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ABSTRACT 

The quantitative extent of resistance induced by specific and 

nonspecific 1mmunization to systemically induced £. albicans infection 

was investigated in mice. Animals were spec1fically immunized by i.p. 

injections of formalinized suspensions of £. albicans. Nonspecific 

resistance was induced by temporally spaced subcutaneous injections of 

endotoxin. The mice were challenged by 1.V, inJections of known numbers 

of C. albicans. Animals were sacrificed at 24 hour intervals; cultures 

of spleen~ liver~ and kidney for viable £. albicans were done on anti

biotic blood agar. 

In vitro studies were evaluated by comparing kinetic curves of 

inactivation of £. albicans by macrophages from various systems~ that 

is~ from animals that were immunizeC1~ endotoxin treated or treated 

with saline. Lymphocytes plus macrophages from the var10US systems 

were also challenged to determine if the lymphocyte was functionally 

involved with the destruction of C. albicans. 

The most significant in vivo result was that fewer yeascs were 

found in the kidneys of immunized animals. The kidneys of the endotoxin 

treated animals and the saline treated animals were heavily infected. 

No significant differences were observed in the livers and spleens 

of the different groups throughout the experiment. 



In vitro results indicate that macrophages from immunized animals have 

slightly but statistically significant enhanced cytopeptic capacities when 

compared to macrophages from endotoxin treated and saline treated animals. 

Lymphocytes appeared to enhance the cytopeptic response after a temporal 

delay which was not observed in cultures containing only macrophages. 

The data suggest that macrophages from ~mmunized animals. endotoxin 

treated animals or saline treated animals yielded a steeper inactivation 

curve, reflecting death of the challenge organism, than the systems 

containing lymphocytes from the various systems acting in conjunction 

with macrophages trom a homologous or heterologous system. Lymphocytes 

from immunized animals and lymphocytes from endotoxin treated animals 

did enhance the cytopeptic capacities of macrophages from saline treated 

animals when comparisons to the lymphocyte-macrophage saline control 

system were made. This enhanced cytopepsis that occurred in the presence 

of the lymphocyte was not as pronounced in systems contain~ng lymphocytes 

and macrophages from ~mmunized animals and/or endotoxin treated animals. 

The fact that endotOXin treated lymphocytes stimulate the cytopeptic 

capacities of saline treated macrophages indicates a mechanism for the 

induction of nonspecific resistance. This implies that the mechanism 

of nonspecific resistance includes cellular components and that both 

the lymphocyte and macrophage participate. 

xi 



INTRODUCTION 

There are few reports concerning ehe comparative efficacy of 

specific and nonspecific resistance in a single experiment. In this 

thesis I report, 1n terms of resistance co challenge with Candida 

albicans, daea of quantitative nature concerning the relationship of 

normal, Boivin antigen, (endotoxin) treated and immunized animals. 

Endotox1n was used as a classical agent to induce nonspecific resis-

tance. 

Ie was planned to study the role of cellular resistance in fungal 

infections by in vivo and in vitro techniques. Previously, several 

investigators have reported the role of antibody in resistance to 

Candidiasis as being of minimal value. A significant role for cellular 

mechanisms in resistance to fungal infections has been reported. 

Recently the archival literature has reported that combinations of 

lymphocytes and macrophages from immunized animals have an enhanced 

resistance to challenge organisms when compared to lymphocyte-macrophage 

combinations from saline treated animals. These reports have been 

mainly concerned with a soluble product termed "macrophage inhibition 

factor" or MIF. 

The studies now reported have been with the cytopeptic capacities 

of peritoneal exudate macrophages from the immunized, endotoxin treated, 

and saline treated control animals. The cytopeptic competence of the 

differently treated macrophages has been compared employing macrophages 

freed from lymphocytes before exposure to the infectious agents as well 

as macrophages exposed to defined lymphocyte populations at the same time 
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as exposure to the infectious agents. The experimental designs were chosen 

to further out knowledge concerning the role of macrophages, of lymphocytes, 

and of macrophages plus lymphocytes acting on the infectious fungal 

agent, Candida albicans. 



REVIEW OF THE LITERATURE 

It has been shown that acquired immunity to certain infectious agents 

is not dependent on the mechanism in which specific antibody interferes 

with the pathogenicity of the agent. These agents are found among the 

protozoa, fungi, bacteria, and viruses. The majority of the organisms are 

intracellular parasites and this may be a partial explanation for the 

ineffectiveness of the specific antibody. Howser, there are several 

pathogenic bacteria (37), fungi (25), and protozoan (47) parasites that 

are unaffected by antibody in an extracellular environment. 

Metchnikoff (45) proposed the mechanisms of phagocytosis and subsequent 

intracellular killing and destruction (cytopepsis) by which these 

IIspecial" parasites as well as any other invading body could be disposed 

of. In spite of his discovery that the macrophage had a role in host 

resistance, the subject was not investigated extensively for several 

years. This may have been due to the difficulties involved in working 

with cell cultures as compared to the ease of working with humors. 

Nevertheless, many investigators have recently studied cellular resistance 

in detail and many new concepts are evolving as a result of these 

investigations. 

Origins of Lymphocytes and Macrophages 

In order to understand the possible mechanisms of the cellular response 

to an invading agent, we should first have a general understanding of the 

cells involved. 



The matrix from which "blood" cells are derived is the embryonic 

mesoderm. Most of the early studies and conclusions concerning the 

origin of cells in a developed fetus were based on morphological criteria 

and functional information was obtained with vital dyes and carbon particles. 

With newer techniques and radioactive labeling. it has become possible to 

draw more definite conclusions from investigations concerning the origin 

of mononuclear cells. 

Experiments, using H3- t hymidine. bone marrow mononuclear phagocytes, 

peripheral blood monocytes and tissue macrophages, have indicated that 

these cells are proliferating cells or are capable of proliferation. 

Additional experiments differentiated mononuclear phagocytes into two 

cell types. One type has been referred to as promonocytes or immature 

proliferating phagocytes and the other type was referred to as a mature 

monocyte or macrophages (76). Labeling experiments have shown that the 

macrophages has the ability to mUltiply in the tissue. 

North (54. 55) using the bacterium Listeria monocytogenes and 

mycobacterium Bacillus Calmette-Guerin (BCG) and H3-thymidine, was 

able to demonstrate a pattern of cellular responses. The responses 

consisc of intense proliferation of lymphoid cells in the spleen, a 

coincident proliferation of resident macrophages in the peritoneal 

cavity and subsequent emergence of a population of macrophages with a 

greatly increased ability to phagocytize inert particles and to spread 

on a foreign surface. North feels that the temporal relationship that 

exists between che cellular responses suggescs a relationship between 

the lymphocyte and macrophage cell division and that division of both 

types of cells 1s necessary for the changes which occur in macrophages. 
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Glick (19) reported the abnormal development of immune mechanisms, 

cellular as well as antibody, after removal of the bursa of Fabricius 

shortly after birth of chickens. Later this worker implicated antibody 

formation as the major defect following ablation of the bursa. 

Cooper (10) demonstrated a separation of immunologic function in 

the chickens. In the chicken, the bursa of Fabricius contains the larger 

lymphocytes (B-cells) and plasma cells and these cells are responsible for 

antibody production. 

The thymus in the chicken represents the site of differentiation of 

a population of lymphocytes that are associated with cellular immunity. 

The thymus-dependent, or T-cell, system may also form antibody to selected 

antigens. 

This divided immunologic system has been extended to other vertebrates. 

Only the chicken has a bursa of Fabricius but investigators have proposed 

other possible locations of a similar B-cell population development in 

higher vertebrates (I, 9, 20, 21). 

A number of kinins have been reported to be present in active or 

precursor form and to be secreted by activated T-cell lymphocytes. Among 

these kinins are transfer factor, lymphocyte transforming factor, migration 

inhibition factor, lymphotoxln, chemotactic factors. growth inhibitory 

factors, mitogenic or blastogenic factors and cytotoxic factors. It 

should be noted that some of the kinins or factors may have more than 

one title at the present time. Some of these factors do not affect 

macrophages to our knowledge whereas others seem to have a specific effect 

on macrophages (11, 14, 15). 

The reticuloendothelial system is composed in part of a network of 

reticular, i.e .• supporting or structural cells of the spleen, thymus, and 
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other lymphoid tissues, together with cells lining the sinuses of the spleen, 

bone marrow, lymph nodes, the capillary endothelium of the liver, Kupffer 

cells, and the adrenal and pituitary glands. 

The spleen possesses a combination of phagocytic, cytopoietic and 

antibody forming activities which are of great importance in providing 

immunity to organisms or antigens which get into the blood. These functions 

are shared with the other filtering organs, chiefly the liver and bone 

marrow, which contain macrophages strategically placed for contact with 

substances in the blood. The macrophages are the most active individually, 

but because of the size of the liver, it is the most important from the 

viewpoint of total phagocytic activity. In the cytopoiesis of phagocytes, 

the spleen is the most important in producing macrophages and the bone 

marrow in producing granulocYLes. 

The fixed and free macrophages of the connective tissue share the 

function of phagocytosis. Lymphocytes have not been shown to phagocytize 

particles. 

In general phagocytosis is the process by wrnch a cell extends 

pseudopodia around the foreign particulate matter which is then taken 

into the cytoplasma in vacuoles, Phagocytic vacuoles then merge with a 

lysosome and the lysosome contents are brought in contact with the ingested 

particles. Subsequent digestion of the particle results (6, 44, 49, 79). 

Specific Cellular Immunity 

The acquisition of antibody forming capacity, commonly referred to 

as immunologic competence, by the vertebrates has not lowered the importance 

of phagocytosis as a mechanism of resistance to infectious disease. Macro

phages are able to ingest, kill, and digest many types of organisms that 
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gain entrance to the borly. The role and quantitative extent of immunolo~ical 

assistance from the lymphoid system under such circumstances remains moot; 

macrophages, however, play an important role in immune responses of both 

cellular and humoral types. 

Cellular 1mmunity must be considered as resistance to foreign particles 

manifest by the phagocytic capabilities of macrophages acting in conjunction 

with cytotoxic secret10ns of lymphocytes. 

Humoral ant1bodies may have only limited efficacy against those 

pathogens that are capable of intracellular survival and proliferation 

such as most viral, fungal, protozoal and several bacterial diseases. 

In such infections, cellular hypersensitivity mechanisms are the major 

participants in host defense (79). 

Specific cellular immunity was first proposed by Metchnikoff. He 

hypothesized that phagocytic cells of immunized animals may be endowed 

with enhanced phagocytic and digestive activities independent of humoral 

antibody. Much of the research involving cellular immunity has corrobor

ated Metchnikoff's hypothesis and has shown that cellular immunity can be 

specifically st1mulated. 

A. Cytophilic Antibody Theory 

At the present time there are three principal theoriP3 to explain the 

mechanism of stimulation of specific cellular immun1ty. The first theory 

proposes the existence of cytophil1c antibodies, e.g., that group of 

antibodies which show a predilection for macrophage surface antigen. This 

binding of antigen to macrophages may be the only function of the antibody 

and any subsequent cellular activity may be unrelated to the presence of 

the spec1fic antibody. Alternatively, the combination of antigen with 
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cell-bound antibody may directly affect macrophage enzyme systems (46, 74, 75). 

The following chart summarizes schematically the first two theories. 

POSSIBLE MECHANISMS OF ACTION OF CYTOPHILIC ANTIBODY 

ASSOCIATED WITH MACROPHAGES 

(1) Antibody + macrophages -+ cell bound antibody + 
antigen 7 fixation of antigen -+ fixed antigen + 
immune macrophage 7 cytotoxic effect. 

(2) Antibody + macrophages -+ cell bound antibody + 
antigen 7 activation of macrophage enzyme systems 
-+ subsequent change in macrophage activity. 

(Adapted from Tizard, I.R., Macrophage-cytophilic anti
bodies and the functions of macrophage-bound immuno
globulins. Bacteriological Reviews 35:375, 1972.) 

B. Soluble Chemical Mediator Theory 

The second theory employs the concept of chemical mediators. The 

theory states that sensitized lymphocytes (probably thymus derived 1ympho-

cytes) secrete a variety of chemical mediators such as chemotactic factor, 

blastogenic factor, macrophage inhibitory factor, macrophage activating 

factor, and other factors. The factors affect macrophages in an inflam-

matory response in various ways. 

This second theory depicts cellular immunity as a process involving 

two cell types, e.g., the lymphocyte and the macrophage. The lymphocytes 

that are involved in protection against infection are short lived. They 

are derived from the long lived inununocompetent "T" cells that circulate 

through lymphoid tissues to the blood and back again (40). 

Mackaness has confirmed that a specific cellular response does occur 

in the presence of specific antigen. He also demonstrated a relationship 
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between the lymphocyte and macrophage to obtain specific response to the 

antigen (39, 40, 41). Further evidence to support the bicellular relation

ship for specific resistance has been furnished by Simon and Sheagren (70). 

They compared the bactericidal activity of normal macrophages after overnight 

incubation with either normal or bovine gamma globulin sensitized lympho

cytes in the presence or absence of the antigen. They found that immune 

lymphocytes plus antigen were more effective than immune lymphocytes minus 

antigen which were similar to the control lymphocytes with and without 

antigen. 

Salvin, Sell and Nishio (64) have studied the lymphocyte-macrophage 

relationship in relation to delayed hypersensitivity. They observed 

moderate inhibition of motility and activity of normal macrophages in the 

presence of sensitized lymphocytes and antigen. The effect was more 

dramatic with macrophages from sensitized animals in the presence of 

antigen. They attributed these effects to MIF and felt that this 

mechanism provided the greatest quantity of cells in delayed hypersensi

tivity reactions. 

Salvin and Cheng (62) have shown a relationship of lymphoid cells 

and macrophages in guinea pigs that have been sensitized to Candida 

albicans. Howard, Otto, and Gupta (28) have shown that lymphocytes 

were the mediators of the suppression of intracellular growth of 

Histoplasma capsulatum. Simon and Sheagren (70) have shown by two techniques 

that peritoneal exudate macrophages from immune animals had a greatly 

enhanced bactericidal capacity when the exudate had been cultured with the 

antigen before challenge. 

Characteristic of many of the above observations and indeed the 

system for determining the specificity of the two components was nonspecific 
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activation of macrophages. It should be noted that the nonspecific activation 

of the macrophages is a result of specific activation of the lymphocytes. For 

example, if spleen cells from a tuberculous donor were given to a normal recip

ient, there would be no overt effects on the functional state of the recipient's 

macrophages unless tubercle bacilli were injected simultaneously with the reac

tive spleen cells. When this was done, activated macrophages appeared in the 

peritoneal cavity within 24 hours, and the animals became resistant to Listeria 

challenge (33,41). Thu~ it would appear that sensitized lymphocytes can influence 

macrophage activity only in the presence of the specific antigen used to sensi

tize the host. 

C. Specific Sensitization ~ Macrophages 

The thin! theory is that the macrophage acquires a specific capacity for a 

particular antigen after the primary exposure. In many instances there is a 

direct relationship between the animal's ability to inactivate a second inoculum 

of bacteria in vivo and the ability of the macrophages to ingest and destroy 

the same bacteria in an in vitro system. Antibody has been reported to be of 

little or no value in many of the systems studied (18, 26, 48, 51, 73). This 

is not to say that antibody is not important. Under the proper set of circum

stances, antibody may be equally as important as the cellular response. Anti

bodies are effective in protecting a host from most organisms that ordinarily 

cannot grow and divide in phagocytic cells (68). 

Thorpe and Marcus (73) have presented data showing that phagocytes 

from specifically immunized animals had significantly enhanced cytopeptic 

abilities when compared to phapocytes from normal animals that had been 

challenged with Pasteurella tularensis. It was also shown that passively 

transferred specific antibodies did not alter the mortality rates in normal 
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mice, but decreases in mortality were observed when the animals were treated 

with passively transferred phagocytes from immunized animals. 

Radioisotope studies carried out by Hill and Marcus (25, 26) demon-

strated that macrophages from immune animals were able to limit the growth 

of the li. capsulatum. They were also able to show that these macrophages 

had an enhanced capacity for cytopepsis in the absence of lymphocytes. 

Hackett and Marcus (22) reported that animal specifically immunized 

to Klebsiella pneumoniae had 1000 times the protection induced by treatment 

of animals with endotoxin when challenged with !. pneumoniae. 

Maxwell and Marcus (34, 43) have shown that animals immunized with 

BGG, presumably in the absence of lymphocytes, were more active in ingesting 

and inactivating tubercle bacilli than were animals that had been treated 

with saline. 

Mitsuhashi et al. (50) were able to demonstrate that cells could 

suppress intracellular proliferation of phagocytized, highly virulent 

Salmonelleae and finally digest them without addition of exogenous 

immune sera. This expression of cellular immunity could be established 

only after contact with live bacilli. 

Sato et al. (64) isolated phagocytes from the liver and subcutaneous 

tissue of adult mice and demonstrated inhibition of intracellular multi-

plication of Salmonella enteritidis regardless of the presence of antibody 

in the cell cultures from immunized animals. Cell cultures from normal 

animals did not retard the growth of the organism either with or without 

antibody. Sato ~ al. (64) subsequently reported that mononuclear 

phagocytes from a normal mouse acquired cellular immunity against infection 

with Salmonella enteritidis in tissue culture if the cells were treated with 
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live vaccine of the same organism, whereas the cells treated with dead 

vaccine of S. enteritidis did not. 

Osawa (56) and co-workers in a series of elaborate experiments 

concluded that contact of live organisms with the host cell is necessary 

for conferring post-infective immunity in salmonellosis. 

Venneman and Berry (77, 78) have shown that resistance to Salmonella 

typhimurium can be induced with live organisms or extracts of ribosomal 

RNA. Heat-killed suspensions did not confer resistance to the recipients. 

Furthermore, they were able to demonstrate a resistance to Salmonella 

with serum from immunized mice. This immunity was short lived when 

compared to the immunity provided by the cellular response. 

The effect of neonatal thymectomy on immunity of mice against Salmonella 

infection was studied by Saito et al. (61). They found a lowered peripheral 

lymphocyte count, reduced serum antibody response and partially reduced 

protection against infection with virulent Salmonella enteritidis after 

immunization with a live vaccine in mice thymectomized at birth. However, 

in vitro cellular resistance of peritoneal macrophages from immunized 

animals was not found to be reduced by neonatal thymectomy. 

Perkins and Marcus (57, 58) studied the effects of x-irradiation on 

resistance to infectious organisms. They observed that antibody was an 

effective agent in protection of mice which had been subjected to sublethal 

doses of x-irradiation. However, antibody protection failed when animals 

were exposed to higher levels of x-irradiation. These investigators 

concluded that for antibody to be effective in protection, cellular activity 

cannot be impaired. 

Mackaness (37) investigated the response of macrophages from normal 

and immune mice to Listeria monocytogenes. The response of normal and immune 
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cells from mice to infection with Listeria was tested using plaque formation 

in macrophage monolayers. The results indicated that macrophages from 

immunized animals were capable of destroying the parasite, whereas cells 

from normal animals were unable to control the Listeria challenge. 

Mackaness (37) has reported a possible mechanism for specific cellular 

responses. He felt that an accelerated response was dependent upon the 

ability to generate a new population of resistant cells from a residuum 

of specifically sensitized macrophages or macrophage precursors still 

surviving in the tissues as a result of the immunological activation 

which occurred during the primary infection. 

Cline (5) has reported on the bactericidal activity of human 

macrophages using a Listeria model. He reported that "differentiated!! 

macrophages ingested and killed more organisms per cell than newly 

isolated macrophages. 

Holland and Pickett (27) used guinea pig. rat or mouse macrophages 

and Brucella abortus, Brucella melitensis or Brucella suis and found 

that while all three strains of Brucella grew abundantly within normal 

macrophages, immune macrophages greatly restricted the intracellular 

growth of smooth and non-smooth Brucella. Although Brucella species 

are sensitive to antibodies, the growth of smooth Brucella species within 

either normal or immune cells was not influenced by the addition of 

specific antiserum to the medium. These studies suggest that macrophage 

immunized animals have an enhanced capacity to phagocytize and digest the 

specific challenge organism. These observations imply that macrophages 

can be specifically sensitized to an antigen and may have a memory 

capacity similar to that observed in antibody production. 
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Nonspecific Cellular Immunity 

The normal body possesses a remarkable nonspecific resistance to 

infections. The first line of defense consists of the physical and 

chemical barriers presented by the epithelial tissues. The relative 

impenetrability of the skin, the stickiness of mucous membranes, ciliation 

of the upper respiratory tract, the flushing action of various fluids, the 

acidity or alkalinity of various parts of the digestive system, all are 

effective in protecting the host against numerous pathogens and potential 

pathogens. 

Serum components of normal animals contain bactericidal substances 

which are nonspecific in their action. These substances have been referred 

to as natural antibody or opsonins. In 1904, Neufeld and Rimpau (53) drew 

attention to the thermostable opsonins of heated sera. He and his colleagues 

gave these heat stable opsonins the title "bacterotropins." The bactero

tropins, however, are specific in their phagocytosis promoting action, 

whereas the original opsonins were nonspecific in their phagocytosis 

promoting action. 

The complement molecule is also considered part of the nonspecific 

resistance system. Although the complement precursors are only assembled 

in the presence of an antigen-antibody complex, it should be noted that 

nearly any antigen-antibody complex will induce the molecules' assembly. 

This is evidenced by its multiplicity of actions; e.g., it may be involved 

in opsonisation, anaphylotoxin release, histamine release; it may result in 

in immune adherence, chemotaxis of neutrophils; it is an effector in hemolytic 

and bacteriolytic mechanisms and recently has been reported to be an integral 

portion of the properdin system (60). 
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Properdin was isolated and reported by Landy and Pillmer (34). They 

found the protein in normal human serum. It required the precursor of 

complement and magnesium ions to exhibit bactericidal action against gram 

negative bacteria and certain viruses. 

There are several other antibacterial substances that have been 

isolated from animal tissues or fluids. Table 1 summarizes many of 

the substances wh~ch I shall not discuss. 

Another mechanism of defense is nonspecific cellular immunity. 

Bacterial endotoxins and BCG constituents are most commonly encountered 

examples of nonspecific stimulants. When animals are inoculated with 

either BCG or lipopolysaccharide, they develop an enhanced resistance 

to challenge by a variety of bacteria. 

In 1936 Boivin and Mesrobeanu isolated antigenic substances from 

a gram-negative bacillus, Salmonella typhi. It was soon realized 

that the latter substance not only represented the antigenic moiety of 

the bacterium but possessed at the same time a number of nonspecific 

and seemingly unrelated biological effects. Among these effects, the 

most important qualities were described as the ability to induce fever, 

leukopenia followed by leukocytosis, vascular reactions, hyperglycemia, 

depletion of liver glycogen, thrombocytopenia, fibrinolysis, to raise the 

properdin level, stimulate the R.E. system, to endow the organism with the 

ability to resist heterologous infection, and, in high doses, bring about 

prostration and death. 

Data indicate that endotoxins migrate in an electric field as anions 

due to the presence of phosphoric acid esters. Although still under inves

tigation, a current dogma holds that all known gram-negative endotoxins have 



Table 1. Antibacterial Substances from Animals Tissue or Fluid 

Compound 

Complement 

Properdin 

Natural Ab 

Phagocytin 

B Lysin 

(l Lysin 

Leukins 

Plakins 

Lysozyme 

Histones 

Protamine 

Hematin 
(Mes 0 hema tin) 

Spermine 
(Spermidine) 

Tissue 
Polypeptides 

Source 

Serum 

Serum 

Serum 

Leukocytes 

Serum 

Serum 

Leukocytes 

Blood platelets 

Cells (?) 

Lymphatics 

Sperm 

RBC 

Pancreas 
Prostate 

Lymp!1atics 

Chemical Nature 

Euglobulin-carbohydrate 

Euglobulin 

Euglobulin 

Globulin 

Protein 

Protein 

Basic peptides 

Peptide (1) 

Small basic protein 

Small basic protein 

Small basic protein 

Iron porphyrins 

Basic polyamines 

Linear basic peptides 

Labile ••••••••••.••.. Inactivated 56°C, 1/2 hr. 

Antibacterial 
Selectivity 

Gram negative 

Gram negative 

Gram negative 

Gram negative 

Gram positive 

Gram positive 

Gram positive 

Gram positive 
(Chiefly) 

Gram positive 

Gram positive 

Gram positive 

Gram positive 

Gram positive 

Relatively stable ••.• Resists 56°C, 1/2 hr., but destroyed below 80·C, 1/2 hr. 
Stable •.•....••...••. Resists aO-lOO·C, 1/2 hr. or more. 

Heat Stability 

Labile 

Labile to relatively 
stable 

Labile to relatively 
stable 

Relatively stable 

Relatively stable 

Stable 

Relatively stable 

Stable 

Stable 

Stable 

Stable 

Stable 

Stable 

...... 
0'> 
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similar structure. They consist of lipopolysaccharide-protein-lipid 

complexes which can be split into the relative components. It has been 

found that the lipid portion of the complex is responsible both for 

toxicity and the manifold biological effects of endotoxin. 

It has long been known that gram-negative bacterial lipopolysaccharides 

(LPS) enhance the resistance of experimental animals (3, 71). Studies 

clearly demonstrate that many apparently unrelated biological systems, 

both humoral and cellular, are affected by injection of LPS (4, 7, 71). 

Investigators have purified endotoxin and have demonstrated that 

administration of purified endotoxin greatly alters the activity of 

cellular defense mechanisms. The phagocytic activity of the reticuloendo

thelial system and of mobile phagocytes has been shown to be stimulated 

(71). 

Rowley (59) reported in 1956 that injection of gram-negative bacterial 

cell walls into animals resulted in, first, an increase in susceptibility 

to challenge followed by an enhanced state of resistance. 

Bohme (3) has drawn the following conclusions concerning endotoxin: 

1. Endotoxin preparations increase the resistance of 

mice to heterologous infections. 

2. The amounts of endotoxin necessary are in the order 

of magnitude of hundreds of micrograms and less; the 

route of administration has no clear bearing on the 

results. Other reporters have also reported this 

(4, 22). 

3. The protective effecL becomes manifest 5-24 hours 

after administration depending on the dose. 
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4. The effect afforded by endotoxin is nonspecific in 

nature. 

Bohme does not discuss, nor is there significant literature available to 

define the mechanism of resistance induced by endotoxin. 

Macrophages or mononuclear leukocytes react to initiating stimuli such 

as LPS or BeG by becoming activated and proliferating in the vicinity of 

the irritation. The activated macrophage is characterized by increased 

"stickiness", morphology, increased acid phosphatase, increased oxygen 

uptake, increased glycolysis and lipid turnover, production of hydrogen 

peroxide, faster movement and more efficient ingestion (13, 

35, 49). 

The lysosomes and mitochondrial activity are increased nonspecifically 

for the stimulating agent involved (12). However, the destructive proper

ties of the activated macrophage are nonspecific even though the origin 

of these properties was from an immunologic event that was specific. 



MATERIALS AND METHODS 

Organisms 

Cultures of Candida a1bicans were obtained from the Department of 

Microbiology (University of Utah) pure culture collection. The organism 

was maintained on Sabouraud-dextrose agar slants. The organism was 

transferred every three months and was stored at room temperature. The 

organism was checked periodically for contamination by growth on 

chlamydospore agar and germ tube formation in human sera. 

Cultures of Klebsiella pneumoniae (199-A) were also obtained from 

the Department of Microbiology pure culture collection (University of 

Utah). The organism was maintained on nutrient agar slants. The organism 

was also lyophilized for long-term storage. Biochemical analysis and 

Klebsiella antisera (Difco) identified the organism as Klebsiella 

pneumoniae type 1. 

Endotoxins 

The endotoxin was obtained from Difco Laboratories (Bacto Lipopoly

saccharide B, !. coli OSS:BS). This material was diluted in sterile 

saline to a concentration of 100 ug per m1 and was stored at 4 C. 

Vaccine 

Candida a1bicans was grown on antibiotic blood agar at 37 C for 24 

hours. The organisms were harvested in gel-saline (1% gelatin in 0.85% 

saline) from the blood agar plate. The harvested suspension was filtered 
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through sterile glass wool. The filtered suspension was observed micro

scopically for clumping. The suspension was adjusted to MacFarland tube 

#3 or MacFarland tube #6. The organisms were killed by addition of 

0.5% formalin. The vaccine was checked for viability of the organisms 

at 48 hours. If viable organisms were present, the vaccine was stored 

and rechecked again at 72 hours. 

MacFarland tubes prepared according to a standard method (69) were 

used to estimate the number of organisms for Candida vaccines and Klebsiella 

organisms to be used in experiments. 

Media 

Antibiotic blood agar (ABA) was used for all experimental cultures. 

The organisms were grown for 24 hours at 37 C. Antibiotic blood agar 

was also used for all cultures from organs sampled during the in vivo 

experiments. Antibiotic blood agar is prepared by the following recipe 

(42) : 

Tryptose phosphate broth 29.5 g 14.75 g 

Agar 20.0 g 10.0 g 

Human blood 60 m1 30.0 m1 

Distilled water 1000 m1 500 m1 

Penicillin 50 units/m1 final concentration 

Streptomycin 50 mg/m1 final concentration 

Phosphate buffered saline (PBS), pH 7.2, was used to wash tissue 

culture cells. PBS was also used to make appropriate dilutions of in vitro 

samples prior to plating the organism. The phosphate buffered saline was 

prepared by the following recipe: 
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Sodium phosphate 5.2 g 

Potassium chloride 0.9 g 

Potassium phosphate 0.9 g 

Sodium chloride 36.0 g 

Distilled water 4500 ml 

Fluid thioglycolate medium (BBL) was reconstituted and sterilized. 

Thioglycollate was used to induce peritoneal exudates in the animals. 

Chlamydospore agar (Difco Laboratories) was used to grow Candida 

albicans in the mycelial phase. The spores produced during the mycelial 

phase of growth aided in identification of the organism. 

Sabouraud-dextrose agar (Difco Laboratories) was used to maintain 

the cultures of Candida albicans. The organism was transferred every 

three months. Two stock cultures on Sabouraud-dextrose agar were 

overlayed with light mineral oil for long-term storage. 

Tissue Culture Fluid 

Auto-Pow Eagles Minimum Essential Medium (EMEM) (Flow Laboratories, 

Rockville, Md; Cat. no. lA-020) was used as a stock tissue culture medium. 

After sterilization, 150 mg of glutamine per 500 ml of EMEM, 100 units 

per ml of penicillin, and 100 mg/ml of streptomycin were added to the 

sterile media. The pH was adjusted to 7.4 by addition of sterile sodium 

carbonate. Fifty ml of fetal calf serum (Grand Island Biological Co., 

Berkeley, California; Cat. no. 614) was added immediately prior to use. 

The media was stored at 4 C. Prior to use, the media was warmed to 37 C. 

Human serum was used to observe the short filament (germ) tubes 

formed by Candida albicans. 
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Dyes and St.::dnt:l 

Trypan blue dye was reconstituted in distilled water to yield a 0.2% 

Trypan blue solution. The dye was used to determine the number of viable 

cells per m1 of exudate (23). Trypan blue was substituted for eosin y. 

Wright's stain (Allied Chemical) was used to stain peritoneal exudate 

smears. 

Antibiot'ics 

Tetracycline hydrochloride (500 mg) suitable for intravenous (i.v.) 

injections was purchased from Leder1e Laboratories (Pearl River, N.Y.). The 

sterile powder was weighed out in mg amounts and reconstituted in sterile 

saline. 

Penicillin (100 units/m1) was mixed with streptomycin (100 mg/m1) and 

distributed in one m1 portions to sterile disposable tubes. The penici11in

streptomycin was frozen until needed. 

Mycostatin sterile powder (E.R. Squibb and Sons, N.Y.) was used in the 

tissue culture media. The powder was suspended in EMEM in a concentration 

of 2500 units/m1. One-tenth m1 was added to 2 m1 final volume in the culture 

tubes. The final concentration in the culture tubes was 125 units/m1. For 

use in tissue cultures, the suggested minimum concentration for mycostatin 

sterile powder is 100-300 units/m1 of nutrient medium (Mycostatin insert). 

Candidin 

Candidin was prepared in this laboratory. A departmental culture 

collection organism was grown in Sauton's protein-free media for 2 weeks 

at 37 C. Formalin (0.5%) was added to the culture to kill the organisms. 

The broth was checked for viable organisms by culture. The sterile 
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suspension was filtered and stored at 4 C. The supernatant fluid contained 

5.4 mg/IOO m1 total protein. 

Equipment 

Red tip heparinized capillary tubes were obtained from Sherwood 

Medical Industries (St. Louis, Missouri). The capillary had an internal 

diameter of 1.1 mm + 0.1 mm and a length of 75 mm. Calculation indicated 

that 52 mm length of fluid was equivalent to 50 lambda. The capillary 

tubes were used during the clearance study. 

Leighton tubes (16 x 150) were obtained from Bellco Glass, Inc. 

(Vineland, New Jersey). 

Glass beads were sterilized and used to lyse the tissue culture 

cells. 

A Deluxe Mixer (58220) from Scientific Products was used to aid 

in lysis of the tissue culture cells. The mixer was also used to mix 

dilutions prior to sampling. 

A bright line hemocytometer (American Optical) was used to count 

peritoneal exudate cells and diluted suspensions of Candida albicans. 

Animals 

Adult albino mice (Mus musculus) obtained from local sources were 

used in these experiments. They were fed Purina chow and had free access 

to water. 

Injection Schedule 

The experiments involved both in vivo and in vitro systems. The 

systems will be discussed separately beginning with the in vivo system. 
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Mice were separated into groups consisting of 20 animals. The groups 

were assigned a treatment regimen by random drawing. 

The animals that were specifically immunized were given an intraperitoneal 

injection of 0.25 m1 of the prepared formalin vaccine three times a week 

for two weeks. The mice were then challenged following one week of rest. 

The second group of animals was treated with the endotoxin. The 

animals received 10 ug of endotoxin subcutaneously in the nuchal region 

24 hours prior to challenge. The total volume of solution injected per 

mouse was 0.1 m1. 

The third group of animals was treated with saline. The animals 

received 0.1 m1 of saline subcutaneously (s.c.) in the nuchal region 

24 hours prior to challenge. 

. Preparation of Q .. albicans for Chall~ng~. 

Stock cultures of Candida albicans were grown on antibiotic blood 

agar. A 24 hour culture was harvested in 1% gel-saline and mixed 

thoroughly. The suspension was filtered through glass wool and wet 

preparations of the suspension were observed microscopically. It was 

observed that less than 10% of the yeasts were budding. The organisms 

were diluted in PBS and counted in a hemocytometer. The organisms were 

then adjusted to the appropriate concentration for challenge. Plate 

counts of the challenge suspension were also done to determine the 

exact number of viable organisms. For in vitro experiments, the Candida 

6 suspension was adjusted to a concentration of 2 x 10 organisms/ml in 

gel-saline. The suspension was centrifuged at 3000 RPM for five minutes. 

The resulting pellet was resuspended in Eagles Minimum Essential Medium. 

6 
The macrophages were challenged with 10 Candida albicans organisms (0.5 

m1). 
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Challenge 

Systemic moniliasis was induced by i.v. challenge. All mice were 

challenged sequentially over a one hour period with the same suspension 

of organisms. The suspension of organisms contained approximately 1 x 107 

organisms/m1. The challenge dose was 0.1 m1 which contained approximately 

1 x 106 organisms/ml. 

Five animals from each group, e.g., the saline treated group, 

endotoxin treated group and specifically immunized animal group, were 

sacrificed at 24 hours intervals post-challenge. The skin surrounding 

the peritoneal area was treated with 95% ethanol. The skin surrounding 

the peritoneal cavity was reflected without entering the abdominal cavity. 

With a sterile set of instruments the abdominal cavity was entered 

and the liver, spleen, and kidney were excised. The organs were bisected 

and equivalent cross sections streaked onto antibiotic blood agar plates. 

The plates were then incubated 48-96 hours, the colonies were counted, 

and results recorded. 

In vitro Experimental Design 

The mice used for the in vitro experiments had the same immunization 

schedule as the specifically immunized mice used in the in vivo experiments. 

If the immunized mice were not used within a month of their last immuni

zation injection, a 0.1 ml booster injection was administered 7 days prior 

to collection of the macrophages. 

The endotoxin treated animals received 0.2 ml injections containing 

20 ug of endotoxin. The injections were administered subcutaneously in 

the nuchal region. The first injection of endotoxin was administered 24 

hours prior to stimu1atin of the peritoneal exudate. The second injection 
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of endotoxin was adm~nistered 48 hours later~ 24 hours after the injection 

of thioglycollate. The animals received injections of endotoxin daily 

for the follow~ng 3 days. The last injection of endotoxin was adminis

tered 24 hours prior to harvesting the macrophages. 

The third group of animals received 0.1 ml saline for 5 consecutive 

days prior to harvesting the macrophages. 

The peritoneal exudate was induced by injecting the animals with 

5.0 ml of thioglycollate intraperitoneally. Five days later the animals 

were sacrificed by ether anesthesia. Immediately after the animal had 

expired, it was removed from the ether jar and injected i.p. with 5 m1 of 

sterile PBS. The animals were pinned to a dissection board and 95% 

ethanol was applied to the abdominal region to moisten the fur of the 

abdominal surface. Sterile forceps and scissors were used to reflect 

the skin hom the abdominal wall, A second pair of sterile tissue 

forceps and scissors were used to make a small opening in the abdominal 

wall. A ster1.1e PaSteur pipette was used to aspirate the peritoneal 

exudate from the abdominal cavity. The exudate was placed in a sterile, 

silicon coated centrifuge tube. The cells from three or four animals in 

each group were pooled. The monocytes were centrifuged at 2000 RPM for 

five minutes in a table top centrifuge. The cells were washed twice in 

PBS and resuspended in 5 ml of tissue culture fluid. The monocytes were 

counted by the trypan blue dye exclusion technique. The cells were 

adjusted to a concentration of 4 x 106 monocytes/ml and dispensed in 

0.5 ml quantities, 2 x 106 cells, to sterile Leighton tubes. The 

respective groups, e.g., cells from specifically immunfzed animals, 

cel~ from endotOXin treated animals and cells from saline treated 

animals were aligned one behind the other with the immune cells in the 
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front row, the endotoxin treated cells in the second row, and the saline 

treated cells in the back row. Tissue culture fluid, 1.5 ml, was added 

to each tube brining the total volume to 2 mI. The phagocytes were 

incubated for 24 hours at 37 C in a CO2 incubator. After overnight 

incubation, the tissue culture fluid was aspirated and the cells were 

washed twice with sterile PBS. Tissue culture fluid, 1.5 mI, was added 

to each tube. These cells were then ready to be challenged. 

Lymphocytes were collected from the mesenteric lymph node and the 

inguinal lymph nodes. The lymph nodes were removed aseptically and placed 

in 100 x 15 mm Falcon tissue culture petri dishes. The lymph nodes 

were suspended in 10 ml of tissue culture fluid until the nodes from all 

the animals in the respective group had been collected. The lymph nodes 

were then placed in a sterile strainer that contained a sterile one square 

inch section of 100 mesh stainless steel wire screen. The lymph nodes 

were drawn across the screen until only fatty tissue and connective 

tissue remained. Five ml of the tissue culture fluid in the dish was 

pipet ted through the screen to wash the lymphocytes into the petri dish. 

The lymphocyte suspension was incubated at 37 C for 30 minutes. After 

incubation, the lymphocytes were filtered through sterile glass wool 

into a centrifuge tube. The cells were centrifuged at low speed (2000 

RPM) for 5 minutes. The supernatant fluid was poured off and the cells 

were resuspended in 5 ml of tissue culture medium. Appropriate dilutions 

of the cell suspension were made and the cells were counted by the trypan 

blue dye exclusion technique, Approximately 90% of the lymphocytes were 

viable at this time. If the lymphocytes were to be incubated with the 

Candidin, 1.0 ml of the antigen (54 ug) was added at this point and the 
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lymphocyte plus antigen suspension was incubated together for 24 hours. 

At the end of the incubation the lymphocytes were added to the macrophages 

before the Candida suspension was added. 

The cultured phagocytes (2 x 106 ) plus 1 x 106 lymphocytes per tube 

plus 1 x 106 Candida albicans per tube were incubated together for 30 

minutes at 37 C in a CO 2 incubator. At the end of the incubation period, 

the supernatant fluid was aspirated and the phagocytes were washed twice 

with PBS. Tissue culture fluid containing 125 units of Nystatin was 

added to each tube. As soon as all of the tubes had received the Nystatin-

tissue culture fluid, the first tube from the group was labeled and 

sampled. The supernatant fluid was aspirated from the sample tubes and 

2 ml of cold PBS was added to each Leighton tube. Eight to 12 sterile 

glass beads were added to each tube. The cells were lysed by holding 

the Leighton tube on a Vortex mixer. This resulted in a rapid rotation of 

the beads within the tube. Each tube was held on the mixer for 30 seconds 

or longer if necessary for lysis of all the cells. The cell lysate was 

diluted in cold PBS and place counts of the dilutions were done. The 

plate counts were done on antibiotic blood agar in duplicate. The plates 

were incubated for 48 hours at 37 C and colony counts were then made. 

Experimental Design for Circulatory Clearance of .£. ·albicans 

In vivo clearance studies were done to determine if there were any 

differences in the clearance rate of immune, normal and tetracycline 

treated animals. Several animals in each group were tested to get an 

average at each time interval. 

Mice were anesthetized with ether. Subsequently the animals were 

injected with 2 x 106 organisms intravenously. Blood samples were collected 
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by orbital puncture. The blood samples were collected in heparinized 

capillary tubes and diluted in cold PBS. Samples were collected prior 

to the injection of the organisms, immediately after the injection of the 

organisms and at 30 seconds, 1 minute, 2, 5, and 10 minutes. Plate 

counts were done in duplicate on each sample. 



EXPERIMENTAL RESULTS 

Experiments were carried out in albino white mice (20-27 grams). 

In vivo and in vitro experiments were designed to compare cellular 

resistance of white mice to Candida albicans. 

Efficacy of Nonspecific Immunization 

A. Dose Variation 

Experiments were designed to determine the quantity of endotoxin 

necessary to induce nonspecific resistance to an infectious agent. 

White mice, in groups of 10, were treated with saline, 1 ug, 10 ug or 

100 ug of endotoxin respectively. Twenty-four hours later the mice were 

challenged with Klebsiella pneumoniae (10 LD50). The results, Table 2, 

indicate that 10 ug of endotoxin was as effective as 100 ug of endotoxin 

in affording protection, whereas 1 ug of endotoxin gave no significant 

protection to challenge with Klebsiella pneumoniae. 

B. Schedule Variation 

The extent of the nonspecific resistance induced with 10 ug of 

endotoxin was determined next. The mice were challenged with Klebsiella 

pneumoniae in quantities of 10 LD50 , 100 LD50 , or 1000 LD 50 . The results, 

Table 3, show that 10 ug of endotoxin injected subcutaneously render the 

mice resistant to 100 LD50 challenge. 

To determine if daily doses of endotoxin, 10 ug. resulted in enhanced, 

diminished, or equal protection, 24 mice were divided into four groups. The 



Challenge 

Table 2. Induced Nonspecific Resistance 

to Klebsiella pneumoniae in Mice 

Amount of endotoxin injected 

Control (gel-saline s.c.) 1 ug 10 ug 

10/10* 7/10 1/10 

*Number dead/total five days after challenge 

31 

100 ug 

1/10 
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Table 3. Nonspecific Resistance to Klebsiella pneumoniae 

Induced by Subcutaneous Injections of Endotoxin 

LDSO challenge doses 

Endotoxin injected Saline 1 LDSO 10 LDSO 100 LDSO 1000 LDSO 

10 ug 0/10* 0/10 0/10 2/10 8/10 
24 hr prior to challenge 

10 ug/ day for 0/10 0/10 2/10 3/10 9/10 
7 days prior to challenge 

*Number dead/total five days after challenge 
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animals were treated with saline or 10 ug of endotoxin 24 hours prior to 

challenge, or 10 ug of endotoxin for 7 days prior to challenge the animals 

were challenged with!. pneumoniae, 10 LDSO or 100 LDSO' depending on the 

group. The results in Table 3 show that treating the animals for 7 days 

prior to challenge with 10 ug of endotoxin does not significantly differ 

from treating the animals with 10 ug of endotoxin 24 hours prior to 

challenge. 

CircuIatory Clei:rranc~ of .£. 'albicahs in Mice 

A clearance experiment was performed to determine how rapidly C. 

a1bicans was cleared from the circulatory system. Systemic mono1iasis 

was induced by i.v. injections of 2 x 106 Candida a1bicans. Blood 

samples were obtained by intra-arterial bleedings. Samples were 

obtained at the time of injection, 60 seconds, 120 seconds, 300 seconds, 

and 600 seconds. Mice that had been immunized with C. a1bicans vaccine, 

injected with saline, and injected with lug tetracycline daily for 3 

days prior to challenge were used for the clearance study. The results 

presented in Table 4 show that each group of animals cleared the 

Candida a1bicans to an asymptote level in 600 seconds. The tetracycline 

groups showed no significant differences from the saline group or the 

immunized group of animals. 

In Vi voExper.iment a1 Results 

In an effort to determine the extent of resistance in white mice to 

Candida albicans, animals were treated with saline, endotoxin, Candida 

albicans vaccine or tetracycline (67) (1 mg/mouse). Comparisons of 

induced resistance were made by doing plate counts on the liver, spleen 



Table 4. Clearance of Candida a1bicans 

from the Circulatory System 

Challenge dose • 2 x 106 C. 

Time in seconds Immune Tetracycline 

Before injection 0 0 

0 7,4 x 105 7.3 x 105 

30 5.8 x 104 6.0 x 104 

60 9.2 x 103 1.1 x 104 

120 1 x 103 2.0 x 103 

a1bicans 

Saline 

0 

7 x 105 

6 x 104 

1 x 104 

2 x 103 

300 1 x 102 1.4 x 102 1.5 x 102 

600 5 x 101 5.5 x 101 7 x 101 

34 
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and kidney at designated time intervals. The results of the in vivo 

experiments are presented in Figure 1. It was observed that the kidneys 

were the most affected organs in all groups. By visual inspection, the 

kidneys from the immunized animals appeared more normal than the endotoxin, 

tetracycline treated or saline treated animals' kidneys. These latter 

kidneys appeared swollen, pale in color and had multiple petechial 

hemorrhages at the surface. The livers and spleens of all the animals, 

regardless of the group, appeared normal. 

The average colony count per group with five mice per group for 

each of 4 days is given in Figure 1. If the number of colonies was 

greater than 200 or too numerous to count, the sample was scored as 

200 on the graph. 

At 24 hours post challenge, there were few differences. There were 

no significant differences in the colony counts from the liver samples. 

The spleen samples showed a small difference between the immune animals' 

spleens and the normal animals' spleens. There did not appear to be any 

significant differences between the immune or normal spleens when 

compared to the endotoxin and tetracycline spleen samples. The counts 

for the kidney samples from the tetracycline group and endotoxin treated 

group appeared to be greater than the counts for the immune kidney and 

normal kidney samples. There appeared to be no differences in counts 

between the immune kidney samples and the normal kidney samples. The 

liver samples tested on days 2, 3, and 4 showed few or no colonies. Thus, 

no significant differences in counts were observable in either liver or 

spleen samples tested on the second, third, or fourth days. The kidney 

samples on day 2 indicated that the saline treated animals' kidneys and 
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Figure 1. Candida alb1cans infection: post challenge plate counts from 
mouse organs. I=immunized, E=endotoxin treated, T=tetracycline 
treated, N~sa11ne treated. 



37 

the immunized animals' kidneys were nearly equal in colony counts. The 

endotoxin treated animals' kidneys had a greater number of counts. However, 

it is unlikely that the difference is significant. By day three, the 

saline treated animals' kidneys had a greater number of colony counts 

Lhan did the endotoxin treated or the immune animals' kidneys. 

The samples collected on day four showed the saline treated animals' 

kidneys to contain too many organisms to be counted by the method used. 

The tetracycline treated animals' kidneys had high numbers of colonies 

but the colony counts were less than the colony counts in the group of 

saline treated animals. The endotoxin treated animals also had a high 

number of colony counts from the kidney samples; however, the colony 

counts were not as great as the tetracycline or the saline treated 

animals' kidney colony counts. The immunized animals' kidney samples 

had significantly fewer colony counts than the endotoxin, tetracycline 

and saline treated groups. 

It would appear that by day four the immunized animals were starting 

to control the infection whereas the other groups were showing no significant 

change in the number of colony counts or an increase in colony counts from 

previously tested samples. 

The apparent differences in colony counts in the kidney samples 

indicate some degree of enhanced resistance among the immunized animals 

when compared to the other groups. Reasons for these differences were 

sought at a cellular level. 

Removal of ~. albicans from Tissue Culture Monolayers by Washing with PBS 

An experiment was designed to determine the success of removing extra

cellular organisms from a cell monolayer by washing the monolayer. One 
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million L-ce11s (Department of Microbiology, University of Utah), mouse 

fibroblasts that are poorly phagocytic and may not be phagocytic at all, 

were cultured in Leighton tubes. The cells were incubated for 48 hours 

at 37 C. After the incubation period the cells were challenged with 2 x 106 

Candida a1bicans. The L-ce11s and Candida a1bicans were incubated for 

30 minutes at 37 C. The cells were washed three times with PBS and 

tissue culture media was added after the final washing. A sample of 

the extracellular fluid was taken immediately after the tissue culture 

fluid had been added. Samples were also taken at 15 minutes, 30 minutes, 

1 hour, 3 hours, 6 hours, 18 hours, and 24 hours. The results, presented 

in Table 5, indicate that no significant increase in extracellular organisms 

occurs during the initial 3 hours of incubation. At 18 ,hours of incubation 

the organism had multiplied to a significantly greater quantity of organisms 

per m1 of tissue culture fluid. 

These results also indicate that greater than 99.0% of the organisms 

were removed by washing the monolayer three times. Due to the small 

number of organisms that remained in the tubes despite the washings 

and the ability of the few residual organisms to multiply to a significant 

number of colonies, in a brief period, the decision was made to include 

125 units of mycostatin in the media in further experiments (72). 

In Vitro Cytopepsis: Macrophage Systems 

Experiments were designed to determine the efficiency of macrophages 

from animals treated with saline, endotoxin or Candida a1bicans vaccine 

to phagocytize and destroy Candida a1bicans organisms. 

Approximately equal numbers of macrophages (2 x 106) from the 

specifically treated animals were cultured in Leighton tubes. After 
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Table 5. Removal of Extracellular Candida albicans 

from L-cells by Washing 

Number of Candida albicans recovered 
Sample Time in 1 m1 of extracellular fluid 

0 minutes 210* 

15 minutes 238 

30 minutes 257 

60 minutes 220 

180 minutes 245 

360 minutes 495 

1080 ml.nutes TNC (..> 105) 

1440 minutes TNC 

*Average colony count for 2 samples 
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overnight incubation, the cells were washed and challenged with approximately 

1 x 106 organisms. In the experiments, the number of yeast cells initially 

phagocytlzed were nearly equal in all of the groups. However, the macro-

phages from the immunized animals appeared to be slightly more efficient 

in destroying the yeast cells when compared to the macrophages from the 

endotoxin treated and saline treated animals' macrophages. The macrophages 

from the endotoxin treated animals were intermediate in their cytopeptic 

capacities. By the sixth hour post challenge there appeared to be no 

differences in the cytopeptic activity in any of the groups, e.g., the 

number of vlable yeasts were round to be nearly equal in each system. 

Results of the experiment are presented in Figure 2. 

A modification of the above experimental design to include lympho-

cytes from one group of animals added to macrophages of all groups was 

proposed to determine if lymphocyte.s interact with macrophages to enhance 

cellular resistance. 

in Vitro Cytopepsis: Macrophage Plus Lymphocyte Systems 

In all of the following experiment the same basic experimental 

design has been employed as described below, The variable involved 

is the lymphocytes from the variously treated animals. 

Experimental Design 

1. Treat the anlmals with Candida albicans vaccine, endotoxin 

or sal1ne. 

2. Induce peritoneal exudate macrophages with thioglycollate. 

3. Aseptically collect the macrophages irom the peritoneal cavity. 

4. Wash the macrophages with PBS. 

.. , 
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~'-4macrophages from immunized animals 
~mac:tophages from endotoxin treated 

animals 

(t--itmac.rophages from saline treated 
anl.mals 

Figure~. COmpaIl.SOn of the l.n vitro rate of destruction of 
Candida albicans: ~acrophages from imrnunl.zed animals, 
endotoxin treated an1ma1s and macrophages from sall.ne 
treated animals. 
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5. Aseptically collect the mesenteric and inguinal lymph nodes from 

the proper group of an1mals. 

6. Count the macrophages and lymphocytes and adjust the cells to the 

proper concentration, 

7. Incubate the exudate cells in the presence of Candidin overnight. 

8. Wash the cells. 

9. Challenge the cells with 1 x 106 Candida albicans. 

10. Incubate the suspensio tor 30 minutes. 

11. Wash the cells with PBS (3 times) and re-feed the cells. 

12. Rupture the cells at specific time intervals. 

13. Do plate counts for viable organisms in the resulting supernatant 

fluid. 

Macrophages were cultured in duplicate. To one culture lymphocytes 

were added while the other culture was not exposed to lymphocytes. The 

media used to re-feed the cells after the challenge with C. albicans 

contained 125 units of mycostatin. 

The following experimental results were obtained. 

Figure 3 compares the cytopeptic activities of macrophages from 

immunized animals to macrophages from saline treated animals. The 

corresponding lymphocytes were added to each macrophage culture. The 

results are presented as the percent of surviving yeasts on the abcissa 

versus time, in hours, on the ordinate. The macrophages from the 

immunized animals destroyed most of the yeas!: cells during the initial 

two hours. The macrophages from saline tre.ated an1mals were significantly 

less efficient at this time in destroying yeast cells. 
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•• ----"1 •• lymphocytes and macrophages from 
salinetreated animals 

•• ~~ •• lymphocytes and macrophages from 
immunized animals 

3 
HOURS 

4 5 6 

Comparison of the in vitro rates of destruction of Candida albicans: 
immune lymphocyte-macrophage system versus the saline lymphocyte
macrophage system. 
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By the end of the fourth hour the numbers of yeasts alive in normal 

and immune macrophages had diminished to insignificant differences. Only 

a few organisms were alive after six hours, that is, at the termination of 

the experiment. The most significant difference in the number of viable 

yeast cells was observed at two hours post challenge. The data in this 

figure was observed to be a first order rate reaction. Subsequent 

comparisons made between various combinations of lymphocytes and macro

phages from immunized animals, endotoxin treated animals and saline 

treated animals, were also observed to be a first order rate reaction. 

Slope regression analysis (Figure 4) and estimation of 50% survival 

(ET
50

) of the yeast cells indicate a significant difference at the 95% 

confidence level. The statistical analysis was done according to the 

method of Litchfield and Wilcoxin (37). 

Figure 5 shows results obtained when macrophages from endotoxin 

treated animals plus lymphocytes from immune animals were compared to 

a lymphocyte-macrophage combination from saline treated animals. The 

figure shows that there is an enhanced capacity to destroy the~. albicans 

cells until the fourth hour. The immune cell system reaches its asymp

tote by the second hour; the "normal" cell system reaches a similar 

asymptote by the fourth hour. The slope regression analysis (Figure 6) 

shows the linear relationship of the two systems. The difference in ET50 

and in slope regression was statistically significant at the 95% confidence 

levels. 

Figure 7 compares cytopeptic capacities of the system containing 

lymphocytes from immunized am.mals plus macrophages from saline treated 

animals to lymphocytes and macrophages from saline treated animals. 
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Comparison of the in vitro rates of destruction of Candida 
a1bicans: lymphocytes from immunized animals plus macrophages 
from endotoxin treated animals versus lymphocytes and macro
phages from saline treated animals. 
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During the initial hour the two systems seemed to be equally effective 

in destroying the yeast cells. However, by the end of the second hour 

the system composed of lymphocytes from immunized animals plus macro

phages from the saline treated animals system. This increased efficiency 

diminished with time and by the fourth hour the cytopeptic capacities 

of the two systems had reached asymptomatic levels. Figure 8 presents 

the slope regression analysis for this system. The slope of the 

immune lymphocytes plus saline treated macrophage system is signifi

cantly different from the slope of the saline lymphocyte-macrophage 

system, as is the ETSO for the comparison of these two systems. 

Figures 9 and 10 show the comparisons of the system containing 

lymphocytes from endotoxin treated animals plus macrophages from 

immunized animals to the system containing lymphocytes and macro-

phages from saline treated animals. The data show moderate differences 

developing after the initial hour post challenge. This system does not 

show the efficiency observed in the system containing macrophages and 

lymphocytes from immunized animals, or the system containing macrophages 

from endotoxin or saline treated animals. Slope regression analysis and 

the ETSO values are significantly different from the saline treated 

control system. 

Figure 11 compares the lymphocyte-macrophage system from endotoxin 

treated animals to the lymphocyte-macrophage system from saline treated 

animals. The cells from the endotoxin treated animals were more efficient 

in post phagocytic killing of the yeast cells than the saline treated 

animal cells. This homologous system of endotoxin treated lymphocytes 

macrophages appears to be more active cytopeptically than the previously 
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examined heterologous system containing lymphocytes from endotoxin treated 

animals and macrophages from immunized animals. Statistical analysis of 

these data show that significant differences exist between the two systems 

in terms of ET50 and slope regression values (Figure 12). 

Figure 13 shows a comparison of the system involving lymphocytes from 

endotoxin treated animals plus macrophages from saline treated animals to 

the system of lymphocytes and macrophages from saline treated animals. 

The data suggest moderate enhancement of the cytopeptic rate in the 

endotoxin involved system. As observed in previous systems, the 

differences diminished by the fourth hour of the experiment. The 

slope regression (Figure 14) and the ETSO values were significantly 

different at the 95% confidence level. 

Figure 15 presents data from the system utilizing lymphocytes 

from saline treated animals plus macrophages from immunized animals. 

The data show no differences between this system and the saline control 

system during the initial hour of the experiment. The subsequent three 

hours show moderate differences which have diminished by the fourth 

hour of the experiment. Statistical analysis of the slope regression 

(Figure 16) shows that the slope of the test system is not parallel 

with the control system. Slope regression analysis and F.TSO analysis 

indicate significant differences exist at the 95% level of confidence. 

Figure 17 compares lymphocytes from saline treated animals plus 

macrophages from endo~oxin treated animals to the system composed of 

lymphocytes and macrophages from saline treated animals. This figure 

shows li~tle or no difference during the initial hour of the experiment. 

The second and third hour samples show marked differences from the 
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saline control system. However. by the fourth hour the differences have 

diminished. Figure 18 is the slope regression comparison of the two 

systems and is significant at the 95% confidence level as are the F.T50 

values. 

Macrophages trom immunized mice, endotoxin treated mice and saline 

treated mice were cultured and challenged in the absence of lymphocytes. 

The macrophage systems were compared to a lymphocyte free macrophage 

system from saline treated animals in addition to the lymphocyte-macrophage 

system from saline treated animals. 

When immune macrophages were compared to saline treated macrophages, 

slight but significant differences were observed. These data are shown 

in Figure 19. The macrophages from the immunized mice are represented 

by triangles and the macrophages from the saline treated animals are 

represented by circles. 

~~en the macrophages from the immunized animals were compared to 

the lymphocyte-macrophage system from saline treated animals, the 

differences of greatest magnitude were observed. Figure 20 presents 

the comparison of the macrophages from immunized animals to the 

lymphocyte-macrophage system from saline treated animals. 

Macrophages from endotoxin treated animals were compared to 

macrophages from saline treated animals. The slopes of the lines 

are nearly equal as shown in Figure 21. Fowever, the magnitude of 

d~fference is great enough to be significant at the 95% level of 

confidence. The ET50 is statistically significantly different from 

the saline macrophage system. When the cytopeptic activity of 

macrophages from endotoxin treated animals was compared to the 
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Figure 20. Slope regression analysis of the in vitro rates of destruction 
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cytopeptic activity of the lymphocyte-macrophage system from saline treated 

animals, large differences were observed (Figure 22). The endotoxin 

treated macrophage system was significantly more cytopeptically active 

than the saline treated lymphocyte-macrophage system. 

Surprisingly, when macrophages from the saline treated animal 

system were compared to the saline treated lymphocyte-macrophage system, 

significant differences were observed with the more rapid cytopepsis 

in favor of the macrophage alone. The lines representing the systems 

containing the lymphocytes plus macrophages from saline treated animals 

and the saline treated macrophages alone are shown in Figure 23. The 

ETSO of the saline treated system is also significantly different from 

the ETSO of the saline tleated lymphocyte-macrophage system. 

Figure 24 compares all of the lymphocyte-macrophage systems. The 

saline treated lymphocyte-macrophage system is represented by S-S. 

The saline treated lymphocyte-macrophage system is represented by S-E. 

The endotoxin treated lymphocyte-saline treated macrophage system is 

represented by E-S. The endotoxin treated lymphocyte-macrophage system 

is represented by E-E. The endotoxin treated lymphocyte-immune macro

phage system is represented by E-I. The system containing lymphocytes 

from immunized animals plus macrophages from saline treated animals is 

represented by I-S. The system composed of the immunized animals' 

lymphocytes plus macrophages from endotoxin treated animals is 

represented by I-E. The system containing lymphocytes and macrophages 

from immunized animals is represented by I-I. 

Figure 2S compares macrophages from immunized mice (represented 

by hexagons), macrophages from endotoxin treated animals (represented 
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endotoxin treated animals VB. lymphocytes and macrophages from 
saline treated animals. Symbols mark ETSO values. 



Ul 
~ 
<!l 
u 
H 
r:Q 

~ 

ul 
~ 
<!l 
j:;il 
~ 

~ 

j:;il 
p 
H 

~ 

~ 
8 

99.9 

90 

80 

4 

2 

2 

1 

1 

TIME (hr) 

2 

• 

j 

3 

lymphocytes and 
macrophages from 
saline treated 
animals 

macrophages from 
saline treated 
animals 

456 

Figure 23. Slope regression analysis of the in vitro rates of destruction 
of Candida alb in the systems containing macrophages from 
saline treated animals vs. lyrr~hocytes and macrophages from 
saline treated animals. Symbols mark ET50 values. 

I"''!'' 



99.9 

(J) 

Z 
~ 
U 
H 90 j:Q 

~ . 
Uj 80 
;;j 
J:il 
A 
iN! 60 
J:il 
:> 
H 
H 40-~ 

~ 
U 

20 

10 

5 

2 

1 

1 
TIME (hr) 

s-s lymphocyte.s and 
macrophages from 
saline treated 
animals 

E-I lymphocytes from 
endotoxin treated 
animals plus 
macrophages 
immunized animals 

E-S l~nphocytes from endotoxin 
treated animals plus macro
phages from saline treated 
animals 

I-I lymphocytes and macrophages 
from immunized animals 

S-E lymphocytes from saline treated 
animals plus macrophages from 
endotoxin treated animals 

E-E lymphocytes and macrophages 
from endotoxin treated animals 

2 3 4 5 6 

Figure 24. Comparison of the in vi_tro rates of destruction of Candida 
albicans: all of the lymph("\cyte-macrophage systems. 



99.9 

1 

1 
TUlE (hr) 

2 

lymphocytes & macro-
• phages from saline 

treated animals 

macrophages from 
• immunized animals 

macrophages from 
4 endotoxin treated 

animals 

macrophages from 
• saline treated 

animals 

3 4 S 6 

Figure 25. Comparison of the in vi rates of destruction of S;andida 
albican~: the systems containin~ only macrophages vs. lymphocytes 
and macrophages from saline treated animals. Symbols mark ETSO 
values. 



71 

by triangles), macrophages trom sal~ne tteated an~mals (represented by 

squares) and lymphocytes plus mal:rophages tram saline treated animals 

(represented by circles). The ma.:.:rophages from the immunized animals 

are observed to ha1le an enhanced cytopeptac capacity when compared to 

macrophages ttom the endotox~n treated an~mals or macrophages from 

saline treated an~mals. 

Table 6 summar~2.E.S the daLa. The cell tyne and treatment are 

listed in columns one and LWO. Col14mn three ~ndicates the magnitude 

ot the ditferences ~n percent dead yeasts between the exper~mental 

system and the control system. Column tour lists the value and 

conf~dence l~mitS ~95%) for the slope at each system. The table 

~ndicate9 that each system 18 s~gnit1cantly d~fterent from the 

lymphocyte-macrophage system 0t cellS l[Oin SCill.ne treated mice. 

The data suggest with confiden~e that macrophages trom 1mmunized 

animals and mac.rophages t:i0m enaOL0X1n treated an1mals, 1n the absence 

of lymphocytes, destroy the yeast cells more etficlently than the 

systems conta.lning lymphocytt:!~ and maCl:.vphdgeb. Correspondingly, 

the slopes ot the 11nes wn1~h 1nci1cate rate 01 destruct10n tor the 

systems conta.l.ning only ma<-rophages have greater values than the 

lymphocyte-mal.rophage system". Th1s l.Lndinr!, implie6 that the tate 

of destruction 01 the C. alb1~ans occur£ed at a more rapl.d rate in 

the systems containing only mai..!ophages than 1n the systems containing 

lymphocytes and macrophages. 

The most eit1Cl.ent lymphocyte-macJ::0phage system consisted of 

lymphocytes from immunl.zed an~mals plus mac.rophages from endotoxin 



Table VI. Compilation of Experimental and Control Data 

Cell type and treatment t:. at 2 hours Estimated time of Slope of 
Ly!!p_hocytes ~..Clc_rophage~ in _~ 5iead y~G\s ts 50%~!!rvi val (ET"iol regression line 

Saline Saline 2.12 (2.105 - 2.131) 1.599 (1.591 - 1.607) 

Immune Immune 50 0.74 (0,7342-0.7460)* 1.7329(1.7226-1.74J3)* 

Immune Endotoxin 48 0.65 (0.643 - 0.657)* 2.i51 (2.134 - 2.168)* 

Immune Saline 42 1.00 (0.998 - 1.012)* 2.370 (2.3487-2.3914)* 

Endotoxin Immune 30 1.10 (1.089 - 1.110)* 1.994 (1.980 - 2.008). 

Endotoxin Endotoxl.n 34 1-03 (1.02 - 1.04)* 2.068 (2.054 - 2.082)* 

Endotox1n Saline 45 0.96 (0.951 - 0.969)* 1.900 (1.887 - 1.91j)* 

Saline lmmune 34 1.15 (1.139 - 1.161)* 1.910 (1.956 - ~.984)* 

Saline Endotu.un 32 1.10 (1.089 - 1.111)* 2.107 (2.084 - 2.118)* 

Immune 46 0.27 (0.266 - 0.274)*t 3.074 l3.041 - 3.108)*t 

Endotoxin 47 0.51 (0.503 - 0.517)*t 2.530 (2.507 - 2.553)*t 

Saline 39 0.68 (0.6719-0.6882)* 2.239 \2.219 - 2.259)* 
...... 
N 

*s1gnificantly different trom the sal~ne treated lymphocyte-macrophage control system 

+significantly different from the saline treated macrophage system 



73 

treated animals (ET
SO 

- 0.65). ThiS system was slightly more efficient 

than the lymphocyte-macrophage system irom immunized animals (ETSO = 0.74). 



DISCUSSION 

These studies have been c0ncerned wuh the comparative efficacy 

of the two dist~ngulshable cellular mechi:misms ot resistance in mice to 

Candida albicans. In vivo and in vitro comparisons were made on groups 

of animals and cells taken from such animals, that had been specifically 

immunized. treated with bacterlal lipopolysaccharide or treated with 

saline. There are tew reports ln the literar:.ure that are concerned 

with this type of quantitatlVe compar~6on· 

Kemp and Solotorovsky (29) studied the pathogenesis of experimental 

candidiasis. They tound rapid clearing of the organism from blood 

into the lungs. spleen. and liver. Also. cytopepsis of the Candida 

cells in these tissues was complete within a short time. In the 

kidney and heart a progresslve lniectlon was observed. Although we 

did not investigate the posslbllity of a progressive infection in the 

heart. our results with other organs agree with those of Kemp and 

Solotorovsky, 

The protective ef!ect of endotoxln admlnistered 24 hours prior 

to challenge with Candida albicans has been demonstrated (16, 22, 33). 

Kimball et a1. (,30) have demonstrated a protective effect against other 

fungi by the same means. Several lnvestigaco!s (3, 4. 7, 16, 34. 59, 81) 

have reported on the protective eitect arforded an animal treated with 

endotoxin. FlHthetm0re, there ate repo! 1:5 showing that animals specifi

cally immunlzed agalnsl: various tungi and bacteria have a greater degree 
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of resistance to challenge with the homologous organism than the degree 

of resistance achieved by injection of endotoxin. In these reports specific 

antibody did not appear to enhance either the phagocytic or the cyto-

peptic rate of the organism. His~ologic s~udies on animals that had 

been immunized and then challenged showed fewer organisms in tissues 

than did the tissues of non-~mmunized animals (.2, 25, 31, 62, 81). 

Our studies with Candida albicans show that with time, immunized 

animals were able to control the gr:ow~h of the organism in the liver 

and spleen and that the number of organisms in t:he kidney had decreased 

by the fifth day. Endotoxin and saline treated animals showed less 

resistance t:han ~he speC~I~cally immunized animals. 

Experimental moniliasis has been studied by several investigators. 

In general, it has been reported that aiter ~ntravenous injection of 

Candida, there is a marked leukocytosis and granulocytosis (32). There 

may be a marked lymphopenia however, and monocytes show a tendency to 

increase. The organisms are cleared rapidly from the blood (33) and 

seem to locate in all of ~he maJor organs (29), Chronic infections are 

the result of established fod ~n the kidney and! or the heart. 

Clearance experiments were car tied Gut to determine how rap~dly 

the organisms were removed from the (;i:cc..ulat:oIY system. Ten minutes 

after Lv. inJ ection or the organism, less than 10 organisms/ml (colony 

count) could be isolated trom the blood. Compansons of clearance rar:es 

were made among the immune, ter:racycl~ne, and saline treated animals. 

There were no differences in the rate of clearance in these groups. The 

results of the saline control group correlated with the data presented by 

Wright ~ a1. (81). 
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Investigators have studied the effect of endotoxin treatment with 

Candida albicans infections. Reports on the efficacy of endotoxin are 

inconsistent. Wnght ~ aL (80, 8lj have reported protective effects 

from administration of endotoxin. They used 100-400 ug of endotoxin 

and found a serum tactor that was a~tive against Candida. Cellular 

responses were not recorded by these investigators. Hansenclever and 

Mitchell (24) were able to detect some protection to candidiasis in 

mice after treatment with 30 ug of endotoxin. Experiments reported 

by Dobias (16) showed a protective effect afforded by bacterial endotoxin 

when mice were challenged 5, 8, and 14 days after endotoxin treatment. 

Dobias also reported a tailure to conter specific immunity to 

Candida albicans in mi.:..e. His expenments employed multiple injections 

of dead Candida albicans followed by a two week rest before challenge. 

Larger doese of antigen caused extensive alopecia in the mice. 

Many investigators have reported increased resistance to experi

mental fungal lnfections. Increased resistance to histoplasmosis and 

coccidiodomycosis has been reported by Anderson (2), Hill (25), Knight 

(31), Rowley (59), and others. These investigators reported enhanced 

resistance in animals after treatment wlth fungal spores, fungal extracts, 

dead cells, and live cells. As In several of the bacterial diseases, 

increased reslstanc.e appeared to be independent of humoral immunity. 

Our results indlcated enhanced reSlStance in the irrnnunized group. 

The difference In protection was small but appeared consistently in 

each experiment. 

Recently cellular lmmunity has been deplcted as a process involving 

two cell types. EVldence presented by a number of investigators lends 
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credence to the hypothesis that cell mediated immunity involves collaboration 

between committed lymphocytes and phagocytic cells (8, 9, 39, 41, 71). 

The mediator or effector cell is thought to be the committed 

lymphocyte which is derived from the long-lived small lymphocytes. The 

effector cell itself is produced specifically in response to an antigen 

and is short lived. In the presence of the specific antigen the effector 

lymphocytes have an influence on macrophages due to chemical mediators (14) 

or the elaboration of cytophilic antiody. The stimulating process 

results in activated macrophages and is effective in combating a variety 

of organisms (17, 39, 40, 41, 61, 62, 63. 70, 71). 

There are reports in the literature that demonstrate restriction of 

intracellular growth of some fungi 1n mononuclear phagocytes from 

immunized mice (2, 24, 25, 26). Recently Howard ~ al. (28) have 

implied a lymphocyte mediated cellular imm~nity to histoplasmosis. 

Although they have been unable to detect any of the lymphoid mediators, 

experiments utilizing immune and nonimmune lymphocytes with the immune 

and nonimmune macrophages lend support to a lymphocyte mediated role 

1n resistance. 

Salvin and Cheng (63) have detected a lymphocyte mediator commonly 

referred to as macrophage inhibitory factor (MIF) (53) In guinea pig 

mononuclear cells. The cells were harvested from guinea pigs which had 

developed delayed hypersensitivity to Candida alblcans. These investi

gators reported that such mononuclear cell mixtures phagocytized fewer 

numbers of Candida albicans 

animals. 

vitro than a~d monocytes from normal 

Our experiments were not designed to determine if any of the soluble 

mediators from lymphocytes were present. vl~ro experiments utilizing 
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macrophages from normal and immune animals showed small but consistent 

differences in their cytopeptic capacities. We observed the greatest 

difference when lymphocytes from immune animals plus macropha~es from 

endotoxin treated animals were compared to lymphocytes and macrophages 

from saline treated animals. The difference observed in this system 

was greater than the difference observed when only macrophages from 

immune animals were compared to macrophages from saline animals. 

Salvin and Cheng (62) reported a decrease in phagocytic and cytopeptic 

capacity in sensitized mononuclear cells in tissue culture when challenged 

with Candida albicans. We did not observe this. In our systems the 

macrophages, regardless of how they had been treated, phagocytized nearly 

equal numbers of yeast cells. The cells from saline treated animals 

were not as efficient in their cytopeptic capacities or at best they 

were equal to the cells from the immunized animals. 

The effort to separate variables for study made necessary the in 

vitro system. Since lymphocytes and macrophages coexist in the in vivo 

situation, it cannot be presumed that an effect seen following therapy 

of the animal with any biological agent is the result of lymphocyte

macrophage interaction. In fact, this criticism applies to an unknown 

extent to the in vitro studies because the cells obtained from the mice 

could conceivably have been acted upon prior to setting up the in vitro 

experiment. This made necessary the variety of controls which have been 

used. 

To determine the effect the lymphocyte had in resistance to Candida 

albicans numerous experiments were pertormedc These experiments consisted 

of comparing lymphocytes and macrophages from saline treated animals to 
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lymphocytes plus macrophages from immunized, endotoxin treated or saline 

treated animals. There were small differences between lymphocytes and 

macrophages from saline treated animals and lymphocytes from saline 

treated plus macrophages from immunized animals. It is possible that 

the macrophages from the immunized anImals could have been coated 

in vivo with a specifIC cytophilic antibody. ThIS would account for 

the small differences observed. It is also possible that the macrophages 

from the immunized anImals were auto-activated in the presence of the 

antigen and the lymphocytes did not contribute to the resistance to C. 

albicans. 

When lymphocytes and macrophages from saline treated animals were 

compared to lymphocytes from immunized animals and macrophages from 

saline treated an1mals, a modest difference in the cytopeptic abilities 

was observed from one to four hours post challenge. This leads one to 

consider the possibility of soluble lymphocyte kinins that activate 

macrophages. However, in other systems (28, 33, 38, 39, 40, 41). 

the enhanced activity of the macrophage was not reported to wane during 

the experiment. By the fourth hour there were no observable differences 

in the above system. 

Lymphocytes and macrOFhages from saline treated animals were compared 

to lymphocytes from saline treated animals plus macrophages from endotoxin 

treated animals. After the initial hour post challenge, the macrophages 

from the endotoxin trea.ted animals were more efficient at destroying the 

yeast cells. The differences observed were not as great or as early as 

the system which had lymphocytes from immunized animals plus macrophages 

from endotoxin treated anImals. In the latter system it is possible that 
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a combination of specific and nonspecific factors enhanced the cytopeptic 

abilities of the macrophages. The former system, i.e., normal lymphocytes 

and endotoin treated macrophages, would not release the specific kinins 

according to the mediator theory. The results with the former system 

are very similar to the results obtained when the macrophages were 

challenged without previous exposure to lymphocytes or antigens. 

Therefore, one could conclude that the nonspecific stimulation of 

the macrophages by the endotoxin was responsible for the enhanced 

capacity to destroy the yeast cells. 

Further experiments were performed to determine if endotoxin treated 

lymphocytes would confer a state of enhanced resistance on macrophages 

prior to challenge with Candida albicans. 

Lymphocytes from endotoxin treated animals were cultured with 

macrophages from immunized animals and challenged with f. albicans. 

When a comparison was made between the system containing lymphocytes 

from endotoxin treated animals plus macrophages from immunized animals 

with the same cells from the saline control system, no differences were 

observed during the initial hour. 

A modest difference was observed during the subsequent four 

hours, but by the sixth hour no observable difference existed between 

the twO systems. One might have expected to see greater differences 

in this system than were observed. This expectation seems logical 

conSidering data that others have obtained which suggests that macro

phages from immunized animals become activated in the presence of specific 

antigen and that lymphocytes from endotoxin treated animals appear to 

have a slight activating effect on macrophages as suggested by our data. 
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One might expect this latter system to be very active cytopeptically. 

The data indicate that the amount of intracellular killing activity 

provided by the endotoxin-treated lymphocyte "immunized ll macrophage system 

is about the same as the saline-treated lymphocyte "immunized" macrophage 

system. Thus, the differences observed in the endotoxin-treated lymphocyte 

"irrnnunized" macrophage system may be due to the "irrnnunized ll macrophage 

activity alone with the lymphocyte contributing little or not at all to 

the overall killing effect in the system tested. 

Lymphocytes and macrophages from endotoxin-treated mice were 

cultured and challenged with Q. albicans. Once again, no differences 

were observed between the endotoxin-treated lymphocyte-macrophage system 

and the saline-treated lymphocyte-macrophage system during the initial 

hour post challenge. During the subsequent two hours, the endotoxin

treated lymphocyte-macrophage system was more efficient in cytopeptic 

capacities than the saline control system. However, by the fifth hour 

both systems showed equivalent killing capacities. If these results 

are compared to those obtained with the saline treated lymphocyte plus 

endotoxin treated macrophage system, one can see that the results are 

nearly equal. It appears that the degree of cytopeptic competency observed 

was due to the endotoxin treated macrophages and that the interaction of 

the lymphocytes with the macrophages provided little or no enhancement 

of killing capacity. If a degree of enhanced cytopeptic capacity is 

conferred on macrophages via the endotoxin treated lymphocyte, it should 

be observed when endotoxin treated lymphocytes are cultured with saline 

treated macrophages. When this system was challenged with Q. albicans, 

there were modest differences observed between the endotoxin treated 
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lymphocyte plus saline treated macrophage system and the saline control 

system. The most marked difference was seen at the end of the first 

hour; this difference decreased steadily during the remainder of the 

experiment. These results seem to contradict some results presented 

previously. It is possible that the modest amount of cytopeptic capacity 

provided by the lymphocytes is not cumulative and therefore not evident 

in the presence of macrophages that have been activated by specific 

antigen or endotoxin. It is also possible that there is a cumulative 

effect. In this case, the activation provided by the lymphocyte may 

be so slight that activated macrophages do not evidence an enhanced 

capacity to kill the f. albicans when compared to activated macrophages 

and saline treated lymphocytes. 

The results presented indicate a possible mechanism for the 

induction of nonspecific resistance. Saline treated macrophages, 

in the presence of endotoxm treated lymphocytes, show an enhanced 

capacity to kill C. albicans cells. How this enhanced cytopeptic 

capacity is transferred to the macrophage is not known at the present 

time. One could hypothesize that mediators similar to the mediators 

that are released from sensitized lymphocytes in the presence of specific 

antigen are released from the endotoxin treated lymphocytes but in 

smaller quantities. However, this does not explain the greatly enhanced 

activity of the endotoxin treated macrophage system that was not exposed 

to lymphocytes during the in vitro experiments. The activity of these 

macrophages may have been influenced in vivo by the homologous lymphocytes. 

If indeed this latter speculation were a factor, one would expect to see 

the same degree of lymphocyte influence on the system containing only 



83 

endotoxin treated macrophages and the system composed of saline treated 

lymphocytes and endotoxin treated macrophages. This was not observed 

in terms of the ET50 values obtained. The slope values were similar 

but significantly different. 

From these data it appears that endotoxin has an effect on lymphocytes 

that results in moderate activation of "normal" macrophages. Macrophages 

from endotoxin treated animals are more active than the system containing 

lymphocytes and macrophages from endotoxin treated animals or the system 

containing lymphocytes from endotoxin treated animals plus saline treated 

macrophages from saline treated animals. This finding implies that the 

lymphocyte may actually retard the killing action of the macrophage under 

certain conditions. 



SUMMARY 

A model experimental system has been employed in vivo and in vitro 

which compares the efficacy of specific and nonspecific resistance. 

Candida albicans was used as the challenge organism in the experiments. 

Data of a quantitative nature was collected concerning the relationship 

of saline treated animals, Boivin antigen, i.e., endotoxin treated 

animals, specifically immunized animals and the respective lymphocytes 

and macrophage combinations from such animals have been discussed. In 

vitro experiments were performed using macrophages alone and lymphocyte

macrophage combinations. The results of the experiments suggest that 

in vitro, macrophages from immunized animals in the absence of lympho

cytes are most active cytopeptically. Macrophages from endotoxin 

treated animals, in the absence of lymphocytes, are more active than 

any of the lymphocyte-macrophage systems. The data involving macrophages 

cultured in the absence of lymphocytes showed steeper slopes when 

compared to the saline treated lymphocyte-macrophage system data. The 

macrophage system appeared to destroy the yeast cells rapidly whereas 

the lymphocyte-macrophage systems were slightly delayed in their cyto

peptic activities. In all systems equivalent numbers of yeast cells 

were phagocytized. The differences observed were a function of post 

phagocytic killing of the organisms. 

Statistical analysis of the data show that each experimental system 

was significantly different from the lymphocyte-macrophage saline control 
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system. In addition, the systems containing only macrophages from immunized 

animals and macrophages from endotoxin treated animals were significantly 

different from the macrophages from saline treated animals. 

Differences were observed in the lymphocyte-macrophage systems which 

implied a mechanism for induction of nonspecific resistance. The results 

suggest that lymphocytes from endotoxin treated animals are capable of 

enhancing cytopeptic capaciti$of macrophages from saline treated animals. 

The specific mechanisms or products involved have not been elucidated at 

the present time. 
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