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ABSTRACT 
 
 
 

 The Wasatch Mountains are a unique place to study deposition of ions in snow 

because of proximity to Salt Lake City, UT, home to 1.1 million people, and Great Salt 

Lake, the world’ fourth largest closed-basin saline lake.  Prior study at low elevations of 

the Wasatch Mountains and in Salt Lake City indicates very high deposition (>1 mmol L-

1) of chloride nitrate, sulfate, sodium and calcium ions in snow and rime during winter 

temperature inversions.  At peak snowpack, concentrations (µeq L-1) and ecosystem 

loading (meq m-2) of major ion species (Cl-, NO3
-, SO4

2-, H+, NH4
+, Na+, Mg2+, K+, and 

Ca2+) were measured at five sites in 2008 and 16 sites in 2009 in the Wasatch Mountains.  

Concentrations and loading of these ion species in snow were up to an order of 

magnitude higher than previously observed and were likely derived from salts that 

precipitated from Great Salt Lake as its elevation decreased.  Great Salt Lake has very 

high salinity dominated by concentrations of chloride, sulfate, sodium and magnesium.   

Moderately strong correlations existed between concentrations of these ions in snow and 

distance from Great Salt Lake, suggesting it as a major source of ion deposition in the 

Wasatch Mountains.  Concentrations and ecosystem loading of nitrate in snow were 

lower than expected, but total winter inorganic nitrogen deposition (NO3- and NH4
+) was 

similar to observations at Niwot Ridge in the Rocky Mountains of Colorado.  In general, 

concentrations of ions in snow decreased with elevation while ecosystem loading of ions 

increased with elevation due to greater snow accumulation. 
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INTRODUCTION 
 
 
 

 Utah’s Salt Lake Valley (SLV) and the Wasatch Front are prone to winter 

temperature inversions that trap cold air and anthropogenic pollutants near the valley 

floors during times of synoptic high pressure (Silva et al. 2007).  The presence of winter 

temperature inversions combines with high emissions from fossil fuel combustion to 

cause episodes of poor air quality that may be both hazardous to human health and to 

adjacent natural ecosystems.  SLV is home to over one million people (US Census 

Bureau 2006) and adjacent to the Wasatch Mountains, rising more than 2000 meters 

above the valley floor.  Levels of particulate matter (PM 2.5 µm), rich in ammonium, 

nitrate and sulfate ions (Long et al. 2003), often exceed EPA standards during winter 

(EPA 2007).  Air-borne particulate matter represents a significant hazard to human health 

during periods of winter valley temperature inversions (Pope 1989) and particulate matter 

dispersal may deposit a significant amount of natural and anthropogenic pollutants to 

adjacent ecosystems. A study of ion chemistry in snow and rime during a severe 

temperature inversion event in Salt Lake City, UT during the winter of 1985-86 found 

exceptionally high concentrations of nitrate, sulfate, chloride and sodium in snow 

(Cerling and Alexander 1987).  Due to air pollution problems in SLV, and perhaps 

proximity Great Salt Lake (GSL), the Wasatch Mountains may experience high levels of 

atmospheric ion deposition in snow.   
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GSL is the fourth largest closed-basin lake in the world and may be a source of 

ion deposition in the Wasatch Mountains.  It has varied in size and elevation over the last 

150 years from a historic low elevation of 1,277 m in 1963 to a historic high of 1,283 m 

in 1987 when it covered approximately 6,200 km2 (Stephens 1987).  GSL is the remnant 

of Lake Bonnevile, a much larger and deeper freshwater lake, which formed during the 

Miocene Epoch of the Tertiary Period, 5 to 23 million years ago.  Due to millennia of 

evaporation, modern GSL is a saline lake with very high concentrations of chloride, 

sulfate, sodium, magnesium and calcium (Jones et al. 2009).  The shallow nature of the 

basin, and fluctuations in lake height on annual to decadal scales, create large areas of 

salt flats surrounding the lake.  These salt flats likely have high soil salt concentrations, 

including ions of sodium, chloride, magnesium and sulfate.  Extremely high 

concentrations (> 1 mequivalent L-1) of sodium, calcium, chloride and sulfate ions 

observed in snow and rime during a Salt Lake City temperature inversion, suggest an 

influence of GSL on precipitation chemistry in SLV and the Wasatch Mountains (Cerling 

and Alexander 1987).   

Deposition of ions in snow occurs either through wet deposition, where ions are 

incorporated into precipitation, or through dry deposition, where ions are deposited on as 

dust particles or aerosols (Williams et al. 2009).  Winter snowpack provides a unique 

opportunity to study ion deposition because ions deposited through both wet and dry 

processes are conserved in snow throughout the winter (Bowman et al. 1992; Sickman et 

al. 2001; Hiltbrunner et al. 2005).  Measurements of ions in snow at peak snow depth 

represent total atmospheric deposition over the snow-covered period.  Commonly 

occurring ions in snow include chloride (Cl-), nitrate (NO3
-), sulfate (SO4

2-), hydrogen 
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(H+), ammonium (NH4
+), sodium (Na+), magnesium (Mg2+), potassium (K+) and calcium 

(Ca2+).  Sodium and chloride are typically derived from sea salt.  Potassium, calcium and 

magnesium are ‘crustal elements’ that often come from dust storm events.  Ammonium, 

nitrate and sulfate most commonly originate from the combustion of fossil fuels (Hidy 

2003) and are common in particulate matter pollution (Long et al. 2003).  Ion deposition 

can vary with geographic location, proximity to regional or local sources, aspect, 

elevation, season, and year (Bowman 1992; Baron and Denning 1993; Kuhn et al. 1998; 

Hiltbrunner et al. 2005).  Deposition of ions in snow is important because high snow ion 

concentrations can affect ecosystems by altering plant function, ecosystem processes and 

elemental cycling (e.g., Aber et al. 1989; Fenn et al. 2003).   

 Ion deposition in North American snowpacks has been studied most intensively at 

Niwot Ridge on the Front Range of the Colorado Rocky Mountains.  Niwot Ridge 

receives moderate amounts of ion deposition and is located in a subalpine forest near 

alpine tree line at 3340 m (Williams et al. 2009).  Remote regions of the world, such as 

Greenland, Antarctica and the Himalaya Mountains receive significantly less atmospheric 

ion deposition than Niwot Ridge (Hidy 2003), while mountains down wind of Los 

Angeles and eastern Europe receive significantly greater ion deposition (Fenn and 

Bytnerowicz 1997; Emmet et al. 1998).  Barbaris and Betterton (1996) found that snow 

on the Mongollon Rim of northern Arizona had relatively high concentrations of 

ammonium and sulfate compared to results found at Niwot Ridge (Williams et al. 2009).  

Snow ion concentrations of sodium and chloride in northern Arizona were also higher 

than Niwot Ridge perhaps due to salts derived from deserts in central and southern 

Arizona (Barbaris and Betterton 1996; Williams et al. 2009).  Few differences in snow 
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ion concentration were found between the eastern and western slopes of the Rocky 

Mountains in Colorado in a multiyear study, suggesting little winter time influence of 

pollutants originating from the Front Range cities of Colorado (Heuer et al. 2000).  Lack 

of snow ion data in the Inter Mountain West, except from the Front Range of Colorado, 

underscores the importance of further study, especially in regions downwind from major 

cities. 

 Ion deposition in snow has also been thoroughly studied in the Alps.  An 11-year 

examination of snowpack chemistry at peak snow accumulation in the Austrian Alps 

found typically acidic snow dominated by the deposition of sulfate and nitrate ions (>10 

µeq L-1).  Ammonium, chloride and magnesium ions were also significant components of 

the annual snow (5-10 µeq L-1), while sodium, potassium and magnesium were present in 

very low concentrations (<5 µeq L-1) (Winiwarter et al. 1998).  Two types of events 

dominated ion deposition in Austrian Alps snow: Saharan dust storms and anthropogenic 

pollution.  Due to high elevation and separation from the atmospheric boundary layer 

during much of the winter, dust storm and pollution events were infrequent, but 

accounted for a significant portion of total ion deposition.  Strong correlations between 

concentrations of sulfate, nitrate and ammonium suggested a common source, potentially 

representing deposition due to fossil fuel combustion (Winiwarter et al. 1998).  

Concentrations of sulfate and ammonium in snow loosely correlated to higher sulfate and 

ammonium emissions from Western Europe.  In the Italian Alps at 3000 m and 4000 m 

ion deposition was generally low, but also dominated by Saharan dust events with high 

calcium, or by urban sources containing ammonium, nitrate and sulfate.  Snow deposition 

from one “anthropogenic event” accounted for 30-40% of the total annual deposition of 
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nitrate and sulfate (Novo and Rossi 1998).  Similarly, in the Colorado Rockies, the 

highest concentrations of sulfate and nitrate in snow were found at a site downwind from 

two coal-fired power plants and a small city (Hidy 2003).  While snow chemistry may not 

directly correlate with regional emissions, deposition of nitrate and sulfate in many 

mountainous regions appears to be influenced by regional transport of anthropogenic 

emissions. 

 The absence of a strong correlation between anthropogenic emissions in Western 

Europe and snow ion concentrations is partly explained by differences in seasonality of 

deposition at high elevations.  Studies in both the Alps and the Rocky Mountains report 

seasonal changes in the ion concentration of precipitation.  On an Austrian glacier, peak 

ion concentration in snow occurred in April.  Nitrate, ammonium and sulfate 

concentrations were 3-10 times higher in late spring snow compared to early winter snow 

(Kuhn et al. 1998).  Similarly, at 2500 m in the Swiss Alps, winter N deposition in snow 

reached a peak in March, but was much higher in summer rain.  In a review of snow 

chemistry in the Rocky Mountains, Hidy (2003) also reported that nitrate and sulfate 

deposition were at their lowest in early winter and increased through winter to a peak in 

late spring.  Mountains such as the Alps and Rockies have such large vertical relief from 

the surrounding lowlands that deposition at high elevations is often representative of 

general background levels of ions in the troposphere (Baltensperger et al. 1998).  Cold 

temperatures during mid-winter typically create a shallower planetary boundary layer and 

air from lowlands near the Alps or Rocky Mountains does not often mix with air at high 

elevations.  As temperatures warm in the spring, convection increases and the planetary 

boundary layer deepens, causing air at low elevations to mix with air at high elevations.  
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In regions where significant industry exists at low elevations, transport of valley air 

masses to high elevations brings higher aerosol concentrations, which typically causes 

higher ion concentrations in snow (Baron and Denning 1993; Kuhn et al. 1998; 

Schwikowski et al. 1998; Hidy 2003).  Winter separation of high elevation and lowland 

air masses followed by greater air mass mixing in spring is the likely cause of seasonal 

changes in ion deposition. 

 Dry deposition of atmospheric pollutants can be significant in arid regions, but 

ions in snow is typically originate from wet deposition (Fenn et al. 2003).  The National 

Atmospheric Deposition Program (NADP) monitors the wet deposition of ions at 

hundreds of sites across the United States.  To examine the potential importance of dry 

deposition of ions in winter, Clow et al. (2002) compared NADP deposition data (wet 

deposition only) to total snow deposition measured at peak snowpack (wet and dry 

deposition).  No difference between concentrations of nitrate and sulfate in snow 

compared to NADP deposition data were observed, suggesting that dry deposition is not 

significant. Differences between NADP data and snow chemistry data were found in 

calcium, magnesium and potassium, suggesting an increased importance of winter dry 

deposition for these species.  Deposition of calcium, magnesium and potassium increased 

from north to south in the Rocky Mountains and likely represents the dry deposition of 

eolian carbonate dust from deserts of the Great Basin, especially from the Colorado 

Plateau (Clow et al. 2002; Painter et al. 2007).  

 Ions present in precipitation, ultimately reaching ecosystems through wet or dry 

deposition, transform in the atmosphere, while falling, and on the ground.  Pollutants in 

the atmosphere, dust particles, aerosols and soluble gases, are incorporated into liquid or 
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solid precipitation through scavenging processes.  There is no simple relationship 

between atmospheric chemistry and snow chemistry, but several processes lead to 

deposition of atmospheric pollutants in snow. Ice crystal growth, and incorporation of 

dust and aerosols in clouds can occur one of three ways: diffusion, aggregation or 

accretion (Baltensperger et al. 1998; Poulida et al. 1998).  Ice crystal growth through 

diffusion leads to large dendritic snowflakes, with typically very low ion concentration.  

In aggregation, individual ice crystals contact one another and clump together.  Ice 

crystals can also grow through accretion, or riming, where supercooled liquid cloud 

droplets contact and freeze onto the surface of the ice crystal.  The highest concentration 

of ions in snow, especially nitrate, sulfate and ammonium, occurs through riming.  The 

scavenging ratio, or ratio of aerosols in precipitation to atmospheric aerosol 

concentration, is three times higher in the winter than in summer (Baltensperger et al. 

1998).  Schwikowski et al. (1998) found that aerosol scavenging efficiencies were 

generally low and ranged from 13% for chloride to 43% for nitrate.  Events with high 

precipitation rates tended to produce snow with relatively low ion concentrations.  The 

low observed scavenging efficiencies suggest that the majority of atmospheric aerosols 

remain in an air mass for long-range transport, even when the air mass encounters a 

formidable barrier like the Alps. 

 Transformations of ions in snow can also occur while snow is on the ground, 

contradicting the dogma that ions in snow are conserved in cold environments during 

winter.  In the late 1990s anomalously high levels of NOx gases near the snow surface 

were reported at the summit of Greenland (Dibb et al. 1998).  Flux measurements of 

nitrogenous gas showed a strong correlation between the vertical flux of gases and 
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sunlight intensity suggesting nitrate photolysis within the snowpack (Honrath et al. 

2002).  Research appears to indicate that photolysis of snow nitrate caused elevated 

concentrations of NOx gases near the snow surface, suggesting release of deposited 

nitrogen from snow.  Similar fluxes of nitrogenous gases from snow have also been 

reported in the High Arctic of Svalbard and at the South Pole (Beine et al. 2003; Davis et 

al. 2004; Jacobi and Hilker 2007), but has not been observed at temperate latitudes.  

Understanding of nitrogen transformations within the snow is imperative to accurately 

interpret snow chemistry, especially when concentrations of ions in snow are used as a 

measure of total winter deposition of nitrogen.   

 In forested regions, forest canopy interception of snow and rain can cause further 

ion transformation.  Ion concentrations of throughfall precipitation, collected beneath a 

forest canopy, can be many times greater than precipitation collected away from trees.  

Concentrations of ions in throughfall precipitation at high elevations forest sites in Italy 

were 20-110% greater than precipitation collected in open areas (Balestrini et al. 2001).   

While concentrations of ions in throughfall precipitation can be very high, Hansen et al. 

(1996) found sharp decreases in throughfall ion concentrations 1.5 m away from tree 

trunks as compared to samples collected at the base of tree trunks, suggesting that canopy 

influence on precipitation chemistry is strongest directly underneath tree canopies. 

During winter, forest canopy interception of snow can cause further changes in ion 

concentrations due to a variety of processes, including sublimation, volatilization and dry 

deposition of aerosols.  In boreal forests of northern Canada, concentrations of chloride 

and sulfate were five to six times greater in snow intercepted by forest canopies and two 

to three times greater 0.5 m away from trees when compared to snow in open areas 
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(Pomeroy et al. 1999).  Conversely, nitrate concentrations of intercepted snow was up to 

25% lower than in snow in open areas of subarctic boreal forests and up to 20% less in 

intercepted snow in Pacific Northwest forests, suggesting volatilization of nitrate in 

intercepted snow (Pomeroy et al. 1999; Klopatek et al. 2006).  A snow chemistry study in 

a Picea englemannii and Abies lasiocarpa dominated forest of Colorado showed that 

concentrations of hydrogen, ammonium and potassium ions were greater near forest 

canopies than in adjacent clear-cut areas.  Similar to results in boreal forests, snow nitrate 

concentrations were higher in clear-cuts than near forest canopies (Stottlemyer and 

Troendle 2001). 

 Nitrogen (N) deposition in snow is particularly important because ecosystem 

production in many snow covered systems, such as subalpine forests or alpine tundra, is 

limited by the availability of N but, N can become detrimental at high levels (Aber et al. 

1998; Aber et al. 2001).  Over the past 100 years, human-induced changes have 

approximately doubled rates of N inputs to terrestrial ecosystems, much of that occurring 

in the form of atmospheric N deposition (Vitousek et al. 1997).  N deposition is 

heterogeneously distributed with the highest rates occurring downwind of urban and 

industrial sources.  Annual rates of ecosystem N deposition vary from high rates outside 

Los Angeles and in northwestern Europe (15-60 kg N ha-1 yr-1) to moderate rates in 

forests of New England (8-10 kg N ha-1 yr-1), to lower rates in subalpine forests of 

Colorado (4-5 kg N ha-1 yr1) (Fenn et al. 2003; Emmett et al. 1998; Aber et al. 1997; 

Baron et al. 2000).  N deposition can also significantly alter carbon cycling, an 

interaction studied in temperate deciduous forests of eastern North America (Magill et al. 

2000; Magill et al. 2004; Pregitzer et al. 2008) and coniferous forests of Europe (Emmett 
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et al. 1998; Vetter et al. 2005), but less is known about how subalpine forests of western 

North America will respond to increases in N deposition.  Understanding effects of N 

deposition in western forests is important because these forests are among the most 

significant CO2 sinks in North America (Schimel et al. 2002) and increased rates of 

urbanization will likely to lead to greater N deposition (Fenn et al. 2003).  Although 

many forests in the West may be impacted by N deposition, which forests are impacted 

and how they will respond is not known.  Further research examining the magnitude and 

spatial distribution of ion atmospheric deposition in snow will help determine areas that 

are heavily impacted by deposition of N and other ion species.  

 Climate change and anthropogenic pollution are impacting ecosystems globally.  

Combustion of fossil fuels over the past two centuries has led to dramatic rises in 

atmospheric concentrations of carbon dioxide and ions such as nitrate, ammonium and 

sulfate.  Although it is understood how many ecosystems will respond to increasing 

levels of atmospheric deposition of ions, it is imperative to continue snow chemistry 

research to better understand the magnitude, spatial scale and distribution of ion 

deposition.  Locally high atmospheric deposition of ions in snow is more prevalent in 

areas downwind of major metropolitan areas like the San Bernardino Mountains of 

California, outside of Los Angeles (Fenn and Bytnerowicz 1997).  Mountainous regions 

near cities of the Inter Mountain West, such as Bozeman, MT or Salt Lake City, UT may 

be subject to high ecosystem ion loads of due to atmospheric deposition (Fenn et al. 

2003b).  The Wasatch Mountains of Utah may experience unique deposition of ions in 

snow due to significant air pollution problems (Long et al. 2003) and their proximity to 

GSL.  The following study investigates the extent and geographic distribution of ion 
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deposition in snow of the central Wasatch Mountains adjacent to SLV, UT.  The study 

was designed to build upon previous work by Cerling and Alexander (1987), which 

suggests that very high concentrations of chloride, nitrate, sulfate, sodium, and calcium 

may be found in snow of the Wasatch Mountains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 
 

METHODS 
 
 
 

Site Description and Snow Sampling 

 Snow samples were collected near the time of peak snow depth (late March to 

early April) from five sites in 2008 and 16 sites 2009 in the Wasatch Mountains adjacent 

to Salt Lake City, Utah (Figure 1).  Sites were chosen to characterize the geographic 

distribution of ion deposition in the Wasatch Mountains.  All sites had a northeasterly to 

northwesterly aspect and were between 2000 m and 3000 m a.s.l. (Table 1).  Sites were 

located adjacent to a forest dominated by coniferous tree species, except for the highest 

elevation site in Little Cottonwood Canyon.  Snow study sites were located in five 

canyons of the Wasatch Mountains: City Creek Canyon (CCC), Red Butte Canyon 

(RBC), Neffs Canyon (Neffs), Big Cottonwood Canyon (BCC) and Little Cottonwood 

Canyon (LCC).  Sites are named with a canyon abbreviation and elevation, i.e. LCC 

2950, is a site in Little Cottonwood Canyon at 2950 m.  At each site, three snow pits were 

dug to the ground and one sample was collected from each pit.  Specific snow pit 

locations at a site were chosen randomly within the following two criteria.  Every snow 

pit location was NE to NW in aspect, adjacent to a coniferous forest, or in a clearing 

within the forest approximately 2 m outside of the tree canopy drip-line.  Forests were 

dominated by coniferous tree species including Abies concolor, A. lasiocarpa, Picea 

engelmannii and Pseudotsuga menziesii and the deciduous tree Populus tremuloides. 
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Figure 1.  Snow sampling sites visited in 2008 and 2009.  Snow collection occurred at all 
sites in 2009 (  and ) and 5 sites in 2008 ( ).  Sites were located in City Creek 
Canyon (CCC), Red Butte Canyon (RBC), Neffs Canyon (Neffs), Big Cottonwood 
Canyon (BCC) and Little Cottonwood Canyon (LCC).  
 
 
 
A continuous column of snow from the snow surface to the ground was collected in 50 

cm increments using a 50 cm long PVC tube with an inner diameter of 4 cm (Sickman 

and Leydecker 1993).  Snow depth of each sample was recorded.  The PVC tube was 

serially washed in de-ionized water prior to each sample date but not between samples on 

a given date.  The entire column of snow from each snow pit was stored in polyethylene 

bags that were also serially washed with de-ionized water prior to collection.  Polethylene 

gloves and non-fibrous clothing were worn during all snow  
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Table 1. Description of sites where snow was sampled in 2008 and 2009.  All sites 
were visited in 2009; data from 2008 are in parentheses.  Sites are named with a 
canyon abbreviation and an elevation, i.e., BCC 2050, is a site from Big 
Cottonwood Canyon at 2050 m.  
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sampling to minimize contamination of snow samples.  Upon returning from the field, 

snow samples were stored in a freezer at -15° C.  Snow density measurements were taken 

in one snow pit at each site by collecting samples in 10 cm intervals from the snow 

surface to the ground using a stainless steel RIP 1-L density cutter (Snowmetrics, Fort 

Collins, CO).  One-liter snow density samples were weighed using a 500 g spring scale 

and snow density was calculated as the average density of all 10 cm depths for each snow 

pit.  Snow density and snow depth were used to scale snow ion concentrations to amount 

of ions per ground area for each site.  Ecosystem loading of ions, or amount of ions 

deposited to an ecosystem, was measured in mequilvalents (meq) L-1. 

 
 

Ion Analysis 

 Prior to snow water ion analysis, snow stored in polyethylene bags was melted at 

room temperature and transferred to 0.5L polyethylene bottles. Approximately 30 mL of 

melted snow–water was filtered using a 0.45 µm syringe filter.  All melted snow samples 

were re-frozen at approximately -15°C.  Snow water samples were analyzed for 

concentrations of Cl-, NO3
-, SO4

2-, H+, NH4
+, Na, Mg2+, K+ and+ Ca2+.  Concentrations of 

Cl-, NO3
-, and SO4

2- ions were analyzed using a Dionex 4100 ion chromatograph at the 

Brigham Young University (BYU) water chemistry laboratory.  General methods used 

for ion chromatography followed Anderson et al. (2006).  For each batch of samples 

analyzed for anions, a five-point calibration curve was collected using dilute solutions of 

ions mixed from 99.99% pure NaCl, NaNO3 and Na2SO4 at concentrations ranging from 

3.1 to 83.5 µeq L-1 for chloride, 1.7 to 47.3 µeq L-1 for nitrate and 1.2 to 30.4 µeq L-1 for 
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sulfate.   All calibration curves used were determined using a quadratic regression with 

coefficients of determination (r2) > 0.99.  One snow sample from LCC 2370 was 

analyzed twice during each of three batches (n = 6) with mean ion values of 41.1 µeq L-1 

(s.d. = 1.12) for chloride, 7.7 µeq L-1 (s.d. = 0.28) for nitrate and 7.8 µeq L-1 (s.d. = 0.29) 

for sulfate.   

Hydrogen ions were measured as pH on unfiltered snow water samples using an 

Oakton 1100 series pH meter (Oakton Instruments, Vernon Hills, IL) and converted to 

ion concentrations.  A three-point calibration curve was employed, using NIST standard 

buffer solutions with a pH of 4.00, 7.00 and 10.00.  One sample from Neffs 2370 was 

analyzed ten times to yield a mean of H+ concentration of 0.41 µeq L-1 (s.d. = 0.03).  

Concentrations of Na+, Mg2+ and Ca2+ ions were measured at the BYU water chemistry 

laboratory in Provo, UT using a Perkin Elmer 5100C Atomic Absorption Spectrometer.  

General methods used for cation analysis followed Anderson et al. (2006).  Samples were 

analyzed in small batches that contained a five-point calibration curve and a quality 

control sample analyzed in replicates of six.  The five-point calibration curve was 

constructed using dilute solutions mixed from 99.99% pure NaCl, MgCl2 and CaCl2 and 

ranged in concentration from 4.3 to 131.1 µeq L-1 for sodium, 4.1 to 125.1 µeq L-1 for 

magnesium and 2.5 to 75.7 µeq L-1 for calcium. All calibration curves had significant 

correlations with coefficients of determination (r2) > 0.99.  For all batches, quality control 

samples had a standard deviation of <5% of the sample’s value.  K+ and NH4
+ ions were 

measured at the Kiowa wet chemistry laboratory at the University of Colorado in 

Boulder, CO following the protocols used in Williams et al. (2009).  Potassium ions were 
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measured using a Perkin Elmer Analyst 100 Atomic Absorption Spectrometer.  NH4
+ 

ions were measured on an OI Analytical Spectrophotometer Flow System IV Analyzer.   

 To assess the potential for contamination of snow samples due to sampling 

techniques, 1-L samples of ultra-pure de-ionized water were poured through a serially 

washed PVC sampling tube and stored in polyethylene bags at -15°C for 60 days prior to 

analysis.  Analysis of these samples (n = 3) resulted in mean ion concentrations of 4.75 

µeq L-1 (s.d.=1.06) for chloride, 0.18 µeq L-1 (s.d.=0.001) for nitrate, 0.77 µeq L-1 

(s.d.=0.36) for sulfate, 1.6 µeq L-1 (s.d.=0.32) for ammonium, 4.3 µeq L-1 (s.d=1.56) for 

sodium, 0.35 µeq L-1 (s.d.=0.40) for magnesium and 0.6 µeq L-1 (s.d.=0.32) for 

potassium.  

 
 

Data Analysis 

 To compare concentrations and ecosystem loading of ions at different elevations 

in 2009, sites were grouped into three elevation categories, low (2,000-2,200 m), middle 

(2,200-2,600 m) and high (2,600-2,950m) comprised of four, five and seven sites 

respectively.  Data from LCC 3050 was excluded from these analyses due its high 

elevation and lack of forest.  Comparisons of ion concentrations and ecosystem loading 

between years and between different elevation groups were made using a Student’s t-test 

with a two-tailed distribution and heteroscedastic variance (Microsoft Excel:Mac, 2008).  

To assess the effects of a site’s location relative to potential ion sources, the distance of a 

site from the nearest point of GSL, downtown Salt Lake City and the oil refineries in 

North Salt Lake was measured using topographical mapping software (TOPO! Utah, 

2004).  The relationship between elevation or distance from a source and ion 
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concentration or ecosystem loading was assessed using linear regression (Microsoft 

Excel:Mac, 2008).  Significant correlation between distance and ion deposition were only 

found for distance from GSL.  Results from linear regressions using distance from 

downtown Salt Lake City and the oil refineries in North Salt Lake are not presented. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

RESULTS 
 
 
 

 Snow samples from five sites in 2008 and 16 sites in 2009 were analyzed for 

concentrations (µeq L-1) and ecosystem loading (meq m-2) of dominant ion species.  Data 

reported include concentrations and ecosystem loading of chloride, nitrate, sulfate, 

hydrogen, ammonium, sodium, magnesium, potassium and calcium (Cl-, NO3
-, SO4

2-, H+, 

NH4
+, Na+, Mg2+, K+ and Ca2+).   In 2008, ion concentrations ranged from 16 to 22 µeq L-

1 for chloride, 9 to 16 µeq L-1 for nitrate, 8 to 16 µeq L-1 for sulfate, 1.1 to 1.4 µeq L-1 for 

hydrogen, 10 to 23 µeq L-1 for ammonium, 14 to 70 µeq L-1 13 to 30 µeq L-1 for sodium, 

4 to 7 µeq L-1 for magnesium and 6 to 12 µeq L-1 for potassium (Table 2).  Due to 

problems with the atomic absorption spectrometer, only one 2008 sample was measured 

for calcium.  In 2009, concentrations of ions ranged from 14 to 60 µeq L-1 for chloride, 6 

to 10 µeq L-1 for nitrate, 9 to 31 µeq L-1 for sulfate, 0.2 to 1.5 µeq L-1 for hydrogen, 6 to 

16 µeq L-1 for ammonium 14 to 70 µeq L-1 for sodium, 5 to 15 µeq L-1 for magnesium, 3 

to 10 µeq L-1 for potassium and 9 to 102 µeq L-1 for calcium (Table 3).   

In 2008, the highest ion concentrations generally occurred at 2,130 m in Neffs canyon 

while the lowest ion concentrations were found at high elevations of Neffs or Little 

Cottonwood Canyon (LCC).  The lowest concentrations of ions measured in 2009 

occurred at the highest elevations sampled in LCC (2,950 m or 3,050 m), while the 

highest ion concentrations were found near 2,000 m in Big Cottonwood Canyon (BCC) 

or Red Butte Canyon (RBC). When compared to 2007 snow chemistry data at Niwot 



 

 
 
 
 
 
 
 
 

Table 2. Mean ion concentrations in µequivalent L-1 for 2008 snow samples.  Number inside parentheses denotes 1 s.d., lack of s.d. means 
only one sample was analyzed.  Missing samples are labeled n.d. for not determined.  adenotes ion concentrations in snow from Niwot 
Ridge, CO in 2007 (Williams et al. 2009). 

 
Sites Cl- NO3

- SO4
2- pH H+ NH4

+ K+ Na+ Mg2+ Ca2+ 

BCC 2670 16.4(2.3) 9.7(0.6) 10.4(0.7) 5.9 1.3 10.3 10.3 13.7(5.9) 4.1(2.2) n.d. 
CCC 2700 22.1(6.0) 12.3(0.7) 13.3(2.4) 5.9(0.2) 1.3(0.1) 12.8(1.0) 5.9(1.5) 16.89(2.6) 4.5(0.1) n.d. 
LCC 2950 16.23(6.1) 7.5(0.7) 11.2(2.2) 6.0 1.1 11.3 11.3 29.9(6.3) 5.7(0.43 6.0 
Neffs 2130 27.1(4.2) 16.1(2.6) 16.0(4.5) 5.9 1.4(0.8) 22.7(2.1) 6.2(1.8) 21.9(1.8) 7.2(1.4) n.d. 
Neffs 2740 16.4(2.4) 9.1(1.0) 7.8(0.7) 5.9 1.3 12.5 12.5 13.2 3.7 n.d. 
Niwot Ridgea 1.8 12.1 7.7 5.3 5.50 5.6 6.5 1.9 1.8 10.2 

 
 
 
 
 
 
 
 
 
 
 



 

Table 3. Mean ion concentrations in µequivalent L-1 for 2009 snow samples.  Number inside parentheses denotes 1 s.d., lack f s.d. 
means only one sample was analyzed.  Missing samples are labeled n.d. for not determined.  adenotes ion concentrations in snow from 
Niwot Ridge, CO in 2007 (Williams et al. 2009). 
 
Site Cl- NO3

- SO4
2- pH H+ NH4

+ K+ Na+ Mg2+ Ca2+ 

BCC 2050 60.4(1.6) 6.1(0.4) 30.6(1.6) 6.6(0.3) 0.3(0.2) 9.0(0.7) 5.1(0.5) 70.4(2.0) 14.4(1.3) 102(19.9) 
BCC 2670 34.2(2.7) 7.6(0.4) 21.8(2.8) 6.8(0.2) 0.2(0.1) 9.7(0.2) 6.3(1.0) 42.4(4.4) 10.5(0.9) 72.2(0.5) 
BCC 2950 25.7(1.3) 7.6(0.5) 19.2(0.6) 6.0(0.2) 1.0(0.5) 8.8(0.8) 7.3(0.8) 33.6(1.7) 5.4(0.5) 61.3(9.5) 
CCC 2340 39.2(9.2) 9.1(0.9) 20.4(1.5) 6.5(0.1) 0.3(0.1) 13.5(0.2) 9.2(2.7) 44.7(9.2) 13.5(2.2) 73.3(22.1) 
CCC 2700 40.8(2.8) 8.1(0.4) 23.7(1.6) 6.3(0.4) 0.7(0.7) 16.0(0.8) 6.7(1.4) 40.8(2.0) 9.4(1.5)  n.d. 
LCC 2130 45.1(8.4) 6.9(1.1) 22.7(2.6) 6.2(0.2) 0.6(0.3) 6.0(1.4) 6.0(0.6) 53.2(10.8) 12.3(0.1) 57.4 
LCC 2370 33.4(5.2) 7.6(0.3) 18.67(2.4) 6.3(0.3) 0.5(0.3) 14.4(4.6) 4.2(0.9) 36.7(0.2) 8.5(0.8) 50.2 
LCC 2600 35.9(8.8) 7.0(0.4) 13.6(1.8) 6.2(0.4) 0.8(0.6) 10.3(1.6) 2.6(0.4) 37.4(8.8) 9.4(2.0) 34.6 
LCC 2950 20.8(2.4) 7.89(0.1) 15.1(0.4) 6.6(0.1) 0.3(0.0) 12.6(2.3) 8.2(2.1) 13.7(1.6) 4.7(0.3) 41.2 
LCC 3050 13.5(3.3) 5.7(0.3) 9.0(0.9) 6.0(0.4) 1.5(1.1) 10.1(1.4) 4.4(2.4) 14.0(3.23) 5.1(0.6) 9.3(0.2) 
Neffs 2130 52.8(8.9) 7.1(0.2) 24.9(3.3) 6.4(0.3) 0.5(0.3) 11.4(3.5) 23.5(2.5) 58.5(8.3) 13.3(1.4) 66.9(8.0) 
Neffs 2370 49.1(5.0) 8.1(0.4) 20.2(1.2) 6.3(0.1) 0.6(0.2) 13.1(2.9) 6.4(0.6) 53.7(5.3) 11.6(0.6) 65.7 
Neffs 2560 44.2(3.4) 7.4(0.2) 19.9(0.5) 6.3(0.3) 0.4(0.2) 10.3(1.0) 6.5(1.4) 48.2(6.1) 10.2(1.4) 66.1(5.6) 
Neffs 2740 50.3(6.1) 7.4(0.3) 21.1(1.5) 6.7(0.1) 0.2(0.1) 13.7(0.9) 6.5(1.4) 45.2(5.8) 8.7(0.7) 47.3(5.2) 

RBC 2070 41.4(6.6) 7.5(0.3) 19.3(1.7) 6.1(0.2) 0.8(0.4) 13.6(1.6) 3.2(0.2) 44.6(6.0) 11.9(1.7) 48.6(5.2) 
RBC 2170 58.9(7.26) 9.6(1.1) 27.5(2.8) 6.1(0.2) 1.0(0.4) 12.8(5.1) 7.4(3.1) 60.1(5.7) 15.5(3.0) 72.9(21.1) 
Niwot Ridgea 1.8 12.1 7.7 5.3 5.5 5.6 6.5 1.87 1.8 10.2 
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Ridge in Colorado, 2009 Wasatch Mountain snow samples had higher concentrations of 

chloride, sulfate, ammonium, sodium, magnesium and calcium.  Concentrations of 

chloride, magnesium and calcium were approximately an order of magnitude higher than 

those found at Niwot Ridge.  Contrasting the other ion species, 2009 concentrations of 

nitrate and hydrogen in the Wasatch Mountains were generally lower than those 

measured at Niwot Ridge.  

Ecosystem loading of ions to sites in 2008 and 2009 was measured in 

milliequivalents m-2 (meq m-2) and represents the total deposition of ions over a period of 

four to five months.  In 2008, ecosystem loading of ions in the Wasatch Mountains varied 

from 10 to 18 meq m-2 for chloride, 5 to 11 meq m-2 for nitrate, 5 to 13 meq m-2 for 

sulfate, 0.7 to 1.2 meq m-2 for hydrogen, 7 to 12 meq m-2 for ammonium, 8 to 16 meq m-2 

for sodium, 2 to 5 meq m-2 for magnesium and 2 to 4 meq m-2 for potassium (Table 4).   

In 2009, ecosystem loading of ions varied from 12 to 36 meq m-2 for chloride, 2 to 6 meq 

m-2 for nitrate, 6 to 19 meq m-2 for sulfate, 0.1 to 1.2 meq m-2for hydrogen, 2 to 13 meq 

m-2 for ammonium, 1 to 38 meq m-2 for sodium, 4 to 10 meq m-2 for magnesium, 1 to 7 

meq m-2 for potassium and 6 to 56 meq m-2 for calcium (Table 5). 

In 2008, the highest levels of ecosystem ion loading occurred at 2,950 m in LCC, 

while the lowest levels were found at 2,740 m in Neffs Canyon. In 2009, the lowest 

values for ecosystem loading of ions in snow occurred either at low elevations of Red 

Butte Canyon (2,070 m) or high elevations of LCC (2,950 m).  High levels of ecosystem 

ion loading occurred at many sites and elevations, but high elevations of City Creek 

Canyon (CCC) tended to have greater ecosystem loading for all ions in 2009.  Lower  



 

 
 
 
 
 
Table 4. Mean ecosystem loading on ions in snow at peak snowpack of 2008 measured in mequivalents L-1.  Number inside 
parentheses denotes 1 s.d., lack of s.d. means only one sample was analyzed.  Missing samples are labeled n.d. for not determined.  
adenotes ecosystem loading on ions in snow from Niwot Ridge, CO in 2007 (Williams et al. 2009). 
 
Sites Cl- NO3

- SO4
2- H+ NH4

+ K+ Na+ Mg2+ Ca2+ 

BCC 2670 10.4(1.7) 6.1(0.5) 6.5(0.4) 0.9 6.7 4.0 12.1 (2.6) 3.9(1.0) n.d. 
CCC 2700 14.6(3.7) 8.2(0.3) 8.9(1.9) 0.9(0.2) 8.6(0.3) 4.1(1.8) 11.2(1.6) 3.0(0.1) n.d. 
LCC 2950 18.4(4.9) 8.7(0.3) 12.8(1.6) 1.2 12.4 2.9 15.7(1.2) 5.4(0.6) 7.3 
Neffs 2130 11.5(1.9) 11.1(5.3) 7.8(2.3) 0.6(0.5) 8.5(2.8) 2.2(1.0) 8.8(1.0) 2.8(0.4) n.d. 
Neffs 2740 9.8(1.4) 5.5(0.6) 4.7(0.4) 0.7 7.9 2.3 8.0 2.2 n.d. 
Niwota 2.0 12.9 8.2 5.9 6.0 2.8 1.6 2.8 10.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Table 5. Mean ecosystem loading on ions in snow at peak snowpack of 2009 measured in mequivalents L-1.  Number inside 
parentheses denotes 1 s.d., lack of s.d. means only one sample was analyzed.  Missing samples are labeled n.d. for not determined.  
adenotes ecosystem loading on ions in snow from Niwot Ridge, CO in 2007 (Williams et al. 2009). 
 

Site Cl- NO3
- SO4

2- H+ NH4
+ K+ Na+ Mg2+ Ca2+ 

BCC 2050 32.3(1.8) 3.3(0.1) 16.3(1.0) 0.2(0.1) 4.8(0.5) 2.7(0.3) 37.5(1.6) 7.7(0.5) 54.0(5.7) 
BCC 2670 19.3(1.2) 4.3(0.2) 12.2(1.5) 0.1(0.0) 5.4(0.2) 3.5(0.5) 23.8(2.2) 5.9(0.4) 41.1(0.2) 
BCC 2950 20.8(1.9) 5.9(0.2) 15.1(0.6) 0.8(0.3) 6.9(1.2) 5.6(0.2) 26.0(1.9) 8.3(0.6) 45.0(7.5) 
CCC 2340 30.4(7.3) 7.0(0.6) 15.7(1.0) 0.2(0.0) 10.4(0.2) 7.0(2.0) 34.5(7.0) 10.4(1.5) 53.6(14.6) 
CCC 2700 32.6(2.7) 6.5(0.5) 18.9(1.0) 0.3(0.1) 12.7(0.7) 5.2(1.0) 32.7(2.9) 7.5(1.1) n.d. 
LCC 2130 15.6(2.5) 2.5(0.5) 7.9(1.0) 0.2(0.1) 1.8(0.8) 1.9(0.0) 18.3(2.8) 4.3(0.3) 17.2 
LCC 2370 17.7(1.4) 4.0(0.1) 9.9(0.8) 0.3(0.2) 5.0(0.8) 2.1(0.4) 19.4(2.4) 4.5(0.3)) 23.3 
LCC 2600 31.1(7.7) 6.1(0.6) 12.0(2.0) 0.7(0.6) 9.1(1.9) 2.3(0.5) 32.6(8.1) 8.4(2.1) 33.2 
LCC 2950 24.6(2.5) 6.2(0.1) 14.4(0.3) 0.3(0.0) 12.7(3.7) 8.3(2.2) 30.4(5.3) 5.7(0.3) 41.8 
LCC 3050 12.1(3.9) 4.7(0.6) 7.5(1.3) 1.2(0.9) 7.4(0.7) 1.9(0.3) 12.3(4.9) 4.2(0.9) 6.1(2.1) 

Neffs 2130 15.8(1.6) 2.6(0.2) 7.8(0.7) 0.2(0.1) 3.9(0.8) 4.8(1.8) 20.3(2.5) 4.6(0.4) 22.6(2.6) 
Neffs 2370 32.2(4.2) 5.2(0.1) 13.2(1.2) 0.4(0.1) 8.5(1.9) 4.2(0.5) 35.3(4.7) 7.5(0.1) 39.8 
Neffs 2560 28.6(2.3) 4.9(0.3) 13.0(0.5) 0.3(0.2) 7.4(0.6) 4.1(1.0) 31.1(2.9) 6.9(1.2) 45.4(10.5) 
Neffs 2740 35.6(4.9) 5.8(0.2) 15.0(1.2) 0.2(0.0) 10.8(0.7) 5.1(1.1) 35.7(4.7) 6.9(0.6) 37.1(4.2) 

RBC 2070 12.8(1.2) 2.4(0.2) 6.1(0.2) 0.3(0.1) 4.3(0.3) 1.0(0.1) 13.9(0.9) 3.7(0.3) 16.4(2.2) 
RBC 2170 18.9(2.2) 3.1(0.3) 8.8(0.8) 0.3(0.1) 5.7(1.8) 2.4(0.7) 19.4(2.0) 5.0(0.8) 18.7(5.9) 

Niwot Ridgea 2.0 12.9 8.2 5.9 6.0 6.9 1.6 2.8 10.9 
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levels of ecosystem ion loading were generally found at low elevations of all canyons 

sampled. 

Five sites sampled in 2009 were also sampled in 2008 allowing for a 2 year 

comparison of ion concentrations and ecosystem ion loading in four Wasatch Mountain 

canyons adjacent to SLV.  At most sites, concentrations of chloride, sulfate, sodium and 

magnesium in 2009 were nearly twice that observed in 2008 (Figure 2).  Nitrate 

concentrations, however, were generally slightly higher in 2008 when compared to those 

in 2009.  Nitrate concentrations in 2009 were low compared to those observed at Niwot 

Ridge in 2007, but 2008 nitrate concentrations in the Wasatch Mountains were similar to 

those observed at Niwot Ridge (Williams et al. 2009).   

 Similar to comparisons of ion concentrations between years, mean ecosystem ion 

loading was generally greater in 2009, especially for chloride and sodium where values 

were at least twice that observed in 2008 (Figure 3).  Ecosystem loading of sulfate and 

magnesium was significantly greater at several sites in 2009 compared to 2008.  Few 

differences in ecosystem loading of hydrogen, ammonium and potassium were observed 

between 2008 and 2009.  The one exception aforementioned trend was nitrate, where 

mean ecosystem loading was greater in 2008 and approached values observed at Niwot 

Ridge in 2007 (Williams et al. 2009).   

 Sites varied in elevation and distance from potential sources of ion deposition.  

The relationship between ion deposition and elevation or distance from potential sources 

was evaluated using linear regression analysis (Table 6).  Relationships between distance 

from potential sources and ion deposition were evaluated as distance from the nearest 

point of GSL.  Relatively low r2 values were observed for all regressions between ion 
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Figure 2.  Mean ion concentrations of snow collected in 2008 (gray bars) and 2009 
(white bars).  Measurements are in µequivalents L-1 (µeq L-1) and error bars represent 1 
s.d.  Paired bars with ‘a’ and ‘b’ above them represent significantly different values (t-
test, p<0.05).  Paired bars with ‘a’ and ‘b*’ also represent significantly different values (t-
test, p<0.1).  Data for Ca2+ was omitted because only one 2008 Ca2+ samples was 
analyzed. 
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Figure 3.  Mean ecosystem loading of ions (mequivalents m-2) in 2008 (gray bars) and 
2009 (white bars).  Error bars denote 1 s.d. Paired bars with ‘a’ and ‘b’ above them 
represent significantly different values (t-test, p<0.05).  Paired bars with ‘a’ and ‘b*’ also 
represent significantly different values (t-test, p<0.1). Data for Ca2+ was omitted because 
only one 2008 Ca2+ samples was analyzed. 
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Table 6.  Results from linear regressions between distance from GSL and ion 
concentration (µeq L-1) or ecosystem loading of ions (meq m-2) and between elevation 
and ion concentrations or ecosystem loading in 2009.  Values listed in table are 
coefficients of determination (r2) from linear regressions.  Missing values denote 
relationships without significant correlation (p<0.05). 
 

 

 

concentration and ecosystem loading.  Higher correlations between elevation and ion 

concentration were observed for chloride, nitrate, sulfate, sodium and magnesium, 

potentially indicating GSL as a source of ion deposition.  Correlations between distance 

from urban sources and deposition of ions was also evaluated, but no trends were 

observed.   

In general, ion concentrations decreased with elevation, and ecosystem loading increased 

with elevation.  Relatively strong correlations between elevation and ion concentration 

were observed for chloride, sulfate, sodium, magnesium and calcium.  Weak correlations 

between ecosystem ion loading and elevation were observed, except for nitrate.  The 

relationship between elevation and ion concentration or ecosystem loading was further 

explored by categorizing sites into low, middle and high elevation sites (Figure 4). Ion 

concentrations were significantly higher at low elevations compared to high elevations 

for chloride, sulfate, sodium and magnesium.  For chloride and sodium, ion 



 

 

29 

 

Figure 4. Snow ion concentrations (µeq L-1) and ecosystem loading (meq m-2) by 
elevation group.  Sites were grouped as low elevation sites, 2,000-2,200 m (black bars), 
middle elevation sites, 2,200 m to 2,600 m (gray bars) and high elevation sites, 2,600-
3,050 m (white bars). Error bars denote 1 s.d. Paired bars with different letters above 
them represent significantly different values (t-test, p<0.05).  
 

concentrations were significantly different in all elevation groups (t-test, p<0.05) and 

showed a strong decrease with elevation. Ecosystem loading of all ions, except 

potassium, was significantly higher at high elevations compared to low elevations.  

Unlike the relationship between ion concentration and elevation, ecosystem loading at 

middle and high elevation sites was not different, but both middle and high elevation sites 

showed greater loading than low elevation sites. 

Snow ion concentrations from samples collected in BCC in 2009 were compared 

to samples collected by Cerling and Alexander (1987) in Salt Lake City and in low 

elevations of BCC at Storm Mountains (Table 7).  There was a clear trend of decreasing 

snow ion concentration as elevation increases.  In 2009, snow ion concentrations 
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decreased with increasing elevation for all ions except hydrogen, ammonium and 

potassium.   During a severe temperature inversion in December 1985, concentrations of 

ions in snow were significantly higher at 1475 m in Salt Lake City compared to 1765 m 

in BCC.  When 1985 data is compared to 2009 data, there is a very clear trend of 

decreasing snow ion concentration with elevation.  Although data collected in Salt Lake 

City and Storm Mountain by Cerling and Alexander (1987) are not directly comparable 

to 2009 snow data, the comparison shows that snow and rime ion concentrations at very 

low elevations of BCC and Salt Lake Valley can be significantly higher than those 

observed at high elevations of BCC.  Concentrations of all ions were significantly higher, 

often by an order of magnitude or more, at the lowest elevation sites at Storm Mountain 

in BCC and in Salt Lake City compared to BCC samples from 2009. 

 
 

 

 

 



 

         

 
 
 
 
Table 7. Comparison of mean ion concentrations (µeq L-1) from snow in along a gradient in elevation from Salt Lake City 
(1475 m) to high elevations of Big Cottonwood Canyon (BCC). Snow samples are from three 2009 sites in BCC (n=3), all 
2009 snow samples (n =56) and snow and rime collected by Cerling and Alexander (1987) in Salt Lake City (1300 m) and in 
BCC at Storm Mountain (1765 m).  Numbers inside parentheses denote 1 s.d. 
 
 

 

 



 
 
 
 

DISCUSSION 
 
 
 

 No study had previously assessed concentrations and ecosystem loading of ions in 

snow of the Wasatch Mountains.  Proximity of the Wasatch Mountains Slat Lake City 

and Great Salt Lake (GSL) suggests that ion deposition may be both extremely high and 

unique compared to other locations.  Two years of snow ion measurements in the 

Wasatch Mountains showed extremely high concentrations and ecosystem loading of 

salt-derived ions, including chloride, sulfate, sodium, magnesium and calcium.  An 

examination of the chemical composition of hoar frost, rime and snow during a severe 

temperature inversion event in Salt Lake City, UT in 1985 also revealed very high 

concentrations of chloride, nitrate, sulfate, sodium and calcium exceeding 1 mmol L-1 

(Cerling and Alexander 1987).  Concentrations of chloride, sulfate, sodium, magnesium 

and calcium in snow during 2008 and 2009 were significantly lower than those observed 

by Cerling and Alexander (1987) but were up to an order of magnitude higher than those 

observed in any other published study of snow ion concentrations.  

Studies in the Rocky Mountains revealed snow chloride concentrations ranging 

from 1 to 7 µeq L-1 compared to 10 to 60 µeq L-1 in the Wasatch Mountains (Barbaris and 

Betterton 1997; Heur et al. 1999; Turk et al. 2001; Williams et al. 2009).  The highest 

previously observed snow chloride concentrations in North America were found in the 

southern Rockies and the Sierra Mountains in California (Laird et al. 1986; Turk et al. 

2001).  Sulfate concentrations in snow of the Wasatch Mountains were three to ten 
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times higher than those observed in the Rocky Mountains (Barbaris and Betterton 1997; 

Heur et al. 1999; Turk et al. 2001; Williams et al. 2009).  In general, snow concentrations 

of sodium were very low in the Rocky Mountains, averaging around 2 to 3 µeq L-1 (Turk 

et al. 2001; Williams et al. 2009) compared to concentrations of up to 70 µeq L-1 

observed in the Wasatch Mountains.  Concentrations of magnesium in Wasatch snow 

were two to three times higher than those observed at other sites in the Rocky Mountains. 

Snow calcium concentrations were also vey high in the Wasatch Mountains, nearly an 

order of magnitude higher than those measured at Rocky Mountain sites in Colorado.  

However, in 2006 at Niwot Ridge, CO, calcium concentrations of 35 µeq L-1 were 

observed, which approach values in the Wasatch Mountains (Williams et al. 2009).  One 

study in the Alps revealed similarly high calcium concentrations of nearly             20 µeq 

L-1 (Kuhn et al. 2001).  High snow calcium concentrations in 2006 at Niwot Ridge and in 

the Alps were likely a result of dust storm events coming from the Colorado Plateau and 

the Sahara, respectively (Kuhn et al. 2001; Williams et al. 2009).   

Anomalously high concentrations of chloride, sulfate, sodium and magnesium in 

Wasatch Mountain snowpacks can likely be attributed to the proximity of GSL and other 

dry playas in the desert to the west of Salt Lake City.  Because GSL is a closed basin 

lake, it is extremely saline, with salinity ranging from 12% in the southern portion of the 

lake to 28% in the northern portion (Jones et al. 2009).  The greatest inputs of ions to 

GSL come from dilute calcium carbonate stream water and sodium chloride from springs 

and groundwater.  The four dominant ion components of GSL waters are chloride, 

sulfate, sodium and magnesium, contributing 7.2%, 0.8%, 4.1% and 0.4%, respectively, 

to the lake’s salinity (Jones et al. 2009).  Dissolved ions in the waters of GSL are not 
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likely to enter the atmosphere for deposition in the Wasatch, but ions deposited in soils 

through evaporation as lake elevation drops may be available for atmospheric transport.  

Since GSL is a shallow closed basin lake, its elevation and surface area change as annual 

inputs of water and temperature change.  Since 1847, lake elevation has fluctuated from a 

low of 1277.52 m in 1963 to a high of 1283.77 m in 1987.  The 6 m change in lake 

elevation increased lake surface area from 2,500 km2 in 1963 to 6.200 km2 in 1987 

(Stephens 1990).  Currently, GSL elevation is 1278.58 m, approaching its historic low 

elevation (USGS data, 2010).  The 5.5 m drop in lake elevation in the last 20 years has 

uncovered thousands of square kilometers of previously inundated soils.  These inundated 

soils are likely rich in minerals and ions that precipitate from GSL waters as evaporation 

occurs.  Calcite (CaCO3), or magnesium-bearing calcite tends to precipitate first from 

saline waters, but halite (rich in chloride) and mirabilite (Na2SO4 ! 10 H2O) are also 

common precipitates from GSL waters during evaporation.  Drought during the 1930s 

and 1960s caused significant salt (NaCl) precipitation, which was later re-dissolved as 

lake levels rose.  Slight declines in lake concentrations of sulfate, magnesium, potassium 

and calcium from 1965-2002 may have been due to increased precipitation of these 

elements (Jones et al. 2009).   

The large area of previously inundated soils around GSL is likely rich in ions 

prevalent in Wasatch Mountain snows (chloride, sulfate, sodium, magnesium and 

calcium) and may enter the atmosphere as dust and later deposited downwind through 

wet and dry depositional processes.  Regression analysis between snow ion 

concentrations and site distance from GSL adds support to the hypothesis that high 

concentrations of chloride, sulfate, sodium and magnesium in snow originate from GSL.  
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Although correlations between site distance from GSL and ion concentrations were 

generally low, the highest correlations were found for chloride (r2=0.36), sulfate 

(r2=0.22), sodium (r2=0.22) and magnesium (r2=0.17).  With the exception of nitrate, all 

other correlations between ion concentration and distance from GSL were low (r2<0.1).  

Distance from GSL is clearly not the only determinant of snow ion concentrations of 

chloride, sulfate, sodium and magnesium, but it appears that GSL is a major source of 

snow ion deposition in the Wasatch Mountains. 

 While snow in the Wasatch Mountains had surprisingly high concentrations of 

ions prevalent in GSL saline waters, snow concentrations of nitrate were lower than 

expected.  It was expected that snow nitrate concentrations in the Wasatch Mountains 

would be high relative to other studies in the Rocky Mountains due to proximity to and 

downwind location from SLV and the prevalence of pollution-concentrating valley 

temperature inversions (Long et al. 2003; Silva et al. 2007).  Contrary to expectations, 

snow nitrate concentrations in the Wasatch Mountain were generally lower than those 

observed at Niwot Ridge, CO and other sites in the Colorado Rocky Mountains (Williams 

et al. 2009; Turk et al. 2001).  During the winter, SLV routinely exceeds EPA air quality 

standards for PM 2.5 (particulate matter <2.5µm in diameter), which typically has high 

concentrations of nitrate, sulfate and ammonium (Long et al. 2003; Utah Division of Air 

Quality 2010).  EPA revisions to 24-hour PM2.5 air quality standards in 2006 (reduction 

from 65 µg m-3 to 35 µg m-3) resulted in the designation of seven counties in Utah, 

including Salt Lake County, as non-attainment areas from the PM 2.5 standard (Utah 

DEQ 2007).  Despite high levels of particulate matter air pollution in SLV, snow nitrate 

concentrations were relatively low.  Snow ammonium concentrations in the Wasatch 
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Mountains were slightly higher and snow sulfate concentrations were significantly higher 

than those observed at other sites in the Rocky Mountains.  Since both ammonium and 

sulfate can be constituents of particulate matter air pollution, elevated levels in snow 

could be due to the influence of urban air pollution.   

 Interactions between snow chemistry and the forest canopy may contribute to 

high concentrations of chloride and sulfate and lower concentrations of nitrate in snow.  

Unlike many snow chemistry studies, this study’s snow samples (except for snow from 

LCC 3050) were collected from clearings within or adjacent to coniferous forests.  Snow 

collected was not throughfall snow, but snow pits were close enough (2 m outside canopy 

drip-line) to the forest canopy that intercepted snow from the canopy may have impacted 

snow samples.  Snow that is intercepted by the forest canopy is subject to sublimation 

and dry deposition that can affect snow ion concentrations (Laberge and Jones 1991; 

Jones et al. 1993; Pomeroy et al. 1998; Pomeroy et al. 1999).  There are three 

mechanisms for changes in ion concentration of intercepted snow.  First, dry atmospheric 

deposition to intercepted snow can increase ion concentrations relative to surface snow 

due to higher surface area of snow in the forest canopy.  Second, in cold and dry climates, 

sublimation of snow from the canopy leaves snow with high ion concentrations relative 

to surface snow.  And lastly, as snow sublimates, some ions may volatilize leaving 

intercepted snow with lower ion concentrations (Pomeroy et al. 1998).   

Investigations of intercepted snow chemistry have typically focused on chloride, 

nitrate and sulfate and have often produced conflicting results.  At a boreal forest site in 

the Canadian Arctic, intercepted snow had significantly higher concentrations of chloride, 

sulfate and nitrate and concentrations of chloride and sulfate were similar to those 
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observed in the Wasatch Mountains.  Despite higher ion concentrations of intercepted 

snow, snow collected along transects moving away from individual trees showed that 

snow 0.5 m away from the tree trunk was not influenced by high ion concentrations of 

intercepted snow, suggesting that snow samples in this study were not influenced by 

intercepted snow.  In a more southern Canadian boreal forest, increases in chloride and 

sulfate concentrations of intercepted snow were also observed, but concentrations of 

nitrate in intercepted snow were lower relative to surface snow, suggesting some 

volatilization of nitrate during sublimation (Pomeroy et al. 1998).  Most studies 

investigating the influence of canopy interception on snow ion concentrations were 

located in very cold boreal forests with much different weather and forest canopies than 

the Wasatch Mountains.  Despite differences between sites where snow interception was 

studied and the Wasatch, snow samples collected in 2008 and 2009 may have been 

influenced by sublimation and volatilization, which would tend to increase snow chloride 

and sulfate concentrations while decreasing concentrations of nitrate.   

 Sampling snow from a variety of locations and elevations in the Wasatch 

Mountains adjacent to SLV allowed for an examination of some factors that influence ion 

deposition, such as distance from an ion source, elevation and geographic location.  

Linear regression analysis showed some correlation between distance and ion deposition, 

but correlations between elevation and ion deposition were much stronger.  It was 

impossible to separate the effects of distance and elevation because high elevation sites in 

a specific canyon were always further away from SLV and GSL than low elevation sites 

in the same canyon.  Despite difficulties in evaluating distance and elevation 

independently, some clear patterns emerged.  Site distance from GSL was best correlated 
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with snow concentrations of chloride, nitrate, sulfate, sodium, magnesium and calcium 

potentially indicating GSL as a source of these ions.  With the exception of nitrate, the 

only significant correlations between snow ion concentration and distance from GSL 

were with ions that are typically abundant in GSL (Jones et al. 2009).      

 There were generally differences in measured ion concentrations and ecosystem 

ion loading between 2008 and 2009, but one site at 2,950 m in LCC tended to have very 

similar ion concentrations and ecosystem loading in 2008 and 2009.  The lowest 

concentrations of all ions in 2009 were observed at 3,050 m in LCC.  This site was 

unique because it was the highest elevation site and was located in alpine terrain devoid 

of trees.  Similar ion concentrations and loading between years and low ion deposition at 

the highest elevations of LCC may illustrate a common pattern of ion deposition in snow 

of high elevation locations.  While several studies have shown that ion deposition in 

snow can vary with elevation (Taylor et al. 1999; Bacardit and Camarero 2009), others 

have shown that there is a threshold elevation above which ion concentrations tend to be 

relatively low.  In regions with great vertical relief, like the Wasatch Mountains, ion 

deposition at the highest mountain elevations is often more representative of regional 

background levels of deposition and not strongly influenced by local sources during 

winter.  In the winter, cold temperatures tend to reduce the thickness of the planetary 

boundary layer, which causes reduced mixing of low and high elevation air masses 

(Baltensperger et al. 1998).  Low levels of snow ion deposition observed at 2,950 m in 

LCC during 2008 and 2009 and 3,050 m in 2009 may be explained by reduced high 

elevation air mass mixing with SLV.   
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There is significant variation in ion concentration in snow and ecosystem ion 

loading between most sites measured in the Wasatch Mountains.  While low levels of ion 

deposition at high elevations of LCC and BCC may be explained by reduced winter 

mixing of valley air to high elevations, there are other potential explanations for 

variations in deposition.  Ionic deposition can vary with geographic location, proximity to 

regional/local sources, aspect, elevation, and year (Bowman 1992; Baron and Denning 

1993; Kuhn, Haslhofer et al. 1998; Hiltbrunner, Schwikowski et al. 2005).  While 

elevation does not explain the majority of variation in ion concentration or loading, it 

does account for 30-50% of the variation at many sites.  Measurements of bulk 

precipitation along a 800m gradient in altitude in northern England showed that 

hydrogen, ammonium, nitrate and sulfate ion concentrations were 20-120% greater at the 

highest elevation site (Taylor et al. 1999), a pattern opposite to that observed in the 

Wasatch Mountains.  Conversely, an examination of trace elements in snow between 

2,000 m and 3,500 m in the Pyrennes Mountains found the highest concentrations at 

2,050 m (Bacardit and Camarero 2009).  Elevation clearly influences deposition of ions 

at many sites around the world and it appears to influence snow ion deposition in the 

Wasatch Mountains such that the highest elevations receive the lowest concentrations of 

ions in snow, but the highest ecosystem loading.  Opposing trends of snow ion 

concentration and ecosystem loading of ions with altitude can likely be explained by 

consistently higher accumulation of snow as elevation increases.  Lower relative snow 

ion concentrations are common at high elevations, but snow water equivalent (SWE) at 

the highest elevation sites was approximately 90% - 250% greater than SWE at the 
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lowest elevation sites.  Significantly greater values of SWE cause higher ecosystem 

loading of ions at high elevations despite relatively low snow ion concentrations. 

  Further evidence of decreases in snow ion concentration with elevation was 

evident when snow ion concentrations from BCC in 2009 were compared to data 

collected by Cerling and Alexander (1987).  Concentrations of chloride, nitrate, sulfate, 

sodium and calcium in snow were significantly higher in Salt Lake City (1300 m) during 

a 1985 severe temperature inversion compared to BCC (1765 m).  While the trend of 

higher snow ion concentrations in Salt Lake City compared to BCC in 1985 was likely 

related to the elevation of the temperature inversion, the same pattern of decreasing snow 

ion concentration with increasing elevation is present in 2009 snow samples from BCC 

and the Wasatch Mountains.  Concentrations of ions in snow at peak snowpack in 2009 

were one to two orders of magnitude lower than those observed during the valley 

inversion of 1985.  The valley temperature inversion in late December of 1985 was the 

most severe in several decades (Cerling 2010 personal communication).   

 The Wasatch Mountains receive moderate loads of ions important to plant growth, 

e.g., nitrate and ammonium. Deposition of nitrate was lower than expected, but 

deposition of ammonium was higher than expected, leading to similar total inorganic 

nitrogen (N) deposition in the Wasatch Mountains and at Niwot Ridge (Williams et al. 

2009, etc.).  N deposition in the Front Range of Colorado has increased soil N pools, 

altered foliar chemistry (Baron et al. 2000) and increased productivity of some subalpine 

forests (Sievering et al. 2007).  Slightly higher levels of N deposition than observed in the 

Wasatch Mountains altered aboveground net primary production of eastern deciduous 

forest in both positive and negative directions (McNulty et al. 1996; Magill et al. 2000; 
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Magill et al. 2004).  Effects of atmospheric N deposition on forests, especially western 

subalpine forests, are not clearly understood.  Deposition of nitrate and ammonium in 

snow of the Wasatch Mountains may affect ecosystem processes essential to the health of 

Wasatch Mountain forests.  Further study is necessary to evaluate the impact of N 

deposition.   

 The presence of GSL has likely caused high deposition of salt-derived ions to 

subalpine forests of the Wasatch Mountains for many millennia.  Many plants are 

intolerant to salinity and the presence of high salinity in snow may affect plant growth 

and ecosystem processes.  Mining effluent, high in chloride, sulfate and sodium, reduced 

seedling growth of Picea glauca, Picea mariana and Pinus contorta in soils subject to 

high concentrations of Na2SO4.  Leaves of Salix spp. and Populus tremuloides were 

rapidly lost, but very quickly replaced by morphologically unique leaves (Renault et al. 

1998).  Increased marine aerosol deposition (high in NaCl) may be a primarily driver of 

the Picea abies mortality in southern Sweden (Gustafssen 1997).  Finally, an examination 

of the effect of road salt (MgCl2) P. tremuloides, P. engelmannii and A. lasiocarpa found 

high foliar chloride concentrations correlated strongly with percent foliar damage and 

significant effects of road salt were found in soils and vegetation 100 m distant from 

roads (Goodrich et al. 2009).  Most studies investigating effects of salinity on forest 

health use salt concentrations higher than those that likely exist in soils of the Wasatch 

Mountains.  While subalpine forests of the Wasatch Mountains may be adapted to 

relatively higher levels of salt common in precipitation, changes in GSL lake level may 

further alter precipitation chemistry, potentially affecting forest and ecosystem processes. 

 



 
 

 
 
 

CONCLUSION 
 
 
 

 The Wasatch Mountains, adjacent to the metropolitan area defined by SLV, were 

subject to extremely high ecosystem loading and concentrations of chloride, sulfate, 

sodium, magnesium and calcium in snow.  Concentrations and amounts of these ions 

were among the highest observed in snow chemistry studies and likely reflect proximity 

to GSL, a closed basin saline lake.  Nitrate deposition in the Wasatch Mountains was 

lower than expected considering proximity to a city with significant particulate matter air 

pollution problems.  Total inorganic N deposition (nitrate and ammonium) was similar in 

the Wasatch Mountains and the Colorado Rockies.  Moderate deposition of inorganic N 

and high deposition of salt-derived ions may affect forest and ecosystem processes of the 

Wasatch Mountains.  While distance from GSL and elevation affected concentrations and 

ecosystem loading of ions in snow, deposition was dominated by ions likely derived from 

salt flats surrounding GSL. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

APPENDIX 

 

FOLIAR CHEMICAL COMPOSITION AND NITRATE 

DEPOSITION 

 

 Needles and leaves of the dominant subalpine tree species of the Wasatch 

Mountains (Abies lasiocarpa, Picea englelmanii, Populus tremuloides and Pseudotsuga 

menziesii) were collected in late August and early September of 2008 and 2009 from a 

subset of sites where snow was sampled.  Foliage was sampled from eight sites in 2008 

and four sites in 2009.  Three randomly chosen trees of each species were sampled.  

Needles and leaves were sampled using a 4 m tree-pruning saw.  From each tree three 

small branches exposed to the sun for part of the day were clipped and stored in coin 

envelopes.  In the laboratory, conifer needles were separated into this current year 

needles and last year’s needles.  Leaf and needle samples were stored in coin envelopes, 

oven-dried at 60˚C, and ground into a fine powder with mortar, pestle and liquid 

nitrogen.  All leaf samples were analyzed for C, N, !13C and !15N using a Finnigan Delta 

Plus XP continuous-flow stable isotope ratio mass spectrometer coupled with an 

elemental analyzer (Thermo Electron Corp., Waltham, MA). 

 Data from 2008 is presented in Tables 8-11.  Data from 2009 will be presented in 

the final manuscript (and likely available for discussion on 3/9/10).  Table 8 presents 
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foliar chemistry data for Abies lasiocarpa, Table 9 presents data for Picea engelmannii, 

Table 10 presents data for Pseudotsuga menziesii and Table 11 presents data for Populus 

tremuloides.  Mean values of foliar !15N measured in 2008 for A. lasiocarpa, P. 

engelmannii, P. tremuloides and P. menziesii (Tables 8, 9, 10 and 11) were compared to 

mean site nitrate deposition using linear regression (Microsoft Excel:Mac, 2008).  

Significant correlations between nitrate deposition and foliar !15N were found with A. 

lasiocarpa (r2=0.57), P. engelmannii (r2=0.66) and P. tremuloides (r2=0.64) (Figure 5).  

Mean values of foliar !15N and nitrate deposition were used for linear regression because 

snow and foliar samples were collect independently at the same site, such that a foliar 

sample is not paired with a specific snow sample.  Snow nitrate data used for linear 

correlations was collected identically to specifications in the methods, but snow nitrate 

was by first converting all NO3
-to NO2

-through copper-cadmium reduction and then 

quantifying concentrations through spectrophotometric analysis (Cruz and Loucao 2002).  

Significant correlations between nitrate deposoition and foliar !15N in 2008 were found 

with A. lasiocarpa (r2=0,57), P. engelmannii (r2=0.66) and  P tremuloides (r2=0.64) 

(Figure 5). 
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Table 8.  Chemistry of Abies lasiocarpa needles, including stable isotopes of carbon 
(!13C) and nitrogen (!15N), percentage nitrogen (%N) and percentage carbon to 
percentage nitrogen ratio (C:N), collected at sites in August to September of 2008 and 
2009.  All site locations can be found in Table 1 except for Neffs 2790, which is located 
on a south-facing slope in Neffs Canyon at 2,790 m (N 40° 39.693’, W 111° 43.677’) and 
BCC 2700 located in Big Cottonwod Canyon at 2,700 m (N 40° 37.992’, W 111° 
40.202’).  Numbers inside parentheses denote 1 s.d. and n=3 for all samples. 
 
 
Sites Year !13C !15N %N C:N 
BCC 2700 2008 -26.1(1.7) -4.7(4.4) 1.00(0.17) 54.7(10.6) 
BCC 2670 2009 -27.8(0.1) -0.6(1.2) 1.07(0.24) 48.5(4.2) 
BCC 2950 2009 -26.7(0.6) -1.4(0.5) 1.03(0.41) 51.7(12.7) 
CCC 2700 2008 -26.3(0.7) -1.3(1.1) 1.10(0.19) 44.7(4.9) 
LCC 2950 2008 -25.4(1.4) -2.6(0.8) 1.50(0.31) 35.3(6.4) 
Neffs 2370 2009 -26.3(0.8) -3.3(0.4) 1.25(0.50) 42.0(7.6) 
Neffs 2740 2008 -24.9(0.8) -1.7(1.6) 1.32(0.03) 38.5(1.1) 
Neffs 2740 2009 -26.5(0.6) -1.4(0.8) 1.20(0.17) 43.1(2.2) 
Neffs 2760 2008 -25.4(0.4) -2.3(1.4) 1.13(0.05) 45.1(3.5) 
 
 
 
Table 9.  Chemistry of Picea engelmannii  needles, including stable isotopes of carbon 
(!13C) and nitrogen (!15N), percentage nitrogen (%N) and percentage carbon to 
percentage nitrogen ratio (C:N), collected at sites in August to September of 2008 and 
2009.  Numbers inside parentheses denote 1 s.d. and n=3 for all samples. 
 
  
Sites Year !13C !15N %N C:N 
BCC 2700 2008 -23.9(0.4) -6.6(0.4) 0.90(0.10) 54.9(6.8) 
BCC 2670 2009 -26.0(0.1) -1.5(0.5) 0.94(0.58) 53.3(1.9) 
BCC 2950 2009 -26.8(0.5) -1.6(0.4) 0.90(1.56) 54.1(3.0) 
CCC 2700 2008 -25.9(0.6) -1.6(1.3) 1.00(0.05) 47.2(3.1) 
LCC 2950 2008 -25.3(0.5) -3.5(1.7) 1.00(0.05) 52.2(5.2) 
Neffs 2740 2008 -24.9(0.8) -3.6(0.2) 0.88(0.12) 57.9(9.0) 
Neffs 2740 2009 -26.4(1.5) -2.1(0.6) 0.92(0.55) 55.5(3.2) 
 
 
 
 
 
 
 
 
 



 46 

Table 10. Chemistry of Pseudotsuga menzeisii needles, including stable isotopes of 
carbon (!13C) and nitrogen (!15N), percentage nitrogen (%N) and percentage carbon to 
percentage nitrogen ratio (C:N), collected at sites in August to September of 2008 and 
2009.  All site locations can be found in Table 1 except CCC 2740, which is located in 
City Creek Canyon at 2,072 m (N 40° 49.821’, W 111° 45.874’) and Neffs 1840 located 
at 1,840 m in Neffs Canyon (N 40° 40.327’, W 111° 46.025’).  Numbers inside 
parentheses denote 1 s.d. and n=3 for all samples. 
 
Sites Year !13C !15N %N C:N 
BCC 2700 2008 -24.4(0.5) 2.1(0.8) 1.10(0.33) 48.0(12.5) 
CCC 2070 2008 -28.0(1.0) -1.9(0.4) 0.90(0.01) 53.7(1.0) 
Neffs 1840 2008 -25.2(0.8) 1.3(1.3) 0.90(0.06) 55.5(6.8) 
Neffs 2130 2008 -26.8(1.0) -1.7(0.1) 0.94(0.04) 54.2(5.2) 
Neffs 2740 2008 -25.2(0.7) -2.0(0.2) 0.91(0.02) 55.0(2.5) 
 
 
 
Table 11. Chemistry of Populus tremuloides needles, including stable isotopes of carbon 
(!13C) and nitrogen (!15N), percentage nitrogen (%N) and percentage carbon to 
percentage nitrogen ratio (C:N), collected at sites in August to September of 2008 and 
2009.  Numbers inside parentheses denote 1 s.d. and n=3 for all samples. 
 
Sites Year !13C !15N %N C:N 
BCC 2670 2009 -27.1(0.3) 2.1(0.8) 1.82(0.10) 27.3(0.9) 
BCC 2950 2009 -26.9(1.3) -1.9(0.4) 2.35(1.25) 21.2(2.1) 
CCC 2070 2008 -26.6(1.1) 1.3(1.3) 2.50(0.11) 19.8(1.7) 
Neffs 2370 2009 -26.6(0.2) -1.7(0.1) 2.04(0.60) 24.7(5.0) 
Neffs 2740 2008 -26.8(0.9) -2.0(0.2) 2.32(0.17) 21.7(2.9) 
Neffs 2740 2009 -26.9(0.3) -1.7(0.9) 2.21(0.19) 22.2(0.9) 
Neffs 2790 2008 -23.6(0.6) -1.4(0.3) 2.22(0.14) 22.1(1.7) 
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Figure 5.  Linear regressions between foliar !15N and winter nitrate deposition during 
2008.  Winter nitrate deposition was measured at peak snowpack in 2008 as mass of 
nitrate per ground area.  Leaf and need samples from Abies lasiocarpa, Pseudotsuga 
menziesii, Picea engelmannii  and Populus tremuloides were collected in late August to 
early September 2008.  Both foliar !15N and winter nitrate deposition nitrate deposition 
are the mean of three independent samples.  Error bars represent 1 s.d. 
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