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ABSTRACT

A Uinta Basin bitumen was hydrotreated over a sulfided Ni-Mo on alumina 

commercial hydrodemetallation catalyst. The catalyst was on-stream 

continuously for more than 1,000 hours. The data were obtained with the 

reactor operating as a fixed bed reactor in the upflow mode to ensure complete 

wetting of the catalyst and nearly isothermal operation.

The deactivation of the catalyst was monitored by the decline in the API 

gravity of the total liquid product with time-on-stream at a standard set of 

conditions. The primary process variables studied were reactor temperature 

(620-685 K; 656-775 °F), liquid weight hourly space velocity (0.24-1.38 h'1) and 

total reactor pressure (11.3-16.7 MPa; 1634-2423 psia). The hydrogen/oil ratio 

was fixed in all experiments at 890 m3/m3 (5000 scf H/bbl).

The extent of heteroatom and metals removal, residuum (>1000 °F) 

conversion and molecular weight reduction were determined as a function of 

process operating variables. Simulated distillation of the hydrotreated total liquid 

products was used to compute residuum conversion and product distributions. 

Conradson carbon residue conversion and pour point reduction were also 

determined as functions of process operating conditions.

Hydrodenitrogenation, hydrodesulfurization, hydrodemetallation and 

residuum conversion data were analyzed using a modified power rate law model.

regression and ordinary differential equation solver techniques for the analysis of 

laboratory data. Simple first-order power rate law expressions for

The apparent kinetic parameters were obtained by combined



hydrodenitrogenation and hydrodesulfurization were obtained for bitumen 

hydrotreating over the hydrodemetallation catalyst. Higher than first-order 

kinetic data for residuum conversion and nickel removal were organized by 

invoking two parallel first-order reactions for the facile and refractory fractions. A 

molecular weight reduction model was proposed to examine the extent of 

residuum conversion to gas-oil, middle distillate and gases. The first-order rate 

constants were also determined.

The hydrodemetallation catalyst was less active for nitrogen, sulfur and 

residuum conversion than the hydrodenitrogenation catalyst. Nitrogen, sulfur, 

and metals removal; residuum conversion; and product distributions are 

discussed for bitumen hydrotreating over the hydrodemetallation and 

hydrodenitrogenation catalysts.
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CHAPTER 1

INTRODUCTION

Heavy oils and bitumens are known for their high molecular weight and 

high concentrations of heteroatomic species such as nitrogen, sulfur and oxygen 

and metals such as Ni, V. and As. The heteroatomic species are a cause for 

environmental concern since they form SOx and NOx during combustion. Both 

metals and heteroatomic species are a concern in refinery processes such as 

catalytic cracking, hydrocracking and reforming by poisoning the catalysts.

In catalytic upgrading, heteroatoms are removed as H2S and NH3 via 

desulfurization and denitrogenation; however, in hydrodemetallation (HDM), 

metals are deposited on the catalyst as sulfides and cause irreversible fouling of 

the catalyst. This catalyst deactivation has a serious impact on the economics of 

residuum hydroprocessing because catalysts poisoned by metal deposition must 

be replaced whereas coked catalysts can be reused after regeneration. 

Therefore metals which are concentrated in the high molecular weight resin and 

asphaltene fractions ultimately determine the lifetime of the catalyst. Recent 

hydrotreating processes for upgrading heavy feedstocks have focused on 

catalysts having a low tendency toward coke formation and catalysts which can 

tolerate higher metal deposition [1].

diameter and volume was used in this study due to the nature of the Whiterocks 

bitumen: high molecular weight and high residuum content. These

A commercial hydrodemetallation catalyst
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characteristics of heavy feeds may cause maldistribution of the feedstock over 

the surface of the catalyst bed in conventional trickle-bed laboratory reactor 

operation. The resulting coning in the inlet region of the reactor and the 

consequent incomplete wetting of the catalyst may lead to the determination of 

erroneous apparent kinetic parameters and to misleading conclusions regarding 

the influence of process variables on conversion and product distribution and 

yields. Furthermore, lower superficial velocities in laboratory reactors at the 

same space velocity relative to the commercial reactor could lead to partial 

wetting of the catalyst. Therefore, the kinetic parameters for heteroatom 

removal and residuum conversion for bitumen and bitumen-derived heavy oil 

were determined in an reactor which operated upflow in the plug-flow mode.

The objective of this study was to determine the influence of process 

operating variables, temperature, pressure and residence time or space velocity 

on denitrogenation, desulfurization and residuum conversion and on product 

distributions and yields. The determination of apparent kinetic parameters was 

also undertaken.



CHAPTER 2

LITERATURE SURVEY 

Origin of Bitumen

The potential hydrocarbon resource that occurs in oil sand deposits have 

been variously estimated on a worldwide basis as being in excess of 3 trillion (3 

x 1012) barrels of petroleum equivalent and the oil sand resource for the United 

States has been estimated to be in excess of 52 million barrels [2].

Oil sand is a general term for any rock material, loose or consolidated, 

that contains the bitumen in pores or fractures. It is usually composed of 85 wt% 

of rock matrix which is mostly quartz or carbonate sand-sized particles and the 

heavy oil called bitumen [3]. The bitumen has a reddish brown to black color 

and exists in semisolid under natural reservoir conditions due to its high 

viscosity. It contains more heteroatoms and metals and less volatiles than 

conventional petroleum crude oil. This bitumen must be recovered from the oil 

and upgraded to produce high quality hydrocarbon values.

Bitumen Separation Technologies

f
Bitumen can be recovered from oil sands by either in-situ thermal 

enhanced oil recovery processes or by aboveground recovery processes.



In-Situ Processes

In-situ thermal enhanced oil recovery processes can be divided into three 

types: 1) heating alone to reduce the viscosity of bitumen to release it from the 

rock, 2) solvent (or chemically active solution) injection to flush the bitumen from 

the rock and 3) combinations of heating and solvent injection.

Steam or hot water injection [4,5] and in-situ combustion (fire flooding) [6] 

belong to the first category. In steam injection processes minor changes occur 

in bitumen properties except for pour point and viscosity reduction [4,5], 

However, when steam is introduced into the formation at high pressures, 

cracking may occur to some extent in addition to distillation. In-situ combustion 

usually causes significant physical and chemical changes in bitumen due to the 

coking and combustion of a portion of the bitumen to provide heat to mobilize 

bitumen and/or the bitumen-derived heavy oils. In-situ combustion includes a 

number of options: forward s nd wet and dry combustion [6],

Chemical processes lemicals or chemically active solutions

for mobilizing bitumen result in minor changes in bitumen properties other than 

viscosity. In these processes, the chemical should be recovered and cleaned up 

for reuse in view of the high cost of the injected chemicals.

Abovegrou nd Processes

The first step in all aboveground processes is mining or quarrying 

followed by size-reduction. The size and quantity along with the cost of this 

equipment are all enormous.

There are ways of recovering bitumen-derived heavy oils from oil sands 

after mining or quarrying: extraction using water and/or chemical solvents [7,8,9] 

and pyrolysis or thermal processing [10]. The extraction processes do not 

significantly influence the physical and chemical properties of bitumen; however,
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the final mineral-free product is little different from the original reservoir fluid 

[7,8,9]. Pyrolysis or thermal processing results in significant physical and 

chemical changes to the bitumen-derived liquids recovered from the oil sands 

relative to the bitumen. A sufficient heat should be introduced in this type of 

processes to volatilize a portion of bitumen, thus, being separated from the oil 

sand; at the same time the heavier or higher boiling fractions of the bitumen will 

be thermally decomposed [10].

The alternative schemes for production of a refinery feedstock from oil 

sands are summarized in Figure 2.1.

Chemical Composition of Bitumen and Petroleum Reslds

Definitions of heavy oils are usuall n the API gravity or viscosity

induce mobility in the reservoir. The bitumen in oil sands which require surface 

mining followed by extraction or pyrolysis to recover hydrocarbon values are also 

defined to be heavy oils. Heavy oils are generally darker than conventional 

crudes and may even black.

Speight [2] classified the heavy oils according to the following density- 

gravity system:

• Heavy crude oil

- Density-gravity range from 1,000 kg/m3 to more than 934 kg/m3 

(10 “API to < 20 °API)

• Extra heavy crude oil (may also include atmospheric residua (boiling 

range 613 K to 923 K))

T
have API gravities of less than 20 °API and which require thermal stimulation to

itional 

'hich r
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Figure 2.1

Alternative Schemes for Production of a Refinery Feedstock from Oil Sands
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* Density-gravity greater than 1,000 kg/m3 (<10 °API)

- Maximum viscosity of 10,000 mPa s (cp)

• Oil sand bitumen or natural asphalt (may also include vacuum residua 

(boiling range>783 K)):

- Density-gravity greater than 1,000 kg/m3 (<10 °API)

- Viscosity greater than 10,000 mPa s (cp).

Beaton [12] defined residuum as the bottom fraction that remains after 

atmospheric or vacuum distillation of a crude oil. The atmospheric and vacuum 

residuum differs in their nominal initial boiling points which are 617 K (650°F) and 

811 K (1000°F), respectively. Asphaltene constituents and vanadium and nickel 

organometallic compounds distinguish residuum from the lighter fractions of 

crude oils. Residuum must undergo significant upgrading as they are generally 

less valuable in their natural state than lighter crude fractions.

Beaton and Bertolacini [1] demonstrated that sulfur contents vary between 

1% to 6%, with 4% typical in the petroleum residuum and the typical residuum 

contains 20% oils (the most catalytically reactive fraction), 65% resin 

(intermediate reactive fraction), and 15% asphaltenes (the least reactive 

fraction). Most studies on the composition of residuum begin with fractionation 

of the materials into several compound-type classes by techniques such as gel 

permeation and liquid chromatography.

The bitumen in oil sands differs from crude oil in heteroatom 

concentrations and in the proportions of hydrogen and carbon. Bitumens have 

higher nitrogen and oxygen concentrations and lower hydrogen-to-carbon ratios 

than conventional crude oils due to the heavier, complex hydrogen-deficient 

constituents. These differences are reflected on the high Conradson carbon 

residue (CCR) and asphaltene contents of bitumen. These chemical differences
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are reflected in physical properties: high viscosity, high specific gravity, and high 

pour point [10,13-17].

The properties of a conventional crude oil, a Canadian bitumen, a Utah 

bitumen and an atmospheric petroleum resid are compared in Table 2,1.

Uinta Basin Oil Sands

Although the United States does not have oil sand deposits which 

comparable in size with those of Canada and Venezuela, there are several large 

deposits in the state of Utah.

As can be seen in Table 2.1., the Uinta Basin bitumen has a higher 

hydrogen content and contains about three times as much nitrogen, but only 

about one-tenth as much sulfur, as the Athabasca bitumen [14]. It also has a 

lower vanadium content, but slightly higher nickel content [16-18]. The Uinta 

Basin bitumens originated in a nonimkrine environment (lacustrine) thus they 

are richer in saturates than AthabaSca bitumens which originated in a marine 

environment [17], The bitumens usually differ not only in depositional 

environment, but in age. The bitumens that had lower saturate molecular weight 

distributions were reported to be older [18]. The higher concentrations of mono-, 

di- and tricyclic saturates in Athabasca bitumen [19] may simply be the result of 

greater degradation of higher molecular weight saturates in the bitumen. These 

results are consistent with the high H/C ratio of Whiterocks oil sands bitumen 

[20].

The distinguishing property of the Uinta Basin oil sand bitumens are the 

viscosities. The Uinta Basin bitumens are at least one to two orders of 

magnitude more viscous than the Athabasca bitumen [21]. This high viscosity 

affects recovery and upgrading process and makes handling of the primary 

bitumen difficult.
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Table 2.1

Comparison of Athabasca and Uinta Basin Bitumens with Petroleum Resid

and Conventional Crude Oil

Conventional Athabasca Uinta Basin Safaniya

Crude Oil Bitumen Bitumen Atmospheric 

Residuum 

(617 K+)

Reference [13] [14] [10] [15]

Property

Gravity, “API 25-37 7.4 10.3 13.9

Conradson carbon, wt% 1-2 12.7 13.0 13.2

Ash, wt% 0.0 0.9 0.8

Elemental analvsis

C, wt% 86 83.1 85.0 84.9

H, wt% 13.5 9.8 11.4 11.1

N, wt% 0.2 0.4 1.3 0.2

S, wt% 0.1-2.0 4.5 0.4 3.6

Ni, ppm - 68 75 [17] 24.3

V, ppm - 234 2 [17] 86.0

Fe, ppm 2-10 408 - -

H/C Atomic Ratio 1.9 1.4 1.6 1.6
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The physical and chemical properties of bitumens extracted from Utah oil 

sands are presented in Table 2.2 [10].

The decline in demand for residual fuel oils and the increase in heavier 

crude supplies worldwide indicates that the development of heavy oil upgrading 

technologies for converting heavy residuum to lighter and/or more valuable 

materials are necessary [22-24].

There are several ways to categorize heavy oil upgrading technology 

[25,26]. Traditionally upgrading processes have been classified according to 

whether carbon is rejected from or hydrogen is added to the feedstock. Carbon 

rejection aims to remove asphaltene and carbon residues in the form of coke, 

pitch, or extra heavy, aromatic oils by thermal cracking whereas hydrogen 

addition is intended to increase hydrogen/carbon ratio via hydrotreating.

Upgrading processes can be grouped as follows:

• catalytic processes (hydrotreating (HT), hydrocracking)

• noncatalytic processes (hydrovisbreaking, donor-solvent processes, 

hydropyrolysis)

• catalytic cracking (FCC); and

• thermal processes (visbreaking, coking)

Finally there are other nonirefining processes in which heavy oils and
«J

residuum can be utilized:

• combustion

• partial oxidation

• steam reforming

• solvent deasphalting (SDA)

Heavy OH Uoaradinc Jloav
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Table 2.2

Properties of Extracted Bitumen from Utah Oil Sands [10]

Property
PR Spring 
Rainbow I

Sunny-
side

Whiterocks Asphalt
Ridge

Circle
Cliffs

Bitumen Content, wt% 14.1 8.5 8.0 10.9 3.6
Gravity, °API 7.8 5.5 10.3 14.4 14.3
Conradson Carbon, wt% 14.0 14.8 13.0 . 23.3
Ash, wt% 3.3 2.4 0.8 0.04 0.10
Pour Point, K 372 - - - 332
Viscosity, cps 8269a 7373b 29245s 2015d 23012*
Simulated Distillation 
Volatility, wt% 39.9 32.4 22.1 31.2
IBP-478K, wt% 1.3 0.9 0.9 - 0.0
478K-617K, wt% 5.1 7.3 3.3 - 3.4
617K-811K, wt% 25.6 24.0 18.8 - 27.8
>811 K Residue, wt% 68.1 67.6 77.9 - 68.8
Elemental analvsis 
C, wt% 84.7 83.3 85.0 85.2 83.2
H, wt% 11.2 10.8 11.4 11.7 9.8
N, wt% 1.3 0.7 1.3 1.0 0.4
S, wt% 0.5 0.6 0.4 0.6 4.9
Atomic H/C Ratio 1.60 1.56 1.61 1.65 1.42
MW, g/mol 702.0 1042.0 - 668.0 744.0
Gradient elution chromatoaraDhv 
Saturates, wt% 9.5 13.2 15.3 10.0 13.4
MNA/DNA Oils, wt% 10.2 21.0 8.5 11.4 21.1
PNA Oils, wt% 11.4 5.9 11.9 4.4 9.1
Soft Resins, wt% 13.9 13.9 16.7 18.4 9.5
Hard Resins, wt% 1.1 5.6 2.6 1.2 3.6
Polar Resins, wt% 2.0 1.7 2.7 3.7 3.8
Asphaltenes, wt% 31.3 29.8 31.2 39.9 33.0
Noneluted Asohaltenes. wt% 20.6 8.9 11.1 11.1 6.5

Measured at 373 K
b Measured at 338 K
c Measured at 347 K
d Measured at 493 K
8 Measured at 363 K
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• olefin processes (non-tubular, tubular)

The various heavy oil and residuum upgrading process schemes are 

summarized in Figure 2.2.

Catalytic hydroprocessing includes hydrotreating and hydrocracking. 

Hydrotreating includes hydrodesulfurization (HDS), hydrodenitrogenation (HDN), 

and hydrodemetallation (HDM). Co/Mo catalysts are recommended where HDS 

is the primary objective because Co exhibits better selectivity for desulfurization 

than Ni and Ni/Mo catalysts are more suitable in applications where mild 

hydrogenation or nitrogen removal is required because Ni exhibits better 

hydrogenation than Co.

Since the initial developments for the production of low-sulfur fuel oil 

(LSFO) in the late 1960s catalytic residuum hydroprocessing has played an 

important role in producing low sulfur fuel oil in accordance with environmental 

regulations. It should be noted that these restrictions have become stricter since 

the 1970s. Quann et al. [27] reported that the capacity of residuum 

hydrotreating is increasing with the total free world capacity has increased from 

approximately 200,000 barrels per stream day (BPSD) in 1970 to 1,200,000 

BPSD in 1986 [27].

In residuum desulfurization processes the distillate and naphtha yields are 

low even though conversion of gas-oils to light products occurs. Recently high 

severity residuum hydrotreater operations have been used to attain 80 to 95% 

sulfur conversion [28-30]. Thus, the current trend in catalytic residuum 

hydrotreating is to use an HDM catalyst at severe operating conditions rather 

than using an HDS catalyst at moderate conditions [1].
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Figure 2.2

Summary of Heavy Oil Upgrading Processes
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Typical residuum hydrotreating operating conditions are a temperature 

range of 623-713 K (350-440°C), a pressure range of 5.2-20.7 MPa (750-3000 

psi) and a space velocity range of 0.1-2 h'1 LHSV. Hydrogen consumptions 

range from 550 to 2500 [scf/bbl] [27], Beaton and Bertolacini [1] reported 

operating temperatures between 672-728 K (750-850°F, about 400-450°C), 

hydrogen partial pressures from 9.7 to 17.2 MPa (1400-2500 psi), and liquid 

hourly space velocities ranging from 0.1 to 0.5 h'1 for residuum hydrotreating.

Chevron RDS or vacuum residuum desulfurization (VRDS) [22], Exxon 

RESIDfining [31], Gulf RDS [32], Shell RDS [33], UNOCAL Unicracking/RDS 

[34], and UOP reduced crude desuIfurization/black oil conversion (RCD/BOC) 

Unibon [35] are the current commercial residuum hydrotreating processes.

The combination of two processes exhibits advantages over single 

processes. The combination of residuum hydrotreating-fluidized catalytic 

cracking (FCC) [36] and residuum hydrotreating-delayed coking [37] are typical 

examples. The residuum hydroprocessing-coking combination produces higher 

yields of upgraded liquid products which are lower in heteroatoms and higher in 

hydrogen-to-carbon ratio with less coke formation than the coking process alone. 

This makes these products superior feedstocks to the downstream process. In 

this process the effective catalyst lifetime and tolerance is more important than 

high activity of the catalyst. The produced coke is of a higher quality and can be 

used in the production of high-value anode-grade coke.

In residuum hydroprocessing the boiling range reduction is accompanied 

by heteroatom removal. The main difference between residuum hydrotreating 

and hydrocracking processes is the boiling range reduction. In the residuum 

hydrotreating, heteroatom removal occurs to improve the quality of petroleum 

liquid and boiling range conversions below 25% are achieved whereas in 

residuum hydrocracking boiling range reduction is commonly about 50%.
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Hydrocracking processes differ from catalytic cracking in variety of feedstocks 

relative to catalytic cracking and in its incorporation of a metal sulfide catalyst 

and hydrogen at a total pressure of 5.5-17.2 MPa {800-2500 psig). Commercial 

heavy oil hydrocracking processes include LC-Fining [38], H-Oil [39], VEBA- 

Combi [40], CANMET [41], UOP Aurabon [42], HFC [43], M-Coke [44], and 

Chiyoda asphaltenic bottom cracking (ABC) [45]. Operating variable ranges 

include temperatures of 703-743 K (430-470°C), pressures of 7.6-20.7 MPa 

(1100-3000 psig), LHSV’s of 0.5-1.0 h'1 and hydrogen consumptions of 500-1500 

[scf/bbl] [25].

Noncatalvtic Hvdroprocessipq ^
, r

Noncatalytic hydroprocessing includes hydrovisbreaking, donor-solvent 

processes, and hydropyrolysis.

The basic concept in hydrovisbreaking is to increase the solubility of 

hydrogen in oil with temperature and pressure. Hydrovisbreaking gives better 

conversions and paraffin/olefin ratios than visbreaking and operates in the same 

temperature-time range as hydrocracking.

Donor-solvent processes involve the dehydrogenation of the feed with 

solvent and the formation of hydrogen radicals which are then available for 

cracking reactions. The licensors for this process includes Lurgi (Donor Solvent 

Visbreaking (DSV)) [46], Gulf (Chevron) (Donor Refined Bitumen (DRB)) [47], 

and Exxon (Hydrogen Donor Visbreaking (HDDV)) [48].

Hydropyrolysis upgrades the feedstock by hydrogen addition with little or 

no coke formation. Hydropyrolysis operates at temperatures of 773-973 K (500- 

700°C), pressures of 4.1-12.4 MPa (600-1800 psig), and retention times below 1 

minute. This hydropyrolysis process has been used at the University of 

Erlangen [49] and HRI (Dynacracking) [50] to upgrade petroleum residuum.
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Most of these hydroprocessing processes are not still available at the 

commercial scale.

Thermal and Nonhydrogen Processes

The carbon/hydrogen ratio of petroleum feed can be upgraded by thermal 

processes through the formation of coke or unsaturated/aromatic hydrocarbons 

(hydrogen disproportionation). Thermal processes have the advantage of 

flexibility of feed selection over catalytic processes which require higher quality 

feeds due to the catalytic deactivation. The disadvantages of the thermal 

processes are related to the production of significant amounts of unsalable 

products. Thermal conversion processes for heavy oil upgrading including 

Visbreaking [51], Delayed Coking [52], Fluid Coking [53], Flexicoking [54], and 

Eureka [55] are in commercial operation. The catalytic nonhydrogen processes, 

heavy oil cracking (HOC) [56], residual catalytic cracking (RCC) [57], and total 

residuum cracking (RC) [58] are in commercial operation.

Other Processes

Other processes include combustion, partial oxidation, steam reforming, 

and solvent deasphalting. Heavy oils are frequently used as refinery fuels. 

Noncatalytie partial oxidation process is used in generation of synthesis gas by 

producing an additional hydrogen source [59]. One of the typical steam 

reforming process for producing synthesis gas from heavy oil is THR-R (Total 

Hydrocarbon Reforming) developed by Toyo Engineering Co. [60]. ASHVAL’s 

Solvahl-asvahl solvent deasphalting (SDA) [61], Foster Wheeler's low-energy 

deasphalting (LEDA) [62], Kellogg's Solvent Deasphalting [63], Kerr-McGee's 

residuum oil supercritical extraction (ROSE) [64], UOP's Demex [65], Lummus
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Crest's residue solvent refining (RSR) [66] are the representative processes for 

solvent deasphalting.

Reactors in Residuum Hydroprocessing

The most common reactor designs for residuum hydroprocessing include 

fixed beds, ebullieted or expanded beds and slurry beds, and moving-bed 

reactors. The types of reactors used in resid hydroprocessing are tabulated in 

Table 2.3.

petroleum feedstocks and typically contain 1 to 8 wt% and 3 to 20 wt% of a 

group VIII and VIB metal oxides on a support having a high-surface-area such as 

alumina. The metal oxides have been used as the active phase either in 

combination or alone in either supported or unsupported forms. In particular Co

Mo, Ni-Mo, Ni-Co-Mo and Ni-W have focused wide applications. The individual 

catalyst properties such as pore volume, pore size distribution, metal loading 

atomic ratio and surface area play important roles in the catalyst’s activity, 

deactivation and stabilization [67].

The Co-Mo supported on gamma alumina catalyst has been widely used 

in hydrodesulfurization of petroleum liquids due to its activity and selectivity. 

Richardson [68] reported that Co-Mo catalyst on alumina is superior in HDS and 

that the activity varies with the concentration of metals with an apparent optimum 

Co-Mo weight ratio of 1/5. Conventional HDS catalysts contain 3% CoO, 14% 

MoOs metal oxides and is supported on gamma alumina which has surface 

areas as high as 200-300 m7g and small pore diameters in the range 80-120 A

Hvdroprocessina Catalysts

Hydrotreating catalysts were primarily for processing
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Table 2.3

Types of Reactors in Residuum Hydroprocessing [25,69]

Reactor Type Process

Fixed Bed Chevron RDS and VRDS [22] 

Exxon RESIDfining [31]

Gulf RDS [32]

Shell RDS [33]

UNOCAL Unicracking/RDS [34] 

UOP RCD/BOC Unibon [35]

Ebullieted Bed H-Oil [39]

Expanded Bed C-E Lummus/Cities Service LC-Fining 

licensed by AMOCO [38]

Slurry Reactor Canadian DOE CANMET [41] 

Exxon M-Coke [44]

UOP Aurabon [42]

Moving Bed or Bunker Reactor Shell RDS [25]
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[1]. The Ni-Mo catalyst is well known for its hydrogenation activity and has been 

used in hydrodenitrogenation of petroleum feedstocks. Phosphorous has been 

used as a promoter in hydrotreating process.

Hydrodemetallation catalysts typically contain larger pore diameters (180

250 A in meso pore range) and lower surface areas of 150 m7g than HDS 

catalysts. The HDM catalysts have lower metal contents than HDS catalysts 

with the intention of dematallation and maintaining catalyst activity [70].

Noncylindrical extrudates such as quadralobes exhibit better diffusion 

characteristics, improveehastivities and lower pressure drops across the catalyst 

bed than cylindrical, non-shaped catalysts [71].

Precipitation and impregnation are two typical methods for preparing 

hydrotreating catalysts [72]. In precipitation, solutions of the desired 

components are mixed with a precipitation agent and dried in air at 339-478 K. 

They are then extruded or pelleted, calcined and activated. The precipitation 

agent is used to promote the formation of either a coprecipitate or a gel, 

depending upon conditions. In impregnation, solutions of the desired 

constituents are in contact with either a dried porous support or a wet precipitate 

or gel and the excess solution is removed. The catalyst is subsequently dried 

and calcined. The calcination temperature, generally in the range 589-1033 K, 

may affect the structure and activity of the catalyst [68]. Pellet size and pore 

structure of the support are also important [73].

Particle Size ancLPeantinn Rate

Catalyst size and shape are important considerations in optimizing 

catalyst performance considering that HDM reactions are typically diffusion 

limited. For large particle size residuum hydrotreating catalysts, the reaction 

rates are controlled by intraparticle diffusion. The factor controlling intraparticle



diffusion is the rate of heteroatomic species diffusion since the rate of hydrogen 

in the oil is known to be greater than that of heteroatoms in the catalyst [74]. 

Arey et at. [75] observed no effect of increasing the bulk-liquid flow rates on 

desulfurization rates and reported that diffusion of hydrogen through the liquid 

phase was not limiting. They also found that desulfurization was markedly 

improved by reducing particle size and they attributed it to the increased 

utilization of the interior region of the catalyst.

Kato et al. [76] investigated the relation between catalyst size and the rate 

constant for desulfurization of Khafji atmospheric residuum. When the volume of 

the catalyst bed was constant, the rate constant, k, increased in proportion to 1/d 

for values of 1/d up to approximately 1 where d is the average diameter of the 

catalyst particle. When 1/d exceeded 1, the influence of catalyst particle size 

significantly diminished.

Shah and Paraskos [77] observed no difference in desulfurization rate for 

catalysts having particle sizes of 0.5 to 0.6 mm and 0.8 mm when 50% Kuwait 

atmospheric reduced crude oil was hydrotreated in a down-flow fixed bed 

reactor. Particles smaller than 0.8 mm (1/32 in.) are typically not used in 

commercial fixed-bed reactors because of excessive pressure drop or the 

potential for plugging of the catalyst bed by particulates found in residuum feeds

[78]. Therefore the optimum catalyst should compromise physical properties 

such as surface area, pore radius, pore volume with feedstock characteristics

[79].

Surface Area, Pore Structure and Pore Size Distribution

The catalyst surface area, pore volume, pore size distribution and the 

ratio of molecular size to pore size are considered to be significant factors

22



23

influencing hydrotreating. These properties influence the diffusivity of the liquid 

feed whereas reactivities of metal compounds influence the reaction kinetics.

Riley [80] reported a general classification of catalysts according to 

median pore diameters: 1) small pore catalysts have median pore diameters less 

than 100 A; 2) intermediate pore catalysts have median pore diameters between 

100-150 A; and 3) large pore catalysts have median pore diameters above 150 

A. Physical properties of the catalysts reflect the properties of the support. Bulk 

densities range from 0.4 to 0.7 g/ml, whereas pore volumes vary from 0.4 to 1.5 

ml/g and surface areas typically range from 50 to 300 m7g. The average pore 

diameters of hydrotreating catalysts range from 40 to 400 A but catalysts with 

bimodal pore structures may contain some pores as large as 1000 to 10,000 A 

[27].

Residuum Hydroprocessing Catalysts

Since residuum typically contains a significant amount of high molecular 

weight resins and asphaltenes as well as nitrogen, sulfur, and metal containing 

species, the catalyst used to hydrotreat residuum must have optimum physical 

properties to permit the activity to be maintained over a long period even when 

excessive amounts of coke and metals deposit. In other words, the physical 

properties should be appropriate to the reaction environment in addition to the 

activity, selectivity, and stability required of the catalyst in the residuum 

hydrotreating catalyst [67].

Richardson and Alley [81] reported that when hydroprocessing a 

residuum containing 12% of its sulfur in the asphaltene fraction, the 

refractoriness of the feed was determined by the asphaltenic sulfur for the sulfur 

conversion levels above 90%. This refractoriness was attributed to the small 

pores of the catalyst. The refractoriness for desulfurization at lower conversion
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levels was attributed to sterical hindrance involving aromatic sulfur compounds 

such as substituted thiophene, benzothiophenes, and dibenzothiophenes. 

Schuit and Gates [82] reported the effectiveness factor of two cylindrical 

catalysts (1.6 mm diameter) which had mean pore diameters of 78 A and 103 A 

in their study of hydrodesulfurization of a Middle East residuum. The 

effectiveness factor of the former was estimated to be 0.4 and that of the latter to 

be 0.8 .

Inoguchi et al. [83] investigated the influence of catalyst physical 

properties on desulfurization of Khafji atmospheric residuum and have shown 

that pores having diameters less than 40 A did not affect activity while pores 

having diameters of 100 A or larger did affect the activity. Desulfurization 

conversions of 60 to 70% were obtained with catalysts having pore sizes of 100 

to 150 A.

Hydrodernetallation Catalysts

In residuum hydrotreating processes, catalysts which have a tendency for 

low coke formation and high metal deposition tolerance are required. When the 

metal species permeate the catalyst pore structure, maximum metals tolerance 

can be obtained even though the metal deposition would still poison the active 

site of the catalyst. However, when metal penetration is shallow due to fast 

reaction or controlled pore size, the pore mouth would soon be plugged by metal 

deposition leaving active sites unused in the inner portions of the catalyst [84].

When the run-length is limited by the metals capacity of catalyst, the HDM 

catalyst which allows maximum metal-bearing molecule penetration and uniform 

metal deposition is preferred. However, when the run-length is not controlled by 

catalyst metal capacity, catalysts with high activity for HDM and moderate activity 

for HDS and Ramsbottom carbon conversion are desirable. High-activity HDM
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catalysts which also have high HDS and Ramsbottom carbon removal activities 

are usually used for the feeds which contains low-metals [85]. Catalyst surface 

activity may be manipulated to alter the ratio of HDM activity to metal compound 

diffusivity with a predictable impact on optimum pore size. The increase of Ni 

and V penetration into the HDM catalyst can be accomplished by lowering the 

intrinsic surface activity. This is done by varying the quantity, chemical 

composition, or distribution of active catalytic metals.

Plumail et al. [86] determined that the optimum pore diameter for 

demetallation of Boscan crude on a unimodal pore size catalyst was 150 to 200 

A. Hydrodesulfurization activity was highest on catalysts with pores of 100 A, 

suggesting a difference in molecular size between the sulfur- and vanadium- 

bearing molecules. Riley [15] reported that pore structure controlled Ni and V 

removal in hydrotreating a Safaniya atmospheric residuum. Metals removal 

activity increased with increasing pore size from 100 to 150 A in narrow-pore- 

size distribution CoMo/AI2Oa catalysts.

Catalysts prepared by Hardin et al. [87] contained two pore regimes: large 

interparticle pores corresponding to intergranular voids with diameters of 10,000 

A and larger and intragranular pores of diameter 500 A and smaller. Catalysts 

characterized by median pore diameters of 200 A exhibited maximum activity for 

Ni and V removal from Athabasca bitumen. This observation was explained on 

the basis of catalyst surface area. As pore size increases, the catalyst surface 

area decreases and as does the number of active sites. Decreasing the pore 

size increases the surface area but also increases the diffusional resistance to 

the sites. Bimodal catalysts having micropore diameters ranging from 100 to 

320 A and macropores of 1000 A and greater also exhibit maxima in 

hydrodevanadation (HDV) activity in the range 150 to 200 A average pore 

diameter, similar to the unimodal catalyst. HDV activity over bimodal catalysts is
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markedly enhanced, up to 50%, relative to the unimodal catalysts. The 

introduction of macropores increases asphaltene accessibility to the micropores 

of the catalyst, enabling conversion by depolymerization and cracking and by 

demetallation.

The pore structure of the catalyst is the controlling parameter for metals 

removal for large pore size catalysts. Vanadium removal is somewhat easier to 

accomplish than nickel removal which implies that either the vanadium is in a 

smaller molecular species than the nickel or the nickel is more tightly held by the 

molecule [27]. Apparently the selectivity for vanadium removal with small pore 

catalysts is independent of pore size [80]. Howell et al. [85] reported that Ni 

compounds in both Arabian Heavy and Maya feedstocks penetrated more 

deeply and deposit more uniformly than V counterparts.

The selection of the optimum HDM catalyst should be determined by 

residuum feed properties, process operating conditions, and product quality 

requirements [88]. A compensation effect is operative between the increase in 

activity due to an increase in surface area and the decrease due to diffusional 

resistance; hence, the existence of an optimum pore size.

Effect of Liquid Holdup and Catalys „

Satterfield [89] reported that the liquid holdup is a measure of the 

effectiveness of contact between liquid and solid catalyst and can be defined as 

the ratio of the volume of liquid present in the reactor to the volume of the empty 

reactor. The liquid present in the catalysts pores accounts for the internal 

holdup while that present outside the catalyst pellets is responsible for the 

external holdup.

Bench Scale Hydrotreating Reactor
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Satterfield and Way [90] proposed that the external liquid holdup can be 

correlated in terms of the superficial velocity and viscosity of the fluid. According 

to Koros [91] complete catalyst wetting cannot be attained in a pilot-plant scale 

reactor whereas it may be attained in a commercial reactor.

Schwartz et al. [92] used tracers to make liquid holdup measurements in 

trickle bed reactors. The observed liquid holdups were 45-60% and 25-40% with 

porous and nonporous packing; respectively, for liquid fluxes in the range 0.3 to 

5 kg/m2 s. The general trend observed was an increase in liquid holdup with 

increasing liquid flow rate. Mears [93] proposed a model based on incomplete 

catalyst wetting and suggested it was a better criterianor assessing the effects of 

dynamic conditions in the reactor. In narrow diameter laboratory reactor, as well 

as in large commercial units, the liquid trends to migrate towards the wall 

resulting in partial wetting of the catalyst bed. Satterfield and Ozel [94] provided 

visual evidence for non/uniform wetting of the catalyst particles in packed beds. 

Also, diluting the pilot-scale catalyst bed with fine inert material such as silicon 

carbide (SiC) had a minimal effect on reducing axial dispersion and channeling, 

and did not improve the catalyst wetting at normal operating conditions with a 

bitumen-derived coker gas-oil [95].

Yui and co-workers [95,96] studied the kinetics of HDS, HDN and mild 

hydrocracking (MHC) in pilot-scale trickle-bed reactors. Yui et al. [96] reported 

that plug-flow was not attained with catalyst dilution and proposed that the plug- 

flow model used for reaction kinetics should be modified by including a power 

term for space velocity, WHSV“, to compensate for nonplug-flow. Yui et al. [96] 

also proposed that the effect of hydrogen partial pressure should be represented 

by a power-rate law term, pH2p.

The empirical power, a, has been determined in pilot-scale reactors

[95,96] to be between 0.3 to 1.0. Various values of alpha have been reported in
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the literature for undiluted trickle-bed reactors; 0.6 [97], 0.68 [93], 0.5 to 0.9 [98]. 

Yui et al. [99] also reported the power term for space velocity to be 1.0 for HDS 

and HDN and 0.5 for mild hydrocracking (MHC) for bitumen-derived coker and 

hydrocracker heavy gas-oils.

Montagna and Shah [79] reported that for catalyst particles of 20/30 mesh 

size the liquid holdup or catalyst wetting effects are negligible in explaining the 

hydrotreating kinetics for 56% reduced crude. Henry and Gilbert [97] reported 

that at constant process operating conditions the increased utilization of catalyst 

achieved by decreasing the catalyst particle size can be attributed to an increase 

in liquid holdup.

Axial and Radial Dispersion and Backmixjng in Packed Beds

Axial liquid dispersion was investigated by Scott [100] who reported that a 

height to column diameter ratio (H/D) of 25 to 1 was necessary to minimize axial 

dispersion problems in packed towers.

The model widely used for explaining the axial mixing in fixed beds is the 

one parameter piston diffusion (PD) model which superimposed plug-flow with a 

"Fick's diffusion" type of process [101]. The Peclet number (Pe) is the parameter 

by which the residence distribution of the liquid is described:

where, Dp is the particle diameter, u is the linear liquid velocity in the interstices 

and E is the dispersion coefficient. When this parameter is based on the particle 

diameter, it is called the Bodenstein number (Bo):
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D ds u
Bo = - 5 7  (2-2)

where, d, is the spherical catalyst particle diameter and Da is the axial eddy 

diffusivity [102]. Many investigators have shown that the Bodenstein number 

can be correlated by the Reynolds number (Re);

Dp -u-p
Re = - Ey ~  (2-3)

where, p is the density, and \i is the viscosity of the liquid [103-105]. In most 

instances the investigations have taken place in the Reynolds number range 

from 1 to 100 whereas small-scale trickle-flow reactor experiments typically 

operate at in the Reynolds number range from 0.001 to 0.1 [102].

Satterfield [106] states that liquid and gas radial dispersion attains a 

constant value above a particle Reynolds Number of about 100 and axial 

dispersion attains a constant value above a Reynolds Number of about 10. 

Small-scale laboratory experiments normally fall well below the critical Reynolds 

Number of 100 for radial dispersion unless special provisions are taken to 

ensure that the criterion is met.

Schwartz and Roberts [107] indicate that radial distribution problems may 

exist in trickle-flow reactors. Although they define the concept as "contacting 

efficiency" they did not present a method for prediction of their contacting 

efficiency but suggest an experimental program to determine the efficiency and 

develop a correlation.

The deviation from plug-flow as a function of Reynolds number has been 

quantified by Mears in terms of a minimum value for Peclet number [93,108].
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The following criterion was suggested to determine the minimum h/dp ratio 

required to establish the reactor length within 5% of that needed for plug-flow:

h 20n. CQ
d ^ B o "  c f  <«>

where h is the catalyst bed length, dp is the catalyst particle diameter, n is the 

reaction order and C0 and C, are the inlet and outlet reactant concentrations. 

Mears applied the criterion to bench scale hydrotreating units processing a 

straight run gas-oil feed at a temperature of 644 K (700°F), a pressure of 10.3 

MPa (1500 psia) and a LHSV of 2.0 h'1. A minimum h/dp of 350 was calculated.

Comparisons of Upflow with Downflow Operation

There may be a deviation in the test data of the pilot-plant relative to the 

results of commercial operation even when they are obtained under same 

conditions of temperature and space velocity. This is due to the low superficial 

mass velocities in a test unit which result in poor liquid-solid contact along with 

low rate constants which vary with the catalyst bed length and liquid velocity

[93,97]. Satterfield [89] showed that under commercial conditions the 

effectiveness of catalyst wetting is ideal only if a sufficiently high superficial liquid 

mass velocity is used. Although criteria on wetting and back-mixing for beneh- 

scale catalyst testing units were met [71,109] in diluted downflow experiments 

with shaped catalysts it was reported that downflow experiments in bench-scale 

gave poor reproducibility and the method of catalyst packing changed reaction 

orders. This indicates ineffective catalyst wetting and liquid maldistribution [110]. 

Catalyst testing in the upflow mode can be used to overcome these problems in 

some instances [79,89].
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A comparison of a bench-scale reactor operated in the upflow versus 

downflow mode for desulfurization of a heavy coker gas-oil by Takematsu and 

Parsons [111] indicated that the upflow mode gave superior performance and 

more consistent kinetics for desulfurization. This was attributed to the fact that 

upflow maximized the residence time of the heavy liquid fractions.

De Wind et al. [110] reported that close to 100% effective wetting of 

catalyst with liquid and good liquid distribution were obtained at low mass 

velocities using the upflow mode and concluded that upflow testing does improve 

catalyst wetting. The small scale reactor data and catalyst wetting efficiency 

were comparable to commercial downflow hydrotreaters. Thus, they 

recommend the upflow mode operation in bench-scale evaluation of 

hydrotreating catalysts in small units and at low space velocities. Testing in the 

upflow mode indicated that catalyst wetting efficiency was independent of space 

velocity and that at the conversions obtained in the upflow mode, dilution has no 

beneficial effect on catalyst utilization.

The upflow mode may also provide other benefits. If a catalyst gradually 

becomes deactivated by the deposition of polymeric or heavy materials, the 

upflow reactor may maintain activity longer by more effectively washing off these 

deposits. Heat transfer between liquid and solid may also be more effective in 

upflow than in downflow operation. This is of particular importance if reaction is 

rapid and highly exothermic. If reactants are present in both the gas and liquid 

phases over a range of operating conditions in which pores of the catalyst pellets 

are filled with liquid, an upflow reactor would be expected to exhibit a lower 

reaction rate than a partially-wetted trickle bed or one in which the solid catalyst 

is deliberately designed so as not to be wetted by the liquid phase. Some upflow 

reactor designs may lead to fluidization of the catalyst unless the catalysts are 

held in place by mechanical means [89].
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Trickle-bed operation has several advantages. Pressure drop through the 

bed is less which reduces pumping costs and in the downflow operations the 

catalyst bed remains in place.

Chemistry and Reaction Meche ' s of Hvdroprocessina

The presence of sulfur and nitrogen species in residuum reduces the 

quality of the refined products and poses environmental concerns due to the 

formation of SO, and NO„ emissions during combustion. The heteroatoms (S, N) 

also act as catalyst poisons, causing rapid deactivation in catalytic conversion 

steps such as catalytic cracking and reforming [112]. Typical organosulfur 

compounds, organonitrogen compounds (both basic and nonbasic) and 

porphyrin type nickel analogs are shown in Figure 2.3.

Hydrodepjtrogenat]on

The nitrogen in petroleum residuum, bitumens, coal-derived liquid, and 

shale oils can be divided into two types; heterocyclic aromatic compound and 

nonheterocyclic organonitrogen compounds such as aliphatic amines and 

nitriles. The former are dominant in heavy oils and are more difficult to 

denitrogenate than the latter and thus play a significant role in 

hydrodenitrogenation (HDN) processes involving heavy feeds [113].

Nitrogen is more difficult to remove than other heteroatoms such as sulfur 

or oxygen because of wider variations in adsorptivity and reactivity [114]. These 

variations are attributed to the two types of nitrogen species in petroleum: 

pyridinic and pyrrolic. These two classes of nitrogen heterocyclics have different 

electronic configurations. The pyridinic ring containing nitrogen compounds (six- 

membered) exhibit a strong basic nature since the unshared pair of electrons
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associated with the nitrogen are not involved in the % cloud and therefore 

available to share with acids. The basic nitrogen can therefore accept surface 

protons from the acidic site on the catalyst (Bronsted acidity) or donate unpaired 

electrons to electron-deficient surface sites (Lewis acidity). However, the pyrrolic 

ring type nitrogen heteroaromatics (five-membered) exhibit nonbasic 

characteristics since the extra pair of electrons on nitrogen is involved in the n 

cloud of the ring so that they can not interact with acids [115,116].

Typical catalysts used to accomplish HDN include Ni-Mo/AI20 3. The 

reaction chemistry for heterocyclic organonitrogen species removal indicates that 

the nitrogen atom containing ring must be hydrogenated before the 

hydrogenolysis of the carbon-nitrogen bond [113]. This is because 

hydrogenation of the heteroring facilitates carbon-nitrogen bond scission by 

reducing the bond energy of the carbon-nitrogen bond [116]. Large HDN rates 

can be obtained by increasing the equilibrium concentrations of saturated 

heteroring compounds with high hydrogen partial pressure [117].

The reactions in which nitrogen is removed from aniline derivatives are 

important in the denitrogenation networks because the pathways involving these 

reactions are those requiring the lowest hydrogen consumption. Investigations 

of the HDN of anilines indicate that both direct hydrogenolysis and HDN via 

hydrogenated intermediates may occur [118,119]. The hydrogen consumption 

depends strongly on the extent of hydrogenation of the aromatic rings.

Generally kinetics govern the removal of nitrogen rather than 

thermodynamics at reaction conditions currently used for commercial 

hydrotreating. Deep removal of nitrogen from moderately-refractory feedstocks 

can generally be achieved when a sufficiently long reaction time is used [114]. 

The reaction pathways for HDN of pyridine [120] and quinoline [119] are shown 

in Figure 2.4.
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Figure 2.4

Possible Reaction Pathways for HDN of Pyridine [120] and Quinoline [119]
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Hydrodesulfurization

Hydrodesulfurization (HDS) has been used not only for removing sulfur 

from naphtha reformer feedstocks but also for reducing the sulfur contents of 

heavy oils used as fuel refinery feedstocks and as power plant feedstocks.

Gates et al. [112] reported on the chemistry of thiophenic compound 

conversion since these are the least reactive organosulfur compounds in 

petroleum and other fossil fuels. Beaton and Bertolacini [1] showed that like the 

metals, about 73% of the total sulfur is distributed in the resin fraction of a typical 

vacuum residuum. Bar Vise and Whitehead [121] reported that sulfur-containing 

compounds are more volatile than metal-bearing compounds. More than 20% of 

the sulfur appears in 773 K minus fraction, with less than 50% of the sulfur 

occurring in the 923 K plus fraction.

Unlike nitrogen removal which requires the heteroatom ring hydrogenation 

before the hydrogenolysis of the carbon-nitrogen bond, sulfur removal occurs 

either with or without hydrogenation of the heterocyclic ring. Also, 

thermodynamics would govern the HDS pathways involving prior hydrogenation 

of the ring since hydrogenation of the sulfur-containing rings of organosulfur 

compounds is equilibrium-limited at practical HDS temperatures [117], The HDS 

of organosulfur compounds is exothermic and essentially irreversible under the 

reaction conditions employed industrially (e.g., 613-698 K (340-425°C) and 5.6

17.2 MPa (55-170 atm)) [122], Reaction pathways for HDS of thiophene [112], 

benzothiophene [123] and dibenzothiophene [124] are presented in Figure 2.5.

Hydrodemetallation

Heavy oil feedstocks contain not only heteroatoms but also the trace 

metals in the form of organometallic compounds [125]. The metals in heavy oils 

poison the catalyst in hydrotreating processes and the resulting metal deposition



Figure 2.5

Possible Reaction Pathways for HDS of Thiophene [112], 

Benzothiophene [123] and Dibenzothiophene [124]
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ultimately determines the catalysts' useful operating lifetime because the metal 

contaminants can not be removed as gases (H2S and NH3) as in desulfurization 

and denitrogenation, respectively. For example, reducing metal content via 

HDM is essential when heavy oils are fed to the fluid catalytic cracking unit 

because it would poison the cracking catalyst and erode the furnace linings and 

turbine blades.

Metals are usually present in the 811 K plus (1000T*) fraction of the 

heavy oils whereas sulfur and nitrogen are distributed over the entire boiling 

range. The abundance of nickel and vanadium compounds in heavy oils have 

stimulated the interest in residuum hydroprocessing.

Metal Compounds

Unlike sulfur and nitrogen compounds in petroleum which are distributed 

in the aromatic, resin and asphaltene fractions, more than 85% of the nickel and 

vanadium compounds are found in the resin and asphaltene fractions [126]. 

Beaton and Bertolacini [1] showed that nickel and vanadium reside primarily in 

the resin and asphaltene fractions of the residuum fractions.

There are two main types of nickel and vanadium compounds in 

petroleum feedstocks: one is metal porphyrins and the other is nonporphyrin 

metal species. The metal porphyrins differs from nonporphyrin metal species in 

properties such as polarity, molecular weight and structure. The nonporphrin 

metals have higher polarities, higher molecular weights and lower volatility than 

the metal porphyrins. Dean and Whitehead [127] have shown that most Ni and 

V appeared as nonporphyrins in 923 K plus (650°C+) fraction of Middle East 

crudes and only 5% of the metals in the asphaltenes are present as 

metalloporphyrins This indicated that nonporphyrin metals associate with the 

highly polar asphaltene fraction. Sugihara et /aT[)28] also observed that the
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nonporphyrin metals are associated with the asphaltenes due to high polarity in 

his study of metal porphyrins in Boscan asphaltenes using gel permeation 

chromatograph (GPC) and other techniques.

The basic form of porphyrin is called porphrite (C20H14N4) which has four 

pyrrole groups in a closed ring and connected to the ex-carbon by methine- 

carbon atoms. The metalloporphyrins are also divided into two categories, a 

deoxophylloerythroetioporphyrin (DPEP) and an etioporphyrin (Etio) series [128

130].

The basic skeleton of nonporphrin metal compounds has not been well 

identified. It is reported that they are composed of various forms of metals from 

inorganic to polar organic compounds [128]. Two main types of nickel and 

vanadium compounds have been proposed by Yen [129]: one includes 

arylporphyrins, hydroporphyrins, and porphyrin-degraded products and the other 

includes tetradentate-mixed ligands in Ni and V complexes.

Catalytic Hydrodemetailation *

Hung and Wei [131] reported that total metal removal was less than the 

overall disappearance of feed porphyrins in their study of hydrodemetailation of 

porphyrins. This observation was attributed to the production of intermediate 

(hydrogenated metalloporphyrin termed metallochlorin) during the hydrotreating 

process.

Agrawal and Wei [74] found that vanadium removal is much faster than 

the nickel removal in their kinetic study of hydrodemetailation of nickel and 

vanadium porphyrins. The fast vanadium removal is due to its reactive moieties 

and concentration at the surface of the catalyst. However, nickel species are 

distributed more evenly over the catalyst than vanadium and this resulted in 

lower removal. They also proposed that an initial reversible hydrogenation
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would be followed by terminal hydrogenolysis step in hydrodemetallation

process.

Galiasso et al. [132] reported that the depolymerization of asphaltene 

structures followed by transport of metal species to catalytic sites is rate 

controlling in reactions of porphyrinic and nonporphyrinic molecules during 

hydrodemetallation of heavy crude oils rather than the intrinsic demetallation 

chemistry.

Proposed demetallation reaction pathways for Ni-etioporphyrin (a) and Ni- 

tetra (3-methylphenyl) porphyrin (b) [133] are presented in Figure 2.6.



44

Figure 2.6

Possible Reaction Pathways for HDM of Ni-etioporphyrin and 

Ni-tetra (3-methylphenyl) porphyrin [133].
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CHAPTER 3

EXPERIMENTAL APPARATUS AND PROCEDURE 

Feedstock Preparation

X
Ore Acquisition _

The bitumen prepared for this study was obtained by solvent extraction of 

the Whiterocks oil sand. The oil sand ore was obtained from the Northeast 

section of the Fausett quarry on the Whiterocks deposit in the Uinta Basin. The 

mined oil sand ore was transported in polyethylene lined, 209 liter (55 gallon) 

drums to the Oil Sand Research Laboratory at the University of Utah. The 

drums were sealed to minimize oxidative degradation of the bitumen. The ore 

was crushed and sieved prior to extraction.

Solvent Extraction

Bitumen was separated from the oil sand by toluene extraction. Three 5- 

liter and five 4-liter Soxhlet extractors were used to extract the bitumen. 

Whatman cellulose extraction thimbles (90 mm diameter x 200 mm length) were 

completely filled with 800 to 1,000 g of fresh oil sands. Filter paper covers were 

placed on top of each thimble to prevent sand from being transferred from the 

thimbles into the solvent reservoir. Toluene (ACS grade, EM Science) was used 

as a extracting solvent. Approximately 2,000-2,500 cm3 of toluene was poured 

into the solvent reservoir until the toluene level was about 2.5 cm above the top 

of the Glas-Col heating mantle. Four or five boiling chips were placed in the
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solvent reservoir to prevent bumping and the outer wall of the thimble was 

cleaned. Each thimble was then wrapped with sharkskin filter paper to filter fines 

and the thimble and sharkskin filter paper were placed in an extractor. The 

assembled extractor containing fresh oil sand was wrapped with aluminum foil 

and the reboiler temperature controller set point was set to 55% of full scale. 

The extractor was checked frequently until condensed toluene started to drip 

from the condenser onto the top of the extraction thimble. Approximately 12 

hours were required to complete the extraction. During extraction, water was 

collected and separated from the toluene in the trap mounted between the 

extractor and the water cooled condenser to produce a water-free bitumen- 

toluene solution.

The extent of bitumen extraction was determined by monitoring the color 

of toluene dripping from the thimble. When the toluene solution was clear it was 

determined that extraction was complete. The heating mantle switch was turned 

off and the aluminum foil was removed. The water and toluene were drained 

from the trap. The sharkskin and thimble cover were dried and placed in an 

appropriate disposal vessel. The extracted sand in the thimble was dried and 

stored in the designated receptacle for disposal. These procedures were 

repeated until the eighth extraction was completed.

After the eighth extraction, the extractor was cooled to room temperature 

and the toluene-bitumen solution was poured into 5-gallon plastic containers 

which were sealed and stored for rotary-evaporation and distillation. The 

extractor was cleaned completely with toluene and the procedure was repeated. 

Sufficient toluene-bitumen solution was collected to produce 57 liters (15 

gallons) of solvent-free bitumen. Approximately five drums of the crushed 

Whiterocks oil sand ore were extracted during a 4-month period to produce the 

toluene-bitumen solution. The toluene-bitumen solution was allowed to stand for
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3 days to permit mineral fines to settle from the solution before evaporation and 

recovery of the toluene.

Safety precautions were rigorously followed during the extraction 

procedure:

• Safety glasses, gloves and laboratory apron were worn to avoid contact 

with the solvent when handling toluene, toluene-wetted thimbles and 

sand.

• The handling of thimbles and extracted sand was done in the hood.

• The assembly and disassembly of the extractor were done cautiously due 

to the fragile nature of the glass extractors.

• The presence of fines in the toluene-bitumen solution was avoided as 

they might cause bumping of the solution in the reboiler.

Rotary Evaporation

Toluene was removed from the toluene-bitumen solutions by rota- 

evaporation followed by batch distillation. A Buchi EL 131 rotary evaporator with 

a Buchi 460 water bath was used to remove the solvent. A Precision Scientific 

vacuum pump (Model S35) was connected to the evaporator to evaporate 

toluene at su‘  ̂ ospheric conditions. This was done to facilitate solvent

recovery. The pump operated at 100-150 torr and the evaporator speed and 

water-bath temperature were 120 rpm and 353 K, respectively. The previous 

study revealed that about 6-8 wt% toluene still remained in the bitumen after 

rotary evaporation [18]. This residual toluene was removed by vacuum 

distillation.
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Distillation

A Semi-Cal high temperature distillation apparatus (Series 3650) by 

Reliance Glass Works, Inc. and a Precision Scientific vacuum pump were used 

for vacuum distillation. This tilting-funnel fractionating column was filled with 

Heli-Pak packing (stainless steel wire-coil packing; Podbielniak Inc.). The 12- 

liter kettle was filled with 8 liters of the toluene-bitumen solution to allow sufficient 

vapor space for disengagement of liquid. The kettle temperature was monitored 

by J-type thermocouples and the heating mantle was controlled with three 

variable transformers. The kettle pressure was monitored with a mercury 

manometer. The reflux ratios were varied with a solenoid valve timer.

The column and kettle were purged with argon to prevent air oxidation of 

the bitumen during distillation. The system was evacuated and the kettle heater 

was activated. It has been reported that bitumen would thermally crack when 

the kettle temperature reaches 620-650 K (347-377°C) [18]. Two methods have 

been proposed to avoid cracking the bitumen in the kettle at the termination of 

the distillation process. The first was to shut down the heating mantle when the 

kettle temperature reached 595 K (322°C). This method assumed a 25°C 

temperature overshoot might occur in the kettle. The second method was to 

stop heating the kettle when the desired reflux temperature was reached. Two 

assumptions were made to calculate the target reflux temperature at which 

distillation should be stopped. The first was that the lightest material in the 

Whiterocks bitumen is C„ naphthene which has the same vapor pressure 

properties as hexylcyclopentane. The second was that the toluene used in the 

extraction contained impurities like xylene. Therefore, a 50/50 mixture of xylene 

and hexylcyclopentane was used with the Antoine equation and Raoult's law to 

calculate the end point temperature at a specified system pressure. This 

temperature was considered as the final reflux temperature.
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The system pressure during the distillation was held between 60-80 torr 

which was sufficient to distill the toluene while maintaining the kettle temperature 

below the bitumen thermal cracking temperature. The reflux ratios were 

selected based on a compromise between efficient and rapid separation. The 

initial reflux ratio was 5; it was increased to 10 near the end of the distillation and 

was 20 at the end point to give a sharp separation. Approximately 15 batch 

distillations were made to remove the solvent from the bitumen-solvent solution.

The kettle and reflux temperatures and the cumulative amount of the 

overhead liquid collected were measured during the distillation. The reflux 

temperature and the reflux ratios versus the volume of liquid distilled are plotted 

in Figure 3.1.

The concentrated bitumen was analyzed by simulated distillation to 

determine residual toluene concentration. The overhead product was also 

examined to determine the amount of light ends distilled overhead. The toluene 

in the residual bitumen and the light ends in the overhead fraction were less than 

the detectable limits (< 0.1 wt%) indicating that toluene removal was complete 

and that the bitumen was characteristic of the reservoir fluid.

The solvent-free bitumen was collected and stored in a 15-gallon drum. 

Due to the bitumen viscosity, the drum was wrapped with a Brisk Heat Drum 

Heater (Model DHCH 11) and heated to 373 K when transferring bitumen to the 

liquid feed burettes. The bitumen was blanketed with nitrogen to prevent air 

oxidation during storage.
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Figure 3.1

Reflux and Kettle Temperatures versus Volume of Liquid Distilled



Te
m

pe
ra

tu
re

 
[K

J

3
Volume of Distilled Liquid [cm ]



•  Reflux Temperature [K] 

O Kettle Temperature [K]

1 «
600



53

Experimental Equipment

The hydrotreating reactor system used in this study consisted of four 

distinct sections; the liquid feed system, the hydrogen feed system, the catalytic 

reactor and the product recovery and sampling system. The hydrotreater was 

designed for both upflow and downflow operating modes by placing three-way 

manifold valves at the reactor inlet and outlet. The hydrogen and liquid feeds 

were fed to the reactor in the upflow mode in this study. The product gases and 

liquids were separated in a high pressure vapor-liquid separator. The gases 

were withdrawn through a back pressure regulating valve (BPRV) and the liquid 

product was withdrawn through the high pressure separator liquid level control 

valve (Annin valve). The process flow diagram for the hydrotreating unit and a 

schematic of the control panel are presented in Figures 3.2 and 3.3, 

respectively.

Liquid Feed System

Two heat traced Ace Glass, Inc. Instatherm burettes were used as 

feedstock reservoirs and to. meter the bitumen feed rate t< ' ' ‘

and was used during mass balances and to set feed rates to the unit. The larger 

burette had a capacity of 4,000 cm3 (120 volts, 5 amps maximum) and was used 

as a feed reservoir for overnight, unattended operation. A Model 52 Proportional 

Controller (Love Controls Co.) was used to control the temperature of the fluids 

in the burettes.

The specific gravity of the bitumen in the heated burettes was measured 

at 417 K (144°C) with a Streamline Hydrometer (H-B Instrument Co.; 19-31 °API 

range). The specific gravity was calculated according to the following equation:

e smaller burette had a capacity of 500 cm3 (110 volts, 2 amps maximum)
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Figure 3.2

Process Flow Diagram of the Hydrotreating Unit
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Figure 3.3

Diagram of Hydrotreating Unit Control Panel
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(3-1)

The API gravity and the specific gravity were 23.3 °API and 0.9144 g/cc, 

respectively, at 417 K (144°C). A Durcometer U Type proportioning pump 

(Duriron Company, Inc.) was used to pump the bitumen from the burettes to the 

reactor at the desired flow rate. A standard digital stroke adjustment, graduated 

in percent of stroke length, permitted reproducible setting of the stroke. The 

maximum operating discharge pressure of the pump was 34.3 MPa (5,000 psig) 

and the minimum flow rate was 20 cm3/h at 13.8 MPa (2,000 psig).

The pump was primed using the valve at the outlet of the pump. Check 

valves were installed between the pump and the pump outlet manifold to prevent 

back flow of hydrogen into the liquid feed system. A pressure relief valve was 

installed at the pump outlet to avoid damage if the heat tracing failed and the 

transfer lines between the pump and the reactor inlet plugged with bitumen.

Heat Tracing Lines

The Vfhiterocks bitumen has a viscosity of about 10,000 cp at room 

temperature and about 1,500 cp at 361 K (190°F) [18]. Liquid transfer lines, 

valves, and the pump head were heat traced with 25 gauge Nichrome wire to 

heat the bitumen and lower its viscosity. The liquid product sampling line was 

also heat traced. This precaution permitted uninterrupted operation and 

circumvented plugging of transfer lines due to cold spots. The Nichrome wire 

had a resistivity of 0.83 ohm/cm (2.1 ohm/in) and was coated with glass fabric to 

avoid shorting on metal surfaces. Fiberglass tape was used to attach the wire to 

the system.
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A proportional controller was used to control temperature of the heat 

traced lines. The heat tracing was divided into two sections; section A (lines A1 

through A13), which included the lines from the pump to the reactor inlet and 

section B (lines B1 through B14), which included the lines from the reactor outlet 

to the liquid product recovery system. These two sections were connected in 

parallel. The spacing of the wire in each section was determined by the nature 

of the fluids flowing in the section.

The resistance of the heat-trace wires in each section is indicated in Table 

3.1. Typical temperatures of heat traced lines for the base case operating 

condition at a controller setting was 343 K (70°C) are reported in Table 3.2. A 

schematic of heat traced sections A and B is presented in Figure 3.4.

Hydrogen Feed System

Hydrogen was compressed to the reactor inlet pressure by a Whitey 

Laboratory Compressor (Model LC10) whose maximum output pressure was 

20.7 MPa (3,000 psig). The sealed diaphragm construction of this compressor 

was ideally suited for pumping hydrogen since leaks could not be tolerated. The 

compressor power supply was designed to turn the compressor off if the inlet 

pressure fell below 1.38 MPa (200 psig) to prevent damage since the inlet 

pressure limit was 0.35 MPa (50 psig). The regulator pressure and the 

compressor outlet pressure were controlled to provide a fixed hydrogen supply 

of 890 m7m3 (5,000 scf/bbl) to the reactor. Typically the hydrogen supply 

pressure to the compressor inlet was 3.4 to 5.5 MPa (500-800 psig).

The initial hydrogen cylinder pressures were 13.8 MPa (2,000 psig). 

When the cylinder pressure fell below 5.5 MPa (800 psig), the hydrogen 

cylinders were changed. The hydrogen cylinder exchange was done in such a 

way that the lines were purged of air.
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Table 3.1

Resistance of the Heat-Trace Wires in Each Section

Resistance
(Ohms)

A Section
A1-A2 9.5
A3-A4 22.5
A5-A6 5.6
A7-A8 22.5
A9-A10 2.1
A11-A12 5.5

Total in A Section 74.9

B Section
B1-B2 1.1
B3-B4 13.6
B5-B6 10.4
B7-B8 29.8
B9-B10 8.7
B11-B12 10.8

Total in B Section 82.0
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Table 3.2

Typical Temperatures of Heat Traced Lines at the Base Case Condition

Temperature Indicator Section Description Temperatures
Channel Number [K]

#1 Catalyst Bed Temperature 642
#2 Pump-Reactor Inlet Transfer Line 402
#3 Three-Way Valve at Reactor Inlet 420
#4 Vapor-Liquid Separator 352
#5 Annin Valve 380
#6 Room Temperature 289



Figure 3.4 

Schematic of Heat Traced Lines
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Calibration of Mass FlovyController

Hydrogen flow was controlled with a Brooks mass flow controller 

(Emerson Electric Co.). The mass flow controller valve was located between the 

compressor outlet and the reactor inlet manifold valves. Check valves were 

installed in the gas inlet lines to the reactor to prevent the backflow of liquid into 

the mass flow controller. Pressure relief valves were installed on the outlet of 

the compressor and on the inlet of the mass flow controller to protect the 

controller in the event of system overpressurizing.

The mass flow controller was calibrated at 13.7 MPa by measuring the 

hydrogen flowrate from the reactor in the absence of hydrogen consumption. 

Hydrogen flowrate was measured with a wet testmeter at different mass flow 

controller settings. The calibration curve for the mass flow controller is 

presented in Figure 3.5.

Reactor

A packed-bed tubular reactor was used in this study to simulate a refinery 

reactor. This type of reactor is superior to a batch autoclave even though both 

are governed by the same kinetics [89]. The reactor held 100 cm3 of catalyst 

and was rated for operation at 20.7 MPa (3,000 psig) hydrogen at 773 K (500°C). 

The bitumen was fed into the reactor in the upflow mode to ensure complete 

wetting of the catalyst and to permit isothermal operation.

The reactor was made of seamless 316 stainless steel tubing which had 

an inside diameter of 2.54 cm (1 in) and a wall thickness of 0.95 cm (0.37 in). A 

0.32 cm (0.13 in) outside diameter thermowell which held a movable 

thermocouple was located on the centerline of the reactor. The reactor was 

flanged at each end and sealed by copper and aluminum gaskets.



Mass Flow Meter Reading versus Volumetric Hydrogen Flow Rate

Figure 3.5
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H2 Volumetric Flow Rate [liter STP H21 h]
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The copper gasket was used to seal the bottom (inlet) flanges because 

the inlet gas contained no hydrogen sulfide (H2S) or ammonia (NHJ. The 

aluminum gasket was used to seal the top (outlet) flanges because copper might 

interact with the hot H2S and/or NH3 leaving the reactor and aluminum is 

corrosion resistant. The aluminum gaskets showed no signs of corrosion even 

after 1,000 hours at temperatures in the range 620-685 K (656-775T) in the 

presence of ammonia, hydrogen sulfide and water.

A 0.95 cm (0.38 in) stainless steel tube was welded in the center of the 

inlet and outlet cap-flanges to serve as the feed inlet and product outlet lines.

Reactor Temperature ControUSvstem

A three-zone Lindberg furnace was used to provide the heat to the 

reactor. Three UDC 2000 Mini-Pro Universal Digital Controllers were used to 

control the temperature of each section. The reactor temperature was monitored 

by DP 285J temperature display, Omega Engineering Co., using a movable 

thermocouple.

The catalyst was located in the middle (30.5 cm (12 in)) furnace zone. 

The bottom zone (15.2 cm (6 in)) served as the preheater and the top zone (15.2 

cm (6 in)) was used as a trim heater to maintain the catalyst zone isothermal. 

The setting of the top section was set above the desired isothermal temperature 

to diminish heat losses through the reactor head. An aluminum shield was used 

as a heat sink to moderate temperature fluctuations due to cycling of the furnace 

heating element and to maintain an isothermal temperature profile in the catalyst 

bed. A schematic of the reactor is presented in Figure 3.6.
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Figure 3.6

Schematic Diagram of Upflow Catalytic Reactor
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Reactor Pressure Control/Svstem

The system pressure was maintained by a back pressure regulating valve 

(BPRV) and was monitored by an Omega Engineering Model DP-354 pressure 

indicator. Pressure gauges were located in the feedline from the pump, in the 

transfer line to the reactor, in the transfer line from the reactor, and at the back 

pressure regulating valve as indicated in Figure 3.2. A Mity Mite Back Pressure 

Regulating Valve with a pressure rating of 20.7 MPa (3,000 psig) controlled the 

total system pressure. The system was pressurized to the desired value by 

admitting nitrogen to the dome of BPRV.

A schematic of the pressure control system is presented in Figure 3.7. 

Initially valves a, b and c were opened while valves d was closed. The 

compressor delivered nitrogen to the dome of the BPRV until the pressure gauge 

B reading reached the desired value, then all the valves were closed. The 

system pressure was controlled with a BPRV which functioned by controlling the 

flow of the vapor product exiting from the vapor-liquid separator. The BPRV 

functioned as an on-off valve due to the movement of the Teflon diaphragm 

which deflected to permit vapor product to exit the system through the BPRV 

orifice. The system pressure at which the BPRV would open to release vapor 

product was determined by the pressure on the dome side of the diaphragm. 

When the process pressure was greater than the dome pressure the diaphragm 

would deflect to permit the vapor to leave the system through the BPRV orifice. 

The operation of the BPRV permitted steady control of the system pressure 

(±0.01 MPa).

At the start of each run the dome pressure was loaded with nitrogen to the 

base case pressure (13.7 MPa). During reactor operation the system pressure 

was occasionally raised or lowered depending on the desired reactor conditions.



Schematic of System Pressure Control System

Figure 3.7



Gas Sampler



73

The dome pressure was changed in the following manner to permit a steady 

transition from one operating pressure to another:

• The dosing volume was pressurized with gas in manifold 1 to a pressure 

0.1-1.2 MPa (15-30 psi) higher than the BPRV. Valve c between the 

dosing volume and the BPRV was opened. The immediate effect of 

opening this valve was to increase the BPRV dome pressure 0.05-0.1 

MPa (7-14 psi) which in turn increased the system pressure by the same

amount. The valvg between the BPRV and the dosing volume was 6n\y)" " ■ . .. - .. _1 1

opened %hen the dosing volume pressure was greater than the BPRV 

dome pressure to avoid a sudden and uncontrolled drop in the system 

pressure.

• If the system pressure was to be lowered, then the pressure on the dosing 

volume/BPRV was slowly vented through the needle valve (valve d) until 

the dome (and the system) reached the desired pressure. This step was 

conducted slowly (rate of pressure decreased < 0.07 MPa/m in) to permit 

hydrogen dissolved in elastomeric rubber gaskets and O-rings to diffuse 

out of the matrix.

• If the system pressure was to be increased, then valves (valves a and b) 

between manifold #2 and the dosing volume were opened. The dosing 

volume/BPRV dome pressure was then gradually increased until it was 

0,05-0.1 MPa higher than the desired BPRV dome pressure. At that 

point, the valves between manifold #2 and the dosing volume were shut.

• Because the system pressure responds slower than the dosing volume 

pressure, the system pressure was permitted to rise until vapor product 

started to exit the BPRV. Then the additional pressure (0.05-0.1 MPa) in
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the connected dosing volume/BPRV dome was slowly vented through the 

needle valve.

• After adjustments on the BPRV dome pressure were completed the valve 

between the BPRV and the dosing volume was shut.

Liquid Product Separation and Sampling System

A liquid level control system on the high pressure separator was used to 

withdraw the total liquid product from the system. The system pressure was 

dropped from 13.8 MPa (2,000 psig) upstream of the control valve to 

atmospheric pressure downstream at the low pressure separator. A Wee Willie 

Model 5061 (Annin) control valve manufactured by the Masoneilan Division of 

the McGraw-Edison Co. was used in concert with a DP liquid level sensor- 

controller to control the withdrawal of liquid from the system.

The building supply air pressure which was normally 0.5-0.6 MPa (70-80 

psig) was regulated to 0,16 MPa (23 psig) for the l/P converter through a 0.04

0.3 MPa (5-40 psig) Masoneilan Dresser regulator and also provided air 

pressure (0.21 MPa (30 psig)) to the Annin valve. A Pneumotive air compressor 

fitted with a Solberg air filter and a Speedaire Reducing Regulator was used to 

provide instrument air in the event that the building air compressor shut down. 

The compressor starter was set to turn on the compressor when the building air 

pressure dropped below 0.17 MPa (25 psig) and to shut down the compressor 

when the instrument air pressure reached 0.31 MPa (45 psig).

A Bailey Type BC Transmitter (BC2/3/4), Bailey Controls Co., measured 

the differential pressure across the Brooks high pressure vapor-liquid separator. 

The separator was rated for a maximum pressure of 41.3 MPa (6,000 psig) 

maximum pressure. The transmitter sent 4-20 mA current output to the 

Masoneilan Dresser l/P converter through the Honeywell UDC 3000 Universal
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Digital Controller which was used to control the liquid level. The I/P converter 

converted this 4-20 mA signal to 0.02-0.1 MPa (3-15 psig) air signal which 

controlled the output to the positioner on the Annin valve. The Annin valve had a 

series A trim which permitted a theoretical Cv range of 0.001 and 0.01 and had a 

variable maximum stroke length from 0.025 to 0.38 cm (0.01-0.15 in). A 

schematic of the Annin control valve system is presented in Figure 3.8.

The NH3 and H2S in the exit gases were absorbed in a bubbler which 

contained a 2 molar solution of KOH (potassium hydroxide) before passing 

through the wet test meter or being vented to the hood.

Safety System
m. ii i ■ i ii ------------  i i ..I....... a........

A safety alarm was incorporated into the system since it was intended for 

continuous operation; that is, more than 1,000 hours on stream. If the liquid 

level reached the maximum permitted level in the vapor-liquid separator, the 

Sonalert alarm, Mallory Co., was activated and the pump was shut down to 

prevent flow of bitumen through the BPRV.

Air-flow in the vicinity of the hydrotreater was maintained by continuous 

operation of the hood. A commercial fan was used to ventilate the hydrotreater 

during periods of operation to move hydrocarbon vapors and/or hydrogen to the 

hoods.

The reactor furnace was divided into three independently controlled 

regions; the preheater zone, the catalyst bed zone and the exit trim heater zone. 

The reactor was flanged at both the inlet and outlet. Aluminum and copper

Experimental Procedure

C atalyst Lnadinn» m —■ * * SF



Figure 3.8 

Schematic of Annin Valve
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gaskets were used to seal the flanges to the unit which were set using a torque 

wrench. The torque wrench force was increased from 10 lb(-in to 60 lb,-in 

increments of 10 lbf-in.

Alpha alumina balls (0.05 cm (0.13 in)) were placed in the preheater and 

exit zones of the reactor. The balls in the preheater zone also served to support 

the catalyst bed. Sand (white Si02; -50+70 mesh) from Aldrich Chemical Co. 

was placed in the interstices of the a-alumina balls to reduce the void volume 

and to induce higher liquid superficial velocities.

The exit zone was filled with 126.7 cm3 of alundum balls and 34.8 cm3 of 

fine sand. The reactor was tapped frequently during loading to distribute the 

sand throughout the alundum balls in the reactor. A pan-shaped holder fitted 

with a 65-mesh screen (equivalent to 212 mm opening) was used to hold the 

alundum balls and sand in place. The HDM catalyst bed was not diluted with 

sand to avoid catalyst bed plugging due to coking of the large molecular weight 

species in the bitumen. The catalyst charge was 152 cm3 and was placed in the 

central region of the reactor. The reactor was tapped during catalyst loading to 

ensure proper packed density. The catalyst bed was held in place by a screen. 

Finally, 128.3 cm3 of alundum balls and 35.3 cm3 of sand were placed in the 

preheater zone. The reactor body was connected to the unit.

Pressure Test

The reactor system was pressure tested prior to catalyst sulfiding to 

minimize hydrogen leaks. The pressure test was conducted by increasing the 

BPRV pressure from atmospheric pressure to 6.9 MPa (1,000 psig) at 

atmospheric temperature. Nitrogen was used to pressurize the system. After 

the nitrogen pressure stabilized the system was isolated. The isolated section 

consisted of the line from the nitrogen regulator to the inlet of the reactor, the
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reactor and the line from outlet of the reactor to vapor-liquid separator and the 

line from vapor-liquid separator to the BPRV inlet line.

The unit pressure was monitored. If there was no loss of pressure over 

16 hours the system pressure was increased to 13.8 MPa (2,000 psig). The 

system pressure was monitored overnight (16 hours). If a significant leak was 

indicated in any segment of the unit, the line was removed, replaced and the 

pressure test was performed again. The BPRV section was also pressure 

tested. Once the system was pressure tight sulfiding could be performed.

Catalyst Sulfiding

The hydrotreating catalyst was presulfided in-situ before contact with the 

liquid feed. The catalyst sulfiding procedure consisted of contacting the catalyst 

with a sulfiding solution and hydrogen to reduce and sulfide the supported metal 

oxide component. After sulfiding, the active component of the metal in the 

catalyst changed from metal oxide to metal sulfide. The sulfiding solution was 2 

wt% dimethyldisulfide in kerosene. The kerosene was obtained from the Flying J 

Refinery in North Salt Lake City, Utah. The dimethyldisulfide used in this study 

was in a 99 vol% purity obtained from Aldrich Chemical Company, Inc. The 

solution was prepared in a hood due to the toxicity of dimethyldisulfide. A 4-liter 

bottle was filled with 2,400 g of kerosene and the desired amount of 

dimethyldisulfide solution (72 g) was added and stirred for an hour to form a 

completely mixed solution.

The catalyst sulfiding procedure was recommended by the manufacturer. 

The conditions were a system pressure of 6.2 MPa (900 psig), 890 m3(STP)/m3 

(5,000 ft3/bbl) hydrogen-to-oil ratio, and 1.0 h"1 liquid hourly space velocity 

(LHSV). A mass flow controller was used to maintain the feed rate and 

hydrogen-to-oil ratio. The sulfiding procedure is illustrated in Figure 3.9.



Figure 3.9 

Catalyst Sulfiding Sequence



Te
m

pe
ra

tu
re

 
[K

]

03



82

Sulfiding was started at ambient temperature and the catalyst was heated 

to 505 K (450°F) at a rate of 27.8 °C/h (50 °F/h). The catalyst was held at 505 K 

for 2 hours. At 478 K (400°F) sulfur uptake by the catalyst increases 

dramatically; thus, the extended period at 505 K was to ensure complete 

sulfiding of the catalyst. The initial set points for the three temperature 

controllers were 550 K (530°F) (bottom), 489 K (420°F) (middle) and 533 K 

(SOOT) (top). The heating rate was checked and adjusted every twenty minutes 

by monitoring the reactor temperature in the catalyst bed as the reactor heated 

up to 505 K. After holding the reactor temperature at 505 K for 2 hours, the 

completion of sulfiding was confirmed by the presence of hydrogen sulfide in the 

exit gas sampler. The hydrogen sulfide was detected by the color change of 

copper wool in the sampler from red to black.

The sulfiding solution feed was then stopped and the reactor temperature 

was lowered to 494-500 K (430-440°F). The bottom and top temperature 

controllers were set at 494 K (430°F). The middle section controller set point 

was kept at 489 K (420°F). The hydrogen feed was reversed to force the 

sulfiding solution out of the reactor and a small amount of hydrogen (mass flow 

meter reading was 2.0) was fed to the reactor to maintain hydrogen pressure 

overnight.

The low hydrogen flow was intended to avoid sulfur stripping by hydrogen. 

Subsequently, hydrogen was introduced to the reactor in the upflow mode at 890 

m3/m3 (5,000 scf/bbl) and the sulfiding solution was introduced to the reactor at 

1.0 h'1 LHSV. The reactor temperature was increased from 505 K (450°F) to 644 

K (700°F) at a rate of 27.8 K/h (50 °F/h). At 644 K the liquid pump was turned off 

and the hydrogen feed was reversed to flush the sulfiding solution out of the 

reactor and the reactor temperature was lowered to 617 K (650°F).
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Experimental Strategy and Reactor Startup

The effects of operating variables on the extent of denitrogenation, 

desulfurization, demetallation, residuum conversion and the product distribution 

and yields were determined. •

Initially, the catalyst was deactivated and stabilized for 8 days at the base 

case conditions; 642 K (696°F), 0.45 h'1 and 13.7 MPa (1980 psig). At this point 

it was assumed that the catalyst was stabilized because the change in °API 

gravity with time was negligible. When liquid product started to exit from the 

reactor system through Annin valve, it was considered to be zero time on 

stream. The conditions during the initial catalyst deactivation study are 

presented in Table 3.3. The initial catalyst deactivation, as a function of time on- 

stream is shown in Figure 3.10.

After the initial catalyst deactivation period, as indicated by the API gravity 

of the total liquid product, the process variable experiments were conducted in a 

cyclic mode. A specific operating variable experiment was performed followed 

by an experiment at the base case condition to determine if the catalyst 

deactivated during the process variable experiment.

In order to select the optimum operating conditions and to cover as many 

operating conditions as possible with a limited number of experiments, two 

variables were fixed while the other variable was varied within a reasonable 

range. A 3-D representation of the set of operating conditions used in this study 

is presented in Figure 3.11. The API gravities of the total liquid products 

produced in the process variable experiments and at the base case conditions 

with respect to time on-stream are presented in Figure 3.12. The process 

variable experiments were performed in a random manner to avoid systematic 

errors; that is, the same operating variable was not studied in sequence. The 

sequence of experiments performed in this study is presented in Table 3.4.
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Table 3.3

Conditions for Initial Catalyst Deactivation

Run No. T
K

(°F)

WHSVa
h'1

LHSV
h'1

P
MPa

(psig)

TOSb
h

D-1 641 (694) 0.90 0.53 13.7 (1987) 8
D-2 640 (693) 0.86 0.51 13.6 (1975) 29
D-3 641 (694) 0.86 0.50 13.7(1980) 53
D-4 640 (693) 0.86 0.50 13.6(1966) 74
D-5 640 (693) 0.82 0.48 13.5 (1955) 116
D-6 640 (693) 0.83 0.49 13.6(1975) 139
D-7 640 (693) 0.92 0.54 13.6 (1975) 167
D-8 642 (696) 0.78 0.46 13.7(1985) 188

a Weight hourly space velocity 
b Time elapsed since oil was started over catalyst



Figure 3.10 

API Gravity versus Time On-Stream
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Figure 3.11 

Operating Conditions Used in This Study
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Figure 3.12

Total Liquid Product API Gravities as a Function of Time On-Stream
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Table 3.4

Sequence of Experiments Performed

Run No. T, K (F) WHSV (LHSV), h'1 P, MPa (psig) TOS*, h

D-9 686 (775) 0.75 (0.44) 13.7(1987) 211
D-10 642 (697) 0.77 (0.45) 13.7(1980) 235
D-11 665 (737) 0.77 (0.45) 13.8 (1995) 259
D-12 643 (697) 0.78 (0.46) 13.6 (1975) 283
D-13 664 (736) 0.77 (0.45) 16.7 (2423) 306
D-14 642 (696) 0.78 (0.46) 13.6(1975) 334
D-15 666 (739) 0.24 (0.14) 13.6(1971) 405
D-16 642 (696) 0.77 (0.45) 13.7(1984) 426
D-17 665 (737) 0.77 (0.45) 11.3 (1634) 450
D-18 642 (697) 0.77 (0.45) 13.6 (1972) 475
D-19 665 (738) 0.43 (0.25) 13.7 (1983) 525
D-20 653 (716) 0.77 (0.45) 13.6 (1974) 561
D-21 665 (737) 0.76 (0.45) 15.3 (2220) 584
D-22 642 (696) 0.76 (0.45) 13.7 (1988) 631
D-23 673 (752) 0.76 (0.44) 13.7(1989) 656
D-24 642 (695) 0.78 (0.46) 13.6 (1977) 681
D-25 662 (732) 1.38 (0.81) 13.6(1978) 705
D-26 642 (696) 0.78 (0.46) 13.6(1972) 727
D-27 685 (773) 0.76 (0.45) 13.7(1984) 750
D-28 641 (694) 0.77 (0.45) 13.7 (1981) 775
D-29 620 (656) 0.77 (0.45) 13.7 (1980) 799
D-30 641 (695) 0.79 (0.46) 13.6 (1976) 827

Production Run of 18 °API Total Liquid Product.
D-31 686 (775) 0.66 (0.39) 13.5(1965) 849
D-32 686 (774) 0.70 (0.41) 13.5 (1962) 870
D-33 685 (773) 0.75 (0.44) 13.5 (1960) 895
D-34 687 (777) 0.75 (0.44) 13.5(1957) 919
D-35 695 (792) 0.76 (0.44) 13.5 (1954) 943
D-36 698 (797) 0.66 (0.39) 13.6 (1972) 966
D-37 697 (796) 0.61 (0.36) 13.6 (1972) 992

8 Time on-stream.
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The API gravities of the hydrotreated products were determined according 

to the Syncrude Analytical Method [134].

Operating Procedure

Daily experimental operations consisted of a mass balance followed by 

changing the reaction conditions for overnight unattended operation. It was 

assumed that the catalyst activity at each reaction condition was stabilized after 

overnight operation (16 hours) and that representative samples were taken 

during the subsequent mass balance.

Massf Balances

A representative sample was collected for subsequent analysis at a 

specific set of reaction conditions during each mass balance. The mass balance 

procedure was as follows:

• The gas chromatograph was activated and the sample collection system 

was prepared to acquire a sample of the gas from vapor-liquid separator. 

The procedure is described in Product Oil and Gas Analysis Section.

• The empty Erlenmeyer liquid sample collection flask (500 cm3) and the 

condensable vapor collection tube (60 cm3) were weighed.

• The liquid feed level in the large burette and the time were recorded and 

the constant overnight feed rate was calculated. It was assumed that the 

catalyst activity was at steady state since it had been at run conditions for 

more than 16 hours.

• Deionized water was boiled for the bath in which API gravity of the liquid 

product collected during mass balance would be measured.
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• The hydrogen cylinder pressure was checked. If the hydrogen cylinder 

pressure was below 5.5 MPa (800 psig), all three cylinders were replaced.

• The small burette was filled with bitumen from the storage drum and the 

pump feedline was switched from the large to the small burette for the 

mass balance. The initial volume of feed in the small burette and the 

starting time of the mass balance were recorded. The liquid sampler was 

connected to the product line.

• The temperature profile along the catalyst bed was recorded. The 

detailed procedure is described in the following section (Temperature 

Measurement). A gas sample from the liquid-vapor separator line was 

collected and injected into the GC for analysis.

• The gas collector in the liquid nitrogen trap to the product line was 

connected and a gas sample was collected. The gas sample was 

collected over 1 hour and the gas flowrate was measured with the wet test 

meter (Precision Scientific, Inc.). The atmospheric pressure and 

temperature were recorded and the volumetric hydrogen flowrate exiting 

the reactor at STP was calculated. A gas sample collected from the liquid 

nitrogen trap vent line was injected for GC analysis.

• The gas collector and the liquid nitrogen trap were removed from the unit. 

The amount of gas collected in the liquid nitrogen trap was determined 

and the rate of gas production was measured.

• A representative liquid sample was collected for 3 to 4 hours. The liquid 

collection reservoir was disconnected from the system and was replaced 

by a polypropylene container (19 liter (5 gallon)) for overnight operation. 

The liquid level in the small burette was recorded and the LHSV during 

the mass balance was calculated. The mass balance was calculated from
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the gas and liquid products collected. All wt% mass balances were in the 

range 98 to 100 wt% in this study.

• The reaction conditions were changed to those selected for the next 

experiment. The conditions were checked frequently so that the catalyst 

system would be equilibrated for the following day’s mass balance.

• The hydrogen and oxygen flow to the GC were discontinued and the GC 

was turned off. Helium flow was continued for 2 hours until the column 

temperature returned to ambient.

• The API gravity of the total liquid product was determined to assess the 

deactivation of the catalyst as a function of the time on-stream.

The temperature profile of the catalyst bed was measured along the axis 

of the reactor with a movable J-type thermocouple. The thermocouple moved 

inside of the 0.05 cm (1/8 in) O.D. thermowell to measure the temperature in the 

catalyst region. The three heating elements in the furnace were controlled to 

give a uniform temperature throughout the reactor length. A typical experimental 

catalyst bed temperature profile is presented in Figure 3.13. The temperature 

profile along the length of the catalyst region was almost isothermal. The kinetic 

average temperature was calculated from the temperature profile.

The kinetic average temperature (TM) is the temperature of an isothermal 

reactor required to give the same conversion obtained in a nonisothermal 

reactor. The following equation was used to calculate the kinetic average 

temperature:

(3-2)



Typical Temperature Profiles in the Catalyst Zone

Figure 3.13
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where, T(l) is the measured axial temperature gradient across the reactor; R is 

the gas constant; I is the length of the reactor at each measurement; L is the 

total length of the reactor; and E# is the activation energy.

The kinetic (Tke) and arithmetic average temperatures (Tae) were 

calculated as follows;

The activation energy for hydrodenitrogenation of bitumen-derived liquid, 

Ea=106 kj/mol, was determined in a previous study [18] and was used here to 

calculate the kinetic average temperature. The kinetic average temperature is 

not strongly dependent upon the value of the activation energy, Ea. This 

assumption should be valid because T ^ p T ^ -T ^  is small as can be seen in 

Figure 3.13. The calculation was based on Trapezoidal Rule using the weighting 

functions.

The arithmetic average temperature was only slightly higher (0.06 K 

(0.1°F) at most) than the kinetic average temperature. Thus, the reactor 

operated essentially isothermally.

(3-3)

(3-4)

Sample Purging

f  he total liquid product samples collected during the mass balances were 

purged to remove H2S and NH3 which were dissolved in the hydrotreated liquid
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so as to minimize the uncertainty when elemental analyses of these samples 

were performed.

About 25 g of the total liquid product was placed in a 60 cm3 test tube 

fitted with a side arm. The test tube was placed in a 250 ml Erlenmeyer flask 

containing 175 cm3 of water. The ammonia and hydrogen sulfide were stripped 

from the sample with helium at a flowrate of 50 cm7min. The helium was 

bubbled through the sample for 4 hours while the water in the flask was boiling. 

The purged liquid and the stripped light ends which were recovered in a cold 

water trap were mixed to form the final sample. These samples were sent to the 

Galbraith Lab for elemental analysis.

Overnight Operating Procedure

After completion of each mass balance and the collection and preparation 

of material balance samples, the temperature and pressure were reset for the 

next experiment. The space velocity was adjusted because the feed rate was 

affected by the temperature and pressure adjustments. The total liquid product 

was collected overnight in 19 liter (5 gallon) plastic container and the catalyst 

attained a steady state at the new reactor conditions. Even though the system 

was designed to operate unattended overnight, it was periodically checked to 

minimize the possibility of reactor upsets.

Shutdown

After the conclusion of the process variable study a high temperature 

(775-797 K (685-698T)) and low LHSV (0.36-0.43 h'1) run was made to produce 

a high API gravity (18 °API) total liquid product for subsequent hydrocracking 

and catalytic cracking experiments. After 150 hours on-stream in the production 

run the compressor failed, hydrogen flow was lost and, severe coking occurred
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in the reactor inlet region; thus the bitumen hydrotreating run (Run D) was 

terminated.

All heat tracing lines were shut off and the system was allowed to return 

to the ambient temperature. In addition, the reactor pressure was slowly 

decreased. Kerosene was pumped through the reactor to flush out the bitumen- 

derived heavy oil. The kerosene flush was discontinued when the color of the 

liquid exiting from the system changed from black to yellow. Hexane was used 

as a second flush solution at a reactor temperature of 400 K and a reactor 

pressure of 1.4 MPa (200 psig). The hexane was pumped through the system 

until the liquid exiting from the system was colorless. The catalyst was then 

dried in flowing nitrogen and cooled to ambient temperature.

The reactor was disconnected and removed from the system and the 

catalyst was removed from the reactor. The catalyst particles were no longer 

individual pellets but rather were fused due to severe external coking. It was 

presumed that the coking took place at the time of the compressor failure.

The gas samples produced during mass balances were analyzed by gas 

chromatography. The liquid samples were analyzed by simulated distillation. 

Carbon, hydrogen, nitrogen, sulfur, and metals contents were determined along 

with pour point, Conradson carbon residue, and composition-type analyses.

Gas Product Analysis

The gas from the high pressure vapor-liquid separator was analyzed with 

a Carle Analytical GC Series SX , Model 211 (FID) (Carle Instruments, Inc.), 

which was connected to IBM AT computer for integration. The Carle GC was

Product Gas and Liquid Analysis
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turned-on each day as part of the mass balance procedure. The helium flow 

pressure was then started at 0.37 MPa (53 psig) when the column temperature 

reached 331 K. When the column temperature reached (331 K), the hydrogen 

flow was started at 0.07 MPa (10 psig) above the run pressure, 32 psig. The 

FID was ignited after purging the hydrogen line, for 1 to 2 minutes. The air flow 

was started at 20 psig and the hydrogen flow pressure was reduced to the 

normal operating pressure (0.22 MPa (32 psig)). Two gas samples from the 

system were injected, one was taken at a point before the gas collector and the 

other was taken from after the gas collector in the liquid nitrogen trap. These 

two samples were necessary because the liquid nitrogen trap did not collect a 

small amount of the light hydrocarbon gases, methane and ethane. This 

observation was factored into the calculation of hydrogen consumption.

The FID response factors were used to correct the GC analysis [135]. 

The FORTRAN program called HYDROGEN.FOR was written to calculate 

hydrogen consumption for various mass balance and is presented in Appendix 

A.

Liquid Product Analysis 

Simulate istillation

Th olecular weight distribution of the liquid products was determined by 

simulated distillation using a Hewlett Packard 5890 Series II Gas Chromatograph 

with an HP 3396 Series II Integrator and an HP 7673 Controller. The GC was 

connected to an IBM XT Personal Computer for data logging. A Fused Silica 

Capillary Column, 5 m long and 0.53 mm ID with a 0.1 mm thick film, by Supelco 

Inc., was used to separate the sample to carbon number 60 (CJ. The column 

was calibrated using an HP boiling point calibration sample No. 1, for the C5 to 

Qk, paraffins and Supelco, Inc. boiling point calibration sample for paraffins up to
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CgQ. The column retention time calibrations were performed three times before 

bitumen and hydrotreated total liquid product analyses were performed. The 

normal paraffin boiling point distributions corresponding to carbon numbers were 

obtained from the literature [136]. Then tabulated retention times for the paraffin 

standard samples were used in the program, SIMDIS.BAS, which is described in 

Appendix B. The oven temperature program was started at 308 K and held at 

this temperature for 4.5 minutes. The oven was then heated at the rate of 12 

°C/h until the final temperature of 653 K was reached and maintained for 8.75 

minutes. The same program was used for both the sample and blank runs. The 

hydrotreated liquid sample was warmed and dichloromethane (EM Science Co.) 

was added to obtain a representative sample for GC injection.

The simulated distillation procedures for the hydrotreated total liquid 

products were repeated in the following manner:

• First conditioning run

• First blank run

« Sample only xm j

• Second conditioning run

• Second blank run

• Sample and^ernal standard run

Column conditioning was required after a sample injection to remove all 

uneluted materials left on the column owing to the heavy nature of the 

hydrotreated total liquid product.

The initial oven temperature for the conditioning run was 308 K. The oven 

was then heated at 50 °C/h to 653 K and temperature was maintained at 653 K 

for 90 minutes to remove the uneluted material from the previous run.
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Blank runs were also necessary after conditioning to obtain the stabilized 

base lines. The Basic program called ZEROBLNK.BAS was written to subtract 

the baseline from the sample peak. The sample plus internal standard run was 

conducted to the correct retention times for the high carbon number materials. 

The C14 through C17 paraffin mixture was used as an internal standard. The 

weight ratios for mixtures of the bitumen, the hydrotreated total liquid product 

and the internal standard are tabulated in Table 3.5. About 10 hours were 

required to analyze one sample.

The raw data acquired from the GC, which has ".BNC" extension and was 

not readable by IBM PC, ( • In te g ra te d  using a Basic program called 

SLICE6.BAS and resulted in files which had ".RPT" extension. The .RPT 

extension files were readable by an IBM PC, and through the SIMDIS.BAS 

program in the PC, they were transferred into ASCII text files and tabulated. The 

basic programs including SIMDIS.BAS and ZEROBLNK.BAS are shown in 

Appendix A.

Elemental Analysis

The bitumen feed and the hydrotreated total liquid products were sent to 

Galbraith Laboratory, Inc. for elemental analysis. The analyses performed 

included carbon, hydrogen, nitrogen, sulfur, nickel, vanadium, and arsenic. The 

hydrotreated samples were nitrogen and sulfur stripped prior to analysis to 

remove dissolved ammonia and hydrogen sulfide.

The nitrogen analysis was conducted on a LECO FP-428 Nitrogen 

Analyzer (50-100 mg sample size). The range of the instrument was 0.1 to 100 

wt% nitrogen with a reproducibility of ±0.1 % [137].

The sulfur analysis was done by an Oxygen Bomb/ion Chromatography 

method [138,139] due to the low ppm range, 0-3500 ppm of the samples. A



Mixture Ratios for Internal Standard and Representative Samples

Table 3.5

Sample I.D. Amount of Sample Amount of Internal Standard
[wt%] [wt%]

Feed+IS 74.2 25.8
D-11+IS 69.5 30.5
D-13+IS 66.4 33.6
D-15+IS 64.3 35.7
D-17+IS 68.6 31.4
D-18+IS 73.7 26.3
D-19+IS 65.6 34.4
D-20+IS 67.7 32.3
D-21+IS 65.5 34.5
D-23+IS 67.7 32.3
D-25+IS 75.0 25.0
D-27+IS 68.7 31.3
D-29+IS 69.2 30.8



104

Dionex Model 10/14 Ion Chromatograph was used. Carbon and hydrogen 

analyses were performed with a Perkin-Elmer 240 Elemental Analyzer [140]. 

The amount of arsenic of the feed was in the ppm range and was analyzed by 

Atomic Absorption Spectroscopy using a Perkin Elmer 5000 AA; and a HGA 500 

Graphite Furnace [141,142], The nickel and vanadium analyses were performed 

by Inductively Coupled Plasma Emission Spectroscopy using a Perkin-Elmer P II 

instrument [143,144].

Pour Point and Conradson Carbon Residu surement

Conradson carbon residues were mea according to ASTM D 189-IP 

13 [145], The pour points were measured by the Pycnometer Method described 

in the Syncrude Analytical Methods Handbook [134],



CHAPTER 4

RESULTS AND DISCUSSION

This chapter describes the extent of heteroatom removal, residuum 

conversion, product distributions and yield of hydrotreated Whiterocks bitumen 

over a commercial HDM catalyst as a function of process variables. Also, a 

comparison of bitumen hydrotreating over a small pore (HDN) catalyst [18,146] 

and a large pore (HDM) catalyst was generated to determine the effect of metal 

loading and pore size distribution on hydrotreating. This comparison is based on 

two experiments in which bitumen was hydrotreated at similar conditions [18, 

146]. The kinetics of nitrogen, sulfur and residuum conversion for the 

hydrotreating of a bitumen-derived heavy oil over the HDN catalyst will also be 

discussed [18,147]. The Whiterocks bitumen-derived heavy oil was produced in 

a fluidized-bed pyrolysis reactor [18,147,148].

Properties of Bitumen. Bitumen-Derived Liquid and Hvdrotreated Products 

, „ •  over HDM and HDN Catalysts

There are significant differences in the properties between commercial 

HDM and HDN catalysts as indicated in Table 4.1. The HDM catalyst has 

double the median pore diameter and less than half of the metal loadings as the 

HDN catalyst.

The large pore diameter of the HDM catalyst diminishes deactivation due to 

coke formation and metal deposition relative to the HDN catalyst for a fixed
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Table 4.1

Properties of UNOCAL Quadralobe HDM and HDN Catalysts

HDM Catalyst HDN Catalyst 
[18,147-149]

Pore Volume, cc/g
(by Mercury Porosimetry) 0.72 0.55
Surface Area, m2/g 155 241
Mean Pore Diameter, A 180 90
Average Characteristic Dimension, cm 0.16 0.16

Mo0 3, wt% 6.2 12.8
NiO, wt% 1.0 3.3
P20 6, wt% 0.0 0.8

Unimodal Pore Structure yes yes
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feedstock and set of operating parameters. It also reduces the diffusion barrier 

to the transport of heteroatoms, metal compounds and residuum molecules to 

the interior, active surface of the catalyst. Quann et al. [27] reported that metal 

removal reactions in conventional 0.16 cm (=1/16 inch) hydrotreating catalysts 

are generally diffusion limited.

The metals in the catalyst serve as sites for catalytic hydrogenation in the 

hydrotreating process. Therefore, the lower surface area and metals loading of 

the HDM catalyst was expected to exhibit lower catalytic activity than higher 

metals content HDN catalyst. An HDM catalyst also has a larger pore volume. 

The UNOCAL HDM and HDN catalysts were quadralobe shaped extrudates with 

unimodal pore structures. The quadralobe catalyst was selected for this study 

since it has been demonstrated that shaped catalysts exhibit improved diffusion 

characteristics relative to cylindrical extrudates [71].

Selected physical and chemical properties of the feedstocks are 

presented in Table 4.2. The analyses indicate that the two bitumen samples 

were quite similar. The bitumen-derived liquid contained significantly less 

residuum than the bitumen samples as indicated by simulated distillation 

analysis and it had only about 31% of the residuum content of the bitumen.

The differences in the feedstocks are also reflected in the Conradson carbon 

residues (CCR) and the asphaltene contents. The asphaltene contents were 

determined as pentane insolubles in this study. The Conradson carbon residue 

and the asphaltene content of the bitumen-derived liquid were 79% and 64%; 

respectively, of the values determined for the bitumen. Elemental analyses 

indicated that the pyrolysis process in which the bitumen-derived heavy oil was 

produced resulted primarily in molecular weight and boiling range reduction 

without selective deposition of heteroatomic species in the carbonaceous 

residue; however, nickel compounds were deposited in the carbonaceous
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Table 4.2

Selected Feedstock Properties

Whiterocks 
Bitumen 

over 
HDM Catalyst

Whiterocks 
Bitumen 

over 
HDN Catalyst 
[18,146,149]

Whiterocks 
Bitumen-Derived 

Liquid over 
HDN Catalyst 
[18,147,149]

Liquid Gravity, °API 11.7 11.4 18.5
CCR, wt% 10.2 8.8 8.1
Pour Point, K{°F) 319(115) 330(135) 250(-10)
Asphaltenes3, wt% 4.4 5.0 2.8

Simulated Distillation
Volatility, wt% 42.2 43.3 82.2
Cs-478 K(400°F), wt% 1.9 0.0 4.9
478 K(400°F)-616 K(650°F), wt% 6.0 6.3 42.2
616 K(650°F)-811 K(1000°F), wt% 34.3 37.0 35.6
>811 K(1000°F), wt% 57.8 56.7 17.8

Elemental Analysis
C, wt% 85.1 85.5 85.9
H, wt% 11.6 11.0 11.1
N, wt% 1.3 1.1 1.0
S, ppm 3334 3700 3200
Ni, ppm 72 78 9
V, ppm <10 4 <1
As, ppm 3 3 3

H/C Atomic Ratio 1.6 1.5 1.6

a Pentane Insolubles



residue.

The processing conditions required to hydrotreat the bitumen were more 

severe than those required for the bitumen-derived liquid. The process 

operating variable range for bitumen hydrotreating over both the HDM and HDN 

[18,146,149] catalysts and for bitumen-derived liquid hydrotreating over the HDN 

catalyst [18,147,149] are summarized in Table 4.3 and in Figure 4.1.

The extent of nitrogen removal was the key reactivity parameter followed 

during the course of this study; however, the key operating parameter followed 

on the catalyst testing unit during the run was the specific gravity of the total 

liquid product. The nitrogen content of the total liquid products produced during 

hydrotreating the Whiterocks bitumen and bitumen-derived liquid over HDM and 

HDN catalysts is plotted as a function of API gravity in Figure 4.2. The similarity 

between the trends indicates that the nitrogen-gravity correlation for the 

hydrodenitrogenation of bitumen and bitumen-derived liquid could be used with 

confidence as an online guide to estimate the real time influence of changes in 

operating variables during the course of the study.

Although the bitumen-derived liquid data [18,147] were obtained under 

the same sets of conditions as the bitumen data [18,146], the hydrotreated 

bitumen-derived liquid samples are clustered at lower product nitrogen levels 

than the hydrotreated bitumen samples. Clearly, the bitumen nitrogen is more 

refractory than the bitumen-derived liquid nitrogen. The difference is most likely 

due to the higher molecular weight of the bitumen.
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Table 4.3

Process Operating Variable Ranges and Base Case Conditions 

for Bitumen and Bitumen-Derived Liquid Hydrotreating

Bitumen Bitumen-Derived Liquid 

[18,146,149] [18,147,149]

Base Case Conditions

Temperature, K(°F) 642(696) 618(653)

Pressure, MPa(psia) 13.7(1980) 13.7(1980)

WHSV, h 1 0.76 0.78

LHSV, h 1 0.45 0.48

Process Variable Ranaes

Temperature, K(°F) 616-711(650-820)

Pressure, MPa(psia) 11.0-16.9(1600-2450)

WHSV, h'1 0.24-1.38

LHSV, h 1 0.14-0.81
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Figure 4.1

Operating Conditions for Bitumen and Bitumen-Derived Liquid 

Hydrotreating over HDM and HDN Catalysts
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Figure 4.2

Nitrogen Concentration versus Total Liquid Product API Gravity



Ni
tro

ge
n 

Co
nc

en
tra

tio
n 

[w
t%

]

114

1.4

1.2

0.8

0.6

0.4 -

0.2

0
5 10 15 20 25 30 35

API Gravity

•  Bitumen HT over an HDM Catalyst

O Bitumen HT over an HDN Catalyst [18,146]

+  Bitumen-Derived Liquid HT over an HDN Catalyst [18,147]



115

Hydrotreated Bitumen over an HDM Catalyst

The chemical and physical properties of the hydrotreated total liquid 

products produced from bitumen and bitumen-derived liquid at various reaction 

conditions over an HDN catalyst were reported by Longstaff and co-workers 

[18,147-149].

The total liquid products produced were upgraded relative to the bitumen 

(Tables 4.4 through 4.6) as a result of hydrotreating the bitumen over an HDM 

catalyst. The HDM catalyst selectively removed nickel in the feed under all 

reaction conditions. The maximum nickel removal was 81.8% at low WHSV,

0.24 h'1 and a temperature of 666 K. Sulfur removal occurred to a greater extent 

than nitrogen removal which seems to be reasonable considering the need for 

hydrogenation of the ring prior to nitrogen removal. Sulfur removal ranged from 

14.9% to 77.4% whereas nitrogen removal ranged from 2.3% to 29.0%. It is 

interesting to note that at the least severe conditions there appeared to be an 

increase in the sulfur content of the hydrotreated total liquid product relative to 

the bitumen. This may be related to the low sulfur content in the feed. The 

maximum Conradson carbon residue conversion, 43.4%, was achieved at low 

WHSV of 0.24 h'1 and a temperature of 666 K.

The pour point of the total liquid product was 279 K at 685 K whereas it 

was 319 K for the bitumen. This change indicated that the HDM catalyst 

exhibited little cracking activity under the conditions used in this study. The API 

gravity was increased from 11.7 to 18.3 °API at low WHSV of 0.24 h \  Residuum 

conversion ranged from 10.6% to 61.2%.
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Elemental Analysis of the Bitumen and the Hydrotreated Total Liquid Products 

Produced over a Commercial HDM Catalyst

Table 4.4

Run Temperature Pressure WHSV C H N S Ni H/Ca
I D. [K] [MPa] [h'1] [wt%] [wt%] [wt%] [ppm] [ppm] [-]

Whiterocks Bitumen 85.1 11.6 1.29 3334 72 1.6

Temperature:
D-29 620 13.7 0.77 85.3 11.4 1.23 4220 39 1.6
D-18 642 13.6 0.77 85.4 10.7 1.21 2390 40 1.5
D-20 653 13.6 0.77 86.1 11.6 1.26 2720 55 1.6
D-11 665 13.8 0.77 85.5 11.8 1.15 2030 23 1.7
D-23 673 13.7 0.76 85.5 11.7 1.14 1930 25 1.6
D-27 685 13.7 0.76 85.8 11.3 1.10 2220 30 1.6

Pressure:
D-17 665 11.3 0.77 85.8 12.0 1.21 2140 31 1.7
D-11 665 13.8 0.77 85.5 11.8 1.15 2030 23 1.7
D-21 665 15.3 0.76 85.4 11.6 1.16 1880 25 1.6
D-13 664 16.7 0.77 85.9 11.9 1.14 1980 22 1.7

WHSV:
D-15 666 13.6 0.24 86.2 12.2 0.96 790 14 1.7
D-19 665 13.7 0.43 85.4 11.5 1.20 1720 20 1.6
D-11 665 13.8 0.77 85.5 11.8 1.15 2030 23 1.7
D-25 662 13.6 1.38 85.6 11.2 1.20 2850 33 1.6

Atomic Ratio
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Selected Properties of the Bitumen and the Hydrotreated Total Liquid Products

Table 4.5

Produced over a Commercial HDM Catalyst

Run Temperature Pressure WHSV 
I.D. [K] [MPa] [h1]

Conradson 
Carbon Residue 

[wt%]

Pour Point 

[K]

API
Gravity
[°API]

Whiterocks Bitumen 10.2 319 11.7

Temperature:
D-29 620 13.7 0.77 10.1 315 12.7
D-18 642 13.6 0.77 9.4 307 13.7
D-20 653 13.6 0.77 9.2 299 14.2
D-11 665 13.8 0.77 8.5 287 15.2
D-23 673 13.7 0.76 8.1 283 16.1
D-27 685 13.7 0.76 7.6 279 18.0

Pressure:
D-17 665 11.3 0.77 8.6 288 14.9
D-11 665 13.8 0.77 8.5 287 15.2
D̂ 21 665 15.3 0.76 8.4 287 15.3
D-13 664 16.7 0.77 8.0 284 15.5

WHSV:
D-15 666 13.6 0.24 6.1 281 18.3
D-19 665 13.7 0.43 7.9 284 15.9
D-11 665 13.8 0.77 8.5 287 15.2
D-25 662 13.6 1.38 8.9 295 14.0



Table 4.6

Yield of Distillate Fractions Produced in Bitumen Hydrotreating over an HDM Catalyst

Run Temperature Pressure WHSV C,-C4 Cs-478 K 478-616 K 616-811 K > 811K H2 consumption
I.D. [K] [MPa] [h1] [wt%] [wt%] [wt%] [wt%] [wt%] [I/I]

Feed Composition - 1.9 6.0 34.3 57.8
Temperature:
D-29 620 13.7 0.77 1.5 0.7 6.7 38.8 52.2 6
D-18 642 13.6 0.77 1.2 4.8 7.2 40.9 46.5 24
D-20 653 13.6 0.77 0.8 1.1 8.7 44.0 44.1 31
D-11 665 13.8 0.77 1.3 1.5 10.2 48.2 38.1 41
D-23 673 13.7 0.76 2.0 1.5 13.1 51.1 31.9 47
D-27 685 13.7 0.76 3.3 5.3 15.4 49.5 25.9 55
Pressure:
D-17 665 11.3 0.77 1.7 5.0 9.4 43.7 38.9 28
D-11 665 13.8 0.77 1.3 1.5 10.2 48.2 38.1 41
D-21 665 15.3 0.76 1.2 4.0 9.7 48.0 36.8 43
D-13 664 16.7 0.77 1.3 6.2 10.7 45.6 34.7 66
WHSV:
D-15 666 13.6 0.24 3.8 3.1 15.2 52.6 23.5 75
D-19 665 13.7 0.43 2.4 1.5 10.7 52.5 32.5 48
D-11 665 13.8 0.77 1.3 1.5 10.2 48.2 38.1 41
D-25 662 13.6 1.38 0.9 1.8 8.4 42.1 46.5 31
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Upflow Mode Operation

Laboratory-scale catalytic reactors are frequently used to simulate 

commercial reactors. However, plug-flow operation is difficult to attain in the 

trickle-bed mode due to low length-to-diameter ratios of laboratory-scale reactors 

[89,95,99,150,151]. The reactor diameter used in this study was 2.54 cm and 

the catalyst was confined to a section of the reactor 30.4 cm long which gave a 

reactor diameter-to-catalyst particle diameter ratio of 16. It has been reported 

[89] that hydrodynamic problems associated with liquid distribution and wall flow 

decrease with an increase in the reactor diameter-to-particle diameter ratio 

above 10. A reactor diameter-to-particle diameter ratio of 16 would have been 

expected to have been sufficient to ensure minimal liquid distribution and wall 

effects for intermediate petroleum feedstocks (“API gravity > 20 °API). However, 

heavy oils (°API gravity >10 °API; \i < 10,000 cps) and bitumens (“API gravity < 

10 °API; jj > 10,000 cps) may exhibit coning and incomplete wetting of the 

catalyst even when the reactor diameter-to-particle diameter is 16. The criterion 

for minimum reactor length which minimizes axial dispersion in shallow, trickle- 

bed reactors was developed by Mears [108] and is given by Equation (4-1):

L 20n. Cf 
> — ln ^ -  (4--I)dg Bo Cp

where L is the length of reactor bed, d, is the equivalent spherical diameter of the 

catalyst particles, n is the order of reaction, Bo is the Bodenstein number or the 

liquid particle Peclet number, C, is the feed concentration, and Cp is the product 

concentration. The Mears criterion [108] was used to assess the feasibility of 

operating the laboratory reactor used to study the hydrotreating of bitumen and
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bitumen-derived liquid in the trickle-bed mode. Even though the criterion was 

satisfied for downflow or trickle bed operation, the low superficial mass velocities 

in the reactor may lead to inefficient catalyst utilization, especially for shaped 

catalysts [110]. Wind et al. [110] proposed that reversing the direction of liquid 

flow from downflow to upflow in a laboratory-scale reactor would improve 

catalyst utilization comparable to that attained in commercial units. It also was 

shown that the utilization of shaped catalysts would vary less in the upflow than 

in the downflow mode owing to improved wetting, reduced channelling and 

reduced back-mixing. Thus, the upflow mode which improves catalyst utilization, 

eliminates channelling and simulates commercial downflow reactor behavior was 

chosen for these studies.

The rate expressions for hydrodenitrogenation, hydrodesulfurization and 

hydrodemetailation contain a power-law dependence on hydrogen partial 

pressure. It was, therefore, necessary to estimate the hydrogen partial pressure 

at the various process operating conditions.

Vapor phase hydrogen fugacities were determined using the Grayson- 

Streed method [152]. Flash calculations were performed using the Process 

Simulation Program developed by Simulation Sciences Inc. [153] and 

parameters calculated by Longstaff [18,146,147] and Hwang [154]. The 

calculations indicated that vapor phase was predominately hydrogen (Table 4.7) 

at the reaction conditions employed to hydrotreat the Whiterocks bitumen and 

bitumen-derived liquid. This is mainly due to the H/oil ratio (=890 m3/m3; 5,000 

scf/bbl) used in this study.

Plua-Flov “ itions
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Table 4.7

Influence of Operating Variables on Vapor Composition during Bitumen 
Hydrotreating over an HDM Catalyst

Run Temperature Pressure WHSV Vapor Liquid H2
I.D. [K] [MPa] [h1] [mol%] [mol%] [mol%

in vapor]

Temperature: 
D-29 620 13.7 0.77 94.6 5.4 98.8
D-18 642 13.6 0.77 94.6 5.4 97.3
D-20 653 13.6 0.77 94.3 5.7 98.2
D-11 665 13.8 0.77 94.1 5.9 98.2
D-23 673 13.7 0.76 94.2 5.8 98.0
D-27 685 13.7 0.76 94.4 5.6 96.3

Pressure;
D-17 665 11.3 0.77 95.0 5.0 96.2
D-11 665 13.8 0.77 94.1 5.9 98.2
D-21 665 15.3 0.76 93.9 6.1 97.6
D-13 664 16.7 0.77 93.7 6.3 96.0

WHSV:
D-15 666 13.6 0.24 94.2 5.8 96.4
D-19 665 13.7 0.43 94.0 6.0 98.0
D-11 665 13.8 0.77 94.1 5.9 98.2
D-25 662 13.6 1.38 94.3 5.7 98.6
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Evaluation of Plug-Row Assumption

The plug-flow assumption for the upflow operating mode was evaluated 

using two models; one assumes plug-flow and a second accounts for possible

deviations from plug-flow [95,99].

Plua-How nth Order/Kinetics

The rate expressions for heteroatom removal contain a power-law 

dependence on hydrogen partial pressure. The rate expression for nth order

plug-flow is given by:

where C, is an appropriate representation of the bitumen or bitumen-derived 

liquid concentration, k is the apparent rate constant, n is a reaction order, PĤ is 

hydrogen partial pressure and 3 is a power term for hydrogen partial pressure. 

The solution of the plug-flow equation for nth order kinetics is given by:

k P.!
<«>

1 1 (n - 1) k P4 _ 1
fMi-i r>n-1 \a/uq\/ for n*1 (4-4)

Iprod '■'Weed WHbV

where k = k0 exp (- - J - ), n is reaction order, Ci(eed is the feed concentration, Ciptod 
RT 1 ’

is the product concentration, kD is the pre-exponential factor, E is the apparent 

activation energy and R is the Universal gas constant.
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Nonplua-Flow nth Order Kinetics J .

Yui and Sanford [95,99] recommended that the WHSV should be replaced 

by WHSV“ to compensate for deviations from plug-flow behavior. These 

deviation arise because of the lower superficial mass velocities achieved in the 

laboratory-scale reactors relative to those obtained in the commercial reactor 

when it was operated in a trickle-bed mode. The integrated equation for 

nonplug-flow, nth order kinetics is given by

r  k Pp°I,feed _  *  H2 ,a
Cltroa WHSV“ ,0r n=1 ( ‘ ’

1 (n - l)k P '

c £ ,  WHSV“ forn* 1 <4' 6)

where k = k0 exp (- ^ ).

The kinetic parameters were determined by a nonlinear regression 

technique which used the Levenberg-Marquardt method [155]. Subroutines from 

the MINPACK package were used [156]. The results, presented in Table 4.8, 

indicated that the exponent (a) on the WHSV was very close to 1 for the 

hydrotreating of bitumen and bitumen-derived liquid over both HDM and HDN 

catalyst when the reactor was operated in the upflow mode. Thus, the plug-flow 

equation was valid for use in this study. The fact that the value of a was slightly 

greater than one is attributed to experimental error.

Furthermore, when the terms on the left-hand side in Equations (4-3) 

through (4-6) are plotted against (1/WHSV) or 1/(WHSV)“ , the resulting straight 

lines should pass through the origins if the plug-flow assumption is valid. The 

plots for heteroatom removal for the bitumen-derived liquid and the bitumen 

(Figure 4.3) demonstrate that the fixed-bed catalytic reactor used in this study
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Values of the Power a on the Space Velocity to Account for Deviations
from Plug-Flow Operation

Empirical Power Term 

for Space Velocity

Table 4.8

Bitumen Hvdrotreatlna over an HDM Catalyst

Hydrodenitrogenation /, 0.99

Hydrodesu If u rization 1.00

Residuum conversion 0.97

Hydrodemetailation (Ni Removal) 0.92

Bitumen Hvdrotreatina over an HDN Catalyst

Hydrodenitrogenation 1.05

Hydrodesulfurization 1.08

Residuum conversion 0.97

Bitumen-Derived Liquid Hvdrotreatina over an HDN Catalyst

Hydrodenitrogenation 0.95

Hydrodesulfurization 1.01

Residuum conversion 0.98
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Figure 4.3

Test of Plug-Flow Assumption for HDN and HDS of Bitumen and 

Bitumen-Derived Liquid over an HDN Catalyst
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operated under plug-flow conditions when the feed was introduced in upflow 

mode. Thus, the plug-flow assumption is valid for the upflow operating mode in 

the laboratory-scale reactor and the plug-flow equation (4-3) was used to 

analyze the data.

Alternative Kinetic Representation

Nickel removal from bitumen over an HDM catalyst and HDS for bitumen 

and HDN for bitumen-derived liquid over an HDN catalyst exhibited reaction 

orders greater than one when the data was analyzed by an nth order kinetic 

approach. Also, residuum conversion for bitumen and bitumen-derived liquid 

[18,147] over both the HDM and HDN [18,146] catalysts were found to follow 

higher than first-order kinetics. This indicated that a range of reactivities for 

heteroatom and residuum compounds was being observed [157]. When a 

significant fraction of the heteroatomic and/or the residuum species are present 

in unreactive fractions such as asphaltenes, the removal and/or conversion 

kinetics can be represented by two parallel first-order reactions.

The basis of the alternative model is to assume that the feedstock 

consists of two reactive lumps or fractions; a facile fraction and a refractory 

fraction. The rate of removal or conversion of the refractory fraction is presumed 

to be considerably slower than that of the facile fraction. For the case of HDN of 

bitumen-derived liquid [18,147], this can be partly attributed to partial 

dehydrogenation of nitrogen containing compounds during bitumen pyrolysis. 

Therefore, the conversion or removal of species which gave an apparent order 

greater than unity was modeled by two parallel first-order reactions [158].

This model has been used to explain hydroprocessing kinetics [81,82, 

159-161]. Richardson et al. [81] proposed that, although the desulfurization rate 

of different individual sulfur compounds follow first-order rate expressions, when
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these compounds are simultaneously desulfurized the combined results provide 

an apparent second-order behavior. Oleck and Sherry [159] also reported a 

similar observation for the desulfurization of an atmospheric reduced Arabian 

Light crude oil. The desulfurization of nonasphaltenic sulfur compounds is 

extremely fast and that of asphaltenic sulfur compounds is slow. Both are first- 

order reactions and the whole may be regarded as a second-order reaction. 

Frye and Mosby [160] reported that the desulfurization data for three compounds 

found in a cycle oil feedstock were well organized by a first-order model. 

Therefore, residuum desulfurization can be considered to be a series of first- 

order reactions of decreasing rate constants such that the sequence of reactions 

leads to an apparent second-order dependence [161]. Richardson and Alley 

[81] suggested that the apparent order with respect to space-time depends on 

the ratio of the fastest and slowest reactions.

The reaction scheme is presented in equation (4-7).

k i
A, = y  A ------- ------ > B

A k (4-7)

A2 = (1 - y ) A --------£__» B

where A, represents the facile portion of the heteroatom or residuum fraction in 

the feedstock and Aj represents the refractory portion. The reaction scheme is 

written such that the apparent first-order rate constant k, is larger than the 

apparent first-order rate constant k2. The parameter y is the facile fraction of the 

heteroatom or residuum fraction which is more reactive and 1-y is the refractory 

fraction which is less reactive. The integrated rate expression is given by 

Equation (4-8).
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(4-8)

where the rate constants are given by the Arrhenius equation

and k10 and E1 and k2o and E2 are the pre-exponential factors and apparent 

activation energies for facile and refractory heteroatom or residuum fractions, 

respectively.

The kinetic parameters determined for the two-parallel first-order 

reactions scheme for HDS, HDN, HDM and residuum conversionjjre presented 

in Table 4.9. The objective function [162,163] (OF) 'vjfricfT represented the 

minimization of the function defined in Equation (4-9) was computed.

The values for objective function indicated that the two-parallel first-order 

reactions provided a reasonable representation of the data. Experimental and 

calculated values for Ni removal over an HDM catalyst for both the nth order and 

two parallel first-order reactions representation are compared in Figure 4.4.

2oF=s|c--cr' (4-9)



Apparent Kinetic Parameters for the Alternative Kinetic Representation

Table 4.9

Bitumen Bitumen Bitumen-Derived Liquid

Hydrotreating Hydrotreating Hydrotreating

over an HDM Catalyst over an HDN Catalyst over an HDN Catalyst

[18,146] [18,147]

HDM Residuum Conversion HDS HDN

y 0.67 0.74 0.7 0.8

1̂0 9.8 x 104 1.3 x 1012 4.3 x 1011 3.8 x 1012

2̂0 8.5 x 10s 7.9 x 108 6 .3x10’2 1.6 x 10”

EJkJ/mol] 94 124 142 160

EJkJ/mol] 81 177 170 158

OF 6.0x1 O'6 12.8 1.4 x 10"* 1.2 x 10'3

130
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Figure 4.4

Observed versus Predicted Nickel Content of the Total Liquid Product Produced 

dj/ring Bitumen Hydrotreating over an HDM Catalyst
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Computation of Kinetic Parameters

Two methods were used to obtain the kinetic parameters for hydrotreating 

bitumen and bitumen-derived liquid. The first was a conventional kinetic analysis 

using a graphical method (Longstaff et al. [18,147]) and the other was a 

nonlinear regression analysis. The conventional analysis consisted of fixing two 

operating variables, and changing one variable to obtain data from which the 

required kinetic parameters were calculated. This method clearly detects the 

effect of each operating variable; however, many experiments are required since 

two variables are fixed in each set of experiments. The kinetic parameters for 

the general plug-flow equations were determined simultaneously by nonlinear 

regression analysis thus the need to fix two variables at a time was avoided. 

However, the effect of each variable is not clearly demonstrated. In addition, 

due to a limited number of data points and the relatively large number of 

parameters which must be simultaneously determined, the final results may be 

misleading.

The kinetic parameters for hydrodenitrogenation determined by 

conventional and nonlinear regression kinetic analyses for HDN of bitumen and 

bitumen-derived liquid are presented in Table 4.10.

The two most important reacti taking place in bitumen hydrotreating 

are thermal cracking to lighter products and catalytic hydrogenation related to 

the removal of heteroatoms [12,164]. Both of these reactions are dependent 

upon the residence time of the feedstock in the reactor and/or the contact time, 

the temperature of the reaction and the hydrogen partial pressure in the reactor.

Process Variable Studies



Table 4.10

Comparison of Kinetic Parameters for Hydrodenitrogenation

Bitumen HDN Bitumen HDN Bitumen-Derived Liquid HDN

over an HDM Catalyst over an HDN Catalyst over an HDN Catalyst

[18,146] [18,147]

Conventional Nonlinear Conventional Nonlinear Conventional Nonlinear

n 1.0 1.2 1.0 0.8 1.5 1.7

a 1.0 0.99 1.0 1.05 1.0 0.95

P 1.1 1.5 0.7 0.8 0.6 1.1

ko 2.8 x 104 7.3 x 104 1.3 x 107 4.5 x104 3.4 x 109 8.5 x 106

Ea[kJ/mol] 71 98 92 75 113 96

OF 7.7 x 10* 5.4 x 10 3 1.5 x 101 4.3 x 102 1.5 x 101 2.3 x 103

134



135

The primary process variables investigated in this study were the liquid 

hourly space velocity, the reactor temperature and the hydrogen partial 

pressure.

Space Velocity

The space velocity experiments were conducted at a fixed reaction 

temperature (664 K) and pressure (13.7 MPa) and the effect of space velocity on 

product distribution and yields is presented in Table 4.11. The effect of space 

velocity plays a important role in bitumen hydrotreating over an HDM catalyst. In 

the space velocity ranges studied here, heteroatom removal and residuum 

conversion increased significantly at lower space velocities. Abdul-Halim et al. 

[165] reported that LHSV exerted a greater influence on the sulfur removal than 

temperature at relatively low temperatures. Tables 4.11 and 4.12 represent that 

the increments of hydrogen consumption from 31 to 75 m7m3 made 29% of 

nitrogen removal possible. Also, residence time increments by a factor of six led 

to 77% of sulfur and 82% nickel removals over a low activity HDM catalyst. 

Decreasing trends were shown in Conradson carbon residue conversion as 

WHSV decreased. At 0.24 h'1 WHSV, there was about 43% reduction in CCR 

during hydrotreating.

The product distribution and yields are presented in Figure 4.5. The 

scatter in the naphtha yields may have been related to the loss of this fraction 

when the total liquid product samples were stripped of NH3 and H2S prior to 

elemental analysis. Residuum content is significantly decreased as the 

residence time of the liquid increased; about 61% residuum conversion was 

achieved at 0.24 h 1 WHSV. The gas, naphtha and distillate fractions 

monotonically increased with increasing residence time. The gas-oil yield 

exhibited a maximum at a residence time of 2.3 hours. The maximum in gas-oil



136

Table 4.11

Effect of WHSV on Product Distribution and Yields 

at 664 K (735 °F) and 13.7 MPa (1980 psia)

Run No. D-15 D-19 D-11 D-25
Process operatina conditions
WHSV, h'1 0.24 0.43 0.77 1.38
t, h 4.1 2.3 1.3 0.7
Temperature, K 666 665 665 662
Pressure, MPa 13.6 13.7 13.8 13.6

API gravity 18.3 15.9 15.2 14.0
Specific gravity 0.945 0.960 0.965 0.972
Pour Point, K 281 284 287 295
CCR, wt% 6.1 7.9 8.5 8.9
H2 consumption, m7m3 75 48 41 31

Elemental Analysis
C, wt% 86.2 85.4 85.5 85.6
H, wt% 12.2 11.5 11.8 11.2
N, wt% 0.96 1.20 1.15 1.20
S, wt% 0.08 0.17 0.20 0.29
Ni, ppm 14 20 23 33

H/C atomic ratio 1.7 1.6 1.7 1.6

Product vield distribution
Volatility, wt% 76.5 67.5 61.9 53.5
C.-C,, wt% 3.8 2.4 1.3 0.9
Cs-478 K, wt% 3.1 1.5 1.5 1.8
478-616 K, wt% 15.2 10.7 10.2 8.4
616-811 K, wt% 52.6 52,5 48.2 42.1
> 811 K, wt% 23.5 32.5 38.1 46.5

Liquid yield, vol % 98.4 100.4 99.7 99.4
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Heteroatom Removal and Residuum and Conradson Carbon Conversions of the

Table 4.12

Bitumen over a Commercial HDM Catalyst

Run Temperature Pressure WHSV 
I.D.

[K] [MPa] [h1]

N

[%]

S

[%]

Ni Residuum 

[%] [%]

Conradson
Carbon
Residue

[%]

Temperature; 
D-29 620 13.7 0.77 5.6 46.4 10.6 1.7
D-18 642 13.6 0.77 7.4 29.2 45.1 20.6 9.0
D-20 653 13.6 0.77 2.3 18.4 23.6 23.6 9.6
D-11 665 13.8 0.77 11.9 39.8 68.4 34.9 17.8
D-23 673 13.7 0.76 14.1 43.5 66.1 46.2 22.7
D-27 685 13.7 0.76 16.9 35.1 59.4 56.4 27.5

Pressure:
D-17 665 11.3 0.77 8.2 37.2 57.9 34.2 17.7
D-11 665 13.8 0.77 11.9 39.8 68.4 34.9 17.8
D-21 665 15.3 0.76 10.7 44.0 65.5 36.9 18.5
D-13 664 16.7 0.77 12.8 41.4 69.9 40.9 23.3

WHSV:
D-15 666 13.6 0.24 29.0 77.4 81.8 61.2 43.4
D-19 665 13.7 0.43 10.8 50.5 73.6 46.1 26.1
D-11 665 13.8 0.77 11.9 39.8 68.4 34.9 17.8
D-25 662 13.6 1.38 7.3 14.9 54.4 19.9 13.0
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Figure 4.5

Effect of WHSV on Product Distribution and Yields 

at 664 K (735°F) and 13.7 MPa (1980 psia)
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yields has been reported by other workers [18,146,164] and implies that gas-oil 

is formed from residuum and subsequently cracks to produce distillate, naphtha 

and gas.

The effect of WHSV on the conversion of nitrogen and sulfur at 664 K and 

13.7 MPa is shown in Figure 4.6. The plots of the natural logarithm of the 

fractions of nitrogen and sulfur remaining versus residence time (reciprocal of 

space velocity) were straight lines and passed through 1 on the log scale y-axis. 

This indicated that both HDN and HDS removal from bitumen over an HDM 

catalyst followed first-order kinetics. Also, the differences in the slopes of Figure 

4.6 indicates that sulfur removal from the bitumen is easier than nitrogen 

removal.

First-order nitrogen removal kinetics over an HDN catalyst has been 

reported previously [15,95,99]. Yui and his coworkers [95,99] showed first-order 

kinetics for HDN of bitumen-derived coker and hydrocracker heavy gas-oils and 

Riley [15] reported first-order nitrogen dependence for HDN of heavy oils. The 

consistent observation of first-order kinetics implies a uniform refractoriness for 

nitrogen compounds in the bitumens; bitumen-derived liquids, and heavy oils 

studied.

Hydrotreating studies with different petroleum residua using Co-Mo- 

alumina catalysts have shown that the hydrodesulfurization reaction may follow 

apparent first-order [166], pseudo-second order [167] or second-order [168] 

kinetics with respect to sulfur compounds. Higher than first-order or second- 

order kinetics for HDS in heavy oil hydrotreating is supported by the majority of 

experimental results [73]. HDS of Syncrude bitumen-derived coker and 

hydrocracker heavy gas-oil obeyed an apparent 1.5 order [95,99] over a NiMo 

catalyst in a trickle-bed reactor. The ranges of the reaction conditions were 623

673 K, 0.7-1.5 h'1 LHSV and 7-11 MPa. Second-order kinetics were reported for
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Figure 4.6

First-Order Kinetic Plots for Nitrogen and Sulfur Removal over an HDM Catalyst 

at 664 K (735°F) and 13.7 MPa (1980 psia)
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HDS in coal conversion studies [169] and for HDS in petroleum residuum studies 

[170-172]. Abdul-Halim [165] used second-order kinetics to organize sulfur 

removal data for deasphalted oil and Wei et al. [158] used two parallel first-order 

reactions to obtain apparent overall second-order dependence for HDS.

As indicated earlier, it was found that bitumen HDS over an HDM catalyst 

followed first-order kinetics. The first-order behavior may be related to the 

naphthenic nature of the Uinta Basin bitumens compared with conventional 

heavy oils. George [173] reported that HDS and HDN of feedstocks derived 

from coprocessing of heavy oil and coal (24 °API; 703 K) followed irreversible 

first-order kinetics at 673 K, 5 h'1 LHSV, and 13.3 MPa over a commercial NiMo 

catalyst. Billon et al. [166] also obtained the first-order kinetics for the HDS of 

petroleum residuum over a CoMo catalyst.

In contrast with nitrogen and sulfur removal, nickel removal and residuum 

conversion of Whiterocks bitumen over an HDM catalyst did not follow first-order 

kinetics. Nickel removal and residuum conversion followed higher than first- 

order kinetics overall. Oleck and Sherry [159] reported that a good fit of the 

reaction rate data was obtained with second-order kinetics for nickel and 

vanadium removal from Lagomedio (Venezuelan) atmospheric residuum over 

CoMo/AIj0 3 catalysts.

A first-order kinetic plot (Figure 4.7) for nickel removal indicated two 

distinct regions. This implies that there may be two different classes of nickel 

species in the feed. One class of nickel reacts considerably faster than the other 

class of nickel compounds and each compounds follow first-order behavior. 

Because both classes of compounds react simultaneously apparent overall 

second-order behavior would be expected. Thus, two parallel first-order 

reactions involving the two classes of nickel compounds (or lumps) was used as
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Figure 4.7

First-Order Kinetic Plot for Nickel Removal over an HDM Catalyst 

at 664 K (735°F) and 13.7 MPa (1980 psia)
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an alternative scheme to represent nickel removal. This representation has 

been employed by several researchers for analyzing HDM data [158,174].

The simultaneous occurrence of several first-order metal removal 

reactions with different rates can lead to an apparent reaction order greater than 

unity just as in hydrodesulfurization [175]. Metal profiles indicating the presence 

of "easy" and "hard" to remove metal species have been reported for V [176]. 

Metalloporphyrins, metal species sometimes referred to as "easy" metals, are 

readily removed resulting in sharp metal gradients near the exterior surface of 

the pellets at the reactor entrance. The more refractory, "hard* compounds yield 

more uniform profiles. The liquid phase in the vicinity of the reactor outlet is 

depleted of the “easy5’ Ni species and the relatively uniform metal-deposition 

profiles reflect deposition from the refractory or “hard” Ni compounds. Galiasso 

et al. [132] reported that pure metalloporphyrins in clean systems are up to 10 

times more reactive than naturally occurring metalloporphyrins in petroleum 

resins and 100 to 500 times more reactive than nickel and vanadyl compounds 

in Kuwait atmospheric residuum [131].

The kinetic parameter estimation results indicated that the refractory 

fractions of residuum and nickel were 0.74 and 0.67, respectively. The rate 

constants at 664 K indicate that the facile residuum and nickel fractions are 7 

and 117 times more reactive than those in refractory fractions, respectively. This 

large difference in rate constants resulted in the apparent higher than first-order 

kinetics for nickel removal and residuum conversion over an HDM catalyst, even 

though the refractory nickel and residuum fractions were more than twice the 

facile nickel and residuum fractions.
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Temperature

The effect of temperature on product distribution and yields at a fixed 

space velocity (0.76 h'1 WHSV) and pressure (13.7 MPa) is presented in Table 

4.13. Increasing temperature favorably affected the heteroatom removal 

reaction rates and promoted an increase in the thermal conversion of residuum. 

Sooter [177] observed that the desulfurization of raw anthracene oil, over a 

CoMo/AIz0 3 catalyst at 6.9 MPa (1000 psig), increased from 48% to 84% when 

temperature was increased from 589 K (600°F) to 644 K (700°F). The low sulfur 

and nickel contents in the feed in this study account for the scatter in the sulfur 

and nickel data for the total liquid product. The API gravity increased from 12.7 

to 18.0 “API as the temperature increased from 620 to 685 K. The increase in 

API gravity was accompanied by an increase in hydrogen consumption from 6 to 

55 m7m3. The levels of heteroatom removal and residuum conversion were 

lower in the temperature range studied than those obtained for the WHSV range 

studied. This may be due to the relatively low temperature range used in this 

study (620-685 K) compared to the temperature range used in commercial 

residuum hydroprocessing (620-713 K) [1,27]. Space velocity appears to exert a 

greater impact on heteroatom removal at low temperatures than the reactor 

temperature range itself. The nitrogen content decreased only by 17% , the 

sulfur content decreased by 44% and the nickel content decreased by 68%. The 

relatively high nickel removal is related to the selectivity of the HDM catalyst 

used in this study for demetallation and the low metals loading is reflected in 

heteroatom conversion. Residuum conversion at 685 K and 0.76 h'1 WHSV 

(56%) was comparable to that obtained at 665 K and 0.24 h'1 WHSV (61%). This 

indicated that temperature and residence time exhibit a synergism for residuum 

conversion whereas heteroatom removal over the HDM catalyst was more 

dependent on residence time than on temperature. The Conradson carbon
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Effect of Temperature on Product Distribution and Yields

Table 4,13

at 0.76 h'1 WHSV and 13.7 MPa (1980 psia)
Run No. D-29 D-18 D-20 D-11 D-23 D-27
Process ooeratina conditions
Temperature, K 620 642 653 665 673 685
WHSV, h'1 0.77 0.77 0.77 0.77 0.76 0.76
t, h 1.3 1.3 1.3 1.3 1.3 1.3
Pressure, MPa 13.7 13.6 13.6 13.8 13.7 13.7

API gravity 12.7 13.7 14.2 15.2 16.1 18.0
Specific gravity 0.981 0.975 0.972 0.965 0.959 0.94'
Pour Point, K 315 307 299 287 283 279
CCR, wt% 10.1 9.4 9.2 8.5 8.1 7.6
H2 Consumption, m3/m3 6 24 31 41 47 55

Elemental Analysis
C, wt% 85.3 85.4 86.1 85.5 85.5 85.8
H, wt% 11.4 10.7 11.6 11.8 11.7 11.3
N, wt% 1.23 1.21 1.26 1.15 1.14 1.10
S, wt% 0.42 0.24 0.27 0.20 0.19 0.22
Ni, ppm 39 40 55 23 25 30

H/C atomic ratio 1.6 1.5 1.6 1.7 1.6 1.6

Product vield distribution
Volatility, wt% 47.8 53.5 55.9 61.9 68.1 74.1
C,-C4, wt% 1.5 1.2 0.8 1.3 2.0 3.3
Cs-478 K, wt% 0.7 4.8 1.1 1.5 1.5 5.3
478-616 K, wt% 6.7 7.2 8.7 10.2 13.1 15.4
616-811 K, wt% 38.8 40.9 44.0 48.2 51.1 49.5
> 811 K, wt% 52.2 46.5 44.1 38.1 31.9 25.9

Liquid yield, vol % 97.4 99.5 99.4 99.7 99.5 97.3
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residue shows about 28% removal at 685 K and the pour point decreased 

significantly as the reaction temperature increased.

The product distribution and yields are presented in Figure 4.8. The 

scatter in the C,-C4 gas yields were related to the small amount of gas produced 

during hydrotreating over the low activity HDM catalyst. The naphtha, distillate, 

and gas-oil yields increased and the residuum content decreased as the reaction 

temperature increased. The scatter in the naphtha yields may be related to the 

NH3 and H2S stripping procedure described in the experimental section. A 

maximum in the gas-oil yield was not observed as the temperature increased; 

however, it is expected that there would be a temperature above 685 K at which 

the rate of gas-oil conversion to lighter fractions would exceed the rate of 

residuum conversion to gas-oil.

The apparent activation energy is a measure of the response of the rate 

constant to temperature. The effect of temperature on the rate constant for 

nickel and residuum conversion over an HDM catalyst is presented in Figure 4.9. 

The apparent activation energies were 98 kJ/mol for HDN and 91 kJ/mol for HDS 

for bitumen hydrotreating over an HDM catalyst. The activation energies of both 

HDN and HDS suggest that HDN and HDS for this feedstock over an HDM 

catalyst were not limited by pore diffusion. The activation energy for CCR 

removal was 156 kJ/mol which may reflect the significance of thermal conversion 

on CCR removal. The activation energy for HDN (98 kJ/mol) was comparable to 

literature values [95,99].

Yui and Sanford [99] reported that the apparent activation energies for 

HDN of coker HGO and hydrocracker HGO were 96 kJ/mol and 75 kJ/mol, 

respectively. Diaz-Real [178] reported an apparent activation energy of 104 

kJ/mol for HDN of a bitumen-derived heavy gas-oil over a NiMo zeolite based



150

Figure 4.8

Effect of Temperature on Product Distribution and Yields 

at 0.76 h'1 WHSV and 13.7 MPa (1980 psia)
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Figure 4.9

Arrhenius Plots for Residuum Conversion and Nickel Removal over an 

HDM Catalyst at 0.76 h'1 WHSV and 13.7 MPa (1980 psia)
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catalyst. Yui [95] obtained a similar apparent activation energy, 92 kj/mol, for 

HDN of a bitumen-derived coker gas-oil.

The apparent activation energy (91 kj/mol) for HDS of bitumen over an 

HDM catalyst in this study was somewhat lower than expected [1,76]. This may 

be related to the chemical composition of the residuum in the bitumen under 

investigation as compared to the feedstocks for which data have been reported 

in the literature [1,73,76,99,179]. Bridge et al. [179] reported an apparent 

activation energy of 125 kJ/mol for desulfurization of an atmospheric residuum 

from Arabian heavy crude. Beaton and Bertolacini [1] and Beuther and Schmidt 

[73] reported that the apparent activation energy for HDS of residuum was 117 

kj/mol and for desulfurization of a Kuwait vacuum residuum was 113 kJ/mol. 

Yui and Sanford [99] reported that the apparent activation energies for HDS for 

both bitumen-derived hydrocracker and coker HGO over a commercial NiMo 

catalyst was 129 kJ/mol.

Residuum conversion of bitumen over an HDM catalyst was found to 

follow higher than first-order kinetics thus two parallel first-order reactions were 

used to correlate residuum conversion data. Residuum conversion is primarily a 

thermal reaction thus the higher value of the apparent activation energy than 

catalytic conversion would be expected [180]. The activation energies for the 

facile and refractory fractions of the Whiterocks bitumen residuum in bitumen 

hydrotreating over an HDM catalyst ranged from 124 kJ/mol to 177 kJ/mol, 

respectively. The fractions of facile and refractory residuum were 0.26 and 0.74, 

respectively.

In this study the apparent activation energies for the removal of the facile 

and refractory nickel species were 81 and 94 kJ/mol, respectively. These values 

of activation energy seem to be reasonable compared with literature values. 

Quann et al. [27] reported that apparent activation energies for global metal
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removal ranged from 42 to 158 kJ/mol depending on the reaction order. For 

first-order kinetics the activation energies vary from 42 to 75 kJ/mol. Hung et al. 

[131] reported activation energies of 115 and 142 kJ/mol for Ni-Etio porphyrin 

and Ni-TPP porphyrin, respectively, over a CoMo/AI20 3 catalyst. The 

temperature ranged from 553 to 623 K and the hydrogen partial pressure ranged 

from 4 to 12 MPa. Morales et al. [181] reported that the activation energy for 

VO-TPP porphyrin was 58-60 kJ/mol with CoMo/AI20 3, Co/Al20 3, Mo/Al20 3 

catalysts in the temperature range 423-573 K and the hydrogen partial pressure 

range 1.4-7.4 MPa.

Pressure^

The effects of hydrogen partial pressure on product distribution and yields 

at a fixed space velocity and reaction temperature are presented in Table 4.14. 

The WHSV and temperature were maintained at 0.76 h'1 and 665 K, respectively, 

in these experiments. Heteroatom removal was only slightly influenced by 

increasing the pressure relative to the WHSV and temperature. The API gravity 

and pour point of the total liquid products changed little with respect to increasing 

pressure, that is; the API gravity of the liquid product increased from 14.9 to 15.5 

“API and the pour point decreased from 288 to 284 K as the pressure increased 

from 11.3 MPa to 16.7 MPa.

The hydrogen consumption increased from 28 to 66 m3/m3 as the 

pressure increased from 11.3 to 16.7 MPa (Figure 4.10). Hydrogen 

consumptions in the same range were observed in the WHSV experiments, that 

is; an increase from 31 to 75 m3/m3 as the WHSV decreased from 1.38 to 0.24 h'1 

at 665 K and 13.7 MPa. However, the extent of residuum conversion at high 

hydrogen consumption was significantly different (-50% greater) when space
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Effect of Pressure on Product Distribution and Yields

Table 4.14

at 0.76 h'1 WHSV and 664 K (735 °F)
Run No. D-17 D-11 D-21 D-13
Process ODeratina conditions
Pressure, MPa 11.3 13.8 15.3 16.7
Temperature, K 665 665 665 665
WHSV, h 1 0.77 0.77 0.76 0.77
x, h 1.3 1.3 1.3 1.3

API gravity 14.9 15.2 15.3 15.5
Specific gravity 0.966 0.965 0.964 0.963
Pour Point, K 288 287 287 284
CCR, wt% 8.6 8.5 8.4 8.0
H2 consumption, m7m3 28 41 43 66

Elemental Analvsis
C, wt% 85.8 85.5 85.4 85.9
H, wt% 12.0 11.8 11.6 11.9
N, wt% 1.21 1.15 1.16 1.14
S, wt% 0.21 0.20 0.19 0.20
Ni, ppm 31 23 25 22

H/C atomic ratio 1.7 1.7 1.6 1.7

Product vield distribution
Volatility, wt% 61.1 61.9 63.2 65.3
C,-C4, wt% 1.7 1.3 1.2 1.3
Cs-478 K, wt% 5.0 1.5 4.0 6.2
478-616 K, wt% 9.4 10.2 9.7 10.7
616-811 K, wt% 43.7 48.2 48.0 45.6
> 811 K, wt% 38.9 38.1 36.8 34.7

Liquid yield, vol % 99.5 99.7 99.4 100.0



Figure 4,10

Reactor Pressure versus Hydrogen Consumption for Bitumen 

Hydrotreating over an HDM Catalyst
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velocity was the independent variable than when pressure was the independent 

variable.

The high hydrogen consumption and low residuum conversion observed 

when pressure was varied could be due to aromatic ring hydrogenation in the 

absence of cracking and/or extensive denitrogenation and desulfurization, 13% 

and 44%, respectively; and was not the result of saturating cracked products. 

Beuther and Schmid [73] reported an improvement in desulfurization with 

increasing hydrogen pressure, however, the response to pressure diminished 

with increasing pressure at pressure above 6.9 MPa. A similar trend was 

observed in this study over the pressure range investigated. The residuum and 

CCR conversions were 41% and 23%, respectively, in this study.

Speight [11] reported that heteroatom removal rates are enhanced by an 

increase in hydrogen partial pressure in accord with model compound studies. 

Both feedstock and degree of heteroatom removal may influence the magnitude 

of the hydrogen response. The heavier feedstocks require substantially more 

hydrogen addition to achieve a fixed level of upgrading relative to conventional 

feedstocks. Simultaneous removal of other heteroatoms, aromatics saturation, 

and nonselective hydrocracking of petroleum are responsible for hydrogen 

consumption.

Figure 4.11 shows the hydrogen partial pressure dependence for reaction 

rate for nitrogen, sulfur, and Conradson carbon residue conversion. The 

hydrogen partial pressure dependence (p) for bitumen hydrotreating over an 

HDM catalysts in Equation (4-2) were 1.5 for nitrogen, 0.7 for sulfur, and 1.8 for 

nickel removal and 0.8 for residuum and CCR conversions.

The high value for the nitrogen removal confirms the presumption 

[113,114,116] that aromatic ring hydrogenation is required prior to 

hydrogenolysis of the carbon-nitrogen bond. This step is not necessarily



Figure 4.11

Hydrogen Partial Pressure Dependence for Reaction Rate 

for Nitrogen, Sulfur, and CCR Conversion
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required for the sulfur removal and accordingly sulfur removal results in a lower 

hydrogen dependence. Residuum conversion is largely dependent on the 

thermal cracking and hydrogen is consumed in preventing retrograde 

polymerization.

Yui et al. [95,99] reported that the hydrogen partial pressure power 

ranged from 1.2 to 1.8 for HDN and from 0.6 to 1.1 for HDS when bitumen- 

derived coker and hydrocracker gas-oils were hydrotreated. Beaton and 

Bertolacini [1] reported that desulfurization of residuum responded in a first-order 

manner to pressure. The low hydrogen partial pressure dependence for HDS of 

the Whiterocks bitumen compared with literature values (0.7 versus unity) may 

be related to the naphthenic nature of the Uinta Basin bitumens. This may 

indicate that hydrogenation becomes more important as the number of aromatic 

rings increases in the average feed molecule.

Nickel in petroleum exists as soluble organometallic complexes that fall 

into two categories; metal porphyrins, and nonporphyrin metal complexes. Dean 

and Whitehead [127] have shown that the majority of the nickel species are 

present in the 617 K* fraction and are nonporphyrins. The reactivity of the high 

molecular weight nonporphyrin nickel in an aromatic hydrocarbon structure is 

therefore sensitive to hydrogen partial pressure. The reported hydrogen partial 

pressure dependence [131, 181] for HDM varied from 1 to 2.2. The order for 

nickel removal is likely a function of the rate-limiting metal removal step. The 

values of hydrogen partial pressure dependence determined in this study are in 

agreement with these values and seem to be reasonable.
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Catalyst Deactivation Rate

The deactivation or aging rate for Whiterocks bitumen hydrotreating over 

the HDM catalyst was calculated to be 0.18°C/day over approximately 600 hours 

on-stream which was similar to the deactivation rate obtained over an HDN 

catalyst (0.20°C/day) [18,147]. The deactivation rate for Whiterocks bitumen- 

derived liquid hydrotreating over the HDN catalyst [18,147] was also estimated to 

be the same with those of bitumen hydrotreating over both the HDN [18,146] and 

HDM catalyst. The similarity in the deactivation rates for the BDL-HDN, BIT- 

HDN and BIT-HDM systems despite the larger pore size, lower surface area and 

lower metal loadings of the HDM catalyst relative to the HDN catalyst and the 

fact that the bitumen-derived liquid contained 1/3 less residuum than the bitumen 

was puzzling. It is presumed that it may be related to the combinations of 

thermal and catalytic conversion required to upgrade these heavy oil feedstocks.

Process Variable Effect on Pour Point

The pour point of the hydrotreated total liquid product generally 

decreased as the temperature and pressure increased, and the space velocity 

decreased. Temperature and space velocity had the greatest effect on pour 

point (Figure 4.12). The effect of pressure on pour point was minimal.

EffectofCatalystaiKlFeedxia^^Qliyersion

The API gravity was used to correlate the extent of sulfur and nitrogen 

removal and residuum conversion in the hydrotreated liquid products using two 

different catalysts (HDM and HDN) and two different feeds (BDL and BIT).

As can be seen in Figures 4.13 through 4.15, heteroatom and residuum 

conversions correlate with the total liquid product API gravities. Figures 4.13 

and 4.14 indicate that the HDM catalyst was less active for heteroatom
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Figure 4.12

Pour-Point of Hydrotreated Total Liquid Product 

as a Function of Operating Variables
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Figure 4,13 

Nitrogen Conversion versus API Gravity
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Figure 4.14 

Sulfur Conversion versus API Gravity



Fr
ac

tio
n 

of 
Su

lfu
r 

Co
nv

er
te

d

169

1 - + 11 ............c
• °  .p +

0.9 — O +

0.8
- q cp°
■ •
- o

0.7 — o

0.6 -

0.5 - •
. • •

0.4 -
/  .•

0.3 - •

0.2 - •
. •

0.1 -

0
5 10 15 20 25 30 35

API Gravity

•  Bitumen HT over an HDM Catalyst 

O Bitumen HT over an HDN Catalyst [18,146]

+  Bitumen-Derived Liquid HT over an HDN Catalyst [18,147]



Figure 4.15 

Residuum Conversion versus API Gravity
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conversion when processing bitumen. Heteroatom removal appeared to 

represent a continuum for both catalysts (HDN and HDM) and both feedstocks 

(BDL and BIT) whereas residuum conversion for BDL over the HDN catalyst was 

distinctly different from residuum conversion for BIT over both the HDN and 

HDM catalysts. This difference is related to the thermal history of the BDL [148]: 

pyrolysis of the Whiterocks oil sand to produce the BDL resulted in a significant 

reduction in boiling range and residuum content; however, it had little influence 

on heteroatom concentration.

The higher nitrogen and sulfur conversions of bitumen-derived liquid 

[18,147] compared with those of bitumen over an HDN catalyst [18,146] are 

likely related to the molecular weight differences between the two feeds which 

ultimately influenced their reactivities. This explanation seems possible 

considering that both feedstocks have the same origin and these two 

experiments were performed at the same operating conditions. The influence of 

molecular weight on reactivity for heteroatom removal has been discussed 

previously [182,183]: nitrogen and sulfur conversions are limited by steric 

hindrance and diffusional constraints. These steric hindrance and diffusional 

constraints were applied to the results of bitumen hydrotreating over an HDN 

catalyst [18,146]. These factors seemed to result in the lower conversion of 

heteroatoms in bitumen than in bitumen-derived liquid over an HDN catalyst. 

Thus, molecular weight reduction is required prior to heteroatom removal to 

convert high nitrogen content bitumen to liquid fuels catalytically.

Residuum conversion plots for bitumen and bitumen-derived liquid over 

an HDN catalyst [18,146,147] in Figure 4.15 exhibit the parallel curves. The 

displacement of the bitumen-derived liquid curve is related to the molecular 

weight reduction which occurred during the fluidized bed pyrolysis of the oil sand 

to produce the bitumen-derived liquid.
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The effect that catalyst selection plays on residuum conversion appears to 

contrast with the work of other researchers [166,184-186] which indicated that 

residuum conversion is primarily thermal. The residuum conversion in 

hydrotreating bitumen over an HDN catalyst gives a higher value than that over 

an HDM catalyst. In addition, the Arrhenius plot for whole residuum conversion 

shows that the first-order activation energies for bitumen hydrotreating were 

found to be 132 and 83 kJ/mol for HDM and HDN catalysts, respectively. If 

residuum conversion is only due to thermal reaction, these two values should be 

the same. The higher apparent activation energy observed for residuum 

conversion during the bitumen hydrotreating over an HDM catalyst implies the 

increasing influence that thermal cracking exhibits when the catalytic activity of 

the system is reduced. All these results indicate for catalyst/oil systems 

operating in the ranges of temperature studied that residuum conversion is 

affected by catalyst selection.

There are two possible explanations for the catalytic effect on residuum 

conversion. One is related to process operating variables; this study was 

conducted at lower temperatures (620-685 K) than those reported in the 

literature (620-713 K) [1,27]. The importance of thermal cracking in the overall 

residuum conversion would be emphasized if this study had been carried out at 

higher temperatures. This is basically due to the fact that thermal cracking 

exhibits a higher activation energy than catalytic cracking.

The second possible explanation is that the catalyst-to-oil ratio used in 

this study is higher than those used in the literature [1,27]. The system in this 

study has a very highly concentrated catalyst region which is not diluted. Also, 

the fixed-bed reactor used in this study had a higher catalyst-to-oil ratio than 

were used in the dilute catalyst systems such as stirred autoclaves, ebullieted 

beds or diluted packed beds. In dilute catalyst systems, catalytic cracking is
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suppressed whereas thermal cracking remains the same as in the concentrated 

catalyst systems. Consequently, if thermal and catalytic reactions are 

approximately equal, it is not possible to compare the results from these two 

different systems.

Effect of CatalyfjLand Feed on Selectivity

The effecrb^ catalyst and feed selection on the extent of heteroatom 

removal are shown in Figures 4.16 to 4.18. Sulfur conversions exceed nitrogen 

conversions as expected since sulfur compounds are known to be more reactive 

than nitrogen compounds [114]. Heteroatom conversion was lower over the 

HDM and HDN catalysts when bitumen was used as the feedstock relative to the 

conversions attained with the bitumen-derived liquid [18,147]. This is due to the 

steric and diffusional effects which reduce accessibility of heteroatom containing 

moieties in BIT-HDN system and lower activity of catalyst incorporated in BIT- 

HDM system.

Residuum conversion in bitumen hydrotreating over an HDM catalyst was 

reduced relative to an HDN catalyst; however, it was not as significant as the 

reductions in heteroatom removal. Thermal conversion is not greatly influenced 

by mass transfer or steric barriers whereas heteroatom removal is more 

sensitive to catalyst activity, i.e., metal loading, than residuum conversion.

Bitumen hydrotreating over an HDM catalyst indicated that residuum 

conversion surpassed nitrogen conversion in all cases and was almost the same 

as sulfur conversion as can be seen in Figure 4.18. In this sense, the results of 

the bitumen-derived liquid and bitumen hydrotreating over an HDN catalyst 

demonstrated that heteroatom conversion is more sensitive to catalyst selection 

than is residuum conversion [18,146,147]. This is because cracking can 

proceed via a thermal pathway which is unavailable for heteroatom conversion.
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Figure 4.16

Nitrogen, Sulfur and Residuum Conversion versus API Gravity for 

Bitumen-Derived Liquid over an HDN Catalyst System [18,147]
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Figure 4.17

Nitrogen, Sulfur and Residuum Conversion versus API Gravity for 

Bitumen over an HDN Catalyst System [18,146]
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Figure 4.18

Nitrogen, Sulfur and Residuum Conversion versus API Gravity for 

Bitumen over an HDM Catalyst System
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Molecular Weight Reduction Model for Residuum Conversion

X
The residuum conversion reaction involves a free-radical mechanism to 

convert residuum molecules to hydrocarbon gases, naphthas, distillates, and 

gas-oils. Hydrogen must be present to prevent retrograde polymerization 

reactions. Mosby et al. [164] showed that the thermal cracking of residuum is 

not a single first-order reaction and that these cracking reactions are irreversible. 

The refractory and facile residuum were assumed to crack to form all product 

fractions (gas-oil, distillate, naphtha, and gases). The rate constants from the 

model correlate well with intuition in that lower molecular weight reactants have 

smaller rate constants, and the overall model closely predicts pilot plant results. 

Mosby et al. [191] reported that the gas-oil yield goes through a maximum at 

about 30% at 683 K (770°F). This is due to cracking of the gas-oil fraction to 

lighter products at the higher temperatures. Thermal reaction pathways have 

been discussed by Savage [187] and Bunger [188], who investigated the 

reactions of hydrogen during the hydropyrolysis of heavy crudes.

In order to represent the product distributions as a function of process 

variables, the bitumen and hydrotreated total liquid products were grouped into 

four lumps; the residuum fraction (R) which boils above 811 K (538°C), the gas-

oil fraction (O) with boiling range between 548-811 K (275°C-538°C), the middle 

distillate fraction (D) which includes C5 to 548 K (275°C) boiling material, and 

gases (G) whichjncludes NH3, HZS and C, to C4 hydrocarbon gases.

The t\Aplve possible reactions involving these four lumps are shown in the 

following scheme:
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R -»0 R ->D R
0 —-—>R 0 — >D O

->G
-»G

D—L ^ r  D—6- ^ 0  D— »G 
G—!i-*R  G— ^  12

(4-10)

Two assumptions were made to simplify the reaction scheme. First, each 

reaction was assumed to obey irreversible first-order kinetics, so that reactions

4, 7, 8, 10, 11, and 12 were excluded. The second assumption was that the 

middle distillate fractions and gases are secondary products. Therefore, 

reactions 2 and 3 were also disregarded in the final scheme. Accordingly, the 

simplified reaction scheme for molecular weight reduction can be represented as 

follows:

(4-11)
'DG

The differential equations describing the system are given by the following 

equations:

.. -  ^rô r (4-12)□t
dCr,
~ ~ Z ~  =  k ROC R “  ( k OD +  k 0G )C 0  H - 1  3)dt
dCn
- f - =  k0DC0 -k0GCD (4-14)

at

G =  ^ o G ^ O  +  ^ D G ^ D  H"1 5 )at
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where CR, C0, CD, and CQ represent concentrations of residuum, gas-oils, middle 

distillates, and gases, respectively. The apparent first-order rate constants; kR0, 

k0D, k0G, and k^,, represent the conversions of residuum to gas-oil, gas-oil to 

middle distillate, gas-oil to gases and middle distillates to gases, respectively. 

Reaction rates are usually expressed in terms of molar concentrations for well- 

defined chemical species and reaction schemes. However, the conversions 

adopted for lumped kinetic representations of complex reaction schemes are in 

terms of mass fractions.

The results of the analysis are presented in Table 4.15. The rate of 

conversion of residuum to gas-oil was about four times greater than that of gas-

oil conversion to middle distillates and gases. The production of gases from 

middle distillates was minimal.

The experimental and calculated values for the residuum, gas-oil, middle 

distillate, and gas fractions for the molecular weight reduction scheme matched 

reasonably well (Figures 4.19 and 4.20). The objective function defined in 

Equation (4-9) was used for computing the differences of the experimental and 

calculated values [162,163].
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Table 4.15

Irreversible First-Order Rate Constants and Objective Functions for the 

Proposed Molecular Weight Reduction Model at 664 K (735°F) 

and 13.7 MPa (1980 psia)

Rate Constants 

[h i

RQ 0.28

0.04

Kxa 0.03

• ' dq 0.002

Objective Function (OF)

Residuum Fraction 3.6 x lO'3

Gas-Oil Fraction 2.9x1 O'3

Middle Distillate Fraction 1.1 x 10-3

Gases Fraction 4.8 x 1G'6
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Figure 4.19

Experimental versus Calculated Yield of Reactant Lumps for Hydrotreating 

Whiterocks Bitumen over an HDM Catalyst at 664 K (735°F) 

and 13.7 MPa (1980 psia)
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Figure 4.20

Plot of Experimental versus Calculated Values for Residuum Conversion
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CHAPTER 5

CONCLUSIONS

The plug-flow assumption is appropriate for the hydrotreating of bitumen 

and bitumen-derived liquid over both HDM and HDN catalysts in the 

upflow operating mode.

The HDM catalyst was effective for nickel and sulfur removal with the 

Whiterocks bitumen. However, it was ineffective for denitrogenation. 

Bitumen HDN and HDS followed pseudo first-order kinetics over a 

commercial HDM catalyst. Nickel removal and residuum conversion gave 

apparent higher than first-order kinetics. The data were organized by 

invoking parallel first-order reactions: one involving a facile fraction as 

reactant and the second involving a refractory fraction as reactant. The 

activation energies for residuum conversion and metal removal, 124 

kJ/mol for facile residuum, 177 kJ/mol for refractory residuum, 81 kJ/mol 

for facile nickel and 94 kJ/mol for refractory nickel, suggested that 

residuum conversion and metal removal for bitumen over an HDM 

catalyst were not limited by pore diffusion.

HDM catalyst deactivation was about 0.18°C/day during bitumen 

hydrotreating over a commercial HDM catalyst.

Sulfur conversion appears to be linked to residuum conversion because 

residuum conversion facilitates conversion of sulfur in higher molecular 

weight moieties.
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5. During hydroprocessing, gas, distillate and naphtha are produced; 

residuum is converted; and, gas-oil is both converted and produced. The 

proposed molecular weight reduction model organized the Whiterocks 

bitumen hydrotreating data reasonably well.

6. Conradson Carbon Residue removal was found to obey first-order kinetics 

and its activation energy and hydrogen partial pressure dependence 

indicated that thermal reaction largely influenced its conversion.

7. Pour point reduction during hydroprocessing was most sensitive to 

temperature and space velocity. The influence of pressure on pour point 

was minimal.

8. Larger median pore diameters in the HDM catalyst do not result in higher 

conversion compared with HDN catalyst when hydrotreating bitumen 

because of the lower activity of the catalyst. Since thermal reactions are 

emphasized with an HDM catalyst, heteroatom conversion lags behind 

residuum conversion compared that with an HDN catalyst.

9. Although thermal cracking is important in residuum conversion, some 

residuum conversion is catalytic. This is in disagreement with the known 

model that thermal and catalytic reactions can be treated as largely 

independent and separable. This disagreement can be explained by the 

fact that the diluted catalyst systems do not have sufficient catalyst 

concentrations to promote a noticeable increase in activity in residuum 

removal; this is particularly true at high temperatures when thermal 

cracking plays a more significant role in residuum conversion.

10. Residuum cracking is less sensitive to catalyst selection than heteroatom 

conversion because residuum conversion can proceed through a thermal 

pathway which, for the most part, is not available for heteroatom 

conversion.



APPENDIX A

BASIC PROGRAMS FOR SIMULATED DISTILLATION OF LIQUID PRODUCTS

(SIMDIS.BAS, ZEROBLNK.BAS)
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85
86
90
94
95
100
101
102
103
104
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
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REM
REM THIS IS "SIMDIS.BAS" PROGRAM 
REM
REM VERSION TO USE HALF-AND-HALF INTERVALS 
REM VERSION FOR THE SHORT COLUMN, USING THE 
REM SHORT RETENTION TIMES
REM PROGRAM = SHORTSMD.BAS (SHORT SIMULATED DISTILLATION.BASIC)
REM
REM
REM BY SEOKHWAN KWAK
REM
REM
REM ******** CAUTION *********
REM *** THIS PROGRAM USES LONG VARIABLE NAMES, THIS IS NOT 
REM *** SUPPORTED IN SOME VERSIONS OF BASIC, WHICH READ AS FEW 
REM *** AS TWO SIGNIFICANT CHARACTERS IN A VARIABLE NAME.
REM *** THIS MAY LEAD TO VERY DIFFICULT TO FIND BUGS.
REM ******** END OF CAUTION **********
REM *** THIS PROGRAM WRITTEN FOR MICROSOFT QBASIC
REM
REM
DIM RETENTIONTIME(99), BOILINGPOINT(99), BLANK(3500)
DIM SAMPLE(3500), ISSAMPLE(3500), CARBONNUMBER(99)
DIM CUMAREA(99), PEAKAREA(99), E(3500), CUM(99)
DIM NORMPEAKAREA(99)
REM
REM
REM READ PARAFFIN PROPERTY DATA
GOSUB 1000
REM
REM
REM GET THE VARIOUS FILENAMES
GOSUB 3000
REM
REM
REM CALCULATE PEAK LOCATIONS, ETC...
GOSUB 4000
REM
REM
REM LOAD DATA FROM SAMPLE (ETC...) FILES, SUBTRACT BLANK
GOSUB 5000
REM
REM
REM CALCULATE TOTAL AND PARTIAL SAMPLE AREAS
GOSUB 6000
REM
REM
REM CALCULATE UNELUTED FRACTION
GOSUB 7000
REM
REM
REM CALCULATE PEAK AND CUMULATIVE AREAS
GOSUB 8000
REM



530
540
550
560
570
580
590
600
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1730
1740
1750
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REM
REM PRINT RESULTS
GOSUB 9000
REM
REM
STOP
REM
REM
REM SUBROUTINE FOR PROGRAM INDEX, CARBON NUMBER, 
REM RETENTION TIME(MIN), NORMAL BP (F)
DATA 01,20, 13.27, 651 
DATA 02, 21, 13.84, 673 
DATA 03, 22, 14.40, 695 
DATA 04, 23,14.94, 716 
DATA 05, 24, 15.48,736 
DATA 06, 25, 15.98, 755 
DATA 07, 26,16.48,774 
DATA 08, 27, 16.98, 791 
DATA 09, 28, 17.47, 808 
DATA 10, 29, 17.95, 824 
DATA 11, 30, 18.42, 840 
DATA 12, 31, 18.86, 856 
DATA 13, 32, 19.30, 871 
DATA 14, 33, 19.74, 884 
DATA 15, 34, 20.17, 898 
DATA 16, 35, 20.66, 912 
DATA 17, 36, 21.15, 925 
DATA 18, 37, 21.60, 936 
DATA 19, 38, 22.05, 948 
DATA 20, 39, 22.43, 960 
DATA 21, 40, 22.80, 972 
DATA 22, 41,23.18, 982 
DATA 23, 42, 23.55, 993 
DATA 24, 43, 23.88, 1003 
DATA 25, 44,24.20, 1013 
DATA 26, 45, 24.58,1023 
DATA 27, 46, 24.95, 1033 
DATA 28, 47, 25.33, 1042 
DATA 29, 48, 25.70, 1051 
DATA 30, 49, 26.00, 1059 
DATA 31, 50, 26.30, 1067 
DATA 32, 51, 26.63, 1075 
DATA 33, 52, 26.95, 1083 
DATA 34, 53, 27.23, 1090 
DATA 35, 54, 27.50, 1098 
DATA 36, 55, 27.80,1105 
DATA 37, 56, 28.10, 1112 
DATA 38, 57, 28.33,1119 
DATA 39, 58, 28.55,1126 
DATA 40, 59, 28.83, 1132 
DATA 41, 60, 29.10, 1139
INPUT "MAX C-NUMBER INDEX ELUTED, C60 = 41: ", MAXINDEX 
FOR I = 1 TO MAXINDEX 
READ TRASH



1760
1770
1780
1790
1800
1810
1820
1830
1840
3000
3010
3020
3030
3040
3050
3055
3060
3070
3080
3090
3094
3095
3096
3097
3098
3099
3100
3110
3120
3130
3140
4000
4010
4015
4020
4030
4040
4050
4060
4062
4064
4070
4080
4090
4100
4110
4120
4130
5000
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READ CARBONNUMBER(l)
READ RETENTIONTIME(I)
READ BOIUNGPOINT(I)
NEXT I
RETURN
REM
REM
REM
REM
REM GET VARIOUS FILENAMES
INPUT "SUBTRACT A BLANK RUN (1 = YES, 0 = NO) ", FLAG2 
PRINT
IF (FLAG2 = 1) THEN INPUT "BLANK RUN FILENAME ", SBLANK$
INPUT "SAMPLE (ONLY) RUN FILENAME ", SSAMPLE$
INPUT "SAMPLE + INTERNAL STANDARD FILENAME ", S!SSAMPLE$
INPUT "OUTPUT FILENAME ", OUTPUTS 
PRINT
IF (FLAG2 = 1) THEN OPEN SBLANKS FOR INPUT AS #10 
OPEN SSAMPLES FOR INPUT AS #11 
OPEN SISSAMPLE$ FOR INPUT AS #12 
OPEN OUTPUTS FOR OUTPUT AS #13
PRINT #13, “SUBTRACT A BLANK RUN (1 = YES, 0 = NO) ", FLAG2 
PRINT #13, "SAMPLE (ONLY) RUN FILENAME ", SSAMPLE$
PRINT #13, "SAMPLE + INTERNAL STANDARD FILENAME ", SISSAMPLES 
PRINT #13, "OUTPUT FILENAME ", OUTPUTS 
PRINT #13,
RETURN
REM
REM
REM
REM
REM CALCULATE SOME PEAK LOCATIONS
INPUT "CHROMATOGRAM TIME IN MINUTES ", CHROMATOGRAMTIME 
PRINT #13, "CHROMATOGRAM TIME IN MINUTES ", CHROMATOGRAMTIME 
TIMEFACTOR = 30
REM TIMEFACTOR = # OF "SLICES" IN ONE MINUTE 
MAXI = CHROMATOGRAMTIME * TIMEFACTOR
INPUT "A TIME BEFORE FIRST l-S PEAK IN MIN. (5 MIN.?) ", FIRSTPEAK
INPUT "A TIME AFTER LAST l-S PEAK IN MIN. (13 MIN.?) ", LASTPEAK
PRINT #13, "A TIME BEFORE FIRST l-S PEAK IN MIN. ", FIRSTPEAK
PRINT #13, 'A TIME AFTER LAST l-S PEAK IN MIN. ", LASTPEAK
FIRSTI » FIRSTPEAK * TIMEFACTOR
LASTI = LASTPEAK * TIMEFACTOR
RETURN
REM
REM
REM
REM
REM LOAD DATA FROM SAMPLE (ETC...) FILES, SUBTRACT BLANK 
FOR I = 1 TO MAXI
IF (FLAG2 = 1) THEN INPUT #10, TRASH, TRASH, BLANK(I)
INPUT #11, TRASH, TRASH, SAMPLE(I)
INPUT #12, TRASH, TRASH, ISSAMPLE(I)
IF (FLAG2 = 1) THEN SAMPLE(I) = SAMPLE(I) - BLANK(I)



5060
5070
5080
5090
5100
5110
5120
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
7000
7010
7020
7022
7024
7030
7040

7050
7060
7070
7075
7080
7090
7100
7110
7120
8000
8005

8010
8020
8030
8040
8050
8060
8070
8080
8090
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IF (FLAG2 = 1) THEN ISSAMPLE(I) = ISSAMPLE(I) - BLANK(I)
NEXT I
RETURN
REM
REM
REM
REM
REM CALCULATE TOTAL AND PARTIAL SAMPLE AREAS 
SAMPAREA = 0 
ISSAMPAREA = 0 
FOR I = 1 TO MAXI
SAMPAREA = SAMPAREA + SAMPLE(I)
ISSAMPAREA = ISSAMPAREA + ISSAMPLE(I)
NEXT I
PARSAMPAREA = SAMPAREA
PARISSAMPAREA = ISSAMPAREA
FOR I = FIRSTI TO LASTI
PARSAMPAREA = PARSAMPAREA - SAMPLE(I)
PARISSAMPAREA = PARISSAMPAREA - ISSAMPLE(I)
NEXT I
RETURN
REM
REM
REM
REM
REM CALCULATE UNELUTED FRACTION
INPUT "SAMPLE WEIGHT = ", SAMPWT
INPUT "INTERNAL STANDARD WEIGHT = ", ISSAMPWT
PRINT #13, "SAMPLE WEIGHT = ", SAMPWT
PRINT #13, "INTERNAL STANDARD WEIGHT = ISSAMPWT
ISFRAC = ISSAMPWT/(ISSAMPWT + SAMPWT)
UNELUTED = (1 / ISFRAC) * (ISSAMPAREA - (SAMPAREA * PARISSAMPAREA / 
PARSAMPAREA)) - ISSAMPAREA
TEMP = ISSAMPAREA - SAMPAREA * PARISSAMPAREA / PARSAMPAREA 
PLUSFRAC = UNELUTED / (UNELUTED + (ISSAMPAREA - TEMP))
PRINT "PLUS FRACTION = PLUSFRAC
PRINT #13, "PLUS FRACTION = PLUSFRAC
RETURN
REM
REM
REM
REM
REM CALCULATE PEAK AND CUMULATIVE AREAS 
RETENTIONTIME(MAXINDEX + 1) = 2 * RETENTIONTIME(MAXINDEX) - 
RETENTIONTIME(MAXINDEX -1)
FOR I = 1 TO MAXINDEX 
CUMAREA(I) = 0
FOR J = 1 TO (RETENTIONTIME(I) + RETENTIONTIME(l + 1)) * TIMEFACTOR/2 
CUMAREA(I) = CUMAREA(I) + SAMPLE(J)
NEXT J 
NEXT I
FOR I = 2 TO MAXINDEX
PEAKAREA(I) = CUMAREA(I) - CUMAREA(I -1)
NORMPEAKAREA(I) = PEAKAREA(I) / SAMPAREA



8100
8110
8120
8130
8140
8150
8160
8170
8180
8190
8200
9000
9010
9015
9020
9030
9040
9050

9055

9060
9070

9080

9090
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NEXT I
PEAKAREA(1) = CUMAREA(1)
NORMPEAKAREA(I) = PEAKAREA(1) / SAMPAREA
FOR I = 1 TO MAXINDEX
CUMAREA(I) = CUMAREA(I) / SAMPAREA
NEXT I
RETURN
REM
REM
REM
REM
REM PRINT RESULTS
PRINT "CARBON # NORMAL BP MASS FRAC CUMULATIVE FRAC "
PRINT#13, "CARBON# NORMAL BP MASS FRAC CUMULATIVE FRAC" 
FOR I = 1 TO MAXINDEX
ACTUALPEAKAREA = NORMPEAKAREA(I) * (1 - PLUSFRAC)
ACTUALCUMAREA = CUMAREA(I) * (1 - PLUSFRAC)
PRINT CARBONNUMBER(I), BOILINGPOINT(I), ACTUALPEAKAREA, 
ACTUALCUMAREA
PRINT #13, CARBONNUMBER(I), BOILINGPOINT(I), ACTUALPEAKAREA,
ACTUALCUMAREA
NEXT I
PRINT "C“; CARBONNUMBER(MAXINDEX);" PLUS FRACTION = (1 - 
ACTUALCUMAREA)
PRINT #13, “C"; CARBONNUMBER(MAXINDEX); "PLUS FRACTION = “; (1 - 
ACTUALCUMAREA)
RETURN
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85
86
91
92
93
94
100
110
120
130
140
145
150
160
170
171
172
173
174
175
176
180
190
200
210
220
230
240
250

260
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REM
REM THIS IS "ZEROBLNK.BAS" PROGRRAM,
REM
REM
REM
REM BY SEOKHWAN KWAK
REM
INPUT "SAMPLE FILENAME: ", F1$
INPUT ■ BUNK FILENAME; ", F2$
INPUT "OUTPUT FILENAME: ", F3$
F1$ = F1$ + ".RPT"
F2$ = F2$ + ".RPT"
INPUT "CHROMATOGRAM TIME (MIN): ", TYME 
OPEN F1$ FOR INPUT AS #10 
OPEN F2$ FOR INPUT AS #11 
OPEN F3$ FOR OUTPUT AS #12
INPUT "AMOUNT OF START OF RUN TO ZERO OUT (MIN): ", ZTIME 
FOR I = 1 TO (ZTIME * 30)
PRINT #12, USING "########.####"; TRASH 1 
PRINT #12, USING "########.####"; TRASH2 
PRINT #12, USING "########.#####"; 0 
NEXT I
FOR I = ((ZTIME * 30) +1) TO (TYME * 30)
INPUT #10, TRASH1, TRASH2, SAMPLE 
INPUT #11, TRASH, TRASH, BLANK 
RESULT = SAMPLE - BLANK 
PRINT #12, USING "########.####"; TRASH1 
PRINT #12, USING "########.####"; TRASH2 
PRINT #12, USING "########.#####"; RESULT 
NEXT I

STOP



APPENDIX B

FORTRAN PROGRAM FOR CALCULATING HYDROTREATED 

PRODUCT DISTRIBUTION
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c
C The following program is used to calculate 
C heavy oil product distributions for bitumen hydrotreated over 
C Unocal HDM catalyst including NH3, H2S, H20, C1-C4 Gases, 
C C5+ naphtha, distillate, gas oil and residuum fractions 
C by weight.
C
C By Seokhwan Kwak
C
C

implicit double precision (a-h,o-z) 
double precision ld,masbal,masbwt,lnorm,liqout 
double precision methawt,metha,naphtwt,napht 
double precision methal ,napht1 ,hcgas,methaar

C
C
C Initialization....
C

open(22, file='d13c1c6', status='unknown')
C
C Input all feed elemental properties....
C where, fd=wt[in grams] of feed going to hydrotreater.
C fdcwt, fdhwt, hdnwt, fdswt, fdowt=wt% of carbon, hydrogen,
C nitrogen, sulfur and oxygen in the feed respectively....
C

write(MO)
write(22,10)

10 format(2x, 'Amount of liquid fed into hydrotreater[grams] ?') 
read*, fd 
write{*,15) fd 
write(22,15) fd 

15 format(4x,';',2x1f9.5,2x,'[grams]',/)
C

fdcwt=85.1 
fdhwt=11.6 
fdnwt=1.360 
fdswt=0.3334
fdowt=1 OO.-fdcwt-fdhwt-fdnwt-fdswt

C
C
C Calculating actual grams of C, H, O, N, S in the feed....
C

fdc=fd*fdcwt/100. 
fdh=fd*fdhwt/100. 
fdn=fd*fdnwt/100. 
fds=fd*fdswt/100. 
fdo=fd*fdowt/100.

C
C
C The following step is used to calculate the mass balance and
C normalization of the hydrotreated product....
C
C where,
C ld=wt of liquid coming out of hydrotreater [grams].
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C out=wt of liquid+gas coming out of hydrotreater [grams]
C masbwt=Mass Balance [wt%j 
C gnorm=wt of gas after normalization [grams]
C Inorm=wt of liquid after normalization [grams]
C snorm=wt of liquid+gas after normalization [grams]....
C

write(*,20)
write(22,20)

20 format(2x,'lnput amount liquid going out [grams]1) 
read*, Id 
write(*,25) Id 
write(22,25) Id 

25 format(4x,';',2x,f9.5,2x,'[grams]'/)
C

write(*,30)
write(22,30)

30 format(2x,'input amount of liquid+gas going out [grams]') 
read*, out 
write(*,35) out 
write(22,35) out 

35 format(4x,';',2x,f9.5,2x,'[grams]',/)
C
C

gas=out-ld
C

masbal=out/fd 
masbwt=masbal*100.

C
write(*,40) masbwt 
write(22,40) masbwt 

40 format(2x,'Mass balance;',2x,f9.5,/)
C
C

gnorm=gas*1/masbal
lnorm=ld*1/masbal
snorm=gnorm+lnorm

C
write(*,50)
write(22,50)

50 format(2x,'NORMALIZATION VALUE OF GAS & LIQUID') 
C

write(*,60) gnorm 
write(22,60) gnorm 

60 format(2x,'Gas;',2x,f9.5) 
wr'rte(*,70) Inorm 
write(22,70) Inorm 

70 format(2x,'Liquid;',2x,f9.5) 
write(*,80) snorm 
write(22,80) snorm 

80 format(2x,'gas+liquid after normalization;',2x,f9.5,/)
C
C Calculating amount of n,s,o converted in grams....
C

write(*,90)
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write(22,90)
90 format(2x,'Input wt% of Carbon in the product') 

read*, pdcwt 
write(*,95) pdcwt 
write(22,95) pdcwt 

95 format(4x,';',2x,f9.5,2x,'[wt%]',/)
C

write(*,100)
write(22,100)

100 format(2x,'Input wt% of Hydrogen in the product') 
read*, pdhwt 
write(*,105) pdhwt 
write(22,105) pdhwt 

105 format(4x,';,,2x,f9.5,2x,'[wt%]1,/)
C

writef, 110) 
write(22,110)

110 format(2x,'Input wt% of Nitrogen in the product') 
read*, pdnwt 
write(*,115) pdnwt 
write(22,115) pdnwt 

115 format(4x,';',2x,f9.5,2x,’[wt%]',/)
C

write(*,120)
write(22,120)

120 format(2x,'Input wt% of Sulfur in the product') 
read*, pdswt 
write(*,125) pdswt 
write(22,125) pdswt 

125 format(4x,';',2x,f9.5,2x,'[wt%]',/)
C

pdowt=1 OO.-pdcwt-pdhwt-pdnwt-pdswt
C

cons=fds-lnorm*pdswt/100, 
conn=fdn-lnorm*pdnwt/100, 
cono=fdo-lnorm*pdowt/100,

C
water=cono*(18./16.) 
liqout=lnorm-water

C
ammonia=conn*(17./14.)
hysulf=cons*(34./32.)
gasout=gnorm-ammonia-hysulf

C
write(*,130) water 
write(22,130) water 

130 format(2x,'Water;',2x,f9.5)
C

write(*,140) hysulf 
write(22,140) hysulf 

140 format(2x,'Hydrogen Sulfide;',2x,f9.5)
C

writ e(*, 150) ammonia 
wrrte(22,150) ammonia
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150 format(2x,'Ammonia;',2x,f9.5)
C

writ e(*, 160) liqout 
write(22,160) liqout 

160 format(2x,'Liquid Product;',2x,f9.5)
C

write(M70) gasout 
write(22,170) gasout 

170 format(2x,'Gas Product;',2x,f9.5)
C
C Input each area of C1 to C6 for hydrotreated gas 
C from Carle Gas Chromatograph....
C

write(*,180) 
write(22,180)

180 format(2x,'Input area of C1 from G.C.') 
read*, methaar 
write(*,185) methaar 
write(22,185) methaar 

185 format(4x,';',2x,f9.5)
C

write(M90)
write(22,190)

190 format(2x,‘Input area of C2 from G.C,') 
read*, ethanar 
write(*,195) ethanar 
write(22,195) ethanar 

195 format(4x,’;',2x,f9.5)
C

write(*,200)
write(22,200)

200 format(2x,'Input area of C3 from G.C.') 
read*, propaar 
write(*,205) propaar 
write(22,205) propaar 

205 format(4x1';',2x,f9.5)
C

write(*,210)
write(22,210)

210 format(2x,'Input area of C4 from G.C.') 
read*, butanar 
write(*,215) butanar 
write(22,215) butanar 

215 format (4x,' ,2x,f 9.5)
C

write(*,220)
write(22,220)

220 format(2x,'Input area of C5 from G.C.') 
read*, pentaar 
write(*,225) pentaar 
write(22,225) pentaar 

225 format(4x,';',2x,f9.5)
C

write(*,230)
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write(22,230)
230 format(2x,'Input area of C6 from G.C.') 

read*, hexanar 
write(\235) hexanar 
write(22,235) hexanar 

235 format(4x,';',2x,f9.5)
C
C Consider relative sensitivity data for hydrogen flame 
C detector [FID]....
C Adapted from " W.A. Dietz, "Response Factors for Gas 
C Chromatographic Analysis", J, of G.C., Feb, 1987, p.68,
C

tmethar=methaar/0.97 
tethaar=ethanar/0.97 
tpropar=propaar/0.98 
tbutaar=butanar/1.09 
tpentar=pentaar/1.04 
thexaar=hexanar/1.03

C
totalar=tmethar+tethaar+tpropar+

& tbutaar+tpentar+thexaar
C

methawt=tmethar/totalar*100. 
ethanwt=tethaar/totalar*100. 
propawt=tpropar/totalar*100. 
butanwt=tbutaar/totalar*100. 
pentawt=tpentar/totalar* 100. 
hexanwt=thexaar/totalar*100,

C
metha=gasout*methawt/100. 
ethan=gasout*ethanwt/100. 
propa=gasout*propawt/100. 
butan=gasout*butanwt/100. 
penta=gasout*pentawt/100. 
hexan=gasout*hexanwt/100,

C
C Input the Simulated Distillation results for 
C hydrotreated product....
C

write(*,240)
write(22,240)

240 format(2x,'Input wt% of up to 400 [F] from Simdis') 
read*, naphtwt 
write(*,245) naphtwt 
write(22,245) naphtwt 

245 format(4x,';',2x,f9.5)
C

write(*,250)
write(22,250)

250 format(2x,'Input wt% of 400 to 650 [F] from Simdis') 
read*, distiwt 
write(*,255) distiwt 
wrile(22,255) distiwt 

255 format(4x,';',2x,f9.5)
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write(*,260)
write(22,260)

260 format(2x,'Input wt% of 650 to 1000 [F] from Simdis') 
read*, gasoiwt 
write(*,265) gasoiwt 
write(22,265) gasoiwt 

265 format(4x,,;',2x,f9.5)
C

write(*,270)
write(22,270)

270 format(2x,,Input wt% of > 1000 [F] from Simdis') 
read*, residwt 
write(*,275) residwt 
write(22,275) residwt 

275 format(4x,';‘,2x,f9.5)
C

napht=liqout*naphtwt/100. 
dist i=liqout*distiwl/100. 
gasoi=liqout*gasoiwt/100. 
resid=liqout*residwt/100.

C
chliq=water+napht+disti+gasoi+resid
chgas=ammonia+hysulf+metha+ethan+propa+butan+

& penta+hexan
C

total=chliq+chgas
C

write(*,280)
write(22,280)

280 format(2x,'ls total product gas and liquid = feed amount ?') 
write(*,285) total 
write(22,285) total 

285 format(4x,';‘,2x,f9.5)
C
C
C Based on amount of feed (assumed to be 100 [g]),
C calculate all gas and liquid hydrotreated products including 
C NH3, H2S, H20, C1-C4 Gases, C5+ naphtha, distillate, gas oil
C and residuum fractions by weight....
C

ammonial =(ammonia/fd)*100.
hysulfl = (hysulf/fd) * 100.
waterl =(water/fd)*100.
methal =(metha/fd)*100.
ethanl =(ethan/fd)*100.
propal =(propa/fd)‘ 100.
butanl =(butaiVfd) 100.
naphtl =((penta+hexan+napht)/fd)*100.
distil =(disti/fd)*100.
gasoil =(gasoWd)*100.
residl =(resid/fd)*100.

C

C
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hcgas=metha1 +ethan1 +propa1 +butan1

write(*,290) 
write(22,290)

290 format(2x,'wt% of ammonia in product') 
write(\295) ammonial 
write(22,295) ammonial 

295 format(4x,';',2x,f9.5)
C

write(\300)
write(22,300)

300 format(2x,'wt% of hydrogen sulfide in product') 
write(‘ ,305) hysulfl 
write(22,305) hysulfl 

305 format(4x,';,,2x,f9.5)
C

write(*,310)
write(22,310)

310 format(2x,'wt% of water in product') 
write(*,315) waterl 
write(22,315) waterl 

315 format(4x,,;,I2x,f9.5)
C

write(*,320)
write{22,320)

320 format(2x,'wt% of methane in product') 
write(*,325) methal 
write(22,325) methal 

325 format(4x,';',2x,f9.5)
C

write(*,330) 
writ e(22,330)

330 format(2x,'wt% of ethane in product') 
write(*,335) ethanl 
write(22,335) ethanl 

335 format(4x,,;,,2x,f9.5)
C

write(*,340)
write(22,340)

340 format(2x,lwt% of propane in product’) 
write(*,345) propal 
write(22,345) propal 

345 format(4x,';,.2x,f9.5)
C

write(*,350)
write(22,350)

350 format(2x,'wt% of butane in product') 
write(*,355) butanl 
write(22,355) butanl 

355 format(4x,';',2x,f9.5,//)
C

write(*,357)
write(22,357)

357 format(2x,‘wt% C1 to C4 gases in product')

C
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write(*,359) hcgas 
write{22,359) hcgas

359 format{4x,';',2x,f9.5)
C

write(*,360)
write(22,360)

360 format(2x,‘wt% of C5 to 400 [F] in product') 
write(*,365) naphtl
write{22,365) naphtl 

365 format (4x,'; ',2x,f 9.5)
C

write(*,370) 
write(22,370)

370 format(2x,'wt% of 400 to 650 [F] in product') 
write(*,375) distil 
write(22,375) distil

375 format(4x,';'12x,f9,5)
C

writ e(*,380) 
writ e(22,380)

380 format(2x,'wt% of 650 to 1000 [F] in product’) 
write(*,385) gasoil 
write(22,385) gasoil 

385 format(4x,';',2x,f9.5)
C

writeC,390) 
write(22,390)

390 format(2x,'wt% of >1000 [F] in product') 
writef,395) residl 
write(22,395) residl 

395 format(4x,';',2x,f9.5,//)
C
C

totaI2=ammonia1 +hysulf 1 +water1 +hcgas+napht 1 +disti1 +gasoi 1 +resid1
C

writ e(‘ ,400) 
writ e(22,400)

400 format(2x,'sum of total wt% of products should be 100') 
write(*,405) totaI2 
write(22,405) totai2 

405 format(4x,';',2x,f9.5)
C
C

stop
end



APPENDIX C
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C Program "Hydrogen.for"
C
C This program is used to calculate hydrogen consumption 
C for hydrotreating of heavy oil over HDM catalyst,
C
C by Seokhwan Kwak
C 
C 
C

implicit double precision (a-h.o-z) 
double precision metha

C
C
C Initialization....
C
C

open(22, file='d13h2cos', status='unknown')
C
C Input the amount of hydrogen going into the hydrotreater and 
C the amount of hydrogen+methane+ethane+ethylene coming out of the
C liquid nitrogen trap....
C

write(*,10)
write(22,10)

10 format(2x,'lnput amount of hydrogen going in l[stp]/hr') 
read*, hydin 
writef,15) hydin 
write(22,15) hydin 

15 format(4x,,;,,2x,f9.5,2x,'liter[stp]/hr1,/) 
write(*,20) 
write(22,20)

20 format(2x,'Input amount of hydrogen+C1 +C2 going out l[stp]/hr') 
read*, gasout 
writ e(*,25) gasout 
write(22,25) gasout 

25 format(4x,';,,2x,f9.5,2x,'liter[stp]/hr,I/)
C
C Enter gas chromatographic results for hydrogen+C1 to C2 gases from
C the liquid nitrogen trap....
C

write(*,30) 
write(22,30)

30 format{2x,'Input area of methane') 
read*, metha 
write(*,35) metha 
write(22,35) metha 

35 format(4x,,;',2x,f9.5) 
write(*,40) 
write(22,40)

40 format(2x,'Input area of ethane') 
read*, ethan 
write{*,35) ethan 
write(22,35) ethan

C
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writef,50) 
write(22,50)

50 format(2x,'Input area of ethylene') 
read*, ethyl 
write{‘ ,55) ethyl 
write(22,55) ethyl 

55 format (4x,1,2x,f 9.5,/)
C
C Calculate volumes of hydrogen, methane, ethane and ethylene
C at std condition based on standard sample areas....
C

write(\60)
write(22,60)

60 format(2x,'Input atmospheric temperature [C]") 
read*, temp 
write(*,65) temp 
write(22,65) temp 

65 format(4x,';',2x,f5,1,2x,'[C]') 
write(*,70) 
write(22,70)

70 format(2x,'Input atmospheric pressure [mmHg]') 
read*, press 
write(*,75) press 
write(22,75) press 

75 format(4x,';',2x,f5.1,2x,'[mmHg]‘,/)
C

saread =2.6387 
sareac2=4.7985 
sareac3=8.3760

C
vstdl =(metha*5. e-4/sareac1 )*(273.15/(temp+273.15))*(press/760.) 
vstd2=(ethan*5.e-4/sareac2)*(273.15/(temp+273.15))*(press/760.) 
vstd3=(ethyl*5.e-4/sareac3)*(273.15/{temp+273.15))*(press/760.) 
vstd4=5.e-1 - vstdl-vstd2-vstd3

C
C Normalization and get the volume % of hydrogen only among 
C exit gas from liquid nitrogen trap....
C

vstd=vstd1 +vstd2+vstd3+vstd4
C

vstdl 1=vstd1/vstd 
vstd21=vstd2/vstd 
vstd31=vstd3/vstd 
vstd41 =vstd4/vstd

C
hydout=gasout*vstd41

C
C Simple check of normalization result....
C

chtotal=vstd11 +vstd21 +vstd31 +vstd41

write(*,80) chtotal 
write(22,80) chtotal

C
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80 format(2x,'After normalization, total volume should be 
& 1;',2x,f3,1/)

C
write(*,90)
write(22,90)

90 format(2x,'Input liquid feeding in (cc/hr]') 
read*, vel 
write(*,95) vel 
write(22,95) vel 

95 format(4x,';',2x,f9.5,2x,'[cc/hr]',/)
C
C Finally, calculate hydrogen consumption for heavy oil
C hydrotreating by HDM catalyst in various units....
C

hydcons=(hydin-hydout)*(1000.*5.614578)/(vel) 
hydconsl =(hydin-hydout)*2./(22.4*vel*0.9144) 
hydcons2=hydcons*(28.31685/158.98729)

C
writef,100) 
write(22,100)

100 format(2x,'hydrogen consumption in scfH2/bblfeed') 
write(*,105) hydcons 
write(22,105) hydcons 

105 format(4x,';',2x,f9.5,2x,'[scf H2/bbl feed]') 
write(*,110) 
write(22,110)

110 format(2x,'hydrogen consumption in gH2/gfeed') 
write(*, 105) hydconsl 
write(22,105) hydconsl 

115 format(4x,';',2x,f9.5,2x,,[g H2/g feed]') 
write(*,120) 
write(22,120)

120 format(2x,'hydrogen consumption in IH2/lfeed‘) 
write(*,125) hydcons2 
write(22,125) hydcons2 

125 format(4x,';',2x,f9.5,2x,'[liter H2/liter feed]')
C
C
C

stop
end
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This program is used to calculate kinetic parameters for hydrotreating the 
Whiterocks bitumen over a commercial (UNOCAL) catalyst. This program uses 
the non-linear regression MINPACK routine and is specially made for two parallel first 
order nickel removal reactions (facile and refractory fractions).

by Seokhwan Kwak

INTEGER J,M,N,INFO,LWA,NWRITE 
INTEGER IWA(5)
DOUBLE PRECISION TOL,FNORM,L2NORM 
DOUBLE PRECISION X(5),FVEC(12),WA(99)
DOUBLE PRECISION ENORM.DPMPAR 
DOUBLE PRECISION TIME,CAL(12),DIFF.AAD 
DOUBLE PRECISION TIME,CALCP,EXPCP,DIFF1 
DOUBLE PRECISION T,WHSV,P,EXPT,ALPHA,BETA,CP 
COMMON /KWAKDAT/T(12), WHSV(12), P(12),EXPT(12),ALPHA,BETA,CP(12) 
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 11.

DATA NWRITE /11/

M = 12 
N = 5

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

Here, X(1) = gamma 
X(2) = K10 
X(3) = K20 
X(4) = E1 [J mol-1]
X(5) = E2 [J mol-1] ....

X(1) = ,1d0 
X(2)= 0.6d5 
X(3)= 0.6d6 
X(4) = 0.78d5 
X(5) = 0.89d5

LWA= 150

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))*1.d4
C

CALL LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
FNORM = ENORM(M.FVEC)

C
OPEN(NWRITE,FILE='hdnialtr.out',STATUS=,UNKNOWNl)

WRITE (NWRITE.1000) FNORM,INFO,(X(J),J=1,N)
C



1000 FORMAT (5X.31 H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X.15H EXIT PARAMETER,16X.I10//
* 5X.27H FINAL APPROXIMATE SOLUTION II 3X,5D15.7)

C
WRITE(6,9994)
WRITE(NWRITE,9994)

9994 FORMAT(//5X, Time(hr)', 6X, 'Exptl.', 9X, 'Cald.',
1 9X, ‘Diff1, 10X, 'AAD %’,
2 /5X, '========', 6X, '======', 9X, '=====',
3 9X, '====', 10X, ■====='/)

C
S=0.D0 
DO 5 1=1 ,M
CALL CALCUL(I, N, X, CAL)
TIME=1.D0/WHSV(I)
DIFF=CAL(I)-EXPT(I)
AAD=100.D0*ABS(DIFF)/EXPT(l)
S=S+AAD
WRITE(6, 9993) TIME, EXPT(I), CAL(I), DIFF, AAD 
WRITE(NWRITE,9993) TIME, EXPT(I), CAL(I), DIFF, AAD 

9993 FORMAT(7X, F5.3, 4X, 4(1 X, F12.8))
5 CONTINUE 
C

S=S/M
WRITE(6,9992) S 
WRITE(NWRITE,9992) S 

9992 FORMAT(/5X, 'AAD:', F14.8,'%'//)
C

WRITE(6,1112)
WRITE(NWRITE, 1112)

1112 FORMAT(//5X, Time(hr)', 6X, 'Cp(exp)', 9X, 'Cp(cal)',
1 9X,'Diff', 10X,'L2 norm',
2 /5X, •========', 6X, '======', 9X, '=====',
3 9X, '====', 10X, '====='/)

C
DO 6 1=1,M
CALL CALCUL(I, N, X, CAL)
TIME=1 .D0/WHSV(l)
EXPCP=CP(I)
CALCP=(CAL(I))
DIFF1=EXPCP-CALCP
L2NORM=DIFF1**2.DO
S1=S1+L2NORM
WRITE(6, 9993) TIME, EXPCP, CALCP, DIFF1, S1 
WRITE(NWRITE,9993) TIME, EXPCP, CALCP, DIFF1, S1

6 CONTINUE 
C

WRITE(6,*) S1 
WRITE(NWRITE,*) S1

STOP
END

WRITE (*,1000) FNORM,INFO,(X(J),J=1,N)
C

C
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SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG,I
DOUBLE PRECISION X(N),FVEC(M),CAL(12),EXPT 
DOUBLE PRECISION CONCPROD,CONCFEED,CP(12)
DOUBLE PRECISION T,WHSV,P,EXPT,ALPHA,BETA,CP
COMMON /KWAKDAT/T(12), WHSV(12), P(12),EXPT(12),ALPHA,BETA,CP(12)

C
DATA CONCFEED/0.0072D0/
DATA (CP(I),I=1,12)/0.0039d0,0.0040d0,0.0055d0,0.0023d0,

0.0025d0,0.0030d0,0.0033d0,0.00198d0,
0.00137d0,0.0031 d0,0.0025d0,0.0022d0/

DO 50 1=1,12

CONCPROD=CP(l)
EXPT(l)=CONCPROD

CALL CALCUL(I,N,X,CAL)
FVEC(I)=CAL(I) - EXPT(I)
CONTINUE

C

RETURN
END

SUBROUTINE CALCUL(I, N, X, CAL)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(N)
DOUBLE PRECISION WHSVE,PRESS,TEMP,CAL(12),K1 ,K2 
DOUBLE PRECISION T,WHSV,P.EXPT,ALPHA,BETA,CP 
COMMON /KWAKDAT/T(12), WHSV(12), P(12),EXPT(12),ALPHA,BETA,CP(12)

DATA (P(l) ,1=1,12)/13.4892d0,13.2361 dO,13.3706d0,13.5050d0,
13.4268d0,13.1797d0,13.4434d0,13.3926d0,
13.1069d0,10.8405d0,14.9383d0,16.0327d0/

DATA (T(l),l=1,12)/619.8550d0,642.3613d0,652.9521 dO,664.7213d0, 
673.3173d0,684.6519d0,662.2412d0,665.1570d0,
665.7481 dO,664.6790d0,664.7027d0,664.4580d0/

DATA (WHSV(I),I=1,12)/0.76978d0,0.76578d0,0.769456d0,0,76676d0,
0.757103d0,0.762504d0,1.37578d0,0.432506d0, 
0.24429d0,0.76683d0,0.76007d0,0.771431 dO/

C
DATA CONCFEED/0.0072D0/
DATA ALP H A,B ET A/0.9164538d0,1,759649d0/

C
TEMP=T(I)
WHSVE=WHSV(I)
PRESS=P(I)

K1 =X(2)*EXP(-(X(4)/8.314D0)*(1 .DO/TEMP))
K2=X(3)*EXP(-(X(5)/8.314D0)*(1 .DO/TEMP))

C



CAL(I)=((X(1 )*EXP(-K1 *PRESS**BETA/(WHSVE**ALPHA)))+(1 ,D0-X(1 ))*
EXP(-K2*PRESS**BETA/(WHSVE**ALPHA)))*C0NCFEED
RETURN
END
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TITLE PROBLEM=HTTEMP, PROJECT=HDMBIT, USER=KWAKRJDS, DATE=JUN/1Q/93 
DIMENSION ENGLISH, TEMP=F 
PRINT INPUT=NONE, STREAM=NONE 
COMPONENT DATA
LIBID 1 .HYDROGEN / 2,WATER / 3.HYSULFID / 4,AMMONIA / 5,METHANE / *

6,ETHANE / 7,PROPANE / 8.BUTANE / 9.PENTANE /10,HEXANE 
TBPCUTS 100,1488,15 

THERMODYNAMICS DATA 
METHODS SYSTEM=GS, TRANSPORT=PETRO 

STREAM
OUTPUT FORMAT=1, NSTREAMS=4, STREAMS= F13, F14, F15, F16 
FORMAT IDNO=1, PAGE, NAME, PHASE, LINE, CPCT(M), LINE, ARATE(M.HR), * 

ARATE(W.LB.HR), TEMP, PRES, LFRAC, LINE, ENTHALPY(T), * 
ENTROPYfT), DENSITY, TC, PC, VC, ZC, ACENTRIC, LINE, * 
SSPGR(WATER), SAPI, MW, NBP, CP(W), PAGE, NAME, PHASE, LINE, * 
CRATE(W), LINE, CPCT(W)

$ INPUT STREAMS 
PROPERTY STRM=F13, TEMP=350, PRES=1983, RATE(W)=256.586, ASSAY=WT 
TBP STRM=F13,‘

DATA 0.4822,304 / 1.6495,421 / 6.2566,520 / 9.7234,601 / *
18.8604,716 / 26.8391,808 / 44.2711,911.5/ *
61.5871,1003 / 76.2614,1105 / 100,1285.14 

API AVG=15,183, STRM=F13
PROPERTY STRM=F14, TEMP=350, PRES=1983, RATE(W)=27.668, *

COMP(W)=1,0.78868 / 2,0.03044 / 3,0.01353 / 4,0.026711 *
5.0.02773 / 6,0.02625 / 7,0.04473 1 8,0.02185 / *
9.0.01169/10,0.00837 

UNIT OPERATIONS
FEED F13, F14 
PROD V=F15, L=F16 
ISO TEMP=736.8, PRES=1995 

END
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VERSION 3.02, VAX 77 
SIMULATION SCIENCES INC. 
PROJECT HDMBIT 
PROBLEM HTTEMP

TM
PROCESS PAGE 1

INPUT
KWAKRJDS

JUN/10/93

VlilA UNIT - STREAM CORRELATION MATRIX

UNIT ====== FEED STREAM IDS ====== ===== PRODUCT STREAM IDS
NO ID
4HD11 F13 F14 - - - - F15 F16

VIIIC CALCULATION AL SEQUENCE IS DEFINED BY INPUT

*** ALL INPUT DATA IN ORDER ***

**** PROBLEM SOLUTION REACHED “ **

UNIT ID HD11 
NUMBER 1 
NAME
TYPE FLASH

FEEDS F13
F14

PRODUCTS F15 (V) 
F16 (L)

TEMP, DEG F 736.8000 
PRESSURE, PSIA 1995.0000 
FRACTION LIQUID 0.06414 
DUTY, MM BTU /HR 0.10339
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VERSION 3.02, VAX 77 TM
SIMULATION SCIENCES INC. PROCESS PAGE 11
PROJECT HDMBIT KWAKRJDS
PROBLEM HTTEMP SOLUTION JUN/10/93

USER-DEFINED STREAM SUMMARY OUTPUT *
STREAM ID. 
STREAM NAME

F13 F14 F15 F16

STREAM PHASE 
COMP. MOLE PERCENTS.

LIQUID VAPOR VAPOR LIQUID

1 HYDROGEN 0.0000 98.0191 97.2015 27.5007
2 WATER 0.0000 0.4234 0.4067 0.3104
3 HYSULFID 0.0000 0.0995 0.0874 0.1921
4 AMMONIA 0.0000 0.3929 0.3887 0.1241
5 METHANE 0.0000 0.4331 0.4278 0.1451
6 ETHANE 0.0000 0.2187 0.2109 0.1485
7 PROPANE 0.0000 0.2542 0.2439 0.1905
8 BUTANE 0.0000 0.0942 0.0891 0.0887
9 PENTANE 0.0000 0.0406 0.0376 0.0499

10 HEXANE 0.0000 0.0243 0.0219 0.0388
11 NBP-75 0.0000 0.0000 0.0000 0.0000
12NBP 256 0.0000 0.0000 0.0000 0.0000
13NBP 326 3.9918 0.0000 0.1821 0.7001
14NBP 419 2.1175 0.0000 0.0855 0.5330
15NBP 551 11.4195 0.0000 0.3121 5.0518
16NBP 613 6.3807 0.0000 0.1263 3.5249
17NBP 709 12.4306 0.0000 0.1186 8.7259
18NBP 797 9.4474 0.0000 0.0355 7.4283
19NBP 889 17.9606 0.0000 0.0199 14.8166
20NBP 976 13.3873 0.0000 0.0038 11.2057
21 NBP 1071 9.5353 0.0000 0.0005 8.0139
22 NBP 1164 7.8793 0.0000 0.0001 6.6269
23 NBP 1252 5.4500 0.0000 0.0000 4.5842
24 NBP 1344 0.0000 0.0000 0.0000 0.0000
25 NBP 1434 0.0000 0.0000 0.0000 0.0000
RATE, LB MOLS/HR 0.6297 11.0430 10.9240 0.7487
RATE, LB /HR 256.5860 27.6680 48.8354 235.4186
TEMPERATURE, DEG F 350.0000 350.0000 736.8000 736.8000
PRESSURE, PSIA 1983.0000 1983.0000 1995.0000 1995.0000
MOLE FRAC LIQUID 1.0000 0.0000 0.0000 1.0000
ENTHALPY, MM BTU /HR 0.0251 0.0009 0.0411 0.0883
ENTROPY, M BTU /HR F 0.0800 0.2263 0.2651 0.1424
ACT.DENS, LB /FT3 56.0270 0.5386 0.6628 44.4758
CRIT. TEMP, F 1150.4110 -386.8691 -376.0008 747.6270
CRIT. PRES, PSIA 187.8697 212.5301 212.5935 190.8625
CRIT. VOLUME, FT3/LB MOLE 22.2287 1.0580 1.1642 17.3172
CRIT. COMPRESS. (ZC) 0.2175 0.3041 0.3036 0.2388
ACENTRIC FACTOR 0.9189 -0.2121 -0.2052 0.6386
STD. SPGR, (H20.60F) 0.9662 0.0856 0.1430 0.9523
STD. API GRAVITY 14.9534 1521.3000 858.0804 17.0907
MOLECULAR WEIGHT 407.4461 2.5055 4.4705 314.4485
NML. BOIL PT„ (MOLE) F 839.9493 -415.3532 -407.1068 520.2131

CP, BTU /LB F 0.5542 2.8503 1.8979 0.7290
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C This is the main program for solving ODE equations and performing 
C nonlinear regressions using the SIMPLEX method simultaneously.
C This program was developed to obtain the best reaction constants 
C at 735 [F] for the series of irreversible first-order reactions in a plug-flow reactor.
C All data were obtained for hydrotreating of Whiterocks bitumen over a commercial
C UNOCAL hydrodemetallation catalyst....
C
C By Seokhwan Kwak
C 
C 
C
C The molecular weight reduction reaction scheme was examined by lumping 
C HT products into four representive groups, which are 
C - Resid (b.p. > 538 C)
C - Total Gas Oil (275 C < b.p. < 538 C)
C - Middle Distillates (C5 < b.p. < 275 C)
C - Gases (including NH3, H2S, C1 to C4 Hydrocarbon gases)....
C
C
C
C The proposed irreversible first order reaction scheme is as follows....
C
C Resid-(kro)-> Total Gas Oil -(kod)-» Middle Distillates
C i I
C l-(kog)-> Gases <—(kdg)—I
C
C where,
C kro = rate constant from resid to total gas oil [1/hr] (=X(1))
C kod = rate constant from total gas oil to middle distillates [1/hr] (=X(2))
C kog = rate constant from total gas oil to gases [1/hr] (=X(3))
C kdg = rate constant from middle distillates to gases [1/hr] (=X(4))....

C

C
C
C

IMPLICIT REAL*8 (A-H, O-Z)
CHARACTER *1 CC, CC1, CC2, CNAME*11 
DIMENSION X(6), XX(7,6), FX(7), C(6), Y(6), Z(6), V(6) 
EXTERNAL F 
WRITE(6,200)

200 FORMAT(2X, The name of output f i l e : $)
READ (5,210) CNAME 

210 FORMAT(A11)
OPEN (1, FILE=CNAME, STATUS='NEW')

C
C
C Input all the initial informations including initial guesses....
C

WRITE(6,150)
150 FORMAT(2X, The dimension of parameter:', $) 

READ(5,*) N 
WRITE(6,170)
READ(5,*) ITMAX 
WRITE(6,190)
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READ(V) EPS 
5 CONTINUE

WRITE(1,220) N, ITMAX, EPS 
220 FORMAT('1 'Dimension of parameter: 19,

* 2X, 'Maximum iteration time: 19,
* 2X, 'Convergence criterion: ', E9.2)

WR1TE(6,100)
100 FORMAT(2X, The initial guesses:',)

DO 10 1=1 ,N 
WRITE(6,110) I 

110 FORMAT(5X, 'X(', 12, ')= ? ', $)
READ(5,*) X(l)

10 CONTINUE
WRITE(6,120) (X(l), 1=1 ,N)
WRITE(1,120)(X(I), 1=1,N)

120 FORMAT (2X, The initial value:’,5X, 6D12.4)
C
C
C Now call subroutine SIMPLEX for solving nonlinear regression, which calls
C FX in RK4 for solving ODEs simultaneously....
C

CALL SIMPLEX(N, ITMAX, EPS, X, XX, FX, C, Y, Z, V, FY, 0, IP1, F)
C
C
C The subroutine STTEST is used to evaluate the overall performance of the 
C results obtained from this program. This will include the relative
C errors like AAD, etc.....
C

CALL STTEST(N,X,IP1)
C
C
C If the desired AAD was not obtained in the previous run
C the following subroutine will rerun the program....
C

WRITE(6,130)
130 FORMAT (2X, 'Going on with another initial values? (Y/N)', $) 

READ(5,140) CC 
140 FORMAT(A1)

IF(CC ,EQ, V  .OR. CC .EQ. 'y*) THEN 
WRITE(6,160)

160 FORMAT(2X, to change the max. iteration time? (Y/N)', $)
READ(5,140) CC1
IF (CC1 .EQ. 'Y' .OR. CC1 .EQ. 'y') THEN 
WRITE(6,170)

170 FORMAT(2X, The max. number of iterations:', $)
READ (5,*) ITMAX 
ENDIF
WRITE(6,180)

180 FORMAT(2X, 'to change the convergence criterion? ( Y /N )$) 
READ(5,140) CC2
IF (CC2 .EQ. 'Y‘ .OR. CC2 .EQ. *y’) THEN 
WRITE(6,190)

190 FORMAT(2X, 'The convergence crite rion:$)
READ (5,*) EPS
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ENDIF 
GOTO 5 
ENDIF 
CLOSE (1)
STOP
END

C
C
C The following subroutine is a general SIMPLEX method....
C
C

SUBROUTINE SIMPLEX(N, ITMAX, EPS, X, XX, FX, C, Y, Z, V, FY,
2 IP.IP1.F)

C
IMPLICIT REAL *8 (A-H, O-Z)
CHARACTER ACTIONS 2, FLIP‘5, ACTP*17
DIMENSION X(N), XX(N+1,N), FX(N+1), C(N), Y(N), Z(N), V(N)
EXTERNAL F
DATA R, T, S/1.0D0, 2.0D0, 0.5D0/
DATA FLIP/'Flip/V

C
C
C Initialization....
C

ITER=0
LINE=0
IFLIP=0
ACTIONS '
ACTP = ' '
L=N/7+1

C
C
C Calculate the coordinate of other N vertices....
C

SQ1 =SQRT (FLOAT (N+1 ))-1 
SQ=N*SQ RT (2.0D0)
P=(SQ1+N)/SQ 
Q=SQ1/SQ 
DO 200 1=1 ,N 
XX(1,I)=X(I)

200 CONTINUE
DO 2101=2,N+1 
11=1-1
DO 210 J=1,N 
IF (11 .EQ. J) THEN 
XX(I,J)=X(J)+P 
ELSE
XX(I,J)=X(J)+Q 
ENDIF 

210 CONTINUE 
5 CONTINUE 
C 
C
C Calculate the function values at every vertex....
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DO 10 l=1,N+1 
DO 8 J=1,N 
X(J)=XX(I,J)

8 CONTINUE
CALL F(X,N,FX(I))

10 CONTINUE
C
C
C Search for the max. and the min. points....
C
15 CONTINUE

FMAX=-1.0D38
FMIN=1.0D38
DO 17 I=1,N+1
IF (FX(I) .GT. FMAX) THEN
FMAX=FX(I)
IMAX=I
ENDIF
IF (FX(I) .LT. FMIN) THEN 
FMIN=FX(I)
IMIN=I 
ENDIF

17 CONTINUE 
C 
C
C Print the title for the intermediate results....
C

IF (MOD(LINE,53) .EQ. 0) THEN 
C WRITE(1,1000)

IF (IP1 .EQ. 1) WRITE(6,1000)
1000 FORMAT('1'No of IT', 2X, ‘Action1, 16X, ^min)',

* HX.'XCmin)1,
* /IX , '========', 2X, '======', 16X, '======',
* 11X, '======',/)

ENDIF
C
C Check to see if the action is combined with flip....
C

IF (IFLIP .EQ. 1) THEN
ACTP=FLIP//ACTION
IFLIP=0
ELSE
ACTP=ACTION 
ENDIF

C
C
C Print the intermediate results: iteration time, action taken,
C coordinate and function value at the minimum point....
C
C WRITE(1,1010) ITER, ACTP, FX(IMIN), (XX(IMIN,J),J=1,N) 

IF (IP1 .EQ. 1)
* WRITE(6,1010) ITER, ACTP, FX(IMIN), (XX(IMIN,J),J=1,N) 

1010 FORMAT(2X, 14, 5X, A17, D15.6, 2X, /5X, D11.3)

C
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ACTP=‘ '
LINE=LINE+1

C
C
C Check to see if the criterion is satisfied, if so, return....
C

SS=O.ODO 
DO 170 1=1,N+1 
SS=SS+(FX(I)-FX(IMIN))**2 

170 CONTINUE
SS=SQRT(SS/N)
IF (SS .LT. EPS) THEN 
FY=FX(IMIN)
DO 175 1=1 ,N 
X(I)=XX(IMIN,I)

175 CONTINUE
WRITE(6,1020) ITER, FY, (X(I),I=1,N)
WRITE(1,1020) ITER, FY, (X(]),I=1,N)

1020 FORMAT(5X, 'No. of iterations:', 110,
* /5X, 'Function value(min):', D20.10/
* 5X, 'The coordinate:', 5X, (4X, 7D18.10,:,))

RETURN
ENDIF

C
C
C Check to see if the max. Iteration times have been reached, if
C so, print a message and return....
C

IF (ITER .GT. ITMAX) THEN 
DO 180 1=1,N 
X(I)=XX(IMIN,I)

180 CONTINUE 
FY=FX(IMIN)

C WRITE(1,1030) ITMAX, ITER, FY, (X(I),I=1,N) 
WRITE(6,1030) ITMAX, ITER, FY, (X(I),I=1,N)

1030 FORMAT(//2X,' ** The max. Iteration time,', 15,' has been ',
* 'reached, but the convergence is not satisfied.',
* /5X,'No. of iterations:', 110,
* /5X, 'Function value(min):', D20.10,
* /5X, The coordinate:',/5X, (4X, 7D18.10, :, /))

RETURN
ENDIF

C
C
C Search the second max. point....
C

SS=-1.0D38
DO 18 l=1,N+1
IF (I .NE. IMAX) THEN
IF (FX(I) .GT. SS) THEN
SS=FX(I)
IMAXS=I
ENDIF
ENDIF
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18 CONTINUE
C
C
C Calculate the coordinate of the centroid....
C

DO 20 1=1 ,N 
C(l)=0.0D0 

20 CONTINUE 
DO 22 1=1 ,N 
DO 22 J=1,N+1
IF (J .NE. IMAX) C(I)=C(I)+XX(J,I)

22 CONTINUE 
DO 25 1=1 ,N 
C(I)=C(I)/N 

25 CONTINUE 
C 
C
C Print the coordinate and function values at every vertex,
C and the coordinate of centroid if IP=1....
C

IF (IP .EQ. 1) THEN 
WRITE(2,1040) ITER, (C(I),I=1,N)

1040 FORMAT(/2X,'ITERATION TIME:', 110, 5X,'CC:',/5X, F10.3) 
DO 270 1=1,N+1 
JJ=0
DO 265 J=1,N
IF (ABS(FX(J)) .LT. 1E-3) THEN 
JJ=1
GOTO 267 
ENDIF 

265 CONTINUE 
267 CONTINUE

IF (JJ .EQ. 0) THEN 
WRITE(2,1060) I, FX(I), (XX(I,J),J=1,N)
ELSE
WRITE(2,1050) I, FX(I), (XX(I,J),J=1,N)
ENDIF

1050 FORMAT(2X, 'FX(', 11,'):', E10.3, 5X, 'XX:', /5X, F10.3)
1060 FORMAT(2X, *FX(', 1 1 , F10.3, 5X, 'XX:', /5X, F10.3)
270 CONTINUE 

ENDIF
ITER=ITER+1

C
C
C Reflection....
C

DO 30 1=1,N
Y(l)=C(l)+R*(C(l)-XX(IMAX, I))

30 CONTINUE
C
C
C The function value at the new point....
C

CALL F(Y,N,FY)
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IF (FY .LT. FX(IMIN)) THEN
C
C
C Expansion....
C

DO 40 1=1 ,N
Z(I)=C(I)+T*(C(I)-XX(IMAX,I))

40 CONTINUE
CALL F(Z,N,FZ)
IF (FZ .LT. FY) THEN

C
C
C The expansion has succeeded....
C

DO 45 1=1 ,N 
XX(IMAX,I)=Z(I)

45 CONTINUE 
FX(IMAX)=FZ 
ACTION='Expansion 1 
GOTO 15 
ELSE
DO 50 1=1 ,N 
XX(IMAX,I)=Y(I)

50 CONTINUE 
FX(IMAX)=FY 
ACTION='RefIection '
GOTO 15 
ENDIF
ELSEIF (FY .LT. FX(IMAXS)) THEN

C
C
C Exchange ....
C

DO 60 1=1 ,N 
XX(IMAX,I)=Y(I)

60 CONTINUE 
FX(IMAX)=FY 
ACTION='Exchange '
GOTO 15 
ELSE
IF (FY .LT. FX(IMAX)) THEN

C
C
C Flip....
C

DO 70 1=1 ,N 
XX(IMAX,I)=Y(I)

70 CONTINUE 
FX(IMAX)=FY 
IFLIP=1 
ENDIF

C
C
C Contraction....
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c
DO 80 1=1 ,N
V(I)=C(I)+S*(XX(IMAX,I)-C(I))

80 CONTINUE
CALL F(V,N,FV)
IF (FV .LT. FX(IMAX)) THEN 
DO 90 1=1,N 
XX(IMAX,!)=V(I)

90 CONTINUE 
FX(IMAX)=FV 
ACTION='Contraction'
GOTO 15 
ELSE

C
C
C Shrink....
C

DO 100 1=1,N+1 
DO 100 J=1,N
XX(I,J)=0.5D0*(XX(I,J)+XX(IMIN,J))

100 CONTINUE
ACTION=‘Shrink '
GOTO 5
ENDIF
ENDIF
RETURN
END

C
C
C The following subroutine is for solving ODEs by Runge-Kutta
C fourth method....
C

SUBROUTINE F(X,N,FX)
IMPLICIT REAL *8 (A-H,0-Z)
DIMENSION X(N), CONST(2)
INCLUDE 'MOLREDTN.DAT'
DOS 1=1,N 
XX(I)=X(I)
IF (XX(I) .LT. 0.0D0) THEN 
FX=1.0D10 
GOTO 20 
ENDIF 

5 CONTINUE 
FX=0.0D0 
DO 20 JCOL=1,NT 
TK=TEM P(JCOL)
Y(1)=Y10
Y(2)=Y20
Y(3)=Y30
Y(4)=Y40
Y(5)=Y50
CALL DERIVS (NN,Y,DY)
JEXP=1
TIME1 =TIME(JEXP, JCOL)
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DO 10 l=1,MAXS
CALL RK4(NN,H,YPDY,YC,Y1)
IF (ABS(Y(1)-TIME1) ,LE. 1.0D-8) THEN 
D! FA=A(J EXP,JCOL)-Y(2)
DIFB=B(JEXP,JCOL)-Y(3)
Dl FC=C( JEX P, JCOL)-Y (4)
DIFD=D(JEXP,JCOL)-Y(5)
DIFA=SIGN(MIN(ABS(DIFA), 1.0D15), DIFA) 
DIFB=SIGN(MIN(ABS{DIFB), 1.0D15), DIFB) 
DIFC=SIGN(MIN(ABS(DIFC), 1.0D15), DIFC) 
DIFD=SIGN(MIN(ABS(DIFD), 1.0D15), DIFD) 
DIFA=DlFA/A(JEXP,JCOL)
Dl FB=DIFB/B(J EXP, JCOL)
DIFC=DIFC/C(JEXP,JCOL)
DIFD=DIFD/D(JEXP,JCOL)
FX=FX+DIFA*DIFA+DIFB*DIFB+DIFC*DIFC+DIFD*DIFD
JEXP=JEXP+1
TIME1 =TIME(JEXP,JCOL)
IF(JEXP .GT. NUMBER(JCOL)) GOTO 20 
ENDIF 

10 CONTINUE 
20 CONTINUE 

RETURN 
END

Here is the ODE solver....

SUBROUTINE RK4(N,H,Y,DY,YC,Y1) 
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION Y(N), DY(N), YC(N), Y1(N), A(4)
A(1)=0.5D0*H
A(2)=A(1)
A(3)=H 
A(4)=H 
DO 1 1=1,N 
Y1(I)=Y(I)
CONTINUE 
DO 3 K=1,3 
DO 2 1=1 ,N
YC(I)=Y1 (l)+A(K)*DY(l)
Y(I)=Y(I)+A(K+1 )*DY(I)/3.0D0 
CONTINUE
CALL DERIVS(N,YC,DY)
CONTINUE 
DO 4 1=1, N
Y(I)=Y(I)+A(1)*DY(I)/3.0D0
CONTINUE
CALL DERIVS(N,Y,DY)
RETURN
END

This subroutine is for derivatives of the differential equations for
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the reaction scheme, 
where,

Y(1) = time
Y(2) = Fraction of the Resid in the total HT product 
Y(3) = Fraction of the Total Gas Oil in the total HT product 
Y(4) = Fraction of the Middle Distillates in the total HT product 
Y(5) = Fraction of the Gases in the total HT product

Also,
X(1) = kro 
X(2)= kod 
X(3) = kog 
X(4) = kdg

DY(1) = dY(1)/dt, DY(2) = dY(2)/dt, DY(3) = dY(3)/dt,
DY(4) = dY{4)/dt, DY(5) = dY(5)/dt....

SUBROUTINE DERIVS(N,Y,DY) 
IMPLICIT REAL*8 (A-H.O-2) 
DOUBLE PRECISION Y(5), DY{5) 
COMMON /DKWAK/TEMP, X(10) 
DO 10 l=2,N
IF(Y(I) .LT. 0.0D0) Y(l)=0.0D0
IF(Y(i) .GT. 1.0D0) Y(I)=1.0D0
CONTINUE
DY(1)=1.0D0
Y2=Y(2)
Y3=Y(3)
DY(2)=-X(1)*Y2
DY(3)=X(1)*Y2-Y3*{X(2)+X(3))
DY (4)=X(2)*Y2-X(4)*Y(4)
DY (5)=X{3)*Y3+X(4)*Y (4)
RETURN
END

The following subroutine checks the performance of this program.
It compares the experimental and calculated value of the estimated 
kinetic constants and gives the performance ranges....

SUBROUTINE STTEST(N,X,IP1)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N)

C INCLUDE 'MOLREDTN.DAT'
C DIMENSION DIFFA(NP),DIFFB(NP),DIFFC(NP),DIFFD(NP),DIFFE(NP), 
C 1 YAA(NP),YBB(NP),YCC(NP),YDD(NP),YEE(NP),
C 2 PERCTA(NP),PERCTB(NP),PERCTC(NP),PERCTD(NP)
C DIMENSION DIFA(NT*NP),DIFB(NT*NP),DIFC(NT*NP),DIFD(NT*NP)
C 1 ,DIFE(NT*NP)
C

DIMENSION DIFFA(5),DIFFB(5),DIFFC(5),DIFFD(5),DIFFE(5),
1 Y AA(5), YBB(5), Y CC(5), YDD(5), YEE(5),
2 PERCTA(5),PERCTB(5),PERCTC(5),PERCTD(5)
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DIMENSION DIFA(5),DIFB(5),DIFC(5),DIFD(5)
1 ,DIFE(5)

INCLUDE 'MOLREDTN.DAT'
C

DO 5 1=1,N 
XX(I)=X(I)

5 CONTINUE 
ICQUNT=0 
AADA=0.0D0 
AADB=0.0D0 
AADC=0.0D0 
AADD=0.0D0 
DO 200 JCOL=1 ,NT 
TK=TEMP(JCOL)
Y(1)=Y10
Y(2)=Y20
Y(3)=Y30
Y(4)=Y40
Y(5)=Y50
NUM=NUMBER(JCOL)
JEXP=1
TIME1 =TIME(JEXP,JCOL)
CALL DERIVS(NN,Y,DY)
DO 10 1=1,1000
CALL RK4(NN,H,Y,DY,YC,Y1)
IF(ABS(Y(1)-TIME1). LE. 1.0D-8) THEN 
DIFFA(JEXP) = A(JEXP,JCOL)-Y(2)
DIFFB(JEXP) = B(JEXP,JCOL)-Y(3)
DIFFC(JEXP) = C(JEXP,JCOL)-Y(4)
DIFFD(JEXP) = D(JEXP,JCOL)-Y(5)
ICOUNT=ICOUNT+1
DIFA(ICOUNT)=DIFFA(JEXP)
DIFB(ICOUNT)=DIFFB(JEXP)
DIFC(ICOUNT)=DIFFC(JEXP)
DIFD(ICOUNT)=DIFFD(JEXP)
Y AA( J EXP)=Y (2)
YBB(JEXP)=Y(3)
YCC(JEXP)=Y(4)
YDD(JEXP)=Y(5)
PERCTA(JEXP)=DIFFA(JEXP)/A(JEXP,JCOL)*100.0D0
PERCTB(JEXP)=DIFFB(JEXP)/B(JEXP,JCOL)*100.0D0
PERCTC(JEXP)=DIFFC(JEXP)/C(JEXP,JCOL)*100.0D0
PERCTD(JEXP)=DIFFD(JEXP)/D(JEXP,JCOL)*100.0D0
AAD A=AAD A+ABS(P ERCTA(JEXP))
AADB=AADB+ABS(PERCTB(JEXP))
AADC=AADC+ABS(PERCTC(JEXP))
AADD=AADD+ABS(PERCTD(JEXP))
i c v p _  JFYP+1

TIME1=TIME(JEXP,JCOL)
IF(JEXP .GT. NUM) GOTO 20 
ENDIF 

10 CONTINUE 
20 CONTINUE 
C WRITE(MOO) TK
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WRITE(1,100) TK 
100 FORMAT(/5X,lTEMPERATURE=‘,F7.2,‘ K',

1 /5X, 'RESID FRACTION;')
WRITE(*,110)
WRITE(1,110)

110 FORMAT(7X,TIME',4X,'EXPERIMENTAL',10X,'CALCULATED',7X,
1 'DIFFERENCE',5X,'PERCENTAGE'/
2 7X,'-—'.SX,1-------M3X,'--------',8X,
3 '............ ',5X,'---------')

DO 30 l=1,NUM
WRITE(6,120) TIME(l,JCOL),A(l,JCOL),YAA(l),DIFFA(l),PERCTA(l) 
WRITE(1,120) TIME(l,JCOL),A(l,JCOL),YAA(l),DIFFA(l),PERCTA(l) 

30 CONTINUE
120 FORMAT(3X,F8.1,2X,G13.5,G22.7,G18.7,G13.5)

WRITE(*,130)
WRITE(1,130)

130 FORMAT(/5X, 'TOTAL GAS OIL FRACTION:') /
WRITE(*,110)
WRITE(1,110)
DO 40 l=1,NUM
WRITE(*,120) TIME(l,JCOL),B(l,JCOL),YBB(l),DIFFB(l),PERCTB(l) 
WRITE(1,120) TIME(l,JCOL),B(l,JCOL),YBB(l),DIFFB(l),PERCTB(l) 

40 CONTINUE 
WRITE(M40)
WRITE(1,140)

140 FORMAT(/5X, 'MIDDLE DISTILLATE FRACTION:')
WRITE(*,110)
WRITE(1,110)
DO 50 l=1,NUM
WRITE(*,120) TIME(l,JCOL),C(l,JCOL),YCC(l),DIFFC(l),PERCTC(l) 
WRITE(1,120) TIME(l,JCOL),C(l,JCOL),YCC(l),DIFFC(l),PERCTC(l) 

50 CONTINUE 
WRITE(*,150)
WRITE(1,150)

150 FORMAT(/5X, 'GASES (NH3, H2S, C1 TO C4):')
WRITE(M10)
WRITE(1,110)
DO 60 1=1 ,NUM
WRITE(*,120) TIME(l,JCOL),D(l,JCOL),YDD(l),DIFFD(l),PERCTD(l) 
WRITE(1,120) TIME(l,JCOL),D(l,JCOL),YDD(l),DIFFD(l),PERCTD(l) 

60 CONTINUE 
200 CONTINUE 
C 
C
C Now calculating each fraction’s AADs....
C

S1=0,0D0 
DO 70 J=1,NT 
NUM=NUMBER(J)
DO 70 l=1,NUM 
S1=S1+A(I,J)
S1=S1+B(I,J)
S1=S1+C(I,J)
S1=S1+D(I,J)
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