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ABSTRACT 

This dissertation focuses on two prominent issues encountered in analyzing 

questionnaire data. First, the summed score of all individual questions in a questionnaire 

is characteristically used as a measure of disease severity, even though it often does not 

have interval properties. Second, measurement errors exist whenever there is 

measurement. For example, questionnaires, composed of questions with predefined 

response categories, force patients to make choices.  

The data for the dissertation were binary response data from Simple Shoulder Test 

questionnaire (SST). A Rasch model was used to estimate Rasch scores. The minimum 

clinical important difference (MCID) in Rasch scores was then compared with the MCID 

in summed scores. MCID was defined as the statistically significant difference in change 

from baseline between patient groups (No Change and Minimal Improvement). Two 

anchored questions were used to delineate patient groups. In Rasch scores, conclusions 

about the MCID reached through both questions supported MCID in summed scores.   

To address issues of nonlinearity and measurement errors, I constructed a Rasch 

model accounting for measurement errors and mapped out Markov Chain Monte Carlo 

(MCMC) steps to estimate model parameters. The optimal setting of factors affecting 

MCMC implementation was identified.  

To evaluate the effect of measurement errors, I applied Rasch model accounting 

for measurement errors to SST data and obtained Rasch scores accounting for 
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measurement errors (i.e., MCMC Rasch scores). MCID analysis was performed on 

MCMC Rasch scores. I found that MCID is unascertainable through MCMC Rasch 

scores. Inconsistent MCID findings in these two types of Rasch scores may be due to bias 

of estimates of Rasch SST when measurement errors are left unconsidered. 

In sum, Rasch scores accounting for measurement errors: 1) provide more 

accurate estimates for person abilities indicated by mean square errors; 2) provide 

unequal spaces between scores compared with summed scores, which may more 

accurately describe patients’ experiences; 3) provide estimates corresponding to extreme 

summed scores with reasonable variances, which remain inestimable in the classical 

Rasch model; 4) may be used as a continuous variable, unlike summed and classical 

Rasch scores, because the measurement errors were treated as random effects. 
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CHAPTER 1 

 

INTRODUCTION 

The convergence of a number of trends in society has made the evaluation of the 

health care treatment outcomes a pressing issue. The costs of health care have risen 

rapidly, and the need to make judicious cuts in health care has become apparent. There is 

also a growing awareness among patients as well as physicians that health care is not 

always efficacious. Increasingly, the question is the following: Given a particular 

treatment, what are the outcomes?  

Outcomes measurement, however, relies upon the choice of a particular outcome 

measure or measures. A key consideration in selecting them is what matters to patients. 

From the patient’s point of view, outcomes that mainly pertain to laboratory or clinical 

findings may be of lesser importance than outcomes they themselves may report. For 

many diseases and conditions, most relevant to them is that their pain improves and they 

are capable of carrying on with daily activities and return to work.[1] For this reason, 

especially since the 1980s, outcome evaluators have increasingly adopted measures of 

patient reported outcomes.[2] 

Patient reported measures have been developed to evaluate treatment of diverse 

conditions. For example, the incontinence impact questionnaire (IIQ) is used to evaluate 

severity of urinary incontinence and posttreatment relief of symptoms.[3] Another 
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example of measure based on patients’ reports, and the one primarily to be examined 

here, is the Simple Shoulder Test (SST) used to evaluate shoulder functions.[4] 

Questionnaires, however, inevitably lead to measurement errors, which 

potentially undermine an analysis or distort results. They may result in attenuation to the 

null, loss of power, and bias of estimates. Especially, in questionnaires, we necessarily 

narrow the choices with which subjects may respond. For example, in binary response 

questions, there are only two categories for them to choose (e.g., 1=yes or 2=no), which 

is exemplified in the SST. In other words, questionnaires, particularly those consisting of 

binary response categories, force subjects to make a choice among predefined response 

categories, even though their true choice may fall in between the available values of 

categories. This suggests that measurement errors (with respect to individual items as 

well as their overall summed score) are much more than simple recording or instrument 

error.  They encompass many different sources of variability.[5] In this dissertation, I 

focused on the measurement errors in questionnaires with binary response categories.  

In questionnaires, the summed score is conventionally used as a measurement of 

disease severity.  Problems that may ensue from this are the following: (1) there are no 

natural numerical upper or lower limits to health status (one conceivable exception with 

regard to lower limits is “worse than dead”), and for this reason, a zero value does not 

have an inherent meaning; (2) furthermore, psychometric instruments (i.e., 

questionnaires) do not necessarily have interval characteristics (i.e., are not scaled in a 

linear fashion). In other words, one cannot assume that the two point difference between 

scores of 10 and 12 is equal (in a patient’s perception or other respects) to the same two 

point difference between scores of 1 and 3. This leads to difficulty in interpreting changes 
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in the score at follow-up visits. Fortunately, to deal with the nonlinear property of 

summed scores for SST, the Rasch model converts ordinal measures into linear measures 

through logit transformation.[6] Generally speaking, the Rasch model is a transformation 

from SST summed scores into linear space, provided that the fit to the model and several 

assumptions about the model are appropriate.[7] Through the Rasch model for 

dichotomous data, the probability of the outcome ܺ௡௜ ൌ 1 is given by: 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௡ߚሺ݌ݔ݁ െ ௜ሻ1ߜ ൅ ௡ߚሺ݌ݔ݁ െ   ௜ሻߜ
where 

     ܺ௡௜ is the response (1=Yes, 0= No) for Person n to Item i; 

 ௡ is the ability of Person n (n = 1, …, N), which hereafter will be referred asߚ     

the “Rasch score”; 

 ;௜  is the difficulty of Item i (i = 1, …, I)ߜ     

          P(·) is the probability that Person n has a true or observed response to Item i. 

In other words, the person ability ߚ௡ ሺ݊ ൌ 1, … , ܰሻ indicates how able ݊௧௛person 

can perform items in SST; the item difficulty ߜ௜ ሺ݅ ൌ 1, … ,  .ሻ  indicates the difficulty of ݅௧௛item. The person ability estimates are used for parametric analysisܫ

There is substantial evidence from the literature to support the use of the Rasch 

model to compare the outcomes either among patients, within patients (change scores), or 

between treatments. In 1996, Stucki et al. published an article with an informative title 

“Interpretation of change scores in ordinal clinical scales and health status measures: The 

whole may not equal the sum of the parts”. [8] Stucki and colleagues illustrated 
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difficulties in interpreting change scores of a health status measure (the physical ability 

scale of the SF-36) for clinical research or practice.  Briefly, depending on baseline health 

status, seemingly equal gains of ordinal health status measures may actually imply 

different meanings. Such findings have several important implications for interpreting 

health status instruments for clinical sensibility. Consequently, as several studies have 

found, the relative precision (RP) (sometimes called the relative validity [RV]) is greater 

for Rasch scores than conventional summed scores. RP is defined as the ratio of pair-wise 

F statistics, which is the F statistic for the comparisons between groups based on the 

Rasch scores divided by the F statistic based on the summed scores.[9-12]  

Additionally, White[13] revealed that the conclusions based on Rasch scores are 

not necessarily consistent with those based on Likert scaling. Rather, the two types of 

scores may lead to essentially differing conclusions, with disability categories based on 

Likert and Rasch score not equivalent.  

Importantly, Tennant[7] recently compiled a primer on Rasch analysis that may 

serve as a basis for recommendations. In doing so, Tennant explained what “Rasch 

analysis” is, why it should be used, and when to apply it. According to this article, Rasch 

analysis should be applied whenever change scores need to be calculated from ordinal 

scales. The data must be shown to meet model expectations so that an interval (logit-

based) estimate may be derived and logit person estimates may be exported for 

parametric analysis. 

Nevertheless, previous studies on the Rasch Model have not dealt with 

measurement errors, which, as discussed, are virtually ubiquitous. The key purpose of 

this dissertation, then, is to address measurement errors in Rasch model. To do so, I 
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proposed to incorporate them into the Rasch model under an established framework of 

measurement errors. The proposed model addressed linearity issues of the summed scores 

from questionnaires and more general issues related to measurement errors. Typically, 

the measurement errors in self-reported questionnaires may be modeled as classical 

measurement error. In the classical measurement error model for an item response 

data,[14] I introduce the following terms: an unobserved true response to Item i by 

Person n (ܺ௡௜) is measured by some individual-specific random error. The observed 

response ௡ܹ௜ may be different from ܺ௡௜ because it is mainly caused by inaccurate 

information obtained in the self-report questionnaires. Accordingly, Rasch model 

accounting for the classical measurement error structure may be modeled in the following 

way: the logit transformed latent variables LW and LX linked the true response ܆ and the 

observed response ܅.  

ࢃࡸ ൌ ࢄࡸ ൅   ࢁ
௑೙೔ܮ ൌ ௡ߚ െ  ௜ߜ

where each component ܷ௡௜ of U are i.i.d. random variables of measurement error. 

Due to the difficulty in modeling the likelihood of the Rasch model along with 

measurement errors directly, I adopted the Markov Chain Monte Carlo (MCMC) 

approach to find the estimates of Rasch model parameters. From simulation exploration, I 

discovered optimal setting of the factors that affected the MCMC implementation.  

Using the optimal setting of factors that affected the MCMC implementation, I 

applied the Rasch model accounting for measurement errors to SST data. From this 
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model, I obtained the estimates of Rasch model parameter estimates (ࢼ), denoted as 

MCMC Rasch SST scores. With MCMC Rasch SST scores, I determined the minimum 

clinically important difference (MCID) for patients with rotator cuff tendonitis or tearing. 

The SST, a questionnaire designed to assess patient reported shoulder function, consists 

of 12 yes/no questions.[4] For each question in the SST, answer “Yes” is coded as one (1) 

and answer “No” is coded as zero (0). The sum of answers (1 vs. 0) over all SST 

questions for each subject is used to characterize the patient’s shoulder function, denoted 

as the SST summed score. The higher the SST summed score, the better is the patient-

reported shoulder function. The range of SST summed score is from 0 to 12.[4]  

The SST data were obtained from a larger dataset collected for a study whose 

Principal Investigator was Robert Z. Tashjian, MD, Department of Orthopedics, 

University of Utah, School of Medicine, Salt Lake City, UT.[15, 16] Permission to use 

these data was obtained from Dr. Tashjian (i.e., PI of the study for which data were 

collected).  

In this dataset, 81 patients with rotator cuff tendonitis or tearing provided SST 

data both at Screening and Week 6 follow-up after the intervention with nonoperative 

modalities. All of them responded to two anchored questions at the week 6 follow-up. 

Through Rasch model accounting for measurement errors, I obtained the estimates of 

Rasch model parameters (ࢼ) at both Weeks 0 and 6, called MCMC Rasch scores.  If the 

difference of change from baseline in MCMC Rasch scores between two patient groups 

(i.e., No Change vs. Minimal Improvement) is statistically significant at 0.05 level, then 

this difference was defined as MCID.[17, 18]  The two patient groups were classified by 

either15-item or four-item anchored questions (see Appendix C of Chapter 4 for the 
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details of the two anchored questions). To evaluate the role of measurement errors on 

conclusions about MCID, I calculated the difference in change from baseline between the 

two patient groups delineated above (reflecting the two anchored questions) in three 

ways:  SST summed scores, Rasch SST scores, and MCMC Rasch SST scores. Results 

were then compared.  The anchored questions were (1) “Since your last clinic visit, has 

there been any change in the function of your treated shoulder?” (with 15 response 

categories ranging from “A very great deal worse” to “A very great deal better”); (2) 

“Since your last clinic visit, please rate your response to treatment.” (with 4 response 

categories ranging from “None” to “Excellent” ). 

Purpose of Study 

In dealing with nonlinearity and measurement errors in self-reported responses to 

questionnaires, this dissertation proposes Rasch model accounting for measurement 

errors. Our particular purpose was to explore the construction of the Rasch model 

accounting for measurement errors in questionnaires with binary responses. Because of 

complexity of this model (i.e., the direct model of distribution for measurement errors is 

not available), there was no maximum likelihood solution. For this reason, I used Markov 

Chain Monte Carlo (MCMC) algorithm to obtain the numerical estimates for the model 

parameters. Next, via the Metropolis-Hastings algorithm with Gibbs sampler, I explored a 

spectrum of factors that may affect the MCMC implementation. In doing so, I found 

optimal setting for factors in the MCMC implementation. Using the optimal setting of 

factors that affect the MCMC implementation, I then applied Rasch model accounting for 

measurement errors to SST data in patients with rotator cuff tendonitis or tearing. The 

scores obtained through Rasch model accounting for measurement errors are referred to 
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as MCMC Rasch scores. Finally, in order to evaluate the effect of measurement errors on 

the MCID determination, I compared the conclusions about the MCID obtained through 

SST summed scores, Rasch SST scores, and MCMC Rasch SST scores. 
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CHAPTER  2 

 

MINIMUM CLINICALLY IMPORTANT DIFFERENCE FOR THE SIMPLE 

SHOULDER TEST: RASCH SCORE VS. SUMMED SCORE 

Abstract 

According to the literature, a common way to determine the minimum clinically 

important difference (MCID) is through an anchored question, and it is defined as the 

statistically significant difference in change from baseline (CFB) between a No Change 

group and a Minimal Improvement group. Using this method, summed scores are 

conventionally used to ascertain the MCID, even though this may be open to criticism. 

Given the importance of the MCID in clinical and outcomes research, I used another 

method to view the MCID, i.e., Rasch model transformation. Data, provided by patients 

treated conservatively for rotator cuff disease, consisted of their responses to the Simple 

Shoulder Test (SST). I used the Rasch Model to transform SST summed scores and two 

anchored questions to determine the MCID. According to the 15-item anchored question 

and transformed SST scores, the difference (95% CI) of the CFB between two groups 

was 1.97 (-0.17, 4.10). According to the four-item anchored question and transformed 

SST scores, the difference (95% CI) of the CFB between two groups was 

2.38 (1.03, 3.74). Each result ascertained through Rasch transformation supported the 

other, and, furthermore, both of them are consistent with MCID’s ascertained by summed 
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scores. [1] This consistency in results, even though they were obtained from different 

analyses, may be reassuring to those who employ the MCID of the SST. 

Introduction 

The use of questionnaires in outcomes research immediately raises the question of 

how to establish the minimum clinically important difference (MCID).  Given a 

particular outcome as measured by patients’ responses on a questionnaire and a specific 

patient population, what is the MCID?  A clinically important difference is 

distinguishable from a statistically significant difference.[2] A statistically significant 

difference does not necessarily imply a meaningful difference from the patient’s point of 

view. In contrast, a MCID represents “the smallest difference in score in the domain 

which patients perceive as beneficial and which would mandate, in the absence of 

troublesome side effects and excessive cost, a change in the patient’s management.” [3]  

From patients’ point of view, results of laboratory and imaging tests as well as 

statistical improvement have little inherent value. What matters most to them is the 

degree to which they can function and perform daily activities after treatment.[4, 5] The 

MCID, based on patients’ perception of function, by definition is pivotal to patient 

centered care.  Conventionally, it is determined by the summed score derived from 

totaling responses from all individual questions.[6, 7] In view of the importance of the 

MCID in clinical care and outcomes research, we would not accept the MCID with a 

summed score at face value. Rather, aside from the MCID based on summed scores, I 

bring another method, i.e., Rasch model transformation, to bear on the MCID.  Are 

results based on one of these methods consistent with results based on the other?  
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I explore this question using responses on the simple shoulder test (SST) provided 

by patients treated for rotator cuff disease.[8] The SST represents many advantages of 

using questionnaires in outcomes research.[4, 5] Because patients usually answered 

questions in questionnaires without assistance, the data collected through them 

systemically incorporate patients’ perspectives in the evaluation of outcomes, and, 

relative to invasive procedures, they are less expensive and also patients may find them 

more acceptable. However, outcome measures based on patients’ reports, such as SST, 

have a certain feature in common: their summed score is used as a measurement of 

disease severity.[6, 7] Among the problems that arise from this feature are the following: 

(1) there are no natural numerical upper or lower limits to health status, and for this 

reason, a zero value does not have an inherent meaning. (2) Furthermore, psychometric 

instruments such as the SST do not necessarily have interval characteristics (i.e., scaled in 

a linear fashion). In other words, one cannot assume that the two-point difference 

between scores of 10 and 12 is the same as the difference between scores of 1 and 3. This 

leads to difficulty in interpreting changes in the score at follow-up visits. 

To deal with the nonlinear property of summed scores for SST, the Rasch model 

converts ordinal measures into linear measures.[9] Generally speaking, the Rasch model 

is a transformation from SST summed scores into linear space, provided that the fit to the 

model and several assumptions about the model are appropriate.[10] After the Rasch 

transformation of the SST summed score, the interval property of Rasch SST score is 

established. Then, I can analyze Rasch SST scores through t-tests to determine the 

MCID.  
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Materials and Methods 

Simple Shoulder Test 

The  SST questionnaire consists of 12 “yes/no” questions (or coded as 1/0), which 

assess shoulder function.[8] The summed score of 12 SST questions is used to 

characterize shoulder function: the possible values of SST summed score are 0, 1, 2, …, 

to 12; the higher the SST score, the better is the shoulder function. The University of 

Washington, Department of Orthopedics and Sports Medicine, has compiled a website 

that provides a full description of the SST, including a listing of its questions, 

psychometric properties, and data obtained from patients.[8] According to the website, 

the SST may be administered to all patients presenting to a shoulder clinic.  

Rasch Model 

The basis of outcomes research frequently consists of patient reports obtained 

from questionnaires and, more specifically, change scores derived from patients’ reports. 

Rasch analysis is useful because it transforms ordinal scores into linear, interval-level 

scores, given the fit of data to Rasch model expectations. [10] 

Considering the data structure of two category items, in the Rasch model for 

dichotomous data, the probability of the outcome ܺ௡௜ ൌ 1 is given by: 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௘௫௣ሺఉ೙ିఋ೔ሻଵା௘௫௣ሺఉ೙ିఋ೔ሻ      (2.1) 

where 

    ܺ௡௜ is response (1=Yes, 0= No) from Person n to Item i; 
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 ௡ is the ability of person n (n = 1, …, N), which hereafter will be referred as theߚ    

“Rasch score”; 

  .௜  is the difficulty of item i (i = 1, …, I)ߜ     

Through the logit transformation, the dichotomous Rasch model has the following linear 

form:  

௑೙೔ܮ ൌ ሾܲሺܺ௡௜ݐ݅݃݋݈ ൌ 1ሻሿ ൌ ௡ߚ  െ  ௜ߜ
The person ability ߚ௡ ሺ݊ ൌ 1, … , ܰሻ is to measure how able ݊௧௛person can 

perform items in SST; the item difficulty ߜ௜ ሺ݅ ൌ 1, … ,  ሻ  is to measure the difficulty ofܫ

the ݅௧௛item. ܮ௑ is the 88Hlogit  (log odds) of performance by a person to an item, based on 

the model, equal to ߚ௡ െ   .௜ߜ
According to Rasch, “A person having a greater ability than another should have 

the greater probability of solving any item of the type in question and similarly one item 

being more difficult than another one means that for any person, the probability of 

solving the second item correctly is the greater one.” [11]  

In other words, the greater the distance between the person and item location (the 

difference between ߜ ݀݊ܽ ߚ), the greater certainty we would expect in the person’s 

ability to perform successfully on an item. However, as this distance approaches zero, 

then the more likely we are to say that there is a 50-50 chance that the person will 

successfully perform the item.[12] 

http://en.wikipedia.org/wiki/Logit�
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Data Source 

The data used in this analysis were obtained from a larger dataset collected for a 

study whose Principal Investigator was Robert Z. Tashjian, MD, Department of 

Orthopedics, University of Utah, School of Medicine, Salt Lake City, UT. [1, 13] Prior to 

data collection, the Tashjian study received approval from the University of Utah 

Institutional Review Board. 

The following briefly describes inclusion and exclusion criteria for the study 

population.  Patients were included if they: 

1. were over the age of 18; 

2. had clinical diagnosis of rotator cuff tear or rotator cuff tendonitis; 

3. agreed to participate in nonoperative treatment.  

Patients were excluded if they:  

1. were treated with early surgical repair (for acute full-thickness tears or chronic 

tears in patients under the age of 60), glenohumeral arthritis, adhesive capsulitis; 

2. were not willing to participate in nonoperative treatment;  

3. had any signs of glenohumeral arthritis present on radiographs, including 

humeral or glenoid osteophytes, joint space narrowing, subchodral sclerosis, or 

subchondral cysts; 

4. had a diagnosis of rotator cuff disease and stiffness with a global loss of motion 

in all planes compared to the opposite shoulder  

5. had less than 50% external rotation at the side compared to the opposite shoulder.  

All patients meeting the inclusion and exclusion criteria were asked to participate 

in the study.  All participating patients went through initial screening activities, which 

included a history, physical examination, and shoulder radiographs.  Additionally, they 
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all had magnetic resonance imaging of the shoulder performed either prior to the initial 

evaluation (if one was obtained) or during the screening. Their final diagnosis was based 

on the initial physical examination, and the initial imaging studies (radiographs and 

magnetic resonance imaging scans).  

Eighty-one patients with rotator cuff tendonitis or tearing were enrolled and 

treated with nonoperative modalities. Patient characteristics are described in the previous 

publication.[1] All of them provided SST data both at Screening and Week 6 follow-up.  

Statistical Analysis 

First, through the Rasch model, the summed scores from the SST questionnaire 

data were converted to Rasch scores for each subject. Then, the minimum clinically 

important difference (MCID) of Rasch scores was determined using anchor-based 

approaches [2] as described below. Anchor-based approaches rely on the relationship of 

the outcome instrument being evaluated and an independent measure of improvement 

question (i.e., anchor question).[2, 3, 14] Table 2.1 provides the two anchored questions. 

Two anchored questions were chosen to determine MCID in SST Rasch scores 

because these anchored questions were used in the Robert Z. Tashjian’s articles. 

According to the 15-item function question in Table 2.1,  

• the patients will be classified as no change group [1] if their answers to this 

question are one of the following:  

o almost the same, hardly any worse at all;  

o no change; 

o almost the same, hardly any better at all. 
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Table 2.1: Anchored Questions 
15-Item Function Question 
Since your last clinic visit, has there been any change in the function of your treated shoulder? 
A very great deal worse 
A great deal worse 
A good deal worse 
Moderately worse 
Somewhat worse 
A little worse 
Almost the same, hardly any worse at all 
No change 
Almost the same, hardly any better at all 
A little better 
Somewhat better 
Moderately better 
A good deal better 
A great deal better 
A very great deal better 
four-Item Question 
Since your last clinic visit, please rate your response to treatment. 
None – no good at all, ineffective treatment 
Poor – some effect but unsatisfactory 
Good – satisfactory effect with occasional episodes of pain or stiffness 
Excellent – ideal response, virtually pain free 

 

• the patients will be classified as minimal improvement group [1] if their answers 

to this question are one of the following:  

o a little better; 

o somewhat better. 

According to the four-item question in Table 2.1,   

• the patients will be classified as no change group [1] if their answers to this 

question are one of the following:  

o none;  

o poor. 
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• the patients will be classified as minimal improvement group [1] if their answers 

to this question are one of the following:  

o good. 

With the classification of patient groups (No change vs. Minimal Improvement), 

the mean change from baseline with respect to SST were calculated for each of patient 

groups. The statistically significant difference of changes from baseline between patient 

groups was defined as the MCID. The p value and 95% confidence interval (CI) from a 

t-test was provided on the difference of change from baseline between “No Change” and 

“Minimal Improvement” in the section of Results.  

Results 

Table 2.2 presents the SST Rasch score and its change from baseline (CFB) by 

anchored questions. The estimated difference (95% CI) of the CFB between two groups 

is 1.10 (-0.05, 2.25) for the 15-item question while the estimated difference (95% CI) of 

CFB between the two groups is 1.33 (0.59, 2.06) for the four-item question.  

I found that SST Rasch score is between -3 and 3 with standard deviation of 1.5 

while the SST summed score is between 0 and 12 with standard deviation of 3.2. In order 

to obtain a fair comparison with the MCID derived from the SST summed score,[1] the 

SST Rasch scores were rescaled by the factor of the ratio of standard deviations of SST 

summed score over SST Rasch scores. In other words, I rescaled the SST Rasch score so 

that it had a similar scale of standard deviation as the SST summed score. The results are 

shown in Table 2.3. 
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Table 2.2: SST Rasch Score and its Change from Baseline 

Anchored 
Questions 

 No Change 
Minimal 

Improvement 
Visit Mean (SD) n Mean (SD) n 

15-Item Question Week 0 (BL) 0.16 (1.526) 9 0.44 (1.829) 19 
 Week 6 -0.02 (1.231) 9 0.81 (1.542) 17 
 CFB -0.17 (1.462) 9 0.92 (1.262) 16 
 Difference (CI) 1.10 (-0.05, 2.25) 
 P Value 0.0606

    
four-Item Question Week 0 (BL) 0.25 (1.588) 20 -0.11 (1.522) 46 
 Week 6 -0.29 (1.517) 21 1.13 (1.309) 37 
 CFB 0.03 (1.401) 18 1.36 (1.218) 37 
 Difference  (CI) 1.33 (0.59, 2.06) 
 P Value 0.0007

BL= Baseline; CFB= Change from Baseline; CI=95% Confidence Interval 
 

For purposes of comparison (with results in Table 2.3), the results on SST 

summed score from a previous study results [1] are shown in Table 2.4. 

From the results shown in Table 2.3 and 2.4, the difference (95% CI) of the CFB 

between two groups is 1.97 (-0.17, 4.10) for the rescaled SST Rasch score vs. 1.95 (0.06, 

3.85) for the SST summed score, using the 15-item anchored question.  Based on the 

four-item anchored question, the difference (95% CI) of the CFB between the two groups 

is 2.38 (1.03, 3.74) in the rescaled Rasch SST score vs. 2.33 (0.99, 3.66) in the SST 

summed score. Note in the results, the CIs in Rasch scores were wider than CIs in 

summed scores because Rasch scores are nonestimable for the summed scores of zero 

(the answers are all NO) and twelve (the answers are all YES). For this reason, five 

patients were lost using 15-item anchored question and 15 patients using four-item 

anchored question. 
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Table 2.3: Rescaled SST Rasch Score and Its Change from Baseline 

Anchored 
Questions 

 No Change 
Minimal 

Improvement 
Visit Mean (SD) n Mean (SD) n 

15-Item Question Week 0 (BL) 0.30 (2.856) 9 0.83 (3.422) 19 
 Week 6 -0.03 (2.194) 9 1.45 (2.750) 17 
 CFB -0.32 (2.698) 9 1.64 (2.348) 16 
 Difference (CI) 1.97 (-0.17, 4.10) 
 P Value 0.0693 
    
four-Item Question Week 0 (BL) 0.46 (2.972) 20 -0.21 (2.848) 46 
 Week 6 -0.53 (2.704) 21 2.02 (2.333) 37 
 CFB 0.06 (2.568) 18 2.44 (2.247) 37 
 Difference  (CI) 2.38 (1.03, 3.74) 
 P Value 0.0009 
BL= Baseline; CFB= Change from Baseline; CI=95% Confidence Interval 

 

Table 2.4: SST Summed Score  and Its Change from Baseline 

Anchored 
Questions 

 No Change 
Minimal 

Improvement 
Visit Mean (SD) n Mean (SD) n 

15-Item Question Week 0 (BL) 6.33 (3.000) 9 6.71 (3.690) 21 
 Week 6 6.00 (2.500) 9 8.33 (3.055) 21 
 CFB -0.33 (2.958) 9 1.62 (2.012) 21 
 Difference (CI) 1.95 (0.06, 3.85) 
 P Value 0.0439

    
four-Item Question Week 0 (BL) 5.83 (3.667) 24 5.76 (2.877) 46 
 Week 6 6.33 (3.447) 24 8.59 (2.833) 46 
 CFB 0.50 (2.396) 24 2.83 (2.783) 46 
 Difference  (CI) 2.33 (0.99, 3.66) 
 P Value 0.0009 
BL= Baseline; CFB= Change from Baseline; CI=95% Confidence Interval 
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Discussion 

In comparing the results of these four analyses, the point estimates are of similar 

magnitude (1.97 of rescaled Rasch score vs. 1.95 of the SST summed score using the 

15-item anchored question; 2.38 of rescaled Rasch score vs. 2.33 of SST summed score 

using the four-item anchored question). All four analyses reached statistical significance 

or borderline significance at α=0.05. The two sets of results, one obtained from the 

analysis of  rescaled Rasch scores and the other obtained from the analysis of  summed 

scores, show agreement with each other both clinically (in terms of magnitude) and 

statistically. Above all, it appears that the results from the Rasch model supports the 

conclusion in the original study, which determined that a 2 point change in the SST 

summed score was the MCID.[1] 

Because the Rasch model can be viewed as a transformation from SST summed 

scores into linear space, provided that the fit to the model and several assumptions[10, 

15] about the model are appropriate, Figure 2.1 shows the relationship between Rasch 

SST scores (i.e., person ability) and SST summed scores in our population. Although 

scores from the two methods are expected to be highly related, they do not form a linear 

relationship due in part to the logarithmic nature of the Rasch model. A plot of the two 

scores is expected to be represented by an ogive (sigmoidal-shaped curve) in which the 

curve rises gradually, has a steep central slope, and then gradually flattens out [16, 17]. 

The shape of the curve indicates that the Rasch scores at the upper and lower end of the 

range are more spread out than the corresponding the SST summed scores. In other 

words, the graph demonstrates that the Rasch model describes more meaningful changes 

for those patients at the upper and lower end of the range, which would not be indicated 

when using SST summed scores (i.e., equal spaces between any two scores). 
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Figure 2.1: Relationship between SST Total Score and Rasch SST Score 

After transformations (our advice would be to let the statistician build the Rasch 

model for each unique patient dataset), clinicians may conveniently use Rasch SST 

scores to draw conclusions. The change scores can be identified for a patient, and, in turn, 

they can be compared with MCID determined in terms of Rasch scores. The 

interpretation in Rasch scores across patients is much simpler than SST summed scores 

because the change scores of the same magnitude have the same meaning across all the 

baselines. That is, a change of two in Rasch scores for one patient with a baseline score 

of minus one has the same meaning as a change of two in Rasch scores for another 

patient with a baseline score of three because the Rasch score is the part of linear model 

in logit form. In contrast, the use of summed scores provides no such guarantee. In other 

words, Rasch scores provide the basis for clinicians to compare results across patients in 

order to evaluate if an intervention is effective.  

In explaining to patients how they are doing after an intervention, however, 

clinicians may still use SST summed scores as a reference point. In that case, a clinician 
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may say to a patient: “When you came in initially, you only indicated you could perform 

6 activities. Now, after the intervention, you can perform 8 activities” 

A limitation of the study is its relatively small sample size. Even though a total of 

81 subjects were enrolled in the study, the sample size for the “No Change” group is 9 

while the sample size for the “Minimally Improvement” Group is 21 according to 

15-item question.  The sample size is 24 for the “No Change” group and 46 for the 

“Minimally Improved” group according to four-item question. From the above two 

analyses, the MCID for SST summed score was determined to be a change of 2 points. In 

the analysis with the four-item question, the power to detect a difference of 2 points 

between two groups is about 80% at the current sample sizes (24 for No Change vs. 46 

for Minimal Improvement).  

To conclude, clinicians and outcomes researchers have relied upon the MCID, 

and this has profound implications for patient care. I raise the question whether it should 

be trusted. For this reason, I viewed the MCID from another statistical perspective. 

Despite small sample sizes, the consistency in results is notable: each result ascertained 

through Rasch transformation supported the other, and both of them were consistent with 

MCID’s ascertained by the SST summed score [1]. These results may be reassuring to 

physicians and researchers who employ the MCID of the SST because different methods 

of determining it (summed scores and Rasch scores) are mutually supportive.  
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CHAPTER  3 

 

BAYESIAN APPROACH FOR RASCH MODEL ACCOUNTING FOR 

MEASUREMENT ERRORS 

Abstract 

Measurement errors exist whenever there is an attempt to measure. They may 

distort an analysis in many ways, which in turn may result in attenuation to the null, loss 

of power, and bias of estimates. I used a Bayesian approach through Markov Chain 

Monte Carlo (MCMC) methods in order to account for measurement errors in the Rasch 

model. In doing so, I explored a spectrum of factors that may affect the MCMC 

implementation. This model I used constitutes our attempt to address more general issues 

related to measurement errors. Importantly, its use led to the exploration of how to obtain 

the estimates of βݏ corresponding to extreme summed scores with reasonable variances, 

which remain inestimable in the classical Rasch model. Rasch model accounting for 

measurement errors enables us to prevent missing data in the conversion process between 

the summed scores and linear Rasch scores. 

Introduction 

Measurement errors exist whenever there is an attempt to measure.[1] Most often 

they consist of measurement errors in questionnaires, which may be defined as the 
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discrepancy between respondents' true attributes and the data obtained in the 

questionnaire about their attributes. A subtype of measurement errors is response error, 

which has many sources, including the mode of interview, wording of questions, 

interviewer behavior, sensitivity of information requested, respondents' recall, and coding 

errors.[2] 

Additionally, when subjects are asked to complete questionnaires, we necessarily 

narrow the choices with which they may respond. For example, in binary response 

questions, there are only two categories for them to choose (e.g., 1=yes or 2=no), which 

is exemplified in the simple shoulder test (SST). In other words, questionnaires, 

particularly those consisting of binary response categories, force subjects to make a 

choice among predefined response categories, even though their true choice may fall 

in-between these categories.   

This suggests that measurement error is much more than simple recording or 

instrument error. It encompasses many different sources of variability.[3] Measurement 

errors may distort an analysis in the following ways:[4, 5] 

• attenuation to null 

• loss of power 

• bias of estimates (i.e., real effects are hidden, observed data exhibit relationship 

that are not present in the error-free data, and the signs of estimated coefficients 

are reversed relative to the case with no  measurement error) 

There is substantial evidence from the literature to support the use of the Rasch 

model to compare outcomes measured by questionnaires, either among patients, within 
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patients (change scores), or between treatments. According to the following studies, in 

relation to summed scores,  

 the Rasch model has produced more accurate estimates of change in terms of 

estimated trait level.[6] 

 Rasch scores also achieved greater relative precision when compared with 

conventional summed scores in many articles.[7-10] 

Nevertheless, preexisting studies on Rasch Models have not dealt with virtually 

ubiquitous measurement errors. This chapter extends fundamental considerations of 

measurement errors in Rasch modeling and addresses the following issues in 

dichotomous response data in questionnaires:  nonlinear summed scores and 

measurement errors. To do so, I implemented the Markov Chain Monte Carlo (MCMC) 

method, specifically via the Metropolis-Hastings algorithm.[11][12] 

Background 

Simple Shoulder Test 

The SST is a self-reported questionnaire, designed to assess patient reported 

shoulder function, consists of 12 yes/no questions.[13] For each question in the SST, 

answer “Yes” is coded as one (1) and answer “No” is coded as zero (0). The sum of 

answers (1 vs. 0) over all SST questions for each subject is used to characterize the 

patient’s shoulder function, denoted as the SST summed score. The higher the SST 

summed score, the better the patient-reported shoulder function is. The range of SST 

summed score is from 0 to 12.[13]  
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From the SST, the summed score is used as a measurement of disease severity. 

Among the problems that arise from this feature are the following:  

• There are no natural numerical upper or lower limits to health status. Thus, a zero 

value does not have an inherent meaning. 

• The SST summed score is not necessarily an interval measure (i.e., linear 

measure). The spaces between 0, 1… and 12 may not be equal, which variously 

impacts change scores depending on the initial scores, i.e., 12 – 10 ≠ 3 – 1. 

Rasch Model Accounting for Measurement Errors 

To deal with the nonlinear property of summed scores for the SST, the Rasch 

model converts ordinal measures into linear measures. Considering the data structure of 

two category items through the Rasch model for dichotomous data, the probability of the 

outcome ܺ௡௜ ൌ 1 is given by: 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௘௫௣ሺఉ೙ିఋ೔ሻଵା௘௫௣ሺఉ೙ିఋ೔ሻ      (3.1) 

where 

      ܺ௡௜ is the response (1=Yes, 0= No) for Person n to Item i; 

 ௡ is the ability of Person n (n = 1, …, N), which hereafter will be referred as theߚ      

“Rasch score”; 

 ;௜  is the difficulty of Item i (i = 1, …, I)ߜ      

     P(·) is the probability that Person n has a true or observed response to Item i.  

Through the logistic regression model, the dichotomous Rasch model has the following 

linear form:  
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ሾܲሺܺ௡௜ݐ݅݃݋݈ ൌ 1ሻሿ ൌ ௡ߚ  െ  ௜     (3.2)ߜ

The person ability ߚ௡ ሺ݊ ൌ 1, … , ܰሻ is to measure how able ݊௧௛person can 

perform items in SST; the item difficulty ߜ௜ ሺ݅ ൌ 1, … ,   .ሻ  is to measure how difficult of ݅௧௛itemܫ

In order to account for the effects of measurement errors, I proposed to 

incorporate them into the Rasch model under a  preestablished framework of 

measurement errors.[3] Recall that the SST consists of 12 self-reported yes/no questions. 

Typically, the measurement errors in self-reported questionnaires may be modeled as 

classical measurement error. In the classical measurement error model for an item 

response data,[14] I introduce the following terms: an unobserved true response to Item i 

by Person n (ܺ௡௜) is measured by some individual-specific random error. The observed 

response ௡ܹ௜ may be different from ܺ௡௜  because it is mainly caused by inaccurate 

information obtained in the self-report questionnaires.  

Because the joint distribution of ࢄ and ࢃ is difficult to model directly, I modeled 

two latent variables ࢃࡸ and ࢄࡸ instead. The ࢃࡸ was defined as ݈ݐ݅݃݋൫ܲሺࢃሻ൯ and 

the ࢄࡸwas defined as ݈ݐ݅݃݋൫ܲሺࢄሻ൯. The Rasch model incorporating the classical 

measurement error structure may be modeled in the following way: the logit transformed 

latent variables ࢃࡸ and ࢄࡸ linked the true response ࢄ and the observed response ࢃ.  

ࢃࡸ ൌ ࢄࡸ ൅  (3.3)       ࢁ

௑೙೔ܮ ൌ ௡ߚ െ  ௜      (3.4)ߜ
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where each component ܷ௡௜ of U are i.i.d. random variables of measurement error 

,ሺ0૚ܰ ~ ࢁ   .௨ଶ is the variance of the classical measurement errorߪ ሻ, whereࡵ௨ଶߪ

,ࢄࡸࣆሺܰ ~ ࢄࡸ  ଶࢄࡸߪ ଶࢄࡸߪ and ,ࢄࡸ is the mean of ࢄࡸࣆ ሻ, whereࡵ  is the variance of ࢄࡸ 

Therefore, the joint distribution of  ࢃࡸ and ࢄࡸ is: 

ቀࢃࡸࢄࡸቁ ~ ܰ ൭ቀࢄࡸࣆࢄࡸࣆቁ , ቈఙࢄࡸమ మࢄࡸఙࡵ మࢄࡸఙ ࡵ మࢄࡸቀఙࡵ ାఙೠమቁࡵ቉൱     (3.5) 

and the conditional distribution of ࢄࡸ given ࢃࡸ is: 

ࢄࡸࣆ൬ ࡺ ~ ࢃࡸ|ࢄࡸ ൅ ఙࢄࡸమఙࢄࡸమ ାఙೠమ ࢃࡸ൫ࡵ െ ଶࢄࡸߪ   ,൯ࢄࡸࣆ ൬1 െ ఙࢄࡸమఙࢄࡸమ ାఙೠమ൰  ൰   (3.6)ࡵ

In order for the implementation of the above formula, I further assume that ࢄࡸࣆis 

equal to ࢃࡸ,  and ࡸߪଶ࢞  is equal to ࢃࡸߪଶ  estimated as ݎܽݒ ሺࢃࡸሻ, and ࢁߪଶ is equal to the 

proportion (denoted as a%) of ࢄࡸߪଶ .  Therefore, Formula (3.6) became  

ܰ ~ ࢝ࡸ|ࢄࡸ ቀࢃࡸ૚, ଶࢃࡸߪ ቀ଴.௔ଵ.௔ቁ  ቁ     (3.7)ࡵ

Description of Source Data and Simulated Data 

The SST data were obtained from a larger dataset collected for a study whose 

Principal Investigator was Robert Z. Tashjian, MD, Department of Orthopedics, 

University of Utah, School of Medicine, Salt Lake City, UT.[15, 16] Prior to data 

collection, Dr. Tashjian’s study received approval from the University of Utah 

Institutional Review Board.  
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Eighty-one patients with rotator cuff tendonitis or tearing were enrolled and 

treated with nonoperative modalities. All of them provided SST data both at Screening 

and Week 6 follow-up. Permission to use these data was obtained from Dr. Tashjian (i.e., 

PI of the study for which data were collected). 

Due to the difficulty in modeling the likelihood of the Rasch model along with 

measurement errors directly, I used simulations to demonstrate the utilization of our 

methods. I first estimated ݏߚ and ݏߜ from classical Rasch model based on observed SST 

data at week 0 without accounting for measurement errors. I then used these estimates as 

true parameters. Starting with true ݏߚ and ݏߜ,  I introduced a proportion of variance of  ܮ௑ as the measurement errors into Rasch model and then generated simulated datasets. 

One hundred datasets were generated with each measurement error scenario: 10%, 50%, 

and 100% of the variance of ࢄࡸ. I will refer to three scenarios of measurement errors as, 

respectively, 10% level, 50% level, and 100% level of measurement errors.  

For each above simulated dataset with known measurement errors, I used a 

Bayesian approach through Markov Chain Monte Carlo (MCMC) method[11, 17, 18] to 

estimate the parameters  ݏߚ and ݏߜ from the Rasch model incorporating measurement 

errors. In doing so, I adopted Gibbs sampler in conjunction with a Metropolis-Hasting 

steps to evaluate the effect of measurement errors in Rasch model. After the MCMC 

simulations, I summarized posterior distribution of Rasch model accounting for 

measurement errors and compared the results with true parameters. 
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Methods 

Overview of Definition and Properties of Markov Chains 

Consider a distribution π from which a sample must be drawn via Markov chains. ܲሺݔ|ݕሻ is transitional probability (or conditional transitional density) and  

ܲሺݔ|ݕሻ ൌ ሺ݊ߠሺݎܲ ൅ 1ሻ ൌ ሺ݊ሻߠ| ݕ ൌ  ሻ    (3.8)ݔ

The conditional transitional density  

ሻݔ|ݕሺ݌ ൌ డ௉ሺ௬|௫ሻడ௬ , ,ݔ ݎ݋݂ א ݕ ܵ     (3.9) 

where S is the state space. 

According to Section 6.2 of Gamerman,[19] a transition kernel ݌ሺݔ|ݕሻ must be 

constructed in a way such that π is the equilibrium distribution of the chain. A simple 

way to do this is to consider reversible chains where the kernel p satisfies[19] 

ሻݕ|ݔሺ݌ሻݔሺߨ ൌ ,ሻݔ|ݕሺ݌ሻݕሺߨ   (3.10)   ݕ ݀݊ܽ ݔ ݈݈ܽ ݎ݋݂

As seen in Section 4.6 in the text on Markov chain Monte Carlo,[20] Equation 

(3.10) is the reversibility condition of the chain, which is also referred to as the detailed 

balance equation. Even though this is not a necessary condition for convergence, it is a 

sufficient condition in order that π be the equilibrium distribution of the chain. 

The kernel ݌ሺݔ|ݕሻ consists of 2 elements:  

• an arbitrary transition kernel ݍሺݔ|ݕሻ 
• a probability of ߙሺݔ,  ሻݕ



35 
 

 

ሻݔ|ݕሺ݌ ൌ ,ݔሺߙሻݔ|ݕሺݍ ,ሻݕ ݔ ݂݅ ്  (3.11)     ݕ

So the transitional kernel defines a density ݌ሺ·  ሻ for every possible value of theݔ|

parameter different from ݔ. Therefore, there is a positive probability left for the chain to 

remain at θ: ݌ሺݔ|ݔሻ ൌ 1 െ ׬ ሻݔ|ݕሺݍ ,ݔሺߙ   ݕሻ݀ݕ

The general form for transitional kernel is: 

ሻݔ|ܣሺ݌ ൌ ׬ ,ݔሺߙሻݔ|ݕሺݍ ሻݕ ݕ݀ ൅ ݔሺܫ א ሻൣ1ܣ െ ׬ ,ݔሺߙሻݔ|ݕሺݍ ሻݕ ஺ݕ݀ ൧஺   (3.12) 

Hastings [21] proposed to define the acceptance probability in such a way that when 

combined with arbitrary transition kernel, it defines a reversible chain as follows: 

ߙ ൌ ݉݅݊ ቄ1, గሺ௬ሻ௤ሺ௬|௫ሻగሺ௫ሻ௤ሺ௫|௬ሻቅ     (3.13) 

Those algorithms, based on chains with transitional kernel (3.12) and acceptance 

probability (3.13), are Metropolis-Hastings algorithms. The transitional kernel q defines 

only a possible move that can be confirmed according to the value of acceptance 

probability α. Thus, q is generally referred to as the proposal kernel or proposal 

(conditional) density.  

It is crucial that the proposal kernels are easy to draw from, because the 

Metropolis-Hastings method replaces the difficult generation of π by many generations 

proposed from q. Another equally important requirement to be met by q is the correct 

tuning of the moves it proposes to ensure that moves cover the parameter space and may 

be accepted in the computing power. Except for a few technical restrictions in the 
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previous paragraph, there is a total flexibility for the choice of the proposal transitional 

kernel q. 

Bayesian Methods through MCMC Process 

As pointed out above, it is not practical to model the joint distribution of true and 

observed response (i.e., X and W) directly. For this reason, I employed Logit 

transformation to convert X and W into ࢝ࡸ ݀݊ܽ ࢄࡸ. This allows us to assume that 

measurement errors are normally distributed in the Logit dimension. The Bayesian 

approach is a very efficient and effective way to obtain the model parameter estimates. 

According to the Bayesian method, the complete likelihood function needs to be 

constructed for the Rasch model accounting for measurement errors. The complete 

likelihood function for the model (see Appendix A for details) is 

,ࢼሺܪܮ ,ࢾ ,ࢄ ሻࢄࡸ ൌ ሼ݂ሺࢼ|ࢄ, ሻሽࢾ ൈ ሼ݂ሺࢼሻ כ ݂ሺࢾሻሽ ൈ ሼ݂ሺࢄࡸ|ࢄሻሽ ൈ ሼ݂ሺࢃࡸ|ࢄࡸሻሽ  (3.14) 

I generated a Gibbs Sampler for each parameter according to the following 

outlined steps. After a Gibbs sampler is generated at each step as a candidate θ, 

Metropolis-Hastings Algorithm to accept this candidate θ from a proposed distribution 

q(.) is based on the following probability: 

ߙ ൌ ݉݅݊ ቄ1, ௅ு ሺఏ೎ೌ೙೏೔೏ೌ೟೐ሻ௤ሺఏ೎ೠೝೝ೐೙೟|ఏ೎ೌ೙೏೔೏ೌ೟೐ሻ௅ு ሺఏ೎ೠೝೝೝ೐೙೟ሻ௤ሺఏ೎ೌ೙೏೔೏ೌ೟೐|ఏ೎ೠೝೝೝ೐೙೟ሻቅ   (3.15) 

Then compare ߙ with probability generated from uniform distribution. If ߙ is greater than 

the probability from uniform distribution, then update ߠ௖௨௥௥௘௡௧ with ߠ௖௔௡ௗ௜ௗ௔௧௘. 
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Otherwise, keep ߠ௖௨௥௥௥௘௡௧ as it is. From ܪܮሺࢼ, ,ࢾ ,ࢄ  ሻ,  the steps to generate Gibbsࢄࡸ

samplers are:  

1. Obtain initial starting values of ࢼ and ࢾ, e.g. estimates the two sets of parameters 

from the simulated dataset using Rasch model ignoring measurement error. Set these 

values as the current values ࢼ௖௨௥௥௘௡௧ and ࢾ௖௨௥௥௘௡௧. 

2. Generate a candidate of the true Logit  ࢄࡸ according to the distribution of ࢃࡸ|ࢄࡸ, 

given the observed ࢃࡸ equal to ࢼ௖௨௥௥௘௡௧ minus ࢾ௖௨௥௥௘௡௧.  

3. Generate a candidate of true response ࢄ௖௔௡ௗ௜ௗ௔௧௘ based on updated ࢄࡸ௖௨௥௥௘௡௧.  ࢄ௖௔௡ௗ௜ௗ௔௧௘ follows logistic distribution.  

4. Generate a candidate of ઺ based on current ઺ୡ୳୰୰ୣ୬୲ using the normal 

distribution ܰ൫ࢼ௖௨௥௥, ௣௥௢௣௢௦௘ௗଶ ࢼߪ ൯ .  

5. Generate a candidate of ࢾ based on current ࢾ௖௨௥௥௘௡௧ using the normal 

distribution ܰ൫ࢾ௖௨௥௥, ௣௥௢௣௢௦௘ௗଶ ࢾߪ ൯ .  

Repeat Step 2 to 5 for a large number of times, or until convergence. For each generated 

Gibbs sampler, the associated acceptance ratio can be found in Appendix B. 

Markov Chain Monte Carlo Implementation 

As we know, many factors will affect the implementation of a MCMC algorithm, 

such as convergence and acceptance rate. The focus of this chapter is to obtain the true 

posterior distribution of ઺. Other model parameters ࢄࡸ, ,ࢄ  are considered as the ࢾ ݀݊ܽ

nuisance parameters.  
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General Exploration of Factors Affecting MCMC implementation 

In our case, the following factors may affect the implementation of MCMC 

algorithm: the variance of measurement errors (ߪଶ࢛ሻ equal to the proportion of ࡸߪଶ࢝  

(a%ሻ and prior variance (σ઺ଶ and σଶ઼ሻ and proposal variances for  ࢾ ݀݊ܽ ࢼ. 
After carefully examining the chains of ܆ۺ, ,܆ ઺, and ઼, I found that the variance of 

measurement errors, expressed as a% ൈ σܟۺଶ , only dictated the generation of ܆ۺ chains 

but not the acceptance ratio of ܆ۺ because the acceptance ratio for ܆ۺ did not involve 

any ܆ۺ portion; the chains of ܆ were derived from ܆ۺ and the acceptance ratio for ܆ 

depends on current ઺ and ઼. For both ઺ and ઼, prior variance and proposal variance are 

deciding factors for a candidate to be accepted. Therefore, I focused on the behaviors of 

chains for ઺ and ઼. Several combinations of the factors ( σ઺ଶ, σ઺ ୮୰୭୮୭ୱୣୢଶ , σଶ઼, σ઼ ୮୰୭୮୭ୱୣୢଶ ) 

were used to check the acceptance rate and convergence from trace plots of ࢾ ݀݊ܽ ࢼ.  

The explored ranges for these parameters were σ઺ଶ: 1 to 4;  σ઺ ୮୰୭୮୭ୱୣୢଶ : 0.01 to 0.5; σଶ઼:1 

to 4;  σ઼ ୮୰୭୮୭ୱୣୢଶ : 0.01 to 0.5. Generally speaking, no matter what these four factors are, 

they did not affect the average of acceptance rates for (%98) ܆ۺ and (%20) ܆ and the 

pattern of trace plots of these two sets of model parameters. However, when prior 

variances for ઺ and ઼ increased from 1 to 4, the average acceptance rates were slightly 

rising to about 95-96% and 89-91% respectively.  For ઺ and ઼, if I increased the 

proposed variances from 0.01 to 0.5, the average acceptance rates decreased to about 

78% for ઺ and around 60% for ઼. In short, since the prior variances for ઺ and ઼ did not 

substantially affect acceptance rates, I chose sample variances of ઺ and ઼ as the prior 

variances for further explorations. Because the sample variance for ઼ is relatively small, 

so I chose the proposed σ઼,୮୰୭୮୭ୱୣୢଶ  equal to 0.1. However, according to the following 
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exploration results in Table 3.1, I chose the proposed equal to 0.5 such that the average 

acceptance rate is below 80%. 

Exploration of Factor ࣌૛ for ࢼ in the Implementation of MCMC 

I arbitrarily chose two simulated data sets (labeled as 12th and 73rd dataset) from 

each level of measurement errors (see Section: Description of Source Data and Simulated 

Data for generation of simulated datasets). In this exploration, I used the mean squared 

error (MSE) of an estimator to quantify the difference between values implied by an 

estimator and the true values of the quantity being estimated. MSE is defined as variance 

plus square of bias. I ran 100,000 MCMC iterations for each selected dataset. The first 

50,000 iterations were discarded and the last 50,000 iterations were used for the 

calculations of MSE. From the distribution of 81 true βs (corresponding to 81 subjects) in 

Week 0 data, I selected five true β parameters according to quartiles, minimum, and 

maximum values. In Table 3.2 to Table 3.7, I present the results for the selected five true βs from Rasch model and the MCMC results. To facilitate the description, I also 

classified βs into two categories: extreme β vs. nonextreme β. Extreme β refers to 

the β that came from subject’s summed score of 0 or 12 while nonextreme β refers to the β that came from subject’s summed score of 1 to 11. Other terms in the tables are 

described as below: 

• Classical Rasch Model is a Rasch model (Eq. 3.1) without accounting for 

measurement errors 
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Table 3.1: Acceptance Rate for  βs on MCMC Results from 100,000 Iterations 
for a Simulated Dataset (12) with 10% Level of Measurement Errors ߪఉ,   ௣௥௢௣௢௦௘ௗଶ  Statistic ߚ 

0.01 Mean 0.9957 
 25th, 75th 0.9951  , 0.9957  
 Median 0.9955   
 Min, Max 0.9942  , 0.9987 
   

0.05 Mean 0.9784   
 25th, 75th 0.9759  , 0.9772   
 Median 0.9764   
 Min, Max 0.9749  , 0.9950 
   

0.1 Mean 0.9572   
 25th, 75th 0.9526, 0.9542   
 Median 0.9534   
 Min, Max 0.9506 , 0.9902 
   

0.25 Mean 0.8941   
 25th, 75th 0.8828, 0.8867 
 Median 0.8844 
 Min, Max 0.8791 , 0.9741 
   

0.5 Mean 0.7947 
 25th, 75th 0.7731 , 0.7792  
 Median 0.7753 
 Min, Max 0.7694  , 0.9467 ߪఉଶ  =41.22 is the sample variance from all ݏߚ, and  ߪఉଶ =1.89 is the sample variance of ݏߚ 

excluding extreme ݏߚ corresponding to the summed score of 0 and 12. 
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Table 3.2: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior ݏߚ for a Simulated Dataset (12) with 10% Level of Measurement Errors 

  Classical Rasch Model MCMC I MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -18.84  981561.4 981562.2 -7.16 10.67 126.58 -7.85 10.98 112.57 -3.60 1.08 1.49 -1.94  0.14- (25th) 3ߚ206.40 0.34 -6.18 12.18 34.22 -1.40 1.31 1.31 -2.16 1.76 0.06 0.42 0.05- (50th) 6ߚ2.21 0.28 3.08 23.83 33.69 0.37 1.40 1.59 0.80 2.44 1.48 0.86 0.08 (75th) 2ߚ3.18 0.46 5.17 20.20 33.85 0.60 1.13 1.90 1.25 2.16 18.06 18.85 488908.4 (Max) 58ߚ2.21 488909 7.45 12.12 124.62 7.32 10.87 126.27 3.52 1.13 212.52

Mean Acceptance Rate for ݏߚ in MCMC 90.23% 79.47% 80.40% 

MCMC I:  ࢼߪଶ = 41.22 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 41.22 was used for the chains when initially estimated ݏߚ were extreme  ఉଶ = 1.89 was used for the chains when initially estimatedߪ ;ݏߚ
estimated ݏߚ were nonextreme ݏߚ. 
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ

 

Table 3.3: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior βs for a Simulated Dataset (73) with 10% Level of Measurement Errors 

  Classical Rasch Model MCMC I MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -17.75 277640.4 277640.4 -6.42 7.66 140.09 -6.34 6.63 140.74 -3.47 1.08 1.49 -0.43 0.03- (25th) 3ߚ210.11 1.14 -2.27 9.96 10.57 -0.32 1.14 2.51 -0.68 2.39 0.06 -0.03 0.05- (50th) 6ߚ3.04 0.05 0.16 12.84 12.88 0.09 1.31 1.34 0.13 2.27 1.48 0.81 0.06 (75th) 2ߚ2.30 0.51 3.75 9.86 15.04 0.87 1.04 1.40 1.37 1.60 18.06 17.86 541141.8 (Max) 58ߚ1.61 541141.8 6.58 6.69 138.40 6.54 6.81 139.54 3.64 1.32 209.08

Mean Acceptance Rate for ݏߚ in MCMC 87.91% 78.14% 80.50% 

MCMC I:  ࢼߪଶ = 25.18 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 25.18 was used for the chains when initially estimated ݏߚ were extreme  ఉଶ = 1.66 was used for the chains when initially estimatedߪ ;ݏߚ
estimated ݏߚ were nonextreme ݏߚ. 
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ
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Table 3.4: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior ݏߚ for a Simulated Dataset (12) with 50% Level of Measurement Errors 

  Classical Rasch Model MCMC I MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -16.59 229927.7 229929.5 -4.45 3.13 184.67 -4.35 3.09 187.33 -3.16 1.24 1.49 -0.35 0.03- (25th) 3ߚ219.23 1.32 -1.44 9.97 9.97 -0.19 0.68 2.36 -1.09 3.26 0.06 -0.00 0.02- (50th) 6ߚ3.41 0.02 0.09 11.38 11.41 0.04 0.62 0.63 -0.21 4.09 1.48 1.13 0.08 (75th) 2ߚ4.12 0.20 3.29 4.43 7.72 0.67 0.58 1.22 2.09 1.93 18.06 16.59 459039.3 (Max) 58ߚ2.31 459041.4 4.36 2.90 190.62 4.43 3.00 188.72 3.17 1.19 222.87

Mean Acceptance Rate for ݏߚ in MCMC 84.95% 71.21% 79.81% 
MCMC I:  ࢼߪଶ = 10.92 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 10.92 was used for the chains when initially estimated ݏߚ were extreme  .ݏߚ were nonextreme ݏߚ ఉଶ = 0.67 was used for the chains when initially estimatedߪ ;ݏߚ
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ

 

Table 3.5: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior βs for a Simulated Dataset (73) with 50% Level of Measurement Errors 

  Classical Rasch Model MCMC I MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -1.63 0.61 266.03 -3.52 2.93 210.27 -1.14 0.52 282.11 -2.56 1.51 1.49 -0.00 0.02- (25th) 3ߚ237.69 2.23 -0.46 7.39 8.45 -0.04 0.73 2.84 -0.02 4.36 0.06 -1.12 0.05- (50th) 6ߚ6.52 1.16 -3.12 2.77 12.18 -0.83 0.56 1.16 -2.51 1.83 1.48 -0.00 0.02 (75th) 2ߚ7.83 2.20 -0.13 7.70 10.28 -0.01 0.77 2.98 0.12 3.87 18.06 2.43 0.27 (Max) 58ߚ5.70 244.62 3.67 2.43 209.45 1.31 0.41 280.98 2.94 1.34 230.03

Mean Acceptance Rate for ݏߚ in MCMC 83.74% 71.73% 80.33% 

MCMC I:  ࢼߪଶ = 7.62 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 7.62 was used for the chains when initially estimated ݏߚ were extreme  ఉଶ = 0.77 was used for the chains when initially estimatedߪ ;ݏߚ
estimated ݏߚ were nonextreme ݏߚ. 
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ
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Table 3.6: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior ݏߚ for a Simulated Dataset (12) with 100% Level of Measurement Errors 

  Classical Rasch Model MCMC I from _1 MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -2.42 0.60 240.98 -1.21 0.27 279.51 -1.20 0.30 280.02 -3.12 1.25 1.49 -1.11 0.03- (25th) 3ߚ220.38 0.17 -0.93 0.32 0.63 -0.94 0.30 0.60 -2.77 1.40 0.06 -0.34 0.02- (50th) 6ߚ3.06 0.10 -0.36 0.43 0.53 -0.40 0.40 0.52 -1.71 2.38 1.48 -0.70 0.02 (75th) 2ߚ5.12 4.77 -0.72 0.39 5.21 -0.72 0.38 5.20 -2.46 1.77 18.06 1.63 0.05 (Max) 58ߚ17.25 270.02 1.07 0.29 289.00 1.08 0.30 288.43 2.97 1.41 228.95

Mean Acceptance Rate for ݏߚ in MCMC 68.51% 68.53% 81.01% 
MCMC I:  ࢼߪଶ = 0.48 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 0.48 was used for the chains when initially estimated ݏߚ were extreme  ఉଶ = 0.48 was used for the chains when initially estimatedߪ ;ݏߚ
estimated ݏߚ were nonextreme ݏߚ. 
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ

 

Table 3.7: Results from Classical Rasch Model and MCMC Models (from 100,000 Iterations) with Different Variances of 
Prior ݏߚ for a Simulated Dataset (73) with 100% Level of Measurement Errors 

  Classical Rasch Model MCMC I MCMC II MCMC III 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -0.71 0.03 296.37 -1.87 2.08 259.95 -0.53 0.43 303.01 -2.02 1.87 1.49 -0.00 0.02- (25th) 3ߚ254.75 2.23 0.11 2.98 5.55 0.00 0.52 2.75 0.02 3.69 0.06 -0.00 0.02- (50th) 6ߚ5.98 0.02 -0.12 3.45 3.45 0.01 0.50 0.51 0.11 3.73 1.48 -1.12 0.07 (75th) 2ߚ3.76 6.83 -2.42 1.46 16.62 -0.74 0.43 5.32 -2.44 1.57 18.06 2.44 1.10 (Max) 58ߚ16.93 245.06 2.80 1.23 234.15 1.18 0.34 285.15 2.95 1.40 229.74

Mean Acceptance Rate for ݏߚ in MCMC 79.71% 69.43% 80.30% 

MCMC I:  ࢼߪଶ = 3.56 was used for the chains of ݏߚ. 
MCMC II: ࢼߪଶ = 3.56 was used for the chains when initially estimated ݏߚ were extreme  ఉଶ = 0.54 was used for the chains when initially estimatedߪ ;ݏߚ
estimated ݏߚ were nonextreme ݏߚ. 
MCMC III: ߪఉଶ = 4, arbitrarily chosen variance, was used for the chains of all  .ݏߚ
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• MCMC I is Rasch model accounting for measurement errors through the 

Bayesian method (hereafter, refers to MCMC Rasch model as a general term), in 

which I assumed that the variance (ࢼߪଶሻ of prior distribution for βs is the sample 

variances of all initial estimates of βs from the classical Rasch model based on a 

simulated dataset;  

• MCMC II is MCMC Rasch model, in which I assumed that the variance (ࢼߪଶሻ of 

prior distribution for extreme βs is the variances of all initial estimates of βs from 

classical Rasch model based on a simulated dataset; the variance (ࢼߪଶሻ of prior 

distribution for nonextreme βs is the variance of initial estimates of βs after 

excluding extreme β estimates from classical Rasch model based on a simulated 

dataset; 

• MCMC III is MCMC Rasch model, in which, I arbitrarily assumed that the 

variance (ࢼߪଶሻ of prior distribution is equal to 4. 

Additionally, for MCMC I to MCMC III, other factors were as follows: σ઺ ୮୰୭୮୭ୱୣୢଶ =0.5, σଶ઼= Sample variance of all initial estimates of ݏߜ from Rasch model, σ઼ ୮୰୭୮୭ୱୣୢଶ =0.1, and the variance of measurement errors (ߪଶ࢛ሻ  in terms of ࢃࡸߪଶ  

(a%ሻ assumed as what I introduced 

Comparing the results among MCMC Rasch models (Table 3.2 to Table 3.7), I 

made the following observations: 

With 10% level of measurement errors, the MSE from MCMC II are smaller for 

nonextreme βs than MCMC I and MCMC III for both datasets. For extreme βs, MSEs of 

MCMC II are similar to MCMC I and better than MCMC III. 
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With 50% level of measurement errors, the results were a little bit different 

between two datasets. For both datasets, MSE from MCMC II were smaller for 

nonextreme βs than MCMC I and MCMC III. However, for extreme βs in Dataset 12, 

MSEs of MCMC II are similar to MCMC I and better than MCMC III. For extreme βs in 

Dataset 73, MSEs of MCMC II were slightly worse than MCMC I and MCMC III 

because the introduction of 50% measurement errors changed the true extreme βs to 

nonextreme βs. 

Similarly, with 100% level of measurement errors, MSE from MCMC II were 

smaller for nonextreme βs than MCMC I and MCMC III for both datasets. MSE from 

MCMC II were a little bigger for extreme βs than MCMC I and MCMC III because true 

extreme βs became nonextreme βs in the simulated datasets. In terms of the acceptance 

rates, MCMC II for three measurement error scenarios had slightly lower acceptance 

rates than both MCMC I and MCMC III, ranged from 69% to 79% with one exception. In 

this case (Dataset 12 with 100% level of measurement errors), the acceptance rate of 

MCMC II was almost exactly the same as that of MCMC I, but better than that of 

MCMC III. 

Therefore, in terms of MCMC models, I recommended the setting in Table 3.8 for 

the assumptions on the factors: prior ߜ ݀݊ܽ ߚ and proposed ߜ ݀݊ܽ ߚ for the further 

exploration.  
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Table 3.8: Setting of prior β and δ and proposed β and δ for MCMC 
Implementation 

Prior  1,2ߚ Proposed ߚ Prior 3ߜ Proposed ߜ 

N (0, ߪఉଶ) N (ߚ௖௨௥௥, 0.5) N(0, ߪఋଶ) N (ߜ௖௨௥௥, 0.1) 
1. For observed extreme ݏߚ in a simulated dataset, ߪఉଶ is the sample variance of all initially 
estimated ߚs from Rasch model 
2. For nonextreme ݏߚ in a simulated datasets,  ߪఉଶ is the sample variance of initially 
estimated ߚs from Rasch model excluding extreme ݏߚ 
 s from Rasch modelߜ ఋଶ is the sample variance of all initially estimatedߪ .3

 

Additionally, I compared the results from classical Rasch model with the results 

from MCMC Rasch models. I observed three patterns: 

•  In a situation where a true extreme β remained an extreme β after measurement 

errors were introduced, the MSE for classical Rasch model is much larger than 

that for MCMC Rasch models (MSEs are tens-of-thousands for classical Rasch 

model vs.  MSEs are around 300 for MCMC Rasch models).   

• In the situation where a true extreme β became nonextreme β after measurement 

errors were introduced in the datasets, MCMC Rasch models produced a smaller 

MSEs in most cases.  

• In the case where a true nonextreme β remained nonextreme β after measurement 

errors were introduced in the datasets, MCMC Rasch models performed better for 

some βs while classical Rasch model performed better for other βs. However, the 

differences between the best MCMC Rasch model (i.e., MCMC II) and classical 

Rasch for nonextreme βs are small.  

Generally speaking, then, MCMC Rasch models are better than classical Rasch 

models when measurement errors exist in the datasets.  
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Markov Chain Monte Carlo Simulations and Results 

To recapitulate the previous sections, I have explored prior variances and 

proposed variances for ࢾ ݀݊ܽ ࢼ. From the practical point of view, another important 

factor in the MCMC Rasch model implementation is to decide how much measurement 

errors exist in the real observed dataset.  The purpose of the following section is to 

examine assumptions of measurement errors in the implementation of MCMC Rasch 

models.  

In order to do so, I examined different levels of measurement errors, which I 

introduced into the dataset (i.e., 10%, 50%, and 100%). Each level of measurement errors 

was defined as a proportion of variance of LX (see Section on Description of Source Data 

and Simulated Data). Each level of measurement errors consisted of 100 simulated 

datasets. I examined three levels and, in all, the total number of simulated datasets 

examined was 300.  

Described below was the MCMC scheme with the assumption that measurement 

error only exists in the dataset at 10% of variance of LX .  Hereafter, I refer to the MCMC 

Rasch model based on this assumption simply as the “MCMC 10% model” (this is to be 

distinguished from the 10% level of measurement errors introduced in 100 simulated 

datasets). 

For each simulated dataset ሺܦ ൌ 1, … , 100ሻ within each of three levels of 

measurement errors ሺܮ ൌ 10%, 50%, 100%ሻ. 
• First, I ran 10,000 iterations for MCMC Rasch model. In the simulations, I used 

the above recommended setting for ઺ and ઼ in Table 3.8.  
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• Second, I discarded the first 9000 iterations and averaged the last 1000 iterations 

to estimate β୬,D,L ሺn ൌ 1, … , Nሻ for each of the subjects in that dataset.  

I repeated the above two bulleted procedures for 300 simulated datasets (i.e., 100 

simulated datasets within each level of measurement errors).  

Finally, I averaged β୬,D,L over 100 datasets ቀi. e. , ∑ ஒ౤,D,LభబబDసభଵ଴଴ ቁ with each of three 

levels of measurement errors as the estimate of β୬,L for L level of measurement errors. 

The associated variance of mean for each β୬,L was calculated as varianceቀ∑ ఉ೙,ವ,ಽభబబವసభଵ଴଴ ቁ.  

The above scheme, which pertains to the assumption that measurement errors 

exist in the dataset at 10% of variance of LX, were repeated for the assumption that 

measurement errors exist in the dataset at 50% and 100% of variance of LX.(referred to 

as, respectively, “MCMC 50% model ” and “MCMC 100% model”) 

Similarly, for each dataset within each level of measurement errors, I estimated β୬,D,L for each of the subjects in that dataset from classical Rasch model. I averaged 

β୬,D,L across 100 datasets ቀ݅. ݁. , ∑ ఉ೙,ವ,ಽభబబವసభଵ଴଴ ቁ  to estimate of β୬,L  for L level of 

measurement errors. 

Table 3.9 presents the means across 100 datasets for the same five βs in the 

previous section as well as associated variances and MSEs with 10% level of 

measurement errors. Table 3.10 presents the same statistics across 100 datasets with 50% 

level of measurement errors. Finally, presented in Table 3.11 are those statistics 

across100 datasets with 100% level of measurement errors.  

As seen in Table 3.9 for the 10% level of measurement errors, the MCMC 10% 

model performed best for βs: 25th, 50th, 75th, and maximum among all the MCMC 
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Table 3.9: Results from Classical Rasch Model and MCMC Models with Three Assumptions on Measurement Errors Exist in 
the Datasets Across 100 Datasets with 10% Level of Measurement Errors 

  Classical Rasch Model MCMC 10% Model MCMC 50% Model MCMC 100% Model 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -18.16 4737.65 4737.71 -6.98 0.06 119.91 -6.98 0.07 119.76 -6.62 0.07 1.49 -1.56 126.90- (25th) 3ߚ127.81 126.90 -0.97 0.01 0.28 -0.63 0.02 0.74 -0.52 0.01 0.06 -0.1 0.001- (50th) 6ߚ0.95 0.002 -0.003 0.01 0.01 0.06 0.01 0.03 0.01 0.01 1.48 1.46 61.89 (75th) 2ߚ0.02 61.89 1.09 0.01 0.16 0.55 0.01 0.87 0.45 0.01 18.06 18.24 5062.09 (Max) 58ߚ1.06 5062.12 7.20 0.07 117.96 6.98 0.07 122.74 6.63 0.07 130.72

MCMC 10% were MCMC results if measurement errors in the simulated datasets were assumed 10% of the variance of ܮ௑. 
MCMC 50% were MCMC results if measurement errors in the simulated datasets were assumed 50% of the variance of ܮ௑. 
MCMC 100% were MCMC results if measurement errors in the simulated datasets were assumed 100% of the variance of ܮ௑. 

 

Table 3.10: Results from Classical Rasch Model and MCMC Models with Three Assumptions on Measurement Errors Exist in 
the Datasets Across 100 Datasets with 50% Level of Measurement Errors 

  Classical Rasch Model MCMC 10% Model MCMC 50% Model MCMC 100% Model 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -7.80 1011.77 1114.34 -2.54 0.01 236.78 -2.40 0.01 240.91 -2.33 0.01 1.49 -0.20 0.000- (25th) 3ߚ243.29 1.65 -0.17 0.01 1.75 -0.13 0.01 1.85 -0.1 0.01 0.06 0.07 0.000- (50th) 6ߚ1.94 0.02 0.05 0.01 0.02 0.03 0.01 0.01 0.03 0.01 1.48 0.32 0.000 (75th) 2ߚ0.01 1.34 0.29 0.01 1.41 0.22 0.01 1.58 0.18 0.01 18.06 9.23 1743.11 (Max) 58ߚ1.69 1820.98 2.84 0.02 231.63 2.75 0.02 234.38 2.62 0.02 238.38

MCMC 10% were MCMC results if measurement errors in the simulated datasets were assumed 10% of the variance of ܮ௑. 
MCMC 50% were MCMC results if measurement errors in the simulated datasets were assumed 50% of the variance of ܮ௑. 
MCMC 100% were MCMC results if measurement errors in the simulated datasets were assumed 100% of the variance of ܮ௑. 
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Table3.11: Results from Classical Rasch Model and MCMC Models with Three Assumptions on Measurement Errors Exist in 
the Datasets Across 100 Datasets with 100% Level of Measurement Errors 

  Classical Rasch Model MCMC 10% Model MCMC 50% Model MCMC 100% Model 
Selected ߚ True ߚ ߚመ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯ መߚ ෞݎܽݒ  ൫ߚመ൯ ෣ܧܵܯ ൫ߚመ൯40ߚ (Min) -17.92 -1.87 105.28 363.12 -1.03 0.004 285.33 -1.01 0.004 286.13 -1.01 0.004 1.49 -0.13 0.000- (25th) 3ߚ286.24 1.85 -0.10 0.004 1.92 -0.10 0.004 1.94 -0.09 0.004 0.06 -0.03 0.001- (50th) 6ߚ1.96 0.001 -0.03 0.004 0.01 -0.04 0.004 0.005 -0.03 0.004 1.48 0.15 0.000 (75th) 2ߚ0.01 1.75 0.12 0.004 1.84 0.13 0.004 1.81 0.11 0.005 18.06 2.06 122.66 (Max) 58ߚ1.87 378.46 1.09 0.004 287.92 1.10 0.004 287.67 1.07 0.004 288.70

MCMC 10% were MCMC results if measurement errors in the simulated datasets were assumed 10% of the variance of ܮ௑. 
MCMC 50% were MCMC results if measurement errors in the simulated datasets were assumed 50% of the variance of ܮ௑. 
MCMC 100% were MCMC results if measurement errors in the simulated datasets were assumed 100% of the variance of ܮ௑. 
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models. Regarding the minimum β, the MCMC 50% model provided a smaller MSE, 

although the difference between this model and other MCMC models was not substantial. 

In general, differences in MSE results obtained from MCMC models were small and 

were within random sampling variability. In comparing the results from classical Rasch 

model with the results from MCMC models, MCMC models provided substantially 

smaller MSEs for the βs with exception of 50th β. Notably, this was especially the case 

for extreme βs. For example, the MSE for minimum β was 4737.71 for classical Rasch 

model vs.119.76 to 127.81 for MCMC models. The MSE for maximum β was 5062.12 

for classical Rasch model vs. 117.96 to 130.72 for MCMC models.  Although classical 

Rasch model provided the better estimate for the 50th β,  the difference between the two 

are minimal in terms of MSEs (0.002 for classical Rasch model vs. 0.01 to 0.03 for 

MCMC models). 

In addition, for 25th and 50th βs, the MSEs from classical Rasch model were also 

distinctly bigger than those from MCMC Rasch models. The reason for this was that after 

10% level of measurement error was introduced, nonextreme 25th true β was changed to 

extreme β in three of 100 simulated datasets and nonextreme 75th true β changed to 

extreme β in two of 100 simulated datasets. The Monte Carlo estimates of the two βs 

from Classical Rasch model were associated with much bigger variances while the Monte 

Carlo estimates of these βs from MCMC Rasch models were associated with much 

smaller variances.  

In the case of 50% level of measurement errors (Table 3.10), the MSEs from 

MCMC 10% Model provided the best estimates for minimum, 25th, 75th, and maximum βs among all three MCMC models. The MSE for 50th β was smallest from MCMC 50% 
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or 100% models. However, the difference in MSE for 50th β is very small across three 

MCMC scenarios.  Again, the MSEs were similar in all MCMC models. Compared with 

the results from classical Rasch model, the MSEs from MCMC models were very similar 

for nonextreme βs. And, the differences were miniscule. Once more, for the extreme βs, 

the MSEs were much smaller for the results from MCMC models (in the hundreds) in 

relation to classical Rasch model (thousands).  

In the case of 100% level of measurement errors (Table 3.11), the MSEs from 

MCMC 10% model provided the best estimates for minimum and 25th βs among all three 

MCMC models; the MSEs for 50th, 75th, and maximum β were smallest from MCMC 

50% model. Regardless of the different MSEs observed in three MCMC models, the 

differences were not significant. Compared with classical Rasch model, the results from 

MCMC models were also better estimates for the extreme βݏ. For nonextreme βݏ, classical Rasch model provided a little bit better estimates. 

Discussion 

Because the extreme βs are nonestimable using the classical Rasch model, I found 

that the variances of the estimates for extreme βs are tremendously large (its magnitude is 

in the tens-of-thousands, which triggers the algorithm to stop under the convergence 

criteria). For this reason, I used Bayesian methods to incorporate measurement errors into 

the Rasch model (resulting in what I refer to as “MCMC Rasch model”). Most 

importantly, I obtained the estimates of extreme βs at a better range than classical Rasch 

model, and these estimates had reasonable variances (in the hundreds). This enables us to 

make formal statistical inferences.  The now estimable extreme βs prevent the missing 
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scores in Rasch field so that the statistical power is retained, which allows statistical 

analysis based on the β scores. In other words, this prevents the missing data in the 

conversion between the summed scores and linear Rasch scores. However for 

nonextreme βs, MCMC Rasch models sometimes performed a little worse than classical 

Rasch model. But the differences are miniscule and well within the randomly sampling 

variation. 

I compared MCMC 10%, 50%, and 100% models and found that the results in 

terms of MSE were very similar. So, in order for us to account for measurement errors in 

a real observed dichotomous response dataset, how much measurement errors may be 

assumed for the MCMC appears to be inconsequential so long as we use Rasch model 

accounting for measurement errors. Using this procedure, we obtained reasonable 

estimates of βs for additional statistical analysis. 

Conclusions 

I explored factors that affected MCMC implementation. In doing so, I found that 

the following factors largely determined the behavior of chains:  prior variance of β,  the 

proposed variance for β,  and the proposed variance for δ. The optimal setting of these 

three factors was:  

• the proposed variance for β is 0.5;  

• the proposed variance for δ is 0.1;  

• prior variance of β is either the sample variance of all initially estimated βs from 

Rasch model for extreme  βs or the sample variance of initially estimated βs from 

Rasch model excluding extreme βs for nonextreme βs.  
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Using the optimal setting, I further explored the measurement errors, which may 

be assumed as 50% of variance of observed ܅ۺ for the implementation of MCMC.  

In the next chapter, I will use the setting of factors identified in this chapter and 

apply it to the SST data collected by Dr. Tashjian to evaluate the effect of the 

measurement errors on minimum clinically important difference. 
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Appendices 

Appendix A: Likelihood Functions 

 In the Rasch model for dichotomous data, the probability of outcome ܺ௡௜ ൌ 1 is 

given by 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௡ߚሺ݌ݔ݁ െ ௜ሻ1ߜ ൅ ௡ߚሺ݌ݔ݁ െ   ௜ሻߜ
where 

      ܺ௡௜ is the response (1=Yes, 0= No) for Person n to Item i; 

 ;௡ is the ability of person n (n = 1, …, N)ߚ      

 ;௜  is the difficulty of Item i (i = 1, …, I)ߜ      

     P(·) is the probability that Person n has a true or observed response to Item i. 

If measurement errors are not considered in the Rasch model, the likelihood function 

based on the observed data is 

݂ሺࢼ|ࢄ, ሻࢾ ൌ ,ࢼሺܪܮ ሻࢾ ൌ ෑ ܲሺܺ௡௜|ࢼ, ሻ௑೙೔ࢾ ൈ ൫1 െ ܲሺܺ௡௜|ࢼ, ሻ൯ଵି௑೙೔௡,௜ࢾ  

where ܺ௡௜ is the response by nth subject for ith question. 

If we introduced measurement errors into Rasch model as in the form of  

ࢃࡸ ൌ ࢄࡸ ൅   ࢁ
the complete likelihood function based on the observed data is 

,ࢼሺܪܮ ,ࢾ ,ࢄ ሻࢄࡸ ൌ ሼ݂ሺࢼ|ࢄ, ሻሽࢾ ൈ ሼ݂ሺࢼሻ כ ݂ሺࢾሻሽ ൈ ሼ݂ሺࢄࡸ|ࢄሻሽ ൈ ሼ݂ሺࢃࡸ|ࢄࡸሻሽ  
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                     That is ሼܴ݈ܽ݁݀݋ܯ ݄ܿݏሽ ൈ ሼܲݎ݋݅ݎሽ ൈ ሼBernoulliሽ ൈ ሼ݈ܽ݊݋݅ݐ݅݀݊݋ܥ ሽ 

 where  

݂ሺࢼ|ࢄ, ሻࢾ ൌ ,ࢼሺܪܮ ሻࢾ ൌ ∏ ܲሺܺ௡௜|ࢼ, ሻ௑೙೔ሺ1ࢾ െ ܲሺܺ௡௜|ࢼ, ሻሻଵି௑೙೔௡,௜ࢾ   

݂ሺࢼሻ ן   2൯/ࢼଵࢼି∑்ࢼ൫݌ݔ݁

݂ሺࢾሻ ן ࢾି∑்ࢾሺ݌ݔ݁ ଵ2/ࢾሻ  

݂ሺࢄࡸ|ࢄሻ ൌ ∏ ܲ൫ܺ௡௜|ܮ௑೙೔൯௑೙೔ ൈ௡௜ ቀ1 െ ܲ൫ܺ௡௜|ܮ௑೙೔൯ቁଵି௑೙೔
  

ܰ ~ ࢃࡸ|ࢄࡸ ൬ࢄࡸࣆ૚ ൅ ఙࢄࡸమఙࢄࡸమ ା ఙೠమ ࢃࡸ൫ࡵ െ ,൯ࢄࡸࣆ ଶࢄࡸߪ ൬1 െ ఙࢄࡸమఙࢄࡸమ ା ఙೠమ൰   ൰ࡵ
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Appendix B: Gibbs Samplers and Metropolis-Hastings Algorithm 

 The Gibbs samplers along with the Metropolis-Hastings algorithm were used to 

generate estimates of the parameters from the complete likelihood function.  For each 

Gibbs sampler generated at following steps, the general form of Metropolis-Hastings 

Algorithm to accept a Gibbs Sampler θ from a proposed distribution q(.) is: 

ߙ ൌ ݉݅݊ ቊ1, ௖௨௥௥௘௡௧ሻߠ|௖௔௡ௗ௜ௗ௔௧௘ߠሺݍ௖௨௥௥௘௡௧ሻߠሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሻߠ|௖௨௥௥௘௡௧ߠሺݍ௖௔௡ௗ௜ௗ௔௧௘ሻߠሺ ܪܮ ቋ 

Then compare ߙ with probability generated from uniform distribution. If ߙ is greater than 

the probability from uniform distribution, then update ߠ௖௨௥௥௘௡௧ with ߠ௖௔௡ௗ௜ௗ௔௧௘. 

Otherwise, keep ߠ௖௨௥௥௘௡௧ as it is.  

 The steps to generate Gibbs Samplers and associated Metropolis-Hastings 

Algorithms are:  

1. Obtain initial starting values of ࢼ and ࢾ, e.g. estimates the two parameters from 

the simulated dataset using Rasch model ignoring measurement error. Set these 

values as the current values ࢼ௖௨௥௥௘௡௧ and ࢾ௖௨௥௥௘௡௧. 

2. Generate a candidate of the true Logit  ࢄࡸ according to the distribution of ࢃࡸ|ࢄࡸ, 

given the observed ࢃࡸ equal to ࢼ௖௨௥௥௘௡௧ minus ࢾ௖௨௥௥௘௡௧.  

The acceptance ratio for each element of candidate ܮ௑[j], where j= 1, 2, …, ܰ ൈ  is ,ܫ

௑௖௨௥௥௘௡௧ሾ݆ሿሻܮ|௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿܮሺݍ௑௖௨௥௥௘௡௧ሾ݆ሿሻܮሺ ܪܮ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻܮ|௑௖௨௥௥௘௡௧ሾ݆ሿܮሺݍ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻܮሺ ܪܮ ൌ ݂ሺܺ|ܮ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ݂ሺܺ|ܮ௑௖௨௥௥௘௡௧ሾ݆ሿሻ  

ൌ ሺ ௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ௑೎ೠೝೝ೐೙೟ ൈ ሺ1 െ ௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻሺଵି௑೎ೠೝೝ೐೙೟ሻሺ ௑ܲ௖௨௥௥௘௡௧ሾ݆ሿሻ௑೎ೠೝೝ೐೙೟ ൈ ሺ1 െ ௑ܲ௖௨௥௥௘௡௧ሾ݆ሿሻሺଵି௑೎ೠೝೝ೐೙೟ሻ  
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where 

௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ ൌ ܲሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ ൌ 1ሻ ൌ ௑௖௔௡ௗ௜ௗ௔௧௘ ሾ݆ሿሻ1ܮሺ݌ݔ݁ ൅  ௑௖௔௡ௗ௜ௗ௔௧௘ ሾ݆ሿሻܮሺ݌ݔ݁

௑ܲ௖௨௥௥௘௡௧ሾ݆ሿ ൌ ܲሺܺ௖௨௥௥௘௡௧ሾ݆ሿ ൌ 1ሻ ൌ ௑௖௨௥௥௘௡௧ ሾ݆ሿሻ1ܮሺ݌ݔ݁ ൅  ௑௖௨௥௥௘௡௧ ሾ݆ሿሻܮሺ݌ݔ݁

3. Generate a candidate of true response ࢄ௖௔௡ௗ௜ௗ௔௧௘ based on updated ࢄࡸ௖௨௥௥௘௡௧.  ࢄ௖௔௡ௗ௜ௗ௔௧௘ follows logistic distribution. ࢄ௖௔௡ௗ௜ௗ௔௧௘ follows Logistic distribution.  

The acceptance ratio for each element of ܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ, where j= 1, 2, …, ܰ ൈ  is ,ܫ

ሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ|ܺ௖௨௥௥௘௡௧ሾ݆ሿሻݍሺܺ௖௨௥௥௘௡௧ሾ݆ሿሻ ܪܮሺܺ௖௨௥௥௘௡௧ሾ݆ሿ|ܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻݍሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ ܪܮ  

ൌ ൫݁݌ݔሺߚ௖௨௥௥௘௡௧ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݅ሿሻ൯௑೎ೌ೙೏೔೏ೌ೟೐ሾ௝ሿି௑೎ೠೝೝ೐೙೟ሾ௝ሿߜ
 

where ݆ ൌ ሺ݊ െ 1ሻ ൈ 12 ൅ ݅  
,݉݁ݐ௧௛݅݅ ݀݊ܽ ݐ݆ܾܿ݁ݑݏ௧௛݊ ݎ݋݂  ݏ݁݉݅ݐ݁݉݋ݏ "݅݊" ݏܽ ݀݁ݐ݋݊݁݀

4. Generate candidate of ઺ based on current ઺ୡ୳୰୰ୣ୬୲ using the normal 

distribution ܰ൫ࢼ௖௨௥௥௘௡௧, ௣௥௢௣௢௦௘ௗଶ ࢼߪ ൯ . The ࢼߪ ௣௥௢௣௢௦௘ௗଶ  should be small. The prior 

distribution of ࢼ is ܰ൫0૚,    .൯ࡵଶࢼߪ

The acceptance ratio for each element of ߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿ, where n= 1, 2, …, ܰݐ݆ܾܿ݁ݑݏ ݄ݐ, 
is   



59 
 

 

௖௨௥௥௘௡௧ሾ݊ሿሻߚ|௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿߚሺݍ௖௨௥௥௘௡௧ሾ݊ሿሻߚሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻߚ|௖௨௥௥௘௡௧ሾ݊ሿߚሺݍ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻߚሺ ܪܮ ൌ 

ෑ ቆ݁݌ݔሼߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ௖௨௥௥௘௡௧ሾ݅ሿሽ݁ߜ െ ௖௨௥௥௘௡௧ሾ݅ሿሽߜ ቇ௑೎ೠೝೝ೐೙೟ሾ௡௜ሿூୀଵଶ
௜ୀଵ  

ൈ ෑ ቆ 1 ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽ1ߜ ൅ ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽቇூୀଵଶߜ
௜ୀଵ  

ൈ ݌ݔ݁ ቊെ ሺߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻଶ െ ሺߚ௖௨௥௥௘௡௧ሾ݊ሿሻଶ2 ൈ ଶࢼߪ ቋ 

5. Generate candidate of ࢾ based on current ࢾ௖௨௥௥௘௡௧ using the normal 

distribution ܰ൫ࢾ௖௨௥௥௘௡௧, ௣௥௢௣௢௦௘ௗଶ ࢾߪ ൯ . ࢾߪ ௣௥௢௣௢௦௘ௗଶ  should be small. The prior 

distribution of ࢾ is ܰሺ0૚,   .ሻࡵଶࢾߪ

The acceptance ratio for each element of ߜ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿ, where i ൌ 1, 2, … ,  :is ݉݁ݐ݅ ݄ݐܫ

௖௨௥௥௘௡௧ሾ݅ሿሻߜ|௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿߜሺݍ௖௨௥௥௘௡௧ሾ݅ሿሻߜሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻߜ|௖௨௥௥௘௡௧ሾ݅ሿߜሺݍ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻߜሺ ܪܮ ൌ 

ෑ ቆ݁݌ݔሼߚ௖௨௥௥௘௡௧ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሽ݁ߜ െ ௖௨௥௥௘௡௧ሾ݅ሿሽߜ ቇ௑೎ೠೝೝ೐೙೟ሾ௡௜ሿே
௡ୀଵ  

ൈ ෑ ቆ 1 ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽ1ߜ ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሽቇேߜ
௡ୀଵ  

ൈ ݌ݔ݁ ቊെ ሺߜ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻଶ െ ሺߜ௖௨௥௥௘௡௧ሾ݅ሿሻଶ2 ൈ ଶࢾߪ ቋ 

Repeat Step 2 to 5 for a large number of times, or until convergence. 

From the generation of Gibbs samplers, the chain for Logit ܆ۺ is an independent 

chain. For an independent chain where proposal transitional kernel q(y|x=q(y)it may 
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seem that the independence from the previous state disagrees with Markovian property of 

the chain. Actually, q is just a proposal that is combined with an acceptance probability 

of α to give the transitional p of the algorithm. This transition depends on the previous 

state, thus, preserves the Markovian properties.[19] The chains for  β and δ are 

symmetric chains, in this case when q(y|x) = q(|y−x|), e.g., the normal distribution with 

mean x, then we have q(y|x) = q(x|y). 
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CHAPTER 4 

 

MINIMUM CLINICALLY IMPORTANT DIFFERENCE FOR SIMPLE SHOULDER 

TEST IN RASCH SCORE ACCOUNTING FOR MEASUREMENT ERRORS 

Abstract 

Measurement errors result from classical sources such as uncertainty of subjects’ 

self-reports on questionnaires and restricted response categories offered to them. In this 

chapter, I took a Bayesian approach using the Markov Chain Monte Carlo (MCMC) 

method to account for measurement errors in the Rasch model. Our data came from 

patients treated conservatively for rotator cuff tendonitis or tearing. I applied Rasch 

model accounting for measurement errors to the Simple Shoulder Test (SST), and 

evaluated the effect of measurement errors in the determination of minimum clinically 

important difference (MCID). Patient groups were defined by anchored questions, and 

the MCID was defined as the statistically significant difference of mean change from 

baseline between patient groups. According to the 15-item anchored question, the 

difference (95% CI; p value) of the mean change from baseline (CFB) between two 

groups was 1.97 (-0.17, 4.10; 0.0693) for rescaled Rasch score and 8.54 (1.78, 15.30; 

0.0156) for rescaled MCMC Rasch SST score. According to the four-item anchored 

question, the difference (95% CI; p value) of the mean CFB between two groups 2.38 

(1.03, 3.74; 0.0009) for rescaled Rasch score and 1.20 (-7.40, 9.81; 0.7810) for rescaled 
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MCMC Rasch score. The inconsistencies in MCIDs between MCMC Rasch scores and 

classical Rasch scores may be due to the bias of estimates of Rasch scores when 

measurement errors are left unconsidered. Additionally, I found that the implementation 

of the Rasch model accounting for measurement errors model is feasible. 

Introduction 

Measurement errors exist whenever there is an attempt to measure. Potentially 

they may undermine analysis and lead to inaccurate or incorrect conclusions. 

Questionnaires may introduce measurement errors because typically they offer only 

restricted response categories. For example, binary response questions such as those that 

comprise the Simple Shoulder Test (SST), force subjects to make a choice among 

predefined response categories, even though their true choice may fall in-between 

categories. This suggests that measurement errors are much more than simple recording 

or instrument error. They encompass many different sources of variability.[1]  

As is the convention for many questionnaires, the sum of answers over all SST 

questions is used to characterize each subject’s shoulder function, denoted as SST 

summed score. The higher the SST summed score, the better the shoulder function is. 

Nevertheless, there are problems inherent in the  summed score, including the following: 

(1) there are no natural numerical upper or lower limits to health status, and for this 

reason, a zero value does not have an inherent meaning; and (2) psychometric 

instruments (i.e., questionnaires) do not necessarily have interval characteristics (i.e., 

scaled in a linear fashion) . In other words, one cannot assume that the difference 

between scores of 10 and 12 is equal to the difference between scores of 1 and 3. This 

leads to difficulty in interpreting changes in the score at follow-up visits. Fortunately, to 
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deal with the nonlinear property of summed scores for SST, the Rasch model converts 

ordinal measures into linear measures.[2] Generally speaking, the Rasch model is a 

transformation from SST summed scores into linear space, provided that the fit to the 

model and several assumptions about the model are appropriate.[3] Through the Rasch 

model for dichotomous data, the probability of the outcome ܺ௡௜ ൌ 1 is given by: 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௘௫௣ሺఉ೙ିఋ೔ሻଵା௘௫௣ሺఉ೙ିఋ೔ሻ      (4.1) 

where 

     ܺ௡௜ is the response (1=Yes, 0= No) for Person n to Item i; 

 ௡ is the ability of Person n (n = 1, …, N); which hereafter will be referred asߚ     

 the “Rasch score”; 

 ;௜  is the difficulty of Item i (i = 1, …, I)ߜ     

     P(·) is the probability that Person n has a true or observed response to Item i. 

In SST, the person ability ߚ௡ ሺ݊ ൌ 1, … , ܰሻ indicates how able ݊௧௛person can 

perform items; the item difficulty ߜ௜ ሺ݅ ൌ 1, … ,  .ሻ  indicates the difficulty of ݅௧௛itemܫ

In this chapter, I applied Rasch model accounting for measurement errors[4] to 

evaluate the effect of measurement errors on the determination of minimal clinically 

important difference (MCID) via Bayesian approach. 

In order to facilitate the assessment of effectiveness of an intervention, the 

determination of MCID plays an important role in bringing statistical significance and 

clinical significance together. The MCID represents “the smallest difference in score in 

the domain which patients perceive as beneficial and which would mandate, in the 
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absence of troublesome side effects and excessive cost, a change in the patient’s 

management.”[5] 

Background 

Measurement Errors in Questionnaires 

Inevitably, as with any questionnaire, measurement errors arise with patients’ self 

reports on the SST, including the following:[1, 6]   

• the mode of interview; 

• wording of questions; 

• interviewer behavior; 

• sensitivity of information requested;  

• respondents' recall; 

• coding errors; 

• choice from a limited set of answers, i.e., in the case of SST questionnaire, no 

option between YES and No as a choice for subjects.  

Measurement errors may distort an analysis due to attenuation to null and loss of 

power. Without accounting for measurement errors, the analyses may result in bias of 

estimates (i.e., real effects are hidden, observed data exhibit relationship that are not 

present in the error-free data, and the signs of estimated coefficients are reversed relative 

to the case with no  measurement error). [6, 7] 

As mentioned in the Introduction, the summed score of questionnaire typically is 

used in analyses. However, the summed score of the SST may lack linear measurement 

properties, and for this reason the change in scores may not reflect what we intend to 
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measure. This is a well-known problem, and the literature provides substantial evidence 

to support the use of the Rasch model to compare outcomes measured by questionnaires, 

either among patients, within patients (change scores), or between treatments. [8-12] 

Nevertheless, preexisting studies on Rasch Models in the literature have not dealt with 

virtually ubiquitous measurement errors. This chapter extends fundamental 

considerations of measurement errors in Rasch modeling and addresses the following 

issues in dichotomous response data in SST questionnaire: nonlinear summed scores and 

measurement errors.  

Rasch Model Accounting for Measurement Errors 

In order to account for the effects of measurement errors in questionnaires, I  

proposed to incorporate measurement errors  into the Rasch model under a  

preestablished framework of measurement errors.[1] Typically, measurement errors in 

self-reported questionnaires may be modeled as classical measurement error. In the 

classical measurement error model for item response data,[4] I introduce the following 

terms: an unobserved true response to Item i by Person n (X୬୧), which is measured by 

some individual-specific random error (X in matrix notation). The observed response W୬୧ 
(W in matrix notation), which may be different from X୬୧  because it is mainly caused by 

inaccurate information obtained in the self-report questionnaires. 

Through the logistic regression model, the dichotomous Rasch model[13] has the 

following linear form:  

ሾܲሺܺ௡௜ݐ݅݃݋݈ ൌ 1ሻሿ ൌ ௡ߚ  െ  ௜     (4.2)ߜ
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The ࢃࡸ was defined as ݈ݐ݅݃݋൫ܲሺࢃሻ൯ and the ࢄࡸwas defined as ݈ݐ݅݃݋൫ܲሺࢄሻ൯,  
where P(·) is the probability that Person n has a true or observed response equal to 1to 

Item i. The Rasch model accounting for the classical measurement error structure may be 

modeled in the following way: the logit transformed latent variables ࢃࡸ and ࢄࡸ linked the 

true response ࢄ and the observed response ࢃ.  

ࢃࡸ ൌ ࢄࡸ ൅  (4.3)       ࢁ

௑೙೔ܮ ൌ ௡ߚ െ  ௜      (4.4)ߜ

where each component ܷ௡௜ of U are i.i.d. random variables of measurement error: ࢁ ~ ܰሺ0૚, ,ࢄࡸࣆሺܰ ~ ࢄࡸ ௨ଶ is the variance of the classical measurement error; andߪ ሻ, whereࡵ௨ଶߪ ଶࢄࡸߪ ଶࢄࡸߪ and ,ࢄࡸ is the mean of ࢄࡸࣆ ሻ, whereࡵ  is the variance of ࢄࡸ. 

Description of Source Data 

The SST questionnaire is a well-established  patient-reported measure  used to 

evaluate shoulder function.[14] It consists of 12 yes/no questions, with the answer “yes” 

coded as one (1) and answer “no” coded as zero (0). The sum of answers over all SST 

questions is used to characterize each subject’s shoulder function, denoted as SST 

summed score. The higher the SST summed score, the better is the shoulder function. 

The range of SST summed score is from 0 to 12.   

The SST data were obtained from a larger dataset collected for a study whose 

Principal Investigator was Robert Z. Tashjian, MD, Department of Orthopedics, 

University of Utah, School of Medicine, Salt Lake City, UT.[15, 16] Prior to data 
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collection, Dr. Tashjian’s study received approval from the University of Utah 

Institutional Review Board. Again, permission to use these data was obtained from Dr. 

Tashjian (i.e., PI of the study for which data were collected) through Dr. Christy 

Porucznik (my dissertation chair).  

The dataset was based on 81 patients with rotator cuff tendonitis or tearing who 

were enrolled in the study and treated with nonoperative modalities. All of them 

completed SST questionnaires both at Screening and Week 6 follow-up and provided the 

response to two anchored questions at Week 6 Follow-up. The MCID for the SST 

summed score was determined in a study for patients with rotator cuff disease.[15] In 

addition, the MCID for the Rasch SST score was determined in Chapter 2. 

I treated this dataset as observed response dataset and assumed that measurement 

errors existed in the dataset. I followed the proposed Rasch model accounting for 

measurement errors to obtain the person ability scores.  

Methods 

Bayesian Methods through Markov Chain Monte Carlo Process 

Equation (4.3) allows us to assume that measurement errors are normally 

distributed in the Logit dimension. Because the direct model of distribution for 

measurement errors is not available, I adopted the Markov Chain Monte Carlo (MCMC) 

approach to find the estimates of Rasch model parameters. In order to follow the 

framework of Bayesian approach, the complete likelihood function (see Appendix A for 

details) in this case is 

,ࢼሺܪܮ ,ࢾ ,ࢄ ሻࢄࡸ ൌ ሼ݂ሺࢼ|ࢄ, ሻሽࢾ ൈ ሼ݂ሺࢼሻ כ ݂ሺࢾሻሽ ൈ ሼ݂ሺࢄࡸ|ࢄሻሽ ൈ ሼ݂ሺࢃࡸ|ࢄࡸሻሽ 
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To obtain the model parameter ࢼ and ࢾ estimates through the complete likelihood 

function, the Gibbs Sampler and Metropolis-Hastings Algorithm were used (see 

Appendix B)[17].  

In Chapter 3, I identified the factors that affect the implementation of MCMC 

simulation in Rasch model accounting for measurement errors: the variance of 

measurement errors (ߪଶ࢛ሻ, prior variance (σ઺ଶ and σଶ઼ሻ, and proposal variances for  ࢾ ݀݊ܽ ࢼ. I applied the optimal setting for these factors to the observed SST data as 

specified in Table 4.1 to generate the MCMC chains for SST data at Week 0 and Week 6 

separately. In doing so, I obtained the posterior distribution of ࢼ for both Week 0 and 

Week 6. 

Evaluation of Convergence for MCMC Chain  

After obtaining the posterior distribution of ࢼ, I evaluated the convergence of 

chain for each element ߚ௡ of ࢼ by using the potential scale reduction, of which the idea is 

to test whether dispersion within chains is larger than dispersion between chains. The 

potential scale reduction was estimated by ෠ܴ ൌ ට௩௔௥ෞ శሺఉ೙ሻௐ .[18, 19] 

 

Table 4.1: Optimal Setting for the Factors that Affect the MCMC Implementation 
Prior  1,2ߚ Proposed ߚ Prior 3ߜ Proposed ߜ Measurement Error U4 

N (0, ߪఉଶ) N (ߚ௖௨௥௥, 0.5) N(0, ߪఋଶ) N (ߜ௖௨௥௥, 0.1) Nሺ0૚, σ୳ଶࡵሻ, 
1. For  ݏߚ corresponding to extreme summed scores (0,12), ߪఉଶ is the sample variance of all initially 
estimated ߚs from Rasch model 
2. For ݏߚ corresponding to the summed scores 1 to 11,  ߪఉଶ is the sample variance of initially estimated ߚs from Rasch model excluding  ݏߚ corresponding to extremely summed scores. 
 s from Rasch modelߜ ఋଶ is the sample variance of all initially estimatedߪ .3
 from Rasch model ࢃࡸ ௨ଶ is assumed as 50% of the variance of observedߪ .4
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In order to calculate it, I need to generate M parallel chains for each ߚ௡ with each 

of length L (after discarding the first half of the simulations). I labeled simulation draws 

as ߚ௡ሺ௟௠ሻ(l=1,…,L, m=1,…,M). The between-chain variance (B) and within-chain 

variance (W) were calculated as  

ܤ ൌ ܯܮ െ 1 ෍ ൫ߚҧ௡ሺ.௠ሻ െ ҧ௡ሺ..ሻ൯ଶெߚ
௠ୀଵ  

ܹ ൌ ܯ1 ෍ ൭ ܮ1 െ 1 ෍൫ߚ௡ሺ௟௠ሻ െ ҧ௡ሺ.௠ሻ൯ଶ௅ߚ
௟ୀଵ ൱ெ

௠ୀଵ  

The marginal posterior variance of ߚ௡ is ݎܽݒෞ ାሺߚ௡ሻ ൌ ௅ିଵ௅ ܹ ൅ ଵ௅  .ܤ

MCID in Rasch Scores Accounting for Measurement Errors 

Through the Rasch model accounting for measurement errors, I obtained the 

estimates of Rasch scores after accounting for measurement errors for each subject, for 

both Week 0 and Week 6. Because I obtained these estimates via MCMC method, I refer 

to these as MCMC Rasch Scores from now on. Then, the minimum clinically important 

difference (MCID)[5, 20] was defined as the difference of the change from baseline in 

MCMC Rasch scores between two patient groups (i.e., No Change vs.  Minimal 

Improvement) if the difference showed statistical significance at 0.05 level.  The two 

patient groups were determined by 15-item and four-item anchored questions (see 

Appendix C for the details of the two anchored questions), which were answered by 

patients who completed SST questionnaires at both Week 0 and Week 6. 
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Results 

Convergence of MCMC Chain and Acceptance Rates of ઺ 

I generated M=5 parallel chains with length L =10000 (after deleting the first half 

of iterations) to calculate the potential reduction scale. In order to present the potential 

reduction scales, I selected five β parameters according to quartiles, minimum, and 

maximum values from the distribution of 81 initially estimated βs from Rasch model 

(corresponding to 81 subjects) using Week 0 data. According to Gelman (2004), the 

value for R෡ below 1.1 is acceptable for the claim of convergence for chains).[19] 

From Table 4.2, I found that the potential reduction scales were all below 1.1 for 

both Weeks 0 and 6 data starting from 10,000 iterations. I treated the chain as having 

converged at 10,000 iterations for both weeks.  

The median of acceptance rates for all βs is 79% for Week 0 model and 78% for 

Week 6 model. According to Roberts, et al., the "optimal efficiency" is achieved at an 

acceptance rate of 0.234.[21] According to Gamerman [22], multiple sources indicate to 

the direction of acceptance rates between 20% to 50%. However, Geyer and Thompson 

[23]warned that attempting to reduce the acceptance rate below 70% would keep the  
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Table 4.2: The Potential Reduction Scales from the Five Parallel Chains 
Number of 
Iterations 

 ସ଴ߚ
(Min) 

 ଷߚ
(25th ) 

 ଺ߚ
(50th ) 

 ଶߚ
(75th ) 

 ହ଼ߚ
(Max) 

Week 0 
100 11.880 1.609 1.770 2.351 11.804 
500 2.346 1.187 1.325 1.079 2.878 

5000 1.046 1.044 1.026 1.035 1.021 
10000 1.017 1.002 1.006 1.012 1.009 
20000 1.007 1.004 1.005 1.002 1.009 

Week 6  
100 1.360 2.402 2.032 1.610 20.405 
500 1.708 1.272 1.183 1.225 4.173 

5000 1.007 1.057 1.028 1.201 1.132 
10000 1.007 1.083 1.039 1.034 1.017 
20000 1.015 1.002 1.042 1.044 1.038 

 

sampler from ever visiting part of the state space. The acceptance rates for all βs in the 

study are therefore considered acceptable. 

Rasch Scores Accounting for Measurement Errors  

From one of five chains with 20,000 iterations, I dropped the first 10,000 

iterations.[24] I used the average of the second 10,000 iterations for each β as the 

estimate of personal score for each subject. The MCMC Rasch scores along with Rasch 

score was shown in Figure 4.1 for Week 0 data. Figure 4.2 showed rescaled Rasch scores 

as well as rescaled Rasch scores for Week 0 data.  

In Figure 4.1, each box on the green line represents the box-plot for several 

MCMC Rasch scores that corresponded to a SST summed score. Rasch model accounting 

for measurement errors had a similar shape to Rasch model. Due to the measurement 

errors, the curve was flatter for Rasch model accounting for measurement errors than the 

classical Rasch model. Most importantly, under the assumptions of the proposed models,  
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Figure 4.1: Rasch SST Scores and MCMC Rasch SST Scores 

I obtained a meaningful estimate for Rasch scores for subjects whose SST summed 

scores were zero or twelve. For these subjects, Rasch scores were nonestimable in the 

classical Rasch model.   

In order to obtain a fair comparison among the SST summed score, Rasch SST 

score, and MCMC Rasch SST score, I scaled SST Rasch scores and MCMC SST Rasch 

scores to match used the standard deviations of SST summed score. Figure 4.2 showed 

the rescaled Rasch SST scores and rescaled MCMC Rasch SST scores. 
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Figure 4.2: Rescaled Rasch SST Scores and Rescaled MCMC Rasch SST Scores 

MCID in Rasch Scores Accounting for Measurement Errors 
Using the 15-item Anchored Question 

Figure 4.3 plotted the change in two Rasch SST scores vs. SST summed score by 

patient group defined by 15-item anchored question. Several changes in the Minimal 

Improvement group for MCMC Rasch scores were much larger than the corresponding 

changes in Rasch scores. Table 4.3 presents the summary of SST summed score, 

Rescaled Rasch SST scores, and rescaled MCMC Rasch score and change from baseline 

(CFB) by anchored 15-item question. The estimated difference (95% CI) of the CFB 

between two groups is 1.95 (0.06, 3.85) for SST summed score; 1.97 (-0.17, 4.10) for  
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Figure 4.3: Change in Two Rescaled Rasch SST Scores vs. Change in STT Summed 
Score by Patient Groups Using 15-item Anchored Question 

rescaled Rasch score; 8.54 (1.78, 15.30) for rescaled MCMC Rasch SST score. The p 

value is equal to 0.0156 for the difference of CFB in rescaled MCMC Rasch SST score 

between two groups, which is highly statistically significant. The Rasch model 

accounting for measurement errors seemed to distinguish the difference between two 

patient groups comparing with Rasch model and SST summed scores. 
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Table 4.3: Summary of SST summed score, Rescaled Rasch SST Score, and 
Rescaled MCMC SST Rasch Score  by 15-Item Anchored Question 

  No Change 
Minimal 

Improvement 
Score Type Visit Mean (SD) n Mean (SD) n 
SST Summed Week 0 (BL) 6.33 (3.000) 9 6.71 (3.690) 21 
Score Week 6 6.00 (2.500) 9 8.33 (3.055) 21 
 CFB -0.33 (2.958) 9 1.62 (2.012)  21 
 Difference (CI) 1.95 (0.06, 3.85) 
 P Value 0.0439 
    
Rescaled Rasch  Week 0 (BL) 0.30 (2.856) 9 0.83 (3.422) 19 
SST Score Week 6 -0.03 (2.194) 9 1.45 (2.750) 17 
 CFB -0.32 (2.698) 9 1.64 (2.348) 16 
 Difference (CI) 1.97 (-0.17, 4.10) 
 P Value 0.0693 
    
Rescaled MCMC  Week 0 (BL) 0.40 (2.888) 9 0.99 (8.441) 21 
Rasch SST Score Week 6 0.07 (2.421) 9 9.19 (17.052) 21 
 CFB -0.34 (2.521) 9 8.20 (14.464) 21 
 Difference  (CI) 8.54 (1.78, 15.30) 
 P Value 0.0156 
BL= Baseline; CFB= Change from Baseline; CI=95% Confidence Interval 

MCID in Rasch Scores Accounting for Measurement Errors 
Using the Four-item Anchored Question 

Similarly, Figure 4.4 plotted the change in two Rasch SST scores vs. SST 

summed score by patient group defined by four-item anchored question. Table 4.4 

presents the scores and its change from baseline (CFB) by the anchored four-item 

question for SST summed score, Rescaled Rasch SST score, and rescaled MCMC Rasch 

score. The estimated difference (95% CI) of the CFB between two groups is 2.33 (0.99, 

3.66) for SST summed score; 2.38 (1.03, 3.74) for rescaled Rasch score; and 1.20 (-7.40, 

9.81) for rescaled MCMC Rasch score. The difference in CFB of Rescaled MCMC Rasch 

score between two groups is not statistically significant (p value=0.7810).  
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4B  

 
Figure 4.4: Change in Two Rescaled Rasch SST Scores vs. Change in SST Summed 

Score by Patient Groups Using Four-item Anchored Question 
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Table 4.4: Summary of SST summed score, Rescaled Rasch SST Score, 
and Rescaled MCMC SST Rasch Score  by four-Item Anchored Question 

  No Change 
Minimal 

Improvement 
Score Type Visit Mean (SD) n Mean (SD) N 
SST Summed Week 0 (BL) 5.83 (3.667) 24 5.76 (2.877) 46 
Score Week 6 6.33 (3.447) 24 8.59 (2.833) 46 
 CFB 0.50 (2.396) 24 2.83 (2.783) 46 
 Difference (CI) 2.33 (0.99, 3.66) 
 P Value 0.0009 
    
Rescaled Rasch  Week 0 (BL) 0.46 (2.972) 20 -0.21 (2.848) 46 
SST Score Week 6 -0.53 (2.704) 21 2.02 (2.333) 37 
 CFB 0.06 (2.568) 18 2.44 (2.247) 37 
 Difference (CI) 2.38 (1.03, 3.74) 
 P Value 0.0009 
    
Rescaled MCMC  Week 0 (BL) -1.53 (10.845) 24 -0.14 (2.828) 46 
Rasch SST Score Week 6 5.75 (16.067) 24 8.35 (18.776) 46 
 CFB 7.28 (14.380) 24 8.49 (18.368) 46 
 Difference (CI) 1.20 (-7.40, 9.81) 
 P Value 0.7810 
BL=Baseline; CFB= Change from Baseline; CI= 95% Confidence Interval 
 

According to the four-item anchored question, the Rasch model accounting for 

measurement errors provided different results when comparing with Rasch scores or SST 

summed scores. When closely inspecting the dataset, I found that one subject was able to 

perform four functions at Week 0, but could not perform any function at Week 6, as 

indicated by the point circled by red in Figure 4.4. However, this subject was classified in 

the Minimal Improvement group. I am wondering if the data recording was switched 

between Week 0 and Week 6. Nevertheless, after I excluded this subject from the 

analysis, I still did not obtain the statistically significant result for MCID analysis using 

the four-item anchored question. In other words, using MCMC Rasch SST scores, MCID 

cannot be determined by this four-item anchored question. 
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Discussion 

From the preceding results, I observed the effect of measurement errors on the 

MCID analyses in the simple shoulder test (SST) for a population of patients with rotator 

cuff tendonitis or tearing. MCMC Rasch SST scores provided highly statistical 

significance for the difference of change from baseline (CFB) between patient groups 

classified by the 15-item anchored question, but the SST summed scores and Rasch score 

provided statistical borderline significance for the difference of CFB. Conversely, using 

the four-item anchored question, the difference of CFB between patient groups, was not 

statistically significant (p=0.718) based on MCMC Rasch SST scores, but the difference 

between patient groups were highly significant (both p values=0.0009) based on in SST 

summed scores and Rasch scores.  The inconsistencies in MCIDs between MCMC Rasch 

scores and classical Rasch scores may be due to the bias of estimates of Rasch scores 

when measurement errors are left unconsidered. After accounting for measurement 

errors, I revealed highly significant difference of CFB in MCMC Rasch score while 

difference of CFB in Rasch score was almost hidden with borderline significance 

between patient groups by the 15-item anchored question; I could not claim significant 

difference of CFB in MCMC Rasch score while difference of CFB in Rasch score was 

determined with highly significance between patient groups by the four-item anchored 

question.   

The first advantage of Rasch model accounting for measurement errors is that I 

obtained reasonable estimates of ݏߚ for those subjects with SST summed scores of 0 and 

12, even though their Rasch SST scores remained infinity or nonestimable. Therefore, in 

determining MCID in MCMC Rasch sores, I had no missing data and the same sample 

size as the original analysis.[15]  



81 
 

 

Second, I suggest that the scoring system based on Rasch Model accounting for 

measurement errors is superior to the scoring system based on summed scores. As is 

discussed above, it does not assume equal increments for each additional function 

endorsed by a patient, and, as such, it may reflect the patient’s actual experiences more 

accurately. Especially in two situations, the much larger magnitude of change in MCMC 

Rasch SST rescaled scores are observed: when responses go from no shoulder function to 

at least some shoulder function, and when responses go from no or some shoulder 

function to perfect function. For example, one subject’s SST summed score is zero at 

Week 0 and one at Week 6; and the change score is one in terms of SST summed score, 

whereas the change was 20.8 in rescaled MCMC Rasch SST score. Another subject had 

the change from 10 to 12 in SST summed scores; but the change in Rescaled MCMC 

Rasch scores was 46.6. Therefore, Rasch model accounting for the measurement errors 

has an advantage over Rasch model in dealing with extreme SST summed scores. 

Moreover, this model overcomes the limitation of SST summed score restricted between 

0 and 12, in which the average score was restricted between zero and one. 

Still another advantage of Rasch model accounting for the measurement errors is 

that MCMC Rasch SST scores are now considered as “real” continuous measures. For 

example, if subjects endorse 7 functions on the SST, one subject’s MCMC Rasch SST 

score was 2.5 while another subject’s MCMC Rasch SST score was 1.8. This provides 

good justification to treat MCMC Rasch SST scores as continuous measures and to use 

the t-test, ANOVA, ANCOVA, regression, etc. to analyze the scores.   

One limitation of this chapter is that I only assumed that measurement errors in 

the observed data were 50% of observed variance for ࢃࡸ in this application, but I did not 
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know with certainty if this was true for the observed data. Therefore, in the future, I could 

build the proportion of measurement errors as one of the parameters in the MCMC 

implementation to characterize it in a more accurate way. Another limitation is that 

findings on MCID results are based on a relatively small sample size (for No Change and 

Minimal Change groups, n=9 and n=21 respectively according to the 15-item anchored 

question; n=24 and n=46 respectively according to the four-item anchored question). 

To conclude, measurement errors occur whenever there is measurement. In 

exploring this issue, I applied a Rasch model to account for measurement errors to data 

collected in a clinical setting. From this application, I observed the effects of 

measurement errors on the determination of MCID. Our major finding was that results 

obtained with the model I applied, i.e., Rasch Model accounting for measurement errors, 

are inconsistent with results from both the Rasch Model that does not account for 

measurement error and simple summed score model. This research provides a framework 

to explore measurement errors in real life situations. Even though the Rasch model 

accounting for measurement errors only pertain to  questionnaires with binary response, 

this research  may be expanded to include questionnaires with multiple response 

categories, which increasingly are used in clinical and health care research. Additionally, 

I found that the implementation of the model is feasible. The convergence of chains 

required 10,000 iterations, but this took only about 45 minutes of computer time on a lap 

top computer.  
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Appendices 

Appendix A: Likelihood Functions 

In the Rasch model[13] for dichotomous data, the probability of outcome ܺ௡௜ ൌ 1 

is given by 

ܲሺܺ௡௜ ൌ 1ሻ ൌ ௡ߚሺ݌ݔ݁ െ ௜ሻ1ߜ ൅ ௡ߚሺ݌ݔ݁ െ   ௜ሻߜ
where 

      ܺ௡௜ is the response (1=Yes, 0= No) for Person n to Item i; 

 ;௡ is the ability of person n (n = 1, …, N)ߚ      

 ;௜  is the difficulty of Item i (i = 1, …, I)ߜ      

     P(·) is the probability that Person n has a true or observed response to Item i. 

If measurement errors are not considered in the Rasch model, the likelihood function 

based on the observed data is 

݂ሺࢼ|ࢄ, ሻࢾ ൌ ,ࢼሺܪܮ ሻࢾ ൌ ෑ ܲሺܺ௡௜|ࢼ, ሻ௑೙೔ࢾ ൈ ൫1 െ ܲሺܺ௡௜|ࢼ, ሻ൯ଵି௑೙೔௡,௜ࢾ  

where ܺ௡௜ is the response by nth subject for ith question. 

The Rasch model accounting for the classical measurement error structure may be 

modeled in the following way: the logit transformed latent variables ࢃࡸ and ࢄࡸ linked the 

true response ࢄ and the observed response ࢃ.  

ࢃࡸ ൌ ࢄࡸ ൅  ࢁ
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௑೙೔ܮ ൌ ௡ߚ െ  ௜ߜ
where each component ܷ௡௜ of U are i.i.d. random variables of measurement error 

,ሺ0૚ܰ ~ ࢁ   .௨ଶ is the variance of the classical measurement errorߪ ሻ, whereࡵ௨ଶߪ

,ࢄࡸࣆሺܰ ~ ࢄࡸ  ଶࢄࡸߪ ଶࢄࡸߪ and ,ࢄࡸ is the mean of ࢄࡸࣆ ሻ, whereࡵ  is the variance of ࢄࡸ, 

the joint distribution of  ࢃࡸ and ࢄࡸ is: 

ቀࢃࡸࢄࡸቁ ~ ܰ ൭ቀࢄࡸࣆࢄࡸࣆቁ , ቈఙࢄࡸమ మࢄࡸఙࡵ మࢄࡸఙ ࡵ మࢄࡸቀఙࡵ ାఙೠమቁࡵ቉൱  

Then, the conditional distribution of ࢄࡸ given ࢃࡸ is: 

ࢄࡸࣆ൬ ࡺ ~ ࢃࡸ|ࢄࡸ ൅ ఙࢄࡸమఙࢄࡸమ ାఙೠమ ࢃࡸ൫ࡵ െ ଶࢄࡸߪ   ,൯ࢄࡸࣆ ൬1 െ ఙࢄࡸమఙࢄࡸమ ାఙೠమ൰   ൰ࡵ

The complete likelihood function based on the observed data is 

,ࢼሺܪܮ ,ࢾ ,ࢄ ሻࢄࡸ ൌ ሼ݂ሺࢼ|ࢄ, ሻሽࢾ ൈ ሼ݂ሺࢼሻ כ ݂ሺࢾሻሽ ൈ ሼ݂ሺࢄࡸ|ࢄሻሽ ൈ ሼ݂ሺࢃࡸ|ࢄࡸሻሽ  
                     That is ሼܴ݈ܽ݁݀݋ܯ ݄ܿݏሽ ൈ ሼܲݎ݋݅ݎሽ ൈ ሼBernoulliሽ ൈ ሼ݈ܽ݊݋݅ݐ݅݀݊݋ܥ ሽ 

 where  

݂ሺࢼ|ࢄ, ሻࢾ ൌ ,ࢼሺܪܮ ሻࢾ ൌ ∏ ܲሺܺ௡௜|ࢼ, ሻ௑೙೔ሺ1ࢾ െ ܲሺܺ௡௜|ࢼ, ሻሻଵି௑೙೔௡,௜ࢾ   

݂ሺࢼሻ ן   2൯/ࢼଵࢼି∑்ࢼ൫݌ݔ݁

݂ሺࢾሻ ן ࢾି∑்ࢾሺ݌ݔ݁ ଵ2/ࢾሻ  
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݂ሺࢄࡸ|ࢄሻ ൌ ∏ ܲ൫ܺ௡௜|ܮ௑೙೔൯௑೙೔ ൈ௡௜ ቀ1 െ ܲ൫ܺ௡௜|ܮ௑೙೔൯ቁଵି௑೙೔
  

ܰ ~ ࢃࡸ|ࢄࡸ ൬ࢄࡸࣆ૚ ൅ ఙࢄࡸమఙࢄࡸమ ା ఙೠమ ࢃࡸ൫ࡵ െ ,૚൯ࢄࡸࣆ ଶࢄࡸߪ ൬1 െ ఙࢄࡸమఙࢄࡸమ ା ఙೠమ൰   ൰ࡵ

In order for the implementation of the above formula, we can assume that ࢄࡸࣆ is 

equal to ࢃࡸ,  and ࡸߪଶ࢞  is equal to ࢃࡸߪଶ  estimated as ݎܽݒ ሺࢃࡸሻ, and ࢁߪଶ is equal to 

proportion (denoted as a%) of ࢃࡸߪଶ .  Therefore, ࢃࡸ|ࢄࡸ ~ ܰ ቀࢃࡸ૚, ଶࢃࡸߪ ቀ଴.௔ଵ.௔ቁ   ቁࡵ
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Appendix B: Gibbs Samplers and Metropolis-Hastings Algorithm 

The Gibbs samplers along with the Metropolis-Hastings algorithm were used to 

generate estimates of the parameters from the complete likelihood function. For each 

Gibbs sampler[18] generated at following steps, the general form of Metropolis-Hastings 

Algorithm.[17, 22] to accept a Gibbs Sampler θ from a proposed distribution q(.) is: 

ߙ ൌ ݉݅݊ ቊ1, ௖௨௥௥௘௡௧ሻߠ|௖௔௡ௗ௜ௗ௔௧௘ߠሺݍ௖௨௥௥௘௡௧ሻߠሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሻߠ|௖௨௥௥௘௡௧ߠሺݍ௖௔௡ௗ௜ௗ௔௧௘ሻߠሺ ܪܮ ቋ 

Then compare ߙ with probability generated from uniform distribution. If ߙ is greater than 

the probability from uniform distribution, then update ߠ௖௨௥௥௘௡௧ with ߠ௖௔௡ௗ௜ௗ௔௧௘. 

Otherwise, keep ߠ௖௨௥௥௘௡௧ as it is.  

The steps to generate Gibbs Samplers and associated Metropolis-Hastings 

Algorithms are:  

1. Obtain initial starting values of ࢼ and ࢾ, e.g. estimates the two parameters from 

the simulated dataset using Rasch model ignoring measurement error. Set these 

values as the current values ࢼ௖௨௥௥௘௡௧ and ࢾ௖௨௥௥௘௡௧. 

2. Generate a candidate of the true Logit  ࢄࡸ according to the distribution of ࢃࡸ|ࢄࡸ, 

given the observed ࢃࡸ equal to ࢼ௖௨௥௥௘௡௧ minus ࢾ௖௨௥௥௘௡௧.  

The acceptance ratio for each element of candidate ܮ௑[j], where j= 1, 2, …, ܰ ൈ  is ,ܫ

௑௖௨௥௥௘௡௧ሾ݆ሿሻܮ|௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿܮሺݍ௑௖௨௥௥௘௡௧ሾ݆ሿሻܮሺ ܪܮ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻܮ|௑௖௨௥௥௘௡௧ሾ݆ሿܮሺݍ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻܮሺ ܪܮ ൌ ݂ሺܺ|ܮ௑௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ݂ሺܺ|ܮ௑௖௨௥௥௘௡௧ሾ݆ሿሻ  

ൌ ሺ ௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ௑೎ೠೝೝ೐೙೟ ൈ ሺ1 െ ௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻሺଵି௑೎ೠೝೝ೐೙೟ሻሺ ௑ܲ௖௨௥௥௘௡௧ሾ݆ሿሻ௑೎ೠೝೝ೐೙೟ ൈ ሺ1 െ ௑ܲ௖௨௥௥௘௡௧ሾ݆ሿሻሺଵି௑೎ೠೝೝ೐೙೟ሻ  
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where 

௑ܲ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ ൌ ܲሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ ൌ 1ሻ ൌ ௑௖௔௡ௗ௜ௗ௔௧௘ ሾ݆ሿሻ1ܮሺ݌ݔ݁ ൅  ௑௖௔௡ௗ௜ௗ௔௧௘ ሾ݆ሿሻܮሺ݌ݔ݁

௑ܲ௖௨௥௥௘௡௧ሾ݆ሿ ൌ ܲሺܺ௖௨௥௥௘௡௧ሾ݆ሿ ൌ 1ሻ ൌ ௑௖௨௥௥௘௡௧ ሾ݆ሿሻ1ܮሺ݌ݔ݁ ൅  ௑௖௨௥௥௘௡௧ ሾ݆ሿሻܮሺ݌ݔ݁

3. Generate a candidate of true response ࢄ௖௔௡ௗ௜ௗ௔௧௘ based on updated ࢄࡸ௖௨௥௥௘௡௧.  ࢄ௖௔௡ௗ௜ௗ௔௧௘ follows logistic distribution. ࢄ௖௔௡ௗ௜ௗ௔௧௘ follows Logistic distribution. 

The acceptance ratio for each element of ܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ, where j= 1, 2, …, ܰ ൈ  ,ܫ

is 

ሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿ|ܺ௖௨௥௥௘௡௧ሾ݆ሿሻݍሺܺ௖௨௥௥௘௡௧ሾ݆ሿሻ ܪܮሺܺ௖௨௥௥௘௡௧ሾ݆ሿ|ܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻݍሺܺ௖௔௡ௗ௜ௗ௔௧௘ሾ݆ሿሻ ܪܮ  

ൌ ൫݁݌ݔሺߚ௖௨௥௥௘௡௧ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݅ሿሻ൯௑೎ೌ೙೏೔೏ೌ೟೐ሾ௝ሿି௑೎ೠೝೝ೐೙೟ሾ௝ሿߜ
 

where ݆ ൌ ሺ݊ െ 1ሻ ൈ 12 ൅ ݅,  
,݉݁ݐ௧௛݅݅ ݀݊ܽ ݐ݆ܾܿ݁ݑݏ௧௛݊ ݎ݋݂  ݏ݁݉݅ݐ݁݉݋ݏ "݅݊" ݏܽ ݀݁ݐ݋݊݁݀

4. Generate candidate of ઺ based on current ઺ୡ୳୰୰ୣ୬୲ using the normal 

distribution ܰ൫ࢼ௖௨௥௥௘௡௧, ௣௥௢௣௢௦௘ௗଶ ࢼߪ ൯ . The ࢼߪ ௣௥௢௣௢௦௘ௗଶ  should be small. The prior 

distribution of ࢼ is ܰ൫0૚,   .൯ࡵଶࢼߪ

The acceptance ratio for each element of ߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿ, where n= 1, 2, …, ܰݏݐ݆ܾܿ݁ݑݏ ݄ݐ, 

is 
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௖௨௥௥௘௡௧ሾ݊ሿሻߚ|௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿߚሺݍ௖௨௥௥௘௡௧ሾ݊ሿሻߚሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻߚ|௖௨௥௥௘௡௧ሾ݊ሿߚሺݍ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻߚሺ ܪܮ ൌ 

ෑ ቆ݁݌ݔሼߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ௖௨௥௥௘௡௧ሾ݅ሿሽ݁ߜ െ ௖௨௥௥௘௡௧ሾ݅ሿሽߜ ቇ௑೎ೠೝೝ೐೙೟ሾ௡௜ሿூୀଵଶ
௜ୀଵ  

ൈ ෑ ቆ 1 ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽ1ߜ ൅ ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽቇூୀଵଶߜ
௜ୀଵ  

ൈ ݌ݔ݁ ቊെ ሺߚ௖௔௡ௗ௜ௗ௔௧௘ሾ݊ሿሻଶ െ ሺߚ௖௨௥௥௘௡௧ሾ݊ሿሻଶ2 ൈ ଶࢼߪ ቋ 

5. Generate candidate of ࢾ based on current ࢾ௖௨௥௥௘௡௧ using the normal 

distribution ܰ൫ࢾ௖௨௥௥௘௡௧, ௣௥௢௣௢௦௘ௗଶ ࢾߪ ൯ . ࢾߪ ௣௥௢௣௢௦௘ௗଶ  should be small. The prior 

distribution of ࢾ is ܰሺ0૚,   .ሻࡵଶࢾߪ

The acceptance ratio for each element of ߜ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿ, where i ൌ 1, 2, … ,  :is ,݉݁ݐܫ ݄ݐܫ

௖௨௥௥௘௡௧ሾ݅ሿሻߜ|௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿߜሺݍ௖௨௥௥௘௡௧ሾ݅ሿሻߜሺ ܪܮ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻߜ|௖௨௥௥௘௡௧ሾ݅ሿߜሺݍ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻߜሺ ܪܮ ൌ 

ෑ ቆ݁݌ݔሼߚ௖௨௥௥௘௡௧ሾ݊ሿ െ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሽ݁ߜ െ ௖௨௥௥௘௡௧ሾ݅ሿሽߜ ቇ௑೎ೠೝೝ೐೙೟ሾ௡௜ሿே
௡ୀଵ  

ൈ ෑ ቆ 1 ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௨௥௥௘௡௧ሾ݅ሿሽ1ߜ ൅ ௖௨௥௥௘௡௧ሾ݊ሿߚሼ݌ݔ݁ െ ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሽቇேߜ
௡ୀଵ  

ൈ ݌ݔ݁ ቊെ ሺߜ௖௔௡ௗ௜ௗ௔௧௘ሾ݅ሿሻଶ െ ሺߜ௖௨௥௥௘௡௧ሾ݅ሿሻଶ2 ൈ ଶࢾߪ ቋ 

Repeat Step 2 to 5 for a large number of times, or until convergence. 

From the generation of Gibbs samplers, the chain for Logit ܆ۺ is an independent 

chain. For an independent chain where proposal transitional kernel q(y|x=q(y)it may 
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seem that the independence from the previous state disagrees with Markovian property of 

the chain. Actually, q is just a proposal that is combined with an acceptance probability 

of α to give the transitional p of the algorithm. This transition depends on the previous 

state, thus, preserves the Markovian properties.[22] The chains for  β and δ are 

symmetric chains, in this case when q(y|x) = q(|y − x|), e.g., the normal distribution with 

mean x, then we have q(y|x) = q(x|y).  
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Appendix C: Two Anchored Questions 

15-Item Anchored Question 
Since your last clinic visit, has there been any change in the function of your treated shoulder? 

1. A very great deal worse 
2. A great deal worse 
3. A good deal worse 
4. Moderately worse 
5. Somewhat worse 
6. A little worse 
7. Almost the same, hardly any worse at all 
8. No change 
9. Almost the same, hardly any better at all 
10. A little better 
11. Somewhat better 
12. Moderately better 
13. A good deal better 
14. A great deal better 
15. A very great deal better 

Four-Item Anchored Question 
Since your last clinic visit, please rate your response to treatment. 

1. None – no good at all, ineffective treatment 
2. Poor – some effect but unsatisfactory 
3. Good – satisfactory effect with occasional episodes of pain or stiffness 
4. Excellent – ideal response, virtually pain free 

 

According to the 15-item anchored question, no change group [15] included 

patients whose answers were: almost the same, hardly any worse at all; “No change”; and 

“Almost the same, hardly any better at all”. The minimal improvement group included 

patients if their answers to this question were: “A little better” and “Somewhat better”. 

According to the four-item anchored question, the patients were classified as no 

change group [15] if their answers to this question were: “None” and “Poor”. The 

patients were classified as minimal improvement group [15] if their answers to this 

question were “Good”.  
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CHAPTER  5 

 

CONCLUSION 

In order to address the nonlinearity of the summed score[1-7] and account for the 

effects of measurement errors[8] in patients’ responses to questionnaires, I proposed to 

incorporate measurement errors into the Rasch model under a  preestablished framework 

of measurement errors.[9] Due to the difficulty in modeling the likelihood of the Rasch 

model along with measurement errors directly, I adopted the Markov Chain Monte Carlo 

(MCMC) approach to find the estimates of Rasch model parameters.[10-14] I referred to 

the Rasch model accounting for measurement errors as the MCMC Rasch model. The 

estimates of MCMC Rasch model parameters (ࢼሻ. i.e., person abilities are called MCMC 

Rasch scores.  

Through simulations (Chapter 3), I compared the results from classical Rasch 

model with the results from MCMC Rasch model with different settings that affect the 

MCMC implementation. I discovered the optimal setting of these factors. In addition, I 

observed three patterns: 

• In a situation where a true extreme β remained an extreme β after measurement 

errors were introduced, the mean square of error (MSE) for classical Rasch model 

is much larger than that for MCMC Rasch models (MSEs are tens-of-thousands 

for classical Rasch model vs.  MSEs are around 300 for MCMC Rasch models).   
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• In the situation where a true extreme β became nonextreme β after measurement 

errors were introduced in the datasets, MCMC Rasch models produced a smaller 

MSE.  

• In the case where a true nonextreme β remained a nonextreme β after 

measurement errors were introduced in the datasets, MCMC Rasch models 

performed better for some βs while classical Rasch model performed better for 

other βs. However, the differences between the best MCMC Rasch model (i.e., 

MCMC II) and classical Rasch for nonextreme βs are small.  

Generally speaking, then, MCMC Rasch models are better than classical Rasch 

models when measurement errors exist in datasets.  

Most importantly, the MCMC Rasch model explored here provided a way to 

obtain the estimates corresponding to extreme summed scores with reasonable variances, 

which remain inestimable in the classical Rasch model. Therefore, Rasch model 

accounting for the measurement errors has an advantage over Rasch model in dealing 

with extreme SST summed scores. Furthermore, I found that results appear to be 

unaffected by the magnitude of measurement errors assumed in the dataset when MCMC 

is implemented using mean square of errors (MSE). Comparing the Rasch Model and 

Rasch Model accounting for measurement errors, the latter produced better estimates of 

Rasch model parameters (see Chapter 3). 

With the application of our proposed MCMC Rasch model to a Simple Shoulder 

Test (SST) dataset[15] for patients with rotator cuff tendonitis or tearing, I evaluated the 

effect of measurement errors on the determination of the minimum clinically important 

difference (MCID). Again, the aim of MCID analysis is to find the statistically significant 
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difference in change from baseline (CFB) between a No Change group and a Minimal 

Improvement group via two anchored questions.[16, 17]  In order to facilitate the 

evaluation of the effect of measurement errors in this application, I also performed the 

MCID analyses of Rasch SST scores (Chapter 2) and MCMC Rasch SST scores in 

addition to the MCID determined in the SST summed score in the original study.[18] 

According to the 15-item anchored question, the difference (95% CI; p value) of 

the CFB between two groups was 1.95 (0.06, 3.85; 0.0439) for SST summed score; 1.97 

(-0.17, 4.10; 0.0693) for rescaled Rasch score; and 8.54 (1.78, 15.30; 0.0156) for rescaled 

MCMC Rasch SST score. According to the four-item anchored question, the difference 

(95% CI; p value) of the CFB between two groups was 2.33 (0.99, 3.66; 0.0009) for SST 

summed score; 2.38 (1.03, 3.74; 0.0009) for rescaled Rasch score; and 1.20 (-7.40, 9.81; 

0.7810) for rescaled MCMC Rasch score.  

As shown above, in Rasch scores, the result from MCID analysis according to the 

15-item anchored question is consistent with the result according to the four-item 

anchored question. Furthermore, MCID as assessed through these anchors is consistent 

with MCID assessed by summed scores.  

Nevertheless, using MCMC Rasch SST scores, the MCID cannot be ascertained 

by two anchored questions.  In short, this finding is inconsistent with the result of MCID 

analysis through Rasch scores, and it may be due to the bias of estimates of Rasch scores 

when measurement errors are left unconsidered.  

From simulations in Chapter 3, I found evidence that Rasch model accounting for 

measurement errors provided the estimates for both person abilities and item difficulties 

from questionnaires closer to the “true” model parameters in terms of MSE.  



96 
 

 

Through its application in Chapter 4, I confirmed more advantages of Rasch 

model accounting for measurement errors. These are as follows:  

1. With reasonable estimates of ݏߚ for those subjects with SST summed scores of 0 

and 12, I had no missing data and the same sample size as the original analysis in 

determining MCID of MCMC Rasch scores.[18]  

2. I suggest that the scoring system based on Rasch Model accounting for 

measurement errors is superior to the scoring system based on summed scores. As 

is discussed above, it does not assume equal increments for each additional 

function endorsed by a patient, and, as such, it may reflect the patient’s actual 

experiences more accurately. Especially in two situations, the much larger 

magnitude of change in MCMC Rasch SST rescaled scores are observed: when 

responses go from no shoulder function to at least some shoulder function, and 

when responses go from no or some shoulder function to perfect function. For 

example, one subject’s SST summed score is zero at Week 0 and one at Week 6; 

and the change score is one in terms of SST summed score, whereas the change 

was 20.8 when using the rescaled MCMC Rasch SST score. Another subject had 

the change from 10 to 12 in SST summed scores; but the change in Rescaled 

MCMC Rasch scores was 46.6. Therefore, Rasch model accounting for the 

measurement errors has an advantage over Rasch model in dealing with extreme 

SST summed scores. Therefore, this model overcomes the limitation of SST 

summed score restricted between 0 and 12, in which the average score was 

restricted between zero and one. 
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3. MCMC Rasch SST scores may be considered as “real” continuous measures. For 

example, if subjects endorse 7 functions on the SST, one subject’s MCMC Rasch 

SST score was 2.5 while another subject’s MCMC Rasch SST score was 1.8. This 

provides good justification to treat MCMC Rasch SST scores as continuous 

measures and to use the t test, ANOVA, ANCOVA, regression, etc. to analyze the 

scores.   

The Rasch model accounting for measurement errors as explored in this 

dissertation has far-reaching implications, such as:  

• In health outcomes research, the estimated person abilities obtained from Rasch 

model accounting for measurement errors can be analyzed in the general 

regression model to describe the “true” relationship between the outcome 

measures and interventions. Evidence-based outcomes increasingly are used to 

formulate treatment guidelines that inform public health policy. For example, 

what are the outcomes of conservative treatment for rotator cuff tendonitis or 

tearing? Of course, the “true” relationship between an intervention and its 

outcomes may be useful in formulating such policy decisions.   

• In clinical trials, the estimated person abilities obtained from Rasch model 

accounting for measurement errors may be compared between treatments to reach 

more accurate conclusions about the treatment effect. The question, in other 

words, is the extent to which patients actually benefit from an intervention. On the 

other hand, the model proposed here may find that an intervention may be 

ineffective (or worse), which would suggest that either more research on its 
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outcomes is necessary, or, alternatively, it should be classified as an intervention 

with questionable outcomes.    

• The more accurate MCID may be determined using estimated person abilities 

from Rasch model with measurement errors. For less risky procedures and drugs 

that rarely result in death, the MCID may be used as a metric to establish a 

“volume outcome relationship”. For example, the more an institution performs a 

shoulder nonoperative intervention (volume), the higher may be its rate of patients 

that reach the MCID of the SST (outcome).  If such a volume-outcome 

relationship is ascertainable, patients may then be channeled toward high rate, 

better outcome institutions. Regarding clinical trials, the MCID is required to 

calculate sample sizes. If a trial is overpowered (sample size too large), then 

expenses for it may accrue and the drug or procedure it tests may be delayed in its 

development (or the trial may be deemed too expensive to conduct in the first 

place, and the drug or procedure may remain undeveloped). On the other hand, if 

a trial is underpowered (sample size to small), then it may result in a false 

negative; in other words, the drug or procedure may be effective, but too few 

patients were included in the trial to ascertain statistical significance.   

In addition to the above contributions to outcomes research, this dissertation 

investigated Rasch modeling with measurement errors in a way that would be more 

generally of methodological value, because the framework for incorporation of 

measurement errors in Rasch model may be extended to the situations of multiple 

response questionnaires.  In questionnaires with multiple response categories (such as 

Beck Depression Inventory[19]), the polytomous version of the Rasch model can be used 
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to correct the linearity problem of total scores. At the same time, we may account for 

measurement errors in the logit of polytomous version of the Rasch model for multiple 

response questionnaires. Better estimates of parameters may also be obtained through the 

Bayesian method for additional statistical analysis.    

Finally, I found that the implementation of the model is feasible in the application 

of real world datasets. The convergence of chains required 10,000 iterations, but this took 

only about 45 minutes of computer time on a laptop computer. 
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