
DEVELOPMENT OF THE NEW BEST INFORMATION ALGORITHM 

FOR A MEDICAL EXPERT SYSTEM {litlAD) 

By 

DiGuo 

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Department of Medical Informatics 

The University of Utah 

August 1993 



Copyright © Di Guo 1993 

All Rights ReseIVed 



THE UNIVERSITY OF UTAH GRADUATE SCHOOL 

SUPERVISORY COMMITTEE APPROVAL 

of a dissettation submitted by 

Di Guo 

This dissettation has been read by each member of the following supervisory comrni ttee 
and by majority vote has been found to be satisfactory. 

-

JlMd-ltJ ItjC;� 
r 

ChaW. Homer R. Warner 

Reed M. Gardner 

Mlc!ta;zJ? ./ Ltl,U�12 
Mi&Rael J. Lincoln 



THE UNIVERSITY OF UTAH GRADUATE SCHOOL 

FINAL READING APPROVAL 

To the Graduate Council of The University of Utah: 

I have read the thesis of _____ .-.;;;D.,;;;i;......;;,G.;;;,u,;;..o 
______ in its final 

form and have found that (1) its format, citations, and bibliographic style 

are consistent and acceptable; (2) its illustrative materials including figures, 

tables, and charts are in place; and (3) the final manuscript is satisfactory 

to the Supervisory Committee and is ready for submission to The Graduate 

School. 

(, 

Date Homer R. Warner 

Chair, Supervisory Committee 

Approved for the Major Department 

Homer R. Warner 
Chair/Dean 

Approved for the Graduate Council 

B. Gale Dick 
Dean of The Graduate School 



r 

ABSTRACT 

Iliad is a diagnostic expert system for internal medicine. One important feature that 

iliad offers is the ability to analyze a particular patient case and to detennine the most cost

effective findings to pursue next at any stage of a work-up. The "best information" 

algorithm combines an information content calculation together with a cost factor. The 

calculations then provide a rank-ordering of the alternative patient findings according to 

cost-effectiveness. 

This dissertation presents a three-part study to evaluate the performance of different 

best information algorithms. In the first two parts of the study the suggestions about the 

next best data elements to pursue from different algorithms were collected for different 

vignettes. The performance of different algorithms was compared based on the judgments 

provided by expert clinicians. The results indicated that the current Iliad information 

content model could be improved by using a version of Shannon information content 

model. 

The third part of the study evaluated different best information algorithms by a 

simulation approach. The results indicated that two types of diagnostic behaviors could be 

simulated. The first type of behavior was characterized by pursuing more history and 

physical examination findings, less laboratory tests, less expensive work-ups, and more 

steps to solve a patient case. The second type of behavior was characterized by pursuing 

less history and physical examination findings, more laboratory tests, more expensive 

work-ups, and less steps to solve a patient case. The Shannon information content model 

accomplished work-ups that were significantly less costly than work-ups performed by the 

current LR (likelihood ratio) information content model. However, the Shannon model 

required additional computational resources and more history and physical examination 



steps than the LR model. Decisions regarding the implementation of alternative models 

require a balance of the relative merits of cost, steps, expert preference, and other important 

factors. 

v 
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INTRODUCTION 

Iliad System 

Iliad is a diagnostic expert system for internal medicine, which represents the 

culmination of over 2 decades of expert systems research at the University of Utah. The 

system provides decision support and may be used as a teaching tool for medical students 

and practitioners. Iliad can run both under Macintosh systems and MS DOS-Windows. 

Iliad requires a 68030 Macintosh or 80386 SX DOS (or higher) processor with two 

megabytes of RAM memory. The system currently recognizes over 6300 disease 

manifestations and covers 1350 diseases and intermediate diagnoses in internal medicine. 

The Iliad knowledge base is constructed using knowledge frames. Iliad uses both 

Bayesean and Boolean frames to describe diseases encountered in internal medicine. These 

frames permit use of sensitivities, specificities (in Bayesean frames) and rules (in Boolean 

frames) to describe the relationship of a disease to its manifestations and provide a basis for 

explaining Iliad's conclusions (1-2), The most common form of frames is the Bayesean 

frame. In a Bayesean frame, the relationship between a disease and related medical 

findings is represented by a True Positive Rate (TPR) and a False Positive Rate (FPR). In 

Boolean frames, Boolean logic is used to determine how close a disease is to true and how 

close the disease is to false. A heuristic algorithm allows Iliad to process incomplete 

information and to assign a pseudo-probability to a Boolean disease frame (3). 

Iliad can be used either in consultation mode or simulation mode: 

(1) Consultation mode. Iliad is designed to behave like an expert medical 

consultant. Iliad produces diagnostic suggestions based on medical findings 

presented by a particular patient. Iliad not only suggests all likely diagnoses 

at each stage of the work-up but also provides suggestions for further 



requests for cost-effective data. 

(2) Simulation mode. For this mode iliad is designed to behave like a patient. A 

user is expected to ask Iliad relevant questions and order appropriate tests. 

lliad can function as a testing simulator in which specific scoring algorithms 

have been designed to measure a user's performance in terms of pursuing a 

cost-effective work-up (4). The performance scores for inquiry skills are 

measured by comparing the questions asked by students to a best question 

calculated by lliad's best information model. 

Best Information Algorithm in iliad 

2 

The basis for lliad to generate cost-effective work-up advice in the consultation mode 

and to measure the appropriateness of a user's request for data in the simulation testing 

mode is the program's "best information" algorithm. The "best information" component in 

lliad can be traced to a diagnostic system fIrst tested in the early 1970s as a computerized 

interview tool. This system was further tested in the form of an interactive history 

collection program used directly by patients (5-7). The current system, lliad, has been 

dramatically extended in terms of inference mechanism and knowledge base compared to 

the early system, and Iliad is still evolving. The best information algorithm evaluates the 

information content expected per dollar for uncollected data and selects the finding with the 

maximum information at the least cost. Iliad's dictionary stores the "cost" by using the 

actual dollar amount charged for each test at the University of Utah medical center; other 

medical centers may modify the charges in Iliad as needed. History findings are arbitrarily 

set to cost $1 and physical exam items $2. The procedure to calculate work-up suggestions 

can be summarized as below: 

(1) lliad selects a subset of the diagnostic hypotheses. If the user does not select 

a diagnosis to pursue, Iliad automatically selects a work-up suggestion for 

the most likely diseases, beginning with the top three diseases in the 



differential diagnosis list. 

(2) iliad combines an infom1ation content calculation together with a cost factor 

to rank-order medical findings not yet known according to a cost

effectiveness algorithm in which cost-effectiveness is defmed as information 

content/cost. 

3 

(3) lliad then suggests the finding that is most informative at the least cost. 

Enhancing the performance of Iliad's best information mode has been a continuous 

effort during the development of lliad. The current algorithm was developed and refmed to 

provide adequate results with reasonable computational speed. Currently, disagreements 

exist between Iliad and our medical experts concerning optimal strategies for data 

collection. In the past, the computational burden discouraged use of more complex cost

optimization algorithms. However, with the rapid development of more powerful 

hardware configurations on both PC and Macintosh machines, more computationally 

intensive algorithms were investigated and compared with the current algorithm. In this 

dissertation several utility models for determining cost-effectiveness of a medical finding 

and different ways of applying these models were studied. The research was intended to 

improve the current best information algorithm and thereby ensure that students who use 

Iliad receive accurate training. The research was also intended to explore techniques for 

analyzing the quality of expert advice suggested by lliad. 

Formal Decision Analysis 

Decision making can be considered as a choice between actions or a choice of a 

course of action. Decision theory provides a formal, prescriptive framework for making 

logical choices under uncertainty. The main objectives of a decision analysis are, first, to 

provide models for describing our desires and our beliefs and, second, to use developed 

models to make rational decisions. Given a condition of a patient, there are different 

sequences of findings that might be pursued to reach a final diagnosis. The question then 
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is which sequence of findings to pursue to arrive at the correct diagnosis in the most cost

effective way. Fonnal decision analysis seems to be a natural choice to solve this problem. 

Fonnal decision analysis involves the following key steps: 

(1) Generate a list of the possible actions or events. A decision tree is usually 

used to represent the course of actions. In the context of this study, possible 

actions were potential sequences of fmdings to reach a final diagnosis. 

(2) Assign probabilities (objective or subjective) to each node of the action 

course. The probability assignments must be checked for internal 

consistency. 

(3) Generate a utility model to describe each outcome state. The model can be 

represented by one single attribute, such as cost of reaching the final 

diagnosis, but it is usually described in terms of multiple attributes (e.g., 

time, risk, and cost) that are condensed into a single scale. The measurement 

of an attribute can be a hard measure, which is the result of controlled 

experiments, or a soft measure, which is the result of beliefs and personal 

experience about relevant events. 

(4) Calculate the expected utility for each possible outcome. The objective is to 

choose an action which has the highest utility score. Usually a sensitivity 

analysis is performed to determine whether the best choice is robust or 

sensitive to reasonable variations. 

Formal decision techniques have been applied in areas such as air-quality control, 

airport location, environmental and urban design, strategic business problems, and many 

others (8-9). However there are practical problems associated with applying decision trees 

and the expected value of utility algorithm. Frequently not every course of actions can be 

isolated and identified. The decision analysis may never be finished if every possible 

course of action must be analyzed. Quantitative knowledge of the utility of each correct and 

incorrect decision is often not available. It is also difficult to estimate utilities and backtrack 
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from all the final positions in a very large decision tree. In medicine, it is usually difficult 

for both physicians and patients to define what they want. 

In formal decision analysis maximizing expected utility is the most common criterion 

used (10-12). However the expected utility criterion is not always appropriate to apply. A 

famous example is the St. Petersburg Paradox (12). Suppose there is game to play. A fair 

penny will be repeatedly tossed until the head appears. If the head occurs on the nth toss, 

the player will receive $2". The question is that how much would the player be prepared to 

pay to play the game once? The probability of a fair penny first landing 'heads' on the nth 

toss is 0.5n, so the expected payoff is 

(1-1) 

The calculation means that the player is expected to win more no matter how much the 

player pays. Thus the player should be willing to risk everything to play the game just 

once. Yet, no one would consider such an action to be rational. This paradox can be 

solved by choosing a different utility measure, the logarithm of money and limiting a bound 

for the utility function. Actually one of the axioms in utility theory is that a utility function 

should be bounded so that no decision maker guided by the expected utility rule will reach 

the paradox conclusion. There are still debates about the validity of using expected utility 

criterion in decision analysis (11, 13-15). However, whether the use of formal decision 

analysis is valid or not is not the subject of this study. The goal of this study is to 

investigate different practical alternatives for measuring cost-effectiveness of a medical 

finding at a given stage in solving a diagnostic problem. 

Quasi -Utility Concept 

The traditional approach to analyzing a decision problem has been a foldback analysis 

in a decision tree. This starts with the end nodes of a decision tree and compares utility 

values at each decision node when folding back recursively toward the root. In terms of 
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medical diagnosis problems, there are many potential medical findings to confirm and 

exclude hypotheses being considered. The decision tree to depict all the possible sequence 

of medical findings to make a final diagnosis would be very large. It would become very 

difficult to obtain utility values for each scenario in a large decision tree from patients and 

doctors. Thus the traditional approach is computationally expensive and hard to manage 

when dealing with a medical diagnostic problem. To obtain a practical solution to this 

complex problem, certain assumptions have to be made. The most popular ones follow 

(16): 

(1) No competition: Each information source (a medical finding in the context of 

this study) is evaluated in isolation, as if it were the only source available for the 

entire decision. 

(2) One-step horizon: After obtaining the source with the highest utility value, a 

terminal decision is made. To make further decisions, the process must be 

repeated. 

These assumptions result in a suboptimal myopic analysis; i.e., the analysis only 

looks one step ahead. In the context of this study, the physician is also assumed to be in 

the middle of a decision tree search and is not about to make an immediate decision on 

treatment. To overcome the difficulty in obtaining utility values for a decision tree, a 

substitute for utility can be used. If one assumes that the utility of a diagnostic decision can 

be measured in terms of reduction in uncertainty of a disease given a medical finding, then 

one has the substitutes for utility, called quasi-utilities to compare different medical 

findings. Quasi-utilities are introduced as compromises to evaluate potential actions one at 

a time instead of going through all possible combination of actions. Whenever a particular 

decision stage is analyzed using quasi-utilities, that stage acts approximately as if it is the 

final stage. This method makes it practical to make decisions by cutting down on the size 

of the search. 

Different models to measure the reduction in uncertainty, also called information 
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content in the theoretic sense, can be derived from information theory and Bayes theorem. 

The derivation of these models will be discussed later in this chapter. 

In this study, the quasi-utility for expressing cost-effectiveness is defined as the ratio 

of the quantity of uncertainty reduction (i.e., information content) and the charge for 

obtaining a medical finding. It always costs something to acquire a medical finding, such 

as time to wait for the result, effort, money, or risk. Because the purpose of this study was 

to investigate different characteristics of information content models, only the direct charges 

of laboratory test and other procedures were considered. 

The charge for a laboratory test procedure and the cost of a laboratory test procedure 

are different. Costs are generated based on what hospitals pay to deliver the services; 

charges are what the patients, insurance companies, and Medicare pay for the services. 

The difference results from the complex reimbursement schemes that frequently underpay 

for some services and will overpay for others (17-18). There are other cost factors 

associated with obtaining a laboratory test or procedure result such as patient discomfort, 

test-related morbidity and test-related death, hospital waiting time for patient, etc. 

Obtaining the true costs of different services is not a trivial task. It is difficult to allocate 

some costs such as utility bills, ancillary services for each item or service, costs of test

related morbidity, and test-related death. Because there are hundreds of laboratory test 

procedures contained in lliad, it would be extremely difficult and time consuming to have 

every procedure assigned a "true" cost value. Alternatively charges for services can be 

easily obtained from ·hospitals. The distinction between costs and charges is important, but 

quasi-utility models in this study only take into account actual charges for medical services. 

These models can be easily modified appropriately when the real cost data are available. 

Information Theory 

Information theory is the science of quantification, coding, and communication of 

information (19). The basic ideas were formulated back in the 1920s. Since the Second 
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World War modem information theory has had a considerable development due to the early 

work of Claude Shannon (20). The fundamental theorems from information theory are 

considered as the basis for information technology. The quantification of information in 

information theory is used to quantify the transmission errors due to accidental errors or 

random noises across communication channels, such as telephone, television, radio, and so 

on. Because information theory provides a formal mathematical basis for quantifying 

information and uncertainty, it is logical to use the method to measure diagnostic 

information provided by a medical finding. 

The basic idea behind measuring the quantity of information in a signal or message is 

to measure the reduction of uncertainty. If a person is a male, and somebody tells him that 

he is a male, the message does not convey any information. If a message confirms a 

previously unlikely event, it contains information. A natural choice for quantifying 

information conveyed by a message is to take the difference of uncertainty before and after 

a message is received. One property of information suggested by Shannon is that 

information is additive. The total information conveyed by several messages is equal to the 

sum of the information conveyed by each of them. A natural choice to quantify uncertainty 

is the probability of an event. To satisfy the requirement of additivity, the logarithm of the 

probability was used by Shannon to quantify uncertainty. Quantity of information was 

expressed as I = -log2 P. The logarithm to the base two of the probability is commonly 

used to allow measurement of information in unit of "bit. II The measure of average 

uncertainty is described as "entropy, II which was chosen for its similarity to entropy in 

thermodynamics. The amount of heat from a chemical reaction can be measured by the 

change of thermo-entropy. The amount of information can be measured by the change of 

information-entropy. Entropy is defined as the average amount of uncertainty. In the 

context of medicine, the entropy can be used to represent the average amount of uncertainty 

as to whether a patient does or does not have a disease. The mathematical equation for the 
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entropy is 

(1-2) 

Here, H(D) is the Shannon's uncertainty or entropy measured in "bits. II P(D) is the 

probability that a patient has a disease D; P(D-) is the probability a patient does not have the 

disease D. If a medical finding's result is known as F, the information content provided by 

F is the difference in entropy before and after the finding F is known (based on the prior 

probability and posterior probability). If there is a perfect medical test that can change the 

probability of a disease to unity no matter what the prior probability of the disease and if the 

prior probability of the disease is 0.5, then the information content of the perfect test is 1 

bit. This is because the uncertainty before the perfect test is 1 bit and the uncertainty after 

the test is 0 bit. 

Ouantity versus Quality about Information Theory 

One shortcoming of information theory is that it only considers the quantity of a 

message without any regard for its meaning. For example, two messages may convey the 

same amount of information, but they can have significantly different meanings from a 

human point of view. If there are two tests, one test shows the diagnosis of lung cancer 

for patient A and another one shows the diagnosis of pneumonia for patient B, and if 

patient A and patient B have same prior probabilities of lung cancer and pneumonia 

respectively, the information contents of these two test are the same, but they really have 

different impact on patient A and patient B. In addition, the pain and risk associated with 

each test can not be reflected by the amount of information itself. The information value of 

a test does not carry semantic meaning of the circumstances being applied, because it is the 

same for every patient. This shortcoming may cause criticism about the validity of quasi

utility approach. However, information content value is not the only component to 

describe an objective or a goal. Multiple factors or attributes are needed in a model to 

reflect the real meaning of the quasi-utility (8-9, 21). 
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Derivation of Ouasi-Utilities 

The central feature of the quasi-utility models used in this study combined an 

information content calculation with a cost factor and then provided a rank -ordering of the 

alternative patient findings according to cost-effectiveness. The "information content" 

model in the current version of iliad is 

Utility = prob x information gain 
dollar charge of a [mding 

information gain = max {( sen ), ( 1 - sen ) } 
1 - spec spec 

(1-3) 

(1-4) 

where prob = the prior probability of the frame being true (Le., before obtaining the 

item of information), sen true positive rate, spec = true negative rate. In terms of 

dollar charge of a finding, for history items the charge was set to an arbitrarily low 

value as $1, physical exam items $2; lab test procedures were the actual charges at the 

University of Utah Hospital Center. 

Information gain is used interchangeably with information content in this dissertation. 

However, the author wants to make a finer point about these two terms. Information 

content in information theoretic sense is the uncertainty difference before and after a 

message is obtained. In the case of the current iliad model, the information measurement is 

not based on the uncertainty difference. For the simplicity of discussion, the term 

"information content" will be used for all kinds of information measurement models. 

The current Iliad model selects the finding with the maximum utility based on 

likelihood ratios and identifies the corresponding hypothesis for which the finding is 

relevant. The current algorithm was developed and refined to provide adequate results 

with reasonable computational speed. It has the advantage that the parameters required are 

easily accessible from iliad's knowledge base. In addition, a minimum of calculation is 

required. 
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In this study, four new information content models are introduced (22-24). Two 

models are derived based on information theory, and two are based on ad hoc approaches. 

The derivation of the four new information content models is introduced next. 

Two Information Content Models from Information Theory 

One key assumption of information theory is that a message is not significant by 

itself. Rather the information in a message depends on the extent to which it resolves 

uncertainty. Another key assumption is that information conveyed by a series of messages 

is additive. iliad's approach to the process of pursuing a group of diagnostic hypotheses is 

based on the assumption that the amount of diagnostic uncertainty in a case can be reduced 

by obtaining additional patient findings. The information provided by the patient findings 

can be measured quantitatively as the change in the level of uncertainty associated with a 

particular disease. One equation for measuring the uncertainty, H in "bits," is given by 

H = -10g2P (1-5) 

This equation implies that uncertainty of disease is a function of the probability that the 

disease is present. Johnson used -H to represent the deficit of information (25). If the 

initial probability of a disease is P, the associated uncertainty is H bits of information. In 

order to conclude a disease, most of those H bits of uncertainty have to be removed. The 

information provided by a diagnostic observation or test is the difference between the 

diagnostic uncertainty on hand before the finding is known and the uncertainty after the 

finding is known. This difference (MI) can be expressed as 

~H = 10g2P(DIF) - log2P(D) (1-6) 

where P(DIF) is the posterior probability of the disease after the test is performed, and P(D) 

is the prior probability of the disease before the test is peIformed. If information content 

provided by a finding is always a positive number, then the information content I(F) 

provided by a finding whose result is F (either positive or negative) can be expressed as 

I(F) = abs (~H) 0-7) 
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Eq. [1-7] represents the "10gP2-logP1" model, and the algorithm derived from it will be 

called the 10gP2-logP1 algorithm. This model calculates infonnation contribution from the 

posterior disease probability and prior disease probability only. It does not take into 

account of the nondisease probabilities before and after a finding is known. 

Another model from the information theory can be derived by using the average 

amount of uncertainty or "entropy" defined by Shannon. If there are a set of mutually 

exclusive probabilistic events (such as the presence and absence of a disease, or a group of 

mutually exclusive diseases) and if the events are denoted as Di and the prior probability by 

P(Dj), the uncertainty can be described by the following equation: 

H(D) = -~ P(D.) log P(D.) L 1 2 1 
i 

(1-8) 

where H(D) represents the uncertainty or entropy and D is the set of Dj's. In this study Dj 

represents either the presence or absence of a disease. Eq. [1-8] becomes the same as eq. 

[1-2]. The infonnation conveyed about D by F (either positive or negative): 

I(F) = abs (H(D) - H(DIF» (1-9) 

The use of eq. [1-9] requires an appreciation of uncertainty as the function of the 

prior probability of disease. The standard Shannon model fails to capture reasonable 

intuitions about the quantity of information provided by a diagnostic finding (26). For 

example, when the prior and the posterior probabilities are complementary (e.g., the prior 

is 0.1, the posterior is 0.9), the finding provides no change in uncertainty, and thus no 

infonnation has been conveyed. To overcome the limitations of eq. [1-8], the modified 

Shannon's information content model is used (27). It is known that the maximum 

uncertainty in a system exists when the probabilities of each possible event are equal. If the 

function H(D) passes through a maximum when the hypothesis moves from the prior state 

to the posterior state, the information contributed by finding F (either positive or negative) 

can be measured by 

I(F) = (Hmax - H(D» +(Hmax - H(DIF» (1-10) 
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where Hmax represents the value of H(D) at the maximum between the two states. If D 

represent the mutually exclusive probabilistic events: presence and absence of a disease and 

substituting disease status P(D) = 0.5 and nondisease status P(D-) = 0.5 in eq. [1-8], it can 

be seen that Hmax = 1 (bit). 

If the function H(D) does not pass through the maximum Hmax due to the change of 

disease status (e.g., the prior and the posterior of the disease are both either greater than 

0.5 or less than 0.5), I(F) still follows eq. [1-9]. Eq. [1-9] and [1-10] together serve as the 

second model of measuring information resulted from a finding F (either positive or 

negative). This approach is the "modified Shannon" model, and the corresponding 

algorithm will be called the modified Shannon algorithm. 

Two Information Content Models from Ad Hoc Approach 

The model called "linear information theory" measures information by linear change 

of the probability of disease (26). Warner used this approach to measure information 

content provided by different medical findings and to help selecting the next questions to 

present (28). The uncertainty representation here is the probability of a disease. The 

information content of a finding F (either positive or negative) can be expressed as 

I(F) = abs (P(DIF) - P(D)) (1-11) 

where P(DIF) is the posterior probability of disease D, P(D) is the prior probability of 

disease D. This third model for measuring information content is called "p2-Pl" model, 

and the corresponding algorithm will be called the P2-Pl algorithm. 

Another model is called "weight of evidence" (29-30). Medical experts do not 

always seek clinical data based on a global view of the differential diagnostic set. Under 

certain circumstances, they focus on a single diagnostic possibility and choose which 

information to seek in this context Weight of evidence considers information in terms of 

its effect on the likelihood of a specific disease. The weight of evidence contributed by a 

finding F (either positive or negative) for a disease Dis: 



W(DIF) = log P(FI~) 
2 P(FID) 

(1-12) 
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where W(DIF) measures the contribution of a finding result F to the diagnosis of a specific 

disease D as opposed to the alternate condition D. This model is called "LogLR" model, 

where LR stands for the likelihood ratio. The current Iliad model is actually a LR model. 

These two models ignore the prior probability of the disease and depend only on the 

sensitivity and specificity of a medical finding. Whether one uses the LogLR or the LR 

model should not make any difference in terms of ranking information value per se. 

However, the ranking in Iliad's best infonnation algorithm is based on the information per 

dollar charge. The LogLR model is more sensitive to dollar charge because of the 

logarithm function. In addition, it should be noted that LogLR is additive and LR is not. 

Expected Information Content Provided by a Finding 

The derivation of different information content models above is all based on the 

assumption that the result of a finding F is known. A known result finding means (1) the 

result of presence or absence of a finding is known, such as cough. The result "cough 

present" or "cough absent" is a known result, (2) the value result of a finding is known 

such as CBC. The value result can be either normal or abnormal. The expected 

information content provided by a medical finding can be defined as the weighted average 

information content contributed by two possible states (e.g., present and absent). If the 

information provided by a positive finding is expressed as I(F+) and the information 

provided by a negative finding is I(F-), then the expected infonnation provided by the 

finding is 

Expected I(F) = P(F+) I(F+) + P(F-) I(F-) (1-13) 

where P(F+) and P(F-) are the frequencies of the positive finding F+ and the negative 

'finding F- respectively. I(F+) and I(F-) can be obtained by applying one of these 

information content models discussed above. The frequency of the positive finding F+ is 
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calculated as 

P(F+) = P(F+ID) P(D) + P(F+ID) P(D) (1-14) 

P(F+) depends on the probability of the disease D, true positive rate of the finding F for D 

and the false positive rate of the finding F for D. Because the sum of P(F+) and P(F-) is 

unity, P(F-) = 1 - P(F+). 

Strate~ies to Make Dia~nostic Decisions Based on Quasi-Utilities 

Decision Criteria 

Selecting a most cost-effective medical finding to ask at any stage of work-up is the 

process of ranking each finding's cost-effectiveness based on their utility values. How are 

alternative findings evaluated? There are several methods to assign utility values to medical 

findings. The fundamental decision rule of formal decision analysis is the principle of 

maximizing expected utility. If the utility score of a finding's positive result is U (F+) and 

the utility score of a negative result is U (F-), the expected utility score of the finding is the 

weighted average of U(F+) and U(F-) based on frequency of the finding. There are other 

variations of expected utility criterion (31-33). 

Maximax 

This is an optimistic decision rule which uses maximum utility that can possibly be 

obtained. In the context of this study, the larger utility score between U (F+) and U (F-) 

will be assigned to represent the finding's cost-effectiveness to be compared with other 

findings. 

Maximin 

This criterion, in contrast, is a pessimistic rule which uses the utility value that can be 

assured first and then selects the maximum utility value among those assured values. This 

means that the less utility value between U (F+) and U (F-) will be assigned to represent the 

finding's cost-effectiveness to be compared with other findings. 
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Hruwicz Criterion 

This decision rule is the combination of maximax and maximin criteria. It requires 

the decision maker to choose a "pessimism-optimism coefficient" and to compute a 

weighted combination of worst and best outcomes. The approach is not widely used 

because it is difficult to implement 

There are other criteria that can be used to describe decision making under risk such 

as minimax, minimin. In this study only two criteria were used and compared. One was 

the aggressive approach, maximax, which is currently being used by Iliad; another was the 

conservative approach, maximizing expected utility. The expected approach could be 

considered as a normative model, and the maximax approach could be considered as a 

descriptive model. There is a distinction between a descriptive and normative approach 

(32-33). The normative approach describes what a rational decision maker should do most 

of time. The descriptive approach describes how people in fact (rationally or not) make 

decisions. The two models are different, but they can agree with each other. For example, 

the normative model is widely accepted as a descriptive model to describe economic 

behavior (34-35). 

Two Strategies 

There are two ways to link medical findings and diseases: 

(1) Single-frame strategy: consider findings within the context of each individual 

disease frame. 

(2) Across-frame strategy: consider the information that a single finding could 

provide across several diseases. 

Currently Iliad uses the single-frame strategy. One of this study's objectives was to 

. consider a new strategy, the across-frame strategy, and compare the performance of 

different information content models under the two strategies. 
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Single-frame Strategy 

This strategy evaluates the relative cost-effectiveness of each medical finding within 

each separate disease frame. Iliad is a frame-based expert system. Suppose there are 

findings F 1, F2, F3, ... , Fn contained in a disease frame shown in Table 1. The actual 

frame is usually more complex than one shown here. An Iliad's frame can contain 

findings, clusters, and other frames. The nested frame can be more than 10 levels deep. 

Assume all the findings listed in Table 1 are not yet answered. Quasi-utility values can be 

calculated for each finding's positive and negative results respectively based on cost factors 

and different information content models. Iliad currently uses the optimistic approach, 

maximax, to rank cost-effectiveness of these findings. Under the maximax approach, Iliad 

first compares the utility scores between the positive and negative results for each finding 

and chooses the larger one to represent the utility score for that particular finding; second 

Iliad compares all the better findings and selects the fmding with the maximum utility score. 

If there are multiple diseases being considered, Iliad compares the best from each disease 

frame and chooses the best among the best ones. The procedure of applying the single

frame strategy under the expected utility rule is identical to the one described above. 

Table 1. Summary of the Single-frame Strategy. 
(Quasi-utility values, information content/cost, for 

all fmdings 'in a disease frame) 

Finding positive result negative result 

Fl ul+ u1-

F2 u2+ u2-

Fn un+ un-
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Across-frame Strategy. 

This strategy reflects the combined information provided by a medical finding to a 

group of hypotheses (see Table 2). It considers the information that a single finding could 

provide across several diseases. Suppose there are several hypotheses being considered, 

D l , D2, ... , Dm' All the medical findings not yet known in those disease frames are 

represented by Fl , F2, ... , Fk. Positive results are represented by Fl +, F2 + , ... , Fk +. 

Negative results are represented by Fl -, F2-, ... , Fk-. The ranking of cost-effectiveness of 

each finding is fundamentally different here. Suppose the decision rule is maximax. Take 

finding Fl as an example, the utility value of Fl to Dl is represented by the larger value of 

the positive and negative utility scores, max(ull' ul1'). The total utility score of Fl is the 

summation of utility values to D1, D2, ... , Dm' If Fl has nothing to do with a particular 

disease, the score will be O. Under this strategy, certain findings may not be cost-effective 

within a context of a single disease frame, but they may be most-effective overall in the 

context of all the hypotheses being considered. 

Dl 

~ ul1 

F+ 
2 U21 

F+ 
k Ukl 

Table 2. Summary of the Across-frame Strategy. 
(Quasi-utility values, information content/cost, for all 

findings in multiple disease frames) 

positive result ne ~ative result 

D2 ... Dm Dl D2 ... 

u12 ulm F - , , ... 1 U 11 U 12 . .. 

U22 U2m 
F - I 

U'22 ... 2 U 21 ... 

Uk2 Ukm F - U'kl U'k2 ... k . .. 

Om 

u'lm 

U'2m 

U'km 
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An Example to Apply Two Strategies 

Suppose hypotheses under consideration are pulmonary embolus and atypical 

pneumonia. Also suppose three unanswered questions exist for each disease frame, as 

shown in Table 3. 

The approach for this scenario by the single-frame strategy is as follows: 

(1) Calculate information content per dollar of each finding within each disease 

frame. 

(2) Rank. the cost-effectiveness of each finding in the Atypical Pneumonia frame 

and the Pulmonary Embolus frame separately. 

(3) Select the finding that receives the highest of the six scores. 

The approach by the across-frame strategy is as follows: 

(1) Calculate infonnation content per dollar of each finding for each disease frame. 

(2) Sum across the infonnation per dollar for the "common" findings, respiratory 

rate, and the chest x-ray, across the two hypotheses. 

(3) Select the finding that receives the highest of four scores. 

Table 3. A Scenario of Considering Two Hypotheses under Two Strategies 

Atypical Pnewnonia Pulmonary Embolus 

present history: cough with present history: cough with gross 

purulent sputum hemoptysis 

vital signs: respiratory rate vital signs: respiratory rate 

chest x-ray shows alveolar chest x-ray shows alveolar 

infiltrate infiltrate 
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Significance of the Study 

The quasi-utility model in this study represents an estimate of the information per 

dollar available for each medical finding. The critical part of the model is the measure of 

information contribution provided by a finding. By investigating the performance of 

different information content models, it was expected to find a best information content 

model that would improve the behavior of Iliad's consultation mode and make Iliad a more 

accurate model of expert behavior. Application of a well-developed best information 

algorithm has at least the following potentials: 

(1) allow Iliad's test mode to better discriminate among students and physicians 

with different levels of expertise, 

(2) improve the quality of education with the use of Iliad through providing high 

quality advice, 

(3) serve as a diagnostic assistant to physicians, 

(4) serve as a tool to measure cost-effectiveness of physician's work-up 

retrospectively. 

The study of characteristics of different information content models will help to 

design a model that can incorporate specific needs of Iliad at different stages of work-up. 

Knowing why different information content models are different at different stages of a 

work-up will serve as a guide to identify advantages and disadvantages of potential 

information content models and therefore to predict behaviors of those models. Early 

rejections of inferior approaches could save time and effort for later improvement of Iliad's 

best information algorithm. The investigation of strategies to apply the quasi-utility model 

in diagnostic problems can further create a new dimension to improve the performance of 

Iliad's best information algorithm. 

This study will also help to identify the relationship between different information 

content models and the cost factor. Some quasi-utility models may be more sensitive to the 

cost factor, and some may be less sensitive. 
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The performance of an information content model depends not only on the 

characteristics of the model itself but also on lliad's ability to generate accurate differential 

diagnoses. The demonstration of usefulness of Iliad's best information mode may help 

drive further efforts to improve lliad's diagnostic engine. 



MA THEMA TICAL :METI-IODS 

Probabilistic Inference by iliad 

The data elements in an Iliad frame are divided into the following categories: (1) 

findings with yes or no answers ("shortness of breath," "chest pain") or with value 

answers (e.g., heart rate, white blood count), (2) intennediate concepts that are themselves 

represented by frames ("sympathetic reaction to stress," "hypovolemia"), (3) a disease 

frame that can help rule in or rule out the top level disease. There are three kinds of frames 

in Iliad knowledge base, Bayesean frame, Boolean frame, and Value frame. Figure 1, 2 

and 3 show examples of each these frames. A top-level diagnostic disease is represented 

by either a Bayesean frame or a Boolean (also called deterministic or rule-based) frames. 

The value frame is specifically designed to represent a certain concept or a value that 

requires multiple elements to determine. A value frame has only two states, true or false 

(see examples in Figure 3). A value frame can contribute information to the upper level 

frame only if each element in the frame is known. In contrast, both Bayesean and Boolean 

frames can be partially true or false depending available information. The posterior 

probability is used to represent the likelihood status of a Bayesean frame. A pair of 

pseudo-probabilities generated by a heuristic algorithm is used to represent the likelihood 

status of a Boolean frame. Iliad's ability to generate a differential diagnosis list (a 

probability list of diseases) given patient findings is the basis for generating cost-effective 

suggestions, because the best information algorithm requires the updated differential 

diagnoses to identify most likely diseases and also to determine partial information 

'provided by a finding to a disease through one or more intermediate disease 

frames. Understanding the probability inference mechanism of Iliad is the first step to 



Disease: ARDS (adult respiratory distress syndrome) 
• Prevalence: I in 1,000 for statistics in "iliad's inpatient" a priori table. 
• Posterior Probability: 0.0 

FINDINGS: 

• Blood gas pattern of ARDS 

--- or ---

• Hypoxemia 

·Status 
·Cost 

Vital signs: respiratory rate is === per minute (12 - 20) 
o 21 

21 -- 41 

> 41 

Chest auscultation: crackles that are fme rales 
(velcro) diffuse and bilateral 

(9.90) 

• Minimally scattered consolidation by CXR 

--- or ---
• Diffuse bilateral consolidation by CXR 

• Risk factors for ARDS 

History of present illness: shortness of breath (dyspnea) 
at rest with recent onset 

Swan-Ganz (right heart catheterization) 
pulmonary capillary wedge pressure is === 
mmHg, mean (5 - 13) 

if> 15 

$650 

·TPR 
• FPR 

0.99 
0.001 

0.99 
0.10 

0.10 
0.90 

0.24 
0.05 

0.75 
0.001 

0.90 

0.10 
0.005 

0.90 
0.04 

0.99 
0.05 

0.95 
0.05 

0.001 
0.025 

·LR+ 
·LR-
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989 
(99.9) 

9.90 
(90.0) 

(90.0) 
(n/a) 

4.80 
(n/a) 

749 
(n/a) 

90.0 
0.01 

20.0 
(1.10) 

22.5 
(9.60) 

19.8 
(95.0) 

19.0 
(19.0) 

(25.0) 
1.02 

TPR (True Positive Rate) = Sensitivity; FPR (False Positive Rate) = 1 - Specificity; 
Cost = hospital charge (in most cases); (n/a) = not applicable; 
LR+ = likelihood ratio for the positive result; LR- = likelihood ratio for the negative result; 
• = the following item is a nested frame. 

Figure 1. A sample Bayesean frame. 



Disease: Blood gas pattern of ARDS 
- Closeness to true: 0.0; -Closeness to false: 0.0 

FINDINGS: -Status 

A. Blood gases on high-flow (> 5 L/min) 
supplemental oxygen arterial p02 is === mmHg (>80) 

B. Blood gases arterial pC02 is === mmHg 
(35 - 42) 

C. Blood gases arterial p02 is === mmHg 
(60 - 80) 

True if: A <= 50 and B < 40 and C < 50 

Figure 2. A sample Boolean frame. 

Disease: Predicted minus measured DLCO (mL/min/rnmHg) 
Value is: 0.0 

FINDINGS: 

A. -Predicted DLCO (mL/min/mmHg) 

B. Lung diffusion testing single breath 
DLCO is === mL/min/mmHg ( > 30) 

Value if: (A > 0 and B > 0) then A - B 

Disease: Predicted DLCO (mL/min/mmHg) 
Value is: 0.0 

FINDINGS: 

-Status 

-Status 

A. General appearance: Height is == inches (59 - 79) 

B. General infonnation: Age is === years 

C. General infonnation: Sex: male 

Value if: (C) then 1.04 * A - 0.21 * B - 26.31 

Figure 3. Sample value frames. 

-Frequency -Cost 

0.25 $163 

0.025 $51 

0.025 $51 

-Frequency -Cost 

0.025 

0.10 $28 

-Frequency -Cost 

0.025 

0.026 

0.542 

24 
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implement different quasi-utility models into iliad. 

Bayesean Frame Inference 

IT a test finding is denoted as F (presence or absence), the presence of disease is D; 

the absence of disease is D-. The joint probability of disease present and test is 

P[F, D] = P[FID] P[D] (2-1) 

P[FID] is the probability of F given D. The joint probability of disease absent and test is 

P[F, D-] = P[FID-] P[D-] (2-2) 

P[FID-] is the probability of F given D-. The probability of F can be expressed as 

P[F] = P[F, D] + P[F, D-] (2-3) 

Let P[DIF] denote the conditional probability of disease given the test finding F as P[DIF], 

the Bayes' Theorem is expressed as 

P[D] P[FID] 
P[DIF] = P[D] P[FID] + P[D-] P[FID-] (2-4) 

IT F is positive, P[FID] is the true positive rate, sensitivity; P[FI-D] is the false positive rate, 

1- specificity. If F is negative, P[FID] is the false negative rate, I-sensitivity; P[FI-D] is 

the true negative rate, specificity. Based on eq. [2-4], the likelihood ratio LR for F is 

LR = P[FID] 
P[FID-] (2-5) 

If F is positive, LR is the ratio of true positive rate to the false positive rate, LR + = 

sensitivity / ( 1 - specificity). IT F is negative, LR is the ratio of false negative rate to the 

true negative rate, LR- = (1 - sensitivity) / specificity. 

Eq. [2-4] is used to revise the posterior probability of disease given a finding. Iliad 

uses the equation sequentially to update the posterior probability of disease given multiple 

findings. 

Data elements in a Bayesean frame consist of not only findings but also nested 

frames. Their status are represented by probability (Bayesean frames) or a pair of pseudo-

probability (Boolean frames). To update the top-level disease probability given partially 
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true or false status of a nested frame, a modified version of Bayes' formula is used by iliad: 

a b 
P[DIFrame Status (a, b)] = P[D] (sen) (1-sen) 

P[D] (sen/ (l-sen)b + (l - P[D]) (l-spec)a (spec)b (2-6) 

Frame status (a, b) denotes that the positive status of the frame is "a" and the negative 

status of the frame is lib." For a nested Bayesean frame, if AP is the a priori probability of 

the frame and P is the posterior probability of the frame after a finding is known, then a and 

b are calculated as follows (3): 

ifP > AP 

ifP <AP 

a = (P - AP) / ( 1 - AP), b = 0 

a = 0, b = (AP - P) / AP 

Note that AP is the a priori probability of a Bayesean frame; in almost all Bayesean frames, 

AP is close to O. Other notations are sen = sensitivity of the nested frame to the upper level 

frame and spec = specificity of the nested frame to the upper level frame. For example, the 

answer of a finding in a nested frame revises the status of the nested frame to (a, b); the top 

level disease probability is updated by eq. [2-6]. This revision of probability is usually 

done sequentially because disease frames in Iliad knowledge base often have multiple 

levels. Currently Iliad assigns the square root of a and the square root of b as the 

exponents to adjust the dependence of P[DIFrame Status] on sensitivity and specificity to 

behave closer to expert performance as new information is propagated to a top-level frame. 

Boolean Frame Inference 

A Boolean frame is designed as a decision module built around a Boolean relationship 

among its findings. Anyone or some combination of findings in the frame may be 

sufficient for the frame to come true or false. When there is not enough information to 

make the frame true, a pair of pseudo-probability numbers, close_true and close_false, is 

,used to express the true state and false state of the Boolean frame respectively. For 

example, if the logic of a Boolean frame is "true if 3 of (A, B, C, D) are true," and assume 

A and B are true, C is false, D is unknown, and each item in the logic has the same 
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frequency. If only one item is true and other items are unknown in the logic, there is 1/3 of 

what is needed to be true. Since A and B are true, close_true = 0.67 (2/3). The negative 

logic (derived from the "true" logic) in this example is "false if 2 of (A, B, C, D) are false." 

The calculation of close_false is similar to close_true. Here C is false; there is 1/2 of what 

is needed to be false, so close_false = 0.50. 

When items in the logic have different frequencies, normalization is needed to 

calculate close_true and close_false. For example, if the frequency of A and B is 0.5 and 

the frequency of C and Dis 0.25, A and B both carry weighting factor of 2 (1/0.5), and C 

and D both carry weighting factor of 4 (1/0.25). If only A and B are true, the positive 

status of the Boolean frame is 0.50 (4/8). 

A more detailed discussion about Boolean frame inference was given by Sorenson 

(3). 

The Current Best Wonnation Searching Algorithm 

The critical part of searching the most cost-effective finding to acquire next is to 

determine the infonnation content of the potential findings. The cost factor of each finding 

is fixed and readily available from the Iliad knowledge base. The current best information 

searching algorithm is a fairly complex recursive process. The idea is to find the most cost

effective finding based on the maximax criterion. The algorithm is described as follows: 

(1) Identify the hypothesis being pursued and determine the type of the disease frame 

being considered. If the disease frame is a Baysean frame, Iliad compares the positive 

likelihood ratio to the negative likelihood ratio for each unanswered item contained in 

the top-level frame and uses the larger likelihood ratio value as the information content 

of that item. The word "item" here represents either a direct observation or test result 

or the result of processing a nested frame. If an item is a nested frame, the probability 

or pseudo-probability of 0.99 is the threshold to determine whether the item is 

answered or not and the charge of the item is set to be $1 temporarily. No calculation 
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is done for items contained in nested frames at this point. If the disease frame being 

considered is a Boolean frame, Iliad detemrines the information for each item as 

follows: 

Info_true = (close_true after item - close_true before item)/ 
(close_true before item) 

or 

Info_false = (close_false after item - close_false before item)/ 
(close_false before item) 

(2-7) 

(2-8) 

Info_true and Info_false are infonnation contents provided by true and false result of an 

item respectively; close_true and close_false are the positive and negative status of the 

Boolean frame, and they can be generated by Iliad based on the Boolean frame 

inference. Again Iliad uses the larger value of Info_true and Info_false as the 

information content for each item in a Boolean frame; no calculation is done for items 

contained in nested frames at this point. 

(2) Determine the utility scores of each item in the top-level disease frame and rank all 

items in the top-level disease frame. Identify the best item in the top-level disease 

frame. If the top item is a nonnal finding (not a nested frame), then stop the search. If 

the top item is a nested frame, then go down the ranking list until a normal finding is 

found and record the utility score of the finding. This finding will be referred as a 

"recorded finding." Each nested frame on the top of the ranking list (higher than the 

recorded finding) is referred as "recorded nested frame." If every item in the ranking 

list is a nested frame, then record nothing. 

(3) Find the "best" item in the first recorded nested frame by repeating step 1 and 

determine the utility score of this "best" item to the top-level disease frame. The utility 

score is calculated based on partial information provided by the item to the top-level 

disease frame and the charge of the item. The method of determining partial 

information will be discussed in the next section. 

(4) Compare the best item from the first nested frame to the recorded finding in the top-
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level frame. If the best item in the first nested frame is better than the recorded 

finding, then check whether this best item is still a nested frame. If this best item is a 

normal finding, then compare it to the recorded finding and select a better one as the 

new recorded finding. If this best item is still a nested frame, then decide whether to 

continue the calculation. To justify further calculation, the utility score of this best 

item has to be greater than the score of recorded finding; otherwise just stop the 

calculation, go to the second recorded nested frame and repeat step 3 and 4. 

(5) Go through the above steps recursively until all the recorded nested frames are 

processed. Because the recorded finding is always replaced by the best finding 

available, the final recorded finding is the most cost-effective finding in the top-level 

disease frame. 

(6) Repeat step 1 to step 5 for each hypothesis being considered. The utility score of the 

best finding in each hypothesis frame is adjusted by multiplying the probability or 

pseudo-probability of that disease. After adjusting utility scores for each "best" 

finding for each hypothesis being considered, the finding with the maximum adjusted 

utility score is chosen as the best information to acquire next. The corresponding 

hypothesis is also identified. 

(7) Suggest the hypothesis to pursue and the best finding to acquire next. iliad usually 

suggests multiple "best findings" from the identified hypothesis disease frame. This is 

because that any finding whose utility score is within certain range (current range: 

500/0) of the maximum score is suggested together with the best item to make more 

alternatives available. 

The advantage of the current searching method is its fast computational speed, 

because the method eliminates unnecessary calculations for findings whose utility scores 

are less competitive. The current searching method is specifically designed for the LR 

(likelihood ratio) model under the single-frame strategy_ However there is a danger to 

ignore a potentially overall best finding when the objective is to find a best finding that 
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provides the maximum information to multiple diseases at the least cost (the across-frame 

strategy). The overall best finding for a group of diseases may not be the best finding for 

each individual disease. To overcome the limitation of the current searching method, a 

more generic searching method was designed and will be discussed later in this chapter. 

Partial Information Passinf! Methods 

Iliad uses frames to represent the relationship among findings and diseases. The 

linkage between a finding and a disease is usually through one or more intermediate 

frames. To obtain information content provided by a finding in a intermediate frame, Iliad 

currently uses the following method to achieve hierarchical propagation of information 

content. 

If a top level decision frame is a Bayesean frame, information content is measured by 

likelihood ratio. Assume the disease frame is "Frame A. II A finding "Ft! is in a 

intermediate frame "Frame B." The linkage between F and Frame A is F -> FrameB -> 

Frame A. The linkage between Frame B and Frame A in terms of likelihood ratio is already 

known by Iliad; let the positive likelihood ratio (given Frame B is true) be LR+B_>A' and let 

the negative likelihood ratio (given Frame B is false) be LR-B_>A' The question is how 

much likelihood ratio value finding F contributes to Frame A. The following rules are 

currently used to determine the partial information LR+p_>A (if F is positive) and LR-p_>A (if 

F is negative), 

If Frame B is a Baysean frame: 

if (close_true[BIF+] > close_true[BD 

LR+p_>A = (close_true[BIF+] - close_true[BD x LR+B_>N'O - close_true[BD 

else 

LR+p_>A = 0 

if (close_true[B] > close_true [BIF-D 

LR-p_>A = (close_true[B] - close_true [BIF-D X LR-B_>A/(close_true[B] ) 
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else 

LR-p_>A = 0 

If Frame B is a Boolean frame: 

if (close_true[BIF+] > close_true[BD 

LR+F_>A = (close_true[BIF+] - close_true[BD X LR+B_>A/(l - close_true[BD 

else 

LR+F_>A = 0 

if (close_false[BIF-] > close_false [BD 

LR-p_>A = (close_false[BIF-] - close_false [BD X LR-B_>A/(1 - close_false[B] ) 

else 

LR-F_>A = 0 

Note that only close_true is used to describe a Bayesean frame status, and close_false 

is not needed; close_true for a Bayesean frame is defmed as 

If (P > AP) close_true = (P - AP) I ( 1 - AP) 

If (P < AP) close_true = 0 

P represents the posterior probability of a Bayesean frame after a finding is known; AP 

represents the a priori probability. Note AP is not the prevalent probability of the Bayesean 

frame before the finding is known. For Boolean frames, close_true and close_false are 

generated by Iliad Boolean logic inference. In the rules of partial information passing 

described above, close_true[BIF+] and close_true [BIF-] represent the true status of Frame 

B given F is positive and negative respectively; close_true[B] is the true status of Frame B 

before the result of F (either positive or negative) is known; close_false[BIF-] represents 

the false status of Frame B(in case Frame B is a Boolean frame) given F is negative; 

close_false[B] represents the false status of Frame B (in case Frame B is a Boolean frame) 

before the result of F is obtained. 

If a top-level decision frame is a Boolean frame, partial information content is 
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measured by eq. [2-7] and [2-8]. 

This current method of partial information passing was developed empirically. In the 

case that a finding links to a Bayesean frame through an intermediate frame, the assumption 

is that "equivalent likelihood ratio" (partial information) provided by the finding is 

proportional to the finding's ability to make the intermediate frame closer to be true or 

closer to be false. In the case that a finding links to a Boolean frame through an 

intermediate frame, the partial information is measured by the finding's ability making the 

top-level disease frame closer to be true or closer to be false. If there are multiple 

intermediate frames, Iliad determines partial information by using the modified Bayes 

formula (eq. [2-6]) or the Boolean inference logic inference sequentially and then uses the 

rules of partial information passing method described above. 

The current partial information passing method is designed for pursuing best 

information under single-frame strategy. It is not suitable for pursuing best information 

under across-frame strategy, because the current method uses two utility scales to measure 

information (likelihood ratio in a Bayesean frame, how close to being true or false in a 

Boolean frame) and it is counter intuitive to sum across two different information 

measurement scales together. Even though there are few top level Boolean disease frames 

in the Iliad knowledge base, a more generic method of passing information is needed. The 

new method to pass information to both Baysean and Boolean frames is therefore 

developed and will be described next. For the convenience of discussion, the method 

described above will be referred as "partial information passing method I." 

The new method of passing information is based on the mathematical definition of 

likelihood ratio. Given any finding in a disease frame, Iliad can generate a posterior 

probability or a pseudo-probability for the disease. Based on Bayes equation, the 

likelihood ratio can be calculated from the prior probability before the finding is obtained 

and the posterior probability after the finding is obtained. If a finding does not link to the 

top disease frame directly, the calculated likelihood ratios (LR+ and LR-) can be considered 
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as "equivalent" likelihood values. The new method of determining partial information 

provided by a finding to a top disease frame through one or more intermediate frames can 

be described as the following equations: 

IT top disease frame is a Bayesean frame, 

LR+ = 1 - P(D) P(DIF+) 
P(D) 1 - P(DIF+) 

LR- = 1 - P(D) P(DIF-) 
P(D) 1 - P(DIF-) 

IT top disease frame is a Boolean frame, 

(2- 9) 

(2-10) 

if [close_true (DIF+) > close_true (D)] or [close_true (DIF+) < close_true (D)] 

LR+ = 1 - close_true (D) close_true (DIF+) 
close_true (0) I - close_true (DIF+) 

LR- = 1 - close_false (D) close_false(DIF-) 
close_false (D) 1 - close_false (DIF-) 

(2-11) 

(2-12) 

else if [close_true (DIF-) > close_true (D)] or [close_true (DIF-) < close_true (D)] 

LR+ = 1 - close_true (D) close_true (DIF-) 
close_true (D) 1 - close_true (DIF-) 

LR- = 1 - close_false (D) close_false (DIF+) 
close_false (D) 1 - close_false (DIF+) 

else LR+ = LR- = 0 

(2-13) 

(2-14) 

When a top-level disease frame is a Baysean frame, P(D) is the prior probability of 

the top-level disease before finding F is obtained. P(DIF+) and P(DIF-) are the posterior 

probabilities of the top-level disease given finding F is positive and negative respectively. 

When a top-level disease frame is a Boolean frame, a pair of pseudoprobability 

(close_true(D), close_false(D» is used to describe the prior status of the disease. IT the 

positive status of the disease D changes given F is positive, eq. [2-11] and [2-12] indicate 

that the pseudolikelibood ratio can be calculated by close_true(D) and close_true(DIF+) and 

the pseudolikelihood ratio for the negative finding can be calculated by close_false(D) and 

close_false(DIF-). If the true status of the disease D changes given F is negative, the 
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derivation is similar to the one if F is positive. If the true status of the disease D does not 

change regardless of positive F and negative F, pseudolikelihood ratio values for both F+ 

and F- are zero. 

This new partial information passing method will be referred as "partial information 

passing mechanism II." Both partial information passing mechanisms are designed for 

implementing LR and Log LR information content models and both mechanisms use 

approximate measures to estimated likelihood ratio values for findings that are not directly 

linked to the top disease frame. The partial information passing mechanism I is acceptable 

for LR and LogLR models under the single-frame strategy, but partial information passing 

mechanism II is more intuitive to be used for LR and LogLR models under the across

frame strategy. In the next chapter (EXPERIMENTS AND RESULTS) performance of 

different information content models by using both information passing methods will be 

presented. 

Expected Quasi-Utility Value from a Findin~ 

Let F represent the finding, F+ and F- represent the positive and negative result of F 

respectively. Let D represent the top-level disease. A general procedure of calculating 

expected quasi-utility value provided by F to D (either a Bayesean or Boolean disease 

frame) can be described as follows, 

if D is a Bayesean frame 

(1) calculate P(DIF+) and P(DIF-), 

(2) back calculate P(F+ID) and P(F+ID-) by using Bayes' equation, 

(3) calculate P(F+) and P(F-) by using P(F+ID), P(F+ID-) and P(D), 

(4) calculate quasi-utility values, U(F+) and U(F-), provided by both F+ and F-, 

(5) calculate expected quasi-utility value for F: P(F+)U(F+) + P(F-)U(F-). 

ifD is a Boolean frame 

(1) calculate quasi-utility values, U(F+) and U(F-), provided by both F+ and F-, 
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(2) calculate expected quasi-utility value for F: (U(F+) + U(F-»/2. 

When D is a Bayesean frame, P(F+) and P(F-) are calculated based on back-calculated 

sensitivity and specificity data plus the probability of D. This back -calculation can provide 

frequency estimates for findings that link either directly to D or through one or more 

intermediate frames. When D is a Boolean frame, proper values for P(F+) and P(F-) are 

very difficult to obtain, P(F+) and P(F-) are assumed to be 0.5 each. The expected quasi

utility value for F is the average of U(F+) and U(F-). The methods of obtaining quasi

utility values will be discussed next. 

Methods of Calculating Quasi-utility Values from Different 

Information Content Models 

The quasi-utility to measure cost-effectiveness of a medical finding in this study is the 

information content per dollar charge provided by the finding. There are different models 

of measuring information content. The following example will demonstrate methods of 

calculating quasi-utility values based on different information content models. 

Take two findings, Fl and F2, in Aortic Dissection Frame, for example: 

FI: Aortic angiography shows signs of aortal dissection or aneurysm. F2: 

Echocardiography shows aortic dissection. If D represents Aortic Dissection, the data 

below are obtained from the current Iliad knowledge base, 

Finding Sensitivity (F+ID) 1 - Specificity (F+ID-) 

FI 0.95 0.01 

F2 0.70 0.03 

Charge($) 

1500 

390 

Assume prior probability of D is 0.4, P(D) = 0.4. The question is what quasi-utility value 

each finding should be assigned at this particular stage of work-up. 

Quasi-utility Values Based on LR and LogLR Models 

For finding Fl, the positive likelihood ratio LR+ = 0.95/0.01 = 95; the negative 

likelihood ratio LR- = (1-0.95)/(1-0.01) = 0.0505. For finding F2, the positive likelihood 
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ratio LR+ = 0.70/0.03 = 23.3; the negative likelihood ratio LR- = (1-0.7)/(1-0.03) = 

0.309. Let I(F+) and I(F-) represent information content provided by a positive and a 

negative finding respectively. If LR model is used, I(F1 +) is 95, J(F1-) is 1/0.505 = 19.8 

(iliad uses the reciprocal value if a likelihood ratio is less than one), I(F2+) is 23.3, J(F2-) 

is 1/0.309 = 3.24. If LogLR model is used, the information content is the logarithm (base 

2) of likelihood ratio. Table 4 gives the quasi-utility (information content/cost) values. 

Under the maximax decision criterion, if LR model is used, iliad assigns quasi-utility 

value 0.0633 to F1 and assigns 0.0597 to F2; if LogLR model is used, iliad assigns quasi

utility value 0.00438 to F1 and assigns 0.0116 to F2. Note that F1 is considered to be 

more cost-effective than F2 under LR model and F2 is considered to be more cost-effective 

than F1 under LogLR model. This is because LogLR model is more sensitive to the cost 

factor. 

Under the expected utility decision criterion, the quasi-utility value of a finding is the 

weighted average of quasi-utility values from both the positive finding and the negative 

finding. Therefore a positive finding and a negative finding frequencies are needed to 

calculate the expected quasi-utility of a finding. In this example, let P(F1 +) and P(F1-) be 

the frequency of finding F1 given the positive result and the negative result respectively, 

P(F1+) = P(F1+ID) P(D) + P(F1+ID-) P(D-) = 0.95 x 0.4 + 0.01 x 0.6 = 0.386 

P(F1-) = I - P(FI+) = 1 - 0.386 = 0.614 

Table 4. Quasi-Utility Values Calculated Based on LR and LogLR Models 

Finding Result LRmodel LogLR model 

F1 positive 0.0633 0.00438 

F2 positive 0.0597 0.0116 

F1 negative 0.0132 0.00287 

F2 negative 0.00831 0.00435 
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The expected quasi-utility value of Fl based on LR model is: 0.386xO.0633 + 

0.614xO.0132 = 0.0325. The expected quasi-utility of Fl based on LogLR model is 

0.00345. By similar calculations, the expected quasi-utility value of F2 based on LR 

model is 0.0281 and the expected quasi-utility value of F2 based on LogLR model is 

0.00715. Note that under expected utility decision criterion, Fl is considered to be more 

cost-effective than F2 under the LR model, F2 is considered to be more cost-effective than 

Fl under the LogLR modeL 

Quasi-Utility Values Based on Modified Shannon, P2-P1 and 

LogP2-LogP1 Models 

Modified Shannon, P2-P1 and LogP2-LogP1 models measure information provided 

by a finding based on different models of representing uncertainty. All these three models 

depend on prior probability and posterior probability of the disease being considered. 

Because the charge for each finding is readily available in iliad knowledge base, for the 

simplicity of demonstration, only information content values are obtained in the following 

calculations. Take the same example described above; the prior probability of the disease is 

0.4, the posterior probabilities for various results F1 +, F 1-, F2+, and F2- can be calculated 

by the Bayes' equation. P(DIF1+) = 0.98, P(DIF1-) = 0.033; P(DIF2+) = 0.94, P(DIF2-) 

= 0.17. 

Modified Shannon Model 

The equation for uncertainty representation can be expressed by the following 

equation: 

if P(D) ::;; 0.5 

H(D) = -P(D)10g2P(D) - P(D-)10g2P(D-) 

if P(D) > 0.5 

H(D) = 2 + P(D)10g2P(D) + P(D-)10g2P(D-) 

(2-15) 

(2-16) 
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The above equations are equivalent to the equations introduced in the first chapter. Note 

that eq. [2-16] gives the entropy value if the entropy curve described by eq. [2-15] flips 

upward when P(D) > 0.5. Here, P(D) = 0.4, H(D) = 0.971; P(DIFl+) = 0.98, H(DIFl+) 

= 1.859; P(DIFl-) = 0.033, H(DIFI-) = 0.209. For FI, the information content of positive 

Fl is H(DIFI+) - H(D) = 1.859 - 0.971 = 0.888, the information content of negative Fl is 

IH(D1Fl-) - H(D)I = 10.209 - 0.9711 = 0.762. The frequencies of Fl+ and Fl- are 0.386 

and 0.614. The expected information content of Fl is 0.386xO.888 + 0.614xO.762 = 

0.811. By similar calculations, P(DIF2+) = 0.940, H(DIF2+) = 1.673; P(DIF2-) = 0.171, 

H(DIF2-) = 0.660; P(F2+) = 0.298, P(F2-) = 0.702. The information content of positive 

F2 is 0.702, the information content of negative F2 is 0.311, and the expected information 

content of F2 is 00428. 

P2-P1 Model 

For finding Fl, the information content of positive F1 is IP(DIF+) - P(D)I = 10.98 -

0.41 = 0.580, the information content of negative Fl is IP(DIF-) - P(D)I = 10.033 - 0.41 = 

0.367, and the expected information content of Fl is 0.386xO.580 + 0.614x 0.367 = 

0.449. For finding F2, the information content of positive F2 is IP(DIF2+) - P(D)I = 10.94 

- 0.41 = 0.54, the information content of negative F2 is lP(DIF2-) - P(D)I = 10.171 - 0.41 = 

0.229, and the expected information content of F2 is 0.298xO.54 + 0.702x0.229 = 0.322. 

LogP2-LogPI Model 

For finding Fl, the information content of positive Fl is llog2P(DIF1 +) - 10g2P(D)1 = 

llog20.98 - log20.41 = 1.293, the information content of negative Fl is llog2P(DIF1-) -

log2P(D)1 = llog20.033 - log20AI = 3.599, and the expected information content of F1 is 

0.386x1.293 + 0.614x 3.599 = 2.709. For finding F2, the information content of positive 

, F2 is llog2P(DIF2+) - log2P(D)1 = llog20.94 - log20.41 = 1.233, the information content of 

negative F2 is llog2P(DIF2-) - log2P(D)1 = Ilog20.171 - log20.41 = 1.226, and the expected 

information content of F2 is 0.298x1.233+ 0.702x1.226 = 1.228. 
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Information Provided by a Finding to Multiple Diseases 

There are two strategies to calculate information provided by a finding, a single

frame strategy and an across-frame strategy. The difference between the two strategies is 

whether the link between a finding and several hypotheses being considered is treated 

separately or simultaneously. Assume there are two hypotheses being considered, 

pneumonia and acute bronchitis. The probability of pneumonia is 0.4, the probability of 

acute bronchitis is 0.3. How much information does the finding "chest auscultation: 

crackles" provide according to single-frame strategy and across-frame strategy? The 

relationship among the finding and diseases is shown in Figure 4. For the purpose of 

demonstration, only the P2-P1 information content model and the expected utility decision 

criterion are applied to demonstrate the method of obtaining infonnation content values for 

the finding F (crackles) under both strategies. Quasi-utility values will not be calculated 

here because they are easily obtained after infonnation values are determined. Note the 

charge for "chest auscultation: crackles" is $2. Let D1 represent pneumonia, D2 represent 

acute bronchitis, and F represent crackles. Here, P(D1) = 0.4; P(D2) = 0.3. 

Single-frame Strategy 

Assume no findings have been answered in the "lung consolidation by PE" frame. 

According to Iliad, if chest auscultation with crackles presence, the status of "lung 

consolidation by PE" frame is (close_true = 0.183, close_false = 0); if chest auscultation 

with crackles is absent, the frame status becomes (close_true = 0, close_false = 0.3391). 

Based on the modified Bayes' formula, eq. [2-6], P(D1IF+) = 0.76, P(D1IF-) = 0.21; 

P(D2IF+) = 0.0082, P(D2IF-) = 0.31. Equivalent likelihood ratios of F to Dl and F to D2 

can be back calculated by Bayes' equation, LR+(F->D1) = 4.75, LR-(F->Dl) = 0.399, 

LR+(F->D2) = 0.0193, LR-(F->D2) = 1.048. Therefore equivalent sensitivities and 

specificities can be back calculated as P(F+ID1) = 0.656, P(F-IDI-) = 0.86, P(F+ID2) = 

0.0009, P(F-ID2-) = 0.953. Given P(Dl) = 0.4, the frequency of positive F is P(F+) = 



40 
Disease: Pneumonia 

FINDINGS TPR LR+ 
FPR LR-

• Lung consolidation by PE 0.80 40.0 
0.02 (4.90) 

Sputum gram stain shows gram 0.75 1.87 
positive 0.40 (2.40) 

• Systemic signs of bacterial 0.95 9.50 
infection 0.10 (18.0) 

•••••••••••• 

, Shared Findings 

r Frequency "'" Lung consolidation by PE 
A. Chest percussion: dullness 0.04 
B. Chest auscultation: bronchial breath sounds 0.03 
C. Chest auscultation: egophony (e-to-a changes) 0.015 
D. Chest palpation: increased vocal fremitus 0.035 
E. Chest auscultation: crackles 0.05 
F. Chest auscultation: whispered pectoriloquy 0.0137 
True if: (A or B) and 2 of (C, D, E, F) 

'-
Sputum gram stain shows gram positive 

..I 

~~ 

Disease: Acute bronchitis 

FINDINGS TPR LR+ 
FPR LR-

• Lung consolidation by PE 0.000005 (10000) 
0.05 1.05 

Sputum gram stain shows gram 0.95 6.33 
positive 0.15 (17.0) 

• Acute productive cough 0.95 19.0 
0.05 (19.0) 

•••••••••••• 

Figure 4. Example of calculating information provided by a finding to multiple diseases. 
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P(F+IDl)x P(Dl) + P(F+IDl-)x P(Dl-) :: 0.656x 0.4 + (1-0.86)x 0.6 = 0.346; the 

frequency of negative F is P(F-) :: 1 - 0.346 :: 0.654. The expected information content 

provided by F to Dl is IP(DIIF+) - P(D1)1 x P(F+) + IP(DIIF-) - P(Dl)1 x P(F-) = 10.76-

0.41 x 0.346 + 10.21-0.41 x 0.654 = 0.249. By similar calculations, given P(D2) :: 0.3, 

the expected information content provided by F to D2 is 0.0194. Iliad adjusts information 

content by multiplying the information content by the probability of disease. In this 

example, adjusted information content of F to Dl is 0.249 x 0.4 = 0.0996, and adjusted 

information content of F to D2 is 0.0194 x 0.3 = 0.00582. Under the single-frame 

strategy, the information content of F is max(0.0996, 0.00582) = 0.0996. 

Across-frame Strategy 

Under the across-frame strategy, the information content of F is the summation of 

adjusted information contribution to D 1 and D2, that is 0.0996 + 0.00582 :: 0.105. 

Note that all the information content values have been weighted by the probability of 

the disease. The higher the probability of the disease, the larger the weighting factor; 

therefore Iliad tends to pursue findings in more probable disease frames. Actually the 

weighting factor is not limited to the probability of the disease; it can be the square of the 

probability of the disease or other values depending on the design of the best information 

algorithm. 

The New Best Information Searching Algorithm 

The new best information searching algorithm considers every finding related to the 

hypotheses being considered. The algorithm is designed to accommodate different 

combinations of information content models, decision criteria, and strategies. The 

algorithm is described as follows: 

(l) Identify the disease being pursued. List all the unanswered findings including those in 

nested frames in the disease frame. Store all the intermediate frames between each 

fmding and the top level disease frame. 
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(2) Identify the strategy being used. If the single-frame strategy is being used, detennine 

each finding's quasi-utility value within each disease frame being considered, adjust 

each finding's quasi-utility value within each corresponding disease frame by 

mUltiplying a weighting factor (e.g., prior probability of the disease), rank findings 

within each disease frame being considered and choose the finding with the highest 

utility score. After ranking each disease frame being considered, choose the best 

finding among those "best findings" for each disease frame. If the across-frame 

strategy is being used, determine each finding's quasi-utility value. Generate a utility 

score list for each pursued disease frame and adjust each utility score list by 

multiplying a weighting factor (e.g., the prior probability of the corresponding 

disease). Generate a final utility score list that includes all the findings across all 

pursued hypotheses frames. Rank utility scores based on the final list, and select the 

finding with the highest score. 

(3) Suggest the hypothesis to pursue and the best finding to acquire next. In the 

consultation mode, any finding whose utility score is within 95% range of the 

maximum score is suggested together with the best finding. In the simulation mode, 

any finding whose utility score is tied to the maximum score is requested. 

Characteristics of Different Infonnation Content Models 

Different infonnation content models measure information content differently. To 

show characteristics of different information content models, the following data are used to 

generate infonnation content values at different prior probability of disease: 

Sensitivity = 0.9 Specificity = 0.3 

Sensitivity = 0.3 Specificity = 0.9 

Sensitivity = 0.9 

Sensitivity = 0.9 

Sensitivity = 1.0 

Specificity = 0.9 

Specificity = 0.999 

Specificity = 1.0 
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The prior probability changes from 0.0 to 1.0 with increment of 0.1 at each step. 

Two approaches of calculating information contents are used; the first approach is called 

expected information content approach, and the second approach is called one-way 

approach. The expected information content approach and the one-way approach are used 

for the expected utility decision criterion and the maximax utility decision criterion 

respectively. When prior probability is 0 or 1, mathematical calculations for some 

information content models can not be carried out. Therefore, numbers 0.000001 and 

0.999999 are used to replace 0 and 1 respectively. Ten figures (Figure 5 to Figure 14) will 

show information content values at different prior probability of disease given a set of 

sensitivity and specificity values of a finding based on different information content models 

and different approaches of calculating information. 

Figure 5 shows expected information content values calculated by the modified 

Shannon model. The figure shows that a perfect test (sensitivity = 1, specificity = 1) 

provides the highest information content when the prior probability of disease is 0.5. Note 

that test (0.9, 0.3) has the highest information content when prior probability is low (about 

0.2), the test (0.3, 0.9) has the highest information content when prior probability is high 

(about 0.8), and the test (0.9, 0.999) has the highest information content when prior 

probability is about 0.35. The figure indicates that if all the tests cost the same, findings 

with high sensitivity and low specificity should be pursued during the early stage of the 

work-up, and findings with low sensitivity and high specificity should be pursued during 

the late stage of work-up. 

Figure 6 shows one-way information content values calculated by the modified 

Shannon model. The figure shows that a perfect test provides the maximum information 

content when the prior probability is 0 or 1, which means that the positive result of the 

. perfect test provides the most information when nothing is known about a patient and the 

negative result of the perfect test provides the most information when the patient's disease 

is known. Note that information contents provided by test (0.9, 0.3) and test (0.3, 0.9) 
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Figure 5. The expected information content calculated by the modified Shannon model 
provided by different tests that are indicated by "(sensitivity, specificity)." 
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Figure 6. The one-way information content calculated by the modified Shannon model 
provided by different tests that are indicated by "(sensitivity, specificity)." 
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Figure 7. The expected infonnation content calculated by the P2-Pl model provided by 
different tests that are indicated by "(sensitivity, specificity)." 
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Figure 8. The one-way infonnation content calculated by the P2-Pl model provided by 
different tests that are indicated by "(sensitivity, specificity)." 
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Figure 9. The expected information content calculated by the LogP2-LogPl model by 
different tests that are indicated by "(sensitivity, specificity)." 
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Figure 10. The one-way information content calculated by the LogP2-LogP 1 model 
provided by different tests that are indicated by "(sensitivity, specificity)." 
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Figure 11. The expected information content calculated by the LR Model provided by 
different tests that are indicated by "(sensitivity, specificity)." 
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Figure 12. The one-way information content calculated by the LR model provided by 
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Figure 13. The expected information content calculated by LogLR model provided by 
different tests that are indicated by "(sensitivity, specificity)," 
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Figure 14. The one-way infonnation content calculated by the LogLR model provided by 
different tests that are indicated by "(sensitivity, specificity)." 
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have two "maximum" information content points: one maximum point occurs in the early 

stage of a work-up, and the other maximum point occurs in the late stage of the work-up. 

The first maximum point is resulted from the positive finding, and the second maximum 

point is resulted from the negative finding. 

Figure 7 shows expected information content values calculated by the P2-P1 model. 

The figure shows that each test provides the maximum information content at prior 

probability of 0.5. Each test provides the least information content during the early and late 

stage of a work-up. 

Figure 8 shows one-way information content values calculated by the P2-P1 model. 

The figure shows a similar pattern of information content values versus different prior 

probability of disease to that based on the modified Shannon model (Figure 6). 

Figure 9 shows expected information contents calculated by the LogP2-LogPl 

model. A perfect test provides the maximum information content during the early stage of 

work-up and less and less information content as prior probability of disease decreases. 

Other tests shown in the figure provide less and less information content during the late 

stage of work-up (prior probability> 0.5). 

Figure 10 shows one-way information contents calculated by the LogP2-LogPl 

model. The figure shows that a perfect test provides high information contents throughout 

the change of prior probability of disease. Other tests shown in the figure have lower and 

lower information content as prior probability of disease decreases. 

Figure 11 shows expected information contents calculated by the LR model. 

Information content values have linear relationship with the prior probability of disease. 

Because a perfect test has infinite likelihood ratio, the figure only shows three tests with 

limited likelihood ratio values. 

Figure 12 shows one-way information content values calculated by the LR model. 

The figure shows that information content values are independent of the prior probability of 

disease. 
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Figure 13 shows expected information contents calculated by the LogLR model. 

Note the information content values do not have linear relationship with the prior 

probability of disease. The higher the information content the higher the prior probability 

of disease. 

Figure 14 shows one-way information contents calculated by the LogLR model. 

Again the information content values are independent of the prior probability of disease. 

Even though there are limited test conditions shown in the above figures, the 

changing pattern of information content values with the prior probability of disease reflect 

characteristics of different information content models under different decision criteria. 

Under different information content models given a decision criterion, a finding has 

maximum information content at different stages of a work-up. For example, a perfect test 

has the highest expected information content under the modified Shannon model when the 

prior probability of disease is 0.5; however a perfect test has the highest expected 

information content under the LogP2-LogP1 model when the prior probability of disease is 

small (about 0.1). 



EXPERIMENTAL DESIGNS AND RESULTS 

A best information algorithm is made of four important components. These 

components are (1) information content model, which reflects intrinsic disease-finding 

relation (e.g., likelihood ratio, prior probability and posterior probability of a disease); (2) 

stratef:Y, which deals with number of diseases for which a finding provides information 

(single-frame strategy and across-frame strategy); (3) decision criterion, which deals with 

assignment of the information value when a finding has more than one possible outcome 

such as positive and negative results (expected criterion and maximax criterion); (4) partial 

information passinf: method, which determines the information propagation of a finding to 

a top disease frame through several intermediate disease frames (simplified method and 

complete method). The current Iliad best information algorithm is based on the 

combination of LR (likelihood ratio) information content model, the single-frame strategy, 

the maximax decision criterion, and the simplified partial information passing method. 

Two evaluation approaches were utilized to evaluate the performance of different best 

information algorithms, which were different combinations of an information content 

model, a strategy, a criterion, and a partial information passing method. The first was the 

vignette approach; the second was the simulation approach. 

A vignette is a snapshot of a particular stage during a diagnostic work-up. A real 

disease case can be divided into several diagnostically interesting stages; each stage was 

considered to be a vignette. In the vignette approach, each of the generated vignettes was 

solved by a particular best information algorithm. The suggestions about the next best data 

, elements to pursue from each algorithm were collected for different vignettes. Expert 

physicians were asked to rank the suggestions by different algorithms. The frequency with 
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which each algorithm was chosen "the best" was calculated and the different algorithms 

were compared. 

In the simulation approach, the overall work-up performance for an algorithm in 

solving a simulated case was evaluated by objective measures such as computational time, 

number of steps, charges, number of questions categorized by history, physical 

examination, and laboratory tests. A simulated case consisted of collecting sufficient 

medical findings to reach the final diagnosis for a patient. Iliad solved a simulated case 

automatically by using the best information mode sequentially. The details of the 

simulation approach will be discussed later in this chapter. 

The central goal of this research was to evaluate different alternative algorithms as 

candidates for improving the current Iliad's best information algorithm. The hypothesis for 

the vignette approach was that a new algorithm would be found to provide work-up 

suggestions more like an expert. The hypothesis for the simulation study was that a new 

algorithm would be found to provide a more cost-effective work-up. 

This study can be divided into three experiments. The vignette approach was used 

for the first and the second experiments. The first experiment was to evaluate the five 

information content models (LR, LogLR, Modified Shannon, P2-PI and LogP2-LogPI) 

under the single-frame strategy only. The second experiment was designed to evaluate the 

five information content models under two different strategies: the single-frame strategy 

(the current strategy) and the across-frame strategy (the new strategy). 

The simulation approach was used for the third experiment in which two decision 

criteria (maximax and expected) were cOITlbined with the five different information content 

models and the two strategies. This brought to the total of 20 possible algorithms to be 

evaluated (5 x 2 x 2). If the third experiment had been done as a vignette study with 20 

vignette cases to be evaluated, it would have required evaluation of 600 scenarios. The 

time required for expert clinicians to evaluate six hundred scenarios would be prohibitive. 

It was also realized that there would be more and more factors to be included in Iliad's best 
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information algorithm as the study progressed, making the vignette approach become more 

and more time consuming and costly. Therefore, the simulation approach was used to 

study characteristics of different possible algorithms, and this allowed a relatively large 

number of cases to be analyzed at a minimal cost for expert time. 

The simulation approach was not intended to replace the vignette approach. Rather, 

this approach was designed to evaluate different algorithms in a different way. The 

vignette approach was based on subjective measures of expert physicians at a particular 

decision point. The simulation approach was based on overall objective measures such as 

computational time, charges, number of steps, in terms of solving simulated cases. The 

subjective measures had more "face validity" than the objective measures because the 

subjective measures were based on the judgments of clinical experts. However, the 

vignette approach requires experts to build vignette cases and to rate the suggestions 

provided by different algorithms for those vignette cases. Experts have to be involved 

whenever a new algorithm needs to be evaluated. The simulation approach requires experts 

to enter data from real cases from which simulated cases can be easily created. Once the 

simulated cases are built, these simulated cases can be repeatedly used for the evaluation of 

new algorithms without further expenditure experts' time. 

Implementation 

Vignette A1212roach 

Experiment I 

The most useful information option identifies the most cost-effective findings to 

pursue next at any stage of a work-up. Figures 15 and 16 show how the current most 

useful information algorithm works. A patient presented with chest pain and shortness of 

, breath, and Iliad generated a differential diagnosis list. At this stage of the work-up, a user 

wanted to know what the next most useful findings would be. Figure 15 shows the user 

selecting the most useful information mode, and Figure 16 shows the most useful 
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Figure 15. An example that a user selects the most useful information function during a 
work-up. 
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Figure 16. An example that a user obtains the feedback from the best information mode. 
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information feedback from Iliad. To evaluate the performance of five different information 

content models (the current one and four proposed ones), the four proposed models 

(Shannon, P2-Pl, LogP2-LogPl, LogLR) were implemented in four additional versions of 

Iliad. Note that all these new models were implemented in Iliad by following the same 

most useful information searching method (partial information passing method I, the 

single-frame strategy) as the current Iliad. 

Subjects 

Six physicians specializing in internal medicine served as the subject-judges in the 

experiment. These physicians were all faculty members of the University of Utah School 

of Medicine. They were experienced in the use of computerized expert systems for medical 

decision making. 

Experimental Design 

The experiment was a 3 x 5 x 3 (Case x Model x Work-up Stage) factorial design. 

All independent variables are within subjects factors. The two dependent variables were 

measures (1) of the probability of being chosen as the best model and (2) of the expert's 

judgments about the appropriateness of the findings selected by the models. 

Procedure 

Three actual pulmonary disease cases were selected by a pulmonary expert to provide 

the case material. Each case was divided into six vignettes, so there were total 18 

vignettes. Those vignettes for each case were grouped into three diagnostic stages: the 

early stage (vignette 1 and 2) denotes the preliminary steps in the case work-up, when the 

diagnostic certainty was less and there were many diagnostic competitors. The middle 

stage (vignette 3 and 4) and the late stage (vignette 5 and 6) considered later steps in the 

work-up when major diagnostic competitors were considered and finally eliminated. Each 

version of iliad suggested the best data elements to seek next in each vignette. It was found 
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that each of these different models often pursued different findings for the same vignette. 

The different strategies occurred because each model provided a different evaluation for 

information content of the alternative findings. The sample rating form is shown in 

Appendix A. Each expert fITst rated the suggestions from each version of Iliad. The 

ratings, "finding scores," were on a scale of 1 to 5 ( 1 = least cost-effective, 5 = most cost

effective). The finding scores reflected cost-effectiveness of the findings proposed by that 

model's hypothesis and were not based on the appropriateness of the model's hypothesis. 

Each expert then chose the best overall combination of the hypothesis and suggested work

up. The choice of the best overall model was based on the combination of the disease to be 

pursued and the cost-effectiveness of the question for the disease. Several models might be 

regarded as being equally effective and might be simultaneously chosen as the best model. 

Figure 17 shows a scenario of the evaluation procedure. Vignette 3 from case 2 was 

submitted to the five versions of Iliad; expert 3 rated the findings suggested by the five 

models and picked the best overall. 

Results 

There were two outcome variables generated for each model. The first outcome 

variable was the probability of each model being chosen as the best model. This measure 

represents the proportion of experts who chose the result of that model as the best of the 

diagnostic approaches. If three of the six physicians indicated that the work-up plan 

suggested by the fITst model for a vignette was the best, then this model was assigned a 

score of 50% for the vignette. For the statistical analysis, the scores for two vignettes at 

each work-up stage were averaged. There were ties where two or more of the models 

proposed the same work-up plan for the same hypothesis. In these cases, the tied models 

were given the same score. The judges' ratings of the best model dependent variable were 

analyzed using a 3 x 5 x 3 (Case x Model x Work-up Stage) factorial analysis of variance. 

The analysis indicated that the main effects of the Work-up Stage [E(2,425) = 3.08, 12. < 
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Figure 17. The evaluation procedure for experiment 1. 
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.01] and the Model [.E(4,85) = 3.86,11 < .006] were statistically significant. The primary 

hypothesis was that the Model x Work-up Stage interaction would be significant and results 

supported this hypothesis, £(8,425) = 2.23,11 < .002. All reported statistically significant 

comparisons among means were based on the Newman-Keuls procedures (36). 

Figure 18 shows the overall frequency with which each model was chosen as the best 

at different stages of the work-up (early, middle, and late), Shannon and P2 - PI models 

both perfonned better than the current LR (likelihood ratio) model in the early and middle 

stages. In the late stage, the relative perrormance of those three models was closer to each 

other. The 10gLR model and the LR model did not differ significantly and were chosen as 

the best overall model equally often for the three vignette stages. The logP2-logP1 model 

is better than the LR model in the early stage but is worse than the LR model in the middle 

and late stages. 

1.0 
Models: x LogLR 

• Shannon 0 LA 
0.8 

• P2-P1 lSI logP2-logP1 

0.6 

0.4 

0.2 
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Figure 18. Probability of each model being chosen by experts as the best in different 
stage of work-up. 
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Figure 19 shows the overall (across stages) percentage of time each model was 

chosen as the best. Because of frequent ties the total is greater than 1.0. Newman-Keuls 

procedures demonstrated that the Shannon and P2-P1 models were not significantly 

different in performance, and both of them were significantly better than the LR model. 

The performance of the logP2-10gP1, logLR, and LR models was not significantly 

different. 

The second outcome variable was the "finding scores" (scaled from 1 to 5, 1 = least 

cost-effective, 5 = most cost-effective) given by the experts for each model. A 3 x 5 x 3 

(Case x Model x Work-up Stage) factorial analysis of variance was performed on the expert 

judges' ratings of the findings scores. The results indicated that the Work-up Stage main 

effect [.E(2,425) = 9.98,12 < .001] and the Work-up Stage x Model interaction [.E(8,425) = 
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Figure 19. Overall (all stages) probability of time each model being chosen as the best by 
experts. 
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1.74,12< .025] were statistically significant. The model main effect was not statistically 

significant, E = 1.69. Figure 20 shows average scores given by the experts for the work

up, independent of the hypothesis proposed by each model. These scores represented the 

appropriateness of the finding to the hypothesis that the model pursued; the scores were 

unaffected by how good the suggested working hypothesis was. Again, Newman-Keuls 

procedures indicated that the Shannon and P2-P1 models were significantly better than the 

current model (LR) at each work-up stage (early, middle, and late). The logLR model was 

also significantly better than the LR model, but the LogP2-LogPl model showed unstable 

performance compared to the LR model. It was significantly better than the LR model at 

the early work-up stage but was significantly worse at the middle work-up stage and was 

as good as the LR model at the late work -up stage. 
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Figure 20. Average finding scores given by experts to each of five models at different 
stages of work-up. 
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Experiment II 

Implementation 

This experiment was designed to compare the performance of the five information 

content models and two strategies, the single-frame strategy and the across-frame strategy, 

to the judgments provided by expert clinicians. Five information content models and two 

strategies were implemented in an experimental version of Iliad, so that any combination of 

an information content model and a strategy could be used to pursue the most cost-effective 

work-up. Note that the partial information passing method II (new method) and the 

maximax criterion were used in the implementation. 

Single diagnostic procedures, such as chest X-ray examinations or batteries of 

laboratory tests (e.g., Chem-20) can produce multiple findings. It was assumed that these 

findings should be evaluated together to give a total value for the information from the 

procedure. Thus, in this implementation of the across-frame strategy, all information from 

the same lab test was summed across together to represent the information content 

contributed by the test. Although history and physical examination findings are usually 

collected systematically in real life, they were treated individually in this implementation of 

the across-frame strategy. 

Figure 21 and Figure 22 show how the experimental version of Iliad works. Figure 

21 shows that an information content model can be selected from a hierarchical menu item 

"Algorithm. II Figure 22 shows that a strategy can be selected from a hierarchical menu item 

"Strategy." After the selections, go to the menu item "Best Information," the system will 

provide most cost-effective suggestions based on the selected combination of the 

information content models and the strategy. Note that menu item "Modes lt contains 

selections of "history," "physical exam," "lab test," and "overall." "Overall" is the default 

, . selection, which means suggested findings will not be limited to a particular category of 

history findings, physical examination findings, or laboratory test procedures; they will be 

cost-effective over all the categories. 
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Subjects 

Six academic internists specializing in internal medicine served as the subject judges 

in the experiment. These physicians were all faculty members of the University of Utah 

School of Medicine. They were all experienced in the use of computerized expert system 

for medical decision making. 

Experimental Design 

The independent variables are: Case (six cases), Stage (three stages in each case), 

Information Content Model (five models), and Strategy (two strategies). All raters had 

substantially the same level of training and experience. Hence, no effort was made to 

classify the experts by level or type of expertise. The experiment was a 6 x 3 x 5 x 2 

(Case x Stage x Information Content Model x Strategy) factorial design. All independent 

variables are within subjects factors. There were three dependent variables. The first 

dependent variable was the frequency of being chosen as the best information content 

model under the single-frame strategy. The second dependent variable was the frequency 

of being chosen as the best information content model under the across-frame strategy. 

The third dependent variable was the frequency of being chosen as the best strategy overall. 

Each dependent variable represents the proportion of experts who chose the result of that 

outcome as the best. 

Procedure 

Six pulmonary cases were randomly selected from real patient cases at the University 

of Utah Medical Center. Each case was divided into three stages. The first two stages 

denoted stages in the work-up when history and physical examination findings were 

acquired. The third stage denoted a later stage in the work-up when major competing 

diagnostic hypotheses were considered and finally eliminated through laboratory tests or 

other procedures. Thus there were 18 medical decision points, or vignettes, represented. 

Each information content model was applied under two strategies. Therefore, 10 best 
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work-up suggestions (5 algorithms x 2 strategies) were generated for each vignette. Each 

expert was provided with a copy of the vignette containing a subset of patient findings and 

also the hypotheses Iliad considered, the 10 work-up suggestions, and a simple rating 

form. A sample vignette rating form is given in Appendix B. Figure 23 shows the rating 

instructions given to experts. In the rating instructions, the term "student" instead of 

"algorithm" was used to make experts feel closer to real-life ratings. 

Based on Iliad's suggested work-up items, the experts were instructed to choose (1) 

the best strategy for each information content model and (2) the best information content 

model for the single-frame and the across-frame strategies. "Ties" were allowed only when 

several information content models or two strategies produced the same work-up 

suggestion. A nominal scale was used to assess the information models and strategies. 

Whenever the strategy or the information model was chosen as the best, the score was 

assigned to 1; otherwise the score was O. All the experts completed their entire set of 

evaluation forms. 

Results 

The judges' ratings of the best information model under the single-frame strategy 

were analyzed by using a 6 x 5 x 3 (Case x Information Content Model x Stage) factorial 

analysis of variance. Comparisons among cell means were based upon a Bonferonni 

adjusted confidence interval (36). In the Bonferroni procedure, the desired significance 

level (0:) is divided by the number of comparisons to be performed (k). In the study, four 

comparisons were to be made among the means so that the adjusted significance level was 

0.0125 (0.05/4). The analysis of variance indicated that the main effect for Information 

Content Model was statistically significant, E(4,360) = 10.72,12< 0.0001. The interaction 

. between Stage and Information Content Model was also statistically significant, E(8,360) = 

4.83, 12 < 0.0001. Average scores (frequency of being chosen as the best) of each 

information content model at stage 1 and stage 2 were used to represent the 
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Rating Instructions 

Five medical students were asked to work up several real patient cases. Students have 
reviewed each case history and independently proposed two work-up plans for each case, 
which we call Strategy I and Strategy II. Each type of strategy was based on slightly 
different sets of instructions and goals given to the students. We would now like you to 
rate each student's perionnance. 

FIRST, please pick the best strategy for each student. Make this rating in the right-most 
column, labeled "Best Strategy." For instance, suppose student one's suggested work-up 
plan under Strategy I is superior to his plan under Strategy II. You would then write a "I" 
in the Best Strategy column for that student. 

SECOND, please pick the best student for each type of strategy. Make this rating in the 
bottom row, labeled "Best Student". For instance, suppose student 4's Strategy I was the 
best of all the Strategy I suggestions. You would then write a "4" in the "Best Student" 
row under that strategy. 

NOTE: How to handle identical work-up strategies. If a particular student suggests the 
same work-up plan for both Strategy I and Strategy II, write an "X" in the "Best Strategy" 
coluIlUl. If two or more students each suggest the same work-up plan and they tie each 
other for the "Best Student" rating, write each student's number in the "Best Student" row. 

Here is a sample rating sheet: 

Student Strategy I Strategy II Best 
Strategy 

I 

2 

3 

4 

5 

Best 
Student 

Figure 23. Rating instructions for experiment ll. 
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effectiveness of the model in suggesting history and physical exam findings, and the score 

at stage 3 was used to reflect the effectiveness of the model in suggesting laboratory test 

procedures. Comparisons among the mean finding scores for the algorithms indicated that 

the Shannon model was significantly better than the rest of models (ex = 0.0125) in terms 

of suggesting history and physical exam findings. However, the results revealed no 

significant differences between Shannon's model and the LR model (current model) in 

terms of suggesting laboratory test procedures during the late stage of work-up. No other 

models performed better than the LR model at the late stage. The results also indicated that 

the Shannon's model was the best in terms of overall finding scores across all stages (ex = 

0.0125). The overall performance of five information models is shown in Figure 24. 

Under the across-frame strategy, the results about the performance of different 

information content models were similar to the previous findings when information content 

was summed across frames. The analysis of variance showed that the main effect for 

Information Content Models was statistically significant, E(4,360) = 3.20,12 < 0.015. The 

interaction between Stage and Information Content Model was also statistically significant, 

F(8,360) = 2.30, 12 < 0.02. The Shannon's model and the P2-P1 model were not 

significantly different in terms of suggesting history and physical exam questions, but they 

were all significantly better than the LR model (ex = 0.0125). During the late stage of the 

work-up, there were no significant difference among the Shannon, P2-P1 and LR models. 

No models performed better than the LR model in terms of suggesting laboratory test 

procedures. The Shannon's model and the P2-P1 model were the best overall among the 

five models across all stages (ex = 0.01). The overall performance of five information 

models under the across-frame strategy is shown in Figure 25. 

The frequencies of each strategy being chosen as the best based on the grand average 

, scores for all the information models were calculated. Each strategy was evaluated five 

times in each of the 18 vignettes. The five times represent implementation of five 

information models under each strategy for each vignette. The best strategy scores were 
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Figure 24. Overall (all stages) frequency that each information content model was chosen 
as the best by experts under the single-frame strategy. 
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Figure 25. Overall (all stages) frequency that each information content model was chosen 
as the best by experts under the across-frame strategy. 
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analyzed by ANOVA using repeated measures. The results indicated that experts preferred 

the across-frame strategy to the single-frame strategy, as shown in Figure 26. 

Implementation 

Simulation Approach 

Experiment ill 

This experiment was designed to demonstrate simulation techniques to compare the 

performance of different algorithms. Five information content models~ two strategies, and 

two decision criteria were implemented into a special version of iliad, so any combination 

of an information content model, a strategy, and a decision criterion could be used to solve 

a simulated case automatically. A simulated case is formed based on a actual patient case. 

The disease manifestations from the patient are stored as the simulated case. Starting from 

the chief complains of the patient, Iliad!s best information algorithm generates the next best 

work-up findings to pursue next; the answers of the requested findings are based on the 

record in the simulated case. lliad updates the differential diagnosis list given the answers 

of these findings and repeats the process (requesting the next most cost-effective finding to 

pursue) again until a stopping rule is met. There are three stopping rules: the first is that the 

probability of the simulated patient's disease(s) is greater than 0.95, the second is that all 

disease probabilities in the differential diagnosis list are less than the apriori probabilities, 

and the third is that Iliad runs out of questions to ask for the hypotheses being pursued. 

The first stopping rule is used when iliad can successfully solve a case; the second or third 

stopping rules is used when Iliad can not solve a case. Figure 27 and Figure 28 show an 

example of a simulation study that is being solved by iliad. In Figure 27, under the menu 

item "Algorithms," different information content models can be selected. A decision 

criterion can then be selected after an information content model is selected. Note that the 

item "Current Iliad" represents the exact current algorithm, which uses the LR information 

content model, the single-frame strategy, and partial information passing method 1. The 



70 

1.0~-------------------------------------------

80% 

sing Ie-frame across-frame 

Strategy 

Figure 26. Overall (all information content models) frequency that each strategy was 
chosen as the best 



Sim least Cost Path 

loglR 
"---~~P2-Pl 

................................................................................... ••••• .... •• .. , .. • .. • .. 1 

Ht.~I){) UH~S~~ "ll<~~t;td l: ni ry 
S(~I(~( t H~~pi) UH~sH 

.... __ ................................................................... -................. . 

logP2-logP 1 

Figure 27. Menu from which an algorithm is selected to solve a simulated case. 

,... iii File Edit Workup EHplain Browse Cheat Help 

least Cost Run Status 
Hypotheses under consideration: 

(54;5) Pn€Oumonia) (17;5) Bronchi,;,l asthma) 
(15;5) Acute bronchitis 

No---- History of present illness: : chills with shaking -0-r--

~ 
'{} 

"::;'11) ..:;telllll;:; \"(11 UI(I\" (l11I!;:jIUIU wnn spU1;um UI'4I\I"4 ",,,,,,,0>, ..... ':1 

1 % Pri mary 1 ung cancer that is of recent onset 

1 % Acute MI lasting 0.10 'Weeks 

1 % Pul monary tuberculosis that is not worse- at night 

< 1 % I di opathi c cardi omyopathy 
without acute onset 
.I.L . .1. • ... , . 

%~fl= ~ D Probability Changes 

Figure 28. An example of a simulated case being solved by Diad. 

7 1 



72 

item "LR" represents the modified current algorithm, which uses the LR information 

content model and partial information passing method II (the new partial information 

passing method). Under the menu item "Strategy," the single-frame strategy and the 

across-frame strategy can be selected. Under the menu item "Modes," the overall best 

information was the default After all the selections, go to the menu item "Simulation Least 

Cost Path," Iliad will start to solve a simulated case either "step by step" or "automatically." 

If step-by-step mode is selected, Iliad stops at each step. If automatic mode is selected, 

Iliad does not stop until a stopping rule is met. The Figure 28 shows an example that Iliad 

gets the answer about a question "chills with shaking" at a particular step. Iliad updates the 

differential diagnosis list sequentially based on answers to questions at each step until the 

stopping rule is met. Note that if an algorithm pursued history and physical exam findings 

whose results were not recorded in the case, those findings were set to negative answers. 

If an algorithm pursued laboratory test or procedures whose results were not recorded, 

those tests were set to unknown answers. 

Case selection 

Seventy simulated cases were randomly selected from test cases used for medical 

student training at University of Utah School of Medicine. These cases were based on real 

charts. Being actual cases, they could be solved by means of more than one pathway. The 

distribution of cases in different domains is shown in Table 5. 

Table 5. Number of Simulated Cases in Different Domains 

Cardiology 8 GI 14 
Hematology 5 Infectious Diseases 15 
Metabolic and Endocrine 2 Pulmonary Diseases 7 
Diseases 
Renal Diseases 11 Rheumatology 8 
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Simulation Procedure 

To avoid repetitive selections, a special version of Iliad, which runs each combination 

of an infonnation content model, a strategy, and a decision criterion, was created. After the 

selection of an algorithm, the special version of Iliad did work-ups for 70 simulated cases 

sequentially until all the cases were processed. All the dependent variables were recorded 

for each simulated case. 

Experimental Design 

The independent variables were: Information Content Model (five models), Strategy 

(two strategies), and Decision Criterion (two criteria). The experiment was a 5 x 2 x 2 

(Information Content Model X Strategy x Decision Criterion) factorial design. All 

independent variables were within subjects factors. There were nine dependent variables. 

Each variable describes a performance measure for an algorithm to solve a simulated case. 

These measures were (1) time (seconds), (2) number of steps, (3) cumulative charges ($) 

for "known laboratory tests" ordered, (4) cumulative charges ($) for "all laboratory tests" 

ordered ordered, (5) number of known laboratory tests ordered, (6) number of total 

laboratory tests ordered, (7) number of history questions requested, (8) number of physical 

exam questions requested, (9) total number of history and physical exam questions 

requested. Note that "known laboratory tests" were those tests whose results could be 

found in the simulated case. "All laboratory tests" included known laboratory tests and 

those tests whose results could not be found in the simulated case. 

Results 

There were 20 combinations of algorithms used to solve 70 simulated cases. 

Because certain simulated cases could be solved by some algorithms but not by others, 44 

cases (62%) were solved by all 20 algorithms. The statistical analysis of the dependent 

variables was based on the complete data sets of these 44 cases. 
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Each of nine dependent variables were analyzed by using a 5 x 2 x 2 (Information 

Content Model x Strategy x Decision Criterion) factorial analysis with repeated measures. 

The comparisons between the means were based on paired t-tesi with the significant level 

at ex = 0.05. 

Computational Time to Solve a Simulated Case 

The effects of different factors on the computational time are listed in Table 6. The 

computational time was based on Macintosh Quadra 700 with 25 MHz 68040 CPU with 

math coprocessor. The Information Content Model main effect, Strategy main effect, and 

Decision Criterion main effect were all statistically significant. There was no interaction 

effect among the independent variables. 

Note that the LR infonnation content model was implemented according to the partial 

information passing method II (new method), which was much more computationally 

extensive than the partial information passing method 1 (simplified method used in current 

Iliad), The computational time for the LR model here did not reflect the current Iliad 

computational speed. The comparison between two partial infonnation passing methods 

will be given later in this chapter. 

Table 6. The Effects of Information Content Model, Strategy, and Decision 
Criterion on Computational Time (Seconds) 

Effect of Factor FValue p Value 

Information Content Model (lnfomod) F(4, 168) = 3.79 0.006 

Strategy (Strat) F(!. 42) = 10.61 0.002 

Decision Criterion (Rule) F(1, 42) = 10.12 0.003 

Infomod by Strat F( 4, 168) = 1.05 0.385 

Infomod by Rule F(4, 168) = 0.27 0.898 

Strat by Rule F(1, 42) = 0.01 0.938 

Infomod by Strat by Rule F(4,168) = 2.19 0.072 
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The means of the computational time from different algorithms are given in Figure 

29. The average time for probability dependent information content models (Shannon, P2-

PI, LogP2-LogPI, M = 590.4 seconds) was significantly longer than for probability 

independent information content models (LR, LogLR, M = 474.7 seconds). The average 

time among probability dependent models was not significant different. The average time 

among probability independent models was also not significant different. The average time 

for the across-frame strategy CM = 586.4 seconds) was significantly longer than for the 

single-frame strategy eM = 501.7 seconds). The average time for the expected decision 

criterion (M = 607.3 seconds) was significantly longer than for the maximax decision 

criterion eM = 480.7 seconds). 
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Figure 29. Average computational time for each algorithm to solve a simulated case. Two 
decision criteria are indicated by "expected" and"maximax." Two strategies are indicated 
by "single-frame" and "across-frame." 
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Number of Steps to Solve a Simulated Case 

The effects of different factors on the number of steps are listed in Table 7. The 

Information Content Model main effect, Strategy main effect, and Decision Criterion main 

effect were all statistically significant. There was no interaction effect among the 

independent variables. The means from different algorithms are indicated in Figure 30. 

The average number of steps for probability dependent models ill = 30) was significantly 

more than that for probability independent models (M = 22). There was no performance 

difference in terms of number of steps among the probability dependent models, and there 

was no difference among the probability independent models. It took fewer steps for the 

single-frame strategy (M = 25) to solve a simulated case than the across-frame strategy (M 

= 28). It took fewer steps for the maximax decision criterion (M = 24 ) to solve a 

simulated case than for the expected criterion (M = 29). 

Table 7. The Effects of Information Content Model, Strategy, and Decision 
Criterion on Number of Steps to Solve a Simulated Case 

Effect of Factor FValue p Value 

Information Content Model (Infomod) F(4, 168) = 11.83 < 0.001 

Strategy (Strat) F(1. 42) = 13.24 0.001 

Decision Criterion (Rule) F(l, 42) = 7.55 0.009 

Infomod by Strat F( 4, 168) = 0.37 0.83 

Infomod by Rule F(4, 168) = 0.7 0.596 

Strat by Rule F(l, 42) = 0.13 0.725 

Infomod by Strat by Rule F(4,168) = 1.66 0.161 
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Figure 30. Average number of steps for each algorithm to solve a simulated case. Two 
decision criteria are indicated by "expected" and"maximax." Two strategies are indicated 
by "single-frame" and "across-frame." 
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Cumulative Charges ($) for Results-Known Laboratory Tests Ordered 

During the process of solving a simulated case, different laboratory tests were 

requested by the algorithms. Some tests were recorded in the simulated case, but some 

were not. Results of those tests recorded in the case are available to Iliad and are called 

results-known laboratory tests. The effects of different factors on the cumulative charges 

for results-known laboratory tests ordered are listed in Table 8. The Information Content 

Model main effect was statistically significant. The strategy main effect and the Decision 

Criterion main effect were not statistically significant. There was no interaction effect 

among the independent variables. The mean cumulative charges for results-known 

laboratory tests ordered from different algorithms are indicated in Figure 31. There was no 

significant difference among algorithms derived from probability dependent models. There 

was also no significant difference among algorithms derived from probability independent 

models. 

Note that mathematically LogLR model is more sensitive to the cost factor than the 

LR model because of the logarithm of the numerator. However the average charges for 

results-known laboratory tests by the LR model eM = $422) were not significantly different 

from the charges by the LogLR model eM = $393). 

Table 8. The Effects of Infonnation Content Model, Strategy, and Decision Criterion 
on Average Cumulative Charges ($) for Results-Known Laboratory 

Tests to Solve a Simulated Case 

Effect of Factor F Value p Value 

Information Content Model (Infomod) F(4, 168) = 3.52 0.009 

Strategy (Strat) F(l. 42) = 0.34 0.561 

Decision Criterion (Rule) F(1, 42) = 0.02 0.888 

Infomod by S trat F(4, 168) = 1.38 0.242 

Infomod by Rule F(4, 168) = 1.25 0.29 

Strat by Rule F(1, 42) = 2.65 0.111 

Infomod by Strat by Rule F(4,168) = 0.67 0.614 
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Figure 31. Average cumulative charges ($) for results-known tests asked by Iliad for 
each algorithm to solve a simulated case. Two decision criteria are indicated by II expected II 
and "maximax." Two strategies are indicated by "single-frame" and "across-frame." 

On average, the probability dependent information content models (M = $135) 

accrued fewer charges than the probability independent information content models (M = 

$408). Cost for laboratory charges was not significantly different between the single-frame 

strategy (M = $242) and the across-frame strategy (M = $247). Charges were also not 

.. significantly different between the expected decision criterion eM = $240) and the maximax 

decision criterion CM = $248 ). 
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Cumulative Charges ($) for All Laboratory Tests Ordered 

The effects of different factors on the cumulative charges for all laboratory tests 

ordered to solve a simulated case are listed in Table 9. The Information Content Model 

main effect was statistically significant. The Decision Criterion main effect was also 

statistically significant Strategy main effect was not statistically significant. There was no 

interaction effect among the independent variables. The mean cumulative charges for all 

laboratory tests ordered from different algorithms are indicated in Figure 32. 

There was no significant difference among algorithms derived from probability 

dependent models. However there was a significant difference among algorithms derived 

from probability independent models. On average (across the single-frame and across

frame strategies), the charges by LogLR model with the maximax decision criterion (M = 

$980) were significantly more than those with the expected decision criterion (M = $645). 

There was no significant difference among algorithms derived from LR models. The 

average cumulative charges for all laboratory tests ordered by algorithms derived from LR 

model (M = $768 ) were not significantly different from the charges by algorithms derived 

from LogLR model eM. = $812). 

Table 9. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Average Cumulative Charges ($) for All Laboratory 

Tests Ordered to Solve a Simulated Case 

Effect of Factor FValue p Value 

Information Content Model (Infomod) F( 4, 168) = 6.03 < 0.001 

Strategy (Strat) F(l. 42) = 0.35 0.559 

Decision Criterion (Rule) F(1, 42) = 4.71 0.036 

Infomod by Strat F(4, 168) = 0.25 0.907 

Infomod by Rule F(4, 168) = 1.84 0.123 

Strat by Rule F(l, 42) = 0.4 0.529 

Infomod by Strat by Rule F(4,168) = 0.7 0.592 
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Figure 32. Average cumulative charges ($) for all the tests asked by iliad for each 
algorithm to solve a simulated case. Two decision criteria are indicated by Ifexpected" and 
"maximax." Two strategies are indicated by "single-frame" and "across-frame," 

On average, the charges by algorithms derived from probability dependent models eM 

= $236) were significantly less than those from probability independent models (M = 

$790). The charges by algorithms derived from the across-frame strategy eM = $465) were 

, not significantly different from those by the the single-frame strategy eM = $450). Finally, 

the charges by algorithms derived from the expected decision criterion eM = $397) were 

significantly less than those by the maximax decision criterion CM = $519). 
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Number of Results-Known Laboratory Tests Ordered 

The effects of different factors on the nurnber of results-known laboratory tests 

ordered to solve a simulated case are listed in Table 10. The Information Content Model 

main effect, the Decision Criterion main effect and Strategy main effect were all not 

statistically significant. There was no any interaction effect among the independent 

variables. The means from different algorithms are indicated in Figure 33. 

There was no significant difference between probability dependent information 

content models (M = 1.58) and probability independent infornlation content models (M = 

1.53). Also, there was no significant difference between the across-frame strategy (M = 

1.57) and the single-frame strategy (M = 1.55). Finally, there was also no significant 

difference between the expected decision criterion (M = 1.61) and the maximax decision 

criterion (M = 1.51). 

Table 10. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Number of Results-Known Laboratory Tests Ordered 

to Solve a Simulated Case 

Effect of Factor FValue p Value 

Information Content Model (Infomod) F( 4, 168) = 1.32 0.265 

Strategy (Strat) F(l. 42) = 1.1 0.299 

Decision Criterion (Rule) F(1, 42) = 0.75 0.391 

Infomod by S trat F(4, 168) = 0.56 0.695 

Infomod by Rule F(4, 168) = 0.34 0.853 

Strat by Rule F(1, 42) = 3.01 0.09 

Infomod by Strat by Rule F( 4,168) = 0.57 0.686 
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Figure 33. Average number of results-known tests for each algorithm to solve a 
simulated case. Two decision criteria are indicated by "expected" and "maximax." Two 
strategies are indicated by "single-frame" and "across-frame." 
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Number of All Laboratory Tests Ordered 

The effects of different factors on the number of all laboratory tests ordered to solve a 

simulated case are listed in Table 11. The Information Content Model main effect was 

statistically significant. The Decision Criterion main effect and Strategy main effect were 

not statistically significant. There was no any interaction effect among the independent 

variables. The means from different algorithms are indicated in Figure 34. 

The number of all laboratory tests ordered to solve a simulated case by algorithms 

derived from probability dependent models (M = 2.64) was significantly less than the 

number of ordered by algorithms from probability independent models (M = 3.21). There 

was no significant difference between the across-frame strategy (M = 2.86) and the single

frame strategy CM = 2.87). There was also no significant difference between the expected 

decision criterion CM = 2.71) and the maximax decision criterion (M = 3.03). 

Table 11. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Number of All Laboratory Tests Ordered 

to Solve a Simulated Case 

Effect of Factor F Value p Value 

Information Content Model (lnfomod) F(4, 168) = 2.43 0.05 

Strategy (Strat) F(1. 42) = 0.04 0.849 

Decision Criterion (Rule) F(l, 42) = 1.04 0.313 

Infomod by Strat F(4, 168) = 0.72 0.581 

Infomod by Rule F( 4, 168) = 2.08 0.086 

Strat by Rule F(l, 42) = 0.01 0.916 

Infomod by Strat by Rule F(4,168) = 0.24 0.914 
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Figure 34. A verage number of all tests ordered for each algorithm to solve a simulated 
case. Two decision criteria are indicated by "expected" andllmaximax." Two strategies are 
indicated by "single-frame" and II across-frame. " 
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Number of History Questions Asked to Solve a Simulated Case 

The effects of different factors on the number of history questions asked to solve a 

simulated case are listed in Table 12. The Infonnation Content Model main effect was 

statistically significant. The Decision Criterion main effect and Strategy main effect were 

not statistically significant. The means from different algorithms are indicated in Figure 35. 

The average number of history questions requested to solve a simulated case by algorithms 

derived from probability dependent information content models (M = 34.0) was 

significantly more than that by probability independent information content models <M. = 

25.0). There was no significant difference between the across-frame strategy <M. = 29.5) 

and the single-frame strategy (M = 30.6). There was also no significant difference between 

the expected decision criterion (M = 30.2) and the maximax decision criterion (M = 29.8). 

A 3 x 2 x 2 (Information Content Model x Strategy Decision x Criterion) factorial 

analysis of variance among algorithms derived from probability dependent models 

(Shannon, P2-Pl, LogP2-LogPl) indicated that there were no main effects by independent 

variables of Infonnation Content Model, Strategy, and Decision Criterion. There were no 

interaction effects among the independent variables. A 2 x 2 x 2 (Information Content 

Model x Strategy Decision x Criterion) factorial analysis of variance among algorithms 

derived from probability independent models (LogLR, LR) indicated again there are no 

main effects by independent variables of Information Content Model, Strategy, and 

Decision Criterion. There are no interaction effects among those variables. 

The interaction between Information Content Model and Decision Criterion was 

significant. For LogP2-LogPl model, the average number of history questions under the 

expected decision criterion <M. == 29) was significantly less than that under the maximax 

decision criterion <M. = 36). In contrast, for LogLR model, the average number of history 

questions under the expected decision criterion (M = 29) was significantly more than that 

under the maximax decision criterion <M. == 23). For models of Shannon, P2-Pl and LR 

models, the expected criterion and the maximax criterion were not significantly different 
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Table 12. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Number of History Questions Requested 

to Solve a Simulated Case 

Effect of Factor F Value p Value 

Information Content Model (Infomod) F(4, 168) = 5.02 0.001 

Strategy (Strat) 

Decision Criterion (Rule) 

Infomod by Strat 

Infomod by Rule 

Strat by Rule 

Infomod by Strat by Rule 

40 

o 
Shannon 

F(l. 42) = 1.11 0.299 

F(l, 42) = 0.04 0.84 

F( 4, 168) = 1.86 0.12 

F(4, 168) = 3.97 0.004 

F(1, 42) = 0.02 0.88 

F(4,168) = 1.61 0.173 

• single-frame & expected 

1.1 single-frame & maximax 

o across-frame & expected 

~ across-frame & maximax 

P2-P1 LogP2-LogP1 LogLR 

Model 

LA 

Figure 35. A verage number of history questions requested for each algorithm to solve a 
simulated case. Two decision criteria are indicated by lIexpected" and Ilmaximax." Two 
strategies are indicated by "single-frame" and lIacross-frame." 
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Number of Physical Exam Questions Asked to Solve a Simulated Case 

The effects of different factors on the number of physical exam questions asked to 

solve a simulated case are listed in Table 13. The Information Content Model main effect 

was nearly but not statistically significant. The Decision Criterion main effect and Strategy 

main effect were not statistically significant. The means from different algorithms are 

indicated in Figure 36. 

A 3 x 2 x 2 (Information Content Model x Strategy Decision x Criterion) factorial 

analysis of variance among algorithms derived from probability dependent models 

(Shannon, P2-Pl, LogP2-LogPl) indicated that there were no main effects by independent 

variables of Information Content Model, Strategy, and Decision Criterion. There were no 

interaction effects among the independent variables. A 2 x 2 x 2 (Information Content 

Model x Strategy Decision x Criterion) factorial analysis of variance among algorithms 

derived from probability independent models (LogLR, LR) indicated again there are no 

main effects by independent variables of Information Content Model, Strategy, and 

Decision Criterion. There are no interaction effects among those variables. 

Table 13. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Number of Physical Exam Findings Requested 

to Solve a Simulated Case 

Effect of Factor FValue p Value 

Information Content Model (lnfomod) F( 4, 168) = 2.32 0.059 

Strategy (Strat) F(l. 42) = 0.47 0.496 

Decision Criterion (Rule) F(I, 42) = 0.25 0.619 

Infomod by S trat F( 4, 168) = 2.56 0.04 

Infomod by Rule F(4, 168) = 1.27 0.285 

Strat by Rule FO, 42) = 0.25 0.619 

Infomod by Strat by Rule F( 4,168) = 1.67 0.16 



12 

10 

8 

6 

4 

2 

o 
Shannon 
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~ across-frame & maximax 

P2·P1 LogP2-LogP1 LogLR LA 
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Figure 36. Average number of physical exam findings requested for each algorithm to 
solve a simulated case. Two decision criteria are indicated by "expected" and"maximax." 
Two strategies are indicated by "single-frame" and "across-frame." 

On average, there was no significant difference between the probability dependent 

infonnation content models eM = 9.6) and the probability independent information content 

models eM = 7.5). There was no significant difference between the across-frame strategy 

(M = 8.6) and the single-frame strategy (M = 8.9). There was also no significant 

difference between the expected decision criterion (M = 8.9) and the maximax decision 

criterion eM = 8.5). 
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The effects of different factors on the number of history and physical exam questions 

asked to solve a simulated case are listed in Table 14. The Information Content Model 

main effect was statistically significant. The Decision Criterion main effect and Strategy 

main effect were not statistically significant. The means from different algorithms are 

indicated in Figure 37. There was significant difference between the probability dependent 

information content models (M = 43.6) and probability independent information content 

models eM = 32.5). There was no significant difference between the across-frame strategy 

eM = 38.1) and the single-frame strategy eM = 39.5). There was no significant difference 

between the expected decision criterion eM = 39.1) and the maximax decision criterion eM 

= 38.3). 

A 3 X 2 x 2 (Information Content Model x Strategy Decision x Criterion) factorial 

analysis of variance among algorithms derived from probability dependent models 

(Shannon, P2-P1, LogP2-LogP1) indicated that there were no main effects by independent 

variables of Information Content Model, Strategy, and Decision Criterion. There were no 

interaction effects among the independent variables. A 2 x 2 x 2 (Information Content 

Model x Strategy Decision x Criterion) factorial analysis of variance among algorithms 

derived from probability independent models (LogLR, LR) indicated again there were no 

main effects by independent variables of Information Content Model, Strategy, and 

Decision Criterion. There were no interaction effects among those variables. 

The interaction between Information Content Model and Decision Criterion was 

significant. There were no other interaction effects among the independent variables. For 

LogP2-LogPl model, the average number of history and physical exam questions under 

, the expected decision criterion (M = 39.0) was significantly less than that under the 

maximax decision criterion eM = 46.0). In contrast, for LogLR model, the average number 

of history questions under the expected decision criterion (M = 37.0) was significantly 
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Table 14. The Effects of Information Content Model, Strategy, and Decision Criterion 
on Number of History Questions and Physical Exam Findings 

Requested to Solve a Simulated Case 

Effect of Factor FValue p Value 

Information Content Model (Infomod) F(4, 168) = 4.47 0.002 

Strategy (Strat) 

Decision Criterion (Rule) 

Infomod by S trat 

Infomod by Rule 

Strat by Rule 

Infomod by Strat by Rule 

30 

20 

10 

o 
Shannon 

F(1. 42) = 1.05 0.312 

F(1, 42) = 0.08 0.78 

F(4, 168) = 2.18 0.074 

F(4, 168) = 3.65 0.007 

F(1, 42) = 0.08 0.784 

F(4,168) = 1.67 0.16 

single-frame & expected 

single-frame & maximax 

across-frame & expected 

across-frame & maximax 

P2- P 1 LogP2-LogP1 LogLR 

Model 
LA 

'. Figure 37 . Average number of history questions and physical exam findings requested 
for an algorithm to solve a simulated case. Two decision criteria are indicated by 
"expected" and "maximax." Two strategies are indicated by "single-frame" and "across
frame. II 
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more than that under the maximax decision criterion eM = 30.0). For models of Shannon, 

P2-P 1 and LR models, the expected criterion and the maximax criterion were not 

significantly different. 

Comparison of Two Information Passing Method by Simulated Study 

Objective of the Comparison 

There are two partial information passing methods for the LR model. Partial 

information passing method I represents the method currently used in Iliad. Partial 

information passing method II represents a new method that takes advantage of Iliad's 

inference engine and back calculates the "equivalent" likelihood ratios based on posterior 

probabilities. The Iliad with the LR model under the single-frame strategy and maximax 

criterion in Experiment III was based on the partial information passing method II. The 

two methods represent two mechanisms of implementing the LR model into Iliad. The two 

mechanisms have not been previously compared and evaluated. The objective of this 

comparison was to evaluate the performance of two partial information passing methods by 

the simulated study technique. Two corresponding versions of Iliad were used to solve the 

same 70 simulated cases in Experiment ill. 

Experimental Desi~n 

The independent variables are Partial Information Passing Method I (Method I) and 

Partial Information Passing Method IT (Method II). The independent variables are the same 

as the nine measures used in the Experiment ill. The comparisons were based on paired t

tests. 

Results 

Fifty-seven cases (81 %) were solved by Iliad version with the Method I (current 

version of Iliad). Fifty-nine cases (84%) were solved by Iliad version the Method II. 
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There were 54 simulated cases (77%), which were solved by both versions of Iliad. The 

paired t-test comparisons were all based on the complete sets of data from those 54 cases. 

The average time for Iliad with the Method I to solve a simulated case was 92 

(seconds), and the time for lliad with the Method II was 333 (seconds). The computational 

time was based on a Macintosh Quadra 700 with 25 MHz 68040 CPU with math 

coprocessor. Paired t-test indicated that Iliad with Method I was significantly faster than 

Iliad with the Method IT in terms of the computational time to solve a simulated case. 

The average number of steps for Iliad with Method I to solve a simulated case was 

26, as compared to 18 with Method II. Paired t-test indicated that lliad with Method I used 

significantly more steps to solve a simulated case than lliad with Method II. 

To solve a simulated case, Iliad with Method I and Iliad with Method II were not 

significantly different in terms of the charges for results-known laboratory tests, charges 

for all laboratory tests, the number of results-known laboratory tests ordered, the number 

of all laboratory tests ordered, the number of history questions requested, and the number 

of physical exam questions requested. 



DISCUSSION 

Summary of Results 

Infonnation Content Model 

Experts preferred the Shannon's information content model (vignette study I and IT). 

If this model was implemented in Iliad, the work-up suggestions would be more like the 

suggestions of experts. The Shannon's model accomplished work-ups that were 

significantly less costly than work-ups performed by the LR (likelihood ratio) model 

(simulation study). Implementing the Shannon's model would increase the cost

effectiveness of Iliad's suggestions. However, the Shannon's model required additional 

computational resources and more history and physical examination steps than the LR 

model. Decisions regarding implementing alternative models require Iliad researchers to 

balance the relative merits of cost, steps, expert preference, and other important factors. 

Strategy 

Physicians preferred algorithms that summed information across the relevant diseases 

being considered (vignette study IT). It appears that the across-frame strategy may improve 

Iliad's ability to model diagnostic behavior of expert physicians. If the result can be 

replicated and as microprocessors improve the across-frame strategy is recommended to be 

adopted into Iliad. 

In the implementation of the across-frame strategy (vignette study II), multiple 

findings produced by single diagnostic procedures, such as chest X-ray examinations or 

batteries of laboratory tests (e.g., Chem-20), were evaluated together to give a total value 

for the information from the procedure. However, history and physical examination 

findings were treated individually. Physicians tend to collect data in "chunks," which are 
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related groups of findings such as questions concerning shortness of breath. Future study 

is needed to group history and physical examination findings in a way preferred by expert 

physicians. 

Decision Criterion 

The expected decision criterion is recommended to be used at the early stage of a 

work-up to avoid expensive test ordering (simulation study). The maximax decision 

criterion is recommended to be used at the late stage of a work-up when confirmatory tests 

needed to be performed. The "cut-point" between the early and late stage of a work-up can 

not be specified from the current experiments. 

Vignette Studies 

In the first vignette study, five information content models were implemented into 

Iliad based on the current searching method. Algorithms derived from the modified 

Shannon model and P2-Pl model performed better than the current algorithm derived from 

LR model in terms of experts' judgments about the appropriateness of the findings selected 

and the best overall combination of the hypothesis and suggested findings. The LogLR 

model performed better than the LR model (current model), but the LogLR model was not 

as good as the. Shannon and P2-Pl models. The LogP2-LogPl model performed as well 

as the modified Shannon and P2-Pl models initially but worsened in the middle and late 

work-up stages. 

In the second vignette study, the five information content models and two strategies 

were implemented into Iliad based on a new searching method. This implementation was 

to ensure any combination of an information content model and a strategy could be used to 

pursue the most cost-effective work-up. The modified Shannon information model was the 

'best model overall, regardless of strategy. The Shannon's model was significantly better 

than the LR model during the initial stage of a work-up when history and physical exam 

findings were the major items to acquire. During the late stage of work-up when the 
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patient's major history and physical exam features were known, the LR model was just as 

good as the Shannon's model. These results also confirmed the first vignette study 

findings, which suggested that Shannon's model was preferable to other models especially 

during the initial phase of a patient case. 

Physicians typically generate a differential diagnosis early in the work-up of a patient 

case. They then pursue findings that allow them to separate potential diagnostic 

competitors (37). The single-frame and the across-frame strategies have been used to 

model this process. The single-frame strategy, which is present in the current version of 

Iliad, evaluates the relative cost-effectiveness that each diagnostic finding has in relation to 

each hypothesis on the differential. This strategy allows Iliad to rank-order each possible 

diagnostic finding and select the best one. However, this strategy treats each finding and 

disease link independently. In some cases, obtaining one finding may provide positive 

information for one hypothesis and negative information for another. For instance, a chest 

X -ray may be ordered to work up a patient with shortness of breath when the physician is 

considering pneumonia versus pneumothorax. If the chest X-ray shows a pneumothorax, 

and not an infiltrate, information accrues (positive and negative) for both diagnostic 

hypotheses. The single-frame strategy does not reflect the combined information available 

in a group of diseases to which a particular finding may be relevant. The result is an 

underestimation of the total information value of findings that contribute to multiple 

diagnoses. This may explain why Iliad sometimes delays obtaining tests such as chest X

rays even when experts feel they are indicated. It appears that the across-frame strategy 

may improve Iliad's performance. The relative performance of different information 

models was closer to each other when the across-frame strategy was used as compared to 

the single-frame strategy. This finding indicates that the performance of best information 

algorithm in Iliad depends not only on the information content model, but also on the 

strategy with which the model is itnplemented. 
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The two vignette studies have indicated that (1) history and physical exam findings 

suggested by Shannon's information content model were chosen most frequently by expert 

physicians regardless of two strategies lliad used; (2) in terms of suggesting laboratory test 

procedures, Shannon's model and the LR model (current model) were not significantly 

different; no models performed better than the LR model regardless of two strategies; (3) 

Suggestions by the across-frame strategy were chosen more frequently by expert 

physicians than ones by the single-frame strategy. 

The vignette approach was designed to have experts' feedback about the performance 

of different algorithms. This feedback was essential to the development of best infonnation 

algorithm for lliad. However there are some limitations with this approach. This approach 

takes lots of experts' time to evaluate different algorithms for a large number of vignettes. 

The cost for experts' time is large. Because of the time and budget concerns, the number 

of vignettes had to be limited and the number of algorithms also had to be limited. Because 

many potential algorithms need to be investigated, it is hard to have every one of them 

evaluated by expert physicians. 

Simulation Study 

A simulation study is inexpensive and fast, and the process of data collection can be 

automated. The number of algorithms and simulation cases used in an experiment can be 

relatively large. Both vignette and simulation approaches are necessary to evaluate the 

performance of different algorithms. The vignette approach provides the experts' 

judgments about the performance of an algorithm at different stages of a work-up. The 

simulation approach provides objective measures about the overall performance of an 

algorithm when solving a patient case. The simulation approach can serve as a screening 

method to evaluate potential algorithms; the vignette approach can then be used to validate 

the results from the simulation study. 
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The simulation study showed that the performance of Iliad's best information 

algorithm depends on the information content model, the strategy, and the decision criterion 

with which the model is implemented. 

The simulation study has shown the characteristics of two categories of information 

content models. One category is represented by probability dependent information content 

models, Shannon, P2-Pl and LogP2-LogPl. The other category is represented by 

probability independent information content models, LogLR and LR. 

In terms of computational time to solve a simulation case, algorithms with probability 

dependent models were slower than those with probability independent models. This 

resulted from the fact that algorithms with probability dependent models took more steps 

and requested more questions to solve a simulated case. Algorithms with the across-frame 

strategy were slower than those with the single-frame strategy because of the extra 

considerations of multiple linkage between findings and diseases. Algorithms with the 

expected decision criterion were slower than those with the maximax decision criterion 

because the expected decision criterion required the frequency of a finding to calculate the 

weighted average information content provided by the finding; the maximax decision 

criterion did not require the frequency value to obtain the information content provided by 

the fmding. 

The algorithms with Shannon, P2-Pl and LogP2-LogPl models took more steps 

than those with LogLR and LR models to solve a simulated case, but the former type of 

algorithms use much less amount of total charges (for both known and unknown tests) to 

solve a simulated case than the latter type of algorithms. Algorithms with Shannon, P2-Pl 

and LogP2-LogPl models simulated one type of diagnostic work-up behavior with more 

emphasis on history and physical examination questions. The work-up by these algorithms 

was cheaper but more conservative. Algorithms with LogLR and LR models simulated 

another type of diagnostic work-up behavior with more attention on the expensive tests. 
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The more expensive algorithms ignore the prior probability of disease being considered 

before ordering a laboratory test. 

Mathematically LogLR model is more sensitive to the cost factor than the LR model. 

However the simulation study did not indicate cheaper work-ups by algorithms with 

LogLR model than those by LR model. This finding suggests that taking the logarithm of 

likelihood ratio value can not make LR model more sensitive to work-up cost in terms of 

solving simulated cases. 

Algorithms with the across-frame strategy took more steps than those with the single

frame strategy to solve a simulated case. There were no other differences between the two 

strategies. Note that only exactly the same findings in different disease frames were 

evaluated together to give a total value of information in the across-frame strategy 

implementation for the simulation study. In other words, medical findings were grouped 

according to the lowest level of findings hierarchy. 

lliad represents medical findings with six hierarchical levels. The first level indicates 

general categories of findings (e.g., Medical History, Physical Examination, Chemistry, 

Blood Bank, Radiology, etc.). The second level indicates the type of examination 

performed, name of the test, or procedure. For example, with history data the level 2 terms 

include "present history," "previous history"; with physical examination data the level 2 

terms include "vital signs," "chest auscultation," etc; with laboratory tests or procedures the 

level 2 terms include "CBC," "Chest x-ray," etc. Meaningful clinical terms are found from 

level 3 to level 6.· If findings at higher level of the hierarchy other than the lowest level 

were evaluated together, there nright be different kinds of performance from two strategies. 

For example, present history findings of shortness of breath at rest (FI) and short of breath 

on exertion (F2) are two different findings. For the across-frame strategy implementation 

in the simulation study, information provided by Fl and F2 were not grouped together 

because they were not exactly the same findings. However if Fl and F2 were grouped at 

the upper level of the hierarchy, shortness of breath (noun level), the information content 
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value contributed by either FI or F2 would be the total information value contributed by the 

two findings. Different implementations of the across-frame strategy might affect the 

performance of the best information algorithm of Iliad. Further investigation is needed to 

study characteristics of different across-frame strategy implementation methods. 

Algorithms with expected decision criterion took more steps to solve a simulated case 

than those with maximax decision criterion. However the former type of algorithms 

consumed more charges (for known and unknown tests) than the latter type of algorithms. 

This may result from the fact that the maximax decision criterion is relatively more 

"aggressive" than the expected decision criterion. 

The simulation study has indicated that two types of behaviors can be simulated. 

Algorithms with probability dependent information content models (Shannon, P2-PI, 

LogP2-LogPI) simulated the frrst type of diagnostic behavior, which was characterized by 

pursuing more history and physical examination findings, less laboratory tests, less 

expensive work-ups, and more steps to solve a patient case. Algorithms with probability 

independent models (LogLR and LR) simulated the second type of behavior, which was 

characterized by pursuing less history and physical examination findings, more laboratory 

tests, more expensive work-ups, and less steps to solve a patient case. Algorithms with 

expected decision criterion took more steps to solve a patient case than those with maximax 

decision criterion. However the expected decision criterion consumed less charges than the 

maximax decision criterion. 

The simulation stud} has shown that the partial information passing method I and 

partial information passing method IT were different in terms of the computational time and 

number of steps to solve a simulated case. The method I (currently used in Iliad) was 

faster even though it took more steps to solve a simulated case. This indicated that the 

method I was very computationally efficient compared to the method II. However method 

II was more "goal" oriented than the method I. This is because the likelihood ratio values 

are directly back calculated from the posterior probabilities by method II. 
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Future Studies 

There are a variety of information content measures. These measures could be 

evaluated by the simulation approach first and a few selected measures can be further 

evaluated by the expert physicians. Renyi (38) suggests entropy of order a, which is 

defined by 

m 

Ha(P) = -1 _1 -log (~ p~), a > 0, a ;t 1 
-a £...J 1 

i = 1 

m 

m 

H1(P) = -1: Pi log Pi 
i = 1 

where P = (PI' P2' ---, Pm)' 1: Pi = 1 and pi;;:: ° i = 1,2, ... ,m. 
i = 1 

(4 - 1) 

(4 - 2) 

For a = 1, Reni's entropy is the same as Shannon's entropy. The variation of a values 

provides a continuum of uncertainty measures from Renyi's entropy. Ben-Bassat suggests 

a possible information measure by the divergence measure of order a between P and Q 

(39): 
m 

D (QIP) = _1 -log ~ q~ p~ -a a > ° a;t 1 
a a-I £...J 1 1 

i = 1 
(4 - 3) 

(4 - 4) 

where the Pi represent the a priori probabilities and the qi represent the corresponding 

posterior probabilities. The properties of Renyi's entropy are discussed by Aczel and 

Daroczy (40) and Ben-Bassat (41). Another possible information measure that is 

suggested by Ben-Bassat can be expressed as 

m 

V(QIP) = ~ p. (q. _ p.)2 £...J 1 1 1 

i = 1 (4 - 5) 
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Eq. [4-5J is the expected weighted variance of the a posterior probability vector. 

Patton and Woolfenden defmed diagnostic utility eDU) of a finding as follows (42): 

DU = 2 P(D) (Se - Sp) + 2 Sp - 1 (4 - 6) 

where peD) is the probability of the disease being considered, Se is the sensitivity of the 

finding for the disease, and Sp is the specificity of the finding for the disease. As stated by 

Patton and Woolfenden, DU is not an inherent property of a diagnostic test but of test

observer interactions in a clinical setting. The proposed diagnostic utility model is simple 

but incorporates important clinical decision analytic variables sensitivity, specificity, and 

disease probability. 

In the current implementation of quasi-utility models, only dollar charges of clinical 

findings are considered. If data about the real costs of obtaining clinical findings were 

available, further studies could be done to investigate the effect of charges and true cost 

values on the performance of lliad's best information algorithm. The costs of medical tests 

as a whole should include the cost of personnel, equipment, indirect overhead, test-related 

morbidity and mortality, the waste due to imperfect test performance, patient discomfort, 

waiting time for test results, etc. The estimation of different cost factors and how to 

include cost factors properly into the quasi-utility model present a challenge for the future 

research. Even though the task is not easy, these potential additions to the best information 

algorithm should improve the ability of Iliad to simulate the multifaceted environment in 

which real data collection decisions are made. 

Clute (43) and Peterson (44) showed that general practitioners did far less history 

taking and physical examination than was deemed appropriate. If scoring options were 

based on data gathering, Marshall (45) found that experts gathered less data and as a result 

scored lower than relative juniors when patient management problems were presented to 

people with different level of expertise. The simulation study of different best infonnation 

algorithms has shown two types of behaviors from algorithms with probability dependent 

information content models (Shannon, P2-Pl, and LogP2-LogPl) and algorithms with 
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probability independent information content models (LR and LogLR). Algorithms with 

probability dependent models tend to pursue more history and physical examination 

questions than algorithms with probability independent models. A further study could be 

done on Iliad's test mode. The hypotheses are that one type of scoring algorithm based on 

probability dependent models such as Shannon model will score medical students higher 

than experts and another type of scoring algorithm based on probability independent 

models such as LR model will score medical students lower than experts. To examine the 

hypotheses, test cases could be administered to medical students and physicians at different 

expertise levels. Test scores could then be analyzed as an index to expertise. 

Gorry and Barnett (46) applied a "real utility II approach to pursue additional tests. 

They represented utility values by dollar amount in terms of costs of tests (e.g., patient 

discomfort, time of skilled persons, etc.) and costs of possible misdiagnoses. A matrix 

was built to describe the costs associated with misdiagnoses. In the following matrix, 

TD1, TD2, ... , TDn represent the actual diseases being covered. D1, D2, ... , Dn represent 

Diagnosis TDI TD2 

Dl ull u12 
D2 u21 u22 

D-1 

Actual Disease 

TO' J 

U1j 
U2j 

u-IJ 

TDn 

ul n 
u2n 

the diagnosis list. The utility for each pair (Di , TDj) Uij represents the cost of misdiagnosis 

of TDj with Di. The cost for having the "right" diagnosis is 0 (e.g., u11 = 0, ... , unn = 0). 
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The assignment of utility values in the study was arbitrary. However the method 

presented provided an interesting approach to searching for cost-effective tests. Given a 

test result, the posterior probabilities at a particular stage of a work-up can be calculated. 

The expected utility values resulted from possible misdiagnosis given a test can be 

calculated according to the posterior probabilities and the utility values in the matrix. The 

utility value of a test was the summation of expected misdiagnosis cost resulting from 

performing the test and the cost of the test itself. The test with the lowest utility value is 

considered to be the best. If a similar approach could be taken, it would be very desirable 

to compare a real utility model to a quasi-utility model in terms of suggesting cost-effective 

findings. 

The quasi-utility model was implemented in Iliad based on the sequential searching 

strategy. To save computational time, the sequences of multiple tests were not included in 

the implementation. There is a possibility that the sequential searching method may 

overlook a very cost-effective pathway that consists of several tests, none of which is 

particularly effective alone. As the speed of microprocessors continues to improve, it will 

become practical to consider multiple sequences of tests. 

Finally, with the improvements in the best information algorithm of Iliad, a study 

involving a clinical trial to measure the impact of Iliad on the cost-effectiveness of the 

patient work-up can be performed. 



APPENDIX A 

VIONETIE RA TIN 0 FORM FOR EXPERIMENT I 
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In the first vignette study, three real pulmonary disease cases were selected. Each 

case was divided into 6 vignettes, so there were total 18 vignettes. Two sample vignettes 

from one case are given below. 

Vignette 1 

Patient Findings 

Five medical students were asked to work-up a real patient case. These students had 
obtained the following findings part of the way through their initial work-up: 

Age: 85 
Sex: Female 
Patient has the following fmdings: 
Present history: 

chest pain 
that is sharp or stabbing 
that is radiating 

to the shoulder, neck, arm or jaw 

Rating Section 

The five students have proposed the following work-up plans: 

Student 1,4 & 5: Pursue Unstable Chest Pain Pattern -> from Stable Angina by 
asking: 
"Present history of chest pain with a specific time pattern, with a specific 
aggravating factors, at rest?!! 
"Previous medical history of cardiac problem?1I 

Student 2: Pursue Acute Productive Cough -> from Pneumonia by asking: 
"Present history of coughT' 

Student 3: Pursue Stable Angina by asking: 
IIPrevious lab and other tests: positive test for coronary artery disease?1I 

Section 1: Findings Score 

Please score the cost-effectiveness of the question(s) proposed by each student for that 
student's diagnosis. Please do not score based on the appropriateness of the student's 
hypothesis. The score should range from 5 (similar to the cost-effectiveness of questions 
typically proposed by the best students you have known) to 1 (similar to the cost
effectiveness of questions typically proposed by the worst students you have known). 

Student 1,4 & 5: ____ (1 to 5) 

Student 2: _____ (l to 5) 
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Student -____ (1 to 5) 

Section 2: Best Overall Score 

Please pick the best overall strategy (combination of disease to be pursued and cost
effectiveness of question for the disease). Put the number(s) of the student(s) who selected 
the best strategy in the blank line below: 

Number(s) of the best student(s) ___ _ 

Vignette 2 

Patient Findings 

Now, we continue the work-up of the case. Despite your previous rating of the "best" 
student to be allowed to pursue the work-up, a single student was arbitrarily selected to 
continue. This student collected the following additional findings: 

Present history: 
chest pain 

that did begin recently 
that does come on suddenly 
that is not recurrent 
that is increased by breathing deeply 
that is increased by coughing 
that is at rest 

No recent unusual or severe physical activity 
No major injury or trauma 

Previous Medical History: 
Cardiac problem 

Physical Exam: 
No tenderness to pressure or palpation 

The complete case history has now been updated and is printed below. Please note that the 
underlined tenns are the newly acquired fmdings. 

Age: 85 
Sex: Female 
Patient has the following fmdings: 
Present history: 

chest pain 
that did be~in recently 
that does come on suddenly 
that is not recurrent 
that is sharp or stabbing 
that is radiating 

to the shoulder, neck, arm or jaw 
that is increased by breathin~ deeply 
that is increased by coueh;ne 
that is at rest 

No recent unusual or severe physical activity 
No major injury or trauma 



Previous Medical History: 
Cardiac problem 

Physical Exam: 
No tenderness to pressure or palpation 

Rating Section 

The five students have proposed the following work-up plans: 

Student 1,2 & 3: Pursue Acute Productive Cough -> from Pneumonia by 
asking: "Present history of cough?" 

Student 4: Pursue Risk of Atherosclerosis -> from Acute MI by asking: 
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"Previous medical history of hypertension, peripheral vascular disease, coronary 
heart disease, diabetes?" 
"Family history of cardiovascular disease?" 

Student 5: Pursue Risk of Atherosclerosis -> from Acute MI by asking: 
"Previous medical history of coronary heart disease?" 

Section 1: Findings Score 

Please score the cost-effectiveness of the question(s) proposed by each student for that 
student's diagnosis. Please do not score based on the appropriateness of the student's 
hypothesis. The score should range from 5 (similar to the cost-effectiveness of questions 
typically proposed by the best students you have known) to 1 (similar to the cost
effectiveness of questions typically proposed by the worst students you have known). 

Student 1,2 & 3: ____ (1 to 5) 

Student 4: ____ (1 to 5) 

Student 5: ____ (1 to 5) 

Section 2: Best Overall Score 

Please pick the best overall strategy (combination of disease to be pursued and cost
effectiveness of question for the disease). Put the number(s) of the student(s) who selected 
the best strategy in the blank: line below: 

Number(s) of the best student(s) ___ _ 



APPENDIXB 

VIGNETTE RATING FORM FOR EXPERIMENT II 



Age: 52 
Sex: Male 
Chief Complaint(s): 

Dyspnea: fatigue; 

Patient has the following fmdings: 

Present history: 
shortness of breath (dyspnea) 

on exertion 
that is worsened recently 

not at rest 
that does not cause the patient to awaken at night (PND) 
easy fatigue (reduced exercise capacity) 
palpitations (sensation of heart beat) 

Previous medical history: 
no neurologic or nervous problems 
no chronic lung disease 
no embolus or embolism 

Hypotheses under consideration: 

Ischemic Cardiomyopathy 
Heart Failure 
Idiopathic Cardiomyopathy 
Hypertensive Heart Disease 
Pneumonia 

110 



Rating Sheet 

Student Strategy I 

1 

2 

3 

4 

5 

Best 
Student 

vital signs: 
systolic blood pressure, diastolic 
blood pressure, respiratory rate, 
heart rate, oral temperature 

vital signs; 
systolic blood pressure, diastolic 
blood pressure, respiratory rate, 
heart 
rate, oral temperature 

vital signs: 
systolic blood pressure, diastolic 
blood pressure, respiratory rate, 
heart rate, oral temperature 
previous medical history: 
coronary heart disease (myocardial 
infarction) 
vital signs: 
systolic blood pressure, diastolic 
blood pressure, respiratory rate, 
heart rate, oral temperature 
vital signs: 
systolic blood pressure, diastolic 
blood pressure, respiratory rate, 
heart rate, oral temperature 

Strategy IT 

present history: 
cough, 
shortness of breath that is 
worsened 
when lying flat, 
diminished urine (oligurial), 
nocturia. 
decreased mental abilities 
present history: 
cough that is of recent onset, 
with gross hemoptysis, with 
blood streaked sputum 
shortness of breath that is 
worsened 
when lying flat, 
diminished urine (oliguria), 
nocturia, 
decreased ment:l.l abili ties 
previous medical history 
coronary heart disease (myocardial 
infarction) 
previous medical history 
coronary heart disease (myocardial 
infarction) 

previous medical history 
coronary heart disease (myocardial 
infarction) 

present history 
cough, 
shortness of breath that is 
worsened 
when lying flat, 
diminished urine (oligurial), 
nocturia, decreased mental 
abilities 

Best 
Strategy 
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