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ABSTRACT 
 
 
Andersen-Tawil syndrome Type 1 (ATS1) is a disorder linked to a loss of function 

of the inward rectifier current IK1. Such a reduction in repolarization reserve has an 

established link with heterogeneous action potential duration (APD) prolongation. This in 

turn can serve as a substrate for reentrant arrhythmias. While APD prolongation and 

increased dispersion have been reported in pharmacological models of ATS1 they have 

not been linked with arrhythmogenesis. 

APD prolongation secondary to reduced IK1 can increase Ca2+ entry into myocytes. 

The resultant accumulation of cytosolic Ca2+ has been linked with ventricular ectopies 

which can trigger arrhythmias. Indeed this mechanism of arrhythmogeneis has been 

proposed in ATS1 based on previous in silico and ex vivo studies. However, ATS1-

associated cytosolic Ca2+ overload and increased arrhythmia propensity has not been 

demonstrated in tissue preparations.  

The overall goal of this research was to characterize the factors that underlie 

arrhythmia propensity in a pharmacological model of ATS1. To this end we performed 

two studies. The first study analyzed APD gradients to determine whether they were 

sufficient for induction of reentrant arrhythmias. The results indicated they were not. 

However, this study revealed increased arrhythmia propensity which correlated with 

cytosolic Ca2+ overload. Therefore, the second study focused on Ca2+ handling and 

showed that ectopic activity originated from regions of higher Na+/Ca2+ exchanger 



 iv

(NCX) functional expression relative to sarcoplasmic reticulum Ca2+ ATPase 

(SERCA2a), which we term “NCX dominant” regions of the heart. In support of the idea 

that NCX is an important determinant of ectopy, we were able to modulate both the 

timing as well as the frequency of ectopy by pharmacologically modulating NCX 

dominance. 

The data presented in this dissertation provide an insight into the factors by which 

Ca2+ handling contributes to ectopy under conditions of partial loss of IK1 function. This 

concept may aid in the identification of novel targets for antiarrhythmic therapy when IK1 

is reduced in ATS1, as well as more prevalent disorders such as heart failure. 
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CHAPTER 1 

 
 
 

INTRODUCTION 

 

 



 Sudden arrhythmic death is the most common consequence of cardiac disease, 

accounting for around 450,000 deaths annually in the US alone.1 It is estimated that in 

about 80% these cases, sudden death results from ventricular arrhythmias.2 Such 

arrhythmias, which can be precipitated by reentry as well as by ventricular ectopy (i.e., 

abnormal impulse formation), occur both in patients with structural heart disease,3,4 most 

notably heart failure, as well as in seemingly healthy individuals. 

Classically, two conditions are thought to be necessary for arrhythmias to occur: 

firstly, there must be present heterogeneous electrophysiology between cells of 

neighboring regions5,6, and secondly, an abnormally timed beat, a trigger.7,8 

Electrophysiologic heterogeneities contribute to diverse pathophysiological conditions 

ranging from heart failure9 to inherited channelopathies.10 For instance, in heart failure, 

remodeling of ion channels exacerbates existing electrophysiologic heterogeneities, 

resulting in heterogeneously delayed repolarization. However, it is difficult to resolve the 

precise contribution of electrophysiologic heterogeneities to arrhythmogenesis in a 

complex milieu such as heart failure.11-14 Similarly, it is difficult to pinpoint the 

mechanisms behind arrhythmia triggers (such as ventricular ectopy) in conditions like 

heart failure. However, inherited channelopathies such as Andersen-Tawil syndrome 

Type 1 (ATS1), which result from altered function of just one ionic current, offer a 

convenient experimental test bed for such inquiries.  

The purpose of this dissertation is to elucidate the mechanism by which a single 

channelopathy leads to increased arrhythmia propensity. To this end we have used a 

drug-induced model of ATS1 to investigate the contributions of two arrhythmogenic 

mechanisms: heterogeneously delayed repolarization5,6 and ventricular ectopy.7,8 
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Whereas the former is primarily associated with reentrant arrhythmias,15-17 the latter has 

been linked to Ca2+ accumulation in the cytosol and consequent ectopy.8,18-20 We have 

demonstrated that gradients of action potential duration (APD; an index of delayed 

repolarization) were insufficient for reentrant arrhythmia occurrence in an intact 

ventricular experimental model of ATS1. Importantly, we have demonstrated in this 

model that cytosolic Ca2+accumulation can underlie the observed arrhythmias. Based on 

this finding, we have investigated the contribution of the heterogeneous Ca2+ handling 

protein distribution to the regional arrhythmia susceptibility. 

 
 

Overview of Cardiac Function 
 

In order to facilitate understanding of pathological mechanisms discussed in 

subsequent sections, some basic elements of cardiac physiology are briefly described 

below. 

 
 
The Cardiac Action Potential 
 

The heart is a pump, where its mechanical function resulting from cellular 

contraction synchronized by electrical signals. In a normal heart, these electrical signals 

originate in the pacemaking cells of the sino-atrial node, from whence it spreads across 

the atria and into the atrio-ventricular node. From there, after a delay, it travels rapidly 

through the highly specialized His-Purkinje network which branches into the two 

ventricles. The His-Purkinje network enables simultaneous activation of both ventricles 

resulting in synchronous contraction. 
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All cardiac myocytes are coupled electrically so that excitation of one cell soon 

leads to the excitation of its neighbors. The result is a propagating wave of excitation that 

spreads through the heart until every cell is excited. Such excitation takes the form of 

transient changes in transmembrane electrical potential called action potentials. Briefly, a 

cell at rest is electrically negative with respect to the extracellular space and its 

membrane is said to be polarized. The inward rectifier potassium current (IK1) is the 

major determinant for keeping myocytes at rest. The introduction of positive charge into 

a resting cell, i.e., excitatory current, raises the transmembrane potential, triggering rapid 

entry of sodium (Na+) ions into the cell through voltage-gated Na+ channels. The 

membrane is now said to be depolarized and this process corresponds to the AP upstroke 

(phase 0, Figure 1.1). Immediately following the upstroke, the membrane potentially 

drops by a few millivolts due to a small amount of K+ ions leaving the cell through K+ 

channels (phase 1, Figure 1.1). At this point, Ca2+ ions enter the cell through L-type Ca2+ 

channels which maintains the membrane at a depolarized state, inscribing the AP plateau 

(phase 2, Figure 1.1). Eventually, the L-type Ca2+ channels close and a multitude of K+ 

channels open up, causing significant amounts of K+ to leave the cell and the membrane 

to return to its polarized state. This process is termed repolarization (phases 3; Figure 

1.1). Throughout the action potential, Na+/K+ ATPase exchanges Na+ for K+ (Na+-out – 

K+-in) thereby restoring the Na+ and K+ gradients between the inside and the outside of 

the cell that are altered by ion movement during the action potential. Finally, returning 

full circle, IK1 is also responsible for the late phase of depolarization and as well as 

maintaining the resting membrane potential between action potentials as mentioned 

previously (phases 4; Figure 1.1). Importantly, it is a mutation in IK1 which underlies 
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ATS1, and the first purpose of this dissertation is to understand how loss of IK1 function 

leads to heterogeneous repolarization and increased arrhythmia susceptibility.For a more 

complete description of the action potential during normal as well as pathological 

conditions, please refer to comprehensive reviews by Luo and Rudy21 as well as Kleber 

and Rudy.22 

 

Excitation-Contraction Coupling 

Changes in transmembrane potential are coupled to mechanical contraction and 

relaxation of the cell by changes in intracellular Ca2+, a mechanism called excitation-

contraction coupling.23 Briefly, Ca2+ influx through L-type Ca2+ channels during Phase 2 

(Figure 1.1 anf 1.2) of the action potential triggers the release of intracellular Ca2+ stores 

from the sarcoplasmic reticulum (SR) into the cytosol through ryanodine receptor 

channels (RyR) – a process dubbed Ca2+-induced-Ca2+-release. The quantity of Ca2+ thus 

released from the SR exceeds the amount that enters through the L-type Ca2+ channels by 

more than an order of magnitude. Consequently cytosolic Ca2+ concentration is raised a 

thousand fold from around 100nM to over 10μM. The resulting high cytosolic Ca2+ 

concentration actuates the contractile machinery of the cell composed primarily of actin 

and myosin, causing cellular contraction. As the L-type Ca2+ channels inactivate and the 

cell begins to repolarize at the start of phase 3 (Figure 1.1 and 1.2), Ca2+ is shuttled from 

the cytosol back into the SR by the SR Ca2+ ATPase (SERCA2a) and out of the cell by 

the Na+/Ca2+exchanger (NCX). The consequent reduction in cytosolic Ca2+ results in Ca2+ 

unbinding from contractile proteins and mechanical relaxation of the cell, thereby 

restoring its resting state.  
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 Given the aforementioned components of action potential generation and the 

excitation-contraction coupling, one can appreciate that perturbation in of just one of the 

components can result in arrhythmias. The second purpose of this dissertation is to 

highlight the mechanisms by which a loss of IK1 function results in abnormal calcium 

handling and increased arrhythmia susceptibility. 

 
 

Andersen-Tawil Syndrome – Type 1 
Genetic Basis 
 

Andersen-Tawil Syndrome – Type 1 (ATS1) is attributed to loss-of-function 

mutations in KCNJ2, the gene that encodes for the Kir2.1 channel, which in turn carries 

the inward rectifier current (IK1).
24,25 Despite being first reported in 196326, the 

characterization of ATS1 is still ongoing,27 with significant insights into the genetic basis 

and molecular aspects of ATS1 being gained as recently as the last decade.  Plaster et 

al.,25 through a linkage analysis in a large kindred, identified a locus corresponding to a 

genetic region of over 40 centiMorgans (cM) on chromosome 17q23. Study of the eight 

KCNJ2 mutations initially identified in ATS1 patients revealed dominant-negative effects 

on Kir 2.1 channel function. These findings suggest that mutations in KCNJ2 impair 

Kir2.1 channel function, thereby reducing IK1. Despite dysmorphic features being one of 

the most common systemic phenotypic manifestations of the aforementioned mutation of 

Kir 2.1,24  the destabilization of the resting membrane potential in skeletal muscle and the 

resultant periodic paralysis, particularly during hypokalemia,28 is an important systemic 

electrophysiological manifestation. Of note, such an alteration of the resting membrane 

potential and the resultant prolongation of APD in the cardiomyocytes is a key factor that 

predisposes ATS1 patients to ventricular arrhythmias.25 
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In order to recapitulate the ATS1 arrhythmia phenotype in a guinea pig 

ventricular model, we perfused BaCl2, a relatively specific IK1 blocker.29 A concentration 

of 10 µM BaCl2 was used, which is similar to that used in a canine model of IK1 

blockade30 and a guinea pig model of ventricular fibrillation.31 Since arrhythmias in 

ATS1 are often unmasked by extreme reductions in serum K+ levels,24 IK1 current density 

was further reduced by decreasing the extracellular K+ concentration to levels observed in 

patients exhibiting increased ventricular ectopy (2mM).32 Henceforth, the aforementioned 

drug-induced model of ATS1 will be referred to as DI-ATS1. 

 
 
Regional Arrhythmia Manifestation and Mechanisms 

 
Although the incidence of sudden cardiac death in ATS1 is low, patients 

experience frequent ectopy and nonsustained runs of ventricular tachycardia (VT).25 

However, such frequent arrhythmias are associated dilated cardiomyopathy,33 which can 

contribute to increased morbidity and mortality.2 Such consequences can be avoided and 

potentially even reversed by anti-arrhythmic therapy.33,34 Clues as to what underlies 

arrhythmias in ATS1 may be gained from examining the other clinical electrophysiologic 

manifestations of the pathology. For instance, individuals with ATS1 often present with 

mild QT interval prolongation (hence, its characterization as long QT syndrome 7) 25,28 

and/or a prominent U wave.35 This combination of QT prolongation and the U wave 

suggests delayed repolarization, which most likely is heterogeneous between regions.35 

Such heterogeneous dispersion of repolarization between or even within the ventricles in 

turn can constitute a substrate for reentrant arrhythmias.36,37,30 
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Gradients of repolarization and reentrant arrhythmias. Reentrant arrhythmias 

result from an abnormal, persistent wave of excitation that fails to terminate. For reentry 

to occur, the wave of excitation requires an obstruction to excitation, either anatomical or 

functional, around which the wave can propagate in a loop. This phenomenon is 

associated with unidirectional block (Figure 1.3).22 In the majority of long QT 

syndromes, heterogeneous delay of repolarization creates functional obstructions, 

providing a substrate for reentry.15-17 

The aforementioned heterogeneity of delayed repolarization is often an 

unmasking/exacerbation of regional ion channel heterogeneities, intrinsic to the normal 

heart. The existence of such ion channel heterogeneities, whether across the ventricular 

wall, between the apex and the base or between the ventricles, is widely recognized.38,39 

For instance, in guinea pig, left ventricle (LV) expresses a larger IK1 density relative to 

right ventricle (RV),31,40 which may be exacerbated during DI-ATS1 in a pro-arrhythmic 

manner. In other words, the alterations in refractoriness observed in DI-ATS1 when 

combined with intrinsic ion channel heterogeneities can transform relatively benign 

repolarization heterogeneity into a potent substrate for unidirectional block and thereby, 

arrhythmias.30 

Indeed, unidirectional block of transmural impulse propagation due to dispersion 

of repolarization has been reported in a model of failing canine LV wedge.6 On the other 

hand, the cardiac anatomy and particularly the heart size of smaller animals such as 

guinea pig may preclude the occurrence of reentrant arrhythmia. Despite such concerns, 

successful arrhythmia induction by programmed electrical stimulation previously 
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reported in a guinea pig model of LQT3 suggests that occurrence of reentry is not 

precluded by the size of the guinea pig heart.15 

Without a whole-heart model of ATS1, it was unknown whether gradients of 

repolarization could in fact underlie arrhythmogenesis in ATS1. Therefore, the role of 

heterogeneous dispersion of repolarization on arrhythmogenesis was tested in the 

research outlined in Chapter 2. In short, we report that gradients of repolarization were 

below the previously reported threshold for reentrant arrhythmia initiation.6 Furthermore, 

we were unable to initiate arrhythmias with gradients of repolarization present in DI-

ATS1 using accepted reentrant arrhythmia induction protocols.15 

 

Ca2+ Mediated Ectopy 

Based on the frequency of ventricular ectopy and the non-sustained nature of VT 

in ATS1, it has been suggested that abnormal Ca2+ handling secondary to APD 

prolongation may be the underlying electrophysiologic change leading ectopy.35 The 

putative mechanism for such an abnormality in Ca2+ handling, manifest as cytosolic Ca2+ 

overload during loss of IK1 function is linked to intracellular K+ accumulation. The rise in 

cytosolic K+ levels during partial IK1 blockade in turn leads to Na+/K+ ATPase 

dysfunction and consequent intracellular Na+ overload (Figure 1.2). Given NCX’s 

exquisite sensitivity to intracellular Na+ levels, cytosolic Na+ overload increases the rate 

and duration of Na+ extrusion (i.e. Ca2+ entry) through NCX. This in turn increases the 

cytosolic Ca2+ concentration. 

Support for the aforementioned assertion of abnormal Ca2+ handling and cytosolic 

Ca2+ overload underlying ectopic activity in models of long QT syndromes has come in 
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the form of experimental observations demonstrating that ectopy originates from areas of 

elevated cytosolic Ca2+ levels during APD prolongation. Importantly such ectopy caused 

by membrane depolarization via forward mode NCX (Na+-in – Ca2+-out) in response to 

Ca2+ release from the SR is called “triggered activity” and/or “Ca2+mediated ectopy,” 

because abnormal Ca2+ handling, rather than electrical stimulation causes the ectopy.41-43   

Spontaneous SR Ca2+ release was proposed as the cellular mechanism of such ectopy. 

Such an event can result either from elevated cytosolic Ca2+  (which may be due to 

increased Ca2+ leak from the SR) or increased Ca2+ sensitivity of ryanodine receptors (the 

specialized SR release channels, RyR).44 Alternatively, the combination of elevated 

cytosolic Ca2+  and enhanced Ca2+ uptake via the SERCA2a may overload the SR with 

Ca2+, increasing the probability for a spontaneous Ca2+ release from the SR.41,45-49 Indeed, 

results from previous models of ATS1, both in silico50,51 and in vivo,36,37 support the 

hypothesis that cytosolic Ca2+ overload underlies increased triggered arrhythmias during 

partial IK1 blockade.50,51 However, to date, direct experimental evidence for cytosolic 

Ca2+ overload in a whole heart model of ATS1 has been lacking. In Chapter 2 we 

demonstrate that DI-ATS1 is associated with a rise in cytosolic Ca2+, as previously 

postulated. Further, the observed cytosolic Ca2+ accumulation was associated with an 

increased arrhythmia burden in accord with the clinical arrhythmia phenotype of ATS1. 

However, the precise cellular mechanism by which rises in cytosolic Ca2+ translate into 

ectopy remains a subject of intense debate.52 The factors that could influence such a 

phenomenon in DI-ATS1 are discussed below.  

Elevated cytosolic Ca2+ and SR Ca2+ release. It has been proposed the increases in 

cytosolic Ca2+, whether in ATS1, or heart failure53 or during cardiac glycoside 
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administration,54 can result in Ca2+ mediated ectopy. Under conditions of cytosolic Ca2+ 

overload, cytosolic Ca2+  concentrations can be further increased by rapid pacing and/or 

increasing Ca2+entry through the L-type Ca2+ channel. The consequence of increased 

cytosolic Ca2+ can potentially increase SR Ca2+ loading with consequent increased 

ectopy.46 This is a point of intense debate, however. 

The controversy regarding the relationship of ectopy and cytosolic Ca2+ arises 

from three principal experimental observations: 

1. In intact myocardium, regions with the lowest SERCA2a expression have 

preferentially increased cytosolic Ca2+ and higher arrhythmia propensity.8 This 

means that the regions with the weakest ability to load the SR with Ca2+ 

demonstrate a higher propensity for ectopy.  

2. Pharmacologically blocking SERCA2a in isolated cardiomyocytes increases 

cytosolic Ca2+  55 but lowers such propensity for spontaneous depolarization.56  

3. Inhibiting NCX lowers ectopy without significantly altering cytosolic Ca2+.57  

These three observations suggest that cytosolic Ca2+ overload by itself poorly 

correlates with an increased propensity for ectopy. It is possible, therefore, that there may 

be other mechanisms, apart from cytosolic Ca2+ overload, associated with ectopy. These 

mechanisms are discussed below (Figure 1.2). 

SERCA2a. The first proposed arrhythmogenic mechanism involves SERCA2a, 

which is responsible for active Ca2+ uptake into the SR. Previous research suggested that 

CaD accumulation as a result of low SERCA2a expression could paradoxically increase 

the efficiency of SERCA2a via Ca2+/calmodulin-dependent protein kinase activation.58 

This could result in paradoxically greater SR Ca2+ loading in regions with reduced 
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SERCA2a expression. However, this theory is inconsistent with studies that demonstrated 

that lowering SERCA2a function via pharmacological block not only decreases the 

propensity of ectopy, but elevates diastolic Ca2+.55,56 Further, the regions with lowest 

SERCA2a protein expression evidence the highest incidence of ectopy.8 These data, 

therefore, put into question the involvement of SR Ca2+ overload as one of the 

arrhythmogenic mechanisms in DI-ATS1. 

Leaky SR. The second proposed mechanism for increased incidence of SR Ca2+ 

release is that elevated cytosolic Ca2+ increases the probability that the RyR will open in 

response to an influx of Ca2+. The inconsistency in this theory is that blocking SERCA2a 

should elevate cytosolic Ca2+ and further increase the probability that the RyR channels 

will spontaneously release Ca2+ from the SR. Again, experimental data shows that 

blocking SERCA2a raises cytosolic Ca2+ but decreases propensity for ectopy.55,56 One 

possible explanation for this paradoxical phenomenon is that if the SR cannot sufficiently 

overload itself with Ca2+ during SERCA2a blockade, then the SR has a decreased 

propensity for spontaneous overload and release. However, this assertion is also 

inconsistent with the observation that sites with greatest propensity for ectopy have the 

lowest SERCA2a functional expression.8 

NCX. The third proposed mechanism for increased incidence of SR Ca2+ release 

is related to NCX and its role in elevating cytosolic Ca2+. It has been previously 

demonstrated that Ca2+ influx through NCX can trigger SR Ca2+ release and thereby, 

ectopy.59-62 Recently a mathematical model of ATS1 suggested an upward shift in the 

NCX current towards more positive potentials during the repolarization phase of the 

action potential, allowing NCX to operate predominantly in the reverse mode (Ca2+-in – 
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Na+-out) during repolarization.63 Further, reports of enhanced late Na+ current associated 

with increased cytosolic Ca2+ concentrations can further promote reverse mode NCX 

function (Figure 1.2).64 These studies along with recent reports NCX modulation of SR 

Ca2+ release65-67 form a foundation for a plausible hypothesis of enhanced ectopic 

frequency during partial IK1 blockade, as evidenced in DI-ATS1 being linked to reverse 

mode NCX. 

Altered membrane excitability. Alternatively, reduced IK1 density has been shown 

to destabilize the resting membrane potential.68 This mechanism allows for spontaneous 

pacemaking activity (automaticity) that is independent of the SR. Specifically, during 

conditions of elevated cytosolic Ca2+, forward mode NCX (3Na+-in – 1Ca2+-out) could 

raise membrane potential particularly in late phases of the action potential and diastole by 

slowly depolarizing myoctes. Without IK1 maintaining a stable resting membrane 

potential (Figure 1.1), NCX could depolarize the cell to the activation thresholds of either 

voltage-gated Na+ or Ca2+ channels. However, previous work by our group40 and others31 

have demonstrated a significantly higher Kir2.1 protein density and consequent IK1 in the 

LV, the region with highest ectopic activity incidence, which suggests that these regions 

would be most resistant to pacemaker-like activity secondary to a greater resting 

membrane potential stability in such regions.  

In Chapter 3 we discuss the effect of experimentally modulating the afore-

mentioned factors involved in Ca2+ handling on regional arrhythmia propensity in DI-

ATS1. 
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Research Objectives 
 
 The aim of this work is to characterize cytosolic Ca2+ accumulation and triggered 

arrhythmia during partial IK1 current inhibition in a whole ventricular preparation, and 

further, to investigate the potential implications of regional distribution of Ca2+ cycling 

proteins (SERCA2a and NCX), as the underlying modulators of arrhythmias in DI-ATS1. 

Chapter 2 will focus on regional arrhythmia vulnerability during DI-ATS1. Although 

previous studies in DI-ATS1 have revealed APD prolongation and dispersion,36,30 

whether this dispersion is sufficient for reentry to occur remains unknown. To investigate 

the roles of APD prolongation and dispersion on increased arrhythmogenicity during DI-

ATS1, incidence of VT and ventricular ectopy were quantified. Subsequently, spatio-

temporal characteristics of ventricular ectopy were determined. Lastly, using a 

ratiometric Ca2+ optical mapping system, which was designed and validated for this 

study, the correlation between ventricular ectopy and elevated cytosolic Ca2+ levels was 

established.  

Chapter 3 discusses the role of regional distribution of Ca2+ cycling proteins 

(SERCA2a and NCX) in arrhythmia incidence. To test the hypothesis that increased 

incidence of ventricular ectopy correlates particularly with regions of higher NCX 

functional expression relative to SERCA2a (which we term “NCX dominance”) and 

greater cytosolic Ca2+ accumulation relative to other regions, the effects of 

pharmacological modulation of NCX dominance were determined: during decreased 

NCX dominance, secondary to NCX inhibition and enhanced NCX dominance during 

SERCA2a inhibition. Finally, Chapter 4 highlights the major findings of these studies, 
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relates them to arrhythmia research in general, and concludes with future directions for 

this project. 
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Figure 1.1. The Cardiac Action Potential and Ca2+ Handling. The cardiac action 
potential can be divided into five phases (0-4), while Ca2+ flux occurs predominantly 
during phase 2-3 as indicated.  
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Figure 1.2. Excitation Contraction Coupling. Schematic diagram of Ca2+ cycling with 
the major proteins labeled. Upon membrane depolarization by intracellular Na+ entry, 
Ca2+ enters via the L-type Ca2+ channels (LCC) leading to Ca2+ release channels (RyR) 
activation and consequent Ca2+ release (solid arrows) from the sarcoplasmic reticulum 
(SR). The released Ca2+ is then re-sequestered (dashed arrows) into the SR by the SR 
Ca2+ ATP-ase (SERCA), which is regulated by phospholamban (PLB), and extruded by 
Na+/Ca2+ exchanger (NCX). Lastly, the cytosolic Na+ that accumulated during 
depolarization is extruded from the cytosol at that time NCX and by Na+/K+ ATPase 
through the action potential. 
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Figure 1.3. Mechanism of Reentry. A) Heterogeneities in APD in normal heart are 
insufficient for areas of refractoriness to form; therefore, impulse propagation will 
conduct through the two heterogeneous areas at virtually same rate. When those two 
wave-fronts encounter each other they terminate. B) On the other hand, during states of 
heterogeneous APD prolongation, areas with greatest refractoriness forme an area of 
block. C) The impulse travels through the unblocked area to reactivate previously 
refractory area in a retrograde fashion leading to excitation of that area and formation of 
reentry. 
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CHAPTER 2 

 
 
 

CYTOSOLIC CALCIUM ACCUMULATION AND DELAYED 

REPOLARIZATION ASSOCIATED WITH VENTRICULAR 

ARRHYTHMIAS IN A GUINEA PIG MODEL OF 

ANDERSEN-TAWIL SYNDROME 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reprinted with permission from Radwański et al., Heart Rhythm 2010;7(10):1428-1435. 



Introduction 

Anderson-Tawil Syndrome (ATS1) is an inherited channelopathy that results 

from loss of function of the inward-rectifier K+ current (IK1) secondary to mutations in 

KCNJ2, the gene that encodes the Kir2.1 channel.1,2 ATS1 is characterized 

electrocardiographically by a prolonged QT interval (hence its classification as Long-QT 

7 syndrome) and nonsustained ventricular tachycardias (VTs) that are often 

foreshadowed by frequent triggered activity and occur more frequently during 

hypokalemia.2,3 Therefore, it has been proposed that arrhythmias in ATS1 may be caused 

by electrical substrate remodeling4,5 giving rise to the prolonged QT interval and 

increased triggered activity frequency. While heterogeneous action potential duration 

(APD) prolongation and increased dispersion, both transmural and interventricular, have 

been reported in experimental models of ATS1,5-7 it remains unknown whether these 

gradients of repolarization are sufficient for reentry to occur.  

Additionally, the high frequency and focal nature of bidirectional VTs in ATS1 

suggest that triggered activity underlies, at least in part, the observed arrhythmias in 

ATS1.6 In general, focal arrhythmias have been previously linked to cytosolic Ca2+ 

([Ca2+]i) accumulation.8-10 Indeed, in silico models of ATS1 support the hypothesis that 

[Ca2+]i accumulation underlies increased triggered activity during partial IK1 

blockade.11,12 Based on ex vivo studies in drug induced ATS1 (DI-ATS1) models, Morita 

et al. and Poelzing et al. proposed, that arrhythmia propensity in ATS1 derives from 

[Ca2+]i accumulation leading to increased triggered activity.6,7  However, [Ca2+]i 

accumulation has yet to be demonstrated in an experimental model of ATS1 in part due 

to limitations in whole-heart [Ca2+]i measurement techniques.  
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While the development of ratiometric (i.e. dual wavelength) fluorescent Ca2+ 

probes has helped minimize artifacts due to inhomogeneities in fluorescence and motion, 

whole-heart Ca2+ optical mapping has lacked a calibration procedure that would 

satisfactorily account for multiple excitation light exposures.13,14  We, therefore, designed 

and validated a ratiometric Ca2+ optical mapping system capable of simultaneous, 

quantitative, multisite measurements and use it here to test the hypothesis that elevated 

[Ca2+]i concomitant with APD prolongation rather than APD dispersion underlies 

arrhythmia propensity during DI-ATS1.  

We demonstrate in guinea pig Langendorff perfused ventricles that gradients of 

epicardial APD dispersion in DI-ATS1 were insufficient for arrhythmia induction by 

premature stimuli. However, APD prolongation was associated with increased incidence 

and severity of spontaneous and rapid pacing induced arrhythmias. Importantly, we 

demonstrate that this increased arrhythmia incidence is associated with significant 

diastolic [Ca2+]i accumulation. Further, APD abbreviation with ATP-sensitive potassium 

channel opener, pinacidil, alleviated both diastolic [Ca2+]i accumulation and the 

consequent increased arrhythmia burden.  

 

Methods 

This investigation conforms with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996) and has been approved by the Institutional Animal Care and Use 

Committee of the University of Utah (protocol no. 05-07002). 
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Guinea Pig Langendorff Preparation  

Guinea pig ventricles were perfused as Langendorff preparations as previously 

described.7 Briefly, adult male guinea pig breeders (800 to 1000 g) were anesthetized 

with sodium pentobarbital (30 mg/kg IP), and their hearts rapidly excised, atria removed 

and perfused as Langendorff preparations (perfusion pressure, 55 mm Hg) with 

oxygenated (100% O2) Tyrode's solution at 36.5 C containing (mMol/l) CaCl2 2, NaCl 

140, KCl 4.5, dextrose 10, MgCl2 1, HEPES 10 (pH 7.41). 

 

Optical Voltage and Ca2+ Mapping 

We performed ratiometric voltage optical mapping as previously described.7 See 

Supplemental Methods for more detail.  

We developed an optical calcium mapping similar to that developed by Katra et 

al.15 Ratiometric Ca2+ transients were determined by dividing the background-subtracted 

fluorescence Ca2+ transients at 405 nm by the background-subtracted fluorescence 

calcium transients at 485 nm. 

Background-485485

Background-405405

485

405

F F

F - F

F

F
Ratio




  

F is the actual change in fluorescent amplitudes in the cameras after 405 or 485 

bandpass filtering, and the subscript “Background” corresponds to light intensity without 

Indo-1 dye loading. The shorthand F405/F485 is an abbreviation to represent the calculated 

ratiometric Ca2+ signal. 
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Optical Action Potential and [Ca2+]i Measurements 

Motion was reduced by 7.5 mM 2,3-diacetylmonoxime. Ventricles were 

stimulated at 1.5 times the stimulation threshold with a unipolar silver wire placed on the 

basal epicardial right ventricle. Activation time was defined as the time of the maximum 

first derivative of the AP as described previously.16 Repolarization was defined as the 

time to 95% repolarization from peak voltage amplitude. APD was the time difference 

between activation and repolarization, while APD50 was the time difference between 

activation and 50% of repolarization. APD dispersion was defined as the difference 

between epicardial regions with the longest and shortest APD (using 25 spatially 

contiguous optically mapped sites per region). Relative diastolic Ca2+ level and Ca2+ 

transient amplitude were defined as the minimum ratiometric signal before the Ca2+ 

transient upstroke and the difference between systolic and diastolic [Ca2+]i values, 

respectively. Ca2+ transient duration was calculated from the time of 90% amplitude 

during systole to the time of 10% amplitude during diastole. 

 

DI-ATS1 

 ATS1 was modeled as described previously by perfusion of hypokalemic (2 mM 

KCl) Tyrode's solution containing 10uM BaCl2.
7 Henceforth, this drug induced model of 

ATS1 will be referred to as DI-ATS1. Pinacidil was always perfused at 15 µM (Sigma 

Chemical). For most experiments Ca2+ transient recordings made during control, DI-

ATS1, and DI-ATS1 with pinacidil were made sequentially. In order to rule out the 

involvement of the time-dependent component with respect to changes in Ca2+ transient 
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recordings, the order of recordings in a subset of preparations was altered where the 

perfusion of pinacidil during DI-ATS1 directly followed the control recordings. 

 

Arrhythmia Induction 

After a 20-beat drive train delivered to the anterior epicardial surface of the right 

ventricular base at the BCL of 400 ms (previously demonstrated as the region with the 

longest APD),7 an epicardial premature stimulus (S2) at the left ventricular apex (the 

region with shortest APD)7 was delivered through the same drive train. The S1-S2 

interval was sequentially shortened by 10-ms until refractoriness was reached or an 

arrhythmia was induced. Rapid pacing induced arrhythmias were quantified at the 

shortest cycle length allowing for 1:1 capture. Volume-conducted electrocardiograms 

(ECG) were continuously recorded in a subset of experiments in order to assess 

arrhythmia burden. QT intervals were corrected for changes in basic cycle length (BCL) 

using the formula ([QTc = QT + (1/BCL – 1)]).7 Ventricular Tachycardia (VT) was 

defined as a run of three or more ventricular beats with a cycle length less than 250ms. A 

premature ventricular complex (PVC) was defined as any QRS complex with different 

morphology that occurred less than 1.5 standard deviations of the intrinsic cycle length. 

Arrhythmia was defined as any type of VT or PVC. PVC frequency was defined as the 

number of PVCs per minute. In order to account for inter-animal variability, PVC 

frequency for each animal was normalized to the PVC frequency during the DI-ATS1 

recording. 
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Statistical Analysis 

Statistical analysis was performed with a two-tailed Student's t-test for paired and 

unpaired data. Multiple regression analyses were used to characterize fluorescence Ca2+ 

signal drift both in vitro and in ex vivo preparations. A Fisher’s Exact test was used to test 

differences in nominal data. A p < 0.05 was considered statistically significant. All values 

are reported as means ± standard error unless otherwise noted. 

 

Results 

Drug Induced-ATS1 

A representative volume-conducted ECG in Figure 2.1A demonstrates QT-

interval prolongation by approximately 60 ms during DI-ATS1 relative to control. 

Additionally, the T-wave, which was monophasic under control conditions, was biphasic 

during DI-ATS1. Over all experiments, QTc during DI-ATS1 (286.7 ± 15.2ms) was 

significantly longer relative to control (210.7 ± 5.2ms, Figure 2.1B). Underlying the 

observed QTc prolongation during DI-ATS1 was APD prolongation illustrated by 

representative optical action potentials in Figure 2.2A. For all experiments, global APD 

and APD50 was prolonged during DI-ATS1 relative to control (222.5 ± 3.5 ms vs.151.3 ± 

1.3 ms, Figure 2.2B; and 130.1 ± 5.5 ms vs. 99.8 ± 6.1 ms, Figure 2.2D, respectively). 

Additionally, APD dispersion was greater during DI-ATS1 relative to control (16.9 ± 1.0 

ms vs. 13.8 ± 1.3 ms, Figure 2.2C). 

No arrhythmias (defined as one or more premature beats) were induced by 

premature programmed stimulation under any condition. Furthermore, VTs were neither 

spontaneous nor inducible under control conditions. However, during DI-ATS1, 38% of 
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preparations experienced spontaneous VTs, 19% experienced rapid pacing induced VTs. 

Some preparations experienced one or more VT type. In total, 0% of control and 8 of 21 

DI-ATS1 preparations experienced some type of VT. During DI-ATS1, all preparations 

experienced PVCs. PVC frequency for all experiments was normalized to the PVC 

frequency during DI-ATS1 (Table). PVC frequency during control conditions was 

significantly lower (by 99.5± 0.3%) than during DI-ATS1 alone (100%, Table). In total, 

only 2 of 8 preparations during control experienced any type of arrhythmia, all due to 

PVCs, relative to 17 of 17 preparations with at least one type of arrhythmia (VT and/or 

PVC) during DI-ATS1 (Table). 

 

APD Shortening During DI-ATS1 Reduces Frequency and 

Duration of Arrhythmias 

Perfusion of pinacidil during DI-ATS1 (DI-ATS1+Pinacidil) shortened the QTc to 

near control values as demonstrated by a representative trace in Figure 2.1A (right). Over 

all experiments, pinacidil shortened QTc relative to DI-ATS1 (Figure 2.1B); however, 

QTc was still prolonged (240.8 ± 5.8ms, Figure 2.1B) relative to control. QT-shortening 

during DI-ATS1+Pinacidil was associated with an abbreviation of APD relative to DI-

ATS1 alone (Figure 2.2A). Specifically, DI-ATS1+Pinacidil significantly shortened APD 

to 190.6 ± 3.7ms (Figure 2.2B), which was significantly greater relative to control. 

Additionally, DI-ATS1+Pinacidil significantly shortened APD50 to 99.5 ± 6.1ms (Figure 

2.2D), which was not significantly different from control. Lastly, DI-ATS1+Pinacidil 

reduced APD dispersion to 5.0 ± 0.4 ms (Figure 2.2C), which was significantly lower 

than during control or DI-ATS1 alone. 
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DI-ATS1+Pinacidil abolished spontaneous VTs, while the incidence of rapid 

pacing induced VTs was not significantly reduced (6%, Table). Importantly, DI-

ATS1+Pinacidil significantly reduced PVC frequency by 79.5±0.1% relative to DI-ATS1 

alone (Table), which was significantly greater relative to control (0.5±0.3%). Lastly, the 

ECG was continuously monitored in a subset of DI-ATS1+Pinacidil preparations (n=5). 

In this group, all preparations exhibited some form of arrhythmia (VT and/or PVC), 

which was not significantly different from DI-ATS1 but was significantly greater than 

control.  

 

Validation of Ratiometric [Ca2+]i Mapping 

In order to quantify relative changes in [Ca2+]i during ATS1, it was important to 

validate Ca2+ independent drift. The F405/F485 drift was measured in vitro (see 

Supplemental Results) and ex vivo in Langendorff-perfused guinea pig ventricles (n=3), 

where recordings were made every 5 minutes for 1 hour. Ca2+ transients recorded from 

the same epicardial site at different exposure times demonstrate an upward shift in the 

signal consistent with the in vitro observations (Figure 2.3A, Exp 1 – black, first 

exposure, Exp 13 – gray, last exposure). Both diastolic [Ca2+]i and Ca2+ transient 

amplitude were significantly higher during Exp 13 relative to Exp 1 (Figure 2.3E). 

Multiple regression analysis revealed a significant correlation of observed drift with 

cumulative exposure (parameterized as number of exposures). Specifically, diastolic 

[Ca2+]i increased at a rate of 3.77% ([95% CI, 3.37-4.17], R2=0.79) per exposure (Figure 

2.3B). Importantly, Ca2+ transient duration (Figure 2.4A), QRS duration, and QT interval 

(Supplemental Figure 2.2) were unaffected by the number of exposures. 
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Mathematically correcting measured transients by subtracting 3.77% per exposure 

from the ratiometric fluorescence Ca2+ signal resulted in a high degree of morphological 

correspondence between Ca2+ transients recorded several exposures apart (Figure 2.3C). 

Over all experiments, the mathematical drift correction returned Ca2+ transient amplitude 

and diastolic [Ca2+]i after 13 exposures to Exp 1 levels (Figure 2.3D & E).  

 

Validation of Ca2+ Drift Correction 

Under control conditions, rapid pacing (BCL=200 ms, Exp 2, Figure 2.4) 

significantly increased drift-corrected diastolic [Ca2+]i by 7.6 ± 1.4% (n = 3) relative to 

baseline pacing (BCL=400 ms, Exp 1) as demonstrated by representative data in Figure 

2.4A. Cessation of rapid pacing (BCL=400, Exp 3) returned drift corrected diastolic 

[Ca2+]i to values similar to baseline (BCL=400, Exp 1, 6.7 ± 0.9% decrease). To further 

validate our ability to measure changes in diastolic [Ca2+]i we inhibited SERCA2a with 

5μM cyclopiazonic acid (CPA), which significantly increased drift-corrected diastolic 

[Ca2+]i by 15.2 ± 1.5% (n = 3) relative to control as demonstrated by representative data 

in Figure 2.4B. All subsequent [Ca2+]i measurements were therefore corrected for drift. In 

order to compare relative changes between different experiments, the offset of diastolic 

[Ca2+]i was normalized to the offset of diastolic [Ca2+]i in the first recording of each 

experiment. 

 

DI-ATS1 Alters [Ca2+] Handling  

Representative Ca2+ transients in Figure 2.5A, demonstrate that DI-ATS1 shifts 

the ratiometric Ca2+ transients upward. Diastolic [Ca2+]i during DI-ATS1 was 
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significantly greater relative to control (by 17.9 ± 1.8%, n = 10, Figure 2.5B). 

Additionally, DI-ATS1 significantly elevated Ca2+ transient amplitude by 18.1 ± 1.3% 

relative to control (Figure 2.5A and B). Perfusion of pinacidil (15μM) during DI-ATS1 

attenuated the upward shift in diastolic [Ca2+]i (Figure 2.5A). This effect was observed 

irrespective of the experimental order. For all experiments, DI-ATS1+Pinacidil reduced 

diastolic [Ca2+]i by 12.7 ± 1.7% (Figure 2.5C) relative to DI-ATS1 alone; however, 

diastolic [Ca2+]i remained significantly greater relative to control (6.5 ± 2.2%). Further, 

pinacidil did not reverse the rise in Ca2+ transient amplitude (Figure 2.5B & C). 

Specifically, Ca2+ transient amplitude during DI-ATS1 was not significantly different 

after pinacidil perfusion, and therefore, Ca2+ transient amplitude during DI-

ATS1+Pinacidil remained significantly greater relative to control (19.4 ± 2.3%). 

 

Discussion 

Several studies hypothesized that [Ca2+]i accumulation concomitant with APD 

prolongation underlies arrhythmias in ATS111,17 and DI-ATS1.6,7 However, [Ca2+]i 

accumulation had not been demonstrated in whole heart preparations in part because of 

methodological difficulties in quantitative [Ca2+]i measurement using ratiometric Ca2+ 

optical mapping. In this study, we demonstrate that DI-ATS1 was associated with [Ca2+]i 

accumulation concomitant with APD prolongation. Attenuating [Ca2+]i accumulation 

during DI-ATS1 and reducing APD significantly reduced spontaneous VTs and PVC 

frequency. Further, programmed electrical stimulation failed to induce arrhythmias 

despite increased APD dispersion during DI-ATS1. However These data suggest that 
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APD prolongation in DI-ATS1 is associated with [Ca2+]i accumulation, which 

subsequently is associated with the increased arrhythmogenic burden in ATS1.   

 

APD and Arrhythmias in Drug Induced-ATS1 

The electrocardiographic features observed in our DI-ATS1 model were 

consistent with previous experimental studies6,7 as well as clinical observations:2 The 

QT-interval prolonged on the volume-conducted ECG and a double-repolarization wave 

was observed during DI-ATS, which was not present during control (Figure 2.1A). QT-

interval prolongation was associated with APD prolongation quantified from the anterior 

epicardial surface of guinea pig myocardium (Figure 2.2A), which is consistent with 

previous experimental and in silico studies of ATS1.5-7,11,17 

Additionally, APD prolonged heterogeneously in DI-ATS1 resulting in increased 

interventricular APD gradients relative to control. Despite the larger APD gradients, 

programmed electrical stimulation failed to induce an arrhythmia in any of the hearts 

tested in this study. This suggests that APD dispersion may have been of insufficient 

magnitude to precipitate reentrant arrhythmias.18,19 Successful arrhythmia induction by 

programmed electrical stimulation previously reported in a guinea pig model of LQT320 

suggests that occurrence of reentry is not precluded by the size of the guinea pig heart. 

Further, that study reported a significantly larger APD dispersion than observed in our 

model, lending credence to the hypothesis that there was insufficient dispersion of 

repolarization in our model for reentry to occur.  Therefore, our data argue against 

involvement of dispersion of repolarization on arrhythmogenesis in our model, but do not 

completely rule out its involvement. Further, it is important to note that the 
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methodologies used in the present study also preclude the assessment of transmural 

dispersion of repolarization. However, Tsuboi et al. concluded that transmural dispersion 

of repolarization gradients were insufficient for arrhythmia induction by programmed 

electrical stimulation in a canine LV wedge model of DI-ATS1.5 Taken together, these 

data still suggest that the degree of dispersion observed in DI-ATS1 was likely 

insufficient for re-entrant arrhythmia induction.  

In order to test the effects of APD abbreviation on the DI-ATS1 phenotype, we 

perfused pinacidil, an ATP-sensitive potassium channel opener. Pinacidil decreased APD 

gradients in DI-ATS1 below those observed in DI-ATS1 alone or control and reduced the 

incidence of arrhythmias but did not abolish them. Specifically, PVC frequency, a marker 

of arrhythmia vulnerability,21,22 during pinacidil perfusion was lower relative to DI-ATS1 

but still higher relative to control. Therefore, these data suggest that gradients of 

repolarization in DI-ATS1 are unlikely to be a significant substrate for arrhythmias in this 

condition.  

On the other hand, pinacidil attenuated the rise in APD50 due to DI-ATS1 such 

that APD50 during control and DI-ATS1+Pinacidil were not significantly different. 

Therefore, the observation that arrhythmias were reduced but still present during DI-

ATS1+Pinacidil further suggests that these arrhythmias are not correlated to APD50 or 

action potential plateau prolongation.  

Both conditions, DI-ATS1 and DI-ATS1+Pinacidil, exhibited final repolarization 

(APD) prolongation and [Ca2+]i accumulation relative to control. These findings suggest 

two mechanisms, which may not necessarily be independent. Specifically, prolongation 

of final repolarization, as estimated by APD could also be a substrate for increased 
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triggered activity in DI-ATS1. The hypothesis that APD prolongation leads to recovery 

from inactivation of L-type calcium channels is not well supported by changes in APD50, 

but could be supported by total APD prolongation.  However, it is well established that 

APD prolongation can increase [Ca2+]i accumulation.10 Therefore, triggered activity 

observed in our DI-ATS1 model, still suggests a prominent, but not necessarily exclusive 

role for [Ca2+]i accumulation as an arrhythmia mechanism in DI-ATS1 

 

Proposed Arrhythmia Mechanism in ATS1 

Arrhythmias in ATS1 patients are often preceded by a high PVC incidence, 

presumably due to triggered activity, and PVC burden in ATS1 is exacerbated by 

hypokalemia.3,24 Importantly, it has been demonstrated that hypokalemia alone leads to 

[Ca2+]i accumulation and the increased incidence of arrhythmias.25 Based on these 

findings, the following mechanism of increased incidence of arrhythmias has been 

proposed. [Ca2+]i accumulation is associated with increased sarcoplasmic reticular Ca2+ 

loading and an increased propensity for triggered activity, presumably due to spontaneous 

Ca2+ release from the sarcoplasmic reticulum.23 The resultant spontaneous Ca2+ release 

may lead to depolarization via transient inward currents carried by the forward mode 

Na+/Ca2+ exchanger, facilitating triggered activity.8-10 This lead to the hypothesis that 

[Ca2+]i accumulation, secondary to hypokalemia underlies triggered activity in ATS1 or 

DI-ATS1.6,7 

Sung et al. tested this hypothesis in an in silico study and suggested a role for 

abnormal [Ca2+]i cycling in ATS1-associated arrhythmias.11 This was indirectly affirmed 

by Morita et al., who reported that Ca2+ channel blockade by verapamil abolished all 
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arrhythmic activity in a canine LV wedge model of DI-ATS1.6 However, [Ca2+]i 

accumulation during DI-ATS1 has not been previously demonstrated in an ex-vivo intact 

ventricular model. 

 

Validation of Ratiometric Calcium Mapping 

In order to assess the effects of DI-ATS1 on [Ca2+]i handling, it is important to 

characterize any Ca2+ independent changes in Indo-1 fluorescence. Despite previous 

calibration attempts,26 many reports indicated that incomplete de-esterification of Indo-

1/AM, along with excitation-intensity dependent photo-bleaching of Indo-1 affect 

ratiometric fluorescent Ca2+ measurement.27-30 Specifically, the fluorescent signals 

corresponding to bound and unbound Indo-1 (F405 and F485 respectively) drift toward zero 

at two different rates, resulting in an apparent decrease in the ratiometric Ca2+ signal.28 In 

our experimental setup, individual fluorescent Ca2+ signals (F405 and F485) also decreased, 

yet the ratiometric Ca2+ increased (Supplemental Figure 2.1A). These seemingly 

contradictory findings could be attributed to the following experimental differences: the 

choices of dye of Indo-1 versus the ester form of Indo-1 (Indo-1/AM), emission filters, 

and/or photo-detector spectral response. The relative drift rates of the F405 and F485 

signals will dictate whether the ratiometric signal drifts upward or downward. 

Importantly, future studies that measure [Ca2+]i over time should validate [Ca2+]i 

response as a function of exposure.28,30 The absence of concomitant changes in ECG 

parameters or Ca2+ transient duration (Supplemental Figure 2.2), suggest that these 

changes in fluorescent Ca2+ signals may be dye-related rather than physiological in origin. 

Importantly, mathematical correction of ratiometric fluorescent Ca2+ transients by 
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subtracting the observed drift from the signal resulted in a high degree of morphological 

correspondence between ratiometric transients recorded several exposures apart (Figure 

2.3C). Lastly, the optically measured, drift-corrected diastolic [Ca2+]i increased during 

rapid pacing and returned to baseline upon cessation of rapid pacing (Figure 2.4A), which 

is consistent with previous studies.31,22 Likewise, SERCA2a inhibition by 5μM CPA 

perfusion lead to [Ca2+]i accumulation as was previously demonstrated.32 Therefore, this 

mathematical drift correction was applied to all subsequent recordings. 

 

DI-ATS1 Alters [Ca2+]i Handling 

DI-ATS1 was associated with a significant rise in [Ca2+]i as reflected in both 

diastolic [Ca2+]i and Ca2+ transient amplitude, and an increased incidence of ventricular 

arrhythmias. These data are the first direct evidence in an intact ventricular preparation 

for [Ca2+]i accumulation during DI-ATS1. Furthermore, these data are consistent with the 

theoretical mechanisms proposed for arrhythmias in ATS1.6,7,11 More generally, the 

finding that [Ca2+]i accumulation concomitant with APD prolongation is related to 

increased arrhythmia propensity is also consistent with previous studies utilizing 

alternative methods of [Ca2+]i loading to increase the incidence of triggered activity.8-

10,21,22 Future studies, however, are necessary to elucidate the relationship between the 

extent of [Ca2+]i accumulation, APD prolongation, and the origin of triggered activity 

during DI-ATS1. 
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Conclusion 

This study suggests that arrhythmias during DI-ATS1 may be a result of triggered 

activity secondary to prolonged APD and altered [Ca2+]i cycling and less likely dependent 

on large gradients of repolarization acting as a substrate for reentrant arrhythmias. 

Therefore, ameliorating myocyte [Ca2+]i load may prove a more effective therapeutic goal 

in ATS1 compared to decreasing APD gradients.   

 

Limitations 

  While APD gradients in guinea pig (present study) or canine5 were not associated 

with increased arrhythmia propensity, it is known that APD distribution and 

heterogeneity varies between animal models.33,34  The nature of electrophysiological 

remodeling induced by chronic functional IK1 down-regulation, as occurs in patients with 

ATS1, remains unclear.5-7,11,17 Furthermore, it is well appreciated that pharmacological 

models of cardiac disease should be interpreted cautiously due to the acute nature of the 

study as well as the specificity of the intervention.35  
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TABLE: Ventricular Preperations Exhibiting Arrhythmias 
 

Arrhythmia type: 
Control DI-

ATS1 DI-ATS1 + Pin 
Programmed Stimulated VT or PVC - 0/6 0/6 
Spontaneous VT  0/8 8/21* 0/16† 
Rapid Pacing  VT 0/4 4/21 1/16 
Preparations exhibiting VTs 0/8 8/21* 1/16† 

 
PVC frequency (% of ATS1) 0.5±0.3% 100%‡ 20.5±0.1%‡§ 

 
Arrhythmic Preparations 2/8 17/17* 5/5* 

 
PVC frequency: normalized to the PVC frequency (number of PVCs/min) during DI-
ATS1 
Arrhythmic Preparation: Preparations exhibiting VT’s and/or PVCs. 
* Fisher’s Exact test for one-tailed probability vs. control p < 0.05 
† Fisher’s Exact test for one-tailed probability vs. DI-ATS1 p < 0.05 
‡ Two-tailed Student's t-test vs. control, p < 0.05 
§ Two-tailed Student's t-test vs. ATS1, p < 0.05
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Figure 2.1: Volume-conducted ECG. A) Representative volume-conducted ECGs 
obtained during control (top), DI-ATS1 (middle), and DI-ATS1 and 15μM pinacidil 
(bottom). DI-ATS1 is associated with a bifurcated T-wave, while pinacidil perfusion 
abolished such morphology. B) DI-ATS1 increased QTc compared to control (†, p < 
0.05, n = 6). Pinacidil (15μM) perfusion decreased QTc compared to DI-ATS1 alone; 
however, it was still longer relative to control (*, p < 0.05, relative to control and DI-
ATS1).  
 

46



 
 
Figure 2.2: DI-ATS1 Increases APD. A) Representative optical action potentials 
recorded from the same ventricular regions (RVB – black and LVA – gray) during 
control (top), DI-ATS1 (middle) and DI-ATS1 and 15μM pinacidil (bottom). DI-ATS1 
prolonged the APD and enhanced total APD dispersion, defined as the difference in mean 
APD (calculated over 25 spatially contiguous sites per region) between epicardial regions 
with the longest (RVB) and shortest APD (LVA). Pinacidil (15µM) perfusion reversed 
both phenomena. B) Mean APDs demonstrate a rise in APD during DI-ATS1 compared 
to control (†, p < 0.05, n = 6) that was mitigated by pinacidil (15μM) perfusion (*, p < 
0.05 relative to DI-ATS1 alone).  However, APD after pinacidil (15μM) perfusion 
remained prolonged relative to control (*, p < 0.05).  C) Total APD dispersion was 
greater during DI-ATS1 relative to control (†, p < 0.05). Pinacidil (15μM) perfusion 
decreased dispersion relative to both control and DI-ATS1 (*, p < 0.05). D) Mean APD50 
demonstrate a rise in APD50 during DI-ATS1 compared to control (†, p < 0.05, n = 6) that 
was mitigated by pinacidil (15μM) perfusion (*, p < 0.05 relative to DI-ATS1 alone). 
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Figure 2.3: Ex Vivo Characterization of Ca2+ Drift. A) Representative ratiometric Ca2+ 
transients (black – Exp 1, gray – Exp 13) recorded during repeated exposures to 
excitation light at 5 minute intervals. The 13th exposure (Exp 13) exhibited an upward 
shift of Ca2+ transients relative to the first recording (Exp 1). B) Multiple regression 
analysis of diastolic [Ca2+]i (CaD) drift (n = 3) revealed a significant correlation between 
the drift and the number of exposures. Drift = 3.77% ([95% CI 3.37-4.17], R2=0.79) 
increase in CaD per exposure. C) Representative Ca2+ transients from Exp 1 (black) and 
drift corrected Ca2+ transients from Exp 13 (grey). Subtraction of CaD drift leads to high 
degree of morphological correspondence between Ca2+ transients recorded several 
exposures apart. D) Pooled CaD data depicting % CaD drift per exposure (black). 
Correction for observed drift leads to no change in CaD (grey). Dotted grey line marks 
zero level. E) Summary data for all experiments depicting changes in CaD (left) and Ca2+ 
transient amplitude (CaA) (right) secondary to exposure. During last recording (Exp 13) 
both CaD and CaA rose significantly (*, p < 0.05 vs. Exp 1). Drift correction returned both 
parameters to baseline.  
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Figure 2.4: Ex Vivo Validation of Ca2+ Drift Correction. A) Representative drift-
corrected, Ca2+ transients during baseline pacing at BCL 400ms (left), followed by rapid 
pacing at BCL 200 and subsequent return to baseline pacing. Diastolic [Ca2+]i (CaD) after 
mathematical correction were normalized to CaD in the first recording. Rapid pacing 
significantly increased CaD, while a return to baseline pacing reversed the rise in CaD. B) 
Representative drift-corrected Ca2+ transients recorded during control (left), followed by 
(5μM) cyclopiazonic acid (CPA) perfusion. CPA perfusion significantly increased CaD. 
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Figure 2.5: DI-ATS1 Alters [Ca2+] Handling. A) Representative drift-corrected Ca2+ 
transients recorded during control, DI-ATS1 and (15μM) pinacidil perfusion. During DI-
ATS1, Ca2+ transients were shifted upward, while pinacidil partially reversed that shift. 
Both DI-ATS1 and DI-ATS1 with pinacidil exhibit greater Ca2+ transient amplitude 
(CaA) (horizontal lines) relative to control. B) Summary of ∆CaD (left) and ∆CaA (right) 
relative to control. DI-ATS1 significantly increased CaD and CaA relative to control (*, p 
< 0.05, n = 10). Pinacidil perfusion (15μM) decreased CaD relative to DI-ATS1 alone (†, 
p < 0.05). Pinacidil did not completely revert CaD to control levels (*, p < 0.05). Pinacidil 
had no effect on CaA relative to DI-ATS1 alone.  
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Appendix 

Supplemental Materials 

Optical voltage mapping. Optical voltage mapping was performed as previously 

described.1 Briefly, we used two SciMedia MiCam02 HS CCD cameras (SciMedia) in a 

tandem lens configuration capable of resolving membrane potential changes as small as 2 

mV with 1 ms temporal resolution from 90 x 60 sites simultaneously. The hearts were 

stained by direct coronary perfusion for 10 minutes with the voltage-sensitive indicator 

di-4-ANEPPS (Molecular Probes) at a final concentration of 15 µmol/L. The dye in the 

preparation was excited by three-60 LED light sources (RL5-A9018, Superbrightleds) 

fitted with 510 ± 5 nm filters (Chroma) and a 50 mm aspheric lens (Edmund Optics). 

Fluorescent light passed through a 150 mm achromatic (BK7/Flint) lens and was incident 

on a 565DXR dichroic mirror (Chroma) set at 45º angles to the recording surface. 

Transmitted light passed through a 50 mm aspheric B270 crown glass lens (Edmund 

Optics), a 35 mm planoconvex BK7 lens (Edmund Optics), and a 610 nm LP filter 

(Newport) before it was incident on the CCD array. Reflected light passed through a 50-

mm aspheric B270 crown glass (Edmund Optics), a 35-mm planoconvex BK7 lens 

(Edmund Optics), and a 540 ± 10 nm filter (Chroma) where it was incident on the second 

CCD array. CCD arrays were optically aligned at fixed and equal optical path lengths. 

The interpixel resolution was 0.184 mm in the x-direction (90 pixels) and 0.199 mm in 

the y-direction (60 pixels). The relative change in voltage (Vm) was defined as Vm 

=∆F610/∆F540, where ∆F represents the change in fluorescence for a particular wavelength. 

Optical Ca2+ mapping. We developed an optical mapping system capable of 

recording high-fidelity fluorescent signals at two wavelengths simultaneously with high 
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spatial and temporal resolution.2 Once again we used two SciMedia MiCam02 HS CCD 

cameras (SciMedia) in a tandem lens configuration capable of resolving membrane 

potential changes with 1-ms temporal resolution from 90 x 60 sites simultaneously. 

Before dye loading, background fluorescence representing tissue autofluorescence was 

recorded at both emission wavelengths (485 nm and 405 nm). The heart was then loaded 

for 45 min with Indo-1/AM (Invitrogen) at a final concentration of 1 µmol/L. The dye-

loading period was followed by a 15-min washout period. All recordings made after Indo-

1 loading include fluorescence originating from the dye and the tissue (background 

fluorescence). Excitation light obtained from a 1000-W mercury arc lamp (Thermo-Oriel) 

was filtered at 350 ± 10 nm (Chroma) and directed through a flexible liquid light guide 

(Thermo-Oriel) to the preparation. Fluorescent light passed through a 150 mm achromatic 

(BK7/Flint) lens and was incident on a 445-nm dichroic long-pass mirror (Chroma) set at 

45º angle to the recording surface to transmit wavelengths above 445 nm on to one CCD 

array and reflect wavelengths below 445 nm on to another. Transmitted and reflected 

fluorescent light passed through 50 mm aspheric B270 crown glass lenses (Edmund 

Optics), 35 mm planoconvex BK7 lenses (Edmund Optics) and was limited to 485 ± 10 

and 405 ± 10 nm (Chroma), respectively, before it was incident on the respective CCD 

arrays. CCD arrays were optically aligned at fixed and equal optical path lengths. 

Ratiometric Ca2+ transients were determined by dividing the background-subtracted 

fluorescence Ca2+ transients at 405 nm by the background-subtracted fluorescence 

calcium transients at 485 nm. 

Backgroun-485485

Background-405405

405

405

F F

F - F

F

F
Ratio




  

52



Where F is the actual change in fluorescent amplitudes in the cameras after 405 or 485 

bandpass filtering. The shorthand F405/F485 is an abbreviation to represent the calculated 

ratiometric Ca2+ signal. 

Validation of ratiometric flourescent [Ca2+]i mapping. In order to quantify Ca2+ 

handling dysregulation in DI-ATS1, it was important to validate a Ca2+ optical mapping 

system which would allow for temporal estimation of [Ca2+]i. To this end, vials 

containing varying concentrations of Ca2+ (0, 0.04, 0.07, 0.08, 0.1, 0.23, 0.35, 1, 1.35, 3 

μM) and 0.1 μM Indo-1 were exposed to excitation light and recorded at different 

frequencies of illumination. During the first  exposure (Exp 1) of a vial containing 0.1μM 

Ca2+ and 0.1 μM Indo-1 with a 385 nm light source, fluorescent intensity in both cameras 

decreased monotonically as a function of time (Supplemental Figure 2.1A, Exp 1 - 405 

nm-gray trace and 485 nm-black trace). Of note, the fluorescence signals in Supplemental 

Figure 2.1A were normalized to the fluorescent intensity at the first time point in the first 

recording (Exp 1) in order to visually demonstrate signal drift. Importantly, in this 

example the 485 nm fluorescent signal (F485) decreased at a significantly faster rate than 

the 405 nm fluorescent signal (F405) as determined by multiple regression analysis -

0.080% [95% CI, -0.085 – -0.075] per second vs -0.024% [95% CI, -0.027 – -0.020] per 

second. While not visually apparent, this drift translated into a rise in the ratiometric 

signal (F405/F485) within a single recording (Supplemental Figure 2.1B, Exp 1). 

Specifically, the slope of the f405/f485 signal was significantly greater than 0 during a 

single exposure (0.023% [95% CI, 0.006 – 0.039] per 1 second). 

Representative data in Supplemental Figure 2.1A demonstrates that the F485 signal 

again decreased significantly more than the F405 signal after 7 consecutive exposures 

53



performed over 15 minutes (Supplemental Figure 2.1A Exp 7, last exposure vs. Exp 1, 

first exposure). Consequently, F405/F485 during Exp 7 was elevated relative to Exp 1 

(Supplemental Figure 2.1B). Additionally, consecutive ratiometric optical [Ca2+] 

measurements were made from vials containing either 0.1μM or 1μM [Ca2+] with an 

exposure frequency of 1 exposure per 5 minutes (n=12). There was no noticeable 

difference in F signal drift between the two [Ca2+] (7.22% per exposure [95% CI, 5.10 – 

9.35], R2=0.68 vs 5.85% [95% CI, 3.90 – 7.81], R2=0.62 for 0.1 μM and 1 μM [Ca2+]o, 

respectively). Therefore, data were pooled from all experiments (n=57). Multiple 

regression analysis of pooled measurements made at different exposure frequencies (1 

exposure per 2.5, 5 and 15 minutes, n = 10, 30 and 17, respectively) revealed a significant 

correlation of the ratiometric drift with the number of exposures (Supplemental Figure 

2.1C), where ratiometric Ca2+ fluorescence drifted at a rate of 5.98% ([95% CI 5.52-

6.44], R2=0.63) per exposure. 
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Supplemental Figure 2.1: In Vitro characterization of Ca2+ fluorescence drift. A) 
Representative fluorescent Ca2+ signals (gray – F405, black – F485) of a vial containing 
0.1μM [Ca2+] and 0.1 μM Indo-1 during the first (Exp 1) and last exposures (Exp 7).  In 
this example during Exp 1, F485 decreased faster relative to F405 (-0.080% [95% CI, -
0.085 – -0.075] per second vs -0.024% [95% CI, -0.027 – -0.020] per second, 
respectively). After 7 exposures (Exp 7), both F405 and F485 decreased relative to the first 
recording (Exp 1). B) Representative ratiometric fluorescent Ca2+ signals corresponding 
to the F405 and F485 in Figure 2.3A. The drift in F405 and F485 during Exp 1 translated into 
a rise in F405/F485 within the recording (0.023% [95% CI, 0.006 – 0.039] per 1 second). 
After 7 exposures (Exp 7) ratiometric fluorescent Ca2+ signals was enhanced relative to 
Exp 1. C) Multiple regression analysis of drift measurements pooled from all 
experiments (n=57) conducted at different exposure frequencies. The drift demonstrated a 
significant correlation with the number of exposures with rate of 5.98% ([95% CI 5.52-
6.44], R2=0.63) increase in ratiometric Ca2+ fluorescence per exposure. 
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Supplemental Figure 2.2: Effect of time on CaDur and ECG parameters. A) 
Representative volume-conducted ECGs recorded under control conditions to assess 
Ca2+-independent changes in indo-1 fluorescence. No changes in the ECG morphology 
were observed between the first (Exp 1 – black) and last recordings (Exp 13 – grey). B) 
Summary data (n = 3) depicting no significant difference in QRS, QTc, and Ca2+ 
transients duration (CaDur) between the first (Exp 1 – black) and last recordings (Exp 13 – 
grey). 
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CHAPTER 3 

 
 
 

NCX DOMINANCE IS AN IMPORTANT DETERMINANT FOR 

PREMATURE ACTIVITY PROPENSITY IN A DRUG 

INDUCED MODEL OF ANDERSEN- 

TAWIL SYNDROME 

 

 



Introduction 

Anderson-Tawil Syndrome (ATS1) is an autosomal dominant inherited 

channelopathy linked to a loss of function mutation in KCNJ2, the gene that encodes the 

Kir2.1 channel which is responsible for carrying the inward-rectifier K+ current.1 ATS1 is 

characterized by a mild QT prolongation and ventricular arrhythmias that are initiated by 

frequent, hypokalemia-exacerbated, premature ventricular activity (PVA).1 These 

triggered events have been linked to abnormal Ca2+ regulation,2 particularly elevated 

diastolic cytosolic Ca2+ levels (CaD) and presumed sarcoplasmic reticulum (SR) Ca2+ 

overload.3 However, the relationship between regional perturbation in Ca2+ cycling and 

the origin of PVA from a specific site is not clear.  

More specifically, PVA which have been demonstrated to originate from areas of 

elevated CaD and Ca2+ overload were caused by membrane depolarization in response to 

nonelectrically driven Ca2+ release from the SR.4-6 One proposed mechanism is 

spontaneous SR Ca2+ release secondary to elevated CaD which may increase Ca2+ leak 

from the SR and increase the sensitivity for the specialized SR release channels, 

ryanodine receptors, to release Ca2+.7 Similarly, the combination of elevated CaD and 

enhanced SR Ca2+ entry via SR Ca2+ ATP-ase (SERCA2a) may overload the SR with 

Ca2+, further increasing the probability for a spontaneous Ca2+ release.4,8-12  

Regardless of the mechanism leading to spontaneous Ca2+ release, the non-

electrogenic release of Ca2+ from the SR requires the Na+/Ca2+ exchanger (NCX) 

operating in its forward mode (3 Na+-in – 2 Ca2+-out) to cause a rise in membrane 

potential and thereby a propagated beat. We hypothesize that in our drug-induced model 

of ATS1 (DI-ATS1), regions of higher NCX functional expression relative to SERCA2a 
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(which we term “NCX dominance”) coupled to slower Ca2+ uptake and heterogeneities in 

CaD levels may serve as a potential substrate for arrhythmias. To test this hypothesis, we 

employed ratiometric optical mapping to measure the CaD and kinetics of Ca2+ cycling 

from the anterior surface of guinea pig epicardium during pharmacological modulation of 

global NCX dominance. 

 

Methods 

This investigation conforms with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996) and has been approved by the Institutional Animal Care and Use 

Committee of the University of Utah (protocol no. 05-07002). We have read the detailed 

Journal of Physiology policy and relevant UK regulations regarding animal 

experimentation as described in Drummond (2009) and our procedures are in compliance 

with the policies and regulations described in that article. 

 

Experimental Preparation 

Retired-breeder guinea pigs (n=28) were anaesthetized [30 mg/kg pentobarbital 

sodium (Nembutal) IP]. Their hearts were rapidly excised and perfused as Langendorff 

preparations (perfusion pressure 55 mmHg) with oxygenated (100% O2) Tyrode’s 

solution at 36.5°C containing (mmol/L) CaCl2 2, NaCl 140, KCl 4.5, dextrose 10, MgCl2 

1, HEPES 10 (pH 7.41). The right and left atria were excised to avoid competitive 

stimulation from the atria. Hearts were stained with either the voltage-sensitive dye di-4-

ANEPPS (15 µmol/L) or with Indo-1/AM (1 µmol/L) by direct coronary perfusion for 10 

61



or 30 min, respectively. The dye-loading period was followed by a 15 min washout. 

ATS1 was modeled as described previously by perfusion of hypokalemic (2 mmol/L 

KCl) Tyrode's solution containing 10 µmol/L BaCl2.
3 Cyclopiazonic acid (CPA) and KB-

R7943 (KBR) were always perfused at 5 µmol/L. Motion was reduced using 7.5 mmol/L 

2,3-diacetylmonoxime. Ventricles were stimulated at 1.5 times the stimulation threshold 

with a bipolar stainless steal electrode placed on the septum at a basic cycle length (BCL) 

of 400 ms unless otherwise specified. Volume-conducted electrocardiograms (ECGs) 

were continuously recorded with a Mortara H12 Holter (Mortara Instrument, Inc.) in 

order to assess arrhythmia burden. In order to gain higher spatial resolution from volume-

conducted ECGs we employed a three lead recording system as described in Supplement 

Figure 3.1. Lastly, in a subset of ventricles (n=3) we inserted an intramural multielectrode 

needle into the basal left ventricular (LVB). This needle carried 3 Ag-AgCl electrodes 

with an interelectrode spacing of 1 mm. 

 

Optical Voltage Mapping 

Optical voltage mapping was used as previously described using ratiometric 

fluorescence method.3 Specifically, we used two SciMedia MiCam02 HS CCD cameras 

(SciMedia) in a tandem lens configuration capable of resolving membrane potential 

changes as small as 2 mV with 1 ms temporal resolution from 90 x 60 sites 

simultaneously. Following staining with the voltage-sensitive dye, the preparation was 

excited by three 60-LED light sources (RL5-A9018, Superbrightleds) fitted with 510 ± 5 

nm filters (Chroma) and a 50 mm aspheric lens (Edmund Optics). Fluorescent light was 

incident on a 565DXR dichroic mirror (Chroma) set at 45º angles to the recording 
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surface. Transmitted light passed through a 50 mm aspheric B270 crown glass lens 

(Edmund Optics), a 35 mm planoconvex BK7 lens (Edmund Optics), and a 610 nm LP 

filter (Newport) before it was incident on the CCD array. Reflected light passed through a 

50-mm aspheric B270 crown glass (Edmund Optics), a 35-mm planoconvex BK7 lens 

(Edmund Optics), and a 540 ± 10 nm filter (Chroma) where it was incident on the second 

CCD array. CCD arrays were optically aligned at fixed and equal optical path lengths. 

The relative change in voltage was determined by dividing the fluorescence at 610 nm by 

the fluorescence at 540 nm. 

 

Optical Ca2+ Mapping 

Once again we used two SciMedia MiCam02 HS CCD cameras (SciMedia) in a 

tandem lens configuration.3 Before Ca2+-sensitive dye loading, background fluorescence 

representing tissue autofluorescence was recorded at both emission wavelengths (485 nm 

and 405 nm). Excitation light was obtained from a 1000-W mercury arc lamp (Thermo-

Oriel) and filtered at 350 ± 10 nm (Chroma). A dichroic mirror placed between the 

tandem lens passed light of longer wavelengths (>445 nm) to an emission filter (485 ± 10 

nm) and CCD array and reflected light of shorter wavelengths to a second emission filter 

(405 ± 10 nm) and CCD array. Ratiometric measurements of Ca2+ transients were 

determined by dividing the background-subtracted fluorescence Ca2+ transients at 405 nm 

by the background-subtracted fluorescence Ca2+ transients at 485 nm. 
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Western Blotting 

Immediately following heart isolation, the anterior ventricular free walls were 

divided into four parts (base and apex from the LV and RV). The samples were then 

snap-frozen and homogenized into a whole-cell homogenate. Western blotting was 

performed following a previously described procedure.13 Briefly, the protein 

concentration in the whole-cell homogenates was assessed using a BCA assay, and equal 

amounts of protein resolved by SDS polyacrylamide electrophoresis on 4–12% Bis–Tris 

gels (BioRad, Hercules, CA, USA). The proteins were then transferred onto a 

nitrocellulose membrane. After treatment with a 5% casein solution to block non-specific 

binding of antibodies, the membrane was treated with primary antibody [mouse 

monoclonal anti-SERCA2a / anti-NCX1 monoclonal antibody / anti-actin antibody 

(Affinity BioReagents, Golden, CO USA)] followed by goat anti-mouse HRP-conjugated 

secondary antibody (JacksonImmuno, West Grove, PA, USA). The membrane was then 

treated with enzymatic chemiluminescence reagents, and the bands were visualized on 

autoradiography film. Protein expression in the samples was quantified on the basis of the 

size and density of the bands. SERCA2a and NCX expression levels were normalized to 

the regional actin expression for inter-animal comparison.  

 

Data Analysis 

Activation time was defined as the time of the maximum first derivative of the 

action potential as described previously.14 Repolarization was defined as the time to 95% 

repolarization from peak voltage amplitude. Action potential duration (APD) was the 

time difference between activation and full repolarization. APD dispersion was defined as 
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the difference between epicardial regions with the longest and shortest APD (using 25 

spatially contiguous optically mapped sites per region). The premature ventricular 

activity (PVA) coupling interval was determined by calculating the percent of the interval 

of the PVA and the preceding beat in relation to the average beat to beat interval of five 

preceding beats. Excitation times obtained from the intramural multielectrode needle 

were estimated from the time of maximum negative slope during the QRS interval in the 

unipolar electrgorams.15 Relative CaD level was defined as the minimum ratiometric 

signal before the Ca2+ transient upstroke. In order to compare relative changes between 

different experiments, the offset of diastolic CaD was corrected for drift in fluorescent 

Ca2+ signal as previously described.3 Regional CaD levels were normalized to the apical 

RV CaD level obtained during the initial recording (i.e., control or DI-ATS1). To quantify 

the rate of recovery of cytosolic Ca2+ to diastolic levels, the decay portion of the Ca2+ 

transient (from 30% to 100% of the decline phase) was determined using the time 

constant (τ) of a single exponential fit, as previously used for fluorescent signals.16 

Statistical analysis was performed with a two-tailed Student's t-test or a single factor 

ANOVA with post hoc Student's t-tests for continuous, normally distributed paired data, 

with statistical significance assumed for values of P < 0.05, with correction for multiple 

comparisons (Sidak adjusted) where necessary. A Fisher’s Exact and a Mantel-Haenszel 

test were used to test differences in nominal data. Differences in PVA frequency were 

analyzed using Wilcoxon signed rank test for non-normally distributed continuous data. 

All statistical comparisons were made on paired data. All values are reported as means ± 

standard error unless otherwise noted. 
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Results 

Heterogeneous Manifestations of Triggered Activity During DI-ATS1 

Figure 3.1A depicts ECGs of intrinsic beats from three leads. The isochrone map 

of the resulting epicardial activation (Figure 3.1B) reveals two characteristic anterior 

epicardial breakthrough sites one on each ventricle.17 In the case of a premature 

ventricular depolarization, which we term premature ventricular activity (PVA), the QRS 

complex was discordant relative to the QRS complexes of the preceding intrinsic beats in 

all three ECG leads (Figure 3.1C), and the earliest epicardial activation occurred in the 

LV-Base (LVB; Figure 3.1D). Similarly, concordant PVA depicted on the ECGs (Figure 

3.1E) evidenced earliest epicardial activation in LV-Apex (LVA, Figure 3.1F). Activation 

arising from the anterior RV and indeterminate areas as quantified by optical mapping 

exhibited QRS morphologies different to the prior two cases (data not shown). 

Regional PVA frequency was quantified from ECGs collected over the duration 

of the experiment, and QRS orientation (all leads concordant or discordant) in 3-leads 

was used as an index of the PVA origination site. Over 90% of PVA during DI-ATS1 

originated from the LV (either the LVB or LVA). PVA originating from other sites 

(Figure 3.1G) occurred with lower frequency relative to LV PVA (0.1±0.1 PVA/10min 

vs. 2.8±0.6 PVA/10min, P < 0.05, n=10). Among LV PVA, significantly more originated 

from the LVB relative to the LVA (2.2±0.8 PVA/10min vs. 0.6±0.3 PVA/10min, P < 

0.05, Figure 3.1G). Further, optically mapped LVB PVA were more closely coupled to 

the preceding intrinsic beat than LVA PVA (67.7±4.7% vs. 78.5±3.6%, P < 0.05, n=7, 

Figure 3.1H); however, this difference was not noted when comparing all PVA recorded 

on volume-conducted ECGs (70.8±1.8% vs. 70.7±1.9%, P = ns, n=10, Figure 3.1I). 
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Lastly, the QRS duration of intrinsic beats were significantly shorter than all PVA 

(Figure 3.1J). Additionally, QRS duration of LVB PVA was significantly longer relative 

to LVA PVA (49.3±1.4ms vs. 44.6±1.4ms, P < 0.05, n=10, Figure 3.1J). 

 

Multifocal Origins of Premature Ventricular Activity During DI-ATS1 

Examining the transmural activatin of the intrinsic activation during DI-ATS1 

represented on the volume-conducted ECGs in Figure 3.2A revealed earliest transmural 

activation on the endocardium followed by the midmyocardium and subsequently 

epicardium as evidenced by the intramural multielectrode neelde electrograms in Figure 

3.2B. In the case of LVB PVA (Figure 3.2C), the layer of earliest transmural activation 

corresponded to the epicardium (Figure 3.2D). While in an another instance of LVB PVA 

(Figure 3.2E), the layer of earliest transmural activation corresponded to the endocardium 

(Figure 3.2F). 

 

Spatio-temporal Correlation of Heterogeneous Cytosolic Ca2+ 

Levels and Premature Ventricular Activity During DI-ATS1 

Representative control Ca2+ transients (Figure 3.3A, grey traces) demonstrate 

higher CaD in the LV relative to the RV with CaD of control (Figure 3.3B, gray bars) 

being highest in the LVB and lowest in the RVA. During DI-ATS1, CaD increased in all 

regions (Figure 3.3A, black traces) but retained its LV to RV gradient.  The LVB still 

exhibited the highest CaD levels during DI-ATS1 (black bars) relative to other anterior 

epicardial regions (Figure 3.3B). 
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Ca2+ Transient Decay 

Comparing representative normalized Ca2+ transients (from 0 to 1) recorded at 

BCLs 400 ms (Figure 3.4A, left) and 200 ms (Figure 3.4A, right), there were no 

quantifiable differences in the duration (vertical lines) or the decay kinetics of the Ca2+ 

transients between control (grey traces) and DI-ATS1 (black traces). Hearts were paced 

at 400 and 200 ms basic cycle lengths (BCL) in order to unmask differences in Ca2+ 

uptake kinetics during bradycardic and tachycardic conditions. Ca2+ transients in LVA 

decayed faster then LVB (Figures 3.4B, C insets) or RV regions. However, Ca2+ transient 

decay time constants (τ) were not different between control and DI-ATS1 in any region, 

at either BCL (Figures 3.4B, C). Further, LVA evidenced significantly shorter τ relative 

to LVB (by 10.1±2.1ms at BCL 400ms and by 7.3±1.3ms at BCL 200ms, n=5), as well as 

RV regions under all conditions (P < 0.05, Figures 3.4 B, C). 

 

NCX and SERCA2a Protein Expression 

NCX and SERCA2a expression were quantified by Western blotting using 

homogenized tissue samples from guinea pig (n=5 and 6, respectively). Actin was used to 

normalize for differences in lane loading. Representative bands in Figure 3.5A 

corresponding to NCX (outlined in red) and actin (outlined in black) demonstrate greater 

NCX expression in LVB relative to LVA. Over all experiments, actin-normalized NCX 

expression was significantly greater in the LVB compared to the LVA by 81.2± 30.9% (P 

< 0.05, Figure 3.5B), but no significant differences in NCX expression were noted within 

the RV.  
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Representative bands in Figure 3.5C corresponding to SERCA2a (outlined in 

blue) and actin (outlined in black) demonstrate greater SERCA2a band density in LVA 

relative to LVB. Indeed, over all experiments, actin-normalized SERCA2a expression 

was significantly greater in the LVA compared to the LVB by 76.8± 23.6%% (P < 0.05, 

Figure 3.5D), which is consistent with observed heterogeneities in Ca2+ transient decay 

kinetics (Figure 3.4). 

 

Pharmacologically Induced NCX Dominance During DI-ATS1 

Representative Ca2+ transients in Figure 3.6A demonstrate that NCX inhibition by 

KBR led to an upward shift of CaD in the LV but not in the RV. Indeed over all 

experiments, perfusion of KBR during DI-ATS1 significantly increased CaD in both LVB 

and LVA by 14.1±3.0% and 13.5±3.0%, respectively (P < 0.05, n=5, Figure 3.6B). All 

values in Figure 3.6B were normalized to DI-ATS1 in the RVA. We were unable to 

detect an effect of NCX blockade on Ca2+ transient decay kinetics at either pacing rate 

(Figures 3.6C, E). Overall, NCX inhibition did not significantly affect τ at either BCL 

(Figures 3.6D, F). However, the LVA still maintained the fastest uptake kinetics (lowest 

τ) relative to all other regions at both cycle lengths. 

 

Pharmacologically Induced SERCA2a Dominance During DI-ATS1 

Conversely, SERCA2a inhibition with CPA during DI-ATS1 resulted in a global 

CaD level elevation (Figure 3.6G). Overall, SERCA2a blockade during DI-ATS1 elevated 

CaD across all regions by 21.1±2.6% (n=6, Figure 3.6H) relative to DI-ATS1 alone. 

Further, SERCA2a inhibition by CPA slowed Ca2+ transient decay only in the LV at BCL 
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400 ms (Figure 3.6I) and in both ventricles at BCL 200 ms (Figure 3.6K). In summary, 

CPA increased τ in LVB and LVA (by 17.0±5.2ms and 10.9±2.7ms, respectively, Figure 

3.6J) at BCL of 400ms and in all regions at BCL 200ms (by 9.8±2.6ms, 11.0±2.7ms, 

12.5±2.5ms and 6.2±1.1ms in LVB, LVA, RVB and RVA, respectively, Figure 3.6L). 

 

Pharmacologic Manipulation of DI-ATS1 and Arrhythmia Incidence 

NCX inhibition with KBR during DI-ATS1 (DI-ATS1 + KBR) reduced incidence 

of spontaneous VTs to zero (0 of 8 hearts) from 25% (2 of 8) during DI-ATS1 (Figure 

3.7A, P = 0.11). DI-ATS1+KBR also lowered the frequency of LVB PVA (Figure 3.7B, 

2.8±1.0 PVA/10min vs. 0.6±0.3 PVA/10min, P < 0.05), but not LVA PVA (Figure 3.7C, 

1.4±0.5 PVA/10min vs. 0.9±0.4 PVA/10min, P = ns). Further, NCX inhibition during DI-

ATS1 did not alter the coupling interval of PVA quantified from continuous ECG 

recordings relative to DI-ATS1 alone (Figure 3.7C, LVB: 76.3±2.9% vs. 74.4±9.8%, P = 

ns; LVA: 70.4±4.2% vs. 68.8±4.2%, P = ns). 

Conversely, enhancing global NCX dominance during DI-ATS1 via SERCA2a 

inhibition (DI-ATS1 + CPA) increased the incidence of spontaneous VTs three-fold 

relative to DI-ATS1 (Figure 3.7D, 58.3% vs. 16.7% of preparations respectively, P < 

0.05, n=10), as well as the frequency of PVA from both LVB (Figure 3.7E, 6.2±2.7 

PVA/10min vs. 2.2±0.8 PVA/10min) and LVA (Figure 3.7E, 27.3±18.4 PVA/10min vs. 

0.6±0.3 PVA/10min).Yet, the difference in PVA frequency between the LVB and LVA 

was no longer statistically significant during DI-ATS1 + CPA. Lastly, CPA decreased 

PVA coupling interval relative to DI-ATS1 alone (Figure 3.7F, LVB:  60.3±2.1% vs. 

70.8±1.8%, LVA: 57.0±2.8% vs. 70.7±1.9%). 
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Action Potential Duration Prolongation During Pharmacological 

Perturbations of DI-ATS1 

Representative action potentials in Figure 3.8A during DI-ATS1 (black traces) 

demonstrate existing APD heterogeneities between RVB and LVA (previously 

demonstrated to have the longest and shortest APDs, respectively).3,18 NCX blockade 

during DI-ATS1 (blue traces) prolonged APD and enhanced APD dispersion. Over all 

experiments, APD was prolonged by 31.9±0.9% in RVB and 32.3±1.7% in LVA during 

DI-ATS1 + KBR relative to DI-ATS1 alone (n=3, Figure 3.8B) resulting in a persistent 

APD dispersion (Figure 3.8C, 14.4±0.9ms vs 17.6±3.0ms, P = ns). Conversely, 

SERCA2a inhibition (Figure 3.8D, red traces) prolonged APD in both RVB and LVA 

relative to DI-ATS1 alone (Figure 3.8D, black traces); however, to a lesser extent when 

compared to NCX inhibition. Indeed, over all experiments, DI-ATS1 + CPA significantly 

prolonged APD in RVB and LVA relative to DI-ATS1 alone (by 12.4±1.8% and 

17.8±0.4% respectively, n=3, Figure 3.8E), while significantly reducing APD dispersion 

(1.5±3.1ms vs 14.9±3.3ms, P < 0.05, Figure 3.8F).  

 

Discussion 

In this study, we investigated the factors underlying the arrhythmogenic burden 

during cytosolic Ca2+ overload as observed in DI-ATS1.3 We found PVA occurring 

predominantly in the LV, particularly in regions with relatively higher NCX relative to 

SERCA2a protein expression which we term “NCX dominance.” These regions also 

exhibited slower Ca2+ uptake and elevated CaD. Importantly, pharmacologically 

modulating NCX dominance affected both the timing as well as the frequency of PVA. 
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Increasing NCX dominance increased the incidence of spontaneous VTs and shortened 

the time to the first PVA. These data suggest that NCX dominance may represent an 

important arrhythmogenic substrate of ATS1 contributing to abnormal Ca2+ cycling.  

 

Action Potential Duration Prolongation Unlikely to Underlie 

Arrhythmias During DI-ATS1 

It is well accepted that dispersion of repolarization is an important basis for the 

genesis of ventricular arrhythmias associated with long QT syndromes.19 Previously, we 

suggested that when APD prolongation and dispersion were reduced virtually to baseline 

levels, some arrhythmia vulnerability remained secondary to persistent CaD 

accumulation; however, we were unable then to uncouple APD prolongation from 

arrhythmias.3 Here we demonstrate that NCX inhibition during DI-ATS1 prolongs APD 

heterogeneously, increases dispersion and yet, decreases arrhythmia burden. SERCA2a 

inhibition during DI-ATS1 also prolonged APD, albeit homogenously, and to a lesser 

extent than NCX inhibition. However, SERCA2a inhibition decreased APD dispersion, 

yet significantly increased the arrhythmia burden.  

While this study did not measure any transmural parameters and therefore cannot 

exclude transmural gradients of repolarization playing a role on the electrophysiological 

substrate of arrhythmia susceptibility, to our knowledge there is no data to suggest that a 

pharmacological intervention can decrease dispersion of repolarization in one region and 

increase it in another. Taken together, these data suggest that APD prolongation and 

dispersion are an unlikely substrate for reentrant arrhythmias during DI-ATS1. 
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Heterogeneous Manifestations of Triggered Activity During DI-ATS1 

We demonstrate that PVA manifests heterogeneously during DI-ATS1; 

specifically that PVA originates preferentially from the LV, in particular the LVB. This is 

consistent with the location of PVA origination in a rat heart model of oxidative stress20 

and hypokalemia.21 Furthermore, Fujiwara et al.21  demonstrated that the PVA originating 

from LVB were virtually abolished by NCX inhibition, consistent with our results. 

We also observed PVA that originated from the LVA, with ECG morphology 

distinct from LVB PVA. Where the QRS complexes of the former were concordant to the 

preceding beats in all three leads, those of the latter were discordant. Further, optically 

mapped PVA originating from LVB were more closely coupled to the preceding intrinsic 

beats compared to those recorded from the LVA. Since, optical acquisition of irregular, 

low-frequency events, such as PVA, might have introduced selection bias; volume-

conducted ECG were continuously recorded to obtain a similar index of regional 

arrhythmia burden. Interestingly, the coupling interval between LVA and LVB PVA 

were statistically different as quantified by optical mapping but not the ECG. One 

explanation is that PVA misclassification can occur during ECG analysis due to lower 

regional specificity of the ECG in comparison to optical mapping (see Supplement Figure 

3.2). 

Lastly, LVB PVA evidenced on average wider QRS complexes relative to LVA 

PVA. This suggests that LVB PVA may have occurred further from the Purkinje 

network, while LVA PVA with their narrower QRS might have originated much closer or 

even within the conduction system. Taken together, the phenomenological differences 
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between the two main PVA types suggest differences in their coupling fidelity and/or the 

sites of their origin. 

The two-dimensional nature of optical mapping employed in this study does not 

completely resolve the exact origins of such PVA but only identifies the epicardial 

breakthrough sites. To this end we recorded transmural electrograms to assess the earliest 

transmural PVA. These studies revealed that LVB PVA were multifocal in nature. 

Therfore, this study quantifies all protein expression from the entire ventricular wall in 

the different regions without distinguishing transmural layers. 

In accord with our study, Morita and colleagues2 demonstrated under similar DI-

ATS1 experimental conditions multifocal PVA where the foci migrated across all of the 

transmural layers of a canine LV wedge preparation. Recent study in rabbit ventricles 

with diminished inward-rectifier K+ current, demonstrated a shift in PVA from the 

endocardium to the epicardium.22 Further studies are needed to determine though whether 

the site of earliest activation in ATS1 or DI-ATS1 comes from the epicardium, 

endocardium, or Purkinje network. 

  

Intraventricular Heterogeneity of Ca2+ Handling During DI-ATS1

We have shown previously that PVA during DI-ATS1 is coupled to elevated 

CaD.3 Here, we compare optically measured CaD, Ca2+ transient dynamics and arrhythmia 

burden between regions and across different conditions. During control, we observed 

greater CaD in LV relative to RV, similar to that measured by Katra et al.23 in guinea pig. 

Further, consistent with our previous report,3 DI-ATS1 led to a rise in CaD across all 

anterior epicardial regions. Interestingly, CaD during DI-ATS1 was highest in the LVB, 
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the region with the highest TA frequency. However, DI-ATS1 did not alter  of Ca2+ 

transients with the LVA demonstrating the fastest  in both control and DI-ATS1. This is 

consistent with the regional epicardial distribution of  in guinea pig.23  The τ values 

presented in this study are considerably shorter than previously published at BCL = 

400ms.23 This could be in part explained by differences in temperature,24 which was 36ºC 

in the present study and 32 ºC in the Katra et al. study. 

The observed regional heterogeneity in Ca2+ dynamics in our model is likely due 

to regionally heterogeneous expression of Ca2+ cycling proteins. We observed reduced 

SERCA2a expression in the LVB compared with the LVA, which was consistent with 

observed regional  differences. Further, lower SERCA2a expression coupled to CaD 

elevation, as evidenced in LVB, has been proposed as the arrhythmia mechanism during 

enhanced Ca2+ entry.25,26 However, the RV experienced low arrhythmia incidence relative 

to the LVA despite reduced SERCA2a expression and CaD elevation during DI-ATS1; 

therefore, the aforementioned hypothesis cannot fully explain the high LVB arrhythmia 

burden. Therefore, we considered the contribution of NCX to regional Ca2+ handling 

heterogeneities and its possible role as a determinant of the observed regional arrhythmia 

incidence. 

Previously, Katra et al.27 demonstrated that under conditions of increased Ca2+ 

leak and enhanced Ca2+ entry, the epicardium of canine wedge preparations exhibit the 

highest incidence of triggered activity, which is the region of highest NCX functional 

expression.28,29 We demonstrate, along similar lines in a guinea pig model of enhanced 

intracellular Ca2+ accumulation, that the LVB evidenced higher PVA and NCX 

expression relative to all other regions. While these data are correlatively similar for PVA 
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and NCX expression, further studies are warranted to determine the transmural functional 

distribution of NCX in guinea pig. 

 

Decreased Global NCX Dominance Decreases Triggered Activity 

To assess the contribution of NCX dominance to regional heterogeneities in 

arrhythmias susceptibility during DI-ATS1, we decreased global NCX dominance by 

inhibiting NCX with KB-R7943 (KBR). While KBR did not alter , it did increase CaD 

preferentially in the LV. Despite, the CaD elevation, NCX blockade decreased the 

frequency of LVB PVA strongly suggesting that NCX constitutes an arrhythmogenic 

substrate in DI-ATS1. Lastly, no spontaneous VTs were observed upon KBR perfusion 

during DI-ATS1, where as during DI-ATS1 alone 25% of preparations evidenced such 

arrhythmias. This difference between the two conditions only trended towards, but did 

not attain significance (p=0.11). This is perhaps due to insufficient power (n=8) and low 

frequency of observed events during DI-ATS1 (comparable to previous reports2,3) 

relative to models of other long QT syndromes.30 Nonetheless, the findings that NCX 

inhibition decreases PVA and/or arrhythmia burden are consistent with previous reports 

of the anti-arrhythmic effect of NCX blockade in various models of long QT syndromes 

as well as during Na+ overload induced by cardiac glycosides.30-32 

Importantly, it has been demonstrated that KBR does not increase SR Ca2+ load31 

which implies that the mechanism for PVA in this model is not spontaneous Ca2+ release 

due to SR Ca2+ overload. This further suggests that KBR may be modulating the coupling 

fidelity of the spontaneous Ca2+ release events and the transient inward current carried by 

NCX.21 
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Enhanced Global NCX Dominance Increases Triggered Activity 

An original finding in this study is that enhancing global NCX dominance via 

SERCA2a inhibition during DI-ATS1 increased the frequency of both major types of 

PVA against a backdrop of CaD elevation. Importantly, this translated into higher 

incidence of spontaneous VT compared to DI-ATS1 alone. Taken together, these findings 

provide evidence that NCX dominance, slower Ca2+ uptake, CaD elevation is an 

important determinant of the arrhythmia phenotype. These findings seemingly contradict 

previous reports which have suggested that SERCA2a inhibition decreased SR Ca2+ 

load33,34 and thereby, the frequency of spontaneous SR Ca2+ events.8 One possible 

explanation for this seemingly paradoxical finding may be that the incidence of 

spontaneous Ca2+ releases do not necessarily correlate with triggered activity unless 

sufficient NCX is present to depolarize the membrane and elicit a propagated response. 

 

Enhanced Global NCX via SERCA2a Inhibition Decreases PVA 

Coupling Interval 

As quantified by optical mapping, regions with lower SERCA2a and higher NCX 

expression (LVB) during DI-ATS1 exhibit a shorter PVA coupling interval than the 

region with higher SERCA2a and lower NCX expression (LVA). When NCX is inhibited 

with KBR during DI-ATS1, there is no change in the PVA coupling interval. From this 

data, one might come to the conclusion that NCX dominance is not well correlated to the 

time to PVA; however, KBR also raises CaD. Katra and Laurita25 demonstrated in canine, 

that the region with highest CaD and lowest SERCA2a functional expression experiences 

the shortest time to PVA. Therefore, the synergistic effect between raising regional CaD, 
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while reducing NCX functional expression may mask the expected increase in PVA 

coupling interval that would be expected during KBR perfusion. Importantly, raising CaD 

by SERCA2a inhibition decreases the time to PVA globally while increasing the 

incidence of PVA. This is consistent with the regional PVA timing during DI-ATS1 

alone as well as the relationship between CaD and time to PVA.   

Lastly, CaD is also modulated by the myriad Ca2+ and Na+ handling proteins in a 

myocyte which may also be heterogeneously distributed.35 Therefore, further studies are 

required to determine how modulating NCX affects PVA coupling interval. This 

limitation does not detract from our finding that NCX dominance underlies overall PVA 

propensity.  

 

Mechanisms of Premature Ventricular Activity in DI-ATS1 

The exact mechanism by which cytosolic Ca2+ accumulation initiates PVA 

remains unclear. Previously, it was proposed that increased CaD
7 and/or SR Ca2+ load36 

can precipitate triggered activity.9,10 Although we did not measure the SR Ca2+ content, 

Szentesi et al.33 demonstrated in isolated guinea pig cardiomyocytes, using CPA 

concentrations comparable to those in this study, a 50% reduction in SR Ca2+ content. 

Thus, our data argue against SR Ca2+ overload precipitating arrhythmias in DI-ATS1.  

The concentration of CPA used in this study prolonged  in the left ventricle as 

one would expect of partial SERCA2a inhibition. Functional SERCA2a inhibition is 

likely the mechanism underlying increased CaD because the SR is unable to accumulate 

as much Ca2+ with CPA. Again, these data argue against SR Ca2+ overload precipitating 

arrhythmias in DI-ATS1. This, however, does not preclude CaD alone from triggering 
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spontaneous SR Ca2+ releases as has been previously suggested.7 

Alternatively, reduced inward-rectifier K+ current has been shown to destabilize 

the resting membrane potential.37 This mechanism allows for spontaneous pacemaking 

activity (automaticity) that is independent of the SR. Specifically, during conditions of 

elevated CaD, forward mode NCX could raise membrane potential particularly in late 

phases of the action potential and diastole. Without the inward-rectifier K+ current 

maintaining a stable resting membrane potential, NCX could depolarize the cell to the 

activation thresholds of either voltage-gated Na+ or Ca2+ channels. However, previous 

work by our group13 and others38 have demonstrated a significantly higher Kir2.1 protein 

density in the LV, the region with highest PVA incidence, which would suggest that these 

regions would be most resistant to pacemaker-like activity.  

Lastly, it has been previously demonstrated that Ca2+ influx through NCX can 

trigger SR Ca2+ release and thereby PVA.39-42 Although this hypothesis has been 

controversial,43 a mathematical model of ATS1 suggested an upward shift in the NCX 

current, allowing it to operate primarily in the reverse mode (Ca2+-in – Na+-out) during 

the repolarization phase of the action potential.44 This along with reports of enhanced late 

Na+ current during increased cytosolic Ca2+ concentrations45 and recent reports of Na+ and 

NCX modulating SR Ca2+ release46-48 form a foundation for a plausible hypothesis of 

enhanced PVA frequency during DI-ATS1 being linked to reverse mode NCX. 

Therefore, this hypothesis merits further investigation, particularly in the light of the 

results presented herein. 
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Figure 3.1: Premature Ventricular Activity (PVA) Originate Preferentially from 
LVB During DI-ATS1. A) Representative volume-conducted ECGs of intrinsic beats 
recorded during DI-ATS1 and B) a resulting activation isochrone map. C) Discordant 
premature ventricular activity (PVA) on volume-conducted ECGs (red ECGs) D) 
evidenced the earliest anterior epicardial activation occurred in the 3.basal LV (LVB). E) 
PVA with concordant QRS morphology (blue ECGs) F) originated in the apical LV 
(LVA). G) PVA originating from other sites (right ventricle and indeterminate areas) 
occurred less frequently relative to the LV PVA (*P < 0.05, n=10), while those 
originated from the LVB occurred more frequently relative to the LVA (†P < 0.05). H) 
Optically mapped (OM) LVB PVA were more closely coupled to the preceding intrinsic 
beat than LVA PVA (*P < 0.05, n=7). I) The difference in coupling interval was not 
noted when comparing all PVA recorded on volume-conducted ECGs (n=10). J) The 
QRS duration of intrinsic beats were shorter than all PVA (*P < 0.05) while, QRS 
duration of LVB PVA was wider relative to LVA PVA (†P < 0.05). 
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Figure 3.2: Multifocal Origin of  PVA During DI-ATS1. A) Representative volume-
conducted ECGs of intrinsic beats recorded during DI-ATS1 and B) corresponding 
intramural multielectrode needle electrograms revealing sequential activation of an 
intrinsic beat starting with endocardium (Endo), proceeding through the midmyocardium 
(Mid) and lastly activating epicardium (Epi). C) PVA consistent with LVB activation 
reveals D) epicardial (Epi) origin of the ectopy, while E) another LVB PVA reveals E) 
endocardial (Endo) origin of the ectopy. 
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Figure 3.3: Cytosolic Ca2+ Levels Correlate with PVA During DI-ATS1. A) 
Representative Ca2+ transients demonstrate higher CaD in the LV relative to the RV 
during control (grey traces) and an upward CaD shift in all regions during DI-ATS1 
(black traces). B) Mean RVA normalized CaD during control was greater in LVB relative 
to RVA (*P < 0.05, n=8). During DI-ATS1, CaD increased in all regions (†P < 0.05). 
The LVB exhibited the highest CaD levels relative to other anterior epicardial regions (‡P 
< 0.05). 
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Figure 3.4: Ca2+ Transient Decay Kinetics Spatially Correlate with SERCA2a 
Protein Expression. A) Representative normalized Ca2+ transients (from 0 to 1) recorded 
at BCLs 400 ms (left, same ones as in Figure 2) and 200 ms (right), demonstrate high 
degree of morphological correspondence and no quantifiable difference in Ca2+ transient 
decay constant (τ; marked by vertical lines)  within regions between control (grey traces) 
and DI-ATS1 (black traces). However, LVA Ca2+ transients (full line) appeared to decay 
faster relative to RV (dashed lines) and B) LVB (inset) at BCL 400ms. Mean τ was not 
different between control and DI-ATS1 in any region. LVA evidenced shorter τ relative 
to LVB a well as RV regions (*P < 0.05, n=5). C) During pacing at BCL 200ms similar 
pattern was observed as during BCL 400ms, where LVA evidenced shoert τ relative to 
other anterior epicardial regions (*P < 0.05). 
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Figure 3.5: NCX Dominance Spatially Correlates with PVA. A) Representative NCX 
(outlined in red) and actin bands (outlined in black) from different anterior epicardial 
regions of the heart that were measured. B) Actin-normalized NCX protein expression in 
each region is denoted by the radius and color of the corresponding circle, while dashed 
circles reflect standard error. Mean actin-normalized NCX protein expression in the LVB 
was 81.2± 30.9% greater than that in the LVA (*P < 0.05, n=5), whereas no significant 
difference was observed within the RV (P = ns). C) Representative SERCA2a (outlined 
in blue) and actin (outlined in black) demonstrate greater SERCA2a band density in LVA 
relative to LVB. D) Mean, actin-normalized SERCA2a expression was significantly 
greater in the LVA by 76.8± 23.6% compared to the LVB (*P < 0.05, n=6). 
 

91



Figure 3.6: SERCA2a but Not NCX Inhibition Prolongs Ca2+ Transient Decay 
Kinetics. A) Representative Ca2+ transients demonstrate that NCX inhibition by KB-
R7943 (KBR) during DI-ATS1 (DI-ATS1+KBR, blue traces) resulted in an upward shift 
of CaD in the LV relative to DI-ATS1 alone (black traces). B) Mean CaD exhibited 
highest CaD levels during DI-ATS1 in the LVB relative to other anterior epicardial 
regions (*P < 0.05, n=5), while DI-ATS1+KBR resulted in a CaD rise only in the LV (†P 
< 0.05).  C) Representative normalized Ca2+ transients recorded at BCLs 400 ms and E) 
200 ms demonstrate no quantifiable difference in τ between DI-ATS1 and DI-
ATS1+KBR. D & F) Mean τ was unaltered by DI-ATS1+KBR relative to DI-ATS1 
alone during both BCL 400 ms and 200 ms, where LVA evidenced lowest τ relative to 
other anterior epicardial regions (*P < 0.05). G) SERCA2a inhibition by cyclopiazonic 
acid (CPA)during DI-ATS1 (DI-ATS1+CPA, red traces) resulted in an upward shift of 
representative Ca2+ transients compared to DI-ATS1 alone (black traces) resulting in a 
global CaD rise. H) Mean CaD exhibited highest CaD levels during DI-ATS1 in the LVB 
relative to other anterior epicardial regions (*P < 0.05, n=6), while DI-ATS1+CPA 
resulted in a CaD rise across the mapping filed (†P < 0.05).  I) Representative normalized 
Ca2+ transients recorded at BCL 400 ms demonstrate prolongation of τ in the LV during 
DI-ATS1+CPA relative to DI-ATS1 alone K) while DI-ATS1+CPA prolonged τ across 
the mapping field at BCL 200 ms. J) Mean τ was lowest in the LVA during both DI-
ATS1 and DI-ATS1+CPA at BCL 400ms (*P < 0.05) despite mean τ prolongation in the 
LV by DI-ATS1+CPA (†P < 0.05). L) LVA also evidenced shortest mean τ at BCL 
200ms during DI-ATS1 (*P < 0.05). Mean τ prolonged across the mapping field during 
perfusion of DI-ATS1+CPA (†P < 0.05), resulting in no quantifiable difference in τ 
between the anterior epicardial regions. 
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Figure 3.7: NCX Dominance Underlies Arrhythmias During DI-ATS1. A) Out of 8 
preparations tested, spontaneous ventricular tachycardia (VT) were observed in 2 (25%) 
preparations during DI-ATS1 and none during DI-ATS1+KBR (P = 0.11). B) Over all 
PVA frequency, defined as number of events per 10 mins, originating from LVB was 
decreased during DI-ATS1+KBR relative to DI-ATS1 alone (*P < 0.05, n=8). C) 
However, the mean coupling interval of PVA to the preceding intrinsic beat was 
unaltered in either LV region by DI-ATS1+KBR (P = ns). D) DI-ATS1+CPA increased 
the incidence of spontaneous VT relative to DI-ATS1 alone (7 vs. 2, n=12, respectively, 
*P < 0.05). E) Over all experiments, PVA frequency was increased both in LVB and 
LVA during DI-ATS1+CPA compared to DI-ATS1 alone (*P < 0.05, n=10). F) DI-
ATS1+CPA shortened the coupling interval of both LVB and LVA PVA (*P < 0.05). 
Arrhythmia burden was assessed during a 15 to 30 min. long protocol. 
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Figure 3.8: Action Potential Duration Prolongation During Pharmacological 
Perturbations of DI-ATS1. A) Representative optical action potentials recorded from 
the same ventricular regions during DI-ATS1 (black traces) and DI-ATS1+KBR (blue 
traces). DI-ATS1+KBR prolonged the action potential duration (APD) and enhanced 
total APD dispersion, defined as the difference in mean APD (calculated over 25 spatially 
contiguous sites per region) between epicardial regions with the longest (RVB) and 
shortest APD (LVA) during DI-ATS1. B) Mean APDs demonstrate a rise in APD during 
DI-ATS1+KBR compared to DI-ATS1 alone (†P < 0.05, n=3) where the difference in 
APD between RVB and LVA was retained (*P < 0.05). C) Total APD dispersion was 
unaltered by DI-ATS1+KBR relative to DI-ATS1 alone (P = ns). D) Representative 
optical action potentials recorded during DI-ATS1 (black traces) and DI-ATS1+CPA (red 
traces). DI-ATS1+CPA prolonged the APD but decreased total APD dispersion. E) Mean 
APDs demonstrate a rise in APD during DI-ATS1+CPA compared to DI-ATS1 alone (†P 
< 0.05, n=3), where the difference in APD between RVB and LVA evidenced during DI-
ATS1 alone (*P < 0.05) was no longer observed during DI-ATS1+CPA (P = ns). F) 
Total APD dispersion was reduced by DI-ATS1+CPA relative to DI-ATS1 alone (*P < 
0.05). 
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Appendix 
 
 
 

 
 
Supplemental Figure 3.1: Three lead volume-conducted ECG acquisition. Schematic 
representation of the perfusion bath lead placement that allows continuous three lead 
volume-conducted ECG acquisition. Representative ECG recorded during steady state 
pacing at basic cycle length 400ms from septum (*, stimulation site on the septum) reveal 
in Lead I propagation of depolarization from right anterior (RA, grey) to left anterior 
(LA, black) electrodes, in Lead II from RA to left posterior (LP, red) electrodes and in 
Lead III from LA to LP electrodes. Right posterior (RP, green) electrode serves as a 
reference. 



 
 
Supplemental Figure 3.2: Premature Ventricular Activity that Originates from RV 
during DI-ATS1. A) Representative volume-conducted ECG of intrinsic beats recorded 
during DI-ATS1 and B) a resulting activation isochrone map. C) In the case of premature 
ventricular activity (PVA) on volume-conducted ECG (red ECG) D) the earliest 
epicardial activation occurred in the right ventricle (RV). 

 



 

 

CHAPTER 4 

 
 
 

SUMMARY AND FUTURE DIRECTIONS 



 

The presence of regional heterogeneity within the heart, in both electrophysiology 

and Ca
2+

 handling, is well established. However, the precise characterization of these 

heterogeneities is very much a work in progress. While such heterogeneities are crucial 

for normal cardiac function, they may be unmasked or exacerbated under 

pathophysiological conditions in a manner that contributes to the disease process. In 

order to understand and predict the role of regional heterogeneities in disease, it is vital to 

understand: a) their role in health and under challenging conditions, b) their 

interrelationships with other determinants of function, and c) how they may be modified 

by pathophysiological remodeling processes. Regional heterogeneity of the inward 

rectifier potassium current (IK1) is one such heterogeneity that is prevalent under normal 

conditions and plays a benign role.
1,2

 However, pathophysiological remodeling of IK1 as 

occurs in heart failure and other conditions
1,3

  can dramatically alter the functional 

implications of such regional heterogeneity as well as bring to the fore other, previously 

dormant heterogeneities. In this work, we have studied the role of various regional 

heterogeneities in the context of IK1 loss-of-function versus normal health. 

Anderson-Tawil Syndrome Type 1 (ATS1) is an inherited channelopathy 

resulting from a loss of IK1 function.
4,5

 Importantly, it has been proposed that arrhythmias 

in ATS1 may be caused by electrical substrate remodeling,
6,7

 which coupled with the 

intrinsic electrical and Ca
2+ 

handling heterogeneities prolongs the QT interval and 

increases ectopic activity. Although heterogeneous action potential duration (APD) 

prolongation and increased dispersion, both transmural and interventricular, have been 

reported in experimental models of ATS1,
8-10

 whether these gradients of repolarization 
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are sufficient for reentry and Ca
2+ 

handling abnormalities to occur has been addressed by 

research presented in this work.  

 In Chapter 2, we demonstrate that gradients of epicardial APD dispersion in a 

drug-induced model of ATS1 (DI-ATS1) were insufficient for reentrant arrhythmia 

induction. Further, APD prolongation but not dispersion was associated with increased 

incidence and severity of spontaneous and rapid pacing induced arrhythmias. Further, we 

demonstrated that even when APD prolongation and dispersion were reduced virtually to 

baseline levels, some arrhythmia vulnerability remained. Therefore, in Chapter 3 we 

uncoupled heterogeneous APD prolongation and dispersion from arrhythmias. This was 

accomplished by pharmacological interventions where we demonstrate that Na
+
/Ca

2+
 

exchanger (NCX) inhibition (↓ NCX dominance) during DI-ATS1 prolonged APD 

heterogeneously, increased dispersion and yet, decreased arrhythmia burden. On the other 

hand, sarcoplasmic reticulum (SR) Ca
2+

 ATP-ase (SERCA2a) inhibition (↑ NCX 

dominance) with cyclopiazonic acid (CPA) during DI-ATS1 also prolonged APD and 

reduced APD dispersion; however, it significantly increased the arrhythmia burden. 

These findings strongly suggest that gradients of repolarization are unlikely to constitute 

the arrhythmogenic substrate in ATS1. 

Since, the aforementioned data argued against reentrant mechanisms, we then 

turned towards ectopic activity as the arrhythmic mechanisms in DI-ATS1. Importantly, 

we did note a significantly elevated incidence of ectopy during DI-ATS1, which we 

characterized in detail. We demonstrated that the preponderance of observed ectopy 

originated from the left ventricle (LV), which will be discussed below. However, there 

were a few ectopic beats that originated elsewhere. Since the heart is a three dimensional 
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structure, it is important to know not only the regional origin site of ectopy (i.e., anterior, 

posterior, left, right, apex, base or septum) but also from which depth of tissue the ectopy 

arises (i.e. epicardium, midmyocardium or endocardium). To map the site of earliest 

epicardial activation, one might employ a sock electrogram array. One limitation of the 

suck array is that the spatial resolution and number of mapping sites is limited by the 

ability to “pack” the wires around the heart. However, even this reduced resolution 

overcomes the limitation of optical mapping by allowing one to quantify a larger two-

dimensional map of epicardial breakthrough TA sites.  

This, however, does not address the precise transmural localization of ectopic 

events in our model. The two dimensional nature of optical and electrode array
 
mapping 

does not completely resolve the exact origins of such events but as already stated
 
only 

identifies the epicardial breakthrough sites. This could potentially be resolved by the use 

of transmural needle electrodes to pinpoint the transmural site of origin of ectopy. One 

limitation of this approach is that the needles must penetrate the myocardium.
11

 Such an 

approach can cause tissue injury causing itself ectopic activity to occur. 

The aforementioned approach of employment of transmural needle electrodes 

warrants further consideration particularly if there are discrete number of unique ectopic 

sites. In a model of catecholaminergic polymorphic ventricular tachycardia (VT), the 

ectopy origination sites have been suggested to arise from the Purkinje network, which in 

humans generally terminates in the endocardium.
12

 However, pharmacological models of 

IK1 inhibition have revealed ectopy to be multifocal, originating from different depths 

transmurally.
9,13

 Therefore, we expect the origin of ectopy to be likewise multifocal in 

nature, spanning multiple transmural layers of the guinea pig myocardium. 
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Whether of Purkinje or myocardial origin, disregulated Ca
2+

 cycling has been 

suggested as the mechanism underlying ATS1-associated ectopy.
9,10,14,15

 However, no 

direct evidence has been presented in support of such a hypothesis. Importantly, in 

Chapter 2 we demonstrate that this increased arrhythmia incidence is associated with 

significant diastolic
 

Ca
2+ 

(CaD) accumulation, which offers some insights into the 

arrhythmia mechanism in DI-ATS1. In order to further investigate the effect of APD 

prolongation on altered Ca
2+

 cycling we shortened APD with the ATP-sensitive 

potassium channel opener pinacidil, which allows these channels to be opened through 

the action potential. This pharmacological intervention alleviated the aforementioned 

APD prolongation but only partially reversed CaD accumulation and it did not abolish 

arrhythmias. These data, therefore, suggest that abnormalities in Ca
2+

 cycling can serve 

as a substrate for ATS1-associated arrhythmias. 

Next we investigated the factors underlying Ca
2+

 mediated arrhythmias in our 

pharmacological model of ATS1. In Chapter 3, we report ectopic events occurring 

predominantly in the LV, particularly in regions with relatively higher protein expression 

of NCX relative to SERCA2a. These regions also exhibited slower Ca
2+

 uptake and 

elevated CaD. Importantly, we were able to modulate both the timing as well as the 

frequency of such ectopy by pharmacologically modulating NCX dominance. 

Specifically, increasing NCX dominance increased the incidence of spontaneous VTs and 

decreased the latency of ectopic events. Conversely, we also demonstrated that 

decreasing NCX dominance decreased the incidence of spontaneous VTs and ectopy. 

These data suggest that NCX dominance may represent an important characteristic of the 

arrhythmogenic substrate in ATS1.   
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Despite clear correlation between NCX dominance in LV-base (LVB) and the 

origin of ectopy during DI-ATS1, further questions remain regarding the effects of 

pharmacological modulation of NCX dominance on regional ectopic propensity. For 

instance the incidence of ectopic events was significantly elevated both in LVB and LV-

apex (LVA) during pharmacologically enhanced NCX dominance (SERCA2a blockade). 

However, the difference in ectopic frequency between these regions was no longer 

significant. This coupled with the finding of greatest CaD accumulation in the LVB 

suggests that the coupling fidelity (i.e., coupling of aberrant Ca
2+

 release to the rise of 

transmembrane potential and consequent ectopy) of the NCX in that particular region is 

near saturation during DI-ATS1. Therefore, any subsequent perturbation in Ca
2+

 cycling, 

as occurs during pharmacologically enhanced NCX dominance, had a smaller effect on 

ectopy in the LVB relative to LVA. Such effect was more pronounced in the LVA, a 

region more dependent on SERCA2a for Ca
2+

 resequestration into the SR, allowing more 

room for the NCX to compensate for an induced reduction in Ca
2+

 resequestration. We 

previously showed that greater expression of Nav1.5 (the protein that carries the cardiac 

fast Na
+
 current) in the anterior LV relative to other myocardial regions.

2
 In the LVA, the 

larger Na
+
 current together with NCX may act to bring more Ca

2+
 into the cell via reverse 

mode exchange during the depolarization phase.
16

 This Ca
2+

 influx via NCX could be 

then sequestered into the SR by SERCA2a, which is also more abundant in the LVA, 

resulting ultimately in a greater Ca
2+

 transient amplitude observed in this particular 

region compared to other anterior epicardial regions.
17

 Therefore, SERCA2a inhibition 

during DI-ATS1 resulted in a greater NCX coupling fidelity between aberrant Ca
2+

 

release and rise of transmembrane potential (i.e. ectopy) in the LVA compared to LVB, 
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while the coupling fidelity in the LVB may have become saturated. The relevance of the 

interplay between Na
+
 influx, NCX and propensity for ectopy should be further 

investigated in isolated cellular preparations.   

We have demonstrated here that a key arrhythmogenic mechanism in DI-ATS1 is 

ectopy secondary to disregulated Ca
2+

 handling, particularly from NCX dominant 

regions. Such ectopy is believed to be due to triggered activity, which have been 

demonstrated to originate from areas of elevated CaD and Ca
2+ 

overload and were caused 

by membrane
 
depolarization in response to nonelectrically driven Ca

2+ 
release from the 

SR.
18-20

 Three hypotheses have been proposed for the cellular mechanism of aberrant 

Ca
2+

 release which likely underlies the observed ectopy: a) spontaneous SR Ca
2+

 release 

due to SR overload, b) ryanodine receptor (RyR) sensitization due to CaD elevation and c) 

NCX-triggered SR Ca
2+

 release. The involvement of these mechanisms in ATS1 warrants 

further investigation. This represents a very important line of inquiry, particularly in the 

light of the potential therapeutic value of such insight. 

In order to gain more insight into the underlying arrhythmic mechanism a future 

study could employ an isolated cellular model. Such an experimental setup would allow 

querying the SR Ca
2+

 load by caffeine pulse protocol particularly during highly 

arrhythmogenic states (DI-ATS1+CPA). Based on previous research,
21,22

 we expect that 

SR Ca
2+

 load will be decreased during DI-ATS1+CPA relative to DI-ATS1 alone 

secondary to decreased Ca
2+

 resequestration into the SR via SERCA2a. Further, we 

expect that SR Ca
2+

 load during the aforementioned pharmacological interventions will 

not correlate with arrhythmia incidence. 
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An additional benefit of such research would be to investigate the role of 

cytosolic Ca
2+

 accumulation on SR Ca
2+

 release by application of intracellular Ca
2+

 

chelators. Using such an approach will allow to determine the effect of cytosolic Ca
2+

 on 

spontaneous Ca
2+

 release from SR Ca
2+

. We expect that lowering cytosolic Ca
2+

 will 

result in lowered incidence of spontaneous Ca
2+

 release events. 

Lastly, research in isolated cells would allow us to investigate the NCX-triggered 

SR Ca
2+

 release by direct application of NCX selective peptide-inhibitor. Further, in the 

light of the latest revelations of neuronal Na
+
 channels and NCX involvement in 

augmenting Ca
2+ 

release by the L-type Ca
2+ 

channel,
16,23

 this study can be augmented by 

testing the effect of a neuronal Na
+
 channel inhibitor, tetrodotoxin, on NCX-triggered 

Ca
2+

 release. We expect that modulation of either NCX or neuronal Na
+
 channel in the 

aforementioned fashion will decrease the incidence as well as alter the kinetics of Ca
2+

 

release events. 

While our results suggests an important role for NCX in coupling aberrant Ca
2+

 

release to rise of transmembrane potential (i.e. ectopy), the roles of other transmembrane 

currents, in particular the L-type Ca
2+

 current
24

 bear investigation. This is particularly 

relevant in the light of recent findings of L-type Ca
2+

 current density differences between 

the base and apex of rabbit model of long QT syndrome that was correlated with 

arrhythmias.
24

 Clearly, there may be more than one explanation for heterogeneous 

arrhythmia manifestation in addition to the regional NCX dominance. 

In this work however, we have undertaken a targeted approach for measuring the 

functional consequences of NCX dominance along with Ca
2+ 

handling aberrancy and 

electrophysiologic alterations present during conditions of partial loss of IK1 function. 
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This research may aid in the identification of novel targets for antiarrhythmic therapy 

when IK1 is reduced as occurs in ATS1 and heart failure. 
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