
SOLVING G E O M E T R I C C O N S T R A I N T

P R O B L E M S T H R O U G H M O N T E

C A R L O OPTIMIZATION

by

Daniel James Perry

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

August 2008

SOLVING GEOMETRIC CONSTRAINT

PROBLEMS THROUGH MONTE

CARLO OPTIMIZATION

by

Daniel James Perry

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

III

Computer Science

School of Computing

The University of Utah

August 2008

Copyright © Daniel James Perry 2008

All Rights Reserved

Copyright © Daniel James Perry 2008

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Daniel James Perry

This thesis has been read by each member of the following supervisory committee and by
majority vote has been found to be satisfactory.

���
Chair: Elaine Cohen

C} .-:;(� I
� _/"------

David Johnson

Peter Shirley

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Daniel James Perry in its final form
and have found that (1) its format. citations. and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures. tables. and charts are in place;
and (3) the final manuscript is satisfactory to the supervisory committee and is ready for
submission to The Graduate School.

-'7

r4&�-e(f {0:�
Elaine Cohen

Chair: Supervisory Committee

Approved for the Major Department

H.�/
Martin Berzins

Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

A B S T R A C T

Geometric constraint problems appear in many situations, including C A D sys­

tems, robotics, and computational biology. The complexity of these problems inspires

the search for efficient solutions. We have developed a method to solve geometric con­

straint problems in the areas of geometric computation and robot path planning using

configuration space subdivision. In this approach the configuration space, or parame­

ter space, is subdivided and conservatively tested to find collision-free regions, which

are then numerically searched for specific path solutions. This thesis presents a new

more general approach to this last solution search step, using Monte Carlo optimiza­

tion. In this new search approach, within a single subdivided area of configuration

space, space is randomly sampled and then iteratively resampled based on impor­

tance weighting, until convergence to a solution with an acceptable error. We show

that by using Monte Carlo optimization to extend configuration space subdivision

we can solve higher dimensional problems more efficiently than configuration space

subdivision by itself.

ABSTRACT

Geometric constraint problems appear in many situations, including CAD sys­

tems, robotics, and computational biology. The complexity of these problems inspires

the search for efficient solutions. We have developed a method to solve geometric con­

straint problems in the areas of geometric computation and robot path planning using

configuration space subdivision. In this approach the configuration space, or parame­

ter space, is subdivided and conservatively tested to find collision-free regions, which

are then numerically searched for specific path solutions. This thesis presents a new

more general approach to this last solution search step, using Monte Carlo optimiza­

tion. In this new search approach, within a single subdivided area of configuration

space, space is randomly sampled and then iteratively resampled based on impor­

tance weighting, until convergence to a solution with an acceptable error. We show

that by using Monte Carlo optimization to extend configuration space subdivision

we can solve higher dimensional problems more efficiently than configuration space

subdivision by itself.

For my family.

I

For my family.

T A B L E O F C O N T E N T S

A B S T R A C T iv

A C K N O W L E D G E M E N T S viii

1 I N T R O D U C T I O N 1

2 B A C K G R O U N D 4

2.1 Literature Survey 4
2.1.1 Symbolic Analysis 4
2.1.2 Approximation Through Sampling 5
2.1.3 Monte Carlo Optimization 6

2.2 State of the Art 7
2.3 Robo t Configuration Space 8

2.3.1 Configuration Space and Workspace 8
2.3.2 Obstacles 13
2.3.3 Usefulness 14

3 A P P R O A C H 16

3.1 Overview 16
3.2 Algorithm 19
3.3 Implementation Details 21

3.3.1 Configuration Space Decomposition 21
3.3.2 Monte Carlo Optimization 23

4 R E S U L T S 31

4.1 Overview 31
4.2 Initial Sampling Experimentation 33

4.2.1 Experiment Setup 33
4.2.2 Experiment Results 37
4.2.3 Overall 37
4.2.4 Sample Sizes Under 100 39
4.2.5 Sample Size 25 39

4.3 General Geometric Constraints 43
4.3.1 Bisector Surfaces 43
4.3.2 Intersection of Three Bisectors 46
4.3.3 Intersection of Sviii Bisectors 48
4.3.4 Overconstraint 52

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

1 INTRODUCTION ..

2 BACKGROUND ...

2.1 Literature Survey
2.1.1 Symbolic Analysis
2.1.2 Approximation Through Sampling
2.1.3 Monte Carlo Optimization

2.2 State of the Art
2.3 Robot Configuration Space.

2.3.1 Configuration Space and Workspace .
2.3.2 Obstacles
2.3.3 Usefulness

3 APPROACH

3.1 Overview
3.2 Algorithm
3.3 Implementation Details .

3.3.1 Configuration Space Decomposition .
3.3.2 Monte Carlo Optimization

4 RESULTS

4.1 Overview..
4.2 Initial Sampling Experimentation

4.2.1 Experiment Setup ..
4.2.2 Experiment Results ...
4.2.3 Overall..
4.2.4 Sample Sizes Under 100
4.2.5 Sample Size 25

4.3 General Geometric Constraints
4.3.1 Bisector Surfaces
4.3.2 Intersection of Three Bisectors.
4.3.3 Intersection of Sviii Bisectors
4.3.4 Overconstraint

IV

viii

1

4

4
4
5
6
7
8
8

13
14

16

16
19
21
21
23

31

31
33
33
37
37
39
39
43
43
46
48
52

4.3.5 Solution Size 53
4.4 Robo t Path Planning Problems 54

4.4.1 Generalized Voronoi Diagram 54
4.4.2 Important Point Solutions 58

5 C O N C L U S I O N A N D F U T U R E W O R K 85

5.1 Conclusion 85
5.2 Future Work 86

B I B L I O G R A P H Y 88

vii

4.3.5 Solution Size
4.4 Robot Path P lanning Problems . . .

4.4.1 Generalized Voronoi Diagram
4.4.2 Important Point Solutions ..

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion ..
5.2 Future Work.

BIBLIOGRAPHY

Vll

53
54
54
58

85

85
86

88

A C K N O W L E D G M E N T S

First of all I would like to thank my supervisory committee, David Johnson, Elaine

Cohen, and Peter Shirley, all of whom have contributed so much in helping reach this

point. Each has helped in very important ways and I am very thankful to each of

them. I am particularly indebted to David Johnson, who first helped me to join the

Geometric Design and Computation group and has worked closely with me for over

a year on this project.

I am also grateful to my fellow students in the Geometric Design and Computation

group who have contributed many suggestions and ideas along the way.

Since this is the culmination of 5 years of undergraduate and graduate work at

the University of Utah, I would also like to acknowledge the very fine and effective

instructors I've had both inside and outside the School of Computing during my time

here. They've not only helped to educate me in my field of study and in general

university studies, but have been very influential in what I can already see as a vital

learning and shaping time of my life.

I also feel the need to acknowledge the wonderful office staff in the School of

Computing who are always so helpful and friendly. In particular Sandy Hiskey and

Karen Feinauer who both spent much of their time helping me along.

And of course I would be entirely selfish to not acknowledge my very supportive

parents and family for their love and encouragement in everything I seem to get myself

into.

To everyone listed here and anyone I've missed, Thank You.

ACKNOWLEDGMENTS

First of all I would like to thank my supervisory committee, David Johnson, Elaine

Cohen, and Peter Shirley, all of whom have contributed so much in helping reach this

point. Each has helped in very important ways and I am very thankful to each of

them. I am particularly indebted to David Johnson, who first helped me to join the

Geometric Design and Computation group and has worked closely with me for over

a year on this project.

I am also grateful to my fellow students in the Geometric Design and Computation

group who have contributed many suggestions and ideas along the way.

Since this is the culmination of 5 years of undergraduate and graduate work at

the University of Utah, I would also like to acknowledge the very fine and effective

instructors I've had both inside and outside the School of Computing during my time

here. They've not only helped to educate me in my field of study and in general

university studies, but have been very influential in what I can already see as a vital

learning and shaping time of my life.

I also feel the need to acknowledge the wonderful office staff in the School of

Computing who are always so helpful and friendly. In particular Sandy Hiskey and

Karen Feinauer who both spent much of their time helping me along.

And of course I would be entirely selfish to not acknowledge my very supportive

parents and family for their love and encouragement in everything I seem to get myself

into.

To everyone listed here and anyone I've missed, Thank You.

C H A P T E R 1

I N T R O D U C T I O N

One area of ongoing research in geometric computation is efficient solution to ge­

ometric constraint problems. Geometric constraint problems appear in many areas,

including C A D , robotics, and computational biology. Because of their wide applica­

tion, new approaches to solving geometric constraints are quite useful.

Geometric constraint problems appear often in a C A D system, for example, find­

ing the medial surface of a complex model or collision detection between moving parts

in a machinery design. Constraint problems are also an important part of robotics,

especially in the realm of path planning and collision detection. Additionally, com­

putational biology also makes use of solutions to constraint problems, for example, in

the accurate calculation of collision and surface offset in simulations of molecular be­

haviors. Even computer games require the solution of geometric constraint problems,

again consider character collision detection, proximity detection and related prob­

lems. Geometric constraint problems are general enough that they appear in many

situations, resulting in broad application of the methods used to find their solutions.

In the area of robotics, one interesting area that uses geometric constraint solutions

is robot path planning. A path planning problem normally consists of finding a path

for a robot through a workspace that avoids collision with obstacles. The problem

can be made more difficult by having more obstacles to navigate around and by using

a more complex robot.

We have developed a method for finding the solution to such constraint problems

using configuration space subdivision. The constraints are sampled in specific con­

figuration parameter ranges, which create hypercubes in n dimensional configuration

CHAPTER 1

INTRODUCTION

One area of ongoing research in geometric computation is efficient solution to ge­

ometric constraint problems. Geometric constraint problems appear in many areas,

including CAD, robotics, and computational biology. Because of their wide applica­

tion, new approaches to solving geometric constraints are quite useful.

Geometric constraint problems appear often in a CAD system, for example, find­

ing the medial surface of a complex model or collision detection between moving parts

in a machinery design. Constraint problems are also an important part of robotics,

especially in the realm of path planning and collision detection. Additionally, com­

putational biology also makes use of solutions to constraint problems, for example, in

the accurate calculation of collision and surface offset in simulations of molecular be­

haviors. Even computer games require the solution of geometric constraint problems,

again consider character collision detection, proximity detection and related prob­

lems. Geometric constraint problems are general enough that they appear in many

situations, resulting in broad application of the methods used to find their solutions.

In the area of robotics, one interesting area that uses geometric constraint solutions

is robot path planning. A path planning problem normally consists of finding a path

for a robot through a workspace that avoids collision with obstacles. The problem

can be made more difficult by having more obstacles to navigate around and by using

a more complex robot.

We have developed a method for finding the solution to such constraint problems

using configuration space subdivision. The constraints are sampled in specific con­

figuration parameter ranges, which create hypercubes in n dimensional configuration

2

parameter space. Using the constraint sampling, the hypercubes are conservatively

tested as to whether they contain potential solutions. These hypercubes in configu­

ration space are recursively subdivided and tested to narrow regions of configuration

space in which solutions are possible. This configuration subdivision, constraint sam­

pling, and testing approach result in regions or hypercubes in configuration space

where potential solutions lie. These regions are then searched for exact solutions.

One simple approach to finding the exact solution is to keep subdividing until the

size of the hypercubes is smaller than a specified error, and then taking the cube

center to be the solution. Alternatively, if an explicit derivative is available, the ap­

proach can use the Newton-Raphson and related methods to reach a specific solution.

This process is described more fully in Section 3.3.1.

In this thesis we adapt Monte Carlo optimization as a general type of numerical

search. In essence, the Monte Carlo algorithm optimizes the geometric constraint

within each of the hypercubes resulting from configuration space subdivision, in­

stead of subdividing down to the answer. The optimization is done by sampling the

subspace, weighting the samples according to an error metric, and then iteratively

resampling around samples with better weights until convergence. The error metric

is created from the constraints, which guide the optimization algorithm towards a

solution. This approach is described more fully in Section 3.3.2.

Monte Carlo methods in general are useful for solving complicated problems in

higher dimensions [27, 23]. We have found this approach is also useful for configura­

tion spaces of higher dimensions because it samples and tests only the constraint in

a random yet guided approach. Because it iteratively samples the constraint, Monte

Carlo optimization matches well to the computational requirements of configuration

space subdivision, fitting well together.

By combining configuration space subdivision and Monte Carlo optimization, we

are able to solve path planning problems to a higher precision and solve constraint

problems of a higher dimension than configuration space subdivision alone. This

2

parameter space. Using the constraint sampling, the hypercubes are conservatively

tested as to whether they contain potential solutions. These hypercubes in configu­

ration space are recursively subdivided and tested to narrow regions of configuration

space in which solutions are possible. This configuration subdivision, constraint sam­

pling, and testing approach result in regions or hypercubes in configuration space

where potential solutions lie. These regions are then searched for exact solutions.

One simple approach to finding the exact solution is to keep subdividing until the

size of the hypercubes is smaller than a specified error, and then taking the cube

center to be the solution. Alternatively, if an explicit derivative is available, the ap­

proach can use the Newton-Raphson and related methods to reach a specific solution.

This process is described more fully in Section 3.3.l.

In this thesis we adapt Monte Carlo optimization as a general type of numerical

search. In essence, the Monte Carlo algorithm optimizes the geometric constraint

within each of the hypercubes resulting from configuration space subdivision, in­

stead of subdividing down to the answer. The optimization is done by sampling the

subspace, weighting the samples according to an error metric, and then iteratively

resampling around samples with better weights until convergence. The error metric

is created from the constraints, which guide the optimization algorithm towards a

solution. This approach is described more fully in Section 3.3.2.

Monte Carlo methods in general are useful for solving complicated problems in

higher dimensions [27, 23]. We have found this approach is also useful for configura­

tion spaces of higher dimensions because it samples and tests only the constraint in

a random yet guided approach. Because it iteratively samples the constraint, Monte

Carlo optimization matches well to the computational requirements of configuration

space subdivision, fitting well together.

By combining configuration space subdivision and Monte Carlo optimization, we

are able to solve path planning problems to a higher precision and solve constraint

problems of a higher dimension than configuration space subdivision alone. This

3

is demonstrated in both geometric constraint problems and in robot path planning

problems.

3

is demonstrated in both geometric constraint problems and in robot path planning

problems.

C H A P T E R 2

B A C K G R O U N D

2.1 Literature Survey

Solving geometric constraints is an important part of current geometric compu­

tation research. Path planning is an important part of robotics research. There

has been substantial work done in these related areas, using a variety of approaches.

Additionally, there has been considerable work done in Monte Carlo optimization

itself. Here work most relevant to this thesis is reviewed and categorized into related

approaches.

2.1.1 Symbolic Analysis

One approach to solving geometric constraint problems uses "degrees of freedom

analysis" to solve geometric constraints, as in [16]. That type of analysis describes

the constraints to be solved and the initial state of the geometry, and then outlines

sequences of rotations and translations to satisfy the constraints, providing a plan for

that particular solution. Once the plan is made, it can then be run numerically on

different initial geometries. This provides an intuitive approach to constraint solving

but requires specific plans to be made for each constraint, rather than an automatic

solution through numerical computation as done in other approaches.

Recent work in solving geometric constraints has been done by [8, 15]. In their

approach they reduce the problem of solving a geometric constraint to the problem

of finding the zero-set of a system of NURBS. By doing so they are able to use

the special attributes of NURBS to subdivide the constraint system representation

into subproblems, each of which can be tested for potential solutions. This process

CHAPTER 2

BACKGROUND

2.1 Literature Survey

Solving geometric constraints is an important part of current geometric compu­

tation research. Path planning is an important part of robotics research. There

has been substantial work done in these related areas, using a variety of approaches.

Additionally, there has been considerable work done in Monte Carlo optimization

itself. Here work most relevant to this thesis is reviewed and categorized into related

approaches.

2.1.1 Symbolic Analysis

One approach to solving geometric constraint problems uses "degrees of freedom

analysis" to solve geometric constraints, as in [16]. That type of analysis describes

the constraints to be solved and the initial state of the geometry, and then outlines

sequences of rotations and translations to satisfy the constraints, providing a plan for

that particular solution. Once the plan is made, it can then be run numerically on

different initial geometries. This provides an intuitive approach to constraint solving

but requires specific plans to be made for each constraint, rather than an automatic

solution through numerical computation as done in other approaches.

Recent work in solving geometric constraints has been done by [8, 15]. In their

approach they reduce the problem of solving a geometric constraint to the problem

of finding the zero-set of a system of NURBS. By doing so they are able to use

the special attributes of NURBS to subdivide the constraint system representation

into subproblems, each of which can be tested for potential solutions. This process

5

enables efficient elimination of subsections where solutions cannot exist. Because the

constraints are represented as NURBS, a numerical method like Newton-Raphson can

be used to numerically search for potential solutions with high accuracy.

This approach of reducing a geometric constraint problem to finding the solution of

a system of constraint equations represented as NURBS has been applied to multiple

problems, such as finding the minimum distance between a point and surface as in [25]

or in solving the visibility problem as in [24]. Reducing the problem to the solution

of a system of equations represented as NURBS allows for a very robust approach to

solutions to constraint and other geometric problems.

One restriction to this approach is that the input geometry must also be repre­

sented as NURBS, which precludes its use in other geometry. Additionally, higher

dimensional problems reach current hardware limitations because of the memory in­

tensive, explicit representation of the constraint equation. This is in contrast to other

approaches that sample only the constraint function to test for constraint satisfaction

or optimization. Representing the system of equations as NURBS requires additional

memory requirements.

2.1.2 Approximation Through Sampling

Other approaches, instead of representing the constraint completely, evaluate or

sample the constraint only at specific values. Then, using those samples they attempt

to satisfactorily find the values at which the constraint is satisfied or optimized.

One approach that uses sampling as opposed to exact representation to solve robot

path planning problems is described in [30]. Using approximate cell decomposition of

the configuration space they are able to show path existence. The same authors later

combine the approximate cell decomposition with a probabilistic road map planner

in [31] with good results.

We are developing a related approach in that the constraint is sampled in order to

narrow down areas where potential solutions lie. These areas, which are hypercubes

in the configuration space, are then searched for the answer using geometric tech-

5

enables efficient elimination of subsections where solutions cannot exist. Because the

constraints are represented as NURBS, a numerical method like Newton-Raphson can

be used to numerically search for potential solutions with high accuracy.

This approach of reducing a geometric constraint problem to finding the solution of

a system of constraint equations represented as NURBS has been applied to multiple

problems, such as finding the minimum distance between a point and surface as in [25]

or in solving the visibility problem as in [24]. Reducing the problem to the solution

of a system of equations represented as NURBS allows for a very robust approach to

solutions to constraint and other geometric problems.

One restriction to this approach is that the input geometry must also be repre­

sented as NURBS, which precludes its use in other geometry. Additionally, higher

dimensional problems reach current hardware limitations because of the memory in­

tensive, explicit representation of the constraint equation. This is in contrast to other

approaches that sample only the constraint function to test for constraint satisfaction

or optimization. Representing the system of equations as NURBS requires additional

memory requirements.

2.1.2 Approximation Through Sampling

Other approaches, instead of representing the constraint completely, evaluate or

sample the constraint only at specific values. Then, using those samples they attempt

to satisfactorily find the values at which the constraint is satisfied or optimized.

One approach that uses sampling as opposed to exact representation to solve robot

path planning problems is described in [30]. Using approximate cell decomposition of

the configuration space they are able to show path existence. The same authors later

combine the approximate cell decomposition with a probabilistic road map planner

in [31] with good results.

We are developing a related approach in that the constraint is sampled in order to

narrow down areas where potential solutions lie. These areas, which are hypercubes

in the configuration space, are then searched for the answer using geometric tech-

6

niques specific to the problem. This approach allows for some interactive results of

problems that cannot be solved using a complete representation on modern desktop

computers. Additionally this subdivision of configuration space allows for other than

spline geometry, such as polygonal models.

Significant research has been done in path planning for robots in general and in

particular for path planning for robots with many degrees of freedom. A valuable

introduction to path planning can be found in [5]. Work has been done not only on

rigid robot bodies but also on flexible bodies as in [12].

Because path planning in higher dimensions becomes difficult, some of the only

solutions to high dimensional problems have used probabilistic road map planners

(P R M) , such as [14]. Additionally [11] achieve good results for high dimension plan­

ners by improving a solution incrementally. Another approach that was successful

at solving high dimensional path planning problems used a derivative of dynamic

programming, as described in [1]. Rapidly-exploring random trees (R R T) planners

have also had success in path planning problems, up to 12 degrees of freedom [18, 17].

Since R R T planners can have difficulty in narrow passages, in response [32] adapt the

R R T approach to be a retraction-based planner with success.

2.1.3 M o n t e Carlo Optimization

We use Monte Carlo optimization as the numerical search step in configuration

space subdivision. There has been substantial research done on Monte Carlo opti­

mization.

A good introduction to Monte Carlo methods in general are [27, 9, 13]. Monte

Carlo methods as well as a thorough treatment of different Monte Carlo optimization

techniques are discussed in [21].

The approach we are developing is similar to Monte Carlo optimization "evo­

lution strategy" which is discussed at length and compared to most of the current

optimization algorithms in [22, 23].

In developing this approach, we are using strategies from genetic algorithms as

6

niques specific to the problem. This approach allows for some interactive results of

problems that cannot be solved using a complete representation on modern desktop

computers. Additionally this subdivision of configuration space allows for other than

spline geometry, such as polygonal models.

Significant research has been done in path planning for robots in general and in

particular for path planning for robots with many degrees of freedom. A valuable

introduction to path planning can be found in [5]. Work has been done not only on

rigid robot bodies but also on flexible bodies as in [12].

Because path planning in higher dimensions becomes difficult, some of the only

solutions to high dimensional problems have used probabilistic road map planners

(PRM), such as [14]. Additionally [11] achieve good results for high dimension plan­

ners by improving a solution incrementally. Another approach that was successful

at solving high dimensional path planning problems used a derivative of dynamic

programming, as described in [1]. Rapidly-exploring random trees (RRT) planners

have also had success in path planning problems, up to 12 degrees of freedom [18, 17].

Since RRT planners can have difficulty in narrow passages, in response [32] adapt the

RRT approach to be a retraction-based planner with success.

2.1.3 Monte Carlo Optimization

We use Monte Carlo optimization as the numerical search step in configuration

space subdivision. There has been substantial research done on Monte Carlo opti­

mization.

A good introduction to Monte Carlo methods in general are [27, 9, 13]. Monte

Carlo methods as well as a thorough treatment of different Monte Carlo optimization

techniques are discussed in [21].

The approach we are developing is similar to Monte Carlo optimization "evo­

lution strategy" which is discussed at length and compared to most of the current

optimization algorithms in [22, 23].

In developing this approach, we are using strategies from genetic algorithms as

7

well. In particular, when resampling around a potential solution, one challenge is to

determine the proper replacement strategy. In [19, 20] avoidance of replacement errors

in cases of multiple solutions is discussed. This is also important in single solution

strategies like that presented in this thesis. We use this replacement approach in our

algorithm.

An important aspect of our implementation of Monte Carlo optimization is the

initial sampling approach. We explore three types of initial sampling, uniformly

distributed random sampling, stratified sampling, and Halton-Hammersley sampling.

Stratified sampling, also known as jittered sampling, is explained very well in [26], as

applied to computer graphics. Halton and Hammersley-based sampling is discussed in

a straitforward manner in both [2], as used in computer graphics, and [3], as applied

to P R M robot planners.

2.2 State of the Ar t

It is worth it to emphasize background on those approaches most similar to this

thesis. Currently there are many methods proposed for solving constraint problems,

especially path planning problems in robotics.

As mentioned, reducing the problem to the solution of a spline function is a very

robust approach to solving this type of problem [8].

One method described in [28] solves motion planning problems by dividing free

space in the workspace into star shaped sections. Each section has a central point

known as a guard. By dividing the free space into these star shaped sections, the

guards of the different sections can be connected to form road maps.

By using approximate cell decomposition of the configuration space, [30] are able

to find solutions to path planning problems. By subdividing the configuration space

and using conservative tests, Zhang, et al. are able to show that a path does exist.

In [31], they extend their approach to include methods adapted from probabilistic

road map planners for instances where standard subdivision cannot show if a path

exists or not. They are able to solve problems with 4 degrees of freedom, and gain

7

well. In particular, when resampling around a potential solution, one challenge is to

determine the proper replacement strategy. In [19, 20] avoidance of replacement errors

in cases of multiple solutions is discussed. This is also important in single solution

strategies like that presented in this thesis. We use this replacement approach in our

algorithm.

An important aspect of our implementation of Monte Carlo optimization is the

initial sampling approach. We explore three types of initial sampling, uniformly

distributed random sampling, stratified t:>ampling, and Halton-Hammersley sampling.

Stratified sampling, also known as jittered sampling, is explained very well in [26], as

applied to computer graphics. Halton and Hammersley-based sampling is discussed in

a strait forward manner in both [2], as used in computer graphics, and [3], as applied

to PRM robot planners.

2.2 State of the Art

It is worth it to emphasize background on those approaches most similar to this

thesis. Currently there are many methods proposed for solving constraint problems,

especially path planning problems in robotics.

As mentioned, reducing the problem to the solution of a spline function is a very

robust approach to solving this type of problem [8].

One method described in [28] solves motion planning problems by dividing free

space in the workspace into star shaped sections. Each section has a central point

known as a guard. By dividing the free space into these star shaped sections, the

guards of the different sections can be connected to form road maps.

By llsing approximate cell decomposition of the configuration space, [30] are able

to find solutions to path planning problems. By subdividing the configuration space

and using conservative tests, Zhang, et al. are able to show that a path does exist.

In [31], they extend their approach to include methods adapted from probabilistic

road map planners for instances where standard subdivision cannot show if a path

exists or not. They are able to solve problems with 4 degrees of freedom, and gain

8

substantial speedup using the probabilistic road map planning step.

This is different from the approach described in this thesis, because they use

approximate cell decomposition to construct paths. If approximate cell decomposition

is not able to find a path, then techniques from probabilistic road map planners are

used to check for the potential path existence, warranting further cell subdivision.

The approach proposed here on the other hand uses uniform random importance

sampling to search each cell in the decomposition for a solution.

The probabilistic road map planners have had success in motion planning problems

of high dimensions, as in [17],[14], [4]. For example, [14] show solutions to motion

planning problems for robots with up to seven degrees of freedom.

Probabilistic road map planners are very successful in most situations but still

rely on stochastic processes, rather than a more deterministic process. The approach

presented here uses configuration space subdivision to provide more determinism,

then uses Monte Carlo optimization to search for the actual solutions.

2.3 Robot Configuration Space

This section provides a brief introduction to Robo t Configuration Space, due to

the very domain specific nature of the topic. For a more indepth explanation see [5].

2.3.1 Configuration Space and Workspace

T w o spaces in robotics will be discussed in this thesis: the robot workspace and

configuration space.

Workspace is the "real world" of the robot, the real environment in which the

robot exists and moves.

Configuration space is the parameter space of a robot. A set of configurations or

parameters is a way of describing the position of the robot in workspace, by describing

what position the individual configurable parts of the robot are in. More formally, a

robot R with n dimensions of freedom is configurable using n configuration parame­

ters, which creates an n-dimensional configuration space.

8

substantial speedup using the probabilistic road map planning step.

This is different from the approach described in this thesis, because they use

approximate cell decomposition to construct paths. If approximate cell decomposition

is not able to find a path, then techniques from probabilistic road map planners are

used to check for the potential path existence, warranting further cell subdivision.

The approach proposed here on the other hand uses uniform random importance

sampling to search each cell in the decomposition for a solution.

The probabilistic road map planners have had success in motion planning problems

of high dimensions, as in [17],[14], [4]. For example, [14] show solutions to motion

planning problems for robots with up to seven degrees of freedom.

Probabilistic road map planners are very successful in most situations but still

rely on stochastic processes, rather than a more deterministic process. The approach

presented here uses configuration space subdivision to provide more determinism,

then uses Monte Carlo optimization to search for the actual solutions.

2.3 Robot Configuration Space

This section provides a brief introduction to Robot Configuration Space, due to

the very domain specific nature of the topic. For a more indepth explanation see [5].

2.3.1 Configuration Space and Workspace

Two spaces in robotics will be discussed in this thesis: the robot workspace and

configuration space.

Workspace is the "real world" of the robot, the real environment in which the

robot exists and moves.

Configuration space is the parameter space of a robot. A set of configurations or

parameters is a way of describing the position of the robot in workspace, by describing

what position the individual configurable parts of the robot are in. More formally, a

robot R with n dimensions of freedom is configurable using n configuration parame­

ters, which creates an n-dimensional configuration space.

9

For a simple example, consider a circularly shaped robot that can move in the x

and y directions of a two-dimensional Euclidean plane. The configuration of the robot

in this case is the same as the position of the robot in workspace, specified by the pair

x, y. This would be called a two-dimensional configuration space. Changing the robot

into a sphere-shaped robot and allowing it to move in the ^-direction as well would

result in three parameters, and a three-dimensional configuration space. The three-

dimensional configuration space is still the same as the position of the spherical robot

in workspace. The configuration parameters are describing a translation of the robot

from its original position. Converting from configuration parameters to workspace

position in this case would be very simple. Given any point [xo, yo]T or [xo, yo, zo]T on

the robot at its initial position in workspace and given the configuration parameters

[x, y]T or [x, y, z]T, the converting function C2 : 3ft2 => 3ft2 or C 3 : 3ft3 => 3ft3 could be

defined as,

The relationship between configuration space and workspace becomes a little dif­

ferent when different types of robots are considered. For example, consider a one

segment, rotational robot arm that is "fastened" to the ground on one end allowing

it to rotate a full 360 degrees. It has a one-dimensional configuration space, but the

configuration space and the position of the robot in workspace are no longer the same.

The only parameter for the robot is the angle at which the arm will be positioned. If

the configuration parameter were 90 degrees, the robot arm would be positioned with

a 90 degree angle from the original position. As the configuration parameter ranges

from 0 to 360, the robot arm rotates around, the end-effector drawing a circle with a

P2([x,y]T) = [xQ,yQ]T + [x,y]T (2.1)

or

P 3 ([x , y, z]T) = [x0,2/o, ZQ]T + [x, y, z]T (2.2)

9

For a simple example, consider a circularly shaped robot that can move in the x

and y directions of a two-dimensional Euclidean plane. The configuration of the robot

in this case is the same as the position of the robot in workspace, specified by the pair

x, y. This would be called a two-dimensional configuration space. Changing the robot

into a sphere-shaped robot and allowing it to move in the z-direction as well would

result in three parameters, and a three-dimensional configuration space. The three­

dimensional configuration space is still the same as the position of the spherical robot

in workspace. The configuration parameters are describing a translation of the robot

from its original position. Converting from configuration parameters to workspace

position in this case would be very simple. Given any point [xo, Yo]T or [xo, Yo, zo]T on

the robot at its initial position in workspace and given the configuration parameters

[x, y]T or [x, y, Z]T, the converting function C2 : 1R2 =} 1R2 or C3 : 1R3
=} 1R3 could be

defined as,

(2.1)

or

(2.2)

The relationship between configuration space and workspace becomes a little dif­

ferent when different types of robots are considered. For example, consider a one

segment, rotational robot arm that is "fastened" to the ground on one end allowing

it to rotate a full 360 degrees. It has a one-dimensional configuration space, but the

configuration space and the position of the robot in workspace are no longer the same.

The only parameter for the robot is the angle at which the arm will be positioned. If

the configuration parameter were 90 degrees, the robot arm would be positioned with

a 90 degree angle from the original position. As the configuration parameter ranges

from 0 to 360, the robot arm rotates around, the end-effector drawing a circle with a

10

center at the fastened end and the radius being the length of the one segment arm.

The configuration space is topologically a circle; it wraps around onto itself, so that,

the position at 360 degrees would be the same as at 0 degrees.

Converting from configuration space to workspace is also straightforward in this

case. To produce the workspace position of any point on the robot (xo,yo) (at its

initial position), given the angle configuration parameter, 0, the converting function

Ti : V C 3ft => 3ft2 could be defined as,

TX(B) = R(d)[x0,y0}T (2.3)

where R(0) is the two-dimensional rotation matrix of 0.

A more complex example is created by adding another segment to the arm with

the same rotational ability, resulting in a two-dimensional configuration space, with

one parameter controlling the angle of the first segment and the second parameter

controlling the angle of the second segment. A value for each parameter dictates

the position of the two-segment robot arm in workspace. The position of any point

[xo,yo]T o n the first segment of the robot in its initial workspace position can be

defined in its configured position given parameters 0\, 62, using the function T2 : V C

3ft2 =• 3ft2:

T2(e1,e2) = R(d1)[x0,y0]T (2.4)

and for any point [x i , y i] T on the second segment in the initial workspace position:

T2(9ue2) ^ RiO^lx^yf + R(62)([xuyi}T - [x':yf)) (2.5)

where [x', y']T is the position of the connection between the first and second segments

in initial position. Topologically, this configuration space is a torus, both dimensions

wrap around on themeselves. However, for ease in visualization this space is drawn

as a limited two-dimensional plane, a torus cut open and spread out.

Continuing to add segments to the robot arm (and angle parameters to the con-

10

center at the fastened end and the radius being the length of the one segment arm.

The configuration space is topologically a circle; it wraps around onto itself, so that,

the position at 360 degrees would be the same as at 0 degrees.

Converting from eonfiguration space to workspace is also straightforward in this

case. To produce the workspace position of any point on the robot (xo, Yo) (at its

initial position), given the angle configuration parameter, 0, the converting function

TI : VcR =? R2 could be defined as,

(2.3)

where R(e) is the two-dimensional rotation matrix of e.

A more complex example is created by adding another segment to the arm with

the same rotational ability, resulting in a two-dimensional configuration space, with

one parameter controlling the angle of the first segment and the second parameter

controlling the angle of the second segment. A value for each parameter dictates

the position of the two-segment robot arm in workspace. The position of any point

[xo, YO]T on the first segment of the robot in its initial workspace position can be

defined in its configured position given parameters Ol, O2 , using the function T2 : V C

R2 =? R2:

(2.4)

and for any point [Xl, YIlT on the second segment in the initial workspace position:

(2.5)

where [x', y'jY is the position of the connection between the first and second segments

in initial position. Topologically, this configuration space is a torus, both dimensions

wrap around on themeselves. However, for ease in visualization this space is drawn

as a limited two-dimensional plane, a torus cut open and spread out.

Continuing to add segments to the robot arm (and angle parameters to the con-

11

figuration space) would increase the dimension of the configuration space.

Rotational and translating abilities can be combined in a single robot. A robot

that can both translate in the plane and rotate within the plane could have two

parameters controlling the translation of the robot, and one parameter controlling the

rotation of the robot, resulting in a three-dimensional configuration space. Any point

[# O J 2 / O] on the robot in its initial position can be described in a configured position

as a function of the configuration parameters. The configured position function T3 :

V C 3ft3 => 3ft2 could be defined as

T2([x,y]T,0) = R(0)[X(hyo}T + [x,y]T (2.6)

This is not an exhaustive list of robot types, but it gives an idea of the types of

robots and configuration spaces considered in this thesis and how their configuration

parameters and workspace positions relate.

Consider a simple example illustrating the use of configuration space to plan a

simple robot path. A simple robot that can translate in the plane is used, resulting

in a two-dimensional configuration plane. There are two obstacles in the workspace,

and to plan around them the Voronoi diagram is found (which in this simple case

is just the bisector line between them). The result is shown in workspace in Figure

2.1, with the corresponding configuration space diagram in Figure 2.2. The line in

this diagram represents the solution to the Voronoi diagram, which also represents the

path on which the robot is drawn in the workspace figure. A correlation is not difficult

to find between configuration space and workspace, because the configuration space

only contains positional parameters of the robot. In other situations the correlation

is not quite as trivial (consider the correlation of the configuration and workspace of

the example given in Section 4.4.2.1).

11

figuration space) would increa.."le the dimension of the configuration space.

Rotational and translating abilities can be combined in a single robot. A robot

that can both translate in the plane and rotate within the plane could have two

parameters controlling the translation of the robot, and one parameter controlling the

rotation of the robot, resulting in a three-dimensional configuration space. Any point

[xo, yo] on the robot in its initial position can be described in a configured position

as a function of the configuration parameters. The configured position function T3 :

V C ?R3 ::::} ?R2 could be defined as

(2.6)

This is not an exhaustive list of robot types, but it gives an idea of the types of

robots and configuration spaces considered in this thesis and how their configuration

parameters and workspace positions relate.

Consider a simple example illustrating the use of configuration space to plan a

simple robot path. A simple robot that can translate in the plane is used, resulting

in a two-dimensional configuration plane. There are two obstacles in the workspace,

and to plan around them the Voronoi diagram is found (which in this simple case

is just the bisector line between them). The result is shown in workspace in Figure

2.1, with the corresponding configuration space diagram in Figure 2.2. The line in

this diagram represents the solution to the Voronoi diagram, which also represents the

path on which the robot is drawn in the workspace figure. A correlation is not difficult

to find between configuration space and workspace, because the configuration space

only contains positional parameters of the robot. In other situations the correlation

is not quite as trivial (consider the correlation of the configuration and workspace of

the example given in Section 4.4.2.1).

Figure 2.1: Simple translating robot, drawn along the Voronoi diagram of the two

obstacles.

12

Figure 2.1: Simple translating robot , drawn along the Voronoi diagram of the two
obstacles.

--:--~~-, -OIIM'I'
IIUW loll"!'

'.

IT-~ ~ P'r-
Wt'l

~:t Y

r---

'----- ----

Figure 2.2: The configuration space diagram of Figure 2.1

13

2.3.2 Obstacles

Obstacles in workspace are objects with which the robot can potentially collide.

Because any position of the robot can be described using configuration parameters,

they can be used to describe positions of the robot that collide with obstacles, also

known as invalid configurations and positions. These invalid configurations are rep­

resented as a subset of the robot configuration space C, called C 0 D S - Then any

configuration outside of CQus would be considered free space or, C f r e e = C / C 0 b s -

Consider, for example, the circular robot example from above and add to the

workspace a circular obstacle. The invalid configurations can be described as any

(x,y) pair that position the robot such that it is colliding with the obstacle. Let

(xo,yo) be the original position of the center of the robot, and rr be the radius of

the robot. Let the circular obstacle be described by a center (xb, Xb) and radius r&.

Given that it is the only obstacle in workspace, the invalid configurations Cobs could

be described as all configurations (x, y) satisfying this inequality,

y/{(x0 + x) - X b) 2 + ((?/o + y) ~ Vb)2 - r r - r b < 0 (2.7)

All valid configurations (x, y) or C £ r e e would satisfy the inequality,

y/({x0 + x)- xb)2 + ((?/o + y)- Vb)2 - r r - r b > 0 (2.8)

In other words, any position of the robot that produces a signed distance less than 0

would be invalid. This is a very simple case. As the robots and workspaces become

more complex, so does the j o b of describing both valid and invalid configurations.

In this thesis the configuration space C is decomposed using axis-aligned hy­

percubes, which results in an inexact separation of C* 0 ^ s and C f r e e ; some of the

hypercubes will contain both valid and invalid configurations. Consequently any con­

figuration hypercubes containing both valid and invalid configurations are considered

part of C o b s .

13

2.3.2 Obstacles

Obstacles in workspace are objects with which the robot can potentially collide.

Becaut>e any position of the robot can be described using configuration parameters,

they can be used to describe positions of the robot that collide with obstacles, also

known as invalid configurations and positions. These invalid configurations are rep­

resented as a subset of the robot configuration space C, called Cobs' Then any

configuration outside of Cobs would be considered free space or, Cfree = C ICobs'

Consider, for example, the circular robot example from above and add to the

workspace a circular obstacle. The invalid configurations can be described as any

(x, y) pair that position the robot such that it is colliding with the obstacle. Let

(xo, Yo) be the original position of the center of the robot, and rr be the radius of

the robot. Let the circular obstacle be described by a center (Xb, Xb) and radius rb.

Given that it is the only obstacle in workspace, the invalid configurations Cobs could

be described as all configurations (x, y) satisfying this inequality,

(2.7)

All valid configurations (x, y) or Cfree would satisfy the inequality,

(2.8)

In other words, any position of the robot that produces a signed distance less than 0

would be invalid. This is a very simple case. As the robots and workspaces become

more complex, so does the job of describing both valid and invalid configurations.

In this thesis the configuration space C is decomposed using axis-aligned hy­

percubes, which results in an inexact separation of Cobs and Cfree; some of the

hypercubes will contain both valid and invalid configurations. Consequently any con­

figuration hypercubes containing both valid and invalid configurations are considered

part of Cobs'

14

A more complex case of describing C 0 D S is shown in Section 4.4.2.

2.3.3 Usefulness

The abstraction of robot configuration parameters as an n-dimensional space is

useful in robot path planning.

Abstraction allows a simplification of the assortment of configurations into which

a robot can be placed. Even for a two-dimensional rotational robot it would be dif­

ficult to exactly describe all of the potential collisions and free movement positions

into which the robot can be placed, using only the workspace. By abstracting con­

figurations into a set and then identifying the various configurations as representing

valid or invalid positions of the robot, it becomes much easier then to know exactly

what configurations and resulting positions the robot can and cannot use.

This abstraction also allows the relationships between C f r e e and C O D S to become

clearer. For example, it may not be apparent from the workspace that a robot cannot

enter a particular target position from a given initial position. However with C f r e e

and C 0 D S clearly identified, the possibility of a movement between the two positions

can be determined comparatively easily by an attempt to connect the two positions

in configuration space. Configuration space representation also provides a way to

establish a path or to prove path nonexistance (assuming the configuration space

decomposition is sufficiently precise). The abstraction means that a path can be

represented as a curve in configuration space, rather than a sweeping of complex

geometry through workspaces and so allow the mentioned analysis benefits.

Once the C f r e e and C 0 D g have been identified more general methods, not neces­

sarily specific to robotics, can be used to solve the problem. For example, consider

again that C f r e e and CQus have been identified and a path between an initial and

final position is sought. The space could be discretized and arranged in a graph,

and then more general graph routing algorithms could be used to connect the two

positions in configurations space. This could not be done in workspace alone.

Another of these more general tools is visualization. Depicting all positions in

14

A more complex case of describing Cobs is shown in Section 4.4.2.

2.3.3 Usefulness

The abstraction of robot configuration parameters as an n-dimensional space is

useful in robot path planning.

Abstraction allows a simplification of the assortment of configurations into which

a robot can be placed. Even for a two-dimensional rotational robot it would be dif­

ficult to exactly describe all of the potential collisions and free movement positions

into which the robot can be placed, using only the workspace. By abstracting con­

figurations into a set and then identifying the various configurations as representing

valid or invalid positions of the robot, it becomes much easier then to know exactly

what configurations and resulting positions the robot can and cannot use.

This abstraction also allows the relationships between Cfree and Cobs to become

clearer. For example, it may not be apparent from the workspace that a robot cannot

enter a particular target position from a given initial position. However with Cfree

and Cobs clearly identified. the possibility of a movement between the two positions

can be determined comparatively easily by an attempt to connect the two positions

in configuration space. Configuration space representation also provides a way to

establish a path or to prove path nonexistance (assuming the configuration space

decomposition is sufficiently precise). The abstraction means that a path can be

represented as a curve in configuration space, rather than a sweeping of complex

geometry through workspaces and so allow the mentioned analysis benefits.

Once the Cfree and Cobs have been identified more general methods, not neces­

sarily specific to robotics, can be used to solve the problem. For example, consider

again that Cfree and Cobs have been identified and a path between an initial and

final position is sought. The space could be discretized and arranged in a graph,

and then more general graph routing algorithms could be used to connect the two

positions in configurations space. This could not be done in workspace alone.

Another of these more general tools is visualization. Depicting all positions in

1 5

which a robot collides with obstacles in workspace would be very messy at best.

Assuming the space can be visualized, depicting C f r e e and C 0 b s or subsets of them

in configuration space would be much clearer. It is clearer because each point in

configuration space corresponds to either a valid or invalid robot position, which is

not as easy to see in workspace.

15

which a robot collides with obstacles in workspace would be very messy at best.

Assuming the space can be visualized, depicting Cfree and Cobs or subsets of them

in configuration space would be much clearer. It is clearer because each point in

configuration space corresponds to either a valid or invalid robot position, which is

not as easy to see in workspace.

CHAPTER 3

APPROACH

3.1 Overview

In this thesis we seek the solution to geometric constraint problems related to mo­

tion planning involving robots with higher degrees of freedom. We use a configuration

space subdivision approach, with a last solution step using Monte Carlo optimization.

While other papers have used configuration space subdivision, and even incorporated

some random searching for speed ([30, 31]), the approach presented in this thesis

uses explicit Monte Carlo optimization to find solutions. Further, we seek to build

generalized Voronoi diagrams to solve the motion planning problem, as in [10].

One of the safe paths of a robot through a workspace with obstacles is the same

as the generalized Voronoi diagram (GVD) of the complete workspace and obstacles.

Once an accurate generalized Voronoi diagram is found, the cell boundaries can serve

as the robot's path to safely navigate the workspace. The Voronoi diagram or safe

path can be described using constraints in the configuration space of the robot.

In other words, rather than decomposing the entire configurations space C into

C 0 bs and C f r e e , we instead search for the Voronoi diagram in C, which represents in

a very compact sense a roadmap through C f r e e [5]. This is the roadmap consisting

of all configurations with equal distance to the closest obstacles. A specific path can

then be created, following the roadmap, which will avoid the obstacles.

A Voronoi cell consists of all points nearest to its generating point [29]. The

GVD extends this definition so that a cell consists of all points nearest to a gener­

ating shape [5]. In our case, a diagram is created in configuration space, and the

distance metric is defined to be the workspace minimum distance. The k obstacles in

CHAPTER 3

APPROACH

3.1 Overview

In this thesis we seek the solution to geometric constraint problems related to mo­

tion planning involving robots with higher degrees of freedom. We use a configuration

space subdivision approach, with a last solution step using Monte Carlo optimization.

While other papers have used configuration space subdivision, and even incorporated

some random searching for speed ([30, 31]), the approach presented in this thesis

uses explicit Monte Carlo optimization to find solutions. Further, we seek to build

generalized Voronoi diagrams to solve the motion planning problem, as in [10].

One of the safe paths of a robot through a workspace with obstacles is the same

as the generalized Voronoi diagram (GVD) of the complete workspace and obstacles.

Once an accurate generalized Voronoi diagram is found, the cell boundaries can serve

as the robot's path to safely navigate the workspace. The Voronoi diagram or safe

path can be described using constraints in the configuration space of the robot.

In other words, rather than decomposing the entire configurations space C into

Cobs and Cfree' we instead search for the Voronoi diagram in C, which represents in

a very compact sense a roadmap through Cfree [5]. This is the roadmap consisting

of all configurations with equal distance to the closest obstacles. A specific path can

then be created, following the road map , which will avoid the obstacles.

A Voronoi cell consists of all points nearest to its generating point [29]. The

GVD extends this definition so that a cell consists of all points nearest to a gener­

ating shape [5]. In our case, a diagram is created in configuration space, and the

distance metric is defined to be the workspace minimum distance. The k obstacles in

17

workspace, O — (o i , . . . , Ofc), are the generating shapes for each Voronoi cell. A GVD

cell consists of all n-dimensional configuration space points p G 9?n that are nearest

to the generating shape. The distance function is the workspace Euclidean distance

between the obstacle shape and the robot in a particular configuration. The robot in

a particular configuration p is signified here as Q(p).

A particular configuration point p belongs to the GVD cell with generating shape

Oj only if,

d(Q(p),Oj) = mini(d(Q(p), o,)) (3.1)

where d(-, •) is the Euclidean distance between the two objects (the distance between

the two closest points on each model). Additionally, the cell boundaries can be defined

using this same structure.

For example, if n = 3, then all points can be found that belong to the GVD cell

wall (surface) between cells generated by on and oi2, by solving for all points that

satisfy these three equations:

<W(pW) = d(Q(p):oi2) (3.2)

d(Q(p),on) < miniii^J2{d(Q{p),oi)) (3.3)

d(Q(p),oi2) < minli¥ii42(d(Q(p),oi)) (3.4)

In the n = 3 case the boundary curve where these cell wall surfaces intersect can

also be defined, which is the intersection of three GVD cells generated by on,oi2,Oi^.

They would need to satisfy these five equations:

d(Q(p),Oii) d(Q(p),oi2) (3.5)

d{Q(p),oi2) = d{Q(p),oi3) (3.6)

d(Q(p),On) < minu¥zihi243(d(Q(p), ot)) (3.7)

d{Q(p),oi2) < mini^iU243(d(Q(p), ot)) (3.8)

d(Q{p),oi3) < mini^ihi243(d(Q(p), oi)) (3.9)

17

workspace, 6 = (01, . .. , Ok), are the generating shapes for each Voronoi cell. A GVD

cell consists of all n-dimensional configuration space points if E Rn that are nearest

to the generating shape. The distance function is the workspace Euclidean distance

between the obstacle shape and the robot in a particular configuration. The robot in

a particular configuration if is signified here as Q(p).

A particular configuration point if belongs to the GVD cell with generating shape

OJ only if,

(3.1)

where d(· , ·) is the Euclidean distance between the two objects (the distance between

the two closest points on each model). Additionally, the cell boundaries can be defined

using this same structure.

For example, if n = 3, then all points can be found that belong to the GVD cell

wall (surface) between cells generated by Oil and 0i2 , by solving for all points that

satisfy these three equations:

d(Q(p) , Oil) d(Q(p) , Oi2)

d(Q(p) , Oil) < minl,l#il ,i2(d(Q(p) , Ol))

d(Q(P) ,Oi2) < minl,l#il,dd(Q(P) , Ol))

(3.2)

(3.3)

(3.4)

In the n = 3 case the boundary curve where these cell wall surfaces intersect can

. also be defined, which is the intersection of three GVD cells generated by Oil , 0i2, 0i3·

They would need to satisfy these five equations:

d(Q(P) , Oil)

d(Q(P) , Oi2)

d(Q(P) , Oid <

d(Q(p), Oi2) <

d(Q(p), Oi3) <

d(Q(p), Oi2)

d(Q(p), Oi3)

minl,l#il,i2,i3 (d(Q(p) , Ol))

minl,l#il ,i2,i3 (d(Q(p) , Ol))

minl,l#il ,i2,i3 (d(Q(p), Ol))

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

18

Continuing with the n = 3 case the points where multiple cells come together can also

be defined, which are the intersections of at least four GVD cells, each of the cells

being generated by on, oi2, oi3, c^4. They would need to satisfy these seven equations:

d(Q(p),on) = d(Q(p),oi2) (3.10)

d(Q{p)iOi2) = d(Q(p),oi3>) (3.11)

d(Q(p),oi3) d{Q(p),oiA) (3.12)

d(Q(p),on) < (3.13)

d{Q(p),oi2) < mini^ihi243M(d(Q(p), ot)) (3.14)

d(Q{p),oi3) < mini^ihi243M(d(Q(p), ot)) (3.15)

d(Q(p),oi4) < rniniteiiii2fi3M(d(Q(p), ot)) (3.16)

These specific constraint problems (which while useful in robotics as discussed, are

also more generally useful) are solved in Section 4.3.

In problems of higher dimensions, the components of the GVD are made up of

hypersurfaces. To find a large hypersurface completely using sampling and approxi­

mate cell decomposition would be difficult because sufficient point solutions need to

be found to accurately represent the surface. In those situations we propose using our

approach to find important points in the configuration (or configurations of interest)

which are normally just points instead of multidimensional surfaces.

We use the term important point to indicate points in configuration space where

the shape of the collision space or C 0 k s changes. An important point is similar to

a critical point, but because a critical point indicates either a max, min, or saddle

point, the term important point is more general.

These important points would be useful for finding the GVD, as well as for de­

scribing the the full CQ^S and C f r e e subspaces. Finding these important points often

requires overconstraint of the solutions.

One type of overconstraint would be very similar to the above discussion where

18

Continuing with the n = 3 case the points where multiple cells come together can also

be defined, which are the intersections of at least four GVD cells, each of the cells

being generated by 0ill 0i2, 0i3, 0i4. They would need to satisfy these seven equations:

d(Q(P), Oil) d(Q(P), Oi2) (3.10)

d(Q(P), Oi2) d(Q(P), Oi3) (3.11)

d(Q(P) , Oi3) d(Q(P),Oi4) (3.12)

d(Q(P), Oil) < minl,l",il,i2,i3,i4(d(Q(P), 01)) (3.13)

d(Q(P), Oi2) < minINil,i2,i3,i4(d(Q(P) , 01)) (3.14)

d(Q(P), Oi3) < minINil,i2,i3,i4(d(Q(P) , 01)) (3.15)

d(Q(P),Oi4) < minINil,i2,i3,i4(d(Q(P), 01)) (3.16)

These specific constraint problems (which while useful in robotics as discussed, are

also more generally useful) are solved in Section 4.3.

In problems of higher dimensions, the components of the GVD are made up of

hypersurfaces. To find a large hypersurface completely using sampling and approxi­

mate cell decomposition would be difficult because sufficient point solutions need to

be found to accurately represent the surface. In those situations we propose using our

approach to find important points in the configuration (or configurations of interest)

which are normally just points instead of multidimensional surfaces.

We use the term important point to indicate points in configuration space where

the shape of the collision space or Cobs changes. An important point is similar to

a critical point, but because a critical point indicates either a max, min, or saddle

point, the term important point is more general.

These important points would be useful for finding the GVD, as well as for de­

scribing the the full Cobs and Cfree subspaces. Finding these important points often

requires overconstraint of the solutions.

One type of overconstraint would be very similar to the above discussion where

19

adding constraints to the GVD equations reduces the size of the solution set. Above

using Equations 3.10-3.16, constraints were added that reduced the solution set from

a set of surfaces to a set of points.

Another type of overconstraint in robot path planning less related to the GVD

problem, more a subproblem of describing C 0 k s completely, would be to constrain

the number of collisions to be detected. Constraining the number of collisions would

produce solutions of special cases of collision, helping to start to form an idea of what

the complete CQ^S subset looks like. Alternately, constraining the type of collision,

for example only finding where the tip of the robot collides, would also result in

important point solutions. A variety of other related constraints can be imposed on

the problem, for example, constraining the range of rotation at which collision occurs.

Consider a path planning problem involving a grounded (nontranslating) robot

arm with four segments and four joints/hinges. All configurations of the robot arm

where it collides with obstacles (C 0 u g) could be represented as a surface. While it

may be difficult to find the complete surface, our approach would be able to find

all configurations where only the tip of the robot collides. In the geometry of the

C^g-surface these solutions represent corners and edges where the surface changes.

This would be a good starting point in understanding the shape of the surface. A

more in depth discussion of this approach can be found in Section 4.4.2.

3.2 Algorithm

The algorithm consists of these steps:

1. Using configuration subdivision and conservative geometric tests, find hyper-

cubes in configuration space where solutions potentially lie. (For an example

see Figures 3.1, 3.2)

2. Using Monte Carlo Optimization to numerically search each of the hypercubes

that potentially contain a solution for specific solutions.

(a) Define an error metric based on the geometric constraint.

19

adding constraints to the GVD equations reduces the size of the solution set. Above

using Equations 3.10-3.16, constraints were added that reduced the solution set from

a set of surfaces to a set of points.

Another type of overconstraint in robot path planning less related to the GVD

problem, more a subproblem of describing Cobs completely, would be to constrain

the number of collisions to be detected. Constraining the number of collisions would

produce solutions of special cases of collision, helping to start to form an idea of what

the complete Cobs subset looks like. Alternately, constraining the type of collision,

for example only finding where the tip of the robot collides, would also result in

important point solutions. A variety of other related constraints can be imposed on

the problem, for example, constraining the range of rotation at which collision occurs.

Consider a path planning problem involving a grounded (nontranslating) robot

arm with four segments and four joints/hinges. All configurations of the robot arm

where it collides with obstacles (Cobs) could be represented as a surface. While it

may be difficult to find the complete surface, our approach would be able to find

all configurations where only the tip of the robot collides. In the geometry of the

Cobs-surface these solutions represent corners and edges where the surface changes.

This would be a good starting point in understanding the shape of the surface. A

morc in depth discussion of this approach can be found in Section 4.4.2.

3.2 Algorithm

The algorithm consists of these steps:

1. Using configuration subdivision and conservative geometric tests, find hyper­

cubes in configuration space where solutions potentially lie. (For an example

see Figures 3.1, 3.2)

2. Using Monte Carlo Optimization to numerically search each of the hypercubes

that potentially contain a solution for specific solutions.

(a) Define an error metric based on the geometric constraint.

20

Figure 3.1: Approximate cell decomposition. Lighter cells are empty, darker cells are
potential solutions.

Figure 3.2: Resulting three-dimensional cubes where solutions potentially lie, empty
cells trimmed away.

20

Figure 3.1: Approximate cell decomposition. Lighter cells are empty, darker cells are
potential solutions.

Figure 3.2: Resulting three-dimensional cubes where solutions potentially lie, empty
cells trimmed away.

21

(b) Sample the space within the hypercube with N samples. (For an example

see Figure 3.3)

(c) If any sample has an error less than the acceptable e, return that sample

as the solution.

(d) If all the samples leave the hypercube, then return without a solution (be­

cause of conservative testing in Step 1, some hypercubes may not contain

solutions).

(e) Else weight each sample according to the error metric.

(f) Resample according to weight. (For an example see Figure 3.4)

(g) Repeat steps 2c-2f

Note that this approach lends itself very well to parallelization. Step 2 executes

multiple times (once for every hypercube result from Step 1), and each execution is

independent of the others so that they can potentially execute in parallel. This is ben­

eficial because configuration space subdivision is also easily parallelizable, assuming

shared memory between parallel executions.

3.3 Implementation Details

Here the steps of the algorithm are discussed in more detail, as well as implemen­

tation details.

3.3.1 Configuration Space Decomposition

This description corresponds to algorithm step 1.

Our implementation follows the general cell decomposition approach, which while

more completely described in [33, 7, 6], will be reviewed briefly here.

First, a relevant subspace of an n-dimensional parameter space is described by a

containing n-dimensional axis-aligned hypercube. This parameter space hypercube

is then recursively subdivided into two subspaces or cells, the division occuring on

the dimensions with the largest size. At each subdivision step the boundaries are

21

(b) Sample the space within the hypercube with N samples. (For an example

see Figure 3.3)

(c) If any sample has an error less than the acceptable E, return that sample

as the solution.

(d) If all the samples leave the hypercube, then return without a solution (be­

cause of conservative testing in Step 1, some hypercubes may not contain

solutions) .

(e) Else weight each sample according to the error metric.

(f) Resample according to weight. (For an example see Figure 3.4)

(g) Repeat steps 2c-2f

Note that this approach lends itself very well to parallelization. Step 2 executes

multiple times (once for every hypercube result from Step 1), and each execution is

independent of the others so that they can potentially execute in parallel. This is ben­

eficial because configuration space subdivision is also easily parallelizable, assuming

shared memory between parallel executions.

3.3 Implementation Details

Here the steps of the algorithm are discussed in more detail, as well as implemen­

tation details.

3.3.1 Configuration Space Decomposition

This description corresponds to algorithm step l.

Our implementation follows the general cell decomposition approach, which while

more completely described in [33, 7, 6], will be reviewed briefly here.

First, a relevant subspace of an n-dimensional parameter space is described by a

containing n-dimensional axis-aligned hypercube. This parameter space hypercube

is then recursively subdivided into two subspaces or cells, the division occuring on

the dimensions with the largest size. At each subdivision step the boundaries are

Figure 3.4: After a few of iterations the samples cluster around an answer.

22

Figure 3.3: Initial sampling of one of the cubes.

Figure 3.4: After a few of iterations the samples cluster around an answer.

23

conservatively tested for the possibility of a solution existing within the cell and

subsequent subcells. Conservatively testing means that the preference is to err by

retaining too many cells, rather than prematurely trimming a cell.

The actual cell testing is more specific to the problem. Essentially, the config­

uration parameters at the edge of the cell are converted into real-world positions.

Additionally, the potential range of real-world positions are considered (from one

hypercube vertex configuration to another hypercube vertex configuration). From

these positions and ranges it is determined whether a solution to the constraint could

potentially lie within the range of configurations.

If there is no potential for a solution to lie within the cell, subdivision of that cell

stops (essentially trimming that area of configuration parameter space from being

considered for further searching). If a solution can potentially exist, subdivision

continues to the predefined minimum cell size.

In our implementation, a subdivision only results in two subspaces, so that the

entire subdivision can be arranged into a binary tree.

See Figures 3.1 and 3.2 for an example.

Figure 3.1 shows the complete decomposition. The lighter colored cells are those

that were tested and could not contain a solution, the darker colored cells are those

that passed the conservative test and might contain a solution.

Figure 3.2 shows the same scenario as Figure 3.1, but without the lighter cells.

3.3.2 Monte Carlo Optimization

3.3.2.1 Error Metric

This description corresponds to algorithm step 2a.

An error metric is defined that maps a point in configuration space to a scalar

value indicating how well it satisfies the geometric constraint. In all of our examples

configuration space is always a manifold in ffi71 so that the error metric can be de­

scribed by a mapping function / : 3ftm =>• 5?, where m is the dimension of configuration

space.

23

conservatively tested for the possibility of a solution existing within the cell and

subsequent subcells. Conservatively testing means that the preference is to err by

retaining too many cells, rather than prematurely trimming a cell.

The actual cell testing is more specific to the problem. Essentially, the config­

uration parameters at the edge of the cell are converted into real-world positions.

Additionally, the potential range of real-world positions are considered (from one

hypercube vertex configuration to another hypercube vertex configuration). From

these positions and ranges it is determined whether a solution to the constraint could

potentially lie within the range of configurations.

If there is no potential for a solution to lie within the cell, subdivision of that cell

stops (essentially trimming that area of configuration parameter space from being

considered for further searching). If a solution can potentially exist, subdivision

continues to the predefined minimum cell size.

In our implementation, a subdivision only results in two subspaces, so that the

entire subdivision can be arranged into a binary tree.

See Figures 3.1 and 3.2 for an example.

Figure 3.1 shows the complete decomposition. The lighter colored cells are those

that were tested and could not contain a solution, the darker colored cells are those

that passed the conservative test and might contain a solution.

Figure 3.2 shows the same scenario as Figure 3.1, but without the lighter cells.

3.3.2 Monte Carlo Optimization

3.3.2.1 Error Metric

This description corresponds to algorithm step 2a.

An error metric is defined that maps a point in configuration space to a scalar

value indicating how well it satisfies the geometric constraint. In all of our examples

configuration space is always a manifold in Rm so that the error metric can be de­

scribed by a mapping function f : Rm ::::} R, where m is the dimension of configuration

space.

24

In our examples the error function is defined by converting from configuration

space to robot position in workspace and then measuring error of that configuration

to the defined constraint. The error is based on the constraint problem being solved,

thus guiding the samples toward the constraint solution.

The error metric is used to customize the general approach to individual problems.

The error metric acts as an artificial gradient, guiding the sampling procedure towards

the solution of the constraint. Another viewpoint, is that the error function is being

optimized by Monte Carlo optimization.

As an example, consider the case of finding the generalized Voronoi diagram of

three coplanar points in three-dimensional space. The constraint can be described in

a straightforward way, find all positions equidistant to the obstacles. Consider the

diagram in Figure 3.5, the error of point p (red square) could be described by the

difference between the distances to each of the three Voronoi points (center points of

the three spheres). More specifically, if the center point of each sphere is c~i,c~2,C3,

then the Euclidean distance (d(x, y) = \ /Ei(^ — %i)2) from any point on that plane,

p, to each sphere center, would be

where e is the acceptable error.

We use the multiplicative inverse of the error as the weight function, to guide

resampling towards the solution. To give an idea of how this weight behaves, the

weight function, or multiplicative inverse error function,

di = d{p,Ci). (3.17)

The constraint could be defined as

(3.18)

1
(3.19)

'i+l

24

In our examples the error function is defined by converting from configuration

space to robot position in workspace and then measuring error of that configuration

to the defined constraint. The error is based on the constraint problem being solved,

thus guiding the samples toward the constraint solution.

The error metric is used to customize the general approach to individual problems.

The error metric acts as an artificial gmdient, guiding the sampling procedure towards

the solution of the constraint. Another viewpoint , is that the error function is being

optimized by Monte Carlo optimization.

As an example, consider the case of finding the generalized Voronoi diagram of

three coplanar points in three-dimensional space. The constraint can be described in

a straightforward way, find all positions equidistant to the obstacles. Consider the

diagram in Figure 3.5, the error of point p (red square) could be described by the

difference between the distances to each of the three Voronoi points (center points of

the three spheres). More specifically, if the center point of each sphere is cI, C2, C3 ,

then the Euclidean distance (d(x , y) = VLi(Yi - Xi)2) from any point on that plane,

p, to each sphere center, would be

di = d(p, Ci). (3.17)

The constraint could be defined as

(3.18)

where E is the acceptable error.

We use the multiplicative inverse of the error as the weight function, to guide

resampling towards the solution. To give an idea of how this weight behaves, the

weight function, or multiplicative inverse error function,

1
(3.19)

25

is plotted as a heightfield shown in Figure 3.6. The (x, y) position on the graph is

the position on the plane (created by the three sphere centers), and the height of the

graph is the weight, or inverse of the error. As a potential solution approaches the

center of the three Voronoi points, the error approaches 0, so that the inverse becomes

very large (for purposes of visualizing, the graph was cut off at a large value, which

is why the top is visible).

By further resampling around points whose weight is the greatest, samples are

continually found with smaller error, until the desired error threshold is obtained.

Other examples of potential constraint error functions could be considered. For

example, the constraint problem involved in finding configurations where the robot

collides with the obstacles. The error metric from that constraint could be simply

the distance from the robot to the closest obstacle.

d(p, O) < e, (3.20)

where O is an obstacle. The solution is approached as that value goes to zero by

the samples. Similarly the weight function will increase as the configuration nears an

obstacle. A variety of other constraint problems can be described in a similar fashion.

3.3.2.2 Initial Sampling

This description corresponds to algorithm step 2b.

The initial sampling is an important part of Monte Carlo optimization. The initial

sampling affects both the quality of the solution and the speed of convergence on a

solution. If the initial sampling does not sufficiently cover the target space, it is not

always easy to migrate towards the solution. If more iteration steps are required to

reach the solution, due to not having an initial sample near the solution, it results in

a longer runtime. If the initial sampling is far enough from a solution, it may result

in missing the solution completely.

After running a number of experiments to determine what type of initial sampling

25

is plotted as a height field shown in Figure 3.6. The (x, y) position on the graph is

the position on the plane (created by the three sphere centers), and the height of the

graph is the weight, or inverse of the error. As a potential solution approaches the

center of the three Voronoi points, the error approaches 0, so that the inverse becomes

very large (for purpoi:lei:l of vii:lualizing, the graph wai:l cut off at a large value, which

is why the top is visible).

By further resampling around points whose weight is the greatest, samples are

continually found with smaller error, until the desired error threshold is obtained.

Other examples of potential constraint error functions could be considered. For

example, the constraint problem involved in finding configurations where the robot

collides with the obstacles. The error metric from that constraint could be simply

the distance from the robot to the closest obstacle.

d(p,O) < E, (3.20)

where 0 is an obstacle. The solution is approached as that value goes to zero by

the samples. Similarly the weight function will increase as the configuration neari:l an

obstacle. A variety of other constraint problems can be described in a similar fashion.

3.3.2.2 Initial Sampling

This description corresponds to algorithm step 2b.

The initial sampling is an important part of Monte Carlo optimization. The initial

sampling affects both the quality of the solution and the speed of convergence on a

solution. If the initial sampling does not sufficiently cover the target space, it is not

always easy to migrate towards the solution. If more iteration steps are required to

reach the solution, due to not having an initial sample near the solution, it results in

a longer runtime. If the initial sampling is far enough from a solution, it may result

in missing the solution completely.

After running a number of experiments to determine what type of initial sampling

Figure 3.5: Overhead diagram of the error metric.

Figure 3.6: The inverse error metric heightfield for finding the center point of the
three sphere centers.

26

p

Figure 3.5: Overhead diagram of the error metric.

Figure 3.6: The inverse error metric height field for finding the center point of the
three sphere centers.

27

would suit our system best, between uniform random sampling, stratified sampling

and Halton sampling, we decided to use stratified sampling (also known as jittered

sampling). The details of the experiment are found in Section 4.2.

3.3.2.3 Determining if a Solution Exists

This description corresponds to algorithm step 2d.

Using conservative testing during the configuration subdivision means that some

of the cells will not contain the solutions to the geometric constraint. This means

that if the solution lies outside the cell the solution points will migrate outside the

cell. The cell is trimmed when this occurs (since that solution will be found in its

own cell).

The test for a sample to be outside the cell is done by finding the distance from

each sample to the center of the cell, and then checking that this distance is less than

the size of the cell.

One interesting aspect is to determine how many of the samples are allowed to

leave the hypercube before concluding that there is no result within the hypercube.

It may seem tempting to terminate the search early when a majority of the the

points leave the hypercube. Through experimentation we have found that, though

terminating early on this kind of condition can save computation time, it is safer to

require all samples to leave the cell before terminating the search. If the solution

lies near the boundary of the hypercube, a majority of the samples can leave the

hypercube for a time, and then reenter. In fact we have found that a better approach

is to give a small cushion or buffer zone outside the hypercube, which the samples

have to pass before being considered outside the hypercube.

In the resulting approach, each sample is checked to see if it lies outside the

hypercube (and potential buffer zone). The search is terminated only when all samples

have completely left the hypercube, a maximum iteration count has been reached, or

the solution is found.

27

would suit our system best, between uniform random sampling, stratified sampling

and Halton sampling, we decided to use stratified sampling (also known as jittered

sampling). The details of the experiment are found in Section 4.2.

3.3.2.3 Determining if a Solution Exists

This description corresponds to algorithm step 2d.

Using conservative testing during the configuration subdivision means that some

of the cells will not contain the solutions to the geometric constraint. This means

that if the solution lies outside the cell the solution points will migrate outside the

cell. The cell is trimmed when this occurs (since that solution will be found in its

own cell).

The test for a sample to be outside the cell is done by finding the distance from

each sample to the center of the cell, and then checking that this distance is less than

the size of the cell.

One interesting aspect is to determine how many of the samples are allowed to

leave the hypercube before concluding that there is no result within the hypercube.

It may seem tempting to terminate the search early when a majority of the the

points leave the hypercube. Through experimentation we have found that, though

terminating early on this kind of condition can save computation time, it is safer to

require all samples to leave the cell before terminating the search. If the solution

lies near the boundary of the hypercube, a majority of the samples can leave the

hypercube for a time, and then reenter. In fact we have found that a better approach

is to give a small cushion or buffer zone outside the hypercube, which the samples

have to pass before being considered outside the hypercube.

In the resulting approach, each sample is checked to see if it lies outside the

hypercube (and potential buffer zone). The search is terminated only when all samples

have completely left the hypercube, a maximum iteration count has been reached, or

the solution is found.

28

3.3.2.4 Resampling

This description corresponds to algorithm steps 2e and 2f.

The resampling portion of the algorithm was designed to favor resampling of points

with smaller error (better weight). To this end, the weight of each point is assigned

to be the multiplicative inverse of its error, which is later normalized against all the

other samples.

Once the samples are weighted appropriately, the space is resampled using the

weights. The weighting system is designed so that the samples with higher weights

(which corresponds to lower errors), are selected to be resampled more often.

An example distribution over 10 sample points is shown in Figure 3.7. That figure

is a number line showing the cumulative weight of each sample, where the sum of all

weights is equal to 1.0. The weight of the an individual sample is represented by the

distance between itself and the previous sample. By picking a uniformly distributed

random number between 0.0 and 1.0, and then selecting the sample it "lands on,"

samples with larger weights are selected more often. For example, a random sample

where the dot is positioned would select sample 8.

This approach results in the samples being selected to be resampled according to

the inverse error metric. The samples with lower errors will have a better chance of

being resampled and replace other samples that have a higher error. The samples

with a higher error (and, therefore, lower weight) will fall out of the sample set over

multiple iterations.

Resampling is done by adding a Gaussian distributed random vector to the original

point. If the new sample has better weight (lower error) than the original, it replaces

it. Otherwise, the original is kept.

The convergence rate can be modified by varying the standard deviation, or cr,

of the Gaussian distribution. As depicted in Figure 3.8, a larger a leads to larger

random vectors, which allows more exploration. A smaller a leads to smaller random

vectors, which helps converge faster near the solution (smaller steps do not overstep

28

3.3.2.4 Resampling

This description corresponds to algorithm steps 2e and 2f.

The resampling portion of the algorithm was designed to favor resampling of points

with smaller error (better weight). To this end, the weight of each point is assigned

to be the multiplicative inverse of its error, which is later normalized against all the

other samples.

Once the samples are weighted appropriately, the space is resampled using the

weights. The weighting system is designed so that the samples with higher weights

(which corresponds to lower errors), are selected to be resarnpled more often.

An example distribution over 10 sample points is shown in Figure 3.7. That figure

is a number line showing the cumulative weight of each sample, where the sum of all

weights is equal to 1.0. The weight of the an individual sample is represented by the

distance between itself and the previous sample. By picking a uniformly distributed

random number between 0.0 and 1.0, and then selecting the sample it "lands on,"

samples with larger weights are selected more often. For example, a random sample

where the dot is positioned would select sample 8.

This approach results in the samples being selected to be resampled according to

the inverse error metric. The samples with lower errors will have a better chance of

being resampled and replace other samples that have a higher error. The samples

with a higher error (and, therefore, lower weight) will fall out of the sample set over

multiple iterations.

Resampling is done by adding a Gaussian distributed random vector to the original

point. If the new sample has better weight (lower error) than the original, it replaces

it. Otherwise, the original is kept.

The convergence rate can be modified by varying the standard deviation, or (J,

of the Gaussian distribution. As depicted in Figure 3.8, a larger a leads to larger

random vectors, which allows more exploration. A smaller (J leads to smaller random

vectors, which helps converge faster near the solution (smaller steps do not overstep

29

the solution as easily). Our approach is to adapt the a according to the error of the

sample; for smaller errors, a smaller a is selected. This allows more exploration when

further from the solution and faster convergence when near the solution.

In our implementation the standard deviation would step down at specific error

intervals. The standard deviation for each error range is listed in Table 3.1.

29

the solution as easily). Our approach is to adapt the a according to the error of the

sample; for smaller errors, a smaller a is selected. This allows more exploration when

further from the solution and faster convergence when near the solution.

In our implementation the standard deviation would step down at specific error

intervals. The standard deviation for each error range is listed in Table 3.1.

30

o.o
1 2 34 5

H- 10
-|1.0

Figure 3.7: An example of cumulative weight values for 10 samples. Each vertical
line represents the cumulative weight of the samples up to that weight. The weight
of each sample is the distance between itself and the previous weight.

Figure 3.8: Example Gaussian curves with standard deviation or a = 1,0.7,0.5,0.2
from bottom to top. Changing the a in the Gaussian spread affects the convergence
rate of the Monte Carlo optimization step. The lower the cr, the closer new samples
will be to the original sample overall. The higher the a, the further they will be from
the original sample.

Table 3.1: Standard devi­
ation depends on the error
size.

Error Range Stand. Dev.
(2.0, oo)
(1.0,2.0]
(0.1,1.0]

(-oo,0.1]

1.0 x 10°
1.0 x 10- 1

1.0 x 10- 2

1.0 x 10 3

0.01 I W I I I •
1 2 5 6 7 8 9

I 11.0
10

30

Figure 3.7: An example of cumulative weight values for 10 samples. Each vertical
line represents the cumulative weight of the samples up to that weight. The weight
of each sample is the distance between itself and the previous weight.

,
I \

J.- I..

~ ,,' ~ - - ~~~ .. -;~------~

Figure 3.8: Example Gaussian curves with standard deviation or (J = 1,0.7,0.5,0.2
from bottom to top. Changing the (J in the Gaussian spread affects the convergence
rate of the Monte Carlo optimization step. The lower the (J, the closer new samples
will be to the original sample overall. The higher the (J, the further they will be from
the original sample.

Table 3.1: Standard devi­
ation depends on the error
size.

Error Range Stand. Dev.
(2.0,00) 1.0 x IOu
(1.0,2.0] 1.0 x 10- 1

(0.1,1.0] 1.0 x 10-2

(-00,0.1] 1.0 x 10- 3

CHAPTER 4

RESULTS

4.1 Overview

Through experimental results, we show that by using Monte Carlo optimization

for the final solution step in configuration space subdivision, we can solve to a higher

precision, as well as solve higher dimensional problems than subdivision by itself.

Using subdivision by itself to find a solution can require an exponential amount

of memory, and comparable increases in time. By extending subdivision with Monte

Carlo optimization, subdivision terminates at a lower precision, and the Monte Carlo

approach is used to "refine" the low precision solution to a more precise solution.

This requires much less memory and we have shown through experimentation that

solutions we were unable to solve with configuration space subdivision alone can be

solved with this combined approach.

Other approaches to the solution step after subdivision would be difficult to use in

the results shown. In the geometric constraint solutions, the models used are polyg­

onal, making it impractical to use Newton-Rhapson method to refine the solution.

Using polygonal geometry also makes it difficult to use special geometric properties

of the problem. Additionally, as stated previously, the goal is to have a more general

solution method and using special geometric properties to solve the problem would

not follow that principle.

In the robot path planning solutions it is also difficult to use other final solution

methods. While the robot and obstacle models are continuous, converting them into

a spline function on which Newton-Rhapson could be used would be too expensive.

The representation requires contributions from the complete surface of the robot, the

CHAPTER 4 .

RESULTS

4.1 Overview

Through experimental results, we show that by using Monte Carlo optimization

for the final solution step in configuration space subdivision, we can solve to a higher

precision, as well as solve higher dimensional problems than subdivision by itself.

Using subdivision by itself to find a solution can require an exponential amount

of memory, and comparable increases in time. By extending subdivision with Monte

Carlo optimization, subdivision terminates at a lower precision, and the Monte Carlo

approach is used to "refine" the low precision solution to a more precise solution.

This requires much less memory and we have shown through experimentation that

solutions we were unable to solve with configuration space subdivision alone can be

solved with this combined approach.

Other approaches to the solution step after subdivision would be difficult to use in

the results shown. In the geometric constraint solutions, the models used are polyg­

onal, making it impractical to use Newton-Rhapson method to refine the solution.

Using polygonal geometry also makes it difficult to use special geometric properties

of the problem. Additionally, as stated previously, the goal is to have a more general

solution method and using special geometric properties to solve the problem would

not follow that principle.

In the robot path planning solutions it is also difficult to use other final solution

methods. While the robot and obstacle models are continuous, converting them into

a spline function on which N ewton-Rhapson could be used would be too expensive.

The representation requires contributions from the complete surface of the robot, the

32

obstacle surfaces, and the constraint variables. Again, we avoid special geometrically

tailored solutions, because they are not general enough.

There are certainly additional methods that could be considered. Instead this new

Monte Carlo optimization approach is compared to a subdivision only approach to

give an indication of its improvement and performance. Specific comparison to other

methods is left to future work.

In order to recover a surface or line solution from the point solutions found, the

configuration subdivision hierarchy must be stored. This is the cause of most of the

memory usage in configuration space subdivision. If only point solutions were of

interest in the end (no reconstruction of surfaces or curves necessary), the method

could be adapted to trim the tree structure as it went, moderating the memory usage.

Note that in the area of path planning instead of reconstructing surfaces, the tree

organization would aid in constructing a smooth path from an initial position to a

final position.

This section is broken into three major categories. First, the results to our initial

sampling experiment are presented. Afterwards, the results of using the complete

algorithm on multiple different problems are presented in two sections "General Ge­

ometric Constraint Problems" and "Robot Path Planning Problems."

The results to a few general geometric constraint problems are shown in order

to give an idea that the approach can be used in situations other than robot path

planning. This also begins to give an idea of the speed and memory advantages of

using Monte Carlo optimization with configuration space subdivision.

Next, the results to various robot path planning problems are presented. The

main results of our experimentation is that extending configuration space subdivision

with Monte Carlo optimization allows the solution of path planning problems of higher

precision, and constraint problems in higher dimension and precision than subdivision

by itself.

32

obstacle surfaces, and the constraint variables. Again, we avoid special geometrically

tailored solutions, because they are not general enough.

There are certainly additional methods that could be considered. Instead this new

Monte Carlo optimization approach is compared to a subdivision only approach to

give an indication of its improvement and performance. Specific comparison to other

methods is left to future work.

In order to recover a surface or line solution from the point solutions found, the

configuration subdivision hierarchy must be stored. This is the cause of most of the

memory usage in configuration space subdivision. If only point solutions were of

interest in the end (no reconstruction of surfaces or curves necessary), the method

could be adapted to trim the tree structure as it went, moderating the memory usage.

Note that in the area of path planning instead of reconstructing surfaces, the tree

organization would aid in constructing a smooth path from an initial position to a

final position.

This section is broken into three major categories. First, the results to our initial

sampling experiment are presented. Afterwards, the results of using the complete

algorithm on multiple different problems are presented in two sections "General Ge­

ometric Constraint Problems" and "Robot Path Planning Problems."

The results to a few general geometric constraint problems are shown in order

to give an idea that the approach can be used in situations other than robot path

planning. This also begins to give an idea of the speed and memory advantages of

using Monte Carlo optimization with configuration space subdivision.

Next, the results to various robot path planning problems are presented. The

main results of our experimentation is that extending configuration space subdivision

with Monte Carlo optimization allows the solution of path planning problems of higher

precision, and constraint problems in higher dimension and precision than subdivision

by itself.

33

4.2 Initial Sampling Exper imentat ion

A very important part of Monte Carlo optimization is the initial sampling. The

initial sampling affects both the quality of the solution and the speed of convergence

on a solution. If the initial sampling does not sufficiently cover the target space, it is

not always easy to migrate toward the solution. If more iteration steps are required

to reach the solution, due to not having an initial sample near the solution, a longer

runtime result or the solution may not be found at all.

To determine what sort of initial sampling would be most appropriate, we ran

our implementation of Monte Carlo optimization several times on a simple constraint

problem adapted for this purpose. By evaluating different values for the number

of samples and the type of initial sampling distribution with respect to a desired

precision, one approach was found that performed better than the others.

4.2 .1 Exper iment Setup

The simplified problem is setup to consider different situations that the Monte

Carlo optimization will encounter while extending our implementation of configura­

tion space decomposition. In our decomposition system, a subdivision causes the

largest dimension to divide in half, so that at any time some of the dimensions of

the configuration hypercube may be half of the other dimensions. To try to recreate

this in an experimental situation, two n-dimensional hypercubes are created, the first

hypercube, Hi, is centered about a point P = [p i , . . . , p n] T G 3ftn, with distance to

each face L = [li,... ,ln]T G 3ftn, where U = k,\/i G [l ,n] , k a constant. A second

n-dimensional hypercube, H2, is centered about a point Q = [qi,..., qn]T G $ln, with

distance to each of the faces M = [m i , . . . , m n / 2 - i , \mn/2, \™<n/2+i, • • •, | ^ n] T £

where = fc,Vi G [1, n], k a constant. In other words, while the first hypercube

has all faces equidistant from its center point, the second has the first half set to the

same constant, while the second half are set to half of that constant. In the results

below we set P , Q to be the origin, and li = rrii — 5.

The Monte Carlo optimization step may run into solutions that are difficult to

33

4.2 Initial Sampling Experimentation

A very important part of Monte Carlo optimization is the initial sampling. The

initial sampling affects both the quality of the solution and the speed of convergence

on a solution. If the initial sampling does not sufficiently cover the target space, it is

not always easy to migrate toward the solution. If more iteration steps are required

to reach the solution, due to not having an initial sample near the solution, a longer

runtime result or the solution may not be found at all.

To determine what sort of initial sampling would be most appropriate, we ran

our implementation of Monte Carlo optimization several times on a simple constraint

problem adapted for this purpose. By evaluating different values for the number

of samples and the type of initial sampling distribution with respect to a desired

precision, one approach was found that performed better than the others.

4.2.1 Experiment Setup

The simplified problem is setup to consider different situations that the Monte

Carlo optimization will encounter while extending our implementation of configura­

tion space decomposition. In our decomposition system, a subdivision causes the

largest dimension to divide in half, so that at any time some of the dimensions of

the configuration hypercube may be half of the other dimensions. To try to recreate

this in an experimental situation, two n-dimensional hypercubes are created, the first

hypercube, HI, is centered about a point P = [PI, ... , PnV E 3(n, with distance to

each face L = [h, ... , In]T E 3(n, where li = k, 'Vi E [1, n], k a constant. A second

n-dimensional hypercube, H 2, is centered about a point Q = [ql,"" qnV E 3(n, with

distance to each of the faces M = [ml,' .. , mn/2-1, ~mn/2' ~mn/2+1'" ., ~mn]T E 3(n,

where mi = k, 'Vi E [1, n], k a constant. In other words, while the first hypercube

has all faces equidistant from its center point, the second has the first half set to the

same constant, while the second half are set to half of that constant. In the results

below we set P, Q to be the origin, and li = mi = 5.

The Monte Carlo optimization step may run into solutions that are difficult to

34

find. To try to capture this occurence, we create three optimization problems to solve.

The first problem is to find the center of the cube; second, to find a point very close to

the corner of the cube (which can be difficult to find without leaving the hypercube);

and finally, to find a random point in the cube, this will represent situations where

the solution may not be in the corner or in the center, but somewhere else within

the hypercube. The constraint for each of these problems is that the solution be

equal to the target point, so the error function will simply be the distance from

the specified point. More specifically, for each problem, where the target point is

T = [ti,..., tn]T £ ^Rn, and the current guess is G = [# i , . . . , gn]T £ 3ftn, error(G) =

Varying numbers of samples, precision, and type of initial sampling are used to

try to solve each of these problems.

The goal of the experiment is to find which of three initial sampling techniques will

perform the best with the smallest number of samples (since fewer samples require

less compute time in the end). It would also be beneficial to gain some intuition as

to whether one type of sampling technique works best for this type of problem. The

three investigated here are

(1) Halton Point Sampling

Halton point sampling (closely related to Hammersley points) utilizes a de­

terministic sequence generator to create what can appear to be a sequence of

random points, but in reality is a well spaced, deterministic sequence of points.

The basic idea of the sequence generator can be understood from a simple ex­

ample. A positive integer k has a binary representation

k = boh .. A = 60(2°) + h{21) + . . . + bn(2s). (4.1)

If the components of the binary representation are reversed, including the binary

point, and then reinterpreted as a decimal value, the result k' = bsbs^i... bo has

34

find. To try to capture this occurence, we create three optimization problems to solve.

The first problem is to find the center of the cube; second, to find a point very close to

the corner of th(~ cube (which can be difficult to find without leaving the hypercube);

and finally, to find a random point in the cube, this will represent situations where

the solution may not be in the corner or in the center, but somewhere else within

the hypercube. The constraint for each of these problems is that the solution be

equal to the target point, so the error function will simply be the distance from

the specified point. More specifically, for each problem, where the target point is

T = [tl, ... ,tn]T ERn, and the current guess is G = [91, ... ,9n]T ERn, error(G) =

J2:7=1 (ti - 9i)2.

Varying numbers of samples, precision, and type of initial sampling are used to

try to solve each of these problems.

The goal of the experiment is to find which of three initial sampling techniques will

perform the best with the smallest number of samples (since fewer samples require

less compute time in the end). It would also be beneficial to gain some intuition as

to whether one type of sampling technique works best for this type of problem. The

three investigated here are

(1) Halton Point Sampling

Halton point sampling (closely related to Hammersley points) utilizes a de­

terministic sequence generator to create what can appear to be a sequence of

random points, but in reality is a well spaced, deterministic sequence of points.

The basic idea of the sequence generator can be understood from a simple ex­

ample. A positive integer k has a binary representation

(4.1)

If the components of the binary representation are reversed, including the binary

point, and then reinterpreted as a decimal value, the result k' = bsbs- 1 ... bo has

35

the value

k' = M 2 " 1) + k - i (2 " 2) . . . + 6 0 (2 - (s + 1)) . (4.2)

This operation can be refered to as G(-)2, so that k' = G(k)2-

Because any positive number k can be decomposed and represented by any

prime number p in the same way as by 2, the same operation can be defined

using any prime base p. This more general operation can be referred to as G(-)p.

It is important to note that if the domain of G(-)p is all positive integers, the

range will remain (0 ,1) .

Finally, given a point R — [n , r^,..., rn]T a function can be defined

such that p l , p 2 , . . . ,pn are distinct prime numbers.

To generate a Halton point set, a sequence of points whose components are all

positive integers is each in turn operated on by # (•) , resulting in a set of points

within the range (0, l) n , the n-dimensional unit hypercube. In our implementa­

tion H(•) is used on the set of S n-dimensional points, [1 , . . . , 1] T , [2 , . . . , 2] T , . . . ,

[S,..., S]T. Resulting in the Halton points # ([! , . . . , 1] T) , i f ([2 , . . . , 2] T) ,

For a more detailed discussion and implementation example see [2].

Our motivation for trying a Halton set was the idea that an even spread of

points throughout space would aid in finding a potential solution faster.

(2) Stratified Sampling

Stratified sampling in general statistical terms refers to sampling by first ar­

ranging the sampling population into relatively homogeneous subgroups, called

strata, before sampling. This is done for representation from each of the differ­

ent strata in the final sampling.

H(R) = [G(n)pl, G(r2)p2,..., G(r„Ur (4.3)

H([S,...,S]T).

35

the value

(4.2)

This operation can be refered to as G('h, so that k' = G(k)2'

Because any positive number k can be decomposed and represented by any

prime number p in the same way as by 2, the same operation can be defined

using any prime base p. This more general operation can be referred to as G(·)p.

It is important to note that if the domain of GOp is all positive integers, the

range will remain (0,1).

Finally, given a point Ii = [Tl, T2," ., Tn]T a function can be defined

(4.3)

such that pl,p2, .. . ,pn are distinct prime numbers,

To generate a Halton point set, a sequence of points whose components are all

positive integers is each in turn operated on by H (.), resulting in a set of points

within the range (0, l)n, the n-dimensional unit hypercube. In our implementa-

tion H (.) is used on the set of S n-dimensional points, [1, ... , I]T, [2, ... , 2]T, ... ,

[S, . .. , SJT. Resulting in the Halton points H([I, ... , If'), H([2, . .. , 2]T), .. . ,

H([S, . .. ,SJT).

For a more detailed discussion and implementation example see [2].

Our motivation for trying a Halton set was the idea that an even spread of

points throughout space would aid in finding a potential solution faster.

(2) Stratified Sampling

Stratified sampling in general statistical terms refers to sampling by first ar­

ranging the sampling population into relatively homogeneous subgroups, called

strata, before sampling. This is done for representation from each of the differ­

ent strata in the final sampling.

36

Uniform regular stratified sampling in computer graphics (also commonly called

jittered sampling), and related fields, including our approach, follows this same

idea. The sampling population is the entire space, and the strata or subgroups

into which it is divided are distinct, uniform size subspaces.

A simple example illustrates. Assume the sampling is of a two-dimensional

space with S = s2 samples. One approach to stratified sampling is to divide the

space into s2 equally sized subregions. Then s2 samples are selected by finding

a random point within each of the subregions. See [26] for more details.

To extend this approach to n-dimensional space, sn uniform subregions are

created. Then sn samples are selected by finding a uniformly random point

within each of the sn subregions.

In our implementation, given a number of samples, 5 , to be taken, set S' =

| S 1 / n J . Then if b = S - (S')n ^ 0, the remaining b samples are taken as

uniform random variables over the whole space.

This approach was also implemented and tested in hopes that a more equal

spread of initial sampling would aid in finding the answer faster, and with fewer

samples.

(3) Uniform Random Distribution Sampling

This approach is the most straightforward of the three. To select S samples

from an n dimensional space, S n-dimensional points are created where each

component is a uniformaly distributed random number. More specifically,

P=\pi,...,Pn]T (4.4)

where pi,... ,pn are each uniformly distributed random numbers.

Uniform random sampling is taken as the base case. The experiment was created

to determine whether a different initial distribution of points would be more

36

Uniform regular stratified sampling in computer graphics (also commonly called

jittered sampling), and related fields, including our approach, follows this same

idea. The sampling population is the entire space, and the strata or subgroups

into which it is divided are distinct, uniform size subspaces.

A simple example illustrates. Assume the sampling is of a two-dimensional

space with 5 = S2 samples. One approach to stratified sampling is to divide the

space into S2 equally sized subregions. Then S2 samples are selected by finding

a random point within each of the subregions. See [26] for more details.

To extend this approach to n-dimensional space, sn uniform subregions are

created. Then sn samples are selected by finding a uniformly random point

within each of the sn subregions.

In our implementation, given a number of samples, 5, to be taken, set 5' =

l5Ijn J. Then if b = 5 - (5,)n =J 0, the remaining b samples are taken as

uniform random variables over the whole space.

This approach was also implemented and tested in hopes that a more equal

spread of initial sampling would aid in finding the answer faster, and with fewer

samples.

(3) Uniform Random Distribution Sampling

This approach is the most straightforward of the three. To select 5 samples

from an n dimensional space, 5 n-dimensional points are created where each

component is a uniformaly distributed random number. More specifically,

(4.4)

where PI, ... ,Pn are each uniformly distributed random numbers.

Uniform random sampling is taken as the base case. The experiment was created

to determine whether a different initial distribution of points would be more

37

effective.

While we find no clear winner overall, for our target numbers of samples (from

10 to 30), we conclude from the experiment that (2) Stratified Sampling has the best

results overall, and use that type of sampling in our solutions where possible. This

conclusion is more of a default decision because stratified sampling performs the same

or a better than the other two approaches. This agrees somewhat with our initial

intuition, that a more equally spread sampling would perform better than a purely

uniformly random distribution. Although because Halton sampling is a little more

uniform (deterministic, rather than random in its distribution), we had originally

thought that it would fare the best.

The results are presented next, accompanied by a discussion of how those results

influence our decisions on what to use in the Monte Carlo optimization.

4.2 .2 Exper iment Results

Two main criteria are examined from each type of sampling.

1. Percentage of successfully finding the result

(number of successes / number of trials)

2. Average number of iterations for a successful solution

(total number of iterations / number of successes)

We maintain that criterion (1) is more important to our approach than (2), because

the solution should be found even if it takes a few more iterations on average.

4 .2 .3 Overall

Looking at the overall results for (1) percentage of successful solutions, shown in

Figure 4.1 and Table 4.1, it appears that the stratified sampling approach, while not

always the best, does the best in most of the sample sizes. Similarly overall in (2)

the average number of iterations for a successful solution, shown in Figure 4.2 and

37

effective.

While we find no clear winner overall, for our target numbers of samples (from

10 to 30), we conclude from the experiment that (2) Stratified Sampling has the best

results overall, and use that type of sampling in our solutions where possible. This

conclusion is more of a default decision because stratified sampling performs the same

or a better than the other two approaches. This agrees somewhat with our initial

intuition, that a more equally spread sampling would perform better than a purely

uniformly random distribution. Although because Halton sampling is a little more

uniform (deterministic, rather than random in its distribution), we had originally

thought that it would fare the best.

The results are presented next, accompanied by a discussion of how those results

influence our decisions on what to usc in the Monte Carlo optimization.

4.2.2 Experiment Results

Two main criteria are examined from each type of sampling.

1. Percentage of successfully finding the result

(number of successes / number of trials)

2. Average number of iterations for a successful solution

(total number of iterations / number of successes)

We maintain that criterion (1) is more important to our approach than (2), because

the solution should be found even if it takes a few more iterations on average.

4.2.3 Overall

Looking at the overall results for (1) percentage of successful solutions, shown in

Figure 4.1 and Table 4.1, it appears that the stratified sampling approach, while not

always the best, does the best in most of the sample sizes. Similarly overall in (2)

the average number of iterations for a successful solution, shown in Figure 4.2 and

38

90

80

70
•a

60
>

60

O
S

 50
* J

c 40

V 30
a.

20

10

0 -

halton
stratified
uniform

10 25 50 100 500
Sample size

1000

Figure 4.1: Overall percentage of sampling test problems solved correctly at .001
precision.

Table 4.1: Overall percentage of sampling
test problems solved correctly at .001 pre­
cision.

samples Halton Stratified Uniform
5 48.16 61.16 34.50
10 48.83 57.00 60.50
25 64.83 66.33 65.66
50 65.16 69.00 55.00
100 66.66 72.83 62.83
500 78.83 82.83 84.00
1000 73.00 76.66 68.83

6

5
(0
c

ra
9

3
u
Oi

2

1

0 10 25 50 100 500 1000
Sample size

halton
1 stratified
uniform

Figure 4.2: Overall average iterations to find a correct solution at .001 precision.

90 r-------------------------~

"a

80

70

~ 60

a 50 ..
~ 40
u
~ 30
Q.

20

10

o ~------------------------~
5 10 25 50 100 500 1000

Sample size

-+- halton
_ stratified

uniform

38

Figure 4.1: Overall percentage of sampling test problems solved correctly at .001
precision.

Table 4.1: Overall percentage of sampling
test problems solved correctly at .001 pre­
cision.

samples Halton Stratified Uniform
5 48.16 61.16 34.50
10 48.83 57.00 60.50
25 64.83 66.33 65.66
50 65.16 69.00 55.00
100 66.66 72.83 62.83
500 78.83 82.83 84.00
1000 73.00 76.66 68.83

6 r----------------------------,

til
c

5

~4
III ..
41
~ 3
41
01
III .. 2
~

CC
1

o L-__________________________ ~

5 10 25 50 100 500 1000

Sample size

-+- halton

_ stratified

uniform

Figure 4.2: Overall average iterations to find a correct solution at .001 precision.

39

Table 4.2, it appears stratified sampling uses, on the average, the fewest number of

iterations.

4 . 2 . 4 Sample Sizes Under 100

As stated previously, we are more interested in finding the best approach for solu­

tions using smaller numbers of samples, preferably between 10 and 30, consequently

the results between 0 and 100 samples carry more importance. Shown in Figure 4.3

are the same results for criterion (1) from Figure 4.1, except only showing up to

100 samples. As shown the stratified solution performs the best with any number of

samples over about 20. Between 0 and 20 it comes in second. In contrast, Figure 4.4

shows that stratified sampling actually performs the worst in terms of average number

of iterations, criterion (2), until a sample size of about 60. This is not encouraging,

but we maintain that stratified sampling is still the best choice overall, because as

stated previously criterion (1) is more important to our approach.

4 . 2 .5 Sample Size 25

By examining the results for a specific sample size of 25, the selection of stratified

sampling is supportable, but not a clear leader in the scoring. As can be seen in

Figure 4.5 and Table 4.3, stratified sampling does not fare the best. While it does

not score the worst on every dimension, it only becomes the best choice in the 8

dimensional problem. The results reveal that with a sample size of 25, stratified

sampling performs averagely compared to the other approaches. However, as shown

in Figure 4.6 and Table 4.4, in average iterations, stratified sampling does the best in

every dimension.

The 25 sample results differ somewhat from the overall results examined above.

While the stratified sampling performed very well in most of the cases for criterion

(1), in the 25-sample case it does not do quite as well. For criterion (2) it does

better. We maintain the choice of stratified sampling, because overall it shows the

most promise, and while the specific 25-sample case reveals some potential problems,

39

Table 4.2, it appears stratified sampling uses, on the average, the fewest number of

iterations.

4.2.4 Sample Sizes Under 100

As stated previously, we are more interested in finding the best approach for solu­

tions using smaller numbers of samples, preferably between 10 and 30, consequently

the results between 0 and 100 samples carry more importance. Shown in Figure 4.3

are the same results for criterion (1) from Figure 4.1, except only showing up to

100 samples. As shown the stratified solution performs the best with any number of

samples over about 20. Between 0 and 20 it comes in second. In contrast, Figure 4.4

shows that stratified sampling actually performs the worst in terms of average number

of iterations, criterion (2), until a sample size of about 60. This is not encouraging,

but we maintain that stratified sampling is still the best choice overall, because as

stated previously criterion (1) is more important to our approach.

4.2.5 Sample Size 25

By examining the results for a specific sample size of 25, the selection of stratified

sampling is supportable, but not a clear leader in the scoring. As can be seen in

Figure 4.5 and Table 4.3, stratified sampling does not fare the best. While it does

not score the worst on every dimension, it only becomes the best choice in the 8

dimensional problem. The results reveal that with a sample size of 25, stratified

sampling performs averagely compared to the other approaches. However, as shown

in Figure 4.6 and Table 4.4, in average iterations, stratified sampling does the best in

every dimension.

The 25 sample results differ somewhat from the overall results examined above.

While the stratified sampling performed very well in most of the cases for criterion

(1), in the 25-sample case it does not do quite as well. For criterion (2) it does

better. We maintain the choice of stratified sampling, because overall it shows the

most promise, and while the specific 25-sample case reveals some potential problems,

40

Table 4.2: Overall average iterations to
find a correct solution at .001 precision.

samples Halton Stratified Uniform
5 5.15 3.47 5.54
10 2.61 4.52 3.64
25 3.03 4.11 2.09
50 2.91 3.36 3.05
100 3.03 2.28 3.34
500 2.35 2.18 2.37
1000 2.51 2.38 2.40

80

70

60
XJ
> 50

£ 40
3
2 30
£

20

10

0

halton
1 stratified
uniform

10 25 50
Sample size

100

Figure 4.3: Overall percentage of sampling test problems up to 100 samples solved
correctly at .001 precision.

Figure 4.4: Overall average iterations to find a correct solution up to 100 samples at
.001 precision.

Table 4.2: Overall average iterations to
find a correct solution at .001 precision.

samples Halton Stratified Uniform
5 5.15 3.47 5.54
10 2.61 4.52 3.64
25 3.03 4.11 2.09
50 2.91 3.36 3.05
100 3.03 2.28 3.34
500 2.35 2.18 2.37
1000 2.51 2.38 2.40

80 .-----------------,

"a
11/

70

60

~ SO
o
(II

-c 40
II
~ 30 :.

20

10
o L-_____________ ~

5 10 25

Sample size

so 100

-+- halton

...... stratified

uniform

40

Figure 4.3: Overall percentage of sampling test problems up to 100 samples solved
correctly at .001 precision.

6

5
(II

c
;84
IV ..
II
:!:: 3
II
CII
IV
t 2
>
C

1

0
5 10 25

Sample size

SO 100

-+- halton

...... stratified

uniform

Figure 4.4: Overall average iterations to find a correct solution up to 100 samples at
.001 precision.

41

120

100

80 > 80
O
(A

*•> 60
C

60
0)

rc

40
01

40
a.

20

0

halton
stratified
uniform

2 3 4 5 6 7 8 9 10
Dimension

Figure 4.5: Percentage of problems solved correctly with sample size 25 and .001
precision.

Table 4.3: Percentage of problems solved
correctly with sample size 25 and .001 pre­
cision.

dimension Halton Stratified Uniform
2 100.00 100.00 100.00
3 83.33 83.33 75.00
4 97.16 72.16 81.50
5 66.66 77.50 83.16
6 79.00 66.66 73.50
7 66.66 72.16 86.83
8 66.66 66.66 49.66
9 65.50 53.50 59.66
10 64.83 66.33 65.66

120

100
'tI
GI

80 >
'0
VI ... 60 c
GI
U 40 ..
GI
A-

20

0
2 3 4 5 6 7 8 9 10

Dimension

-+- halton
___ stratified

uniform

41

Figure 4.5: Percentage of problems solved correctly with sample size 25 and .001
precision.

Table 4.3: Percentage of problems solved
correctly with sample size 25 and .001 pre­
cision.

dimension Halton Stratified Uniform
2 100.00 100.00 100.00
3 83.33 83.33 75.00
4 97.16 72.16 81.50
5 66.66 77.50 83.16
6 79.00 66.66 73.50
7 66.66 72.16 86.83
8 66.66 66.66 49.66
9 65.50 53.50 59.66
10 64.83 66.33 65.66

42

halton
• stratified
uniform

5 6 7
Dimension

Figure 4.6: Average iterations to find a correct solution with sample size 25 and .001
precision.

Table 4.4: Average iterations to find a cor­
rect solution with sample size 25 and .001
precision.

dimension Halton Stratified Uniform
2 2.02 1.80 2.02
3 2.27 1.78 1.94
4 2.12 1.95 2.51
5 2.42 2.29 2.30
6 2.48 2.46 2.75
7 2.63 2.32 2.52
8 3.40 2.89 3.31
9 2.57 2.22 2.88
10 3.03 4.11 2.09

4.5 ,---------------......,

4

1/1 3.5
c
~ 3
~
11/ 2.5

.'!::
8, 2
1'0 t 1.5
>
< 1

0.5

o ~------------~
2 3 4 5 6 7 8 9 10

Dimension

42

-+- halton
-II- stratified

uniform

Figure 4.6: Average iterations to find a correct solution with sample size 25 and .001
precision.

Table 4.4: Average iterations to find a cor­
rect solution with sample size 25 and .001
precision.

dimension Halton Stratified Uniform
2 2.02 1.80 2.02
3 2.27 1.78 1.94
4 2.12 1.95 2.51
5 2.42 2.29 2.30
6 2.48 2.46 2.75
7 2.63 2.32 2.52
8 3.40 2.89 3.31
9 2.57 2.22 2.88
10 3.03 4.11 2.09

43

neither of the other candidates show as strong a position in all cases considered.

4.3 General Geometric Constraints

The constraint problems presented mainly center around finding the GVD of mul­

tiple objects. First, the cell boundary surfaces are found, and then through overcon-

straint, the cell edge curves, and finally the Voronoi vertices are found.

4.3 .1 Bisector Surfaces

The trimmed bisector surfaces of four models are found at once, shown in Figures

4.7 and 4.8. This solution is the same as the generalized Voronoi diagram of the four

objects. In fact, these surfaces are the cell boundaries of the generalized Voronoi

diagram. The constraint can be described as having equal distantance to the two

closest objects, and the solution as the collection of points that satisfy the constraint.

More precisely, a solution is saught for all points, P = \pi,P2,P3]T, such that

d(P,&) = d(P,B?) (4.5)

where d(X,Y) = yLtifai — Vi)2 or the Euclidean distance, B1 = [b{,bl,bl]T is the

closest point on one of the two nearest models, and B2 = [b2,b2,bl]T is the closest

point on the other of the two nearest models.

The solution to this constraint using configuration space subdivision by itself is

shown in Figure 4.8, and using Monte Carlo optimization in Figure 4.7. The runtime

details are listed in Table 4.5. The method of using configuration space subdivision

by itself is indicated by "CS", and using Monte Carlo optimization to extend the

configuration space subdivision is indicated by "MC". Both solutions are done using

an error threshold of 1.0 x 1 0 - 1 . Of note is that using the Monte Carlo optimization

approach the constraint is solved in 2% of the time and using less than 20% of the

space it takes without it. In contrast, consider Figure 4.9, which is the solution with

the same configuration subdivision precision of 1.0 x 10°, but without the solution

43

neither of the other candidates show as strong a position in all cases considered.

4.3 General Geometric Constraints

The constraint problems presented mainly center around finding the GVD of mul-

tiple objects. First, the cell boundary surfaces are found, and then through overcon-

straint, the cell edge curves, and finally the Voronoi vertices are found.

4.3.1 Bisector Surfaces

The trimmed bisector surfaces of four models are found at once, shown in Figures

4.7 and 4.8. This solution is the same as the generalized Voronoi diagram of the four

objects. In fact, these surfaces are the cell boundaries of the generalized Voronoi

diagram. The constraint can be described as having equal distantance to the two

closest objects, and the solution as the collection of points that satisfy the constraint.

More precisely, a solution is saught for all points, j5 = [Pl,P2,P3]T, such that

d(P, HI) = d(P, Bl) (4.5)

where d(X, Y)

closest point on one of the two nearest models, and H2 = [b2 b2 b2]T is the closest l' 2' 3

point on the other of the two nearest models.

The solution to this constraint using configuration space subdivision by itself is

shown in Figure 4.8, and using Monte Carlo optimization in Figure 4.7. The runtime

details are listed in Table 4.5. The method of using configuration space subdivision

by itself is indicated by "CS", and using Monte Carlo optimization to extend the

configuration space subdivision is indicated by "MC". Both solutions are done using

an error threshold of 1.0 x 10-1. Of note is that using the Monte Carlo optimization

approach the constraint is solved in 2% of the time and using less than 20% of the

space it takes without it. In contrast, consider Figure 4.9, which is the solution with

the same configuration subdivision precision of 1.0 x 10°, but without the solution

44

i.

Figure 4.7: Bisector surfaces of four models, found using Monte Carlo optimization.

Figure 4.8: Bisector surfaces of four models, using only configuration space subdivi­
sion. The points are close enough that they appear to be a solid surface.

Table 4.5: Timing and memory usage comparison for finding the
bisector surfaces of four objects shown in Figures 4.7 and 4.8.

method time(sec) memory CS precision MC precision
CS
MC

76.363
2.125

133 MB
23 MB

1.0 x H T 1

1.0 x 10°
N/A

1.0 x 1 0 " 1

.. . . :
, .'

' .. ~ .

44

..
• " • • '0

. ' .

. ,0,".
<' .a :."""

. -.' : ..
'0 '0,

Figure 4.7: Bisector surfaces of four models, found using Monte Carlo optimization.

Figure 4.8: Bisector surfaces of four models, using only configuration space subdivi­
sion. The points are close enough that they appear to be a solid surface.

Table 4.5: Timing and memory usage comparison for finding the
bisector surfaces of four objects shown in Figures 4.7 and 4.8.

method time(sec) memory CS precision MC precision
CS 76.363 133 MB 1.0 x 10 -1 N/A
MC 2.125 23 MB 1.0 x 10° 1.0 X 10-1

45

Figure 4.9: The solution at precision 1.0 x 10°, but without the solution improvement
by Monte Carlo optimization. Because the error is so large, the surfaces look more
like volumes.

improvement by Monte Carlo optimization. The error is large enough that the surfaces

resemble volumes more than surfaces. Figure 4.8 shows the subdivision-only solution,

but with error equal to the 1.0 x 1 0 _ 1 , the precision of the MC optimization solution

in Figure 4.7. This solution looks almost like a solid surface, because the subdivision

cells become as small as the specified error tolerance leading to solution points which

are close enough together that they resemble a surface.

Monte Carlo optimization is able to solve the problem much faster and use much

less memory because using the MC optimization to reach the solution configuration

space subdivision can terminate much earlier. Figure 4.10 shows the solution using

Monte Carlo optimization with the configuration space subdivision cells visible. In

essence, a solution is found with the same precision but with a more sparse distribution

of solution points. This sparsity can be adjusted as needed. Interpolating between

the solutions found can fill in the gaps.

While solutions here are shown as collections of individual points, the surfaces or

curves they form can be reconstructed from these points. This is possible because the

subdivision structure created by the configuration space subdivision is maintained,

.. ... : .. " ..

"

.... ':::" :: ,"'''WO '0,:" .•..•

j ~~{;} ~ !; ::'::;;:: ::::::::::::~ ::::::::
• ' : •• 0

0
' , •• ':, . : •• :.:::

:: :; :~: ~ ;;:::: ;:.::::::::"
• : I' ". '

.......... -""
.. "",.: ""':' .

. ;!E;i:1~: ;:::: ::::
.. , , . ' ..

• • • 0" • •• " ••

45

Figure 4.9: The solution at precision 1.0 x 10°, but without the solution improvement
by Monte Carlo optimization. Because the error is so large, the surfaces look more
like volumes.

improvement by Monte Carlo optimization. The error is large enough that the surfaces

resemble volumes more than surfaces. Figure 4.8 shows the subdivision-only solution,

but with error equal to the 1.0 x 10-1 , the precision of the MC optimization solution

in Figure 4.7. This solution looks almost like a solid surface, because the subdivision

cells become as small as the specified error tolerance leading to solution points which

are close enough together that they resemble a surface.

Monte Carlo optimization is able to solve the problem much faster and use much

less memory because using the MC optimization to reach the solution configuration

space subdivision can terminate much earlier. Figure 4.10 shows the solution using

Monte Carlo optimization with the configuration space subdivision cells visible. In

essence, a solution is found with the same precision but with a more sparse distribution

of solution points. This sparsity can be adjusted as needed. Interpolating between

the solutions found can fill in the gaps.

While solutions here are shown as collections of individual points, the surfaces or

curves they form can be reconstructed from these points. This is possible because the

subdivision structure created by the configuration space subdivision is maintained,

46

Figure 4.10: Showing the MC solution, detailing the size of volumes from which the
solutions are found.

providing topographical information of the solution.

4.3 .2 Intersection of Three Bisectors

The system is also able to solve for the curves representing the Voronoi cell edges

or where two or more cell boundaries intersect. This is shown in Figure 4.11.

These edges can be found for all four models at once, as shown in Figures 4.12

and 4.13.

This constraint can be described in a manner similar to Equation 4.5. Again, a

solution is sought for all points P such that

d(P, Bl) = d(P, B2) = d(P, B3) (4.6)

where B3 = [6f, 6|> ^ |] T i s the closest point on one of the three closest models, and

b] and bf are defined similarly as in Equation 4.5 and where B1

1B2

iB9 are all on

different models.

This problem adds a constraint to the previous problem, so that the constraint is

now to have equal distantance to the closest three obstacles.

46

Figure 4.10: Showing the Me solution, detailing the size of volumes from which the
solutions are found.

providing topographical information of the solution.

4.3.2 Intersection of Three Bisectors

The system is also able to solve for the curves representing the Voronoi cell edges

or where two or more cell boundaries intersect. This is shown in Figure 4.11.

These edges can be found for all four models at once, as shown in Figures 4.12

and 4.13.

This constraint can be described in a manner similar to Equation 4.5. Again, a

solution is sought for all points P such that

(4.6)

where B3 = [bf, b~, b~V is the closest point on one of the three closest models, and

b; and b; are defined similarly as in Equation 4.5 and where Bi, B2, B3 are all on

different models.

This problem adds a constraint to the previous problem, so that the constraint is

now to have equal distantance to the closest three obstacles.

47

Figure 4.11: Intersection of three bisector surfaces, or bisector edges.

Figure 4.12: Bisector curves for four models, found using Monte Carlo optimization.

47

'.

'.

Figure 4.11: Intersection of three bisector surfaces, or bisector edges.

Figure 4.12: Bisector curves for four models, found using Monte Carlo optimization.

48

Figure 4.13: Bisector curves for four models using only configuration space subdi­
vision. The individual points are so close together that they appear to be a solid
line.

This problem is solved using subdivision by itself in Figure 4.13, and then with

MC optimization in Figure 4.12. The timing and memory usage for each solution are

presented in Table 4.6. As the table results indicate, a solution to the problem using

MC optimization is found in 1.86% the time needed without it. The table also shows

the much smaller memory footprint, only requiring 20 MB instead of 79 MB.

As explained above, these gains are because MC optimization allows termination

of the subdivision process earlier.

4.3 .3 Intersection of Six Bisectors

From the previous examples and images, it can be seen that there is a single point

at which all these curves intersect, which is also the point where all six bisecting

surfaces intersect. It would also be considered a vertex in the generalized Voronoi

diagram.

The solution is shown in Figure 4.14. This constraint would be described as

having equal distantance to the four closest objects, thus increasing the number of

48

Figure 4.13: Bisector curves for four models using only configuration space subdi­
vision. The individual points are so close together that they appear to be a solid
line.

This problem is solved using subdivision ·by itself in Figure 4.13, and then with

Me optimization in Figure 4.12. The timing and memory usage for each solution are

presented in Table 4.6. As the table results indicate, a solution to the problem using

Me optimization is found in 1.86% the time needed without it. The table also shows

the much smaller memory footprint, only requiring 20 MB instead of 79 MB.

As explained above, these gains are because Me optimization allows termination

of the subdivision process earlier.

4.3.3 Intersection of Six Bisectors

From the previous examples and images, it can be seen that there is a single point

at which all these curves intersect , which is also the point where all six bisecting

surfaces intersect. It would also be considered a vertex in the generalized Voronoi

diagram.

The solution is shown in Figure 4.14. This constraint would be described as

having equal distantance to the four closest objects, thus increasing the number of

49

Table 4.6: Timing and memory usage comparison for finding the
bisector curves of four objects shown in Figures 4.12 and 4.13.

method time(sec) memory CS precision MC precision
CS
MC

54.344
1.011

79 MB
20 MB

1.0 x 1 0 - 2

1.0 x 10°
N/A

1.0 x 1 0 - 2

Figure 4.14: Intersection point of six bisectors solved using MC optimization.

Table 4.6: Timing and memory usage comparison for finding the
bisector curves of four objects shown in Figures 4.12 and 4.13.

method t ime(sec) memory CS precision MC precision
CS 54.344 79MB 1.0 x 10 .:l NjA
MC 1.011 20MB 1.0 x 10° 1.0 X 10- 2

Figure 4.14: Intersection point of six bisectors solved using MC optimization.

49

50

constraints. More precisely a solution is sought for the point P, such that

d(P, B1) = d(P, B2) = d(P, 5 3) = d{P, BA) (4.7)

where the bj,b2,bf components are defined the same as Equations 4.5,4-6, and B* =

[frf, b\, b^[T is the closest point on one of the four closest models, where B1, B2, B 3 , B4

are all on different models.

The constraint is solved using both methods again. The results for using Monte

Carlo optimization are shown in Figure 4.14, while the results for subdivision by itself

are in Figure 4.15. The point in Figure 4.15 may look a little larger than normal, this

is because a collection of configuration volumes satisfy this constraint within an error

e are visible, as shown in Figure 4.16. When the solution is a point, an error causese

that a ball around the solution point satisfies the constraint.

The runtime and memory usage are shown in Table 4.7. Again, MC optimization

is able to terminate subdivision earlier and solve to a point solution. Without the

MC step, subdivision must continue further. The difference is not as drastic as in

other cases, but the runtime using MC optimization is still only 20.4% of the runtime

without it, which is still a substantial gain. An additional column is shown displaying

only the data portion of memory usage. Because the memory usage difference is so

small, this closer look is needed to note any difference. The similarity in memory

usage is largely due to the minimal configuration space subdivision in both cases,

caused by the overconstraint of the problem. Potential areas are "trimmed" from

the final solution early because of the strict constraints on the solution. Figure 4.17

shows all the cells in the configuration space subdivision only case, to emphasize that

most cells are trimmed at a very large size. This causes a fast runtime for both cases,

as well as a very small memory overhead.

50

constraints. More precisely a solution is sought for the point ft, such that

(4.7)

where the bi, bT, br components are defined the same as Equations 4.5,4.6, and E4 =

rbi, b~, b§lT is the closest point on one of the four closest models, where EI, E2, E3, E4

are all on different models.

The constraint is solved using both methods again. The results for using Monte

Carlo optimization are shown in Figure 4.14, while the results for subdivision by itself

are in Figure 4.15. The point in Figure 4.15 may look a little larger than normal, this

is because a collection of configuration volumes satisfy this constraint within an error

E are visible, as shown in Figure 4.16. When the solution is a point, an error causese

that a ball around the solution point satisfiet:> the constraint.

The runtime and memory usage are shown in Table 4.7. Again, MC optimization

is able to terminate subdivision earlier and solve to a point solution. Without the

MC step, subdivision must continue further. The difference is not as drastic as in

other cases, but the runtime using MC optimization is still only 20.4% of the runtime

without it, which is still a substantial gain. An additional column is shown displaying

only the data portion of memory usage. Because the memory usage difference is so

small, this closer look is needed to note any difference. The similarity in memory

usage is largely due to the minimal configuration space subdivision in both cases,

caused by the overconstraint of the problem. Potential areas are "trimmed" from

the final solution early because of the strict constraints on the solution. Figure 4.17

shows all the cells in the configuration space subdivision only case, to emphasize that

most cells are trimmed at a very large size. This causes a fast runtime for both cases,

as well as a very small memory overhead.

51

Figure 4.15: Intersection point of six bisectors solved only using configuration space
subdivision.

Figure 4.16: Close up view of the solution, showing that there is actually a collection
of solutions.

Table 4.7: Timing and memory usage comparison for finding the intersection point
of all the bisector surfaces, shown in Figures 4.14 and 4.15.

method time(sec) memory data only mem CS precision MC precision
CS
MC

0.299
0.061

17 MB
17 MB

8664 KB
8660 KB

1.0 x 10- 2

1.0 x 10°
N/A

1.0 x 10~2

51

Figure 4.15: Intersection point of six bisectors solved only using configuration space
subdivision.

Figure 4.16: Close up view of the solution, showing that there is actually a collection
of solutions.

Table 4.7: Timing and memory usage comparison for finding the intersection point
of all the bisector surfaces, shown in Figures 4.14 and 4.15.

method time(sec) memory data only mem CS precision MC precision
CS 0.299 17 MB 8664 KB 1.0 x 10 -2 N/A
MC 0.061 17 MB 8660 KB 1.0 x 10° 1.0 X 10- 2

52

Figure 4.17: All cells are shown depicting how the majority of cells are trimmed early
due to the very tight constraint for this problem. This results in a fast runtime and
low memory usage, even for the subdivision-only solution.

4.3.4 Overconstraint

Sections 4.3.2 and 4.3.3 show that to reduce the size of the solution, a constraint

can be added to the problem being solved. In order to move from a surface solution

to a curve solution, one constraint

d(P,obj l) = d(P,obj2) (4.8)

was increased to two constraints,

d(P,obj l) = d(P,obj2) (4.9)

and

d(P,obj2) = d(P,obj3) (4.10)

Likewise in order to move from a curve solution to a single point solution, two con­

straints were increased to three constraints.

By adding constraints to the problem, also termed overconstraining the solution,

52

Figure 4.17: All cells are shown depicting how the majority of cells are trimmed early
due to the very tight constraint for this problem. This results in a fast runtime and
low memory usage, even for the subdivision-only solution.

4.3.4 Overconstraint

Sections 4.3.2 and 4.3.3 show that to reduce the size of the solution, a constraint

can be added to the problem being solved. In order to move from a surface solution

to a curve solution, one constraint

d(P, obj1) = d(P, obj2), (4.8)

was increased to two constraints,

d(P, obj1) = d(P, obj2) (4.9)

and

d(P, obj2) = d(P, obj3) (4.10)

Likewise in order to move from a curve solution to a single point solution, two con-

straints were increased to three constraints.

By adding constraints to the problem, also termed overconstraining the solution,

53

the number of points that need to be found for the solution is reduced, which is

desirable in higher dimensional problems where solutions become hypersurfaces.

More generally, by overconstraining some problems the most important points, or

points of interest, of the solution can be found. Having the points of interest of the

final solution can give an idea of the complete solution, and may possibly be used for

the final solution. We take this position with the solution to the higher dimensional

path planning problems as well, by overconstraining to find important points which

may be used to give an idea of the complete solution.

4.3.5 Solution Size

4.3.5.1 Solution Sparsity

This approach to speeding up solutions leads to some discussion on the sparsity

or density of a solution. The sparsity of a solution is either indicated visually by a

sparse set of solution points, or by the number of solutions reported in the timing

and memory table. The solutions in Figures 4.8 and 4.7 show very clearly differences

in the sparsity of solutions to the same problem. Both solutions consist of points and

to reconstruct the complete solution interpolation will be used. Interpolation can

introduce some error from the exact solution and interpolating a more sparse set of

points for the same solution will result in an interpolation error less than or equal to

that of a more dense solution set. This introduces a tradeoff between speedups gained

by solving a more sparse set of points and error introduced in the final interpolated

solution due to the sparsity.

This tradeoff would have to be evaluated for each application of this approach and

the sparsity of the solution adjusted as needed. Where a more exact solution is needed,

the more dense solution, resulting in a slower solution time, would be needed. Where

speed is more important, density of the solution can be sacrificed to gain the needed

speedup. One exception to this tradeoff is for a problem whose solution is a single

point. In that case there is no interpolation needed to regain the complete solution

and consequently no interpolation error resulting from the reconstruction. This means

53

the number of points that need to be found for the solution is reduced, which is

desirable in higher dimensional problems where solutions become hypersurfaces.

More generally, by overconstraining some problems the most important points, or

points of interest, of the solution can be found. Having the points of interest of the

final Holution can give an idea of the complete Holution, and may possibly be used for

the final Holution. We take this position with the solution to the higher dimensional

path planning problems as well. by overconstraining to find important points which

may be used to give an idea of the complete solution.

4.3.5 Solution Size

4.3.5.1 Solution Sparsity

This approach to speeding up solutions leads to some discussion on the sparsity

or density of a solution. The sparsity of a solution is either indicated visually by a

sparse set of solution points, or by the number of solutions reported in the timing

and memory table. The solutions in Figures 4.8 and 4.7 show very clearly differences

in the sparsity of solutions to the same problem. Both solutions consist of points and

to reconstruct the complete solution interpolation will be used. Interpolation can

introduce some error from the exact solution and interpolating a more sparse set of

points for the same solution will result in an interpolation error less than or equal to

that of a more dense solution set. This introduces a tradeoff between speedups gained

by solving a more sparse set of points and error introduced in the final interpolated

solution due to the sparsity.

This tradeoff would have to be evaluated for each application of this approach and

the sparsity of the solution adjusted as needed. Where a more exact solution is needed,

the more dense solution, resulting in a slower solution time, would be needed. Where

speed is more important, density of the solution can be sacrificed to gain the needed

speedup. One exception to this tradeoff is for a problem whose solution is a single

point. In that case there is no interpolation needed to regain the complete solution

and consequently no interpolation error resulting from the reconstruction. This means

54

that any speedup gained from this approach has no tradeoff to be concerned about.

Such a problem was shown in Section 4.3.3.

4.3.5.2 Error Tolerance

Another contribution to the size of a solution is the error tolerance. A larger error

tolerance provides that a larger set of points will satisfy the constraint to that error.

This results in a larger solution size for problems with a larger error tolerance and

conversely, a smaller solution size for problems with a smaller error tolerance.

An very illustrative example was shown in Figures 4.15 and 4.16. By looking

closely at the solution, we see in Figure 4.16 that there is a collection of points that

satisfy the constraint to the error tolerance indicated. This solution set is actually a

ball around the exact solution point with radius directly related to the error tolerance.

As the error tolerance gets smaller the size of the ball enclosing all solutions satisfying

also gets smaller. With an error tolerance of 0 there would only be the exact solution

point.

In solution geometry other than a point, for example a curve or a surface, a similar

solution set enlargement occurs. Consider Figure 4.9, where the exact solutions would

be the bisecting surfaces, but in that instance the solutions look more like volumes,

because the error tolerance is so large. Again, a larger error tolerance allows more

points to satisfy the constraint, enlarging the solution set.

4.4 Robot Path Planning Problems

4.4.1 Generalized Voronoi Diagram

This section discusses one approach to robot path planning and how to solve it

using configuration space subdivision and then improves that solution using Monte

Carlo optimization.

The ultimate goal of path planning is to find a path through workspace that avoids

all obstacles, from some beginning point to some ending point. One approach to this

54

that any speedup gained from this approach has no tradeoff to be concerned about.

Such a problem was shown in Section 4.3.3.

4.3.5.2 Error Tolerance

Another contribution to the size of a solution is the error tolerance. A larger error

tolerance provides that a larger set of points will satisfy the constraint to that error.

This results in a larger solution size for problems with a larger error tolerance and

conversely, a smaller solution size for problems with a smaller error tolerance.

An very illustrative example was shown in Figures 4.15 and 4.16. By looking

closely at the solution, we see in Figure 4.16 that there is a collection of points that

satisfy the constraint to the error tolerance indicated. This solution set is actually a

ball around the exact solution point with radius directly related to the error tolerance.

As the error tolerance gets smaller the size of the ball enclosing all solutions satisfying

also gets smaller. With an error tolerance of 0 there would only be the exact solution

point.

In solution geometry other than a point, for example a curve or a surface, a similar

solution set enlargement occurs. Consider Figure 4.9, where the exact solutions would

be the bisecting surfaces, but in that instance the solutions look more like volumes,

because the error tolerance is so large. Again, a larger error tolerance allows more

points to satisfy the constraint, enlarging the solution set.

4.4 Robot Path Planning Problems

4.4.1 Generalized Voronoi Diagram

This section discusses one approach to robot path planning and how to solve it

using configuration space subdivision and then improves that solution using Monte

Carlo optimization.

The ultimate goal of path planning is to find a path through workspace that avoids

all obstacles, from some beginning point to some ending point. One approach to this

55

is to construct the Generalized Voronoi Diagram of the entire configuration space,

and then by following the Voronoi cell edges, the robot will be at a position with the

same distance between it and the closest n obstacles.

In essence, if all the configurations of the robot, which place it in the generalized

Voronoi diagram of the configuration space, can be found they can be used to plan

from an initial starting point to the end point. This approach assumes the initial and

end points are either in the Voronoi diagram or can be connected to it trivially.

4.4.1.1 Specific Setup

The path planning problem consists of using a translating (in two dimensions)

rotating (on one axis) robot, resulting in a three-dimensional configuration space.

There are three obstacles placed in the workspace, which need to be planned around.

First, the generalized Voronoi diagram of the configuration space is found. Once

the configuration space Voronoi diagram is found, those results can be used to plan

a path through the workspace.

4.4.1.2 Results

The generalized Voronoi diagram is found using configuration space subdivision

by itself, to the indicated precision. The result is shown in Figure 4.18, and the

runtime statistics are in Table 4.8.

In order to reach the desired precision, the configuration space subdivision must

subdivide until the individual hypercubes are no larger than the precisions specified

(in this way it guarantees that the solution is to that precision). Because each level

of the configuration subdivision is stored, the memory footprint can also increase

dramatically (essentially storing a very large binary tree). The specified precision

requires 1.6 GB of memory.

By using Monte Carlo optimization, the subdivision is stopped with a higher

error tolerance, and then use Monte Carlo optimization is used to find a more precise

55

is to construct the Generalized Voronoi Diagram of the entire configuration space,

and then by following the Voronoi cell edges, the robot will be at a position with the

same distance between it and the closest n obstacles.

In essence, if all the configurations of the robot, which place it in the generalized

Voronoi diagram of the configuration space, can be found they can be used to plan

from an initial starting point to the end point. This approach assumes the initial and

end points are either in the Voronoi diagram or can be connected to it trivially.

4.4.1.1 Specific Setup

The path planning problem consists of using a translating (in two dimensions)

rotating (on one axis) robot, resulting in a three-dimensional configuration space.

There are three obstacles placed in the workspace, which need to be planned around.

First, the generalized Voronoi diagram of the configuration space is found. Once

the configuration space Voronoi diagram is found, those results can be used to plan

a path through the workspace.

4.4.1.2 Results

The generalized Voronoi diagram is found using configuration space subdivision

by itself, to the indicated precision. The result is shown in Figure 4.18, and the

runtime statistics are in Table 4.8.

In order to reach the desired precision, the configuration space subdivision must

subdivide until the individual hypercubes are no larger than the precisions specified

(in this way it guarantees that the solution is to that precision). Because each level

of the configuration subdivision is stored, the memory footprint can also increase

dramatically (essentially storing a very large binary tree). The specified precision

requires 1.6 GB of memory.

By using Monte Carlo optimization, the subdivision is stopped with a higher

error tolerance, and then use Monte Carlo optimization is used to find a more precise

56

Figure 4.18: Robot drawn on the generalized Voronoi diagram, done with configura­
tion space subdivision by itself.

Table 4.8: Runtime statistics for finding the generalized Voronoi diagram.

method time(sec) memory CS precision MC precision solutions
CS 246.17 1.6 GB 1.0 x 10- 1 N/A 1123058
MC 138.09 722 MB 2.0 x 10- 1 1.0 x 10- 1 271568
CS 243.15 1.6 GB 9.0 x 10- 2 N/A 1123058
MC 348.23 248 MB 8.0 x 10- 1 9.0 x 10"2 10359
CS CO CO 1.0 x 10~2 N/A 0
MC 1404.88 805 MB 8.0 x 10- 1 1.0 x 10"2 7065
MC 1548.98 905 MB 8.0 x 10"1 1.0 x 10~3 6284
MC 1582.00 915 MB 8.0 x 10- 1 1.0 x 10- 4 6233
MC 1633.04 938 MB 8.0 x 10"1 1.0 x 10~5 6230
MC 1855.18 1.0 GB 8.0 x 10" 1 1.0 x 10- 6 6223

56

Figure 4.18: Robot drawn on the generalized Voronoi diagram, done with configura­
tion space subdivision by itself.

Table 4.8: Runtime statistics for finding the generalized Voronoi diagram.

method time(sec) memory CS precision MC precision solutions
CS 246.17 1.6 GB 1.0 x 10 · 1 N/A 1123058
MC 138.09 722 MB 2.0 x 10-1 1.0 X 10-1 271568
CS 243.15 1.6 GB 9.0 x 10 -:2 N/A 1123058
MC 348.23 248 MB 8.0 x 10-1 9.0 X 10-2 10359
CS 00 00 1.0 X 10- :2 N/A 0
MC 1404.88 805 MB 8.0 x 10-1 1.0 X 10-2 7065
MC 1548.98 905 MB 8.0 x 10 1 1.0 x 10 -.j 6284
MC 1582.00 915 MB 8.0 x 10-1 1.0 X 10-4 6233
MC 1633.04 938 MB 8.0 x 10-1 1.0 X 10-5 6230
MC 1855.18 1.0 GB 8.0 x 10-1 1.0 X 10-6 6223

57

answer, using a lower error tolerance. The first pair of results listed (one CS and

one MC) show a faster run time using MC optimization, as well as a smaller memory

footprint, see Table 4.8. In the second pair of results, MC optimization takes a

little longer than subdivision, but takes much less memory to compute. The result

of the MC optimization solution is shown in Figure 4.19. These results are more

important if the problem needs to be solved on a computer with less than 1 GB of

memory. Configuration space subdivision by itself ran out of memory at a precision

of 1.0 x 1 0 - 2 on a machine with 3 GB of memory, this is represented in the table as

taking an infinite amount of time and memory.

Additionally, the last pair of results show another advantage of using MC opti­

mization, to find a solution with an error less than 1.0 x 10~6. Using only configuration

space subdivision, it would have been very difficult to find a solution to the problem

with that precision.

Further, consider the number of solutions for each problem, listed in the table in

the right most column. By comparing the solutions found only with configuration

space subdivision to the solutions found using Monte Carlo optimization, a large dif­

ference in solution count can be seen for a problem of the same precision. The number

of solutions is much greater when solved using only subdivision. This indicates a more

sparse solution when using Monte Carlo optimization, which is similar to the different

sparsity solutions found in the General Constraint Solutions section. Again, there is

a tradeoff between the sparsity of solution and gaining the advantages provided by

the Monte Carlo optimization approach.

Figures 4.18 and 4.19 are actually the projections of the generalized Voronoi di- .

agram in three-dimensional configuration space to the two-dimensional workspace.

This is why the robot arms are not aligned completely with the Voronoi cell bound­

aries, they would in configuration space, but as a projection of that solution into the

two-dimensional workspace they appear differently. Additionally, because the error

margin is only 1.0 x 1 0 _ 1 (in the configuration space only case), this allows for some

57

answer, using a lower error tolerance. The first pair of results listed (one CS and

one MC) show a faster run time using MC optimization, as well as a smaller memory

footprint, see Table 4.8. In the second pair of results, MC optimization takes a

little longer than subdivision, but takes much less memory to compute. The result

of the MC optimization solution is shown in Figure 4.19. These results are more

important if the problem needs to be solved on a computer with less than 1 GB of

memory. Configuration space subdivision by itself ran out of memory at a precision

of 1.0 x 10-2 on a machine with 3 GB of memory, this is represented in the table as

taking an infinite amount of time and memory.

Additionally, the last pair of results show another advantage of using MC opti­

mization, to find a solution with an error less than 1.0 x 10-6
. Using only configuration

space subdivision, it would have been very difficult to find a solution to the problem

with that precision.

Further, consider the number of solutions for each problem, listed in the table in

the right most column. By comparing the solutions found only with configuration

space subdivision to the solutions found using Monte Carlo optimization, a large dif­

ference in solution count can be seen for a problem of the same precision. The number

of solutions is much greater when solved using only subdivision. This indicates a more

sparse solution when using Monte Carlo optimization, which is similar to the different

sparsity solutions found in the General Constraint Solutions section. Again, there is

a tradeoff between the sparsity of solution and gaining the advantages provided by

the Monte Carlo optimization approach.

Figures 4.18 and 4.19 are actually the projections of the generalized Voronoi di- .

agram in three-dimensional configuration space to the two-dimensional workspace.

This is why the robot arms are not aligned completely with the Voronoi cell bound­

aries, they would in configuration space, but as a projection of that solution into the

two-dimensional workspace they appear differently. Additionally, because the error

margin is only 1.0 x 10-1 (in the configuration space only case), this allows for some

58

Figure 4.19: Robot drawn on the generalized Voronoi diagram, done with Monte
Carlo optimization.

visual error showing in Figure 4.18. The positions shown are only a selection of all

solutions found, in order to make the individual robots more visible.

Once the decomposition is complete and the configurations of the robot that make

up the Voronoi diagram are found, an actual robot path can be found through these

solutions. The result is shown in Figure 4.20. This path was created by constructing a

graph out of the solution cells, and then using Dijktra's algorithm to find the shortest

path between the inital and final position. This results in a path that is always

on the Voronoi diagram, but that is optimized as the shortest path. Variations on

this approach could be taken, for example weighting the edges of the graph by their

distance from the obstacles in order to find the path furthest from all obstacles (the

"safest" path).

4.4.2 Important Point Solutions

4.4.2.1 How Important Points Can Be Used

As discussed in Section 2.3, in robot path planning configuration space can be

thought of as being partitioned into distinct areas (not necessarily contiguous), free

58

Figure 4.19: Robot drawn on the generalized Voronoi diagram, done with Monte
Carlo optimization.

visual error showing in Figure 4.18. The positions shown are only a selection of all

solutions found , in order to make the individual robots more visible.

Once the decomposition is complete and the configurations of the robot that make

up the Voronoi diagram are found, an actual robot path can be found through these

solutions. The result is shown in Figure 4.20. This path was created by constructing a

graph out of the solution cells, and then using Dijktra's algorithm to find the shortest

path between the inital and final position. This results in a path that is always

on the Voronoi diagram, but that is optimized as the shortest path. Variations on

this approach could be taken, for example weighting the edges of the graph by their

distance from the obstacles in order to find the path furthest from all obstacles (the

"safest" path).

4.4.2 Important Point Solutions

4.4.2.1 How Important Points Can Be Used

As discussed in Section 2.3, in robot path planning configuration space can be

thought of as being partitioned into distinct areas (not necessarily contiguous) , free

59

Figure 4.20: After creating the generalized Voronoi diagram using MC optimization, a
start position is connected to a finish position to create a path through the workspace.

space or C f r e e , where the robot can move freely, and collision space or C 0 ^ g , where

the robot will collide with an obstacle. Once these spaces are accurately described,

especially the boundaries between the free and collision spaces, path planning can be

done in a pretty straightforward manner, move from start point to end point using

only the free configuration space.

In higher dimensional configuration space, determining the boundary between

collision space and free space can be very challenging. Configuration space decom­

position attempts to decompose the high dimensional configuration space, but will

quickly run out of memory on modern computers.

We propose one starting point at which to approach this problem. Using con­

figuration space subdivision and Monte Carlo optimization, "important points" can

be found in the configuration space. These are points in space where changes in the

free or collision space occur. We call them important points instead of critical points

to emphasize that they enclose a more broad description than traditional use of the

term "critical point."

For example, consider a two-dimensional problem involving a grounded, two link

rotational robot arm. The solution is found for all configurations in the configuration

59

Figure 4.20: After creating the generalized Voronoi diagram using MC optimization, a
start position is connected to a finish position to create a path through the workspace.

space or Cfree' where the robot can move freely, and collision space or Cobs, where

the robot will collide with an obstacle. Once these spaces are accurately described,

especially the boundaries between the free and collision spaces, path planning can be

done in a pretty straightforward manner, move from start point to end point using

only the free configuration space.

In higher dimensional configuration space, determining the boundary between

collision space and free space can be very challenging. Configuration space decom-

position attempts to decompose the high dimensional configuration space, but will

quickly run out of memory on modern computers.

We propose one starting point at which to approach this problem. Using con-

figuration space subdivision and Monte Carlo optimization, "important points" can

be found in the configuration space. These are points in space where changes in the

free or collision space occur. We call them important points instead of critical points

to emphasize that they enclose a more broad description than traditional use of the

term "critical point."

For example, consider a two-dimensional problem involving a grounded, two link

rotational robot arm. The solution is found for all configurations in the configuration .

60

space for which the two link arm collides with an obstacle. The solution is shown

in Figure 4.21 drawn in workspace, and in Figure 4.22 drawn in configuration space.

Because it is only a two-dimensional configuration space a solution can be found for

the entire collision-freespace boundary, indicated by the boundary. To clarify, the

boundary is all the points in configuration space where the distance between the

robot and obstacles becomes zero, which indicates the boundary between free and

collision space.

Viewing the solution for the important points of this problem shows how they fit

into the complete picture. First, the solution for every configuration where the robot

collides with the obstacle(s) twice is shown. The solution drawn in workspace is shown

in Figure 4.23, and in configuration space in Figure 4.24. Comparing Figures 4.22

and 4.24 reveals that they match up quite well, and the solution areas in Figure 4.24

are points in the complete solution where the shape of the boundary changes. This

comparison is shown in Figure 4.25, the arrows indicating where the two diagrams

correspond.

The following solution solves for all positions where the robot collides with only the

very tip of the end-effector. A solution is shown in Figure 4.26 drawn in workspace,

and in Figure 4.27 drawn in configuration space. By comparing these results to the

complete solution in Figure 4.22, some correlation becomes apparent. These solution

points seem to correlate with some of the ridges in the complete solution, as indicated

in Figure 4.28.

In cases where complete solution is difficult to find, even by just solving for these

two types of important points, an idea of the shape of the complete solution begins

to become apparent.

In this vein of thought, while it may not be possible to represent the entire collision

hypersurface of a high dimensional problem using configuration space subdivision

and Monte Carlo optimization, it would still seem useful to detect these important

points. By identifying these important points, an idea of the shape of the complete

60

space for which the two link arm collides with an obstacle. The solution is shown

in Figure 4.21 drawn in workspace, and in Figure 4.22 drawn in configuration space.

Because it is only a two-dimensional configuration space a solution can be found for

the entire collision-freespace boundary, indicated by the boundary. To clarify, the

boundary is all the points in configuration space where the distance between the

robot and obstacles becomes zero, which indicates the boundary between free and

collision space.

Viewing the solution for the important points of this problem shows how they fit

into the complete picture. First, the solution for every configuration where the robot

collides with the obstacle(s) twice is shown. The solution drawn in workspace is shown

in Figure 4.23, and in configuration space in Figure 4.24. Comparing Figures 4.22

and 4.24 reveals that they match up quite well, and the solution areas in Figure 4.24

are points in the complete solution where the shape of the boundary changes. This

comparison is shown in Figure 4.25, the arrows indicating where the two diagrams

correspond.

The following solution solves for all positions where the robot collides with only the

very tip of the end-effector. A solution is shown in Figure 4.26 drawn in workspace,

and in Figure 4.27 drawn in configuration space. By comparing these results to the

complete solution in Figure 4.22, some correlation becomes apparent. These solution

points seem to correlate with some of the ridges in the complete solution, as indicated

in Figure 4.28.

In cases where complete solution is difficult to find, even by just solving for these

two types of important points, an idea of the shape of the complete solution begins

to become apparent.

In this vein of thought, while it may not be possible to represent the entire collision

hypersurface of a high dimensional problem using configuration space subdivision

and Monte Carlo optimization, it would still seem useful to detect these important

points. By identifying these important points, an idea of the shape of the complete

61

Figure 4.22: All configurations (to a precision of
robot collides, drawn in configuration space.

1.0 x 10~2) for which the two link

61

Figure 4.21: Showing a sampling of all configurations for which the two link robot
collides, drawn in workspace.

Figure 4.22: All configurations (to a precision of 1.0 x 10-2
) for which the two link

robot collides, drawn in configuration space.

62

Figure 4.24: All configurations (to a precision of 1.0 x 10 2) for which the two link
robot collides twice, drawn in configuration space.

62

Figure 4.23: Showing a sampling of all configurations for which the two link robot
collides twice, drawn in workspace.

J
I

1--
I

~

.. , _
I -- " ,-_ "

1iT
iltH

- clP-1T
-

1 .. "

t

I

Figure 4.24: All configurations (to a precision of 1.0 x 10-2
) for which the two link

robot collides twice, drawn in configuration space.

63

Figure 4.26: Showing a sampling of all configurations for which the two link robot
collides with only its tip, drawn in workspace.

63

Figure 4.25: Showing how the important point solutions for double collisions relate
back to the complete solutions, points where the shape of collision space changes.

Figure 4.26: Showing a sampling of all configurations for which the two link robot
collides with only its tip, drawn in workspace.

64

Figure 4.27: All configurations (to a precision of 1.0 x 10 2) for which the two link
robot collides with only its tip, drawn in configuration space.

Figure 4.28: Showing how the important point solutions for tip-collisions relate back
to the complete solutions, points where the shape of collision space changes.

64

__ I
1 __ II I

I I -_J~t! in+- 'HH

--
!!IhI

I '1110,
..w

I H"t't

I ~-f I --r-

I
I
I

:

I

}--------

TI
. --- --• I

I::L -

~-T
I f'11IiT I

I _______ tt __ J __ I
t_-~J=-=

Figure 4.27: All configurations (to a precision of 1.0 x 10- 2) for which the two link
robot collides with only its tip , drawn in configuration space.

Figure 4.28: Showing how the important point solutions for tip-collisions relate back
to the complete solutions, points where the shape of collision space changes.

65

hypersurface can be gained.

A discussion of a few of these important points and success in finding them is

presented, particularly how Monte Carlo optimization has performed.

4.4.2.2 Overconstrained Voronoi Solutions

One set of important points that are more helpful to understand the generalized

Voronoi diagram in a high dimension, rather than the complete CQ^S and C f r e e

boundary, although useful in both cases, are overconstraints of the Voronoi constraint

problem itself.

In this example, another constraint is added to the Voronoi solution presented in

the previous section. The constraint before was that the distance to the two nearest

obstacles be equal. To overconstrain that is increased to three, so that the distance

to the three nearest obstacles must be equal. The result is shown in Figure 4.29,

solved using only subdivision. The solution using Monte Carlo optimization is shown

in Figure 4.30, and the runtime statistics for both are listed in Table 4.9.

The results indicate that with any error tolerance larger than 1.0 x 1 0 - 2 , using

subdivision by itself is actually better, it uses less memory in most cases and does it

faster in all of them. However, if the solution needs to have an error tolerance less

than 1.0 x 1 0 - 2 , only the MC optimization approach can find an answer. In fact, to

display the advantage in finding solutions of high precision, Table 4.9 displays results

with solution precision up to 1.0 x 1 0 - 6 , this would be very difficult to achieve with

subdivision alone.

One of the reasons motivating the search for the important points in the Voronoi

diagram, are for situations where higher dimensional problems needs to be solved.

In these situations, these important points of the Voronoi diagram can be found,

indicating areas in configuration space that are equidistant from three or more obsta­

cles, and then used to either reconstruct the entire Voronoi diagram, or simply aid in

constructing the complete picture of the CQ^S and C f r e e boundaries.

65

hypersurface can be gained.

A discussion of a few of these important points and success in finding them is

presented, particularly how Monte Carlo optimization has performed.

4.4.2.2 Overconstrained Voronoi Solutions

One set of important points that are more helpful to understand the generalized

Voronoi diagram in a high dimension, rather than the complete Cobs and Cfree

boundary, although useful in both cases, are overconstraints of the Voronoi constraint

problem itself.

In this example, another constraint is added to the Voronoi solution presented in

the previous section. The constraint before was that the distance to the two nearest

obstacles be equal. To overconstrain that is increased to three, so that the distance

to the three nearest obstacles must be equal. The result is shown in Figure 4.29,

solved using only subdivision. The solution using Monte Carlo optimization is shown

in Figure 4.30, and the runtime statistics for both are listed in Table 4.9.

The results indicate that with any error tolerance larger than 1.0 x 10-2 , using

subdivision by itself is actually better, it uses less memory in most cases and does it

faster in all of them. However, if the solution needs to have an error tolerance less

than 1.0 x 10-2 , only the MC optimization approach can find an answer. In fact, to

display the advantage in finding solutions of high precision, Table 4.9 displays results

with solution precision up to 1.0 X 10-6 , this would be very difficult to achieve with

subdivision alone.

One of the reasons motivating the search for the important points in the Voronoi

diagram, are for situations where higher dimensional problems needs to be solved.

In these situations, these important points of the Voronoi diagram can be found,

indicating areas in configuration space that are equidistant from three or more obsta­

cles, and then used to either reconstruct the entire Voronoi diagram, or simply aid in

constructing the complete picture of the Cobs and Cfree boundaries.

66

Figure 4.29: One link translating and rotating (three-dimensional configuration space)
robot, Voronoi center point. 1.0 x 1 0 - 2 precision using only subdivision.

Figure 4.30: One link translating and rotating (three-dimensional configuration space)
robot, Voronoi important point. 1.0 x 10~4 precision using MC optimization.

66

Figure 4.29: One link translating and rotating (three-dimensional configuration space)
robot , Voronoi center point. 1.0 x 10-2 precision using only subdivision.

Figure 4.30: One link translating and rotating (three-dimensional configuration space)
robot , Voronoi important point. 1.0 x 10- 4 precision using Me optimization.

67

Table 4.9: Runtime statistics for finding the generalized Voronoi diagram
center point.

method time(sec) memory CS precision MC precision solutions
CS 15.01 60 MB 1.0 x lO" 1 N/A 14767
MC 18.01 954 MB 2.0 x lO" 1 1.0 x lO" 1 8060
MC 21.01 39 MB 3.0 x 10" 1 1.0 x lO" 1 2972
CS 63.04 335 MB 1.0 x 10~2 N/A 124407
MC oo oo 1.0 x 10"1 1.0 x lO" 2 0
MC 2086.77 1.1 GB 2.0 x lO" 1 1.0 x lO" 2 2708
MC 459.29 260 MB 3.0 x 10- 1 1.0 x 10" 2 964
CS oo oo 1.0 x 10~3 N/A 0
MC oo CO 1.0 x lO" 1 1.0 x 10~3 0
MC 2455.62 1.2 GB 2.0 x 10"1 1.0 x 10~3 2107
MC 522.34 292 MB 3.0 x lO" 1 1.0 x lO" 3 886
MC 567.36 308 MB 3.0 x lO" 1 1.0 x 10~4 880
MC 1119.71 580 MB 3.0 x lO" 1 1.0 x lO" 5 157
MC 1174.45 606 MB 3.0 x 10- 1 1.0 x 10~6 2

4.4.2.3 Tip Collision Detection

Tip collision is a collision involving nothing but the very tip of the end-effector

of the robot and any obstacle. If C 0 ^ s is a surface, the tip collision would represent

a boundary tip on that surface, an area in configuration space at which the collision

space changes from describing where there is no collision to where there is exactly

one tip of collision. This appears as a point in lower dimensions, but because of the

potential multiplicity of arrangements made possible with more segments in a robot

arm, the solution can become a surface. (See Figures 4.26 and 4.27 for an example of

this in two dimensions.)

4.4.2.3.1 Three link, nontranslating, rotational robot with one tip col­

lision. One problem we are able to solve and improve upon with MC optimization

is the single tip collision of a three link, nontranslating robot.

Results are presented from two subsets of the same problem. First the rotation

freedom of the robot is restricted to 180 degrees for each joint. Then a solution is

found when the joints are allowed to rotate the full 360 degrees.

This contrast presents an appreciation for the size of the 360 degree problem.

Table 4.9: Runtime statistics for finding the generalized Voronoi diagram
center point.

method time(sec) memory CS precision MC precision solutions
CS 15.01 60 MB 1.0 x 10 1 NjA 14767
MC 18.01 954 MB 2.0 x 10-1 1.0 X 10-1 8060
MC 21.01 39 MB 3.0 x 10-1 1.0 X 10-1 2972
CS 63.04 335 MB 1.0 x 10 2 NjA 124407
MC 00 00 1.0 X 10-1 1.0 X 10-2 0
MC 2086.77 1.1 GB 2.0 x 10-1 1.0 X 10-2 2708
MC 459.29 260 MB 3.0 x 10-1 1.0 X 10-2 964
CS 00 00 1.0 x 10 -is NjA 0
MC 00 00 1.0 X 10-1 1.0 X 10-3 0
MC 2455.62 1.2 GB 2.0 x 10-1 1.0 X 10-3 2107
MC 522.34 292 MB 3.0 x 10-1 1.0 X 10-3 886
MC 567.36 308 MB 3.0 x 10 1 1.0 X 10-4 880
MC 1119.71 580 MB 3.0 x 10-1 1.0 X 10-5 157
MC 1174.45 606 MB 3.0 x 10-1 1.0 X 10-6 2

4.4.2.3 Tip Collision Detection

67

Tip collision is a collision involving nothing but the very tip of the end-effector

of the robot and any obstacle. If Cobs is a surface, the tip collision would represent

a boundary tip on that surface, an area in configuration space at which the collision

space changes from describing where there is no collision to where there is exactly

one tip of collision. This appears as a point in lower dimensions, but because of the

potential multiplicity of arrangements made possible with more segments in a robot

arm, the solution can become a surface. (See Figures 4.26 and 4.27 for an example of

this in two dimensions.)

4.4.2.3.1 Three link, nontranslating, rotational robot with one tip col-

lision. One problem we are able to solve and improve upon with MC optimization

is the single tip collision of a three link, nontranslating robot.

Results are presented from two subsets of the same problem. First the rotation

freedom of the robot is restricted to 180 degrees for each joint. Then a solution is

found when the joints are allowed to rotate the full 360 degrees.

This contrast presents an appreciation for the size of the 360 degree problem.

68

Additionally, these results allow easier comparison with later results for a five link

robot which was only solved by limiting to 180 degree rotation freedom (360 was too

large a problem).

First results are presented that only allow 180 degrees of rotation.

This problem is represented in three-dimensional configuration space. The prob­

lem is first solved using only configuration space subdivision, as shown in Figure 4.31.

While this is not a necessarily hard problem for only configuration subdivision to do,

using Monte Carlo optimization demonstrates a speedup. The solution is shown in

Figure 4.32. The computation time and memory usage for each solution are shown

in Table 4.10. As the table shows, configuration subdivision was able to solve the

problem in 81.05 seconds, while with the Monte Carlo optimization extension it was

able to solve it in only 51.03 seconds (using a CS precision of 2.0 x 1 0 _ 1) . Addi­

tionally, alone CS was able to solve the problem using 203MB, while with MC the

solution only required 16MB. While either memory size could be easily handled by

most modern computers, it is important to note how much using MC reduced the

memory footprint: 7.8% of the original size.

Next results are presented where the joints are given the full 360 degrees of rotation

freedom.

The problem is first solved using subdivision by itself, shown in Figure 4.33. The

results of using Monte Carlo optimization are shown in Figure 4.34. The runtime

statistics are presented in Table 4.11. As the table shows, MC optimization finds the

solution slower, but saves a lot in memory usage, only using 11.9% of the subdivision

only solution. This would be critical if the target machine only had under 1 GB of

memory.

Additionally, when the target precision is 1.0 x 1 0 - 3 , the subdivision only approach

runs out of memory, while the solution using MC optimization only requires a few

hundred MB of memory. It is important to note that using MC optimization provides

a way for solving to a precision unreachable with subdivision alone, thus extending

68

Additionally, these results allow easier comparison with later results for a five link

robot which was only solved by limiting to 180 degree rotation freedom (360 was too

large a problem).

First results are presented that only allow 180 degrees of rotation.

This problem is represented in three-dimensional configuration space. The prob­

lem is first solved using only configuration space subdivision, as shown in Figure 4.31.

While this is not a necessarily hard problem for only configuration subdivision to do,

using Monte Carlo optimization demonstrates a speedup. The solution is shown in

Figure 4.32. The computation time and memory usage for each solution are shown

in Table 4.10. As the table shows, configuration subdivision was able to solve the

problem in 81.05 seconds, while with the Monte Carlo optimization extension it was

able to solve it in only 51.03 seconds (using a CS precision of 2.0 x 10-1
). Addi­

tionally, alone CS was able to solve the problem using 203MB, while with MC the

solution only required 16MB. While either memory size could be easily handled by

most modern computers, it is important to note how much using MC reduced the

memory footprint: 7.8% of the original size.

Next results are presented where the joints are given the full 360 degrees of rotation

freedom.

The problem is first solved using subdivision by itself, shown in Figure 4.33. The

results of using Monte Carlo optimization are shown in Figure 4.34. The runtime

statistics are presented in Table 4.11. As the table shows, MC optimization finds the

solution slower, but saves a lot in memory usage, only using 11.9% of the subdivision

only solution. This would be critical if the target machine only had under 1 GB of

memory.

Additionally, when the target precision is 1.0 x 10-3 , the subdivision only approach

runs out of memory, while the solution using MC optimization only requires a few

hundred MB of memory. It is important to note that using MC optimization provides

a way for solving to a precision unreachable with subdivision alone, thus extending

69

Figure 4.31: Nontranslating three link robot rotational drawn in configurations at
which it collides with obstacles only with the tip of its end effector, found with only
configuration decomposition. Joints have 180 degrees of rotation freedom.

69

Figure 4.31: Nontranslating three link robot rotational drawn in configurations at
which it collides with obstacles only with the tip of its end effector, found with only
configuration decomposition. Joints have 180 degrees of rotation freedom.

70

Table 4.10: Runtime statistics for finding the tip-collision solutions of a
three link nontranslating robot, where joints have 180 degrees of rotation
freedom.

method time(sec) memory CS precision MC precision solutions
CS 81.05 203MB 1.0 x 10- 2 N/A 5743
MC 102.07 24 MB 1.0 x 10- 1 1.0 x 10- 2 14
MC 51.03 16 MB 2.0 x 10- 1 1.0 x 10- 2 co

MC 72.05 19 MB 3.0 x 10- 1 1.0 x 10- 2 9
CS oo oo 1.0 x 10~3 N/A 0
MC 108.07 25 MB 1.0 x 10" 1 1.0 x 10" 3

oo

MC 51.03 16 MB 2.0 x 10- 1 1.0 x 10" 3 3
MC 81.05 21 MB 3.0 x 10" 1 1.0 x 10~3 1

Figure 4.32: Same as Figure 4.31 but using Monte Carlo optimization.

Table 4.10: Runtime statistics for finding the tip-collision solutions of a
three link nontranslating robot, where joints have 180 degrees of rotation
freedom.

method time(sec) memory CS precision MC precision solutions
CS 81.05 203MB 1.0 x 10 2 NjA 5743
MC 102.07 24 MB 1.0 x 10-1 1.0 X 10-2 14
MC 51.03 16 MB 2.0 x 10-1 1.0 X 10-2 3
MC 72.05 19 MB 3.0 x 10-1 1.0 X 10-2 9
CS 00 00 1.0 x 10 .<1 NjA 0
MC 108.07 25 MB 1.0 x 10- 1 1.0 X 10- 3 8
MC 51.03 16 MB 2.0 x 10-1 1.0 X 10-3 3
MC 81.05 21 MB 3.0 x 10-1 1.0 X 10-3 1

70

71

Figure 4.33: Noritranslatirig three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with only configuration
decomposition. Joints have 360 degrees of rotation freedom.

71

Figure 4.33: Nontranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with only configuration
decomposition. Joints have 360 degrees of rotation freedom.

72

Figure 4.34: Noiitranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with MC Optimization.
Joints have 360 degrees of rotation freedom.

72

Figure 4.34: Nontranslating three link robot drawn in configurations at which it col­
lides with obstacles only with the tip of its end effector, found with Me Optimization.
Joints have 360 degrees of rotation freedom.

73

Table 4.11: Runtime statistics for finding the tip-collision solutions of a
three link nontranslating robot where joints have 360 degrees of freedom
(Figures 4.33 and 4.34).

method time(sec) memory CS precision MC precision solutions
CS 930.61 1.9 GB 1.0 x 10~2 N/A 71807
MC 1383.91 232 MB 1.0 x 10" 1 1.0 x 10~2 152
MC 1915.58 112 MB 2.0 x 10"1 1.0 x 10~2 35
MC 1290.85 209 MB 3.0 x 10- 1 1.0 x 10"2 50
CS oo oo 1.0 x 10~3 N/A 0
MC 1506.98 252 MB 1.0 x 10- 1 1.0 x 10- 3 61
MC 672.44 114 MB 2.0 x 10- 1 1.0 x 10~3 18
MC 1326.87 217 MB 3.0 x 10" 1 1.0 x 10~3 12

subdivision in an important way.

4.4.2.3.2 Four link, nontranslating, rotational robot with one tip colli­

sion. Solutions to the tip collision problem with four link rotational robot, resulting

in a four-dimensional configuration space to search.

Again, the solution to two related subproblems is presented, one where the joints

have 180 degrees of freedom and one where they have 360 degrees of freedom. First,

a solution where joints have 180 degrees of freedom.

Even with only 180 degrees of rotation freedom, a solution cannot be found using

only configuration space subdivision with error 1.0 x 10~2, due to insufficient memory.

However, it can be found with error 1.0 x 1 0 _ 1 , but with that large of an error the

results do not look very correct, as depicted in Figure 4.35. A solution using Monte

Carlo optimization is presented in Figure 4.36.

In other words, Monte Carlo optimization is able to solve a higher dimensional

problem than configuration space subdivision can by itself. While the configuration

space by itself can find a solution, it is such a lose error bound that the result is not

very usable (Figure 4.35). These results are presented in Table 4.12.

Next, a solution to the same problem but with 360 degree rotational freedom is

presented. Figure 4.37 shows the result, and Table 4.13 details the runtime statistics.

This solution takes long enough that it probably would not be useful for most robotics

Table 4.11: Runtime statistics for finding the tip-collision solutions of a
three link nontranslating robot where joints have 360 degrees of freedom
(Figures 4.33 and 4.34).

method time(sec) memory CS precision MC precision solutions
CS 930.61 1.9 GB 1.0 x 10 -;t NjA 71807
MC 1383.91 232 MB 1.0 x 10-1 1.0 X 10-2 152
MC 1915.58 112 MB 2.0 x 10-1 1.0 X 10-2 35
MC 1290.85 209 MB 3.0 x 10-1 1.0 X 10-2 50
CS 00 00 1.0 x 10 -;j NjA 0
MC 1506.98 252 MB 1.0 x 10-1 1.0 X 10-3 61
MC 672.44 114 MB 2.0 x 10-1 1.0 X 10-3 18
MC 1326.87 217 MB 3.0 x 10-1 1.0 X 10-3 12

subdivision in an important way.

73

4.4.2.3.2 Four link, nontranslating, rotational robot with one tip colli-

sian. Solutions to the tip collision problem with four link rotational robot, resulting

in a four-dimensional configuration space to search.

Again, the solution to two related subproblems is presented, one where the joints

have 180 degrees of freedom and one where they have 360 degrees of freedom. First,

a solution where joints have 180 degrees of freedom.

Even with only 180 degrees of rotation freedom, a solution cannot be found using

only configuration space subdivision with error 1.0 x 10-2
, due to insufficient memory.

However, it can be found with error 1.0 x 10-1
, but with that large of an error the

results do not look very correct, as depicted in Figure 4.35. A solution using Monte

Carlo optimization is presented in Figure 4.36.

In other words, Monte Carlo optimization is able to solve a higher dimensional

problem than configuration space subdivision can by itself. While the configuration

space by itself can find a solution, it is such a lose error bound that the result is not

very usable (Figure 4.35). These results are presented in Table 4.12.

Next, a solution to the same problem but with 360 degree rotational freedom is

presented. Figure 4.37 shows the result, and Table 4.13 details the runtime statistics.

This solution takes long enough that it probably would not be useful for most robotics

74

Figure 4.35: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using only configuration space
subdivision. 180 degrees of rotational freedom. The results have such a loose error
tolerance (1.0 x 1 0 _ 1) , that they appear like garbage results.

74

Figure 4.35: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using only configuration space
subdivision. 180 degrees of rotational freedom. The results have such a loose error
tolerance (1.0 x 10- 1

), that they appear like garbage results.

75

Figure 4.36: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using MC optimization. 180
degrees of rotational freedom.

Table 4.12: Runtime statistics for finding the tip-collision solutions of a
four link nontranslating robot with 180 degrees of rotational freedom.

method time(sec) memory CS precision MC precision solutions
CS oo oo 1.0 x 10- 2 N/A 180
CS 6.00 20 MB 1.0 x 1 0 - 1 N/A 389
MC 1059.67 169 MB 1.0 x 10- 1 1.0 x 10- 2 105
MC 237.15 43 MB 2.0 x 10"1 1.0 x 10- 2 23
MC 441.28 73 MB 3.0 x 10- 1 1.0 x 10"2 25
CS oo oo 1.0 x 10~3 N/A 0
MC 1122.70 180 MB 1.0 x 10"1 1.0 x 10- 3 71
MC 279.18 49 MB 2.0 x 10- 1 1.0 x 10- 3 2
MC 480.31 79 MB 3.0 x 10- 1 1.0 x 10- 3 10

75

Figure 4.36: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using MC optimization. 180
degrees of rotational freedom.

Table 4.12: Runtime statistics for finding the tip-collision solutions of a
four link nontranslating robot with 180 degrees of rotational freedom.

method time(sec) memory CS precision MC precision solutions
CS 00 00 1.0 x 10 -2 NjA 180
CS 6.00 20 MB 1.0 x 10-1 NjA 389
MC 1059.67 169 MB 1.0 x 10-1 1.0 X 10-2 105
MC 237.15 43 MB 2.0 x 10-1 1.0 X 10- 2 23
MC 441.28 73 MB 3.0 x 10-1 1.0 X 10-2 25
CS 00 00 1.0 x 1O-:i NjA 0
MC 1122.70 180 MB 1.0 x 10- 1 1.0 X 10-3 71
MC 279.18 49 MB 2.0 x 10-1 1.0 X 10-3 2
MC 480.31 79 MB 3.0 x 10-1 1.0 X 10-3 10

76

Figure 4.37: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using MC optimization. 360
degrees of rotational freedom.

Table 4.13: Runtime statistics for finding the tip-collision solutions of a
four link nontranslating robot with 360 degrees of rotational freedom.

method time(sec) memory CS precision MC precision solutions
CS oo oo 1.0 x 10- 2 N/A 0
CS oo oo 1.0 x 10- 1 N/A 0
MC oo oo 1.0 x 10- 1 1.0 x lO" 2

MC 10824.83 1.5 GB 2.0 x lO" 1 1.0 x 10"2 328
MC oo oo 3.0 x lO" 1 1.0 x 10"2 0
CS oo oo 1.0 x 10~3 N/A
MC oo oo 1.0 x lO" 1 1.0 x lO" 3

MC 11404.16 1.6 GB 2.0 x 10"1 1.0 x 10~3 76
MC oo oo 3.0 x 10"1 1.0 x lO" 3 0

76

Figure 4.37: Nontranslating four link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector , found using MC optimization. 360
degrees of rotational freedom.

Table 4.13: Runtime statistics for finding the tip-collision solutions of a
four link nontranslating robot with 360 degrees of rotational freedom.

method time(sec) memory CS precision MC precision solutions
CS 00 00 1.0 x 10 -:o! N/A 0
CS 00 00 1.0 X 10-1 N/A 0
MC 00 00 1.0 X 10-1 1.0 X 10-2

MC 10824.83 1.5 GB 2.0 x 10- 1 1.0 X 10- 2 328
MC 00 00 3.0 X 10-1 1.0 X 10-2 0
CS 00 00 1.0 x 10 -;j N/A
MC 00 00 1.0 X 10-1 1.0 X 10-3

MC 11404.16 1.6 GB 2.0 x 10-1 1.0 X 10-3 76
MC 00 00 3.0 X 10-1 1.0 X 10-3 0

77

applications (as do some of the other run times); however, it is meant to emphasize

that the MC optimization approach is able to solve a problem in a dimension that

could not be solved using configuration space subdivision by itself. This is one of the

main points of the thesis, that Monte Carlo optimization can help in speed, precision,

and in problem size.

4.4.2.3.3 Five link, nontranslating, rotational robot with one tip col­

lision. The solution to a five link, nontranslating, rotational robot with one tip

collision problem is shown in Figure 4.38 and the runtime statistics are listed in

Table 4.14. As the table indicates configuration subdivision by itself is unable to

solve this problem to a usable precision. Additionally, these are only results where

each joint has 180 degrees of freedom; solutions were not found using 360 degress of

rotation due to memory constraints. As with the four-dimensional problem, while

the timings are not very encouraging for realtime use, they more importantly bring

across the point that MC optimization is able to extend subdivision to solve higher

dimensional problems with a reasonable precision.

4.4.2.4 Multicollision Detection

A double collision point in configuration space was discussed in Section 4.4.2.1.

This section discusses success in finding multiple-collision points.

We experienced limited success using Monte Carlo optimization to improve upon

solutions to this important point problem. These results are presented, as well as some

discussion as to why this may be. Additionally some results using only configuration

space subdivision are presented, to complete the motivation for future work involving

important points. This also reveals some shortcomings of Monte Carlo optimization.

4.4.2.4.1 Two link, nontranslating, rotational robot with double colli­

sion points. The solution to the constraint involving the double collision of a two

link robot with obstacles using only configuration subdivision is presented in Figure

4.23 in Section 4.4.2.1. Here, Figure 4.39 presents the solution solved using MC opti-

77

applications (as do some of the other run times); however, it is meant to emphasize

that the MC optimization approach is able to solve a problem in a dimension that

eould not be solved using configuration space subdivision by itself. This is one of the

main points of the thesis, that Monte Carlo optimization can help in speed, precision,

and in problem size.

4.4.2.3.3 Five link, nontranslating, rotational robot with one tip col­

lision. The solution to a five link, nontranslating, rotational robot with one tip

collision problem is shown in Figure 4.38 and the runtime statistics are listed in

Table 4.14. As the table indicates configuration subdivision by itself is unable to

solve this problem to a usable precision. Additionally, these are only results where

each joint has 180 degrees of freedom; solutions were not found using 360 degress of

rotation due to memory constraints. As with the four-dimensional problem, while

the timings are not very encouraging for realtime use, they more importantly bring

across the point that MC optimization is able to extend subdivision to solve higher

dimensional problems with a reasonable precision.

4.4.2.4 Multicollision Detection

A double collision point in configuration space was discussed in Section 4.4.2.1.

This section discusses success in finding multiple-collision points.

We experienced limited success using Monte Carlo optimization to improve upon

solutions to this important point problem. These results are presented, as well as some

discussion as to why this may be. Additionally some results using only configuration

space subdivision are presented, to complete the motivation for future work involving

important points. This also reveals some shortcomings of Monte Carlo optimization.

4.4.2.4.1 Two link, nontranslating, rotational robot with double colli­

sion points. The solution to the constraint involving the double collision of a two

link robot with obstacles using only configuration subdivision is presented in Figure

4.23 in Section 4.4.2.1. Here, Figure 4.39 presents the solution solved using MC opti-

78

Figure 4.38: Nontranslating five link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector, found using MC optimization.

Table 4.14: Runtime statistics for finding the tip-collision solutions of a five
link nontranslating robot where joints have 180 degrees of freedom (Figure
4.38).

method time (sec) memory CS precision MC precision solutions
CS oo oo 1.0 x 10~2 N/A 0
CS 114.08 214 MB 1.0 x lO" 1 N/A 4168
MC 20317.69 1.8 GB 1.0 x lO" 1 1.0 x 10~2 1116
MC 1524.99 195 MB 2.0 x 10"1 1.0 x 10"2 121
MC 2992.96 362 MB 3.0 x 10"1 1.0 x 10~2 136
CS oo oo 1.0 x 10~3 N/A 0
MC 15078.58 1.9 GB 1.0 x lO" 1 1.0 x lO" 3 809
MC 1774.15 220 MB 2.0 x lO" 1 1.0 x 10" 3 29
MC 3344.17 527 MB 3.0 x lO" 1 1.0 x 10~3 41

78

Figure 4.38: Nontranslating five link robot drawn in configurations at which it collides
with an obstacle with the tip of its end effector , found using MC optimization.

Table 4.14: Runtime statistics for finding the tip-collision solutions of a five
link nontranslating robot where joints have 180 degrees of freedom (Figure
4.38) .

method time(sec) memory CS precision MC precision solutions
CS 00 00 1.0 x 10 .;l N/A 0
CS 114.08 214 MB 1.0 x 10-1 N/A 4168
MC 20317.69 1.8 GB 1.0 x 10-1 1.0 X 10-2 1116
MC 1524.99 195 MB 2.0 x 10- 1 1.0 X 10- 2 121
MC 2992.96 362 MB 3.0 x 10- 1 1.0 X 10-2 136
CS 00 00 1.0 x 10 ·3 N/A 0
MC 15078.58 1.9 GB 1.0 x 10-1 1.0 X 10-3 809
MC 1774.15 220 MB 2.0 x 10-1 1.0 X 10-3 29
MC 3344.17 527 MB 3.0 x 10-1 1.0 X 10-3 41

79

Figure 4.39: Nontranslating two link robot drawn in configurations at which it collide
with obstacles two times, solved using MC optimization.

mization. As Table 4.15 presents, the configuration subdivision only approach solves

the problem in less time and surprisingly even less memory.

A discussion of some of the reasons for this shortcoming is presented at the end

of this section. In our opinion the results are mostly due to an error metric that is

difficult to optimize using Monte Carlo optimization.

4.4.2.4.2 Three link, nontranslating, rotational robot with quadruple

collision points. Here the solutions to the three link rotational robot colliding at

four points is presented. Figure 4.40 depicts the solution found using configuration

space subdivision by itself. Figure 4.41 is the solution found using MC optimization.

As with the two link, double collision case, Table 4.16 presents results showing that

the solution using configuration space subdivision is faster and uses less memory.

This is another case displaying the shortcomings of the MC optimization step.

4.4.2.4.3 Four link, nontranslating, rotational robot with six collision

points. One solution found using configuration space subdivision by itself was the

six-collisions of a four link, nontranslating robot.

79

Figure 4.39: Nontranslating two link robot drawn in configurations at which it collide
with obstacles two times, solved using MC optimization.

mization. As Table 4.15 presents, the configuration subdivision only approach solves

the problem in less time and surprisingly even less memory.

A discussion of some of the reasons for this shortcoming is presented at the end

of this section. In our opinion the results are mostly due to an error metric that is

difficult to optimize using Monte Carlo optimization.

4.4.2.4.2 Three link, nontranslating, rotational robot with quadruple

collision points. Here the solutions to the three link rotational robot colliding at

four points is presented. Figure 4.40 depicts the solution found using configuration

space subdivision by itself. Figure 4.41 is the solution found using MC optimization.

As with the two link, double collision case, Table 4.16 presents results showing that

the solution using configuration space subdivision is faster and uses less memory.

This is another case displaying the shortcomings of the MC optimization step.

4.4.2.4.3 Four link, nontranslating, rotational robot with six collision

points. One solution found using configuration space subdivision by itself was the

six-collisions of a four link, nontranslating robot.

80

Table 4.15: Runtime statistics for finding the double collision points of a
two link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 3.00 1 MB 1.0 x lO" 1 N/A 33
CS 3.00 1 MB 1.0 x 10~2 N/A 30
MC 54.04 65 MB 1.0 x 10"1 1.0 x 10~2 1

Figure 4.40: Nontranslating three link robot drawn in configurations at which it
collide with obstacles four times, solved using only subdivision.

Figure 4.41: Nontranslating three link robot drawn in configurations at which it
collide with obstacles four times, solved using MC optimization.

Table 4.16: Runtime statistics for finding the quadruple collision points of
a three link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 6.00 27 MB 1.0 x lO" 2 N/A 89
CS 6.00 27 MB 9.0 x 10~3 N/A 89
MC 468.29 425 MB 1.0 x 10"2 9.0 x lO" 3 2
CS 6.00 36 MB 1.0 x lO" 3 N/A 4

Table 4.15: Runtime statistics for finding the double collision points of a
two link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 3.00 1 MB 1.0 x 10 ·1 N/A 33
CS 3.00 1 MB 1.0 x 10-2 N/A 30
MC 54.04 65 MB 1.0 x 10-1 1.0 X 10-2 1

80

Figure 4.40: Nontranslating three link robot drawn in configurations at which it
collide with obstacles four times, solved using only subdivision.

Figure 4.41 : Nontranslating three link robot drawn in configurations at which it
collide with obstacles four times, solved using MC optimization.

Table 4.16: Runtime statistics for finding the quadruple collision points of
a three link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 6.00 27MB 1.0 x 10 -:.! N/A 89
CS 6.00 27MB 9.0 x 10-3 N/A 89
MC 468.29 425 MB LOx 10-2 9.0 X 10-3 2
CS 6.00 36 MB 1.0 x 10-3 N/A 4

81

To fully represent the collision and free space in four-dimensional configuration

space using configuration space subdivision would be difficult using current hardware.

However, using configuration space subdivision, these important points can be found.

These points are detectable because it is easy to tell early on whether a very large

hypercube of configuration space, a configuration space volume, contains a configura­

tion that will satisfy that geometric constraint. This is in part because the constraint

is so precise. With enough early trimming, the entire configuration space is able to

be fully searched to find the points where this six-collision occurs.

Figure 4.42 shows a solution to this problem using configuration space subdivision

alone. Table 4.17 shows the runtime results of that process. No interesting results

were found using MC optimization for this case, again due to the shortcomings dis­

cussed at the end of this section.

4.4.2.4.4 Discussion on Monte Carlo optimization shortcomings. These

results reveal a problem for which MC optimization did not improve the subdivision

approach in some way. Here some ideas are proposed as to why this shortcoming

occurs, with some supporting test runs and results.

The error metric, which provides the guidance of the sampling towards the so­

lution, plays a vital role in the MC optimization method. We believe the problems

experienced in solving for problems involving multiple collisions is in part due to the

difficulty of describing the error for this problem with a single scalar value. Consid­

ering the robot in workspace, the distance to the nearest n obstacles (where the next

n collisions will take place) describes the error, but moving closer to one collision

may bring the robot further from the other. An improvement towards contact at one

point with an obstacle can increase the distance to another collision point. In other

words, the error metric may not provide a very direct guide to the solution, so that

maximum iterations are reached and no solution is found. This makes it difficult for

Monte Carlo optimization to optimize the error.

As an illustration of this situation, we change the Monte Carlo optimization error

81

To fully represent the collision and free space in four-dimensional configuration

space using configuration space subdivision would be difficult using current hardware.

However, using configuration space subdivision, these important points can be found.

These points are detectable because it is easy to tell early on whether a very large

hypercube of configuration space, a configuration space volume, contains a configura­

tion that will satisfy that geometric constraint. This is in part because the constraint

is so precise. With enough early trimming, the entire configuration space is able to

be fully searched to find the points where this six-collision occurs.

Figure 4.42 shows a solution to this problem using configuration space subdivision

alone. Table 4.17 shows the runtime results of that process. No interesting results

were found using MC optimization for this case, again due to the shortcomings dis­

cussed at the end of this section.

4.4.2.4.4 Discussion on Monte Carlo optimization shortcomings. These

results reveal a problem for which MC optimization did not improve the subdivision

approach in some way. Here some ideas are proposed as to why this shortcoming

occurs, with some supporting test runs and results.

The error metric, which provides the guidance of the sampling towards the so­

lution, plays a vital role in the MC optimization method. We believe the problems

experienced in solving for problems involving multiple collisions is in part due to the

difficulty of describing the error for this problem with a single scalar value. Consid­

ering the robot in workspace, the distance to the nearest n obstacles (where the next

n collisions will take place) describes the error, but moving closer to one collision

may bring the robot further from the other. An improvement towards contact at one

point with an obstacle can increase the distance to another collision point. In other

words, the error metric may not provide a very direct guide to the solution, so that

maximum iterations are reached and no solution is found. This makes it difficult for

Monte Carlo optimization to optimize the error.

As an illustration of this situation, we change the Monte Carlo optimization error

82

metric to be only the distance to the closest obstacle for the two link robot, double

collision example. In other words, the configuration subdivision step will solve for

double collisions, and when it then uses Monte Carlo optimization to find a more

precise solution, the error will only be for single collision1. While the solution will

not be entirely correct, it will illustrate the exact same setup, but with a different

error metric, one that is very directly leading to a solution. The results are shown in

Table 4.18, and drawn in workspace in Figure 4.43. The table shows that the runtime

is now on par with the CS solution timings. This data gives some support that in

the same situation with an error metric that clearly leads to a solution, the runtime

is faster.

To provide a similar example, we use the same approach in the three link, quadru­

ple collision detection problem. We modify the error metric to only include the closest

obstacle distance. The resulting runtime statistics are presented in Table 4.19. Again,

with the simpler error construction, the runtime is much more similar to the config­

uration subdivision approach.

This data suggests that, at least in part, a poor error metric may be to blame for

the poor results in multicollision detection using MC optimization. In an attempt

to remedy this problem, we have tried a few different approaches but with limited

success. We leave further exploration to future work. In particular, exploring how to

define the error in a different way, one more conducive to MC optimization, would be

an ideal solution.

1 Error changed to consider only the closest obstacle distance, which is not correct for a multicol­
lision problem.

82

metric to be only the distance to the closest obstacle for the two link robot, double

collision example. In other words, the configuration subdivision step will solve for

double collisions, and when it then uses Monte Carlo optimization to find a more

precise solution, the error will only be for single collision l . While the solution will

not be entirely correct, it will illustrate the exact same setup, but with a different

error metric, one that is very directly leading to a solution. The results are shown in

Table 4.18, and drawn in workspace in Figure 4.43. The table shows that the runtime

is now on par with the CS solution timings. This data gives some support that in

the same situation with an error metric that clearly leads to a solution, the runtime

is faster.

To provide a similar example, we use the same approach in the three link, quadru-

pIe collision detection problem. We modify the error metric to only include the closest

obstacle distance. The resulting runtime statistics are presented in Table 4.19. Again,

with the simpler error construction, the runtime is much more similar to the config-

uration subdivision approach.

This data suggests that, at least in part, a poor error metric may be to blame for

the poor results in multicollision detection using MC optimization. In an attempt

to remedy this problem, we have tried a few different approaches but with limited

success. We leave further exploration to future work. In particular, exploring how to

define the error in a different way, one more conducive to MC optimization, would be

an ideal solution.

1 Error changed to consider only the closest obstacle distance, which is not correct for a multicol­
lision problem.

83

Figure 4.42: Nontranslating four link robot drawn in configurations at which it collide
with obstacles six times

Table 4.17: Runtime statistics for finding the six-collision points of a four
link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 306.19 1.7 GB 1.0 x lO" 2 N/A 1021

Table 4.18: Runtime statistics for finding the double collision points of a
two link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 3.00 1 MB 1.0 x 10~2 N/A 30
CS 3.00 1 MB 1.0 x lO" 3 N/A 24

MC 1 9.01 17 MB 1.0 x lO" 2 1.0 x 10~3 26

83

Figure 4.42: Nontranslating four link robot drawn in configurations at which it collide
with obstacles six times

Table 4.17: Runtime statistics for finding the six-collision points of a four
link nontranslating robot.

time(sec) MC precision
306.19 NjA

Table 4.18: Runtime statistics for finding the double collision points of a
two link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 3.00 1 MB 1.0 x 10 -:l NjA 30
CS 3.00 1 MB 1.0 x 10-3 NjA 24

MC l 9.01 17 MB 1.0 x 10-2 1.0 X 10-3 26

84

Figure 4.43: Nontranslating two link robot drawn in configurations at which it collide
with obstacles two times, found using MC optimization where MC error was only the
closest collision distance.

Table 4.19: Runtime statistics for finding the quadruple collision points of
a three link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 6.00 27 MB 1.0 x 10~2 N/A 89
CS 6.00 36 MB 1.0 x 10~3 N/A 4

MC 1 9.01 34 MB 1.0 x 10"2 1.0 x 10~3 88

84

Figure 4.43: Nontranslating two link robot drawn in configurations at which it collide
with obstacles two times, found using MC optimization where MC error was only the
closest collision distance.

Table 4.19: Runtime statistics for finding the quadruple collision points of
a three link nontranslating robot.

method time(sec) memory CS precision MC precision solutions
CS 6.00 27MB 1.0 x 1O-:l NjA 89
CS 6.00 36 MB 1.0 x 10-3 NjA 4

MC l 9.01 34 MB 1.0 x 10- 2 1.0 X 10- 3 88

C H A P T E R 5

CONCLUSION A N D FUTURE W O R K

5.1 Conclusion

In this thesis we have presented a novel approach to finding the final solution

in configuration space subdivision by adapting Monte Carlo optimization. We have

shown that this new approach allows us to solve constraint problems to a higher

degree as well as a higher precision than configuration space subdivision can alone.

The solution of several general constraint problems in three dimensions have been

shown using the combination of configuration space subdivision and Monte Carlo

optimization. The results have shown that using Monte Carlo optimization is able to

solve the same problem faster and with less memory than with subdivision by itself.

We have also deomonstrated its use in path planning a three-dimensional configu­

ration space problem by solving for the generalized Voronoi diagram in configuration

space. This has shown cases where the Monte Carlo optimization has performed

better, and in every case required less memory. We have shown that using MC opti­

mization can achieve better precision than is possible with only configuration space

subdivision.

Additionally, we have explored some "important point" examples, showing both

successes and shortcomings of the approach. For the overconstrained Voronoi prob­

lem we have shown how for smaller precisions the configuration subdivision alone

actually outperforms MC optimization, while for higher precision MC optimization

performs better. In fact, in order to acheive any precision better than 1.0 x 10~3,

only MC optimization can find the solution. For the tip-collision problem, we have

shown how Monte Carlo optimization has helped to solve constraint problems up to

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis we have presented a novel approach to finding the final solution

in configuration space subdivision by adapting Monte Carlo optimization. We have

shown that this new approach allows us to solve constraint problems to a higher

degree as well as a higher precision than configuration space subdivision can alone.

The solution of several general constraint problems in three dimensions have been

shown using the combination of configuration space subdivision and Monte Carlo

optimization. The results have shown that using Monte Carlo optimization is able to

solve the same problem faster and with less memory than with subdivision by itself.

We have also deomonstrated its use in path planning a three-dimensional configu­

ration space problem by solving for the generalized Voronoi diagram in configuration

space. This has shown cases where the Monte Carlo optimization has performed

better, and in every case required less memory. We have shown that using MC opti­

mization can achieve better precision than is possible with only configuration space

subdivision.

Additionally, we have explored some "important point" examples, showing both

successes and shortcomings of the approach. For the overconstrained Voronoi prob­

lem we have shown how for smaller precisions the configuration subdivision alone

actually outperforms MC optimization, while for higher precision MC optimization

performs better. In fact, in order to acheive any precision better than 1.0 x 10-3 ,

only MC optimization can find the 1-3olution. For the tip-collision problem, we have

shown how Monte Carlo optimization has helped to solve constraint problems up to

86

five-dimensions, while with only subdivision can only solve up to three-dimensional

constraint problems with a usable error. And with multiple collision problems, we

found an important shortcoming of MC optimization, that the error metric must be

very directly guiding the samples to the solution. If there is not a clear direction for

the samples to follow in the error metric, it will be difficult to solve.

Finally, we have presented some beginning steps into analysis of higher dimen­

sional path planning problems using the important points of path planning related

constraint problems. Our contribution has only been to present how overconstraint of

a problem can lead to these important points, and we propose future work be done in

making use of these points to solve higher dimensional constraint and path planning

problems.

In all we have shown how adapting Monte Carlo optimization to work in conjunc­

tion with configuration space subdivision can both improve the precision of configu­

ration space subdivision, and in some cases, increase the dimension of problem it can

solve.

5.2 Future Work

Most of the effort in this thesis has centered on adapting Monte Carlo optimization

to improve upon the configuration space subdivision approach. The area where we

propose future work explore most is expanding the use of important points of higher

dimensional constraint problems, especially in robot path planning. As we have

shown in this thesis, by overconstraining a problem, the size of the solution can be

reduced, in some cases reducing to point solutions. Overconstraint is not a new idea,

but we have demonstrated how some of these overconstraint solutions participate in

the larger, less constrained solution. If these important points can then be used to

reconstruct the complete solution using an alternate method, it could be useful in

path planning and other related geometric constraint problems of higher dimensions.

More closely tied to the adaption of Monte Carlo optimization to work with con­

figuration space subdivision, we also propose future work exploring the solution of

86

five-dimensiom;, while with only subdivision can only solve up to three-dimensional

constraint problems with a usable error. And with multiple collision problems, we

found an important shortcoming of MC optimization, that the error metric must be

very directly guiding the samples to the solution. If there is not a clear direction for

the samples to follow in the error metric, it will be difficult to solve.

Finally, we have presented some beginning steps into analysis of higher dimen­

sional path planning problems using the important points of path planning related

constraint problems. Our contribution has only been to present how overconstraint of

a problem can lead to these important points, and we propose future work be done in

making use of these points to solve higher dimensional constraint and path planning

problems.

In all we have shown how adapting Monte Carlo optimization to work in conjunc­

tion with configuration space subdivision can both improve the precision of configu­

ration space subdivision, and in some cases, increase the dimension of problem it can

solve.

5.2 Future Work

Most of the effort in this thesis has centered on adapting Monte Carlo optimization

to improve upon the configuration space subdivision approach. The area where we

propose future work explore most is expanding the use of important points of higher

dimensional constraint problems, especially in robot path planning. As we have

shown in this thesis, by overconstraining a problem, the size of the solution can be

reduced, in some cases reducing to point solutions. Overconstraint is not a new idea,

but we have demonstrated how some of these overconstraint solutions participate in

the larger, less constrained solution. If these important points can then be used to

reconstruct the complete solution using an alternate method, it could be useful in

path planning and other related geometric constraint problems of higher dimensions.

More closely tied to the adapt ion of Monte Carlo optimization to work with con­

figuration space subdivision, we also propose future work exploring the solution of

87

more constraint problems using this method, and particularly in formulating error

metrics for problems like multiple collision, where the trivial error metric does not

produce desired results.

87

more constraint problems using this method, and particularly in formulating error

metrics for problems like multiple collision, where the trivial error metric does not

produce desired results .

BIBLIOGRAPHY

[1] B A R R A Q U A N D , J., AND FERBACH, P. Path planning through variational dy­
namic programming. In Proceedings, 1994 IEEE International Conference on
Robotics and Automation (May 1994), vol. 3, pp. 1839-1846.

[2] B A R Z E L , R. Graphics Tools : The JGT Editors' Choice. A K Peters, Wellesley,
Mass., 2005.

[3] BOISSONNAT, J . -D . Algorithmic foundations of robotics v. In Springer tracts
in advanced robotics, v. 7 (Berlin; New York, 2004), Springer.

[4] B R U C E , J., AND V E L O S O , M. Real-time randomized path planning for robot
navigation. In IEEE/RSJ International Conference on Intelligent Robots and
System, 2002 (Piscataway, NJ, USA, 2002), vol. 3, IEEE, pp. 2383-2388.

[5] CHOSET, H . , LYNCH, K . M., HUTCHINSON, S., K A N T O R , G., B U R G A R D ,

W . , K A V R A K I , L. E., AND THRUN, S. Principles of Robot Motion: Theory,
Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents).
The MIT Press, June 2005.

[6] D O N A L D , B. R. Motion planning with six degrees of freedom. Tech. rep., AI
Lab, Massachusetts Institute of Technology, Cambridge, MA, USA, 1984.

[7] D O N A L D , B. R. A search algorithm for motion planning with six degrees of
freedom. Artif Intell. 31, 3 (1987), 295-353.

[8] ELBER, G., AND K I M , M.-S. Geometric constraint solver using multivariate
rational spline functions. In SMA '01: Proceedings of the Sixth ACM Symposium
on Solid Modeling and Applications (New York, NY, USA, 2001), ACM Press,
pp. 1-10.

[9] FlSHMAN, G. S. Monte Carlo: Concepts, Algorithms, and Applications.
Springer-Verlag, New York, NY, USA, 1996.

[10] FOSKEY, M., G A R B E R , M., LIN, M., AND M A N O C H A , D . A voronoi-based
hybrid motion planner. In IEEE/RSJ International Conference on Intelligent
Robots and System, 2001 (Piscataway, NJ, USA, 2001), vol. 1, IEEE, pp. 55-60.

[11] G E R A E R T S , R., AND O V E R M A R S , M. H . On improving the clearance for robots
in high-dimensional configuration spaces. In 2005 IEEE/RSJ International Con­
ference on Intelligent Robots and Systems, 2005. (IROS 2005) (Piscataway, NJ,
USA, 2005), IEEE, pp. 679-684.

BIBLIOGRAPHY

[1] BARRAQUAND, J., AND FERBACH, P. Path planning through variational dy­
namic programming. In Proceedings, 1994 IEEE International Conference on
Robotics and Automation (May 1994), vol. 3, pp. 1839-1846.

[2] BARZEL, R. Graphics Tools: The JGT Editors' Choice. A K Peters, Wellesley,
Mass., 2005.

[3] BorSSONNAT, J.-D. Algorithmic foundations of robotics v. In Springer tracts
in advanced robotics, v. 7 (Berlin; New York, 2004), Springer.

[4] BRUCE, J., AND VELOSO, M. Real-time randomized path planning for robot
navigation. In IEEE/RSJ International Conference on Intelligent Robots and
System, 2002 (Piscataway, NJ, USA, 2002), vol. 3, IEEE, pp. 2383-2388.

[5] CHOSET, H., LYNCH, K. M., HUTCHINSON, S., KANTOR, G., BURGARD,
W., KAVRAKI, L. E., AND THRUN, S. Principles of Robot Motion: Theory,
Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents).
The MIT Press, June 2005. .

[6] DONALD, B. R. Motion planning with six degrees of freedom. Tech. rep., AI
Lab, Massachusetts Institute of Technology, Cambridge, MA, USA, 1984.

[7] DONALD, B. R. A search algorithm for motion planning with six degrees of
freedom. Artif. Intell. 31, 3 (1987), 295-353.

[8] ELBER, G., AND KIM, M.-S. Geometric constraint solver using multivariate
rational spline functions. In SMA '01: Proceedings of the Sixth ACM Symposium
on Solid Modeling and Applications (New York, NY, USA, 2001), ACM Press,
pp. 1-10.

[9] FISHMAN, G. S. Monte Carlo: Concepts, Algorithms, and Applications.
Springer-Verlag, New York, NY, USA, 1996.

[10] FOSKEY, M., GARBER, M., LIN, M., AND MANOCHA, D. A voronoi-based
hybrid motion planner. In IEEE/RSJ International Conference on Intelligent
Robots and System, 2001 (Piscataway, NJ, USA, 2001), vol. 1, IEEE, pp. 55-60.

[11] GERAERTS, R., AND OVERMARS, M. H. On improving the clearance for robots
in high-dimensional configuration spaces. In 2005 IEEbjRSJ International Con­
ference on Intelligent Robots and Systems, 2005. (IROS 2005) (Piscataway, NJ,
USA, 2005), IEEE, pp. 679-684.

89

[12] GuiBAS, L. J., HOLLEMAN, C , AND K A V R A K I , L. A probabilistic roadmap
planner for flexible objects with a workspace medial-axis-based sampling ap­
proach. In Proceedings 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1999. (IROS '99) (Piscataway, NJ, USA, 1999), IEEE,
pp. 254-259.

HALTON, J. H. A retrospective and prospective survey of the monte carlo
method. SI AM Review 12, 1 (1970), 1-63.

K A V R A K I , L., SVESTKA, P., L A T O M B E , J . -C , AND O V E R M A R S , M. Prob­
abilistic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on 12, 4 (August 1996), 566-580.

K I M , M.-S., ELBER, G., AND SEONG, J . -K. Geometric computations in pa­
rameter space. In SCCG '05: Proceedings of the 21st Spring Conference on
Computer Graphics (New York, NY, USA, 2005), ACM Press, pp. 27-32.

K R A M E R , G. A. Solving Geometric Constraint Systems: A Case Study in Kine­
matics. The MIT Press, 1992.

L A V A L L E , S., AND JR, J. K . Rapidly-exploring random trees: Progress and
prospects. In Algorithmic and computational robotics : new directions : the
fourth Workshop on the Algorithmic Foundations of Robotics (Natick, Mass.,
2001), A K Peters.

L A V A L L E , S. M. Rapid-exploring random trees: A new tool for path planning.
Tech. rep., Computer Science Dept., Iowa State University, 1998.

M A H F O U D , S. W . Crowding and preselection revisited. In Parallel Problem
Solving from Nature 2 (Amsterdam, 1992), North-Holland, pp. 27-36.

M A H F O U D , S. W . Simple analytical models of genetic algorithms for multimodal
function optimization. Tech. Rep. IlliGAL Report No 93001, Department of
General Engineering, 117 Transportation Building, 104 South Mathews Avenue,
Urbana, IL 61801-2996, 1993.

RUBINSTEIN, R. Y . Simulation and the Monte Carlo Method. John Wiley &
Sons, Inc., 1981.

SCHWEFEL, H.-P. Numerical Optimization of Computer Models. John Wiley &
Sons, Ltd., 1977.

SCHWEFEL, H.-P. Evolution and Optimum Seeking. John Wiley & Sons, Inc.,
1995.

SEONG, J., ELBER, G., AND COHEN, E . Simultaneous precise solutions to the
visibility problem of sculptured models. In Geometric Modeling and Processing
(GMP) (2006), pp. 451-464.

89

[12] GUIBAS, L. J., HOLLEMAN, C., AND KAVRAKI, L. A probabilistic roadmap
planner for flexible objectt'l with a worbpace medial-axis-based sampling ap­
proach. In Proceedings 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1999. (IROS '99) (Piscataway, NJ, USA, 1999), IEEE,
pp. 254-259.

[13] HALTON, J. H. A retrospective and prospective survey of the monte carlo
method. SIAM Review 12, 1 (1970), 1-63.

[14] KAVRAKI, L., SVESTKA, P., LATOMBE, J.-C., AND OVERMARS, M. Prob­
abilistic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on 12, 4 (August 1996), 566-580.

[15] KIM, M.-S., ELBER, G., AND SEONG, J.-K. Geometric computations in pa­
rameter space. In SCCG '05: Proceedings of the 21st Spring Conference on
Computer Graphics (New York, NY, USA, 2005), ACM Press, pp. 27-32.

[16] KRAMER, G. A. Solving Geometric Constraint Systems: A Case Study in Kine­
matics. The MIT Press, 1992.

[17] LA VALLE, S., AND JR, J. K. Rapidly-exploring random trees: Progress and
prospects. In Algorithmic and computational robotics : new directions : the
fourth Workshop on the Algorithmic Foundations of Robotics (Natick, Mass.,
2001), A K Peters.

[18] LA VALLE, S. M. Rapid-exploring random trees: A new tool for path planning.
Tech. rep., Computer Science Dept., Iowa State University, 1998.

[19] MAHFOUD, S. W. Crowding and preselection revisited. In Parallel Problem
Solving from Nature 2 (Amsterdam, 1992), North-Holland, pp. 27-36.

[20] MAHFOUD, S. W. Simple analytical models of genetic algorithms for multimodal
function optimization. Tech. Rep. IlliGAL Report No 93001, Department of
General Engineering, 117 Transportation Building, 104 South Mathews A venue,
Urbana, IL 61801-2996, 1993.

[21] RUBINSTEIN, R. Y. Simulation and the Monte Carlo Method. John Wiley &
Sons, Inc., 1981.

[22] SCHWEFEL, H.-P. Numerical Optimization of Computer Models. John Wiley &
Sons, Ltd., 1977.

[23] SCHWEFEL, H.-P. Evolution and Optimum Seeking. John Wiley & Sons, Inc.,
1995.

[24] SEONG, J., ELBER, G., AND COHEN, E. Simultaneous precise solutions to the
visibility problem of sculptured models. In Geometric Modeling and Processing
(GMP) (2006), pp. 451-464.

90

SEONG, J . -K. , JOHNSON, D. E., AND COHEN, E. A higher dimensional for­
mulation for robust and interactive distance queries. In SPM '06: Proceedings
of the 2006 ACM Symposium on Solid and Physical Modeling (New York, NY,
USA, 2006), ACM Press, pp. 197-205.

SHIRLEY, P. Physically based lighting calculations for computer graphics. PhD
Thesis. Dept. of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, 1990.

SOBOL, I. M. A Primer for the Monte Carlo Method. CRC Press, Inc., 1994.

V A R A D H A N , G., AND M A N O C H A , D. Star-shaped roadmaps - a deterministic
sampling approach for complete motion planning. In Proceedings of Robotics:
Science and Systems (Cambridge, USA, June 2005).

WEISSTEIN, E. W . Voronoi diagram. MathWorld-A Wolfram Web Resource,
http://mathworld. wolfram, com/VoronoiDiagram.html.

Z H A N G , L., K I M , Y . J., AND M A N O C H A , D. A simple path non-existence
algorithm using c-obstacle query.

Z H A N G , L., K I M , Y . J., AND M A N O C H A , D . A hybrid approach for complete
motion planning.

Z H A N G , L., AND M A N O C H A , D. An efficient retraction-based rrt planner.
In IEEE International Conference on Robotics and Automation (ICRA), 2008
(2008).

ZHU, D. , AND LATOMBE, J.-C. New heuristic algorithms for efficient hierar­
chical path planning. In IEEE Transactions on Robotics and Automation (Pis­
cataway, NJ, USA, 1990), vol. 7, IEEE, pp. 9-20.

90

[25] SEONG, J.-K., JOHNSON, D. E., AND COHEN, E. A higher dimensional for­
mulation for robust and interactive distance queries. In SPM '06: Proceedings
of the 2006 ACM Symposium on Solid and Physical Modeling (New York, NY,
USA, 2006), ACM Press, pp. 197-205.

[26] SHIRLEY, P. Physically based lighting calculations for computer graphics. PhD
Thesis. Dept. of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, 1990.

[27] SOBOL, 1. M. A Primer for the Monte Carlo Method. CRC Press, Inc., 1994.

[28] VARADHAN, G., AND MANOCHA, D. Star-shaped road maps - a deterministic
sampling approach for complete motion planning. In Proceedings of Robotics:
Science and Systems (Cambridge, USA, June 2005).

[29] WEISSTEIN, E. W. Voronoi diagram. Math World-A Wolfram Web Resource.
http://mathworld. wolfram. com/VoronoiDiagram.html.

[30] ZHANG, L., KIM, Y. J., AND MANOCHA, D. A simple path non-existence
algorithm using c-obstacle query.

[31] ZHANG, L., KIM, Y. J., AND MANOCHA, D. A hybrid approach for complete
motion planning.

[32] ZHANG, L., AND MANOCHA, D. An efficient retraction-based rrt planner.
In IEEE International Conference on Robotics and Automation (ICRA), 2008
(2008).

[33] ZHU, D., AND LATOMBE, J.-C. New heuristic algorithms for efficient hierar­
chical path planning. In IEEE Transactions on Robotics and Automation (Pis­
cataway, NJ, USA, 1990), vol. 7, IEEE, pp. 9-20.

http://mathworld

