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A B S T R A C T 

Geometric constraint problems appear in many situations, including C A D sys­

tems, robotics, and computational biology. The complexity of these problems inspires 

the search for efficient solutions. We have developed a method to solve geometric con­

straint problems in the areas of geometric computation and robot path planning using 

configuration space subdivision. In this approach the configuration space, or parame­

ter space, is subdivided and conservatively tested to find collision-free regions, which 

are then numerically searched for specific path solutions. This thesis presents a new 

more general approach to this last solution search step, using Monte Carlo optimiza­

tion. In this new search approach, within a single subdivided area of configuration 

space, space is randomly sampled and then iteratively resampled based on impor­

tance weighting, until convergence to a solution with an acceptable error. We show 

that by using Monte Carlo optimization to extend configuration space subdivision 

we can solve higher dimensional problems more efficiently than configuration space 

subdivision by itself. 

ABSTRACT 
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tems, robotics, and computational biology. The complexity of these problems inspires 

the search for efficient solutions. We have developed a method to solve geometric con­

straint problems in the areas of geometric computation and robot path planning using 

configuration space subdivision. In this approach the configuration space, or parame­

ter space, is subdivided and conservatively tested to find collision-free regions, which 

are then numerically searched for specific path solutions. This thesis presents a new 

more general approach to this last solution search step, using Monte Carlo optimiza­

tion. In this new search approach, within a single subdivided area of configuration 
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C H A P T E R 1 

I N T R O D U C T I O N 

One area of ongoing research in geometric computation is efficient solution to ge­

ometric constraint problems. Geometric constraint problems appear in many areas, 

including C A D , robotics, and computational biology. Because of their wide applica­

tion, new approaches to solving geometric constraints are quite useful. 

Geometric constraint problems appear often in a C A D system, for example, find­

ing the medial surface of a complex model or collision detection between moving parts 

in a machinery design. Constraint problems are also an important part of robotics, 

especially in the realm of path planning and collision detection. Additionally, com­

putational biology also makes use of solutions to constraint problems, for example, in 

the accurate calculation of collision and surface offset in simulations of molecular be­

haviors. Even computer games require the solution of geometric constraint problems, 

again consider character collision detection, proximity detection and related prob­

lems. Geometric constraint problems are general enough that they appear in many 

situations, resulting in broad application of the methods used to find their solutions. 

In the area of robotics, one interesting area that uses geometric constraint solutions 

is robot path planning. A path planning problem normally consists of finding a path 

for a robot through a workspace that avoids collision with obstacles. The problem 

can be made more difficult by having more obstacles to navigate around and by using 

a more complex robot. 

We have developed a method for finding the solution to such constraint problems 

using configuration space subdivision. The constraints are sampled in specific con­

figuration parameter ranges, which create hypercubes in n dimensional configuration 
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parameter space. Using the constraint sampling, the hypercubes are conservatively 

tested as to whether they contain potential solutions. These hypercubes in configu­

ration space are recursively subdivided and tested to narrow regions of configuration 

space in which solutions are possible. This configuration subdivision, constraint sam­

pling, and testing approach result in regions or hypercubes in configuration space 

where potential solutions lie. These regions are then searched for exact solutions. 

One simple approach to finding the exact solution is to keep subdividing until the 

size of the hypercubes is smaller than a specified error, and then taking the cube 

center to be the solution. Alternatively, if an explicit derivative is available, the ap­

proach can use the Newton-Raphson and related methods to reach a specific solution. 

This process is described more fully in Section 3.3.1. 

In this thesis we adapt Monte Carlo optimization as a general type of numerical 

search. In essence, the Monte Carlo algorithm optimizes the geometric constraint 

within each of the hypercubes resulting from configuration space subdivision, in­

stead of subdividing down to the answer. The optimization is done by sampling the 

subspace, weighting the samples according to an error metric, and then iteratively 

resampling around samples with better weights until convergence. The error metric 

is created from the constraints, which guide the optimization algorithm towards a 

solution. This approach is described more fully in Section 3.3.2. 

Monte Carlo methods in general are useful for solving complicated problems in 

higher dimensions [27, 23]. We have found this approach is also useful for configura­

tion spaces of higher dimensions because it samples and tests only the constraint in 

a random yet guided approach. Because it iteratively samples the constraint, Monte 

Carlo optimization matches well to the computational requirements of configuration 

space subdivision, fitting well together. 

By combining configuration space subdivision and Monte Carlo optimization, we 

are able to solve path planning problems to a higher precision and solve constraint 

problems of a higher dimension than configuration space subdivision alone. This 
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is demonstrated in both geometric constraint problems and in robot path planning 

problems. 
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C H A P T E R 2 

B A C K G R O U N D 

2.1 Literature Survey 

Solving geometric constraints is an important part of current geometric compu­

tation research. Path planning is an important part of robotics research. There 

has been substantial work done in these related areas, using a variety of approaches. 

Additionally, there has been considerable work done in Monte Carlo optimization 

itself. Here work most relevant to this thesis is reviewed and categorized into related 

approaches. 

2.1.1 Symbolic Analysis 

One approach to solving geometric constraint problems uses "degrees of freedom 

analysis" to solve geometric constraints, as in [16]. That type of analysis describes 

the constraints to be solved and the initial state of the geometry, and then outlines 

sequences of rotations and translations to satisfy the constraints, providing a plan for 

that particular solution. Once the plan is made, it can then be run numerically on 

different initial geometries. This provides an intuitive approach to constraint solving 

but requires specific plans to be made for each constraint, rather than an automatic 

solution through numerical computation as done in other approaches. 

Recent work in solving geometric constraints has been done by [8, 15]. In their 

approach they reduce the problem of solving a geometric constraint to the problem 

of finding the zero-set of a system of NURBS. By doing so they are able to use 

the special attributes of NURBS to subdivide the constraint system representation 

into subproblems, each of which can be tested for potential solutions. This process 
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approach they reduce the problem of solving a geometric constraint to the problem 
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enables efficient elimination of subsections where solutions cannot exist. Because the 

constraints are represented as NURBS, a numerical method like Newton-Raphson can 

be used to numerically search for potential solutions with high accuracy. 

This approach of reducing a geometric constraint problem to finding the solution of 

a system of constraint equations represented as NURBS has been applied to multiple 

problems, such as finding the minimum distance between a point and surface as in [25] 

or in solving the visibility problem as in [24]. Reducing the problem to the solution 

of a system of equations represented as NURBS allows for a very robust approach to 

solutions to constraint and other geometric problems. 

One restriction to this approach is that the input geometry must also be repre­

sented as NURBS, which precludes its use in other geometry. Additionally, higher 

dimensional problems reach current hardware limitations because of the memory in­

tensive, explicit representation of the constraint equation. This is in contrast to other 

approaches that sample only the constraint function to test for constraint satisfaction 

or optimization. Representing the system of equations as NURBS requires additional 

memory requirements. 

2.1.2 Approximation Through Sampling 

Other approaches, instead of representing the constraint completely, evaluate or 

sample the constraint only at specific values. Then, using those samples they attempt 

to satisfactorily find the values at which the constraint is satisfied or optimized. 

One approach that uses sampling as opposed to exact representation to solve robot 

path planning problems is described in [30]. Using approximate cell decomposition of 

the configuration space they are able to show path existence. The same authors later 

combine the approximate cell decomposition with a probabilistic road map planner 

in [31] with good results. 

We are developing a related approach in that the constraint is sampled in order to 

narrow down areas where potential solutions lie. These areas, which are hypercubes 

in the configuration space, are then searched for the answer using geometric tech-
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niques specific to the problem. This approach allows for some interactive results of 

problems that cannot be solved using a complete representation on modern desktop 

computers. Additionally this subdivision of configuration space allows for other than 

spline geometry, such as polygonal models. 

Significant research has been done in path planning for robots in general and in 

particular for path planning for robots with many degrees of freedom. A valuable 

introduction to path planning can be found in [5]. Work has been done not only on 

rigid robot bodies but also on flexible bodies as in [12]. 

Because path planning in higher dimensions becomes difficult, some of the only 

solutions to high dimensional problems have used probabilistic road map planners 

( P R M ) , such as [14]. Additionally [11] achieve good results for high dimension plan­

ners by improving a solution incrementally. Another approach that was successful 

at solving high dimensional path planning problems used a derivative of dynamic 

programming, as described in [1]. Rapidly-exploring random trees ( R R T ) planners 

have also had success in path planning problems, up to 12 degrees of freedom [18, 17]. 

Since R R T planners can have difficulty in narrow passages, in response [32] adapt the 

R R T approach to be a retraction-based planner with success. 

2.1.3 M o n t e Carlo Optimization 

We use Monte Carlo optimization as the numerical search step in configuration 

space subdivision. There has been substantial research done on Monte Carlo opti­

mization. 

A good introduction to Monte Carlo methods in general are [27, 9, 13]. Monte 

Carlo methods as well as a thorough treatment of different Monte Carlo optimization 

techniques are discussed in [21]. 

The approach we are developing is similar to Monte Carlo optimization "evo­

lution strategy" which is discussed at length and compared to most of the current 

optimization algorithms in [22, 23]. 

In developing this approach, we are using strategies from genetic algorithms as 
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well. In particular, when resampling around a potential solution, one challenge is to 

determine the proper replacement strategy. In [19, 20] avoidance of replacement errors 

in cases of multiple solutions is discussed. This is also important in single solution 

strategies like that presented in this thesis. We use this replacement approach in our 

algorithm. 

An important aspect of our implementation of Monte Carlo optimization is the 

initial sampling approach. We explore three types of initial sampling, uniformly 

distributed random sampling, stratified sampling, and Halton-Hammersley sampling. 

Stratified sampling, also known as jittered sampling, is explained very well in [26], as 

applied to computer graphics. Halton and Hammersley-based sampling is discussed in 

a straitforward manner in both [2], as used in computer graphics, and [3], as applied 

to P R M robot planners. 

2.2 State of the Ar t 

It is worth it to emphasize background on those approaches most similar to this 

thesis. Currently there are many methods proposed for solving constraint problems, 

especially path planning problems in robotics. 

As mentioned, reducing the problem to the solution of a spline function is a very 

robust approach to solving this type of problem [8]. 

One method described in [28] solves motion planning problems by dividing free 

space in the workspace into star shaped sections. Each section has a central point 

known as a guard. By dividing the free space into these star shaped sections, the 

guards of the different sections can be connected to form road maps. 

By using approximate cell decomposition of the configuration space, [30] are able 

to find solutions to path planning problems. By subdividing the configuration space 

and using conservative tests, Zhang, et al. are able to show that a path does exist. 

In [31], they extend their approach to include methods adapted from probabilistic 

road map planners for instances where standard subdivision cannot show if a path 

exists or not. They are able to solve problems with 4 degrees of freedom, and gain 
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substantial speedup using the probabilistic road map planning step. 

This is different from the approach described in this thesis, because they use 

approximate cell decomposition to construct paths. If approximate cell decomposition 

is not able to find a path, then techniques from probabilistic road map planners are 

used to check for the potential path existence, warranting further cell subdivision. 

The approach proposed here on the other hand uses uniform random importance 

sampling to search each cell in the decomposition for a solution. 

The probabilistic road map planners have had success in motion planning problems 

of high dimensions, as in [17],[14], [4]. For example, [14] show solutions to motion 

planning problems for robots with up to seven degrees of freedom. 

Probabilistic road map planners are very successful in most situations but still 

rely on stochastic processes, rather than a more deterministic process. The approach 

presented here uses configuration space subdivision to provide more determinism, 

then uses Monte Carlo optimization to search for the actual solutions. 

2.3 Robot Configuration Space 

This section provides a brief introduction to Robo t Configuration Space, due to 

the very domain specific nature of the topic. For a more indepth explanation see [5]. 

2.3.1 Configuration Space and Workspace 

T w o spaces in robotics will be discussed in this thesis: the robot workspace and 

configuration space. 

Workspace is the "real world" of the robot, the real environment in which the 

robot exists and moves. 

Configuration space is the parameter space of a robot. A set of configurations or 

parameters is a way of describing the position of the robot in workspace, by describing 

what position the individual configurable parts of the robot are in. More formally, a 

robot R with n dimensions of freedom is configurable using n configuration parame­

ters, which creates an n-dimensional configuration space. 
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For a simple example, consider a circularly shaped robot that can move in the x 

and y directions of a two-dimensional Euclidean plane. The configuration of the robot 

in this case is the same as the position of the robot in workspace, specified by the pair 

x, y. This would be called a two-dimensional configuration space. Changing the robot 

into a sphere-shaped robot and allowing it to move in the ^-direction as well would 

result in three parameters, and a three-dimensional configuration space. The three-

dimensional configuration space is still the same as the position of the spherical robot 

in workspace. The configuration parameters are describing a translation of the robot 

from its original position. Converting from configuration parameters to workspace 

position in this case would be very simple. Given any point [xo, yo]T or [xo, yo, zo]T on 

the robot at its initial position in workspace and given the configuration parameters 

[x, y]T or [x, y, z]T, the converting function C2 : 3ft2 => 3ft2 or C 3 : 3ft3 => 3ft3 could be 

defined as, 

The relationship between configuration space and workspace becomes a little dif­

ferent when different types of robots are considered. For example, consider a one 

segment, rotational robot arm that is "fastened" to the ground on one end allowing 

it to rotate a full 360 degrees. It has a one-dimensional configuration space, but the 

configuration space and the position of the robot in workspace are no longer the same. 

The only parameter for the robot is the angle at which the arm will be positioned. If 

the configuration parameter were 90 degrees, the robot arm would be positioned with 

a 90 degree angle from the original position. As the configuration parameter ranges 

from 0 to 360, the robot arm rotates around, the end-effector drawing a circle with a 

P2([x,y]T) = [xQ,yQ]T + [x,y]T (2.1) 

or 

P 3 ( [x , y, z]T) = [x0,2/o, ZQ]T + [x, y, z]T (2.2) 
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center at the fastened end and the radius being the length of the one segment arm. 

The configuration space is topologically a circle; it wraps around onto itself, so that, 

the position at 360 degrees would be the same as at 0 degrees. 

Converting from configuration space to workspace is also straightforward in this 

case. To produce the workspace position of any point on the robot (xo,yo) (at its 

initial position), given the angle configuration parameter, 0, the converting function 

Ti : V C 3ft => 3ft2 could be defined as, 

TX(B) = R(d)[x0,y0}T (2.3) 

where R(0) is the two-dimensional rotation matrix of 0. 

A more complex example is created by adding another segment to the arm with 

the same rotational ability, resulting in a two-dimensional configuration space, with 

one parameter controlling the angle of the first segment and the second parameter 

controlling the angle of the second segment. A value for each parameter dictates 

the position of the two-segment robot arm in workspace. The position of any point 

[xo,yo]T o n the first segment of the robot in its initial workspace position can be 

defined in its configured position given parameters 0\, 62, using the function T2 : V C 

3ft2 =• 3ft2: 

T2(e1,e2) = R(d1)[x0,y0]T (2.4) 

and for any point [ x i , y i ] T on the second segment in the initial workspace position: 

T2(9ue2) ^ RiO^lx^yf + R(62)([xuyi}T - [x':yf)) (2.5) 

where [x', y']T is the position of the connection between the first and second segments 

in initial position. Topologically, this configuration space is a torus, both dimensions 

wrap around on themeselves. However, for ease in visualization this space is drawn 

as a limited two-dimensional plane, a torus cut open and spread out. 

Continuing to add segments to the robot arm (and angle parameters to the con-
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figuration space) would increase the dimension of the configuration space. 

Rotational and translating abilities can be combined in a single robot. A robot 

that can both translate in the plane and rotate within the plane could have two 

parameters controlling the translation of the robot, and one parameter controlling the 

rotation of the robot, resulting in a three-dimensional configuration space. Any point 

[ # O J 2 / O ] on the robot in its initial position can be described in a configured position 

as a function of the configuration parameters. The configured position function T3 : 

V C 3ft3 => 3ft2 could be defined as 

T2([x,y]T,0) = R(0)[X(hyo}T + [x,y]T (2.6) 

This is not an exhaustive list of robot types, but it gives an idea of the types of 

robots and configuration spaces considered in this thesis and how their configuration 

parameters and workspace positions relate. 

Consider a simple example illustrating the use of configuration space to plan a 

simple robot path. A simple robot that can translate in the plane is used, resulting 

in a two-dimensional configuration plane. There are two obstacles in the workspace, 

and to plan around them the Voronoi diagram is found (which in this simple case 

is just the bisector line between them). The result is shown in workspace in Figure 

2.1, with the corresponding configuration space diagram in Figure 2.2. The line in 

this diagram represents the solution to the Voronoi diagram, which also represents the 

path on which the robot is drawn in the workspace figure. A correlation is not difficult 

to find between configuration space and workspace, because the configuration space 

only contains positional parameters of the robot. In other situations the correlation 

is not quite as trivial (consider the correlation of the configuration and workspace of 

the example given in Section 4.4.2.1). 
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Figure 2.1: Simple translating robot, drawn along the Voronoi diagram of the two 

obstacles. 
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Figure 2.1: Simple translating robot , drawn along the Voronoi diagram of the two 
obstacles. 
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Figure 2.2: The configuration space diagram of Figure 2.1 
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2.3.2 Obstacles 

Obstacles in workspace are objects with which the robot can potentially collide. 

Because any position of the robot can be described using configuration parameters, 

they can be used to describe positions of the robot that collide with obstacles, also 

known as invalid configurations and positions. These invalid configurations are rep­

resented as a subset of the robot configuration space C, called C 0 D S - Then any 

configuration outside of CQus would be considered free space or, C f r e e = C / C 0 b s -

Consider, for example, the circular robot example from above and add to the 

workspace a circular obstacle. The invalid configurations can be described as any 

(x,y) pair that position the robot such that it is colliding with the obstacle. Let 

(xo,yo) be the original position of the center of the robot, and rr be the radius of 

the robot. Let the circular obstacle be described by a center (xb, Xb) and radius r&. 

Given that it is the only obstacle in workspace, the invalid configurations Cobs could 

be described as all configurations (x, y) satisfying this inequality, 

y/{(x0 + x) - X b ) 2 + ((?/o + y) ~ Vb)2 - r r - r b < 0 (2.7) 

All valid configurations (x, y) or C £ r e e would satisfy the inequality, 

y/({x0 + x)- xb)2 + ((?/o + y)- Vb)2 - r r - r b > 0 (2.8) 

In other words, any position of the robot that produces a signed distance less than 0 

would be invalid. This is a very simple case. As the robots and workspaces become 

more complex, so does the j o b of describing both valid and invalid configurations. 

In this thesis the configuration space C is decomposed using axis-aligned hy­

percubes, which results in an inexact separation of C* 0 ^ s and C f r e e ; some of the 

hypercubes will contain both valid and invalid configurations. Consequently any con­

figuration hypercubes containing both valid and invalid configurations are considered 

part of C o b s . 
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A more complex case of describing C 0 D S is shown in Section 4.4.2. 

2.3.3 Usefulness 

The abstraction of robot configuration parameters as an n-dimensional space is 

useful in robot path planning. 

Abstraction allows a simplification of the assortment of configurations into which 

a robot can be placed. Even for a two-dimensional rotational robot it would be dif­

ficult to exactly describe all of the potential collisions and free movement positions 

into which the robot can be placed, using only the workspace. By abstracting con­

figurations into a set and then identifying the various configurations as representing 

valid or invalid positions of the robot, it becomes much easier then to know exactly 

what configurations and resulting positions the robot can and cannot use. 

This abstraction also allows the relationships between C f r e e and C O D S to become 

clearer. For example, it may not be apparent from the workspace that a robot cannot 

enter a particular target position from a given initial position. However with C f r e e 

and C 0 D S clearly identified, the possibility of a movement between the two positions 

can be determined comparatively easily by an attempt to connect the two positions 

in configuration space. Configuration space representation also provides a way to 

establish a path or to prove path nonexistance (assuming the configuration space 

decomposition is sufficiently precise). The abstraction means that a path can be 

represented as a curve in configuration space, rather than a sweeping of complex 

geometry through workspaces and so allow the mentioned analysis benefits. 

Once the C f r e e and C 0 D g have been identified more general methods, not neces­

sarily specific to robotics, can be used to solve the problem. For example, consider 

again that C f r e e and CQus have been identified and a path between an initial and 

final position is sought. The space could be discretized and arranged in a graph, 

and then more general graph routing algorithms could be used to connect the two 

positions in configurations space. This could not be done in workspace alone. 

Another of these more general tools is visualization. Depicting all positions in 
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which a robot collides with obstacles in workspace would be very messy at best. 

Assuming the space can be visualized, depicting C f r e e and C 0 b s or subsets of them 

in configuration space would be much clearer. It is clearer because each point in 

configuration space corresponds to either a valid or invalid robot position, which is 

not as easy to see in workspace. 
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CHAPTER 3 

APPROACH 

3.1 Overview 

In this thesis we seek the solution to geometric constraint problems related to mo­

tion planning involving robots with higher degrees of freedom. We use a configuration 

space subdivision approach, with a last solution step using Monte Carlo optimization. 

While other papers have used configuration space subdivision, and even incorporated 

some random searching for speed ([30, 31]), the approach presented in this thesis 

uses explicit Monte Carlo optimization to find solutions. Further, we seek to build 

generalized Voronoi diagrams to solve the motion planning problem, as in [10]. 

One of the safe paths of a robot through a workspace with obstacles is the same 

as the generalized Voronoi diagram (GVD) of the complete workspace and obstacles. 

Once an accurate generalized Voronoi diagram is found, the cell boundaries can serve 

as the robot's path to safely navigate the workspace. The Voronoi diagram or safe 

path can be described using constraints in the configuration space of the robot. 

In other words, rather than decomposing the entire configurations space C into 

C 0 bs and C f r e e , we instead search for the Voronoi diagram in C, which represents in 

a very compact sense a roadmap through C f r e e [5]. This is the roadmap consisting 

of all configurations with equal distance to the closest obstacles. A specific path can 

then be created, following the roadmap, which will avoid the obstacles. 

A Voronoi cell consists of all points nearest to its generating point [29]. The 

GVD extends this definition so that a cell consists of all points nearest to a gener­

ating shape [5]. In our case, a diagram is created in configuration space, and the 

distance metric is defined to be the workspace minimum distance. The k obstacles in 
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workspace, O — ( o i , . . . , Ofc), are the generating shapes for each Voronoi cell. A GVD 

cell consists of all n-dimensional configuration space points p G 9?n that are nearest 

to the generating shape. The distance function is the workspace Euclidean distance 

between the obstacle shape and the robot in a particular configuration. The robot in 

a particular configuration p is signified here as Q(p). 

A particular configuration point p belongs to the GVD cell with generating shape 

Oj only if, 

d(Q(p),Oj) = mini(d(Q(p), o,)) (3.1) 

where d(-, •) is the Euclidean distance between the two objects (the distance between 

the two closest points on each model). Additionally, the cell boundaries can be defined 

using this same structure. 

For example, if n = 3, then all points can be found that belong to the GVD cell 

wall (surface) between cells generated by on and oi2, by solving for all points that 

satisfy these three equations: 

<W(pW) = d(Q(p):oi2) (3.2) 

d(Q(p),on) < miniii^J2{d(Q{p),oi)) (3.3) 

d(Q(p),oi2) < minli¥ii42(d(Q(p),oi)) (3.4) 

In the n = 3 case the boundary curve where these cell wall surfaces intersect can 

also be defined, which is the intersection of three GVD cells generated by on,oi2,Oi^. 

They would need to satisfy these five equations: 

d(Q(p),Oii) d(Q(p),oi2) (3.5) 

d{Q(p),oi2) = d{Q(p),oi3) (3.6) 

d(Q(p),On) < minu¥zihi243(d(Q(p), ot)) (3.7) 

d{Q(p),oi2) < mini^iU243(d(Q(p), ot)) (3.8) 

d(Q{p),oi3) < mini^ihi243(d(Q(p), oi)) (3.9) 
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Continuing with the n = 3 case the points where multiple cells come together can also 

be defined, which are the intersections of at least four GVD cells, each of the cells 

being generated by on, oi2, oi3, c^4. They would need to satisfy these seven equations: 

d(Q(p),on) = d(Q(p),oi2) (3.10) 

d(Q{p)iOi2) = d(Q(p),oi3>) (3.11) 

d(Q(p),oi3) d{Q(p),oiA) (3.12) 

d(Q(p),on) < (3.13) 

d{Q(p),oi2) < mini^ihi243M(d(Q(p), ot)) (3.14) 

d(Q{p),oi3) < mini^ihi243M(d(Q(p), ot)) (3.15) 

d(Q(p),oi4) < rniniteiiii2fi3M(d(Q(p), ot)) (3.16) 

These specific constraint problems (which while useful in robotics as discussed, are 

also more generally useful) are solved in Section 4.3. 

In problems of higher dimensions, the components of the GVD are made up of 

hypersurfaces. To find a large hypersurface completely using sampling and approxi­

mate cell decomposition would be difficult because sufficient point solutions need to 

be found to accurately represent the surface. In those situations we propose using our 

approach to find important points in the configuration (or configurations of interest) 

which are normally just points instead of multidimensional surfaces. 

We use the term important point to indicate points in configuration space where 

the shape of the collision space or C 0 k s changes. An important point is similar to 

a critical point, but because a critical point indicates either a max, min, or saddle 

point, the term important point is more general. 

These important points would be useful for finding the GVD, as well as for de­

scribing the the full CQ^S and C f r e e subspaces. Finding these important points often 

requires overconstraint of the solutions. 

One type of overconstraint would be very similar to the above discussion where 
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adding constraints to the GVD equations reduces the size of the solution set. Above 

using Equations 3.10-3.16, constraints were added that reduced the solution set from 

a set of surfaces to a set of points. 

Another type of overconstraint in robot path planning less related to the GVD 

problem, more a subproblem of describing C 0 k s completely, would be to constrain 

the number of collisions to be detected. Constraining the number of collisions would 

produce solutions of special cases of collision, helping to start to form an idea of what 

the complete CQ^S subset looks like. Alternately, constraining the type of collision, 

for example only finding where the tip of the robot collides, would also result in 

important point solutions. A variety of other related constraints can be imposed on 

the problem, for example, constraining the range of rotation at which collision occurs. 

Consider a path planning problem involving a grounded (nontranslating) robot 

arm with four segments and four joints/hinges. All configurations of the robot arm 

where it collides with obstacles ( C 0 u g ) could be represented as a surface. While it 

may be difficult to find the complete surface, our approach would be able to find 

all configurations where only the tip of the robot collides. In the geometry of the 

C^g-surface these solutions represent corners and edges where the surface changes. 

This would be a good starting point in understanding the shape of the surface. A 

more in depth discussion of this approach can be found in Section 4.4.2. 

3.2 Algorithm 

The algorithm consists of these steps: 

1. Using configuration subdivision and conservative geometric tests, find hyper-

cubes in configuration space where solutions potentially lie. (For an example 

see Figures 3.1, 3.2) 

2. Using Monte Carlo Optimization to numerically search each of the hypercubes 

that potentially contain a solution for specific solutions. 

(a) Define an error metric based on the geometric constraint. 
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Figure 3.1: Approximate cell decomposition. Lighter cells are empty, darker cells are 
potential solutions. 

Figure 3.2: Resulting three-dimensional cubes where solutions potentially lie, empty 
cells trimmed away. 
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(b) Sample the space within the hypercube with N samples. (For an example 

see Figure 3.3) 

(c) If any sample has an error less than the acceptable e, return that sample 

as the solution. 

(d) If all the samples leave the hypercube, then return without a solution (be­

cause of conservative testing in Step 1, some hypercubes may not contain 

solutions). 

(e) Else weight each sample according to the error metric. 

(f) Resample according to weight. (For an example see Figure 3.4) 

(g) Repeat steps 2c-2f 

Note that this approach lends itself very well to parallelization. Step 2 executes 

multiple times (once for every hypercube result from Step 1), and each execution is 

independent of the others so that they can potentially execute in parallel. This is ben­

eficial because configuration space subdivision is also easily parallelizable, assuming 

shared memory between parallel executions. 

3.3 Implementation Details 

Here the steps of the algorithm are discussed in more detail, as well as implemen­

tation details. 

3.3.1 Configuration Space Decomposition 

This description corresponds to algorithm step 1. 

Our implementation follows the general cell decomposition approach, which while 

more completely described in [33, 7, 6], will be reviewed briefly here. 

First, a relevant subspace of an n-dimensional parameter space is described by a 

containing n-dimensional axis-aligned hypercube. This parameter space hypercube 

is then recursively subdivided into two subspaces or cells, the division occuring on 

the dimensions with the largest size. At each subdivision step the boundaries are 
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Figure 3.4: After a few of iterations the samples cluster around an answer. 
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Figure 3.3: Initial sampling of one of the cubes. 

Figure 3.4: After a few of iterations the samples cluster around an answer. 
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conservatively tested for the possibility of a solution existing within the cell and 

subsequent subcells. Conservatively testing means that the preference is to err by 

retaining too many cells, rather than prematurely trimming a cell. 

The actual cell testing is more specific to the problem. Essentially, the config­

uration parameters at the edge of the cell are converted into real-world positions. 

Additionally, the potential range of real-world positions are considered (from one 

hypercube vertex configuration to another hypercube vertex configuration). From 

these positions and ranges it is determined whether a solution to the constraint could 

potentially lie within the range of configurations. 

If there is no potential for a solution to lie within the cell, subdivision of that cell 

stops (essentially trimming that area of configuration parameter space from being 

considered for further searching). If a solution can potentially exist, subdivision 

continues to the predefined minimum cell size. 

In our implementation, a subdivision only results in two subspaces, so that the 

entire subdivision can be arranged into a binary tree. 

See Figures 3.1 and 3.2 for an example. 

Figure 3.1 shows the complete decomposition. The lighter colored cells are those 

that were tested and could not contain a solution, the darker colored cells are those 

that passed the conservative test and might contain a solution. 

Figure 3.2 shows the same scenario as Figure 3.1, but without the lighter cells. 

3.3.2 Monte Carlo Optimization 

3.3.2.1 Error Metric 

This description corresponds to algorithm step 2a. 

An error metric is defined that maps a point in configuration space to a scalar 

value indicating how well it satisfies the geometric constraint. In all of our examples 

configuration space is always a manifold in ffi71 so that the error metric can be de­

scribed by a mapping function / : 3ftm =>• 5?, where m is the dimension of configuration 

space. 
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In our examples the error function is defined by converting from configuration 

space to robot position in workspace and then measuring error of that configuration 

to the defined constraint. The error is based on the constraint problem being solved, 

thus guiding the samples toward the constraint solution. 

The error metric is used to customize the general approach to individual problems. 

The error metric acts as an artificial gradient, guiding the sampling procedure towards 

the solution of the constraint. Another viewpoint, is that the error function is being 

optimized by Monte Carlo optimization. 

As an example, consider the case of finding the generalized Voronoi diagram of 

three coplanar points in three-dimensional space. The constraint can be described in 

a straightforward way, find all positions equidistant to the obstacles. Consider the 

diagram in Figure 3.5, the error of point p (red square) could be described by the 

difference between the distances to each of the three Voronoi points (center points of 

the three spheres). More specifically, if the center point of each sphere is c~i,c~2,C3, 

then the Euclidean distance (d(x, y) = \ /Ei(^ — %i)2) from any point on that plane, 

p, to each sphere center, would be 

where e is the acceptable error. 

We use the multiplicative inverse of the error as the weight function, to guide 

resampling towards the solution. To give an idea of how this weight behaves, the 

weight function, or multiplicative inverse error function, 

di = d{p,Ci). (3.17) 

The constraint could be defined as 

(3.18) 

1 
(3.19) 
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is plotted as a heightfield shown in Figure 3.6. The (x, y) position on the graph is 

the position on the plane (created by the three sphere centers), and the height of the 

graph is the weight, or inverse of the error. As a potential solution approaches the 

center of the three Voronoi points, the error approaches 0, so that the inverse becomes 

very large (for purposes of visualizing, the graph was cut off at a large value, which 

is why the top is visible). 

By further resampling around points whose weight is the greatest, samples are 

continually found with smaller error, until the desired error threshold is obtained. 

Other examples of potential constraint error functions could be considered. For 

example, the constraint problem involved in finding configurations where the robot 

collides with the obstacles. The error metric from that constraint could be simply 

the distance from the robot to the closest obstacle. 

d(p, O) < e, (3.20) 

where O is an obstacle. The solution is approached as that value goes to zero by 

the samples. Similarly the weight function will increase as the configuration nears an 

obstacle. A variety of other constraint problems can be described in a similar fashion. 

3.3.2.2 Initial Sampling 

This description corresponds to algorithm step 2b. 

The initial sampling is an important part of Monte Carlo optimization. The initial 

sampling affects both the quality of the solution and the speed of convergence on a 

solution. If the initial sampling does not sufficiently cover the target space, it is not 

always easy to migrate towards the solution. If more iteration steps are required to 

reach the solution, due to not having an initial sample near the solution, it results in 

a longer runtime. If the initial sampling is far enough from a solution, it may result 

in missing the solution completely. 

After running a number of experiments to determine what type of initial sampling 
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Figure 3.5: Overhead diagram of the error metric. 

Figure 3.6: The inverse error metric heightfield for finding the center point of the 
three sphere centers. 
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would suit our system best, between uniform random sampling, stratified sampling 

and Halton sampling, we decided to use stratified sampling (also known as jittered 

sampling). The details of the experiment are found in Section 4.2. 

3.3.2.3 Determining if a Solution Exists 

This description corresponds to algorithm step 2d. 

Using conservative testing during the configuration subdivision means that some 

of the cells will not contain the solutions to the geometric constraint. This means 

that if the solution lies outside the cell the solution points will migrate outside the 

cell. The cell is trimmed when this occurs (since that solution will be found in its 

own cell). 

The test for a sample to be outside the cell is done by finding the distance from 

each sample to the center of the cell, and then checking that this distance is less than 

the size of the cell. 

One interesting aspect is to determine how many of the samples are allowed to 

leave the hypercube before concluding that there is no result within the hypercube. 

It may seem tempting to terminate the search early when a majority of the the 

points leave the hypercube. Through experimentation we have found that, though 

terminating early on this kind of condition can save computation time, it is safer to 

require all samples to leave the cell before terminating the search. If the solution 

lies near the boundary of the hypercube, a majority of the samples can leave the 

hypercube for a time, and then reenter. In fact we have found that a better approach 

is to give a small cushion or buffer zone outside the hypercube, which the samples 

have to pass before being considered outside the hypercube. 

In the resulting approach, each sample is checked to see if it lies outside the 

hypercube (and potential buffer zone). The search is terminated only when all samples 

have completely left the hypercube, a maximum iteration count has been reached, or 

the solution is found. 
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3.3.2.4 Resampling 

This description corresponds to algorithm steps 2e and 2f. 

The resampling portion of the algorithm was designed to favor resampling of points 

with smaller error (better weight). To this end, the weight of each point is assigned 

to be the multiplicative inverse of its error, which is later normalized against all the 

other samples. 

Once the samples are weighted appropriately, the space is resampled using the 

weights. The weighting system is designed so that the samples with higher weights 

(which corresponds to lower errors), are selected to be resampled more often. 

An example distribution over 10 sample points is shown in Figure 3.7. That figure 

is a number line showing the cumulative weight of each sample, where the sum of all 

weights is equal to 1.0. The weight of the an individual sample is represented by the 

distance between itself and the previous sample. By picking a uniformly distributed 

random number between 0.0 and 1.0, and then selecting the sample it "lands on," 

samples with larger weights are selected more often. For example, a random sample 

where the dot is positioned would select sample 8. 

This approach results in the samples being selected to be resampled according to 

the inverse error metric. The samples with lower errors will have a better chance of 

being resampled and replace other samples that have a higher error. The samples 

with a higher error (and, therefore, lower weight) will fall out of the sample set over 

multiple iterations. 

Resampling is done by adding a Gaussian distributed random vector to the original 

point. If the new sample has better weight (lower error) than the original, it replaces 

it. Otherwise, the original is kept. 

The convergence rate can be modified by varying the standard deviation, or cr, 

of the Gaussian distribution. As depicted in Figure 3.8, a larger a leads to larger 

random vectors, which allows more exploration. A smaller a leads to smaller random 

vectors, which helps converge faster near the solution (smaller steps do not overstep 
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the solution as easily). Our approach is to adapt the a according to the error of the 

sample; for smaller errors, a smaller a is selected. This allows more exploration when 

further from the solution and faster convergence when near the solution. 

In our implementation the standard deviation would step down at specific error 

intervals. The standard deviation for each error range is listed in Table 3.1. 
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Figure 3.7: An example of cumulative weight values for 10 samples. Each vertical 
line represents the cumulative weight of the samples up to that weight. The weight 
of each sample is the distance between itself and the previous weight. 

Figure 3.8: Example Gaussian curves with standard deviation or a = 1,0.7,0.5,0.2 
from bottom to top. Changing the a in the Gaussian spread affects the convergence 
rate of the Monte Carlo optimization step. The lower the cr, the closer new samples 
will be to the original sample overall. The higher the a, the further they will be from 
the original sample. 
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Figure 3.7: An example of cumulative weight values for 10 samples. Each vertical 
line represents the cumulative weight of the samples up to that weight. The weight 
of each sample is the distance between itself and the previous weight. 
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Figure 3.8: Example Gaussian curves with standard deviation or (J = 1,0.7,0.5,0.2 
from bottom to top. Changing the (J in the Gaussian spread affects the convergence 
rate of the Monte Carlo optimization step. The lower the (J, the closer new samples 
will be to the original sample overall. The higher the (J, the further they will be from 
the original sample. 
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CHAPTER 4 

RESULTS 

4.1 Overview 

Through experimental results, we show that by using Monte Carlo optimization 

for the final solution step in configuration space subdivision, we can solve to a higher 

precision, as well as solve higher dimensional problems than subdivision by itself. 

Using subdivision by itself to find a solution can require an exponential amount 

of memory, and comparable increases in time. By extending subdivision with Monte 

Carlo optimization, subdivision terminates at a lower precision, and the Monte Carlo 

approach is used to "refine" the low precision solution to a more precise solution. 

This requires much less memory and we have shown through experimentation that 

solutions we were unable to solve with configuration space subdivision alone can be 

solved with this combined approach. 

Other approaches to the solution step after subdivision would be difficult to use in 

the results shown. In the geometric constraint solutions, the models used are polyg­

onal, making it impractical to use Newton-Rhapson method to refine the solution. 

Using polygonal geometry also makes it difficult to use special geometric properties 

of the problem. Additionally, as stated previously, the goal is to have a more general 

solution method and using special geometric properties to solve the problem would 

not follow that principle. 

In the robot path planning solutions it is also difficult to use other final solution 

methods. While the robot and obstacle models are continuous, converting them into 

a spline function on which Newton-Rhapson could be used would be too expensive. 

The representation requires contributions from the complete surface of the robot, the 
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obstacle surfaces, and the constraint variables. Again, we avoid special geometrically 

tailored solutions, because they are not general enough. 

There are certainly additional methods that could be considered. Instead this new 

Monte Carlo optimization approach is compared to a subdivision only approach to 

give an indication of its improvement and performance. Specific comparison to other 

methods is left to future work. 

In order to recover a surface or line solution from the point solutions found, the 

configuration subdivision hierarchy must be stored. This is the cause of most of the 

memory usage in configuration space subdivision. If only point solutions were of 

interest in the end (no reconstruction of surfaces or curves necessary), the method 

could be adapted to trim the tree structure as it went, moderating the memory usage. 

Note that in the area of path planning instead of reconstructing surfaces, the tree 

organization would aid in constructing a smooth path from an initial position to a 

final position. 

This section is broken into three major categories. First, the results to our initial 

sampling experiment are presented. Afterwards, the results of using the complete 

algorithm on multiple different problems are presented in two sections "General Ge­

ometric Constraint Problems" and "Robot Path Planning Problems." 

The results to a few general geometric constraint problems are shown in order 

to give an idea that the approach can be used in situations other than robot path 

planning. This also begins to give an idea of the speed and memory advantages of 

using Monte Carlo optimization with configuration space subdivision. 

Next, the results to various robot path planning problems are presented. The 

main results of our experimentation is that extending configuration space subdivision 

with Monte Carlo optimization allows the solution of path planning problems of higher 

precision, and constraint problems in higher dimension and precision than subdivision 

by itself. 
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4.2 Initial Sampling Exper imentat ion 

A very important part of Monte Carlo optimization is the initial sampling. The 

initial sampling affects both the quality of the solution and the speed of convergence 

on a solution. If the initial sampling does not sufficiently cover the target space, it is 

not always easy to migrate toward the solution. If more iteration steps are required 

to reach the solution, due to not having an initial sample near the solution, a longer 

runtime result or the solution may not be found at all. 

To determine what sort of initial sampling would be most appropriate, we ran 

our implementation of Monte Carlo optimization several times on a simple constraint 

problem adapted for this purpose. By evaluating different values for the number 

of samples and the type of initial sampling distribution with respect to a desired 

precision, one approach was found that performed better than the others. 

4.2 .1 Exper iment Setup 

The simplified problem is setup to consider different situations that the Monte 

Carlo optimization will encounter while extending our implementation of configura­

tion space decomposition. In our decomposition system, a subdivision causes the 

largest dimension to divide in half, so that at any time some of the dimensions of 

the configuration hypercube may be half of the other dimensions. To try to recreate 

this in an experimental situation, two n-dimensional hypercubes are created, the first 

hypercube, Hi, is centered about a point P = [ p i , . . . , p n ] T G 3ftn, with distance to 

each face L = [li,... ,ln]T G 3ftn, where U = k,\/i G [ l ,n] , k a constant. A second 

n-dimensional hypercube, H2, is centered about a point Q = [qi,..., qn]T G $ln, with 

distance to each of the faces M = [ m i , . . . , m n / 2 - i , \mn/2, \™<n/2+i, • • •, | ^ n ] T £ 

where = fc,Vi G [1, n], k a constant. In other words, while the first hypercube 

has all faces equidistant from its center point, the second has the first half set to the 

same constant, while the second half are set to half of that constant. In the results 

below we set P , Q to be the origin, and li = rrii — 5. 

The Monte Carlo optimization step may run into solutions that are difficult to 
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find. To try to capture this occurence, we create three optimization problems to solve. 

The first problem is to find the center of the cube; second, to find a point very close to 

the corner of the cube (which can be difficult to find without leaving the hypercube); 

and finally, to find a random point in the cube, this will represent situations where 

the solution may not be in the corner or in the center, but somewhere else within 

the hypercube. The constraint for each of these problems is that the solution be 

equal to the target point, so the error function will simply be the distance from 

the specified point. More specifically, for each problem, where the target point is 

T = [ti,..., tn]T £ ^Rn, and the current guess is G = [# i , . . . , gn]T £ 3ftn, error(G) = 

Varying numbers of samples, precision, and type of initial sampling are used to 

try to solve each of these problems. 

The goal of the experiment is to find which of three initial sampling techniques will 

perform the best with the smallest number of samples (since fewer samples require 

less compute time in the end). It would also be beneficial to gain some intuition as 

to whether one type of sampling technique works best for this type of problem. The 

three investigated here are 

(1) Halton Point Sampling 

Halton point sampling (closely related to Hammersley points) utilizes a de­

terministic sequence generator to create what can appear to be a sequence of 

random points, but in reality is a well spaced, deterministic sequence of points. 

The basic idea of the sequence generator can be understood from a simple ex­

ample. A positive integer k has a binary representation 

k = boh .. A = 60(2°) + h{21) + . . . + bn(2s). (4.1) 

If the components of the binary representation are reversed, including the binary 

point, and then reinterpreted as a decimal value, the result k' = bsbs^i... bo has 
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the value 

k' = M 2 " 1 ) + k - i ( 2 " 2 ) . . . + 6 0 ( 2 - ( s + 1 ) ) . (4.2) 

This operation can be refered to as G(-)2, so that k' = G(k)2-

Because any positive number k can be decomposed and represented by any 

prime number p in the same way as by 2, the same operation can be defined 

using any prime base p. This more general operation can be referred to as G(-)p. 

It is important to note that if the domain of G(-)p is all positive integers, the 

range will remain (0 ,1) . 

Finally, given a point R — [ n , r^,..., rn]T a function can be defined 

such that p l , p 2 , . . . ,pn are distinct prime numbers. 

To generate a Halton point set, a sequence of points whose components are all 

positive integers is each in turn operated on by # ( • ) , resulting in a set of points 

within the range (0, l ) n , the n-dimensional unit hypercube. In our implementa­

tion H(•) is used on the set of S n-dimensional points, [ 1 , . . . , 1 ] T , [ 2 , . . . , 2 ] T , . . . , 

[S,..., S]T. Resulting in the Halton points # ( [ ! , . . . , 1 ] T ) , i f ( [ 2 , . . . , 2 ] T ) , 

For a more detailed discussion and implementation example see [2]. 

Our motivation for trying a Halton set was the idea that an even spread of 

points throughout space would aid in finding a potential solution faster. 

(2) Stratified Sampling 

Stratified sampling in general statistical terms refers to sampling by first ar­

ranging the sampling population into relatively homogeneous subgroups, called 

strata, before sampling. This is done for representation from each of the differ­

ent strata in the final sampling. 

H(R) = [G(n)pl, G(r2)p2,..., G(r„Ur (4.3) 

H([S,...,S]T). 
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Uniform regular stratified sampling in computer graphics (also commonly called 

jittered sampling), and related fields, including our approach, follows this same 

idea. The sampling population is the entire space, and the strata or subgroups 

into which it is divided are distinct, uniform size subspaces. 

A simple example illustrates. Assume the sampling is of a two-dimensional 

space with S = s2 samples. One approach to stratified sampling is to divide the 

space into s2 equally sized subregions. Then s2 samples are selected by finding 

a random point within each of the subregions. See [26] for more details. 

To extend this approach to n-dimensional space, sn uniform subregions are 

created. Then sn samples are selected by finding a uniformly random point 

within each of the sn subregions. 

In our implementation, given a number of samples, 5 , to be taken, set S' = 

| S 1 / n J . Then if b = S - (S')n ^ 0, the remaining b samples are taken as 

uniform random variables over the whole space. 

This approach was also implemented and tested in hopes that a more equal 

spread of initial sampling would aid in finding the answer faster, and with fewer 

samples. 

(3) Uniform Random Distribution Sampling 

This approach is the most straightforward of the three. To select S samples 

from an n dimensional space, S n-dimensional points are created where each 

component is a uniformaly distributed random number. More specifically, 

P=\pi,...,Pn]T (4.4) 

where pi,... ,pn are each uniformly distributed random numbers. 

Uniform random sampling is taken as the base case. The experiment was created 

to determine whether a different initial distribution of points would be more 

36 

Uniform regular stratified sampling in computer graphics (also commonly called 

jittered sampling), and related fields, including our approach, follows this same 

idea. The sampling population is the entire space, and the strata or subgroups 

into which it is divided are distinct, uniform size subspaces. 

A simple example illustrates. Assume the sampling is of a two-dimensional 

space with 5 = S2 samples. One approach to stratified sampling is to divide the 

space into S2 equally sized subregions. Then S2 samples are selected by finding 

a random point within each of the subregions. See [26] for more details. 

To extend this approach to n-dimensional space, sn uniform subregions are 

created. Then sn samples are selected by finding a uniformly random point 

within each of the sn subregions. 

In our implementation, given a number of samples, 5, to be taken, set 5' = 

l5Ijn J. Then if b = 5 - (5,)n =J 0, the remaining b samples are taken as 

uniform random variables over the whole space. 

This approach was also implemented and tested in hopes that a more equal 

spread of initial sampling would aid in finding the answer faster, and with fewer 

samples. 

(3) Uniform Random Distribution Sampling 

This approach is the most straightforward of the three. To select 5 samples 

from an n dimensional space, 5 n-dimensional points are created where each 

component is a uniformaly distributed random number. More specifically, 

(4.4) 

where PI, ... ,Pn are each uniformly distributed random numbers. 

Uniform random sampling is taken as the base case. The experiment was created 

to determine whether a different initial distribution of points would be more 



37 

effective. 

While we find no clear winner overall, for our target numbers of samples (from 

10 to 30), we conclude from the experiment that (2) Stratified Sampling has the best 

results overall, and use that type of sampling in our solutions where possible. This 

conclusion is more of a default decision because stratified sampling performs the same 

or a better than the other two approaches. This agrees somewhat with our initial 

intuition, that a more equally spread sampling would perform better than a purely 

uniformly random distribution. Although because Halton sampling is a little more 

uniform (deterministic, rather than random in its distribution), we had originally 

thought that it would fare the best. 

The results are presented next, accompanied by a discussion of how those results 

influence our decisions on what to use in the Monte Carlo optimization. 

4.2 .2 Exper iment Results 

Two main criteria are examined from each type of sampling. 

1. Percentage of successfully finding the result 

(number of successes / number of trials) 

2. Average number of iterations for a successful solution 

(total number of iterations / number of successes) 

We maintain that criterion (1) is more important to our approach than (2), because 

the solution should be found even if it takes a few more iterations on average. 

4 .2 .3 Overall 

Looking at the overall results for (1) percentage of successful solutions, shown in 

Figure 4.1 and Table 4.1, it appears that the stratified sampling approach, while not 

always the best, does the best in most of the sample sizes. Similarly overall in (2) 

the average number of iterations for a successful solution, shown in Figure 4.2 and 
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Figure 4.1: Overall percentage of sampling test problems solved correctly at .001 
precision. 

Table 4.1: Overall percentage of sampling 
test problems solved correctly at .001 pre­
cision. 

samples Halton Stratified Uniform 
5 48.16 61.16 34.50 
10 48.83 57.00 60.50 
25 64.83 66.33 65.66 
50 65.16 69.00 55.00 
100 66.66 72.83 62.83 
500 78.83 82.83 84.00 
1000 73.00 76.66 68.83 
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Figure 4.2: Overall average iterations to find a correct solution at .001 precision. 
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Table 4.2, it appears stratified sampling uses, on the average, the fewest number of 

iterations. 

4 . 2 . 4 Sample Sizes Under 100 

As stated previously, we are more interested in finding the best approach for solu­

tions using smaller numbers of samples, preferably between 10 and 30, consequently 

the results between 0 and 100 samples carry more importance. Shown in Figure 4.3 

are the same results for criterion (1) from Figure 4.1, except only showing up to 

100 samples. As shown the stratified solution performs the best with any number of 

samples over about 20. Between 0 and 20 it comes in second. In contrast, Figure 4.4 

shows that stratified sampling actually performs the worst in terms of average number 

of iterations, criterion (2), until a sample size of about 60. This is not encouraging, 

but we maintain that stratified sampling is still the best choice overall, because as 

stated previously criterion (1) is more important to our approach. 

4 . 2 .5 Sample Size 25 

By examining the results for a specific sample size of 25, the selection of stratified 

sampling is supportable, but not a clear leader in the scoring. As can be seen in 

Figure 4.5 and Table 4.3, stratified sampling does not fare the best. While it does 

not score the worst on every dimension, it only becomes the best choice in the 8 

dimensional problem. The results reveal that with a sample size of 25, stratified 

sampling performs averagely compared to the other approaches. However, as shown 

in Figure 4.6 and Table 4.4, in average iterations, stratified sampling does the best in 

every dimension. 

The 25 sample results differ somewhat from the overall results examined above. 

While the stratified sampling performed very well in most of the cases for criterion 

(1), in the 25-sample case it does not do quite as well. For criterion (2) it does 

better. We maintain the choice of stratified sampling, because overall it shows the 

most promise, and while the specific 25-sample case reveals some potential problems, 
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Table 4.2: Overall average iterations to 
find a correct solution at .001 precision. 

samples Halton Stratified Uniform 
5 5.15 3.47 5.54 
10 2.61 4.52 3.64 
25 3.03 4.11 2.09 
50 2.91 3.36 3.05 
100 3.03 2.28 3.34 
500 2.35 2.18 2.37 
1000 2.51 2.38 2.40 
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Figure 4.3: Overall percentage of sampling test problems up to 100 samples solved 
correctly at .001 precision. 

Figure 4.4: Overall average iterations to find a correct solution up to 100 samples at 
.001 precision. 

Table 4.2: Overall average iterations to 
find a correct solution at .001 precision. 

samples Halton Stratified Uniform 
5 5.15 3.47 5.54 
10 2.61 4.52 3.64 
25 3.03 4.11 2.09 
50 2.91 3.36 3.05 
100 3.03 2.28 3.34 
500 2.35 2.18 2.37 
1000 2.51 2.38 2.40 
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Table 4.3: Percentage of problems solved 
correctly with sample size 25 and .001 pre­
cision. 
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8 66.66 66.66 49.66 
9 65.50 53.50 59.66 
10 64.83 66.33 65.66 
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rect solution with sample size 25 and .001 
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neither of the other candidates show as strong a position in all cases considered. 

4.3 General Geometric Constraints 

The constraint problems presented mainly center around finding the GVD of mul­

tiple objects. First, the cell boundary surfaces are found, and then through overcon-

straint, the cell edge curves, and finally the Voronoi vertices are found. 

4.3 .1 Bisector Surfaces 

The trimmed bisector surfaces of four models are found at once, shown in Figures 

4.7 and 4.8. This solution is the same as the generalized Voronoi diagram of the four 

objects. In fact, these surfaces are the cell boundaries of the generalized Voronoi 

diagram. The constraint can be described as having equal distantance to the two 

closest objects, and the solution as the collection of points that satisfy the constraint. 

More precisely, a solution is saught for all points, P = \pi,P2,P3]T, such that 

d(P,&) = d(P,B?) (4.5) 

where d(X,Y) = yLtifai — Vi)2 or the Euclidean distance, B1 = [b{,bl,bl]T is the 

closest point on one of the two nearest models, and B2 = [b2,b2,bl]T is the closest 

point on the other of the two nearest models. 

The solution to this constraint using configuration space subdivision by itself is 

shown in Figure 4.8, and using Monte Carlo optimization in Figure 4.7. The runtime 

details are listed in Table 4.5. The method of using configuration space subdivision 

by itself is indicated by "CS", and using Monte Carlo optimization to extend the 

configuration space subdivision is indicated by "MC". Both solutions are done using 

an error threshold of 1.0 x 1 0 - 1 . Of note is that using the Monte Carlo optimization 

approach the constraint is solved in 2% of the time and using less than 20% of the 

space it takes without it. In contrast, consider Figure 4.9, which is the solution with 

the same configuration subdivision precision of 1.0 x 10°, but without the solution 
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i. 

Figure 4.7: Bisector surfaces of four models, found using Monte Carlo optimization. 

Figure 4.8: Bisector surfaces of four models, using only configuration space subdivi­
sion. The points are close enough that they appear to be a solid surface. 

Table 4.5: Timing and memory usage comparison for finding the 
bisector surfaces of four objects shown in Figures 4.7 and 4.8. 

method time(sec) memory CS precision MC precision 
CS 
MC 

76.363 
2.125 

133 MB 
23 MB 

1.0 x H T 1 

1.0 x 10° 
N/A 

1.0 x 1 0 " 1 
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Figure 4.7: Bisector surfaces of four models, found using Monte Carlo optimization. 

Figure 4.8: Bisector surfaces of four models, using only configuration space subdivi­
sion. The points are close enough that they appear to be a solid surface. 

Table 4.5: Timing and memory usage comparison for finding the 
bisector surfaces of four objects shown in Figures 4.7 and 4.8. 

method time(sec) memory CS precision MC precision 
CS 76.363 133 MB 1.0 x 10 -1 N/A 
MC 2.125 23 MB 1.0 x 10° 1.0 X 10-1 
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Figure 4.9: The solution at precision 1.0 x 10°, but without the solution improvement 
by Monte Carlo optimization. Because the error is so large, the surfaces look more 
like volumes. 

improvement by Monte Carlo optimization. The error is large enough that the surfaces 

resemble volumes more than surfaces. Figure 4.8 shows the subdivision-only solution, 

but with error equal to the 1.0 x 1 0 _ 1 , the precision of the MC optimization solution 

in Figure 4.7. This solution looks almost like a solid surface, because the subdivision 

cells become as small as the specified error tolerance leading to solution points which 

are close enough together that they resemble a surface. 

Monte Carlo optimization is able to solve the problem much faster and use much 

less memory because using the MC optimization to reach the solution configuration 

space subdivision can terminate much earlier. Figure 4.10 shows the solution using 

Monte Carlo optimization with the configuration space subdivision cells visible. In 

essence, a solution is found with the same precision but with a more sparse distribution 

of solution points. This sparsity can be adjusted as needed. Interpolating between 

the solutions found can fill in the gaps. 

While solutions here are shown as collections of individual points, the surfaces or 

curves they form can be reconstructed from these points. This is possible because the 

subdivision structure created by the configuration space subdivision is maintained, 
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Figure 4.9: The solution at precision 1.0 x 10°, but without the solution improvement 
by Monte Carlo optimization. Because the error is so large, the surfaces look more 
like volumes. 

improvement by Monte Carlo optimization. The error is large enough that the surfaces 

resemble volumes more than surfaces. Figure 4.8 shows the subdivision-only solution, 

but with error equal to the 1.0 x 10-1 , the precision of the MC optimization solution 

in Figure 4.7. This solution looks almost like a solid surface, because the subdivision 

cells become as small as the specified error tolerance leading to solution points which 

are close enough together that they resemble a surface. 

Monte Carlo optimization is able to solve the problem much faster and use much 

less memory because using the MC optimization to reach the solution configuration 

space subdivision can terminate much earlier. Figure 4.10 shows the solution using 

Monte Carlo optimization with the configuration space subdivision cells visible. In 

essence, a solution is found with the same precision but with a more sparse distribution 

of solution points. This sparsity can be adjusted as needed. Interpolating between 

the solutions found can fill in the gaps. 

While solutions here are shown as collections of individual points, the surfaces or 

curves they form can be reconstructed from these points. This is possible because the 

subdivision structure created by the configuration space subdivision is maintained, 
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Figure 4.10: Showing the MC solution, detailing the size of volumes from which the 
solutions are found. 

providing topographical information of the solution. 

4.3 .2 Intersection of Three Bisectors 

The system is also able to solve for the curves representing the Voronoi cell edges 

or where two or more cell boundaries intersect. This is shown in Figure 4.11. 

These edges can be found for all four models at once, as shown in Figures 4.12 

and 4.13. 

This constraint can be described in a manner similar to Equation 4.5. Again, a 

solution is sought for all points P such that 

d(P, Bl) = d(P, B2) = d(P, B3) (4.6) 

where B3 = [6f, 6|> ^ | ] T i s the closest point on one of the three closest models, and 

b] and bf are defined similarly as in Equation 4.5 and where B1

1B2

iB9 are all on 

different models. 

This problem adds a constraint to the previous problem, so that the constraint is 

now to have equal distantance to the closest three obstacles. 
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The system is also able to solve for the curves representing the Voronoi cell edges 

or where two or more cell boundaries intersect. This is shown in Figure 4.11. 

These edges can be found for all four models at once, as shown in Figures 4.12 

and 4.13. 

This constraint can be described in a manner similar to Equation 4.5. Again, a 

solution is sought for all points P such that 

(4.6) 

where B3 = [bf, b~, b~V is the closest point on one of the three closest models, and 

b; and b; are defined similarly as in Equation 4.5 and where Bi, B2, B3 are all on 

different models. 

This problem adds a constraint to the previous problem, so that the constraint is 

now to have equal distantance to the closest three obstacles. 
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Figure 4.11: Intersection of three bisector surfaces, or bisector edges. 

Figure 4.12: Bisector curves for four models, found using Monte Carlo optimization. 
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Figure 4.11: Intersection of three bisector surfaces, or bisector edges. 

Figure 4.12: Bisector curves for four models, found using Monte Carlo optimization. 
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Figure 4.13: Bisector curves for four models using only configuration space subdi­
vision. The individual points are so close together that they appear to be a solid 
line. 

This problem is solved using subdivision by itself in Figure 4.13, and then with 

MC optimization in Figure 4.12. The timing and memory usage for each solution are 

presented in Table 4.6. As the table results indicate, a solution to the problem using 

MC optimization is found in 1.86% the time needed without it. The table also shows 

the much smaller memory footprint, only requiring 20 MB instead of 79 MB. 

As explained above, these gains are because MC optimization allows termination 

of the subdivision process earlier. 

4.3 .3 Intersection of Six Bisectors 

From the previous examples and images, it can be seen that there is a single point 

at which all these curves intersect, which is also the point where all six bisecting 

surfaces intersect. It would also be considered a vertex in the generalized Voronoi 

diagram. 

The solution is shown in Figure 4.14. This constraint would be described as 

having equal distantance to the four closest objects, thus increasing the number of 
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Table 4.6: Timing and memory usage comparison for finding the 
bisector curves of four objects shown in Figures 4.12 and 4.13. 

method time(sec) memory CS precision MC precision 
CS 
MC 

54.344 
1.011 

79 MB 
20 MB 

1.0 x 1 0 - 2 

1.0 x 10° 
N/A 

1.0 x 1 0 - 2 

Figure 4.14: Intersection point of six bisectors solved using MC optimization. 

Table 4.6: Timing and memory usage comparison for finding the 
bisector curves of four objects shown in Figures 4.12 and 4.13. 

method t ime(sec) memory CS precision MC precision 
CS 54.344 79MB 1.0 x 10 .:l NjA 
MC 1.011 20MB 1.0 x 10° 1.0 X 10- 2 

Figure 4.14: Intersection point of six bisectors solved using MC optimization. 
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constraints. More precisely a solution is sought for the point P, such that 

d(P, B1) = d(P, B2) = d(P, 5 3 ) = d{P, BA) (4.7) 

where the bj,b2,bf components are defined the same as Equations 4.5,4-6, and B* = 

[frf, b\, b^[T is the closest point on one of the four closest models, where B1, B2, B 3 , B4 

are all on different models. 

The constraint is solved using both methods again. The results for using Monte 

Carlo optimization are shown in Figure 4.14, while the results for subdivision by itself 

are in Figure 4.15. The point in Figure 4.15 may look a little larger than normal, this 

is because a collection of configuration volumes satisfy this constraint within an error 

e are visible, as shown in Figure 4.16. When the solution is a point, an error causese 

that a ball around the solution point satisfies the constraint. 

The runtime and memory usage are shown in Table 4.7. Again, MC optimization 

is able to terminate subdivision earlier and solve to a point solution. Without the 

MC step, subdivision must continue further. The difference is not as drastic as in 

other cases, but the runtime using MC optimization is still only 20.4% of the runtime 

without it, which is still a substantial gain. An additional column is shown displaying 

only the data portion of memory usage. Because the memory usage difference is so 

small, this closer look is needed to note any difference. The similarity in memory 

usage is largely due to the minimal configuration space subdivision in both cases, 

caused by the overconstraint of the problem. Potential areas are "trimmed" from 

the final solution early because of the strict constraints on the solution. Figure 4.17 

shows all the cells in the configuration space subdivision only case, to emphasize that 

most cells are trimmed at a very large size. This causes a fast runtime for both cases, 

as well as a very small memory overhead. 
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Figure 4.15: Intersection point of six bisectors solved only using configuration space 
subdivision. 

Figure 4.16: Close up view of the solution, showing that there is actually a collection 
of solutions. 

Table 4.7: Timing and memory usage comparison for finding the intersection point 
of all the bisector surfaces, shown in Figures 4.14 and 4.15. 

method time(sec) memory data only mem CS precision MC precision 
CS 
MC 

0.299 
0.061 

17 MB 
17 MB 

8664 KB 
8660 KB 

1.0 x 10- 2 

1.0 x 10° 
N/A 

1.0 x 10~2 
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Figure 4.15: Intersection point of six bisectors solved only using configuration space 
subdivision. 

Figure 4.16: Close up view of the solution, showing that there is actually a collection 
of solutions. 

Table 4.7: Timing and memory usage comparison for finding the intersection point 
of all the bisector surfaces, shown in Figures 4.14 and 4.15. 

method time(sec) memory data only mem CS precision MC precision 
CS 0.299 17 MB 8664 KB 1.0 x 10 -2 N/A 
MC 0.061 17 MB 8660 KB 1.0 x 10° 1.0 X 10- 2 
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Figure 4.17: All cells are shown depicting how the majority of cells are trimmed early 
due to the very tight constraint for this problem. This results in a fast runtime and 
low memory usage, even for the subdivision-only solution. 

4.3.4 Overconstraint 

Sections 4.3.2 and 4.3.3 show that to reduce the size of the solution, a constraint 

can be added to the problem being solved. In order to move from a surface solution 

to a curve solution, one constraint 

d(P,obj l ) = d(P,obj2) (4.8) 

was increased to two constraints, 

d(P,obj l ) = d(P,obj2) (4.9) 

and 

d(P,obj2) = d(P,obj3) (4.10) 

Likewise in order to move from a curve solution to a single point solution, two con­

straints were increased to three constraints. 

By adding constraints to the problem, also termed overconstraining the solution, 
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due to the very tight constraint for this problem. This results in a fast runtime and 
low memory usage, even for the subdivision-only solution. 

4.3.4 Overconstraint 

Sections 4.3.2 and 4.3.3 show that to reduce the size of the solution, a constraint 

can be added to the problem being solved. In order to move from a surface solution 

to a curve solution, one constraint 

d(P, obj1) = d(P, obj2), (4.8) 

was increased to two constraints, 

d(P, obj1) = d(P, obj2) (4.9) 

and 

d(P, obj2) = d(P, obj3) (4.10) 

Likewise in order to move from a curve solution to a single point solution, two con-

straints were increased to three constraints. 

By adding constraints to the problem, also termed overconstraining the solution, 
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the number of points that need to be found for the solution is reduced, which is 

desirable in higher dimensional problems where solutions become hypersurfaces. 

More generally, by overconstraining some problems the most important points, or 

points of interest, of the solution can be found. Having the points of interest of the 

final solution can give an idea of the complete solution, and may possibly be used for 

the final solution. We take this position with the solution to the higher dimensional 

path planning problems as well, by overconstraining to find important points which 

may be used to give an idea of the complete solution. 

4.3.5 Solution Size 

4.3.5.1 Solution Sparsity 

This approach to speeding up solutions leads to some discussion on the sparsity 

or density of a solution. The sparsity of a solution is either indicated visually by a 

sparse set of solution points, or by the number of solutions reported in the timing 

and memory table. The solutions in Figures 4.8 and 4.7 show very clearly differences 

in the sparsity of solutions to the same problem. Both solutions consist of points and 

to reconstruct the complete solution interpolation will be used. Interpolation can 

introduce some error from the exact solution and interpolating a more sparse set of 

points for the same solution will result in an interpolation error less than or equal to 

that of a more dense solution set. This introduces a tradeoff between speedups gained 

by solving a more sparse set of points and error introduced in the final interpolated 

solution due to the sparsity. 

This tradeoff would have to be evaluated for each application of this approach and 

the sparsity of the solution adjusted as needed. Where a more exact solution is needed, 

the more dense solution, resulting in a slower solution time, would be needed. Where 

speed is more important, density of the solution can be sacrificed to gain the needed 

speedup. One exception to this tradeoff is for a problem whose solution is a single 

point. In that case there is no interpolation needed to regain the complete solution 

and consequently no interpolation error resulting from the reconstruction. This means 
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that any speedup gained from this approach has no tradeoff to be concerned about. 

Such a problem was shown in Section 4.3.3. 

4.3.5.2 Error Tolerance 

Another contribution to the size of a solution is the error tolerance. A larger error 

tolerance provides that a larger set of points will satisfy the constraint to that error. 

This results in a larger solution size for problems with a larger error tolerance and 

conversely, a smaller solution size for problems with a smaller error tolerance. 

An very illustrative example was shown in Figures 4.15 and 4.16. By looking 

closely at the solution, we see in Figure 4.16 that there is a collection of points that 

satisfy the constraint to the error tolerance indicated. This solution set is actually a 

ball around the exact solution point with radius directly related to the error tolerance. 

As the error tolerance gets smaller the size of the ball enclosing all solutions satisfying 

also gets smaller. With an error tolerance of 0 there would only be the exact solution 

point. 

In solution geometry other than a point, for example a curve or a surface, a similar 

solution set enlargement occurs. Consider Figure 4.9, where the exact solutions would 

be the bisecting surfaces, but in that instance the solutions look more like volumes, 

because the error tolerance is so large. Again, a larger error tolerance allows more 

points to satisfy the constraint, enlarging the solution set. 

4.4 Robot Path Planning Problems 

4.4.1 Generalized Voronoi Diagram 

This section discusses one approach to robot path planning and how to solve it 

using configuration space subdivision and then improves that solution using Monte 

Carlo optimization. 

The ultimate goal of path planning is to find a path through workspace that avoids 

all obstacles, from some beginning point to some ending point. One approach to this 
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that any speedup gained from this approach has no tradeoff to be concerned about. 
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is to construct the Generalized Voronoi Diagram of the entire configuration space, 

and then by following the Voronoi cell edges, the robot will be at a position with the 

same distance between it and the closest n obstacles. 

In essence, if all the configurations of the robot, which place it in the generalized 

Voronoi diagram of the configuration space, can be found they can be used to plan 

from an initial starting point to the end point. This approach assumes the initial and 

end points are either in the Voronoi diagram or can be connected to it trivially. 

4.4.1.1 Specific Setup 

The path planning problem consists of using a translating (in two dimensions) 

rotating (on one axis) robot, resulting in a three-dimensional configuration space. 

There are three obstacles placed in the workspace, which need to be planned around. 

First, the generalized Voronoi diagram of the configuration space is found. Once 

the configuration space Voronoi diagram is found, those results can be used to plan 

a path through the workspace. 

4.4.1.2 Results 

The generalized Voronoi diagram is found using configuration space subdivision 

by itself, to the indicated precision. The result is shown in Figure 4.18, and the 

runtime statistics are in Table 4.8. 

In order to reach the desired precision, the configuration space subdivision must 

subdivide until the individual hypercubes are no larger than the precisions specified 

(in this way it guarantees that the solution is to that precision). Because each level 

of the configuration subdivision is stored, the memory footprint can also increase 

dramatically (essentially storing a very large binary tree). The specified precision 

requires 1.6 GB of memory. 

By using Monte Carlo optimization, the subdivision is stopped with a higher 

error tolerance, and then use Monte Carlo optimization is used to find a more precise 
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Figure 4.18: Robot drawn on the generalized Voronoi diagram, done with configura­
tion space subdivision by itself. 

Table 4.8: Runtime statistics for finding the generalized Voronoi diagram. 

method time(sec) memory CS precision MC precision solutions 
CS 246.17 1.6 GB 1.0 x 10- 1 N/A 1123058 
MC 138.09 722 MB 2.0 x 10- 1 1.0 x 10- 1 271568 
CS 243.15 1.6 GB 9.0 x 10- 2 N/A 1123058 
MC 348.23 248 MB 8.0 x 10- 1 9.0 x 10"2 10359 
CS CO CO 1.0 x 10~2 N/A 0 
MC 1404.88 805 MB 8.0 x 10- 1 1.0 x 10"2 7065 
MC 1548.98 905 MB 8.0 x 10"1 1.0 x 10~3 6284 
MC 1582.00 915 MB 8.0 x 10- 1 1.0 x 10- 4 6233 
MC 1633.04 938 MB 8.0 x 10"1 1.0 x 10~5 6230 
MC 1855.18 1.0 GB 8.0 x 10" 1 1.0 x 10- 6 6223 
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answer, using a lower error tolerance. The first pair of results listed (one CS and 

one MC) show a faster run time using MC optimization, as well as a smaller memory 

footprint, see Table 4.8. In the second pair of results, MC optimization takes a 

little longer than subdivision, but takes much less memory to compute. The result 

of the MC optimization solution is shown in Figure 4.19. These results are more 

important if the problem needs to be solved on a computer with less than 1 GB of 

memory. Configuration space subdivision by itself ran out of memory at a precision 

of 1.0 x 1 0 - 2 on a machine with 3 GB of memory, this is represented in the table as 

taking an infinite amount of time and memory. 

Additionally, the last pair of results show another advantage of using MC opti­

mization, to find a solution with an error less than 1.0 x 10~6. Using only configuration 

space subdivision, it would have been very difficult to find a solution to the problem 

with that precision. 

Further, consider the number of solutions for each problem, listed in the table in 

the right most column. By comparing the solutions found only with configuration 

space subdivision to the solutions found using Monte Carlo optimization, a large dif­

ference in solution count can be seen for a problem of the same precision. The number 

of solutions is much greater when solved using only subdivision. This indicates a more 

sparse solution when using Monte Carlo optimization, which is similar to the different 

sparsity solutions found in the General Constraint Solutions section. Again, there is 

a tradeoff between the sparsity of solution and gaining the advantages provided by 

the Monte Carlo optimization approach. 

Figures 4.18 and 4.19 are actually the projections of the generalized Voronoi di- . 

agram in three-dimensional configuration space to the two-dimensional workspace. 

This is why the robot arms are not aligned completely with the Voronoi cell bound­

aries, they would in configuration space, but as a projection of that solution into the 

two-dimensional workspace they appear differently. Additionally, because the error 

margin is only 1.0 x 1 0 _ 1 (in the configuration space only case), this allows for some 
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Figure 4.19: Robot drawn on the generalized Voronoi diagram, done with Monte 
Carlo optimization. 

visual error showing in Figure 4.18. The positions shown are only a selection of all 

solutions found, in order to make the individual robots more visible. 

Once the decomposition is complete and the configurations of the robot that make 

up the Voronoi diagram are found, an actual robot path can be found through these 

solutions. The result is shown in Figure 4.20. This path was created by constructing a 

graph out of the solution cells, and then using Dijktra's algorithm to find the shortest 

path between the inital and final position. This results in a path that is always 

on the Voronoi diagram, but that is optimized as the shortest path. Variations on 

this approach could be taken, for example weighting the edges of the graph by their 

distance from the obstacles in order to find the path furthest from all obstacles (the 

"safest" path). 

4.4.2 Important Point Solutions 

4.4.2.1 How Important Points Can Be Used 

As discussed in Section 2.3, in robot path planning configuration space can be 

thought of as being partitioned into distinct areas (not necessarily contiguous), free 
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Figure 4.20: After creating the generalized Voronoi diagram using MC optimization, a 
start position is connected to a finish position to create a path through the workspace. 

space or C f r e e , where the robot can move freely, and collision space or C 0 ^ g , where 

the robot will collide with an obstacle. Once these spaces are accurately described, 

especially the boundaries between the free and collision spaces, path planning can be 

done in a pretty straightforward manner, move from start point to end point using 

only the free configuration space. 

In higher dimensional configuration space, determining the boundary between 

collision space and free space can be very challenging. Configuration space decom­

position attempts to decompose the high dimensional configuration space, but will 

quickly run out of memory on modern computers. 

We propose one starting point at which to approach this problem. Using con­

figuration space subdivision and Monte Carlo optimization, "important points" can 

be found in the configuration space. These are points in space where changes in the 

free or collision space occur. We call them important points instead of critical points 

to emphasize that they enclose a more broad description than traditional use of the 

term "critical point." 

For example, consider a two-dimensional problem involving a grounded, two link 

rotational robot arm. The solution is found for all configurations in the configuration 
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space for which the two link arm collides with an obstacle. The solution is shown 

in Figure 4.21 drawn in workspace, and in Figure 4.22 drawn in configuration space. 

Because it is only a two-dimensional configuration space a solution can be found for 

the entire collision-freespace boundary, indicated by the boundary. To clarify, the 

boundary is all the points in configuration space where the distance between the 

robot and obstacles becomes zero, which indicates the boundary between free and 

collision space. 

Viewing the solution for the important points of this problem shows how they fit 

into the complete picture. First, the solution for every configuration where the robot 

collides with the obstacle(s) twice is shown. The solution drawn in workspace is shown 

in Figure 4.23, and in configuration space in Figure 4.24. Comparing Figures 4.22 

and 4.24 reveals that they match up quite well, and the solution areas in Figure 4.24 

are points in the complete solution where the shape of the boundary changes. This 

comparison is shown in Figure 4.25, the arrows indicating where the two diagrams 

correspond. 

The following solution solves for all positions where the robot collides with only the 

very tip of the end-effector. A solution is shown in Figure 4.26 drawn in workspace, 

and in Figure 4.27 drawn in configuration space. By comparing these results to the 

complete solution in Figure 4.22, some correlation becomes apparent. These solution 

points seem to correlate with some of the ridges in the complete solution, as indicated 

in Figure 4.28. 

In cases where complete solution is difficult to find, even by just solving for these 

two types of important points, an idea of the shape of the complete solution begins 

to become apparent. 

In this vein of thought, while it may not be possible to represent the entire collision 

hypersurface of a high dimensional problem using configuration space subdivision 

and Monte Carlo optimization, it would still seem useful to detect these important 

points. By identifying these important points, an idea of the shape of the complete 
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Figure 4.22: All configurations (to a precision of 
robot collides, drawn in configuration space. 

1.0 x 10~2 ) for which the two link 
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Figure 4.21: Showing a sampling of all configurations for which the two link robot 
collides, drawn in workspace. 

Figure 4.22: All configurations (to a precision of 1.0 x 10-2
) for which the two link 

robot collides, drawn in configuration space. 
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Figure 4.24: All configurations (to a precision of 1.0 x 10 2 ) for which the two link 
robot collides twice, drawn in configuration space. 

62 

Figure 4.23: Showing a sampling of all configurations for which the two link robot 
collides twice, drawn in workspace. 
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Figure 4.24: All configurations (to a precision of 1.0 x 10-2
) for which the two link 

robot collides twice, drawn in configuration space. 
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Figure 4.26: Showing a sampling of all configurations for which the two link robot 
collides with only its tip, drawn in workspace. 
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Figure 4.25: Showing how the important point solutions for double collisions relate 
back to the complete solutions, points where the shape of collision space changes. 

Figure 4.26: Showing a sampling of all configurations for which the two link robot 
collides with only its tip, drawn in workspace. 
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Figure 4.27: All configurations (to a precision of 1.0 x 10 2 ) for which the two link 
robot collides with only its tip, drawn in configuration space. 

Figure 4.28: Showing how the important point solutions for tip-collisions relate back 
to the complete solutions, points where the shape of collision space changes. 
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Figure 4.27: All configurations (to a precision of 1.0 x 10- 2) for which the two link 
robot collides with only its tip , drawn in configuration space. 

Figure 4.28: Showing how the important point solutions for tip-collisions relate back 
to the complete solutions, points where the shape of collision space changes. 
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hypersurface can be gained. 

A discussion of a few of these important points and success in finding them is 

presented, particularly how Monte Carlo optimization has performed. 

4.4.2.2 Overconstrained Voronoi Solutions 

One set of important points that are more helpful to understand the generalized 

Voronoi diagram in a high dimension, rather than the complete CQ^S and C f r e e 

boundary, although useful in both cases, are overconstraints of the Voronoi constraint 

problem itself. 

In this example, another constraint is added to the Voronoi solution presented in 

the previous section. The constraint before was that the distance to the two nearest 

obstacles be equal. To overconstrain that is increased to three, so that the distance 

to the three nearest obstacles must be equal. The result is shown in Figure 4.29, 

solved using only subdivision. The solution using Monte Carlo optimization is shown 

in Figure 4.30, and the runtime statistics for both are listed in Table 4.9. 

The results indicate that with any error tolerance larger than 1.0 x 1 0 - 2 , using 

subdivision by itself is actually better, it uses less memory in most cases and does it 

faster in all of them. However, if the solution needs to have an error tolerance less 

than 1.0 x 1 0 - 2 , only the MC optimization approach can find an answer. In fact, to 

display the advantage in finding solutions of high precision, Table 4.9 displays results 

with solution precision up to 1.0 x 1 0 - 6 , this would be very difficult to achieve with 

subdivision alone. 

One of the reasons motivating the search for the important points in the Voronoi 

diagram, are for situations where higher dimensional problems needs to be solved. 

In these situations, these important points of the Voronoi diagram can be found, 

indicating areas in configuration space that are equidistant from three or more obsta­

cles, and then used to either reconstruct the entire Voronoi diagram, or simply aid in 

constructing the complete picture of the CQ^S and C f r e e boundaries. 
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Figure 4.29: One link translating and rotating (three-dimensional configuration space) 
robot, Voronoi center point. 1.0 x 1 0 - 2 precision using only subdivision. 

Figure 4.30: One link translating and rotating (three-dimensional configuration space) 
robot, Voronoi important point. 1.0 x 10~4 precision using MC optimization. 
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Figure 4.29: One link translating and rotating (three-dimensional configuration space) 
robot , Voronoi center point. 1.0 x 10-2 precision using only subdivision. 

Figure 4.30: One link translating and rotating (three-dimensional configuration space) 
robot , Voronoi important point. 1.0 x 10- 4 precision using Me optimization. 
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Table 4.9: Runtime statistics for finding the generalized Voronoi diagram 
center point. 

method time(sec) memory CS precision MC precision solutions 
CS 15.01 60 MB 1.0 x lO" 1 N/A 14767 
MC 18.01 954 MB 2.0 x lO" 1 1.0 x lO" 1 8060 
MC 21.01 39 MB 3.0 x 10" 1 1.0 x lO" 1 2972 
CS 63.04 335 MB 1.0 x 10~2 N/A 124407 
MC oo oo 1.0 x 10"1 1.0 x lO" 2 0 
MC 2086.77 1.1 GB 2.0 x lO" 1 1.0 x lO" 2 2708 
MC 459.29 260 MB 3.0 x 10- 1 1.0 x 10" 2 964 
CS oo oo 1.0 x 10~3 N/A 0 
MC oo CO 1.0 x lO" 1 1.0 x 10~3 0 
MC 2455.62 1.2 GB 2.0 x 10"1 1.0 x 10~3 2107 
MC 522.34 292 MB 3.0 x lO" 1 1.0 x lO" 3 886 
MC 567.36 308 MB 3.0 x lO" 1 1.0 x 10~4 880 
MC 1119.71 580 MB 3.0 x lO" 1 1.0 x lO" 5 157 
MC 1174.45 606 MB 3.0 x 10- 1 1.0 x 10~6 2 

4.4.2.3 Tip Collision Detection 

Tip collision is a collision involving nothing but the very tip of the end-effector 

of the robot and any obstacle. If C 0 ^ s is a surface, the tip collision would represent 

a boundary tip on that surface, an area in configuration space at which the collision 

space changes from describing where there is no collision to where there is exactly 

one tip of collision. This appears as a point in lower dimensions, but because of the 

potential multiplicity of arrangements made possible with more segments in a robot 

arm, the solution can become a surface. (See Figures 4.26 and 4.27 for an example of 

this in two dimensions.) 

4.4.2.3.1 Three link, nontranslating, rotational robot with one tip col­

lision. One problem we are able to solve and improve upon with MC optimization 

is the single tip collision of a three link, nontranslating robot. 

Results are presented from two subsets of the same problem. First the rotation 

freedom of the robot is restricted to 180 degrees for each joint. Then a solution is 

found when the joints are allowed to rotate the full 360 degrees. 

This contrast presents an appreciation for the size of the 360 degree problem. 

Table 4.9: Runtime statistics for finding the generalized Voronoi diagram 
center point. 

method time(sec) memory CS precision MC precision solutions 
CS 15.01 60 MB 1.0 x 10 1 NjA 14767 
MC 18.01 954 MB 2.0 x 10-1 1.0 X 10-1 8060 
MC 21.01 39 MB 3.0 x 10-1 1.0 X 10-1 2972 
CS 63.04 335 MB 1.0 x 10 2 NjA 124407 
MC 00 00 1.0 X 10-1 1.0 X 10-2 0 
MC 2086.77 1.1 GB 2.0 x 10-1 1.0 X 10-2 2708 
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CS 00 00 1.0 x 10 -is NjA 0 
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MC 1119.71 580 MB 3.0 x 10-1 1.0 X 10-5 157 
MC 1174.45 606 MB 3.0 x 10-1 1.0 X 10-6 2 

4.4.2.3 Tip Collision Detection 

67 

Tip collision is a collision involving nothing but the very tip of the end-effector 

of the robot and any obstacle. If Cobs is a surface, the tip collision would represent 

a boundary tip on that surface, an area in configuration space at which the collision 

space changes from describing where there is no collision to where there is exactly 

one tip of collision. This appears as a point in lower dimensions, but because of the 

potential multiplicity of arrangements made possible with more segments in a robot 

arm, the solution can become a surface. (See Figures 4.26 and 4.27 for an example of 

this in two dimensions.) 

4.4.2.3.1 Three link, nontranslating, rotational robot with one tip col-

lision. One problem we are able to solve and improve upon with MC optimization 

is the single tip collision of a three link, nontranslating robot. 

Results are presented from two subsets of the same problem. First the rotation 

freedom of the robot is restricted to 180 degrees for each joint. Then a solution is 

found when the joints are allowed to rotate the full 360 degrees. 

This contrast presents an appreciation for the size of the 360 degree problem. 
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Additionally, these results allow easier comparison with later results for a five link 

robot which was only solved by limiting to 180 degree rotation freedom (360 was too 

large a problem). 

First results are presented that only allow 180 degrees of rotation. 

This problem is represented in three-dimensional configuration space. The prob­

lem is first solved using only configuration space subdivision, as shown in Figure 4.31. 

While this is not a necessarily hard problem for only configuration subdivision to do, 

using Monte Carlo optimization demonstrates a speedup. The solution is shown in 

Figure 4.32. The computation time and memory usage for each solution are shown 

in Table 4.10. As the table shows, configuration subdivision was able to solve the 

problem in 81.05 seconds, while with the Monte Carlo optimization extension it was 

able to solve it in only 51.03 seconds (using a CS precision of 2.0 x 1 0 _ 1 ) . Addi­

tionally, alone CS was able to solve the problem using 203MB, while with MC the 

solution only required 16MB. While either memory size could be easily handled by 

most modern computers, it is important to note how much using MC reduced the 

memory footprint: 7.8% of the original size. 

Next results are presented where the joints are given the full 360 degrees of rotation 

freedom. 

The problem is first solved using subdivision by itself, shown in Figure 4.33. The 

results of using Monte Carlo optimization are shown in Figure 4.34. The runtime 

statistics are presented in Table 4.11. As the table shows, MC optimization finds the 

solution slower, but saves a lot in memory usage, only using 11.9% of the subdivision 

only solution. This would be critical if the target machine only had under 1 GB of 

memory. 

Additionally, when the target precision is 1.0 x 1 0 - 3 , the subdivision only approach 

runs out of memory, while the solution using MC optimization only requires a few 

hundred MB of memory. It is important to note that using MC optimization provides 

a way for solving to a precision unreachable with subdivision alone, thus extending 
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Figure 4.31: Nontranslating three link robot rotational drawn in configurations at 
which it collides with obstacles only with the tip of its end effector, found with only 
configuration decomposition. Joints have 180 degrees of rotation freedom. 
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Figure 4.31: Nontranslating three link robot rotational drawn in configurations at 
which it collides with obstacles only with the tip of its end effector, found with only 
configuration decomposition. Joints have 180 degrees of rotation freedom. 
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Table 4.10: Runtime statistics for finding the tip-collision solutions of a 
three link nontranslating robot, where joints have 180 degrees of rotation 
freedom. 

method time(sec) memory CS precision MC precision solutions 
CS 81.05 203MB 1.0 x 10- 2 N/A 5743 
MC 102.07 24 MB 1.0 x 10- 1 1.0 x 10- 2 14 
MC 51.03 16 MB 2.0 x 10- 1 1.0 x 10- 2 co

 

MC 72.05 19 MB 3.0 x 10- 1 1.0 x 10- 2 9 
CS oo oo 1.0 x 10~3 N/A 0 
MC 108.07 25 MB 1.0 x 10" 1 1.0 x 10" 3 

oo 

MC 51.03 16 MB 2.0 x 10- 1 1.0 x 10" 3 3 
MC 81.05 21 MB 3.0 x 10" 1 1.0 x 10~3 1 

Figure 4.32: Same as Figure 4.31 but using Monte Carlo optimization. 

Table 4.10: Runtime statistics for finding the tip-collision solutions of a 
three link nontranslating robot, where joints have 180 degrees of rotation 
freedom. 

method time(sec) memory CS precision MC precision solutions 
CS 81.05 203MB 1.0 x 10 2 NjA 5743 
MC 102.07 24 MB 1.0 x 10-1 1.0 X 10-2 14 
MC 51.03 16 MB 2.0 x 10-1 1.0 X 10-2 3 
MC 72.05 19 MB 3.0 x 10-1 1.0 X 10-2 9 
CS 00 00 1.0 x 10 .<1 NjA 0 
MC 108.07 25 MB 1.0 x 10- 1 1.0 X 10- 3 8 
MC 51.03 16 MB 2.0 x 10-1 1.0 X 10-3 3 
MC 81.05 21 MB 3.0 x 10-1 1.0 X 10-3 1 
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Figure 4.33: Noritranslatirig three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with only configuration 
decomposition. Joints have 360 degrees of rotation freedom. 
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Figure 4.33: Nontranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with only configuration 
decomposition. Joints have 360 degrees of rotation freedom. 
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Figure 4.34: Noiitranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with MC Optimization. 
Joints have 360 degrees of rotation freedom. 
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Figure 4.34: Nontranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with Me Optimization. 
Joints have 360 degrees of rotation freedom. 
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Table 4.11: Runtime statistics for finding the tip-collision solutions of a 
three link nontranslating robot where joints have 360 degrees of freedom 
(Figures 4.33 and 4.34). 

method time(sec) memory CS precision MC precision solutions 
CS 930.61 1.9 GB 1.0 x 10~2 N/A 71807 
MC 1383.91 232 MB 1.0 x 10" 1 1.0 x 10~2 152 
MC 1915.58 112 MB 2.0 x 10"1 1.0 x 10~2 35 
MC 1290.85 209 MB 3.0 x 10- 1 1.0 x 10"2 50 
CS oo oo 1.0 x 10~3 N/A 0 
MC 1506.98 252 MB 1.0 x 10- 1 1.0 x 10- 3 61 
MC 672.44 114 MB 2.0 x 10- 1 1.0 x 10~3 18 
MC 1326.87 217 MB 3.0 x 10" 1 1.0 x 10~3 12 

subdivision in an important way. 

4.4.2.3.2 Four link, nontranslating, rotational robot with one tip colli­

sion. Solutions to the tip collision problem with four link rotational robot, resulting 

in a four-dimensional configuration space to search. 

Again, the solution to two related subproblems is presented, one where the joints 

have 180 degrees of freedom and one where they have 360 degrees of freedom. First, 

a solution where joints have 180 degrees of freedom. 

Even with only 180 degrees of rotation freedom, a solution cannot be found using 

only configuration space subdivision with error 1.0 x 10~2, due to insufficient memory. 

However, it can be found with error 1.0 x 1 0 _ 1 , but with that large of an error the 

results do not look very correct, as depicted in Figure 4.35. A solution using Monte 

Carlo optimization is presented in Figure 4.36. 

In other words, Monte Carlo optimization is able to solve a higher dimensional 

problem than configuration space subdivision can by itself. While the configuration 

space by itself can find a solution, it is such a lose error bound that the result is not 

very usable (Figure 4.35). These results are presented in Table 4.12. 

Next, a solution to the same problem but with 360 degree rotational freedom is 

presented. Figure 4.37 shows the result, and Table 4.13 details the runtime statistics. 

This solution takes long enough that it probably would not be useful for most robotics 

Table 4.11: Runtime statistics for finding the tip-collision solutions of a 
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presented. Figure 4.37 shows the result, and Table 4.13 details the runtime statistics. 

This solution takes long enough that it probably would not be useful for most robotics 
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Figure 4.35: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using only configuration space 
subdivision. 180 degrees of rotational freedom. The results have such a loose error 
tolerance (1.0 x 1 0 _ 1 ) , that they appear like garbage results. 
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Figure 4.35: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using only configuration space 
subdivision. 180 degrees of rotational freedom. The results have such a loose error 
tolerance (1.0 x 10- 1

), that they appear like garbage results. 
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Figure 4.36: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using MC optimization. 180 
degrees of rotational freedom. 

Table 4.12: Runtime statistics for finding the tip-collision solutions of a 
four link nontranslating robot with 180 degrees of rotational freedom. 

method time(sec) memory CS precision MC precision solutions 
CS oo oo 1.0 x 10- 2 N/A 180 
CS 6.00 20 MB 1.0 x 1 0 - 1 N/A 389 
MC 1059.67 169 MB 1.0 x 10- 1 1.0 x 10- 2 105 
MC 237.15 43 MB 2.0 x 10"1 1.0 x 10- 2 23 
MC 441.28 73 MB 3.0 x 10- 1 1.0 x 10"2 25 
CS oo oo 1.0 x 10~3 N/A 0 
MC 1122.70 180 MB 1.0 x 10"1 1.0 x 10- 3 71 
MC 279.18 49 MB 2.0 x 10- 1 1.0 x 10- 3 2 
MC 480.31 79 MB 3.0 x 10- 1 1.0 x 10- 3 10 
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Figure 4.36: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using MC optimization. 180 
degrees of rotational freedom. 

Table 4.12: Runtime statistics for finding the tip-collision solutions of a 
four link nontranslating robot with 180 degrees of rotational freedom. 

method time(sec) memory CS precision MC precision solutions 
CS 00 00 1.0 x 10 -2 NjA 180 
CS 6.00 20 MB 1.0 x 10-1 NjA 389 
MC 1059.67 169 MB 1.0 x 10-1 1.0 X 10-2 105 
MC 237.15 43 MB 2.0 x 10-1 1.0 X 10- 2 23 
MC 441.28 73 MB 3.0 x 10-1 1.0 X 10-2 25 
CS 00 00 1.0 x 1O-:i NjA 0 
MC 1122.70 180 MB 1.0 x 10- 1 1.0 X 10-3 71 
MC 279.18 49 MB 2.0 x 10-1 1.0 X 10-3 2 
MC 480.31 79 MB 3.0 x 10-1 1.0 X 10-3 10 
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Figure 4.37: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using MC optimization. 360 
degrees of rotational freedom. 

Table 4.13: Runtime statistics for finding the tip-collision solutions of a 
four link nontranslating robot with 360 degrees of rotational freedom. 

method time(sec) memory CS precision MC precision solutions 
CS oo oo 1.0 x 10- 2 N/A 0 
CS oo oo 1.0 x 10- 1 N/A 0 
MC oo oo 1.0 x 10- 1 1.0 x lO" 2 

MC 10824.83 1.5 GB 2.0 x lO" 1 1.0 x 10"2 328 
MC oo oo 3.0 x lO" 1 1.0 x 10"2 0 
CS oo oo 1.0 x 10~3 N/A 
MC oo oo 1.0 x lO" 1 1.0 x lO" 3 

MC 11404.16 1.6 GB 2.0 x 10"1 1.0 x 10~3 76 
MC oo oo 3.0 x 10"1 1.0 x lO" 3 0 

76 

Figure 4.37: Nontranslating four link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector , found using MC optimization. 360 
degrees of rotational freedom. 

Table 4.13: Runtime statistics for finding the tip-collision solutions of a 
four link nontranslating robot with 360 degrees of rotational freedom. 

method time(sec) memory CS precision MC precision solutions 
CS 00 00 1.0 x 10 -:o! N/A 0 
CS 00 00 1.0 X 10-1 N/A 0 
MC 00 00 1.0 X 10-1 1.0 X 10-2 

MC 10824.83 1.5 GB 2.0 x 10- 1 1.0 X 10- 2 328 
MC 00 00 3.0 X 10-1 1.0 X 10-2 0 
CS 00 00 1.0 x 10 -;j N/A 
MC 00 00 1.0 X 10-1 1.0 X 10-3 

MC 11404.16 1.6 GB 2.0 x 10-1 1.0 X 10-3 76 
MC 00 00 3.0 X 10-1 1.0 X 10-3 0 
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applications (as do some of the other run times); however, it is meant to emphasize 

that the MC optimization approach is able to solve a problem in a dimension that 

could not be solved using configuration space subdivision by itself. This is one of the 

main points of the thesis, that Monte Carlo optimization can help in speed, precision, 

and in problem size. 

4.4.2.3.3 Five link, nontranslating, rotational robot with one tip col­

lision. The solution to a five link, nontranslating, rotational robot with one tip 

collision problem is shown in Figure 4.38 and the runtime statistics are listed in 

Table 4.14. As the table indicates configuration subdivision by itself is unable to 

solve this problem to a usable precision. Additionally, these are only results where 

each joint has 180 degrees of freedom; solutions were not found using 360 degress of 

rotation due to memory constraints. As with the four-dimensional problem, while 

the timings are not very encouraging for realtime use, they more importantly bring 

across the point that MC optimization is able to extend subdivision to solve higher 

dimensional problems with a reasonable precision. 

4.4.2.4 Multicollision Detection 

A double collision point in configuration space was discussed in Section 4.4.2.1. 

This section discusses success in finding multiple-collision points. 

We experienced limited success using Monte Carlo optimization to improve upon 

solutions to this important point problem. These results are presented, as well as some 

discussion as to why this may be. Additionally some results using only configuration 

space subdivision are presented, to complete the motivation for future work involving 

important points. This also reveals some shortcomings of Monte Carlo optimization. 

4.4.2.4.1 Two link, nontranslating, rotational robot with double colli­

sion points. The solution to the constraint involving the double collision of a two 

link robot with obstacles using only configuration subdivision is presented in Figure 

4.23 in Section 4.4.2.1. Here, Figure 4.39 presents the solution solved using MC opti-
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Figure 4.38: Nontranslating five link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector, found using MC optimization. 

Table 4.14: Runtime statistics for finding the tip-collision solutions of a five 
link nontranslating robot where joints have 180 degrees of freedom (Figure 
4.38). 

method time (sec) memory CS precision MC precision solutions 
CS oo oo 1.0 x 10~2 N/A 0 
CS 114.08 214 MB 1.0 x lO" 1 N/A 4168 
MC 20317.69 1.8 GB 1.0 x lO" 1 1.0 x 10~2 1116 
MC 1524.99 195 MB 2.0 x 10"1 1.0 x 10"2 121 
MC 2992.96 362 MB 3.0 x 10"1 1.0 x 10~2 136 
CS oo oo 1.0 x 10~3 N/A 0 
MC 15078.58 1.9 GB 1.0 x lO" 1 1.0 x lO" 3 809 
MC 1774.15 220 MB 2.0 x lO" 1 1.0 x 10" 3 29 
MC 3344.17 527 MB 3.0 x lO" 1 1.0 x 10~3 41 
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Figure 4.38: Nontranslating five link robot drawn in configurations at which it collides 
with an obstacle with the tip of its end effector , found using MC optimization. 

Table 4.14: Runtime statistics for finding the tip-collision solutions of a five 
link nontranslating robot where joints have 180 degrees of freedom (Figure 
4.38) . 

method time(sec) memory CS precision MC precision solutions 
CS 00 00 1.0 x 10 .;l N/A 0 
CS 114.08 214 MB 1.0 x 10-1 N/A 4168 
MC 20317.69 1.8 GB 1.0 x 10-1 1.0 X 10-2 1116 
MC 1524.99 195 MB 2.0 x 10- 1 1.0 X 10- 2 121 
MC 2992.96 362 MB 3.0 x 10- 1 1.0 X 10-2 136 
CS 00 00 1.0 x 10 ·3 N/A 0 
MC 15078.58 1.9 GB 1.0 x 10-1 1.0 X 10-3 809 
MC 1774.15 220 MB 2.0 x 10-1 1.0 X 10-3 29 
MC 3344.17 527 MB 3.0 x 10-1 1.0 X 10-3 41 
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Figure 4.39: Nontranslating two link robot drawn in configurations at which it collide 
with obstacles two times, solved using MC optimization. 

mization. As Table 4.15 presents, the configuration subdivision only approach solves 

the problem in less time and surprisingly even less memory. 

A discussion of some of the reasons for this shortcoming is presented at the end 

of this section. In our opinion the results are mostly due to an error metric that is 

difficult to optimize using Monte Carlo optimization. 

4.4.2.4.2 Three link, nontranslating, rotational robot with quadruple 

collision points. Here the solutions to the three link rotational robot colliding at 

four points is presented. Figure 4.40 depicts the solution found using configuration 

space subdivision by itself. Figure 4.41 is the solution found using MC optimization. 

As with the two link, double collision case, Table 4.16 presents results showing that 

the solution using configuration space subdivision is faster and uses less memory. 

This is another case displaying the shortcomings of the MC optimization step. 

4.4.2.4.3 Four link, nontranslating, rotational robot with six collision 

points. One solution found using configuration space subdivision by itself was the 

six-collisions of a four link, nontranslating robot. 
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Figure 4.39: Nontranslating two link robot drawn in configurations at which it collide 
with obstacles two times, solved using MC optimization. 
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Table 4.15: Runtime statistics for finding the double collision points of a 
two link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 3.00 1 MB 1.0 x lO" 1 N/A 33 
CS 3.00 1 MB 1.0 x 10~2 N/A 30 
MC 54.04 65 MB 1.0 x 10"1 1.0 x 10~2 1 

Figure 4.40: Nontranslating three link robot drawn in configurations at which it 
collide with obstacles four times, solved using only subdivision. 

Figure 4.41: Nontranslating three link robot drawn in configurations at which it 
collide with obstacles four times, solved using MC optimization. 

Table 4.16: Runtime statistics for finding the quadruple collision points of 
a three link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 6.00 27 MB 1.0 x lO" 2 N/A 89 
CS 6.00 27 MB 9.0 x 10~3 N/A 89 
MC 468.29 425 MB 1.0 x 10"2 9.0 x lO" 3 2 
CS 6.00 36 MB 1.0 x lO" 3 N/A 4 

Table 4.15: Runtime statistics for finding the double collision points of a 
two link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 3.00 1 MB 1.0 x 10 ·1 N/A 33 
CS 3.00 1 MB 1.0 x 10-2 N/A 30 
MC 54.04 65 MB 1.0 x 10-1 1.0 X 10-2 1 
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Figure 4.40: Nontranslating three link robot drawn in configurations at which it 
collide with obstacles four times, solved using only subdivision. 

Figure 4.41 : Nontranslating three link robot drawn in configurations at which it 
collide with obstacles four times, solved using MC optimization. 

Table 4.16: Runtime statistics for finding the quadruple collision points of 
a three link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 6.00 27MB 1.0 x 10 -:.! N/A 89 
CS 6.00 27MB 9.0 x 10-3 N/A 89 
MC 468.29 425 MB LOx 10-2 9.0 X 10-3 2 
CS 6.00 36 MB 1.0 x 10-3 N/A 4 
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To fully represent the collision and free space in four-dimensional configuration 

space using configuration space subdivision would be difficult using current hardware. 

However, using configuration space subdivision, these important points can be found. 

These points are detectable because it is easy to tell early on whether a very large 

hypercube of configuration space, a configuration space volume, contains a configura­

tion that will satisfy that geometric constraint. This is in part because the constraint 

is so precise. With enough early trimming, the entire configuration space is able to 

be fully searched to find the points where this six-collision occurs. 

Figure 4.42 shows a solution to this problem using configuration space subdivision 

alone. Table 4.17 shows the runtime results of that process. No interesting results 

were found using MC optimization for this case, again due to the shortcomings dis­

cussed at the end of this section. 

4.4.2.4.4 Discussion on Monte Carlo optimization shortcomings. These 

results reveal a problem for which MC optimization did not improve the subdivision 

approach in some way. Here some ideas are proposed as to why this shortcoming 

occurs, with some supporting test runs and results. 

The error metric, which provides the guidance of the sampling towards the so­

lution, plays a vital role in the MC optimization method. We believe the problems 

experienced in solving for problems involving multiple collisions is in part due to the 

difficulty of describing the error for this problem with a single scalar value. Consid­

ering the robot in workspace, the distance to the nearest n obstacles (where the next 

n collisions will take place) describes the error, but moving closer to one collision 

may bring the robot further from the other. An improvement towards contact at one 

point with an obstacle can increase the distance to another collision point. In other 

words, the error metric may not provide a very direct guide to the solution, so that 

maximum iterations are reached and no solution is found. This makes it difficult for 

Monte Carlo optimization to optimize the error. 

As an illustration of this situation, we change the Monte Carlo optimization error 
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metric to be only the distance to the closest obstacle for the two link robot, double 

collision example. In other words, the configuration subdivision step will solve for 

double collisions, and when it then uses Monte Carlo optimization to find a more 

precise solution, the error will only be for single collision1. While the solution will 

not be entirely correct, it will illustrate the exact same setup, but with a different 

error metric, one that is very directly leading to a solution. The results are shown in 

Table 4.18, and drawn in workspace in Figure 4.43. The table shows that the runtime 

is now on par with the CS solution timings. This data gives some support that in 

the same situation with an error metric that clearly leads to a solution, the runtime 

is faster. 

To provide a similar example, we use the same approach in the three link, quadru­

ple collision detection problem. We modify the error metric to only include the closest 

obstacle distance. The resulting runtime statistics are presented in Table 4.19. Again, 

with the simpler error construction, the runtime is much more similar to the config­

uration subdivision approach. 

This data suggests that, at least in part, a poor error metric may be to blame for 

the poor results in multicollision detection using MC optimization. In an attempt 

to remedy this problem, we have tried a few different approaches but with limited 

success. We leave further exploration to future work. In particular, exploring how to 

define the error in a different way, one more conducive to MC optimization, would be 

an ideal solution. 

1 Error changed to consider only the closest obstacle distance, which is not correct for a multicol­
lision problem. 
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Figure 4.42: Nontranslating four link robot drawn in configurations at which it collide 
with obstacles six times 

Table 4.17: Runtime statistics for finding the six-collision points of a four 
link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 306.19 1.7 GB 1.0 x lO" 2 N/A 1021 

Table 4.18: Runtime statistics for finding the double collision points of a 
two link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 3.00 1 MB 1.0 x 10~2 N/A 30 
CS 3.00 1 MB 1.0 x lO" 3 N/A 24 

MC 1 9.01 17 MB 1.0 x lO" 2 1.0 x 10~3 26 
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with obstacles six times 

Table 4.17: Runtime statistics for finding the six-collision points of a four 
link nontranslating robot. 

time(sec) MC precision 
306.19 NjA 

Table 4.18: Runtime statistics for finding the double collision points of a 
two link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 3.00 1 MB 1.0 x 10 -:l NjA 30 
CS 3.00 1 MB 1.0 x 10-3 NjA 24 

MC l 9.01 17 MB 1.0 x 10-2 1.0 X 10-3 26 
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Figure 4.43: Nontranslating two link robot drawn in configurations at which it collide 
with obstacles two times, found using MC optimization where MC error was only the 
closest collision distance. 

Table 4.19: Runtime statistics for finding the quadruple collision points of 
a three link nontranslating robot. 

method time(sec) memory CS precision MC precision solutions 
CS 6.00 27 MB 1.0 x 10~2 N/A 89 
CS 6.00 36 MB 1.0 x 10~3 N/A 4 

MC 1 9.01 34 MB 1.0 x 10"2 1.0 x 10~3 88 
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C H A P T E R 5 

CONCLUSION A N D FUTURE W O R K 

5.1 Conclusion 

In this thesis we have presented a novel approach to finding the final solution 

in configuration space subdivision by adapting Monte Carlo optimization. We have 

shown that this new approach allows us to solve constraint problems to a higher 

degree as well as a higher precision than configuration space subdivision can alone. 

The solution of several general constraint problems in three dimensions have been 

shown using the combination of configuration space subdivision and Monte Carlo 

optimization. The results have shown that using Monte Carlo optimization is able to 

solve the same problem faster and with less memory than with subdivision by itself. 

We have also deomonstrated its use in path planning a three-dimensional configu­

ration space problem by solving for the generalized Voronoi diagram in configuration 

space. This has shown cases where the Monte Carlo optimization has performed 

better, and in every case required less memory. We have shown that using MC opti­

mization can achieve better precision than is possible with only configuration space 

subdivision. 

Additionally, we have explored some "important point" examples, showing both 

successes and shortcomings of the approach. For the overconstrained Voronoi prob­

lem we have shown how for smaller precisions the configuration subdivision alone 

actually outperforms MC optimization, while for higher precision MC optimization 

performs better. In fact, in order to acheive any precision better than 1.0 x 10~3, 

only MC optimization can find the solution. For the tip-collision problem, we have 

shown how Monte Carlo optimization has helped to solve constraint problems up to 
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five-dimensions, while with only subdivision can only solve up to three-dimensional 

constraint problems with a usable error. And with multiple collision problems, we 

found an important shortcoming of MC optimization, that the error metric must be 

very directly guiding the samples to the solution. If there is not a clear direction for 

the samples to follow in the error metric, it will be difficult to solve. 

Finally, we have presented some beginning steps into analysis of higher dimen­

sional path planning problems using the important points of path planning related 

constraint problems. Our contribution has only been to present how overconstraint of 

a problem can lead to these important points, and we propose future work be done in 

making use of these points to solve higher dimensional constraint and path planning 

problems. 

In all we have shown how adapting Monte Carlo optimization to work in conjunc­

tion with configuration space subdivision can both improve the precision of configu­

ration space subdivision, and in some cases, increase the dimension of problem it can 

solve. 

5.2 Future Work 

Most of the effort in this thesis has centered on adapting Monte Carlo optimization 

to improve upon the configuration space subdivision approach. The area where we 

propose future work explore most is expanding the use of important points of higher 

dimensional constraint problems, especially in robot path planning. As we have 

shown in this thesis, by overconstraining a problem, the size of the solution can be 

reduced, in some cases reducing to point solutions. Overconstraint is not a new idea, 

but we have demonstrated how some of these overconstraint solutions participate in 

the larger, less constrained solution. If these important points can then be used to 

reconstruct the complete solution using an alternate method, it could be useful in 

path planning and other related geometric constraint problems of higher dimensions. 

More closely tied to the adaption of Monte Carlo optimization to work with con­

figuration space subdivision, we also propose future work exploring the solution of 
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more constraint problems using this method, and particularly in formulating error 

metrics for problems like multiple collision, where the trivial error metric does not 

produce desired results. 
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