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ABSTRACT 
 
 
 

 Peptides are a powerful class of therapeutics with high potency, high specificity, 

low immunogenicity, and effective methods of discovery.  However, peptides often 

possess limitations including degradation by proteases, rapid clearance by renal filtration, 

and difficulty passing through membranes. 

The Kay lab at the University of Utah has applied the benefits of peptide design to 

tackling the problem of HIV-1 transmission.  In this dissertation I describe the discovery 

of our lead peptide candidate, PIE12, including its optimization by mirror-image phage 

display, its potency enhancement by defined geometric linkages and lipid conjugation, its 

engineered ability to prevent HIV-1 resistance, and finally the optimization of its 

pharmacokinetic properties.  These efforts have overcome the common limitations of 

peptide therapeutics and produced an ideal preclinical candidate for the treatment and 

prevention of HIV/AIDS. 

The first chapter examines the scope of the HIV pandemic, describes HIV-1’s 

susceptible target for which we developed PIE12, and includes a brief examination of the 

current state of the peptide therapeutic field.  The second chapter reviews methods of 

peptide discovery that enable protease resistance, including a discussion of well-validated 

techniques like mirror-image phage display followed by a review of several emerging 

technologies.  The third chapter reveals how the aforementioned techniques were utilized 

in the discovery of PIE12, including early efforts to link PIE12 peptides together in order 



to improve potency.  The fourth chapter completes this story, illuminating our efforts to 

optimize the linkages between PIE12 peptides in order to increase potency, and includes 

information on potency-enhancing membrane-tethering moieties.  The fifth chapter 

describes our efforts to make potent PIE12-conjugates suitable for subcutaneous delivery, 

including new conjugate designs and detailed evaluation of their half-life-improving 

properties.  The final chapter discusses future directions and new opportunities revealed 

to us by the body of this work. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

Scope of the HIV Pandemic 
 

Since the AIDS pandemic was first identified in 1981 an estimated 59 million 

people have contracted its causal agent “human immunodeficiency virus” (HIV).  To 

date, approximately 26 million people have died from HIV/AIDS, leaving 33 million 

people (including 1.2 million in the US) living with the infection (UNAIDS, 2011 UN 

Millennium Development Goals Report).  Although five classes of antiretroviral 

therapies (NRTI, NNRTI, protease, integrase and entry inhibitors) are available, HIV 

remains a formidable pathogen.  It continues to spread, affects vulnerable populations, 

and can develop resistance to current therapeutics.  New pharmacological agents and 

therapeutic targets are needed in order to stay ahead of drug resistance and keep the virus 

under control. 

Unfortunately, even new classes of inhibitors, such as the recently approved 

integrase inhibitor raltegravir, can succumb to the rapid emergence of HIV resistance 

within a few months of use1.  As such, there is a growing need not only to develop new 

promising therapies against HIV, but also to anticipate and counter the problem of HIV’s 

capacity for resistance. 
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HIV Entry 
 
 The general mechanism of HIV entry into susceptible host cells is well 

understood2.  HIV expresses a homo-trimeric membrane protein Env (gp160), which 

undergoes posttranslational cleavage yielding the noncovalently associated gp120 and 

gp41 subunits.  Posttranslational cleavage allows for trapping of these proteins in a 

“spring-loaded” kinetic trap.  The trap is sprung when HIV virions recognize host cells 

through the interaction of viral gp120 with the primary receptor CD4 and one of two co-

receptors (CCR5 or CXCR4).  In general, CCR5-tropic virions are more transmissible, 

and represent the majority of early-stage HIV viral load.  In ~50% of patients, HIV 

undergoes a switch or broadening in co-receptor tropism to begin utilizing CXCR4.  This 

transition correlates with advanced disease and poorer clinical outcomes3.  It is not clear 

what is responsible for the transition, but may simply reflect a selection for tropic virions 

as CCR5-expressing host cells die from CCR5-tropic virus. 

 After gp120 interacts with CD4 and co-receptor, it undergoes a conformational 

change that releases the kinetically trapped gp41.  gp41 then adopts an extended 

conformation, plunging its N-terminal fusion peptide into the host cell membrane (Fig. 1-

1).  This extended conformation is semistable, lasting for several minutes (strain 

specific)4.  In this state, two regions become newly defined.  First, the host cell-proximal 

N-trimer is a trimeric coiled-coil with three inter-helical hydrophobic grooves.  The 

highly conserved 17 C-terminal residues of the N-trimer form three deep hydrophobic 

pockets (Fig. 1-2).  Second, the virion-proximal C-peptide region adopts an unknown 

configuration, possibly unstructured. 

 



 
Figure 1-1. Proposed Model of HIV Fusion with Host Cells.  HIV expresses several copies of the trimeric Env protein, which is 
post-translationally cleaved to produce gp120 and gp41.  gp120 interacts with its primary receptor CD4 and a co-receptor, triggering 
gp41 to adopt an extended conformation that plunges its fusion peptide (red) into the host cell membrane.  This prehairpin 
intermediate contains two regions, a host cell-proximal trimeric coiled-coil (N-trimer) and a loosely structured C-peptide region. The 
C-terminal residues of the N-trimer form three highly conserved deep hydrophobic pockets.  The prehairpin intermediate is stable for 
several minutes, after which C-peptides collapse upon the N-trimer forming the trimer-of-hairpins structure that mediates fusion.  
Soluble C-peptide analogues (e.g., C37, Fuzeon) and/or D-peptides can bind to the prehairpin intermediate, preventing trimer-of-
hairpins formation and HIV fusion.  [Modified from5] 



A) 

 
B) 

 
Figure 1-2.  Spatial Characteristics of gp41.  A) The residues assigned to each region of gp41 (HxB2 numbering).  FP = fusion 
peptide, DSL = disulfide loop, MPER = membrane-proximal external region, TM = trans-membrane, CT = cytoplasmic tail. 
B) Distances relevant to oligomerization and membrane-tethering designs.  ~25 Å PEG linkers are sufficient to span two pockets. 
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 After a brief window of time, gp41 collapses upon itself, mediating fusion of the 

virus and host cell.  The C-peptide region becomes helical and fills in the grooves of the 

N-trimer region, forming the very stable “six-helix bundle” or “trimer-of-hairpins.”  

Preventing formation of this trimer-of-hairpins is known to prevent viral infection, and is 

the basis of the FDA-approved entry inhibitor Fuzeon.  Fuzeon is a peptide derived from 

the C-peptide region and can preemptively bind the N-trimer grooves and prevent fusion 

through a dominant negative mechanism6.  Pocket-specific Inhibitor of Entry #12 

(PIE12), an optimized nondegradable D-peptide I co-discovered in the Kay lab, binds to 

the deep hydrophobic pocket of the N-trimer and also prevents trimer-of-hairpins 

formation and fusion. 

 It is worth noting that CD4 and the co-receptors are located within host cell lipid 

rafts7,8, which are regions of thicker membrane containing distinct lipid content.  The 

localization of HIV’s receptors here establishes viral entry at lipid rafts.  Thus, entry 

inhibitors that are targeted to lipid rafts will have improved local concentrations and on-

rates, leading to improved inhibition of fusion9. 

Despite this detailed understanding of viral entry, some aspects remain poorly 

understood, such as how many Env proteins are involved in fusion, and what role, if any, 

endocytosis plays in physiological virus entry10. 

 

HIV’s Vulnerable Drug Target – The Pocket 

The three deep hydrophobic pockets of gp41 are critical for HIV fusion11.  Each 

pocket is encoded by the 17-residue sequence LLQLTVWGIKQLQARIL, and binds an 

essential 8-residue sequence from the C-peptide, WMEWDREI.  Interestingly, this 
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natural ligand contains two tryptophans.  A similar motif, EWXWL, was selected in our 

early phage display efforts and became the basis of future library designs, ultimately 

leading to the D-peptide entry inhibitor PIE12: HPCDYPEWQWLCELGK.  PIE12 binds 

to the pocket with low nM affinity and potently inhibits HIV fusion5. 

The pocket is highly conserved across all major HIV-1 strains, consistent with its 

critical role in mediating fusion.  Amino acid substitutions in this site are not well-

tolerated2.  Moreover, the nucleotide sequence that encodes this region produces the Rev-

response element for Env, a critical stem-loop structure required for mRNA nuclear 

export12,13, thereby discouraging mutation even at the nucleotide level. 

 

Discovering D-Peptide Inhibitors of HIV Entry 
 

Work in the Kay lab focuses on developing novel D-peptide therapeutics and 

advancing them towards promising applications such as inhibiting HIV entry.  Peptides 

are typically defined as sequences of !40 amino acids14.  D-peptides are peptides 

composed of D-amino acids, which are the mirror image (opposite chirality) of the L-

amino acids typically utilized by living systems.  D-peptides cannot be made 

recombinantly, so they must be made by chemical synthesis.  Living systems almost 

exclusively utilize L-amino acids for peptide and protein synthesis, and metabolic 

enzymes show clear preference for their natural ligands compared to a mirror-image 

substrate (e.g., >1000-fold15,16).  This makes D-peptides essentially nondegradable by 

proteases, endowing them with the capacity to withstand harsh physiological conditions 

like human plasma, the gastrointestinal system, and vaginal mucosa.  This property is of 

obvious interest for enhancing the exposure of a peptide therapeutic. 
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However, the same property that makes D-peptides essentially nondegradable 

makes D-peptide discovery incompatible with powerful biologically-based peptide 

discovery techniques, because D-peptides cannot be expressed in living systems.  This 

problem, however, can be overcome by a clever technique called “mirror-image phage 

display.”  Briefly, a library of M13 phage can be genetically designed to display billions 

of different L-peptides fused to their g3 proteins.  There are five g3 proteins expressed on 

each M13 phage, so zero to five identical peptides can be displayed per phage.  Phage 

display involves exposing a target protein or peptide to a library of L-peptides fused to 

these phage to select for L-peptides that bind to the target.  Weak or non-binders can be 

washed away, while tighter binders can be eluted and the associate-phage amplified for 

another round of selection, thereby continually selecting for progressively better binders 

(Fig. 1-3)17. 

Mirror-image phage display involves the same process, but utilizes symmetry in 

order to discover D-peptide binders.  The phage still encode L-peptides, but the target 

they bind to is made as a mirror image (D-chirality) of the natural L-peptide or protein.  

By symmetry, the L-peptide that is selected as the strongest binder to a D-target will bind 

to the natural L-target when synthesized as a D-peptide18.  In our case, HIV’s gp41 

pocket region is the desired target, so to find a D-peptide that binds to it, an L-peptide 

phage library was screened against a synthetically produced D-gp41 pocket analog.  The 

winning sequence was synthesized as a D-peptide and was found to effectively bind and 

inhibit the natural L-gp41 pocket region.  We discovered the D-peptide HIV entry 

inhibitor PIE12 using a combination of mirror-image phage display and structure-aided 

design (described in Chapter 3)5. 
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Figure 1-3.  Phage Display. A library of phage displaying genetically encoded peptides 
is incubated with a target.  The target may be tethered to a surface (solid-phase) or in 
solution with a handle for pull-down (solution-phase) as shown here with biotin.  After 
incubation, the target is retrieved by adding magnetic beads coated with streptavidin.  
After several washes, the remaining phage contain the tightest binding peptides.  These 
are eluted and amplified in E. coli.  The amplified phage comprise a new library of 
improved binders which can be re-incubated with the target to further select for the 
tightest binders. 
 
 
 

Improving Potency Through Oligomerization 

and Membrane Tethering 

 Because gp41 is a trimeric target with three symmetric pockets, we reasoned that 

linking three PIE12 peptides together would improve potency.  Indeed, this strategy 

greatly improved potency ~200-fold over monomeric PIE12.  We also found that discrete 

PEG linkers of ~22-25 Å between the C-termini of PIE12 peptides was optimal (Fig. 1-

2), becoming the basis for a PEG scaffold enabling rapid synthesis of PIE12-trimer 

(described in Chapter 4)9. 

Through oligomerization we discovered that initial improvements in affinity (KD) 

are correlated with improvements in antiviral potency (IC50), but eventually a potency 
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plateau is reached after which further improvements in affinity no longer affect potency 

(Fig. 1-4).  The potency plateau for HxB2 is ~100-300 pM, while it is 2-3 nM for JRFL.  

JRFL is a difficult-to-inhibit primary strain known to fuse more rapidly than other strains, 

thereby reducing its exposure to fusion inhibitors, decreasing their potency4.  Of our D-

peptide oligomers, PIE12-trimer possesses the highest affinity, but the potency plateau 

prevents estimation of its KD based on IC50.  A direct measurement of KD is not possible 

because the interaction is too tight; the extraordinarily slow off-rate prevents assessment 

by biosensor analysis.  Nevertheless, PIE12-trimer affinity can be estimated by 

comparisons to the affinities and potency improvements of other D-peptide oligomers.  

Such estimates predict a sub-fM KD for PIE12-trimer. 

We reason that the cause of the potency plateau is the transient exposure of the 

prehairpin intermediate.  Because potency is typically a function of both on-rate and off-

rate, either increasing the on-rate or decreasing the off-rate will increase potency.  

However, once the off-rate exceeds the time that a target is exposed, the on-rate becomes 

the limiting factor for potency, and for peptides in solution (i.e., not tethered to the 

membrane) the on-rate is limited by three-dimensional diffusion.  This on-rate limit 

creates the potency plateau.  Although affinity can be improved by prolonging off-rates, 

the improvement will no longer be correlated with an increase in potency.  Other groups 

have noticed the same potency plateau in their HIV entry inhibitors4. 

Interestingly, the potency plateau can be overcome by increasing the on-rate via 

prepositioning inhibitors on cell surfaces using membrane-tethering moieties.  This 

tethering significantly improves potency (described in Chapter 4). 
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Resisting Resistance – the “Resistance Capacitor” 

Besides contributing potent inhibitors to the armament of antiretrovirals, our work 

aims to build into drug design a capacity to withstand viral mutations.  Drug resistance is 

the bane of HIV treatment, so instead of simply developing a drug that would inevitably 

succumb to resistance, we decided to proactively design a therapeutic that could delay it 

as long as possible.  To this end, several design strategies have been employed.  The first 

has already been discussed; choosing the gp41 pocket as our drug target reduces the 

capacity of HIV to develop drug-resistance because the pocket is highly conserved and 

genetically limited in its capacity to acquire mutations.  

The second strategy involves a deliberate over-engineering of our inhibitor.  As 

mentioned, a potency plateau is observed when increases in binding affinity are no longer 

correlated with increases in antiviral potency.  At first we questioned whether to continue 

efforts to increase binding affinity given that no further potency improvements could be 

obtained.  However, we found that increasing the affinity beyond the potency plateau 

endows the inhibitor with an excess of binding energy that can absorb the impact of 

affinity-disrupting resistance mutations by HIV.  The greater the binding affinity is with 

respect to the potency plateau, the more highly charged the “capacitor” is against resistant 

mutations.  We call this excess binding energy the “resistance capacitor.”  Practically, if 

HIV develops a mutation that damages binding affinity, the mutated virus will still be 

inhibited with equal potency (Fig. 1-4).  The mutated virus has no growth advantage over 

wildtype, preventing its selection and giving little opportunity for the mutant to acquire 

other resistance mutations though step-wise accumulation. 
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Figure 1-4.  The Potency Plateau and Resistance Capacitor.  An inhibitor that 
maintains the same potency (IC50) over a range of affinities (KD) has reached a potency 
plateau.  Increasing affinity despite no improvements in potency creates a charged 
“resistance capacitor” where excess binding energy is stored that can resist HIV 
mutations.  If HIV manages to acquire a mutation in the pocket, affinity (KD) of the 
inhibitor for the pocket will be weakened.  A 100-fold loss of affinity represents a 
particularly severe affinity-reducing mutation (red arrows).  With a charged resistance 
capacitor, the 100-fold loss in affinity can be completely absorbed, maintaining potency. 
 
 
 

Resistance studies conducted in collaboration with Mike Root at Thomas 

Jefferson University reveal how difficult it is for HIV to develop mutations to escape our 

pocket-binding inhibitors.  PIE12-dimer and PIE12-trimer were incubated with virus at 

sub-therapeutic levels to encourage the development of virus resistance.  Using this 

protocol, resistance to Fuzeon developed after only 3 weeks, while resistance to PIE12-

dimer and PIE12-trimer required 40 and 65 weeks respectively5, demonstrating the 

inability of HIV to readily mutate its pocket and the effectiveness of the resistance 

capacitor design. 
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Peptide Therapeutics – Powerful Yet Fragile 
 

Peptide therapeutics have key advantages and disadvantages compared to small 

molecules and proteins.  Compared to small molecules, peptides generally have improved 

selectivity and affinity.  Furthermore, peptides can disrupt protein-protein interactions, 

which has proven a difficult challenge for small molecules.  And unlike proteins, peptides 

can be chemically synthesized, can penetrate deeper into tissues, and are generally less 

immunogenic because of their small size19,20.  However, peptides generally suffer from 

short half-lives and limited delivery options.  Unless specially designed (like our D-

peptides), peptides are susceptible to proteases and are rapidly degraded, often with half-

lives on the order of minutes19.  Furthermore, their small size leads to rapid clearance 

(e.g., by renal filtration).  Moreover, peptides do not easily cross cell membranes, which 

not only limits access to potential cytoplasmic targets, but also prevents absorption from 

the GI tract.  As a result, peptides are generally delivered parenterally. 

Fuzeon is an FDA-approved HIV entry inhibitor that exemplifies many of the 

challenges associated with peptide therapeutics.  For instance, Fuzeon is rapidly degraded 

by proteases.  Therefore, very large doses must be given to make up for its rapid 

clearance (90 mg subcutaneously injections twice each day).  Such large doses drive up 

the cost of the therapy (~$30,000/year) and require formulations that are irritating to the 

skin leading to severe injection site reactions.  Moreover, Fuzeon binds the mutation-

prone groove region of the gp41 N-Trimer, leading to rapid development of resistance.  

Although approved, these challenges limit Fuzeon to salvage therapy in patients with 

treatment-resistant HIV. 
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By overcoming the common limitations of peptides, our work aims to simplify 

patient dosing by enabling once-weekly or once-monthly subcutaneous injection.  Having 

already overcome protease susceptibility by developing D-peptides, avoiding additional 

routes of clearance must be addressed to achieve suitable pharmacokinetics.  

 
 

Pharmacokinetic Considerations 
 

Because we recognized the general limitations of peptide therapeutics at an early 

stage, we developed our anti-HIV candidates to be protease stable from the very 

beginning by utilizing nondegradable D-peptides.  However, rapid clearance is still a 

major concern; even nondegradable peptides can be quickly cleared by renal filtration or 

other metabolic process. 

 Numerous promising PK-enhancing strategies for peptides have emerged over the 

years, with several yielding FDA-approved products.  And because insulin, glucagon-like 

peptide 1 (GLP-1), interferon (IFN-alpha2a), and HIV C-peptide-based entry inhibitors 

all have proven efficacy, it seems that every PK-enhancing strategy has been applied to at 

least one of them.  PEGylation has yielded 11 approved products and is arguably the most 

successful strategy to date.  Lipidation is a growing field with two approved products.  

Direct albumin conjugation is perhaps the next-most developed approach, demonstrating 

impressive gains in half-life.  Chapter 5 focuses on utilizing the most promising of these 

techniques to improve the pharmacokinetics of our lead candidate, PIE12-trimer. 
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PEGylation 

Conjugating peptides and proteins to polyethylene glycol (PEG), also known as 

polyethylene oxide (PEO), has an impressive track record of enhancing PK in approved-

products (Table 1-1).  PEGylation primarily enhances PK by reducing renal filtration, and 

because PEG is extensively hydrated by water, less PEG is required to reduce filtration 

than might be anticipated from molecular weight alone.  While the molecular weight 

cutoff for globular proteins to avoid renal clearance is ~70 kDa, peptide and protein PEG 

conjugates need only acquire a combined molecular weight of 40-60 kDa.  This can 

usually be accomplished by the addition of 20-40 kDa of PEG. 

The PK-enhancing benefits of PEG are sigmoidal, so exceeding 40 kDa of PEG 

provides little additional PK benefit and appears to increase uptake into the 

reticuloendothelial system21.  Moreover, adding less than 5 kDa of PEG appears to 

provide little PK benefit.  Notably, PEGylation also diminishes clearance of susceptible 

therapeutics by reducing proteolysis (e.g., Omontys [peginesitide]) and immunogenicity 

(e.g., Krystexxa [PEG-uricase]). 

 Important challenges are associated with PEGylation.  PEGylation usually 

reduces activity of the protein/peptide conjugate, and the polydispersity of PEG 

complicates quantitation, essentially necessitating ELISA-based quantitation.  Viscosity 

must also be considered.  We attached a 40 kDa Y-branched PEG to PIE12 and found 

that viscosity limits its solubility to about 10 mM in 50 mM HEPES, pH 7.4.  

Hydroxyethylene starch conjugation (HESylation) is an alternative strategy based on the 

same principles of PEGylation, but HES is less viscous than PEG22. 



Table 1-1.  FDA-Approved PEGylated Peptides and Proteins. 
 
 
  
 

                   
  

 
 

Year of 
FDA-

approval 

Trade-
name 

Generic 
name(s) 

Companies 
involved in 

manufacturing 

Size before 
PEGylation 
(number of 

amino acids, 
m.w.) 

Size, 
number, 
geometry 
of PEG 
chains 

Total 
molecular 

weight 

Indication Route Non-
PEGylated 

half-life 

PEGylated 
half-life 

1990 Adagen Pegademase 
bovine; PEG-

adenosine 
deaminase 

Enzon bovine 
adenosine 
deaminase              
[ADA EC 
3.5.4.4]                     

(336 aa, 42 kDa) 

11-17 
linear       
5 kDa 
PEG 

chains 

~100 kDa ADA-
associated 

SCIDS 

IM, weekly < 30 min 
IV 

3-6 days 

1994 Oncaspar Pegasparaginase; 
Pegaspargase 

Enzon L-asparaginase 
[type EC-2, EC 
3.5.1.1]    (326 

aa, 34 kDa) 

Multiple 
linear   5 
kDa PEG 

chains 

~100 kDa Acute 
Lymphoblastic 

Leukemia 

IM, no more 
than every 

14 days 

8-30 hours 
IV 

5.8 days 

2000 PEG-
INTRON 

peginterferon 
alfa-2b 

Enzon Interferon-
alpha2b   (165 
aa, 19.3 kDa) 

A single 
linear 12 
kDa PEG 

31 kDa HCV, cancer, 
MS, HIV 

Subcut., 
weekly 

8 hours IM 40 hours 

2002 PEGASYS peginterferon 
alfa-2a 

Roche; Nektar Interferon-
alpha2a    (165 
aa, 19.3 kDa) 

A single 
branched 
40 kDa 

PEG  

60 kDa HCV Subcut., 
weekly 

3-4 hours 
IV 

160 hours 

2002 Somavert Pegvisomant Pfizer; Nektar An analog of 
hGH   (191 aa, 

22 kDa) 

4-6 linear 
5 kDa 
PEG 

chains 

42-52 kDa Acromegaly Subcut., 
daily 

15-30 
hours IV 

6 days 

2002 Neulasta; 
PEG-

filgrastim 

PEG-filgrastim Amgen; Nektar G-CSF (175 aa, 
19 kDa) 

A single 
linear 20 
kDa PEG 

chain 

39 kDa Neutropenia 
during 

chemotherapy 

Subcut., 
given once 
per chemo 

cycle 

1.3-7.2 
hours IV 

15-80 
hours 



 
Table 1-1 continued.   FDA-Approved PEGylated Peptides and Proteins. 

 
 
 
 
  
 

                    
 
 
 
 
   
   
 
 
   

2004 Macugen; 
Pegaptinib 

PEG-anti-
VEGF-aptamer 

(oligonucleotide) 

Pfizer; Eyetech 
Pharm.; Nektar 

A 28-mer 
oligonucleotide 
aptamer, ~10 

kDa 

A single 
branched 
40 kDa 

PEG  

~50 kDa Wet age-
related 

Macular 
degeneration 

Intravitreous 
injection into 

eye, once 
every 6 wks. 

ND 10 day 
plasma 
half-life 

2005 Cimzia; 
CD870 

PEG-anti-TNF-
Fab; 

certolizumab 
pegol 

UCB; Nektar Anti-TNF-Fab 
(light chain 214 
aa, heavy chain 
229 aa; 51 kDa) 

A single 
branched 
40 kDa 

PEG  

91 kDa Crohn’s 
Disease 

Subcut., 
once every 4 

weeks 

 14 days 

2007 MIRCERA PEG-Epoetin-
beta 

Roche; Nektar Epoetin-beta  
glycoprotein             
(165 aa,   30 

kDa) 

A single 
linear 30 
kDa PEG 

chain 

60 kDa Anemia in 
chronic kidney 
disease (CKD) 

IV or 
Subcut., 

once every 
2-4 weeks 

~7 hours 134 hours 

2010 Krystexxa Pegloticase 
(previously 

Puricase/PEG-
Uricase) 

Savient 
Pharmaceuticals; 

Nektar 

Tetrameric 
enzyme uricase;                        

34 
kDa/monomer =    
136 kDa tetra. 

8-10 10 
kDa 

mPEG 
chains per 
monomer 

~497-540 
kDa 

Gout 8 mg IV 
every 2 
weeks. 

4 hours 154-331  
hours 

2012 Omontys 
(formerly 
Hematide) 

PEG-EPO-
mimic 

Affymax, Nektar EPO-mimicking 
peptide (14 aa 
dimer, 28 aa 

total, ~4 kDa) 

A single 
branched 
40 kDa 

PEG  

~44 kDa Dialysis and 
non-dialysis 

CKD patients 
with PRCA 

Subcut. once 
every 3-4 

weeks 

Minutes Up to 60 
hours 
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Lipid Conjugation 

 Lipid conjugation is another validated approach for improving half-life.  

Endogenous free fatty acids (FFAs) bind strongly (mid to low nM KD
23-25) to human 

serum albumin (HSA), which circulates with an impressive 19 day half-life26.  Thus, 

conjugating a fatty acid (acylation) to a peptide reduces clearance by promoting HSA 

association.  The approved products Victoza (liraglutide) and Levemir (insulin detemir) 

utilize this strategy, employing palmitate and myristate respectively. 

 Cholesterol conjugation is an alternative lipidation strategy.  Cholesterol is 

reported to have a 25-435 µM affinity for albumin27,28 and a strong but reversible affinity 

for cell membranes9.  Cholesterol conjugation has been show to significantly improve PK 

properties, as well as localize antiviral peptides to lipid rafts, greatly enhancing their 

antiviral potency29.  However, PK studies of cholesterol conjugates have not been done in 

humans who possess a unique circulating lipid profile, so there may be a significant 

difference in the way cholesterol conjugates are shuttled and interact with circulating 

lipid carriers in humans compared to rodents. 

 

Albumin Binding Peptides and Molecules 

 Since acylation has demonstrated reliable PK-enhancement through albumin 

interaction, albumin-binding peptides and molecules have emerged as alternative PK-

enhancing techniques.  Genentech’s SA21 is the best studied of this group.  SA21 is an 

18 amino acid disulfide-constrained peptide (Ac-RLIEDICLPRWGCLWEDD-NH2) 

with 467 nM affinity for HSA and exhibits a 2.3 hour terminal half-life after IV injection 

in rabbits30.  A similar disulfide-bonded peptide with micromolar affinity has been 
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identified by Dyax after screening a CX10C phage library31, while an extremely high 

affinity (50 fM) albumin-binding protein has been engineered by optimizing (also by 

phage display) a bacterially-derived nanomolar affinity 46-residue three-helix bundle32.  

Finally, “Albu tag” is a unique small molecule that displays a high affinity for albumin 

(330 nM at 37 °C) and a maleimide moiety for thiol-mediated peptide conjugation33. 

 

Direct Albumin Conjugation 

 As mentioned, albumin circulates with an impressive 19-day half-life in humans. 

Albumin enjoys this half-life by avoiding renal filtration.  For globular proteins, the size 

limitation for avoiding glomerular filtration is ~70 kDa, and although albumin is slightly 

below this size threshold (66.5 kDa), it avoids filtration because it is highly negatively 

charged and experiences electrostatic repulsion from the highly negatively charged 

glomerular basement membrane of the kidney.  By comparison, IgG (150 kDa), one of 

the largest circulating proteins, circulates with a half-life of 21-27 days (subclasses 1, 2 

and 4; subclass 3 has a half-life of only 7 hours)34. 

Rationally, if albumin-binding moieties increase half-life, direct conjugation to 

albumin should increase half-life even further.  To this end, three strategies have been 

described.  Two strategies involve thiol-mediated conjugation to the uniquely exposed 

Cys-34 in the Ia subdomain of albumin.  The difference between them is whether 

conjugation is completed in vitro to purified HSA or a thiol-reactive prodrug is delivered 

for conjugation in vivo to circulating HSA.  The accessibility of albumin’s Cys-34 thiol 

both in vitro and in vivo is discussed by Katz et al., who note that physiologically free 

thiols are fairly rare such that side-reactions are expected to be uncommon35.  The third 
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reported strategy involves genetically linking a peptide to HSA such that a fusion protein 

can be expressed36, though such a strategy depends on recombinant expression and would 

not be suitable for D-peptides. 

 

Other PK-Enhancers 

A variety of other PK-enhancing moieties can be found in the literature.  Fc 

conjugation is a validated strategy with several approved products (e.g., Orencia, Enbrel).  

The Fc domain derived from human IgG1 increases half-life by utilizing cellular Fc 

receptors.  These receptors mediate endocytosis of Fc domains followed by a return to 

circulation37.  Moreover, Fc receptors in the lung are thought to provide an opportunity 

for trans-pulmonary delivery of peptides into circulation38. Fc domains require 

mammalian cell-line expression in order to achieve appropriate folding and 

glycosylation, although recent work has focused on mutated Fc variants to simplify 

production.39  PK-enhancing transferrin and GCSF conjugations are also reported in the 

literature but have not yet been extensively utilized.  Like Fc domains, these conjugations 

are thought to improve half-life by utilizing receptors that mediate endocytosis and 

recycling37. 

 Fuzeon has been found to contain a critical 8 amino-acid hydrophobic foot, 

WASLWNWF, which is necessary for its potency (through membrane localization) and 

half-life40.  The sequence is derived from the gp41 MPER region (Fig. 1-2).  This moiety 

is attractive as a potential PK-booster because of its short length, and because its 

generally hydrophobic sequence may enable it to function equally well in D, making it 

nondegradable. 
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 Our lab has also considered multimerization as a strategy for PK-enhancement.  

As mentioned previously, globular proteins are efficiently filtered by the kidney until 

they exceed ~70 kDa in size.  Each PIE12 peptide is ~2 kDa, and each PIE12-trimer is ~7 

kDa.  To approach 70 kDa of molecular weight, strings of monomers or trimers could be 

linked together through any number of possible geometries.  PEG linkers with multiple 

reactive groups are readily available, although their polydispersity may complicate 

studies that utilize them.  Alternatively, multimerization could be achieved using 

controlled linkages, such as poly-Lys or poly(Lys-Gly-Gly) peptide scaffolds. 

 

Depots and Drug Formulation 

Depots are an attractive and validated PK-enhancing strategy that slowly releases 

compounds over a prolonged period of time, reducing clearance, increasing drug 

exposure, and prolonging the time between doses.  For example, in the GLP-1 analog 

field, Byetta (exenatide) exhibits a 2.4 hour terminal half-life (SC) and must be 

administered twice per day, while Victoza (liraglutide) is a PK-enhanced acylated 

homologue with an improved terminal half-life of 13 hours (SC) that allows for once-

daily subcutaneous administration41,42.  However, even without the aid of PK-enhancing 

conjugations, Alkermes has co-developed Bydureon (extended release exenatide) 

utilizing their biodegradable depot formulation (50:50 poly(D,L-lactide-co-glycolide) 

polymer and sucrose), enabling an impressive once-weekly subcutaneous administration.  

It is likely that PK-enhancing conjugations (e.g., acylation or cholesterol conjugation) 

would be readily compatible with extended release depot formulations resulting in 

additive PK improvements. 
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Furthermore, drug formulation technology provides another means for improving 

half-life and bioavailability.  Cyclosporine is a classic example of peptide drug 

formulation where excipients enabled ~30% oral bioavailability43,44, although its success 

has not proven general for most peptides.  Instead, a relatively new field has emerged that 

utilizes gut permeabilizers and protease inhibitors to improve the oral bioavailability of 

peptides.  Gut permeability enhancers transiently reduce tight-junctions in the GI tract, 

allowing peptides to be absorbed paracellularly45,46.  A primary concern with these agents 

is the potential for bacterial transmission into the bloodstream.  For this reason, 

Unigene’s technology is perhaps the most promising; using a gentle and naturally 

occurring gut permeabilizer common in goat milk (acylated carnitine), peptides can 

become absorbed in the duodenum immediately following stomach evacuation, a 

relatively microbe-free environment47,48.  Other permeabilizing agents have been 

extensively reviewed45,46. 

 
 

Analytical Assay Development 
 

As we prepared for investigational new drug (IND)-enabling studies involving 

pharmacokinetics and toxicity, it was apparent that we would need a robust quantitative 

assay for plasma and tissue samples.  Pilot PK and toxicity studies are required to rank 

and select PIE12-trimer conjugates for advancement to expensive IND-enabling 

preclinical studies.  Our original approach was to develop an assay that could 

accommodate a variety of PIE12 candidates, independent of what we had conjugated to 

them (i.e., an assay based on function/binding events).  Further, we had hoped to develop 

a “homogenous” assay that required little or no sample preparation.  We wanted an assay 
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where the addition of a few reagents to a sample could produce a detectable readout.  We 

initially explored fluorescence-based assays like FRET and ELISA that have 

extraordinary sensitivity, with lower-limits of detection often below 10 nM.   

Unfortunately, we encountered a variety of unanticipated barriers, some of which 

were insurmountable.  The key problem was that unknown plasma component(s) 

interfered with our fluorescent assays and could not be removed.  The interference also 

varied from animal to animal, preventing our ability to predict or account for it.  Details 

and ideas for future troubleshooting are discussed in the Appendix.  Given these 

problems, we developed an LC/MS/MS bioanalytical assay.  Method development for 

each of our conjugates has been straightforward, allowing us to achieve lower-limits-of-

detection below 10 nM.  The PK studies conducted in Chapter 5 utilize this assay. 

It is helpful to discuss briefly some basic principles behind a triple-quad mass 

spectrometer and the general MRM (Multiple Reaction Monitoring) method (Fig. 1-5). 

The triple-quad is comprised of three quadrupoles dubbed Q1, Q2, and Q3.  Each 

quadrupole functions independently such that each can be set to allow only a chosen set 

of molecular weight/charge ratios to pass.  Preceding Q1 is the source, which ionizes 

molecules that pass through it.  Peptides usually pick up multiple charges in the source 

(e.g., each PIE12 prefers a +2 charge state, though +3 is also produced).  Q1 then filters 

the influx to allow only selected parent ions to pass.  The molecular weight range that is 

selected for Q1 is based on mass (m) per charge (z) ratios.  The Q1-selected m/z parent(s) 

then enter Q2.  Q2 is filled with a collision gas that breaks the parent ion into fragments, 

termed daughter ions, while Q3 is set to capture selected daughter ions.  The MRM 

method  utilizes  all  three  quadrupoles;  Q1 to select for a parent mass,  Q2  to  break the  
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Figure 1-5.  General Function of an LC/MS/MS Triple-Quad Mass Spectrometer.  A 
source sends ionized particles into the first quadrupole Q1.  One or more specified m/z 
ions are selected in Q1 and passed into Q2 where these parent ions collide with gas to 
produce daughter ion fragments.  Q3 passes selected daughter ions to the detector.  An 
MRM method monitors the number of counts produced by a pair of selected 
parent/daughter ions. 
 
 
 
parent into fragments, and Q3 to select for a daughter mass.  Notably, the process of 

breaking a parent ion and selecting a daughter ion reduces sensitivity by ~10-fold, but the 

signal-to-noise ratio improves dramatically, making the MRM method ideal for removing 

potentially confounding signals (e.g., from plasma samples).  In general, triple-quads are 

considered “unit” resolution instruments (i.e., 1 m/z resolution). 

 
 

FDA Approval Considerations 
 

Precedent is an obvious benefit when pursuing FDA approval.  As such, it is 

worth mentioning two IND’s that have been filed for full-D peptide therapeutics.  

Genzyme’s orally-administered Delmitide (NH2-D-Arg-D-Nle-D-Nle-D-Nle-D-Arg-D-

Nle-D-Nle-D-Nle-D-Gly-D-Tyr-CONH2)49,50, currently under investigation for ulcerative 

colitis, and Allelix’s IV-administered CXCR4 inhibitor ALX40-4C (N-acetyl-nona-D-

arginine amide)51 have both been tested and found to be well tolerated in human trials.  

These precedents reduce concerns over a possible generalized innate toxicity from D-

peptides. 
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Summary 

Chapter 2 reviews the peptide therapeutics field with special emphasis on utilizing 

protease-resistant design for the discovery of HIV inhibitors.  Chapter 3 describes how 

mirror-image phage display and structure-assisted design were utilized in the discovery 

of PIE12.  Early oligomerization efforts are also described.  Chapter 4 recounts the 

development of our powerful scaffold-based design for rapid synthesis of PIE12-trimer 

with membrane-tethering cargoes.  PK-enhancing designs and related PK studies are 

portrayed in Chapter 5.  Studies underway and immediately pending are discussed in the 

future directions in Chapter 6.  Finally, efforts and lessons involving development of a 

FRET and ELISA bioanalytical assay are illustrated in the Appendix. 
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INTRODUCTION

I
n drug discovery and development, peptide therapeutics

have many advantages. Their polymeric nature makes

synthesis straightforward, especially when compared

with the synthetic schemes typically utilized for small

molecules. Peptides are generally easier and less expensive

to produce than recombinant proteins. Peptide therapeutics

can also be more specific (and less toxic) than small mole-

cules and excel at the challenging problem of disrupting large

protein–protein interaction interfaces (i.e., ‘‘undruggable’’

targets). Due to advancements in genomics and proteomics,

a plethora of natural peptide ligand sequences for important

drug targets are available and provide a sensible starting

point for the rational development of therapeutic com-

pounds. In addition, a host of mature and emerging library-

based screening techniques provides a means to rapidly dis-

cover novel peptide sequences with specific binding proper-

ties.

Despite these enticing advantages, a major problem limit-

ing development of peptide therapeutics is their proteolytic

sensitivity and associated delivery challenges. Synthetic thera-

peutic peptides are typically relatively unstructured and are

therefore rapidly degraded in vivo, often with half-lives on

the order of minutes.1 Proteolysis commonly occurs in the

GI lumen, intestinal brush border, enterocytes, hepatocytes,

antigen-presenting cells, and plasma. Because of this in vivo

fragility, oral delivery is generally not possible, necessitating

frequent dosing by injection. Even when delivered parenter-

ally, degradation in the blood combined with rapid renal fil-

tration often results in drugs that are expensive, inconven-

ient, and unpleasant to administer.

Protease-resistant peptides would address many of these

limitations. One of the most promising approaches is to

modify the chemical structure of the peptide backbone (pep-

tidomimetics).2 Modifications that have been shown to sub-

stantially decrease proteolysis include N-methylation, ester
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linkages (a-hydroxy acids), insertion of additional methylene

groups into the backbone (b-amino acids, c-amino acids

etc.), and the use of D-amino acids. More significant changes

to the peptide backbone include peptoids, azapeptides,

oligoureas, arylamides, and oligohydrazides.2–4

In this review, we describe how modified peptide back-

bones can be used to design protease-resistant inhibitors

with a special focus on the high-priority problem of design-

ing protease-resistant HIV entry inhibitors. Although these

modified backbones effectively address protease sensitivity,

each is associated with a set of design challenges using

rational design or library screening techniques. This review

will not cover traditional strategies to reduce protease sensi-

tivity, e.g., peptide capping, sequence alteration at susceptible

sites, cyclization, or stapling, which have been extensively

reviewed elsewhere.5

INHIBITING HIV ENTRY
An estimated 34 million people worldwide are infected with

HIV, the causative agent of AIDS, resulting in nearly 2 mil-

lion deaths per year and over 25 million cumulative deaths

(UNAIDS). Dramatic progress has been made in reducing

mortality since the inception of antiretroviral therapy against

HIV enzymes reverse transcriptase, protease, and recently

integrase. However, the relentless development of drug resist-

ance necessitates ongoing development of therapeutics that

target other stages in the viral lifecycle. In particular, there

have been extensive efforts to develop potent, broadly active,

and economical entry inhibitors for the prevention and treat-

ment of HIV/AIDS.6

The current HIVentry pathway model is shown in Figure 1.

Viral entry into host cells is mediated by the trimeric HIV en-

velope (Env) glycoprotein. Env contains the noncovalently

associated surface gp120 and transmembrane gp41 subunits.

gp120’s primary function is to interact with cell receptors that

mark HIV’s preferred target cells (e.g., T-cells and macro-

phages), while gp41 induces membrane fusion. Host cell inter-

actions are mediated by gp120 through association with the

primary cell receptor (CD4) and chemokine coreceptor (either

CXCR4 or CCR5, depending on viral tropism). Upon gp120

engagement with cell receptors, a complex series of structural

rearrangements in gp120 propagate to gp41, activating it for

membrane fusion (reviewed by Ref. 7). At this stage, gp41

forms an extended prehairpin intermediate containing an

N-terminal trimeric coiled coil (N-trimer) and C-terminal

region (C-peptides) of unknown structure. Fusion is driven by

collapse of this intermediate as three helical C-peptides pack

anti-parallel to the N-trimer (trimer-of-hairpins formation),

drawing the viral and host cell membranes into close proximity.

A similar fusion mechanism is utilized by many other enveloped

viruses, including influenza, Ebola, and paramyxoviruses.7

C-Peptide Inhibitors
This mechanism suggests that peptides derived from the

N- and C-peptide regions of gp41 could prevent viral mem-

brane fusion in a dominant-negative manner by preventing

trimer-of-hairpins formation. Indeed, both N-and C-pep-

tides inhibit HIV entry.8–14 The N-trimer/C-peptide interac-

tion is predominantly mediated by conserved interactions

between the hydrophobic face of helical C-peptides and a

hydrophobic groove formed between helices in the N-trimer.

C-peptide inhibitors are more promising drug candidates

because of their higher potency and better solubility com-

pared with N-peptide inhibitors.

C-peptide inhibitors were first identified through screens

of gp41-derived peptides.9,11 Fuzeon (Enfuvirtide, T-20) is a

36 amino acid L-peptide taken from the gp41 C-peptide

region. Fuzeon inhibits HIV entry with nM potency and

reduces viral loads by 2 logs,15 leading to its approval as the

first HIV entry inhibitor in 2003. Unfortunately, Fuzeon’s

clinical use has been limited by its short half-life. Fuzeon

requires injection at very high doses (90 mg, twice daily) to

overcome its proteolysis and rapid renal filtration. These

practical problems result in a drug that is expensive

(*$30,000 per year), can cause painful injection site reac-

tions, and is only approved for patients experiencing treat-

FIGURE 1 HIV entry pathway. HIV Env is composed of surface
(gp120, green) and transmembrane (gp41, blue) subunits. Fusion is
initiated by binding to CD4 and a chemokine coreceptor, which
activates gp41 and induces formation of the prehairpin intermedi-
ate. In this intermediate, the gp41 N-terminal region forms a tri-
meric coiled coil (N-trimer, gray), which is separated from the C-
peptide region (dark blue). This intermediate slowly collapses to
form a trimer-of-hairpins structure that brings the viral and cell
membranes into close apposition, leading to fusion. C-peptide and
D-peptide inhibitors bind to the N-trimer, preventing trimer-of-
hairpins formation and membrane fusion.

432 Weinstock et al.

Biopolymers (Peptide Science)  



    
 

 

33 

ment failure due to multi-drug resistance (‘‘salvage therapy’’).

Fuzeon’s high dosing requirements and in vivo fragility also

limit options for less frequent dosing via depot formulation.

The gp41 ‘‘Pocket’’ Region
At the N-trimer’s C-terminus lie three symmetry-related

deep hydrophobic pockets. Each pocket has a volume of

*400 Å3 that is filled primarily by three C-peptide residues

(Trp628, Trp631, and Ile635)16,17 (Figure 2). The pocket is a

promising inhibitory target because of its critical importance

in membrane fusion and very high level of conservation

across diverse HIV strains.16,18 Mutations in the pocket are

often not well tolerated due to the requirement for compen-

satory mutations in the C-peptide region to restore binding.

In addition, the pocket region is encoded by the structured

RNA region of the Rev-responsive element (RRE), which

contains a signal critical for nuclear export of viral RNA.18

Interestingly, extensive efforts by numerous groups to dis-

cover small molecule pocket-binding inhibitors have had

limited success, generally producing inhibitors with modest

potency and/or significant toxicity.19–23 Based on this body

of work, the gp41 pocket appears to be ‘‘undruggable’’ by

small molecule inhibitors, a common problem for extended

protein–protein interaction interfaces.

Fuzeon was discovered before the gp41 6-helix bundle

crystal structure and does not bind to the gp41 pocket. How-

ever, next generation C-peptide inhibitors (e.g., C34, T-1249)

do include pocket-binding residues and enjoy superior

potencies and resistance profiles.24–26 The follow-on com-

pound to Fuzeon, T-1249, performed very well in clinical tri-

als, but was not developed further due to unspecified formu-

lation problems, which we speculate includes challenges in

the economic synthesis of this 39-residue peptide and a

requirement for four 1 mL injections, once per day, as used

in a phase I/II trial.25

Fuzeon and T-1249 show that a peptide fusion inhibitor

can be very effective against HIV, but the impact of such

drugs will be limited until the problems of short half-life and

high dosing (and the resulting high cost) can be overcome.

In this review, we focus on two distinct strategies that have

yielded promising protease-resistant peptide fusion inhibi-

tors with the potential to overcome Fuzeon’s in vivo fragility.

RATIONAL DRUG DESIGN WITH MODIFIED
PEPTIDE BACKBONES
While there is much interest in the de novo development of

peptides with defined structural and functional characteris-

tics, this work is hampered by limitations in currently avail-

able modeling strategies. Thus, as illustrated below, most suc-

cessful rational designs of protease-resistant peptides start

from sequence and structural information from existing pep-

tide ligands.

In the realm of rational design of modified peptide thera-

peutics, b-peptides and mixed a/b-peptides are among the

most promising. b-peptides are composed of b-amino acids,

which contain an extra backbone methylene group (between

FIGURE 2 One pocket, two binding solutions. The gp41 pocket (from pdb code 3L35) is shown
with (A) the natural gp41 C-peptide (pdb code 1AIK) and (B) D-peptide PIE12 (pdb code 3L35).
Structures were aligned on the 17 pocket-forming residues from gp41 and rendered using Pymol.
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the amino and a-carbon, specified as a b2-amino acid, or

between the carboxylate and a-carbon, specified as a

b3-amino acid) (Figure 3). Short b-peptide sequences can

adopt robust secondary structures analogous to a-helices
formed by a-amino acids. If a natural helical peptide ligand

is known, a b-peptide mimic can be generated by the precise

placement in three dimensions of key side chains onto a

b-peptide scaffold. Two b-peptide scaffolds that have been

extensively utilized are the 12-helix and 14-helix, named after

the number of atoms between hydrogen bonding groups

(these and other b-residue-containing scaffolds are reviewed

elsewhere3,27–30). The specific structural motif adopted by a

particular b-peptide is dictated by the nature of the substitu-

ent b-amino acids.31 b-peptides composed of monosubsti-

tuted, acyclic b-amino acids or cyclic six-member ring

b-amino acids preferentially adopt the 14-helix structure,

while the 12-helix structure is favored by peptides composed

of cyclic five-member ring b-amino acids. The helical param-

eters of the 12- and 14-helices are discussed and compared

with a-helices in Refs. 27 and 31.

In a 14-helix composed of b3-amino acids, side chains at

residues i, i+3, and i+6 are presented along the same face of

the helix, and are reasonably superimposable with side chains

at residues i, i+4, and i+7 of an a-helix.32 This property can

be exploited to display epitopes that mimic an a-helical face
and has been applied to the development of low-mid lM

HIV entry inhibitors that bind to the gp41 pocket region.33,34

In an analogous approach, b-peptide inhibitors of HCMV

entry were developed using the 12-helix scaffold.35 To map

an a-helix epitope onto the 12-helix, side chains at positions

i, i+4, and i+7 on the a-helix are placed at positions i, i+3,

and i+5 on the 12-helix. Although acyclic residues diminish

12-helix propensity, they provide the easiest avenue for side

chain attachment, so a minimum number of acyclic b2 or b3

residues were introduced into the structure at specific points

to mimic side chain presentation of the native a-helix. This
approach enabled the rapid discovery of inhibitors with

modest potency, but its main challenge is the lack of a route

forward, by rational design or high-throughput screening, to

optimize these initial hits.

A sequence-based approach utilizing mixed a/b-peptides
has been applied to develop an HIV entry inhibitor that

structurally and functionally mimics C-peptides (*10 turn

a-helix).36 In this approach, a subset of C-peptide residues

were strategically replaced with homologous b3-amino acids

following an aabaaab pattern, which, despite the additional

methylene units, does not significantly alter secondary struc-

ture of the helix.37 On folding, this pattern generates an a-
helix-like conformation with a b-residue stripe that runs

down the side of the helix distal to the interaction surface,

minimizing disruption of the binding interface. On replacing

11 of the 38 residues with b3-amino acids, the resulting a/b-
peptide had >10,000-fold diminished affinity for its binding

target relative to the a-peptide counterpart.
As a second step in the design, specific b3-residues were

replaced by cyclic b-residue homologues. The cyclic residues

were incorporated to reduce the entropic penalty associated

with helix formation due to the inherent torsional flexibility

of b3-residues. b3 analogues of alanine in the a/b-peptide
were replaced with a nonpolar, five-member ring constrained

b-residue (ACPC), while b3 analogues of arginine were

replaced with a polar, heterocyclic analogue of ACPC (APC).

These replacements improved affinity by *400-fold over the

peptide with acyclic residues. Although the binding affinity

never recovers to that of the original a-peptide ligand, the

resulting a/b-peptide was nearly as potent as the a-peptide,
but with the added advantage of being 280-fold more resist-

ant to proteolytic degradation by proteinase K. The apparent

discrepancy of having diminished binding affinity, yet a-pep-
tide-like potency is likely due to the potency plateau

observed for many HIV entry inhibitors (see the discussion

of the ‘‘resistance capacitor’’ below).

The original report indicated that the N-terminal Trp-

Trp-Ile motif of the a/b-peptide does not engage the C-ter-

minal hydrophobic pocket of gp41, but subsequent crystallo-

graphic analysis indicated that that the pocket-binding motif

FIGURE 3 Peptidomimetic structures.
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on the a/b-peptide is indeed able to engage the pocket. The

authors suggest that the lack of engagement in the original

structure was an artifact caused by crystal packing, and that

the newer structure more faithfully portrays the binding of

the a/b-peptide (see discussion in supplementary materials

of Ref. 38).

GENETICALLY ENCODED LIBRARY-BASED
SCREENS
An alternative to rational design is screening of random pep-

tide libraries. These high-throughput methods identify novel

peptides with a desired function (typically binding to an im-

mobilized target). Commonly used screening techniques

include phage, ribosome, and mRNA display, but these

methods all rely on cellular translation machinery and are

therefore not yet fully compatible with peptidomimetics in

their standard forms. Though there have been many advan-

ces and refinements in the field of synthetic peptidomimetic

library generation (e.g., split and pool synthesis, physically

addressable synthesis by photolithography), these synthetic

libraries are typically limited to <106 members39 compared

with the billion to trillion member libraries that can be gen-

erated with genetically encoded libraries.

D-Peptides
D-peptides are entirely composed of D-amino acids, which

are mirror-image stereoisomers of the L-amino acids found

in naturally occurring L-peptides. D-Peptides are a promising

therapeutic platform because they are highly resistant to nat-

ural proteases.40 In elegant work by the Kent group,41 D-HIV

protease was shown to cleave only D-peptide substrates,

showing that proteases exhibit highly stereospecific substrate

discrimination.

The symmetry relationship between L- and D-peptides can

be exploited in mirror-image display techniques42 in which a

mirror-image version of the target molecule is generated by

solid-phase synthesis using D-amino acids. Randomized ge-

netically encoded L-peptide libraries are then screened against

this D-target. The winning L-peptides are identified by DNA

sequencing and then the corresponding D-peptides are syn-

thesized. By symmetry, the D-peptide will have the same ac-

tivity toward the natural L-target as the L-peptide had against

the mirror-image D-target (Figure 4).

A major limitation of mirror-image display is the require-

ment for chemical synthesis of the D-target. Synthesis of D-

peptides is currently done using traditional solid phase pep-

tide synthesis (SPPS).43 Routine use of SPPS chemistries for

the production of peptides is limited to *50 residues,

though this limit varies widely depending on the required

purity and sequence/structure properties of the peptide in

question (e.g., extended beta-strand peptides can aggregate

during SPPS). Despite these challenges, syntheses of very

long peptides have been reported (e.g., the synthesis of the

140-residue IL-3 protein44).

Larger D-peptide targets can be obtained using peptide li-

gation techniques to link multiple synthesized peptide frag-

ments. A variety of ligation chemistries have been developed

(see Ref. 45 for a very thorough review), but the most com-

mon technique is cysteine-mediated native chemical ligation

(NCL). NCL requires the presence of an N-terminal cysteine

on one peptide fragment and a C-terminal thioester on the

other (see Ref. 46 for a summary of popular recombinant

and synthetic methods for the generation of peptides bearing

a C-terminal thioester) and results in the ligation of the two

segments via a native peptide bond. SPPS of thioester-con-

taining peptides has traditionally been carried out via Boc

chemistry, but recent advances have enabled the robust syn-

thesis of thioesters using the easier and more popular Fmoc

chemistry47 and commercially available Dawson Dbz resin

(Novabiochem). Other means of accessing peptide thioesters

via Fmoc chemistry have been recently reviewed.48

By strategically utilizing masked N-terminal cysteines

(e.g., thioproline), multiple peptide fragments can be joined

together sequentially or in a single-pot reaction.49–53 This

strategy has been used in the D-peptide synthesis of the 81-

residue snow flea antifreeze protein.54 NCL leaves a Cys resi-

due at each ligation site, but this ‘‘scar’’ can be removed by

desulphurization of the cysteine residue to alanine.55,56 Fur-

thermore, several creative adaptions of NCL allow residues

other than an N-terminal cysteine to be present at the liga-

FIGURE 4 Mirror-image phage display. Phage bearing L-peptides
are panned against a mirror-image protein (D-target). By symmetry,
D-versions of binding peptides will bind to the natural L-targets.
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tion junction, such as N-terminal, thiol-containing auxiliary

groups that can be removed via reduction,57 UV irradia-

tion,58,59 or treatment with acid60,61 after they have facilitated

peptide bond formation. In another approach, modified ver-

sions of phenylalanine,62 valine,63 or lysine64 bearing a thiol

substituent were incorporated at the N-terminus of a peptide

fragment and yielded the respective native amino acid at the

ligation site following NCL/desulfurization.

Once a D-target has been synthesized, it can be used in

conjunction with mirror-image display to screen peptide

libraries for novel sequences of interest (see our work on

HIV below and Ref. 65). The unifying feature that underlies

all of the library-based display techniques discussed here is

the physical linkage of a peptide to its corresponding geno-

type (RNA or DNA). This linkage allows the library to be

subjected to multiple rounds of interrogation/library amplifi-

cation leading to enrichment of sequences that bind to a tar-

get of interest. In these techniques, library diversity is gener-

ated in the nucleotide coding sequence, and cellular machin-

ery efficiently translates this information into a peptide

library. The display techniques most suitable for screening

high-diversity libraries can be broken down into two broad

categories: viral display and cell-free display systems

(briefly described here, but for a more extensive review see

Refs. 66–70).

Viral Display
Phage display continues to be the workhorse of the viral dis-

play techniques because of its ease of use, versatility, and low

cost. Since phage display requires a bacterial transformation

step, library size is typically limited to *109–1010. The most

commonly utilized phage display system is the nonlytic M13-

family filamentous phage, in which the peptide library is

expressed as an N-terminal fusion with the pIII minor coat

protein. Up to five copies of pIII are present on the phage

surface, making both polyvalent and monovalent display

techniques possible. Polyvalent display provides a strong

avidity effect, which is highly advantageous for screening na-

ı̈ve peptide libraries containing only rare low affinity binders.

In contrast, monovalent display reduces avidity and allows

for more stringent selection of peptides with high affinity. In

an early round of phage display, library diversity is high, but

each sequence is represented by only a few phage. As with

any library display method, the application of selection pres-

sure must be sufficient to drive selection for tighter binders,

but not so severe as to eliminate rare tight binding sequences

due to stochastic factors. In later rounds, as phage library di-

versity drops and each remaining sequence is represented by

numerous phage, selection pressure can be steadily increased.

Insufficient selection pressure can select for ‘‘cheater’’ phage

that do not bear authentic tight binding peptides (e.g., phage

with growth advantages).

Besides filamentous phage display, techniques employing

various eukaryotic viruses, including retroviruses, baculovi-

rus, Adeno-associated virus, and Adenovirus have been or

are currently being developed for displaying peptide libra-

ries.67 Other display techniques (e.g., bacterial, yeast, or

mammalian cell display) have several advantages over phage

display (e.g., more sophisticated folding machinery, post-

translational modifications, ability to use FACS sorting), but

are more complex and typically limited to less diverse libra-

ries (reviewed by Refs. 66, 67, 71, 72).

Cell-Free Display
One of the major advantages of cell-free techniques (reviewed

by Ref. 73) is that they are carried out in vitro. Because a

transformation step is not required, library diversities >1012

can be generated.69 Due to the proposed correlation between

library diversity and the affinity of selected ligands, this large

increase in library diversity over typical viral or cell surface

display systems provides a distinct advantage.

Ribosome display74,75 capitalizes on the fact that it is pos-

sible to stall the in vitro translation of a polypeptide so that

the ribosome remains assembled and attached to the mRNA

transcript and the nascent translated polypeptide. This

mRNA-ribosome-polypeptide ternary complex serves to link

genotype to phenotype and can be panned against a target to

isolate sequences of interest. The ternary complex can then

be eluted and dissociated with EDTA, allowing for the isola-

tion of the original mRNA transcript.

Alternatively, RNA display76 links phenotype to genotype

by connecting an mRNA sequence directly to the peptide it

encodes. This linkage is accomplished by chemically attach-

ing the antibiotic puromycin to the 3’ end of the RNA via a

DNA linker. As the mRNA is being translated, the ribosome

will stall once it reaches the DNA linker, allowing puromycin

to enter the ribosomal A site, where the ribosome catalyzes

covalent attachment to the recently translated polypeptide.

This peptide–RNA complex can then be subjected to panning

against a specific target.

While in vitro display techniques that link the peptide

phenotype to an RNA genotype overcome many of the limi-

tations of phage display, the instability of RNA molecules

along with other technical challenges fundamental to these

techniques has limited their application to a relatively small

number of expert laboratories. To address these challenges,

techniques that link the library peptides directly to their

encoding DNA have recently been developed.
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CIS display (Isogenica) exploits the unique activity of

RepA, a bacterial plasmid DNA-replication initiation pro-

tein.77 RepA is a cis-acting protein that tightly binds to the

origin of replication (ori) on the plasmid from which it was

expressed. A stretch of DNA between the sequence that enco-

des RepA and the ori known as the CIS element contains a

rho-dependent transcriptional terminator that is thought to

stall the RNA polymerase during transcription of RepA. The

current model holds that this delay allows the newly synthe-

sized RepA protein emerging from the ribosome to interact

with the CIS element, which subsequently directs RepA to

the ori DNA. Peptide libraries can be fused to the N-terminus

of RepA, thereby creating a link between phenotype and the

DNA genotype. Like other in vitro techniques, CIS display

has the capability to accommodate peptide libraries much

larger than those possible for phage display. In one exam-

ple,77 a library of >1012 randomized 18-mer peptides was

constructed and was used to isolate sequences that bound to

disparate targets. In a similar approach, DNA sequences

encoding randomized peptide libraries are fused to the bacte-

riophage P2A gene. P2A is an endonuclease involved in the

rolling circle replication of bacteriophage P2 DNA. P2A

becomes covalently attached to the same DNA molecule

from which it was expressed, linking phenotype to genotype.

This technique has been used in a pilot study to select single-

chain antibodies from a 107-member library and may be suit-

able for screening much larger libraries.78

D-PEPTIDE INHIBITORS OF HIV ENTRY
Here we describe the history of our potent D-peptide inhibi-

tors of HIVentry, developed in the Kim and Kay laboratories.

Initially, mirror-image polyvalent phage display was used to

screen naı̈ve peptide libraries of various lengths and geome-

tries for binding to an HIV N-trimer pocket mimic

(IQN17).18 Pocket-specific binding was only observed in di-

sulfide-constrained 10-mer sequences (CX10C) containing an

EWXWL consensus sequence. An initial group of *10 win-

ning sequences were validated by measuring their binding to

the desired target and several negative control targets

(mutated or missing pockets) to demonstrate pocket-specific

binding.

Validated D-peptides inhibited HIV entry (lab strain

HXB2) with IC50 values ranging from 11 to 270 lM.18 A co-

crystal structure of one of the higher affinity D-peptides

(D10-p1) in complex with IQN17 shows that D10-p1 con-

tains two short left handed a-helical segments flanking a turn

imposed by the disulfide constraint. The binding interface

between the hydrophobic pocket of IQN17 and D10-p1 is

mediated by residues in the C-terminal a-helix, with residues

in the EWXWL consensus motif making the largest contribu-

tions. Comparison of the D10-p1/IQN17 crystal structure to

the native post-fusion gp41 structure17 reveals that critical

residues for binding in D10-p1 are very similar in chemical

character to those of the natural C-peptide ligand (primarily

W628, W631, and I635), but adopt distinct conformations

due to their opposite chirality.

Due to library diversity limitations, the first-generation

library only surveyed about one in a million possible sequen-

ces.18 The identification of a strong EWXWL consensus

sequence allowed us to fix these four residues to produce a

‘‘constrained’’ library with only six randomized residues

(*109 possible sequences). Panning this library produced

*4-fold more potent inhibitors.79

Surprisingly, an 8-mer (CX8C) was also among the win-

ning sequences. Since 8-mers were not part of the library

design and likely arose from rare replication errors, their rel-

ative success suggested that the 8-mer geometry might pro-

vide a better pocket-binding solution. Our crystal structure

of the first identified 8-mer, PIE1 (pocket-specific inhibitor

of entry), bound to IQN17 reveals that the key pocket-bind-

ing residues (WXWL) adopt nearly identical positions within

the pocket as seen with D10-p1, leading to very similar bind-

ing interfaces despite PIE1’s reduced length.79 The key differ-

ence between PIE1 and D10-p1 is a more compact D-peptide

structure with a tighter hydrophobic core devoid of water.

PIE1 has a D-Pro at position 8 that likely aids making the

tighter turn necessary for circularization forced by the

shorter disulfide-constrained loop.79

To completely explore 8-mer sequence space, a new library

was generated with the core consensus sequence WXWL

fixed (CX4WXWLC). While screening this library using tra-

ditional solid-phase phage display, we observed that polyva-

lency made it difficult to distinguish modest (lM) and tight

(nM) binders. Solid-phase target presentation is advanta-

geous for selection of weak initial binders from a naı̈ve

library, but problematic for identifying strong binders in a

sea of modest binders since all binders are strongly retained

on the high-density target surface. Moving the binding reac-

tion into solution (solution-phase phage display) reduces

inter-target avidity and allows additional selection pressure

by reducing target concentration through rounds of pan-

ning.80 Despite reduced inter-molecular avidity, solution-

phase phage were still found to have dramatically higher

binding affinities in the context of the panning than expected

based on KD values of the derived D-peptides, likely due to

intra-molecular avidity on the trimeric target. To overcome

this barrier, an L-peptide version of PIE279 (identified during

earlier rounds of solution-phase phage display) was

employed as a soluble competitor for subsequent rounds of
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panning. Increased selection pressure was applied by escalat-

ing PIE2 concentrations, leading to the discovery of PIE7,

which is *15-fold more potent than D10-p1 (IC50 ¼ 620

nM, HXB2 strain).

Our co-crystal structure of PIE7 in complex with IQN17

suggested that further gains in binding affinity could be

made through optimization of the residues outside the disul-

fide bond, which make significant gp41 contacts.79 Initially,

these four ‘‘flanking’’ residues outside the disulfide bond

(Gly–Ala on the N-terminus and Ala–Ala on the C-termi-

nus) were not varied due to library cloning restrictions. We

redesigned the phage display vector to relocate the cloning

sites and allow randomization of the flank residues. After

four rounds, PIE12 (HP-[PIE7 core]-EL) was identified with

*20-fold improved potency over PIE7. The PIE12/IQN17

crystal structure (Figure 2) reveals that PIE12’s improved

binding is likely due to ring-stacking interactions of D-His1

and D-Pro2 with the pocket residue Trp571 and burial of an

additional 50 Å2 hydrophobic of surface area by D-Leu15.81

Beyond the changes in the flanking regions, the central core

structure is unchanged from PIE7.

Crosslinking and the Resistance Capacitor
After battling the confounding effects of avidity throughout

our phage display screens, we hoped to re-introduce avidity

to boost the potency of our D-peptides. Our D-peptide/N-

trimer crystal structures reveal the precise relationship

between neighboring D-peptides binding to the three symme-

try-related pockets. Using this information, we used discrete

polyethylene glycol (PEG) crosslinkers to generate dimeric

and trimeric D-peptides,79 which showed dramatically

improved antiviral potency (up to 2000-fold) over mono-

meric D-peptides.79,81 PIE12-trimer, our lead inhibitor, is

*30-fold more potent than Fuzeon and inhibits a diverse

panel of the most common circulating HIV strain subtypes

worldwide in the high pM—low nM range.81

Interestingly, we encountered a limit to the potency gains

that could be achieved by monomer affinity optimization

and crosslinking. We hypothesized that this potency plateau

was imposed by the limited time window available for inhibi-

tor binding (target is only available in the transient pre-hair-

pin intermediate) and the inhibitor association rate (limited

by diffusion), as previously observed for the pre-hairpin in-

termediate inhibitor 5-helix.82 Although this potency limit

would prevent us from designing more potent inhibitors, we

hypothesized that ‘‘over-engineering’’ our inhibitors (i.e.,

continuing to improve inhibitor binding despite a lack of

corresponding improvement in potency) would endow them

with a reserve of binding energy that would stall the develop-

ment of resistance mutations. We predict that this ‘‘resistance

capacitor’’ would also greatly delay the emergence of resist-

ance by eliminating the selective advantage conferred by

these mutations (i.e., severing the link between affinity and

potency). Only a profoundly disruptive mutation would

escape the resistance capacitor. In support of this hypothesis,

we were only able to identify high-level PIE12-trimer resist-

ance after 65 weeks of viral passaging in the presence of in-

hibitor, compared with*3 weeks for Fuzeon.81 As predicted,

PIE12-trimer was also able to absorb the impact of earlier-

generation D-peptide resistance mutations.

PROTEASE-RESISTANT PEPTIDES FACE
OTHER PHARMACOKINETIC CHALLENGES
Reduction of peptide susceptibility to proteases increases pep-

tide longevity, but another major threat to serum half-life is

rapid clearance via renal filtration. For globular proteins, the

glomerular filtration size limit is*70 kDa. Although albumin

is slightly smaller, it avoids filtration because of electrostatic

repulsion from the highly negatively charged glomerular base-

ment membrane. Albumin is the smallest major unfiltered

protein, efficiently circulating in the bloodstream with a half-

life of approximately 19 days in humans.83 The small size of

peptide therapeutics means that an additional level of design

is required to reduce renal filtration and realize the full bene-

fits of protease resistance. Several common PK optimization

strategies suitable for peptides are briefly described below.

PEG is a hydrophilic polymer commonly used for protein

conjugation. Adding PEG to a protein has been one of the

most clinically successful strategies for improving pharmaco-

kinetics.84 Early studies on the effects of PEG size on biodis-

tribution revealed that good serum retention is achieved

between 40 and 60 kDa, while exceeding this range resulted

in increased uptake and accumulation within the reticuloen-

dothelial system.85 Thus, the PEGylation field has largely

adopted the strategy of adding *40 kDa of PEG weight to

peptide and small protein therapeutics. PEG is extensively

hydrated such that its hydrodynamic radius is much larger

than expected from its molecular weight. Furthermore, dis-

tributing the weight of the PEG polymer in a branched ge-

ometry improves half-life and reduces steric interference.86

PEG conjugation can also be reversible (e.g., an ester link-

age), creating a circulating depot from which the therapeutic

is cleaved over time (e.g., in case drug activity is adversely

affected by PEG conjugation).87,88 Limitations of PEGylation

include steric interference with binding, long-lived accumu-

lation in renal tubule cells, viscosity, and polydispersity. An

alternative approach uses a hydroxyethyl starch polymer

(HESylation) to reduce renal filtration.89
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Albumin binding (covalent or noncovalent) is another

recently validated approach for prolonging serum half-life

(reviewed by Ref. 90). Promising albumin-binding strategies

include covalent albumin-peptide conjugation, as well as re-

versible binding to circulating albumin via albumin-binding

peptides, small molecules, or fatty acids.90–92 As an example,

albumin conjugation of an HIV C-peptide inhibitor (either

in vitro or in vivo) dramatically improves serum half-life,93 as

does cholesterol conjugation to a lesser extent, presumably

via weak reversible interactions with albumin and/or cell

membranes.94

FUTURE DIRECTIONS

Recombinant Production of Peptidomimetics
Although robust recombinant production of peptidomimet-

ics is not yet possible, significant recent advances in synthetic

biology may enable routine production of diverse peptidomi-

metic libraries in the near future. One promising approach is

in vitro codon reprogramming for the synthesis of unnatural

polymers. This approach relies on cell-free translation sys-

tems to reconstitute ribosomal peptide synthesis using a

minimal set of purified protein components.95–100 By chemi-

cally or enzymatically charging tRNA molecules with novel

amino acid analogues, the genetic code can be effectively

reprogrammed in vitro. When these cell-free systems with

genetic code modifications are used in conjunction with a

display technology, peptides with novel amino acids can be

screened for a desired property. For example, ribosome dis-

play was used in conjunction with in vitro codon reprogram-

ming to isolate peptide sequences from an mRNA library

that encoded an unnatural, selectable amino acid.101–103

Along these lines, it has been demonstrated that tRNAs

can be charged with a variety of amino acid analogues that

will modify the peptide backbone, including a-hydroxy acids,
N-methyl amino acids, a,a-disubstituted amino acids,

b-amino acids, and D-amino acids.104 However, the efficiency

of ribosomal incorporation of Ala/Phe analogues varies

greatly from fairly robust (a-hydroxy acid and N-methyl) to

weak (a,a-disubstituted amino acids) to undetectable (b- and
D-amino acids).104 Subsequent work has described the ability

of the translation machinery to accommodate amino acid

analogues with novel side chains and backbones.105

In one example, seven codons were each reassigned to

encode a unique a-hydroxy acid, and polymers as long as 12

consecutive a-hydroxy acids could be synthesized.106 In

another report, the incorporation efficiencies of 23 N-methyl

amino acids, 19 of which bore naturally occurring side

chains, were determined. Eight of these 19 N-methyl amino

acids were incorporated at specific points in a polypeptide

with >30% efficiency as compared with wild type. A peptide

up to 10 residues long could be synthesized from three

unique N-methyl amino acids.107

While less success has been reported with ribosomal

incorporation of D-amino acids, modifications to the ribo-

somal peptidyltransferase center and helix 89 of the 23S

rRNA can relax the ribosome’s natural substrate specificity,

thereby enhancing the incorporation of D-amino acid resi-

dues into a growing polypeptide chain.108,109 Although these

techniques have not yet been employed as such, in principle

cell-free translation systems coupled with in vitro display

techniques could be used to screen libraries of polymers with

novel backbones. As an advance in this direction, genetic

code reprogramming has already been used in conjunction

with mRNA display technology to generate mRNA-peptide

fusions containing N-methyl amino acids.110

Another approach to recombinantly produce peptidomi-

metics relies on the ability to expand the genetic code in vivo

via the generation of evolved tRNA/aminoacyl-tRNA synthe-

tase pairs. In these systems, the foreign tRNA functions as an

amber suppressor, effectively allowing the amber nonsense

codon to be reprogrammed to encode a non-natural amino

acid.111,112 It has been demonstrated that genetic code expan-

sion can be used in conjunction with phage display to incor-

porate a non-natural amino acid into a pIII fusion pep-

tide.113 In the future, multiple codons could be reassigned,

permitting the incorporation of multiple unnatural residues

in vivo. Several advances have been made toward this end. In

a recent publication describing a technique for rapid, ge-

nome-wide engineering, the authors show progress toward

replacing all 314 TAG stop codons in E. coli with the TAA

stop codon.114 This type of genome manipulation could be

used for the removal of redundancy from the genetic code,

freeing up codons for potential reprogramming. In another

approach involving evolved tRNA/aminoacyl-tRNA synthe-

tase pairs, an evolved orthogonal ribosome able to read both

3- and 4-base codons was able to efficiently incorporate two

different non-natural amino acids into a single polypeptide

chain in vivo.115,116 These approaches present tantalizing pos-

sibilities for the production of peptide libraries with unnatu-

ral side chains and backbones, but the technology is not yet

sufficiently robust to allow for widespread application. Addi-

tional engineering of tRNA molecules, elongation factors,

and the ribosome itself will likely be required for use with

certain diverse peptidomimetics.109,117,118

D-Peptides present a unique opportunity for designing an

artificial recombinant production system. Because of their

symmetry relationship with natural peptides, an in vitro
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translation system composed of all opposite-chirality compo-

nents (D-proteins and nucleotides containing L-ribose) would

function equivalently to natural translation, when provided

with mirror-image DNA substrates. Synthesis of all ribo-

somal components presents an enormous synthetic chal-

lenge, but recent advances in SPPS and peptide ligation may

now make this approach feasible. A mirror-image in vitro

translation system would provide a useful tool for D-peptide

drug discovery and production, but may not be ideal for

large-scale production, especially of complex D-proteins (e.g.,

those requiring chaperones or post-translational modifica-

tions). The ultimate goal is to produce D-peptides using a

synthetic mirror-image organism, a strategy we dub the ‘‘D.

coli’’ project. The key to this project is synthesizing the mini-

mal set of RNAs and proteins necessary to allow enzymatic

production of other larger components and ultimately all

components needed for a self-replicating organism. It is also

not yet clear how to ‘‘start up’’ such an organism.119,120

Cost and Toxicity of Peptidomimetics
In addition to achieving their biological objectives, peptido-

mimetics will need to overcome concerns about cost and tox-

icity to succeed as therapeutics. Currently there are no FDA-

approved fully peptidomimetic peptides, so information on

their in vivo toxicity is extremely limited. Initial data from

two D-peptides that have advanced to clinical trials (Gen-

zyme’s Delmitide121 and Allelix’s ALX40-4C122) showed that

both D-peptides (one orally administered, one systemically

delivered) were well tolerated in humans. Further comfort is

provided by over a dozen approved D-amino acid-containing

peptides, as well as two approved ß-amino acid-containing

peptides.123 These data suggest that these amino acids are

not intrinsically toxic, but more rigorous animal toxicology

studies on different classes of fully protease-resistant peptides

will be required for a definitive determination. Such studies

will also determine whether these peptidomimetics induce

significant immunogenicity upon chronic administration.

Finally, the cost of D-, b-, and other uncommon amino acids

is currently significantly higher than the corresponding com-

mon L-amino acids, largely because of their current status as

specialty reagents. However, we anticipate the cost of these

amino acids will drop dramatically as they are adopted in

high-volume production of therapeutic peptides, as has al-

ready occurred with several D-amino acids in large-scale pep-

tide production.

The authors thank Debra Eckert for critical review of the article and
figures preparation. M.S.K. is a Scientific Director and consultant of
the D-peptide Research Division of Navigen, which is commercializ-
ing D-peptide inhibitors of viral entry.
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The HIV gp41 N-trimer pocket region is an ideal viral target because it is extracellular, highly conserved, and
essential for viral entry. Here, we report on the design of a pocket-specific D-peptide, PIE12-trimer, that is
extraordinarily elusive to resistance and characterize its inhibitory and structural properties. D-Peptides
(peptides composed of D-amino acids) are promising therapeutic agents due to their insensitivity to protease
degradation. PIE12-trimer was designed using structure-guided mirror-image phage display and linker opti-
mization and is the first D-peptide HIV entry inhibitor with the breadth and potency required for clinical use.
PIE12-trimer has an ultrahigh affinity for the gp41 pocket, providing it with a reserve of binding energy
(resistance capacitor) that yields a dramatically improved resistance profile compared to those of other fusion
inhibitors. These results demonstrate that the gp41 pocket is an ideal drug target and establish PIE12-trimer
as a leading anti-HIV antiviral candidate.

The HIV envelope protein (Env) mediates viral entry into
cells (11). Env is cleaved into surface (gp120) and transmem-
brane (gp41) subunits that remain noncovalently associated to
form trimeric spikes on the virion surface (16). gp120 recog-
nizes target cells by interacting with cellular receptors, while
gp41 mediates membrane fusion. Peptides derived from hep-
tad repeats near the N and C termini of the gp41 ectodomain
(N and C peptides) interact in solution to form a six-helix
bundle, representing the postfusion structure (3, 55, 56). In this
structure, N peptides form a central trimeric coiled coil (N
trimer), creating grooves into which C peptides bind. This
structure, in conjunction with the dominant-negative inhibitory
properties of exogenous N and C peptides, suggests a mecha-
nism for Env-mediated entry (10, 22, 58–60).

During entry, gp41 forms an extended prehairpin interme-
diate that leaves the exposed N-trimer region vulnerable to
inhibition for several minutes (18, 35). This intermediate ulti-
mately collapses as the C-peptide regions bind to the N-trimer
grooves to form a trimer of hairpins (six-helix bundle), juxta-
posing viral and cellular membranes and inducing fusion. En-
fuvirtide (Fuzeon), the only clinically approved HIV fusion
inhibitor, is a C peptide that binds to part of the N-trimer
groove and prevents six-helix bundle formation in a dominant-
negative manner (61). Enfuvirtide is active in patients with
multidrug resistance to other classes of inhibitors and is a
life-prolonging option for these patients (30, 31). However,

enfuvirtide use is restricted to salvage therapy due to several
limitations, including (i) high dosing requirements (90 mg,
twice-daily injections), (ii) high cost (!$30,000/year/patient in
the United States), and (iii) the rapid emergence of resistant
strains (21, 47).

A deep hydrophobic pocket at the base of the N-trimer
groove is an especially attractive inhibitory target because of its
high degree of conservation (3, 12, 48), poor tolerance to
substitution (4, 34), and critical role in membrane fusion (2).
Indeed, this region is conserved at both the amino acid level
(for gp41 function in membrane fusion) and the nucleotide
level (for the structured RNA region of the Rev-responsive
element). Enfuvirtide binds to the N-trimer groove just N
terminal to the pocket and is significantly more susceptible to
resistance mutations than 2nd-generation C-peptide inhibitors,
such as T-1249, that also bind to the pocket (8, 13, 29, 44, 46,
47, 58).

Peptide design, molecular modeling, and small-molecule
screening have produced a diverse set of compounds that in-
teract with the gp41 pocket and inhibit HIV-1 entry with mod-
est potency, but often with significant cytotoxicity (7, 14, 15, 17,
23, 24, 26, 34, 51, 54). The first direct evidence that pocket-
specific binders are sufficient to inhibit HIV entry came with
the discovery of protease-resistant D-peptides identified using
mirror-image phage display (12). In this technique, a phage
library is screened against a mirror-image version of the target
protein (synthesized using D-amino acids) (50). By symmetry,
mirror images (D-peptides) of the discovered sequences will
bind to the natural L-peptide target. As the mirror images of
naturally occurring L-peptides, D-peptides cannot be digested
by natural proteases. Protease resistance provides D-peptides
theoretical treatment advantages of extended survival in the
body and possible oral bioavailability (41, 42, 49).
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These 1st-generation D-peptide entry inhibitors possess po-
tency against a laboratory-adapted isolate (HXB2) at low to
mid-!M concentrations (12). We previously reported an affin-
ity-matured 2nd-generation D-peptide called PIE7, pocket-spe-
cific inhibitor of entry 7 (57). A trimeric version of PIE7 is the
first high-affinity pocket-specific HIV-1 inhibitor and has po-
tency against X4-tropic (HXB2) and R5-tropic (BaL) strains at
sub-nM concentrations. However, significant further optimiza-
tion is required to create a robust clinical candidate for two
reasons. First, this D-peptide is much less potent (requiring
high nM concentrations) against JRFL, a primary R5-tropic
strain. Therefore, improved PIE potency is necessary to com-
bat diverse primary strains. Second, by improving the affinity of
our inhibitors for the pocket target, we hope to provide a
reserve of binding energy that will delay the emergence of drug
resistance, as described below.

We and others have reported a potency plateau for some
gp41-based fusion inhibitors that is likely imposed by the tran-
sient exposure of the prehairpin intermediate (9, 27, 53, 57).
For very high-affinity inhibitors, association kinetics (rather
than affinity) limits potency so that two inhibitors with signif-
icantly different affinities for the prehairpin intermediate can
have similar antiviral potencies. We proposed that overengi-
neering our D-peptides with substantial affinity beyond this
potency plateau would provide a reserve of binding energy that
would combat affinity-disrupting resistance mutations (57).
Such a resistance capacitor should also prevent the stepwise
accumulation of subtle resistance mutations in Env by elimi-
nating the selective advantage that such mutants would other-
wise confer.

Here, we report on the design and characterization of a
3rd-generation pocket-specific D-peptide, PIE12-trimer, with
"100,000-fold improved target binding compared to that of
the best previous D-peptide, significantly broadened inhibitory
potency, and an enhanced resistance capacitor that provides a
strong barrier to viral resistance. We achieved this increased
potency via structure-guided phage display and crosslinker op-
timization. PIE12-trimer has a dramatically improved resis-
tance profile compared to the profiles of earlier D-peptides, as
well as those of enfuvirtide and T-1249. These results validate
the resistance capacitor hypothesis and establish PIE12-trimer
as a leading anti-HIV therapeutic candidate.

MATERIALS AND METHODS

Peptide synthesis. All peptides were synthesized as described previously (57).
All dimers and trimers except PIE12-trimer were made essentially as described
using bis-dPEG5 NHS ester (where PEG is polyethylene glycol and NHS is
N-hydroxysuccinimide; catalog no. 10224; Quanta BioDesign); PIE12-trimer was
synthesized using the following higher-yield protocol. PIE12-GK (2 mM) was
reacted with bis-dPEG5 NHS ester crosslinker (1 M stock in dimethylacetamide)
at a 1:20 (peptide/PEG) molar ratio in 100 mM HEPES (pH 7.8 to 8) for 90 s at
room temperature (RT). The reaction was stopped by addition of acetic acid to
5% and 3 M guanidine HCl (GuHCl) and purified by reverse-phase high-pres-
sure liquid chromatography (RP-HPLC; C18 column; Vydac). This product ("3
to 5 mM) was reacted at a 2:1 molar excess with PIE12-GKK in dimethylacet-
amide buffered by triethylamine (pH 7.5) for 75 min and purified by RP-HPLC
(C18 column; Vydac).

Phage display vector design. Use of a commercially available phage library
cloning system (NEB) allowed us to relocate cloning sites away from the flanking
regions (38). We redesigned the regions immediately outside the flanking resi-
dues in our cloning vector in order to structurally isolate them and minimize any
bias caused by flanking sequence randomization. Our library peptides are dis-
played as fusions to the phage p3 protein, which contains an N-terminal leader

sequence that is cleaved by Escherichia coli secretion signal peptidases. In the
original vector, the N-terminal flanking residues of the library peptides are
immediately adjacent to the secretion signal. Due to proximity to the secretion
signal cleavage site, it is likely that randomization of these residues would
differentially affect library-p3 protein secretion and peptide presentation on the
phage surface. This bias would confound the selection of N-terminal flanking
sequences solely on the basis of their affinity for the N trimer. To avoid this bias,
we introduced a five-amino-acid spacer to structurally isolate the cleavage site
from the randomized N-terminal flanking residues. We choose the N-terminal
residues (KIEEG) from maltose binding protein (MBP) as the spacer sequence,
since MBP is very efficiently cleaved during secretion from E. coli.

We have observed that mutations in the C-terminal sequence that links the
peptide to the phage p3 protein can also create undesirable selection bias (pre-
sumably by allowing the C terminus of the D-peptides to form a continuous helix
with the N terminus of p3, thus enhancing peptide presentation to the target)
(57). Therefore, a flexible GGGS spacer was inserted after the C-terminal flank-
ing residues to structurally isolate them from the N terminus of p3.

To validate this new phage display vector, we used it to clone an earlier PIE
(PIE2) along with a mutant (PIE2-AAA) which had previously been observed to
enhance phage affinity for the pocket target via mutation of the linker between
the library peptide and p3, although this mutation did not enhance inhibitor
potency when incorporated into a D-peptide (57). We assayed the target binding
affinity of the resultant phage (#) and compared it to that of phage produced
with the previous phage vector. In the previous phage vector, PIE2-AAA-#
“cheated” in order to bind to the target with an "70-fold more affinity than
PIE2-#, but this difference was abolished in the modified vector (data not
shown). Furthermore, sequencing revealed that N-terminal flanking residues
from the amplified phage library prior to selection were random, indicating a lack
of bias due to signal peptidase cleavage efficiency.

Phage display. An 8-mer flanking library phage display was performed essen-
tially as described previously (57). Four rounds of mirror-image solution-phase
phage display were performed by incubating (for 2 h at RT) 1010 phage (ampli-
fied from the previous round) with 10 nM biotinylated D-IZN17 (a mimic of the
D-peptide gp41 pocket target) in the presence of escalating soluble competitor
(L-2K-PIE2) (10, 30, 90, and 360 !M for rounds 1 to 4, respectively) (57).
Phage-bound D-IZN17 was rapidly captured from solution using Dynal T1
streptavidin-coated magnetic beads (Invitrogen) and briefly washed 3 times with
500 !l of 0.1% Tween 20 in Tris-buffered saline (wash buffer contained 100 !M
D-biotin for the 1st wash). Phage was eluted in 50 !l of glycine (pH 2.2) elution
buffer (10 min at RT) and neutralized with 7.5 !l of 1 M Tris, pH 9.1. The
amplified phage library was sequenced prior to the first round of selection to
confirm randomization, and preamplified eluted phage was sequenced following
each round. All phage binding experiments were performed using the same
protocol described above using 270 !M L-PIE2 soluble competitor. A 7-mer
phage display was performed using a similar protocol.

Crystal growth and data collection. The original form of PIE12 (see Table 1)
contains a C-terminal GK extension and did not yield highly diffracting crystals
in complex with IQN17, a gp41 pocket mimic. Variants of PIE12 instead con-
taining an N-terminal K or KG extension (K-PIE12, KHPCDYPEWQWLCEL;
KG-PIE12, KGHPCDYPEWQWLCEL) crystallized in complex with IQN17
under a variety of conditions. In each case, the reservoir (850 !l) comprised a
solution from a commercially available crystallization screen, and the crystalli-
zation drop was prepared by mixing 0.3 or 0.5 !l of the IQN17-PIE12 or
IQN17-PIE71 protein solution (1:1.1 molar ratio, 10 mg/ml total in water) with
0.3 !l of the reservoir solution. Crystals typically grew in 1 to 10 days. All crystals
were grown by sitting-drop vapor diffusion. IQN17-PIE12 form I crystals (KG-
PIE12) were grown at 21°C in Hampton Scientific condition Screen II 48 (10%
PEG 20,000, 0.1 M bicine, pH 9.0, 2% dioxane). IQN17-PIE12 form II crystals
(KG-PIE12) were grown at 21°C in Emerald Biosystems condition Cryo-II 37
(50% ethylene glycol, 0.1 M imidazole, pH 8.0). IQN17-PIE12 form III crystals
(K-PIE12) were grown at 4°C in Emerald Biosystems condition Cryo-II 25 (40%
2-methyl-2,4-pentanediol (MPD), 0.1 M N-cyclohexyl-3-aminopropanesulfonic
acid (CAPS) [pH 10.5]). IQN17-PIE71 crystals were grown at 21°C in Qiagen
PACT crystallization condition G4 (20% PEG 3350, 0.2 M potassium thiocya-
nate, 0.1 M bis-Tris propane, pH 7.5).

Crystals were mounted in a nylon loop and either directly cryocooled by
plunging them into liquid nitrogen or cryocooled following brief (20 s) immer-
sion in 20 !l crystallization buffer with 30% (IQN17-PIE12) or 15% (IQN17-
PIE71) added glycerol. Crystals were maintained at 100 K during data collection.
Data were collected either in the laboratory using a rotating copper anode X-ray
generator or at a synchrotron beam line. Data were processed using the DENZO
and SCALEPACK programs (40). All structures were determined by molecular
replacement using the PHASER program (33) with IQN17-PIE7 as the search
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model. The models were rebuilt using the O program (25) and refined against a
maximum-likelihood target function using the REFMAC program (36). Struc-
tures were checked using the MolProbity program (6) (see Table 2 for data and
refinement statistics).

Explanation of Lys placement. We were concerned that direct C-terminal
addition of Lys would not be well tolerated because the D-peptide C-terminal
region forms an ! helix critically involved in the pocket-binding interface, with
the C terminus itself being amidated for helix stability. Therefore, we inserted a
Gly between the original C terminus of PIE7 and the C-terminal Lys, both to cap
the helix and to separate the Lys from the binding interface. Unexpectedly,
PIE7-GK-monomer is slightly more potent than PIE7 (see Table 1). A version of
PIE7 containing an N- and C-terminal Lys (K-PIE7-GK) has the same potency
as PIE7-GK (data not shown), indicating a beneficial effect imposed by the
C-terminal Gly-Lys, as opposed to a deleterious effect created by a single Lys at
the N terminus. This benefit is likely the reason that the linkage consisting of an
"22-Å cross-linker at the C terminus whose spacer arm consists of 5 PEGs (C5C)
results in a potency slightly superior to that of the N5C linkage (see Table 1).

Viral infectivity assays. Pseudovirion infectivity assays were performed as
described previously (57). Purified lyophilized inhibitors were dissolved in water
(monomers) or 50 mM HEPES, pH 7.5 (dimers and trimers), to make high-
concentration stocks. For HEPES-containing samples, all media were adjusted
so that the HEPES content matched that in the sample with the highest HEPES
concentration (typically, "1 mM). HEPES at higher concentrations (e.g., 3 mM)
enhanced infectivity up to "15% but had minimal effect at !0.5 mM. The
Monogram Biosciences PhenoSense Entry and peripheral blood mononuclear
cell (PBMC) assays were performed as described previously (43, 52).

CD studies. Samples were prepared with 2 #M IZN17, a 1.1$ molar ratio of
inhibitor to target binding sites, phosphate-buffered saline (PBS; 50 mM sodium
phosphate, 150 mM NaCl, pH 7.4), and 2 M GuHCl in a total volume of 2.5 ml.
Thermal melts were performed by melting the sample in a square 1-cm cuvette
from 25°C to 90°C (or 93°C for PIE12-trimer) in 2°C increments with 2 min of
equilibration. To show reversibility, reverse melts were performed on each sam-
ple from 90°C to 30°C in 10°C increments with 5 min of equilibration. Data were
averaged from a 30-s collection on an Aviv model 410 circular dichroism (CD)
spectrapolarimeter.

For each sample, the CD data followed a smooth sigmoid transition as the
sample was heated or cooled. The data were smoothed in the Kaleidagraph
program (Synergy Software) using 2 points from both sides. The derivative value
of the smoothed data was used to determine the point with the steepest rate of
change on the melt curve, which is the melting temperature (Tm).

Passaging studies. Laboratory-adapted HIV-1 strain NL4-3 was generated by
transient transfection of proviral DNA (pNL4-3) into 293T cells using Lipo-
fectamine (Invitrogen). Cell-free supernatants containing virus were collected
48 h posttransfection and used to infect 5 $ 105 CEM-1 cells in RPMI 1640
medium (0.5 ml). Virus was serially propagated once a week by 1:5 dilution of
cell-free viral supernatants into fresh CEM-1 cells (5 $ 105 cells, 0.5 ml) in the
absence or presence of inhibitor (PIE7-dimer, PIE12-dimer, or PIE12-trimer).
Viral titers were monitored biweekly by p24 antigen enzyme-linked immunosor-
bent assay (PerkinElmer). The inhibitor concentration started at approximately
the 50% inhibitory concentrations (IC50s; 20 nM for PIE7-dimer; 1 nM for
PIE12-dimer, and PIE12-trimer) and was raised 1.5- to 2-fold when p24 antigen
levels in inhibitor-containing cultures approached that in inhibitor-free cultures
(usually 2 to 3 weeks for PIE7-dimer). PIE12-dimer and PIE12-trimer required
a slower escalation strategy with prolonged incubation at a fixed inhibitor con-
centration for 5 to 15 weeks before escalation.

To identify PIE7-dimer escape mutations, viral RNA was isolated from cell-
free supernatants of at least two cultures independently propagated in either the
presence (resistant virus) or absence (control virus) of inhibitor (Qiagen RNA
purification kit). Env cDNA was generated by reverse transcription (Eppendorf
cMaster RTplus system and cMaster reverse transcription kit), amplified by
PCR, and sequenced in five stretches (Thomas Jefferson University Nucleic Acid
Facility). To confirm selected mutations in the gp41 N-peptide region, the cDNA
segment encoding the gp41 ectodomain was reamplified by PCR and subcloned
into the pAED4 vector, and the plasmid DNA from three or more individual
clones was sequenced. The substitutions E560K and V570I were observed in all
sequences from PIE7-dimer-resistant virus but were not observed in any se-
quence from control virus. An expression plasmid for HXB2 Env (pEBB_HXB2
Env) incorporating these substitutions was generated using site-directed muta-
genesis (QuikChange; Stratagene) and was utilized in the pseudoviral infectivity
assay described above.

Protein Data Bank accession numbers. The Protein Data Bank (PDB) acces-
sion numbers for the PIE12-IQN17 complex are 3L35, 3L36, and 3L37 for crystal
forms I, II, and III, respectively, and 3MGN for the PIE71-IQN17 complex.

RESULTS

Structure-guided phage display to optimize flanking resi-
dues. PIE inhibitors consist of a short core sequence sur-
rounded by a disulfide bond that imparts structural rigidity
required for binding (Table 1) (12). The large jump in affinity
between our 1st-generation (12) and 2nd-generation (57) in-
hibitors was accomplished by optimizing this core sequence.
There were also four fixed flanking residues outside the disul-
fide that arose from phage library cloning restrictions, Gly-Ala
on the N terminus and Ala-Ala on the C terminus. Interest-
ingly, our cocrystal structures of D-peptides in complex with a
mimic of its gp41 pocket target (IQN17) reveal significant
contacts between these presumed inert flanking residues and
the pocket (12, 57). Thus, we reasoned that their optimization
would likely lead to improved D-peptide affinity for the pocket.

To optimize these flanking residues, we used a commercially
available phage library cloning system (NEB) that allowed us
to relocate cloning sites away from the flanking regions (38).
We redesigned the regions immediately outside the flanking
residues in our cloning vector in order to structurally isolate
them and minimize any bias caused by flanking sequence ran-
domization. Using this vector, we constructed a phage library
that varied only these four residues in the context of our
previously optimized PIE7 core sequence (XXCDYPEWQW
LCXX). After four rounds of panning, our phage library
showed "100-fold improved binding to a gp41 pocket mimic
(D-IZN17) compared to that of clonal PIE7 phage with the
original GA/AA flanking sequence. We extensively sequenced
this phage pool to identify a consensus sequence, H(A/P)-
[PIE7 core]-(R/K/E)L, as well as five dominant individual se-
quences. Using a phage clone binding assay, we found that
these sequences bound the gp41 pocket 70- to 900-fold more
tightly than PIE7, with PIE12 (HP-[PIE7 core]-EL) having the
highest affinity (data not shown).

TABLE 1. D-peptide inhibition datae

Sample Sequence
IC50 (nM)a

HXB2 JRFL

PIE7 KGA%PIE7&AA 620b 24,000b

PIE7-GK GA%PIE7&AAGK 390 16,000
PIE7-GKK GA%PIE7&AAGKK 380 19,000
PIE12 HP%PIE7&ELGK 37 580
PIE13c HP%PIE7&KL 41 1,500
PIE14 HP%PIE7&RLGK 33 1,100
PIE15 HA%PIE7&ELGK 67 1,400
N9N(PIE7)2 (KGA%PIE7&AA)2 1.9b 2,300b

N5C(PIE7)2 GA%PIE7&AAGKKGA%PIE7&AA 0.6 300
C5C(PIE7)2 (GA%PIE7&AAGK)2 0.5 200
C5C(PIE12)2 (HP%PIE7&ELGK)2 0.4 14
N9N(PIE7)3 (KGA%PIE7&AA)3

d 0.3b 220b

C5C(PIE7)3 (GA%PIE7&AAGK)3
d 0.1 6.7

C5C(PIE12)3 (HP%PIE7&ELGK)3
d 0.5 2.8

C37 1.4b 13b

Enfuvirtide 3.7b 5.0b

a The IC50 standard error of the mean is '25% for duplicate assays for all
values.

b Values are from reference 57.
c PIE13 does not include a C-terminal GK extension because its C-terminal

flanking sequence contains a Lys residue.
d The central peptide of each trimer has two tandem Lys residues (not shown).
e PIE7, CDYPEWQWLC, or PIE7 core motif.
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Enhanced potency of 3rd-generation D-peptides. We synthe-
sized D-peptides corresponding to the top three phage se-
quences in the binding assay (PIE12, PIE13, and PIE14) and
tested their antiviral potencies in a pseudovirion entry assay

(Table 1 and Fig. 1). Pairwise comparisons of both phage
binding and inhibitor potency indicate that Pro is preferred
over Ala at position 2 and Glu is preferred over Arg or Lys at
position 13. As predicted from the phage binding assay, PIE12
has the best potency and is !40-fold more potent than PIE7
(our best previously reported monomer) against strain JRFL.

Crystal structure of PIE12. To better understand the
sources of PIE12’s improved binding and potency, we crystal-
lized PIE12 in complex with the N-trimer pocket mimic
IQN17. Data were collected from three crystal forms (Table 2)
at between 1.45- and 1.55-Å resolution. Each IQN17 trimer
from the three crystal forms reported here and from the PIE7
structure (PDB accession number 2R5D) agreed well with one
another (root mean square deviation [RMSD], 0.6 to 1.2 Å) on
the basis of the least-squares overlap on all C" atoms (residues
1 to 45 of all three chains). The structures suggest two sources
of the improved affinity of PIE12 for IQN17 compared to that
of PIE7. First, the new N-terminal flank residues (His1 and
Pro2) form favorable ring stacking interactions with the pocket
(IQN17-Trp571) (Fig. 2). Second, the substitution of Leu for
Ala in the C-terminal flank sequence buries an additional
!50-Å2 hydrophobic surface area in the pocket. Neither of
these new interactions with the flanking sequence perturbs the
original pocket-binding structure of the core PIE7 residues.
Importantly, the structures reveal that PIE12’s improved affin-
ity does not result from new interactions with less conserved

FIG. 1. Optimization of flanking residues enhances PIE potency.
Each point represents the average of quadruplicate measurements from a
representative pseudovirion entry inhibition assay (JRFL strain) normal-
ized to the measurement for an uninhibited control. Error bars represent
the standard errors of the means. PIE12 is !2-fold more potent than
PIE13 or PIE14 and is !25-fold more potent than PIE7-GK.

TABLE 2. PIE12 and PIE71 crystallographic data and refinement statistics

Data
Result for PIE12 crystal:

Result for PIE71 crystal
Form I Form II Form III

Space group P21 R3 P321 P21
Resolution (Å) 30.0–1.55 (1.61–1.55)a 30.0–1.45 (1.50–1.45) 30.0–1.45 (1.50–1.45) 30.0–1.40 (1.45–1.40)
No. of reflections measured 113,335 98,687 186,351 468,599
No. of unique reflections 25,088 10,475 14,802 82,774
Redundancy 4.5 9.4 12.6 5.7
Completeness (%) 86.5 (66.8) 97.1 (80.1) 99.7 (96.6) 98.2 (97.6)
#I/$I%b 18 (2.4) 19 (3.1) 17 (2.7) 15 (2.0)
Mosaicity (degree) 0.44 0.37 0.45 0.29
Rsym

c 0.051 (0.250) 0.058 (0.102) 0.107 (0.235) 0.052 (0.316)
Refinement
Resolution (Å) 30.0–1.55 (1.59–1.55) 30.0–1.45 (1.49–1.45) 30.0–1.45 (1.49–1.45) 30.0–1.40 (1.44–1.40)
No. of reflections used for refinement 23,765 9,448 13,629 80,532
No. of reflections in Rfree

d set 1,273 1,026 1,136 1,654
Rcryst

e 0.232 (0.465) 0.234 (0.301) 0.243 (0.299) 0.261 (0.306)
Rfree 0.288 (0.624) 0.264 (0.392) 0.278 (0.350) 0.288 (0.335)
RMSD bonds (Å)/angles (degrees) 0.012/1.440 0.013/1.693 0.010/1.530 0.009/1.094

#B%g

All atoms (Å2)/no. of atoms 23.7/1,172 31.9/384 29.2/384 Molf 1, 24.3/1,555; mol 2,
36.0/1,491

PIE12 molecules only (Å2)/no. of atoms 21.3/420 30.8/144 25.9/144 Mol 1, 18.3/368; mol 2,
39.9/322

Water molecules (Å2)/no. of water atoms 32.0/197 38.0/36 40.6/49 39.9/389

&/'h most favored (%) 100 98.1 100 99.0
a Values in parentheses refer to data in the high-resolution shell.
b #I/$I%, average intensity of a group of reflections divided by the average standard deviation (sigma) of the same group of reflections.
c Rsym ( )!I * #I%!/)I, where I is the intensity of an individual measurement and #I% is the corresponding mean value.
d Rfree is the same as Rcryst calculated with a randomly selected test set of reflections that were never used in refinement calculations.
e Rcryst ( )!!Fo! * !Fc!!/)!Fo!, where !Fo! is the observed and !Fc! is the calculated structure factor amplitude.
f Mol, molecule.
g #B%, temperature factor.
h &/+, dihedral angles.
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regions outside the pocket that might render PIE12 more vul-
nerable to resistance mutations.

Discovery and structure of a 7-mer D-peptide. The core
sequence of PIE7 and PIE12 comprises 8 residues flanked by
cysteines (8-mer). Modeling based on our 8-mer D-peptide/
IQN17 crystal structures suggests that a 7-mer core is compat-
ible with pocket binding of the WXWL consensus and forma-
tion of a disulfide bond (57). Previously, we saw that decreasing
the size of the PIE core (from 10 to 8 residues) led to dramat-
ically increased pocket binding (57), so we reasoned that fur-
ther decreasing the size of the core might lead to additional
potency gains. To explore this alternative geometry, we used a
mirror-image discovery process similar to that employed with
8-mers to identify a 7-mer, PIE71 (FVCPPEWRWLCDL).
PIE71 contains the same WXWL motif found in 8-mer and
10-mer pocket binders and inhibits strain HXB2 entry with an
IC50 of 410 nM (data not shown), which is !1.5 fold better
than that of PIE7 but an order of magnitude worse than that of
PIE12.

To gain a better understanding of the 7-mer binding solu-
tion, we determined a cocrystal structure of PIE71 in complex
with IQN17 (Table 2). The key residues involved in the binding
interface (WXWL) adopt nearly superposable conformations
to those observed in PIE7 and PIE12, as do the C-terminal
flank residues. However, the two structures deviate signifi-
cantly at the N terminus (Fig. 2 and 3). Specifically, the 7-mer’s
disulfide bond is shifted much closer to the pocket, which
directs the N-terminal flank residues away from the pocket
region. As a result, the N-terminal flanking residues (Phe-Val)
only graze the pocket, whereas PIE12’s N-terminal flanking
residues have an intimate interaction. So although the 7-mer is
compatible with pocket binding, the smaller core is too con-
strained to allow optimal binding of the flank residues to the
pocket. Due to this decreased binding interface and therefore
decreased potency, we decided not to pursue the 7-mer geom-
etry further.

Optimization of crosslinker length and geometry. We pre-
viously took advantage of the trimeric nature of the gp41

pocket target to geometrically increase the PIE7 binding affin-
ity by cross-linking it into dimers and trimers (57). PIE7 has an
N-terminal lysine, which furnishes a unique primary amino
group (the N terminus is acetylated) and which was added for
solubility. This lysine was used to produce dimers via reaction
with a bis-PEG NHS ester crosslinker (NHS esters selectively
react with primary amino groups). Trimers were produced by
cross-linking two PIE7s to a central peptide with two lysines at
the N terminus (2K-PIE7).

We hypothesized that the strength of the avidity effect is
related to the length of the crosslinker and that shorter
crosslinkers that still allow simultaneous binding to multiple
pockets could strengthen potency. For the original N- to N-
terminal linkage, we used a crosslinker with an !35-Å spacer
arm consisting of 9 PEG units (N9N linkage). However, our
crystal structures of D-peptides in complex with IQN17 reveal
that C- to C-terminal or N- to C-terminal linkages could be
significantly shorter and could be spanned by an !22-Å
crosslinker whose spacer arm consists of 5 PEGs (C5C and
N5C linkages). Therefore, we relocated Lys to the C terminus
of PIE7 (PIE7-GK) in order to make the N5C heterodimers
and C5C homodimers (see Materials and Methods for addi-
tional details).

The resulting N5C- and C5C-PIE7-dimers have similar po-
tencies that are significantly enhanced compared to the po-
tency of our previous N9N-PIE7-dimer (Table 1 and Fig. 4A).
On the basis of these data, we chose C5C connections as our
standard linker, since they are simpler to produce than the
hetero-N5C linkage. Here, all dimers and trimers use the C5C
linkage unless otherwise specified. Combining our new opti-
mized flanking residues and linkages, we produced PIE12-
dimer and PIE12-trimer. Both are extremely potent against the
difficult-to-inhibit primary strain JRFL (low-nanomolar IC50s;
Fig. 4B; Table 1), being up to 2 orders of magnitude more
potent than our best previously described D-peptide (N9N
PIE7-trimer) (57).

Breadth against a diverse multiclade panel. HIV-1 has
jumped from chimpanzees to humans at least three separate
times, giving rise to groups M, N, and O (19). The main group
(group M) accounts for "99% of all HIV-1 infections world-

FIG. 2. Crystal structure of PIE12 binding to IQN17. Trp571 of the
gp41 pocket (gray) and the N-terminal flank residues (dH1 and dP2) of
PIE12 (green) appear to stabilize binding via ring-stacking interac-
tions. The disulfide bond (yellow) is shown in the background.

FIG. 3. Crystal structure of PIE71 binding to IQN17. The N-ter-
minal flank residues (dF1 and dV2) of PIE71 (orange) are directed
away from the pocket compared to the structure in PIE12 (Fig. 2). The
disulfide bond (yellow) is shown in the background.
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wide (32). HIV’s high mutation rate has led to the emergence
of diverse subtypes within group M that are categorized as
clades A to D, F to H, J, and K and various circulating recom-
binant forms (CRFs; e.g., AE and BF). In 2000, clades A to D
were estimated to represent !90% of HIV infections (39);
however, in recent years CRFs have become more prevalent
(1). Different subtypes contain up to 35% sequence diversity in
Env, often causing antibodies raised against a particular strain
to be ineffective against others (20).

To ensure that our pocket-specific D-peptides are potent and
broadly neutralizing against the most common subtypes of
HIV, we measured the potency of PIE7-trimer, PIE12-trimer,
and PIE12 (with enfuvirtide as a control inhibitor) using the
PhenoSense Entry pseudovirion assay (Monogram Bio-
sciences) (Table 3) (43). The inhibitors were tested against a
panel of 23 viruses pseudotyped with clonal and polyclonal
envelopes representing clades A to D, several CRFs, and en-
fuvirtide-resistant strains. Both PIE7 and PIE12-trimers po-
tently inhibited all strains tested, though PIE12-trimer was
generally a superior inhibitor (and in all cases more potent
than enfuvirtide). While PIE12-monomer is much less potent
than PIE12-trimer, it is also broadly active. Interestingly,
PIE12-trimer is "10-fold more potent than PIE7-trimer
against polyclonal virus from clades B and C (samples ampli-
fied from patient plasma), which is consistent with a resistance
capacitor mechanism for maintaining potency in the presence
of various Env sequences. All of the D-peptide inhibitors are
unaffected by enfuvirtide resistance mutations. Additionally,
lack of inhibition against a murine leukemia virus (MLV) con-
trol indicates that these inhibitors are specific and nontoxic in
this assay.

Breadth against replication-competent primary viral iso-
lates on PBMCs. To more closely mimic in vivo infection and
further establish inhibitory breadth, we also tested the ability
of PIE7-trimer, PIE12-trimer, and PIE12 to inhibit PBMC
infection by replicating primary strains, again with enfuvirtide
as a control (Table 4). These data confirm the potent and
broad inhibitory activities of PIE7 and PIE12-trimer against all

group M strains tested, including several CRFs. Toxicity was
not observed on these cells at inhibitor concentrations up to 1
#M (the highest concentration tested), demonstrating a high
therapeutic index for the trimers. Interestingly, the inhibitors
are more potent in this assay than in the PhenoSense Entry
assay, which may be due to differential receptor expression
levels between the two cell types (45).

Notably, two group O strains were also tested in this assay
and are much less sensitive to inhibition than group M strains.
Group O contains several mutations (compared to the se-
quence of group M) in the pocket, including Q567R, T569S,
K574R, Q577R, and V580L. The crystal structures of PIE7 and

FIG. 4. Optimization of linkage geometry. Each point represents the average of quadruplicate measurements from a representative
pseudovirion entry inhibition assay (JRFL strain) normalized to the measurement for the uninhibited control. Error bars represent the standard
errors of the means. (A) Comparison of N9N to C5C linkages; (B) PIE7 versus PIE12-dimers and trimers (all C5C linkages).

TABLE 3. PhenoSense Entry assay data

HIV-1
isolate Subtype

IC50 (nM)

PIE7-trimer PIE12-trimer PIE12-
monomer Enfuvirtide

Aa A 5.5 4.1 2,300 18
92RW008 A 2.0 1.0 1,400 7.2
92UG031 A 18 4.2 2,600 20
94KE105 AC 16 0.7 1,900 13
CMU02 AE 32 12 1,500 16
Ba B 140 13 3,300 30
1168 B 54 31 4,700 140.0
BaL B 2.0 2.5 1,700 10
ENFr1a B 2.0 0.8 790 760
ENFr2a B 0.7 1.0 300 5,400
HXB2 B 0.1 0.3 50 2.6
JRCSF B 13 3.4 1,100 14
JRFL B 21 5.7 1,900 7.9
NL4.3 B 0.3 0.4 150 62
SF162 B 3.4 4.5 940 34
98CN009 BC 0.4 0.4 320 7.9
93BR029 BF 1.5 0.9 750 12
Ca C 220.0 26 5,100 71
97ZA012 C 2.0 0.7 1,500 10
98IN022 C 1.1 1.1 820 6.9
21068 C 6.6 5.0 1,800 47
Da D 3.1 3.2 820 17
92UG005 D 3.9 2.5 2,000 10
aMLV !10,000 !10,000 !500,000 !15,000

a Polyclonal viral envelopes amplified from patient plasma.
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PIE12 in complex with IQN17 reveal that, of these residues,
the D-peptide directly interacts only with K574 (via a hydro-
phobic interaction) and Q577 (via hydrogen bonds). Group O
gp41 has several other mutations in the groove just outside the
pocket (i.e., H564E) that could also affect PIE potency (e.g., by
slowing the association rate). It will be interesting to analyze
the effects of these mutations in a group M (e.g., strain HXB2
or JRFL) background to see if they are responsible for the loss
of potency.

Evidence for a charged resistance capacitor. With the design
of PIE12-trimer, we now observe strong evidence for a highly
charged resistance capacitor in which the PIE12-trimer pocket-
binding affinity vastly exceeds the inhibitory potency. Compar-
ing PIE7 and PIE12-trimers, we observe similar potencies
against pseudovirion entry (Fig. 4B; Table 1), although we
expect their target affinities to be extremely different.

Due to extraordinarily slow off rates, direct measurements of
the pocket affinities for PIE7 and PIE12-trimers via surface
plasmon resonance, used for earlier D-peptides (57), were not
possible. Since the binding affinity of inhibitors correlates with
the stability of inhibitor-target complexes, we used thermal
denaturation monitored by CD to measure the relative stabil-
ities of each IZN17-inhibitor complex and infer the relative
affinities of our ultra-high-affinity binders. The melts were per-
formed in 2 M GuHCl to destabilize the complexes and shift
their melting points into an observable range (below 100°C).

The normalized thermal melts for each IZN17-inhibitor
complex are plotted in Fig. 5, with Tm values being shown in
the key. As expected, PIE12-trimer forms the most stable com-
plex and has a Tm 8°C higher than that of the next most stable
inhibitor complex (PIE7-trimer). PIE12 also forms a more
stable complex than PIE7, as expected. Our previous experi-
ence showed that improvements in monomer affinity translated
to approximately squared and cubed improvements in the cor-
responding dimers and trimers (57). On the basis of PIE12-
trimer’s optimized C5C linkage (35-fold improved antiviral po-

tency over that of the trimer with an N9N linkage; strain JRFL
data) and the !25-fold difference in monomer potency be-
tween PIE7 and PIE12 (JRFL data), we estimate that PIE12-
trimer binds to gp41 "105-fold (35 # 253) more tightly than
N9N PIE7-trimer. This predicted binding at subfemtomolar
concentrations translates to a resistance capacitor charged to
!6 kcal/mol against strain JRFL. Interestingly, the potency
plateau lies at a slightly better potency for trimers than for
dimers, likely due to their faster association rates (i.e., three
versus two opportunities for initial collision with the target).

Selection of resistant strains. To measure the resistance
profile of our D-peptide inhibitors and test our resistance
capacitor hypothesis, we conducted viral passaging studies
with escalating inhibitor concentrations to select for resis-
tant strains. These studies initially used PIE7-dimer, which
was available from our previous study (57) and inhibits the
parental strain, NL4-3, with an IC50 of !20 nM. By doubling
the PIE7-dimer concentration every 2 to 3 weeks, we ob-
tained stable viral cultures in 2,000 nM inhibitor within 20
weeks of propagation. In comparison, we were able to ob-
tain high-level enfuvirtide resistance ("1,000-fold) in only
!3 weeks using a similar protocol (H. K. Steger et al.,
submitted for publication).

Sequencing the N-peptide region of PIE7-dimer-resistant
viruses revealed two selected mutations: E560K and V570I.
These substitutions in the context of HXB2 pseudovirions con-
ferred !400-fold resistance to PIE7-dimer. These mutations
also dramatically weaken the binding of D-peptides to the gp41
pocket but not the C-peptide inhibitor C37 (M. J. Root et al.,
unpublished data). It is not obvious from the PIE7 structure
how these mutations weaken PIE7 binding. Despite this loss of
affinity, the escape mutations had a minimal effect on the

FIG. 5. Stability of D-peptide complexes. Normalized melting
curves of IZN17 alone and with D-peptide inhibitors were monitored
by CD in PBS–2 M GuHCl. Tm values are indicated in the key.

TABLE 4. PBMC assay data

HIV-1
isolate Subtype

IC50 (nM)

PIE7-trimer PIE12-trimer PIE12-
monomer Enfuvirtide

92UG029 A 1.6 0.7 290 190
92UG037 A 0.1 0.2 36 41
93TH073 AE 0.6 0.8 270 200
CMU02 AE 0.2 0.4 300 44
CMU06 AE 0.3 0.4 210 5.7
IIIB B 0.3 0.8 140 28
BaL B 0.2 0.3 72 20
JRCSF B 0.1 0.1 120 7.0
JRFL B 0.5 0.3 110 1.7
93BR019 BF 1.7 4.7 170 "1,000
92BR025 C 15 5.2 "1,000 310
93IN101 C 0.4 0.4 160 22
92UG001 D 0.8 4.5 230 180
92UG046 D 0.1 1.2 170 130
93BR020 F 0.2 0.4 190 59
93BR029 F 0.2 0.8 86 19
G3 G 0.3 1.2 310 23
RU570 G 0.3 0.4 480 37
BCF01 Group O "1,000 "1,000 "1,000 330
BCF02 Group O "1,000 440 "1,000 0.4
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potencies of PIE12-dimer and PIE12-trimer, as well as the C37
control inhibitor (Fig. 6). This result is predicted by the resis-
tance capacitor hypothesis: affinity-disrupting escape muta-
tions selected in the presence of weaker-binding inhibitors
should be less disruptive to the potencies of tighter-binding
inhibitors.

The rapid inhibitor escalation strategy utilized to generate
PIE7-dimer resistance was not effective in generating HIV-1
resistant to PIE12-dimer or PIE12-trimer. Rather, the HIV-1
titer fell precipitously when inhibitor concentrations exceeded
20 nM (5 to 20 times the IC50). Instead, we switched to a much
slower escalation strategy with prolonged periods at stable
inhibitor concentrations (5 to 15 weeks). Resistant virus
emerged after 40 weeks of propagation in PIE12-dimer and
after 65 weeks of propagation in PIE12-trimer. These obser-
vations suggest that a strong resistance capacitor profoundly
delays selection of resistance mutations for these optimized
fusion inhibitors.

Sequencing of the pocket region of PIE12-trimer-resistant
viruses reveals only one mutation, Q577R. Interestingly, this
substitution is present in nearly all group O isolates (including
BCF01 and BCF02; Table 4) but is rare among group M
isolates. Pseudovirions bearing Q577R confirm that this muta-
tion confers substantial resistance to PIE12-trimer (data not
shown). Examination of the PIE12 crystal structure shows that
Q577 makes hydrogen bonds with Glu7 and Trp10 in PIE12,
which may explain the disruptive effects of this mutation.
Q577R’s codon is predicted to disrupt the RRE stem-loop V
structure, since it base pairs with the invariant W571 codon
(Trp is encoded by only one codon).

DISCUSSION

PIE12-trimer is a D-peptide entry inhibitor with !80-fold
enhanced potency and an estimated "100,000-fold improved
binding affinity compared to those of the best previously re-
ported D-peptide. This dramatic improvement in affinity pro-
duces excellent breadth and a charged resistance capacitor to
combat the emergence of resistance mutations. Indeed, PIE12-
trimer was able to withstand the impact of resistance mutations
to earlier D-peptides and required a much longer selection (65
weeks) to generate resistant strains. Ongoing work is exploring
the mechanism of PIE7-dimer, PIE12-dimer, and PIE12-tri-
mer resistance and its relationship to group O’s insensitivity. A
key question is whether HIV can develop resistance to these
inhibitors independent of changes in affinity (e.g., kinetics) that
are capable of maintaining viral fitness.

Viral escape affects even the newest class of FDA-approved
HIV-1 drugs, integrase inhibitors. Resistance to raltegravir and
corresponding treatment failure were observed in a significant
subset of patients in both the phase II and III clinical studies
(5), and corresponding resistance mutations can be seen within
4 weeks when resistant virus is selected in viral passaging stud-
ies (28). Our studies indicate that PIE12-trimer is a promising
entry inhibitor that could overcome the limitations associated
with the two currently approved entry inhibitors, enfuvirtide
(high dosing, susceptibility to resistance) and maraviroc (Sel-
zentry; effective only against R5 viruses) and may also prove to
have a better resistance profile than even the newest class of
HIV-1 inhibitors.

In addition to being a possible therapeutic agent, PIE12-
trimer is an ideal candidate for a topical microbicide, as its
protease resistance would allow it to withstand the protease-
rich environment of the vaginal mucosa. In the absence of a
safe and effective HIV vaccine, a topical microbicide to pre-
vent the sexual transmission of HIV is an urgent unmet global
health need. The ultimate utility of PIE12-trimer as a micro-
bicide or therapeutic agent will be determined by advanced
preclinical and clinical studies, including characterization of
pharmacokinetics, in vivo toxicity, effectiveness in animal mod-
els of HIV infection (alone or in combination with other HIV
inhibitors), and optimization of formulations for microbicide
gels or vaginal rings.

More generally, the present work unequivocally shows that
D-peptide inhibitors can be designed with high potency and
specificity against natural L-protein targets. The D-peptide de-
sign methodology described here can be applied to diverse
biomedical applications, particularly for the many viruses that
share HIV’s hairpin-closing entry mechanism (e.g., influenza
virus, Ebola virus, respiratory syncytial virus, severe acute re-
spiratory syndrome coronavirus, Dengue virus, and West Nile
virus). Our resistance capacitor design strategy may also be
generally applicable for treating other rapidly evolving dis-
eases, especially when combined with recent advances in an-
ticipating likely structural sources of drug resistance (37). Fi-
nally, the development of PIE12-trimer as a strong clinical
candidate will allow D-peptide therapeutics to be evaluated in
vivo to determine if their theoretical advantages warrant a
prominent role as a new class of therapeutic agents.

FIG. 6. Effect of PIE7-dimer resistance mutations on PIE7-dimer,
PIE12-dimer, and PIE12-trimer potency. IC50s against wild-type (wt)
and PIE7-dimer-resistant (E560K/V570I) strain HXB2 pseudovirion
entry are shown. The C-peptide inhibitor C37 is included as a control.
Data represent the means from at least two independent experiments.
Error bars represent the standard errors of the means.
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Design of a Modular Tetrameric Scaffold for the Synthesis of
Membrane-Localized D-Peptide Inhibitors of HIV-1 Entry
J. Nicholas Francis, Joseph S. Redman, Debra M. Eckert, and Michael S. Kay*

Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East Room 4100, Salt Lake City, Utah
84112-5650, United States

ABSTRACT: The highly conserved HIV-1 gp41 “pocket” region is a promising target for
inhibiting viral entry. PIE12-trimer is a protease-resistant trimeric D-peptide inhibitor that binds to
this pocket and potently blocks HIV entry. PIE12-trimer also possesses a reserve of binding
energy that provides it with a strong genetic barrier to resistance (“resistance capacitor”). Here, we
report the design of a modular scaffold employing PEGs of discrete lengths for the efficient
optimization and synthesis of PIE12-trimer. This scaffold also allows us to conjugate PIE12-trimer
to several membrane-localizing cargoes, resulting in dramatically improved potency and retention
of PIE12-trimer’s ability to absorb the impact of resistance mutations. This scaffold design strategy
should be of broad utility for the rapid prototyping of multimeric peptide inhibitors attached to
potency- or pharmacokinetics-enhancing groups.

■ INTRODUCTION
HIV entry is mediated by the trimeric viral envelope
glycoprotein (Env), which is cleaved into surface (gp120)
and transmembrane (gp41) subunits.1,2 Viral entry is triggered
by binding of gp120 to a primary receptor (CD4) and
subsequently a coreceptor (typically CXCR4 or CCR5), which
induces large conformation changes in gp120 that activate gp41
for fusion.3 gp41 then adopts an extended pre-hairpin
conformation, embedding its N-terminal hydrophobic fusion
peptide into the host cell membrane, bridging the virus and the
host cell (Figure 1). In this state, the gp41 N-peptide region
forms a trimeric coiled-coil (N-trimer), while the C-peptide
region is in a structurally undefined state. This pre-hairpin
intermediate then slowly collapses into a hairpin structure, with
the C-peptide folding back upon the N-trimer to pack in an
antiparallel orientation into the grooves of the N-trimer. The
formation of this trimer-of-hairpins structure brings the viral
and host membranes into close proximity and drives membrane
fusion.4,5

In the pre-hairpin intermediate, gp41 is vulnerable to
inhibitors that bind to either the N-trimer or C-peptide2,6

and prevent hairpin formation.7−9 This vulnerability has been
exploited by the C-peptide-derived therapeutic Fuzeon
(enfuvirtide). Fuzeon binds to a portion of the N-trimer
groove, preventing fusion with nanomolar potency. Though
effective, Fuzeon is currently utilized only as “salvage therapy”
for patients with multidrug resistance because of its high cost
(∼$30 000/year/patient), dosing requirements (90 mg twice
daily), injection site reactions, and the rapid emergence of
resistant strains.10,11

The gp41 N-trimer contains a functionally critical and highly
conserved deep hydrophobic pocket at its C-terminus.4,12,13

The genomic region that encodes for the pocket also forms the

structured RNA region of the Rev-responsive element (RRE),
which is critical for the export of viral mRNA to the
cytoplasm,14 further constraining evolution of this region on

Received: February 15, 2012
Revised: April 25, 2012
Published: May 1, 2012

Figure 1. HIV entry pathway. Upon engagement with cellular receptor
and coreceptor, gp120 and gp41 undergo a conformational change
resulting in extension of gp41 into the pre-hairpin intermediate,
exposing the hydrophobic pocket region of the N-trimer. gp41
collapses into the trimer-of-hairpins structure, juxtaposing the viral and
host membranes and causing membrane fusion. The hydrophobic
pocket targeted by PIE12 is an estimated 60 Å from the cell
membrane, which can be bridged by a relaxed PEG24 linker. In
contrast, the C-peptide C-terminus is directly adjacent to the
membrane. Cholesterol (red) conjugated with PEG spacers (black
lines) are shown.
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the nucleotide level. Fuzeon binds to the N-trimer groove
region just outside the pocket, an area that is more tolerant of
resistance mutations. Second/third-generation C-peptide in-
hibitors (e.g, T1249, T2635) bind the groove and pocket and
are much less susceptible to resistance.10,15−20

We have utilized structure-guided mirror-image phage
display to generate D-peptide inhibitors that bind with high
affinity to the pocket.13,21,22 D-Peptides are protease resistant
(as proteases have stereochemical specificity and generally only
cleave L-substrates),23 giving them the potential for a much
longer lifetime in the body. PIE12, our most potent monomeric
D-peptide, is a pocket-specific inhibitor of HIV-1 with high-nM
potency against the difficult-to-inhibit primary HIV isolate
JRFL. Since the N-trimer contains three symmetric pockets, we
designed a trimeric version of PIE12 that uses PEG to link
three monomers and greatly improves affinity and potency via
avidity. PIE12-trimer inhibits all major HIV clades with high-
pM to low-nM potency21 and is a promising preclinical
candidate for the treatment and prevention of HIV-1. Here, we
describe a novel modular PEG scaffold used to optimize the
production and the potency of PIE12-trimer.
While designing D-peptide inhibitors with progressively

greater potency, we encountered a potency limit that could
not be overcome by affinity optimization because the target is
only available in the short-lived pre-hairpin intermediate. Due
to the finite target exposure and the limits of diffusion, the
potency of inhibitors with very high affinities (and on-rates) is
limited by the diffusion-limited on-rate rather than binding
affinity. For such diffusion-limited inhibitors, a potency plateau
is reached beyond which further improvements in affinity do
not improve potency. Similar potency plateaus have been
observed for several inhibitors that target the transient pre-
hairpin intermediate.21,22,24−26 “Over-engineering” our inhib-
itors with improved affinity, but no corresponding improve-
ment in potency, provides a reserve of binding energy and
slows the evolution of resistance mutations. This “resistance
capacitor” eliminates the selective advantage conferred by
affinity-disrupting resistance mutations, since viruses bearing
mutations that reduce affinity are still inhibited with equal
potency, depriving HIV of an efficient evolutionary pathway to
resistance. A profoundly disruptive mutation could escape the
resistance capacitor, but such severe pocket mutations are
discouraged due to the high cost to viral fitness. With high pM
to low nM potency but sub-fM binding affinity, PIE12-trimer
has a very strong resistance capacitor.21

We hypothesize that potency could be improved beyond the
plateau by pre-positioning inhibitor on the cell surface, the site
of viral entry, thus increasing the association rate beyond the
diffusion limit. Using our novel modular PEG scaffold, we
conjugate PIE12-trimer to membrane-localizing groups (cho-
lesterol and alkyl chains) that improve potency up to ∼160-
fold. This approach greatly simplifies trimer synthesis and
improves yield. Importantly, our data show that this gain in
potency does not disrupt the resistance capacitor, leaving intact
PIE12-trimer’s strong barrier to resistance mutations. Using a
discrete PEG scaffold with orthogonal reactive groups and
defined geometry allows for rapid optimization of multimeric
inhibitors and scouting of various potency-enhancing cargoes
and should be of broad utility for the design of other
multimeric peptide inhibitors.

■ EXPERIMENTAL PROCEDURES
Peptide Synthesis. Peptides were synthesized using a PTI

PS3 peptide synthesizer or by RS Synthesis as previously
described21,22 to generate either PIE12-GK or ΔHP-PIE12-GK
(lacks two N-terminal residues, D-His and D-Pro). PIE12-
dPEG4/5-NH2 (the precursor to PIE12-trimer synthesis) was
synthesized as follows: PIE12-GK (10 mM in dimethylaceta-
mide, DMAC) was reacted with 250 mM stock solution of
Fmoc-N-amido-dPEG4/5-NHS ester (Quanta BioDesign 10994
and 10053) in dry DMAC (Acros Organics, septa sealed with
molecular sieves) at a 1:1 molar ratio buffered by triethylamine
(200 mM, pH 7.5) for 60 min at RT. This reaction was
quenched by addition of acetic acid to 5% and purified by
reverse-phase HPLC (water/acetonitrile gradient in 0.1% TFA)
on a Waters BEH X-Bridge 10 μm, 300 Å C18 column (RP-
HPLC). Purified product was lyophilized, then resuspended in
20% piperidine in DMAC for 20 min to remove Fmoc and
produce PIE12-PEG4/5-NH2, which was then purified by RP-
HPLC.

Trimer Synthesis. PIE12-PEG4/5-NH2 (10 mM) was
reacted with 250 mM stock solution trimethylolethane-triNHS
ester (Figure 2A, Quanta BioDesign 10674) in DMAC at a

3.3:1 (peptide/scaffold) ratio in DMAC buffered by triethyl-
amine (200 mM, pH 7.5) for 60 min at RT. Product was
purified by RP-HPLC. All masses were confirmed by ESI-MS
(AB Sciex API-3000).
Cholesterol-PIE12-trimer and alkyl-PIE12-trimer were syn-

thesized as follows: PIE12-PEG4-NH2 (10 mM) was reacted
with Maleimide-PEG12-triNHS ester (Quanta BioDesign
10676, 250 mM in DMAC) or Maleimide-PEG24-triNHS
ester (Figure 2B, Quanta BioDesign 10680, 250 mM in
DMAC) at a 3.3:1 (peptide/scaffold) ratio in DMAC buffered
by triethylamine (200 mM, pH 7.5) for 45 min at RT.
Thiocholesterol (Sigma Aldrich, 136115, 250 mM in chloro-
form), 1-octanethiol (Sigma-Aldrich 471836), 1-hexadecane-
thiol (Sigma-Aldrich 52270), or 1-octadecanethiol (Sigma
Aldrich 01858) were then added to a final concentration of
4.5 mM and reacted for an additional 60 min. For PEG16,
PIE12-PEG4-NH2 was first reacted with Mal-PEG12-triNHS
ester, followed by reaction with D-Cysteine (5 mM) to yield
(PIE12-PEG4)3-PEG12-Cys. This product was then purified by
RP-HPLC before sequential reaction with Maleimide-PEG4-
NHS and thiocholesterol under conditions identical to those
used to generate chol-PEG24-PIE12-trimer. PEG36, PEG57, and
PEG132-trimer were produced through conjugation of PIE12-

Figure 2. Trimeric and heterotetrameric PEG scaffolds and cargoes. A.
Trimethoylethane-triNHS ester. B. Heterotetrameric PEG scaffold.
The fourth maleimide arm is available for reaction with thiol-
containing cargoes, such as 1-octadecanethiol (C18-SH) and
thiocholesterol.
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PEG4-NH2 to Maleimide-PEG24-triNHS ester, followed by
addition of D-cysteine. This intermediate was then conjugated
to Mal-PEG12-NHS ester (Quanta Biodesign, 10284), Mal-
PEG2K-NHS ester (Creative PEGWorks, PHB-950, ∼45 PEG
units), or Mal-PEG5K-NHS ester (Creative PEGWorks, PHB-
952, ∼120 PEG units) to yield Chol-PEG36-PIE12-Trimer,
Chol-PEG57-PIE12-trimer, and Chol-PEG132-PIE12-trimer, re-
spectively. The reaction was quenched by addition of acetic acid
to 5% before purification by RP-HPLC.
Viral Infectivity Assays. Pseudovirion infectivity assays

were carried out as previously described21,22 using HXB2 and
JRFL luciferase reporter pseudovirions (NL4−3 strain) and
HOS-CD4-CXCR4 (for HXB2) or HOS-CD4-CCR5 (for
JRFL) target cells. Inhibitor curves were generated using six
concentration points measured in quadruplicate, and luciferase
counts were normalized to an uninhibited control. Inhibition
curves were fit using a standard IC50 eq [1 − c/(IC50 + c)]
weighting each concentration point by its standard error in
KaleidaGraph (Synergy software). Reported IC50 values are the
average of at least 2 independent assays.

■ RESULTS
Our first goal was to simplify the synthesis of PIE12-trimer
while also optimizing the linkages between PIE12 monomers.
In our previous work, we synthesized PIE12-trimer by attaching
bis-NHS ester PEG5 spacers to PIE12-GK. After purification,
two of these PEGylated monomers were reacted with a central
PIE12-GKK monomer (two primary amines) to produce
PIE12-trimer.21 This method is cumbersome for large-scale
production, because it requires the synthesis of two distinct D-
peptides and a series of HPLC purifications to assemble the
trimer, resulting in low yields. In addition, our PIE12 crystal
structure suggested that shorter PEG linkers might adequately
bridge the neighboring pockets and improve avidity. To address
these goals, we redesigned the PIE12-trimer using a scaffold
strategy. We designed a homotrimeric scaffold containing three
NHS ester arms for conjugation to PIE12-GK (Figure 2a) in a
single-pot reaction. PEG linkers of various lengths can be
appended to the PIE12-GK peptide, allowing for the simple
production of PIE12-trimers with varying PEG lengths.
PIE12-trimer’s estimated sub-fM affinity for the N-trimer

makes direct comparative KD measurements (e.g., by surface
plasmon resonance) very challenging. Although antiviral
potency can be used as a surrogate for affinity, PIE12-trimer’s
potency plateau can mask even large changes in affinity. To
overcome this problem, we designed a PIE12 variant with
weakened affinity to allow comparative evaluation of different
trimer geometries by measuring inhibitor potency. We
previously observed that PIE12’s two N-terminal residues
make important contacts with the N-trimer and reasoned that
deletion of these residues (D-His and D-Pro) would significantly
reduce binding affinity without disrupting the overall
orientation of PIE12 binding to the gp41 pocket or the local
structure at the C-terminal PEG linkage site. ΔHP-PIE12 is 84-
fold less potent than PIE12 (Table 1). In the context of the
homotrimeric scaffold, ΔHP-PIE12 connected via our standard
PEG5 linkers has an IC50 of 380 nM against HXB2 (a standard
lab-adapted strain) and is therefore well outside of the potency
plateau (∼500 pM for HXB2). Using ΔHP-PIE12-trimer, we
can now detect changes in potency due to linker changes that
subtly alter affinity.
Our initial exploration of PEG linker lengths in PIE12-trimer

showed that PEG2 and PEG3 were slightly less potent than the

original PEG5. To determine whether PEG4 or PEG5 was the
optimal arm length, both PEG5 and PEG4 ΔHP-PIE12
conjugates were attached to the homotrimeric scaffold, and
we observed that a PEG4 linker was slightly more optimal
(Table 1). Therefore, PEG4 was selected as the new standard
linker for conjugating PIE12 to the scaffold. The scaffold
synthesis strategy is dramatically simpler than our previous
method for generating trimer since it requires only one peptide
and a single purification. Additionally, the yields are
considerably higher due to the reduced number of purification
and lyophilization steps that led to loss of active NHS esters in
the previous strategy. Finally, the high activity of the scaffold
and single-pot reaction allow for near-stoichiometric concen-
trations of peptide and scaffold, further improving yield.

Heterotetrameric Scaffold. With the optimal PEG linker
length in place, we next turned our attention to improving
PIE12-trimer’s potency via localization to sites of viral entry
(the cell surface). To enable the conjugation of membrane-
localizing groups to PIE12-trimer, we designed a heterotetra-
meric scaffold containing three short arms with NHS ester
groups (for addition of PIE12-PEG4-NH2) and a fourth PEG
arm of variable length functionalized with maleimide (an
orthogonal reactive group for the addition of thiol-containing
cargoes) (Figure 2b).
Our first cargo for the heterotetrameric scaffold was

cholesterol. Several recent studies have shown that cholesterol
conjugation improves both the potency and the circulating half-
life of C-peptide inhibitors of HIV27 and paramyxoviruses.28,29

Cholesterol conjugation has also been shown to specifically
localize dyes to the membrane surface.30,31 A challenge of
applying this approach to PIE12 is that, while the N-terminus
of the C-peptide lies immediately adjacent to the membrane,
PIE12 targets a pocket that we estimate is ∼60 Å from the
membrane (Figure 1). We used flexible PEG linkers of varying
lengths to span this distance. PEG12 is sufficiently long if

Table 1. D-Peptide Inhibition Dataa

IC50 (nM)

inhibitor HXB2 JRFL

PIE12b 37 ± 2.3 580 ± 21.4
ΔHP-PIE12 3100 ± 783 nd
Chol-PEG2-PIE12 69 ± 11 nd
Chol-PEG12-PIE12 12 ± 3.6 nd
Chol-PEG24-PIE12 0.64 ± 0.25 nd
C34 1.4 ± 0.3 13.4 ± 0.1
C34-PEG2-Chol 0.044 ± 0.0004 0.05 ± 0.01
C34-PEG11-Chol 0.021 ± 0.0014 0.024 ± 0.005
C34-PEG80-Chol 0.022 ± 0.0004 0.1 ± 0.045
PEG4-ΔHP-PIE12-trimer 300 ± 7.2 nd
PEG5-ΔHP-PIE12-trimer 380 ± 13 nd
PEG4-PIE12-trimer 0.72 ± 0.04 2.1 ± 0.28
Chol-PEG12-PIE12-trimer 0.052 ± 0.02 0.06 ± 0.004
Chol-PEG16-PIE12-trimer 0.02 ± 0.002 0.017 ± 0.0002
Chol-PEG24-PIE12-trimer 0.013 ± 0.0013 0.019 ± 0.003
Chol-PEG36-PIE12-trimer 0.011 ± 0.0015 0.015 ± 0.005
Chol-PEG57-PIE12-trimer 0.007 ± 0.0013 0.013 ± 0.003
Chol-PEG132-PIE12-trimer 0.012 ± 0.0015 0.025 ± 0.002
C8-PIE12-trimer 0.42 ± 0.01 nd
C16-PIE12-trimer 0.09 ± 0.014 0.11 ± 0.012
C18-PIE12-trimer 0.054 ± 0.018 0.087 ± 0.012

aAntiviral potency against HXB2 and JRFL HIV-1 strains. bFrom ref
21.
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stretched taut, but PEG typically assumes an average length
approximately half of its fully stretched distance.32

To study the potency effects of cholesterol (chol)
conjugation to PIE12 and the length of the linker between
chol and PIE12, we used monomeric PIE12, which is not in a
potency plateau and therefore should be a sensitive reporter for
optimal linker length. We began by generating chol-PIE12
conjugates using heterobifunctional PEG2, PEG12, and PEG24
NHS ester/maleimide cross-linkers to conjugate thiocholesterol
(cholesterol with a thiol replacing its hydroxyl group) to
PIE12’s C-terminal Lys (its only primary amine). We observed
that the PEG2 conjugate, much too short to bridge the
membrane to pocket distance, causes a 2-fold loss of potency
(HXB2 strain) compared to unconjugated PIE12. In contrast,
chol-PEG12-PIE12 shows 3-fold improved potency, while
PEG24 provides an even greater 58-fold increase in potency
compared to PIE12. For comparison, we also synthesized C-
peptide (C34) cholesterol conjugates of varying lengths (Table
1). We reproduce Ingalinella’s finding of ∼40-fold improved
potency27 using a short PEG2 linker, but surprisingly, a longer
linker (PEG11) provides an additional 2-fold improvement in
potency, and a much longer linker (PEG80) maintains the same
potency (HXB2 strain). A similar pattern is seen with the JRFL
strain, but with significant attenuation at very long PEG linker
lengths (4-fold worse than the optimal PEG length).
On the basis of these dramatic potency gains, we next

conjugated cholesterol to PIE12-trimer using the heterotetra-
meric scaffold. Using the optimal PEG4 linker determined
earlier for the three NHS ester (PIE12) arms, we synthesized
chol-PIE12-trimers with a variety of fourth arm (maleimide)
lengths to confirm the relationship between PEG length and
potency observed with the monomer. In the context of chol-
PIE12-trimer, we did not need to utilize ΔHP-PIE12, as the
cholesterol-mediated improvement in potency was discernible
using PIE12. This sensitivity was expected because membrane
localization affects the association rate rather than changing
affinity (masked by the resistance capacitor). We varied the
fourth arm from 12 to 132 PEG units, covering a distance range
of ∼60 to 480 Å (fully extended).
Cholesterol conjugation dramatically improves PEG4-PIE12-

trimer potency against both HXB2 and JRFL entry (up to 160-

fold, Table 1 and Figure 3). Comparison of varying fourth arm
lengths in chol-PIE12-trimer shows that inhibitor potency
varies modestly in an optimal range between PEG24 and PEG57.
A shorter PEG12 linker is suboptimal, though it performs better
than seen in the monomer series, likely due to the additional
length provided by the PEG4 arms. Only a slight decrease in
potency is observed with the longest (PEG132) linker. Despite
being slightly less potent than Chol-PEG57-PIE12-trimer, we
have chosen Chol-PEG24-PIE12-trimer as our lead candidate
due to its ease of synthesis and the availability of monodisperse
PEG24. A monodisperse PEG scaffold will ease future preclinical
studies of chol-PIE12-trimer purity, metabolism, pharmacoki-
netics, and stability. Importantly, cholesterol conjugates retain
high (mM) aqueous solubility.
Another established strategy for localizing inhibitors to

membranes is fatty acid conjugation.33−37 Using the same
heterotetramer scaffold strategy described above with choles-
terol, we synthesized PIE12-trimers conjugated to aliphatic
chains of 8, 16, and 18 carbons (C8/C16/C18-PIE12-trimer).
While C8 conjugation has little effect on PIE12-trimer potency,
C16 and C18 both provide substantial gains in potency, though
to a lesser degree than seen with cholesterol (Table 1). C18-
PIE12-trimer was slightly more potent than C16-PIE12-trimer.

Effect of Membrane Localization on the Resistance
Capacitor. Drug resistance is a constant threat to the
effectiveness of HIV inhibitors. PIE12-trimer is an attractive
drug candidate in part because of its strong resistance capacitor,
which provides a high genetic barrier to resistance.21 The
resistance capacitor depends on the diffusion-limited associa-
tion rate for PIE12-trimer binding to gp41. The cholesterol and
C16/18 conjugation strategies described here break through
this kinetic barrier via inhibitor localization to viral entry sites
(i.e., increasing effective inhibitor concentration and over-
coming the diffusion rate limitation). In theory, this improve-
ment in potency could come at the cost of weakening the
resistance capacitor. To test for this possibility, we measured
the potency of chol- and C16/C18-conjugated PIE12-trimer
against resistance mutations we have previously identified.21

Previous selection for resistance to PIE7-dimer (an earlier-
generation D-peptide inhibitor)22 generated E560K/V570I,
which minimally affects the potency of PIE12-trimer, but

Figure 3. JRFL pseudovirion infectivity assay. A. Dependence of linker length on chol-PIE12-trimer potency. B. Thio-alkane-conjugated PIE12-
trimer series with differing alkane lengths. Representative curves shown.

Bioconjugate Chemistry Article

dx.doi.org/10.1021/bc300076f | Bioconjugate Chem. 2012, 23, 1252−12581255  
 



    
 

 

59 

dramatically reduces PIE7-dimer potency.21 Selection of
resistance to PIE12-trimer required more than a year of viral
passaging, but ultimately resulted in the Q577R mutation,
which decreases PIE12-trimer potency by >1000-fold.21 The
effect of these resistance mutations on chol- and C16/18-
PIE12-trimer potency is shown in Table 2. The relative effects

of both resistance mutations are similar for PIE12-trimer and
the cholesterol/alkane-conjugated PIE12-trimers. However,
because of the greatly improved potency of the conjugated
PIE12-trimers, these inhibitors maintain nanomolar potency
even against the severe Q577R resistance mutation. The impact
of the less severe E560K/V570I resistance mutation is absorbed
by all of the conjugated PIE12-trimers, as well as plain PIE12-
trimer. These data suggest that the improvement in potency
through C16/C18 and cholesterol conjugation retains enough
excess binding energy to maintain an effective resistance
capacitor.

■ DISCUSSION
PIE12-trimer, our previously described D-peptide inhibitor, is a
promising preclinical candidate for the treatment and
prevention of HIV-1 due to its strong potency, wide breadth,
and highly charged resistance capacitor that slows the
emergence of resistance mutations. However, the transient
nature of PIE12-trimer’s target means that its potency is
restricted by its diffusion-limited association rate with the gp41
pocket. In an attempt to break through this potency barrier, we
designed a heterotetrameric scaffold to allow us to conjugate
various membrane-localizing cargoes to PIE12-trimer. This
scaffold also allows us to produce PIE12-trimer variants much
more efficiently than previously reported. As hoped, con-
jugation of PIE12-trimer to cholesterol or C16/C18 reduces
the kinetic limitation and greatly improves potency up to 160-
fold.
We hypothesize that this increased potency is due to local

concentration of inhibitor at membrane sites of viral entry.
Cholesterol is specifically enriched at sites of viral entry (lipid
rafts, where CD4 and coreceptor are localized).38,39 The
mechanism by which cholesterol improves potency is the focus
of ongoing work. Preliminary evidence suggests that the
interaction between cholesterol and the membrane is readily
reversible, which may explain why there is a broad range of
compatible linker lengths. It may also be the case that
cholesterol-conjugated inhibitors interact directly with Env, as
a cholesterol recognition/interaction amino acid consensus
sequence (CRAC) has been identified in the membrane
proximal region of gp41.40

By comparison, C16 and C18 conjugates are less potent than
the cholesterol conjugate. Saturated fatty acids C16:0

(palmitate) and C18:0 (stearate) are also enriched in lipid
rafts,41 but are abundant in the general plasma membrane as
well.42 The reduced potency of alkylated PIE12-trimer
compared to cholesterol may therefore be explained by a
relatively lower affinity of alkyl chains for lipid rafts. Another
possible explanation is fatty-acid sequestration by albumin,
which is known to bind fatty acids with high affinity (compared
to cholesterol),43 though it is not known how loss of the acid
group (leaving an alkane chain) affects this binding.
GPI anchors in lipid rafts contain C16 and C18 alkyl chains

as well as acylated C16 and C18 fatty acids.44 Originally, we
synthesized alkyl conjugates, and noted that they improved
potency through membrane association (overcoming the
potency plateau). For completeness, we also synthesized an
acylated C16 (fatty acid) conjugate. Surprisingly, the C16 acyl
conjugate was much less potent than the C16 alkyl conjugate
(data not shown), presumably because it does not associate as
effectively with plasma membranes. This finding may explain
why a recent study did not observe a potency enhancement
with C16 acylation of C34.27

Importantly, we show that membrane localization does not
impair the resistance capacitor. Both chol- and C16/C18-
conjugated PIE12-trimer are able to absorb the affinity-
disrupting impact of PIE7-dimer resistance mutations
(E560K/V570I). For the more severe PIE12-trimer resistance
mutation Q577R, the relative loss of potency for both
conjugates is comparable to that seen with PIE12-trimer. The
full resistance profile of these conjugates will be determined by
ongoing viral passaging studies starting from both wild-type and
PIE12-trimer resistant virus.
Although PIE12-trimer has ideal antiviral properties, its

relatively small size (∼8 kD) will likely lead to a short serum
half-life due to renal filtration. In addition to their potency-
boosting effects, we hypothesize that both cholesterol and alkyl
conjugation will also lead to improvements in the pharmaco-
kinetic (PK) properties of these inhibitors via interaction with
cell membranes and albumin that slow renal clearance. Albumin
serves as a carrier for both cholesterol45 and fatty acids,46

reducing the rate of renal filtration. Adherence to membrane
surfaces may also slow the absorption of inhibitor from the
subcutaneous space, enabling prolonged dosing via a slow-
release depot effect. This type of depot would be especially
attractive for nondegradable D-peptides.
This work demonstrates the successful application of

modular PEG scaffold-based design to peptide drug optimiza-
tion (both peptide geometry and localization to the site of
action via conjugated localizing cargoes). This approach allows
for alterations in the scaffold to accommodate a variety of
cargoes and chemistries (e.g., “click” chemistry), as well as rapid
optimization of PEG arm lengths. For viruses that undergo
membrane fusion within the endosome, such as Ebola, this
strategy could be employed to attach an endosome-targeting
moiety to localize inhibitor to the site of entry and increase
potency. Additionally, the scaffold allows for conjugation to a
variety of cargoes to modulate PK properties (e.g., large
branched PEGs, albumin, or albumin-binding peptides).47,48

The scaffold itself is inexpensive to produce and can be used
directly for cost-effective large-scale production.
PK and animal toxicity studies for chol- and C16/C18-

PIE12-trimer are underway to determine how conjugation
alters serum half-life and to determine if any specific toxicity
arises as a result of conjugation. Fatty acid conjugation has been
used to prolong serum half-life of a GLP-1 peptide (liraglutide,

Table 2. Antiviral Potency against Resistant Strainsa

IC50 (nM)

inhibitor WT HXB2 E560K/V570I Q577R

PEG4-PIE12-trimer 0.72 0.89 >3 μM
Chol-PEG24-PIE12-trimer 0.013 0.01 10.1
C8-PIE12-trimer 0.42 0.86 452
C16-PIE12-trimer 0.09 0.045 39
C18-PIE12-trimer 0.054 0.035 32.5

aAntiviral potency against identified resistant strains (HXB2 back-
ground). The IC50 standard error of the mean values are <35% for all
samples.

Bioconjugate Chemistry Article

dx.doi.org/10.1021/bc300076f | Bioconjugate Chem. 2012, 23, 1252−12581256  
 



    
 

 

60 

C16) and insulin (detemir, C14). Alkane toxicity in the context
of peptide conjugates has not been studied.
The in vivo efficacy of these conjugates will be determined in

future studies of systemic treatment via subcutaneous injection
or as a vaginally/rectally applied preventative (microbicide) in
human tissue and animal models. Our D-peptide scaffold is
especially advantageous for application as a microbicide due to
its protease resistance, which should enable it to persist for
extended periods in the vaginal/rectal mucosa’s harsh protease-
rich environment. The addition of membrane-binding groups
may also improve microbicide tissue penetration and retention.
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Abstract 
 

Unmodified peptides generally have in vivo half-lives on the order of minutes, 

making pharmacokinetic (PK) enhancement necessary.  Herein we evaluate several 

strategies for enhancing PK in the context of our lead candidate PIE12-trimer, a protease-

resistant D-peptide HIV entry inhibitor.  Surprisingly, PIE12-trimer conjugates show a 

general reduction in half-life compared to equivalent monomeric conjugates.  PEGylation 

with a 40 kDa Y-branched PEG greatly improves PIE12’s half-life but reduces antiviral 

potency.  Moreover, fatty acid conjugation (acylation) and alkane conjugation of 

comparable lengths were found to behave significantly differently.  Fatty acids failed to 

improve potency, but reduced the volume of distribution and clearance 6-fold, while 

alkane conjugates significantly improved potency with only modest effects on half-life.  

Cholesterol conjugation dramatically improves potency while concurrently improving 

half-life.  Because of its simultaneous improvements in potency and PK, cholesterol 
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conjugated PIE12-trimer is an especially promising therapeutic in the arsenal against 

HIV. 

 

Introduction 
 
Peptide therapeutics are an increasingly important class of medicines.  Peptides 

have advantages over small molecules in terms of improved target affinity and 

specificity, as well as an ability to disrupt protein-protein interactions (generally 

considered “undruggable” by small molecules)1.  Furthermore, peptides have advantages 

over proteins in that they can be chemically synthesized, can penetrate deeper into 

tissues, and are generally less immunogenic1. 

Despite these advantages, peptide therapeutics face considerable pharmacokinetic 

(PK) challenges.  Peptides can be rapidly cleared by the kidneys and degraded by 

proteases, leading to short half-lives.  They also do not readily penetrate through cell 

membranes1, limiting access to potential intracellular targets and reducing transcellular 

migration.  These same limitations prevent oral administration of peptides such that they 

must be delivered parenterally, usually by subcutaneous (SC) injection.  Although 

generally not as preferable as oral delivery, self-administered subcutaneous drugs are 

readily accepted by patients for multiple indications, such as diabetes and HCV. 

Recently we reported the development of a highly potent protease-resistant         

D-peptide inhibitor of HIV-1 entry, PIE12-trimer, that exhibits sub-pM binding affinity 

and high pM potency against every major circulating clade of HIV-12,3.  Using a 

polyethylene glycol (PEG) scaffold with three arms of discrete length for the attachment 

of PIE12 (a peptide composed solely of D-amino acids), synthesis of PIE12-trimer has 
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been simplified and yields increased.  Moreover, an orthogonally reactive fourth linker 

arm makes conjugation to potency and PK enhancing moieties possible (Fig. 5-1).   

PIE12-trimer’s target, gp41, is only transiently exposed during HIV fusion.  

Because PIE12-trimer’s off-rate greatly exceeds that time, PIE12-trimer potency is only 

limited by on-rate, which can be increased by membrane-tethering moieties on the fourth-

arm.  Prolonging the off-rate improves affinity for gp41, but not its potency.  Thus, 

PIE12-trimer binds gp41 with an excess of binding energy.  This excess affinity, dubbed 

the “resistance capacitor,” significantly delays the onset of HIV resistance because 

mutations that reduce affinity are still inhibited with equal potency, preventing the 

stepwise accumulation of resistance mutations3.  Overall, PIE12-trimer’s broad potency 

combined with its “charged” resistance capacitor provides an ideal preclinical candidate 

for the prevention and treatment of HIV/AIDS. 

 Ultimately our goal is to develop a weekly or monthly subcutaneous injectable by 

conjugating potency and PK enhancing moieties to PIE12-trimer.  For peptides in 

general, PK-enhancing moieties can improve half-life by reducing clearance (e.g., by 

avoiding renal filtration) or sheltering peptides from proteases.  As a D-peptide, PIE12-

trimer is unique because it is already protease stable.  Thus, our conjugates will provide 

the first clear view of the pure clearance-reducing potential endowed by a given PK-

enhancing moiety, without the need for considering a concurrent reduction in 

degradation. 
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Figure 5-1.  PIE12 and PIE12-trimer Scaffolds with PK-Enhancing Cargoes.  PIE12 
is represented by green circles.  A) PIE12-trimer, activated PIE12, and activated PIE12-
trimer are shown schematically (each PIE12 of PIE12-trimer is linked to the scaffold with 
a discrete PEG4 linker, not shown). B) 40 kDa Y-branched PEG, palmitic acid, aliphatic 
C16 and C18 chains, and cholesterol are conjugated to PIE12 and PIE12-trimer by 
maleimide or NHS-ester chemistry. (modified from3) 
 
 
 

Selection of PK-Enhancing Moieties 
 

When choosing PK-enhancing moieties, we considered both clinically validated 

strategies  (such  as  PEGylation utilized for INF!2a in PEGASYS, and acylation utilized 

for a GLP-1 analogue in Victoza) as well as strategies in preclinical development 

(cholesterol and HSA conjugation)4,5.  The benefits and challenges of each are described. 

 
 
PEGylation 
 

PEGylation is a validated strategy for enhancing PK with eleven approved 

products.  PEG conjugation improves PK primarily by increasing drug size to reduce 
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renal filtration, while also decreasing proteolysis and reducing immunogenicity for 

susceptible proteins.  The primary challenge of PEGylation is to add enough PEG to 

improve pharmacokinetics without sterically inhibiting the activity of the conjugate.  

Approved PEGylated compounds to date have utilized 20-40 kDa of PEG through single 

or multiple attachments.  This amount of PEG is large enough to avoid renal filtration, 

but not too much as to completely inhibit activity or promote uptake into 

reticuloendothelial cells6. 

PEGASYS is a particularly well-studied PEGylated protein, and utilizes a single 

branched 40 kDa PEG.  Branched PEGs are reported to increase half-life and better 

preserve conjugate activity compared to mass-equivalent straight-chains7.  Branched 

PEGs also better protect against proteolysis8.  Compared to unconjugated interferon, the 

40 kDa branched PEG of PEGASYS increases IV half-life in humans from 3.8 to 65 h 

and reduces the volume of distribution 5-fold, thereby slowing clearance 100-fold9 (Table 

5-1).  This enhanced PK profile enables once-weekly subcutaneous administration. 

Unlike most PEGylated products, however, our peptide is an inhibitor, not a 

hormone or enzyme.  Therefore doses must be higher and steadier, so questions regarding 

PEG toxicity become necessary to consider.  Fortunately, PEG appears to be remarkably 

nontoxic.  For example, the PEG 400 excipient in intravenous (IV) busulfan can be given 

at 300 mmoles (110 g) per week without noticeable toxicity10.  With increasing dose, 

eventually PEG toxicity manifests as proximal renal tubule swelling.  Recently a patient 

was given an average of 650 mmoles (240 g) per week of PEG 400 excipient in IV 

lorazepam for a duration of 43 days.  Renal toxicity developed but completely resolved 

upon   discontinuation   of   therapy11.     In   another   report,   32   patients   received   IV 
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Table 5-1.  Terminal Half-Lives and Volumes of Distribution for Relevant FDA-
Approved and Investigational Products. 

 
 
 

 Human 
(60-100 kg) 

Rat 
(250-350 g) 

Mouse 
(25-35 g) 

 IV SC Vd (L) IV SC Vd 
(mL) IV SC Vd 

(mL) 
PEGylation          

Unconjugated 
INF!2a 3.8 h9 3-8 h8; 

4-6 h9 31-738 2.1 h8 0.7 
h12     

PEGASYS               
[40 kD PEG-

INF!2a] 
60-80 h 160 h = 

6.7 d 8-128 15 h8 51 h12     

Cimzia  
(certolizumab pegol) 

[40 kDa anti-TNF-
Fab] 

 14 d13 6-813       

Omontys 
(peginesitide) 

[40 kDa PEG with 
21aa dimerized 

peptides] 

25 h14 53 h14 
1.5-3.4 
per 70 
kg14 

      

Lipidation          
       Acylation          

Unconjugated 
GLP-1 (7-37) 1-2 m15         

Liraglutide 
(Palmitated- 

GLP-1 analogue) 
8 h16 

13 h17; 
11-15 

h18 

4.9 per     
70 kg17  4 h16     

Unconjugated 
Insulin 4-6 m19 ~2.5 h20 11.6-

19.621       

Insulin Detemir 
(myristoylated) 

19-25 
m22 5-7 h23 7 per 

70 kg23       

       Cholesterol          
T20 (Fuzeon) 1.83 h24 3.8 h25 6-724 2.8 

h26      

C34 
ND ND N/A    0.6 h4 0.8 h4 

210 
per 
kg4 

C34-Chol 
ND ND N/A    3 h4 6.5 h4 

30 
per 
kg4 

Albumin 
conjugation          

Unconjugated 
Albumin 19 d27  8.4 per     

70 kg28 
1.9 
d27   1 d27   

C34-HSA ND ND N/A    ~1 d29 ~1 d29  
Albuferon  

(INF!2b-HSA)  140 h30        

CJC-1131 
(maleimide GLP-1 

analogue) 
 9-15 d30   15-20 

h30     
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nitrofurantoin containing 120-225 g of PEG 300 (~650 mmoles) over 3-5 days.  Of these, 

six developed renal toxicity and two died11.  It is not clear whether the total mass of PEG 

or molar concentration contributes more to renal toxicity.  However, the high molarity 

required to observe toxicity, often in the 10’s of mM, exceeds the dose of current 

PEGylated products by approximately 600-fold10, suggesting general safety of the 

material. 

 
 
Acylation and Alkylation 
 
 PK-enhancement by acylation is based on the strong interaction of fatty acids with 

human serum albumin (HSA), which circulates for 19 days (Table 5-1).  A secondary PK 

benefit of acylation is self-association that prolongs absorption from the subcutaneous 

space17,31.  Physiologically, free fatty acids (FFAs) circulate bound to HSA, which has 

two high-affinity sites for FFAs and several secondary sites.  [Note that “free” means it is 

not esterified to glycerol, and should not be taken to mean it is unbound].  Palmitate (C16 

fatty acid) and stearate (C18 fatty acid) are the predominant forms of circulating FFAs32.  

FFA levels follow a diurnal pattern (rise during an overnight fast) that normally does not 

exceed a 2-fold molar excess over HSA33, although >6-molar excess has been reported in 

diabetic and obese patients34.  Circulating FFAs are anionic, although the charge is 

reputed to contribute little to albumin binding.35 

The affinity of HSA for FFAs is in the mid-to-low nM range35-37.  Notably, FFAs 

do not bind significantly to any other circulating particles, including low-density 

lipoproteins (LDL)35.  Furthermore, FFAs bind sites on HSA that appear to be 

independent of those used by most small molecules.  For example, although more than 
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98% of circulating myristoylated (C14 fatty acid) insulin detemir is bound to albumin, 

there have been no clinically relevant interactions noted with other protein-bound 

drugs23,35. 

 Victoza (liraglutide), a GLP-1 analogue, utilizes palmitate conjugation to increase 

its half-life, enabling once-daily subcutaneous dosing.  During the development of 

liraglutide, a myriad of other potential PK-enhancing lipids were evaluated18.  Notably, 

stearate conjugates had a better half-life but reduced activity, so palmitate was chosen for 

development.  Interestingly, liraglutide is not cleared by the kidneys or liver17, consistent 

with its high association with albumin.  Apparently the majority of liraglutide is 

catabolized and absorbed by cells. 

Based on publications that identify a fatty acid’s aliphatic chain as the critical 

moiety for albumin interaction35, we also explored alkane-conjugation as a substitute for 

acylation.  Alkanes only differ from fatty acyl groups by a single terminal carbonyl, and 

thiol-alkanes made synthesis straightforward using the maleimide chemistry of our 

scaffold’s fourth-arm linker. 

 
 
Cholesterol Conjugation 
 
 Cholesterol conjugation of an HIV C-peptide inhibitor improves PK in mice4.  As 

a newer strategy for which there are no FDA-approved examples, it is as yet unclear 

exactly how cholesterol improves PK, although we suspect a combination of cell 

membrane and albumin association.  Two studies report 435 µM38 and 24.6 µM39 

cholesterol affinity for HSA.  It is also reported, and consistent with our data, that 
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cholesterol provides superior membrane-binding over palmitate4, although this 

interaction is readily reversible3. 

 
 
HSA Conjugation 
 
 Whereas acylation and, likely, cholesterol conjugation improve PK by 

noncovalently interacting with albumin, a direct linkage is reported to improve PK even 

further, consistent with albumin’s long half-life (Table 5-1).  Of HSA’s 35 cysteines, only 

one is available for thiol-specific conjugation, Cys-34, found in the Ia subdomain40. 

Importantly, Cys-34 is buried and unavailable for conjugation unless the neighboring 

fatty acid binding site is occupied by fatty acid40.  Physiologically, free thiols like Cys-34 

are unusual, prompting the development of in vivo HSA conjugation prodrugs40.  Among 

albumin conjugates studied to date, Albiglutide (GLP-1), Albugon (GLP-1), and 

Albuferon (INF!2b) are the most developed5,30,41.  An albumin-C34 anti-HIV entry 

inhibitor has also been reported29. 

 

Materials and Methods 
 

Synthesis of Monomeric PIE12 and Conjugates 
 

PIE12 was synthesized by RS Synthesis (Louisville, KY) using standard solid-

phase methods.  PIE12-PEG12-cholesterol was synthesized by reacting 3 mM PIE12 with 

4 mM maleimide-PEG12-NHS ester (Quanta Biodesign, 10284) in dimethylacetamide 

(DMAC) with 200 mM triethylamine (TEA) for 30 min at RT, and then purified by 

reverse-phase HPLC (water/acetonitrile gradient in 0.1% TFA) on a Waters BEH 

XBridge 10 µm, 300 Å C18 column (RP-HPLC).  Two mM of the purified product, 
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PIE12-PEG12-maleimide, was reacted with 4 mM thiocholesterol (Sigma-Aldrich, 

136115) in DMAC with 200 mM TEA for 45 min at RT.  PIE12-PEG12-palmitate was 

synthesized by reacting 3 mM PIE12 with 3 mM Fmoc-N-amido-PEG12-NHS ester 

(Quanta Biodesign, 10996) in DMAC with 200 mM TEA for 30 min at RT, and then 

purified by RP-HPLC.  The lyophilized product, Fmoc-N-amido-PEG12-PIE12, was 

dissolved in 20% piperidine in DMF to deprotect the terminal amine and repurified by 

RP-HPLC.  Two mM of the purified product, PIE12-PEG12-NH2, was reacted with 4 mM 

palmitic acid NHS ester (Sigma-Aldrich, P1152) in DMAC with 500 mM TEA for 45 

min at RT.  PIE12-PEG5-40 kDa Y-branched PEG was synthesized by reacting 2 mM 

PIE12 with 20 mM bis-NHS ester PEG5 (Quanta Biodesign, 10224) in 100 mM HEPES 

pH 8.0 for 90 seconds.  The reaction was quenched in 5% acetic acid and purified by RP-

HPLC.  Two mM of the purified product, PIE12-PEG5-NHS ester, was reacted with 2.5 

mM 40 kDa Y branched PEG-amine (JenKem, A0010), and then purified by RP-HPLC. 

 
 

Synthesis of PIE12-trimer and PIE12-trimer Conjugates 
 

PIE12-trimer and PIE12-trimer-PEG24-maleimide were synthesized as previously 

described3.  PIE12-trimer C8, C16, C18 and cholesterol conjugates were synthesized by 

reacting 3 mM PIE12-trimer-PEG24-maleimide with 4.5 mM thiocholesterol (Sigma 

Aldrich, 136115), 1-octanethiol (Sigma-Aldrich, 471836), 1-hexadecanethiol (Sigma-

Aldrich, 52270), or 1-octadecanethiol (Sigma Aldrich, 01858) in DMAC with 200 mM 

TEA for 60 min at RT, and then purified by RP-HPLC.  Palmitate conjugated PIE12-

trimer was synthesized by first reacting 3 mM PIE12-trimer-PEG24-maleimide with 4.5 

mM D-Cysteine in DMAC with 200 mM TEA for 60 min at RT, and then purified by RP-
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HPLC.  Two mM of the purified product was reacted with 5 mM palmitic acid NHS ester 

(Sigma-Aldrich, P1152) in DMAC with 500 mM TEA for 45 min at RT and then purified 

by RP-HPLC. 

 
 

Pseudoviral Assay 
 

Pseudovirion infectivity assays were conducted as previously described2,42.  

Briefly, a six-point dilution series of inhibitor was generated in quadruplicate in HOS-

CD4-CXCR4 (for HXB2) or HOS-CD4-CCR5 (for JRFL) target cell seeded plates, after 

which HXB2 (X4) and JRFL (R5) luciferase reporter psuedovirions were added.  After 2 

days, cells were lysed using GloLysis buffer (Promega) and BrightGlo (Promega) 

luciferase reagent was added.  Luminescence was read on a PolarStar Optima (BMG) 

plate reader.  Counts were normalized to uninhibited controls.  Curves were plotted and 

fit to a standard IC50 equation for normalized data [1 – c/(IC50 + c)], weighting each point 

by its standard error using KaleidaGraph (Synergy software).  Reported IC50 values are 

the average of at least two independent assays. 

 

HSA Affinity Studies 
 

A 4 x 100 mm, 5 µm Chiral-HSA column was generously donated from Chiral 

Technologies Inc. to enable HSA affinity studies.  Samples were injected on an Agilent 

HPLC system and eluted isocratically at 0.9 mL/min with 15 mM potassium phosphate 

buffer, pH 7.4 with 7.5% ACN and 7.5% isopropanol at 37 °C.  All absorbance traces 

were measured at 214 nm except for warfarin, which was measured at 308 nm. 
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Pharmacokinetic Studies 
 
Animals, Dosing, and Collection 
 

For monomers PIE12, Chol-PIE12 and PEG40-PIE12, PK studies were conducted 

by Invitek.  All other studies were conducted by Navigen.  Studies were conducted by 

dosing three Sprague Dawley rats (0.22-0.44 kg) for each compound and route (doses 

listed in Table 5-5).  ~300 !L blood samples were taken over 10 timepoints and 

anticoagulated with lithium heparin.  Samples were spun and ~150 !L plasma was 

collected for quantitation. 

 
 
LC/MS/MS Quantitation 
 

Drug concentrations in plasma were determined using an AB Sciex API 3000 

triple-quad LC/MS/MS by MRM methods.  Standard curves were produced in pooled 

Sprague Dawley rat plasma anticoagulated with lithium heparin (Bioreclamation).  

Plasma samples were prepared for LC/MS/MS by spiking with internal standard followed 

by precipitation 2:1 with 98% acetonitrile (ACN) / 2% formic acid.  Supernatants were 

run over a C18 reverse-phase column (Waters, 4.6 x 50 mm, 5 µm, XBridge BEH300) on 

an Agilent HPLC system.  Lipid conjugates required lower source temperatures (300 °C 

vs. 500 °C) for best reproducibility.  For all studies except PEG40-PIE12 the column was 

regenerated after every group of 3 rats by running an isocratic gradient of 25% ddH2O, 

25% MeOH, 25% IPA, and 25% ACN for 30 min.  This procedure was found to be 

sufficient for removing retained phospholipids.  For PEG40-PIE12, a blank run and 

isocratic wash of 25% ddH2O, 25% MeOH, 25% IPA, and 25% ACN for 5 min were 

required after every sample to prevent carryover. 
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Determining an appropriate starting ACN concentration was also necessary for 

effective elution.  For PIE12 (mass transition 1022.3/180.1), Palm-PIE12 (mass transition 

721.4/282.3), and Chol-PIE12 (mass transition 1066.6/229.1), the starting concentrations 

were 15%, 40%, and 82% ACN, respectively.  PEG40-PIE12 was fragmented in the 

source (5000 Volts) and the mass transition monitored was 133.1/89 with a starting 

concentration of 37% ACN.  For PIE12-trimer (mass transition 1431.7/180.1), Palm-

PIE12-trimer (mass transition 1466.5/554.5), C16-PIE12-trimer (mass transition 

1450.1/453.4), C18-PIE12-trimer (mass transition 1454.5/481.3), and Chol-PIE12-trimer 

(mass transition 1474.2/1694.9), the starting concentrations were 35%, 40%, 65%, 65%, 

and 75% ACN, respectively. 

 
 
Fitting the Data 
 

IV-dosed time-points were plotted and fit to a noncompartmental model to 

determine C0 and the terminal half-life (T1/2) using the equation C(t) = C0*((1/2)(t/T1/2)), 

where C0 represents the theoretical starting concentration if drug were instantly 

distributed (no alpha phase).  The terminal half-life is then converted into the decay rate 

ke (ke = ln2/T1/2).  SC-dosed time-points were plotted and fit to the model C(t) = 

K*(ka/(ka-ke))*[exp(-ke*t) - exp(-ka*t)], where K is a constant, ka is the rate of 

absorption, and ke is the decay rate determined from the IV fit (weighting to the standard 

deviation of duplicate measurements, KaleidaGraph).  Volume of distribution (Vd) is 

determined by dividing dose (in moles) by C0.  Because elimination is first order, 

clearance (CL) can be determined by the relationship CL = ((ln2)*(Vd))/(T1/2).  Areas 
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under the curve (AUCs) were calculated by integrating fits from zero to infinity.  

Bioavailability (F) is determined by F = 100*(AUCSC / AUCIV)*(DoseIV / DoseSC) 

 
 

Metabolism Studies 
 

PK plasma samples were prepared for pseudoviral assay by 2:1 precipitation with 

98%ACN/2%FA, followed by centrifugation for 10 min in a microcentrifuge at 13,000 

rpm.  Supernatants were spun to dryness on speed-vac, followed by resuspension in 50 

mM HEPES pH 7.4 to their original volumes.  Pooled plasma was prepared as a control.  

Samples were then diluted 1:10 or 1:100 in DMEM/10% FBS and assessed in a 

pesudoviral assay as described (diluting samples 2-fold further) with normalization for 

uninhibited controls in the presence of prepared control plasma (1:20 prepared plasma 

slightly reduced viral infectivity).  A standard IC50 curve was prepared alongside plasma 

samples and was used to convert percent inhibition to a concentration of drug present in 

each sample. 

 
 

Results 
 

Our Designs 
 
Using clinically successful and promising preclinical PK-enhancing moieties, we 

designed and synthesized several PIE12 and PIE12-trimer conjugates (Table 5-2).  The 

effects of each conjugation on antiviral potency are shown in Table 5-3.  As expected, the 

large 40 kDa Y-branched PEG reduces the potency of our inhibitors, likely due to steric 

interference with target binding.  Specifically, the potency of monomeric PIE12 is 

reduced by 2.5 (HxB2)  and 10-fold  (JRFL),  and the potency of PIE12-trimer is reduced 
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Table 5-2.  Conjugate Designs and Naming Scheme 
Abbreviated name Full name 
Monomers  
PIE12 PIE12GK 
PEG40-PIE12 PIE12GK-PEG5-40 kDa Y-branched PEG 
Palm-PIE12 PIE12GK-PEG12-Palmitate 
Chol-PIE12 PIE12GK-PEG12-Maleimide-Thiocholesterol 
  
Trimers  
PIE12-trimer (PIE12GK-PEG4)3 
PEG40-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-D-Cys-40 kDa Y-

branched PEG 
C8-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-Octanethiol 
Palm-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-D-Cys-Palmitate 
C16-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-Hexadecanethiol 
C18-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-Octadecanethiol 
Chol-PIE12-trimer (PIE12GK-PEG4)3-PEG24-Maleimide-Thiocholesterol 
 
 
 
 
Table 5-3.  Potency Effects of PK Conjugation 
Inhibitor %ACN elution 

on reverse-
phase C18 

HxB2 
IC50 (nM) 

JRFL 
IC50 (nM) 

Monomers    
PIE12 41 37 ± 2.3† 580 ± 21.4† 

PEG40-PIE12 47 93 ± 32 5640 ± 950 
Palm-PIE12 67 243 ± 23 1660 ± 14 
Chol-PIE12 88 12 ± 3.6* 28 ± 2.4 
    
Trimers    
PIE12-trimer 51 0.72 ± 0.04* 2.1 ± 0.28* 

PEG40-PIE12-trimer 47 9.5 ± 1.4 71 ± 12 
C8-PIE12-trimer 55 0.42 ± 0.01* 2 ± 0.58 
Palm-PIE12-trimer 62 0.225 ± 0.008 0.540 ± 0.041 
C16-PIE12-trimer 71 0.09 ± 0.014* 0.11 ± 0.012* 
C18-PIE12-trimer 76 0.054 ± 0.018* 0.087 ± 0.012* 
Chol-PIE12-trimer 80 0.013 ± 0.0013* 0.019 ± 0.003* 
(†from2, *from3) 
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by 13 (HxB2) and 34-fold (JRFL).  In comparison, the same PEG on PEGASYS reduces 

activity 14-fold9.  

In contrast, the smaller hydrophobic conjugations mostly increased the potency of 

our inhibitor, but to varying extents, from little or no increase with C8 conjugation to a 2 

log improvement with cholesterol conjugation.  The C8 alkane only modestly improves 

potency, while C16 and C18 alkanes improve potency significantly.  A C16 fatty acid 

(palmitate) also improves potency, but to a much lesser extent than C16 alkane, 

suggesting that acyl groups interact with membranes differently than alkanes.  

Cholesterol interacts with membranes even more strongly4, improving potency over other 

lipid conjugates.  Notably, cholesterol conjugates remain very soluble3. 

 PIE12-trimer conjugations to albumin are still preliminary, but have been 

informative.  Using incompletely purified material (approximately 4:1 HSA to HSA-

PIE12-trimer), there appears to be only a modest five-fold loss in potency compared to 

PIE12-trimer in pseudoviral infectivity assays.  However, challenges remain regarding 

complete purification of HSA-PIE12-trimer, and reliable quantitation of HSA-PIE12-

trimer in plasma samples.  Gel filtration is successful at removing unreacted PIE12-

trimer, but does not remove unreacted HSA.  Unreacted HSA and HSA-PIE12-trimer 

conjugates can be separated by reverse-phase HPLC, but this process completely 

denatures albumin.  It has been reported, however, that not only can HSA be completely 

recovered off a reverse-phase column43, it can also be efficiently refolded following 

HPLC denaturation and lyophilization44,45.  Soluble microaggregates, if present, can be 

detected by light scattering44. 
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HSA Affinity Studies 
 

Acyl and alkane conjugates were synthesized with the intention to improve PK 

through HSA binding.  To assess the relative HSA affinities of PIE12 and PIE12-trimer 

conjugates we utilized an immobilized HSA affinity column.  Longer retention times on 

this column correlate with higher HSA affinity46 (Table 5-4, Fig. 5-2).  Small molecules 

with known affinities for HSA have been included for reference; L-Tryptophan (90.9 µM 

KD) and (R)- and (S)-warfarin (4.8 and 3.8 µM KD respectively)46. 

Notably, Chol-PIE12-trimer shows reduced affinity for HSA compared to Palm-

PIE12-trimer, but comparable affinity to C18-PIE12-trimer.  PEG40-PIE12 shows the 

least affinity for HSA.  Interestingly, C8-PIE12-trimer, with its long fourth-arm PEG 

linker, shows slightly reduced affinity for HSA compared to the three-armed PIE12-

trimer, while C16-PIE12-trimer is not so limited. 

 
 

Table 5-4.  HSA Affinity Column Retention Times 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Inhibitor Retention Time (min) 
PEG40-PIE12 0.65 

C8-PIE12-trimer 1.35 
PIE12-trimer 1.5 

PIE12 1.6 
L-Tryptophan 1.68 

C16-PIE12-trimer 4.0 
C18-PIE12-trimer 5.7 
Chol-PIE12-trimer 5.7 
Palm-PIE12-trimer 10.0 

R-Warfarin 11.5 
S-Warfarin 17.9 
Palm-PIE12 21.5 
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Figure 5-2.  HSA Affinity Column Retention Times.  Compounds are listed in order of 
elution.  HEPES buffer from the samples elutes at 1.01 min. 
 
 
 

PK Studies 
 
In order to understand the PK effects of the different PK-enhancing moieties, we 

studied conjugates of both PIE12 monomer as well as PIE12-trimer (our lead anti-HIV 

drug candidate).  PK studies of C8 conjugates were not pursued due to poor potency 

improvements and low affinity for HSA.  Similarly, significant losses in potency for 

PEG40-PIE12-trimer reduced our interest in it as a lead preclinical candidate.  Although 

we did not pursue PK studies for PEG40-PIE12-trimer, we did study PEG40-PIE12 to 

assess the general PK-enhancing properties of PEGylation.  Representative PK data are 

shown in Figures 5-3 and 5-4, and a summary of PK parameters is given in Tables 5-5 

(IV data) and 5-6 (SC data). 
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Figure 5-3.  Pharmacokinetics of four intravenously administered monomers in rats.  
Data are from single representative animals.  Terminal half-life fits are shown, with 
linearity establishing first-order clearance.  Error bars are the standard deviation of 
duplicate measurements. 
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Figure 5-4.  Pharmacokinetic data of five trimers in rats.  A) Intravenously-administered 
trimer data from single representative animals.  Terminal half-life fits are shown, with 
linearity establishing first-order clearance.  B) Subcutaneously-administered trimer data 
from single representative animals. Standard two-phase absorption-elimination fits are 
shown.  Error bars are the standard deviation of duplicate measurements. 
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Table 5-5.  IV Pharmacokinetic Parameters of PIE12 and PIE12-trimer Conjugates 
in Rats. 
Inhibitor m.w. Dose Term. 

T1/2 (IV) 
IV AUC0!" 

(nM*hr)† 
Vd 

(mL) 
CL 

(mL/hour) 
Monomers       
PIE12 2043.3 1.4 mg/kg 1.9 h 2,891 116 42 
PEG40-PIE12 42345.8 0.9 mg/kg* 26.8 h 223,658 20 0.5 
Palm-PIE12 2881.6 1.2 mg/kg 1.8 h 15,534 17.5 6.7 
Chol-PIE12 3196.9 2.2 mg/kg 5.1 h 26,451 22 3 
Trimers       
PIE12-trimer 7153.2 1 mg/kg 0.54 h 153 211 271 
C16-PIE12-trimer 8692.2 1 mg/kg 0.65 h 876 37 39 
C18-PIE12-trimer 8720.2 1 mg/kg 0.84 h 814 50 41 
Palm-PIE12-trimer 8793.3 1.2 mg/kg 1.5 h 1675 42 20 
Chol-PIE12-trimer 8835.4 1 mg/kg 1.6 h 2049 38 16 
*PIE12 portion of the weight;  † normalized to dose (AUC per mg/kg) 
 
 
 
Table 5-6.  SC Pharmacokinetic Parameters of PIE12-trimer Conjugates in Rats. 
Inhibitor Dose Term. 

T1/2 (SC) 
Abs 
T1/2  

SC AUC0!"  
(nM*hr)† 

F (%) Tmax 
(hr) 

Cmax 
(nM) 

Trimers        
PIE12-trimer 1 mg/kg 1 h 0.7 h 451 295 0.84 h 84 
C16-PIE12-trimer 1 mg/kg 1.3 h 0.9 h 936 107 1.1 h 183 
C18-PIE12-trimer 1 mg/kg 1.5 h 1.2 h 745 92 1.4 h 187 
Palm-PIE12-trimer 1.2 mg/kg 2.1 h 0.5 h 609 36 1.2 h 603 
Chol-PIE12-trimer 1 mg/kg 3.4 h 2.7 h 340 17 3 h 146 
† normalized to dose (AUC per mg/kg) 
 
 
 

The terminal half-life is the most commonly reported PK parameter, often 

referred to simply as “half-life”; it is the steady half-life that occurs after a compound is 

distributed throughout an animal.  PIE12 has a 1.9 hour IV terminal half-life vs. only 0.54 

hours for PIE12-trimer.  Similarly, Chol-PIE12 and Chol-PIE12-trimer IV terminal half-

lives differ by 3- to 4-fold, 5.1 hours and 1.6 hours, respectively.  Whereas PEG40-PIE12 

greatly enhances half-life to 26.8 hours, Palm-PIE12 did not affect the terminal half-life 

compared to PIE12 (1.8 vs. 1.9 hours, respectively).  However, the palmitate moiety did 

reduce the volume of distribution and clearance 6-fold.  Palmitate on Palm-PIE12-trimer 
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did improve half-life compared to PIE12-trimer (1.5 vs. 0.54 hours, respectively), 

reduced clearance ~10-fold, and reduced volume of distribution ~6-fold. 

Notably, identical compounds have different terminal half-lives depending on the 

route of administration, because terminal half-lives are apparent half-lives (a mix of 

absorption from tissue compartments and elimination47).  All PIE12-trimer conjugates 

acquired an approximate 2-fold improvement in terminal half-life after subcutaneous 

administration, with the exception of Palm-PIE12-trimer (~1.3-fold improved). 

 
 

Discussion 
 

Potency Effects 
 
It is interesting to note that for PIE12-trimer conjugates, elution time off a C18 

reverse-phase column correlates with potency, indicating that potency enhancement is 

directly related to hydrophobicity of the lipid moiety.  PIE12-trimer potency is limited by 

on-rate, so improvements in potency reflect improvements in membrane binding3.  This 

indicates a relationship where the more hydrophobic lipids interact more effectively with 

membranes. 

Given the potency increase with palmitate conjugation to PIE12-trimer, it is 

surprising that monomeric PIE12 is not similarly enhanced.  Although the PEG12 linker 

between PIE12 and palmitate is shorter than optimal3, the same linker between PIE12 and 

cholesterol still improves potency over PIE12.  Considering palmitate’s higher affinity 

for HSA over cholesterol, it is possible that fatty acid conjugates are being sequestered by 

albumin in the assay, and that PIE12-trimer’s branched PEG scaffold prevents 

sequestration to the same degree. 
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PK Effects 
 

Because of PIE12-trimer’s large volume of distribution and rapid equilibration 

(no alpha phase noted), the resultant low concentrations were near the sensitivity limit of 

our method of quantitation.  Reduced accuracy regarding AUC calculations are likely 

responsible for the apparent higher bioavailability of SC vs. IV administered PIE12-

trimer. 

The difference in half-life between alkylated and acylated conjugates, which 

differ only by a carbonyl group, is surprising (comparing data for C16 acylation and C16 

alkylation). The uncharged acyl group significantly reduces hydrophobicity compared to 

an equivalent alkane, lowering membrane affinity and antiviral potency while 

simultaneously improving albumin affinity and half-life.  Differences can also be 

observed in the absorption rate, with the more hydrophobic alkanes prolonging 

absorption from the subcutaneous space.  Like PEG, acylation reduces the volume of 

distribution, consistent with albumin binding.  Compared to Palm-PIE12, Palm-PIE12-

trimer has reduced albumin affinity and a larger volume of distribution, suggesting the 

PEG scaffold may be interfering with beneficial HSA interactions. 

Half-life comparisons between related PIE12 and PIE12-trimer conjugates are 

also surprising. While originally we assumed that increasing molecular weight from a 

monomer to a trimer could only improve half-life by reducing renal filtration, there is 

actually an across-the-board 3- to 5-fold higher clearance for each PIE12-trimer 

conjugate.  Conjugations to PIE12 monomer improve PK consistent with the literature; 

PEGylation increases half-life to 26 hours (compared to 15 hours for PEGASYS8), 

acylation reduces the volume of distribution and clearance 6-fold (despite no apparent 
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change in half-life), and cholesterol conjugation increases half-life to 5.1 hours in rat 

(comparable to 3 hours for C34-Chol in mice4).  Notably, for PIE12-trimer the rank order 

of PK-enhancement is still retained for each moiety, as is the magnitude of improvements 

endowed by each conjugate.  Therefore something specific to PIE12-trimer itself must be 

reducing its half-life. 

One explanation is reduced efficacy of PK-enhancing moieties in the context of 

PIE12-trimer.  There are indications that PIE12-trimer’s PEG scaffold may be restricting 

beneficial interactions between PK-enhancing moieties and HSA and cell membranes.  

PIE12-trimer conjugates show reduced affinity for HSA and C18 on reverse-phase 

columns compared to monomer equivalents (Tables 5-3 and 5-4, Fig. 5-2).  Furthermore, 

a C8 alkane conjugated to the long PEG fourth-arm scaffold demonstrates even less 

affinity for HSA than regular PIE12-trimer.  Volumes of distribution are also greater for 

PIE12-trimer conjugates compared to monomers, consistent with reduced albumin 

binding.  Finally, palmitate conjugation improves PIE12-trimer potency while reducing 

PIE12 potency, a finding that might be explained by significant HSA sequestration for 

Palm-PIE12, but less HSA interaction for Palm-PIE12-trimer. 

Of the affinity-boosting conjugates, cholesterol produces the best terminal half-

life.  Cholesterol interacts more weakly with HSA than palmitate, so the enhanced 

retention is likely due to superior cell membrane binding.  This explanation is also 

consistent with the prolonged absorption rate of Chol-PIE12-trimer from the 

subcutaneous space (2.7 hours half-life).  Cholesterol also reduces the volume of 

distribution like acylation.  However, the cholesterol moiety may be causing 

sequestration of Chol-PIE12-trimer.  The bioavailability of SC-administered Chol-PIE12-
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timer is only ~20%, suggesting that long durations of exposure to cell surfaces may lead 

to cell surface sequestration, endocytosis, or local metabolism.  The cholesterol moiety 

might also direct clearance to the liver through LDL binding.  It is known that siRNA-

cholesterol conjugates, even pre-bound to HDL or albumin, are redistributed and taken up 

into LDL particles in mice48, and humans circulate significantly more LDL than 

rodents49.  This disparity may change the pharmacokinetics of cholesterol conjugates in 

humans.  Animal models with more human-like lipid profiles (e.g., Guinea pig, Golden 

Syrian hamsters, and the LDLR-/- mouse)49-51 could provide some insight on in vivo 

kinetics in the context of increased circulating LDL concentrations, and may more 

accurately predict PK in humans. 

In the end, the best clinical candidate must balance potency with 

pharmacokinetics.  Although PEGylation improves half-life the most, potency suffers.  

Palmitate conjugation improves half-life and potency modestly, but to a lesser extent than 

cholesterol.  Alkane conjugation improves potency but does little to improve half-life.  Of 

unknown significance is the decreased volume of distribution created by each 

conjugation because it is not clear which tissue compartments must be accessed for 

successful inhibition of HIV transmission.  However, it is clear that Fuzeon is highly 

HSA-bound25, has a reduced volume of distribution in humans (Table 5-1), and 

successfully inhibits HIV.  Taken as a whole, Chol-PIE12-trimer has become our lead 

candidate for future studies. 
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Metabolism Studies 
 

We envision four possibilities to explain the enhanced clearance of PIE12-trimer 

conjugates.  Reduced affinity for membranes and albumin is the simplest explanation.  

However, enzyme modifications, breakdown, and sequestration are also possible. 

To rule out enzyme modification we developed a method to determine the 

concentration of active compound in plasma samples using our pseudovirus infectivity 

assay.  We reasoned that although molecular weight-shifted metabolites may be missed 

by LC/MS/MS analysis, it is unlikely that such metabolites would lose antiviral potency, 

especially given PIE12-trimer’s charged resistance capacitor.  We analyzed C18-PIE12-

trimer because it was the first to reveal a surprisingly low terminal half-life by 

LC/MS/MS.  C18-PIE12-trimer concentrations calculated from the antiviral activity of 

plasma samples agree with the LC/MS/MS values, indicating that there were no 

detectable active metabolites in the plasma being missed by LC/MS/MS.  Therefore if 

drug clearance is due to a metabolic process, the metabolites must have greatly reduced 

antiviral activity.  Notably, PIE12-trimer is stable in rat plasma, even after weeks of 

incubation at 37 °C.  Chol-PIE12-trimer is also quite stable in rat plasma, although ~20% 

becomes oxidized (+16 Daltons) after 24 hours. 

We are also pursuing additional methods to discover metabolites.  For instance, 

all PIE12-containing analytes produce an acetylated histidine ion fragment (180.1 Da, +1 

charge) with 5% efficiency.  By utilizing the “Precursor Ion” mode on the LC/MS, any 

parent molecule that produces the 180.1 Da daughter ion can be identified with a ~1 !M 

sensitivity limit (following acetonitrile precipitation of plasma samples), enabling the 

detection of mass-shifted PIE12-containing metabolites.  The sensitivity of this method 
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might be improved with better cleanup of the sample, so we also plan to utilize affinity 

purification with IZN17.  IZN17 binds PIE12 and PIE12-trimer with 20 nM and sub-pM 

affinity, respectively.  By adding it to plasma samples, all PIE12-containing molecules 

could be selectively purified.  These cleaner samples should enable sensitive 

identification of metabolites. 

 

Future Directions 
 
Future studies will include a pilot efficacy study in SHIV-infected macaques in 

order to demonstrate the pharmacokinetics and viral response to unmodified and 

cholesterol-conjugated PIE12-trimer.  Suppression of viral load would indicate successful 

exposure and efficacy of our D-peptide antivirals in vivo.  To rule out nonspecific 

mechanisms of viral clearance, treatment will be halted after one month to demonstrate 

viral rebound. 

Dose-escalation studies in rats are also planned.  We would like to assess how PK 

is affected by changes in stock concentrations (e.g., by creating local depots of self-

associated peptide) and total mass delivered.  Moreover, these high-dose studies should 

enable investigation into the clearance mechanism(s) of PIE12-trimer and conjugates.  

Urine, feces, and bile will be collected to determine the roles of renal filtration and biliary 

excretion. 

Next, we plan to track fluorescently labeled PIE12-trimer conjugates in vivo (in 

rodents) to better understand clearance, volumes of distribution, and possible sites of 

sequestration.  A companion PK study will be done to control for possible PK changes 

created by the fluorescent moiety.  This in vivo study will help reveal routes of 
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elimination and assess access to different tissue compartments (e.g., lymphatic tissue, 

brain, etc.).   

 Further, the protease-resistant design of PIE12-trimer enables novel applications.  

For instance, PIE12-trimer is a promising microbicide candidate (antiviral prophylactic) 

because it can withstand the protease-rich environment of the vaginal mucosa.  Moreover, 

our several lipid conjugations may enhance PIE12-trimer exposure by augmenting cell 

surface binding.  Oral bioavailability may also be possible.  By surviving gut proteases, 

PIE12-trimer might be formulated with a gut permeabilizing agent to achieve significant 

circulating concentrations.  Promising gut permeabilizers have been extensively 

reviewed52,53. 

 Finally, sustained delivery technologies may also be readily compatible with 

PIE12-trimer and its conjugates.  Microsphere delivery like that utilized by the recently 

approved Bydureon (once-weekly extended release exenatide) may enable a similarly 

favorable dosing schedule for PIE12-trimer. 
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CHAPTER 6 
 
 
 

DISCUSSION AND FUTURE DIRECTIONS 
 
 
 

Utilizing Other PK-Enhancing Strategies 
 

Numerous PK-enhancing strategies are discussed in the Introduction, but only 40 

kDa Y-branched PEGylation and lipidation (i.e., acylation, alkane conjugation, and 

cholesterol conjugation) have been carefully assessed in our lab to date.  Other 

techniques, especially direct HSA conjugation and Fuzeon’s hydrophobic tail, should also 

be evaluated for their PK-enhancing potential. 

Synthesis of the HSA-PIE12-trimer has been straightforward, but purification has 

been more challenging.  Gel filtration can remove unreacted peptide, but does not 

effectively remove unreacted HSA.  Fortunately, it has been reported that HSA might be 

readily purified and appropriately refolded after reverse-phase HPLC and 

lyophilization1,2.  These results are encouraging, because HSA and HSA-PIE12-trimer do 

separate on a C18 reverse phase column.  Using gel-filtered material (about 1:4 HSA-

PIE12-trimer to unreacted HSA), I have shown that the IC50 of HSA-PIE12-trimer is 

about 5-fold worse than PIE12-trimer itself.  With improved purification (e.g., RP-

HPLC), more accurate IC50’s could be determined. 

Significant analytical method development will also be required for HSA-PIE12-

trimer before PK experiments can be conducted.  Although HSA-PIE12-trimer may
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acquire enough charges to become detectable by LC/MS, this has not yet been 

established.  It is also unlikely that HSA-peptide conjugates would survive an acetonitrile 

precipitation of plasma samples, and it is not yet clear how much crosstalk exists between 

HSA-PIE12-trimer and endogenous albumin on LC/MS.  Affinity purification of plasma 

samples or a non-LC/MS quantitative assay are likely the best strategies for quantifying 

peptide-HSA conjugates. 

The 8 amino acid tail, or hydrophobic foot, of Fuzeon is also worth future 

investigation.  Fuzeon-tail conjugates would be trivial to produce and easy to evaluate in 

both pseudoviral assay and PK studies.  It would also be interesting to discover whether 

this sequence functions equally well in L and D.  If so, this moiety could also become a 

nondegradable component of PIE12-trimer. 

Conjugations to albumin-binding peptides might also be of interest, but would 

require a substantial amount of development.  The peptides discussed in the introduction 

are quite large (making scale-up difficult and costly) and contain disulfide bonds that 

complicate conjugation to our existing PIE12-trimer scaffold’s thiol-reactive maleimide.  

It is also unclear whether these constructs would offer any benefit over simple lipidation. 

Fc domains are unlikely to be of practical use to us, primarily because they 

require mammalian cell expression for appropriate folding and glycosylation, making 

them too complicated to produce synthetically (though simpler production methods are 

being investigated3).  Further, D-peptides cannot be genetically fused to an Fc domain.  

However, it might be possible to express Fc domains in mammalian cells and then post-

translationally link them to D-peptides, but this strategy is unlikely to produce conjugates 

amenable to scale-up for large therapeutic production. 
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Two future directions are envisioned for PEGylation.  First is assessing the effects 

of smaller PEG conjugations.  While PEGylation with a single 40 kDa Y-branched PEG 

has proven beneficial for improving PIE12’s half-life, it reduced the potency of PIE12 

(2.5- to 10-fold) and PIE12-trimer (13- to 34-fold).  It is possible that smaller PEGs (e.g., 

5 kDa or 20 kDa) may provide significant PK enhancement while retaining potency. 

The second future direction involves improving the way PEGylated compounds 

are quantified.  Because of the polydispersity of large PEGs and their propensity to 

acquire multiple charges in LC/MS, determining a reliable Q1 parent mass for LC/MS 

quantitation is difficult.  Although much of the PEG can be fragmented off PIE12 in the 

source, the resulting peptide-containing fragments still contain a polydisperse amount of 

PEG, making detection of a discrete peptide fragment unreliable.  Instead, for quantifying 

PEGylated PIE12 I was forced to follow ionizable PEG fragments as a surrogate for 

intact parent mass. 

Quantifying PEGylated PIE12-trimer by this method is risky.  If PIE12-trimer is 

susceptible to metabolism, we would be unaware if we only followed PEG fragments as a 

surrogate for the parent.  A possible solution for robust quantitation of polydisperse 

PEGylated PIE12-trimer is to develop a non-LC/MS quantitative assay.  We have had 

trouble with this task before, and my recommendations are given in the Appendix. 

 
 

Combining PK-Enhancing Moieties 
 

Of the PK-enhancing strategies we assessed so far, PEGylation provided the 

longest half-life.  However, the large 40 kDa Y-branched PEG reduces potency.  

Cholesterol conjugation, on the other hand, greatly improves potency while modestly 
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improving half-life.  As the two most promising strategies, it is tempting to consider 

whether PEGylation and cholesterol conjugation can be combined. 

Cholesterol’s ability to increase potency is based on its ability to tether PIE12-

trimer close to cell surfaces so that it is prepositioned to bind HIV’s gp41 pocket 

approximately 60 Å away.  Although the fourth arm linker is not taut and can 

accommodate excess linker length, it is not clear exactly how much it can tolerate.  In 

Chapter 4 we showed that for cholesterol conjugates, 60 PEG units appeared ideal for 

increasing potency, while lengths of up to 140 PEG units were well tolerated and 

demonstrated comparable potencies.  Further studies are required to determine how long 

the linker can become before potency drops off significantly. 

PK enhancement from PEGylation exhibits a sigmoidal relationship between size 

and reduction in clearance.  PEGs less than 5 kDa provide little PK benefit because they 

are rapidly cleared by renal filtration.  Forty kDa PEGs provide near-maximal PK benefit, 

while exceeding 40 kDa provides little additional benefit.  Replacing the fourth arm of 

our scaffold with a linear 40 kDa PEG would almost certainly reduce clearance and 

improve half-life, but would likely reduce potency because of long linker length and 

steric blocking.  However, adding less than 5 kDa of PEG is unlikely to provide much PK 

benefit.  Five kDa appears to have about one tenth the clearance-reducing benefit of a 40 

kDa PEG, while 20 kDa appears to have about half the clearance-reducing benefit of a 40 

kDa PEG4. 

To see if the PK and potency-enhancing benefits of PEGylation and cholesterol 

can be combined, cholesterol conjugates that utilize 5 kDa PEG and 20 kDa PEG fourth-

arm linkers should be developed and assessed by pseudoviral assay.  If tolerated, PEG 
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length should be increased until a potency reduction is observed.  The longest PEG that 

maintains potency should then be analyzed in a PK study to assess its clearance-reducing 

benefit. 

There is one caveat; if cholesterol dominates how the conjugate is cleared (e.g., it 

directs clearance through the liver), increasing the fourth arm PEG length may provide 

little PK benefit.  PEG size improves half-life by reducing renal filtration.  Thus, if the 

conjugate is not cleared renally, PEG size may be irrelevant. 

 
 

Multimerization 
 

A multimer of PIE12 might be made large enough to avoid renal filtration.  The 

renal filtration cutoff for globular proteins is ~70 kDa and ~40-60 kDa for PEGylated 

peptides/proteins.  Because each PIE12 is ~2 kDa and each PIE12-trimer is ~7-8 kDa, 

about 20-30 monomers or 5-10 trimers might be linked together to become large enough 

to avoid rapid filtration.  Polydisperse 4-arm and 8-arm activated PEG scaffolds are 

readily available in radial symmetry or comb designs.  For more precise control over the 

number, position and length of each bond, a poly-Lys or poly(Lys-Gly-Gly) peptide 

scaffold could be utilized through primary-amine reactive linkages (e.g., NHS-ester). 

 
 

Analytical Challenges 
 

To date, all the PEG linkers utilized for PIE12-trimer and conjugates have been 

discrete in length.  However, for ease of large-scale synthesis, or for improvements in 

potency and PK (by using long fourth-arm linkers), polydisperse PEGs may become our 

preferred material for synthesizing PIE12-trimer.  There are analytical challenges 
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associated with large polydisperse PEGs that need to be overcome.  As discussed, 

polydisperse PEGs make LC/MS/MS analysis challenging.  I was able to quantitate large 

40 kDa PEGylated PIE12 conjugates only by fragmenting PEG in the source and 

following charged PEG ions in Q1 and Q3.  It is possible that if our scaffold’s fourth-arm 

linker becomes long enough, this same strategy might be applied to all PIE12-trimer 

conjugates.  It is not yet clear how long the linker must become before this technique 

becomes sufficiently sensitive.  Studies that explore this question might be coupled to 

studies that seek to combine the PK benefits of PEG and cholesterol.  Ultimately, mass-

independent assays might be required for effective quantitation of polydisperse 

compounds. 

Developing an antibody to PIE12 would provide a powerful tool for a variety of 

applications, including immunohistochemistry and quantitation.  For example, an ELISA 

assay might utilize an anti-PIE12 antibody coupled to a fluorescent or enzymatic readout 

(e.g., horseradish peroxidase).  Efforts to develop a PIE12 antibody are currently 

underway, but because small peptides are generally nonimmunogenic, PIE12 must first 

be coupled to a carrier protein (e.g., KLH).  Adjuvants must also be included to improve 

the immune response.  Additional challenges surround PIE12’s nondegradable nature 

such that antigen presenting cells are unlikely to become involved in the process.  This 

may limit the kinds of antibodies produced to lower affinity IgM, which may nonetheless 

be sufficient for assay development.  Alternatively, an ELISA kit that utilizes antibodies 

to PEG itself is commercially available (Enzo Life Sciences)5,6.  Although expensive, this 

option would also be compatible with polydisperse PEG. 
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Webster et al. suggest two other methods for quantifying polydisperse PEGylated 

proteins and peptides; Western blot and NMR.  In my own experience, Coomassie-blue 

stain of an SDS-PAGE is insufficient to detect PEGylated peptides because PEG 

excludes the dye.  However, PEGylated protein bands can be transferred to nitrocellulose 

and probed with anti-PEG antibodies. 

NMR is an intriguing possibility because of the cumulative signal of PEG protons 

(all protons on PEG are identical).  Some practical considerations are worth mentioning.  

Jack Skalicky, local NMR expert at the University of Utah, suggests that for a single 

species in buffer, 10 µM is the lower limit of detection for a single unique proton.  If 

there are 200 identical protons in a molecule, such as in a linker of 50 PEG units (2.2 

kDa), the limit of detection would drop to 50 nM.  However, methylene protons, like 

those found in PEG, might be quite abundant in plasma.  It is not clear yet what kind of 

background noise would be present in acetonitrile-precipitated plasma samples.  NMR 

has the added benefit of directly detecting changes in the parent molecule (i.e., 

metabolites), although it is unclear how sensitive detection of these changes might be nor 

how the FDA might perceive such a strategy for primary quantitation. 

 
 

Evaluating the Species-Dependence of PK 
 

So far, cholesterol conjugation has proven to be the most promising overall 

strategy for improving the potency and pharmacokinetics of PIE12-trimer conjugates.  

However, there is no precedent for approved cholesterol conjugates (or D-peptides for 

that matter!).  While the body of literature is just beginning to flourish7-13, it suggests that 
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circulating lipids may directly affect the clearance of lipid conjugates, indicating that PK 

for cholesterolated peptides might differ significantly between species. 

Rodents have significantly different lipid profiles than humans, both in quantity of 

LDL and HDL particles as well is in the profile of lipid receptors that direct lipid 

circulation14.  Fortunately, several animal models have been developed that better 

simulate human lipid content, including Guinea pig, Golden Syrian hamster, the        

LDLR (-/-) knockout mouse, and several rabbit models14-16.  Assessing Chol-PIE12-

trimer in one of these animal models seems prudent and may provide the best indication 

for PK behavior in humans. 

 
 

Evaluating Dose-Dependence 
 

Dose escalation studies are necessary to demonstrate a correlated increase in drug 

exposure (AUC) and to establish an accurate therapeutic index.  For example, if higher 

doses initiate alternate clearance mechanisms in rodents, one might be led to believe that 

high doses are well tolerated, and incorrectly establish a therapeutic index that can lead to 

toxic doses in humans.  Exposure (AUC) evaluations reduce this risk by establishing a 

correlation with the administered dose. 

We have recently conducted dose escalation studies for PIE12-trimer and Chol-

PIE12-trimer (3 mg/kg, 10 mg/kg, and 30 mg/kg in rat).  Early evaluation suggests that 

terminal half-lives may increase with an increase in dose.  While these doses are much 

higher than would reasonably be given to actual human patients, it provides us with an 

opportunity to understand the mechanism behind clearance. 
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Two possible scenarios explain the data.  Either increased overall dosage (in 

mg/kg) leads to a saturation of the clearance-process, or simply increasing the 

concentration of the subcutaneous dose (in mg/mL) leads to a local self-association or 

precipitation of the compound with a delayed resolubilization and circulation.  

Unfortunately, our existing studies have changed both dose and stock concentrations.  

Therefore, an independent future study that deliberately evaluates the effects of just dose 

or stock concentration will be required in order to completely answer this question.  Still, 

if high stock concentrations lead to a PK-enhancing local precipitation, then there are 

important implications regarding how to formulate our compound in order to achieve the 

same benefits at lower doses appropriate for patients. 

 
 

Determining Toxicity 
 

Paracelsus, Renaissance alchemist, physician, and father of toxicology, once said 

“All things are poison and nothing [is] without poison. Only the dose makes a thing not 

to be poison.”17  Toxicity is of particular interest to the Kay lab because, as of yet, no D-

peptides or cholesterol conjugates have been approved by the FDA.  It is not known how 

toxicity might manifest for a nondegradable D-peptide.  Will they permanently 

accumulate somewhere?  Will accumulation have physiological consequences? 

Speculation is of little benefit on this subject; toxicity must be empirically 

determined.  We can, however, surmise what organs might become affected.  Given that 

Fuzeon produced dose-limiting injection-site reactions after subcutaneous administration, 

it is prudent to evaluate whether PIE12-timer injection sites develop similar reactions.  
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Moreover, because of the cholesterol moiety on Chol-PIE12-trimer, liver accumulation 

and toxicity might also be anticipated. 

A set of defined toxicity studies are required by the FDA as part of filing an IND 

(investigational new drug) and again for the NDA (new drug application) following 

clinical trials.  IND toxicity studies must be conducted in two animal species, one rodent 

and one nonrodent.  Early requirements include an acute, 7-day and 28-day toxicity 

studies.  In general, chronic toxicity studies in animals should always be longer (often 

twice as long) as intended studies in humans.  These studies are currently underway with 

our company collaborator Navigen. 

 
 

Exploring Metabolism 
 

Metabolism of therapeutics presents a daunting challenge because almost 

anything can happen to modify a parent compound.  In industry, generally a precise set of 

experiments is done to evaluate a defined number of most-likely metabolic changes.  

These include plasma stability studies, microsomal incubations, and tissue homogenate 

incubations. 

Microsomal incubations help to identify phase-I metabolic products from the 

intracellular Cyp-450 oxidative system, a common site of small molecule metabolism.  If 

susceptible, these enzymes will add +16 and +32 to the molecular weight of a parent 

compound (single or double oxidation).  For peptides, however, we are skeptical that the 

intracellular Cyp-450 system will play much of a metabolic role because peptides do not 

readily cross cell membranes.  However, cryopreserved hepatocytes are also 

commercially available, and may provide a superior alternative to liver microsome 
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studies.  Intact hepatocyte incubation will determine whether peptides are actively 

transported intracellularly where they might become metabolized by Cyp-450 enzymes. 

 A number of other defined metabolic molecular weight changes that are common 

for small molecules can be assayed, one at a time, using defined MRM methods on 

plasma samples containing metabolized analyte18.  Unfortunately, this process is tedious, 

sample-consuming, and unable to detect catabolism, uncommon metabolic changes, or 

sequestration.  Furthermore I have recently demonstrated by pseudoviral assay that our 

LC/MS determined concentrations match the amount of functional PIE12-trimer-

cholesterol in plasma samples, indicating that no detectable active metabolites are present 

in our Chol-PIE12-trimer plasma samples.  If metabolism is occurring, metabolites would 

have to be inactive.  Because such inactivation seems unlikely, breakdown of PIE12-

trimer or sequestration seems more plausible. 

Open Q1 scans might directly reveal metabolites if they are especially abundant. 

Unfortunately, plasma is rife with confounding signals, even after acetonitrile 

precipitation, limiting detection of analytes and metabolites to those with >5 µM 

concentrations.  Open scans of urine are more promising because it contains less of a 

background signal, although urine requires careful handling to prevent analyte loss to 

tubes (no proteins in urine to prevent tube sticking), and urine too contains a surprisingly 

high number of confounding signals, complicating metabolite identification. 

Fortunately, the MS “Precursor Ion” mode is capable of scanning a range of 

masses on Q1, fragmenting them in Q2, detecting a selected daughter ion on Q3 (i.e., a 

unique daughter ion common to PIE12-trimer and its conjugates) and then reporting what 

parent mass produced that ion.  This mode has the capability of directly reporting any 
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metabolite that can produce a known daughter ion.  Furthermore, I have observed that the 

N-terminal residue of PIE12, an acetylated histidine (mw 180.1), is common to all PIE12-

containing molecules.  This ion is relatively unique compared to plasma, and is produced 

at about 5% efficiency from parents in Q2.  Some troubleshooting of the precursor ion 

mode may improve sensitivity, but current assessments allow for detection of any parent 

that produces the unique 180.1 m/z daughter ion if that parent concentration is 1 µM or 

higher in plasma or urine.  This is still a fairly high concentration for a metabolite, but 

several of our highly dosed animals contain analyte concentrations that easily exceed this 

limit. 

Future studies to find metabolites might also utilize affinity purification to help 

isolate metabolites from confounding signals in urine and plasma.  IZN17 is a 

synthetically produced HIV pocket mimic for which PIE12 has a ~20 nM affinity.  

Attaching IZN17 to retrievable magnetic beads and incubating them in biological 

samples is a feasible strategy to pull out any PIE12-containing analyte, metabolite or 

fragment.  Eluting some analytes, like the high-affinity PIE12-trimer, from IZN17-coated 

beads might require very strong conditions, but should be possible.  The eluted samples 

should have vastly improved signal to noise on LC/MS, allowing for higher sensitivity 

detection modes such as the open Q1 scan (low nM sensitivity) to search for metabolites. 

 
 

In Vivo Imaging 
 

 Because of the higher-than-expected clearance of PIE12-trimer and its conjugates, 

and the benefits of actually visualizing distribution, excretion, and possible accumulation 

of these compounds, we envision actively utilizing in vivo imaging to monitor the fate of 
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labeled drug (e.g., via MRI, CT, PET and fluorescence tomography).  Unfortunately, 

synthesizing labeled peptides with identical physical properties (i.e., radiolabeling) is a 

significant technical challenge.  Instead, we intend to utilize fluorescently labeled PIE12-

trimer and/or its conjugates as a substitute.  A fluorescent molecule might redistribute 

PIE12-trimer in a manner unrepresentative of its unlabeled correlate, but parallel PK 

studies using labeled compounds will serve as controls. 
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APPENDIX 
 
 
 

PROGRESS TOWARDS A FLUORESCENT BIOANALYTICAL 
 

ASSAY FOR PIE12-TRIMER IN PLASMA SAMPLES;  
 

CHALLENGES AND LESSONS 
 
 
 

Background 
 
While preparing for our initial PK studies with Invitek, we prepared stocks of 

PIE12 and its conjugates to reach starting concentrations of 5 µM in plasma (>1000-fold 

over PIE12-Trimer IC50’s for HxB2 and JRFL).  We reasoned that an assay that could 

detect analytes down to 10 nM should provide adequate sensitivity and allow us to 

capture 9 half-lives of elimination data.  But with limited access to LC/MS/MS 

instrumentation (at the time), and with numerous different moieties attached to PIE12 

with several more being planned for PIE12-Trimer, we wanted an assay that could easily 

accommodate all PIE12 variants.  We therefore decided to develop a fluorescence 

resonance energy transfer (FRET) assay. 

 
 

The Dream 
 

A FRET assay promised numerous benefits.  Fluorescent dyes have extraordinary 

extinction coefficients and can be detected with high sensitivity and throughput on 
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commonly available 96-well fluorescent plate readers.  Furthermore, a FRET assay 

would be based entirely upon binding events, which made it amenable to our plethora of 

PIE12 conjugates independent of their molecular weights.  Lastly, we envisioned that our 

FRET assay could be amenable to a “homogenous” design, requiring only the addition of 

a few components into one mixture with little or no sample preparation. 

Other commercial tools made FRET sound even more appealing.  Licor’s 

IRDye800 fluoresces in the near-IR spectrum, a region where biological samples absorb 

and emit little.  Further, Licor developed a FRET pair that utilizes an unusual “dark 

quencher” (QC1) along with its standard IRDye800.  Unlike normal FRET where a new 

signal is detected when two fluors approach each other, dark quenchers absorb the energy 

of a nearby fluor, quenching its fluorescence.  Fluorescence is only restored (dequenched) 

when the two moieties are separated. 

Such a quenching pair can be utilized for a competition-based assay where 

addition of unlabeled analyte displaces labeled ligand, resulting in increased fluorescence 

with increasing unlabeled analyte.  Specifically, excess QC1 dark quencher conjugated 

PIE12 (300-500 nM) is added to a limited amount of IRDye800-labeled pocket-

containing target (10-20 nM of 5-Helix or IZN17) resulting in the binding a large fraction 

of pockets according to the equation F = C/ (C+ KD) where F is fraction occupied, C is 

concentration and KD is the affinity of PIE12-QC1 for HIV pockets (~20 nM; 300 nM 

PIE12-Q1 occupies ~94% of sites).  FRET occurs according to the equation                     

E = 1 / (1 + (R/R0)6), where E is the FRET efficiency, R is the distance between the 

fluors, and R0 is the Forster distance defined for a given FRET pair (65 Å for QC1 with 

IRDye800).  Using IZN17 labeled with IRDye800 on its N terminus, the highest 
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observed quenching (FRET efficiency) approached 80%, corresponding to a distance of 

52 Å between the two fluors. 

When a plasma sample containing unlabeled analyte is added (PIE12, PIE12-

trimer, or any PK-modified conjugate thereof), it competes with QC1-PIE12 for binding 

to the pockets.  When QC1-PIE12 is displaced, an incremental increase in fluorescence is 

observed.  Notably, the dark quencher and IRDye800 fluors cannot be switched between 

the pocket-containing target and PIE12 because the PIE12-dye is always in excess, which 

means only a fraction of it will be bound to the pocket at all times such that free PIE12-

IRDye800 would constantly produce an extraordinarily high background signal. 

The maximum achievable FRET signal is determined by the concentration of 

IRDye800-labeled pocket-containing target.  More target means higher maximum signal, 

however, with more target, a higher concentration of PIE12-QC1 has to be added to 

effectively quench that target.  Eventually a balance must be struck because too much 

QC1-PIE12 begins contributing significantly to the background fluorescent signal, and 

too much QC1-PIE12 also prevents effective competition from analyte in plasma. 

The “IC50” of this assay is also somewhat arbitrary.  It reflects the amount of 

analyte required to displace 50% of previously bound pockets, which is a function of how 

much QC1-PIE12 is originally added.  Complications arise when considering PIE12 

monomer analytes vs. PIE12-Trimer analytes, which have extraordinarily different 

affinities; thus, the IC50 of the assay must be tailored to each.  
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The Reality 
 

Throughout my experiments I encountered multiple unanticipated challenges.  By 

careful planning, many of them were overcome.  Eventually I succeeded in developing a 

functional FRET assay in buffer.  However, plasma samples affected the assay with 

animal-to-animal variation, preventing its utility for reliable quantitation.  At the risk of 

waxing too comprehensive, I will chronicle only the most meaningful lessons learned. 

The two most insurmountable challenges that ultimately halted the pursuit of a 

FRET-based assay involved inexplicable increases in fluorescence.  First, fluorescence 

was affected by the addition of every component to the assay, even those that should not 

have had any impact whatsoever.  For example, IRDye800 conjugated to PIE12 would 

increase in fluorescence following the addition of unlabeled PIE12; there is no logical 

reason why this should happen, and it certainly shook our confidence in accurately 

understanding the FRET response.  Furthermore, I found that these inexplicable 

responses also depended on the order of addition of components, implying that the assay 

never truly came to equilibrium (even after days). 

The second insurmountable problem was that the fluor was drastically affected by 

something in plasma that varied from animal to animal, making reproducible quantitation 

impossible.  The same amount of fluor in plasma samples from different animals 

produced wildly different signals, preventing the development of a meaningful standard 

curve.  Moreover, the offending component could not be removed from plasma following 

acetonitrile crash, speed-vac, and resuspension of plasma samples (Table A-1). 

A third challenge was producing enough identical dye-labeled materials that could 

reproduce  the  results  of  a  previous  batch  of  material.   Dye-labeled  conjugates  were 
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Table A-1.  Animal-to-Animal Variable Effect on IRDye800 
10 nM IRDye800-PIE12 placed in: Fluorescent Units 

50 mM HEPES, pH 7.4  
+ 10% Superblock 12.3 

50% plasma from Rat A 111.4 
50% plasma from Rat B 121.8 
50% plasma from Rat C 141.3 
50% plasma from Rat D 102.2 
50% pooled rat plasma 92.4 
10% pooled rat plasma 95.0 

ACN-crashed rat plasma, spun, speed-
vacuumed, and resuspended in 50 mM 

HEPES, pH 7.4 + 10% Superblock 
149.1 

 
 
 
always limited because of the expensive and short supply of dye and never seemed to 

behave the same from batch to batch, further complicated by the challenges of cutting 

pure fractions from the HPLC (especially after labeling on resin, when several truncated 

products would co-elute).  Subtle differences in pH, organic content, denaturant, 

temperature and timing in the stock or assay would produce significant changes in 

fluorescent signal.  This finicky behavior was not unique to Licor’s IRDye800; Cy7.5 and 

DyLight-800 both shared similar unpredictable sensitivities. 

 Several plates were assessed for compatibility with the FRET assay.  Many plates 

had autoflorescence in the IR range, but usually less than 1% of the signal produced by 

the assay.  What mattered most was well-to-well reproducibility.  I found that Greiner 

Bio-One !-Clear high-bind Fluotrac-200 384-well black plates with clear bottom were 

best (Greiner 781097), with coefficients of variance (standard deviation divided by 

average signal) of less than 2%.  Plasma was also found to produce an autofluorescent 

background signal that was significant at 700 nm but negligible at 800 nm.  We 

eventually found that the volume in each well also mattered.  Twenty-five !L of dye-
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containing plasma actually produced a larger signal than fifty !L (at the same 

concentration); this was an illogical but reproducible finding.  The discovery also 

complicated the assay, because evaporation readily changed the volume in wells within 1 

hour.  To address this, all plasma incubations were done in independent tubes before 

transferring contents to the plate.  An automatic pipetter also helped to reduce variability. 

 A Licor Odyssey instrument was used to read the plates.  The limit of detection 

was 150 pg of IRDye800 labeled antibody in 50 !L of plasma (~3 fmoles of fluor, or 60 

pM fluor).  The instrument itself produced a slight left-to-right signal bias (high to low), 

so assays were generally constructed in vertical columns.  Thirty-two nM unconjugated 

IRDye800 saturated the instrument detector (at 600 units).  The fluorescence was 

generally reduced after protein conjugation, so 50 nM of labeled conjugate was the 

maximum before saturating the detector.  

 Because of difficulties producing and properly folding 5-Helix (a target with one 

free pocket), we directed our efforts to labeling IZN17 with IRDye800.  IZN17 trimerizes 

in solution to produce a three-pocket target.  To avoid three fluors on every trimer of 

IZN17, we decided to add unlabeled IZN17 in order to cause shuffling of the monomers, 

aided by incubation for 1 hour at 50 °C.  Surprisingly, we found the ratio of unlabeled 

IZN17 to IRDye800-IZN17 was increasingly beneficial (up to 10:1) for quenching by 

QC1-PIE12 and dequenching with PIE12; rationally, at some point adding unlabeled 

IZN17 would produce a sink of unlabeled IZN17 trimers that would bind PIE12 analyte 

without any corresponding signal, but we never reached a point where adding unlabeled 

IZN17 hurt sensitivity to D-peptide.  This was illogical, but was nevertheless a reality.  
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To explain it we had to invoke some sort of solubilizing activity of D-peptide on 

IRDye800-labeled IZN17. 

 While troubleshooting the assay, we did confirm that dark-quencher labeled 

PIE12 had good affinity for the pocket.  In pseudoviral infectivity assays, QC1-KGPIE12 

and PIE12GK-QC1 had IC50’s (HxB2 strain) of 40 nM and 66 nM respectively (vs. 37 

nM for PIE12).  Attempts were also made to develop better targets (in terms of solubility 

and responsiveness to quenching and dequenching).  I developed “five and a half” helix 

and truncated IZN17 targets to bring the fluors closer together for improved FRET.  

However, neither of these constructs behaved much better than regular IZN17.  I also 

developed a pocket-mutant of IZN17 and added this in a 10:1 ratio to IRDye800 labeled 

IZN17 to create one-pocket targets.  This strategy also did not readily improve the assay. 

 Eventually we succeeded in developing a functioning FRET assay in 50 mM 

HEPES, pH 7.4 buffer.  Unlabeled IZN17 and IRDye800 labeled IZN17 were combined 

in a 10:1 ratio with QC1-PIE12 in 6 M Guanidine at 10x concentrations.  Upon dilution 

into buffer, the signal was appropriately quenched.  Diluting into analyte-containing 

buffer recovered the signal, but oddly, the signal could be recovered to higher values than 

the uninhibited control (Fig. A-1).  This assay also quenched and dequenched 

successfully in plasma, but did not match the responses observed in buffer, and varied in 

response from animal to animal, crippling the utility of the assay. 

After discovering the animal-to-animal variability we gave up on the homogenous 

FRET assay design and developed an ELISA assay that could accommodate a washing 

step.    We   reasoned  that  a  wash  step  might  remove  whatever   fluorescence-altering  
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Figure A-1.  Functioning FRET Assay.  Dashed lines are associated with 10 nM IZN17 
(3.3 nM trimers), where each monomer component is labeled with IRDye800.  Solid lines 
are associated with 10 nM IRDye800 labeled IZN17 spiked with 100 nM unlabeled 
IZN17 in order to preferentially create trimers with only one IRDye800. A) IZN17 targets 
are quenched with increasing concentrations of QC1-PIE12. B) Quenched IZN17 can be 
dequenched by adding increasing concentrations of unlabeled PIE12. 
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component was present in plasma.  We analyzed plates with streptavidin and Neutravidin 

pre-blocked with Superblock or bovine serum albumin (BSA) (Pierce).  We found the 

Superblock/Neutravidin combination was able to bind the most IZN17.  We developed 

the assay with PIE12-trimer in mind so that binding to IZN17 would be irreversible, and 

synthesized PIE12-trimer labeled with IRDye800.  Although IRDye800-PIE12-trimer did 

not bind to the Neutravidin plates, we did observe nonspecific binding once IZN17 was 

immobilized on the plate (compared to IRDye800-PIE12-trimer prebound with IZN17 

and then pulled onto Neutravidin). 

Unfortunately, no variant of the assay removed the effects of plasma.  Once the 

IRDye800 fluor became exposed to plasma its fluorescence was altered and could not be 

recovered by washing.  Further, too many (or too long) washes began removing 

Neutravidin from the bottom of the plate.  I redesigned the ELISA so that the fluor would 

be added last after plasma was removed.  Biotinylated IZN17 was added to plasma to 

bind PIE12-trimer analyte, which was then added to the Neutravidin wells and incubated 

for " 2 hours to pull down biotylated-IZN17.  The plasma was washed away, and 

IRDye800-PIE12-trimer was added to bind any remaining available IZN17 target.  This 

design worked in buffer, but still it failed to avoid plasma effects (Fig. A-2).   

One surprising complication was that the binding of biotinylated IZN17 to 

Neutravidin or streptavidin was not rapid, and was further reduced in the presence of 

plasma  (Fig. A-3).   Once again,  the  assay  never  appeared  to come to equilibrium.  To 

overcome the challenge of delayed equilibrium I employed IZN17-labeled magnetic 

beads.    Unfortunately,  IRDye800-PIE12-trimer  was  found  to  bind  nonspecifically  to  
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A) B)  
 
Figure A-2.  ELISA Design and Function. A) Biotinylated IZN17 was added to 
samples (buffer or plasma) to bind analyte.  These samples were then transferred to 
Neutravidin plates to pull down IZN17.  The wells were then washed to remove unbound 
sample components.  IRDye800-PIE12-trimer was then added to bind any IZN17 lacking 
analyte. B) The assay worked well in buffer, but was still affected by plasma. 
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Figure A-3.  Kinetics of Binding Biotinylated IZN17 to Neutravidin and 
Streptavidin in Plasma and Buffer Samples.  IRDye800-PIE12-trimer was incubated 
with biotinylated IZN17 in buffer and rat plasma (RP).  The samples were then 
transferred at different times to Neutravidin plates blocked with Superblock (NA/SB), 
and streptavidin plates blocked with Superblock or BSA (SA/SB and SA/BSA, 
respectively) to control the timing of pull-down.  Wells were washed to remove unbound 
IZN17.  The data indicate pull-down is surprisingly slow, and is exacerbated by plasma. 
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them, independent of blocking agent used.  This was the last fluorescence-based assay 

attempt I made before turning to the more robust LC/MS/MS technique. 

 
 

Suggestions for Future Troubleshooting 
 
 With anticipated changes to our PIE12-trimer designs (e.g., polydisperse PEG 

scaffolds), a functional ELISA may provide more reliable quantitation than LC/MS/MS, 

although an ELISA would be unable to distinguish between active metabolites.  If efforts 

to develop an ELISA are to be undertaken, I most fervently recommend using a non-

fluor-based readout, like an enzyme; every fluor I used in FRET and ELISA was too 

unpredictable for reliable quantitation of plasma samples. 

 I also recommend a cleanup of plasma samples before analysis by ELISA.  

Untreated plasma interferes with protein-protein interactions like the biotin pull-down by 

Neutravidin.  Several washes, like those required to remove untreated plasma, also 

negatively affect the assay.  Instead, I recommend using an acetonitrile crash of plasma 

samples, followed by speed-vac to dryness and resuspension in aqueous buffer (e.g., 50 

mM HEPES, pH 7.4).  My efforts to cleanup plasma samples for functional quantitation 

in pseudoviral assays have shown that PIE12-trimer conjugates can be successfully 

recovered by this method.  Note that this method does not remove plasma components 

that affect fluorescence.  I would minimize washes of Neutravidin plates, unless 

covalently-linked Neutravidin plates can be developed or acquired. 

As interest in a mass-independent assay is rekindling in the Kay lab, I give my 

very best wishes to the future students whose opportunity it is to progress beyond my 

own efforts.  May these lessons be a boon to you.  Amen. 


