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ABSTRACT 

 
 
 

It is imperative to obtain a complete network graph of at least one 

representative retina if we are to fully understand vertebrate vision. Synaptic 

connectomics endeavors to construct such graphs. Though previously prevented 

by hardware and software limitations, the creation of customized viewing and 

analysis software, affordable data storage, and advances in electron imaging 

platform control now permit connectome assembly and analysis. The optimal 

strategy for building complete connectomes utilizes automated transmission 

electron imaging with 2 nm or better resolution, molecular tags for cell 

identification, open access data volumes for navigation, and annotation with open 

source tools to build three-dimensional cell libraries, complete network diagrams, 

and connectivity databases. In a few years, the first retinal connectome analyses 

reveal that many well-studied cells participate in much richer networks than 

expected. Collectively, these results impel a refactoring of the inner plexiform 

layer, while providing proof of concept for connectomics as a game-changing 

approach for a new era of scientific discovery. 
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Connectomics Discovery 

No complete subnetwork is known for any retinal neuron. If we are to 

obtain a complete understanding of the nervous system, neuroanatomy and 

electrophysiology must concert their efforts.  New electron imaging technologies 

now have the potential to reconstruct complete networks: connectomes. 

Reported herein are specific analyses and results conducted in the first retinal 

connectome ever assembled, Rabbit Retinal Connectome 1 (RC1), 

demonstrating the power of connectomes as analytical tools for scientific 

discovery not achievable by other means.  In a few short years, connectomics 

analysis of a canonical sample of retinal tissue has reframed our understanding 

of network complexity in the retina, and discovered a neural substrate 

responsible for mesopic vision; a problem that has eluded scientists for over forty 

years.  New cell classes breaking the retinal inner plexiform layer (IPL) 

stratification rules with unpredicted network motifs emerge, neural substrates 

analogous to winner-take-all networks in cortex are discovered, and a refactoring 

of the IPL unfolds. The results force us to reconsider long-held assumptions 

regarding the neural retina used in model construction and interpretation of 

physiological data.  A discussion of the impact of connectomes on our scientific 

knowledge of specific retinal neural networks is included, along with proof of 

concept that connectomics is a necessary (though insufficient) component of the 

path toward complete understanding of plexiform layers throughout the brain.  

Connectomics tools delineate complex, sparse networks by systematically 

tracing cellular partners across complex synaptic chains (Sporns et al., 2005).  
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They can also serve a hypothesis testing role.  Often, scientists attempt to infer 

the subnetworks and networks accounting for functional results, and often, they 

are incorrect despite heroic effort and clever experimental design.  This is largely 

because there are so many possible neural configurations (see Neural Network 

Complexity Section below) that could generate any specific observable 

phenomena that is impractical if not impossible to derive from neural behavior 

alone. 

New analyses not possible with previous ultrastructural techniques 

become manageable with high-resolution connectomics. Any cell can be traced 

repeatedly, even concurrently, and an event history stored. From any starting 

point in a canonical volume, a synapse nexus can be traced back to its sources. 

Concurrently, coordinates (locations) and relational properties (links) are 

captured for every cell (parent structure) or part (child structure), used for  

automatically populating statistical tables, and building network graphs, data 

navigation maps, and three-dimensional renderings. All attributes are stored as 

queryable databases, all forms of data query tools are enabled, and all data can 

be shared. Distinct from traditional anatomy, the data collected and analyzed in a 

connectomics format is fully transparent. Further, synaptic identification can 

approach 100% with high-resolution automated transmission electron 

microscope-based (ATEM) connectomics (Anderson et al., 2011a). With 

traditional single-section imaging, vast numbers of synapses are missed (Marc 

and Liu, 2000), giving rise to underestimates of even simple motifs such as serial 

synapses. More importantly, every potential synapse can be flagged, assigned a 
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certainty or query status, assessed by other analysts, reviewed in its full network 

context, reimaged goniometrically at higher resolution if necessary, and have its 

identity finalized (Anderson et al., 2011b; Anderson et al., 2011a). This was 

never possible with manual TEM, including serial section TEM. 

 
 

Neural Network Complexity 

Retinal and brain networks are so complex that we turn to graph theory 

(Diestel, 2005; Harary and Palmer, 1973) to gain traction. In this context, cells 

are represented as vertices, synaptic connections become edges connecting 

vertices, and the edges can be unidirectional or directional.  Thus, we can 

construct multiedge digraphs (directed graphs) to understand neural networks.  

The number of possible graphs Nn constructed from n vertices is incredibly large, 

even with aggressive constraints (Figure 1.1). Even the simplest three-vertex 

labeled digraph creates N3 = 64 possible networks. The human retina has at 

least 70 classes of cells (Marc, 2010), the human brain has no fewer than 250 

regions   (≈  200 for cortex alone (Van Essen et al., 2011)) and >1000 expected 

neuronal classes. Topologic complexities such as diverse cell copy numbers and 

coverages (Reese, 2008), molecular connection types, and synaptic weights 

exponentially expand this universe of possible networks. Attempting to infer 

correct neural networks based on physiological response properties alone is not 

a realistic solution.  Indeed, no provable mappings of physiologic transfer 

functions onto unique graph topologies exist (Aster et al., 2005). Computational 

modelers have a name for the process of attempting to discover network motifs, 
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it is called the subgraph isomorphism problem (Karp, 1972). There is no current 

solution to this problem as the answer is either incredibly difficult or impossible to 

compute.    Moreover,  definitive  proof  of  a  specific  network  motif’s  functional  role  is  

impossible.  Other   “-omics”   fields, such as genomics and proteomics, suffer the 

same problem, as the complexity of relational properties quickly becomes 

unmanageable with any system operating as a multiedge digraph (Wong et al., 

2012).  The solution lies in obtaining network ground truth (Anderson et al., 

2011b), not inference.  It is imperative that we reconstruct the proper wiring 

diagram for representative networks so physiologists and modelers can then 

correctly parameterize them.  

 
 

Specific Connectomics Techniques 

Connectome Approaches 

Connectomics approaches span macroscopic analyses such as the 

Human Connectome Project (Marcus et al., 2011), other large-scale projects 

(Sporns et al., 2005; van den Heuvel and Sporns, 2011), and microscopic 

analyses of synaptic networks in specific tissues (e.g., the vertebrate retina)   

(Anderson et al., 2011a; Briggman et al., 2011).  Conventional TEM fixation and 

postfixation are optimal for connectomics. Image segmentation with molecular or 

functional markers can be achieved by registering optical imagery to TEM image 

fields.  Excitation mapping with the channel-permeant organic ion 1-amino-4-

guanidobutane (AGB) (Anderson et al., 2011a; Anderson et al., 2009) embeds 

small-molecule light-mediated response histories into a retinal sample. Briggman 
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et al. (2011) and Bock et al. (2011) computational aligned optical calcium 

imaging data onto ultrastructural imagery to pre-identify neuron classes for 

targeted annotation. TEM-based connectomes could also utilize genetic markers 

(Gaietta et al., 2002; Hoffmann et al., 2010; Lichtman and Smith, 2008; Shu et 

al., 2011). Molecular tags used for cell classification in a feature space 

independent from morphology and connectivity are key components for complete 

connectomics, and thus far, only ATEM-based schemes are compatible with 

them (Anderson et al., 2009; Jones et al., 2011; Jones et al., 2003; Marc and Liu, 

2000; Micheva and Bruchez, 2011; Micheva et al., 2010; Micheva and Smith, 

2007). 

The tissue section used for connectome datasets are obtained either by 

ablation of a block surface or capturing sections. Ablation methods include in 

vacuo serial block-face (SBF) sectioning (Briggman and Denk, 2006; Denk and 

Horstmann, 2004) or ion beam milling (Knott et al., 2008), then scanning electron 

microscopy (SEM) or scanning transmission electron microscopy (STEM) 

imaging measures backscattered secondary electrons. Ablation methods 

obligatorily have limited depth profiles and require very thin sections for tracking. 

In contrast, manually captured ultramicrotomy sections (Anderson et al., 2009; 

Bourne and Harris, 2011) onto electron-transparent film supports followed by 

conventional staining and ATEM imaging (Anderson et al., 2009) produces 

primary electron projection images through the section thickness, optimally at 

50–70 nm. Manual section capture obligatorily requires tile registration on a large 

scale, but that problem is solved (Tasdizen et al., 2010). Finally, automated 
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sectioning onto electron-opaque films has been developed for STEM imaging 

(Kleinfeld et al., 2011), but the required hardware is rare and expensive. 

 

Wide Analyses and Deep Analyses 

In the RC1 volume, assembled with manually captured ultramicrotomy 

sections captured with a high-throughput automated TEM (ATEM), we searched 

for synaptic chains spanning ON and OFF cone bipolar cell networks, and rod 

and cone bipolar cell networks, using Viking annotation and Viz network analysis 

(Anderson et al., 2009). We hereafter refere to ON and OFF cone bipolar cells as 

CBbs and CBas, respectively, to adhere to the MacNeil et al. (2004) rabbit 

bipolar cell classification scheme described in more detail in Chapter 1.  We 

utilized combinations of wide analysis (querying many copies of a cell class for 

shared features) and deep analysis (mapping a connection cohort of a cell to 

saturation) on patches of bipolar cells to define their connections with amacrine 

cells.  All cells were classified in independent molecular, morphologic, and 

connectivity feature spaces as detailed in the methods and previous publications 

(Anderson et al., 2011b; Anderson et al., 2011a; Anderson et al., 2009). This 

combination of deep and wide connectomics of the rod BC cohort revealed 

incredibly rich networks and subnetworks with direct functional significance.  

Moreover, the topologies underlying these functional motifs force us to 

reconsider legacy functional schema. 

 

 



8 
 

Network Concatenation 

We systematically concatenate several independently discovered 

subnetworks into larger networks to establish the interconnectivity of specialized 

processing streams throughout the retina. For any question of interest, we start 

with the cell classes suspected to contribute, then annotate the immediately 

connected subnetworks.  Often serendipidously, the subnetworks collide which 

we concatenate to create increasingly larger networks.   

 
 

Specific Connectomics Discoveries 

Have connectomics advanced our knowledge base? The oversimplicity of 

many long-held beliefs is now crystallizing with the ability to better scrutinize 

neural connectivity in the retina. Many key findings are summarized here.  We 

use the following conventions to represent synaptic chains and their associated 

gains: >, high-gain sign-conserving (e.g., mediated by ionotropic glutamate 

receptors); >m, high-gain sign-inverting (mediated by mGluR6 glutamate 

receptors); >i, low-gain sign-inverting (ionotropic glycine and GABA receptors). 

High-gain excitatory transfers are assigned a gain of n and low-gain inhibitory 

transfers are assigned a separate gain of p, based on evidence that most 

excitatory gains are >>1 (Copenhagen et al., 1990; Yang and Wu, 2004), 

whereas inhibitory gains are fractional (Maltenfort et al., 1998; Wu, 1991). The 

latter is not necessarily true in all cases and requires further investigation, which 

further justifies treating classical ionotropic inhibition as a separate parameter. 

Coupling is also a separate parameter, here treated as ~1 for notational 
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simplicity, although it is certainly attenuating. Gains achieved via synaptic chains 

are multiplicative. For instance, a chain of cone >m CBb > AC >i GC has a total 

gain of n2p and a net sign-conserving polarity (i.e., the chain copies the cone 

polarity into the target GC). 

 

Cone Bipolar Cell Cross-Inhibition Motifs 

Crossover inhibition is currently a high-profile topic in retinal 

electrophysiology.  The key concept is that polarity-matched   ON  →   OFF   and  

OFF   →   ON   crossover   pathways, dominated by GAC signaling, fine tune 

signaling throughout the retina (Hsueh et al., 2008; Werblin, 2010, 2011). The 

exact functional roles of crossover are currently debated, with conflicting 

evidence for rectification compensation (Werblin, 2010) versus rectification 

enhancement (Liang and Freed, 2010). Essentially, diffusely-stratified GACs are 

believed to cross the ON-OFF border to mediate, for example, [CBb > GAC >i 

OFF GC] chains where the GAC input provides an appropriate OFF polarity via 

an anionic current to compensate for AMPA receptor rectification. Importantly 

(Werblin, 2010), refactoring of bipolar cell outputs in the inner plexiform layer 

shows   that   CBb   axonal   ribbons   provide   an   ON  →  OFF   crossover   topology   to  

monostratified GACs in the OFF layer directly. Moreover, there are also [CBb > 

γAC  >i OFF GC] chains in the OFF layer (Lauritzen et al., 2013). Because the 

latter are deeply embedded in both feedback and feedforward motifs, they have 

not yet been pharmacologically isolated. Additionally, none of the CBb axonal 

output crossover elements involve the AII AC. Indeed, the bulk of the synaptic 
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output of AII ACs is onto CBa cells of all classes, which means the net gain from  

the [AII >i CBa > OFF GC] chain is np and likely rectifying. There is extensive 

direct AII synaptic  drive  to  α- and  δ- OFF GCs, which are both strongly rectified 

GCs, but the net gain will only be p counterbalanced by even more numerous 

CBa2 drive with gain of np. Therefore, the AII AC is not likely a major source of 

rectification correction for the OFF layer. Other GACs likely are. 

Many of the specific network motifs discovered tell us about the capacity 

of individual cells, and therefore the spatial extent of an individual cell and cell 

class’s   influence   (i.e., one GAC can inject ON-OFF signals that spread at least 

up to 200-250 um away). 

 
 

Photopic-Scotopic Cross-Inhibition Motifs 

Crossover networks between rod and cone pathways have not been 

discovered despite decades of electron microscopy. Indeed visualizing retinal 

crossover networks  (Molnar et al., 2009; Werblin, 2010) and, in particular, those 

inhibitory connections between demonstrably dissimilar channels, requires wide-

scale 3D ultrastructural tracing at synaptic resolution. 

 We chose to unravel rod-cone pathway interactions by starting at 

individual rod BCs and mining their contacts outward across wide fields of the 

inner plexiform layer. We mined RC1 for synaptic chains spanning rod and cone 

BC networks. We performed wide analysis (querying many copies of a cell class 

for shared features) on 104 adjacent rod bipolar cells, and deep analysis 

(mapping a connection cohort of a cell to saturation) on a central patch of 5 rod 
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BCs to define all their connections with amacrine cells, including those that 

connect to surrounding cone bipolar cell networks.  All cells were classified in 

independent molecular, morphological, and network feature spaces as detailed in 

the methods and previous publications (Anderson et al., 2011a; Lauritzen et al., 

2013).  

A major attribute of mammalian vision is rapid switching between rod- and 

cone-dominated operations, especially during extended crepuscular periods 

where both rods and cones operate. Psychophysical analyses, including over 

three decades of work by Ulf and Bjorn Stabell, reveal powerful rod–cone 

interactions, including mutually suppressive regimes (Brill, 1990; Buck, 2004; 

Frumkes and Eysteinsson, 1988; Goldberg et al., 1983; Lange et al., 1997; 

Stabell and Stabell, 1998; Thomas and Buck, 2006; Trezona, 1970, 1973), but 

the mechanisms have remained unknown. The notion that horizontal cells 

mediate such interactions is complicated by the lack of evidence for axonal 

signaling in mammalian horizontal cells. Connectomics reveals at least seven 

unique instances of high-gain mediated cone suppression of rod signaling. Deep 

and wide connectomics of the rod BC cohort reveal that every rod BC gets direct 

inhibitory input from CBb-driven ON   γACs   and   GACs   and   that   ~25%   of   AC  

synapses   on   rod   BC   terminals   come   from   ON   cone   ACs   with   a   cone  →   rod  

suppression of n2p. Further, both AI and AII ACs receive extensive cone pathway 

inhibition. AI ACs receive inhibition (~100 inhibitory synapses/cell) on their 

proximal  dendrites  in  the  OFF  layer  via  selective  CBa  >  γAC  >i AI AC motifs, and 

AII ACs receive cone-driven inhibition at every level of the inner plexiform layer, 



12 
 

including a highly selective inhibitory input from ON GACs that target rod BC, AII 

AC, and AI AC. Three pathways mediate rod suppression of cone signaling. 

Certain wide-field   γACs   (different   from   the   cone   →   rod   suppressors)   collect  

sparse rod BC inputs and are both presynaptic and postsynaptic to CBb cells, 

forming   a   selective   [RB   >   γAC >i CBb]   suppression   chain   with   a   rod  →   cone  

suppression of n2p. However, the most powerful motif is the [rod >m RB > AII 

ACs::CBb  >  γAC  >i CBb]  chain  with  a  rod  →  cone  suppression  of  n3p. Because 

AII cells are narrow-field  elements   (<100  μm), whereas   the  γACs  are  wide-field 

(>250  μm),  each  patch  of  rods  can  inhibit  a  vast  field  of  surrounding  cones. 

 
 

Proof of Concept and Generalization 

The following three chapters elucidate the ability of connectomics to 

unravel the daunting neural networks of the retina, and illustrate how results 

obtained in the past three years are already refactoring our legacy of retinal 

structure-function relationships.  Specific cell-class relationships are emerging to 

clarify source-target distributions, the multiplexing capacity of individual cells is 

now more clear, and elusive network substrates responsible for psychophysical 

phenomena unexplainable for over a century are becoming accessible.  These 

results not only solve previously unanswerable questions, but advance new sets 

of testable hypotheses in the process.   Finally, the lessons learned in the IPL of 

the retina will yield important insight into the structure-function relationships of 

plexiform layers throughout the brain.  With the technological scaffolding now in 
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place for connectomics analysis of neural architectures everywhere in the central 

nervous system, we can embark on a new era of scientific discovery.  
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Figure 1.1.  Graph enumeration for networks. A three vertex (n = 3) network 
(ABC) can form different numbers of motifs if the connections are undirected 
U(n), directed D(n) (solid arrows), or directed with re-entrant loops R(n) (dotted 
arrows). Networks can be limited to vertex clusters of size k [C(n,k)]. Directed (D) 
and combinatoric (C) networks in retina (n = 70), brain regions (n = 250), and 
brain neurons (n = 1000) were calculated using the Wolfram Alpha engine. 

  



15 
 

 
 
 

 
 
 
 



16 
 

References 
  
Anderson, J.R., Grimm, B., Mohammed, S., Jones, B.W., Spaltenstein, J., 
Koshevoy, P., Tasdizen, T., Whitaker, R., Marc, R.E. 2011b. The Viking Viewer: 
Scalable multiuser annotation and summarization of large connectomics 
datasets. J Microscopy 241:13-28. 

Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J., DeMill, D., 
Lauritzen, J.S., Lin, Y., Rapp, K., Mastronarde, D., Koshevoy, P., Grimm, B., 
Tasdizen, T., Whitaker, R., Marc, R.E., 2011a. Exploring the retinal connectome. 
Mol Vision 17:355-379. 

Anderson, J.R., Jones, B.W., Yang, J.-H., Shaw, M.V., Watt, C.B., Koshevoy, P., 
Spaltenstein, J., Jurrus, E., Kannan, U.V., Whitaker, R., Mastronarde, D., 
Tasdizen, T., Marc, R.E. 2009. A computational framework for ultrastructural 
mapping of neural circuitry. PLoS Biol 7:e1000074. 

Aster, R., Borchers, B., Thurber, C. 2005. Parameter Estimation and Inverse 
Problems. Academic Press, NY. 

Bock, D.D., Lee, W.-C.A., Kerlin, A.M., Andermann, M.L., Hood, G., Wetzel, 
A.W., Yurgenson, S., Soucy, E.R., Kim, H.S., Reid, R.C. 2011. Network anatomy 
and in vivo physiology of visual cortical neurons. Nature 471:177-182. 

Bourne, J.N., Harris, K.M. 2011. Nanoscale analysis of structural synaptic 
plasticity. Current Opinion in Neurobiology 22:1-11. 

Briggman, K.L., Denk, W. 2006. Towards neural circuit reconstruction with 
volume electron microscopy techniques. Current Opinion in Neurobiology 
16:562-570. 

Briggman, K.L., Helmstaedter, M., Denk, W. 2011. Wiring specificity in the 
direction-selectivity circuit of the retina. Nature 471:138-188. 

Brill, M.H. 1990. Mesopic color matching: some theoretical issues. J Opt Soc Am 
A 7:2048-2051. 

Buck, S.L. 2004. Rod-cone interactions in human vision, in: Chalupa, L.M., 
Werner, J. (Eds.), Visual Neurosciences. MIT Press, Cambridge, MA, pp. 863-
878. 

Copenhagen, D.R., Hemilä, S., Reuter, T. 1990. Signal transmission through the 
dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and 
signal/noise. J Gen Physiol 95:717-732. 

Denk, W., Horstmann, H. 2004. Serial block-face scanning electron microscopy 
to recon-struct three-dimensional tissue nanostructure. PLoS Biol 2:e329 
 



17 
 

Diestel, R. 2005. Graph Theory, 3 ed. Springer-Verlag, Heidelberg. 

Frumkes, T.E., Eysteinsson, T. 1988. The cellular basis for suppressive rod-cone 
interaction. Vis Neurosci 1:263-273. 

Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., 
Sosinsky, G.E., Tsien, R.Y., Ellisman, M.H. 2002. Multicolor and electron 
microscopic imaging of connexin trafficking. Science 296:503-507. 

Goldberg, S.H., Frumkes, T.E., Nygaard, R.W. 1983. Inhibitory influence of 
unstimulated rods in the human retina: evidence provided by examining cone 
flicker. Science 221:180-182. 

Harary, F., Palmer, E.M. 1973. Graphical Enumeration. Academic Press, New 
York. 

Hoffmann, C., Gaietta, G., Zürn, A., Adams, S.R., Terrillon, S., Ellisman, M.H., 
Tsien, R.Y., Lohse, M.J. 2010. Fluorescent labeling of tetracysteine-tagged 
proteins in intact cells. Nat Protoc 5:1666-1677. 
 
Hsueh, H.A., Molnar, A., FS., W. 2008. Amacrine-to-amacrine cell inhibition in 
the rabbit retina. J Neurophysiol 100:2077-2088. 

Jones, B.W., Kondo, M., Terasaki, H., Watt, C.B., Rapp, K., Anderson, J., Lin, Y., 
Shaw, M.V., Yang, J.-H., Marc, R.E. 2011. Retinal degenerative disease and 
remodeling in a large eye model. J Comp Neurol 519:2713-2733. 

Jones, B.W., Watt, C.B., Frederick, J.M., Baehr, W., Chen, C.K., Levine, E.M., 
Milam, A.H., LaVail, M.M., Marc, R.E. 2003. Retinal remodeling triggered by 
photoreceptor degenerations. Journal of Comparative Neurology 464:1-16. 

Karp, R.M., 1972. Reducibility Among Combinatorial Problems, in: Miller, R.E., 
Thatcher, J.W. (Eds.), Complexity of Computer Computations. Plenum, New 
York, pp. 85–103. 

Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D.D., Briggman, K.L., Chklovskii, 
D.B., Denk, W., Helmstaedter, M., Kaufhold, J.P., Lee, W.C., Meyer, H.S., 
Micheva, K.D., Oberlaender, M., Prohaska, S., Reid, R.C., Smith, S.J., 
Takemura, S., Tsai, P.S., Sakmann, B. 2011. Large-Scale Automated Histology 
in the Pursuit of Connectomes. J Neurosci 31:16125-16138. 

Knott, G., Marchman, H., Wall, D., Lich, B. 2008. Serial section scanning electron 
microscopy of adult brain tissue using focused ion beam milling. J Neurosci 
28:2959-2964. 

Lange, G., Denny, N., Frumkes, T.E. 1997. Suppressive rod-cone interactions: 
evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in 
achromatic vision. J Opt Soc Am A Opt Image Sci Vis 14:2487-2498. 



18 
 

Lauritzen, J.S., Watt, C.B., Anderson, J.R., Jones, B.W., Marc, R.E. 2013. ON 
Cone Bipolar Cell Axonal Ribbons in the OFF Inner Plexiform Layer of the Rabbit 
Retina. J Comp Neurol 521:977-1201. 

Liang, Z., Freed, M.A. 2010. The ON pathway rectifies the OFF pathway of the 
mammalian retina. J Neurosci 30:553-543. 

Lichtman, J.W., Smith, S.J. 2008. Seeing circuits assemble. Neuron 60:441-448. 

MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E., Masland, R.H. 2004. 
The population of bipolar cells in the rabbit retina. Journal of Comparative 
Neurology 472:73-86. 

Maltenfort, M.G., Heckman, C.J., Rymer, W.Z. 1998. Decorrelating actions of 
Renshaw interneurons on the firing of spinal motoneurons within a motor 
nucleus: a simulation study. J Neurophysiol 80:309-323. 

Marc, R.E. 2010. Synaptic Organization of the Retina, in: Levin, L.A., Nilsson, 
S.F.E., Ver Hoeve, J., Wu, S.M., Kaufman, P.L., Alm, A. (Eds.), Adler's 
Physiology of the Eye. Elsevier, pp. 443-458. 

Marc, R.E., Liu, W. 2000. Fundamental GABAergic amacrine cell circuitries in the 
retina: nested feedback, concatenated inhibition, and axosomatic synapses. 
Journal of Comparative Neurology 425:560-582. 

Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., 
Jenkinson, M., Laumann, T., Curtiss, S.W., Van Essen, D.C. 2011. Informatics 
and Data Mining Tools and Strategies for the Human Connectome Project. Front 
Neuroinform 5:4. 

Micheva, K.D., Bruchez, M.P. 2011. The gain in brain: novel imaging techniques 
and multiplexed proteomic imaging of brain tissue ultrastructure. Current Opinion 
in Neurobiology 22(1):94-100. 

Micheva, K.D., Busse, B., Weiler, N.C.,  O’Rourke,  N.,  Smith,  S.J. 2010. Single-
synapse analysis of a diverse synapse population: proteomic imaging methods 
and markers. Neuron 68:639-653. 

Micheva, K.D., Smith, S.J. 2007. Array Tomography: A New Tool for Imaging the 
Molecular Architecture and Ultrastructure of Neural Circuits. Neuron 55:25-36. 

Molnar, A., Hain-Ann, H., Roska, B., Werblin, F.S. 2009. Crossover inhibition in 
the retina: circuitry that compensates for nonlinear rectifying synaptic 
transmission. J Comput Neurosci 27:569-590. 

Reese, B. 2008. Mosaics, tiling and coverage by retinal neurons, in: Masland, 
R.H., Albright, T. (Eds.), The Senses: A comprehensive reference. Vision. 
Elsevier, Amsterdam. 



19 
 

Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, 
Y., Ellisman, M.H., Tsien, R.Y. 2011. A genetically encoded tag for correlated 
light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 
9:e1001041. 

Sporns,  O.,  Tononi,  G.,  K√∂tter,  R. 2005. The Human Connectome: A Structural 
Description of the Human Brain. PLoS Computational Biology 1:e42. 

Stabell, B., Stabell, U. 1998. Chromatic rod-cone interaction during dark 
adaptation. J Opt Soc Am A Opt Image Sci Vis 15:2809-2815. 

Tasdizen, T., Koshevoy, P., Grimm, B., Anderson, J.R., Jones, B.W., Whitaker, 
R., Marc, R.E. 2010. Automatic mosaicking and volume assembly for high-
throughput serial-section transmission electron microscopy J Neuroscience 
Methods 193:132-144. 

Thomas, L.P., Buck, S.L. 2006. Foveal and extra-foveal influences on rod hue 
biases. Vis Neurosci 23:539-542. 

Trezona, P.W. 1970. Rod participation in the 'blue' mechanism and its effect on 
colour matching. Vision Res 10:317-332. 

Trezona, P.W. 1973. The tetrachromatic colour match as a colorimetric 
technique. Vision Res:13, 9-25. 
 
Van den Heuvel, M.P., Sporns, O. 2011. Rich-Club Organization of the Human 
Connectome. The Journal of Neuroscience 31:15775-15786. 

Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T. 2011. 
Parcellations and Hemispheric Asymmetries of Human Cerebral Cortex Analyzed 
on Surface-Based Atlases. Cerebral Cortex 22(10):2241-2262. 

Werblin, F.S. 2010. Six different roles for crossover inhibition in the retina: 
correcting the nonlinearities of synaptic transmission. Vis Neurosci 27:1-8. 

Werblin, F.S. 2011. The retinal hypercircuit: a repeating synaptic interactive motif 
underlying visual function. J Physiol 589:3691-3702. 

Wong, E., Baur, B., Quader, S., Huang, C.-H. 2012. Biological network motif 
detection: principles and practice. Briefings in Bioinformatics 13(2):202-215. 

Wu, S.M. 1991. Input-output relations of the feedback synapse between 
horizontal cells and cones in the tiger salamander retina. J Neurophysiol 
65:1197-1206. 

Yang, X.L., Wu, S.M. 2004. Signal transmission from cones to amacrine cells in 
dark- and light-adapted tiger salamander retina. Brain Res 1029:155-161. 
 



 

CHAPTER 2 
 
 
 

ON CONE BIPOLAR CELL AXONAL SYNAPSES  
 

IN THE OFF INNER PLEXIFORM LAYER 
 
 
 

Reprinted from The Journal of Comparative Neurology, 521(5), Lauritzen, J.S., 

Anderson, J.R., Jones, B.W., Watt, C.B., Shoeb, M., Hoang, J.V., Marc, R.E., ON 

cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit 

retina, 977-1201, (2013), with permission from John Wiley and Sons. 

 
 

  



21 
 

Abstract 
 

Analysis of the rabbit retinal connectome RC1 (Figure 2.1) reveals that the 

division between the ON and OFF inner plexiform layer (IPL) is not structurally 

absolute. ON cone bipolar cells (ON CBCs) make noncanonical axonal synapses 

onto specific targets and receive amacrine cell synapses in the nominal OFF 

layer, creating novel motifs, including inhibitory crossover networks. Automated 

transmission electron microscope (ATEM) imaging, molecular tagging, tracing, 

and  rendering  of  ≈  400 bipolar cells reveals axonal ribbons in 36% of ON CBCs, 

throughout the OFF IPL. The targets include GABA-positive amacrine cells 

(γACs), glycine-positive amacrine cells (GACs), and ganglion cells. Most ON 

CBC  axonal contacts target GACs driven by OFF cone bipolar cells (OFF 

CBCs), forming new architectures for generating ON-OFF amacrine cells. Many 

of these ON-OFF GACs target ON CBC axons, ON γACs, and/or ON-OFF 

ganglion cells, representing widespread mechanisms for OFF to ON crossover 

inhibition. Other targets include OFF γACs presynaptic to ON CBCs, forming 

γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive 

bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to 

polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). 

The targeting precision of ON CBC axonal synapses shows that this drive 

incidence is necessarily a joint distribution of cone bipolar cell axonal frequency 

and target cell trajectories through a given volume of the OFF layer. Such joint 

distribution sampling is likely common when targets are sparser than sources 

and when sources are coupled, as are ON CBCs. 
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Introduction 

Structure-function relationships have been explored in the retina for over a 

century. Ramón y Cajal observed differential bipolar cell stratification in the inner 

plexiform layer (IPL) and suspected direct structure-function correlations (Ramón 

y Cajal, 1892). Indeed, it has long since been established that ON and OFF 

channels occupy distinct domains within the mammalian IPL, with OFF cells that  

depolarize to light decrements stratified in the distal 40% of the IPL and ON cells 

that depolarize to light increments stratified in the proximal 60% of the IPL 

(Famiglietti et al., 1977; Famiglietti and Kolb, 1976; MacNeil et al., 2004; Wässle 

et al., 2009; Werblin and Dowling, 1969). Nevertheless, examples of nominal 

cone bipolar cells breaking the mammalian IPL stratification rules were recently 

reported (Anderson et al., 2011a; Dumitrescu et al., 2009; Hoshi et al., 2009). 

Type 6, and possibly type 7 or 8, ON cone bipolar cells in mouse, and calbindin-

positive layer 4/5 stratifying ON cone bipolar cells in rabbit, have been 

demonstrated targeting tyrosine hydrdoxylase-positive cells (TH1s), M1-type 

intrinsically photosensitive retinal ganglion cells (ipRGCs), and bsdGCs in 

stratum one of the IPL  (Dumitrescu et al., 2009; Hoshi et al., 2009), thus 

representing an accessory ON input to the OFF IPL layers. These ribbon 

contacts appear in two varieties: en passant, occurring inside the main bipolar 

cell descending axons, and branched, occurring from small processes that 

branch off the main descending axon (Figure 2.2).  (Anderson et al., 2011a) 

demonstrated by ATEM that presynaptic ribbon and postsynaptic conventional 
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synaptic ultrastructures existed at axonal ribbon locations, but characterization of 

their cognate networks was incomplete.    

Indirect evidence exists to suspect that different ON cone bipolar cell 

types might communicate in the OFF IPL. First, in previous confocal imaging 

studies (Hoshi et al., 2009), only 23% of bsdGCs were apposed to calbindin 

positive bipolar cells, but most bsdGC spines were apposed to ribeye puncta. 

This indicates the remaining ribbons must be associated with other BC types. 

Also, many nonmammalian bipolar cell classes are multistratified, with axonal 

outputs in both the OFF and ON sublayers (Kolb, 1982; Pang et al., 2004; 

Ramon y Cajal, 1892; Scholes, 1975; Scholes and Morris, 1973; Sherry and 

Yazulla, 1993; Wong and Dowling, 2005)  Moreover, infrequent reports of 

mammalian bistratified bipolar cells exist (Calkins et al., 1998; Famiglietti, 1981; 

Jeon and Masland, 1995; Kolb et al., 1990; Kolb et al., 1992; Linberg et al., 1996; 

Mariani, 1982; McGuire et al., 1984). These results impelled us to 

comprehensively classify ON cone bipolar cells that synapse in the OFF sublayer 

of the IPL. 

In addition to the previously identified axonal ribbon targets, unknown 

targets with distinctive morphologies and ultrastructural elements were observed 

in retinal connectome RC1 (Anderson et al., 2011a). This strongly suggested 

additional cell types as targets. Axonal cisterns associated with postsynaptic 

densities were also discovered in the axons of ON cone bipolar cells (Anderson 

et al., 2011a), and are thus possible contributors to accessory ON networks. 

Sparse reports of rod bipolar cell axonal ribbons exist, implicating them as 
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candidates for providing the ON input to ipRGCs, yet we demonstrate that rod 

bipolar cell axonal ribbons are not spatially coincident with ipRGCs and so 

cannot be responsible for ipRGC ON drive. 

Electrophysiology with pharmacological blockade has revealed glycinergic 

crosstalk between ON and OFF channels at every synaptic tier in the retina, 

referred to as crossover inhibition (Chavez and Diamond, 2008; Chen et al., 

2011; Liang and Freed, 2010; Manookin et al., 2008; Molnar et al., 2009; Roska 

et al., 2006; Werblin, 2010). Multistratified GACs are implicated as the source, 

yet the network topologies responsible remain speculative. Crossover inhibition 

has been posited to achieve a range of functions, including fidelity restoration of 

photic drive distorted by glutamate synapse nonlinearities, which would otherwise 

constrain OFF channels to negative contrast processing (Liang and Freed, 2010; 

Molnar et al., 2009; Werblin, 2010). Given that some of the targets of axonal 

ribbon synapses are GACs, ON-OFF crossover is one possible function of this 

accessory input. We show that crossover inhibition can definitely arise from 

accessory ON bipolar cell networks. 

 γACs mediate feedback, nested feedback, and feedforward networks 

throughout the retina, yet the reasons for the great diversity of types (wide-field, 

narrow-field, mono-, and multistratified) remain a mystery (Marc and Liu, 2000; 

Wagner and Wagner, 1988). We show examples of wide-field, OFF layer, 

monostratified γAC processes postsynaptic to ON cone bipolar cell axonal 

ribbons and presynaptic to both ON and OFF cone bipolar cells, arguing for the 

existence of γAC-mediated within- and cross channel inhibition in addition to 
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GAC-mediated within- and crosschannel inhibition. Many instances of GAC-

mediatedand γAC-mediated crossover inhibition motifs have been identified in 

RC1 that do not involve axonal ribbons (data not shown), but that will be the 

subject of future papers.   

In summary, ON cone bipolar cells participate in accessory ON input 

throughout the OFF sublayer of IPL, targeting not only the previously 

characterized ipRGCs and bsdGCs, but also newly identified targets. As yet 

unknown targets exist in RC1, some of which which may be sparse TH1 axonal 

cell dendrites reported by Dumitrescu et al. (2009) and Hoshi et al. (2009).  

Additionally, preliminary data reveal that sixty-eight of ninety-seven (70.1%) 

measured ON cone bipolar cells contain one or more postsynaptic densitites 

(PSDs) to amacrine cell input in the OFF IPL, and recently discovered axonal 

cisterns appear in 55 of 113 (48.7%) ON cone bipolar cell axons measured thus 

far.  This specificity enhances the likelihood that accessory ON networks are 

evolved strategies rather than systemic oddities.  Further, such networks are not 

readily predicted with physiological techniques. ON cone bipolar cell axonal 

ribbons inject both convergent and divergent ON input to several ganglion cell, 

GAC, and γAC networks, thus constructing ON-OFF amacrine cells and ganglion 

cells, and mediating within- and crosschannel inhibition. We show that both 

monad and dyad versions of axonal ribbons can involve single-ribbon or 

multiribbon forms. Some rod bipolar cells possess axonal ribbons, but they are 

very close to their initial axon terminal branches, only contact AI (A17) and AII 

ACs, and do not supply the rod signals discovered in ipRGCs. Ultimately, 
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analysis of axonal ribbons yields a refactoring of the mammalian inner plexiform 

layer where the OFF layer contains precisely multiplexed ON cone bipolar cell 

inputs. 

 

 Methods 

Tissue 
 

Connectome volume RC1 was assembled from a light-adapted female 

Dutch Belted rabbit (Oregon Rabbitry, OR) after in vivo excitation mapping as 

described in Anderson et al. (2011a) in accord with Institutional Animal Care and 

Use protocols of the University of Utah, the ARVO Statement for the Use of 

Animals in Ophthalmic and Visual Research, and the Policies on the Use of 

Animals and Humans in Neuroscience Research of the Society for Neuroscience. 

 
 
Computational Molecular Phenotyping (CMP) 
 

Retinal neurons in RC1 were classified by CMP per Marc and Jones 

(2002) by using an array of small-molecule signatures (4-aminobutyrate [GABA], 

glycine, L-glutamate, L-glutamine, taurine, and the activity marker 1-amino-4-

guanidobutane [AGB]). Briefly, the isolated rabbit eye was hemisected and 

immersion-fixed overnight in 1% paraformaldehyde, 2.5% glutaraldehyde, 3% 

sucrose, 0.01% CaCl2, in 0.1 M phosphate buffer, pH 7.4. Tissues were then 

dehydrated in graded methanols and acetone and embedded in epoxy resin. 

Tissues were then serial sectioned at 70-90 nm onto 12-spot Teflon-coated 

slides (Cel Line, Fisher Scientific, Waltham, MA). Antibody exposure and silver 
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intensification is described below under antibody characterization. Incubation of 

all antibodies generated against small-molecular targets was performed 

overnight at room temperature, and visualization was with goat anti-rabbit 

secondary IgG coated with 1.4 nm gold (Amersham, Arlington Heights, IL) and 

silverintensified (Kalloniatis and Fletcher, 1993). 

 
 

Small-Molecular Antibody Characterization 

Anti-hapten IgGs from Signature Immunologics (Salt Lake City, UT; Table 

2.1) have been extensively characterized in prior publications (Marc et al., 1995; 

Marc,1999a, b; Marc and Cameron, 2002; Marc and Jones, 2002). Each is an 

IgG isotype (determined by affinity chromatography and immunoblotting) 

produced in rabbit hosts immunized with glutaraldehyde-amino acid conjugates 

to bovine serum albumin (BSA), as described in Marc et al. (1995). Five analysis 

types were used to characterize the specificity and detectivity of each anti-hapten 

IgG: 1) dependence on target molecule trapping; 2) immunodot assays against 

cognate small molecule–protein conjugates; 3) competition assays against free 

and bis-conjugates of small molecules (Table 2.2); 4) binding curves on 

quantitative artificial antigen stacks; and 5) cluster analysis (Marc et al., 1995).  

 

RC1 Assembly, Analysis, and Sharing 

Bipolar cell networks in the ultrastructural rabbit retinal connectome RC1 

(Anderson et al., 2011a) were annotated with the Viking viewer (Anderson et al., 

2011b), and explored via three-dimensional rendering and graph visualization of 
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connectivity (Anderson et al., 2011b). Small molecule signals embedded in RC1 

for computational molecular phenotyping (CMP) include 4-aminobutyrate, 

glycine, L-glutamate, L-glutamine, taurine, and the activity marker 1-amino-4-

guanidobutane (AGB). Combined with morphological reconstruction, CMP 

permits robust bipolar cell classification (Anderson et al., 2011a). RC1 was 

acquired by ATEM at 2.18 nm resolution and assembled into a volume with the 

NCRToolset (Anderson et al., 2009). Molecular-ultrastructural registrations were 

generated with ir-tweak (Anderson et al., 2011a; Anderson et al., 2009; Anderson 

et al., 2011b). Three-dimensional renderings are built from disk annotations in 

Vikingplot (Anderson et al., 2011b), allowing rendering of surfaces and 

characterization of areas and volumes. Table 2.3 lists the synaptic color scheme 

applied to all renderings. All cells rendered in this paper are publicly available as 

Google Collada *.dae files via the Connectome Viz application. These can be 

imported into 3D visualization tools such as Collada or Blender 

(http://www.blender.org). One defect in converting disk topologies to volumes for 

rendering of tapered processes sometimes led to somas or varicose neurites with 

vertically peaked shapes. These anomalies will be repaired in future code sets. 

Networks were visualized as directed multigraphs with Connectome Viz, and 

topologies explored with Structure Viz (Anderson et al., 2011b). The RC1 dataset 

and these associated analytical tools are publically available at 

connectomes.utah.edu. Quantitative features of connections (numbers of 

synapses, axon dimensions, etc.) can be queried within these various tools and 

with Microsoft SQL. 



29 
 
Identification of IPL Layers 

The ON-OFF border of the IPL is not absolute and we adopted a structural 

reference to define the transition between zones dominated by OFF and ON 

cone bipolar cells. In practice, the axial location of the ON-OFF border was set as 

the most proximal surface of the AII AC lobule nearest a given bipolar cell. The 

OFF   layer   was   defined   as   the   region   between   the   most   distal   GABA+   (γ+)  

processes and the ON-OFF border. Similarly, the ON layer was defined as the 

region   between   the  most   proximal   γ+   processes   and   the   ON-OFF border. For 

simplicity, we refer to these regions as the ON and OFF layers, corresponding to 

the older but less descriptive sublamina a and sublamina b, respectively. As in 

previous work, we define the amacrine cell layer - IPL border as level 0 and the 

ganglion cell layer - IPL border as level 100 (Marc, 1986). 

 
 

Cell Classification  

All cells were classified using three criteria: molecular signatures, synaptic 

connectivity, and morphology. Bipolar cells were further subclassified according 

to their stratifications within the IPL, compared to the rabbit bipolar cell 

classification scheme outlined by MacNeil et al. (2004). An itemization of the 

rules required for cell identity follows. Table 2.4 lists cell abbreviations used 

throughout this manuscript. 

Rules for bipolar cells.  Their somas reside in the inner nuclear layer (INL) 

and they are glutamate-positive. Glycine-positive (G+) bipolar cells coupled to AII 

AC arboreal dendrites via gap junctions and stratified in the proximal 60% of the 
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IPL were classified as ON cone bipolar cells with their precise level of 

stratification used to further refine their class memberships (CBb3, CBb3n, 

CBb3-4, CBb4, CBb5, CBb6, wide-field cone bipolar cell, and rod bipolar cell). 

Anderson et al. (2011a) showed that quantitative G+ signatures are an absolute 

discriminator of bipolar cell :: AII AC coupling. Glycine-negative (G-) bipolar cells 

that stratified in the distal 40% of the IPL and were both presynaptic and 

postsynaptic to AII AC appendages were defined as OFF cone bipolar cells, with 

their precise level of stratification used to further refine their class (CBa1, CBa1w, 

CBa1-2, CBa1-2n). Bipolar cells with G- signatures stratified in the  most 

proximal IPL, presynaptic to AII AC arboreal dendrites, neither postsynaptic nor 

coupled to them, and presynaptic and postsynaptic to γ+ AI ACs were classified 

as rod bipolar cells. There are 104 rod bipolar cells in RC1. These independent 

classifiers are, collectively, errorless  (Anderson et al., 2011a). There are 

instances where CBa and CBb terminals (never rod bipolar cells) make synaptic 

contacts lacking classical synaptic ribbons. We call these bipolar cell 

conventional synapses, and they occur in terminals with numerous ribbons at 

other sites. One glutamate-positive bipolar cell class (CBa1w) is presynaptic and 

postsynaptic to AII ACs but lacks ribbons and only makes bipolar cell 

conventional synapses. These cells are not discussed in this paper as they are 

not involved with the characterization of axonal synapses. 

Rules for amacrine cells.  Amacrine cells possessed conventional 

synapses only (not ribbon synapses) with somas residing in the INL, except for 

ON starburst amacrine cells whose somas reside in the ganglion cell layer. G 
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and γ signals further refined their classification as GACs and γACs. Cells with 

moderate glycine signals, presynaptic lobular appendages in the OFF IPL, and 

coupled and postsynaptic arboreal dendrites in the ON IPL were defined as AII 

ACs.  

Rules for ganglion cells.  Ganglion cells discussed in this paper were 

glutamate-positive, lacked presynaptic specializations, were never postsynaptic 

to rod bipolar cells and had somas placed in the GCL or processes that traversed 

the entire volume. Based on cone bipolar cell input patterns they were further 

classified as ON, OFF, or ON-OFF.   Some   classes   were   also   γ+   to   differing  

extents (Marc and Jones, 2002) due to amacrine cell coupling.  

Axonal ribbon synapses.  Axonal ribbon synapses were defined by 

presynaptic and postsynaptic form in all cases, with the presynaptic ribbon itself 

surrounded by a halo or cluster of synaptic vesicles, a dense presynaptic 

membrane, complete glial withdrawal from the contact site, an evenly spaced 

synaptic cleft, and an unambiguous postsynaptic density on the target process. 

Synaptic clefts of synapses sectioned at oblique angles were often obscured, but 

were recaptured via goniometric re-imaging at higher resolution when necessary.  

Axonal ribbon synapses were defined as residing distal to the first branch point of 

each bipolar cell’s   primary   axonal   arborization.   While   this   criterion   is   formally  

arbitrary, it distinguishes pure axonal ribbons from those in the thin branches 

between terminal swellings in the axonal arborization. 
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Image Preparation 

 
As described in our prior papers on connectomics (Anderson et al., 2009), 

display TEM images in this paper were produced by remapping RC1 volume tiles 

to gamma 1.3. Optical and TEM overlays used the TEM greyscale brightness 

combined with the hue, and saturation from the optical image as described in 

Anderson et al. (2011a). 3D versions and network maps of annotated cells were 

generated in Vikingplot and Viz applications (Anderson et al., 2011b). 

 

Results 

The rabbit retinal connectome volume RC1 is a serial section, 2 nm 

resolution, 16.4 terabyte TEM image collection assembled into a cylindrical data 

volume  ≈  0.25  mm  wide  and  ≈  0.025  mm  high  spanning   the  mid-inner nuclear 

layer through the GC layer (Figure 2.1 A), augmented by molecular channels 

capping and intercalated every 30 sections through it (Anderson et al., 2011a; 

Anderson et al., 2009; Anderson et al., 2011b). The CMP channels include 

aspartate, glutamate, 4-aminobutyrate (GABA), glycine, glutamine, taurine, and 

AGB as a marker of light-driven activity. These channels permit robust 

classification of cells (Anderson et al., 2011a; Anderson et al., 2009; Anderson et 

al., 2011b; Marc and Jones, 2002; Marc et al., 1995) and form an analytic 

statistic independent of network motif measures. The 0.25 mm wide volume disc 

represents a mixture of sampling domains, including complete, semicomplete, 

and partial architectures (Figure 2.1 B).  The  complete  architectures  include  ≈  360 

bipolar cells   and   ≈   50   narrow-field amacrine cells. The semicomplete 
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architectures  include  ≈  40  bipolar cells,  ≈  50  medium  to  wide-field amacrine cells, 

and 15 ganglion cells with somas in the volume and dendrites extending beyond 

it. The partial architectures include large numbers (hundreds) of traversing 

amacrine cell and ganglion cell dendrites and axonal amacrine cell fields arising 

from somas outside the volume.  This in no way invalidates use of partial 

architectures. Many of these traversing elements are still identifiable from their 

molecular signatures and corresponding network motifs. The size of the volume 

is limited by storage and time. The 2 nm resolution essential for mapping small 

synapses and the gap junctions that provide diverse coupling topologies in retinal 

networks and serve as network identity signatures for specific neurons requires 

16.5   terabytes   (Tb)   of   raw   data   and   ≈   50   Tb   total,   and   required 5 months to 

image. A volume containing complete wide-field amacrine cells would require 

many years of capture time to produce. Even so, the network motifs that emerge 

from deep analyses of partial elements such as crossing ganglion cell dendrites 

still accurately capture the native structure of the source cells, especially since no 

evidence exists for (and much against) network anisotropy in individual GC and 

amacrine cell dendrites. Finally, the connectivity map of any volume is a 

compromise between intrinsic connections arising from cells completely inside 

the volume and extrinsic connections arising from cells outside the volume. 

Forexample, cortical connectome volumes contain far more extrinsic than 

intrinsic elements (Briggman and Bock, 2011). For the purposes of this 

manuscript, we mined the axons of all bipolar cells for the presence of axonal 

ribbons and reconstructed the targets of these ribbons. Table 2.3 contains a 
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legend for the color scheme used to represent synapse types in all 3D 

reconstructions displayed throughout this manuscript. All cell identification 

numbers used in this manuscript are identifiers that can be invoked in Viking, 

VikingPlot, and Viz tools (Anderson et al., 2011a) to validate all of the 

ultrastructural features, network motifs and statistics we report here. RC1 is an 

open-source, open-access, open-data resource. 

 
 

ON Cone Bipolar Cell Axonal Ribbons Throughout the  

OFF IPL form Accessory ON Pathways 

ON cone bipolar cells make numerous axonal ribbon contacts throughout 

the OFF IPL: 175 of 398 (44%) bipolar cells in RC1 are ON cone bipolar cells.  

Thirty-four of these bipolar cells are semi-complete, with incomplete descending 

axons, thus we cannot determine the frequency of axonal ribbons in this subset.  

Fifty-four of the remaining complete 141 ON cone bipolar cells possess axonal 

ribbons (Figure 2.2). Thus 38% of the measurable ON cone bipolar cells make 

accessory ON axonal synapses.  Three of these contain axonal ribbons only in 

the ON IPL, the remaining 51 of 141 bipolar cells (36%) contain one or more 

axonal ribbons in the OFF IPL. Importantly, most of these make multiple contacts 

through the OFF IPL and, on average, each ON cone bipolar cell that makes 

axonal synapses will do so at three different instances.  For clarity we will use the 

MacNeil et al. (2004) rabbit bipolar cell morphological classification scheme to 

describe bipolar cells throughout this manuscript.   Briefly, the MacNeil et al. 

(2004) scheme  abbreviates   “cone  bipolar”  as   “CB”,  OFF   laminae  of   the   IPL  as  
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“a”,  ON   laminae   of   the   IPL   as   “b”,   with   numbers   representing   the   specific   IPL  

sublaminae within which bipolar cell axons primarily arborize.  For instance, an 

OFF cone bipolar cell that primarily arborizes in sublamina 1 is referred to as 

“CBa1”,   and  an  ON  cone  bipolar   cell   that   primarily   arborizes   in   sublamina  5   is  

referred   to   as   “CBb5”,   etc.      Wide-field bipolar cells and rod bipolar cells are 

simply stated as such.  Further cone bipolar cell subsets deemed as narrow and 

wide   are   additionally   labeled   with   “n”   or   “w”,   respectively,   as   in   “CBb3n”   or  

“CBa1w.”    We  introduce  two newly discovered morphological bipolar cell classes, 

CBb5w and CBb6, which make axonal ribbons.  Moreover, all major classes of 

ON cone bipolar cell (CBb3, CBb3n , CBb3-4, CBb4, CBb5, CBb5w, CBb6, 

Wide-field cone bipolar cell) make axonal ribbons, five of which are highlighted 

throughout this manuscript (Figure 2.3).  CBb5w cells costratify with CBb5 cells, 

yet   they  possess  axonal  arbor  field  diameters  ≈  40-55 µm versus the 25-30 µm 

field diameters of most cone bipolar cells.  CBb6s are non-wide-field bipolar cells 

that stratify alongside rod bipolar cells, more deeply than any other class of cone 

bipolar cell. 

Previous studies indicated that the functional IPL stratification schemes 

require amendment to include an accessory ON layer at the most distal portion of 

IPL stratum one, and perhaps throughout the entire OFF IPL (Dumitrescu et al., 

2009; Hoshi et al., 2009). Our data are consistent with mixed ON-OFF 

processing throughout levels 0-45% of the IPL, consistent with bipolar cell 

stratification patterns in nonmammalians. 
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Rod Bipolar Cell Axonal Ribbons Do Not Provide  

Accessory ON Drive 

In contrast to CBbs, 61 of 105 (58%) rod BCs also make bona fide axonal 

ribbon synapses (synapses in the axon above the primary branch point), but 

these are virtually all within the upper part of the ON IPL with only a few breaking 

into the nominal OFF IPL (Figure 2.4). Further, virtually all of these (>90%) are 

contacts with identified AI or AII ACs. Every rabbit rod bipolar cell axon branches 

into 2 or 3 trunks as soon as it enters the ON IPL and immediately makes both 

pre- and postsynaptic specializations. The location of every axonal ribbon distal 

to the branch was mapped and we found that 89% were exclusively in sublamina 

b while 11% weakly breached the a/b border by an average of 600 nm. Over 

90% of the traced targets of rod bipolar cell ribbons were verified as processes of 

AI or AII ACs. Indeed, all the AII AC processes were arboreal dendrites and never 

lobules. 

CBb axonal ribbon frequency is approximately three times greater than 

rod axonal ribbons, and CBb axonal ribbon frequency (122 axonal ribbons) in 

sublamina a is approximately eight times greater than rod axonal ribbons (15 

axonal ribbons), for fewer bipolar cells. Further, the IPL ON-OFF border is not 

distinct but is rather a blend of CBa and CBb terminals. The distribution of CBb 

axonal ribbons represents a unique accessory pathway in the OFF channel, 

whereas the distribution of rod bipolar cell axonal ribbons reflects the targeting of 

normal ON pathway amacrine cells near the a/b border.  
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The upper 80% of the OFF IPL displays no rod bipolar cell axonal ribbons. 

We posited that this might be due to the heavy layer of Müller cell processes that 

ensheath the rod bipolar cells. This may be partly correct, but clearly depends on 

the nature of the target. For example, arboreal dendrites of AII ACs readily induce 

desheathing of rod bipolar cell axons, but lobular processes never do, leading to 

an obvious bias for forming axonal ribbons in the ON IPL. However, AI ACs, 

which are both presynaptic and postsynaptic to rod bipolar cells in the ON IPL, 

effectively induce desheathing in the OFF IPL and were presynaptic to rod 

bipolar cell axons (this network will be the subject of other papers), but were 

never postsynaptic. Thus, the formation of axonal ribbons is both site- and 

function-specific. The comparison of rod bipolar cell and ON cone bipolar cell 

ribbons shows that their roles are very different. 

Finally, though ipRGCs receive rod signals (Aggelopoulos and Meissl, 

2000; Dacey et al., 2005; Wong et al., 2007), the network pathway for this 

transmission remains unclear.  The primary and secondary scotopic pathways 

and rod bipolar cell axonal ribbon pathways have all been implicated, so we 

examined the relationship between rod bipolar cell axonal ribbons and M1 

ipRGCs in the RC1 volume.  We discovered that rod bipolar cell axonal ribbons 

are not cospatial with an M1 ipRGC dendrite present in the RC1 volume (Figure 

2.5); hence, this pathway cannot provide rod signals to M1 ipRGCs in the rabbit 

retina.  Though ipRGC 12208’s  identity  cannot  be  absolutely  confirmed  because  

there was no melanopsin immunolabeling in RC1, it monostratifies at the IPL/INL 

border, sparsely branches, accepts axonal ribbon input from every ON cone 
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bipolar cell it contacts (wide-field cone bipolar cell 6156 and wide-field cone 

bipolar cell 5283), and refuses input from two OFF cone bipolar cells (Figure 2.4. 

G-H). All of the above are consistent with M1-type ipRGCs (Dumitrescu et al., 

2009; Graham et al., 2008; Hoshi et al., 2009).  Henceforth, we shall simply refer 

to it as ipRGC 12208. 

 
 
Ganglion Cell Targets 
 

We identified axonal ribbons from CBbs in the OFF IPL targeting 

bistratified diving ganglion cells (bsdGCs), multistratified ganglion cells, 

intrinsically photosensitive ganglion cells (ipRGCs), and other ON-OFF 

multistratified and OFF layer monostratified ganglion cell processes (Figure 2.6). 

Unexpectedly, a chain of coupled ON cone bipolar cells provides axonal ribbon 

input to the bsdGC. Furthermore, multiple ON cone bipolar cell classes 

synaptically converge to common targets, and individual ON cone bipolar cells 

diverge to multiple targets, via axonal ribbons.  

First, CBb4 3116 forms an axonal ribbon dyad onto bsdGC 15796 and a 

currently unidentified target (Figure 2.6 A,E). bsdGCs were identified in rabbit 

with dendrites that rise through the ON layer to stratify in the OFF IPL, where 

they receive CBb axonal ribbon input before re-entering the ON IPL (Hoshi et al., 

2009). Our bsdGCs may be the same as the G9 ganglion cell identified by 

(Roska and Werblin, 2003), with depolarizing responses to light blocked by L-

APB and enhanced by glycine and GABA receptor antagonists, and thus appear 

to be directly excited by ON cone bipolar cell input despite multistratification in 
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both the ON and OFF IPL. Note the ganglion cell target process ascends to the 

OFF sublaminae where it receives the axonal ribbon input, then more distally 

returns to approximately the same IPL depth as the primary axonal arborization 

of the CBb4 that provides the axonal input. No OFF cone bipolar cell input to this 

ganglion cell has been found, despite abundant contact opportunities. 

Interestingly, CBb4 3116 participates in a chain of coupled CBbs across classes 

(CBb3 and CBb4).  Moreover, none of these other CBbs, except CBb4 3116, 

have been discovered to synapse onto bsdGC 15796 despite costratification of 

their primary axonal arbors with it.  CBb4 3116 only provides input to bsdGC 

15796 at the axonal ribbon location in the OFF IPL. Furthermore, the descending 

axon of CBb4 4569, one of the chain of coupled CBbs, passes within 0.25 µm of 

the axonal ribbon input to bsdGC 15796 by CBb4 3116 and does not form an 

axonal ribbon. These results are consistent with and extend those of Hoshi et al. 

(2009) by validating the selective input from CBb cells in the OFF layer. 

Second, an axonal ribbon contact from CBb5 400 drives multistratified 

ganglion cell 5118. We cannot currently verify whether this ganglion cell is a 

bsdGC or ON-OFF ganglion cell, as its OFF layer-stratifying processes exit the 

volume without descending to ON layers and no OFF inputs have been 

discovered as of yet.  That said, ganglion cell 5118 appears morphologically 

distinct from bsdGC 15796, thus is likely a different ganglion cell class. 

Third, CBb5w 6156 and wide-field cone bipolar cell 5283 convergently 

drive M1 ipRGC 12208 with axonal ribbons, a single-ribbon monad and four-

ribbon monad, respectively (Figure 2.6 C,G,H). This convergent input from two 
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CBb classes presumably indicates fusion of different CBb response profiles to 

extend the functional range of the ipRGC. This is concrete evidence for 

convergent axonal ribbon input from multiple bipolar cell classes onto ganglion 

cells.  

Fourth, CBb6 447 and CBb6 353 converge axonal ribbon synapses onto 

OFF layer monostratified ganglion cell process 21779, and CBb6 447 diverges its 

output across the OFF and ON IPL via another axonal ribbon synapse in the ON 

layer to multistratified ganglion cell process 34336 (Figure 2.6 D,J,K,L). Both 

ganglion cell processes branch sparsely or not at all as they traverse nearly the 

entire width of the RC1 volume (257 µm) with no evidence of somata, indicating 

dendritic   arbor   radii   of   ≥   250   µm   and,   thus,   diameters   ≥   500   µm. Therefore, 

ganglion cell 21779 could belong to one of several classes of OFF layer-

stratifying ganglion cells, but is unlikely to be an M1 ipRGC for two reasons. First, 

it monostratifies closer to the primary branch points of CBb3s than expected for 

an ipRGC. Second, it receives ribbon input from a partial trace of an OFF cone 

bipolar cell axonal arbor (data not shown), further inconsistent with M1 ipRGC 

electrophysiology. Ganglion cell 34336 could belong to any number of 

multistratified ganglion cell classes. This constitutes the first evidence that axonal 

ribbons in a single ON cone bipolar cell divergently drive targets in both the ON 

and OFF IPL. Importantly, all three of the axonal ribbons (across both CBb6s) 

form dyads onto a ganglion cell and amacrine cell targets, and both the amacrine 

cell targets of CBb6 447 conventionally synapse onto the ganglion cell target, 

thus forming CBb > amacrine cell ≥  ON-OFF ganglion cell feedforward motifs 
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(Figure 2.6 I, J, K, L).  Furthermore, amacrine cell 32273 provides feedback onto 

a finger-like projection from CBb 447 in addition to the feedforward to ganglion 

cell 21779, thus regulating both presynaptic bipolar cell release and postsynaptic 

ganglion cell membrane potential (Figure 2.6 J, right subpanel).   

Combined, these results demonstrate that axonal ribbons from multiple 

CBb classes convergently and divergently drive multiple classes of ganglion cells 

across OFF and ON sublayers, and inject both ON excitation and ON inhibition to 

ON-OFF ganglion cells. 

 
 

GAC Targets 
 
Axonal ribbons from at least two CBb classes target both mono- and 

multistratified GACs (Figure 2.7). The first demonstrated reciprocal synapse at an 

axonal ribbon location appears between CBb6 4570 and monostratified GAC 906 

(Figure 2.7 A, E), revealing axonal ribbons as sites of potential input as well as 

output.  GAC 906 receives both ON and OFF inputs via monostratification in the 

overlapping region of ON-OFF processing in the mid-IPL described above.  ON-

OFF cells in the IPL are generally believed to be multistratified, yet this GAC, and 

ganglion cell 18693 described below, highlight ON-OFF comingling in the IPL as 

fundamental topology.  This reinforces the fact that bipolar cells can multistratify 

to facilitate crosschannel communication; that they do not constrain their synaptic 

communication to discrete ON-OFF territories.  GAC 5507 is currently a partial 

trace, so it is possibly multi-, rather than monostratified (Figure 2.7 C, G).  

Multistratified GAC 5575 is particularly interesting, as it extends a dendrite off its 
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main trunk directly toward the descending axon of CBb5w 6156, where it 

receives axonal ribbon input (Figure 2.7 D, H).  GAC 5575 divergently drives both 

ON cone bipolar cell ≥  ON  ganglion cell (bsdGC) and ON cone bipolar cell ≥  ON-

OFF ganglion cell inhibition, described in the text below. The combination of 

mono- and multistratified GAC targets suggests differential sign-inverting 

distribution of the CBb glutamatergic drive, but that will be explored in separate 

manuscripts. 

 
 
γAC Targets Mediate Within- and Cross-Channel Inhibition 

Three classes of ON cone bipolar cell were discovered to form γAC-

mediated within- (Figure 2.8 A) and cross-channel (Figure 2.8 B-C) inhibitory 

motifs with axonal ribbons. First, CBb5 5562 drives multistratified γAC 5294 with 

an axonal ribbon (Figure 2.8 A, D, F).  γAC 5294 forms a conventional synapse 

onto the primary telodendria of CBb5 5645 (Figure 2.8 A inset,G), completing a 

within channel inhibition motif.  This within-channel inhibition is consistent with 

formation of the inhibitory surround of a center surround receptive field for CBb5 

5645, yet this is the first report of such surround inhibition arising from axonal 

ribbon drive.  Second, CBb6 5536 divergently drives a pair of amacrine cells, one 

of which is γ+ (Figure 2.8 E), at a branched axonal ribbon dyad site (Figure 2.8 B-

C, H). Target amacrine cell 20537 is the γAC dendrite, and it spans most of the 

width of the RC1 volume without attachment to its soma, indicating a dendritic 

arbor  radius  ≥  250  um,  and therefore  a  dendritic  arbor  diameter  ≥  500  um.  Thus, 

γAC 20537 is a wide-field γAC.  Target amacrine cell 19571 does not cross an 
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immunolabeled section of the RC1 volume, and cannot be confirmed as γ+, but it 

is glycine negative (data not shown), and possesses the characteristic light 

cytoplasm (clear varicosities) of γACs. Furthermore, the two amacrine cell targets 

form a nested feedback architecture onto CBb6 5536 (Figure 2.8 H, right 

subpanel), a γAC network motif previously demonstrated in teleosts (Marc and 

Liu, 2000).  Wide-field γAC 20537 also receives branched axonal ribbons from 

wide-field cone bipolar cell 16026 (Figure 2.8 B, C left inset, I), which combined 

with input from CBb6 5536 forms a CBb > γAC  convergent motif.  The second 

amacrine cell target of the divergence from the CBb6 5536 branched axonal 

ribbon creates a CBb > γAC  ≥  CBa   crossover   inhibition  motif   (Figure  2.8 B, C 

right inset,J). 

 
 
Axonal Cisterns Appear in Accessory ON Networks 

Axonal cisterns, reported by (Anderson et al., 2011a), are characterized 

by a cistern adjacent to the plasma membrane of the nominal presynaptic cell, 

desheathed glia, an evenly spaced cleft similar to a synaptic cleft, and a definitive 

postcisternal density (PCD) indistinguishable from classic postsynaptic densities.  

As an example, some targets collect from multiple cisterns. In addition to its 

axonal ribbon input, γAC 20537 contacts axonal cisterns from CBb5 176 and 

wide-field cone bipolar cell 5283 (Figure 2.8 B, K; Figure 2.5 H). The convergent 

axonal ribbon input to ipRGC 12208 described previously is linked to this γAC 

axonal ribbon network via the axonal cistern and axonal ribbons in the same 

plane of section by wide-field cone bipolar cell 5283.  Taken together, this partial 
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network of axonal ribbons and cisterns illuminate the complexity of axonal 

communication.  The simultaneous divergence and convergence illustrated by 

the branched axonal ribbon dyad and monad from CBb6 5536 and wide-field 

cone bipolar cell 16026, respectively, spotlights the efficient design inherent in 

these networks. 

 

Divergent ON-OFF GAC Inhibition to CBbs and  

ON-OFF Ganglion Cells 

We explored identified GAC axonal ribbon targets as possible crossover 

candidates.  Axonal ribbon-driven GACs can distribute ON-OFF inhibition to both 

CBbs and ON-OFF ganglion cells (Figure 2.9).  Specifically, the following 

network motifs exist: CBa > ON-OFF  GAC  ≥  CBb,  CBa  >  ON-OFF  GAC  ≥  ON-

OFF ganglion cell, and CBb > ON-OFF  GAC  ≥  ON-OFF ganglion cell, all three of 

which constitute ON-OFF cross-inhibition.  

First, CBa2 424 and CBa2w 478 (a new CBa class discovered in RC1) 

drive monostratified GAC 906 with ribbon synapses (Figure 2.9 A, E, F). GAC 

906 forms a conventional synapse onto CBb6 4570, reciprocal to an axonal 

ribbon (Figure 2.9 A, Figure 2.6 E), thus bestowing ON-OFF properties to GAC 

906, and constructing a CBa > monostratified ON-OFF  GAC   ≥  CBb   crossover  

inhibition motif. ON-OFF GAC 906 also synaptically diverges this ON-OFF 

inhibition to monostratified ON-OFF ganglion cell 18693.  This is the first example 

of one GAC divergently distributing ON-OFF inhibition to both CBb and ON-OFF 

ganglion cell targets. 
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Next, CBb5w 6156 forms axonal ribbon synapses onto multistratified GAC 

5575, (Figure 2.9 B, Figure 2.7 H), and GAC 906 and GAC 5575 cross inhibit 

each other (data not shown). GAC 906 therefore injects its ON-OFF properties to 

GAC 5575. Some ON-OFF amacrine cells are known to receive ON-OFF 

inhibition (Chen et al., 2011), and we add that the excitatory drive for this can 

arise from axonal ribbons. Each of the above ON-OFF GACs makes 

conventional synapses onto mid-IPL monostratified ON-OFF ganglion cell 18693 

(Figure 2.9 B, G, H, I), forming parallel CBb > ON-OFF  GAC  ≥  ON-OFF ganglion 

cell motifs via two morphologically distinct GAC classes, thus blurring classical 

ideas of structure-function relationships.  Clearly, the relationships are complex.  

The OFF input to GAC 906 from the above two CBas further constructs a CBa > 

ON-OFF   GAC   ≥   ON-OFF ganglion cell motif. Examples of GAC-mediated 

crossover inhibition motifs via axonal ribbons from ON to pure OFF targets 

remain to be discovered in RC1.  

 
 
Divergent ON-OFF GAC Inhibition to ON-OFF Ganglion Cells  

and bsdGCs 

bsdGCs obtain ON polarity response properties via direct synaptic drive 

from CBbs, some of which arises from axonal ribbons (Hoshi et al., 2009; Roska 

and Werblin, 2003).  Here, we report that axonal ribbons also drive ON-OFF 

inhibition to bsdGCs via one branch of a divergent inhibitory pathway.  ON-OFF 

GAC 5575, introduced above, not only mediates CBb > ON-OFF  GAC  ≥  ON-OFF 

ganglion cell inhibition, it also synaptically diverges its signals to bsdGC 15796 
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(Figure 2.9 B, C, D, H, I, J).  This constitutes the first reported evidence that a 

single narrow-field multistratified GAC can disperse sign-inverted axonal ribbon 

excitatory signals to both ON-OFF ganglion cells and ON ganglion cells 

(bsdGCs), and emphasizes the inherently multiplexed nature of GACs. 

 
 
ON Cone Bipolar Cell Axon Tangency without  

Axonal Ribbon Synapses 

Thirty-eight percent of CBbs in RC1 make axonal ribbons, which raises 

the question of why the other 60% do not. This requires some new terminology. 

Most neurites in the retina directly appose those of other neurons without forming 

any specialization such as a synapse, gap junction, or adherens junction 

(Anderson et al., 2011a). We refer to such neurite pairs as tangent processes. In 

some cases, a single descending axon simply bypasses a cell to which it is 

tangent without forming an axonal ribbon (Figure 2.10 A, C). More intriguing, two 

ON cone bipolar cell axons may be tangent to the same cell, with differential 

connectivity to it. For example, CBb4 3116 forms an axonal ribbon dyad onto a 

bsdGC 15796 and an unknown target, and CBb4 4569 is tangent to the same 

unknown process, without forming an axonal ribbon synapse (Figure 2.10 B, D). 

In the first case, the potential but unconsummated target is an OFF layer 

monostratified ganglion cell that may be a pure OFF ganglion cell, as we have 

identified only OFF cone bipolar cell  input to this ganglion cell. Thus, it may not 

be an appropriate target.  In the second case, three interesting points arise: 1) 

the CBb without axonal ribbons in the figure does not make any axonal ribbons, 
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2) the CBbs are of the same class (CBb4), and 3) the CBbs are coupled by gap 

junctions and therefore share signaling attributes. One possibility for the 

differential connectivity is that ON cone bipolar cell coupling obviates the need for 

axonal ribbon input from both CBbs. That said, coupled CBbs do drive common 

targets from their telodendria, but never at the same locus.  This topic will be 

addressed in future papers. 

 

Discussion 

The analysis of RC1 and noncanonical ON cone bipolar cell axonal ribbon 

synapses in the OFF layer exposes new organizational concepts in retina and 

leads to a refactoring of the IPL. We first address the existence of mixed 

signaling strata and new network access schemas; the distinction between 

simple tangency and functional contact; and the importance of joint distributions 

for interpreting synaptic statistics. Then we will review key signaling features of 

specific targets of axonal ribbons. Since bipolar cell nomenclatures differ across 

species and we will now be discussing many of them, and since all cone bipolar 

cell classes in rabbit make axonal ribbons, we periodically depart from the McNeil 

et al. (2004) rabbit scheme for the discussion and simply refer to cone bipolar 

cells as ON cone bipolar cells and OFF cone bipolar cells. 

First, why do ON cone bipolar cells target the OFF layer of IPL at all? The 

answer is partly evolutionary: the OFF layer of the IPL has been a mixed ON-

OFF stratum throughout vertebrate descent. Every nonmammalian vertebrate 

class harbors multistratified ON bipolar cells, (Kolb, 1982; Pang et al., 2004; 
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Ramon y Cajal, 1892; Scholes, 1975; Scholes and Morris, 1973; Sherry and 

Yazulla, 1993; Wong and Dowling, 2005) and their discovery in the mammalian 

retina  demonstrates  that  no  evolutionary  mechanism  has  ever  “purified”  the  OFF  

layer. But more concretely, mixed strata reflect important network access 

properties. Axonal ribbons provide ON inputs to unique monostratified cells such 

as TH1 axonal cells and M1 ipRGCs (Dumitrescu et al., 2009; Hoshi et al., 2009) 

that send their dendrites to the most distal layer of the IPL. That is an incomplete 

explanation since the very same ON cone bipolar cells also have outputs in the 

ON layer. The question should be reframed in future work: why do the target ON 

cells invade the OFF layer at all. We have preliminary data to show that, in 

addition to ON inputs, these cells seek inputs from CBa1-driven OFF γACs 

accessible only in the OFF layer. Ultimately, there is no unique distal ON stratum 

in the IPL. Indeed, the entire OFF layer is a stack of mixed ON-OFF strata with 

cone bipolar cell axonal ribbons distributed throughout (Figure 2.2, 2.3, 2.4). We 

propose that ON signals in the OFF layer provide unique network opportunities 

for crossover signaling and loci for mixing ON excitation with polarity-matched 

OFF inhibition.  

Analysis of axonal ribbon sites reveals that specific rules control their 

incidence, though we clearly have a poor idea of the molecular mechanisms. ON 

cone bipolar cell axons are sheathed by three facing Müller cells throughout their 

transit of the OFF layer except at sites of potential target contact, where the 

Müller cells are parted by unknown mechanisms. As described by Anderson et 

al. (2011a),   many neural processes are apposed without intervening glia but 
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never make synapses, gap junctions, or even adherens junctions. We, noted 

above, refer to such lack of functional contact as tangency. Many processes 

somehow induce unsheathing of Müller cells around CBb cells in the OFF layer 

yet remain simply tangent. Another important point is that ribbon synapses, 

whether in the axon or axon terminal, never appear at the membrane without an 

associated postsynaptic density. This suggests that complete synaptic contacts 

are induced by the target or source-target interactions, but that unsheathing to 

expose the source seems to be under the control of the target. 

Finally, not all ON cone bipolar cells in a given class form axonal 

synapses, but members of all classes do form OFF layer axonal synapses. Using 

a very strict criterion, 36% of all identified ON cone bipolar cells in RC1 engage 

the OFF IPL with axonal ribbon synapses. Our analysis of sources and targets 

for these and other synaptic pairings suggests that the retina routinely invokes 

such partial motifs. Such sampling schemes conflict with our traditional 

expectations and methods of tabulating synaptic contacts (e.g., counting the 

percent of outputs onto a target). That approach to network analysis would lead 

us to ask: If most ON cone bipolar cells do not form axonal synapses, how can 

we argue that they are functional and not some statistical anomaly? We can 

approach this problem via graph theory, with cells represented as vertices and 

synaptic connections represented as edges. Every vertex in a directed graph 

represents a point of signal transfer between a source and target. In a 

multidigraph like the retina (Marc et al., 2012), each vertex represents the source 

or target for multiple edges. And given that the copy numbers for each class of 
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vertices (i.e., each ultimate cell class, Marc and Jones (2002)) varies, as do their 

coverages and Hausdorff dimensions, one cannot optimize a complex biological 

system to give smooth statistics or provide 100% source contacts for all cells. 

Figure 2.11 provides a geometric proof of this. The white dots in Figure 2.11 

represent the projection of 15 ON cone bipolar cell axons through a sampling 

plane of the IPL. In Figure 2.11 A, a set of cells from a single class (with 

individual cells in different colors) with a high coverage contacts every cone 

bipolar cell axon. Indeed, the overlap of individual cells leads to multiple edges. 

The outflow efficiency appears to be 100%, with a mean contact number of 2.67 

± 0.7 (standard deviation). However, it is important to grasp that these are 

meaningless metrics, especially the variance. The only metric that matters is the 

efficiency of target sampling, which is also 100%. This becomes clearer in Figure 

2.11 B, where two different, sparse cell classes send dendrites through the 

axonal field. Only 6 of 15 axons are hit for an output efficiency of 40%. Indeed, 

the output efficiency is even lower for each class. Yet, from the perspective of the 

targets, the two cells make synapses with 100% of the axons they encounter. 

This is critical for cells with low coverages such as ganglion cells. Their target 

sampling is perfect. Not all axons are hit because there is an oversupply of 

sources. The target does not   “know”   that   there  are  excess  source  axons  since  

they are not needed. Thus, the partial incidence of axonal synapses in ON cone 

bipolar cell axons reflects the spatial needs of the targets, not the sources. It 

does not represent any imprecision: QED. The key descriptor for such networks 
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is the joint density distribution of source and target, expressed as a metric of 

signal transfer sites per unit area or volume of neural space. 

 

Two ON Cone Bipolar Cell Classes Converge onto ipRGCs 

The putative ipRGC identified in RC1 receives axonal ribbon input from 

every ON cone bipolar cell it encounters, wide-field cone bipolar cell 5283 and 

CBb5w 6156. It further refuses input from two OFF cone bipolar cells to which it 

is tangent (data not shown). Neural structure-function correspondence is widely 

agreed upon, and every tested class of bipolar cell identified based on unique 

morphology has thus far proven to possess unique physiological response 

properties (Masland, 2001).  Thus, wide-field cone bipolar cell 5283 and CBb5w 

6156 contribute their presumably differential responses properties via sign 

conserving synapses to the ipRGC, thereby increasing the complexity or range of 

the ipRGC responses. This could represent convergence of different spectral 

sensitivities and/or flux range fractionation. 

 

Coupled Bipolar Cell Input to bsdGCs 

bsdGC 15796 is one target of an axonal ribbon dyad from CBb4 3116 

(Figure 2.6 A), which belongs to a cluster of seven coupled ON cone bipolar cells 

that likely represent a patch in a larger sheet of coupled cone bipolar cells, 

similar to the coupled clusters of ON cone bipolar cells discovered in teleosts 

(Umino et al., 1994). It is striking that none of the other members of the coupled 

chain provide input to the bsdGC, despite a second axon from CBb4 4569 very 
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close to the axonal ribbon input by CBb4 3116 (Figure 2.6 A; Figure 2.10 B-C), 

and costratification of ON cone bipolar cell primary axonal arbors with ON layer 

bsdGC arbors. Again, this reflects the concept of joint distributions where a 

limited bsdGC target architecture samples inputs from an array of excess 

sources. This would be especially true when sampling from coupled arrays since 

a single sampled input would provide some weighted mean output from a patch. 

Teleost coupled bipolar cells appear to receive variable input from cones, which 

introduces noise into the system, and modeling coupled bipolar cells as 

hexagonal arrays of isopotential units indicates that coupling increases the input 

signal to noise ratio without significantly sacrificing resolution (Umino et al., 

1994).  bsdGCs receive most of their ribbon input in the ON layer (Hoshi et al., 

2009), and the need for axonal ribbon input remains a mystery.  As noted above, 

it is likely that the primary function of OFF stratification in nominal ON cells is 

accessing OFF amacrine cell inputs.  

 

γAC Targets, GAC Targets, and Crossover Inhibition 

Physiological analyses show that ON and OFF channels cross-inhibit each 

other via glycinergic synapses at every tier of the IPL (Chen et al., 2011; Molnar 

et al., 2009; Roska and Werblin, 2003; Werblin, 2010). Functional reasons for 

this include possible restoration of linearity to rectified currents driven by AMPA 

and NMDA receptors, expanding photopic dynamic range into the scotopic 

domain, luminance-contrast distinction, better impedence matching in 

postsynaptic neurons, OFF cone bipolar cell gain and high frequency response 
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increase, and limitation of OFF channels to negative contrast processing (Liang 

and Freed, 2010; Molnar et al., 2009; Werblin, 2010). We add evidence that ON 

cone bipolar cell axonal ribbons mediate crossover inhibition via synapses with 

both γACs and GACs, revealing network topologies not predicted from 

electrophysiology.   

The GAC and γAC targets are both mono- and multistratified (Figures 2.7 

and 2.8). Both GAC and γAC targets form feedback and feedforward motifs, and 

γAC targets also form nested feedback to axonal ribbons. Given the extensive 

γAC networks at bipolar cell axon terminals, it is not surprising they engage 

axonal ribbons as well. γAC feedback and nested feedback onto bipolar cells 

fine-tunes bipolar cell presynaptic release (Marc and Liu, 2000), and is implicated 

in axonal ribbon release as well (Figures 2.7 and 2.9). 

γAC-mediated crossover inhibition via axonal ribbons (Figure 2.8 B, C 

right inset) extends the functional repertoire of γACs, demanding dissection of the 

potentially differential functional role of glycinergic and GABAergic crossover 

inhibition. Two nonexclusive functional implications arise. First, glycine receptor 

(glyR)-mediated, GABA receptor (GABAR)-mediated inhibition of bipolar cells 

may manifest different kinetics that combine with amacrine cell presynaptic 

release, such that GABAAR- and glyR-mediated inhibition  predominantly control 

the magnitude of bipolar cell glutamate release, whereas GABAC-mediated 

inhibition controls the timing of bipolar cell glutamate release by increasing its 

transiency (Eggers and Lukasiewicz, 2011; Eggers and Lukasiewicz, 2006a, 

2006b, 2010; Eggers et al., 2007). Crossover inhibition networks may appropriate 
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these kinetic differences to increase the range and complexity of bipolar cell and 

ganglion cell responses. Second, dual transmitters may optimize crossover 

inhibition by preventing synaptic occlusion, which occurs when two or more 

adjacent presynaptic terminals release the same neurotransmitter onto a shared 

postsynaptic target (Fatima-Shad and Barry, 1992; Gold and Martin, 1984). Since 

the postsynaptic cell detects these multiple GABAergic synaptic inputs via the 

same type of GABAARs, for example, adjacent GABAergic inputs cross-

desensitize. Introduction of multiple neurotransmitters at these locations 

discretizes the signals, which may be necessary to properly effect crossover 

inhibition. 

We now consider the functional role of dual transmitter-mediated 

crossover inhibition for the CBb > γAC  ≥  CBa  motif  (Figure  2.8 B, C right inset). 

Most OFF cone bipolar cells receive ON inhibition (Molnar and Werblin, 2007). 

Further, OFF cone bipolar cells are dominated by glyR-mediated inhibition, 

though they also receive some GABAAR-mediated inhibition, but little GABACR-

mediated inhibition (Eggers and Lukasiewicz, 2011). This is quantitatively 

inconsistent with the dominance of γAC inputs to CBa cells, but qualitatively 

matches observed higher GAC convergence on CBa as opposed to CBb cells.  

Given the similarites between glyR- and GABAAR-mediated OFF cone bipolar 

cell response kinetics in response to natural stimuli, there is no obvious kinetic 

advantage to the utilization of both to cross-inhibit OFF cone bipolar cells. Thus, 

dual γAC-mediated and GAC-mediated bipolar cell > amacrine cell > bipolar cell 

crossover inhibition networks may reduce synaptic occlusion, rather than control 
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OFF cone bipolar cell peak release. That said, examples of axonal ribbon-

involved adjacent γAC and GAC processes sharing postsynaptic targets remain 

to be found. Though axonal ribbon-mediated OFF > ON GABAergic crossover 

inhibition has not been discovered in the OFF layer, it has been found in the ON 

layer between OFF cone bipolar cell telodendria and ON cone bipolar cells, and 

is the topic of future papers.  

Predicting the function of OFF > ON, dual transmitter crossover inhibition 

is less clear, due to some slight discrepancies in the literature. Eggers and 

Lukasiewicz (2011)  report that murine ON cone bipolar cells possess similar 

levels of GABAAR- and GABACR-mediated inhibition, and little to no glyR-

mediated inhibition, whereas others report glycine-mediated crossover inhibition 

of ON cone bipolar cells (Molnar et al., 2009; Werblin, 2010). Presuming that 

glyR-, GABAAR-, and GABACR-mediated inhibition all occur in rabbit ON cone 

bipolar cells, which is consistent with amacrine cell networks in RC1, dual 

glycine- and GABA-mediated crossover inhibition would afford control of both the 

peak amplitude and the degree of prolonged release in ON cone bipolar cells. 

Synaptic occlusion reduction could be an additional benefit of dual-transmitter 

crossover inhibition in these cells as well, but more analysis is needed to 

determine the frequency of adjacent γAC and GAC inputs to common targets. 

 
 

 

 

 



56 
 
GAC- versus γAC-Mediated Cross-Channel Feedback  

and Feedforward Inhibition 

Many networks described in this manuscript constitute axonal ribbon-

mediated cross-channel feedback inhibition (CBb > γAC  ≥  CBa  and  CBa  >  GAC  

≥  CBb  motifs), and cross-channel feedforward  inhibition  (CBb  >  GAC  ≥  ganglion 

cell and  CBa  >  GAC  ≥  ganglion cell motifs). These motifs could also subserve 

kinetically appropriate ON-OFF response properties in polarity-opposite targets. 

Axonal ribbon reciprocal synapses can inject OFF components into ON channels, 

inject ON components into OFF channels, and construct ON-OFF target cells. 

GAC and γAC feedforward motifs discovered thus far are different. γACs 

feedforward to targets also directly driven by axonal ribbons by the CBb, whereas 

GACs feedforward to targets not directly driven by those axonal ribbons. We 

refer to these as in-class and cross-class feedforward motifs, respectively. One 

common form of glycinergic ON > OFF crossover is provided by AII AC lobular 

dendrite synapses onto OFF cone bipolar cells and extensive input to OFF α and 

δ   ganglion cells. Importantly, neither AII ACs nor OFF α   /   δ   ganglion cells are 

targeted by ON cone bipolar cell axonal synapses, despite abundant 

opportunities.  

The diversity of inputs to ON-OFF amacrine cells aligns with the 

complexity of amacrine cell/ganglion cell response properties. We show that an 

anatomical framework exists to support glycine- and GABA-mediated control of 

ON cone bipolar cell release at axonal ribbon locations, which may subserve 
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both crossover inhibition and ON-OFF GAC regulation of ON cone bipolar cell 

axonal ribbon synapse release kinetics. 

 
 
Rod Bipolar Cell Axonal Ribbons Are Distinct from  

ON Cone Bipolar Cell Axonal Ribbons 

Despite the fact that multiple laboratories have reported very few, if any, 

axonal ribbons in rod bipolar cells (Chun et al., 1993; Ghosh et al., 2001; 

Tsukamoto et al., 2001), our results are more consistent with those of Strettoi et 

al. (1990), in which they reported occasional instances of output synapses along 

the descending axons of rod bipolar cells. Nonetheless, the rod bipolar cell 

axonal ribbons all occur en passant, with no evident branching, and are 

concentrated in the ON IPL (Figure 2.4).  Those that breach the ON-OFF 

boundary do so marginally; they comprise ON drive to polarity-matched targets, 

distinct from ON-OFF crosstalk achieved by ON cone bipolar cell axonal ribbons 

in the rabbit retina. The absence of rod bipolar cell axonal ribbons in the distal 

OFF layer is significant since M1 ipRGCs exhibit rod responses (Aggelopoulos 

and Meissl, 2000; Dacey et al., 2005; Wong et al., 2007). Possible sources 

include the primary AII-mediated scotopic pathway, the secondary rod::cone 

coupling scotopic pathway, or direct rod bipolar cell axonal synapses with M1 

ipRGCs, as suggested by Ostergaard et al. (2007). Our data demonstrate that 

rod input to M1 cells absolutely does not arise from rod bipolar cell axonal 

ribbons.  Moreover, we have found no evidence of rod bipolar cell synapses onto 

ganglion cells of any type, and the rod bipolar cell axonal ribbons discovered thus 
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far target only AI and AII ACs, both typical ON layer targets of rod bipolar cell 

ribbons.  AI AC rod bipolar cell axonal ribbon targets are further consistent with 

previous work demonstrating that AI AC dendrites sometimes immediately 

appose GABA receptors on descending rod bipolar cell axons in the ON IPL 

sublaminae, expected for reciprocal synapses observed between AI ACs and rod 

bipolar cell ribbons (Wässle et al., 1991; Zhang et al., 2002).  

 

Multiple Axonal Synaptic and Network Topologies  

Distribute Functionality 

Axonal ribbons routinely construct convergent and divergent synaptic 

motifs. The synaptic topologies vary across these examples, including all 

combinations of single- versus multiribbon, and monadic versus dyadic synapses 

(Figures 2.6, 2.7, 2.8, 2.9). Axonal ribbons also tend to be smaller than ribbons in 

the primary ON cone bipolar cell arbors. Distinct synaptic topologies are 

considered here.  

First, wide-field cone bipolar cell 6156 forms single-ribbon, monadic 

axonal synapses to drive an ipRGC and a narrow-field, diffusely stratified GAC 

employed for divergent within- and cross-channel inhibition motifs (Figure 2.6 C, 

G; Figure 2.7 D, H). Second, wide-field cone bipolar cell 5283 drives the ipRGC 

targeted by CBb5w 6156 with a multiribbon, monadic axonal synapse, 

demonstrating different synaptic topological input to a common target, albeit from 

two classes of ON cone bipolar cell.  Third, CBb6 5536 displays a single-ribbon, 

branched axonal synapse dyad to drive a pair of OFF layer, monostratified 
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amacrine cell processes, which provide nested feedback to the CBb6, and one of 

which mediates CBb > γAC  ≥  CBa crossover inhibition (Figure 2.8 C right inset, 

H). Finally, CBb5 400 forms a multiribbon, dyadic axonal synapse onto ganglion 

cell 5118 and a currently unidentified process (Figure 2.6 B, F).  

No clear pattern emerges as to the rules governing axonal ribbon synaptic 

topologies, but we can eliminate two possibilities.  First, the target cell does not 

govern axonal ribbon count, as evidenced by the ipRGC recipient to convergent 

input from two axonal ribbon monads with different numbers of ribbons.  Second, 

cone bipolar cell class does not govern axonal ribbon synaptic topology, given 

that ON cone bipolar cells of the same class can instantiate different axonal 

synaptic topologies, and ON cone bipolar cells of different classes can share 

synaptic topologies.  More source-target analysis is needed on this topic. 

 

Monostratification Achieves ON-OFF Crosstalk  

via Axonal Ribbons 

It is generally thought that ganglion cells acquire ON-OFF responses via 

bistratification across the ON and OFF IPL, yet in WT mice, 11% of ganglion cells 

establish ON-OFF properties by P33 via monostratification of one thick band of 

dendrites in the middle IPL (Tian, 2008). Ganglion cell process 18693, targeted in 

CBb > ON-OFF  GAC  ≥  ON-OFF ganglion cell crossover inhibition (Figure 2.9 B, 

C, D), is one such monostratified ganglion cell. Unfortunately, this ganglion cell 

process exits RC1, so we cannot verify that it lacks another stratum of 

arborization. However, its annotated processes costratifiy in the mid-IPL with 
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GAC 906 from which it receives crossover inhibition, driven by an axonal ribbon 

(Figure 2.9 B). This example of co-monostratification of a GAC and ganglion cell 

in the same crossover inhibition network demonstrates that multistratified bipolar 

cells can mediate ON-OFF crosstalk. Moreover, since it is now established that 

the entire OFF layer of the IPL contains mixed ON-OFF signal processing, it 

follows that almost any monostratified cell could develop ON-OFF responses. 

 

Axonal Cisterns 

Though the function of axonal cisterns is unknown, they are not randomly 

distributed and appear as well-ordered accessory ON network elements to 

common target cells (Figure 2.8 B, K; Figure 2.6 H). They are often in close 

proximity to axonal ribbon synapses (Figure 2.6 H), converge onto common 

targets (Figure 2.8 B), and have been observed reciprocal to conventional 

synapses (data not shown), suggesting that they are real structural or 

communicative elements of accessory ON networks.  Indeed, preliminary 

analyses reveal that 55 of 113 (48.7%) measured cone bipolar cells contain one 

or more axonal cisterns.  More complete analyses will be conducted in future 

manuscripts. 

 
 

Axonal Ribbons Are Routine Network Elements  

Throughout the IPL 

Ten axonal ribbon-mediated network motifs have been discovered in RC1 

thus far spanning all IPL sublaminae (Figure 2.12), emphasizing their routinity in 
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cone bipolar cell signaling.  It is highly likely that additional motifs exist, as many 

axonal ribbon targets and networks remain to be identified.  The excitatory motifs 

provide direct axonal ribbon drive to an array of ganglion cell classes.  The 

inhibitory motifs comprise both   feedback and feedforward as they target GACs 

and γACs, which in turn form synapses onto CBas, CBbs, and several classes of 

ganglion cell.   

Figure 2.12 collapses the network motifs reported in this manuscript onto 

one representative cone bipolar cell for clarity.  As such two features that occur in 

a minority of cells are included, branched axonal ribbons in the canonical OFF 

IPL and bifurcated descending axons.  It is important to distinguish between a 

bifurcated axon and the primary branch point of the telodendria.  ON cone bipolar 

cell descending axon bifurcations occur in sublaminae 3-5, distinctly distal to the 

primary arborization of the cell.  In such cases, the descending axon typically 

bifurcates into major (Figure 2.12, right branch) and minor (Figure 2.12, left 

branch) axons before each primarily arborizes.  The major branch diameter 

remains comparable to the descending axon diameter distal to the bifurcation, 

while the minor branch point adopts a smaller diameter.  Each branch retains 

axonal features such as predominant microtubule bundles and a scarcity of 

vescicles, except for vesicle clouds concentrated near axonal ribbons.  In cases 

of clearly bifurcated descending axons distal to the primary arborization of the 

cell, such as that shown in Figure 2.12, ribbon synapses in both the major and 

minor axons  were  still  classified  as  “axonal”. 
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  Note that in addition to abundant axonal ribbon output, cone bipolar 

descending axons are frequently postsynaptic to amacrine cell inputs, both 

reciprocal and nonreciprocal to axonal ribbons. 
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Table 2.1. Primary antibodies used in this study 
 
Antibody Immunogen, Host 

Species 
Source Dilution 

Used 
AGB BSA-glutaraldehyde- (1-

amino-4-guanidobutane) 
conjugate, rabbit 

Signature Immunologics 
B100/rabbit-polyclonal 

1:4,000 

GABA BSA-glutaraldehyde- (4-
aminobutyrate) 
conjugate, rabbit 

Signature Immunologics 
YY100/rabbit-polyclonal 

1:32,000 

Glycine BSA-glutaraldehyde 
(glycine) conjugate, rabbit 

Signature Immunologics 
G100/rabbit-polyclonal 

1:4,000 

L-glutamate BSA-glutaraldehyde- (L-
glutamate), conjugate, 
rabbit 

Signature Immunologics 
E100/rabbit-polyclonal 

1:32,000 

L-glutamine BSA-glutaraldehyde- (L-
glutamine) conjugate, 
rabbit 

Signature Immunologics 
Q100/rabbit-polyclonal 

1:4,000 

Taurine BSA-glutaraldehyde- 
(taurine) conjugate, rabbit 

Signature Immunologics 
TT100/rabbit-polyclonal 

1:16,000 

 
Legend. Abbreviations: AGB 1-Amino-4-guanidobutane, GABA γ-Aminobutyric 
acid. 
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Table 2.2. IgG competitive sensitivities computed from inhibition assays 
 

Bis-conjugate γ G E Q τ 

γ 0 8 5 7 6 

G 6 0 5 7 6 

E 4 9 0 5 6 

Q 6 9 5 0 6 

τ 5 10 5 7 0 

 
Legend. IgG competitive sensitivities computed from inhibition assays and 
expressed as log differential inhibition: log [C]/[T], where [C] and [T] are the 
concentrations of any conjugate (C) or the cognate target conjugate (T) required 
for  100%  binding  block.  γ  GABA, G glycine, E glutamate, Q glutamine, τ  taurine. 
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Table 2.3. Synapse color scheme – 3D reconstructions 
 

Synapse Type Color 

Ribbon Green 

Conventional Blue 

Postsynaptic Density Red 

Gap Junction Yellow 

Adherens Junction White 

Cistern Contact Grey 
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 Table 2.4. Abbreviations 
 

INL Inner Nuclear Layer 

IPL Inner Plexiform Layer 

GCL Ganglion Cell Layer 

GAC Glycine-positive Amacrine Cell 

γAC GABA-positive Amacrine Cell 

AI AC AI Amacrine Cell = A17 Amacrine Cell 

AII AC AII Amacrine Cell 

ipRGC Intrinsically Photosensitive Retinal Ganglion Cell 

bsdGC Bistratified Diving Ganglion Cell 

> Sign-Conserving Synapse 

≥ Sign-Inverting Synapse  

GABAAR GABAA Receptor 

GABACR GABAC Receptor 

glyR Glycine Receptor 
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Figure 2.1. RC1 overview.  A.  The RC1 volume with its top section (001) 
beginning in mid-INL and ending in the GCL at section 371, shown in a mirror 
image  below.  RC1   is  a   short   cylinder  ≈  250  μm   in  diameter  and  ≈  30  μm  high  
containing 341 TEM sections and 11 intercalated CMP sections. The cylinder is 
capped at top and bottom with 10-section CMP series allowing molecular 
segmentation. TEM section 001 is a near-horizontal plane section through the 
INL   visualized   with   GABA.glycine.glutamate   →   red.green.blue   transparency  
mapping and a dark gold alpha channel (ANDed taurine + glutamine channels) 
described in Anderson et al. 2011a. Similarly, TEM section 371 is a near-
horizontal plane section through the GCL visualized with GABA.AGB.glutamate 
→   red.green.blue   transparency   mapping.   B. Representative cells contained in 
RC1 are rendered in 3D onto the volume. Many complete copies of small cells 
exist (tens to hundreds) such as rod bipolar cells (cells 1, 2) and AII ACs (cell 3). 
A few semicomplete copies (5-10) of medium-diameter cell classes have their 
somas and much of their arbors within RC1, but extend outside it, such as 
interstitial γACs (cell 4) and AI amacrine cells (cell 5). Finally, RC1 contains many 
processes from partial cells: large cells such as wide-field amacrine cells or OFF 
α ganglion cells (cell 6) with somas outside the volume and often fully traversing 
it. 
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Figure 2.2. Subsets of CBbs make en passant and branched axonal ribbons.  A. 
Vertically oriented renderings of 53 CBbs (neutral and warm colors) with axonal 
ribbons in the OFF IPL plotted against 48 CBas (cool colors). Cone bipolar cell 
color corresponds to depth of IPL stratification as follows:  CBa1, sage; CBa2, 
green; CBb3, tan; CBb3-4, dark mustard; CBb4,  silver; CBb5, mustard; CBb6, 
bright red; wide-field cone bipolar cell, deep red. Arrows, somas of CBbs 
referenced in B-P. Scale bar, 25 µm. B-K. CBbs indicated in A are confirmed as 
glycine-positive (B-F, TEM of CBb somas; G-K, glycine-positive labeling of 
corresponding somas in B-F). Scale bars, 5 µm. L-P. TEM of gap junctions 
between CBbs indicated in A and AII ACs. White arrows delineate gap junctions; 
A-II, AII amacrine cell; WF BC, wide-field bipolar cell; scale bars, 0.5 µm. A, B, G, 
L. CBb3 1637 rendering (A), TEM of soma (B), corresponding glycine-positive 
signature (G), and indirect AII AC coupling via a gap junction with CBb3-4 1724 
(L, left subpanel) which is couple to AII AC 514 (L, right subpanel).  A, C, H, M. 
CBb4 593 rendering (A), TEM of soma (C), corresponding glycine-positive 
signature (H), and gap junction with AII AC 3679 (M). A, D, I, N. CBb5w 6156 
rendering (A), TEM of soma (D), corresponding glycine-positive signature (I), and 
gap junction with AII AC 476 (N). A, E, J, O. CBb6 4570 rendering (A), TEM of 
soma (E), corresponding glycine-positive signature (J), and gap junction with AII 
AC 3257 (O). A, F, K, P. Wide-field cone bipolar cell 5283 rendering (A), TEM of 
soma (F), corresponding glycine-positive signature (K), and gap junction with AII 
AC 3679 (P). Q. CBb4 485 (silver) and CBb5w 180 (copper) form en passant 
axonal ribbon synapses (circles) among CBa1 and CBa2 arbors. Scale bar, 5 
µm. R. Wide-field cone bipolar cell 16026 (red) forms branched axonal ribbon 
synapses (circle) among CBa1 and CBa2 arbors. Scale bar, 5 µm. 
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Figure 2.3. All major classes of CBbs possess axonal ribbons, stereogram.  The 
five CBbs highlighted in Figure 2.2 are displayed in isolation for clarity.  Varied 
numbers of axonal ribbons across CBb classes span the IPL. Cone bipolar cell 
color corresponds to depth of IPL stratification. Specific cone bipolar cell colors 
as follows: CBb3, tan; CBb4, silver; CBb5w, copper; CBb6, bright red (left); wide-
field cone bipolar cell, deep red (right). Note the class-specific arborization 
thickness, pattern of varicosities, and axonal arbor diameters.  Spatial 
relationships are preserved. Scale bar,10 µm.    
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Figure 2.4. CBb versus rod bipolar cell axonal ribbon depths.  The distribution of 
160 axonal ribbons in 54 CBbs and 63 ribbons in 63 of 104 rod bipolar cells in 
RC1. Ribbon positions are measured relative to the sublamina a/b border, defined 
as the proximal face of the nearest AII amacrine cell lobule. CBb axonal ribbons 
are distributed throughout sublamina a. Rod bipolar cell axonal ribbons are 
excluded from 80% of sublamina a. ACL, amacrine cell layer; Rod BC, rod 
bipolar cell. 
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Figure 2.5. Rod bipolar cell axonal ribbons cannot drive M1 ipRGCs.  All 63 rod 
bipolar cells (ghosts) with axonal ribbons in RC1 are displayed against ipRGC 
12208 (sand). Note that all ribbon synapses (bright green dots), including the 
axonal ribbons, are too proximal in the IPL to form synapses with the ipRGC. 
Scale bar, 20 µm. 
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Figure 2.6. Ganglion cell axonal ribbon targets.  A-D. Renderings of five CBb 
classes forming axonal ribbons onto multiple ganglion cell classes, vertical 
orientation. Circles indicate location of synapses shown in E-L. Scale bars (A-B), 
25 µm; scale bars (C-D), 20 µm. E-L. TEM of synapses indicated in A-D. White 
arrows indicate synapse directionality. GC, ganglion cell; WF BC, wide-field 
bipolar cell; AC, amacrine cell; r, ribbons; c, cistern; pcd, postcisternal density; 
scale bars, 0.5 µm;. A,E. CBb4 3116 (left cell of the silver pair that intersect 
ganglion cell 15796 (red)) forms an axonal single-ribbon dyad with bsdGC 15796 
and an unknown cell. CBb4 3116 participates in a chain of seven coupled CBb3s 
(tan) and CBb4s (silver). The bsdGC 15796 dendritic target of the axonal ribbon 
abruptly ascends to the OFF IPL where it receives the input before returning to 
the ON IPL distally (far right of panel A).  B,F. CBb5 400 (mustard) forms an 
axonal multiribbon dyad with ON-OFF ganglion cell 5118 (red) and an unknown 
cell. C,G,H.  CBb5w 6156 (copper) and wide-field cone bipolar cell 5283 (red) 
converge an axonal single-ribbon monad and axonal multiribbon monad, 
respectively, onto ipRGC 12208 (off white). Note the omega figure in the right 
subpanel of panel G.  Wide-field cone bipolar cell 5283 forms an axonal cistern 
onto γAC 20537 (not shown in C, see Fig. 2.8, B-C) in the same plane of section 
as the four-ribbon axonal monad onto ipRGC 12208. D,I,J,K,L. CBb6 353 (red, 
left cell) and CBb6 447 (red, right cell) both form multiribbon axonal dyads (I,J) 
onto OFF-layer monostratified ganglion cell 21779 (silver) and another amacrine 
cell, amacrine cell 22210 (not shown inD for clarity,I) and  amacrine cell 32273 
(upper bright green cell in D, D inset,J), respectively. Amacrine cell 32273 
creates both feedback (J, right subpanel) and feedforward (K) inhibition motifs via 
conventional synapses onto CBb6 447 and ganglion cell 21779, respectively. 
CBb6 447 also forms a single-ribbon axonal dyad in the ON IPL onto 
multistratified ganglion cell process 34336 (beige in D, D inset,L left subpanel) 
and amacrine cell 34337 (lower bright green cell in D, D inset,L left subpanel). 
Amacrine cell  34337 forms a conventional synapse onto ganglion cell 34336 (L 
right subpanel), thus completing a feedforward inhibition motif. 
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Figure 2.7. GAC axonal ribbon targets.  A-D. Renderings of CBbs targeting both 
mono- and multistratified GACs with axonal ribbons, vertical orientation. Circles 
indicate locations of synapses shown in E-H. Scale bars, 10 µm. E-H. TEM of 
axonal synapses at locations indicated A-D. White arrows indicate synapse 
directionality. r, ribbons; scale bars, 0.5 µm. I-L. TEM of GAC somas.  Scale 
bars, 5 µm. M-P. Glycine-positive signatures of the corresponding GAC somas in 
I-L. Scale bars, 5 µm. A, E. CBb6 4570 (red) forms a single-ribbon monadic 
reciprocal synapse with GAC 906 (patina). B,F. CBb5w 309 (copper) forms a 
single-ribbon monadic synapse onto GAC 310 (patina). C,G. CBb5w 6997 
(copper) forms a single-ribbon axonal monad with GAC 5507.  The ribbon is very 
light, but possesses the characteristic halo of clear vesicles, and both pre- and 
postsynaptic densities are visible. D,H. CBb5w 6156 (copper) forms a single-
ribbon axonal monad with GAC 5575 (patina). 
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Figure 2.8. γAC axonal ribbon targets and axonal cisterns.  A-C. Renderings of 
axonal-ribbon driven γACs mediating within- and cross-channel, divergent and 
convergent, inhibitory networks, vertical orientation (A-B), horizontal orientation 
(C).  Arrows, locations of γ+ signatures shown in D-E; circles, locations of 
synapses shown in F-K; scale bars, 20 µm. D-E. TEM of γACs in A-C with 
corresponding γ+ signatures. Scale bar (D), 5 µm; scale bar (E), 0.5 µm. F-K. 
TEM of synapses indicated in A-C. White arrows indicate synapse directionality. 
AC, amacrine cell; WF BC, wide-field bipolar cell; r, ribbons; c, cistern; pcd, post-
cisternal density; scale bars, 0.5 µm. A. CBb5 5562 (mustard, left) forms an 
axonal single ribbon monad onto multistratified γAC 5294 (silver, F). γAC 5294 
forms a conventional synapse (A inset, G) onto CBb5 5645 (mustard, right), thus 
completing an axonal ribbon-mediated within channel inhibition motif.  5294’s  
soma is γ+ (D). B. A chain of five CBbs converge and diverge axonal ribbon and 
cistern contacts onto common γAC and ganglion cell targets, vertical orientation. 
CBb6 5536 (red, right) provides divergent input to amacrine cell 19571process 
(silver) and wide-field γAC 20537(silver) with an axonal ribbon dyad (H) at 
locations indicated in C insets. Wide-field γAC 20537 is γ+ (E). Amacrine cell 
19571 cannot be confirmed as γ+, but is glycine negative, and participates in 
nested feedback with γAC 20537 (H, right subpanel). CBb5 176 (mustard) and 
wide-field cone bipolar cell 5283 (deep red, center) converge axonal cistern 
contacts onto γAC 20537 (K, Fig. 2.6 H, respectively). In the same plane of 
section wide-field cone bipolar cell 5283 drives ipRGC 12208 with a four-ribbon 
axonal monad (Fig. 2.6 H). This ipRGC receives convergent axonal ribbon input 
from CBb5w 6156 (copper, Fig. 2.5 G).  C. Horizontal view of B. Scale bar, 20 
µm. (Left inset): Rotated and zoomed-in vertical view of the circled area in the 
main panel (some cells removed for clarity). CBb6 5536 (red) and wide-field cone 
bipolar cell 16026 (sand) provide convergent, branched axonal ribbon input to 
γAC 20537 (H left subpanel & I, respectively). This view looks down the length of 
γAC 20537 (silver) between wide-field cone bipolar cell 16026 in the right 
foreground and CBb6 5536 in the left background.  Wide-field cone bipolar cell 
5283 (red, right) can be seen close to wide-field cone bipolar cell 16026. Scale 
bar, 2.5 µm. (Right inset): Rotated and zoomed-in vertical view of CBb > γAC  ≥  
CBa crossover inhibition. CBb6 5536 (red) provides a branched axonal ribbon 
dyad onto amacrine cell 19571 (H, left subpanel). amacrine cell 19571 forms a 
conventional synapse (J) onto CBa2 5539 (green) nearby, thus completing the 
crossover inhibition motif. Scale bar, 5 µm.  
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Figure 2.9. Novel network topologies mediate within- and cross-channel 
inhibition.  A-D. Vertically orientated enderings of ON-OFF GAC construction and 
CBa > GAC ≥   CBb crossover inhibition (A), and CBb > GAC ≥ ganglion cell 
within- and crosschannel (crossover) inhibition motifs (B-D). Circles, location of 
synapses shown in E-J; scale bar (A), 10 µm; scale bar (A inset), 5 µm; scale bar 
(B-C), 20 µm; scale bar (D), 10 µm. E-J. TEM of synapses indicated by circles in A-
D. White arrows indicate synapse directionality; GC,ganglion cell; scale bars, 0.5 
µm. A,E-F. Axonal ribbon topologies employed for construction of a 
monostratified, ON-OFF GAC and  CBa > GAC ≥ CBb crossover inhibition motifs. 
(A Inset): Rotated and zoomed in horizontal view of CBa2 424 (green), CBa2 
478 (sage), GAC 906 (silver), and CBb6 4570 (red). CBa2 424 and CBa2 478 
converge a single-ribbon monad and single-ribbon dyad onto GAC 906 (E & F, 
respectively). GAC 906 forms a conventional synapse onto CBb6 4570 (red), 
reciprocal to an axonal ribbon (Fig. 2.6 E) . B,G-J.  Parallel CBb > GAC ≥ ON-
OFF ganglion cell crosschannel inhibition, and divergent within- (CBb > GAC ≥ 
bsdGC) and crosschannel (CBb > GAC ≥ ON-OFF ganglion cell) inhibition. CBb6 
4570 (red) drives GAC 906 (green) at the axonal synapse described in A.  GAC 
906 forms a conventional synapse onto monostratified ON-OFF ganglion cell 
18693 (off-white, G).  CBb5w 6156 (copper) drives narrow-field multistratified 
GAC 5575 (patina) with an axonal ribbon (Fig. 2.6 H). GAC 5575 forms 
conventional synapses onto monostratified ON-OFF ganglion cell 18693 at two 
locations (H,I).  The  above  two  synaptic  chains   thus  form  parallel  CBb  >  GAC  ≥  
ON-OFF ganglion cell motifs that converge onto the same ganglion cell target. 
GAC 5575 also forms a conventional synapse onto bsdGC 15796 (sand, J), 
thereby creating divergent inhibitory motifs from CBb5w 6156 to two distinct 
classes of ganglion cell. C,H-J. Rotated zoom-in and isolation of divergent 
inhibition shown in B. Multistratified, narrow-field GAC 5575 (patina) receives 
axonal ribbon input from CBb5w 6156 (copper) at an OFF-layer branch (Fig. 2.7 
H, not circled for anatomical clarity), and forms conventional synapses with 
ganglion cell 18693 (off-white,H-I) and bsdGC 15796 (sand, J). D,H-J. Zoom-in 
of GAC 5575 divergent inhibition in B-C for anatomical clarity and detail, better 
appreciation of network topologies, and synapse locations.  
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Figure 2.10. CBb axon tangency to potential targets without axonal synapses.  A-
B. Renderings of CBbs with contact, but not synapses onto ganglion cells, 
vertical orientation. Circles, locations of synapses shown in C-D;  scale bars, 20 
µm. C-D. TEM of synapses indicated by circles in A-B. White arrows indicate 
synapse directionality; GC, ganglion cell; scale bars, 0.5 µm.  A,C. CBb3  5513’s 
(copper) axon is tangent (adjacent with no intervening muller glia) to OFF 
ganglion cell 13858 (sand), yet does not form a synapse. B,D.CBb4 3116 (silver) 
forms an axonal ribbon dyad onto bsdGC 15796 (D, Fig. 2.6 A & E) and an 
unknown target (D), whereas CBb4 4569 (dark mustard) does not form an axonal 
ribbon onto the same unknown target despite being tangent to it. Incidently, 
CBb4 3116 and CBb4 4569 are gap junctionally coupled  (data not shown). 
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Figure 2.11. Interaction between sparse network topologies and joint 
distributions.  A. An array of bipolar cell axons (white) traverses the image plane 
of the retina. In the top field, a cell class with high coverage is shown in different 
colors for every instance of the class. Each bipolar cell axon is contacted several 
times for an average contact of 2.4. B. Two different classes of ganglion cells 
(yellow, blue) form part of their tiling by sampling from the bipolar cell array. Most 
bipolar cells are missed, for an average outflow contact of 0.375, which is 
meaningless. Six circled bipolar cells are contacted by the ganglion cells (none 
twice), and the ganglion cells are errorless in contacting encountered bipolar 
cells. As ganglion cells are not space filling cells, further inputs would be 
superfluous. 
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Figure 2.12. Axonal ribbon motifs summary semischematic.  Wiring diagram for 
axonal ribbon motifs discovered across all cone bipolar cell classes in RC1 
collapsed onto one representative cell.  Spatial distributions of axonal ribbons 
have been preserved as best as possible to represent actual axonal ribbon 
locations.  The axonal branch in sublamina 2 and the bifurcated descending axon 
are included for completeness, though both occur in a minority of cone bipolar 
cells.  Note that in addition to abundant axonal ribbon output, cone bipolar 
descending axons are frequently postsynaptic to amacrine cell inputs.  S1-S6, 
IPL sublaminae 1-6; orange arrows, excitatory ribbon synapses; green flathead 
arrows, inhibitory GAC- or γAC-mediated synapses; GC, ganglion cell.   
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Abstract 

Analysis of the rabbit retinal connectome RC1 reveals a class of diffusely-

stratified OFF cone bipolar cells (dsOFF CBCs) that synaptically target amacrine 

cells in the ON inner plexiform layer (IPL). This network architecture constructs a 

large zone of comingled ON and OFF cells in IPL sublaminae 3-5, indicating that 

the mammalian inner plexiform layer is not as discretely segmented as previously 

thought. Current tenets assert that the monostratified bipolar cells of the 

mammalian retina require multistratified amacrine cells to mediate ON-OFF 

crosstalk, since ON and OFF cone bipolar cell axonal arbors putatively occupy 

distinct domains in the inner plexiform layer.  Nonetheless, recent studies 

demonstrated the capacity of ON cone bipolar cells to violate the mammalian IPL 

stratification rules with axonal synapses in the OFF IPL, and a subset of OFF 

CBCs with primary axons longer than some ON CBC primary axons (Anderson et 

al., 2011a; Dumitrescu et al., 2009; Hoshi et al., 2009; Lauritzen et al., 2013). 

Our goal was to confirm the comingling of ON and OFF CBC synapses in the ON 

IPL with automated transmission electron microscopy (ATEM), and identify the 

targets of the dsOFF CBC synapses in ON territory. 

 

Introduction 

A canon of the mammalian retinal research community is that ON and 

OFF channels occupy discrete domains within the mammalian inner plexiform 

layer (IPL), with OFF cells that depolarize to light decrements stratified in the 

distal 40% of the IPL and ON cells that depolarize to light increments stratified in 
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the proximal 60% of the IPL (Famiglietti et al., 1977; Famiglietti and Kolb, 1976; 

MacNeil et al., 2004a; Wässle et al., 2009; Werblin and Dowling, 1969).  For 

nearly forty years, this paradigm stood.  Nevertheless, examples of nominal 

CBCs breaking the mammalian IPL stratification rules were recently reported 

(Anderson et al., 2011a; Dumitrescu et al., 2009; Hoshi et al., 2009; Lauritzen et 

al., 2013).  Indeed, many nonmammalian BC classes multistratify, with axonal 

outputs in both the OFF and ON sublayers (Kolb, 1982; Pang et al., 2004; 

Ramon y Cajal, 1892; Scholes, 1975; Scholes and Morris, 1973; Sherry and 

Yazulla, 1993; Wong and Dowling, 2005). Moreover, axonal ribbons were 

occasionally reported by researchers, but never systematically qualified and 

quantified (Famiglietti, 1981; Jeon and Masland, 1995; Kolb et al., 1990; Kolb et 

al., 1992; Linberg et al., 1996; Mariani, 1982; McGuire et al., 1984). Finally, the 

existing bipolar cell classification scheme developed by MacNeil et al. (2004b) 

illustrates that CBa1-2n OFF bipolar cells marginally encroach on the ON IPL.  

As such, there is motivativation to further investigate the extent to which other 

classes of bipolar cells might violate the canonical IPL stratification rules.  These 

results impelled us to comprehensively classify a suspected cohort of OFF CBCs 

that synapse in the ON sublayer of the IPL. 

All retinal cells discovered with distinct morphologies have thus far proven 

to possess distinct physiological properties (Masland, 2001b).  On this basis, the 

gross morphologies of cells have routinely served as the means by which to 

classify different retinal cell types, with level of IPL arborization purposing the 

cells' physiological roles.  Scientists have used these methods to create lists of 
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candidate cells that may or may not have synaptic connections, based on the 

presence or absence of costratification within the IPL.  Nonetheless, light 

microscopy lacks the resolution to resolve functional synapses and the finest 

neural processes, and previous anatomical methods (including serial section 

approaches) underreport synapses; thus, much of the connectivity within the 

retina has been missed.    

With new connectomics approaches, using automated transmission 

electron microscopy (ATEM) at 2.18 nm resolution, metabolic fingerprinting, 

synaptic connectivity analyses, and 3D renderings of cells, it is possible to 

reconstruct functional anatomical networks that were impossible to see before.  

Synaptic connections are often assumed to exist between cells that costratify 

within the IPL.  Yet  Anderson et al. (2011a) showed neural apposition without 

synaptic contact to be the dominant mode in the IPL, so costratification can only 

provide locations of possible, not guaranteed, connectivity between and two 

cells.  The ability to resolve functional synapses and fine neural processes at the 

ultrastructural level to obtain absolute network groundtruth allows us to solve this 

problem.   

Here, we confirm that a subset of OFF cone bipolar cells indeed 

multistratify across the traditional IPL boundary, and establish functional 

synapses at the same IPL depth as nearest neighbor ON CBCs, constituting a 

new OFF cone class.  To consistently extend the MacNeil et al. (2004a) bipolar 

cell classification scheme, we name these cells CBabs.  A major role of these 

CBabs is to provide OFF input synapses to ON layer monostratified amacrine 
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cells, thus constructing ON-OFF amacrine cells in the nominal ON IPL.  These 

CBabs further scaffold γAC- and GAC-based network motifs capable of passing 

ON-OFF inhibition to polarity-matched and polarity-opposite bipolar and ganglion 

cells.  These motifs are consistent with within and crosschannel feedback as well 

as within- and crosschannel feedforwad.  Since unique neural morphology 

typically represents unique physiological properties ((Masland, 2001b), these 

diffusely-stratified CBabs likely represent a discrete functional component of ON-

OFF signaling in the mammalian retina. 

 

Methods 

Tissue 

Connectome volume RC1 was assembled from a light-adapted female 

Dutch Belted rabbit (Oregon Rabbitry, OR) after in vivo excitation mapping as 

described in Anderson et al. (2011a) in accord with Institutional Animal Care and 

Use protocols of the University of Utah, the ARVO Statement for the Use of 

Animals in Ophthalmic and Visual Research, and the Policies on the Use of 

Animals and Humans in Neuroscience Research of the Society for Neuroscience.  

 

Computational Molecular Phenotyping (CMP) 

Retinal neurons in RC1 were classified by CMP per Marc and Jones 

(2002) by using an array of small-molecule signatures (4-aminobutyrate [GABA], 

glycine , L-glutamate, L-glutamine, taurine, and the activity marker 1-amino-4-

guanidobutane [AGB]). Briefly, the isolated rabbit eye was hemisected and 
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immersion-fixed overnight in 1% paraformaldehyde, 2.5% glutaraldehyde, 3% 

sucrose, 0.01% CaCl2, in 0.1 M phosphate buffer, pH 7.4. Tissues were then 

dehydrated in graded methanols and acetone and embedded in epoxy resin. 

Tissues were then serial sectioned at 70-90 nm onto 12-spot Teflon-coated 

slides (Cel Line, Fisher Scientific, Waltham, MA). Antibody exposure and silver 

intensification is described below under antibody characterization. Incubation of 

all antibodies generated against small-molecular targets was performed 

overnight at room temperature, and visualization was with goat anti-rabbit 

secondary IgG coated with 1.4 nm gold (Amersham, Arlington Heights, IL) and 

silverintensified (Kalloniatis and Fletcher, 1993). 

 

Small-Molecular Antibody Characterization 

Anti-hapten IgGs from Signature Immunologics (Salt Lake City, UT; Table 

2.1) have been extensively characterized in prior publications (Marc et al., 1995; 

Marc, 1999a,b; Marc and Cameron, 2002; Marc and Jones, 2002). Each is an 

IgG isotype (determined by affinity chromatography and immunoblotting) 

produced in rabbit hosts immunized with glutaraldehyde-amino acid conjugates 

to bovine serum albumin (BSA) as described in Marc et al. (1995). Five analysis 

types were used to characterize the specificity and detectivity of each anti-hapten 

IgG: 1) dependence on target molecule trapping; 2) immunodot assays against 

cognate small molecule–protein conjugates; 3) competition assays against free 

and bis-conjugates of small molecules (Table 2.2); 4) binding curves on 

quantitative artificial antigen stacks; and 5) cluster analysis (Marc et al., 1995).  
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RC1 Assembly, Analysis, and Sharing 

Bipolar cell networks in the ultrastructural rabbit retinal connectome RC1 

(Anderson et al., 2011a) were annotated with the Viking viewer (Anderson et al., 

2011b), and explored via 3D rendering and graph visualization of connectivity 

(Anderson et al., 2011b). Small molecule signals embedded in RC1 for 

computational molecular phenotyping (CMP) include 4-aminobutyrate, glycine, L-

glutamate, L-glutamine, taurine, and the activity marker 1-amino-4-

guanidobutane (AGB). Combined with morphological reconstruction, CMP 

permits robust bipolar cell classification (Anderson et al., 2011a). RC1 was 

acquired by ATEM at 2.18 nm resolution and assembled into a volume with the 

NCRToolset (Anderson et al., 2009). Molecular-ultrastructural registrations were 

generated with ir-tweak (Anderson et al., 2011a; Anderson et al., 2009; Anderson 

et al., 2011b). 3D renderings are built from disk annotations in Vikingplot 

(Anderson et al., 2011b), allowing rendering of surfaces and characterization of 

areas and volumes. All cells rendered in this paper are publicly available as 

Google Collada *.dae files via the Connectome Viz application. These can be 

imported into 3D visualization tools such as Collada or Blender 

(http://www.blender.org). One defect in converting disk topologies to volumes for 

rendering of tapered processes sometimes led to somas or varicose neurites with 

vertically peaked shapes. These anomalies will be repaired in future code sets. 

Networks were visualized as directed multigraphs with Connectome Viz, and 

topologies explored with Structure Viz (Anderson et al., 2011b). The RC1 dataset 

and these associated analytical tools are publically available at 
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connectomes.utah.edu. Quantitative features of connections (numbers of 

synapses, axon dimensions, etc.) can be queried within these various tools and 

with Microsoft SQL. 

 

Identification of IPL layers 

The ON-OFF border of the IPL is not absolute and we adopted a structural 

reference to define the transition between zones dominated by OFF and ON 

cone bipolar cells. In practice, the axial location of the ON-OFF border was set as 

most proximal surface of the AII AC lobule nearest a given bipolar cell. The OFF 

layer  was  defined  as  the  region  between  the  most  distal  GABA+  (γ+)  processes 

and the ON-OFF border. Similarly, the ON layer was defined as the region 

between  the  most  proximal  γ+  processes  and  the  ON-OFF border. For simplicity, 

we refer to these regions as the ON and OFF layers, corresponding to the older 

but less descriptive sublamina a and sublamina b, respectively. As in previous 

work, we define the amacrine cell layer - IPL border as level 0 and the ganglion 

cell layer - IPL border as level 100 (Marc, 1986). 

 

Cell Classification 

All cells were classified using three criteria: molecular signatures, synaptic 

connectivity, and morphology. Bipolar cells were further subclassified according 

to their stratifications within the IPL, compared to the rabbit bipolar cell 

classification scheme outlined by MacNeil et al. (2004a). An itemization of the 

rules required for cell identity follows. Table 2.4 lists abbreviations used 

throughout this chapter. 
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Rules for bipolar cells.  Virtually all bipolar cells possess ribbon synapses. 

Their somas reside in the inner nuclear layer (INL) and they are glutamate-

positive. Glycine-positive (G+) bipolar cells coupled to AII AC arboreal dendrites 

via gap junctions and stratified in the proximal 60% of the IPL were classified as 

ON cone bipolar cells with their precise level of stratification used to further refine 

their class memberships (CBb3, CBb3n, CBb3-4, CBb4, CBb5, CBb6, wide-field 

cone bipolar cell, and rod bipolar cell). Anderson et al. (2011a) showed that 

quantitative G+ signatures are an absolute discriminator of bipolar cell :: AII AC 

coupling. Glycine-negative (G-) bipolar cells that stratified in the distal 40% of the 

IPL and were both presynaptic and postsynaptic to AII AC appendages were 

defined as OFF cone bipolar cells, with their precise level of stratification used to 

further refine their class (CBa1, CBa1w, CBa1-2, CBa1-2n). Bipolar cells with G- 

signatures stratified in most proximal IPL, presynaptic to AII AC arboreal 

dendrites, neither postsynaptic nor coupled to them, and presynaptic and 

postsynaptic to γ+ AI ACs were classified as rod bipolar cells. There are 104 rod 

bipolar cells in RC1. These independent classifiers are, collectively, errorless  

(Anderson et al., 2011a). There are instances where CBa and CBb terminals 

(never rod bipolar cells) make synaptic contacts lacking classical synaptic 

ribbons. We call these bipolar cell conventional synapses, and they occur in 

terminals with numerous ribbons at other sites. One glutamate-positive bipolar 

cell class (CBa1w) is presynaptic and postsynaptic to AII ACs but lacks ribbons 

and only makes bipolar cell conventional synapses. These cells are not 
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discussed in this paper as they are not involved with the characterization of 

axonal synapses. 

Rules for CBabs.  CBabs satisfy the molecular and network criteria for 

CBas (glycine-negative and chemical synapses with AII AC lobular appendages 

in the most distal 40% of the IPL), yet deviate morphologically from canonical 

OFF cone bipolar cells by diffusely arborizing alongside CBb processes in the 

proximal 60% of the IPL.  

Rules for amacrine cells.  Amacrine cells possessed conventional 

synapses only (not ribbon synapses) with somas residing in the INL, except for 

ON starburst amacrine cells whose somas reside in the ganglion cell layer. G 

and γ signals further refined their classification as GACs and γACs. Cells with 

moderate glycine signals, presynaptic lobular appendages in the OFF IPL, and 

coupled and postsynaptic arboreal dendrites in the ON IPL were defined as AII 

ACs.  

Rules for ganglion cells.  Ganglion cells discussed in this paper were 

glutamate-positive, lacked presynaptic specializations, were never postsynaptic 

to rod bipolar cells and had somas placed in the GCL or processes that traversed 

the entire volume. Based on cone bipolar cell input patterns they were further 

classified as ON, OFF, or ON-OFF. Some classes   were   also   γ+   to   differing  

extents (Marc and Jones, 2002) due to amacrine cell coupling.  
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Image Preparation 

As described in our prior papers on connectomics (Anderson et al., 2009), 

display TEM images in this paper were produced by remapping RC1 volume tiles 

to gamma 1.3. Optical and TEM overlays used the TEM greyscale brightness 

combined with the hue, and saturation from the optical image as described in 

Anderson et al. (2011a). 3D versions and network maps of annotated cells were 

generated in Vikingplot and Viz applications (Anderson et al., 2011b). 

 

Results 

We mined the axonal arbors of all OFF bipolar cells, identified those that 

comingle with ON bipolar cell telodendria, and reconstructed the synaptic 

connectivity of said OFF arbors in ON territory. Table 2.3 contains a legend for 

the color scheme used to represent synapse types in all 3D reconstructions 

displayed throughout this manuscript. All cell identification numbers used in this 

manuscript are identifiers that can be invoked in Viking, VikingPlot, and Viz tools 

(Anderson et al., 2011a) to validate all of the ultrastructural features, network 

motifs, and statistics we report here. RC1 is an open-source, open-access, open-

data resource. 

 

CBabs Arborize More Proximally in the IPL than Their  

OFF CBC Cohorts 

One hundred four of 400 CBCs (26%) in the RC1 volume are OFF CBCs, 

four of which are semicomplete traces as their processes exit the volume, thus 
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preventing more refined classification.  Of the remaining 100 OFF CBCs, 10 have 

yet to be classified, 21 are CBa1s, 1 is a CBa1w, 2 are CBa1-2s, 1 is a CBa1-2n, 

26 are CBa2s, 4 are CBa2ws, and 35 diffusely arborize more proximally into the 

IPL than their OFF CBC cohorts, where they comingle with ON CBC axonal 

arbors and synaptically target GACs and YACs.  For consistent extension of the 

McNeil et al., 2004 rabbit BC classification scheme, we hereafter refer to these 

dsOFF CBCs as CBabs.  Subsets of CBabs establish multitiered territories 

across OFF and ON layers, as deep as layer 6; thus, we identify these as CBab 

2-3, CBab2-4, CBab2-5, and CBab2-6. 

 

CBabs Exit the Canonical OFF IPL 

When viewed against each other (Figure 3.1), the telodendria of the 35 

CBabs in RC1 can be seen to clearly extend more proximally into the IPL than 

their OFF CBC cohorts.  Laminae 1 and 2 are visible by plotting CBa1s, CBa1ws, 

and CBa2s against each other.  Collectively, these cells establish the nominal 

OFF IPL (Figure 3.1 A-B).  This demonstrates that the CBab axonal processes 

exit the canonical OFF IPL, and form synapses in territories inaccessible to other 

OFF CBCs.  A zoom of some of these processes (Figure 3.1 C) shows clearly 

that CBab telodendria extend more proximally into the IPL than the other classes 

of CBas, thus exiting the canonical OFF IPL.  This yields opportunities for 

synaptic partnership with a greater variety of cell classes than that which is 

possible by the other CBas. 
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CBabs Enter the Canonical ON IPL 

By viewing the CBabs against all CBbs, it becomes clear that not only are 

the OFF CBCs exiting canonical OFF territory, they enter canonical ON territory 

(Figure 3.2).  The axonal arbors, rife with ribbon synapses and postsynaptic 

densities, comingle with CBb axonal arbors.  The CBabs can be seen to ramify at 

different depths throughout the ON IPL (Figure 3.2 A).  A zoom of some of these 

processes shows clearly that CBab telodendria costratify with CBbs, often 

extending as deep as sublamina 6 (Figure 3.2 B-C).  Thus, they are bona fide 

multistratified OFF bipolar cells that span both OFF and ON IPL laminae. 

 

CBabs Costratify with Nearest Neighbor CBbs 

How can we be certain that these multistratified bipolar cells are 

functionally OFF (hyperpolarizing to light increments)?  As described in the 

methods section, we verified that all CBas are glycine negative, chemically 

synaptic to AII AC lobules, and stratify in the outer 40% of the IPL.  The CBabs 

satisfy the first two criteria, but their morphology deviates from the defined 

criteria.  Indeed, that is precisely how we discovered the CBabs; they satisfy all 

criteria for a CBa cell except morphology.  The glycine signatures and chemical 

synapse with AII AC lobules of three representative CBabs are shown in Figure 

3.3 D-F, H-J, L-N.  Despite satisfying the glycine signature and AII AC connectivy 

criteria for CBa identity, the CBabs costratify with CBbs and establish functional 

synaptic contacts in the ON IPL.  We show both the three-dimensional 

reconstructions (Figure 3.3 A-C) as well as TEM sections displaying functional 
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synapses formed by CBabs in the same plane of section as nearest-neighbor ON 

CBCs (Figure 3.3 G, K, O). 

 

γAC Targets 

CBabs form ribbon synapses onto both mono- and multistratified wide-

field γACs in the nominal ON IPL.  The γACs often form reciprocal conventional 

synapses, creating feedback inhibition motifs (Figure 3.6).  Three γAC targets of 

CBabs in the ON IPL are presented here.  Each of the γAC targets forms only 

conventional synapses, and is confirmed as both GABA-positive and glycine-

negative (Figure 3.4 D-O).   

First, CBab2-5 3928, CBab2-5 458, and CBab2-5 359 all form reciprocal 

synapses with multistratified, ON-OFF γAC 115 in the ON IPL (Figure 3.4 A, 

Figure 3.6 E-G).  It is worth note that despite the multistratification of γAC 115 in 

both the OFF and ON laminae, it only intersects with the three CBabs in the ON 

laminae where it forms the synaptic contacts.  It is, however, presynaptic to two 

other CBabs in the nominal OFF IPL.  Thus, this ON-OFF γAC receives its OFF 

input from both the OFF and ON layers.   

Second, monostratified ON-OFF wide-field γAC 5453 possesses a 

reciprocal synapse with CBab2-5 5543 deep in the ON layer at the lamina 5-6 

region (Figure 3.4 B, Figure 6 J-K).  The synaptic topology is interesting, as γAC 

5453 actually receives two ribbon monadic inputs from CBab 5543.  γAC 5453 

participates as one half of a ribbon dyad recipient to CBab 5543 input twice in the 
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same plane of section.  Furthermore, the other target for one of these two dyads 

is  a  GAC  described  more  fully  in  the  “GAC  targets”  section.   

Third, monostratified ON-OFF wide-field γAC 16073 receives synaptic 

input from two CBabs in the mid-IPL.  CBab2-4 6046 and CBab2-4 each form 

ribbon synapses onto  γAC 16073 in ON sublamina 3 (Figure 3.4 C, Figure 3.6 L-

M). This γAC communicates with both the ON and OFF lamina via 

monostratification in the mid-IPL, an architecture also discovered in GACs 

involved in CBb axonal ribbon crossover inhibition motifs (Lauritzen et al., 2013). 

 

GAC Targets 

CBabs are both pre- and postsynaptic to GACs in the ON IPL (Figure 3.5).  

CBabs form synapses with ON layer monostratified ON-OFF GACs and 

multistratified ON-OFF GACs.  Each GAC target was verified as both glycine-

positive and GABA-negative (Figure 3.5, D-O).  CBabs 458 and 5543 form 

reciprocal synapses with multistratified GAC 7703.  Three examples are describe 

here. 

First, CBab2-5 5504 makes a reciprocal synapse with ON layer 

monostratified ON-OFF GAC 8035 (Figure 3.5 A; Figure 3.7 A, E).  The tight 

monostratification of GAC 8035 deep in lamina 5 of the ON IPL emphasizes the 

point that the OFF input to this ON-OFF cell could not arise from CBa1s or CBa2 

restricted to the traditional OFF IPL.  Unfortunately, the soma for GAC 8035 did 

not cross a section in the volume with a glycine label, so the glycine signature 
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obtained for this cell was obtained from its ON layer process with a small 

diameter and therefore less reliable. 

Second, CBab 2-4 6046 forms a reciprocal synapse with ON layer 3-4 

monostratified ON-OFF GAC 7134 (Figure 3.5 B; Figure 3.7 H).  GAC 7134 is a 

distinct class of narrow-field GAC from GAC 8035, as evidenced by the smaller 

arbor and dense branching pattern.  Thus, at least two classes of ON layer 

monostratified GACs are synaptically targeted by CBabs. 

Third, multistratified ON-OFF GAC 7703 forms reciprocal synapses with 

CBab2-6 458 and CBab2-6 5543 (Figure 3.5 C; Figure 3.6 J; Figure 3.7 C, J-L).  

Of note is the fact that neither CBab forms synapses with GAC 7703 in the OFF 

layer.  Rather, they only synaptically connect in the ON IPL.  CBab 458 and GAC 

7703 processes contact each other repeatedly throughout both the OFF and ON 

laminae and form several synapses in both layers.  The synapse highlighted here 

is the deepest between the two cells, and resides in the ON IPL. 

 

CBab-Driven Within- and Crosschannel Inhibition Motifs 

Amacrine cells targeted by CBabs mediate feedback and feedforward, 

within- and crosschannel inhibition motifs consistent with the electrophysiological 

literature yet achieved via unpredicted architectures, including synaptic contacts 

in the ON IPL.  They construct ON-OFF amacrine cells, create within channel 

(OFF>OFF) feedback and feedforward motifs, and create crosschannel 

(OFF>ON and ON>OFF) feedback and feedforward motifs.  Often, they achieve 
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these motifs by breaking the canonical stratification rules to gain access to 

monostratified amacrine cells.  Detailed descriptions of specific motifs follow. 

 

γAC-Mediated Within- and Crosschannel Feedback  

Inhibition Motifs 

First, multistratified ON-OFF γAC 115 forms reciprocal synapses with 

CBab2-5 3928, CBab2-5 458, and CBab2-4 359 (Figure 3.6 A, E-G) between ON 

sublayers 3-5.  This constitutes a CBab within-channel inhibition motif.  γAC 115 

also receives ribbon drive from CBb5 5608 (Figure 3.6 A, D), thus forming a CBb 

>i ON-OFF γAC ≥  CBab  crosschannel  inhibition  motif. 

Second, monostratified γAC 5453 makes reciprocal synapses with CBb6 

6129 and CBab-2-5 5543 (Figure 3.6 B, H-K).  This creates a bidirectional CBb ≤  

>i ON-OFF γAC i< ≥   CBab   crosschannel   inhibition   motif.      Since   γAC 5453 

monostratified in ON sublaminae 5-6, it is inaccessible to other CBas.  Only 

CBabs have the possibility of synaptic contact. 

Finally, CBab 6046 and CBab 5538 drive wide-field ON-OFF γAC 16073 

with ribbon synapses (Fig 3.7 C, L-M).  γAC 16073 is further presynaptic to CBb3 

909, CBb5 1021, and CBb5 307, and postsynaptic to CBb5 307 (data not shown 

due to steric limitations and for clarity of 3D rendering).  The combination of ON 

and OFF ribbon inputs classify γAC 16073 as an ON-OFF cell that constructs 

CBab >i ON-OFF γAC ≥ CBb crosschannel inhibition motifs.  It is further 

interesting that γAC 16073 diverges its output to at least two distinct classes of 

CBb, CBb3 and CBb5, respectively. 
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GAC-Mediated Within- and Crosschannel Feedback  

Inhibition Motifs 

First, ON layer monostratified ON-OFF GAC 8035 makes a reciprocal 

synapse with CBab2-5 5504 in IPL sublamina 5 (Figure 3.7 A, E).  CBb5 6118 

also provides a ribbon input in lamina 5, thus GAC 8035 is an ON-OFF GAC 

which constructs a CBb >i ON-OFF GAC ≥ CBab crosschannel feedback motif.   

Second, ON layer monostratified ON-OFF GAC 7134 forms reciprocal 

synapses with CBb4 5501 and CBab 6046; thus, it is an ON layer monostratified 

ON-OFF GAC (Figure 3.7 B, H-I).  Due to the reciprocal synapses, GAC 7134 

mediates a bidirectional CBab ≤  >i ON-OFF γAC i< ≥  CBb  crosschannel  feedback  

inhibition motif. 

Third, narrow-field GAC 7703 makes reciprocal synaptic contacts with 

CBab 458, CBab 5543, CBb 440, and CBb 6129 (Figure 3.6 J; Figure 3.7 C, J-

O).  CBb 440 is gap junctionally coupled to CBb 431.  This constitutes both 

within- and crosschannel feedback motifs.  Importantly, despite the 

multistratification of GAC 7703, the synapses between the CBabs and the GAC 

occur in IPL strata 5 rather than in the OFF IPL.  Furthermore, ON layer 

monostratified YAC 5453 constructs parallel within and crosschannel inhibition 

motifs via reciprocal synapses between CBab 5543 and CBb 6129.  Note that the 

CBab could not access the monostratified YAC were it not multistratified deep 

into canonical ON territory.  Finally, it is interesting that CBb6 440 participates in 

a chain of twenty-four coupled CBbs (data not shown).  This chain spans all CBb 

classes, which are coupled in a tiered fashion across the RC1 volume.  This 
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could spread the otherwise narrow-field ON-OFF inhibition from GAC 7703 to a 

larger patch of retina to extend its functional range. 

 

γAC-Mediated Within- and Crosschannel Feedforward  

Inhibition Motifs 

In addition to the CBab ribbon input described above, monostratified ON-

OFF wide-field γAC 16073 forms conventional synapses onto multistratified ON-

OFF ganglion cell 8575 and bsdGC 15796 (Figure 3.6 C, N-O).  Thus, γAC 

16073 forms a divergent feedforward ON-OFF inhibition motif to two classes of 

ganglion cell.  This means that γAC 16073 could provide parallel copies of its 

ON-OFF inhibition to two classes of ganglion cell. 

 

GAC-Mediated Within- and Crosschannel Feedforward  

Inhibition Motifs 

ON-OFF GAC 7703 described in the within- and crosschannel inhibitory 

feedback motifs above also feeds forward to ON-OFF ganglion cell 8575 (Figure 

3.7 D, P).  Thus GAC 7703 is capable of integrating convergent differential cone 

bipolar cell drive from multiple classes of bipolar cell, and distributing this 

complex ON-OFF inhibition to ON-OFF ganglion cells.  The two GAC-mediated 

feedforward motifs above demonstrate narrow-field ON-OFF inhibition distributed 

to ON and ON-OFF ganglion cells. 
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CBabs Provide Direct Ganglion Cell Drive in the ON IPL 

         CBabs directly drive at least one class of ganglion cell in the nominal ON 

IPL. For instance, CBab2-5 5543 and CBab2-5 5543 each form ribbon synapses 

onto multistratified ON-OFF ganglion cell 8575 in IPL sublayer 5 (Figure 3.8 A-C, 

F).  Furthermore, CBab 5543 and CBab 458 drive narrow-field feedforward 

inhibition to ganglion cell 8575 via GAC 7703, shown above.  This demonstrates 

that individual CBabs, not simply members of the same class, both excitatorily 

drive targets and regulate the postsynaptic membrane of the same targets via 

feedforward inhibition motifs in the ON IPL.  Finally, It is interesting that ganglion 

cell 8575 multistratifies across the canonical OFF and ON IPL, but receives OFF 

input in the ON layers.  This is addressed in the discussion section. 

 

Convergent and Divergent Feedforward Inhibition  

to Ganglion Cells 

By isolating points of synaptic interconnectivity, we can concatenate 

subnetworks into larger networks.  Interestingly, the CBab-driven narrow-field 

GAC and wide-field γAC described in feedback inhibition motifs above converge 

synapses onto multistratified ON-OFF ganglion cell 8575 (Figure 3.7 P; Figure 

3.6 N; Figure 3.8 A, F).  Additionally, γAC 16073 diverges its output across ON-

OFF ganglion cell 8575 and bsdGC (ON) 15796 (Figure 3.6 N-O; Figure 3.8 A, 

F).  This combination of narrow-field GAC-mediated inhibition and wide-field γAC 

-mediated inhibition illustrates the complexity of the feedforward inhibition 

controlling individual ganglion cell postsynaptic membrane potential, and 
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illustrates that individual γACs diverge their inhibitory outputs to multiple classes 

of ganglion cell.  Thus, CBabs provide OFF excitatory drive in the ON IPL to 

amacrine cells that inject ON-OFF inhibition to multiple classes of ganglion cell.   

 

CBab-Driven Nested Feedback Inhibition 

In addition to the simple feedback inhibition motifs described above, 

CBab-driven GACs and γACs construct nested feedback inhibition motifs.  In the 

context of the IPL, biologically nested feedback manifests as excitatory drive 

from one bipolar cell to two amacrine cell targets, A1 and A2.  A1 and/or A2 

provide direct simple feedback inhibition to the bipolar cell, and A1 or A2 also 

provides inhibition to the other amacrine cell.  This is exactly the motif we find.  

Specifically,  both CBabs and CBbs provide direct ribbon synapses to GAC 7703, 

γAC 5453, and γAC  115 (Figure 3.8 F).  All three amacrine cells form reciprocal 

conventional synapses onto the bipolar cells presynaptic to them.  Additionally, 

GAC 7703 forms conventional syanpses onto both γAC 5453 and γAC 115 

(Figure 3.8 D-F), thus completing parallel nested feedback motifs.  

 

Discussion 

The routine appearance of mixed signaling strata combined with precise 

source-target synaptic pairings, regardless of lamination, suggests that rules of 

proper connectivity override stratification of plexiform layers. The discovery of 

diffusely-stratified OFF cone bipolar cells in the ON IPL extends new 

organizational concepts regarding neural architectures underlying ON and OFF 
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signaling, thereby generating a refactoring of the IPL. We here review key 

signaling features of specific CBab motifs, the joint incidence of source-target 

processes, the erosion of our classical notion of segregated  ON-OFF processing 

streams in the IPL, and discuss the functional implications.  Bipolar cell 

nomenclatures differ across species and we will now be discussing several; we 

periodically depart from the McNeil et al. (2004) rabbit scheme for the discussion 

and simply refer to cone bipolar cells as ON cone bipolar cells and OFF cone 

bipolar cells.  We often describe CBabs more generally as diffusely-stratified 

OFF cone bipolar cells. 

Throughout vertebrate evolution, every nonmammalian class possessed 

multistratified ON and OFF bipolar cells (Kolb, 1982; Pang et al., 2004; Ramon y 

Cajal, 1892; Scholes, 1975; Scholes and Morris, 1973; Sherry and Yazulla, 1993; 

Wong and Dowling, 2005).  The ON and OFF layers were never completely 

segregated, but the overt branching patterns of ON and OFF cone bipolar cells in 

polarity-opposite strata became subdued for reasons unknown. Now, the recent 

discovery of routine ON cone bipolar cell axonal synapses in the OFF IPL 

(Lauritzen et al., 2013) combined with dsOFF CBC synaptic communication in 

the ON IPL explicate the importance of mixed strata.  However, more concretely, 

functional mixing reflects important network access properties. CBab ribbons in 

the proximal 60% of the IPL provide OFF inputs to ON-OFF ganglion cells and 

unique ON layer monostratified amacrine cells, facilitating ON-OFF crosstalk.  

Ultimately, there is no unique proximal ON stratum in the IPL.  Indeed, all but the 

most proximal 20% of the ON IPL is a stack of mixed ON-OFF strata with CBab 
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synaptic contacts distributed throughout (Figure 3.9). We propose that OFF 

signals in the ON layer provide unique network opportunities for crossover 

signaling and loci for mixing OFF excitation with polarity-matched ON inhibition.  

Not all CBas invade the ON territory.  Source-target neurite analyses for 

CBabs and other synaptic pairings suggests that the retina routinely invokes 

partial motifs.  The concept of joint distributions of source-target incidence 

described in detail by (Lauritzen et al., 2013) provides a geometric proof that 

cells with different space filling properties (e.g., dense/overlapping arbors versus 

sparse/tiled arbors) will not always yield smooth statistics.  Simply stated, the 

important statistics describe target sampling from a given potential supply of 

sources. It is not possible to optimize a complex biological system to provide 

100% source contacts for all cells, given that the copy numbers for each class 

(i.e., each ultimate cell class, Marc and Jones (2002)) varies, as do their 

coverages and Hausdorff dimensions. Therefore, the only metric that matters is 

the efficiency of target sampling. This is critical for understanding connectivity 

between cells with different space filling and coverage properties, such as bipolar 

cells, amacrine cells, and ganglion cells. Their target sampling is perfect. Not all 

axons are hit because there is an oversupply of sources. The target does not 

“know”   that   there   are   excess   source   axons   since   they   are   not   needed.   Thus, 

participation of a subset of OFF cone bipolar cell synapses in ON territory 

represents the synaptic requirement of targets cells, not the sources. It does not 

reflect imprecision. The key descriptor for such networks is the joint density 
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distribution of source and target, expressed as a metric of signal transfer sites 

per unit area or volume of neural space. 

 

Source-Target Pairings Regardless of Lamination 

           Why would a multistratified ON-OFF ganglion with processes in the OFF 

IPL need to collect OFF input in the ON layers?  We do not completely 

understand, but we believe it is likely a matter of contact incidence between 

correct synaptic partners (i.e., correct partners will form synapses anywhere they 

contact, regardless of stratification).   

It is worth note that despite the multistratification of γAC 115 in both the 

OFF and ON laminae, it only intersects with the three CBabs in the ON laminae 

where it forms the synaptic contacts.  It is, however, presynaptic to two other 

CBabs in the nominal OFF IPL.  Taken together with the OFF layer CBa2 

synaptic communication, this suggests that this γAC will form synapses with OFF 

bipolar cells anywhwere it contacts them regardless of lamination. 

 

CBabs Constitute a New Morphological Bipolar Cell Class 

CBabs clearly adopt multistratified territories, that cross the canonical IPL 

ON-OFF boundary.  Given the decades of literature supporting structure-function 

relationships, it is justifiable to expect that this subset of OFF cone bipolar cells 

possesses unique physiological response properties. Whether or not other 

mammalian retinas contain a similar class remains to be seen.  Unique markers 

for this cell class could help distinguish this, but ultimately, comparative 
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neuroanatomy should be perfomed as connectome volumes for additional 

species are created.  The first retinal connectome in mouse is currently being 

assembled which will allow us to directly recapitulate and extend findings 

discovered with light microscopy in genetically engineered mice.   

It is clear that these OFF cone bipolar cells can access monostratified 

amacrine cells in the canonical ON IPL that are inaccessible by the OFF cone 

bipolar cell classes.  The motifs reported in this manuscript demonstrate 

repeatedly that multistratified OFF cone bipolar cells can facilitate ON-OFF 

crosstalk by contacting monostratified amacrine cells, though multistratified 

amacrine cells are synaptically engaged in this process as well.  This yields a 

new host of possible network architectures that mediate ON-OFF crosstalk that 

are not currently considered when interpreting physiological data. 

 

CBabs May Be Identical to CBa1-2ns 

It is likely that many of these CBabs are the same as the CBa1-2n cells 

identified by MacNeil et al. (2004a), which are illustrated with arbors as proximal 

as lamina 3.  The processes that extend more proximally into laminae 4-5 may 

have been missed due to the lower resolution of light microscopy.  The degree of 

axonal arbor diffusion should correlate with response property complexity.  

Regardless of incomplete annotations of CBas (i.e., fine processes may have 

been missed, 10 cells not fully classified), the transition from lamina 2 to lamina 3 

is clearly distinguishable (Figure 3.1; Figure 3.2) via CBa2 and CBb3 arbors.  

CBa2 telodendria end and CBb3 telodendria begin at the canonical ON-OFF 
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boundary (40% IPL depth).  Also, total IPL thickness is measurable by plotting 

nearest neighbor CBa1s-CBb6s and ro bipolar cells in any given region for 

calibration.  Due to partial annotation, our estimate of CBab/CBb comingling is 

necessarily and underestimate.  This motif is more prevalent than we report here. 

 

Parallel Glycinergic and GABAergic Inhibition 

The repeated finding of parallel GAC- and γAC-mediated inhibition (Figure 

3.6, 3.7, 3.8) indicates not only redundancy in the system, it suggests a design 

that capitalizes on the differential kinetics of GABAA, GABAC, and glycine 

receptors.  Synaptic targets that receive presynaptic input from both GACs and 

γACs, and also possess receptors for both of these neurotransmitters could 

create more complex response properties in their postsynaptic membrane 

potentials than cells with responses mediated exclusively by one of these 

neurotransmitter/receptor combinations.  This could mediate more faithful 

representations of the photic input in the retinal sector stimulated, increase the 

range of stimuli capable of affecting the postsynaptic cell, or control selective 

filtering of the photic signals passed to ganglion cells and deeper into the central 

visual pathways.  

 

CBab-Driven Convergent and Divergent, Simple and Nested,  

Feedback and Feedforward Inhibition Motifs 

Cases of synaptic convergence involving multiple classes of presynaptic 

cells (Figure 3.6, 3.7, 3.8) indicate the combining of multiple parallel pathways 
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into one postsynaptic membrane potential. Given that every tested class of 

retinal cell identified based on unique morphology has proven to possess unique 

physiological responses (Masland, 2001b), we can derive some basic functional 

implications from the network motifs discovered in RC1.  For instance, when 

multiple classes of cell converge synaptic input to a common target, this 

presumably constructs a postsynaptic cell with more complex response 

properties than a cell that receives convergent drive from cells of the same class.  

Conversely, divergent output from one cell class to multiple postsynaptic targets 

establishes parallel processing streams.  When the postsynaptic cells are of the 

same class, this creates parallel pathways carrying the same signal.  When the 

postsynaptic cells are of more than one class, then presumably they extract 

different components of the presynaptic input, such as transient versus 

sustained, depending on which receptor types they express on the postsynaptic 

membrane immediately opposite the presynaptic input (Awatramani and 

Slaughter, 2000; Devries, 2000; Freed, 2000; Masland, 2001a).   

Analysis of RC1 reveals CBab-driven networks that scaffold ON-OFF 

cross inhibitory processes via feedback and feedforward motifs.  Alternating 

synaptic chains of GACs and γACs arranged in nested feedback motifs emerge.  

Long chains of amacrine-amacrine synapses were previously discovered in RC1 

(Anderson et al., 2011a), but the precise network motifs remained to be 

discovered, and modeling has shown that nested feedback can improve the fine-

tuning of bipolar cell presynaptic frequency-response characteristics (Marc and 

Liu, 2000).  Here, we take the analysis one step forward by identifying specific 
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functional (crossover) motifs constructed by GACs and γACs involved in 

refinement of the input signal ultimately passed to ON-OFF ganglion cells.  The 

narrow-field and wide-field components of the GAC and γAC feedback may 

represent spatially fine-grain and course-grain tuning of the ganglion cell input.  

As other local networks constructed, these data can help parse out the source of 

unique ganglion cell response properties. 

 

CBabs Are Routine Network Elements Throughout the  

Canonical ON IPL 

CBabs synapse with amacrine cells throughout IPL sublaminae 3-5, 

emphasizing their routinity and potential impact on all ON cone bipolar cell 

classes.  The dominant CBab theme is construction of ON-OFF amacrine cells in 

the ON IPL that are inaccessible to other OFF cone bipolar cells.  The excitatory 

motifs provide direct ribbon drive to at least one class of ganglion cell.  The 

inhibitory motifs comprise both feedback and feedforward as they target GACs 

and γACs, which in turn form synapses onto CBas, CBbs, and at least two 

classes of ganglion cell.  It seems that by breaking the classical stratification 

rules of the IPL the CBabs facilitate specific ON-OFF subnetworks that could not 

otherwise be constructed.  These unpredicted network topologies can facilitate 

interpretation of electrophysiological results, and introduce testable hypotheses 

for future inquiry.  
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Refactoring the IPL Functional Strata 

 Lauritzen et al. (2013) indicated mixed ON-OFF processing in the distal 

40% of the rabbit IPL.  The data presented here extend mixed ON-OFF strata 

proximally into the IPL by another 40% from the canonical ON-OFF boundary, 

creating mixed ON-OFF strata in the distal 80% of the IPL, consistent with BC 

stratification patterns in nonmammalians.  The same ON-OFF CBC excitatory 

drive is partitioned into GAC and γAC-mediated parallel channels that target the 

same ganglion cells, which presumably defines the transiency and sustainability 

of the response properties of the ganglion cell targets.  γAC -mediated ON-OFF 

inhibition is distributed to multiple classes of ganglion cell (ON-OFF and ON 

(bsdGCs)), distributing common signals to differentially specialized targets.  The 

establishment of bipolar cell axonal arbors in polarity opposite territory increases 

the potential source-target combinations, and may be necessary for efficient 

sampling of presynaptic signals by ganglion cells in order to develop correct 

response properties. Collectively, these results erode current concepts of 

segmented ON-OFF processing in the IPL strata, with promise to improve 

interpretation of electrophysiological results.  Future analyses will focus on 

mapping the complete input cohort for specific classes of amacrine and ganglion 

cells to more accurately account for their physiological response properties.  

Ultimately, connectomics on multiple volumes is needed to conduct comparative 

neuroanatomy across species and better understand the corrupt networks of 

pathological states. 
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Figure 3.1. CBabs exit the OFF IPL.  A. Vertically oriented renderings of 35 
CBabs (bright green) with telodendria in the ON IPL plotted against 32 CBas 
(cool colors). Cone bipolar cell color corresponds to depth of IPL stratification as 
follows:  CBa1, sage; CBa2, green; CBab, bright green.  B. Same cells as in A, 
except all CBa1s and CBa2s are collapsed to mustard color to enhance contrast 
against CBabs. C. Zoom in of the division between CBa1 and CBa2 depth versus 
CBab depth.  CBab processes can be clearly seen to extend more proximally into 
the IPL than their CBa1 and CBa2 cohorts.  Scale bar (A-B), 25 µm. Scale bar 
(C), 5 µm. 
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Figure 3.2. CBabs enter the ON IPL. A. Vertically oriented renderings of 35 
CBabs (bright green) with telodendria in the ON IPL plotted against 71 CBbs 
(neutral and warm colors). Cone bipolar cell color corresponds to depth of IPL 
stratification as follows: CBab, bright green; CBb3, tan; CBb3-4, dark mustard; 
CBb4,  silver; CBb5, mustard; CBb6, bright red; wide-field cone bipolar cell, deep 
red. B. Same cells as in A, except all CBbs are collapsed to copper color to 
enhance contrast against CBabs. The upper (distal) edge of CBb telodendria 
demarcates the canonical OFF-ON division of the IPL. C. Zoom in of the CBab 
versus CBb telodendria for clarity of CBab depth.  CBab processes can be 
clearly seen to comingle with CBb arbors in the ON IPL.  Scale bar (A-B), 25 µm. 
Scale bar (C), 5 µm. 
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Figure 3.3. CBabs costratify with nearest neighbor ON CBCs.  A-C. Vertically 
oriented renderings of 3 CBabs against their nearest neighbor CBbs. Cone 
bipolar cell color corresponds to depth of IPL stratification as follows: CBab, 
bright green; CBb3, tan; CBb3-4, dark mustard; CBb4,  silver; CBb5, mustard; 
CBb5w, copper; CBb6, deep red (B) for contrast against CBb5ws, & brown (C). 
D-E,H-I,L-M.  Glycine-negative molecular signatures and corresponding TEM of 
CBab somas, for CBabs shown in A-C. F,J,N. Chemical synapses between AII 
ACs and CBabs shown in A-C. G,K,O. TEM of CBab processes and CBb 
processes with forming synapses in the same IPL plane of section.  Sections 
thickness, 70nm. A.  CBab2-4 181 costratifies with CBb4 arbors, and marginally 
with the distal portion of CBb5 arbors.  B. CBab2-5 458 costratifies with CBb5w 
arbors, and marginally with the distal portion of CBb6 arbors. C. CBab2-5 5543 
costratifies with the distal portion of CBb6 arbors.  Zoom in of the CBab versus 
CBb telodendria for clarity of CBab depth.  CBab processes can be clearly seen 
to comingle with CBb arbors in the ON IPL. White arrows indicate synapse 
directionality. r, ribbons. Scale bars (A-C), 10 µm. Scale bars (D-E, H-I, L-M), 5 
µm. Scale bars (F,J,N), 0.5 µm. Scale bars (G), 0.5 µm.  Scale bars (J), 1 µm. 
Scale bars (N), 2.5 µm.    
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Figure 3.4. CBabs target γACs in the ON IPL.  A-C. Vertically oriented renderings 
of CBabs targeting both mono- and multistratified γACs in the ON IPL. Circles, 
locations of synapses between CBabs and γAC s. Arrows, locations from which 
GABA and glycine signatures were obtained for D-O. D-E,H-I,L-M. GABA-
positive signatures and corresponding TEM of somas or processes for γACs 
shown in A-C. F-G,J-K,N-O. Glycine-negative signatures and corresponding 
TEM of somas or processes for γACs shown in A-C. G. γAC 115 displays 
moderate glycine levels. Scale bars (A-C), 10 µm. Scale bars (D-K), 5 µm. Scale 
bars (L-O), 1 µm. 
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Figure 3.5. CBabs target GACs in the ON IPL.  A-C. Vertically oriented 
renderings of CBabs targeting both mono- and multistratified GACs in the ON 
IPL. Circles, locations of synapses between CBabs and GACs. Arrows, locations 
from which GABA and glycine signatures were obtained for D-O. D-E,H-I,L-M. 
Glycine-positive signatures and corresponding TEM of somas or processes for 
GACs shown in A-C. F-G,J-K,N-O. GABA-negative signatures and 
corresponding TEM of somas or processes for GACs shown in A-C. Scale bars 
(A-C), 10 µm. Scale bars (D-K, N-O), 5 µm. Scale bars (L-M), 1 µm.  
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Figure 3.6. CBab-driven γACs mediate inhibition in the ON IPL. A-C. Vertically 
oriented renderings of CBabs targeting both mono- and multistratified γACs in the 
ON IPL. Circles, locations of synapses shown in D-O. D-O. TEM of synapses 
indicated by circles in A-C. D-G. γAC 115 shown in A (silver) is postsynaptic to a 
ribbon from CBb5 5608 (D), and possesses reciprocal synapse with CBabs 3928, 
458, and 359 (E,F,G, respectively). H-K. γAC 5453 shown in B (silver) possesses 
reciprocal synapses with CBb6 6129 and CBab 5543 (H-I, J-K, respectively). L-
O. γAC 16073 shown in C (silver) receives ribbon synapses from CBab 5538 (L) 
and CBab 6046 (M), and forms conventional synapses with ON-OFF GC 8575 
(N) and bsdGC (O). Abbreviations. GC, ganglion cell; bsdGC, bistratified diving 
ganglion cell. White arrows indicate synapse directionality. r, ribbons. Scale bars 
(A-C), 10 µm. Scale bars (D-K), 5 µm. Scale bars (L-O), 1 µm. 
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Figure 3.7. CBab-driven GACs mediate inhibition in the ON IPL.  A-C. Vertically 
oriented renderings of CBabs targeting both mono- and multistratified GACs in 
the ON IPL. Circles, locations of synapses shown in E-P. E-P. TEM of synapses 
indicated by circles in A-C. E-G. GAC 8035 shown in A (patina) forms reciprocal 
synapses with CBab 5504 (E) and CBb5 6118 (F-G). H-I. GAC 7134 shown in B 
(patina) forms reciprocal synapses with CBab 6046 (H) and CBb4 5501 (I). J-O. 
GAC 7703 shown in C (patina) forms reciprocal synapses with CBab 5543 (J; 
Fig. 3.6 J-K), CBab 458 (K-L), CBb6 440 (M-N), and CBb6 6129 (O). P. GAC 
7703 forms a conventional synapse onto ON-OFF GC 8575. Abbreviations. GC, 
ganglion cell. White arrows indicate synapse directionality. r, ribbons. Scale bars 
(A-C), 10 µm. Scale bars (D-O), 5 µm. 
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Figure 3.8. CBab-driven ON-OFF crossover inhibition.  A. Horizontally-oriented 
rendering of nested CBab-driven feedback and feedforward subnetworks 
concatenated to form a larger network. Circles, locations of synapses shown in 
B-E. B-E. TEM of synapses indicated by circles in A. CBab 5543 and CBab 458 
converge ribbon synapses onto ON-OFF GC 8575 (B,C,respectively). GAC 7703 
forms conventional synapses onto γAC 5453 (D) and γAC 115 (E). White arrows 
indicate synapse directionality. r, ribbons. F. Wiring diagram for the rendering 
shown in A. CBab 5543 (B) and CBab 458 (C) directly drive ON-OFF GC 8575 
and GAC 7703. GAC 7703, γAC 5453, and γAC 115 each provides simple 
feedback inhibition to the CBabs and CBbs that directly drive them with ribbon 
synapses. GAC 7703 further mediates nested feedback inhibition to CBab 5543 
and CBab 458 via γAC 5453 (D) and γAC 115 (E). GAC 7703 also provides 
feedforward inhibition to ON-OFF GC 8575 (Fig. 3.7 P), which receives 
convergent γAC-mediated feedforward inhibition from γAC 16073, also driven by 
CBabs.  γAC 16073 diverges CBab-driven feedforward inhibition ON-OFF GC 
8575 (Fig. 3.6 N) and bsdGC 15796 (Fig. 3.6 O). Vertices. Green ellipses, CBab; 
cyan ellipses, CBb; brown ellipses, ganglion cell; red triangle, γAC; green 
inverted triangle, GAC. Edges. Green arrows, excitatory ribbon synapses; red 
flathead arrows, inhibitory conventional synapses. Abbreviations. GC, ganglion 
cell; bsdGC, bistratified diving ganglion cell. Scale bars (A), 50 µm. Scale bars 
(B-E), 0.5 µm. 
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Figure 3.9. The ON and OFF IPL are not discretely organized.  A. The canonical 
division of ON and OFF IPL laminae.  A dividing line is standardly drawn at 40% 
IPL depth, demarkating the OFF (most distal 40%) from the ON (most proximal 
60%) IPL layers. CBas are thought to constrain their axonal arbors to the OFF 
layer, while CBbs constrain their axonal arbors to the ON layer. Spatial 
relationships are conserved. B. Renderings of the 15 distinct morphological 
classes of BC discovered thus far in RC1.  These recapitulate the 13 classes 
describe by MacNeil et al. (2004a), and add two new classes, CBab and CBb6. 
Inside the circle on the left side of the panel, a CBb6 (brown) and CBab (bright 
green) are seen breaching the canonical ON-OFF boundary by branching and 
forming synapses in polarity-opposite territory. C. Since both CBbs and CBabs 
form functional synapse in polarity-opposite territory, mediating ON-OFF 
crosstalk, we refactor the distal 80% of the functional IPL as mixed ON-OFF 
strata.  
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Abstract 

Crossover suppression between mammalian rod and cone pathways has 

been demonstrated psychophysically for many decades, but its supporting 

synaptic architecture has remained cryptic. Connectomics analysis of the rabbit 

retina reveals eight primary rod-cone crossover motifs. Rod pathway suppression 

originates in all ON and OFF cone bipolar cells and targets rod bipolar cells via 

inhibitory amacrine cells. Wide-field GABAergic and narrow-field 

glycinergic amacrine cells effect spatially coarse and fine rod pathway 

suppression for both ON and OFF channels. Cone pathway suppression 

originates in rod bipolar cells and targets all classes of cone bipolar cells. Such 

crossover systems likely drive winner-take-all operations, analogous to brain 

decision networks, mediating fast switching between rods and cones, and 

maintaining bias for the winner network. 

 

Introduction 

Vertebrates experience two protracted mesopic periods daily (Fig. 4.1 A) 

during which rod and cone signaling events coexist (Buck, 2004; Stabell and 

Stabell, 1998, 2002). Many animals exploit this visual regime, but mammals 

navigate it with exceptional facility, differing from most other vertebrates by 

segregating rod and cone signal flow into separate bipolar cell (BC) channels 

(Fig. 4.1 B, C) and by inserting an additional amplification stage in the pathway 

(Dacheux and Raviola, 1986; Strettoi et al., 1990; Strettoi et al., 1992) collected 

by ganglion cells (GCs). This somehow permits rapid switching between rod and 
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cone vision under clouds, canopies or open skies, in caves or burrows. While the 

switch seems perceptually smooth, psychophysical dissection has long 

documented that it is accompanied by strong rod-cone crossover suppression 

(Buck, 2004) and complex chromatic interactions (Goldberg et al., 1983; Ingling 

et al., 1977; Stabell and Stabell, 1998, 2002; Thomas and Buck, 2006; Trezona, 

1970). No validated network models exist for crossover suppression. 

 Visualizing individual functional network motifs is virtually impossible with 

conventional methods due to the large spatial scales and complex topologies of 

real networks (Marc et al., 2012). The difficulty is greater with crossover networks 

as they transfer signals between different subnetworks that can be widely spaced 

and sparsely connected. Indeed, inhibitory crossover networks between rod and 

cone channels have never been documented despite decades of electron 

microscopy. Visualizing retinal crossover networks (Werblin, 2010; Molnar et al., 

2009) requires large-scale 3D connectomics tracing at synaptic resolution 

(Anderson et al., 2009; Anderson et al., 2011b; Briggman and Denk, 2006; 

Briggman et al., 2011; Bock et al., 2011). Connectomics provides tools to parse 

networks by tracing cellular partners over many synaptic transfers (Marc et al., 

2012). We searched for rod-cone pathway interactions by starting at individual 

rod BC axon terminals and tracing their networks outward across wide fields of 

the inner plexiform layer in rabbit retinal connectome RC1, a 0.25 mm diameter 

cylinder of the inner retina built at 2 nm resolution (Anderson et al., 2011). All 

cells in this paper are indexed in volume RC1 to their location maps, network 

associations, and shapes and all resources are publicly accessible. We 
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performed wide analysis (querying many copies of a cell class for shared 

features) on 104 adjacent rod BCs (Fig. 4.2 A), and deep analysis (mapping all 

connections of a cell) on a central patch of 5 rod BCs to define their 

connectivities with amacrine cells (ACs).  All cells were classified within 

independent molecular, shape, and network feature spaces as detailed in the 

methods (20) and previous publications (Anderson et al., 2011a; Lauritzen et al., 

2013). Specifically, we   traced   GABAergic   ACs   (γACs)   and   glycinergic   ACs  

(GACs) that form directed cone BC to rod BC networks (Fig. 4.2, 4.3) and 

directed rod BC to cone BC networks (Fig. 4.4).  

 

Methods 

The Connectome Volume RC1 

RC1 is an open-source, open-access ultrastructural data volume. The 

acquisition, construction, navigation, analysis, and access procedures for RC1 

are detailed in previous papers (Anderson et al., 2011b; Anderson et al., 2011a; 

Anderson et al., 2009; Lauritzen et al., 2013; Tasdizen et al., 2010). In brief, 

volume was built from mid-ventral retina of a light-adapted female Dutch Belted 

rabbit (Oregon Rabbitry, OR), with in vivo excitation mapping using 1-amino-4-

guanidobutane (AGB) and fixation for automated transmission electron 

microscope (TEM) imaging as described in Anderson et al. (2011a). All 

procedures are in accord with Institutional Animal Care and Use protocols of the 

University of Utah, the ARVO Statement for the Use of Animals in Ophthalmic 

and Visual Research, and the Policies on the Use of Animals and Humans in 
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Neuroscience Research of the Society for Neuroscience. The physical volume 

itself is a collection of 370 data sections (341 ATEM sections with 29 intercalated 

optical   molecular   sections,   all   at   ≈70   nm),   imaged   at   a   resolution   of   2.18 

nm/pixel, producing a collection of over 350,000 images with synaptic / gap 

junction resolving capacity. The computational assembly of the image slices has 

been previously published (Tasdizen et al., 2010), as has a detailed description 

of the server / client architecture of Viking, our open-source navigation and 

annotation tool (Anderson et al., 2011b). Tracing has been carried out by a team 

of trained annotators (see Acknowledgements). 

 

Mining Cells 

RC1 contains > 600 annotated neuronal cell bodies. A few hundred cells 

have been fully traced: mostly bipolar cells (BCs), AI and AII amacrine cells 

(ACs), and some ganglion cells (GCs). RC1 currently contains >600,000 

individual   annotations   and   ≈10,000   individual   processes   have   been   classified.  

Candidate rod-cone crossover networks in RC1 were visualized and annotated 

with the Viking viewer by starting at every one of the 104 mapped 3D rod bipolar 

cells (BCs) in RC1 and tracing outwards from individual amacrine cell (AC) 

synapses on the rod BC axon and axon terminal, to determine the synaptic 

identity of the process (e.g., exclusively rod BC or cone BC-driven) and explored 

via 3D rendering and graph visualization of connectivity (Anderson et al., 2011b). 

Each cell referenced in this manuscript possesses a unique index number that 

can be entered into one of six tools (Viking, Network Viz, Structure Viz, Statistics 
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Viz, Motifs Viz, and Vikingplot) to explore connectivity. In Viking, each index 

opens a dialogue containing all the structure locations (annotations) that make up 

a   cell’s shape and a list of all its child structure locations (synapses, gap 

junctions, adherens junctions). In Network and Motif Viz, the index accesses the 

associated network of the cell from immediately-connected (1 hop) up to 8 

synaptic hops distant. Individual connection tip links contain child structure 

indices for navigation in Viking. In Structure Viz, the index accesses a fast 3D 

skeleton of the cell with its various contacts denoted. Clicking on a contact loads 

its location into the system clipboard and direct navigation to the site is then 

made in Viking. Every image capture used in this manuscript is indexed and 

available as a Viking XML bookmark file that allows the user to navigate to the 

locations from which all images were acquired. Finally, Vikingplot is a MatLab® 

application (Natick, MA) that renders cell shapes in 3D using customizable 

lighting models. All renderings produced for this manuscript are available as *.tiff 

and native MatLab® scalable 3D *.fig files. These tools are described in more 

detail in Anderson et al. (2011a; 2011b) and their extensive application 

demonstrated in Lauritzen et al. (2013). 

 
 
Cell Classification 
 

Identification of each cell is based on independent domain classifiers: form 

(shape, stratification), network connectivity, molecular metrics (Anderson et al., 

2011a; Anderson et al., 2009; Lauritzen et al., 2013). RC1 contains both 

capstone and intercalated optical sections that provide small molecule signals for 
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cell classification: L-aspartate, 4-aminobutyrate, glycine, L-glutamate, L-

glutamine, taurine, and the activity marker 1-amino-4-guanidobutane (AGB). 

These molecular markers are detected with small molecule-specific antibodies 

provided by Signature Immunologics, Inc (Torrey, UT): product number B100 

anti-1-amino-4-guanidobutane IgG, D100 anti-L-aspartate IgG, E100 anti-

glutamate IgG, G100 anti-glycine IgG, Q100 anti-L-glutamine IgG, TT100 anti-

taurine IgG, YY100 anti-GABA IgG. Visualization uses archival silver 

immunogold methods (Marc et al., 1995). Detailed characterization of these IgGs 

is provided in Marc and Jones (2002), Anderson et al. (2011a), and Lauritzen et 

al. (2013). Using the molecular signature set alone, every neuron in RC1 can be 

classified without error as a horizontal cell, OFF cone BC, ON cone BC, rod BC, 

GAC, γAC, or GC.  More importantly, each molecular classifier uniquely maps 

onto the distinctive morphologies of each class of cells in 3D (including fine-scale 

stratification in the inner plexiform layer) and unique collections of network motifs 

accessed by each (Anderson et al., 2011a; Lauritzen et al., 2013). Rod BCs have 

a unique cluster of strong glutamate signals and weak photopic activity signals; 

axon terminals deep in the proximal inner plexiform layer; unique synaptic drive 

from both AI and AII ACs; lack gap junctions; and do not drive retinal ganglion 

cells (GCs). In contrast, all ON cone BCs (CBb cells) have a distinctive 

glutamate-glycine signature and varied activity signals according to class; 

arborize in several tiers of the proximal inner plexiform layer with much wider 

axonal fields than rod BCs; and engage in networks that exclude AI ACs and 

include GCs as targets; and are heavily coupled to AII ACs and other CBb cells. 
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OFF cone BCs (CBa cells) have high glutamate, glycine-free signatures; varied 

activity according to class, including the strongest light responses; arborize in 

several tiers of the distal inner plexiform layer with wide fields; engage in 

networks that exclude AI ACs and include GCs as targets; are presynaptic and 

postsynaptic to AII ACs; and are extensively coupled to other CBa cells. Similar 

distinctive feature spaces classify ACs and GCs in RC1 (Lauritzen et al., 2013).  

Finer discrimination of 17 distinct BCs was based on complete 3D 

reconstructions of over 200 CBb and CBa cells in RC1. The details of these 

methods and stratification analysis are available in Lauritzen et al. (2013). 

 
Image Preparation 
 
 Most display TEM images in this paper were produced from raw RC1 

screen captures or by remapping the TEM tile lookup tables tiles to gamma 1.3 

(Anderson et al., 2011a).  Optical and TEM overlays used the TEM greyscale 

brightness channel combined with the hue, and saturation from the optical image 

as described in Anderson et al. (2011a).   

 

Results 

We identified eight primary rod-cone crossover motifs (Table 4.1, Fig. 4.5). 

Every rod BC receives suppressive AC input from multiple cone BCs and every 

cone BC receives extensive AC suppression from surrounding rod BCs. Light 

absorbed by cones can thus inject antagonistic signals into rod BCs by five 

network motifs (C1-5), and light absorbed by rods can inject antagonistic signals 

into cone BCs by three network motifs (R1-3). These motifs converge on target 
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BCs with algebraic signal polarities of antagonistic surrounds: hyperpolarizing for 

ON and depolarizing for OFF BCs (Table 4.1). While the physiological profiles of 

different BC classes are far more complex than we describe here, we 

characterize the nominal gains (amplifications) of these motifs by their serial 

glutamatergic cationic (n), GABAergic or glycinergic anionic (p), and coupling (c) 

transfer  functions,  expressing  a  chain’s  gain  as  their  product  (npc).  For  example, 

the  cone  →  BC  →  AC  →  BC  signaling  chain  has  a  net  gain  of  n2p. We assume 

that most excitatory gains are > 1 (Copenhagen et al., 1990; Yang and Wu, 

2004) and that most inhibitory (Maltenfort et al., 1998; Wu, 1991) or coupling 

networks have gains < 1. 

 

Cone Pathway ON Motifs Suppressing Rod Pathways 

 ON cone BCs (CBb cells) inhibit rod BCs by two pathways using one-

stage inhibition. Motif C1 (Cone 1) is the most common cone ON pathway 

crossover network for suppressing rod BCs: wide-field  ON  γAC  processes  driven  

by and presynaptic to CBb cells (Fig. 4.2 B-D, 4.5 A) are also presynaptic but 

never postsynaptic to rod BC descending axons and axon terminals (Fig. 4.2 E), 

forming a cone-biased rod suppression network. Over 100 instances of motif C1 

have been mapped. Figure 4.2 C displays one of many possible minimum 

spanning subgraphs for motif C1: a subset of C1 motifs that delivers at least one 

suppressive synapse to every rod BC in the graph. In Fig. 4.2 C, some processes 

were traced completely across the volume, while others are intentionally 

displayed as fragments to show the minimum distance between a cone BC and 
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the nearest rod BC target for that process. The distance between a given CBb 

driver cell and its nearest target rod BC along a single wide-field  γAC  neurite  can  

be  as  small  as  10  μm  or  can  span  the  full  width  of  the  RC1  volume  (Fig.  4.2 B-D). 

As every rod BC receives 14-38 such synapses, the total C1 suppression path is 

dense.   Motif   C1   γACs   are   driven   by   ON   cone   BCs   (CBb   cells)   and   form  

widespread CBb feedback networks (Fig. 4.2 F, G). RC1 is 0.25 mm wide, and 

many wide-field  γAC  classes  have dendritic fields > 0.5 mm wide (MacNeil et al., 

1999). Though many wide-field ACs that target BCs in RC1 necessarily have 

somas outside the volume, most can be identified  as  γACs  since   they   traverse  

GABA labeled reference slices in RC1 (Anderson et al., 2011a). Every rod BC is 

thus embedded in a millimeter-scale GABAergic inhibitory field (Fig. 4.2 C, D; 4.5 

A). We have identified eight classes of CBb cells in rabbit (Lauritzen et al., 2013) 

and all drive motif C1. CBb cells also display extensive in-class and tiered cross-

class coupling (data not shown), permitting shared rod suppression across the 

spatial and temporal response domains of all CBb classes. Motif C1 processes 

are also nested, i.e., presynaptic to each other (data not shown). Given that 

wide-field  γACs  are  likely  spiking  neurons  with  large  receptive fields (Bloomfield, 

1992), nesting may temporally shape signaling. However, nesting is common 

among  γACs (Anderson et al., 2011a; Marc and Liu, 2000) and is not unique to 

rod-cone crossover. 

 Motif C2 uses narrow-field ON GACs, e.g., cell 178 in Fig. 4.2B, 

embedding   rod   BCs   in   a   small   field   (≈   0.1   mm)   of   CBb-initiated glycinergic 

inhibition. Motif C2 also inhibits AII ACs (data not shown). Notably, motif C2 
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roughly matches the sizes of peripheral cone-rod suppression domains seen in 

human psychophysics (Buck, 2004; Thomas and Buck, 2006), although short 

range C1 motifs are also abundant.   

 

Cone Pathway OFF Motifs Suppressing Rod Pathways 

OFF cone BCs (CBa cells) inhibit rod BCs by three pathways using two-

stage inhibition, largely initiating in wide-field CBa-driven  γACs  (Fig.  4.3; Fig. 4.5 

C-E). In motif C3, CBa cells   drive   a   nominal   OFF   γAC   inhibitory   field   whose  

synapses  target   the  somas  and  proximal  dendrites  of  a  bistratified  γAC  class   in  

the OFF layer (Fig. 4.3 A, B). This is the only synaptic drive this cell class 

receives: it receives no BC input. One instance   of   motif   C3   (γAC   5281)   is  

presynaptic to four rod BCs, three CBbs (Fig. 4.3 A, C), and several ACs and 

GCs   in   the   ON   layer.   These   bistratified   γACs   are   likely   ON   cells,   but   lack  

excitatory  inputs.  Some  γAC  classes  in  the  rabbit  retina  do  lack  AMPA  or  NMDA 

receptor-mediated drive, arborize in the distal OFF layer, and are candidates for 

motif C3 cells.  

 Motif C4 is a massive inhibitory path originating in CBa cells via OFF wide-

field  γACs  that   target   the  distal  dendrites  of  AI ACs (Fig. 4.3 A, D-F). All traced 

C4 motifs (n>20) are driven by CBa cells, and every class of CBa cells (we have 

tabulated 8 distinct classes) can initiate a C4 motif. We were also able to tabulate 

every synapse on AI AC 4943, showing that suppression synapses outnumber 

rod BC inputs   by   ≈10:1   in   the   RC1   volume.   Every   one   of   the   five   AI ACs we 

mapped receives > 100 inhibitory synapses on its proximal dendrites in a ring-like 
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cluster (Fig. 4.3 A) and this include the largest GABAergic inhibitory synapses 

ever found in the retina (Fig. 4.3 F)  with  diameters  reaching  2  μm.  High  synapse  

number and large postsynaptic area weighting may make the C4 pathway 

effective despite its lower gain of n2p2 (Table 4.1, Fig. 4.5 D). There is also a 

parallel  motif  C4a  via  the  CBa  →AII AC  →  OFF  γAC  →  AI AC chain (Fig. 4.5 D). 

Finally, motif C5 is the narrow-field glycinergic OFF layer paramorph of motif C2, 

originating with CBa drive and targeting AI ACs (Fig. 4.5 E). Thus, both fine-grain 

and coarse-grain suppression converges on AI ACs. 

 

Rod Pathway Motifs Suppressing Cone Pathways 

The flow of suppressive signals from rod BCs to cone BCs largely 

engages the well-known AII AC (Fig. 4.4 A) and, via directly connected CBb and 

CBa cells, accesses all classes of cone BC inhibitory pathways in high gain 

suppression chains. Motifs R1 and R2 use heterocellular AII AC :: CBb coupling 

(Fig. 4.4 B) and AII AC >i CBa (Fig. 4.4 C) glycinergic signaling, respectively, to 

access   cognate   cone   γAC   pathways   (Fig. 4.4 D, E). We have mapped >100 

processes mediating these motifs and while some are the same wide-field  γACs  

that mediate cone BC suppression of rod BCs, the majority are cone pathway 

feedback   γAC   processes   that   do   not   target   rod   BCs   at   all.   Cone   BC-specific 

narrow-field glycinergic ACs are also accessed by these motifs, but we have not 

yet fully traced them nor given them separate codes. These two motifs are 

powerful, with gains of n3 (Table 4.1, Fig. 4.5). Finally, motif R3 involves distinct 

CBb-dominated wide-field  feedback  γACs  that capture sparse ribbon inputs from 
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rod BCs (Fig. 4.2 F, G). Their processes span the entire RC1 volume and their 

fields likely reach 1 mm in diameter (data not shown). A single process can 

contact 15 cone BCs for each rod BC. If such wide-field feedback γACs  in  motif  

R3 are spiking interneurons (Bloomfield, 1992), a few rod BCs could suppress 

60-100 cone BCs over a square millimeter of retina. 

 

Discussion 

Physiological Implications of Rod-Cone Crossover Suppression 

The eight rod-cone crossover motifs could clearly mediate direct rod-cone 

crossover suppression. Other signal mixing architectures such as rod-cone 

coupling, low levels of rod-cone mixing at the BC level (Pang et al., 2010), and 

targeting of cones and rods to different horizontal cell compartments are known, 

but it is unclear how these could mediate rod-cone suppression. It is certain that 

additional crossover motifs will be identified: we have some instances of ON-OFF 

motifs that may be C1/C4 hybrids, as well as abundant cone BC-driven inhibition 

of AII cells. More complete definitions of these will require deeper tracing than we 

have been able to achieve, but are all consistent with extensive rod-cone 

crossover at every level of the inner plexiform layer. 

 Cone suppression of rod sensitivity is most effective with transient rather 

than steady stimuli (Ingling et al., 1977), consistent with the fast ionotropic 

attributes of AC-mediated inhibition (Eggers and Lukasiewicz, 2006a).  We 

propose that retinal rod-cone suppression motifs operate as archetypal GABAA 

receptor-mediated winner-take-all networks, similar to cortical sensory fields 
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(Kurt et al., 2008). If such networks did not exist, concurrent activation of rods 

and cones in complex scenes might elicit additive rather than opponent 

sensitivity envelopes. Such networks may be developmentally sensitive. For 

example, monocular form deprivation in juvenile macaques prevents maturation 

of photopic spectral sensitivity curves into a normal trichromatic opponent 

envelope (Sperling and Harwerth, 1971), instead producing a simple achromatic 

rod-dominated envelope even at photopic levels (Harwerth et al., 1990). Human 

amblyopia leads to a milder defect where red-green lateral inhibition in spectral 

sensitivity curves is attenuated (Harwerth and Levi, 1977).  As rods are evidently 

operational at photopic levels (Harwerth et al., 1990), rod-cone crossover 

suppression may be critical in stabilizing perception. Some crossover networks 

may serve hue and contrast tuning as well. Rabbits are photopic dichromats with 

short wave system 1 (SWS1) blue cones and long wave system (LWS) green 

cones; humans have LWS green and red cones. Psychophysically, the addition 

of rod signals to cone pathways often mimics a blue channel (Buck, 1997; 

Trezona, 1970) and, in principle, the field of rod BC inhibition surrounding cone 

BCs could form de facto LWS cone / short-wave-mimicking rod opponent 

networks. All CBb BCs engage in crossover suppression, so SWS1 / rod 

opponency should also exist, consistent with the observation that rod interactions 

can lead to a wide range of hue percepts in humans (Stabell and Stabell, 2002; 

Thomas and Buck, 2006). These chromatic percepts can even be enhanced in 

blue cone monochromacy (Young and Price, 1985), where the only possible 

opponent pigment is presumed to be rhodopsin, yielding pure SWS1 / rod 
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opponent systems.  The rod-cone interaction architectures of rabbit are likely 

relevant for primate chromatic, spatial, and temporal percepts, as human rod-

cone interactions clearly involve peripheral retina (Buck, 2004; Thomas and 

Buck, 2006; Trezona, 1973), a region stereotyped across mammals (Jeon et al., 

1998). Though the human foveola is rod free (Curcio et al., 1987) and lacks rod-

biased neurons such as AII ACs (Kolb et al., 2002), the rod-free zone is so small 

(≈  0.2  mm)  that  wide-field  γAC  crossover  motifs  could  easily  bridge  the  foveola  

and surrounding rod networks, permitting concurrent rod suppression of foveal 

cone signals and foveal suppression of nearby rod signals. A definitive proof will 

require assembly of a primate retinal connectome.  

 Rod-cone crossover suppression resembles sparsely instantiated, densely 

convergent winner-take-all (Kurt et al., 2008) networks. Psychophysical evidence 

shows that human mutual rod-cone suppression can operate in a winner-take-all 

mode (Buck, 2004; Stabell and Stabell, 1998, 2002), which must have a 

crossover design (Oster et al., 2009). Ultimately, physiological biasing must 

provide the switching features that distinguish simple opponent outcomes from 

winner-take-all outcomes. A more detailed assessment of molecular tuning at 

each signaling stage is essential to determine how rod-cone crossover chains 

are refined by differential glutamate, GABA, and glycine receptor subunit 

expression, or other switching schemas (Eggers and Lukasiewicz, 2006a). The 

similarity of retinal and cortical cross-channel suppression in perceptual, 

pharmacologic, and network domains argues that the retina may be an 
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exceptional model for exploring general mechanisms in the development, 

maintenance, and dysfunction of decision networks. 
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Table 4.1. Synaptic chains mediating rod-cone cross-channel suppression  
Motif Gain Chain 

C1 n2p C >m CBb  >  wf  γAC  >i RB 

C2 n2p C >m CBb > nf GAC >i RB 

C3 n2p2 C  >  CBa  >  wf  γAC  >i wf  “ON”  γAC  >i RB 

C4 n2p2 C > CBa >  wf  γAC  >i AI γAC  >i RB 

C4a n2p3 C > CBa > AII GAC wf >i γAC  >i AI γAC  >i RB 

C5 n2p2 C > CBa > nf GAC >i AI γAC  >i RB 

R1 n3pc R >m RB > AII GAC  ::  CBb  >  wf  ON  γAC  >i CBb 

R2 n3p2 R >m RB > AII GAC >i CBa  >  wf  OFF  γAC  >i CBa 

R3 n2p R >m RB  >  wf  ON  γAC >i CBb 
 
Legend.  We characterize the nominal gains (amplifications) of these motifs by 
their serial glutamatergic cationic (n), GABAergic or glycinergic anionic (p), and 
coupling  (c)  transfer  functions,  expressing  a  chain’s  gain  as  their  product  (npc).  
For example, the  cone  →  BC  →  AC  →  BC  signaling  chain  has  a  net  gain  of  n2p. 
We assume that most excitatory gains are > 1 (22, 23) and that most inhibitory 
(24, 25) or coupling networks have gains < 1. We argue that concatenated 
excitatory gains (n, n2, n3) play a major role in setting the sensitivity of networks 
and that contatenated inhibitory gains and coupling are likely attenuating (p, cp, 
p2). This vastly oversimplifies the likely nonlinearities, cable attenuations, 
synaptic fatigue, synaptic desensitization, and timing events associated with 
each network (45), but should be a dominant weighting factor in any model. 
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Figure 4.1. Rod-cone transitions and networks.  A. Visual threshold (VT, black 
line) varies over the daily cycle. The cusps are transitions between rod and cone 
dominated vision. Variations in threshold (dotted lines) are driven by skylight and 
canopy factors. B. In mammals, rod signals collected by rod bipolar cells are 
aggregated by AII amacrine cells (ACs) and redistributed into the cone bipolar 
cell chain, resulting in three-stage excitatory amplification (n3). C. Other 
vertebrates use mixed rod-cone bipolar cells that drive ganglion cells directly, 
achieving only two-stage amplification (n2). 
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Figure 4.2. Motifs C1 and C2.  A. A rendering of all rod BC axon terminals in 
volume RC1. Rod BC 5923 is circled. Each color is a single rod BC terminal. B. 
Wide-field   γAC  598   (red)   and  narrow-field GAC 278 (green) engaged in motifs 
C1 and C2 respectively. C. A minimum spanning graph that provides crossover 
cone   inhibition   to   every   rod   BC   using   γAC   (red,   orange)   and   GAC   (green)  
processes,   including   γAC   598   (up   arrow)   and   GAC   278   (down   arrow).   CBb5  
6120 is circled. The smallest distance between a CBb and its target rod BC is 
marked   by   the   small   square   and   a   large   CBb   →   RB   path   is   marked   by   the  
rectangle. D. The inhibitory field of processes superimposed on the rod BC field 
(magenta).  Motif  C1  γAC process 32477 (white process, arrows) spans rod BC 
5923   and   CBb5   6120.   The   field   of   γAC   18282   that   drives   motif   R3   is  
superimposed in blue. E. γAC  32477   is  presynaptic   (the  arrow   indicates  signal  
flow) to rod BC 5293, which receives input from another motif   C1   cell   (γAC  
39982) and a classical AI AC   (   γAC  39986).  F. CBb5 6120 provides excitatory 
input  via  a  synaptic  ribbon  (r)  onto  γAC  32477.  G. γAC  32477  provides  reciprocal  
inhibition (arrow) to CBb5 6120. H. Motif C2 GAC 278 collects signals from two 
nearby CBb cells (CBb5 277, CBb6 344) and delivers glycinergic inhibition to two 
adjacent rod BCs (RB 334, RB 342). I. CBb5 synapses onto GAC 278. Inset, 
ribbon viewed at a different tilt, revealing the uniform synaptic cleft. J. Motif C2 
synapse from GAC 278 onto RB 342, which also collects three C1 synapses from 
ACs  31700,  39998,  31702.  Scales:  A,  C,  D  100  μm;;  B  69  μm  ;;  H  50  μm;;  E,  F,  G,  
I, J 500 nm. 
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Figure 4.3. Motifs C3 and C4.  A. Motif  C3  γAC 5281 and its target rod BCs (dark 
magenta), and motif C4 AI AC 4943 with elements of its source C4 crossover 
chain   (CBab  5542,  CBa2  5532,  OFF   γAC  5441)   and   its   target   rod  BCs   (bright  
magenta). Synapses on the proximal dendrites of AI AC 4943 are marked with 
circles.  Scale,  50  μm.  B. A  composite  γAC  5281  with  four  of   its  six  somatic  AC  
inputs marked. Inset, enlargement of AC 43117. C. γAC  5281   targeting  CBbw  
483 in the ON layer. Inset, enlargement of the synapse. D. γAC  5281  targeting  
rod BC 10960 in the ON layer. E. CBab  5538  driving  motif  C4  γAC  8551.  F. Motif 
C4  γAC  13448  driving  AI AC  4943.  Asterisks  delimit  a  2.1  μm  synaptic  arc.  G. AI 
AC 4943 presynaptic to rod BC 469. H. AI AC 4943 postsynaptic to rod BC 8586. 
Scales in panels B-H, 500 nm. 
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Figure 4.4. Motifs R1 and R2.  A. AII AC 514 with motif R1 and R2 partners. The 
vertical view displays AC 514, rod BC 471, CBb 1724, and CBab 4568. The 
horizontal below shows the same cell, motif R1 process 23512 that targets CBb4 
4569, and motif R2 process 43404 that targets CBab 181. The signaling chain is 
shown  for  R1  and  R2.  Scales,  10  μm.  B. One of six gap junctions (arrowheads) 
between AC 514 and CBb1724. C. CBb  1724  synapse  onto  motif  R1  γAC  23512.  
D. Motif  R1  γAC  23512   targeting  CBb4  4569.  E. AC 514 synapses onto CBab 
4658. F. CBab   4568   forms   a   synapse   onto   motif   R2   γAC   43404.   Inset,  
enlargement of the 122 nm long ribbon.  G. Motif  R2  γAC  43404  targets  CBab  
181. Scales B-G, 500 nm; Scale for inset F, 250 nm. 
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Figure 4.5. Crossover motifs.  A. Motif C1. Coupled CBb cells (tan honeycomb) 
are presynaptic to wide-field   ON   γACs   that   target   single   rod   BCs   (RB,   white  
circle) in a chain synapses for a total gain of n2p (see text and Table S1). B. Motif 
C2. CBbs are presynaptic to narrow-field ON GACs that target single rod BCs. C. 
Motif   C3.   CBa   cells   (gold   honeycomb)   are   presynaptic   to   wf   OFF   γACs   that  
target  bistratified  wf  ON  γACs   in   the  OFF   layer  by  somatic   synapses,  which   in  
turn target rod BCs. D. Motif C4/C4a. CBa cells are presynaptic  to  wf  OFF  γACs  
that target AI γACs   in   the  OFF   layer   by  GABAergic   synapses   on   the   proximal  
dendrites,  which  in  turn  target  rod  BCs.  Some  OFF  γACs  are  also  targeted  by  AII 
ACs in the chain. E. Motif C5. CBa cells drive narrow-field GACs that synapse on 
the proximal dendrites of AI γACs.  F. Motif R1. Rod BCs drive AII ACs coupled to 
CBb  cells.  CBb  cells  are  presynaptic  to  ON  γACs  that  inhibit  nearby  and  distant  
CBb cells. G. Motif R2. Rod BCs drive AII ACs that are presynaptic to CBa cells, 
which drive   OFF   γACs   to   inhibit   nearby   and   distant   CBa   cells.   H. Motif R3. 
Sparse rod BCs drive mixed rod-cone   γACs   that   are   presynaptic   to   large  
numbers of CBb cells. 
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Refactoring the Inner Plexiform Layer 

Over four decades of research has indicated that the mammalian retina is 

structurally and functionally segregated into ON and OFF domains (Famiglietti et 

al., 1977; Famiglietti and Kolb, 1976; MacNeil et al., 2004; Wässle et al., 2009; 

Werblin and Dowlin, 1969a, b), yet nonmammalian bony vertebrates (reptiles, 

avians, amphibians, teleost fishes) possess multistratified bipolar cells that 

overtly arborize and form synapses in opposite-polarity IPL layers (Pang et al., 

2004; Sherry and Yazulla, 1993). Researchers have infrequently reported ribbon 

sites in mammalian ON cone bipolar cell axons, though these were never 

quantified and their functional significance remained unknown.  The first two 

chapters demonstrate repeatedly that the ON and OFF neural retina are not 

discrete.  Rather, neural multistratification is more subtle than in other 

vertebrates, but not evolutionarily lost.  Chapter 3 reveals photopic-scotopic 

inhibitory crosstalk at the level of the neural retina.  Decades of psychophysical 

data indicates mutual rod-cone pathway suppression, but previous techniques 

failed to capture the substrate, and it was largely suspected to arise from cortical 

processing.  This discovery suggests that the neural retina can behave as a 

winner-take-all network analogous to those found in cortex, expanding our 

functional view and validating the neural retina as an excellent model system for 

understanding plexiform layers throughout the brain.  The following four sections 

discuss specific results presented in Chapters 1-3 and a common principle of 

joint distributions of source-target neurites that evolves from this work and 

reframes our statistical interpretations of neural networks. 
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ON Cone Bipolar Cells Break the IPL Stratification Rules 

The existence of mixed ON/OFF signaling has been dismissed or ignored 

for mammalians until recent optical evidence of ON BC axonal ribbon output in 

the OFF layer of the IPL was reported by several groups (Dumitrescu et al., 

2009; Hattar et al., 2002; Hoshi et al., 2009). Ultrastructural connectomics now 

recapitulates (Anderson et al., 2011a) and extends (Lauritzen et al., 2013) these 

findings to demonstrate all classes of ON cone bipolar cells (CBbs) form input 

and output synapses throughout the OFF  IPL.  Specifically, ON cone bipolar 

cells target intrinsically photosensitive GCs (ipGCs) and bistratified diving GCs 

(bsdGCs) in the nominal OFF IPL, both of which are pure ON cells (Dumitrescu 

et al., 2009; Hoshi et al., 2009) with OFF layer-stratifying dendrites.  CBbs also 

synapse with discrete sets of glycinergic ACs (GACs) and GABAergic ACs 

(γACs)   to   construct   ON   >i OFF and OFF i< ON crossover inhibition motifs 

(Lauritzen et al., 2013). It remains unclear why ipGCs and bsdGCs arborize in 

the OFF layer to harvest CBb cell inputs when those are also available in the ON 

layer, yet connectomics shows that these cells also capture massive input from 

OFF  γACs  but  not  OFF  cone  (CBa)  bipolar  cells,  providing  wide-field ON polarity 

input via OFF synaptic chains: [cone > CBa BC  >   γAC  >i ipGC/bsdGC] with a 

gain of n2p (see np notation from Chapter 3). Why they obtain a low-gain ON 

signal in the OFF layer is not clear, but certain OFF ACs appear to be preferred 

targets.  Furthermore, since most inhibitory gains (p) could be fractional (Wu, 

1991), the direct ON input from CBb axons should have a higher sensitivity than 

the polarity-matched input via the CBa-driven amacrine cells by a factor of p-1.  



180 
 

The immediate interpretation is that targets of such differentially amplified, 

kinetically distinct, yet polarity matched input signals can finesse their spatial 

sampling and postsynaptic membrane potential responses with such input 

arrays.  Simply, these ON-OFF crosstalk architectures could afford greater 

spatiotemporal control of the responses of the target cells, allowing them to 

increase or decrease transiency over varied photic capture regions, for instance. 

 

OFF Cone Bipolar Cells Break the IPL Stratification Rules 

Additional refactoring of the mammalian inner plexiform layer arises from 

the deep incursion of a subset of CBa cells into the ON layer, where they 

synaptically construct ON-OFF amacrine cells in concert with comingled CBb 

syanpses   to   common   targets,   and   further   create  ON  →  OFF   and  OFF  →  ON  

crossover inhibition motifs throughout IPL sublaminae 3-5 (traditionally 

considered pure ON laminae).  Combined with the above discovery of mixed ON-

OFF signaling in the distal IPL, this disintegrates the discrete ON-OFF IPL 

boundary, revealing that 80% of the IPL comprises intermixed ON and OFF 

signaling motifs.  An important outcome of these discoveries is that amacrine and 

ganglion cell stratification patterns in the inner plexiform layer do not necessarily 

predict the response properties of a cell.  The presence of bistratified ganglion 

cells with dendrites in the OFF layer but pure ON respnonse properties (Hoshi et 

al., 2009; Lauritzen et al., 2013), and monostratified ganglion cells in the nominal 

ON layer with mixed ON-OFF properties  (Lauritzen et al., 2013; Tian, 2008) 

reinforces the idea that cells of a given polarity need to establish opposite-
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polarity synaptic partners as routine signaling elements.  Moreover, repeating 

motifs that break our legacy of ON-OFF segregation suggests that appropriate 

source-target pairing occurs at every joint encounter, regardless of lamination.  A 

complete ultrastructural network mapping is essential to understanding these 

pathways. 

 

Rod Bipolar Cell-Cone Bipolar Cell Cross Inhibition 

The discovery of massive cross inhibition between rod and cone bipolar 

cells enhances the functional landscape of the retina.  The perceptually smooth 

transition from photopic to scotopic domains demands reconciliation with 

psychophysical evidence for winner-take-all mutual rod-cone suppression events. 

Neither physiological nor anatomical approaches have provided accounts for rod-

cone cross suppression because they lack the resolution needed for synaptic 

completeness and the ability to view large networks in the same dataset.  We 

discovered eight rod bipolar-cone bipolar cross inhibitory motifs in RC1, five cone 

bipolar cell-driven motifs, and three rod bipolar cell-driven motifs.  Wide 

connectomics reveals that every cone bipolar cell class receives rod bipolar cell-

driven inhibition, and establishes cone bipolar cell class-motif relationships. Deep 

connectomics proves that every rod bipolar cell receives ON cone bipolar cell-

driven inhibition and that every AI amacrine cell receives OFF cone bipolar cell-

driven inhibition.  In other words, the retina is not merely a perceptual filter, it 

appears to operate analogously to decision networks found deeper in the brain. 
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Joint Distributions of Synaptic Sources and Targets 

Synaptic connections at neurite intersections create functional networks.  

However, differential neurite densities and geometries across cell classes 

(Reese, 2008) influence the probability of encounter (Lauritzen et al., 2013). Most 

wide-field  γACs  cover   the   retina  with  extensive   in-class overlap with coverages 

>> 4 (i.e., center to center), whereas narrow-field GACs have modest overlap 

closer to 4. Many, if not most, ganglion cells tile the same space with low overlap 

and coverages < 4, often close to 1. BCs have mixed patterning depending on 

class.  Some extensively cover, whereas some tile perfectly. Because some 

classes are very sparse and others are dense, synaptic encounter rates will 

depend on joint distributions of synaptic sources and targets. Different cell 

classes fill the retinal space very differently (formally known as Hausdorff 

dimensions).  The Hausdorff dimensions are typically low for wide-field 

amacrince   cells   and  α-ganglion cells, and much higher for bipolar cells. These 

geometries influence how network motifs sample each other. Put simply, it is 

impossible for every source and target to be optimized to achieve 100% contact 

or spatially constant contact variance. Chapter 1, Figure 11 provides a geometric 

proof of this.  Because we do not know the sampling volumes for various cell 

classes, we must discover them by connectomics.  

Conventionally scientists attempt to describe the outflow of signals from a 

given cell class to superclasses of targets (e.g., bipolar cell class X to amacrine 

cells or ganglion cells) in terms of percentages of targets contacted. Yet the 

varied topologies discovered via connectomics highlight the importance of joint 
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distributions (Lauritzen et al., 2013). An example of this is the flow of axonal 

ribbon signaling from ON cone bipolar cell axons to targets in the OFF layer. The 

axonal ribbons provide an oversupply of sources relative to targets. Ganglion 

cells form only a small fraction of postsynaptic targets for ON cone bipolar cell 

axonal   ribbons,  due   to   the  ON  cone  bipolar   cells’   higher  Hausdorff   dimensions  

(the bipolar cells are more space filling) than ganglion cells.  However, specific 

ganglion cells form a synapse with every axonal ribbon encountered, for a 

sampling efficiency of 100%. Thus, the variance of output patterns of profiles 

across a given set has little functional meaning.   

 
The Dangers of Inverse Solutions to Complex Networks 

New rules governing neural network architectures can now be 

incorporated into interpretation of physiological observations.  For instance, 

crossover inhibition is currently a contentious area of the physiological literature 

(Liang and Freed, 2010; Manookin et al., 2008; Werblin, 2010).  Two important 

findings from connectomics have not entered the debate thus far because 

physiology is incapable of testing them directly.  Nonetheless, connectomics 

reveals their prevalence in crossover networks as detailed below.   

First, physiologists assume that the inner plexiform layer (IPL) is divided 

into discrete ON and OFF layers, with morphologically-defined cell classes 

constrained to one domain or the other.  This often leads to error in interpreting 

physiological results.  They suggest that multistratified amacrine cells which span 

the ON-OFF boundary must be responsible for the crosstalk, yet connectomics 
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reveals that other cell classes, such as cone bipolar cells, can multistratify and 

engage monostratified amacrine cells to construct crossover motifs.  This 

increases the number of possible source-target pairings and teaches us that 

many additional cells classes may be involved in the crossover inhibition process 

which have never been considered before.  It further carries direct functional 

consequence, as unique morphological cell classes are believed to possess 

unique functional properties.  Thus, the physiological complexity of these 

networks is currently underestimated.  By identifying the involvement of these 

new distinct morphological cell classes, we create a list of new cell types to be 

systematically targeted for future physiological investigation. 

Second, crossover inhibition networks have thus far only been discovered 

to use glycine as the neurotransmitter, but no involvement of GABA.  This may 

initially seem surprising as every cell in the neural retina receives input from 

GABAergic amacrine cells, yet GABAergic and glycinergic amacrine cells form 

concatenated and nested feedback and feedforward chains (Marc and Liu, 

2000), making it difficult to pharmacologically isolate.  Connectomics analyses 

offer repeated examples of GABA-positive amacrine cells involved in crossover 

inhibition network motifs, often in parallel and/or nested relationships with 

glycinergic crossover motifs.  These networks appear to pervade the IPL and 

now become tractable via connectomics analyses. 

Collectively, the above results improve our ability to interpret functional 

data, instruct us in neural synaptic partnering rules, teach us the architectures 

responsible for complex neural response properties, and create a model for 
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understanding plexiform layer construction elsewhere in the brain.  Functional 

network analysis presupposes the ability to evaluate canonical networks.  

Individual cellular recordings cannot decompose the input complexity from which 

they are created, and models are grossly inadequate  without proper 

parameterization.  We assert that the results presented herein provide proof of 

concept that high resolution ultrastructural connectomics is appropriately scaled 

to and necessary for effective network analyses. 

 

Conclusion 

Completeness 

Three central issues must be satisfied to achieve completeness with 

connectomics approaches.  First, 2 nm resolution or better is required to 

unambiguously mark synapses and gap junctions for complete network mapping 

(Bourne and Harris, 2011; Kamasawa et al., 2006; Massey, 2008). TEM is 

optimal for such endeavors. Second, molecular (Anderson et al., 2011a; Shu et 

al., 2011) or optical (Briggman et al., 2011) tagging to preselect cells of interest in 

complex neural populations (Bock et al., 2011) need more platforms and the 

ability to share them effectively (Anderson et al., 2009). Commercial fMRI 

systems that support macroscale connectomics are indeed established, now the 

same is needed for high resolution TEM-based connectomics. The next 

generation of tools should promote comparative neuroanatomy and 

pathoconnectomics of retinal neurodegenerations by facilitating the creation of 

multiple connectomes in parallel (Jones et al., 2011; Jones et al., 2003).  The 
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faster we can create and analyze datasets of sufficient size, the greater our 

potential for discovery.  Inexpensive, high-resolution commercial systems must 

be developed for the scientific community. 

Mapping exact contacts and contact patterns across multiple instances of 

a cell class is required to achieve statistical completeness. We expect that as 

sampling approaches completeness, some metrics will minimize their variance, 

but we do not currently know which metrics those are.  Some classical statistics 

may turn out to be useless or even misleading. For example, the mean rod BC 

ribbon synapse count onto four adjacent AII ACs in RC1 is 74 ± 5 (1 SD) with 

coefficient of variation (CV) of 0.066. The same cells have a mean rod BC 

contact count of 11.5 ± 3.7 and a CV of 0.32, a variation fivefold greater for 

exactly the same sample space. This suggests that neurons normalize synapse 

number despite varying neurite overlap geometries. On the other hand, there are 

spatial variances that are clearly meaningless in a physiologic context, such as 

the percentage of output onto various cells from AII ACs, although they may be 

useful as classifiers. In network flow, the partitioning of output is not a usable 

metric, whereas the sampling of an output grid as the input to a spatially complex 

cell is critical. In that scenario, the sampling of AII ACs by GCs is perfect (i.e., 

sampling from all encountered opportunities) and likely idempotent. 

Completeness is also gauged by edge density in network graphs where 

submotifs can be extracted and quantitatively compared. 
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The Future of Connectomics 

Interpreting the functional role of cells based on electrophysiological 

properties depends on complete knowledge of their input and output arrays.  

There are too many possible explanations for observable results to explain with 

inverse solutions.  We need to build connectomes faster and in parallel, with 

improved management and analysis software to make large-scale datasets 

tractable in reasonable timeframes. 

Currently, advanced customized software is required to build, manage, 

and analyze terabyte-scale connectome volumes (Anderson et al., 2011a; Fiala, 

2005; Jeong et al., 2010). Additionally, expensive TEM platforms with automated 

stages for high throughput and digital imaging are required, but most TEM 

scopes currently lack these.  If we are to successfully incorporate connectomics 

approaches as mainstream tools, these obstacle must be surmounted. 

To meet this challenge, Marc and colleagues developed an open-source 

Web-compliant Viking environment (Anderson et al., 2011b) that supports 

multiuser visualization via dataset conversion to Web-optimized tiles and delivers 

volume transforms to client devices over the internet. Converting ultrastructure 

into three-dimensional renderings and network graphs also requires integration of 

annotation and database architectures. In Viking, disks placed within structural 

profiles approximate convex hulls which are linked to build three-dimensional 

representations.  Relational elements such as presynaptic complexes (ribbons, 

densities, vesicle accumulations), postsynaptic densities, gap junctions, and 

adherens junctions are located and linked to build adjacency matrices. 
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Additionally, data and metadata queries, and network Web tours can be 

performed based on annotations.  

Analyzing networks requires rendering, graphing, network touring, and 

informatics. Vikingplot and Viz (Anderson et al., 2011a) are services using Viking 

databases to allow cell renderings at higher resolutions than optical methods, 

automated network graphs, navigation between ultrastructural data and network 

motifs, and automated statistical summaries. Although efforts are being made to 

achieve automated tracing (Jeong et al., 2010; Jurrus et al., 2010; Luisi et al., 

2011; Narayanaswamy, Wang, and Roysam, 2011), currently every 

connectomes must be validated by human annotation (Anderson et al., 2011a), 

and none are practical for complex neuropil comprising fine processes. 

Correcting annotation errors is not an obstacle, as errors become highly salient 

against repeating themes, completeness in network diagrams ultimately purges 

errors, and metadata parsing can effectively highlights errors. Errors such as 

skipping between processes in tracing are flagged as forbidden switches in 

molecular signatures, associated synapse type, targets, inputs, and network 

motifs. One of the best methods for error tracking and repair is parsing network 

graphs for wiring violations (e.g., self-synapse loops).  Unexpected network 

motifs are revisited by experts to determine if they are errors or new discoveries. 

To overcome the above obstacles, connectomics datasets must be shared 

in the future (Amari et al., 2002; Anderson et al., 2011a; Jeong et al., 2010); 

however, the immense size of these datasets interferes with their distribution. 

Open-access web services could provide a solution here. Accordingly, we 
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publicly share our datasets and tools. Viking utilizes open-source tools and 

common file formats to effectively interface with other widely used applications 

for viewing, such as Blender or Autodesk® Maya. Intellectual ownership and 

publication issues become complex and will need to be resolved. Integrating 

annotated datasets and summary networks with large informatics frameworks is 

critical for future expansion and sharing as well (Akil et al., 2011; Martone et al., 

2008). 

The future of neural network discovery must involved cooperative 

multidisciplinary efforts. Clearly, physiological dissection is needed, as are more 

accurate models, if we are to understand and repair normal and diseased neural 

networks. However, complex synaptic chains are difficult to pharmacologically 

isolate, and models need accurate parameterization to be of any meaning. 

Connectomics provides the solution to both of these problems with the ability to 

reconstruct exact complex network architectures such as nested and reentrant 

motifs and quantify the relative intra- and interclass synaptic weights and 

directionalities. Targeted symbiotic relationships between these three, and other, 

disciplines is necessary to understand neural networks.  The question of the 

minimum sufficient solution remains open for now.   
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