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ABSTRACT

Previous studies indicate that the brain tissue reaction to implanted silicon 

recording microelectrode arrays involves hyperplasia o f macrophages, microglia and 

astrocytes, and that these reactions are accompanied by a decrease in the density o f  

neurons immediately surrounding the implant. It is generally believed that the foreign 

body response is a major factor in the inconsistent recording performance observed 

with these devices. To gain insight into the earliest events, w e used 

immunohistochemical methods to characterize the cellular responses adjacent to 

implanted microelectrodes at 1 ,3 , and 7 days after implantation using single shank 

planar Michigan-style silicon microelectrode arrays implanted into the cortex o f adult 

male Sprague Dawley rats (225-300g) with N=12 per time point. Electrodes were 

implanted using stereotactic positioning at +0.2 mm bregma, 3 mm lateral, and 2 mm 

deep and were anchored with photo-cured adhesive into a polyurethane grommet. As 

a control, stab wounds were created in the same method, with N=6 at 3 and 7 days. 

Animals were sacrificed by transcardial perfusion and serial sectioned with a 

vibrotome. Significant variability existed in the amount o f surface hemorrhage and 

the presence o f infracted blood vessels along the implantation tract. Activated 

macrophages were attached to explanted probes at all postimplantation periods. 

Activation o f perivascular macrophages and extravasation o f ED1+ cells at the site of 

injury was evident by 1 day postimplantation. Macrophages were found at the



implant-tissue interface at all time points and were most prevalent at 3 days. At as 

early as 1 day, GFAP+ astrocytes were absent from the implantation site to about 50 

|im, which was maintained at days 3 and 7. There was a significant decrease in 

neuronal soma within 0-50 jiin o f the electrode track for stab wound and implanted 

animals. However for implanted animals, the area o f neuronal loss had increased to 0

150 |itn at 7 days, suggesting that secondary neuronal cell death is part o f the early 

phase o f the foreign body response. Future studies may use pharmacological 

approaches to understand if  these early events can be modulated to improve the long

term functionality o f microelectrodes for neuroprosthetic devices.
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CHAPTER 1

INTRODUCTION

Neuroprosthetic devices 

Stimulating and recording electrodes have been developed as research tools and 

for use in rehabilitative or substitutive neuroprosthetic devices. Examples of 

neuroprosthetic applications that have achieved clinical success are deep brain 

stimulators, which are used to alleviate symptoms o f Parkinson’s disease and other 

dystonia-related disorders (Benabid, 2001) and cochlear implants, which are used to 

replace hearing loss in patients with little residual hearing or with deafness (Copeland 

and Pillsbury, 2004). Recording electrodes are important to the development o f a 

brain-machine or brain-computer interface (BMI or BCI, respectively), which are 

being developed to restore some degree o f motor function or control after 

degenerative muscle diseases, stroke, and traumatic spinal cord or brain injury 

(Schwartz, 2006). The realization o f a BMI involves a closed-loop system wherein 

electrical activity in the cerebral cortex can be decoded to accurately predict motor 

intent and sensory precepts to control an external mechanical device, such as a 

robotic arm or a cursor on a computer screen (Donoghue, 2002). The proof of 

principle for developing a BMI has been established in early studies that used 

macroelectrodes and microwires to record single cortical units (Evarts, 1966; Marg 

and Adams, 1967; Schmidt et al., 1976; Palmer, 1977). These single-unit recordings



provided evidence that pyramidal neurons in the motor cortex encoded information 

that strongly correlated to muscle activity (Evarts, 1966, Humphrey, 1970). Further, 

practical issues o f a BMI concerning recording signals from de-efferent cortical 

regions and peripheral nerve stumps in long-time tetraplegics were eased with studies 

that illustrated that motor-cortical activation still followed normal somatotopic 

organization (Shoham et al., 2001) and stimulation o f peripheral nerve stumps could 

generate graded sensory perception in the phantom limb (Dhillon et al., 2002).

Several electrode designs have demonstrated the ability to record cortical activity 

in rodents, primates, and humans correlating to control o f an external device. For 

example, surface electrodes can record electroencephalograms (EEGs) that detect the 

massed activity o f many neurons, as used in indirect BMTs (Wolpaw et al., 2000). 

Local field potentials record the activity o f populations o f synchronized neurons 

within a microscopic organization, such as a barrel or column, which have similar 

morphology and function (Markram et al., 2005; Pesaran et al., 2002; Harris et al., 

2004; Csicsvari et al., 2003). Invasive recording microelectrodes, including 

microwires such as the tetrode and microelectromechanical systems (MEMS)-based 

electrodes and arrays such as the Michigan array and the Utah Electrode Array, are 

used to record single-units and often target the large pyramidal cell bodies o f layer V 

in the cortex (Evarts, 1966; Humphrey, 1970; Schmidt et al., 1976; Liu et al., 1999; 

Maynard et al., 1999; Wessberg et al., 2000; Kennedy et al., 2000; Taylor et al., 

2002; Serruya et al., 2002; Kipke et al., 2003; Nicolelis et al., 2003; Moxon et al., 

2004; Hochberg et al., 2006). Human clinical trials with microelectrodes for 

recording local field potentials (Csicsvari et al., 2003) and single-units (Kennedy et



al., 2000; Hochberg et al., 2006) illustrate the ability o f patients to move a computer 

cursor to do tasks such as checking email and using spelling programs. These studies 

are encouraging to the continued development and integration o f BMIs for increased 

communication for “locked-in” or tetraplegic patients.

Recording ability o f microelectrodes

MEMS-based microelectrodes, such as silicon electrodes and the cone electrode, 

have the advantage o f a smaller surface area, which minimizes mechanical trauma 

during implantation, and provide a method for obtaining high-density, high-resolution 

neuronal recordings (Kennedy et al., 2000; Friehs et al., 2004). To record single-units 

from adjacent neurons, the recording sites o f the microelectrode must be able to 

discern separable spiking events. To do this, electrodes must be integrated into the 

surrounding nervous tissue. Mathematical models predict that recording sites must be 

within 130 |im from active neuronal somas that are most responsible for extracellular 

activity (Eaton and Henriquez, 2005) to record discernible units, but experimental 

measurements indicate the maximal distance is closer to 50-100 |im (Henze et al., 

2000). The invasive nature o f implanted microelectrodes necessitates they be able to 

record from neurons for chronic time periods, even extending to the life o f the patient.

The use o f microelectrodes is affected by an inconsistent recording ability for 

chronic time points, regardless o f design or animal model. The recording longevity of 

an electrode is a measure o f the ability to record resolvable neural signals, and the 

recording longevity o f a neural generator is the measure o f the ability to track spiking 

events from the same neuron or group o f neurons (Liu et al., 2006). Stability studies 

have reported that there is an initial stabilization period after implantation, where



recordings may change day-by-day for the first week, and week-by-week for up to 2 

months (Liu et al., 1999; Nicolelis et al., 2003; Liu et al., 2006). After the initial 

stabilization period, studies to date report electrode longevity of 1061 days with 

microwires in cat cortex (Liu et al., 2006), o f 173 days with the Michigan probe in rat 

cortex (Kipke et al., 2003), o f 540 days with the UEA in monkey cortex (Nicolelis et 

al., 2003), and to a year in a human patient (Hochberg et al., 2006). While these 

studies indicate that microelectrodes can function at a chronic time point, only about 

54-66% of implanted electrodes remained functional after several months 

postimplantation, and the number o f distinguishable single-units greatly degraded 

over time (Rousche and Normann, 1998; Kipke et al., 2003; Nicolelis et al., 2003; 

Maynard et al., 2000).

Tissue response at the implant interface 

Robust and reliable recording over long time periods requires the electrodes to 

maintain neural integration with adjacent nervous tissue. It is generally believed that 

the tissue response to the implanted electrode is a major contributing factor to 

disintegration at the abiotic-biotic interface. Previous studies have shown that the 

reaction involves encapsulation by astrocytes, macrophages and microglia (Linell, 

1928; Drapiewski et al., 1943; Collias and Manuelidis, 1957; Dymond et al., 1970; 

Schultz and Willey, 1976; Stensaas and Stensaas, 1976; Stensaas and Stensaas, 1978; 

Agnew et al., 1986; Turner et al., 1999; Szarowski et al., 2003; Biran et al., 2005), 

which is also accompanied by up to a 40% decrease in the density o f neurons in the 

recording zone (Edell et al., 1992, Biran et al., 2005).



In general, activated astrocytes, often indicated by swollen cell bodies and 

hypertrophied processes, form a cellular sheath around the probe by 1 week after 

implantation (Collias and Manuelidis, 1957; Dymond et al., 1970; Schultz and 

Willey, 1976; Stensaas and Stensaas, 1976; Stensaas and Stensaas, 1978; Smith et al., 

1997; Bramlett and Dietrich, 2002; Rodriguez-Paez et al., 2005; Turner et al., 1999; 

Szarowski et al., 2003; Biran et al., 2005), which persists but contracts closer to the 

implant at later time points (Turner et al., 1999; Szarowski et al., 2003). To date, the 

astroglial scar has been reported to persist at 3 years after implantation (Griffith and 

Humphrey, 2006), although stab wound experiments show that the initial astrocyte 

response is transitory, as the electrode track is not found in stab wound animals after 

several months (Rousche et al., 2001; Csicsvari et al., 2003; Biran et al., 2005). 

Observed as early as 2 weeks postimplantation, the astroglial scar surrounds a core o f  

activated macrophages and microglia, forming a striated response (Linell, 1928, 

Collias and Manuelidis, 1957; Turner et al., 1999; Szarowski et al., 2003; Biran et al., 

2005).

Glia are intimately integrated in the neuronal signaling network. Astrocytes act as 

glutamate buffering cells, help to maintain neuronal synapses, and maintain the blood 

brain barrier (Bezzi and Voltera, 2001). Microglia are the resident macrophages in the 

CNS, formed by infiltration o f prenatal monocytes, and are the primary immune cells 

in response to brain injury (Becher et al., 2000). In uninjured tissue, ramified 

microglia continually survey the extracellular environment with dynamic processes 

and protrusions (Kreutzberg et al., 1996; Stence et al., 2001; Nimmerjahn et al.,

2005). In response to injury, microglia and sometimes astrocytes both respond to and



secrete cytokines that may further develop a local inflammatory response (Gareth et 

al., 1999; Biran et al., 2005).

Early wound healing events in the CNS

Often, the brain tissue response to implanted materials is discussed as two 

separate events, one that occurs acutely due to mechanical trauma, and a chronic 

inflammatory response due to the presence o f the foreign body. The acute response is 

largely characterized by the CNS wound healing events in response to the presence of 

red blood cells, coagulation factors, and complement factors that are induced by the 

disruption o f blood vessels during implantation (Fitch et al., 1999). These events 

facilitate the activation and migration o f macrophages, microglia, and astrocytes that 

lead to the characteristic glial encapsulation around chronically implanted materials 

in the CNS (Collias and Manuelidis, 1957; Stensaas and Stensaas, 1978; Szarowski et 

al., 2003 Turner et al., 1999; Shain et al., 2003).

Injury to the adult brain leads to a complex series o f cellular and molecular 

events, as cells respond to trauma and attempt to repair damaged regions (Fitch et al., 

1999; Wieloch and Nikolich, 2006). In general, wound-healing events involve repair 

of compromised vasculature, removal of debris by white blood cells, reconstructive 

angiogenesis, and remodeling o f affected cell populations and their extracellular 

matrix. Descriptive studies o f the early wound healing response to CNS injury 

describe similar events (Linell, 1928; Drapiewski, et al., 1943; Collias and 

Manuelidis, 1957; Szarowski et al., 2003). The early study by Collias and Manuelidis 

(1957) summarized the tissue reaction to stainless steel electrodes in the cat brain, 

observed by light microscopy. By day 1 after implantation, they found hemorrhagic



necrosis along the track, infiltration o f leukocytes, and activation o f macrophages. 

The macrophage reaction was increased by day 3, though hemorrhage and edema had 

decreased. At this time, astrocytes became hypertrophied and began to form a 

boundary around the electrode. Evidence o f angiogenesis was also evident by 3 days 

and continued at 7 days. Day 7 was further characterized by increased numbers o f 

hypertrophied astrocytes, macrophages, the presence o f fibroblasts, and 

demyelinization o f neurofilaments. By day 15, new capillaries were found in the 

necrotic zones, although some edema still persisted. By 30 days, tissue adjacent to the 

implant showed stages o f repair and encapsulation by connective tissue and the 

astrocyte reaction, which persisted at 60, 120, and 180 days. Thus, the early tissue 

response, occurring over the first week postimplantation, involves the activation o f 

resident glial populations, neurodegeneration, and repair processes involving 

connective tissue and neovascularization. The vascular and cellular remodeling 

events that occur during the first week postimplantation may be responsible for the 

recording ability o f implanted electrodes that has been reported to change day-by-day 

over the first week (Liu et al., 1999; Nicolelis et al., 2003; Liu et al., 2006). However, 

it remains unclear when and by what mechanisms the foreign body response eclipses 

normal wound healing events.

Neurodegeneration involves both the loss o f neurons and demyelination o f axons, 

resulting in a loss o f functionality o f the neural circuit. In response to traumatic brain 

injury, previous studies found that neuronal cell loss occurred as early as 10 minutes 

postinjury (Hicks et al., 1996). Both apoptotic and necrotic neurons were found from 

1-3 days (Bullock et al., 1991; Dietrich et al., 1994; Crowe et al., 1997; Conti et al.,



1998; Sato et al., 2001) with a secondary, generally apoptotic neuronal loss at 7 days 

(Liu et al., 1997; Conti et al., 1998; Sato et al., 2001). Delayed neuronal death may be 

related to increased reactive oxygen species, the glial reaction, and/or neurological 

deficit, such as axonal target deprivation (Ambrosini et al., 2005). While some studies 

report no change in the degree o f neuronal loss adjacent to implants at more chronic 

time points (Edell et al., 1992; Biran et al., 2005), others show a progressive 

neurodegernative process that may occur up to 1 year following traumatic brain 

injury (Smith et al., 1997; Bramlett and Dietrich, 2002; Rodriguez-Paez et al., 2005). 

Overall, active cell death as well as passive necrosis may be responsible for neuronal 

cell death in response to CNS injury, and likely there is not a single cause of 

neurodegeneration (Crowe et al., 1997; Martin et al., 1998; Heidenreich, 2003). In 

addition to determining the mechanism of neuronal cell death, it is important to 

understand the degree o f loss due to the initial injury and to the presence o f the 

indwelling electrode. Intervention strategies may be used shift the degree o f neuronal 

loss due to the foreign body response towards the stab wound phenotype.

Many o f the studies in this field have focused on the long-term or chronic tissue 

response with less attention to the events that precede glial encapsulation. The focus 

o f the present study was to examine the earliest events that follow the implantation o f 

Michigan-style planar silicon microelectrode recording arrays in rat cortex. To do 

this, we used immunohistochemical methods to characterize the cellular responses 

adjacent to indwelling microelectrodes and stab wound tracks to differentiate the 

foreign body response at 1, 3 and 7 days postimplantation. In general, we found that 

the tissue response to implanted Michigan-style microelectrode arrays in the earliest



events is largely characterized by the foreign body response, where the macrophage 

response in implanted animals was increased due to the presence o f the indwelling 

electrode, which contributed to the astrocyte loss and decrease in neuronal density 

immediately surrounding the electrode. Surface hemorrhage and the presence of 

micro-hemorrhages and disrupted blood vessels along the implantation tract were 

observed at days 1 and 3. In the least reactive cases, EDI labeled macrophages were 

present both attached to retrieved electrodes and in the tissue immediately adjacent to 

the implant site at 1 day in both stab wound and experimental animals, with a 

maximal response at 3 days. At as early as 1 day, GFAP labeled astrocytes were 

absent from the implantation site and in the surrounding parenchyma to varying 

degrees, which was maintained at days 3 and 7. This response suggests that astrocytes 

are sensitive to early events in the foreign body response, as stab wound animals 

showed little or no loss o f astrocytes at the electrode-tissue interface. Further, the 

zone o f neuronal loss was increased at day 7, suggesting that secondary neuronal cell 

death is also part o f the early phase o f the foreign body response.

9



CHAPTER 2

MATERIALS AND METHODS

Microelectrodes and grommets 

Single shank, planar, 16 recording site silicon microelectrode arrays were 

fabricated and supplied by the Center for Neural Communication Technology 

(CNCT) at the University o f Michigan. All electrodes had the following dimensions 

within the cortex: length, 2 mm; width, from 75 [im tapering to 2 jam at the tip; and 

thickness, 15 jj.m along the shank and 2 |am at the tip. All electrodes were cleaned by 

soaking in 70% ethanol for 30 seconds followed by sterile DI H20 for 30 minutes. 

Electrodes were gas sterilized with EtO’. Polyurethane grommets, which are access 

ports that snap into the burr hole drilled in the skull, were fabricated as described 

(Young, et al. 2003). Prior to implantation, grommets were soaked in 70% ethanol for 

30 seconds followed by sterile DI H2 O for 30 minutes. After cleaning, grommets were 

inspected for swelling and correct hardness.

Animal surgery .

All procedures involving animals were conducted using sterile technique in 

accordance with protocols approved by the University o f Utah Institutional Animal 

Care and Use Committee. Implantation and terminal surgery methods are similar to 

those previously described (Biran et al., 2005). Adult male Sprague Dawley rats



(225-300g) were weighed and anesthetized with a cocktail o f ketamine (65 mg/kg), 

xylazine (7.5 mg/kg), and acepromazine (0.5 mg/kg). Fully anesthetized animals were 

prepared for surgery by covering the eyes with ophthalmic ointment and shaving the 

head. The scalp was disinfected with isopropanol followed by butadiene. Animals 

were transferred to a stereotaxic frame (Stoelting Co., Wood Dale, IL) set under a 

stereomicroscope. A midline incision extending to the length o f the skull was made. 

For all implant types, a 3 mm diameter burr hole was created through the depth o f the 

skull with a custom fabricated trephinated drill bit under stereotactic control and 

copious irrigation with sterile phosphate buffered saline (PBS). The center o f the hole 

was positioned at coordinates +0.2 forward and 3 mm lateral to bregma. The cortical 

bone plug was removed with fine forceps under stereomagnification. The dura was 

carefully opened with a 21G needle and bleeding was controlled with cotton tip 

applicators. A custom-made polyurethane grommet was fastened to the skull by 

design. Microelectrodes were lowered 2 mm into the brain under stereotactic control, 

with the flat side containing recording sites oriented forward along the coronal plane. 

The electrodes were anchored in the grommet by photocurable adhesive. The scalp 

incision was closed with 5/0 silk sutures. A schematic o f the implant in rat cortex is 

shown in Figure 1.

As a control, stab wounds were created with the same type o f microelectrode for 

adult male Sprague Dawley rats (225-300g). After opening the dura and fastening the 

grommet to the skull, microelectrodes were lowered into the brain to the same depth 

and in the same manner as described above. The microelectrode was withdrawn after

2 minutes, the grommet sealed with photocurable adhesive, and the scalp closed.

11
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Figure 1. Schematic o f implant in rat cortex. Electrodes were implanted at the border 
of motor and sensory cortices o f front fore limb at 0.2 mm forward o f bregma, 3.0 
mm lateral o f the midline, and lowered to a depth o f 2.0 mm, with recording sites 
facing forward. A custom grommet (black) was fit into the skull by design, and an 
electrode (black line) was lowered through the grommet and into the cortex (white) 
using a manipulator. The electrode was fixed in place by photo curable adhesive 
(dark gray). Cortex is white, striatum is hatched, grommet is black, and photocurable 
adhesive is dark gray. Scale bar= 2mm.
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At 1, 3, or 7 days after implantation, N=12 per time point, and 3 or 7 days after 

stab wound, N=6 per time point, animals were again weighed and then terminally 

anesthetized with a mixture o f ketamine (70 mg/kg) and xylazine (30 mg/kg). 

Animals were perfused transcardially at a flow rate o f 50 mL/min with 250 mL of 

ice-cold PBS, followed by 250 mL of fresh ice-cold 4% (w/v) paraformaldehyde. The 

brains were removed and grommets were carefully unfastened from the skull and 

lifted upwards to remove electrodes from the cortex o f implanted animals. Brains and 

implants were postfixed overnight in 4% paraformaldehyde and later stored in PBS 

with 0.1%NaN3.

Sectioning and immunostaining 

Following postfixation, animal brains were sectioned horizontally (N=8 per time 

point, implanted animals or N=6 per time point, stab wound) or coronally (N=4 per 

time point, implanted animals) to a thickness o f 40 on a vibratome (Vibratome, 

Inc., St. Lous, MO) and serially collected. Horizontal sections were collected 

perpendicular to the electrode or stab wound track, beginning at the surface o f the 

cortex to a depth of approximately 3mm, well below the area o f implantation. 

Coronal sections were cut parallel to the implant track. Sections were stored as free- 

floating sections one per well in culture plates filled with lxPBS containing 0.1% 

NaN 3  until processed for immunostaining. Electrodes were removed from the base o f 

the grommets with microdissection scissors and similarly prepared for 

immunostaining.

Approximately one section for every consecutive 160 p  within the cortex, for a 

total o f 11 sections per animal, was stained with each antigen combination. Primary



antibodies were used to specifically identify astrocytes, activated macrophages, and 

neuronal nuclei. Astrocytes were identified by the use o f polyclonal rabbit IgG anti- 

glial fibrillary acidic protein (GFAP) (DAKO, Carpinteria, CA), which is a marker 

for the intermediate filament protein. Monoclonal IgGl anti-CD68 (ED-1) (Serotec, 

Raleigh, NC) was used to label a lysosomal glycoprotein expressed by activated 

macrophages. Resident macrophages, termed microglia, are indistinguishable from 

blood-borne macrophages with this marker. Monoclonal IgGl anti-NeuN (Chemicon, 

Temecula, CA) identified neuronal nuclei by labeling a DNA-binding protein. 

Secondary antibodies were isotype-matched Alexa-488 and Alexa-594 antibodies 

(Molecular Probes, Carlsbad, CA). Each section was stained for GFAP and costained 

for either ED-1 or NeuN. Primary (1/1000 dilution) and secondary (1/500 dilution) 

antibodies were diluted in a blocking solution consisting o f 4% (v/v) goat serum, 

0.5% (v/v) Triton-X-100, and 0.1% (w/v) sodium azide in lxPBS, pH 7.4. Sections 

were incubated with blocking solution for 1 hour at room temperature before 

applying primary antibodies overnight at 4°C. After three PBS rinses, secondary 

antibodies containing 1.0 (.iM 4',6-diamidino-2-phenylindole (DAPI) (Molecular 

Probes) to identify all cell nuclei were added to the appropriate tissue sections for 2 

hours at room temperature. After washing with PBS, sections were mounted onto 

microscope slides using Fluoromount-G (Southern Biotech, Birmingham, AL) and 

covered with a N o .l cover glass. Retrieved electrodes were immunostained by 

applying block solution in the same manner. Primary antibodies (1/500 dilution) for 

GFAP and ED-1 and corresponding secondary antibodies (1/220 dilution), 

counterstained with DAPI were applied as described above. Electrodes retrieved from



stab wound animals were stained with 1% (v/v) eosin solution in EtOH for 2 minutes 

to visualize any protein attached to the electrodes. All implanted animals were batch 

stained to minimize variability in staining intensities, allowing for a way to 

differentiate relative staining intensities over time. Stab wound animals and 

electrodes were also batch stained.

Imaging and quantification 

Digital images were acquired with a Coolsnap color CCD digital camera (Roper 

Scientific, Trenton, NJ) attached to a Nikon E600 upright microscope (Nikon, 

Melville, NY) using Image Pro 4.0 software (Media Cybernetics, Silver Spring, MD). 

Digital images were collected in RGB color at 12 bits per channel with a spatial 

resolution o f 1392 x 1040 pixels. Exposure times were chosen at subsaturating levels 

and were used consistently with respect to each marker. Light field correction images, 

no-primary control images, and dark field images were taken to correct for a 

nonhomogenous illumination field, and changes in background staining and ambient 

light, respectively. Images were captured with the implant site in the center and were 

oriented to be consistent with anatomical maps and to locate the side o f the electrode 

containing the iridium recording sites. To acquire depth information, images were 

ordered with respect to proximity to the corpus callosum.

To quantify the tissue response adjacent to the implant or stab wound track, pixel 

intensity data were analyzed with respect to distance from the tracks. The method 

used to generate profiles of pixel intensity with custom LabVIEW programs 

(National Instruments Co., Austin, TX) is described in (Young et al., 2003). Digital 

lOx images were converted to 8 bit per channel and the red, green, and blue channels

15



were merged for each tissue section using custom Image Pro macros. Light field 

corrections were applied to merged images. Merged images were then transferred into 

a Lab VIEW program that created linear profiles perpendicular to the long orientation 

of the implant. Equally spaced lines were drawn with a constant density and spacing 

between 2.5 and 2.75 jim, depending on track size (Figure 2). For implanted animals, 

the electrode track was identified using DAPI and ED-1 markers to define the 

location and width o f the track. ED-1 and GFAP were useful in determining the 

location o f the stab wound. Line profile data were averaged to create one profile for 

each color channel. The location o f the implant or stab wound track was determined 

for each profile; in this way, the average profile for each animal was calculated with 

respect to distance from the electrode track. Profiles were adjusted for ambient light 

and background staining determined by no-primary control images.

Average line profile data for each animal were transferred to Microsoft Excel. 

Graphs were generated to represent average antigen intensity profiles for each time 

point. Profiles were normalized to the maximum intensity value for implanted and for 

stab wound animals. Further, the maximum intensity values and their positions with 

respect to the implant track for GFAP and ED-1 profiles were determined and 

compared for all implanted animals. Data presented as mean values ±SEM.

The degree o f neuronal loss was measured by counting the number o f NeuN+ 

nuclei by overlaying each image with a 50 x 100 |am mesh (Figure 3). The grid was 

adjusted so that the electrode track was bisected through the long axis, similar to the 

position o f the line profiles shown in Figure 2. Neuronal bodies were counted as a 

function o f distance from the track in 50 |am increments; to a distance o f 500 |itn.
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Figure 2. Example o f the line profile program created in LabVIEW. A) Equally 
spaced line profiles, between 2.55 and 2.75 |xm, are drawn across long axis of the 
electrode or stab wound track, which is in the middle o f the image (dashed horizontal 
line). The endpoints o f the track are determined with DAPI and ED-1 staining. B) 
Panels on the left of the figure show the pixel intensity as a function of distance for 
each of the color channels: red, green, and blue. The average o f all the line profiles 
for a given image are shown in C, separated by color channel. The processed profile 
line intensity graph is exported to another LabVIEW program that averages all the 
profile data per animal.
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Figure 3. Quantification o f  neuronal density. For 
each image, a 50 x  50 jum grid was overlaid so that 
the electrode or stab wound, seen as a dashed line 
in this figure, track was bisected through the long 
axis. For implant tracks that showed a loss o f  
tissue, seen as a hole, the grid was placed on the 
edge o f  the hole. Neuronal bodies were counted as 
a function o f  distance in 50 jum increments to a 
distance o f  500 pm, region o f  interest is boxed.



Bins at comparable distances both above and below the electrode track were 

averaged. Counts were ordered with respect to depth in the cortex and analyzed as a 

percentage o f the average number of neurons 450-500 [im from the electrode track. 

The number of neuronal cell bodies at this distance was assumed to be representative 

of uninjured tissue. Neuronal counts for a depth of 1 to 2 mm in the cortex were 

included in the analysis, as many sections were damaged within the first 1 mm due to 

surface bleeding and necrosis.

Statistical analysis

To analyze the distribution of glial activity over time, one-way ANOVAs, p<0.05, 

were used. A one-way ANOVA was used to compare both the value and the distance 

of the maximum intensity value for each time point. A one-way ANOVA was also 

used to compare NeuN counts for implanted and stab wound animals with respect to 

distance. Significance between groups was determined with a t-test, assuming 

unequal variances with p<0.05 where appropriate. Also, the number of neuronal 

bodies proximal to the electrode track was compared to those 450-500 [xm away 

individually for each time point.

20



CHAPTER 3

RESULTS

All animals recovered from surgery with no evidence o f infection and survived 

the duration o f the experiment. There was no noticeable behavioral difference for any 

experimental animals. This observation was further supported by weight gained in 

animals sacrificed at 3 and 7 days postsurgery; animals sacrificed after one day either 

did not have a significant weight loss. There was no difference in weight gain or loss 

between implanted and stab wound animals (Figure 4).

Gross anatomy o f fixed, perfused brains 

Epidural blood clots were found below the scalp, enclosed in connective tissue, 

for most animals sacrificed at 1 and 3 days. The upper surface o f explanted brains 

showed evidence o f bleeding and swelling at the implant site. The contralateral 

hemisphere was representative o f normal, uninjured tissue. Surface reactivity was 

maximal at 1 day, and diminished over time. Four o f the explanted brains at 7 days 

showed no evidence o f blood at the implant site. Examples o f the most reactive 

hemorrhagic and average responses with respect to time are found in Figure 5. 

Hemorrhages at the surface of the brain at the implant site were also correlated to 

increased tissue reactivity in the more superificial cortical layers. These early
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Figure 4. Chart o f the weight difference for stab wound and implanted animals 
between time o f initial surgery and time o f sacrifice. Animals sacrificed 24 hours 
after surgery generally lost a small amount o f weight. By 7 days, animals had gained 
weight, one indication o f normal behavior postsurgery. There was no difference 
between weight measures for stab wound and implanted animals, 1-way ANOVA p< 
0.05. Error bars are SEM. There is only one stab wound animal sacrificed at 1 day.

bleeding and necrotic events have previously been described for implanted 

macroelectrodes (Linell, 1928; Drapiewski et al., 1943; Collias and Manuelidis, 

1957), but have not been described in response to implanted planar microelectrodes 

such as the Michigan electrode. Further, the contralateral hemispheres for all animals, 

including the most reactive, showed no staining for ED-1, normal distributions of 

nonhypertrophied GFAP+ astrocytes, and normal distributions o f neuronal markers.
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Figure 5. Gross anatomy of the upper surface o f perfused, explanted brains. Animals 
sacrificed at 1 (left panel), 3 (middle panel), and 7 days (right panel), showing the 
implant site and the contralateral, uninjured cortical hemisphere. The top row of 
images (A-C) are examples of the most reactive hemorrhagic response for each time 
point. N= number of animal of each type o f case. The middle row (D-F) are the 
average responses for implanted animals. (G-I) shows the average responses for stab 
wound animals. There was only one stab wound animal sacrificed at 1 day. Blood 
clots were often observed on top of the implant site for implanted and stab wound 
animals sacrificed at 1 and 3 days. Scale bar = 2.5 mm.



Vasculature disrupted during implantation 

During implantation, bladelike electrodes rupture vasculature, especially 

capillaries, along the implantation track. Hemosiderin is a breakdown product of 

hemoglobin released red blood cells upon phagocytosis by activated macrophages; 

the breakdown o f red blood cells contributes to a cytotoxic respiratory burst. 

Hemosiderin deposits were found in the electrode tracks in both implanted and stab 

wound animals sacrificed at 1 and 3 days, an example at 3 days is shown in Figure 6. 

Hemosiderin deposits were not typically observed at the electrode track for animals 

sacrificed at 7 days. Adjacent vasculature was also affected in 1 and 3 day animals: 

vessels contained hemosiderin deposits, and infarcted tissue was observed at remote 

distances from the implant site. Often, in infarcted areas where NeuN and NF 

remained, GFAP+ astrocytes were absent, and fragmented GFAP was observed.

Figure 6. Example of hemosiderin deposit at the electrode track at 3 days 
postimplantation. A) Lightfield image of hemosiderin deposits surrounding electrode 
track. B) Fluorescent image of same section in (A) of GFAP (red), ED-1 (green), and 
DAPI (blue). ED-1+ macrophages are present immediately adjacent to the electrode 
track. GFAP+ astrocytes are absent around the track. The implant track is shown as a 
hole. Electrode footprint is dotted line. Scale bar = 100 (im.



Cellular attachment to explanted electrodes 

Upon removal from fixed, perfused brains, electrodes and grommets were largely 

clear o f connective tissue. Grommets were easily removed from the skull and all 

electrodes remained fixed within the adhesive. Under fluorescence, DAPI was 

observed on all explanted electrodes at all time points. Most o f the cells attached to 

indwelling electrodes were colocalized with the ED-1 antigen but not for GFAP 

(Figure 7). Visualization with scanning electron microscopy (SEM) showed that 

wellspread cellular material attached to the surface o f the electrode corresponded to 

cell clusters visualized by immunostaining. This indicates cellular adhesion and 

spreading o f activated macrophages on the surface o f the electrode, which may be a 

factor in the increased and persistent tissue response due to the presence o f a foreign 

body. Small anuclear cells, that appeared to be red blood cells, were also found 

attached to electrodes using SEM at 7 days postimplantation. Electrodes removed 

from stab wound animals were covered with protein along the entire shank, 

determined by Eosin staining (data not shown). Further, cell nuclei identified by 

DAPI were observed sparsely attached to explanted stab wound probes. 

Colocalization with ED-1 and GFAP were not conclusive in identifying cell types on 

stab wound electrodes due to high background staining.

Activated macrophages are present at the electrode-tissue interface 

Consistent with previous work (Linell, 1928; Drapiewski et al., 1943; Collias and 

Manuelidis, 1957; Szarowski et al., 2003), activated macrophages, determined by the 

expression o f ED-1, were observed around the electrode track by 1 day postinjury.
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Figure 7. Cellular attachment to explanted electrodes. A) Representative fluorescence 
illumination o f an explanted electrode from an animal sacrificed at 1 day. DAPI 
(blue) is colocalized with ED-1 (green) almost exclusively. Activated macrophages 
attached to electrodes as early as 1 day postimplantation. B) SEM visualization o f an 
electrode explanted at 7 days. Cellular material is seen attached and wellspread on the 
electrode surface. Box shows the presence of red blood cells attached to electrode. C) 
Fluorescent image o f the same probe in (B), for DAPI (blue) and ED-1 (green). Most 
of cellular material is positively stained for activated macrophages. Scale bar = 100 
[im.



Upregulation o f perivascular macrophages and presumptive extravasation o f  

monocytes from the vasculature towards the implant site was observed at 1 and 3 

days, seen in Figure 8 at 3 days. At 1 day, macrophages surrounded the implant track 

with a radius o f 60 |im. ED-1 reactivity was most broadly distributed in tissue 

adjacent to the implant track at 3 days, with an average radius o f about 75 jam. By 7 

days, the macrophage response had reached its peak intensity and had contracted 

around the electrode track, to a radius o f about 40 jam. The average peak intensity 

value and position for implanted animals at each time point illustrate the evolution o f  

the macrophage response from a distance o f 6 jam at 1 day, to 13 jim at 3 days, and 3 

Urn from the implant site by 7 days (Figure 9). The distances were found to be 

significantly different among all time points, ANOVA p<0.05. The peak intensity 

value was different between 1 and 3 days, but did not significantly change at 7 days, 

t-test with unequal variance p<0.05.

ED-1 labeled macrophages were also observed at the wound site for stab wound 

animals at 3 and 7 days. The radius o f the macrophage reaction at 3 days postinjury 

was 45 (am, which decreased to about 20 |iin by day 7. Although direct comparisons 

o f line profile data cannot be made between stab wound and implanted animals since 

they were not batched stained, both the intensity and the breadth o f the macrophage 

reaction appeared increased in implanted animals compared to stab wound animals.

Astrocyte loss is an early event in the foreign body response 

While astrogliosis is a hallmark o f the chronic inflammatory response 

surrounding implanted microelectrodes, the presence o f GFAP+ astrocytes was 

■ markedly decreased adjacent to the electrode track in implanted animals at the early



28

Figure 8. Activated macrophages respond quickly to injury. A) Representative 
coronal image at 3 days showing ED-1 reactivity along the length of the electrode 
track through the cortex. B) Horizontal image of ED-1+ cells at the site of injury at 3 
days postimplantation. Macrophages activated in surrounding tissue; presumptive 
migration o f macrophages towards implant site indicated by arrow. C) Representative 
horizontal ED-1 image for stab wound animals. D) Average intensity profiles o f ED- 
1 as a function of distance from the electrode track for stab wound animals at 3 and 7 
days. E) Representative horizontal ED-1 image for implanted animals. F) Average 
intensity profiles of ED-1 for implanted animals at 1, 3, and 7 days. ED-1 labeled 
macrophages appear to be increased in implanted animals compared to stab wounds 
at each time point. Error bars are SEM. Scale bar = 100 [xm.
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Figure 9. Average peak intensity values and position for ED-1 and GFAP antigens.
A) The average peak intensity value and position from the electrode track for ED-1 
was located for implanted animals as a function o f time. The distance o f the peak 
intensity was different among all time points, increasing from 1 day to 3 days, and 
contracting at 7 days. The peak intensity value increased from 1 day to 3 days, but did 
significantly change by 7 days. B) Average peak intensity value and position from the 
electrode track for GFAP as a function o f time. The peak value o f GFAP was located 
outside the zone o f astrocyte loss, which did not change over time. The intensity 
value increased over time, as astrocytes became increasingly hypertrophied. 
Statistical analysis done with a 1-way ANOVA, p<0.05. Error bars are ±SEM.



time points (Figures 10 and 11). Astrocytes were absent for the first 40 jam around 

the implant track at 1 day, and the position o f the front o f astrocytes was not 

significantly different at 3 or 7 days. Outside the zone o f astrocyte loss, remaining 

astrocytes had upregulated expression o f GFAP. The average peak intensity value and 

position o f GFAP was plotted for implanted animals at each time point (Figure 9). 

While the distance o f the maximal GFAP reactivity did not change over time from 

about 80 jam, the intensity value increased over time, ANOVA p<0.05. This is 

reflective o f an astrocyte reaction that was progressively hypertrophic with evidence 

of hyperplasia adjacent to the electrode track by 7 days. See Figure 11. In addition, 

astrocytes within the surrounding 500 |im were increasingly hypertrophic over time.

In contrast to the astrocyte loss surrounding the electrode track in implanted 

animals, stab wound animals showed no loss o f adjacent GFAP+ astrocytes. In fact, 

hypertrophic astrocytes were present at the wound site and to a distance o f about 100 

|im from the wound, often demarcating the location o f the wound. The difference 

between the astrocyte response in implanted and stab wound animals represents the 

change due to the presence o f a foreign body in the CNS (Figure 10).

Neuronal cell loss, early and secondary events

The density o f neuronal cell bodies was decreased within the first 50 jam from the 

implant site for all implanted and stab wound animals (Figure 12). In animals with 

indwelling implants, the average degree o f neuronal loss within the first 0-50 |im was 

70% from background measures (400-450 |im from the implant site). Within the first 

0-100 [am, neuronal density was decreased by about 50%, which is comparable to



Figure 10. Astrocyte loss is an early event in the foreign body response. A) 
Representative horizontal stab wound image at 3 days. GFAP staining shows that 
hypertrophied astrocytes are present at the wound site, dotted line, with no loss of 
astrocytes around the stab wound track. B) Representative horizontal image o f GFAP 
reactivity around the electrode track, dotted line, in the least reactive case. GFAP+ 
astrocytes are absent in immediately surrounding parenchymal to varying degrees. 
This zone of astrocyte loss was maintained at all time points. Scale bar -  100 |im. C 
and D) Distribution of the relative intensity o f GFAP as a function of distance from 
the stab wound or electrode track. C) Average intensity profiles for stab wound 
animals at 3 and 7 days. GFAP is found at the wound site, with no evidence of 
astrocyte loss. Astrocytes are hypertrophied at a radius o f about 100 pim from the 
wound site. D) Average intensity profiles for implanted animals at 1 ,3 , and 7 days. 
The loss of GFAP is reflected in the bimodal antigen distribution. Astrocytes 
continually upregulate GFAP adjacent to the electrode track. Error bars are SEM.
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Figure 11. Representative horizontal images of GFAP response in implanted animals 
as a function o f time. Images for sections stained for both DAPI (A, C, E) and GFAP 
(B, D, F) at 1 day (A, B), 3 days (C, D), and 7 days (E, F). Images for DAPI illustrate 
presence of cell nuclei even within the zone of astrocyte loss. A and B) At 1 day 
postimplantation, astrocytes were absent in tissue surrounding electrode track. Some 
remaining astrocytes became hypertrophied. C and D) By 3 days, astrocytes at the 
zone of loss and within surrounding 500 |im had upregulated GFAP. E and F) 
Hypertrophied astrocytes began to form a cellular sheath by 7 days. There was also 
increased cellularity at the implant site, seen in E. Dashed lines denote implant site. 
Scale bar = 1 0 0  urn.
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Figure 12. Neuronal cell loss increased in implanted animals, secondary loss. A and
B) Representative coronal sections for NeuN (green) and GFAP (red). A) In the least 
reactive cases, neuronal nuclei were decreased within the first 50 |im from the 
implant but were found in an area where all astrocytes were absent. B) Neurons were 
found at or behind the hypertrophied astrocytes at 7 days. C) Representative 
horizontal NeuN image for stab wound animals. D) Line profile data for stab wound 
animals. Average loss was 30% from background within the first 50 [xm from the 
wound. Loss at 3 day was significant from 0-100 |im, and from 0-50 |im at 7 days. E) 
Representative NeuN image for implanted animals. F) Line profile data for implanted 
animals. Average loss within the first 50 urn from the implant site was decreased by 
70% compared to background values. The loss at 1 day was significant from 0-100 
[Am, which increased at 7 days to 0-150 [im from the electrode track. Asterisk denotes 
significant compared to background, t-test p<0.05. Error bars are SEM. Electrode 
track represented by dashed line. Scale bar = 100 (im.



values previously reported at 12 weeks for Michigan electrodes implanted into rat 

cortex (Biran et al., 2005). While the density o f neuronal bodies within 50 |im was 

not significantly different among implanted animals at each time point, the distance, 

or zone of neuronal loss increased over time. Neuronal loss was significant from 

background measures to a distance o f 100 |im at 1 and 3 days and to a distance o f 150 

[im from the implant site at 7 days, suggesting secondary delayed neuronal loss event, 

(Figure 12).

The average decrease in neuronal density within the first 50 [im of the stab wound 

was about 30% from background, less than the average 70% loss for implanted 

animals. On average, implanted animals had about a 40% increase in neuronal loss 

when compared to stab wound animals. This increased loss corresponds to a decrease 

from 3-4 neurons within the recording zone to only 1-2 neurons present within the 

first 0-50 [xm from the electrode due to the presence of the foreign body. The 

decrease in neurons within the recording zone can decrease the chance o f obtaining a 

reliable single-unit recording. At 3 days postinjury, the zone o f neuronal loss was 

significant to a distance of 100 [im. Loss at 7 days was significant from 0-50 um 

from the stab wound.

Antigen profile curves for NeuN, overlaid with GFAP and ED-1 profiles, 

illustrate the clearance o f the marker at the implant site (Figure 13). At 1 and 3 days 

postimplantation, the intensity of the NeuN antigen was increased adjacent to the 

implant track, which closely corresponds to ED-1 reactivity profiles at the same time 

points. By day 7, there was a decrease in the NeuN antigen intensity, which follows 

the trend of GFAP loss. The increased intensity o f NeuN at 1 and 3 days was not due
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Figure 13. Antigen profile curves for NeuN overlaid with GFAP (A, C, E) and ED-1 
(B, D, F) as a function o f time. A and B) At 1 day postimplantation, the intensity of 
the NeuN antigen was increased adjacent to the implant site, with a peak intensity 
equal to that of ED-1, B. Counts of neuronal soma adjacent to the implant site 
demonstrated a loss of neurons within the first 50 um, comparable to the zone of 
absent astrocytes, A. C and D) By 3 days, NeuN intensity was still increased next to 
the implant site, and again closely followed the ED-1 intensity trend. E and F) By day 
7, NeuN antigen intensity was decreased adjacent to the implant site, following the 
trend of astrocyte loss, E, and was inversely related to ED-1 expression, F.



to an increase in cell number; the density o f neuronal nuclei is decreased adjacent to 

the electrode track indicated by counts o f NeuN+ cell bodies as a function o f distance 

from the implant site.

The high degree o f variability among experimental animals was evident by the 

amount hemorrhaging at the surface of the brain as well as by cell-specific markers 

throughout the depth of the cortex. Visual observation of tissue sections from 

implanted animals suggested that the variability of the cellular response surrounding 

the electrode track at 7 days was less compared to that observed at 1 or 3 days 

postimplantation. To quantitatively measure this observation, the averaged variability 

of each marker, expressed as the standard deviations among all animals, were 

analyzed as a function of time. While the total average variability o f each marker did 

not change from 1 to 7 days, the variability o f the ED-1 and GFAP antigens within 

the first 100 |im of the implant had decreased over time (data not shown).

36



CHAPTER 4

DISCUSSION

The use o f recording electrodes in chronic applications for brain-machine 

interfaces relies on their ability to maintain a stable interface between functioning 

nervous tissue and the electrode, specifically with the recording site. It is important to 

characterize that interface, including how the adjacent tissue changes over time. 

While the chronic response has been well defined (Linell, 1928; Drapiewski et al., 

1943; Collias and Manuelidis, 1957; Dymond et al., 1970; Schultz and Willey, 1976; 

Stensaas and Stensaas, 1976; Stensaas and Stensaas, 1978; Agnew et al., 1986; 

Turner et al., 1999; Szarowski et al., 2003; Biran et al., 2005), few have studied the 

early events in the foreign body response. In this study we demonstrated that, in 

response to implanted Michigan-style microelectrode arrays, remodeling o f glial and 

neuronal populations occurs during the early stages o f the foreign body response, 

which is distinct from early wound healing events in the CNS. The foreign body 

response consisted o f an exacerbated macrophage response correlated to a loss of 

astrocytes immediately adjacent to the electrodes, a hypertrophy o f remaining 

astrocytes, and about a 40% increase in the loss o f neurons within the recording zone.

Evidence o f hemorrhagic responses on the surface o f explanted rat brains 

illustrates the high degree o f variability that exists between animals and the 

remodeling that occurs during the first 7 days postimplantation. There was a large



range o f bleeding and necrosis on the surface o f explanted brains and within the 

superficial cortical layers that greatly decreased over time, where the average 

response at 7 days was similar to brains explanted at later time points or uninjured 

brains. In general, glial populations become activated at the electrode track by 1 day 

with respect to macrophages, and from 3-7 days for astrocytes. An apparent increase 

in total cell density was qualitatively observed with DAPI staining at the interface at

3 and 7 days, either due to migration alone or also due to hyperplasia o f glial 

populations. In the least reactive cases, ED1+ macrophages were present both 

attached to retrieved electrodes and in the tissue immediately adjacent to the implant 

site by 24 hours in both stab wound and experimental animals. Activated 

macrophages were also observed in surrounding tissue at 1 and 3 days, which may be 

due to extravasation o f blood-borne macrophages and migration toward the implant 

or due to vascular damage, for example. Astrocytes in the surrounding tissue began to 

upregulate expression o f GFAP by 1 day. Astrocytes were increasingly hypertrophic 

and formed the early stages o f an astroglial scar by 7 days. Evidence from this study 

suggests that astrocytes are sensitive to early events in the foreign body response, as a 

clear zone o f astrocytes loss was found adjacent to the electrode track for all 

implanted animals while stab wound animals showed little to no loss o f astrocytes at 

the electrode-tissue interface. In implanted animals, neuronal loss was significantly 

different from loss in stab wound animals to a distance o f 100 |um from the electrode 

track, with an increased loss o f about 40% compared to the stab wound within the 

first 50 |am. Further, the area o f  neuronal cell loss increased from 100 |im at day 1 to



150 |im at day 7, suggesting that secondary neuronal cell death is also part o f the 

early phase o f the foreign body response.

Glial reactivity

In this study, the macrophage response involved activation and migration to the 

stab wound or electrode track. We observed an increased macrophage response for 

animals with indwelling electrodes, which is consistent with previous findings that 

the macrophage response to brain injury is proportional to the severity o f the insult 

(Kreutzberg et al., 1996; Fujita et al., 1998; Carbonell et al., 2005). Animals with 

indwelling electrodes may present a more severe injury type due to the persistent 

inflammatory response at the site o f injury, which does not occur in response to a 

penetrating injury alone. Recruitment o f blood-borne macrophages may be a response 

to the release o f cytokines from macrophages at the interface. Activated macrophages 

have the ability to initiate an inflammatory response by the secretion o f cytokines as 

well as phagocytose (Becher et al., 2000S). Active phagocytosis was evident by the 

clearance o f blood products and NeuN antigen at the interface. Cytokines released by 

macrophages at the interface, such as TNF-a and interleukins are proinflammatory 

and may be cytotoxic, affecting both adjacent actrocytes and neurons (Bezzi and 

Volterra, 2001). Macrophages attached to explanted electrodes have also been shown 

to release cytokines (Biran et al., 2005). The chemokine system that is initiated, 

including those systems that promote or resist immunoregulation, tissue repair, and 

remodeling, is related to macrophage activation and polarization (Manatovani et al.,

2004). Further, frustrated phagocytosis may occur with the continued presence o f an 

implanted, nondegradable material, leading to the formation o f multiucleated cells
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(Stensaas and Stensaas, 1976; Stensaas and Stensaas, 1978); which together with 

macrophages adhering to indwelling electrodes may encourage an increased, 

unresolved macrophage response at the electrode-tissue interface.

The astrocyte response in implanted animals was characterized by two 

phenomena: a decrease in astrocytes adjacent to the electrode track, and a 

hypertrophy o f remaining astrocytes that formed the early stages o f an astroglial scar 

at the perimeter o f the zone o f loss. This dual event was also observed in response to 

LPS-induced neuroinflammation in the rat brain (Ambrosini et al., 2005). Likewise, a 

loss o f astrocytes within 15 minutes to 24 hours after mechanical damage was 

observed in vitro (Engel et al., 2005). Loss o f astrocytes may be due to ischemic or 

inflammatory events. Astrocyte swelling has been observed as a result o f cytotoxic 

edema and K+ ion uptake to maintain extracellular homeostatsis (Bullock et al., 

1991). Further, the presence o f activated macrophages and the cytokines they secrete 

may affect the function and viability o f astrocytes within a diffusion-limited area 

(Gareth et al., 1999; Bezzi and Voltera, 2001; Polikov et al., 2006). However, 

ischemia and the presence o f activated macrophages are also a part o f the mechanical 

damage inflicted in stab wound animals, which showed no loss o f astrocytes adjacent 

to the wound site. Further work is needed to elucidate the mechanisms o f astrocyte 

loss that occurs during the foreign body response.

The formation o f an astroglial scar is the result o f high concentration of 

hypertrophied astrocytes adjacent to the implant site. Evidence o f hyperplasia of 

astrocytes by 7 days is supported by studies which observed GFAP precursor cells 

(GFAP'/vimentin+) that migrated to the wound site by 24-48 hours, incorporated
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BrdU, and became GFAP+by 7 days (Szwaroski et al., 2003; Polikov et al., 2006). In 

addition, hypertrophied astrocytes were also found in stab wound animals. However, 

this astroglial response has been found to dissipate after several months in longer- 

term stab wound experiments (Rousche et al., 2001; Csicsvari et al., 2003; Biran et 

al., 2005).

Neurodegeneration

Significant neuronal loss was observed within the first 0-100 |im from the 

electrode track in implanted animals, and from 0-50 (im in stab wound animals. In 

addition, neuronal loss within the first 0-100 |am from the implant was not found to 

be significant in stab wound animals after 2 and 4 weeks (Biran et al., 2005). The 

acute neuronal loss events that were observed at 1 and 3 days are supported by 

experimental traumatic brain injuries to rat cortex that demonstrate an initial neuronal 

injury occurring as early as 10 minutes (Hicks et al., 1996) and continuing from 1-3 

days (Dietrich et al., 1994; Liu et al., 1997; Sato et al., 2001). An increase in the area 

o f neuronal loss was also found to extend 0-150 um from the electrode track at 7 days 

postimplantation. Delayed neuronal death has also been observed in response to 

traumatic injury and LPS-induced neuroinflammation (Liu et al., 1997; Sato et al., 

2001; Ambrosini et al., 2005).

The mechanisms o f neuronal degeneration, including apoptosis and necrosis, have 

been described in detail (Crowe et al., 1997; Martin et al., 1998; Heidenreich, 2003). 

Neuronal loss due to the mechanical damage incurred during implantation, which 

results in ischemia when vasculature is disrupted, is generally considered a necrotic 

event. However, some studies have found apoptotic neurons from 24 hours to 1 week
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following injury (Conti et al., 1998). The mechanism o f delayed neuronal death is 

mostly by apoptosis, although it has been proposed that injured neurons in the adult 

CNS may be less capable o f classic apoptosis resulting instead in an apoptosis- 

necrosis hybrid method (Martin et al., 1998). Microcircuits in the CNS are composed 

of anatomically and functionally distinct neuron populations and some neuronal 

populations may be more vulnerable to different types o f injury (Markram et al.,

2005), although the degree o f neuronal loss was not found to change with a function 

of depth and the changing neuron populations throughout the cortex (Williamson,

2006). It is important to determine the mechanism of cell death as antiapoptotic 

therapies might be useful in preventing some secondary neuronal loss. While 

neurogenesis in the adult brain is generally underappreciated, one study found that 

after ischemia, neuroblasts generated in the subventricular zone continually migrated 

into the striatum for up to 4 months after injury. The neuroblasts either differentiated 

into neurons or died by apoptosis (Thored et al., 2006). However, neurogenesis has 

not been found in the zone o f loss surrounding indwelling electrodes. The cytotoxic 

environment created by activated macrophages that persist attached to the electrodes 

and at the interface may discourage the recruitment, differentiation, and/or survival o f  

neuroblasts.

Neuron/glial plasticity 

Changes in glial reactivity in response to the presence o f a foreign body, namely 

an increase in macrophages and a loss o f astrocytes at the interface, is likely 

responsible for the increased neuronal loss in implanted animals. Neuron/glia 

interactions are vital in maintaining brain homeostasis, and the loss o f astroglial cells



may adversely affect the survival o f neurons after brain injury and persisting during 

chronic inflammatory events. In uninjured tissue, astrocyte processes are intimately 

apposed to neuronal synapses in neural networks within various areas o f  the brain 

(Bezzi and Voltera, 2001). Neuron-astrocyte signaling, whereby astrocytes upregulate 

intracellular calcium concentrations in response to neurotransmitter release, may be 

perturbed by the release o f cytotoxic cytokines from macrophages. Deranged 

astrocyte-to-neuron signaling has been found to lead to reduced viability o f the 

surrounding neurons (Bezzi and Voltera, 2001). Macrophages may be responsible in 

part for the disruption in the astrocyte/neuron relationship. In vitro experiments have 

shown that the presence o f activated macrophages and microglia were detrimental to 

the survival o f neurons after 24 hours to 3 days, even in the presence o f astrocytes 

(Bullock et al., 1991; Polikov et al., 2006). As mentioned above, cytokines known to 

be released by macrophages negatively affect the signaling ability o f astrocytes. In 

addiction, calcium-dependent glutamate release has been demonstrated by astrocytes 

exposed to TNF-a (Bezzi and Voltera, 2001). Another direct mechanism of glial 

participation in neurodegeneration may occur when pro-apoptotic astrocytes 

communicate to surrounding viable neuronal cells though gap junctions, as reported 

for ischemic cortical regions (Bezzi and Voltera, 2001). Neurodegeneration may also 

be a result o f abandonment by astrocytes that migrate to the site o f injury.

Many studies demonstrate the response o f glial and neuronal populations to 

injury, and it is unclear to what degree neuronal death, the nature of neuronal network 

plasticity, and the astroglial response itself, which can increase impedance (Liu et al., 

1999), plays a role in the inconsistent recording performances o f implanted



microelectrodes. Local field potentials, which sample a larger population o f neurons, 

may prove more reliable in maintaining usable signals for neuroprosthetic devices 

(Pesaran et al., 2002).

Future work

While the early foreign body events may dictate the longterm inflammatory 

phenotype that is characteristic o f CNS implants like the Michigan silicon electrode 

array, the reason for signal degeneration in chronic implants remains elusive. One 

study used SEM to visualize structural modifications o f an implanted microwire 

electrode that were responsible, at least in part, for an inconsistent recording ability 

(Sanchez et al., 2006). New designs for microelectrodes use bioactive approaches 

such as neurotrophic factors and microfluidic channels that can release therapeutic 

agents into surrounding nervous tissue to increased integration o f implanted 

electrodes. The cone, or neurotrophic electrode, is a newer design that has been 

implanted into human patients (Kennedy et al., 2000). The cone electrode consists of 

a hollow electrode tip with wires and neurotrophic factors that encourage growth of 

neural tissue into the tip and through both ends.

In addition, pharmacological agents may be developed to attenuate tissue 

responses in an effort to stabilize the tissue interface. For example, dexamethasone is 

a synthetic glucocorticoid effective in treating many anti-inflammatory responses that 

has been found to attenuate the astrogliotic response surrounding implanted 

microelectrodes (Shain et al., 2003). Minocycline is a broad spectrum tetracycline 

antibiotic that may attenuate the macrophage response when administered to 

implanted animals. In an ongoing study minocycline was administered by daily
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injection for two weeks after implantation (Chen, unpublished data). The macrophage 

response was decreased compared to saline-injected controls; however the systemic 

inflammatory response due to the injections exacerbated the overall tissue response 

surrounding indwelling electrodes. Pharmacological approaches are likely to prove 

effective in decreasing the difference between the tissue reactivity to the presence o f  

the foreign body and to the initial injury during implantation.

In parallel to improving the electrode-tissue interface, new technology must be 

continually developed. The use o f on-chip buffering, amplification, and signal 

multiplexing have been proposed to reduce crosstalk, signal noise, and the number of 

external leads (Najafi and Wise, 1986; Bai and Wise, 2001). Ultimately, wireless 

technology for amplifying and transmitting signals must be developed to progress the 

use o f invasive microelectrodes in chronically implanted neuroprosthetic devices.

Conclusions

This study demonstrated that remodeling o f glial and neuronal populations occurs 

during the early foreign body response, which that is greatly increased from the 

remodeling events that occur due to the initial mechanical damage alone. 

Macrophages became activated, accumulate at the site o f injury, and adhere to 

electrodes within the first 24 hours postimplantation. The astrocytes response 

consisted o f an early astrocytes loss and hypertrophy o f remaining astrocytes from 3 

to 7 days postimplantation. This glial response was accompanied by a decrease in the 

density o f neuronal soma immediately surrounding the implant by 1 day and 

increasing at 7 days. These events were exaggerated in implanted animals compared 

to stab wound animals, suggesting that the foreign body response dictates the early
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tissue response to implanted Michigan-style microelectrodes. The increased 

macrophage response may be the key to the astrocytes loss and increased neuronal 

loss within the recording zone; however, the mechanism and regulation o f the switch 

from normal wound healing events in the CNS to a chronic inflammatory response 

needs to be further investigated. Future studies may determine whether it is possible 

to use pharmacological methods, for example, to modulate these early events in order 

to decrease the amount o f neuronal loss within the recording zone, thereby potentially 

prolonging the recording ability o f implanted microelectrodes and increasing their 

clinical use in brain-machine interfaces.
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