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INTRODUCTION 

The steroids of the adrenal cortex are regulators of many physi­

ological processes. The body, in order to maintain homeostasis, has 

mechanisms that regulate the activity and biological lifespan of these 

hormones. The peripheral tissues, by oxidation and reduction of the 

substituted groups of the steroid nucleus at C-3, C-ll, C-20 and ~~-5 

can regulate their biological activity (Berliner and Dougherty, 1961). 

The liver is the major organ concerned with the inactivation and 

excretion of these hormones (Berliner and Dougherty, 1961; and Samuels, 

1960). The major reactions of the liver are reductive, particularly 

with respect to ring A. The liver reduces the ~~-3 ketone to a 3-

hydroxy group (Tomkins and Isselbacher, 195~). Subsequent to this 

reduction is conjugation with glucuronic acid or sulfate (Robbins and 

Lipman, 1956; and Isselbacher and Axelrod,1955). Once the steroid is 

conjugated it is more water soluble and readily excreted in the bile 

and urine. The rate of reduction and conjugation controls the bio­

logical half-life of corticosteroids. 

The control of blood and tissue levels of corticosteroid by the 

liver is important for maintaining physiological homeostasis. An 

alteration or defect in this regulatory system could be beneficial or 

deleterious. An increased or decreased excretion of corticosteroid by 

the liver could be primary to a pathological condition or a result of 

a series of pathological events. The alterations in metabolism could, 

however, be a response to protect the animal from various stresses or 

pathological events. 
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This study was undertaken in an attempt to gain new information 

about the conjugation mechanism and the role it plays in maintaining 

physiological homeostasis. The experiments were performed in vitro 

with livers and kidneys of mice. The effect of x-irradiation on con­

jugation was studied in an attempt to correlate the response of the 

conjugating mechanism to other physiological alterations caused by 

irradiation. The biological half-life of steroids seems to be related 

to their molecular structure (Berliner and Dougherty, 1960b). 

The conjugation of 17a-hydroxycorticosteroids was compared to the 

conjugation of corticosteroids without a hydroxyl group at C-17 in an 

attempt to elucidate biological half-life steroid structure relation­

ships. 



- 3 -

HISTORICAL REVIEW 

Detoxification of foreign compounds by conjugation with glucuronic 

acid was unwittingly discovered by Schmid in 1855. He isolated eux­

anthic acid which, upon acid hydrolysis, yielded a copper reducing 

substance. Baeyer in 1870 stated that the reducing substance should 

have the formula, C6HI007' which we know now as the formula of glucur­

onic acid. Baeyer was of the opinion that the reducing substance was 

Tfa kind of saccharic acid" (Williams, 1947). Jaffe in 1874-78 dis­

covered that o-nitrotoluene was conjugated with a hypothetical acid 

that he considered to be carbohydrate in nature. In 1879 Schmiedberg 

and Mayer isolated glucurone (lactone of glucuronic acid) from camphor­

glycuronic acids excreted by dogs that had ingested camphor (Williams, 

1947) • 

The origin of the glucuronic acid was controversial for years until 

it was demonstrated, in whole animals, that the liver is the major site 

for glucuronide synthesis. It was also demonstrated that this organ 

formed glucuronides more efficiently if it contained glycogen or if the 

animals were fed carbohydrates (Quick, 1926). 

Lipschitz and Bueding (1939) postulated the condensation of three 

carbon fragments to form hexose acids. Mosbach and King (1950) using 

carbon-14 labeled glucose showed that glucose is converted to glucur­

onic acid. Free glucuronic acid added to the system was not used to 

form glucuronides (Douglas and King, 1952; and Sudhof, 1954). Dutton 

and Storey (1954) isolated and identified uridine diphosphate glucur­

onic acid (UDPGA) as the glucuronic acid donor. 
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The first definitive work on the synthesis of glucuronides was 

performed on whole slices from various organs. It was shown that the 

liver is the major organ for glucuronidation of foreign compounds. The 

test substances were borneol, menthol and phenol. It was also shown 

that the kidney had about 1/6 to 1/12 of the liver's ability to form 

glucuronides from those compounds (Lipschitz and Bueding, 1939). 

Glucuronic acid conjugation of o-aminophenol was demonstrated in 

liver and kidney slices. The kidney had a capacity 1/10 that of the 

liver (Storey, 1950). The same study showed that the addition of glu­

curonate to the incubation medium inhibited glucuronide synthesis. The 

fact that glucuronate inhibited glucuronide synthesis reinforced the 

idea that glucuronic acid comes from glycogen through glucose. In 

order to study this problem in a well-defined system, broken cell prepar­

ations were used. It was found that in mouse liver homogenates, glucur­

onide synthesis did not occur. Glcuronide synthesis would occur, 

however, if a boiled extract from liver was added to the medium (Dutton 

and Storey, 1951, 195~. It was found that the active liver factor was 

a uridine nucleotide containing stable phosphate, labile phos.phate and 

glucuronic acid in. the ratio (1:2:1:1). Uridine Sf-phosphate is linked 

to I-glucuronic acid phosphate through a pyrophosphate bond. This com­

pound was given the name uridine diphosphate glucuronic acid (UDPGA). 

The following reaction was postulated: UDPGA + ROH --- UDP + R-O­

glucuronic acid. UDPGA also was postulated as having a role in poly­

saccharide synthesis (Storey and Dutton, 1955). Uridine diphosphate 

glucose (UDPG) had recently been discovered (Caputto et al., 1950). 
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Strominger et al. (195~) had shown that UDPGA could be synthesized from 

UDPG by an enzyme found in particle-free supernatant of animal livers. 

The oxidation of one mole of UDPG to UDPGA requires two moles of DPN+ 

and yields one mole of UDPGA and two moles of DPNH. No intermediates 

have been found. The glucose moiety is oxidized at C-6. 

A method for quantitating glucuronide formation was developed using 

anthranilic acid for the test material. Recovery is approximately 100% 

(Shirai and Ohkubo, 195~). Using this method, various organs of the 

rat were assayed for glucuronide forming ability. The kidneys, duo­

denum, ileum, colon and mesenterium, in addition to the liver, were 

able to form anthranilic-glucuronide. It was found, in agreement with 

Lipschitz and Bueding (1939), that lactate or pyruvate would augment 

glucuronide formation and that addition of glucose or fructose showed 

an inhibiting action. Addition of glycogen and glucose-I-phosphate 

produced high yields of glucuronide (Shirai and Ohkubo, 195~b). 

The first steroid isolated and identified as a glucuronide was 

pregnandiol-glucuronide from human pregnancy urine (Venning and Browne, 

1936). Dutton (1956) using mouse liver homogenate demonstrated the 

synthesis of pregnane-3~, 20~-diol glucuronide, androsterone glucur­

onide and allopregnane-3~, 20~-diol glucuronide. The presence of UDPGA 

was necessary in all cases with the resulting formation of uridine-5'­

pyrophosphate and the ester. The naturally occurring glucuronides are 

beta in structure. The enzyme for this synthesis was located primarily 

in the microsomes. Enzyme activity in other fractions was considered 

to be due to contamination from the microsome fraction (Dutton, 1956). 

Guinea pig, rabbit, mouse and rat liver homogenates all contained the 
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glucuronide catalyzing enzyme. The amount of enzyme and UDPGA content 

decreased in order given (Dutton and Greig, 1957). The enzyme was also 

found in liver homogenates from sheep, pigeon and frog livers (Dutton 

and Greig, 1957). Dutton (1958) demonstrated glucuronide forming 

ability in fetal stomach, gastrointestinal tract and kidney using 0-

aminophenol and (-) menthol as substrates. The fetal rabbit and mouse 

livers are deficient in glucuronide forming enzyme and probably defic­

ient in UDPGA. In guinea pigs the primary deficiency was UDPGA, and 

secondarily, the lack of enzyme. Addition of glucose to incubations 

of fetal guinea pig stomach slices produced a high level of glucuronide 

formation - higher than fetal liver and kidney. 

Glucuronosyl transferase was found in kidney cortex microsomes 

but was absent in the medulla. The formation of uridine diphosphate 

glucuronic acid was demonstrated in kidney and gastrointestinal mucosa 

(Dutton and Stevenson, 1959). They demonstrated that UDPGA was formed 

from UDPG by the same process as in the liver. 

The hepatic conjugation of o-aminophenol with glucuronic acid in 

rats was not impaired by administration of 12.5 m~ of cortisone acetate 

per day for six days or by administration of 25 mg of cortisone acetate 

per day for ten days. Cortisone acetate did inhibit glucuronide con­

jugation in the gastrointestinal mucosa by 50% (Halme, Hartiala and 

Pekanmaki,1959). 

Hartiala, Nanto and Rinne (1958,1959)demonstrated the effects of 

x-rays delivered locally to exposed liver and stomach on o-aminophenol 

glucuronide formation. Using doses of ~OO and 1200 r, the liver demon­

strated a cyclic decrease in conjugation in response to x-irradiation. 
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The stomach, on the other hand, decreased and was still below normal 

on the 21st post-irradiation day. The effect of x-rays on ~-glucur­

onidase was described by Hartiala et ale (1960). There was no real 

correlation between the effect of x-rays on glucuronide formation and 

~-glucuronidase. They concluded that ~-glucuronidase was not responsi­

ble for glucuronide synthesis. There had been some speculation that 

~-glucuronidase was the enzyme responsible for glucuronide formation and 

Hartiala's work showed that this was not the case (Hartiala et al., 1961) 

Skin strips and homogenates of skin were shown to have glucuronide 

forming ability using o-aminophenol as substrate (Stevenson and Dutton, 

1960) • 

Stevenson and Dutton (1962) extensively studied the enzymatic 

catalysis of glucuronide formation in kidneys and gastrointestinal 

mucosa. Various substrates were used and they concluded there was only 

one mechanism of glucuronide formation from UDPGA in these tissues. 

The enzyme, glucuronosyl transferase, was associated with microsomes. 

UDPGA is formed in kidney and gastrointestinal mucosa by the DPN de­

pendent oxidation of UDPG. 

The excretion of steroids as glucuronides has been known since 

1936 (Venning and Browne, 1936), but the mechanism had not been eluci­

dated. The injection of progesterone-C14 and testosterone-4C14 in 

mice and rats demonstrated that the majority of metabolites were ex­

creted as water soluble compounds which were not hydrolyzed by acid or 

alkali (Barry et al., 1952). Dorfman and Ungar (1953) showed that a 

major route of steroid metabolism in the liver was the reduction of 
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the a,~-unsaturated-3-ketone to tetrahydro form. This reduction pro­

duced a hydroxyl group at C-3 which could be readily conjugated with 

glucuronic acid. The reduction of the ~~-3-keto. configuration takes 

place in two steps. The first step is the reduction of the double bond 

requiring TPNH and is considered to be rate-limiting. The second step 

is the reduction of the ketone to a hydroxyl group using either TPNH 

or DPNH as a hydrogen donor. Step one was irreversible and step two 

was reversible. The two reactions are catalyzed by an enzyme from the 

particle-free fraction of liver homogenate (Tomkins and Isselbacher, 

195~; and Tomkins, 1956a,b). 

Fukishima et ale (1955) described the formation of cortols and 

c:ortolones, and Caspi, Levy and Hechter (1953) identified four ring A 

reduced steroids as catabolic products of cortisol. 

The formation of steroid glucuronide required an enzyme from mam­

malian liver microsomes and uridine diphosphate glucuronic acid. The 

steroid must be reduced at C-3and coupling takes place at the hydroxyl 

group at this position and a ~-d-glucuronide is formed. This same 

enzyme catalyzes the conjugation of phenophthalein and thyroxine. This 

appears to be a general mechan1sm involving UDPGA and microsomes for 

the formation of phenolic and alcoholic glucuronides (Isselbacher and 

Axelrod, 1955). 

Berliner and Wiest (1956) demonstrated that in eviscerated animals 

no polar conjugates of glucuronic acid or sulfate were formed. Five of 

the seven compounds isolated had the ~~-3-keto: configuration and no 

tetrahydro compounds were found. This indicates that the liver is the 

major organ capable of reducing the ~~-3-ketone. Berliner, Grosser and 
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Dougherty (1958), in eviscerated rats, showed that the liver was the 

major organ capable of completely reducing ring A of corticosteroids 

to the tetrahydro form. Fibroblast can produce dihydrocorticosteroids 

(Berliner and Dougherty, 1958). 

Tomkins (1957) showed that a crude enzyme fraction was capable of 

reducing many different steroids; further purification, however, demon­

strated that the enzyme became more specific and would reduce cortisone 

but not cortisol. 

Sandberg, Chang and Slaunwhite (1957) showed that humans converted 

significant amounts of cortisol to 17-ketosteroids. De Courcy (1957) 

showed that rat kidney can reduce the ketone at C-20 to a hydroxyl 

group when a TPNH-generating system is added to medium. 

Synthetic steroid analogues are more biologically active than their 

normal counterparts, because they are metabolized at a slower rate 

(Glenn et al., 1957). 

Female rats reduce the ~~-5 double bond at a greater rate than 

males. This was due to a ~~-5a-reductase isolated from liver micro­

somes of the male and female rat. The female rat had no ~~-5~­

reductase while the male did (Forchielli, Brown-Grant, and Dorfman, 

1958). Perhaps this explains the more active ~~-5a-reductase in the 

female. 

Yates, Urquhart and Herbst (1958) showed that triiodothyronine 

increased the total hepatic reduction of ring A of cortisone by 38%. 

Thyroidectomy decreased ring A reduction approximately 50%. They 

suggested that the rate of ring A reduction of corticosteroids controls 
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the rate of ACTH excretion in unstressed animals (Urquhart, Yates, and 

Herbst, 1959). 

The liver is the only organ containing steroid sulfokinase as 

well as phenol sulfokinase. The kidney and intestine contain phenol 

sulfokinase but no steroid sulfokinase (Nose and Lipmann, 1958). 

Gold, Smith and Moore (1959) suggested that once a steroid was 

conjugated no further reduction or oxidation could take place at C-ll 

or C-20. Therefore, the conjugation of tetrahydro C-20 ketones would 

give a Porter-Silber reaction and the conjugated ~-cortols or ~-corto­

lones would not (Streeten, 1959; and Fukishima et al., 1955). Beta­

cortols and ~-cortolones constitute about 30% of the excreted metabolites 

of cortisol and more tetrahydrocortisone is excreted than tetrahydro­

cortisol (Streeten, 1959). Deltal'~-3-keto steroids cannot be reduced 

in ring A by the liver in vitro or in vivo (Streeten, 1959). 

Conjugation is known to abolish or reduce biological activity of 

most steroids (Schneider and Lewbart, 1959). Steroid glucuronides are 

excreted more rapidly than steroid sulfates (Schneider and Lewbart, 

1959) • 

Mc Guire and Tomkins (1959a) observed that A~-5~-reductases are 

in the soluble portion of the cell extracts and that A~-5a.-reductases 

are microsomal. These reductases are not one enzyme but a series of 

enzymes, each capable of discerning small differences in the steroid 

molecule. Mc Guire and Tomkins (1959b) demonstrated that in thyro­

toxicosis there is an increase in TPNH availability and that the intra­

cellular concentration of TPNH regulates the rate of steroid metabolism. 
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Steroid reduction may act to reoxidize TBNH to TPN and thereby accel­

erate metabolic processes dependent on oxidized TPN. 

Delta4-3-keto corticosteroids accelerate glucose-6-phosphate 

oxidation in liver in vitro (Yielding and Tomkins, 1960). Themajor 

excretory products of cortisone metabolism were tetrahydrosteroids with 

the dihydroxyacetone side chain. 

The rates of inactivation and excretion of various steroids are 

variable. In man and animals, corticosterone is excreted more rapidly 

than cortisol CWilloughby, Chen and Freeman, 1959; and Berliner and 

Dougherty,1960b). Gold (1960) postulated that the hydroxyl groups 

at C-ll and C-17 may protect cortisol from metabolic degradation. 

Berliner et al. (1962) postulated that the 17a-hydroxy group may inhi­

bit cortisol conjugation. The steroid, Il-deoxycortisol, is conjugated 

five times as fast as cortisol, although the plasma level is about the 

same. 

Peterson (1960) demonstrated in normal men that 40-60% of the 

administered corticosterone was excreted as glucuronide conjugates 

within 72 hours. Fukishima et al. (1960) demonstrated that 45-50% of 

the excretory products of cortisol in men were tetrahydrosteroids with 

the dihydroxyacetone side chain conjugated with glucuronic acid. 

Cortols and cortolones accounted for 18-33% and C-l9 compounds only 

2-12% (17-ketosteroids). 

Following oral administration of pure 17-ketosteroids, 3~­

hydroxy-17-ketosteroids were excreted as s'ulfates and the 3a-hydroxy-

17-ketosteroids were conjugated as glucuronides (Staib, Teller and 

Scharf, 1960). 
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Recently it has been demonstrated that the parenchymal cell of the 

liver is the primary conjugating cell. The reticuloendothelial cells 

of the liver can reduce ring A but cannot conjugate steroids. It was 

also demonstrated that administration of Land D-triiodothyronine would 

increase the conjugation of unsaturated steroids but not of reduced 

steroids. ACTH and stress, on the other hand, decreased the conjugation 

of unsaturated and reduced compounds in~. The parenchymal cell can 

reduce ring A. The Kupffer cell can oxidize and reduce the substituted 

groups of the steroid molecule (Berliner and Dougherty, 1958: Nabors, 

Berliner and Dougherty, 1960; and Berliner and Dougherty, 1960a,b). 

Berliner, Keller and Dougherty (1961) showed that the ACTH in­

hibited conjugation, not by affecting glucuronide formation alone, but 

rather a more general inhibition was evidenced. 

Reid (1958) pointed out that two or three weeks following adrenal­

ectomy (when there is a high ACTH level) the concentration of uridine 

nucleotides was decreased, including UDPGA. 

Dog kidneys perfused in vivo with etiocholanolone and androsterone 

produced the glucuronides of these two compounds. Sixteen per cent 

of the etiocholanolone was present as glucuronide and l~% of the andro­

. sterone was present as glucuronide. No sulfates or phosphates were 

found (Cohn, Hume, and Bondy, 1960). Stevens, Berliner and Dougherty 

(1961) demonstrated that the kidney could conjugate C-21 tetrahydro­

steroids as glucuronides. 

Pasqualini and Jayle (1961) stated that after administering 300 mg 

of corticosterone or cortisol to normal men, most of these two compounds 
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were found in urine as ester sulfates. The sulfate was attached at C-21. 

Roberts and coworkers have demonstrated that following in vivo adminis­

tration of dehydroisoandrosterone-S04 this compound was converted to 

androsterone and etiocholanolone glucuronides. This indicates that the 

sulfate ester dissociates and can be metabolized to other compounds 

(Roberts, Vandewiele and Lieberman, 1961). 

Hartiala (1961) found that duodenal slices could conjugate as 

glucuronides steroids having a phenolic A ring. Duodenal mucosa was 

unable to conjugate progesterone, pregnandiol, androsterone, testoster­

one or cortisone. Pregnandiol and androsterone have hydroxyl groups 

at C-3 and they were not conjugated by the duodenum. 

Cooke and Taylor (1962) demonstrated that rat livers incubated 

with progesterone under nitrogen formed no glucuronide. When incubated 

with air or pure 02 glucuronides and sulfates were formed. 

The incubation of aldosterone with liver slices in vitro yielded 

primarily tetrahydroaldosterone glucuronide. Slices of kidney produced 

small amounts of tetrahydroaldosterone glucuronide, acid labile aldo­

sterone ~nd free tetrahydroaldosterone. Human kidney slices did form 

small amounts of acid labile conjugates, some glucuronides and some 

tetrahydroaldosterone (Sandor and Lantheir, 1962). 

Perfusion of human placentas with Tyrode's solution demonstrated 

that the placenta can produce free and glucuronide conjugated Porter­

Silber chromogens in vitro. The compounds were identified as cortisol, 

cortisone, Reichsteins' Substance S, tetrahydrocortisone and tetra­

hydrocortisol. These compounds accounted for 50-80% of the total 

Porter-Silber chromogens (Troen, 1961). 
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Sandberg et ale (1956) showed that terminal patients had elevated 

plasma 17-hydroxysteroids, had plasma clearance rates slower than normal 

and excreted less total 17-hydroxysteroids than patients under surgical 

stress. Englert et ale (1957) pointed out that patients with cirrhosis 

of the liver had impaired formation of conjugated 17-hydroxycortico­

steroids following infusion of cortisol. No impairment of conjugation 

was seen after infusion of tetrahydroqortisone or dihydrocortisone. 

They concluded that the delay was in the reduction of the ~4-3-ketone 

to produce tetrahydrocorticosteroids. Tetrahydrocortisone was the 

principal product in the urine. 

Congenital, non-hemolytic, non~obstructive jaundice is a disease 

in which the excretion of bilirubin in the bile~and urobilinogen in 

feces is greatly impaired. Patients with this disease after infusion 

of cortisol showed a normal blood clearance rate of the hormone, but 

the appearance of glucuronide conjugated metabolites in the blood was 

much slower (Peterson and Schmid, 1957). The fraction of glucuronide 

metaboli tes appearing in the urine was half that of normal patients 

following infusion of cortisol. The half-life of tetrahydrocortisol in 

patients with this disease was 70 minutes as compared with a half-life 

of 28 minutes in normal patients. This defect is apparent only after 

loading patients with ring A reduced steroids (Peterson and Schmid, 

1957) • 

Axelrod, Schmid and Hammaker (1957) demonstrated that the ability 

to form UDPGA in rats with congenital jaundice is normal. Microsomes 

from jaundiced rats, incubated with UDPGA, o-aminophenol and bilirubin 

showed a decreased bilirubin conjugation. Since UDPGA levels are normal 
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in congenital, non~hemolytic, non-obstructive jaundice, Barniville and 

Misk (1959) postulated that the defect was in the glucuronosyl trans­

ferase. Schmid et ale (1957) showed a markedly decreased glucuronide 

conjugation of cortisone metabolites, bilirubin, menthol and salicylate 

in congenital jaundice. 

Shocked or stressed rats have a prolonged cortisol turnover when 

compared to normal rats. This prolongation of cortisol metabolism 

in shock or stress does not appear to be due to an increased binding of 

steroids in peripheral tissues. It would appear that the liver's 

capacity to metabolize steroids in shock or stress is the limiting 

factor (Firschein et al., 1957). 

The livers of stressed mice incubated in vitro with cortisol have 

a reduced capacity to conjugate the hormone. Livers of normal mice 

incubated with cortisol and ACTH showed a decreased ability to conju­

gate steroids. ACTH administered to adrenalectomized mice caused an 

increase in the cortisol half-life (Dougherty and Berliner, 1958). 

Eik-Nes and Samuels (1958) stated that changes in cortisol metabolism 

in life threatening stress conditions are probably a reflection of 

reduced hepatic activity. They found that stress increased 17-

hydroxycorticosteroids in the plasma and this increase was due to a 

decreased removal rate. Patients with cirrhosis of the liver have 

a decreased rate of removal of free 17-hydroxycorticosteroids, although 

plasma levels do not rise. The decreased rate of removal is probably 

due to a decreased reduction of ring A and not to the conjugation of 

reduced compounds (Streeten, 1959). 
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Hsia et al (1960) found an in vitro inhibition of o-aminophenol 

glucuronide formation produced by pregnandiol-~, 20a, allopregnane­

triol and pregnanolone. Progesterone inhibited glucuronide conjugation 

of o-aminophenol, phenolphthalein and bilirubin. The most effective 

inhibitors were progesterone, and 17a-ethyl-19-nortestosterone. 

Carbon tetrachloride damaged livers had a reduced glucuronide 

forming ability. Microsomal glucuronosyl transferase was not diminished. 

Reduction in hepatic glucuronide conjugation induced by carbon tetra­

chloride is a quantitative change rather than a qualitative change 

(Isselbacher and McCarthy, 1960). 

Herbst et ale (1960) demonstrated that noxious stimuli reduced 

hepatic capacity to reduce ring A of corticosteroids and also reduced 

food intake. Hepatic ~4-steroid dehydrogenase activity was found to 

be a nearly linear function of food intake. Noxious stimuli that 

failed to affect food intake also failed to affect corticosteroid 

metabolism. It appears that a non-specific decrease in intracellular 

TPNH was responsible for the loss of ~4-steroid dehydrogenase activity. 

Adrenal cortical secretions have been known to influence carbo­

hydrate metabolism since 1940. At this time, Long, Katzin and Fry 

(1940) demonstrated that fed adrenalectomized rats and mice maintained 

normal carbohydrate levels, but when fasted, these animals lose carbo­

hydrates faster than normal animals and also excrete less nitrogen. 

The administration of adrenal-cortical extract to fasted normal animals 

or adrenalectomized animals is followed by a large increase in liver 

glycogen and a slight hyperglycemia. Muscle glycogen was unaffected. 
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Concommitantly, there occurred an increase in nitrogen excretion of 

sufficient magnitude to suggest that the increased protein catabolism 

is the source of the newly formed carbohydrate. 

White and Dougherty (1944) stated that the administration of 

adrenal-cortical trophic hormone or adrenal-cortical extract caused 

a decrease in lymphocytes with a simultaneous increase in total serum 

protein. Thus, the protein needed for gluconeogenesis was made avail­

able from the lymphatic tissue. (For reviews on lymphatic tissue and 

hormones see Dougherty, 1959; and Dougherty, Berliner and Berliner, 

1962) .. 

X-irradiation, nitrogen mustards, fasting, and cortisone all 

enhanced the levels of glutamic-alanine and glutamic-aspartic trans­

aminase in the liver. The increase in these enzymes is probably 

mediated via the adrenal cortex. Adrenalectomy would greatly decrease 

these enzyme levels in liver. Glutamic-alanine transaminase was more 

sensitive to stress than glutamic-aspartic transaminase (Brin and 

McKee,1956). These enzymes are important in gluconeogenesis. 

Gluconeogenesis is enhanced by x-irradiation. Increased quanti­

ties of carbohydrate are made available by increased breakdown of protein 

and increased transamination (McKee and Brin, 1956). Following x­

irradiation of intact fasted animals, liver glycogen drops during the 

first 8-10 hours. This is followed by a striking increase in liver 

glycogen which reaches a maximum at 50 hours. A precipitous fall in 

glycogen values occurs reaching abnormally low values 75-80 hours 

post-irradiation. Adrenalectomy or hypophysectomy will prevent these 

changes in liver glycogen in irradiated animals (McKee and Brin, 1956). 
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Adrenalectomized or hypophysectomized fasted rats are unable to 

maintain normal fasting blood sugar levels. In normal animals, fasting 

produces an increase in glucose-6-phosphatase. In adrenalectomized or 

hypophysectomized animals, fasting does not increase glucose-6-phospha­

tase activity. In fed animals, adrenalectomy or hypophysectomy caused 

a significant decrease in liver glucose-6-phosphatase activity (Weber 

and Cantero, 1957). In cortisol treated animals liver glycogen in­

creases in three hours. Cortisol and its metabolites disappeared from 

the liver one hour before the increase in liver glycogen occurred and 

two or more hours before maximum physiological response occurred. Corti­

sol excites a triggering action on a reaction sequence producing the 

increase in liver glycogen (Hyde, 1957). 

Weber and Cantero (1957) demonstrated that 600 r of total body 

irradiation had no effect on glucose-6-phosphatase in normal or hypo­

physectomized rats, but increased hepatic phosphoglucomutase and 

phosphohexoseisomerase activities. Hypophysectomy abolished this 

response in irradiated animals. The increased liver glycogen follow­

ing irradiation is a reflection of the increased phosphohexoseisomerase 

and phosphoglucomutase activities in the liver. 

The incubation of an enzyme from an aqueous extract of liver, 

together with UDPG and primer glycogen in vitro yields approximately 

equal amounts of UDP and glycogen. This conclusively demonstrates that 

UDPG is used to synthesize glycogen (Leloir and Cardini, 1957; and 

Leloir et al., 1959). 

The incorporation of carbon-l~ labeled glycine into liver glycogen 

occurs rapidly in stressed intact animals and in adrenalectomized animals 
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after cortisone administration (Todd and Allen, 1958). 

Gallagher (1958) demonstrated that cortisol inhibits oxidative 

phosphorylation in normal rat liver mitochondria. This effect of 

cortisol was mediated by increasing the mitochondrial membrane per­

meability. Cortisol destroyed the semipermeable nature of the mito­

chondrial membrane. 

Arginase activity was decreased following adrenalectomy and could 

be restored to normal by cortisone~ Cortisone also stimulates arginase 

activity in normal animals (Bach, Carter and Killip, 1958). Cortisol 

produced an increased trytophan pyrollase activity which was not associ­

ated with an increased tryptophan level, or an increase in tryptophan 

excretory products. This suggests that cortisol is acting as a primary 

inducer of this enzyme (Civen and Knox, 1959). 

Rosen et ala (1959) observed that liver glutamic-pyruvic trans­

aminase (GPT) activity was increased by cortisol, cortisone and several 

other corticosteroids in vivo. Cortisol also increased GPT activity in 

thymus, pancreas, and, to a lesser extent, in the kidney. Estradiol 

and thyroxine produced a slight increase in GPT in the liver. Pro­

gesterone, estradiol and thyroxine interferred with the GPT response 

produced by cortisol. This response in GPT may be a secondary response 

to stress associated with utilization of tissue proteins. Cortisol 

treatment increases hepatic alanine~-ketoglutarate transaminase, but 

had little effect on aspartic-a-ketoglutarate transaminase (Harding 

et al., 1961). 

The physiological maintenance of hepatic fructose-l,6-diphosphate, 

phosphohexoseisomerase and phosphoglucomutase is partially dependent on 
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the pituitary-adrenal axis (Weber and Cantero, 1959a). These enzymes 

are necessary for glycogen synthesis. Glucose-6-phosphatase and 

fructose-l,6-diphosphatase are necessary for the formation of free 

glucose. Irradiation causes an increase in phosphogluconate dehydro­

genase which shunts glucose into the pentose phosphate pathway. Irradi­

ation does not increase glucose-6-phosphatase. If the irradiated 

animals are hypophysectomized, these enzyme changes do not occur (Weber 

and Cantero, 1959b). The shunting of glucose into the pentose pathway 

will lead to glycogen synthesis (Eisenberg et al., 1959). 

UDPGA has been implicated in the synthesis of hyaluronic acid 

(Markowitz et al., 1959). Hydrolysis of UDPGA in vivo and in vitro 

leads to the synthesis of ascorbic acid in goat liver microsomes 

(Pogell and Leloir, 1961). 

Yielding and Tomkins (1959) demonstrated that a large number of 

steroid hormones inhibit the oxidation of DPNH by mammalian enzymes. 

In skeletal muscle the site of inhibition was found to be the DPNH­

cytochrome c-reductase reaction. (This reductase reaction also leads 

to the synthesis of two ATP molecules.) This inhibitory effect of 

steroids could be reversed by a-tocopherol. It is interesting to note, 

at this point, that oxidized DPN is necessary for the conversion of 

UDPG to UDPGA. DPN is rate limiting for the conversion of pyruvate 

to acetyl CoA and C02' which allows carbohydrates to enter the Krebs 

cycle. Steroids can regulate oxidative decarboxylation of pyruvic 

acid by virtue of their ability to inhibit oxidation of DPNH (Yielding 

et al., 1960). Using liver slices from cortisone treated animals, 

Landau et al. (1962) demonstrated an increased incorporation of 
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14- 14-
pyruvate-C and C 02 into glucose and glycogen. The incorporation 

of C02 into pyruvate supports the claim that amino acids can serve as 

a source of carbohydrate in the presence of glucocorticoids, and that 

pyruvate or oxaloacetate is an obligate intermediate in the formation 

of glucose from amino acids. 

The primary mechanism by which glucocorticoids increase gluconeo-

genesis involves stimulation of the pyruvate to hexose pathway and that 

increases in glucose-6-phosphatase and fructose-diphosphatase are 

secondary adaptive changes (Kvam and Parks, 1960). Phosphorylase 

activity can be increased by cortisol, cortisone and progesterone. 

Adrenalectomy will reduce the level of this enzyme (Willmer, 1960). 

Scott in 1937 made the following statement, ~The evidence shows 

that x or r-rays only influence enzymes when the dose is enormous. Cell 

division is inhibited by doses which have little or no destructive action 

on enzymes, and, therefore, the inhibition is produced by a process in 

which enzymes play no important part," (Dale, 194-0). 

Purified enzymes in aqueous solutions are radiosensitive only at 

very low concentrations or very high doses of radiation (Dale, 194-0). 

White and Dougherty (194-5) and Dougherty and White (194-6) demon-

strated that 200 r within three hours caused a decrease in adrenal 

cholesterol, a lymphopenia, tissue lymphocyte degeneration and an in-

crease in total serum proteins and gamma globulin. Two hundred rads 

would produce the same changes one day post-operative in adrenalectomized 

mice. Ten rads would produce the sam~ result in intact mice, but not 

in adrenalectomized animals. Irradiation stimulates the pituitary-
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adrenal axis (Frank and Dougherty, 1955). Patt et ale (1947) confirmed 

White and Dougherty and demonstrated that at seven days post-irradiation, 

adrenal cholesterol greatly increased. The increased cholesterol indi­

cates either increased adrenal activity or adrenal exhaustion. This 

adrenal response to x-rays (600-900r) was prevented by hypophysectomy, 

but pituitary abalation did not alter the degree or time course of 

splenic and thymic involution. Hypophysectomy appeared to potentiate 

x-ray toxicity (Patt et al., 1948). 

Wail and Frenkel (Kretzschmar and Ellis, 1947) in 1925 showed that 

4-8 hours after irraidation, changes in mitochondria become apparent 

when no other morphological change in the cell could be observed. 

Kretzschmar and Ellis (1947) suggested that the breakdown of mito­

chondria after irradiation may contribute to a series of metabolic 

changes incompatable with continuance of the normal function of the cell. 

Dogs receiving 300 r exhibited a significant increase in 17-

ketosteroids (Zimmerman) some time between the 5th and 12th day post­

irradiation. The 17-ketosteroids then fell to subnormal or normal 

values showing a return to normal on the 30th to 40th days (Lawrence, 

1949). Brayer et ale (195~ using pigs showed a cyclic alteration in 

total neutral adrenal steroid excretion following 750 or 1000 r. 

French et ale (1955) demonstrated an increase in plasma 17-

hydroxysteroids shortly after doses of 50-800 r, peaking at 4-8 hours 

and returning to normal within 12 hours. Degree of increase and dura­

tion were related to dose. After the first 12 hours steroids remained 

normal until a terminal increase shortly before death. Terminal response 

was two to three times that of maximum ACTH response. 
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Spleen mitochondria from rats given 800 r showed a reduction in 

oxidative phosphorylation capacity. Normal mitochondria given 2000 r 

in vitro were unaffected. This would indicate a physiological effect 

rather than a direct effect of x-irradiation (Potter and Betheel, 1952; 

and Van Bekkum et al., 1954-). 

Mice given 500 r to the head could be protected with cortisone 

or deoxycorticosterone given before or after irradiation (Mirand et al., 

1952). Santisteban et al. (1954-) demonstrated that adrenalectomized 

irradiated animals die sooner, at a faster rate, and with a higher 

mortality than intact irradiated animals. Cortisone tends to restore 

resistance to irradiation in adrenalectomized animals but did not seem 

to make them more resistant than intact animals. Estrogens and di­

ethylstilbesterol given for a week prior to irradiation will afford 

some radioprotection. Androgens had no effect. The same amount of 

protection gained by giving stilbesterol before irradiation was 

achieved if stilbesterol was given immediately after irradiation 

(Mirand and Hoffman, 1954-). 

Oxygen consumption of tissue slices from spleen and thymus given 

4-00 r showed a marked decrease. Maximum inhibition was at 4-8 hours. 

Additions of glucose, pyruvate, and Krebs cycle intermediates did not 

alleviate the radiation induced inhibition of oxygen consumption 

(Sullivan and Dubois, 1955). Miller et al. (1955) demonstrated that 

700 rand 7000 r reduced ATP synthesis by 25% at 72 hours. Animals 

given 700 r gradually recovered their ATP synthesizing ability. The 

reduction in ATP synthesis in the 7000 r group was progressive. 
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Eichel and Sprites (1955) studied the effects of 700 rand 980 r 

on the liver DPN and DPNH levels. They found that 700 r had very little 

effect and that 980 r decreased DPNH by 15-32% and had no apparent 

effect on DPN. 

Hypophysectomy reduces the resistance of rats to whole body irradi­

ation. Thyroxine was the only substance found that increased per cent 

survival. Hypophysectomized, irradiated animals treated with insulin 

died sooner than hypophysectomized, irradiated controls (Sellers and 

Barlow, 1955). 

Unilaterally adrenalectomized mice given 50 r of x-ray to the 

head, showed an adrenal hypertrophy ten days after irradiation. Doses 

greater than 500 r did not cause an adrenal hypertrophy and as dose 

increased an adrenal atrophy appeared (Mirand and Hoffman, 1955). 

Adrenal atrophy could be reversed by giving estrogens for seven days. 

Ungar et al. (1955) and Rosenfield et ale (1955) described the 

effects of 2000 r of r-irradiation on calf adrenals in vitro. They 

found a reduction in the amount of cortisol and corticosterone se­

creted in the irradiated gland versus the contralateral un-irradiated 

gland. This decrease was ascribed to a significant reduction in 11, 

17, and 21-hydroxylation as well as a decrease in the oxidation of 

~5-3~-hydroxy group to the ~4-3-ketone group. Tonkikh (1958) using 

the muscle work test to evaluate adrenal function following irradi­

ation, found an increase at 24 and 48 hours, and a return to normal 

by 72 hours. Seven days post-irradiation adrenal output fell below 

normal and the animals began to die. Administration of ACTH beginning 
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on the third day post-irradiation did not increase the adrenal output 

on the seventh, eighth or ninth day. This leads us to suspect that 

some mechanism which is unresponsive to ACTH is responsible for the 

terminal decrease in adrenal production. Krebs (1956) states that 

there are metabolic reactions in the body especially vulnerable to 

extraneous agents. A decrease in the reaction rates of these "pace­

maker" reactions will be mirrored in a diminished overall rate of 

metabolism. These "pacemaker" reactions are usually reactions in­

volving reduced or oxidized coenzymes. Any change in amount of 

coenzyme or change in the natural biological equilibrium constant for 

the amount of reduced or oxidized coenzyme will block one of these 

"pacemaker" reactions (Yielding and Tomkins, 1959; and Yielding et al., 

1960). Berliner, Berliner and Dougherty (1962) demonstrated that 

dogs with internally deposited radionuclides had a decreased adrenal­

cortical biosynthesis. This was due to a lack of 11, 17, and 21-

hydroxylation. Adrenal biosynthesis can be restored to control values 

by adding TPNH. 

Glucose metabolism is impaired 2~ hours after irradiation and is 

not a fasting phenomenon. The conversion of glucose-Cl~ into C02' 

fatty acids and glycogen indicated a block in the glycolysis pathway 

at a point, or points, before the triose level. Fructose metabolism 

apparently was unimpaired. This block could possibly be an impairment 

of hexokinase once glucose enters the cell (Hill et al., 1956). More­

house and Searcy (1957) demonstrated that irradiation increased the 

incorporation of amino acids into glycogen. It was also observed that 
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amino acids may serve as a source of carbons for glycogen whether they 

are glucogenic or ketogenic. 

Bacq et ale (1957) observed that adrenals grafted into the anterior 

chamber of the eye in adrenalectomized rats responded to total body 

irradiation with the response of adrenals in intact animals. The 

adrenal ascorbic acid content of hypophysectomized rats with two pitu­

itary grafts in each eye decreased two hours after 850 r of total body 

irradiation, returned to normal at 2~ hours, and did not show the 72 hour 

drop observed in the controls. 

Depression of glycolysis in x-irradiated animals is due to an 

immediate decrease in DPN rather than to an inhibition of a glycolytic 

enzyme (Maass and Schubert, 1958). The reaction inhibited by the 

decreased DPN concentration is the triose phosphate dehydrogenase step 

in glycolysis. Holzer (1958) observed that modern cytostatic agents 

are obviously based on a similar mechanism. He found a primary inhi­

bition of DPN metabolism with cytostatic agents. The thymus had a 

decreased DPN and cytidine diphosphate concentration following 800 r 

of whole body irradiation. There was also a decrease in nucleotide 

synthesis as measured by p32 uptake into these compounds: DPN, 2'_ 

AMP, 3'-AMP, ATP, ADP, 2' and 3'-CMP, CDP, CTP, UMP and UDPG (Maass 

and Schubert, 1958). 

There is an impaired glucose utilization following 500 r as 

measured by a glucose tolerance test. This impairment can be correl­

ated with pituitary-adrenal response as well as change in ~/a cell 

ratios in the islets of Langerhans of the pancreas. There is also an 
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increase in thyroid activity at 2~ hours post-irradiation followed by 

a decrease to below normal values (Allegretti, 1958). 

Liver slices from irradiated rats showed a dose dependency for 

cortisol metabolism. Doses of ~28 rand 856 r resulted in a 10-15% 

decrease in cortisol metabolism at four hours, 2~ hours and two weeks 

post-irradiation. Doses ranging from 1712 r to 8750 r resulted in a 

33-35% decrease in liver's ability to metabolize cortisol. Cortisol 

metabolism was measured with the Porter-Silber reaction which is 

specific for the 17, 21-hydroxy, 20-ketone side chain (Lott and Pryor, 

1959). Berdjis (1959) demonstrated that cortisone reinforced the 

injurious effects of irradiation. These injurious effects were evident 

in cortisone treated rats irradiated in both kidneys with 1500 r. 

The kidneys showed capillary thrombosis and glomerulonephrosclerosis 

with necrosis and/or hemorrhage. 

Kochetov (1959) found, 2~ hour post-irradiation, that glucose-6-

phosphate and 6-phosphogluconate dehydrogenases undergo an increase, 

in addition to an increased ribose-5-phosphate breakdown. Fructose 

diphosphate increased and sedoheptulose-7-phosphate utilization de­

creased. These changes indicate a shift from the transaldoase reaction 

to triose condensation into fructose-l,6-diphosphate with subsequent 

dephosphorylation in irradiation. These enzymatic changes can be 

correlated with the increase in glycogen and glucose following irradi­

ation. 

The effect of ionizing radiation on chromosomes has been known 

since 1903. Since that time a tremendous amount of work has been done 
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(Muller, 1958; and Butler, 1959). The effect on cellular DNA synthesis 

and on mitosis has been elucidated by Lajtha et ale (1958). Cell 

division can be separated into three time periods: Gl - long resting 

period, S - DNA synthesis period, and M - mitosis. Once cells begin 

DNA synthesis, 200-300 r will not inhibit it. If the cells are not in 

DNA synthesis but in the Gl period, 200-300 r will prevent one-half of 

these cells from entering into DNA synthesis. Therefore, once a cell 

enters into DNA synthesis and mitosis, large doses of irradiation are 

necessary to inhibit it. If a cell is in the Gl period, small doses 

of irradiation will prolong its resting period, although it may prevent 

DNA synthesis altogether. There must be a metabolic system present 

during the resting period which is closely associated with DNA syn­

thesis and which is more radiosensitive than DNA synthesis (Lajtha 

et al., 1958). 

Osawa, Allfrey and Mirsky (1957) showed that calf thymic nuclei 

will phosphorylate intranuclear adenine, guanine and uridine mono­

phosphates to the corresponding triphosphates aerobically at OOC. 

Creasy and Stocken (1958) found that 100 r of total body irradiation 

completely suppressed high energy phosphate generation in nuclei; even 

25 r led to a 50-80% inhibition (thymus, spleen, lymph nodes, bone 

marrow and intestinal mucosa). There is recovery following sublethal 

doses, but not after 1000 r. Recovery commences in the third day 

post-irradiation and is complete in about 100 hours post-irradiation. 

Hogeboom and Schneider (1952) described the synthesis of DPN in 

cell nuclei. They found that 69-101% of the total enzymatic activity 

was in the nucleus. The coenzyme is formed in the nucleus and trans-
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ferred to the cytoplasm. Hemingway and Carter (1958) demonstrated that 

cortisone decreased the mitotic rate in regenerating rat liver. This 

effect was obviated by growth hormone. They suggest that cortisone was 

blocking the transfer of material between the nucleus and cytoplasm. 

Hemingway (1959) observed that 200 r caused a considerable reduction 

of mitosis in regenerating rat liver and moderate to severe nuclear 

damage in both normal and adrenalectomized rats. In spite of this 

damage, a high mitotic rate is seen in liver from adrenalectomized 

rats, mitosis often proceeding in nuclei obviously breaking down. The 

fact that mitotic rate can be separated from nuclear degeneration in­

dicates that the usually accepted radiation effect comprises at least 

two factors: (a) a hormonal inhibition mediated by corticosteroids 

as part of the general stress response, and (b) a breakdown of nuclei 

due to a block in nucleic acid synthesis. Animals with intact adrenals 

tolerate radiation better than adrenalectomized animals. Thls study 

shows less nuclear degeneration in normal rats than in adrenal­

ectomized rats. 

It appears that the primary action of the ionizing radiation is 

to bring about hyperactivity of the anteri~ pituitary with a subse­

quent increase in blood levels of TSH and ACTH. The target glands of 

these two hormones are stimulated to overproduce their hormones~ The 

excessive amounts of thyroxine and corticosteroids are responsible, 

in turn, for observed depression in phosphate:oxygen ratios in spleen 

and liver mitochondria. The effect on the spleen mediated through 

the pituitary-thyroid axis and the effect on the liver is mediated 

through the pituitary-adrenal axis. Head shielding during whole body 
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irradiation offers complete protection (Benjamin and Yost, 1960). 

Irving and Perkinson (1960) observed that I.P. injections of p32 

inhibited oxygen consumption in rat liver slices. Anaerobic glycolysis 

was also inhibited. There was an increased liver glycogen. Yokata 

(1960) demonstrated that 1-3 r would inhibit tissue respiration of the 

spleen, but did not affect respiration of liver or kidney. Kerppola 

(1960) observed that rats pretreated with cortisone had decreased oxi­

dative phosphorylation in liver mitochondria. The effect was most 

pronounced in female rats 12 months old or older. Uncoupling of oxi­

dative phosphorylation by cortisone and inhibition of the associated 

ATP production' seems to provide and explain many of the tissue changes 

caused by cortisone. 

Plasma levels of 17-hydroxysteroids remained within control values 

following irradiation of rhesus monkeys until shortly before death 

when a marked increase appeared. The magnitude was greater than that 

obtainable from ACTH. This effect could be due to a decreased rate of 

removal of cortisol and its metabolites from the plasma (Wolf, Bowman 

and Harlow, 1961). 

Hilz et ale (1961) observed that the irradiation of Ehrlich 

ascites tumor cells with 3000 r decreased the intracellular DPN con­

tent by 20-50%. The addition of nicotinamide would counteract these 

effects. When DPN levels were restored, DNA synthesis was restored. 

Thus, the radiation effect does not appear to be linked to the syn­

thesis of DPN per~. 

Dose and Dose (1961) showed that the decrease in DPN and ATP in 

Ehrlich ascites cell was dose-dependent. Potassium transport was also 
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affected. The addition of inorganic phosphate, ATP and ADP would 

restore the transport function to normal, but would not restore the 

DPN levels (dosage in range of kiloroentgens) • 

Adachi, Chow and Rothman (1962) reported that irradiation of skin 

caused a decrease in phosphorylase activity by 20%. The synthesis of 

glycogen from UDPG was increased by 23%. This indicates that UDPG is 

the main precursor of glycogen in the skin. 

The liver is a remarkably radioresistant organ as judged by mor­

phological studies (Ely, Ross and Gay, 1957). The liver usually does 

not show morphological changes below 12,000 r in ordinary animals 

CW. D. Claus, 1958). The radiosensitivity of this organ is usually 

determined by the diet. It has been reported that rats given a low 

protein diet for 30 days and then x-rayed with 500 r developed nodular 

atrophic cirrhosis. Rats fed a high protein diet and x-rayed showed 

no cirrhosis at death CWhite et al., 1954). 

The kidneys are considered to be rather radioresistant, but the 

statements in the literature are not in accord. Usually doses of 

several thousand roentgens are necessary to cause renal damage CWarren, 

1942). Furth et ale (1954) has reported slight renal chan~s develop­

ing several months after exposure to 500 r in mice. Mouse kidney has 

been reported to be radiosensitive during compensatory hypertrophy 

(Rosen and Cole, 1960) following unilateral nephrectomy. 
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MATERIALS AND METHODS 

The tissues used in these studies were taken from male mice of 

the CBA strain. The average age of the mice at sacrifice was 8~ days. 

The mice were maintained in a controlled environment and were given 

water and laboratory chow ad libitum. 

The control mice and the experimental animals were chosen by ran­

dom selection. In the irradiation experiments the animals were pooled 

and then divided into groups prior to irradiation. Five groups were 

selected 1, 5, 13 and 21 days post-irradiation, and non-irradiated 

controls. The animals for the rate study were chosen in the same manner 

The control animals were non-irradiated normal animals. The irradiated 

animals were irradiated as a group. Five days later they were sacri­

ficed and the kidneys and livers were incubated. 

The mice were irradiated under the following conditions: a Westing­

house Quadrocondex x-ray machine was used; the machine settings were 

250 kilovolts and 15 milliamps with a 1/2 mm copper + 1 mm aluminum 

filter; and the irradiation chamber was 50 cm from the tube. 

The mice were irradiated in a plexiglass chamber designed to hold 

16 animals (Fig. 1). The dose rate was measured in air with a Victor­

een thimble type ionization chamber. A total of four measurements of 

dose rate were made; two at the inner circumference of the chamber 

and two at the outer circumference. The average of these measurements 

in roentgens per minute, corrected for standard temperature and pres­

sure, gave a dose rate of 82 r/minute. The animals were given a total 

of 500 roentgens, which is a LD 50/30 dose for CBA male mice in our 

laboratory. 
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Fig. 1. Mouse Irradiation Chamber 
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Hormones 

Four different steroid hormones were used in this study: corti­

costerone-l,2-H3 (4-pregnen-ll~,21-diol-3,20-dione), cortisol-4-C14 

(4-pregnen-ll~,17a,21-triol-3,20-dione) - New England Nuclear, Inc., 

compound X (pregnane-3a-ol-ll,20-dione-4-Cl~, and compound XIII 

(pregnane-3a,17a-diol-ll,20-dione-4-C1 4) - N.I.H. Endocrinology Study 

Section (Fig. 2). The stock solutions of steroids were stored in a 

mixture of benzene:acetone (10:1), at -20oC in a volume large enough 

to minimize radiochemical decomposition. The steroids were purified 

by paper chromatography using Zaffaroni* techniques. The pregnane-

3a-ol-ll,20-dione-4-C14 was received as an acetate. In order to obtain 

the free compound, the acetate moiety was removed b~ incubating with 

aqueous K2C03 (2.5~ and methanol for three hours at 37oC. The free 

steroid was then extracted from the water with chloroform (CHC13) and 

purified by paper chromatography. The steroids were diluted with the 

appropriate non-radioactive steroids to adjust the specific activity 

to the desired values. The dilution was made with methanol and a very 

small amount of proplyene glycol. The steroid was pipetted into the 

flasks and the solvent was removed by evaporation under nitrogen (N2) 

leaving the steroid in the propylene glycQl. 

Incubations 

The animals were sacrificed by cervical dislocation. The liver 

(gallbladder removed) and kidneys were immediately removed and placed 

in iced buffer. 

*Recent progress in hormone research, Vol. 8, 1953. 
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structural formulas of steroids used. 
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The tissues were finely minced with a razor blade. One gram of 

tissue was placed in a 125 ml Erlenmeyer flask with 20 ml of 0.1M 

phosphate buffer (pH 7.~). The steroid was already in each flask as 

mentioned previously. A total of 100 millimicromoles (m~ of steroid 

was present in the flask (50 m~ of tritium labeled steroid and 50 m~ 

of carbon-l~ labeled steroid). The standards were prepared from stock 

solutions in the same manner as the samples except that only one steroid 

was in each flask. 

Boiled liver and kidney served as incubation controls. The liver 

and kidney were boiled for ten minutes and then incubated for three 

hours with two of the steroids. mentionedabov€!. 

The ratio of activities of tritium to carbon-l~ was 15:1 disin-

tegrations per minute (dpm). The liver was incubated together with 

corticosterone-l,2-H3 and cortisol-~-Cl~ or pregnane-3a-ol-ll,20-dione­

~_Cl~ or pregnane-3a-17a-diol-ll,20-dione-~-Cl~ The same procedure 

was followed with the kidney. The flasks were incubated at 37 0 C + 20 C 

in an American Instrument Co. wide range laboratory bath for three 

hours. The incubations for the rate study were for the following time 

periods: 5, 15, 30, 60, 120 and 180 minutes for x-irradiated and 15, 

60 and 180 minutes for controls. The reaction was stopped by adding 

20 ml of acetone to each flask. 

Extraction of Products (Fig. 3). 

The flasks were extracted three times with equal volumes of warm 

acetone (~OoC) as soon after incubation as possible. The acetone ex­

tract was filtered through Ushark skin" (Schleicher and Schuell Co.) 
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Fig. 3 . Flow sheet of extraction procedure. 

Free Non-conjugated 
Steroids (CHC13 : MEOH) 

Incubated Tissue Mince 

Acetone Extraction (40ob) 

Protein Free Filtrate 

Ethyl Acetate: H20 Partition 

Conjugated Steroids 
H20 Soluble 

(3-glucuronidase 
Hydrolysis 

Free Steroid 
Hydrolized glucuronosides 

(CHC13 : MEOH) 

Ethyl Acetate: H20 
Partition 

,Remaining Conjugates 
H

2
0 Soluble 



- 38 -

filter paper to remove particulate matter. The acetone extract was 

then evaporated in vacuo with a flash evaporator in a ~OoC water bath. 

The remaining water residue was exhaustively extracted with equal volumes 

of ethyl acetate and the extract was evaporated to dryness in vacuo. The 

water fraction was stored at -20oC until a ~-glucuronidase hydrolysis 

could be performed. The ethyl acetate fraction contained the free (non­

conjugated) steroids. This fraction was brough to a total volume of 

10 ml with chloroform:methanol (CHCl3 :MEOH - 1:1) and stored at -20oC. 

The aqueous fractions were submitted to a ~-glucuronidase hydrolysis 

by Sigma bacterial ~-glucuronidase. The method used was developed by 

Dr. Charles D. West of the Department of Biological Chemistry at the 

University of Utah. The water fractions were made up to a standard 

volume of 20 ml and transferred to a 50 ml Erlenmeyer flask. Fifty mg 

of ethylenediamine tetraacetic acid (Sigma Chemical Co., disodium salt), 

80 mg of cysteine (California Corp. for Biochemical Research), 2 ml of 

0.75M phosphate buffer (pH 6.5), 2000 units of ~-glucuronidase and one 

drop of chloroform were added to each flask in the order given. The 

flasks were incubated for 17 hours at 37 + 2.0oC. 

After hydrolysis, the samples were re-extracted with ethyl acetate 

as before. The ethyl acetate fraction now contained those steroids that 

had been conjugated as glucuronides. This fraction was made to a total 

volume of 10 cc with CHC13:MEOH (1:1) and stored at -20oC. 

Radioisotope Analysis 

A Packard automatic liquid scintillation spectrometer series 31~A 

was used for determining the radioactivity in all samples. The advent 

of this type of instrument makes it possible to count two or more 
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isotopes simultaneously. Carbon-14 and tritium are ideally suited 

for this technique of double isotope counting. 

In all incubations, with the exception of standards, two differ­

ent steroids were used, one labeled with tritium and one labeled with 

carbon-14. Several different methods are available for double isotope 

work (Okita et al., 1957). We selected the method of simurtaneous 

equations (Mays et al., 1958) because they are readily evaluated by 

a digital computer. 

The simultaneous equation method is based on the use of a carbon-

14 standard and a tritium standard. The amount of radioactivity in 

each sample is represented as a fraction of amount of radioactivity in 

each standard. The Packard spectrometer is set in the following manner: 

high voltage 1150 volts, discriminator A = 10 volts, discriminator B = 

50 volts, discriminator C = 70 volts. The machine is set to split 

channel operation, mode 2. Figure 4 gives an idealized representation 

of the pulse height spectrum of carbon-14 and tritium at the above 

settings. It also illustrates that most of the H3 activity occurs in 

channel I with a small amount in channel II. Carbon-14, on the other 

hand, has more activity in channel II than in channel I. 

Let: 

A = count rate of the H3 standard (a) 

B = count rate of the Cl4 standard (b) 

K = count rate of the sample 

X = the fraction of the standard of (a) in the sample 

y= the fraction of the standard of (b) in the sample 
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In the sample the sum of the individual count rates equals the 

total count rate: 

. Therefore, 

A1X + B1Y = Kl 

A2X + B2Y = K2 

B2Kl - B1K2 
X = 

A1B2 - A2Bl 

Y= 
A2Kl - A1K2 

B1A2 - B2Al 

(channel I) 

(channel II) 

The above form of the equation is readily evaluated by digital 

computers. A Burroughs 205 Datatron computer was used in this study. 

These equations may also be evaluated by hand, using a desk calculator. 

The following is the form of equation used when evaluating by hand. 

The only fault inherent in this method is that mistakes in pipetting 

or partial loss of sample are greatly magnified. 
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Radioactive chromatograms were scanned by a Vanguard Model BOO 

automatic chromatogram scanner. All radioactive samples were counted 

for a time period sufficient to attain statistical accuracy. 

Sample Preparation for Radioactive Analysis 

All samples, including standards and zero controls, were made up 

to a total volume of 10 ITll. A 1 ml aliquot was taken and placed in a 

scintillator vial. The solvent was evaporated under N2 to dryness. 

Twenty milliliters of scintillating solution were placed in each vial 

and cooled to -BoC. The samples were then counted. 

Statistics 

The rate study curves were plotted on logarithmic paper. The 

logarithm of per cent free steroid was plotted against the logarithm 

of time in minutes. The plot of observed values gives a straight line. 

These points can be statistically fit with a line that best fits the 

observed values. The method of least squares* was used to determine 

the line of best fit. The resulting empirical equation is a power 

function of the form: 

where 

x = the per cent of steroid remaining free at time t. 

a = intercept at t = 1. 

b = the exponent of t. 

*F. S. Action, Analysis of straight-line data, John Wiley & 
Sons, 1959. 

(1) 



- 43 -

A logarithmic transformation of the power function yields: 

log X = log a + b log t (2) 

which is analogous to the equation for the straight line: 

Y=A+BX (3) 

In Eq. (2) b becomes the slope of the line and can be treated 

statistically as a regression coefficient. 

Statistical analysis was performed using Student's "t test." 

The regression coefficients were tested for significant difference 

from zero and for significant difference between control and x-irradi-

ated groups at the 95% confidence level. A standard table of twas 

used to determine the range of P. 

The original pilot study for this thesis was done using the 

methods described above with the following exceptions. 

1. Only one steroid was incubated per flask. 

2. Each flask contained 2.5 ~ TPNH and 2.5 ~ glucose-6-

phosphate. 

3. Aliquots of both free steroid and water fractions were counted 

in the Packard spectrometer. The efficiency was determined 

for organic and water fractions by using an internal standard 

14-of C toluene. Using these efficiencies, the cpm are con-

verted to dpm, and all subsequent calculations were based on 

dpm .. 



- 44 -

4. The per cent of water soluble conjugates was calculated by 

dividing dpm in water by total dpm (free dpm + H20 dpm). Per 

cent glucuronoside was calculated in the same manner by divi­

ding the dpm in ethylacetate after ~-glucuronidase by the 

total sample dpm (free dpm + H20 dpm). 

5. Cofactors (TPNH, glucose-6-phosphate, and UDPGA) were obtained 

from Sigma Chemical Co. 
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RESULTS 

Conjugation and formation of glucuronides by mouse liver, kidney and 

small intestine. 

A single isotope pilot study. The data in Table I represent the 

original pilot study made to determine if kidney and small intestine 

could conjugate, as glucuronosides, 6 4-3-keto corticosteroids and/or 

3-hydroxy corticosteroids. One steroid was incubated per flask. 

The data are presented as per cent of the total steroid incubated 

which is rendered water soluble during incubation and the per cent of 

that water soluble steroid which is conjugated as a glucuronide. Per­

centage of total steroid as glucuronoside is also included. Zero 

controls were subtracted from each value. Figure 5 illustrates the 

step-by-step conjugation of cortisol. 

The small intestine was unable to conjugate any of the three 

steroids. 

The kidney was able to conjugate 32% of the incubated compound X 

(Fig. 2) and 5% of the incubated corticosterone (Fig. 2) in the presence 

of TPNH and glucose-6-phosphate. The amount of cortisol conjugated was 

negligible. In this study, 30% of the compound X was conjugated as 

glucuronoside by the kidney. The amount of corticosterone present as 

glucuronoside was not detectable. 

The liver was able to conjugate all three steroids. The liver 

conjugated 19% of the cortisol (Fig. 2), 25% of the corticosterone, and 

42% of the compound X. The liver conjugated much more compound X than 
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Fig:~ 5 Example of steps involved in conjugation of cortisol. 



TABLE I: In Vitro incubation of steroids with various tissue 
~ mice (pilot study). : 

Tissue Steroid Incubated* 

Small Cortisol 
Intestine 

Corticosterone 

Pregnane-3a-ol-ll,20-dione 

Kidney Cortisol 

Cort-ico sterone 

Preg~ane-3a-ol-ll,20-dione 

Liver Cortisol 

Corticosterone 

Pregnane-3a.-ol-ll,20-dione 

~E- 50 rnj.l. Moles of steroid incubated. 

f means and standard deviations. 

No. of 
Incubations 

2 

4 

6 

3 

4 

7 

2 

5 

8 

% water 
soluble % water soluble 
Steroidsf as glucuronosidesf 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 

4.96 ± 4.5 Not detectable 

31.8 ± 1.65 29.4 ± 2.03 
(9.35 of total steroid) 

18.8 Not determined 

25.4 ~± 0.81 54.6 ± 0.55 
(13.8 of total steroid) 

42.3 ± 2.2 27.2 ± 1.20 
(11.5 of total steroid) 

+" ........ 
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it did either cortisol or corticosterone. The per cent of water soluble 

corticosterone conjugated as a glucuronoside is double the per cent of 

water soluble compound X conjugated as glucuronoside. However, the 

total amount of compound X and corticosterone present as glucuronoside 

is almost the same. The kidney conjugates compound X at about the same 

rate as the liver. 

Double isotope study. Following the pilot study further work was 

done to verify the results in Table I. It was decided to incubate two 

different steroids with the same tissue in the same flask. Corti­

costerone and compound X were used. The values in Table II are presented 

slightly different than in Table I. The amount of steroid conjugated 

becomes per cent of the initially incubated steroid remaining unconju­

gated after the incubation (free steroid). The per cent water soluble 

steroid as glucuronoside becomes per cent of the initially incubated 

steroid rendered free by ~-glucuronidase hydrolysis (% steroid as 

glucuronoside). 

After incUbation of the kidney, 95% of the corticosterone and 59% 

of the compound X remained as free steroid. Thirty-eight per cent of 

the compound X was conjugated as a glucuronoside. The amount of corti­

costerone conjugated as a glucuronoside was very small. Following in­

cubation of the liver, 72% of the corticosterone and 71% of the compound 

X remained as free steroid. Six per cent of the corticosterone and 9% 

of the compound X was conjugated as a glucuronoside. 

In this experiment all of the compound X conjugated by the kidney 

was present as a glucuronoside, in contrast to the liver which formed 

glucuronosides from 9% of the compound X. On a basis of micromoles of 



Tissue 

Kidney 

Liver 

* 

TABLE II: Conjugation of Steroids by Mouse Liver and Kidney 
in vitro (Two Steroids). 

steroid Incubated~~ 

Corticosterone-l,2-H3 

Pregnane-Ja-ol-ll,20-
dione-4--C14 

Corticosterone-l,2-HJ 

Pregnane-3a-ol-ll,20-
. dione-4-C14 

50 ~ Moles Incubated 

No. of 
Incubations 

6 

6 

6 

6 

% of Initially Incubated 
Steroid Remaining as 
Free Compound f 

95 .19 .± 2. 86 

59.54 .± 5.21 

72.]2..± 2.61 

70.91 .± 2.93 

f Mean + Standard Deviation 

% of Initial Steroid 
Rendered Free by B­
Glucuronidase Hydro­
lysis 

37.59 .± 3.55 

6.56.± 1.93 

8.96 .:!: 2.28 

-1= 
!.D 
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compound X glucuronoside formed per gram of tissue, the kidney was more 

efficient than the liver. The liver conjugated more corticosterone than 

the kidney because of its ability to reduce ring A. The liver formed 

slightly more glucuronoside from compound X than it did from corti­

costerone. 

The influence of steroidal structure on conjugation and glucuronide 

formation. 

This experiment was designed to obtain information about the in­

fluence of steroidal structure on the glucuronoside forming ability of 

mouse kidney and liver. Corticosteroids containing the 17a-hydroxy 

group were compared to compounds without the 17a-hydroxy group. This 

was the only difference between comparative steroids. 

The data in Table III indicate that following incubation of the 

kidney, 65% of the compound X and 9~% of the compound XIII remained as 

free steroid. The kidney conjugated 30% more compound X than it did 

compound XIII. The value of P indicates that this is a highly signi­

ficant difference. The conjugation of cortisol and corticosterone by 

the kidney is very small and there is no significant difference be­

tween them (Fig. 6). The kidney conjugated 18% of the compound X and 

3% of the compound XIII as glucuronosides. The difference between 

compound X glucuronoside and compound XIII glucuronoside is highly 

significant (Fig. 7). The amount of corticosterone and cortisol glu­

curonoside is negligible. 

After incubation of the liver, 70% of the compound X and 85% of 

the compound XIII remained as free steroid (Table III, Fig. 6). The 



Tissue 

Kidney 

Liver 

~~ 

r 

TABLE III: Influence of steroidal structure on conjugation and 
glucuronoside formation by mouse liver and kidney 
in vitro. . 

steroid* 

Pregnane-3a-ol-ll,20-dione 

Pregnane-3u-17a-diol-ll,20-dione 

Corticosterone 

Cortisol 

Zero incubation control 

Pregnane-3a-ol-ll,20-dione 

Pregnane-3a,17a-diol~11,20-dione 

Corticosterone 

Cortisol 

Zero incubation control 

50 m# Moles incubated. 

averages and standard deviations. 

No. 
Incuba­
tions 

6 

6 

10 

2 

2 

6 

6 

12 

5 

2 

% of initial 
incubated steroid 
remaining as non",:" 

conjugated steroidr P 

63.05 ± 2.5 
f < .01 

93.8 ± 1.8 

97.72 ± 1.97 
.8< 1.'<.9 

98.93 

100.20 

70.17 ± 10.6 
P < .01 

85.36 ± 3.91 

77.58 ± 2.17 
P < .01 

87.61 ± 3.60 

98.2 

% of initial steroid 
rendered free follow­
ing ~-glucuronoidase 
hydrolysis (% stergid 
as glucuronosides)i 

18.34 ± 6.34 

3.08 ± 1.09 

1.01 ± 0.50 

P 

P < .01 

.6<P<.7 
0.766 

0 

10.90 ± 5.78 
.01 <P <:.02 

3.57 ± 0.20 

6.32 ± 1.73 
P < .01 

2.50 ± 0.636 

0 

lJ1 
I--' 
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value of P indicates that the difference between compound X and compound 

XIII is highly significant. The liver conjugated 11% of the compound X 

and 3.5% of compound XIII as glucuronosides (Fig~ 7)0 This is a highly 

significant difference. The amount of cortisol remaining as free steroid 

is about 10% mOre than the amount of corticosterone remaining as free 

steroid after incubation with the liver (Fig. 6). This difference is 

highly significant as is the difference between cortisol glucuronoside 

and corticosterone glucuronoside (Table III). This study indicates that 

the presence of the 17a-hydroxy group in cortisol and compound XIII 

inhibits the conjugation of those two compounds by the liver and kidney. 

Effect of total body irradiation on the conjugation of steroids by 

mouse liver and kidney. 

The effect of 500 r total-body irradiation on the conjugation of 

steroids by mouse liver and kidney was studied at 1, 5, 13 and 21 days 

post-irradiation. It was found that in most instances irradiation had 

suppressed conjugation. 

The kidney showed a highly significant decrease (P~ .01) in con­

jugation at all post-irradiation intervals studied (Table IV, Fig. 8)., 

The decrease in conjugation of compound X was greatest on the first 

and 13th day, with lesser decreases on the 5th and 21st days. The 

amount of compound X glucuronoside formed showed almost the same 

pattern (Table V, Fig. 9). There was an initial 'decrease on the first 

post-irradiation day followed by a further decrease on the 5th day. 

There was a slight return towards normal on the 13th day and a continu­

ationof this return on the 21st day. The amount of corticosterone 



Post Irradiation 
(days) 

Controls 

1 

5 

14 

21 

* 

54 

Table IV. 

Kidney Conjugation of Compound X - 500r 

Number of 
Detenninations 

10 

4 

4 

4 

4 

% of Steroid 
Unconjugated 

* 
61.99 ± 1.64 

76.43 ± 5.4B 

71.00 ± 3.37 

72.9B ± 3.0B 

70.30 ± 1.56 

Mean ± 1 standard deviation. 

Table V. 

Kidney Compound X-Glucuronosides - 500r 

Post Irradiation Number of % Steroid present 
(days) Determinations as a Glucuronoside 

* 
Controls 6 37.59 ± 3.55 

1 3 27.79 ± 6.06 

5 3 22.18 ± 4.07 

13 4 24.58 ± 2.36 

21 4 28.60 ± 3.82 

* Mean ± 1 standard deviation. 

Range of 
P 

pc .01 

Pc: .01 

Pc: .01 

Pc: .01 

Range of 
P 

.Ole Pc .02 

pc .01 

pc .01 

Pc .01 
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Fig. 8: Kidney; Conjugation of Compound X - saar 
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cpnjugated by the kidney was so small that it was not followed during 

the experiment. 

The conjugation of compound X by the liver following 500 r of 

total-body irradiation was similar to that of the kidney (Table VI). 

The liver, however, exhibited a more cyclic response and the time se-

quence was different. The liver exhibited the greatest decrease in 

conjugation of compound X on the 5th and 21st days post-irradiation 

with the greatest decrease on the 21st day (Fig. 10). The decrease 
".If 

on the 5th and 21st days are highly significant (P<: .01). The de-

crease on the first day post-irradiation is not significant. The 

decrease in conjugation on the 13th day has a P value range of (0.05~ 

P~.l). This indicates a trend towards the significant decrease on 

the 21st day. The graph repre$enting the amount of compound X glu-
-' 

curonoside formed (Fig. 11) is reciprocal to the graph of the conju-

gation of compound X- by -the liver;,- --The greatest decrease in glucuronide 

formation occurs on the 5th (P< .01) and 21st days (Table VII) with 

the greatest decrease on the 21st day (P< 0.01). There are slight de'lo.. 

creases from the normal mean on the first (0.05«P<:0.10) post-

irradiation (Fig. 11, Table VII) • 

The effect of x-irradiation on the conjugation of corticosterone 

by the liver is less well delineated than with compound X (Table VIII). 

The only highly significant decrease occurs on the 21st post-irradiation 

day (P<:.Ol). Figure 12 illustrates the effect of x-rays on the con-

jugation of corticosterone. The slight decreases on the 5th and 13th 

days follow the same cyclic pattern as for compound X, although the P 

values for these two points indicate they are insignificant (0.05«P«.1). 



Table VI. 

Liver Conjugation of Compound X 500r 

Post Irradiation Number of % of Steroid 
(days) Determinations Unconjugated 

* 
Controls 10 68.19 ± 5.24 

1 4 73.05 ± 10.3 

5 4 79.65 ± 3.24 

13 4 73.32 ± 2.92 

21 4 82.85 ± 1.62 

* Mean ± 1 standard deviation. 

Table VII. 

Liver Compound X-Glucuronosides - 500r 

Post Irradiation Number of % Steroid present 
(days) Determinations as a Glucuronoside 

* 
Controls 9 8.90 ± 2 • .3.3 

1 4 6.22 ± 0.91 

5 4 4.59 ± 0.40 

1.3 4 6.56 ± 1.06 

21 4 .3.54 ± 1.28 

* Mean ± 1 standard deviation. 

Range·of 
P 

.20c Pc .30 

.P c .01 

.05C' P c .10 

Pc.Ol 

Range of 
P 

.05 c Pc .10 

Pc .01 

.05 < P c .10 

Pc .01 
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Fig. 10: Liver; Conjugation of Compound X - SOar 
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Table VIII. 

Liver - Conjugation of Corticosterone - 500r 

Post Irradiation Number of ~ of Steroid 
(days) Determinations Unconj~ated 

* Controls 10 75.03 ± 4.61 

1 7 74.84 ± 6.3 

5 7 79.78 ± 2.38 

13 7 78.54 ± 2.38 

21 7 86.27 ± 3.06 

* Mean ± 1 standard deviation. 

Table IX. 

Liver - Corticosterone-Glucuronoside - 500r 

Post Irradiation 
(days) 

Controls 

1 

5 

13 

21 

* 

Number of 
Determinations 

10 

7 

6 

7 

7 

Mean ± 1 standard deviation. 
c 

% Steroid present 
as a G1ucuronoside 

* 
6.42 ± 1.84 

5.78 ± 2.10 

4.22 ± 0.77 

4.34 ± 1.09 

4.27 ± 1.24 

Range of 
P 

.90c P 

.05c Pc .10 

.05c P < .10 

Pc .01 

Range of 
P 

.. 50< P < .70 

.01< P < .02 

.01e P -= .02 

.01< P < .02 
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Fig. 12: Liver; Conjugation of Corticosterone - SOOr 
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The amount of corticosterone. conjugated as a glucuronoside is shown in 

Fig. 13. Table IX shows that there are significant decreases from 

normal on the 5th, 13th and 21st post-irradiation days. There is an 

insignificant decrease on the first post-irradiation day. To summarize 

this experiment it can be said that x-irradiation does decrease con­

jugation and glucuronoside synthesis in liver and kidney. 

Rate stud~. 

In this study the effect of irradiation on the rate of conjugation 

was studied. The lines were calculated using a least square fit. The 

rat~ equations (Table~X) represent the per cent of steroid remaining 

free at time t (unconjugated). The intercept at t = one minute is 

represented by (a), and (-b) is the exponent of the t or the regression 

coefficient of the line. The hypothesis was established that the re­

gression coefficient or (-b) was equal to zero (horizontal line). In 

all cases this hypothesis was rejected (P~.Ol) _ The regression co­

efficients of the lines are significantly different from zero., 

The regression coefficients of the control line and of the irradi­

ated line were compared statistically. No significant difference in 

regression was found between any of the control and irradiated lines. 

The conjugation of compound X by the kidney demonstrated the 

greatest effect of x-ray_ The rate was not altered by x-irradiation, 

but the line was displaced from the control (Fig. 14). If we examine 

the intercepts at t = 1, we can see that there is a difference between 

control and x-irradiated of 28%. The two lines are parallel, but the 

total amount of steroid conjugated at the end of three hours in the 

control group is greater than in the x-irradiated group. 



Tissue 

Kidney 

Liver 

TABLE X: Effect of x-irradiation on rate of conjugation 

Steroid 

Compound X 

Corticosterone 

Gompound XIII 

Equation of Line (x = at-b) 

Control x = 95.3 t-·09754 

Irradiated .x = 123 t-·1180 

Control x = 106 t-·06736 

Irradiated x = 111 t-· 07132 

Control x = 109 t-·05050 

Irradiated x = 108 t-·03823 

CTl 
I\J 
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The rate study of the conjugation of compound XIII by the liver 

demonstrates that the control and x-irradiated lines are parallel and 

that there is very little difference between the amounts conjugated in 

three hours (Fig. 15). 

X-irradiation did not affect the rate of conjugation of cortico­

sterone nor did it alter the amount conjugated in three hours (Fig. 16). 

The results of the ~-glucuronidase hydrolysis were erratic, and, there­

fore, are not included. 

Effect of UDPGA on conjugation. 

The data of Table XI represents an attempt to restore conjugation 

to normal following 500 r of whole-body x-irradiation. Kidneys and 

livers of mice irradiated with 500 r were taken at one day post­

irradiation and incubated with uridine diphosphate glucuronic acid 

(UDPGA). The only apparent effect of the UDPGA on conjugation was in 

the kidney. Incubation of the kidney minces with UDPGA increased the 

amount of co~pound X conjugated as a glucuronoside. UDPGA had no 

effect on the conjugation of corticosterone by the kidney. 

Conjugation by the liver showed no response to the addition of 

UDPGA to the incubation medium. 



'TABLE XI: Effect of UDFGA on Glucuronide Conjugation - 500r 

% % Corticosterone 
Compound X .f,~":X % Corticosterone Glucuronide 

Tissue Cofactor Free Glucuronoside Free (average) 
{Eo 

UDPGA 61.60 3~.30 92.94 2.40 

Kidney 

None 68.91 26.77 93.46 2.23 

UDPGA 58.22 Lost 65.77 Lost 

Liver O'l 

'" 
None 56.03 22.11 61.91 26.45 

* Average of two measurements. 
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DISCUSSION 

In order for a corticosteroid to be conjugated as a glucuronide it 

must be reduced in ring A and have a hydroxyl group at C-3 (Dorfman and 

Ungar, 1953; and Berliner and Dougherty, 1961). This reduction is a 

two-step process and requires TPNH and DPNH. The reduction of the double 

bond at C-4 ~4-5 is a rate limiting reaction (Tomkins and Isselbacher, 

1952) and requires TPNH. The reduction of the ketone at C-3 can utilize 

either TPNH or DPNH and is not rate limiting. Once the hydroxyl group 

is present at C-3, the steroid is immediately conjugated as a glucuronide 

or sulfate (Berliner and Dougherty, 1961). It appears that the glucur­

onide is the preferred form, since it is cleared from plasma by the 

kidney faster than the sulfate conjugate (Schneider and Lewbart, 1959). 

Once the steroid is conjugated it is now water soluble and can easily 

be excreted in the bile or urine. 

The parenchymal cells of the liver comprise 60.5% of the total 

cells in the liver. The reticuloendothelial cells comprise 33.4% of 

the total cells (Daoust, 1958). Recently it has been shown that the 

parenchymal cell controls the conjugation of steroids, and that the 

reticuloendothelial cell has a large capacity to reduce ring A, but 

cannot form water soluble conjugates. The parenchymal cell has the 

ability to reduce ring A and is the only cell in the liver which can 

form water soluble conjugates (Berliner and Dougherty, 1960). 

Histologically, the kidney has very little, if any, reticulo­

endothelial cells. Since the kidney has no reticuloendothelial cells, 

it cannot reduce significant amounts of ~4-3-ketosteroid and, thus, 



- 69 -

cannot conjugate them. The kidney does contain UDPGA and glucuronosyl 

transferase (Stevenson and Dutton, 1962), and so when incubated with a 

steroid reduced in ring A, it can form steroid glucuronides. The 

physiological significance of this finding has not been elucidated and 

could bear further study. It is interesting to note that the kidney 

can conjugate as much or more compound X as the liver on a per gram 

basis. 

In the liver the reticuloendothelial cell probably absorbs the 

steroid from the medium by pinocytosis and reduces the ring A to the 

tetrahydro form. At this point the reduced steroid is passed to 

parenchymal cells where conjugation takes place, followed by excretion 

into the bile or back into the blood for excretion through the kidney. 

The data from the first two experiments indicate that the liver 

can conjugate more corticosterone than it does cortisol. It should be 

noted, also, that in the liver (double isotope study), the presence of 

corticosterone and compound X together appear to have inhibited, to a 

small degree, the conjugation of compound X. If we look at the single 

steroid study, we see that the liver conjugated 42% of the compound X 

and in the double steroid experiment the liver only conjugated (100 -

70.9 = 29.1) 29% of the compound X. This indicates a competitive 

relationship between compound X and tetrahydrocorticosterone for the 

available enzyme and UDPGA. It has been demonstrated that the mechanism 

of glucuronide formation is a general one for phenols and alcohols, and 

that only one enzyme is implicated (glucuronosyl transferase) (Issel­

bacher and Tomkins, 1955). The kidney, on the other hand, does not 

show this competitive inhibition of glucuronide formation, since the 
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amount of corticosterone reduced is so small that the amount available 

to be glucuronidated is insignificant and, therefore, it does not 

compete with compound X. 

Conjugation of compound X cannot occur at any other site in the 

molecule other than C-3 because compound X does not have a hydroxyl 

group at C-21. Corticosterone, however, could be conjugated as a 

sulfate or glucuronide at C-21. It has been reported that large quanti­

ties of corticosterone C-21 sulfate have been found following adminis­

tration of corticosterone to men (Pasqualini and Jayle, 1961). The 

liver contains steroid sulfokinase and, therefore, is capable of forming 

steroid sulfate conjugates (Nose and Lipman, 1958). Berliner et al. 

(1962) demonstrated that about 5-6% of the total conjugates of corti­

costerone formed by the perfused rat liver were sulfates. The kidney 

does not contain steroid sulfokinase and, therefore, it only produces 

glucuronide conjugates, as is indicated by the present data. 

The ~-glucuronidase hydrolysis does not always give reproducible 

results. This is illustrated by comparing the results of the pilot 

study to the results from the double steroid study. The total amount 

of compound X present as glucuronoside from the kidney in the pilot 

study is only 9.35%, while in the double steroid study 37.59% of the 

total compound X was present as a glucuronoside. The glucuronide 

formed from compound X by the kidney represents 92.9% of total water 

soluble conjugates. Further studies have substantiated this. 

Although the small intestine can form glucuronides from phenolic 

steroids and other phenolic compounds (Hartiala, 1961), it was unable 

to conjugate cortisol, corticosterone or compound X. 
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Approximately one-half of the water soluble conjugates formed , 

by the liver are neither sulfates nor glucuronides. The identity of 

these compounds is unknown. It would be of interest and, I feel, of 

great importance to identify these compounds. 

The biological half-life of sterols and steroids seems to be 

dependent on the number of carbons and the number of oxygen functions 

in the molecule (Berliner and Dougherty, 1960). Gold (19qO) postulated 

that the presence of hydroxyl groups at C-ll and C-17 may partially 

protect ring A of cortisol from metabolic degradation. Berliner et ala 

(1962) postulated that the presence of the 17a-hydroxy group of cortisol 

was hindering the conjugation of that corticosteroid. The data obtained 

in this laboratory have conclusively shown that the presence or absence 

of the 17a-hydroxy group does influence the conjugation of C-21 steroids. 

The liver conjugates compounds without a l7a-hydroxy group (Cortico­

sterone and compound X) to a greater extent than it does compounds 

containing the 17a-hydroxy group (cortisol and compound XIII). It 

appears that the presence of the 17a-hydroxy group hinders the glu­

curonide conjugation of the C-21 steroids containing this chemical 

group. This hinderance of conjugation is present with reduced and 

A4-3-ketosteroids. The kidney also forms less glucuronosides from 

17a-hydroxysteroids than it does from non-17a-hydroxysteroids. This 

reduction in conjugation is reflected in the amount of glucuronoside 

formed from these compounds in the liver and in the kidney. 

The. inhibition of conjugation by the 17a-hydroxy group is probably 

a steric hinderance of glucuronosyl transferase. It is not an inter­

ference with reduction of ring A, since reduced and non-reduced 
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17a-hydroxysteroids are conjugated as glucuronosides to about the same 

extent in liver. 

The fact that the mouse is primarily a corticosterone producer 

could explain why the mouse has the capacity to synthesize more glucur­

onosides from corticosterone than it does from cortisol. Also, in 

humans, corticosterone has a shorter biological half-life than cortisol, 

although humans are primarily cortisol producers (Peterson, 1959). The 

fact that less cortisol is inactivated per unit time than corticosterone 

could partially explain why cortisol has more biological activity in 

vivo than corticosterone. 

X-rays have been shown to alter glucuronidation of o-aminophenol 

in the liver and stomach (Hartiala et al., 1958). The data presented 

in this paper indicate that whole-body x-irradiation affects the con­

jugation of steroids by liver and kidneys in vitro in much the same 

way. The reduction in conjugation could be a secondary ~esponse to 

the stress of irradiation. The mechanism involved is probably mediated 

via the pituitary-adrenal axis. 

The response of the glucuronide forming system is probably due to 

a cyclic lack of UDPGA. The possible lack of UDPGA is evidenced by 

the decreased conjugation of reduced steroids as well as the decreased 

conjugation of ~~-3-ketosteroids. If the defect were in the reduction 

of the ring A, there would be no decrease in conjugation of reduced 

steroids. 

The decrease in available UDPGA could be a secondary result of 

several different effects of ionizing radiation. It is well known that 

irradiation is a "stressor" and elicits a response in the pituitary-
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adrenal axis (Dougherty and White, 1946). This would result in an 

increase in ACTH and an increase in plasma 17-hydroxy steroids (French 

et al., 1955). Stressed animals have been shown to have a decreased 

ability to conjugate steroids (Dougherty and Berliner, 1958). Berliner, 

Keller and Dougherty (1961) showed that administration of ACTH caused 

a decrease in cortisol conjugation. The increase in plasma 17-hydroxy­

steroids leads to an increased gluconeogenesis followed by an increased 

glycogen storage in the liver (Long et al., 1940; and McKee and Brin, 

1956). Uridine diphosphate glucose is a branch point in carbohydrate 

metabolism. Uridine diphosphate glucose is an obligatory intermediate 

in the synthesis of glycogen (Leloir et al., 1959), and is implicated 

in the synthesis of hyaluronic acid. Also, the hydrolysis of UDPGA 

leads to ascorbic acid in goat liver (Pogell and Leloir, 1961). 

Irradiation causes an increased activity in the enzymes essential 

for glycogen synthesis. These enzymes are fructose-l,6-diphosphatase, 

phosphohexoseisomerase and phosphoglucomutase (Weber and Cantero, 1959a). 

Glucose metabolism is impaired following irradiation and is not a fast­

ing phenomenon (Hill et al., 1956). The depression of glycolysis is 

due to a decrease in available DPN rather than to an inhbition of a 

glycolytic enzyme (Maass and Schubert, 1958). This block in glycolysis 

is caused by a decrease in oxidized DPN, which blocks the triose phos­

phate dehydrogenase reaction. This block of glycolysis and impairment 

of glucose utilization in glycolysis leads to a slight hyperglycemia. 

Irradiation also causes an increase in the pentose phosphate pathway 

which is due to increased glucose-6-phosphate and 6-phosphogluconate 

dehydrogenase activity (Weber and Cantero, 1959b; and Kochetov, 1959). 
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The increase in glycogen synthesis and the increased activity of the 

pentose phosphate pathway following irradiation could lead to a de­

creased production of UDPGA. 

This point is well demonstrated in the study with corticosterone 

in liver. Whole-body x-irradiation did not cause a significant decrease 

in conjugation of corticosterone by the liver at 1, 5 and 13 days post­

irradiation. It did, however, cause a significant decrease in the amount 

of corticosterone-glucuronoside formed at 5, 13 and 21 days post­

irradiation. This apparent difference can be attributed to a decreased 

availability of UDPGA. The non-significant decrease in conjugation is 

possibly due to the conjugation of corticosterone as a sulfate or other 

conjugate. 

Krebs (1958) has pointed out that certain pacemaker reactions in 

the body are influenced markedly by availability of coenzymes. The 

oxidation of one mole of UDPG to UDPGA requires two moles of oxidized 

DPN. The availability of oxidized DPN could very well be rate limit­

ing in this reaction. Cortisol is known to inhibit oxidative phos­

phorylation (Gallagher, 1958). Cortisol also limits the oxidation of 

DPNH by inhibiting the DPNH-cytochrome-C reductase reaction, producing 

a deficiency in oxidized DPN. This lack of oxidized DPN explains the 

inhibitory effect of steroids on glycolysis. The depression of gly~ 

colysis in Ehrlich ascites cells following irradiation is due to lack 

of DPN (Maass and Schubert, 1958). It should be noted that DPN controls 

the conversion of pyruvate to acetyl CoA and C02 (Yielding et al., 1960). 

The reduction in oxidative phosphorylation is well known and is 

caused by relatively small doses (Potter and Betheel, 1952; and Van 
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Bekkum et al., 195~). Maximum inhibition occurred in spleen and thymus 

at ~8 hours following irradiation and could not be alleviated by addi­

tion of glucose, pyruvate or Krebs cycle intermediates (Sullivan and 

Dubois,1955). Benjamin and Yost (1960) demonstrated that the re­

duction in liver oxidative phosphorylation was mediated by the pituitary­

adrenal axis and the uncoupling in the spleen was due to increased 

thyroid activity. 

The reduction in oxidative phosphorylation leads to a decrease in 

ATP production which prevents the oxidation of reduced coenzymes. 

Thus, the reduction in glucuronidation, biochemically speaking, 

can be due to (1) increased utilization of UDPG to glycogen and, 

therefore, a decrease in the amount available to be oxidized to UDPGA; 

and (2) a reduction in the amount of oxidized DPN available to oxidize 

the UDPG to UDPGA. 

The addition of UDPGA to the kidney incubation medium caused an 

increase in the conjugation of compound X. This increase was reflected 

in the amount of compound X glucuronoside formed. This evidence would 

indicate that in the kidney the decrease in conjugation caused by 500 r 

of whole-body x-irradiation is mediated by a lack of UDPGA. This is 

supporting evidence for the hypothesis presented here. In the liver, 

however, UDPGA apparently had no effect on conjugation or glucuronoside 

synthesis. This is attributed to the presence of alternate pathways of 

conjugation in the liver which at one day post-irradiation are able to 

compensate for a lack of UDPGA. 

If we examine the reduction of glucuronide formation in terms of 

general homeostatic mechanisms, we can relate the cyclic variations of 
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the responses to changes in adrenal-liver-pituitary responses. 

The muscle work test has been used to evaluate adrenal function 

following irradiation. It was found that the adrenal output increased 

at 24 and 48 hours following irradiation and returned to normal by 72 

hours. Seven days after irradiation, adrenal output fell below normal 

and the animals began to die. ACTH could not restore adrenal function 

to normal (Tonkikh, 1958). Irradiation to exposed calf adrenals caused 

a decrease in amount of corticosteroid produced. This decrease was 

ascribed to lack of hydroxylation at C-ll, C-17 and C-21. These hydroxy-

lations are necessary for production of cortisol and corticosterone 

(Ungar et al., 1955; and Rosenfeld et al., 1955). In dogs with intern-

ally deposited radionuclides, Berliner et al. (1961) found that the 

adrenal cortisol biosynthesis was decreased and apparently there was 

a lack of 11, 17 and 21-hydroxylations. The decrease in cortisol out-

put by the adrenal could be returned to control values by the addition 

of TPNH, which indicates that irradiation does not affect the enzyme 

systems but decreases the amount or availability of reudced coenzymes 

essential for hydroxylation. 

The liver has been postulated to control the blood level of ACTH 

and corticosteroids by feedback mechanism. The reduction of ring A and 

conjugation of steroids decrease the blood levels which, in turn, 

causes an increase in ACTH production. The increased ACTH level stimu-

lates the adrenal to produce more steroids. The increased cortico-

steroids feedsback to the pituitary and decreasesACTH level (Urquhart 

et al., 1958). 
,,,:,~~,,, 

The liver controls the level "o-x steroids in the blood 

so it can indirectly control ACTH production by increasing or decreasing 
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the rate of corticosteroid inactivation. Reid (Brook Lodge Symposium) 

showed that increased levels of ACTH caused a decrease in uridine 

nucleotides including UDPGA. Perhaps the cyclic decrease in conju­

gation is due to a decreased steroid production which leads to an 

elevated ACTH level. This increased ACTH level would decrease avail­

able UDPGA and thus produce the decreased glucuronide formation. The 

cyclic response curve could be explained by the time lag between ACTH 

production and the response of the adrenal and vice versa. 

The rate study indicates that the rates of conjugation are the 

same but that the total amount of steroid inactivated at the end of 

three hours in the kidney is greater in the control animals than in 

the x-irradiated animals. The fact that the regression coefficients 

are the same would indicate that x-irradiation does not affect the 

enzyme itself and, therefore, is not rate limiting, but rather that the 

availability of the substrates (steroid and UDPGA) is rate limiting. 

Since the same amount of steroid is present in both control and experi­

mental animals, the only other variable is availability of UDPGA. 

The liver did not demonstrate a difference in rate of conjugation 

of corticosterone or compound XIII. There was, also, very little 

difference in per cent conjugated per unit time, although the control 

groups are consistently below the.x-irradiated groups. In the previous 

study, the amount of corticosterone conjugated five days following 

irradiation was not significantly different from the controls. Com­

pound XIII is not conjugated by the liver as well as compound X. 

Compound X was used in the previous irradiation study and was signi­

ficantly different from the controls at five days post-irradiation. 

We were unable to use compound X for the rate study because the amount 
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we had available was limited and was used to better advantage with the 

kidney. We were unable to obtain any more compound X from the National 

Institutes of Health or from any commercial source. This study should 

be extended and rates of conjugation re-examined on the 21st day post­

irradiation where there are large differences between the irradiated 

group and the controls. The data obtained in the rate study should 

be analyzed kinetically to determine reaction order and rate constants. 

The conjugation of steroids by the liver~ kidney and possibly 

other organs may not be a simple detoxification process to eliminate 

the steroid from the body. Reduction of the steroids in ring A, re­

duction at C-20 and oxidation of C-ll decrease the biological activity 

of the steroid. Berliner and Dougherty (1961) call these oxidations 

and reductions TTbiotransformations~n These biotransformations may very 

well be associated with the steroidts mechanism of action. For ex­

ample, the reduction of ring A generates oxidized TPN and DPN (Tomkins, 

1959b). The reduction of the ketone at C-20 also generates oxidized 

coenzymes. The production of oxidized coenzymes will increase reaction 

rates dependent on oxidized coenzymes (yielding and Tomkins, 1960). 

The inactivation of cortisol involves the oxidation of the hydroxyl 

group at C-ll to a ketone generating reduced TPNH (Sweat and Bryson, 

1960). The reduction of the double bond in deoxycorticosterone pro­

duces a steroid anesthetic which is sold commercially (pran et al., 

1955). The reduction of androgens produces the Sa-isomer, androsterone, 

and 5~-isomer etiocholanolone. Androsterone is a biologically active 

blood cholesterol lowering agent (Hellman et al., 1959). Etiocholan­

olone is a pyrogenic steroid causing an elevation in body temperature 
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(Kappas et al., 1960). Pregnandiol, the major metabolite of progesterone 

is also pyrogenic (Berliner and Dougherty, 1961). 

The conjugation and inactivation of hormones needs to be re­

examined in terms of what these alterations mean biologically. 
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SUMMARY 

Kidney slices from male CBA mice are able to conjugate ring A 

reduced 3-hydroxy steroids as glucuronides. Glucuronides are formed 

from pregnane-3a-ol-ll,20-dione and pregnane-3a,17a-diol-ll,20-dione. 

The kidney did not form glucuronides from cortisol or corticosterone 

since it was unable to reduce ringA. Most of the water soluble con­

jugates formed by the kidney are glucuronides. 

The liver can reduce ring A and can form glucuronide conjugates 

from cortisol and corticosterone. The liver can form glucuronides 

from pregnane-3a-ol-ll,20-dione and pregnane-3a,17a-diol-ll,20-dione. 

Glucuronides comprise about one-half of the total water soluble con­

jugates. 

The presence of the 17a-hydroxy group hinders the conjugation of 

C-21 steroids containing this chemical grouping in liver and kidney. 

This was shown to be an interference with glucuronosyl transferase 

causing a decreased glucuronide formation with'17-hydroxycortico­

steroids. This effect was exhibited in the liver and the kidney. 

In vitro conjugation of compound X as a glucuronide by the kidney 

was significantly decreased on the 1st, 5th, 13th and 21st days follow­

ing 500 r of whole-body irradiation. Irradiation significantly de­

creased the in vitro conjugation of compound X by the liver on the 5th 

and 21st days post-irradiation. The decrease in conjugation on the 

1st day post-irradiation was non-significant and the decrease on the 

13th day post-irradiation has a P value range of (0.05<P <.1). This 

decrease in conjugation was reflected in the amount of steroid released 
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by ~-glucuronidase hydrolysis. The in vitro conjugation of cortico­

sterone by the liver was significantly decreased on the 21s't day after 

irradiation with 500 r. The amount of glucuronide formed from corti­

costerone on the 21st day was also decreased. There was no significant 

decrease in conjugation or glucuronide formation with corticosterone on 

the 1st, 5th or 13th day post-irradiation. 

X-irradiation did not affect the rate of conjugation of compound X 

in the kidney. The control animals conjugated more compound X at the 

end of three hours than irradiated animals. The rates of conjugation of 

compound XIII and corticosterone in the liver were not altered by 

irradiation. 

The total amount of compound X and corticosterone conjugated by 

the irradiated animals' livers was slightly less than the total amount 

conjugated by the control animals' livers. 
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