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ABSTRACT
One of the fundamental building blocks of many com putational sciences is the construc

tion and use of a discretized, geometric representation of a problem domain, often referred 
to as a mesh. Such a discretization enables an otherwise complex domain to be represented 
simply, and com putation to be performed over th a t domain with a finite number of basis 
elements. As mesh generation techniques have become more sophisticated over the years, 
focus has largely shifted to quality mesh generation techniques th a t guarantee or empirically 
generate numerically well-behaved elements.

In this dissertation, the two complementary meshing subproblems of vertex placement 
and element creation are analyzed, both separately and together. F irst, a dynamic particle 
system achieves adaptivity over domains by inferring feature size through a new information 
passing algorithm . Second, a new tetrahedral algorithm is constructed tha t carefully 
combines lattice-based stenciling and mesh warping to produce guaranteed quality meshes 
on m ultim aterial volumetric domains. Finally, the ideas of lattice cleaving and dynamic 
particle systems are merged into a unified framework for producing guaranteed quality, 
unstructured and adaptive meshing of m ultim aterial volumetric domains.
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CHAPTER 1
INTRODUCTION

Despite many advancements in applied mathematics and com putational sciences, one of 
the most enduring challenges in scientific computing has been the task of decomposing 
geometric domains into well-formed subregions, or elements. This problem is broadly 
known as the problem of mesh generation, and it comes in many flavors. The work in this 
dissertation addresses an im portant class of meshes, those th a t can be called a simplicial 
complex. These are meshes composed of triangles in two dimensions, and tetrahedra in 
three dimensions. In particular, this work focuses on strategies for producing high-quality 
tetrahedral meshes of domains with piecewise smooth and non-manifold boundaries.

Over the past few decades, the use of computer simulation has grown to be an integral 
part of practically every scientific field. This has been especially true for mechanical and 
aeronautical engineering, which have come to rely heavily on the computer-aided design 
(CAD) pipeline. This pipeline typically begins with an input geometry defined using some 
form of spline-based representation. While these representations are the preferred choice 
for modeling piece-wise smooth geometry, computer-aided engineering (CAE) applications 
including structural analysis and com putational fluid dynamics (CFD) often require some 
form of polyhedral mesh over which to perform computation. Tetrahedral meshes are among 
the most common. Thus, tetrahedral mesh generation is a key tool in the modern CAD 
pipeline. Figure 1.1 shows a visualization of an unsteady flow computed across a helicopter 
using CFD methods. The geometry of the helicopter was designed using conventional CAD 
modeling, but ultim ately a tetrahedral mesh is generated in order to perform the CFD 
solve.

More recently, the biomedical community has begun to incorporate simulation for bio
logical process modeling and even patient-specific analysis. These models often rely on the 
com putation of solutions to partial differential equations (PDEs) solved using numerical 
methods. This includes both predictive forward modeling, as well as inverse problems. 
Thus, converting medical image data to meshes of geometric structures is an increasingly
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F ig u re  1.1. A visualization of unsteady flow simulated around a helicopter in forward 
flight. The geometry of the helicopter was designed using conventional CAD techniques, 
but a tetrahedral mesh is generated in order to perform the CFD solve [36].

im portant problem for the medical image analysis community. Figure 1.2 illustrates a mesh 
of a human brain being used to simulate electromagnetic field propagation in a patient.

The finite element method (FEM) has stood out as one of the most robust methods 
for solving the necessary partial differential equations (PDEs) on complicated domains. It 
offers a great deal of flexibility, particularly in regard to discretization, as well as numerical 
consistency. Among the 3D FEM  discretizations, tetrahedral meshes are one of the most 
favored. They offer a good compromise between generality, simplicity of mesh generation 
and its implementation, ability to conform to complex geometries, and guarantees both on 
algorithm term ination and output quality.

Due to its impact on numerical simulation, mesh quality has become one of the most 
im portant aspects of modern mesh generation. The FEM  relies on a weak formulation of a 
set of PDEs solved as integrals across a set of basis elements th a t live on an input mesh. 
Solving these PDEs can be thought of as inverting differential operators in the form of 
matrices in a linear system. A special m atrix known as the stiffness m atrix is a key part 
of this linear system, and it is well known th a t the shapes of the input elements highly 
impact the numeric stability, or conditioning, of this m atrix [16, 97]. This conditioning in 
tu rn  affects both the speed and accuracy of solutions to these systems.

Many measures have been proposed for tetrahedral quality [84], but they all more or less 
correspond to representing a degree of colinearity and coplanarity among element nodes, 
or vertices. Mesh size, or element count, also affects speed and accuracy. Finer resolution 
enables more accurate solutions, but comes at the price of both memory and computational 
cost. For this reason, mesh adaptivity can also be considered a quality measure. Ideally, 
a mesh should have high resolution in areas of small features and features of high interest, 
and low resolution in areas of low curvature or otherwise numerically uninteresting regions.
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F ig u re  1.2. Illustration of simulation of electromagnetic field propagation in a patien
t-specific brain model. The figure shows a finite-element method discretization of Poisson's 
equation with a patient-specific geometrical model derived from a segmentation of a brain 
magnetic resonance image (MRI) [70].

In this way, solving PDEs over complicated domains becomes a more tractable problem.
Despite a great deal of im portant research and many fundamental advances, the gen

eral problem of tetrahedral meshing remains unsolved and challenging. In particular, the 
constraints imposed by adaptive element size, good tetrahedral quality (shape measured by 
some local metric), and material boundaries are often in conflict, and attem pts to satisfy 
these conditions simultaneously frustrate many conventional approaches, especially those 
th a t rely on iterative local updates to the mesh.

Constructing m ultim aterial tetrahedral meshes th a t conform to material interface bound
aries remains one of the most difficult challenges within tetrahedral mesh generation. In 
these meshes, each tetrahedron is given a material label, and interm aterial surfaces lie on 
the boundary triangles between adjacent tetrahedra with differing labels. The tasks of 
producing an adaptive mesh, high-quality elements, and elements th a t conform to complex 
boundaries are often in conflict with one another. To date, there remains no silver bullet 
solution, and expert users typically mix and match whatever tools are at their disposal.

This dissertation explores several novel approaches for producing high-quality te trahe
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dral meshes for use in scientific computing and visualization. The particle system and 
algorithms presented in Chapter 3 achieve topologically robust meshes with high-quality 
elements on parametric boundary-representation surfaces for CAD models. This formula
tion introduces the idea of information passing, whereby output elements can infer their 
local feature size from a combination of locally available information and interaction with 
adjacent particles. A comparative analysis of angle quality included at the end of Chapter 
3 shows th a t this framework rivals some of the best approaches available.

Variational systems like the one in Chapter 3 can be computationally expensive to solve. 
W ithout acceleration they can become prohibitively expensive on large or geometrically 
complex inputs. Thus, this dissertation also looks into new approaches to combinatoric 
meshing, which can provide linear time mesh construction through the use of preconstructed 
lookup tables. In th a t vein, Chapter 4 presents a new algorithm for generating provably 
good m ultim aterial tetrahedral meshes of volumetric datasets.

Building on this, Chapter 5 generalizes the work of Chapter 4 to show th a t the problem 
of m ultimaterial mesh generation can be decomposed into two distinct stages: a stage 
th a t generates a background mesh with appropriately sized elements, and a stage tha t 
processes this background mesh to conform to material boundaries. This new meshing 
paradigm is one of the most significant results of this dissertation. Many traditional 
techniques for creating high-quality elements have difficulties near boundaries. W ithout a 
need to process boundaries, these algorithms can be simplified, streamlined, and advanced. 
Conversely, the generalized cleaving method of Chapter 5 can conform high-quality input 
meshes to material interfaces with bounded degradation, w ithout requiring the typical 
highly structured or otherwise restricted input meshes of lattice-based methods. In this way, 
conforming m ultimaterial mesh generation no longer necessitates a monolithic algorithm 
with conflicting constraints, but rather can be seen as a more flexible two-stage pipeline 
with interchangeable components.

1.1 Contributions
This dissertation provides several new quality meshing techniques for both parametric 

models as well as m ultimaterial volumetric domains. To this end, this dissertation provides 
the following specific contributions:

• A method for achieving adaptive particle sampling of parameterized domains without 
an explicit sizing field. By combining local information with an information passing 
scheme, a particle system is formulated th a t optimizes particle positions on model
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surfaces while performing most calculations in param eter space. Furthermore, a tech
nique for triangulating these points in param eter space avoids the costly computation 
th a t typically takes place in 3D (C hapter 3) [20].

• A multimaterial tetrahedral meshing algorithm with quality guarantees. Beginning 
with a high-quality background lattice, a calculated trade-off between stenciling and 
mesh warping produces bounded-quality output elements. The technique defines a 
consistent set of stencil outputs to represent m ultimaterial topologies. These elements 
conform to material interfaces and can be calculated efficiently enough for use in 
time-sensitive applications (C hapter 4) [18].

• A meshing pipeline fo r separating element shape and size constraints from surface con
forming constraints. Generalizing the new lattice-based algorithm to arbitrary input 
meshes breaks the meshing problem into two phases: first producing a background 
mesh guided by a sizing field, and secondly conforming th a t mesh to a set of input 
boundaries (C hapter 5).

• A new particle system formulation for creating background meshes that conform to a 
specified sizing field. This system is ideal for the new decoupled meshing pipeline. 
Moreover, the absence of surface constraints simplifies implementation and accelera
tion structures.

• A set of subdivision strategies fo r  improving the accuracy o f visualization for topolog
ically problematic multimaterial datasets.

1.2 Overview
Chapter 2 provides a short overview of meshing and its context within scientific comput

ing and visualization. T hat chapter details the m athem atical notation and concepts used 
throughout this dissertation. This includes some fundamental concepts driving modern 
meshing such as Delaunay triangulation, sizing fields, feature size, as well as metrics for 
evaluating mesh quality. The main approaches to mesh construction are also summarized 
to help provide context for the contributions of this dissertation.

Chapter 3 introduces a particle system formulation for generating high-quality te trahe
dral meshes of parameterized surface models. After describing the m athem atical model of 
the particles, the notion of an inferred sizing field is introduced, and the various components 
are discussed in detail. An algorithm for optimizing the formulation is presented with 
solutions for dealing with corner cases. Next, a method for efficiently triangulating the



6

particle samples in param eter space is described. The chapter concludes with a comparative 
analysis of the technique against several competing algorithms. This work is an adapted 
version of the paper titled “Particle systems for adaptive, isotropic meshing of CAD models”, 
published in Engineering with Computers [17].

Chapter 4 introduces a new guaranteed quality m ultimaterial tetrahedral meshing algo
rithm  called lattice cleaving. After providing related work to put this new technique into 
context, the concept of indicator functions is introduced. The chapter then describes how 
these indicator functions interact with a background lattice to define material interface 
points. Next, a set of tetrahedral stencils are defined th a t can capture the topology 
of these material interfaces. A set of geometry and topological rules are then provided 
for ensuring these output stencils are always high quality. Along with an algorithm for 
implementing this technique, a theoretical proof of quality bounds is also provided. The 
chapter concludes with some results of this technique on medical and simulation data. This 
work is an adapted version of the paper titled “Lattice Cleaving: A m ultimaterial tetrahedral 
meshing algorithm with guarantees”, published in IE E E ’s Transactions on Visualization and 
Com puter Graphics [19].

Chapter 5 generalizes the lattice cleaving algorithm to arbitrary unstructured input 
meshes. This generalization forms the basis of a new mesh generation pipeline. The impor
tance of an accurate sizing field based on local feature size is presented with an approach 
for generating such a field from input indicator functions. A new particle formulation is 
formulated th a t samples a volume based on a sizing field in the absence of material interfaces. 
The details of generalizing the lattice cleaving algorithm to make use of such an unstructured 
background mesh are explained, along with a modification to the proof in Chapter 4 tha t 
allows the output quality to remain bounded. The chapter concludes with examples of this 
new meshing pipeline on both structured and unstructured adaptive background meshes. 
This work is an adapted version of the paper titled “Adaptive and unstructured mesh 
cleaving”, published in the proceedings of the 19th International Meshing Roundtable [21].

Chapter 6 concludes the dissertation with a discussion of the work, including short
comings and future research. Finally, some early and published results of visualization 
extensions to the lattice cleaving algorithm are presented. This includes two techniques for 
resolving and reducing the impact of artifacts th a t can arise from the method detailed in 
Chapter 4.



CHAPTER 2
TECHNICAL BACKGROUND

This chapter provides a short introduction to the theoretical underpinnings of mesh 
generation. Mesh generation is such a large field of research [99] th a t anything beyond 
a cursory coverage is outside the scope of this dissertation. Therefore, this chapter is 
purposefully selective and covers only the topics th a t are most relevant to the dissertation. 
F irst, the mathem atical notation used throughout subsequent chapters is defined. Using 
this notation, the chapter then covers the key ideas of a mesh, triangulation, mesh quality, 
and feature size. Finally, the major categories of mesh generation algorithms are briefly 
discussed to give further context to the work in this dissertation.

2.1 Notation
The following m athem atical notation is used throughout this dissertation. Logical sets 

are denoted with upper-case calligraphic letters, (e.g., R 2 =  R x R). Matrices are denoted 
by upper-case, bold letters, while column vectors are denoted by lower-case, bold letters 
(e.g., A x  =  b). Subscripts indicate an index into a vector or set. For example, x* is the ith  
element of the x  vector. Some additional notation is defined where needed in later chapters.

2.2 Meshes
In 2D, a tessellation is a tiling or subdivision of a surface using one or more shapes 

such th a t there are no overlaps or gaps between them. In geometric modeling, a connected 
collection of polygons th a t tesselate a domain is collectively referred to as a polygonal mesh. 
The term  mesh is borrowed from the idea of a physical mesh, an interlaced or woven network 
of fibers, such as in a net or lattice. This dissertation focuses on simplicial meshes, composed 
only of simplicial elements. These are triangle meshes in 2D, and tetrahedral meshes in 3D. 
Formally, a triangle mesh M  embedded in 3D is composed of a set of vertices

V =  jv i , . . . ,v |y | j , Vi e  R 3 (2 .1 )



8

connected by a set of edges

E =  {e i,...,e \£\} , ei e  V x V (2 .2)
and triangle faces

F  =  { / i , ..., f\F | } , f i  e  V x V x V. (2.3)
A tetrahedral mesh is additionally defined by a set of connected tetrahedra

T  =  {t i , . . . , t \ r \} , ti e  V x V x V x V. (2.4)
Meshes capture both the geometry and topology of a surface or set of surfaces th a t they 

are meant to represent or approximate. The geometry of the mesh is determined by the 
location of its vertices. Elements tha t connect these vertices form piece-wise approximations 
to the surfaces of the input domain. A mesh is considered valid or well-formed if it properly 
tessellates the reference domain and all elements have positive volume. The presence of 
zero-volume or degenerate elements, or overlapping inverted elements, render a mesh invalid.

We are often interested in knowing whether the surfaces of a mesh are conforming. In 
a conforming mesh, boundary and material interfaces are represented more precisely, with 
triangle faces aligning with surface tangents and vertices directly sampling boundaries. 
Figure 2.1 shows a 2D comparison of nonconforming and conforming triangle meshes of a 
two-material input domain. The same principle applies to tetrahedral meshes in 3D.

F ig u re  2.1. A comparison of nonconforming and conforming m ultim aterial triangle meshes. 
a) A nonconforming two-material triangle mesh poorly represents the blue-red material 
interface. b) A conforming two-material triangle mesh accurately approximates the blue-red 
material interface [103].
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The topology of a mesh is related to what is known as the Euler-Poincare formula:

v -  e +  f  =  2(1 -  g) (2.5)
This formula describes the precise relationship between the number of vertices, v, edges, 

e, and faces, f , in a mesh of genus, g. The genus is the number of holes (or handles) in 
the geometry. The right-hand side of this equation is referred to as the Euler characteristic 
and is denoted by the variable %.

A sphere, for instance, has a genus of zero and an Euler characteristic of two. Similarly, 
a torus is genus one and has an Euler characteristic of zero. The Euler-Poincare formula is 
also generalizable to tetrahedral meshes, by extending the sequence of alternating sums to:

X =  v -  e +  f  -  c (2 .6)
where c is the number of cells (tetrahedra) in the mesh. Computing the Euler characteristic 
of a mesh is one method for checking th a t it is a valid tessellation of the input domain.

2.3 Mesh Quality
Mesh quality is a very broad notion referring to a m ultitude of properties desirable in a 

mesh. At one level, mesh quality can refer to how well any particular mesh approximates 
both the topology and geometry of the reference data  it is intended to represent. It can 
also refer to how well the mesh behaves numerically in various settings, such as when used 
in FEM  analysis. In general, it is impossible to determine the quality of a mesh without 
knowing its intended purpose. Still, there are a limited set of metrics th a t can be used to 
determine quality for any particular problem. The quality of a mesh can be decomposed 
into roughly three categories: element quality, representation accuracy, and structure.

Often when someone refers to the quality of a mesh, they are referring solely to its 
element quality. In triangular and tetrahedral meshes, the quality of an element in isolation 
is determined strictly by its shape. The shape of an element is often considered in the 
context of a 2nd-order elliptic PD E operator and those operators have associated metrics. 
For the purposes of this dissertation, we are only considering isotropic elliptic operators, 
weighted equally in all directions. Under these operators, regular elements are considered 
ideal, and quality metrics attem pt to characterize deviations from these regular triangles 
and tetrahedra. The case of anisotropic operators and anisotropic meshes is outside the 
scope of this dissertation.

There are multiple measures th a t are used to assess element shape quality, but the most 
commonly used and most easily understood quality measure for simplices is the minimum
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and maximum angle: the minimum and maximum planar angles of a triangle, and dihedral 
angles of a tetrahedron. As the minimum angle approaches 0 degrees or the maximum 
angle approaches 180 degrees, an element approaches degeneracy (having zero volume). 
These two extremes cause two types of numerical behavior th a t are widely known. Small 
planar angles lead to bad conditioning of the stiffness m atrix of the finite element method, 
whereas large planar angles lead to increased interpolation errors [97, 5]. For other mesh 
tasks, such as visualization, these issues are usually of less concern, with slight consideration 
given to interpolation error to avoid distracting lighting artifacts. Aside from minimum and 
maximum angles, many other metrics are used in the core of meshing algorithms.

The aspect ratio, ar, of a triangle or tetrahedron is the ratio of the length of the shortest 
altitude, a, to the length of the longest edge, l. T hat is, r _  a /l  . This ratio approaches zero 
as an element approaches becoming degenerate, and is maximized by regular elements. In 
later chapters, we will dem onstrate a direct relationship between triangle aspect ratio and 
planar angles as well as between tetrahedral aspect ratio and dihedral angles.

Two other popular and convenient element quality measures are the radii ratio, or 
the ratio of circumcircle and incircle radii (p =  R /r ) ,  and the edge ratio, or ratio of the 
length of the longest edge over the length of the shortest edge ( t  =  l /s ) . These measures 
have two properties th a t make them  desirable for a quality measure. F irst, the measures 
are nondimensional, and therefore homogeneous across types. Second, they achieve their 
optimal values at their minimum value of 1 [84].

Yet another two related measures are the edge-to-circumradius ratio, and the edge-to- 
inradius ratio. These measures are less intuitive, but are tied to the strategies of some mesh 
improvement algorithms such as Delaunay refinement, which is reviewed later in this section. 
The downside to these measures is they do not classify slivers (a type of flat tetrahedron) 
as poor quality.

Finally, there exists a set of m atrix norms th a t can be used to describe the quality of 
an element. These norms rely on the edge-matrix of an element. In 2D, this m atrix has the 
following form:

T _ xo x 2 x 0 (2 7)
yi -  yo y2 -  yo

Knupp [60] proposed a series of measures based on the Frobenius norm of the m atrix T . 
Later, Baker [6] generalized these measures to any unitarily invariant m atrix norm. While 
these norms are in some ways more meaningful representations of element quality, they are 
not often used in the meshing literature.
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In addition to the quantitive measures of element quality, qualitative descriptions exist 
for poorly shaped elements. The two types of skinny triangles are distinguished by the 
presence of a large obtuse angle (blade) or the lack of it (dagger) (Figure 2.2). Bern et 
al. [9] and Cheng et al. [24] created taxonomies of badly shaped tetrahedra. The names 
for these tetrahedra are also given based on the arrangem ent of vertices and are generally 
quite descriptive. These classifications can be split into groups: tetrahedra with vertices 
th a t are nearly collinear (spires, spears, spindles, spikes, and splinters (Figure 2.3(a-e))) and 
tetrahedra w ith vertices th a t are nearly coplanar (wedges, spades, caps, slivers) (Figure 2.3(f- 
i)). Some of these elements contribute to error in worse ways than  others. The sliver, in 
particular, is notoriously difficult to eliminate from many otherwise high-quality meshing 
algorithms.

2.3.1 Feature Size
The quality of a mesh is also based on its topology and geometric fidelity. In terms of 

topology, the mesh should be homeomorphic to its reference geometry. However, in practice, 
geometries with high genus may be computational expensive to represent (requiring large 
meshes to capture small features) and topological simplification (hole closing) is common. In 
terms of geometric fidelity, triangle and tetrahedral meshes are piecewise linear. For curved 
surfaces, this means representing surfaces and boundaries will always be an approximation. 
Therefore, a standard requirement for a quality mesh is th a t the size of elements be small 
enough to approximate curvatures adequately, w ithout needlessly increasing the element 
count of the mesh. This is typically achieved by keeping the size of boundary elements 
proportional to what is known as the feature size, while smoothly grading element size on 
the interior of domains.

For any point on a surface, the local feature size is defined as the distance to the medial 
axis of th a t shape. The medial axis is the set of points th a t have equal distance to two or 
more points of the domain [82]. Figure 2.4(a) illustrates a medial axis (sometimes called a

F ig u re  2.2. Undesirable triangles: (a) A dagger contains one highly acute angle and two 
near regular angles. (b) A blade contains one large obtuse angle and two highly acute 
angles.
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(a) spire (c) spindle (d) spike (e) splinter

(f) wedge (g) spade

F ig u re  2.3. Types of undesirable tetrahedra: (a-e) vertices are nearly collinear. 
(f-i) vertices are nearly coplanar.

skeleton) for a smooth shape. Figure 2.4(b) shows a medial axis for a surface with disconti
nuities. Note th a t the medial axis extends to and touches discontinuities on the boundary of 
the domain. This implies th a t the local feature size goes to zero at discontinuities. Despite 
its usefulness for approximating feature size, the robust com putation of the medial axis 
remains a challenging research problem.

The local feature size encapsulates size requirements to both approximate curvature 
in a consistent way, as well as size needed to accurately capture topology. Thin features 
have a smaller local feature size, as do regions with a small radius of curvature. Because 
discontinuities have a feature-size of zero, some form of heuristic is typically used to restrict 
element size and ensure th a t the output mesh does not contain an intractable number of 
elements. Lastly, the structure of a mesh, locally and globally, is also often considered 
integral to mesh quality. Vertices with a high valence, sometimes called extraordinary 
points, are undesirable.
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(b)

F ig u re  2.4. Medial axis illustration for a smooth shape (a) and a shape with sharp 
boundaries (b). The medial axis touches the boundary at discontinuities, causing the local 
feature size to go to zero. The medial axis is also defined on the exterior of these shapes, 
but is omitted for simplicity.

2.4 Meshing Approaches
There are four major categories of tetrahedral meshing techniques: Delaunay-based 

approaches [28, 33, 8 6 , 96], variational optimization methods [1, 47, 63, 75, 108], lattice- 
based approaches [62, 92, 116], and advancing-front methods [6 8 , 72, 57, 67, 87]. Shewchuk 
provides a thorough survey of the unstructured meshing approaches [99]. Aside from the 
lattice-based approaches, the most common strategy for generating surface conforming 
meshes is to capture surfaces first and worry about volume filling tetrahedra afterward. 
Some of the techniques go so far as obtaining a fully hierarchical sampling 0 to k-dimensional 
features [14, 25, 76, 106].

2.4.1 D elaunay
One of the foundational ideas in mesh generation is a special form of triangulation 

known as a Delaunay triangulation. For any set of points in general position, the Delaunay 
triangulation is a triangulation where no point is inside the circumcircle of any triangle. 
T hat is, the circumcircle of every triangle is empty. This special property is called the 
Delaunay property. The Delaunay triangulation of a set of points is also the dual graph of 
the voronoi diagram of those points (Figure 2.5). This powerful relationship enabled some 
of the first provable algorithms for Delaunay mesh generation [13, 27, 26].

In 2D, Delaunay triangulations also have the unique property th a t they maximize the 
minimum angle of all triangles in the triangulation. Unfortunately, this highly desirable tra it 
does not extend into 3D. A Delaunay tetrahedralization may contain arbitrarily small angles
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(a)

F ig u re  2.5. Illustration of the relationship between Delaunay triangulations and Voronoi 
diagrams: a) A Delaunay triangulation b) The dual Voronoi diagram c) The Delaunay 
triangulation and Voronoi diagram superimposed on one another. Adapted from Okabe et 
al. [79].

th a t a non-Delaunay tetrahedralization would not. Another im portant related concept is 
the constrained Delaunay triangulation. This variation allows an input set of triangles to 
be fixed, while the rest of the input point set is Delaunay triangulated.

A large amount of research has been focused around the idea of Delaunay refine
ment [33, 34, 86]. Delaunay refinement methods iteratively insert new points into a Delaunay 
triangulation until some condition is met. W ith each insertion, the mesh is modified such 
th a t the Delaunay property holds. Figure 2.6 illustrates a single step of an insertion. A 
candidate triangle of low quality is selected. A vertex is then inserted into the circumscribing 
ball of th a t triangle and the mesh retriangulated. This process is repeated until some 
term ination condition has been met, such as a minimum angle rising above a threshold or 
the largest element decreasing below a threshold.

Point insertion algorithms are locally greedy by nature, and tend to find suboptimal 
vertex configurations. Protecting features on boundaries is especially difficult under these 
techniques, and requires simplifying assumptions to work in practice [39, 83]. Delau
nay insertion has been adapted for use on segmented medical data  [83, 39, 14] and is 
fairly reliable. Provable guarantees have been given when conforming piecewise linear [96], 
smooth [13, 27], and piece-wise smooth boundaries [14, 25]. Unfortunately, because they 
rely on the circumscribing ball property, these methods can still break down in 3D and 
produce degenerate sliver elements.

2.4.2 Variational O ptim ization
The poor local configurations th a t result from Delaunay insertion techniques provided 

incentive for variational methods to be developed. In these formulations, vertex positions
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F ig u re  2.6. An example of Delaunay insertion. A poor-quality candidate triangle is 
chosen and shown red. Inserting a new vertex within the triangle’s circumscribing ball 
redefines the Delaunay triangulation and destroys the poor-quality triangle. Adapted from 
Shewchuk [94].

are optimized globally, by optimizing some energy function [76, 106, 113] computed from 
the vertex positions. While generally more expensive, these formulations tend to produce 
superior samplings compared to Delaunay refinement. However, they are usually only a 
mechanism for sampling, and still depend on a triangulation method, which often ends 
up being Delaunay. Some work has directly blended Delaunay refinement with vertex 
relaxation to achieve better distributions of points [1, 105, 106, 109, 115]. For instance, 
centroidal voronoi tessellations are created by iteratively updating generating points until 
an optimal Delaunay triangulation is achieved [22, 43]. Others have instead used particle 
systems, which reflect a more physically based approach [76, 113]. Figure 2.7 illustrates 
four snapshots of a particle system optimizing over a square domain. The initial vertices 
are seeded randomly, but soon optimize to produce a high-quality triangle mesh. Despite 
the generally superior mesh quality of variational meshing, these costly methods still cannot 
guarantee th a t poor-quality elements do not appear.

2.4.3 L attice-based
Lattice-based methods take a more combinatoric approach to the problem of mesh 

construction. R ather than  attem pting to capture surfaces and construct a volume bounded 
by these surfaces, lattice-based techniques begin with a volumetric structure of some kind, 
and warp or stencil it to insert elements and match boundary conditions. Stencils vary in
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F ig u re  2.7. A particle system uses repulsive forces to distribute samples over a square 
domain. Delaunay triangulation is used to construct a mesh from these samples. R ather 
than  keeping the location of vertices as new points are added, variational methods iteratively 
update the position of vertices until the quality of the mesh is above some threshold.

topology to match the configuration with which they intersect a background lattice cell. 
This strategy was popularized by the well known marching cubes algorithm [69]. Figure 2.8 
shows the 15 basic topologies used in this technique. The success and failure (arbitrarily 
bad elements) of marching cubes led to further development in lattice-based methods, with 
a variety of strategies. For instance, Zhang et al. [120] use a pillowing strategy on octree 
cells, while Liu et al. [65] use a two-step process to mesh a background grid.

Regular structures can often be adapted to provide a natural adaptivity by using spatial 
subdivision structures, such as octrees [116, 92]. The body-centered cubic (BCC) lattice is 
one of the best regular structures for tetrahedral meshes, because it is conveniently patterned 
with identical high-quality tetrahedra. It has been shown th a t this lattice is particularly
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F ig u re  2.8. The 15 basic topologies of the marching cubes algorithm. Each topology is 
identified and a lookup table is used to obtain the precomputed tessellations needed for 
each case. Adapted from Lorensen and Cline [69].

good at approximating trivariate functions [54]. It has been the basis of several high-quality 
lattice algorithms. The isosurface stuffing algorithm [62] utilizes a careful set of warping 
and snapping rules to both stencil and simplify the BCC lattice. The authors used integer 
arithm etic to place tight numerical bounds on the worst quality outputs. Unfortunately, 
this technique only works for single smooth boundaries, or isosurfaces. Approaches for 
achieving multiple surfaces often employ successive subdivision [65, 120, 77]. While these 
techniques tend to give good results, they offer no formal guarantees on quality. This is one 
of the primary motivations behind the work in this thesis.

2.4.4 A dvancing Front
R ather than  decomposing an input domain into a regular structure or trying to solve 

for a mesh globally, advancing front techniques [6 8 , 72, 57, 67, 87] operate via a greedy 
strategy. Beginning with an initial set of points or elements, a mesh wave-front propagates 
over the input domain. To advance the front, new candidate vertices are picked by some 
ranking function and connected to the existing mesh boundary. W hen the front is empty, 
the mesh is completed. Figure 2.9 illustrates an advancing front mesh being generated over 
a small 2D surface. The selection of new candidate vertices is one of the most im portant 
operations of these methods. The choice of location should not only create a new optimally 
shaped element along the front, but also do it in a way th a t does not limit the choices of 
neighbor elements in the front.
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F ig u re  2.9. An illustration of an advancing front meshing technique. At each iteration, a 
wave-front of already triangulated elements is the starting point for the next set of adjacent 
elements. These new elements are added in a greedy fashion, propagating the mesh wave 
over the input geometry. Adapted from Shewchuk [99].

Advancing front meshes are well suited as input to computational methods th a t require 
boundary layers, as the fronts naturally adm it aligned layers of elements th a t can be sized 
based on the distance to geometry surfaces. These methods also often assume th a t the 
solution gradient is largest at the boundary. Some advancing front techniques make use of 
a guidance field to dictate element size along the wave front [8 8 , 89, 87].

These techniques are typically efficient along the wavefront, as there is no need refine 
or remesh regions over which the wavefront has already passed. This also makes them  
especially amenable to streaming and out-of-core implementations. However, problems 
arise when wavefronts collide. Special rules must be applied to resolve their intersections 
and inconsistencies. This can lead to characteristic meshes with high-quality elements 
throughout most of the domain, but with seams of low-quality stitched elements. The more 
complex an input domain or geometry, the more wave-fronts are likely to interact with one 
another to create these seams.



CHAPTER 3
ADAPTIVE PARTICLE SYSTEMS

This chapter presents a particle-based approach for generating adaptive triangular sur
face and tetrahedral volume meshes from boundary representation (B-Rep) CAD models. 
In such models, input shapes are treated as a collection of smooth, parametric surface 
patches th a t can meet nonsmoothly at their boundaries. The approach uses a hierarchical 
sampling scheme th a t places particles on features in order of increasing dimensionality. 
These particles reach a good distribution by minimizing an energy computed in 3D world 
space, with movements occurring in the param etric space of each surface patch.

One of the contributions of the system described in this chapter is algorithmic control for 
both uniform and adaptive sampling, without requiring a precom putation of global feature 
size needed by similar particle-based approaches [76]. R ather than  using a precomputed 
measure of feature size, the system automatically adapts to both curvature as well as 
a notion of topological separation. It also enforces a measure of smoothness on these 
constraints to construct a sizing field th a t acts as a proxy to piecewise-smooth feature 
size. We evaluate the technique with comparisons against other popular triangular meshing 
techniques for this domain [25, 51].

3.1 Background
While the history of tetrahedral mesh generation began much earlier, a shift in the em

phasis of techniques has become popular within the past decade. In particular, variational 
approaches, i.e., based on energy minimization, have become one of the most im portant tools 
for mesh generation. Alliez et al. [1] describe a variational technique for mesh generation 
th a t couples Delaunay refinement w ith a relaxation process for vertex locations. This 
algorithm and later variants [105, 106, 109, 115] base their energy minimization on a sizing 
field for particle density coupled with an energy minimization grounded in the notion of 
a centroidal Voronoi diagram [43] and its dual, the optimal Delaunay triangulation [22]. 
Consequently, these meshing algorithms can generate nearly isotropic elements in 2D and
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3D, as a byproduct of the centroidal Voronoi condition, as well as leveraging many of the 
benefits of Delaunay refinement techniques.

However, one deficiency is the need for knowledge of an element sizing field a priori. 
Computing a sizing field is considered expensive. Often, approaches for computing sizing 
fields are based on the medial axis [41] or quadratures of mesh elements [4], and thus can 
require O (n2) computations of dense point clouds to build accurate results. One recent 
solution of Tournois et al. [106] solves this problem by alternating a variational phase with 
a refinement phase. After each level of refinement, the sizing function is updated before 
switching back to variational phase. This interleaving allows the available information to 
drive the com putation of a sizing field instead of necessitating a preprocessed computation. 
We aim to improve upon this theme by allowing an energy minimization based on particle 
systems to autom atically improve its approximation of the sizing field.

Many techniques simply require an input oracle th a t evaluates a sizing field over the 
domain [13, 26, 76, 89, 106]. An early exception is the approach of Dey et al. [40] tha t 
uses Delaunay refinement for meshing smooth domains. Using the dual Voronoi diagram 
and the concept of poles [2], this algorithm automatically refines based on a simultaneously 
computed approximation of the local feature size (distance to the medial axis) of the shape 
whose accuracy increases as mesh density increases.

The local feature size of smooth shapes is a natural choice for guiding the adaptivity 
of element size; however, most CAD models are inherently nonsmooth. A notion of local 
feature size for piecewise-smooth shapes has been defined [26] by coupling local feature 
size for the smooth regions with a topological condition called gap size [29]. Computing 
this measure robustly is a significant challenge. The approach in this chapter aims to 
automatically infer a global sizing field of equivalent expressivity to [26] while using only 
locally available information as done by [40]. Such a technique must force a compromise. 
Here, it is to construct a proxy for feature size th a t is Lipschitz continuous by coupling 
curvature adaptivity with a topological separation condition.

A second thrust of recent algorithms is to provide provably algorithms for meshing 
piecewise-smooth shapes. This general class describes shapes with a topological description 
in the form of a piecewise-smooth complex of fc-cells th a t are compact subsets of fc-manifolds. 
We use the same definition as Cheng et al. [26]. In summary, surface patches (2-cells) can 
meet nonsmoothly at curves (1-cells) bounded by points (0-cells). Two fc-cells are adjacent 
if one is on the boundary of the other.

Similar to the B-Rep definition, each fc-cell has an associated geometric description.
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Recent Delaunay-based approaches [26, 85] for meshing this domain have been able to pro
vide topological correctness guarantees using either weighted Delaunay triangulations [26] 
or bounding the angle deviations between smooth patches [85]. A missing piece to the 
implementations of these algorithms is the ability to adapt to a sizing field, primarily because 
there is no consensus on what is the correct sizing field for nonsmooth shapes and how best 
to compute it. However, they do show th a t a careful sampling of points on sharp creases can 
preserve the features of a shape. The approach in this chapter is a natural extension of this 
work, but instead of requiring an accurate sizing field to guarantee topological correctness, 
the scheme will build watertight meshes provided a few easily satisfied conditions are met 
by the particle system (described in Section 3.4).

At the core of the meshing scheme is a paradigm for sampling shapes using particles. 
The idea of using repulsive point clouds to (re-)sample a mesh was first introduced by Turk 
in the context of polygonal remeshing [108]. The first full particle system for meshing was 
later developed by W itkin and Heckbert [112]. Their technique was primarily used as a 
mechanism to sample and control implicit surfaces, which was notoriously difficult under 
other schemes at the time. The key idea behind their work was the introduction of a 
Gaussian energy function to control the interaction between particles. Improvements to 
their scheme were made by H art et al. [53]. Yamakawa and Shimada proposed a meshing 
scheme similar to particles by using packings of ellipsoidal bubbles [113].

Meyer et al. [74, 76, 75] formulated a more robust and stable solution for evolving particle 
systems. The new energy kernel was a modified cotangent function, with finite support. By 
falling off to a finite range, the resulting particle systems were more stable and more quickly 
lead to ideal packings. Additionally, this kernel was nearly scale invariant. Meyer et al. [76] 
later introduced a hierarchical scheme for particle-based sampling m ultimaterial surfaces. 
For such datasets, the boundaries between the different materials can be represented as a 
piecewise-smooth complex. While w ithout the formal guarantees of [26], they use a similar 
strategy of hierarchically sampling topologically features in increasing dimension to build 
consistent, w atertight meshes.

3.2 Formulation
In this section, we provide the m athem atical formulation behind the proposed particle 

system. We define the total energy in the system as the sum of each energy E i calculated 
with respect to particle pi . Each particle pi has a corresponding ai value representing the 
radius of its ball of influence B i centered at pi . It is the varying of ai th a t provides adaptivity.
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Each energy E i is the sum of the energies between particle pi and all neighboring particles 
P j. Particles pi and pj are considered neighbors if either pj falls within B i or if pi falls 
within B j . We use a variation of the modified cotangent for the energy (3.1) between any 
two particles, E ij . By varying oi , the potential function must be scaled to account for this 
new, lopsided interaction between particles. Thus, we scale both the modified cotangent 
function and its derivative (3.2) by oi .

Eij =  c o t ( M n ) +  M n  -  n  (3 .1 )oij 2 oij 2 2

dEij n
Tij ~  2

1 • -21 — sin - 2  ( \rij \ nij 1 _
O ij 2

(3.2)

In this form, \rij \ is the distance between particles pi and pj and the value Oj is taken to 
be the max of Oi and Oj . The hexagonal packings th a t result from this and related particle 
systems requires the particles to reach a critical density on the surface being sampled. For 
any surface and any set of O values, there will always be an ideal number of particles, 
but calculating this number is not tractable. Like previous systems, we use splitting and 
deleting to control energy densities. Particles follow the rules:

E i =  E i (1  +  e) (3.3)
if E* < 0.35Eideal Split (3.4)
if E* > 1.75Eideal Delete (3.5)

where the coefficients 0.35 and 1.75 are used to bias the rate of particle splitting and deletion. 
In practice, these values provide a good balance between stocastic behavior and stability, 
helping to prevent the system from getting stuck in local minima.

Using a hexagonal packing as the notion of an ideal distribution, the ideal energy E ideal 
for a particle pi is six times the energy felt between pi and pj a t the characteristic distance of 
approximately 0.58 [74]. Given th a t a two-ring particle pj is at distance 1.0, Equation (3.6) 
describes this relationship. Additionally, we scale this value by Oi to match the scaling of 
actual energies.

Eidea =  Oi6E(8), with M  =  p  =  — «  0.58 (3.6)oij cos(n /6)
Because one cannot predict what an ideal neighborhood will look like in the adaptive 

case, the ideal energy is less precise than  in the constant case. This leads to more frequent 
splits and deletes for higher local variation, but ultim ately provides much better packings 
than  if the original energy was not scaled proportional to O. An alternative to this approach
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would be to use a notion of scaled distance d' =  ^ , and forego the oi scaling. Then, to
still achieve the high-quality packings, a different scheme for deletion of poorly configured 
particles would need to be devised.

To allow the system to adapt to splits and deletes, E i is biased by a small random 
number, 0 <  e <  1, in Equation (3.3). This makes the discrete energy jumps have less of 
an impact on the speed at which the system stabilizes, by allowing time for the system to 
adapt between jumps. Additionally, this can help resolve any regions which are stuck in 
bad configurations. As the solution to the system converges, this bias can be adjusted to 
stop splits and deletes all together, ensuring termination.

To find the ideal packing of particles, we use a Newton-Raphson scheme, updating 
particle information after each movement (Equations (3.7), (3.8), and (3.9)). Each particle 
maintains its position in both world space (xxt yz) and param eter space ( x fv). Particles move 
with a velocity v i generated by interparticle forces between neighbors. Though energies 
between particles are computed in 3D world space, particles move strictly in parametric 
space (3.9), avoiding the error-prone projection onto the surface th a t results from 3D 
movements. Taking these steps in param eter space only requires a change of coordinates, 
using the inverse Jacobian, J -1 .

As mentioned earlier, we use a hierarchical sampling scheme, which works well for 
param etric models. F irst, we place particles on the 0-cells, the intersection of edges on 
the models. Next, we place particles on the 1-cells and allow them  to be optimized. Finally,

each phase, the new optimization uses the fixed positions from the previous phase, ensuring 
consistency across surface patch boundaries.

We recognize th a t there are several factors th a t often determine good sizing fields: local 
curvature, some notion of feature size, and a desired level of adaptivity. Additionally, users 
may have desires for mesh resolution limits, both minimum and maximum triangle or edge 
size. O ther domain-specific factors also often come into play. In this section, we illustrate 
the constraints we would like to place on a sizing field. We show th a t these constraints

(3.7)

(3.8)
(3.9)

we place particles on the surface patch interiors and the final optimization proceeds. At

3.2.1 Inferred Sizing Field
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can be inferred in a reliable way and used to form a smooth sizing field during energy 
minimization.

We aim for meshes th a t provide arbitrary levels of geometric accuracy and adaptivity, 
using high-quality isotropic elements. In order to provide high-quality elements, particle 
systems require enough spatial freedom to be able to move to lower energy states. Thus, the 
distance between nearby k-cells imposes its own sizing constraint on the particles. Thus, 
in order to determine the sizing field value ai at a particular point pi on a model, we 
must consider the constraints placed on this location by curvature, topological distance, 
and desired level of adaptive continuity. We refer to these constraints as aK, aT, and aL , 
respectively. The actual sizing field value at a particle location is resolved by finding the ai 
th a t respects all constraints. This can be expressed compactly as:

ai =  m a x |a min, m in |a max,a„,aT ,a c }} (3.10)

3.2.1.1 Curvature
Because the curvature at a point is defined as the inverse of the radius of the osculating 

circle at th a t point, a reasonable default sizing field value is the radius of th a t circle itself 
(Figure 3.1). Thus, we use aK =  K, which can be easily computable for param etric surfaces, 
or queried by middleware packages.

To increase or decrease the field relative to this radius, a scaling factor sK is exposed 
as a user parameter. Given a unit system, this value can be used to provide constraints 
to respect geometry to arbitrary levels of accuracy. Finally, Kmin and Kmax values are user 
parameters used to handle straight edges and arbitrarily high curvature, respectively.

F ig u re  3.1. Default curvature constraint on sizing field.
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These form the to tal bounds for the sizing field as:

^min =  1/  (skKmax) I3.11)
^max =  1/ (skKmin) (3.12)

For 2-cells, we use the maximum absolute value principal curvature, because this size 
will dominate an isotropic sampling. For 1 -cells, using the curvature of the edge itself is 
insufficient. The maximum principal curvature on both intersecting surfaces must also be 
considered, because the curve may either be a trim  or a boundary curve, and there is no 
way of knowing which curvature will dominate. Last, 0-cells use the maximum curvature of 
all 1 -cells term inating at its point.

Figure 3.2 illustrates the intuitive effect of modifying the curvature scaling param eter 
sK to  achieve a better geometric fit. For practical purposes, a good scaling param eter will 
usually be based on the unit of measurement of the model.

3.2 .1.2 Gap Size
If available, using the distance to the model’s medial axis would provide a sizing field 

constraint th a t generates good samplings in a particle system. However, computing the 
medial axis on param etric models is a difficult task and still an active area of research. 
Instead, we use the notion of gap size, introduced by Chang and Poon [29] in the context 
of piecewise linear mesh generation. For a point p on a k -cell c, its gap size is the 
distance to the nearest nonadjacent (i.e., not on the boundary of c) cell. This measure 
also preserves topological features inherent to the model’s decomposition into param etric 
patches. Depending on the model and the way it was created, this measure may sometimes

F ig u re  3.2. Effects of changing curvature scaling param eter sK
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be equivalent to definitions of local feature size. Figure 3.3 shows an example where the 
two are equivalent by a factor of one half.

We make the assumption tha t the topological representation provided as input for the 
CAD model should be respected in an output mesh. A byproduct of this approach is tha t 
some models have adaptivity in regions th a t are of little benefit to representing the geometry 
of the model. One could remove adaptivity in regions th a t do not actually need it by taking 
a pass over the model and detecting topological junctions th a t are G 1 continuous, and 
flagging them  to be ignored. The remaining geometrically discontinuous junctions could 
then be preserved using the sampling scheme.

Gap size is approximated directly from interparticle relationships. Particles store which 
k-cell they lie on, and each k-cell stores which particles lie on it. We define the topological 
constraint aT to be the shortest distance from particle pi to another particle pj lying on a 
nonadjacent feature, th a t is, a 0-cell particle interacting with another 0-cell particle, a 1 -cell 
particle interacting with another 1 -cell particle, or a 0-cell particle interacting with a 1 -cell 
particle th a t does not term inate at th a t 0-cell. This notion can be extended to 2-cells as well. 
We further provide a scaling factor sT as a user param eter to allow for higher densities of 
particles within these regions. This proves useful when sampling highly elongated surfaces, 
with parallel k -cells. Scaling the distance aT allows more rows of particles, allowing for 
better energy minimization, and ultim ately better triangulations.

Figure 3.4 illustrates how changing the topological scaling param eter sT effects the

F ig u re  3.3. Gap size constraint on sizing field. In this case, the gap size is equivalent to 
the distance to the medial axis by a factor of two.
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F ig u re  3.4. Effects of changing topological scaling param eter sT

distribution of particles. As the param eter decreases, more particles can fit in the same 
space enclosed by neighboring 1-cells. Depending on the minimum allowable curvature, and 
scaling, this param eter may or may not come into play.

3.2 .1 .3  L ipschitz C ontinuity
In order to provide finer control over the adaptivity of the particle samples, the system 

adheres to a Lipschitz constraint ol th a t enforces the Lipschitz continuity L on the sizing 
field. The Lipschitz condition can be expressed in term s of the formulation as:

|x  -  x j | <  L \oi -  Oj | (3.13)

The ol induced by this constraint is simply the minimum allowable value th a t satisfies this 
condition:

OL = m in {\r%j \L  +  oj } (3.14)
Respecting this Lipschitz continuity provides more gradual adaptivity between areas of 

high and low particle densities. Lower values of L produce samplings th a t result in more 
isotropic triangles, while large values provide increased levels of adaptivity, at the cost of 
isotropy. Figure 3.5 illustrates the effects of changing the Lipschitz parameter, L, for a 
conic surface patch. The param eter is set values ranging from 0.0 (a) to 0.3 (d). W hen L
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(c) (d)

F ig u re  3.5. Effects of changing Lipschitz param eter L =  0.0 to L =  0.3, (a) to (d), 
respectively.

goes to  zero, a uniform sizing field is produced, fitting the smallest constraint on the model. 
In this case, the sharp tip  of the cone is the limiting feature. We found a default value of 
0.3 provides a good trade-off between triangle quality and adaptivity.

It is worth noting th a t the Lipschitz continuity is not satisfiable for arbitrary surfaces. 
Because we place samples hierarchically, it is possible the sizing field may need to adapt 
more quickly on the interior of the surface than it does on the edges. In these situations, 
the Lipschitz constraint needs to be relaxed to allow the sizing field to adjust.
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3.3 Algorithm
The implementation takes as input a param etric model and outputs a triangular mesh. 

We use the middleware package CAPRI [52] to provide us direct geometry access to shapes 
generated by CAD software. It also gives access to the topology of the model, including 
access to the 0-cells, 1-cells, and 2-cells, and their boundary adjacencies. In this section, 
we elaborate only on the parts of the update algorithm th a t are independent from the 
middleware.

3.3.1 P article  O ptim ization
The sampling algorithm consists of three phases: Phase 1 optimizes 0-cell and 1-cell 

samples based strictly on the curvature and the Lipschitz constraints, aK and a L. Phase 2 
continues the 0-cell/1-cell optimization, but includes the topological constraint aT. Finally, 
Phase 3 optimizes samples with surface patches. A phase is considered complete when the 
change from one iteration to the next drops below some threshold.

We initialize Phase 1 by placing one particle on each 0-cell, and one particle on the 
midpoint of each 1-cell. Along the 1-cells, splitting happens to increase particle density as 
the sizing field is inferred. Similarly, if user param eters make any 1-cell particle unnecessary, 
it will be deleted. Phase 3 is initialized by placing fc random samples in the param eter 
domain of the surface. Each iteration of the optimization, a particle updates both its 
position as well as its sizing field value ai . A scaling factor \ i is used to increase stability. 
Pseudocode for the updates of particle positions is shown in Algorithm 1.

A lg o r ith m  1 Position U pdate
1 fo r a ll particles do
2 Compute energies E i , dEi (Equations 3.1,3.2)
3 Compute velocity vXyz (Equation 3.7)
4 Transform to param eter space, obtain v* (Equation 3.8)
5 Compute scaling v*new =  Aiv*
6 Compute new particle position u ^ w (Equation 3.9)
7 Transform to world space xnew
8 Compute the new energy value, E few
9 if E few > =  Ei th e n

10 if  Ai <=  Amin th e n
11 Skip to next particle on list
12 e n d  if
13 Decrease Ai by a factor of 10 and go back to Step 3.
14 e n d  if
15 e n d  fo r
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3.3.2 Corner Cases
The motivation for splitting the optimization of 0-cells and 1-cells into two phases is 

illustrated in Figure 3.6. W hen it comes to enforcing the topological condition, just as 
feature size goes to zero in discontinuous corners, so does the notion of topological feature 
size. Left unchecked, particles in corners would continually shrink their ot , split, and move 
in closer to the corner.

To curtail this response, we detect and label corners in the first phase. Figure 3.6(a) 
shows what one corner might look like after Phase 1 has completed. Notice only the 
curvature and Lipschitz constraints have been met. The oi value of the particle on the 
0-cell is saved as the size of the 0-cell's corner ball. This is similar to the protecting ball 
idea in Delaunay meshing [29]. Figure 3.6(b) shows the same corner once Phase 2 has 
completed. The topological constraint is satisfied for all particles th a t lie outside of the 
corner ball. The particles inside adapt smoothly and guarantee the sampling terminates. 
An alternative approach would be to fix the position of particles laying on this corner ball 
boundary. The downside to such an approach is th a t it could easily violate the Lipschitz 
constraint. W ith corner cases considered as part of the Oi constraint, the pseudocode for 
the sigma update is shown in Algorithm 2 .

3.4 Parameter Space Triangulation
The proposed formulation builds a distribution of samples in 3D. To construct a mesh 

from these samples, one alternative would be to directly build a 3D Delaunay triangula
tion of the point cloud. Through pruning and filtration, one could construct the surface 
triangulation and interior tetrahedralization. However, because of the parametric nature 
of the system, we can instead construct triangulations for each 2-cell and its boundary

F ig u re  3.6. Corners are sampled using a two-phase strategy. (a) Phase 1, respecting 
only curvature and Lipschitz constraints. (b) Phase 2, additionally respecting topology 
constraints outside the corner ball.
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A lgorith m  2 Sigma Update
1 for all particles do
2 if  pi £  1 -cell then
3 for all pj £ N  do
4 if edge(pi) =  edge(pj) and not in corner then
5 Set topology constraint aT =  min {aT, Ixi — Xj |}
6 end if
7 Set Lipschitz constraint aL =  min {aL , |rij | L +  aj }
8 end for
9 end if

10 Satisfy Eq. 3.10: ai =  m ax{amin, m in{amax,s KaK,s TaT,a c }}
11 end for

in the parameter space. This dimensional reduction gains us speed in terms of building 

the triangulation. Still, particles distributed well in 3D may be in poor configurations in 

their corresponding parameter space; we account for this using local modifications after 

constructing an initial triangulation.

Because the parameter space set of samples may be highly distorted, we first perform 

an affine scaling to regularize the 2-cell as much as possible. Figure 3.7 shows an example 

of one such scaling, transforming the parameter space 3.7(a) into parameter space 3.7(b). 

We obtain this transform by solving the least squares solution to the transform that best 

preserves Euclidean distances. This constraint can be expressed as:

A  |ui -  uj | =  Inj| (3.15)

This constraint urges pairwise distances between particles' 2D parametric coordinates 

to be as similar as possible to pairwise distances in 3D euclidean space. While we found 

this transform to be sufficient for the models we tested, clearly more sophisticated trans

formations could be utilized to remove distortion more uniformly in parameter space. It is 

conceivable that a sufficiently distorted surface patch might not benefit from a transforma

tion as simple as an affine scaling. Given that such a system already requires the ability 

to query the surface patch, an optimal transformation would probably need to take surface 

information into account as much as the world space position of particle samples.

Next, for each 2-cell, we construct the 2D Delaunay triangulation of its particle samples 

as well as the samples on its boundary curves using Triangle [95]. This triangulation has 

two problems which we address. (1) This triangulation includes extra triangles (within the 

convex hull) that may in fact be trimmed portions of the parameter space. (2) The quality 

of the triangles lifted back in 3D may be poor.
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(a) (b)

F igure 3.7. Example parameter space before (a) and after (b) affine scaling.

The hierarchical sampling scheme is devised in part to correct for the first concern. The 

samples of the 1-cells create a dense sample of each curve in both spaces. Moreover, the 

particle energies on these samples repel particles within neighboring 2 -cells away. As a 

result, these samples act in a role similar to a weighted sample used in recent Delaunay 

refinement schemes [26]. If each curve is sampled densely enough such that in the 2D 

triangulation each pair of adjacent 1-cell particles has a Delaunay edge, then we can recover 

the 1-cell. While an explicit proof is out of the scope of this work, we note that the 

experiments indicate we can handle arbitrarily sharp edges, without the need for a weighted 

Delaunay. If we were using a full 3D Delaunay triangulation without weights, we would 

suffer from angle limitations, as noted by [85].

Having the 1-cells recovered as a sequence of edges in the 2D Delaunay triangulation is 

sufficient to prune away triangles that are exterior to trims. Once we have pruned these 

triangles, the remaining triangles are lifted to form the surface triangles of the 2-cell in 3D. 

However, because of the distortion of the 2 -cells parameterization, they may be of poor 

surface quality. A recent result of Cheng and Dey [23] discusses a scheme to use edge 

flipping to recover Delaunay surface triangulations. A Gabriel property is enforced for each 

triangle, requiring that each triangle’s diametric ball be empty (a stronger version of the 

Delaunay property). We use a similar scheme; for each edge, we check if two triangles that 

share that edge have diametric balls that do not contain the opposite, unshared vertex. If 

they do not, we flip. The recent theoretical result of Cheng and Dey showed this property 

would only work for e-dense surface triangulations; however, we found the point sets to
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be flippable in nearly all cases. A few rare edges could flip indefinitely. To break these 

ties, we selected the triangle pair that maximize the minimum circumradius (similar to 

the Delaunay property). Figure 3.8 shows an example of a two-patch sphere model that 

undergoes this process. Figure 3.8(a) shows the mesh resulting from the affine scaled 2D 

Delaunay triangulation, while Figure 3.8(b) shows the mesh after edge flipping.

3.4.1 Tetrahedralization
The resultant triangulations are not true 3D Delaunay as we do not ensure that each 

triangle has a circumball empty of all other points. However, we found they still had two 

desirable properties. First, nearly all triangles had excellent aspect ratio (shown in the 

experimental results). Second, these meshes were quite suitable for a constrained Delaunay 

triangulation that preserves each triangle. We use TetGen [101] to generate high-quality 

tetrahedralizations of these surface meshes.

3.5 Evaluation
We break the evaluation of this meshing technique into two parts. First, we compare it 

with two other popular triangular meshing techniques for this domain. Then, we evaluate 

the technique for its own sake, including strengths, weaknesses, and convergence properties.
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3.5.1 Method Comparison

We compare the proposed particle system technique (PSYS) to DelPSC [25] and CAPRI’s 

meshing algorithm [51]. We chose these methods because they were both readily available, 

and actively used in practice. We evaluate the three methods using surface triangle aspect 

ratio and volume tetrahedra aspect ratio. To provide a fair test environment, we hand 

tuned the parameters of each algorithm to generate surface meshes of approximately the 

same number of vertices. PSYS uses default settings of sK =  2, sT =  0.5, and L =  0.3 for all 

input models.

Figures 3.9-3.14 show comparisons of the surface meshes for each of the three algorithms. 

In the insets of these figures, we show close up views of each mesh to highlight how PSYS’s 

adaptivity can build superior geometric approximations using the same number of vertices. 

While the shape of elements is good for all meshes, PSYS can produce especially isostropic 

triangles. Even in areas of high variability for curvature, PSYS was able to adapt especially 

well without sacrificing element quality.

To investigate this aspect further, we report the geometric quality of elements on both 

the surface triangulation as well as the volume tetrahedra. We use the aspect ratio (circum- 

radius to shortest edge length ratio) as a criterion for mesh element quality. Figure 3.15 

shows plots of both mesh quality statistics for the mesh of each model using each algorithm. 

For triangle quality, in Figure 3.15(a), it is interesting to note that PSYS did exceptionally 

well in the median case. DelPSC has a user parameter to bound triangle quality; the 

conservative theoretical bounds to guarantee termination require it to be set near 1.0. In 

addition, DelPSC does not improve element quality near sharp features. As a result, it 

outperforms CAPRI’s surface meshing scheme (which has no refinement parameters for 

triangle quality), but its median behavior is slightly worse than PSYS.

For volume meshing, the algorithms all behave quite similarly in the median case as 

shown by Figure 3.15(b). Because TetGen is used for two of the algorithms, this is not an 

unexpected result. The full 3D Delaunay refinement used by DelPSC also achieves results 

on par with the other algorithms. We remark that setting naive parameters to CAPRI’s 

meshing algorithm would build surfaces meshes not suitable to TetGen. Because CAPRI 

provides no direct control over the quality of surface triangles, if their angles are too sharp, 

TetGen’s refinement could require an impossible number of insertions. We found that 

PSYS’s good quality triangles always lead to suitable inputs for TetGen.
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Figure 3.9. The output volume mesh of an engine block (above). Below, a closeup of 
the mesh is compared against two alternative meshing implementations: CAPRI (left) and 
DelPSC (center).

3.5.2 Evaluating PSYS
For most models, we are able to obtain good distributions in only a few hundred 

iterations total. The convergence rates for the particle system to find optimal distributions 

are based primarily on the number of particles needed and the level of adaptivity. Thus, 

most iterations take place in Phase 3 of the algorithm. Because particles only interact 

within a local neighborhood, as the number of samples increases, so does the number of 

iterations necessary for constraints to travel and allow the system to reach an equilibrium. 

How adaptivity comes into play is more subtle. We enforce the Lipschitz condition at every 

iteration, which means boundary values pull down local a values very quickly. This change 

propagates outward to areas that can otherwise tolerate a larger a . This means surfaces
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t__
Figure 3.10. The output volume mesh of a disk (above). Below, a closeup of the mesh 
is compared against two alternative meshing implementations: CAPRI (left) and DelPSC 
(center).

may become oversampled prior to fitting the Lipschitz continuous field. As the field values 

increase, so do energies, and particles begin to delete to make room for particles of larger a 

values. Relaxing the Lipschitz condition towards the beginning of the energy minimization 

could provide improved converge rates. Additionally, relaxing the energy requirements for 

insertion and deletion can improve convergence rates, but at the cost of less ideal packings.

3.5.2.1 Shortcomings
For test examples, we used default settings that all derived in intuitive ways. The 

curvature parameter was in unit proportion to surface curvature. The Lipschitz parameter
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Figure 3.11. The output volume mesh of a hanoi tower (above). Below, a closeup of 
the mesh is compared against two alternative meshing implementations: CAPRI (left) and 
DelPSC (center).

provided a fair compromise between triangle isotropy and adaptivity. Even the topological 

parameter was set to be half unit distance, to ensure sampling room on surfaces with 

restrictive boundaries. While a typical user might find themselves modifying these values 

for particular applications, care should be taken to ensure that these values are compatible 

with the geometry and topology of the model. This is especially true for the topological 

parameter. For example, the effect of using too large a value is shown in Figure 3.16.

The mesh in Figure 3.16(a), while still valid, has low-quality elements on this edge 

region, where particles did not have enough freedom to distribute evenly. The mesh 

in Figure 3.16(b) instead uses the default topological scaling value, and allows sufficient
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Figure 3.12. The output volume mesh of a screw (above). Below, a closeup of the mesh 
is compared against two alternative meshing implementations: CAPRI (left) and DelPSC 
(center).

freedom for particles to distribute and provide a more isotropic triangulation.

Due to the nature of discrete samplings in real spaces, there will always be situations 

in which a uniform packing is simply not possible. Most often this error will be distributed 

over much of the samples and will not be visually noticeable. However, occasionally, pockets 

of low energy show up that cannot be rectified using the proposed rules, because no single 

particle has an energy that is too low or too high.

Figure 3.17 illustrates this problem on the endcap of a cylinder. The triangulation 

generated in Figure 3.17(a) has formed an energy pocket in the center, due to the geometry 

of the cap. The second triangulation in Figure 3.17(b) has no such issue, simply due to a 

differing particle count. This problem is not unique to PSYS, but rather a shortcoming of 

formulating a discrete sampling scheme as a continuous energy problem. The likelihood of 

this artifact occurring could be reduced by increasing the sensitivity of energy measures for 

splits and deletes, but the gains would be balanced by a decrease in stabilty of the system.
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CAPRI

Figure 3.13. The output volume mesh of a table (above). Below, a closeup of the mesh 
is compared against two alternative meshing implementations: CAPRI (left) and DelPSC 
(center).
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Figure 3.14. The output volume mesh of a screw (above). Below, a closeup of the mesh 
is compared against two alternative meshing implementations: CAPRI (left) and DelPSC 
(center).

3.6 Discussion
The high-quality results generated from the algorithm in this chapter illustrate how well- 

suited such particle systems are for sampling parametric domains (Figure 3.18). Compared 

to the other methods we evaluated, the system was able to generate better quality triangle 

meshes with the added benefit of adaptively sized elements. Moreover, the sizing field we 

adapt to can be inferred directly from the point samples, removing the need for model 

preprocessing.

The success of this technique indicates that there are many unexplored avenues to take 

with respect to particle meshing. The approach in this chapter is centered around generating
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F igure 3.15. Box plots of the aspect ratios (circumradius/shortest edge length) on a log 
scale. We show for triangles (a) and tetrahedra (b) of each output mesh of each algorithm. 
These plots show the minimum, 25th percentile, median, 75th percentile, and maximum 
aspect ratio over all elements in each mesh.
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Figure 3.16. Example of bad and good topological scaling parameters: (a) sT =  1.0 
(b) sT =  0.5

(a) (b)

F igure 3.17. Example of a low energy pocket compared to a desired local minimum. 
(a) Configuration where pentagonal region remains open. (b) Configuration where pentag
onal region is completed.

quality isotropic surface meshes, which happen to be good inputs to a constrained 3D 

Delaunay solution. However, optimizing a particle system directly in 3D space from the 

start may allow for high-quality, isotropic tetrahedral meshes similar to other variational 

techniques [1]. An interesting direction would be to infer the tetrahedralization without 

requiring computing a 3D Delaunay triangulation.

Another avenue we believe could prove fruitful is the introduction of anisotropic kernels 

to the energy formulation. Doing so could provide an easy and powerful method for 

generating anisotropic surface and volume meshes. Coupled with adaptivity, these meshes 

could provide ideal inputs to simulations across many application areas.

The work in this chapter was motivated by quality, and the implementation is not
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Figure 3.18. The output volume meshes of PSYS. From left to right, top to bottom: the 
Block, Disk, Hanoi, Screw, Table, and Wingnut models.
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optimized for speed. There have been various acceleration strategies for other particle 

systems that can greatly reduce the running times. Recent work in GPU algorithms [42] 

have shown that n-body systems can achieve massive performance gains over what would 

otherwise be an O (n2) update algorithm.



CHAPTER 4

LATTICE CLEAVING

In this chapter, we describe a new meshing algorithm, lattice cleaving, for generating 

tetrahedral meshes for multimaterial domains that are specified volumetrically, as a col

lection of continuous indicator functions. That is, the physical materials are given by 

functions on the domain that evaluate to the appropriate material at a given location, and 

material interfaces are where these functions transition from one value to another. This 

volumetric specification is natural in biomedical simulations based on images [81], where 

material boundaries are derived from segmentations or labels, as well as simulations that 

rely on implicit representations of physical interfaces [30].

The proposed method allows for an arbitrary number of materials, produces high-quality 

tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees a degree 

of geometric fidelity. The output meshes conform approximately to interfaces between 

materials, including non-manifold regions where multiple materials meet. Moreover, the 

method is combinatoric so its implementation enables rapid mesh construction. These 

meshes are structured in a way that also allows grading, in order to reduce element counts 

in regions of homogeneity.

Lattice cleaving relies on a regular background lattice, with a resolution determined by 

the user, which is subdivided or cleaved to conform to material boundaries. For each cleaved 

background tetrahedron, it applies and modifies a stencil, used to approximate the geometry 

while not destroying the good quality of elements in the background lattice. Lattice cleaving 

requires a small, fixed number of passes through the background grid and therefore leads to 

reliably fast run times. Results on biomedical volumes and fluid simulations demonstrate 

the algorithm reliably achieves fast run times, geometric fidelity, and good quality elements. 

Additionally, we provide proofs showing that both element quality and geometric fidelity 

are bounded using this approach.
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4.1 Background
The literature on unstructured 3D mesh generation is vast, partly as a byproduct of the 

wide utility of these meshes to application areas in science and engineering. Here we focus 

the discussion along the two major constraints on this meshing problem: (1 ) producing 

high-quality elements and (2) conforming to complex surfaces. In addition, we review 

lattice-based meshing algorithms which use, in part, similar techniques to those presented 

in this document.

In the past decade, a significant amount of effort has gone into building high-quality 

surface meshes [48], particularly through Delaunay triangulations [28]. One of the most 

popular strategies relies on Delaunay refinement [34, 8 6 ], which iteratively inserts sample 

points on the domain boundary until conditions are met for sufficiently capturing both the 

topology and geometry of surfaces. These surface meshes are typically inputs for conformal 

tetrahedral meshing algorithms, with further refinements of the volumetric regions. Boisson- 

nat and Oudot [13] and Cheng et al. [27] pioneered the first variants on provable algorithms 

for performing Delaunay refinement that capture the topology of smooth, surface-boundary 

constraints. Extending these ideas to more complex, piecewise-smooth, and non-manifold 

domains followed [26]. However, these algorithms rely on various strategies for protecting 

features on the material boundaries, and the implementations of these schemes are chal

lenging. Thus, simplifying assumptions are required in the protection scheme to make them 

practical [14, 39, 83].

The local, greedy strategy of Delaunay refinement schemes tend to find suboptimal 

configurations for vertices. Variational meshing schemes attempt to overcome this limi

tation by positioning vertices according to some global energy function. These strategies 

typically decouple, to various degrees, the vertex placement problem from the triangula- 

tion/tetrahedralization problem. Meyer et al. [76] use a variational scheme similar with 

repulsion between particles (points) to sample multimaterial interfaces and then connect 

these samples using a Delaunay triangulation. Bronson et al. [20] build on this formulation 

to build highly adaptive surface meshes for CAD geometries, but do not require expensive 

precomputations. Yan et al. [115] use an energy formulation based on centroidal Voronoi 

tessellations to drive particle movements. Tournois et al. [106] alternate between Delau

nay refinement insertions and vertex optimizations for high-quality meshes for nonsmooth 

shapes. These types of optimizations are nonlinear and require multiple iterations on 

gradient-descent-based strategies to find local minima. Thus, they are time consuming, 

are sensitive to initializations and parameter tuning, and do not provide typical criteria to
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establish guarantees on the quality of the output.

While these works represent only a taste of the most recent work in boundary-constraint 

meshing, they have a number of interesting shared characteristics. First, each algorithm 

requires at least one expensive computation, either a Delaunay triangulation in 3D, or a 

vertex optimization, or both (each of which necessitates an O (n2) computation), while the 

variational schemes may require multiple iterations on these computations. Second, these 

algorithms all decouple the surface constraint of boundary conforming from the volumetric 

quality constraint, by requiring that the algorithm first construct a mesh of the boundary 

and then next construct a volume mesh given this surface mesh as input (surface first, then 

volume). As a result, they often deal with very poor-quality mesh elements, in particular 

slivers or tetrahedra with nearly cocircular vertices [24, 106]. In contrast, the proposed 

method follows the strategy of volume first, then surface, which has the benefit of being 

more flexible in how we manage the inevitable compromises between geometry and quality.

4.1.1 Tetrahedral Element Quality
While a large number of measurements and ratios are used to judge the quality of 

elements in meshes, in this work, we focus on isotropic measures of quality applicable to 

linear finite elements [97]. These qualities, while somewhat generic, have the advantage 

of being numerically useful for the large class of elliptic operators that appear in FEM 

simulations of many physical phenomena, such as incompressible flows, diffusion, and 

electric fields. While there are many reasonable measures of tetrahedral mesh quality, we 

rely on the worst-case dihedral angles (both minimum and maximum) over all tetrahedra. 

The distance of dihedral angles from 0° and 180° correlates with most other common element 

quality measures.

Measures of quality are typically independent of element size. Adaptivity of mesh 

size/resolution provides another key ingredient in the definition of element quality. Both 

Delaunay refinement [96] as well as variational schemes [3] have been used to improve and 

adapt volumetric element quality, as well as more greedy optimizations driven by local 

mesh improvements [47, 59]. Moreover, isotropic element quality is also indifferent to 

element orientations; i.e., it penalizes anisotropy in all directions equally. The proposed 

work provides graded meshes with smaller elements near surfaces, but does not address the 

problem of adaptivity and anisotropy directly.
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4.1.2 Lattice-Based Meshing Approaches

A very common strategy for building meshes is to start with a high-quality (e.g., 

regular) background mesh and modify it to adhere to geometric constraints. However, 

the problem of making a regular lattice conform to an arbitrary surface presents some 

challenges, especially when tetrahedral quality is a concern. One strategy is to cut (or cleave) 

the cells of the input lattice to match the surface, an idea popularized by the well-known 

marching cubes algorithm for isosurfacing [69], and the related dual contouring method [56]. 

Constrained delaunay triangulation [32, 98] can then be applied to generate volume-filling 

tetrahedra [117]. The different configurations of surface/cell intersections are typically 

represented by stencils with the appropriate topology. Several authors propose surface 

reconstruction with a piecewise linear approximation of surfaces as they cut through the 

tetrahedra of a body-centered cubic (BCC) lattice [12, 78], with extensions to non-manifold 

surfaces using a collection of indicator functions (instead of the single scalar field for 

isosurfacing). These algorithms examine indicator functions locally at each vertex of the 

mesh element. Depending on which indicator is maximal, they next label each vertex with 

a material, a generalization of inside/outside for isosurfacing.

Working with lattices has advantages beyond just surfacing. For instance, an octree 

can be used on a regular lattice to facilitate adaptively sized elements [116]. Zhang et 

al. [118] use a regular lattice and encodings to achieve surface simplification while preserving 

topological features. This work was extended to generate tetrahedral as well as hexahedral 

elements [119] and within multimaterial domains [121].

Another strategy for conforming is to warp a background lattice so that primitives 

align with boundaries [49]. Molino et al. [77] use a BCC lattice coupled with a red-green 

subdivision strategy, which they then optimize to conform to the surface. That work 

empirically achieves good-quality tetrahedra, albeit with no proof of bounds. Labelle and 

Shewchuk [62] propose a combination of lattice warping and stenciling, with appropriate 

rules that decide which combination of strategies to use, based on the input data, in order 

to ensure good quality. They describe a computer-assisted proof to compute quality bounds 

for their isosurface stuffing algorithm. Wang and Yu [110] employ a similar approach. The 

proposed method shares several aspects of the Labelle and Shewchuk method. Like their 

algorithm, we cut a BCC lattice to conform to a boundary mesh, and like their algorithm, 

we rely on a threshold a to locally warp the lattice to remove short edges and maintain 

high-quality elements. However, instead of considering a single smooth isosurface, the 

multimaterial boundary constraints present nonsmooth and non-manifold structures. This
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adds considerable complexity to the algorithm, which in the past has only been approached 

using additional levels of subdivision, such as in Liu et al. [65] or dual-contouring [120]. 

Here we show instead that a carefully designed stencil set combined with appropriate rules 

for application provides quality guarantees for the resulting tetrahedra.

4.2 Considerations
The proposed tetrahedral meshing algorithm operates on a collection of indicator func

tions. We sample these functions onto a body-centered cubic (BCC) lattice. Similar 

to many surfacing and meshing algorithms [50, 69], we rely on a set of stencils that 

capture local material configurations. We use the strategy of Labelle and Shewchuck 

[62] to construct a set of rules for each background BCC lattice tetrahedron that switch 

between two cleaving modes— either deforming the background BCC lattice or splitting the 

background tetrahedra in order to conform to boundary surfaces.

Within this context, the multimaterial meshing problem presents several important 

challenges. Unlike the isosurface case, one cannot easily restrict the size of features, because 

feature size [3] will always go to zero where three or more materials meet. The complexity 

within each lattice cell is also challenging. Considering only the material labels at vertices, 

the number of cases is daunting. Furthermore, even if one represents indicator functions 

along lattice edges as linear, the number of possible interfaces passing through a single edge 

grows with the number of materials, regardless of the conditions at the vertices. Therefore, 

geometric and topological approximations are essential.

4.3 Indicator Functions
There are many papers on extensions of implicit surfaces or level sets to multimaterial 

interfaces. Here we represent multimaterial interfaces using a set of K -smooth, volumetric 

indicator functions, F  =  | /i |/i : V  ^  K} [73, 81]. A material label i is assigned to a point 

x  e  V  if (and only if) / i (x) >  / j (x) V j  =  i. For any single material j ,  a continuous, 

inside-outside function can be constructed as / j (x) =  / j (x) — mini= j ( / i (x)), and the zero 

functions of various materials will coincide at shared boundaries.

4.4 Background Lattice and Material Interfaces
Stenciling algorithms rely on a set of regular cells. The configuration of the interfaces on 

these cells are used to generate an index that corresponds to some predefined tessellation. 

We employ a BCC lattice (Figure 4.1), where each cell is composed of 8  normal or primal 

cubic lattice vertices, plus a 9th dual vertex in the center. In addition to the twelve edges of
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Figure 4.1. The BCC lattice is composed of two grids of primal and dual vertices [62]. 
Each vertex is incident to 14 edges, 36 faces, and 24 tetrahedra.

a regular cubic cell, there are eight diagonal edges connecting each dual vertex to its cell's 

primal vertices, and six connecting dual to dual. Fanning out from the dual vertex are 24 

lattice tetrahedra, each of which spans two lattice cells. Each lattice tetrahedron is identical 

in shape, as is each lattice face. The edges connecting both primal and dual vertices differ 

in length from the edges connecting only primal or only dual vertices. We refer to these 

edges as long and short, respectively.

For stencils to be applicable, decisions about the structure of each cell must be strictly 

local and enumerable a priori. The proposed strategy for mapping data onto the lattice 

entails several approximations. Initially, each lattice vertex represents a single material at 

that point, which is given by the indicator function with maximum value. If two or more 

functions are comaximal, the tie is settled by a very small push away from a prioritized (or 

random) material. Any lattice edge that contains vertices with two different labels contains 

a material transition, called a cut-point, or cut [62]. These edge-cuts sample a surface 

separating two materials.

A similar logic applies to junctions of more than two materials. A lattice face with 

three unique material labels on its vertices must have an associated transition point where 

all three materials meet. We refer to this point as a triple-point (triple). The collection 

of triple-points in the domain define curves where three materials meet. A lattice tetra

hedron may have up to four unique material labels. The 4 vertices, and the four function 

values associated with the material labels on each vertex, define a single, isolated, material 

transition point. We refer to this point as a quadruple-point (quadruple).

We restrict the number of material transitions defined on a tetrahedron. Each lattice 

simplex may contain at most a single transition point matching its dimensionality: an edge 

may have only a single cut, each face a single triple, and each tetrahedron a single quadruple. 

These approximations are the multimaterial generalizations of the approximation that un

derlies stencil-based isosurface algorithms, which ignore features that pass between vertices.
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Figure 4.2 illustrates how such a situation might manifest on an edge. These various material 

interfaces are defined as the points where the values of indicator functions of the materials 

on the vertices are equal, and, in general, we assume these locations are given by an oracle. 

In the absence of an oracle, these points can instead be computed, for instance, by a system 

of linear equations.

For an edge, these transitions lie on the line segment connecting the two vertices. How

ever, for triple- or quadruple-points, they could lie outside of the corresponding triangular 

face or tetrahedron, respectively. In such cases, these points are projected back onto the 

tetrahedron, so that local stencils can apply (Figure 4.3). These approximation lead to a 

smoothing or removal of thin features that fall below the resolution of the grid— i.e., the 

exceptions to the above conditions are indicative of features that fit. between grid points, as 

proved in Section 4.10.1.

4.5 Stencils and Keys
Selection of the appropriate stencil for any given cell is determined by a key. For the 

single isosurface case, this key is an ordered concatenation of labels for each vertex of the sim

plex being stenciled. These labels indicate whether a vertex is inside (-1), outside (+1), or 

directly on the isosurface (0). If we were to restrict vertex labels to be strictly inside 

and outside, this leads to 16 configurations, with only eight unique valid cases. Allowing a 

vertex to sit on the isosurface would lead to 81 possible configurations. In the multimaterial 

case, this approach to indexing stencils is problematic for several reasons. First, inside of 

one material is outside of another. This means a label for each material in the volume is 

needed. The length of the key will need to grow in order to accommodate datasets with 

larger numbers of materials. Consequently, the number of cases of stencils would need to

Figure 4.2. An edge with materials a and b maximum on its endpoints, but with a third 
material c becoming maximum on the interval between.
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Figure 4.3. Triples (a) and quadruples (b) are forced to lie within the primitive that 
contains the associated edge-cuts.

fill the space of cases, with many duplicates for similar topologies with differing materials.

One approach to solving this issue is to instead store bits only signifying the number 

of materials found on a vertex. In this scenario, the case table becomes tractable, but 

distinguishing element materials during stenciling becomes more difficult. This task requires 

expensive bookkeeping and may still lead to ambiguous material regions without explicit 

rules to avoid them.

The solution in the proposed approach bypasses this problem by only defining stencils 

on lattice tetrahedra with precisely one material per vertex. Intermediate topologies, where 

multiple materials reside on a single vertex, are generated by various edge collapses on the 

original stencil. In this way, the challenges of exhaustive case tables and ambiguous regions 

are avoided. The key for a generic set of stencils in this multimaterial case would be a 

6 -bit key, each bit indicating whether a particular edge of the lattice tetrahedra contains 

an edge-cut. This leads to only 64 possible configurations, with many cases being invalid. 

In Section 4.8, we show that by generalizing all stencils to a single case, we can avoid the 

need for a lookup table altogether.

4.6 Quality Criteria
Within a lattice tetrahedron, we approximate the material interfaces as a set of triangular 

facets that connect the various cut-points with the correct topology. With no additional 

processing of the mesh data, there are only five unique topological cases, distinguishable 

by the number of edges that contain a cut: 0, 3, 4, 5, or 6 . It is impossible for a lattice 

tetrahedron to contain only one or two edge-cuts. As illustrated in Figure 4.4, these cases 

are composed of three types of polyhedra: tetrahedra, triangular prisms, and hexahedra.

While these polyhedra admit multiple consistent tessellations, the output tetrahedra 

could become arbitrarily bad (regardless of the tessellation chosen) depending on where 

interface points are located. Thus, we define a set of violation conditions that characterize 

the configurations of interface points that lead to bad tetrahedra. These conditions are used
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(a) 0-cut (b) 3-cut (c) 4-cut (d) 5-cut (e) 6-cut

Figure 4.4. The five unique interface topologies determined by the number of cut-points 
present on a lattice tetrahedron.

to decide when it is appropriate to warp the background lattice (changing topology) and 

when it is appropriate to leave a configuration intact. The conditions entail a threshold 

on the proximity between features, denoted a, and are expressed as a fraction of the edge 

lengths on the background lattice.

There are three different ways in which an interface might be violating. First, an interface 

point of any type may violate a lattice vertex. A cut violates a lattice vertex if it lies within 

a distance a to it along the shared edge. As shown in Figure 4.5(a), even in 2D, no matter 

how you choose to tessellate a face, there will always be an angle that is arbitrarily bad as 

the cut approaches the lattice vertex. This principle extends to interface points of higher 

order (i.e., triples and quadruples). Triple-points can move within the 2D space interior to 

a lattice face, and so their vertex violation region is a quadrilateral patch. This patch is 

formed by the intersection of two half spaces. Each halfspace is defined by connecting the 

point at distance a on one edge, to the opposite lattice vertex (Figure 4.5(b)). Similarly, 

quadruple-points can be anywhere inside the lattice tetrahedron, so their vertex violation 

regions are formed by the intersection of three half-spaces defined by planes (Figure 4.5(c)).

The second group of violations pertain to edges. Degenerate tetrahedra can also arise if 

triple-points or quadruple-points lie too close to an edge. We define the notion of edge 

violation in a manner consistent with vertex violations, similarly bounding the angles. 

Dividing lines are formed between each vertex on the edge and the respective a position 

on the edge opposite that vertex (Figures 4.5(d,e)). Finally, a quadruple-point has one 

additional violation condition, arising from its distance to adjacent faces. This violation 

region for faces follows the same logic as the others (Figure 4.5(f)). Three planes are defined 

using the alpha parameters. Each plane contains two vertices on the face in question, and 

the alpha position on the edge incident to neither of these two vertices. The intersection 

of the halfspaces defined by these three planes forms the 3D violation space. With these 

violation rules in place, the next section provides a set of operations that can remedy any 

set of interface points that are in a violation condition.
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(a) cut-vertex

.a

(b) triple-vertex

(d) triple-edge

Figure 4.5. An interface point violates a feature if it falls within an intersection of half 
spaces defined using a. Vertices can be violated by (a) cuts, (b) triples, and (c) quads. 
Edges can be violated by (d) triples and (e) quadruples. Faces can only be violated by (f) 
quadruples.

4.7 Snapping and Warping
The lattice cleaving algorithm uses two fundamental operations to ensure mesh quality. 

A snap operation merges an interface point with another point of lower order, collapsing the 

implicit edge between them in an output stencil. This operation is performed on interface 

points that are in violation, ensuring output stencil tetrahedra do not span bad angles. 

In conjunction, lattice vertices are warped spatially in order to conform to the interface 

surfaces.

The multimaterial cases introduce additional complexity into processing the snaps and 

warps. In the two-material case, Labelle and Shewchuk [62] warp a lattice vertex to a 

single violating cut and remove all adjacent cuts, effectively pulling them into the warped 

vertex. In the multimaterial case, this is unsatisfactory, because the adjacent cuts could be 

interfaces to several different material sets.

If interfaces of different material sets are violating a lattice vertex, no single warp position 

can satisfy the surface constraints. Therefore, a number of strategies may be used to choose 

a suitable warp location. We use the center of mass of these violations, because it is both
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easy to compute and distributes error proportionally among each interface. alternative 

approaches might be to minimize a quadric error term for each surface, or to choose a 

preferred surface representative.

After snapping and warping a vertex to remove its violations, additional material in

terfaces may still be present on the incident edges and faces. Because these edges and 

faces will also be warped by the movement of the lattice vertex, the implicit surfaces may 

intersect them at new locations. Thus, we must update the locations of the remaining cuts 

and triples on incident edges appropriately, either by geometric intersection tests or via 

querying the oracle.

When an edge moves because one of its vertices is warped, any cut on that edge must 

move along the interface the cut represents. In practice we use a linear approximation 

to the interface surface to perform this update. If the cut interface is of the same type 

as the violating cut that caused the warp, it naturally gets pulled into the snap like the 

two-material case. If the new location of the cut is no longer on the edge (e.g. moves off of 

one of the ends), we bring it back onto the line segment at the appropriate end point. In 

this way, the stenciling operation remains local. We call this operation of recomputing the 

position of an interface on the warped lattice a projection, shown in Figure 4.6. If the new 

cut position is violating, we perform a snap to the lattice vertex, and warp the vertex only 

if it has not already been warped previously. In this way, each lattice vertex undergoes at 

most one warp.

If a lattice face moves because one of its vertices is warped, any triple on that face may 

also move. We update its location using the same strategy as with edges. If the triple leaves

Figure 4.6. When a vertex warps (green arrow), (a) cuts and (b) triples on incident faces 
must be updated (blue arrow) to reflect the their new locations on the surfaces.



56

the face, we bring it back on, and follow up with appropriate snaps and warps as needed. 

Quadruples need no projection unless a face moves in such a way that the quadruple falls 

outside of the new tetrahedron— in which case it will be moved onto the nearest edge/face 

and collocated with the corresponding cut/triple on that face.

This strict hierarchy of interface types raises another complexity unique to the multi

material case. Snaps may cause material interfaces to degenerate such that they violate the 

hierarchy of interface types. For example, consider a face with a triple-point. If the cuts 

on two adjacent edges snap to the same lattice vertex, the triple-point is now representing 

only a two-material interface, with a degenerate material region along the remaining line 

segment. To fix this degeneracy, the triple-point joins the two associated cuts at their warp 

destination, as in Figure 4.7. A triple-point snap may also cause cuts to become degenerate, 

and a quadruple-point snap may cause cuts and triples to become degenerate. The number 

of these cases is quite limited, and each one is tested and corrected in a way that ensures a 

consistent hierarchy of features and a consistent mesh.

Figure 4.7. Degenerate triples or quadruples are removed by subsequent snaps.
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4.8 Generalized Stencils
After snapping and warping, the polyhedra from the topological cases described in 

Section 4.6 may have collapsed into intermediate topologies. Each such topology demands 

not only a valid tessellation stencil, but one that does not permit degenerate tetrahedra 

when interface points are in nonviolating configurations. Moreover, each such stencil must 

be consistent both within the lattice tetrahedron, as well as across lattice faces (Figure 4.8). 

One of the contributions of this chapter is presenting a single generalized stencil that can be 

used as a master stencil for all achievable topologies. Not only does this keep the problem 

of stenciling local (avoiding inconsistency issues), but it also removes the requirement of 

implementing and storing a large stencil table that is prone to construction and transcription 

errors [45].

The generalized stencil is constructed from the most complicated topological case, the 

six-cut case. An edge is formed between every pair of points that could be snapped, ensuring 

the snapping procedure of Section 4.7 always simplifies the topology in a manner equivalent 

to a series of edge collapses. On each lattice face, edges star out from the triple-point to 

every edge-cut and vertex on the boundary of the face. Similarly, on the interior of the 

lattice tetrahedron, edges star out from the quadruple-point to every triple-point, edge-cut, 

and vertex on the boundary of the lattice tetrahedron (Figure 4.9). In the regular case, this 

is equivalent to barycentric subdivision of the tetrahedron. This construction tessellates the 

lattice tetrahedron into 24 stencil tetrahedra, each composed of a single vertex, cut, triple, 

and quadruple.

For every lattice tetrahedron that does not have this full complexity of material interfaces 

(six cuts), we choose vertices, cuts or triples, to have virtual material boundaries, as if they

Figure 4.8. Stencils for lattice tetrahedra must be consistent across faces. In this example, 
the blue quad patch shared between the tetrahedra is tessellated in two different ways.
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Figure 4.9. The generalized stencil is constructed from the 6 -cut case. Edges connect each 
interface point to its associated lower order features.

had already snapped. This allows us a consistent way to tetrahedralize the polyhedra in 

the multimaterial stencils without worrying about inconsistencies or tangles across faces 

between stencils, keeping the stenciling operation local.

The procedure to generalize a lattice tetrahedron to the six-cut case proceeds as follows. 

First, virtual edge-cuts are created for any edge missing a cut. The remaining virtual 

points all cascade into place from the location of these virtual cuts. For a face that has 

no triple-point, we label one of the three cuts as a virtual triple-point. To maintain valid 

topologies, we always choose a cut that lies on an edge that already contains a virtual cut. 

If there is no virtual cut, a predetermined cut is chosen. Finally, if a quadruple-point is not 

present, we must choose a triple-point location to represent the virtual quadruple-point. 

We pick a triple-point using the same method a triple uses to pick a cutpoint. If there are 

multiple options, we choose the point that is collocated with the most other points, virtual 

or real.

Note that these rules for generalizing lattice tetrahedra operate once; they are merely 

the mechanism for generating a consistent set of stencils. These generalizations can even 

be computed offline, for all stencil cases, and then chosen from a lookup table at run
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time. These rules for choosing arbitrary, but consistent, transitions from the six-cut case 

to all of the others produce different (but valid and good quality) tetrahedralizations of the 

similar cut patterns, depending on their orientation on the BCC lattice. This mechanism 

for ensuring consistency is a multimaterial alternative to the parity scheme used in the 

two-material case [62]. This procedure as described is merely one solution within a space 

of valid possibilities.

4.8.1 Grading

Like other meshing algorithms built upon the BCC lattice, we take advantage of its 

structure to achieve graded meshes through the use of an octree. Any cell that contains 

at least one edge-cut is created as leaf in this tree. We utilize the same stencil as found 

in Isosurface Stuffing, where bisected and quadrisected BCC tetrahedra are used to span 

neighboring octree cells that differ in height by 1 level. Because these graded tetrahedra 

only appear in regions of homogeneity, the introduction of multiple materials has no affect 

on their structure.

4.9 Algorithm
The full lattice cleaving algorithm utilizes the rules developed in this section and pro

ceeds as follows: Using an octree structure to reduce storage and allow grading, we first 

sample and label each BCC lattice vertex. Alternatively, a search strategy can be employed 

at this point to reduce storage and time searching for interfaces. If a tie occurs, we add an 

epsilon adjustment to a random material, creating cuts one or more incident edges. Next, 

cuts, triples, and quadruples are computed for each lattice tetrahedron that has multiple 

unique material labels on its vertices. The octree stores leaves only for the cells containing 

cuts, and it is balanced such that neighboring cells never differ by more than a height of 

one.

Any lattice tetrahedron that is not the six-cut case is then generalized to be so, by 

labeling the locations of virtual cuts, triples, and quadruples. This operation completes in 

a single pass over the lattice tetrahedra, either directly or through the use of a precomputed 

lookup table. Once all lattice tetrahedra have been generalized, three phases of snapping 

and warping begin.

In the first phase, all violated lattice vertices are identified and visited exactly once. Any 

violating interfaces on incident edges, faces, or tetrahedra are snapped to the vertex, and the 

vertex warps to the center of mass of the interfaces, distributing any round-off equally. All 

adjacent nonviolating interface points are projected to remain on their respective simplices.
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If an oracle is available, the new interface points should be queried directly. All degeneracies 

are fixed with additional snaps, as described in Section 4.7. After completion of this phase, 

all lattice vertices will be free from violations.

In the second phase, all violated lattice edges are identified and visited exactly once. 

If one or more triples or quadruples violates an edge, we snap them to the cut on that 

edge, wherever it may be. Sometimes a triple-point violates an edge that no longer contains 

a cut, because it has already snapped to a lattice vertex. In such cases, the triple-point 

would snap to that lattice vertex as well. These snaps are designed so that a lattice edge 

may contain singular points of transitions or be a single material across its entirety; we do 

not allow material interfaces to lie on the half-edge. An alternative approach would be to 

project these triple-points to the nearest location on the edge, and split the edge with a new 

cut, tessellating the output stencil tetrahedra incident to that edge. This would provide 

increased fidelity but also increased element count.

In the final phase, we address the problem of quadruple-points that are too close to 

lattice faces. Using the face violation condition, we snap any such quadruple-point to 

the triple-point on the face that was violated. Similar to the second phase, sometimes a 

quadruple-point violates a lattice face that no longer contains a triple-point. It may have 

snapped to an edge-cut, or to a vertex. The quadruple-point always follows the triple-point, 

maintaining the hierarchy of features on each edge and face. Again, a splitting procedure 

could be utilized to retain higher fidelity.

Finally, we output all stencil tetrahedra that contain four unique vertices, skipping over 

any that were collapsed during the warping and snapping process. Octree cells at higher 

levels are also filled with appropriate tetrahedra for grading, though there is no need to 

delay this step until the end.

The complexity of this algorithm is worst case O(n) where n is the number of voxels in 

the input image. However, in practice, it is rare that a set of interface surfaces would fill 

the entire volume. We find the complexity is most often sublinear. Additionally, while we 

implemented this algorithm as an in-core solution, requiring memory for the whole volume 

and mesh throughout the algorithm, this need not be the case. All of the operations act 

locally on sets of adjacent lattice cells. Therefore a streaming solution, or moving window 

approach, could also be employed to process lattice cleaving. The benefits of such an 

approach would include reduced memory footprint, and possibly better cache performance.
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4.10 Bounded Dihedral Angles
The algorithm described in Section 4.9 is designed to ensure that both dihedral angles 

are bounded and geometric distortion of input surfaces is controlled. In what follows, we 

prove these properties hold true.

The violation rules defined in Section 4.6 disallow vertex positions that could lead 

to undesirable tetrahedra. These proofs rely on these carefully designed rules for vertex 

placement, a particular set of properties in the generalized stencil set, and their interaction 

with the background lattice.

There are multiple ways to classify types of bad tetrahedron [9, 24]. One useful parti

tioning groups such tetrahedra into two sets: tetrahedra whose vertices are nearly collinear, 

and tetrahedra whose vertices are nearly coplanar. This classification includes not only 

tetrahedra with bad dihedral angles, but also tetrahedra with bad solid angles (i.e., the 

spire).

It is also useful to classify the types of bad triangular faces that can occur on these 

undesirable tetrahedra, namely, daggers and blades. These triangles have vertices that are 

nearly collinear. While a tetrahedron may still be badly shaped without their presence, 

(e.g., slivers), a tetrahedron that contains poor-quality triangles will itself also be of poor 

quality.

The rules comprising the proposed algorithm make it impossible for output tetrahedra 

to become badly shaped (and consequently, they have bounded dihedral angles). First, 

we show that background lattice tetrahedra stay of good quality. This property induces 

constraints on the polyhedra of the output stencils. Finally, we show that these constraints, 

combined with the violation conditions for warping and snapping, always lead to tetrahedra 

with bounded dihedral angles. Unlike the computational proof of Labelle and Shewchuk, 

which relies on interval arithmetic and a numerical search, this approach does not give 

a specific angle bound. The multimaterial problem introduces enough additional degrees 

of freedom to make a similar computational approach currently intractable. This direct 

proof does, however, provide insights into why this algorithm is successful at achieving 

bounded dihedral angles and gives a foundation for modifications and extensions. We begin 

by introducing several definitions.

D efin ition  1 A  dihedral angle d is the angle between two planes.

A tetrahedron contains 6  internal dihedral angles. The dihedral angle between triangular 

faces can be expressed as a function $  : V 2 ^  K of the face unit normals f  i and f 2:
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$  =  arccos (ni ■ n2) (4.1)

D efin ition  2 The aspect ratio, arf =  j , for a triangular face, f , where h is the height of 

the shortest altitude and l is the length of the longest edge.

D efin ition  3 The aspect ratio, art =  j , for a tetrahedron, t, where h the height of the 

shortest altitude and l is the length of the longest edge.

For triangles, the aspect ratio goes to zero as the vertices approach collinearity. For 

tetrahedra, aspect ratio is a measure for how close the vertices of a tetrahedron are to being 

either collinear or coplanar. It turns out that when tetrahedra degenerate in these ways, it 

must be the case that there are either dihedral angles of 0°, 180°, or both. All unwarped 

BCC lattice tetrahedra have aspect ratios art =  0.866025, and dihedral angles of 60° and 

90°. We next define the notion of e-good.

D efin ition  4 For e >  0, let 0min and 0max be the minimum and maximum dihedral angles 

for all possible tetrahedra with art >  e. A dihedral angle, 0, is called e-good if and only 

if 0min <  0 <  0max. Similarly, let 0 min and 0 max be the minimum and maximum interior 

angles, respectively, of all triangles with arf >  e. We call a planar angle, 0, e-good if and

only if 0min ^  0  ^  ^max.

L em m a 1 For a triangle, t, with minimum and maximum interior angles 0 min and 0 max, 

arf >  0  iff there exists k >  0  such that k  <  0 min and 0 max <  180° — k .

P r o o f  : Let t be a triangle composed of vertices v i , v2, and v3. Let L be the length of 

the longest edge, joining v2 and v3, and H  be the height of the shortest altitude, incident 

to vi . v i can be moved along the line parallel to edge v2v3, without changing the height 

of this altitude (Figure 4.10). If H  >  0, a planar angle 0  can only approach 0° or 180° 

as it moves infinitely in either direction. However, as v i moves in either direction, either 

edge v iv2 or v iv3 lengthens. Eventually, this length will become longer than L, and the 

aspect ratio will change. Therefore, the movement of v i is bounded in order to keep arf  

fixed. The worst minimum angle possible becomes 0 min =  arcsin(arf), and the maximum 

0 max =  180° — arcsin (arf).

L em m a 2 For a tetrahedron, t, with minimum and maximum dihedral angles 0min and

0 max> art >  0  iff there exists k  >  0  such that k  <  0min and 0max < 180 — k .
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Vi

Figure 4.10. The space of triangles with aspect ratio H / L .  v\ is restricted to move along 
the axis parallel to edge v2v3 such that L and H do not change. This 1D space is bounded 
on both sides.

P r o o f  : The dihedral angle, 0, between two incident triangular faces may be computed 

using the 3D face normals, as in Equation 4.1. There is an equivalent planar angle, 0, formed 

by projecting these faces along the axis coinciding with their shared edge (Figure 4.11).

The lengths of the two line segments that form this angle in 2D are equivalent to the 

lengths of the two triangle altitudes. The distance of the projection of each vertex not 

incident to the shared edge, to the opposite face becomes the height of an altitude in 2D 

projective space. This gives an equivalent equation for both the planar and dihedral angle 

associated with these vertices:

0 =  arcsin ^ (4.2)

where ht is the height of the tetrahedron altitude in 3D (and equivalently the height of 

the triangle altitude in 2D), and hf  is the height of the altitude of the incident face (and 

equivalently the length of the incidentedge in 2D).

Because the altitudes are orthogonal to the shared edge, by the Triangle Inequality, the 

lengths of the two altitudes are bounded by the edge lengths of the two triangular faces. 

Let L be the longest edge of the two faces and H  the shorter of the two 3D altitudes 

between them. It must be the case that arcsin ^L ) < =  arcsin ^ ^  for all i. Because this 

relationship holds for each pair of faces of a tetrahedron, t, it also must be the case that 

arcsin ( H m a x  ) < =  arcsin ( for all i, or:
\  L m i n  J  \  H  /

arcsin(art) < =  0 < =  180 — arcsin(art) for all 0 in t.

F igure 4.11. For every dihedral angle, there is an equivalent angle in 2D. (left) 3D dihedral 
angle (right) projected to 2D with altitude.
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L em m a 3 There exists a set of violation parameters a short and a long for which all B C C  

lattice tetrahedra maintain e-good dihedral angles after warping as described in Section 4.7.

P r o o f  : Let t be a BCC lattice tetrahedron and ra be the radius of a ball around each 

vertex. Each ball contains the possible set of points to which its vertex may warp, given the 

violation parameters a short and a long (the violation parameters for short and long edges, 

respectively). If ra =  0, no warping takes place, and t has aspect ratio art =  0.866025. 

Because the worst dihedral angle of a tetrahedron can be defined as a continuous function 

of vertex positions, by the intermediate value theorem, there must exist an ra for which 

art =  e >  0. Thus, by Definition 4, there must exist an a short and a long for which the lattice 

tetrahedra maintain e-good dihedral angles after warping.

D efin ition  5 Let p be a polyhedron subdivided into a set of polyhedra S . A polyhedral face 

f  from the set S is considered external if it is incident to dp.

L em m a 4 All stencil polyhedra with nonviolating vertices maintain e-good dihedral angles 

around edges incident to at least one external face.

P r o o f  : For every dihedral angle of a stencil polyhedron that spans an edge incident to an 

external face, either one face or both faces are external. If both faces are external, then the 

dihedral angle equals that of the enclosing background polyhedron. By Lemma 3, we know 

this is an e-good dihedral angle. If one face is internal and the other external, there is at 

least one vertex, Vi, on the internal face that is not incident to the external face. The only 

way for the dihedral angle to lose the e-good property is by moving vi arbitrarily close to 

the external face, its edges, or its vertices. In each case, a violation condition from Section 

4.6 would be triggered, making these impossible.

L em m a 5 All output tetrahedra span at least two stencil polyhedron faces that meet at 

e-good dihedral angles.

P r o o f  : In general, any two faces may either both be external, one external and one 

internal, or both internal. If both are external, by Lemma 4 we know that the dihedral 

angle between these faces will remain e-good. If one is external and the other internal, 

by the violation conditions of Section 4.6 we know these faces are e-good. The case of 

two internal faces is prevented through stencil selection. There are five regular topological 

stencil cases before snaps. Snapping can only simplify polyhedra, never creating additional 

internal faces. Thus, if no tetrahedra span two internal faces of the polyhedra in the regular
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topological cases, it is also the case that no tetrahedra span two internal faces after edge 

collapses. Among the regular topological cases, only the five-cut and six-cut cases have 

the potential for multiple internal tetrahedron faces. The generalized stencil is designed 

specifically to avoid any tetrahedra spanning the faces that are not guarded by violation 

conditions.

L em m a 6  All stencil triangles maintain e-good planar angles after snapping and warping, 

as described in Section 4.7.

P r o o f  : All output stencils are composed from only four types of vertices: (lattice) vertices, 

cuts, triples, and quadruples, abbreviated v,c,t, and q, respectively. The vertices of a stencil 

triangle can exist in three ways. Either all three vertices lie on the same lattice face, two 

vertices lie on the same lattice face, or all three lie on unique lattice faces.

If all three vertices lie on the same lattice face, the violation conditions for cuts and 

triples guard against such an aspect ratio. There are only three sets of points that can 

become collinear, and the proposed stencils specifically preclude triangles spanning them: 

vcv, vtc, and ctc.

If two vertices lie on the same lattice face, the triangle’s aspect ratio, a rf, can only fall 

below e if the third vertex is in violation of the face containing the other two. This includes 

the third vertex violating an edge of the lattice face containing the two vertices.

Finally, if all three vertices lie on unique lattice faces, the triangle’s aspect ratio, arf , 

can only fall below e if all three vertices are violating the vertex incident to all three lattice 

faces.

L em m a 7 All output tetrahedron have e-good dihedral angles.

P r o o f  : Let t be an output tetrahedron. By Lemma 5, t has at least two faces joined at 

an e-good dihedral angle along an edge e. By Lemma 6  the triangles incident to edge e are 

e-good. The existence of one good dihedral angle with two good faces incident to it implies 

t must have e-good dihedral angles everywhere.

T h eorem  1 There exists a dihedral angle, d* >  0°, such that the dihedral angles of all 

tetrahedra are bounded from below by d* and above by 180° — d*.

P r o o f  : By Lemmas 7 and 2.

This proof shows that the meshes from the lattice-cleaving algorithm never degenerate, 

in fact Lemma 6  also ensures we produce no bad solid angles (e.g., “ spires” ), despite them
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lacking bad dihedral angles. Moreover, in practice, with proper choice of a, this bound, 0*, 

is significant, and empirical results in Section 4.11 corroborate this fact.

4.10.1 Geometric Fidelity

We next make a statement about the quality of the surface approximation. Let E be the 

interface surface, the complex of smooth surface patches where two materials meet, as well 

as the associated curves where three materials are coincident, and the points where four 

meet. E is a CW-complex, and geometrically behaves as a piecewise-smooth complex [26]. 

It also has a well-defined medial axis M  ̂ that we define as the closure of the set of points 

in R3 that have at least two closest points in E. Each point in M^ is the center of a ball 

that meets E only tangentially. Using the medial axis, we can quantify of the scale of 

features at each point p e  E. In particular, we define local feature size, lfs: E ^  R, as the 

distance from each surface point to the medial axis. Local feature size is well studied in 

smooth surfaces [3]. In the mutimaterial setting setting, local feature size approaches zero 

near triple junctions, which meet nonsmoothly. Consequently, we define the set of h-regular 

points, E h =  {p e  E | lfs(p) >  h} and restrict our claims to these.

Given a tetrahedron c in the mesh, we make a claim regarding its vertices. Let E|c be 

the restriction of E to c, defined as E n c. We define an h-regular tetrahedron c as one where 

the set of p e  E|c is regular.

L em m a 8  Given an h-regular tetrahedron c constructed from B C C  lattice edges which are 

no longer than h, any vertex v of c that is labeled as having two materials (surface vertex) 

lies on E .

P r o o f  : Because v has two materials, it is the byproduct of a warp and snap to bring it 

to the E. Prior to this, v underwent a sequence of operations that depended on the cuts 

of edges incident to v . As long as there was only one such cut, v only warped once, and 

directly to the surface as computed by the indicator function oracle. We prove that because 

c is h-regular, this is always the case. Assume, for sake of contradiction, that there were 

multiple cuts, of different materials, on edges incident to v (if the materials were identical, 

we preferentially pick the closest cut to move to). Without loss of generality, assume there 

are two cuts of material type A B  and B C , we call x  and y. Both x  and y lie in the violating 

zone, on an edge incident to v. They are no further apart than 2hashort <  h. This indicates 

that the two surface patches defining these cuts are no further apart than h as well.

We show there must be a medial axis point within distance h of E|c. Consider the medial
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axis for any single connected material region. By definition it is a deformation retract 

of this region, and in addition, it touches any point where three materials meet. Thus, 

within a single region, the medial axis is a single connected component which connects all 

triple-points. If we walk along the line segment joining x  and y, we must therefore cross 

the medial axis, because otherwise it would violate the above property. As a result, there 

is a medial axis point at this crossing. This medial axis point must be within distance h 

of v. However, because v lies on E|c, this violates the fact that c is h-regular, leading to a 

contradiction.

In generalizing this case to when more than two cuts are adjacent v , the same logic holds 

for any pair of them, which is sufficient to create the same contradiction above.

All h-regular tetrahedron are well-behaved; in general, they act just like the tetrahedra 

in the isosurface stuffing algorithm [62]. Most importantly, when they do mesh a piece 

of the surface, they geometrically approximate the surface. As with any pointwise probe, 

it is impossible to guarantee that there are no tiny features missed on account of the 

mesh resolution being too coarse. However, we can guarantee that for h-regular tetrahedra 

containing surface patches of E, every point on an interface triangle representing this patch 

lies close to E. This “one-sided” notion of distances mirrors Theorem 2 of [62] (only the 

distance of every mesh vertex to E is bounded). When the mesh is of fine enough resolution 

and each surface patch of E sufficiently smooth, the distance bound for h-regular tetrahedra 

becomes two-sided— the claim follows for distances from E to the mesh.

4.11 Results
Our implementation of lattice cleaving is extremely fast, requires virtually no user 

interaction, and achieves bounded dihedral angles. These bounds depend on choices of 

the violation parameters a long and « short. In this section, we discuss the importance of 

these choices, demonstrate the lattice cleaving algorithm on various datasets, and discuss 

other aspects of the algorithm.

4.11.1 Parameter Choice
The a long and « short parameters determine the distances along an edge, beyond which 

an edge-cut is considered “safe” , or nonviolating. They decide the trade-off between snap

ping/warping and stencil cleaving. A user who is primarily interested in visualization might 

choose to turn off violations completely by using a long =  0 and « short =  0. This will give the 

most accurate geometric representation with possibly degenerate elements. As the alpha 

values increase, the severity of the worst possible dihedral angles decreases, up until a point.
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With sufficiently large alpha values, lattice tetrahedra may become flat or even inverted. 

If a user is interested in only one side of the interface, flat elements can be tolerated by 

stripping them from the surface.

Because our meshes represent volumes on both sides of each interface surface, the most 

appropriate parameters would seem to be those used by Labelle and Shewchuk [62] in the 

double-sided surface case. However, our multimaterial violation conditions use slightly more 

conservative bounds to take into account the dihedral angles near triples and quadruples. 

We picked the parameters a short =  0.357 and aiong =  0.203 and found they achieved a worse 

case minimum angle of 2.76° and worst case maximum angle of 175.426°. In practice, after 

simulating many hundreds of times steps of several dozen fluid simulations, corresponding 

to hundreds of millions of tetrahedra, we see much better angles for the vast majority of 

meshes.

4.11.2 Aliasing
A fundamental aspect of the lattice cleaving algorithm is that it operates at a fixed 

resolution. Any feature that falls below grid width will not be captured in the output 

mesh. For two-material interfaces, this simply results in the smoothing of a surface, or 

removal of small topological features. For three-material interfaces, the behavior becomes 

more interesting. As the feature size around a three-material interface always goes to zero, 

there will always be some degree of approximation. But beyond that, the interaction of the 

background lattice faces with this approximation can lead to regular patterns of topological 

aliasing.

Figure 4.12 illustrates a scenario that can arise in 2D. In the scenario, two material 

interfaces come together at a sharp corner. Because the BCC lattice contain vertices from 

two sets of regular grids, (primal and dual), neighboring lattice faces alternate having either 

two or three unique material labels on their vertices. This leads to a saw-tooth-like pattern 

of spikes and pillars that form topologically distinct regions.

These aliasing artifacts are sometimes taken care of through the snapping and warping 

procedure, because the sharp spikes that form are often in a violating condition anyway. 

However, because there is a space of cases which are not handled by snapping, explicit 

solutions for this problem are needed. A range of possible solutions exist, such as smoothing, 

tightening [111], or morphological operations such as dilation and erosion. If the input data 

cannot be smoothed, one could also design discrete local operators that intelligently change 

material labels on lattice vertices to avoid aliasing.
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Figure 4.12. Sharp features can interact poorly with the background lattice. (a) Three 
materials meet in a sharp corner feature. (b) Using material labels at each lattice 
vertex results in aliasing artifacts. (c) preprocessing (e.g., smoothing) indicator functions 
eliminates this problem.

4.11.3 Examples
To illustrate some of the datasets for which lattice cleaving can be used, we provide 

several examples. Run times for these datasets were calculated on a machine with an Intel 

Core i7 3.2 GHz CPU and 12GB of RAM.

Figure 4.13 shows a mesh generated from a segmented MRI scan of a human head. The 

algorithm completed in about 1 0 0  seconds and produced a mesh with roughly five million 

elements, all with dihedral angles between 4.33° and 157.98°. Figure 4.14 shows a mesh 

generated from a similar scan of a human torso. The algorithm completed in under a minute 

and produced a mesh with roughly 1 2  million elements, all with dihedral angles between 

5.11° and 159.91° .

It is often necessary to visualize multimaterial tetrahedral meshes before any simulation 

work is conducted. This spans from the need to qualitatively verify results are accurate, to
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Figure 4.13. Meshes generated from MRI scan of a human head. Resolution: 
264 x 264 x 264. Dihedral angles: [4.33° — 157.98°]. w 5.3 million elements.

F igure 4.14. Meshes generated from MRI scan of a human torso. Resolution: 
208 x 96 x 208. Dihedral angles: [5.11° — 159.91°]. w 12.6 million elements
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spotting unexpected features that might influence solutions. Figure 4.15 shows a visualiza

tion generated from a segmented frog MRI. The input volume was 260 x 245 x 150 in size, 

and took just over a minute to mesh. The surface meshes can be extracted from the lattice 

cleaving algorithm as a postprocess or generated alongside the tetrahedral mesh using the 

same stencil set.

This work also applies to multiphase fluid simulation and animation. To demonstrate 

this, we utilize the lattice cleaving algorithm in the core of a multiphase viscous fluid 

simulation. Figure 4.16 shows a rendering and cutaway view of the underlying mesh used 

for physics. This simulation used a 643 background lattice (primal vertices), required 8  

seconds to mesh, and produces, on average, 1.2 million tetrahedra. Figure 4.17 shows a 

histogram of the dihedral angles generated from 350 simulation frames. The majority of 

elements are of excellent quality, with small tails near the expected bounds. Counts for 

angles belonging to unwarped background lattice tetrahedra are scaled down.

4.11.4 Algorithm Comparison
We evaluate the proposed meshing algorithm against two other packages commonly used 

in biomedical meshing: BioMesh3D v1.0 [11, 76] and CGAL v3.9 [104]. BioMesh3D uses 

variational optimization [76] to sample a domain and TetGen [100] to construct a Delaunay 

tetrahedralization of those samples. CGAL’s 3D mesh generation package contains an 

engine based on Delaunay refinement [34, 8 6 , 96].

We compare these methods through their performance in three state-of-the-art simula

tion experiments. The first simulation is from an osseointegrated bone implant experiment, 

studying the effects of using direct current cathode stimulation to enhance the ability of 

implants to fuse into the skeletons of rabbits [55]. The second simulation is used for modeling 

the effects of EEG source on a human skull [37]. The third simulation used is for modeling 

ICD placement for defibrillation in children and adults [107].

Tables 4.1-4.3 show the results of the simulations for these three biomedical applications, 

using the meshes generated by the three methods. For each of these experiments, we 

tuned parameters of the different system to get approximately the same number of elements 

(within a factor of 2). We analyzed the geometric quality of the mesh (dihedral angles), 

the condition numbers of the resulting stiffness matrices, and the number of iterations the 

solver took to converge. All of these simulations use the finite element method with linear 

elements and they are solved using the SCIRun 4.5 [91] implementation of the minimal 

residual (MINRES) method [80] (a variant of the conjugate gradient method), combined 

with a Jacobi preconditioner.
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Figure 4.15. Visualization using surface meshes generated from a segmented frog MRI. 
Resolution: 260 x 245 x 150. Dihedral angles: [6.06° — 154.28°]. «  14.8 million elements.



73

Figure 4.16. A multiphase viscous fluid simulation. Each frame uses a conforming mesh 
to compute fluid physics.
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Table 4.1. Torso Simulation: 10 materials, 208 x 96 x 208

Method Elements (m) Min Angle Condition Iterations
Cleaving 1 2 . 6 7.43 5.42e+06 553
BioMesh 2 2 . 1 0 . 0 0 2.94e+09 399
CGAL 14.5 0.04 2.42e+07 1008

Table 4.2. Head Simulation: 8  materials, 264 x 264 x 264

Method Elements (m) Min Angle Condition Iterations
Cleaving 11.7 6.49 1.57e+18 493
BioMesh 7.9 0.18 7.49e+18 525
CGAL 11.5 0 . 0 1 1.04e+20 1026

Table 4.3. Rabbit Leg Simulation: 6  materials, x520 x 520 x 300

Method Elements (m) Min Angle Condition Iterations
Cleaving 5.5 7.80 1.22e+07 728
BioMesh 4.3 0.53 1.12e+07 1143
CGAL 5.6 0.03 8.94e+07 1490

We see from these simulations that the proposed meshing algorithm gives better overall 

bounds on dihedral angles and thereby avoids badly shaped tetrahedra. For the simulations, 

the proposed mesher and and BioMesh perform similarly, while both mesh techniques gen

erally outperform CGAL, requiring roughly half the number of iterations for the numerical 

solvers to reach convergence.

Some of these differences are also seen qualitatively looking at renderings of these meshes, 

as in Figures 4.18-4.20. Here we see the rough, aliasing-type artifacts that result from 

the fact that CGAL operates only on discrete label maps— a reasonable explanation for 

the differences in simulation outcomes. Qualitatively, the proposed method and Biomesh 

are similar, but exhibit different strategies on grading/adaptivity. Besides the bounds on 

dihedral angles, the proposed method has significant advantages in reliability, robustness, 

and ease of use. All of the results for the proposed method were produced in one pass using 

one free parameter, which is the resolution of the finest mesh, and each took between 30 to
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Figure 4.19. Cross-section of the tetrahedral head mesh generated using BioMesh3D.
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Figure 4.20. Cross-section of the tetrahedral head mesh generated using Lattice Cleaving.

300 seconds. CGAL performance was competitive, each mesh taking only a few minutes to 

complete. BioMesh3D performs a series of variational optimizations with a set of interacting 

particles, and has a variety of free parameters. The BioMesh3D results required trial and 

error testing for parameter tuning in order to obtain valid mesh results. Each full mesh 

took over 1 2  hours to compute.

4.12 Discussion
We have developed an extremely fast and robust conforming tetrahedral meshing algo

rithm for multimaterial volumetric domains. This method is guaranteed to produce meshes 

with bounded element quality and empirically this bound is significant, between 2.76° and 

175.426°. In practice, angles tend to be much better. An open-source implementation of 

this method, called Cleaver [90], is now available.

The method falls under the category of stenciling algorithms, operating locally on 

portions of a volume. As such, it is highly parallelizable and amenable to hardware 

acceleration. Moreover, a single generalized stencil is used for all stencil cases, removing 

the need for error-prone case tables while ensuring consistent meshes.

An octree structure is used to reduce element count by providing didatic grading in 

homogenous regions. Future work worth exploring is achieving grading on interface surfaces, 

which may be sufficiently smooth as to not require finest grid resolution elements. Similarly, 

alternative background lattices and stencils should be examined for the purpose of achieving
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anisotropic elements, which are invaluable for particular domains.

The simplifying restriction of at most one material transition per edge was instrumental 

in making this problem tractable. However, this restriction also places requirements on 

the smoothness of the input surfaces in order to avoid artifacts. Allowing for up to two 

transitions per edge might also relax this smoothness restriction significantly, if a suitable 

set of safe and compatible stencils can be constructed.

As formulated, the algorithm is oblivious to vertex ordering. The same mesh, provided to 

the algorithm in a different vertex/element input order, can produce slightly different output 

meshes. This might be an undesirable property for some needs, and could be overcome by 

enforcing an artifical ordering on the vertices, such as material priority or spatial ordering. 

Similarly, for domains that require perfectly symmetric meshes, this symmetry could be 

encoded into the vertex/element ordering to ensure that the algorithm operates symmetricly 

across the input domain.



CHAPTER 5

UNSTRUCTURED AND ADAPTIVE 
CLEAVING

In this chapter, we propose a new strategy for building boundary conforming tetrahedral 

meshes. We take an approach of explicitly decoupling the problem of conforming the mesh 

from all other aspects of meshing. This strategy is based on the observation that several 

somewhat effective methods exist for adaptive, and even anisotropic meshing, but they 

typically have difficulty at boundaries. We observe that in the absence of the need to 

conform to a boundary, many other aspects of meshing become much easier to achieve.

The proposed strategy is to first build a background mesh with the appropriate tetra

hedral properties in terms of size and shape. Next, we apply a single cleaving step which 

conforms the mesh to a boundary without greatly disturbing the characteristics of elements 

in the initial mesh. Near where we conform, we do expect some degradation to occur; 

however, the effects are minimized through a carefully designed set of mesh warping and 

improvement operations.

In developing this new framework, we make several technical contributions including a 

new method for building graded, unstructured meshes as well as a generalization of the 

isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. By 

starting with an input mesh satisfying constraints on the elements first, we observe that the 

technique for making it conform to a boundary leads to only a bounded degradation in the 

nature of the elements. Moreover, we never need to iterate, for example between improving 

element quality and recapturing the boundary. This result is a generalization of those 

reported by the well-known isosurface stuffing [62] and lattice cleaving algorithms [19]. Both 

algorithms show exactly the same behavior, albeit for a more limited class of boundaries 

(in the case of isosurface stuffing) and input background meshes (both cases require BCC 

inputs). By decoupling the problems of satisfying element and boundary constraints, we 

treat meshing for elements of a particular type as a preprocess, enabling a broad range of
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meshing algorithms to effectively ignore boundary constraints, which can then be satisfied 

using the cleaving technique.

5.1 Background
The automatic construction of volumetric meshes has for decades been a relevant prob

lem in computational science and engineering. However, despite numerous successes, it 

would seem the state-of-the-art is still a “mesh du jou r” strategy, where for each new 

computational effort, an expert is needed to construct, either automatically or in practice 

semi-automatically, an appropriate domain discretization. One potential explanation for 

such an approach is that no one meshing algorithm can serve all needs, because no sin

gle set of constraints encompasses the necessary properties of every possible downstream 

application for which a mesh will be used.

Consequently, one of the most desirable properties in a meshing algorithm is the ability 

to construct meshes which are useful in a broad range of settings. This search for additional 

algorithmic flexibility is one explanation for the popularity of unstructured meshes of 

triangles and tetrahedra, in spite of their apparent deficiencies in potential solution quality 

relative to quadrilateral/hexahedral meshes [8 , 35, 38, 93]. Indeed, the simple need for an 

end user to build any mesh at all often trumps more sophisticated concerns. Satisfying 

(automatically) a complex set of meshing constraints on element size, shape, number, 

type, alignment, and/or orientation while still capturing salient boundary conditions is a 

formidable task. Individual constraints often conflict with each other. For example, meshing 

with perfectly isotropic elements strictly prevents the ability to vary the size, because to 

shorten one edge relative to others would create some slight amount of anisotropy. Other 

constraints act in concert, for example, matching a global alignment field can naturally lead 

to anisotropic shapes of elements.

Techniques that “start with a boundary conforming step and then create elements to 

mesh the interior” often suffer because preserving the boundary frustrates efforts to achieve 

other element characteristics. Because the boundary constraint may be too rigid, there 

may no longer be enough degrees of freedom to build a mesh with the remaining prescribed 

characteristics. Both the amount of work needed to fix the few bad regions, as well as final 

amount of improvement in element can sometimes be unknown. For example, Delaunay- 

based approaches for first meshing surfaces (both smooth and piecewise-smooth) followed 

by volume refinement typically lead to slivers [13, 14, 25, 26, 27]. In this setting, the core 

challenge is that removing slivers may require iterating between improving element and



81

boundary quality [1, 106] or other complex techniques [24].

With the exception of lattice-based approaches, when meshing to conform to a boundary, 

the majority of meshing algorithms first try to capture the boundary constraint. Typically, 

such meshes are produced by meshing boundary features in an increasing dimensionality. 

For example, if the domain contains sharp features, meshes are first constructed for the 

0 - and 1 -dimensional feature curves, followed by 2 -dimensional feature surfaces, and then 

the embedding volume is meshed with elements. This paradigm of meshing is natural 

for advancing front techniques, because the boundary elements provide a seed surface 

from which to grow the front. We remark that an interesting conclusion, parallel to this 

work, in the domain of hexahedral meshing by advancing front (paving and plastering) is 

that relaxing the boundary constraint by delaying boundary meshing leads to improved 

results [1 0 2 ].

Meshing by sequencing through boundaries of increasing dimension is particularly pop

ular for tetrahedral meshing in the presence of complex non-manifold boundaries (both by 

Delaunay and variational methods, or combinations of them [14, 17, 25, 76, 106]). However, 

as dimension increases, the collection of lower dimensional elements impose an increasingly 

complex set of constraints for the next stage of meshing. In terms of Delaunay refinement, 

this typically means that the placement of locations for new vertices becomes limited. For 

example, the insertion of points to improve elements may be blocked because they would 

otherwise disturb boundary features [14, 25, 26]. In terms of variational approaches, this 

means that the next stage of optimization becomes a more expensive constrained energy 

minimization [1 , 17]. Alternatively, one can allow the boundary to be disturbed, but then 

iterate in attempt to reconform to the boundary. [106]. Nevertheless, the Delaunay-based 

techniques often offer provable guarantees on the ability to conform to piecewise linear [96], 

smooth [13, 27], and piecewise-smooth [14, 25] boundaries.

While guaranteed meshing with Delaunay-based approaches is an seminal advancement 

of the meshing community, where the proofs break down motivates a new approach. Often, 

these algorithms have only limited results on the characteristics of elements lying near the 

boundary. For example, a common property is a bound on the circumradius to shortest 

edge ratio (naturally improved by the Delaunay property). However, this ratio does not 

optimize for quality in terms of dihedral angles, and thus the creation of sliver elements is 

possible. Slivers are created when sampling a smooth surface and meshing volumetrically, 

because a dense enough sample on the surface creates a number of almost-planar placements 

of vertices. In the simplest approach, inserting the circumcenter of a sliver tetrahedra [97]
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in practice destroys slivers, but in the context of Delaunay meshing, it cannot be proved 

that this process terminates nor holds near a boundary [61]. More sophisticated techniques 

for sliver exudation exist which both require expensive computational tools and can only 

offer limited improvement (the very worst slivers are removed, but some significantly low 

dihedral angles persist) [24].

By comparison, approaches that start with a background lattice are presented with 

the opposite challenge. In the absence of a boundary constraint, it may be possible 

to mesh volumetrically and satisfy a broad range of constraints. However, proving one 

can still capture the boundary becomes more complex. Typically, these approaches use 

a highly structured lattice to rapidly construct meshes with are self-similar, such as an 

octree [92, 116]. While what we can prove about lattice-based algorithms is limited, 

there is a growing body of work. For 2D domains, it was shown that a quadtree can be 

provably adapted to lead to a capturing a polyhedral domain [10]. More recent approaches 

apply the body-centered cubic (BCC) lattice, which is not only a naturally good domain 

for approximating trivariate functions [54], but also a Delaunay triangulation with good 

dihedral angles everywhere. Labelle and Shewchuk were the first to use BCC lattices as 

background meshes to build tetrahedral meshes that conforming to a smooth boundary while 

maintaining dihedral angle bounds [62]. Algorithms such as those of Zhang et al. [120], 

Chernikov and Chrisochoides [31], and Liu et al. [6 6 ] extend some of these ideas to the 

case of multimaterial medical domains with significant experimental results. Most recently, 

Liang and Zhang prove bounds on constructing adaptive meshes which conform to smooth 

surfaces [64]. Bronson et al. [19] generalize the results of Labelle and Shewchuk with their 

lattice cleaving approach, and were also able to generalize a proof that in the case of 

multimaterial boundaries, a bound for the dihedral angles of the resulting elements exists. 

In this chapter, we generalize the result of lattice cleaving to arbitrary background grids 

with a broader range of input characteristics.

5.2 Meshing Pipeline
The strategy we propose is to separate the creation and adaptivity of quality volume 

elements from surface conforming constraints. This separation can be achieved through 

a volumetric meshing pipeline (Figure 5.1). First, the desired and necessary element 

characteristics throughout the volume must be determined. These constraints are then 

used as input to a meshing algorithm to generate an ambient background mesh. This 

mesh will know nothing of material interfaces, but will have appropriately sized elements
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Figure 5.1. Proposed meshing pipeline for conforming volumetric meshing.

thanks to the sizing field driving it. Finally, this background mesh will be fed to the 

cleaving algorithm, where elements near material interfaces will be cleaved to conform to 

these surfaces. We provide algorithms which are separately capable of handling the specific 

pieces of this pipeline.

5.3 Local Feature Size and Sizing Fields
Mesh elements must be adaptively sized for the purpose of geometric fidelity and PDE 

solution accuracy while simultaneously reducing the number of elements needed for an 

accurate numerical simulation. A sizing field is a scalar field that at every point dictates 

the ideal size of an element centered around that point. We suggest that a suitable sizing 

field should posses the following properties: a) it should be small near thin features and 

high-curvature regions; b) it should progressively increase for larger features and lower- 

curvature regions; c) it should be sufficiently large at points that are far from material 

interfaces; and d) it should satisfy Lipschitz continuity conditions. Abrupt changes in the 

sizing field is undesirable because the quality of the resulting elements is likely to be poor.

In surface mesh generation algorithms, the concept of feature size has been widely used 

to accurately capture the topology of the object that is being meshed. It is defined only 

on the surface of the object, and it is defined as the distance from the medial surface of 

the object. The medial surface is a surface formed by those points that have more than 

one closest points on the object boundary. It is also referred to as the “skeletonization” 

an object. Thin features have a small feature size, and large features have a large feature 

size. The feature size is used to place vertices on the object surface so that the features are 

accurately captured by a surface meshing algorithm.

The feature size defined on the surface of an object can be extended over the whole 

domain to dictate the size of elements in every region of the domain. Persson [82] describes 

an algorithm that uses a variant of distance transform (DT) computed from the surface of 

the object using the feature size as the initial set of values for the DT. The DT is a scalar 

field that specifies the distance to the closest point, curve, or surface. It can be visualized as 

a series of wave fronts emanating from the given set of points, curves, or surfaces. Figure 5.2 

provides an illustration of the DT of a C-shaped object and its medial surface (medial axis,
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Figure 5.2. The relationship between a shape’s medial surface and distance transform level 
sets. Left: The medial surface (axis) of a C-shaped object. Right: The distance transform 
level sets. Note, the distance transform is also computed outside the object.
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in 2D). Notice that the discontinuity in the Hessian of the DT indicates the medial surface.

The algorithm to compute a sizing field is based on the work of [15] and [82], and it 

is performed on a voxel domain with subvoxel accuracy. The technique relies on solving 

for three DTs over this domain. First, the DT is computed starting from the material 

boundary surfaces. Because the DT is nonsmooth only where the wave fronts collide and is 

linear otherwise, we can use the Hessian to compute the set of points on the medial surface. 

The Hessian vanishes at all locations except at the medial surface. The voxels where the 

Hessian does not vanish define the medial surface. Next, the DT is computed again from 

the medial surface. The values of the DT at the boundary locations thus define the feature 

size at those points. Finally, the DT is computed again from the boundary. This time, the 

initial value at the boundary is set as the feature size computed in the previous step and 

the gradient of the DT is limited as a user parameter. This gives us the sizing field over 

the whole domain.

To initialize the starting value for the first DT, we have to find the approximate locations 

of material interfaces on the edges of the voxel grid. The DT solver uses the fast marching 

method (FMM) [71] that is second-order accurate and is used with a heap-based priority 

queue. Note that a 3 x 3 x 3 stencil is required to compute the Hessian. Thus, the resolution 

of the grid should be appropriately chosen to capture the features of the require size.

5.4 Electrostatic Particle Distributions
Particle systems are often used in mesh generation algorithms in order to obtain a 

distribution of points satisfying certain constraints. For instance, the idea of centroidal 

Voronoi diagrams has been used in several mesh generation algorithms [43] for isotropic 

point distribution requirements. The concept has been extended for anisotropic metrics [44] 

as well. Other notable examples of the use of particle systems in mesh generation include 

the surface sampling technique of Hart et al. [53], Yamakawa and Shimada’s ellipsoidal 

bubble packing algorithm [114] and the particle sampling technique of Meyer et al. for 

multimaterial meshing [76].
In each of these techniques, a stable point distribution is achieved by iteratively minimiz

ing an energy function that matches the meshing requirements. These approaches typically 

distribute particles on material interfaces first, using these surfaces as a constraint for a 

volumetric meshing algorithm. In contrast, this new approach to adaptive mesh generation 

distributes particles directly over the whole of the domain, without any regard for material 

interfaces. These points are provided to a Delaunay tetrahedralization algorithm to build 

a background mesh suitable for the next stage of the new meshing pipeline.
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We propose a new electrostatic particle simulation technique to distribute particles over 

the whole input domain. A pipeline describing the algorithm for generating an unstructured 

background mesh is shown in Figure 5.3. Unlike typical electrostatic particle systems, in 

which particles tend to gather at protrusions and sharp feature, this new approach produces 

particle distributions that accurately match the input sizing field specification. Particles 

are given an electrostatic charge as usual, but the domain itself is also given an opposite 

charge.

This background charge interacts with particles in such a way that a net-zero charge can 

only be produced when the set of particles precisely matches the desired input sizing field. 

The particle distribution technique is designed such that the regions of the domain with a 

small feature size will have a large charge density, while regions with larger feature size will 

have a smaller charge density. This ensures that greater number of particles congregate in 

the region where they are desired. Figure 5.4 provides a pictorial illustration of a particle 

system where more particles are needed in the three circular regions.

The force on a particle in the domain is a sum of both the background charge density, 

as well as the other particles in the domain. The force due to the background charge 

density is determined by computing the gradient of the electrostatic potential due to the 

charge density, and the force due to other particles is computed by summing up the forces 

from all other particles in the domain. The particles are moved based on the particle-field 

and particle-particle interactions. When the system converges to a stable equilibrium, the 

distribution will respect the provided sizing field.

5.4.1 Charge Density
In order to compute the charge density corresponding to an input sizing field, we exploit 

the relationship between a sizing field and optimal sphere packing density. The optimal 

sphere packing density (fraction of volume filled by spheres) for a hexagonal close packing 

is n =  ~^2. Let the volume of the domain be V , and assume a uniform sizing field, l, in the 

domain. The number of spheres, n, of the radius l/2 in the volume is given by

Figure 5.3. Proposed pipeline for generating an adaptive, unstructured background mesh.
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Figure 5.4. An illustration of a particle distribution over a domain. These particles pack 
with locally desired densities but do not lie directly on any material interfaces.
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n =  - ^ . (5.1)
3 n \ 2

We set the number of particles to be the nearest integer to the total background charge 

in the domain (computed by integrating the charge density). In this way, we realize 

a stable equilibrium where negatively-charged particles neutralize the positively-charged 

background. Therefore, we want n =  pV , where p is the charge density. Solving for p, we 

obtain p =  \ /2 /l3. Thus, the charge density is set to be inversely proportional to the cube 

of the sizing field. Note that any monotonically decreasing charge density with respect to 

the sizing field is likely to yield some results that respect the adaptivity requirements, but 

its feasibility depends upon the application.

5.4.2 Electrostatic Potential

The electrostatic potential due to the background charge density is computed by solving 

the Poisson equation, V 2 u(x) =  f  (x), where u is the electrostatic potential and f  is the 

charge density. The Poisson equations are solved using the finite difference scheme on a 

structured grid with Dirichlet boundary conditions computed by summing up the potential 

due to the charge density at every point in the boundary. This process is accelerated 

using an octree-based technique. We use the linear conjugate gradient solver to determine 

the solution of the linear system resulting from the finite-difference approximation of the 

equation and boundary conditions.

In order to compute the local charge density and its gradient at any point in the domain, 

we utilize a cubic convolution-based interpolation technique over the structured grid. Its 

main advantage over a trilinear interpolation approach is the continuity of the gradient of 

the interpolated function over the whole domain, which helps the system avoid local minima. 

Additionally, the analytical gradient of the interpolant can be accurately computed. When 

trilinear interpolation is used instead, the particles get “ trapped” in the faces, edges, and 

corners of the cubic elements of the grid. This naturally results in a suboptimal point 

distribution.

5.4.3 Particle Simulation
For the electrostatic simulation, the number of particles that are seeded in the various 

parts of the domain is proportional to the local charge density. This ensures a quick 

convergence of the particle system because the movement of particles is locally restricted. 

Each individual particle is separately moved by a distance proportional to the force on 

the particle and the step size for that iteration. We adaptively vary the step size in
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each iteration. The process is accelerated using the octree-based Barnes-Hut simulation 

technique [7].

Each octant of the octree stores the location of the center of the charge distribution 

within the cell, as well as the total contained charge. The force on a particle charge at any 

location is computed by traversing down the octree. If the ratio of the length of the smallest 

side of an octant vs. the distance between the particle charge and the center of the charge 

distribution is lower than a threshold d, the force due to all the charges in the octant on the 

particle charge is approximated by a single point. This significantly reduces the number of 

floating operations required to compute the force on the particle charge. The particles are 

iteratively moved to optimal locations based on the forces acting upon them. Once a static 

equilibrium is reached, the particles are tetrahedralized using Tetgen [100].

5.5 Unstructured Cleaving
In order to produce a surface conforming mesh from an unstructured background mesh, 

we turn to a technique which, up until now, has been demonstrated to work only on regular 

lattices. Lattice Cleaving, like Isosurface Stuffing, is a stencil-based technique for producing 

conforming tetrahedral meshes with elements of bounded quality.

In one sense, these algorithms can be considered mesh processing algorithms. They take 

as input a mesh, a regular lattice of high quality tetrahedra (the Body-Centered Cubic 

(B C C ) Lattice), and through a series of vertex warps and stencil operations transform the 

mesh elements to conform to material boundaries (Figure 5.5). We use this paradigm to 

extend the technique to arbitrary unstructured and irregular background input meshes. 

We do this in the context of multimaterial volumes. This section details the technical 

considerations that need to be accounted for to achieve this generalization.

F igure 5.5. Illustration of lattice cleaving in 2D, Left: background mesh with material 
interfaces overlaid, Right: cleaved output
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The basis of the lattice cleaving algorithm remains unchanged. The input elements 

are still tetrahedra, the violation snapping and warping rules carry over, and the same 

output stencil set is used. However, there are two fundamental challenges when moving to 

an unstructured mesh: resolving stencil consistency across the shared face of neighboring 

background tetrahedra, and alpha parameter selection.

5.5.1 Consistency and Generalization
Some output topologies have multiple permissible tessellations. Without consideration 

for consistency, two neighboring tetrahedra may stencil their shared face differently, leading 

to a topological hole in the mesh. This problem can be avoided by carefully orienting each 

background element before applying output stencils. Isosurface stuffing does this using a 

simple parity rule that exploits the regular structure of the lattice. As we are interested 

in unstructured meshes, we cannot rely on any predetermined structure of an input mesh. 

Instead, we take inspiration from the approach used in the lattice cleaving algorithm.

Rather than rely on the background lattice structure, the lattice cleaving algorithm 

resolves stencil consistency by taking advantage of the fact that all output stencils can be 

generated through a series of material collapses of the most complex four-material stencil. 

This mapping is called a generalization. In this model, a set of stencil outputs is consistent 

if there exists a set of virtual interfaces that, when snapped and warped, would have led 

to that stencil set. The lattice cleaving algorithm for placing these virtual interfaces and 

their snap destinations is specific to the BCC lattice and so we develop a more versatile 

algorithm.

We observe that if you take a three-material face, the only way a set of cuts cannot 

collapse into a simpler stencil form is when their movement forms a cycle (Figure 5.6). 

We further observe that for any set of valid face generalizations on a tetrahedron, there is 

always a way to move a virtual quadruple-point to obtain a valid stencil.

One way to guarantee a set of virtual cuts never move in a cycle is to enforce an ordering. 

If each vertex is given an integer id, then enforcing a rule that a virtual cut always moves to 

the higher (or lower) vertex is sufficient. Most mesh implementations store an ordered list 

of vertices anyway, so creating this order is trivial. The remaining work is determining the 

destination of virtual triple-points and virtual quadruple-points. Because the triple-point 

of a face is shared, any valid destination will by definition be consistent across the face, 

and because quadruple-points exist on the interior of tetrahedron, any valid destination 

will suffice.
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Figure 5.6. Not all virtual cut placements are safe. Left: Cyclic virtual cuts lead to an 
unsatisfiable generalization. Right: Any ordered priority can lead to safe generalization.

There are two principles to selecting valid virtual interface locations: Virtual interfaces 

always snap to the next smallest simplex with the most collocated virtual interfaces, and ties 

are always settled in favor of real interfaces over virtual interfaces. Figure 5.7 illustrates the 

two ways this manifests on a background lattice face. If one virtual cut exists, the virtual 

triple snaps to the real cut on the edge incident to the snapped virtual cut. This collapses the 

missing third material region onto the edge. If two virtual cuts exist, the virtual triple snaps 

to the colocation of the two virtual cuts (i.e., the vertex with the smallest id). Similarly, 

the missing materials collapse onto an edge and onto a vertex.

5.5.2 Alpha Selection and Quality Guarantees

In the lattice cleaving and isosurface stuffing algorithms, the alpha parameter controls 

the trade off between stenciling and warping. It does this by defining the regions in which an 

interface is considered to be violating, and will need to be snapped. Labelle and Shewchuk 

utilized an automated computational proof to determine optimal alpha parameters for the 

long and short edges of the BCC lattice in isosurface stuffing. For the multimaterial case,

F igure 5.7. This figure illustrates the generalization of one and two material face stencils. 
(left) A two-material stencil is generalized. The virtual cut on the edge connecting vertex 0 
and vertex 1 moves to vertex 0. The virtual triple follows the cut onto the edge connecting 
vertex 0 and vertex 2. (right) A one-material stencil is generalized. All virtual cuts move 
to the adjacent vertices with the lowest index. The virtual triple follows the virtual cuts 
that end up on the same vertex.

2 2 2 2

0 0
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the state space for this proof becomes computational infeasible, and so the authors provide 

a theoretical proof of bounds, and utilize conservative version of the parameters from the 

two material case.

As we move to an unstructured mesh, the challenge of finding optimal alpha parameters 

becomes even more difficult. While the BCC lattice has two edge lengths and symmetric 

elements, any given unstructured mesh may have no two neighbors with identical edge 

lengths or element shapes. Therefore, rather than having to choose two alpha values, short 

and long, the user must pick up to 2 |e| alpha values. The set of optimal alpha values is 

therefore unique for every input mesh, and must be computed at run-time.

We present an algorithm for computing conservative alpha violation parameters that 

allow the quality proof of lattice cleaving to still hold. This algorithm has the benefit of 

parameterizing the alpha values of each edge by a single global alpha value.

First, we observe that in the limit, as a  approaches zero, the background mesh stops 

all warps and stencil elements can become arbitrarily bad. As a increases, the snapping 

and warping procedure becomes increasingly aggressive, ultimately to the point where it is 

unsafe and may result in degenerate elements.

If we permit the four vertices of a tetrahedron to move in any direction, the shortest 

distance they can travel before the element becomes degenerate (coplanar) is along the 

shortest vertex altitude. If we show no preference to any particular vertex, they meet in the 

plane that is halfway along the altitude, or | from each vertex, where h is the height of the 

altitude. Figure 5.8 illustrates this in 2D. This observation provides an upper limit for how 

aggressive the a selection can be for any particular vertex with respect to a tetrahedron to 

which it belongs. We can then parameterize over this space as a  =  (1 — £)h for 0 < £ <  2 

and provide £ as a user parameter to optimize.

The algorithm for computing a set of a  parameters is thus as follows: Begin with 

current best guess for £ . For each vertex vi, iterate over all incident tetrahedra and set 

ai =  min j  ai, ( 2  — £ )h j .

In this formulation, the a parameters around a vertex are all the same and are stored 

on the vertex, rather than on the edge. This algorithm can be used in conjunction with the 

proof of bounds from the Lattice Cleaving algorithm [19] to prove that it also places bounds 

on the quality of output elements. We replace Lemma 3 of the proof with the following 

alternate lemma.

L em m a 3 For every tetrahedron with e-good dihedral angles, there exists a space of per

missible violation parameters a such that the tetrahedron will retain e-good angles after
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a = (0.5 - Qh

Figure 5.8. Illustration of how the maximum safe distance that a vertex may move is 
bounded by the height of the corresponding altitude.

warping.

P r o o f  : Let t be a background tetrahedron with e-good angles. Whether measured by 

aspect ratio or dihedral angle, the tetrahedron decreases in quality towards degeneracy as 

the vertices approach becoming coplanar. The shortest path vertices can move during a 

warp to create such a coplanarity is along the shortest altitude. Therefore, any safe set of 

a values must follow the inequality

a i +m ax| a 2 ,a 3 ,a 4 } < h, (5.2)

where a i is an a-ball around vertex vi and v1 is the vertex with the smallest altitude. This 

inequality is easy to satisfy and can be parameterized as

a =  ( 1  - £)h for 0 < £ <  1 . (5.3)

As £ approaches 2, the maximum safe alpha values are reached. As £ approaches 0, 

warping becomes increasingly restricted.

5.6 Evaluation
Together, the contributions of this chapter offer a full multimaterial volumetric meshing 

pipeline. In this section, we illustrate what such a system is capable of through the 

use of both synthetic and real-world data. As discussed in Section 5.4, the electrostatic 

particle formulation, while extendable to further optimization, currently only optimizes 

vertex positions and may produce low volume elements. For comparison, for each example
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dataset, we generate results using both the electrostatic background mesh, as well as a 

structured, adaptive octree mesh. In this way, the cleaving of these meshes may more easily 

be seen as a mesh processing procedure, with results for both input meshes compared side 

by side.

The implementation for creating the adaptive octree background meshes is straight

forward. The octree begins with a single cell that encloses the whole domain. The algorithm 

queries a sizing field oracle that returns the minimum sizing field within the cell. If this size 

is smaller than the width of the cell, the tree subdivides. This routine is ran recursively 

until the smallest local feature size is no smaller than half a cell. Then, the graded stencil 

set from [19] and [62] is used to fill in the tree and output the background mesh.

We ran the experiments on a single core of the 16-core AMD Opteron 8360 SE 2.5GHz 

processor with 96GB of RAM running the openSUSE 11.3 (x86_64) operating system with 

gcc (SUSE Linux) 4.5.0 20100604 compiler. The size of the mesh background and the 

output generated by the implementation is reported in Table 5.1. The timing for each stage 

of the pipeline for structured and unstructured meshes is reported in Table 5.2 and 5.3, 

respectively. In the particle simulation, the threshold 0 (see Section 5.4) was reduced from 

1 to 0.25 in 200 iterations and held at 0.25 for the next 100 iterations. The time taken for 

the first 200 iteration is roughly one-third the time reported in Table 5.3.

Figure 5.9 contains a synthetic dataset of various spheres. These spheres can each 

be independently meshed with a fewer number of tetrahedra, but together produce small 

cavities that drive the sizing field down. The surfaces and background meshes adapt to 

this sizing field as necessary. The left result is generated from a graded octree background 

mesh, and the right result is generated from a graded electrostatic mesh.

Table 5.1. The size of the domain and the sizes of the background and output meshes. 
S denotes structured meshes, and U denotes unstructured meshes.

Domain Size
Mesh Background Mesh Output Mesh
Type #Vertices #  Elements #Vertices #  Elements

Torus [64, 64, 64] S 35,082 175,456 35,951 180,238
U 13,556 82,298 14,259 85,626

Spheres [64, 64, 64] S 26,219 129,804 26,921 133,858
U 11,856 71,160 12,500 74,050

Torso [64, 64, 64] S 145,240 721,678 149,818 746,955
U 60,867 360,182 64,826 378,361

Frog [260, 245, 150] S 1,057,586 5,347,544 1,087,272 5,515,823
U 70,415 428,173 74,489 447,741
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Table 5.2. The time taken for each stage of the pipeline to generate the structured meshes.

Domain Time (in seconds)
Sizing Field Background Mesh Warping/Cleaving

Torus 2.15 6 15
Spheres 2.39 7 1 0

Torso 4.50 43 97
Frog 288.9 520 2 0 2

Table 5.3. The time taken for each stage of the pipeline to generate the unstructured 
meshes. Note the time taken to generate the sizing field is not included in the table because 
it has already been included in Table 2 for structured meshes.

Domain Time (in seconds)
Poisson Solver Particle System Tetgen Warping/Cleaving

Torus 2 2 2,466 1.40 5
Spheres 2 1 2,103 1.30 5
Torso 2 2 17,727 2.24 45
Frog 1,742 9,474 2.75 50

Figure 5.10 contains two meshes generated from a synthetic dataset of a torus and a 

sphere in close proximity. Grading along the surfaces as well as the background mesh can 

be seen in both the structured and unstructured meshes.

Figure 5.11 contains two meshes generated from an MRI of a human torso. The clear cut 

of the boundary of the domain can be seen on both the octree and electrostatic background 

meshes. Because the sizing field goes to zero at three-material junctions, user settings limit 

the sizing field in these regions. The time taken for each stage of pipeline is reasonable for 

the size of the domain and the size of the mesh needed to capture all the features in the 

domain.

Figure 5.12 contains two meshes generated from an MRI scan of a frog. The structured 

version of this mesh ends up being much larger due to the octree dimensions enforcing 

power-of-two dimensions. The unstructured background mesh has no such requirements. 

Note that the time taken to compute the sizing field is much larger for this domain than for 

other domains. This is because the size of the domain and the corresponding large grid on 

which the distance transforms are computed. The time taken to solve the Poisson equation 

is also large for the same reason. This can be accelerated using a suitable preconditioner 

such as the algebraic multigrid preconditioner. Although this domain needs more vertices to
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Figure 5.9. A set of four sphere materials. (top) structured background mesh (bottom) 
unstructured background mesh.

capture all the features present in the data than the torso dataset, the time taken to execute 

the accelerated particle system is much lower. This is due to the large size of the domain. 

As the particles are distributed further away from each other, the Barnes-Hut algorithm is 

able to approximate the forces from groups of particles that are at large distances from a 

particle in consideration.

Because the particle distribution technique is a global technique, i.e., the position of a 

particle depends on the position of all other particles (not just its neighbors), it is less likely 

to get stuck in a local optima. In each of the test cases, we were able to control of the number 

of vertices in a given region of a domain is a precise manner. While other refinement or
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Figure 5.10. A torus with a sphere inside it. (top) structured background mesh (bottom) 
unstructured background mesh.

variational techniques incrementally add vertices, this technique can determine the number 

of particles a priori. As it is slow, in real applications, we recommend running only a few 

iterations of the particle distribution scheme and using local techniques to optimize the 

positions of the particle or to improve the quality of the resulting background mesh.

5.7 Discussion
In this chapter, we have illustrated the potential power of decoupling the problems of 

mesh element and boundary constraints. The particle system presented achieves its goals 

with simplicity due to the lack of interface surfaces, and is simply one method for generating



98

90
d ihe d ra l a ng le

180

Figure 5.11. Section of human torso MRI with (top) structured and (bottom) unstructured 
backgrounds meshes.

unstructured background meshes.

One possible alternative algorithm to use for the background mesh generation of the 

pipeline is centroidal Voronoi tessellation (CVT). This technique is interesting because with 

variable metrics (as presented in [43]), it has the ability to push low volume elements to the 

boundary of the domain. This is ideal for the cleaving algorithm, because these external 

elements will ultimately be discarded.

We have also demonstrated that the lattice cleaving algorithm is extendable to unstruc

tured meshes in a straightforward manner. The method we chose for producing safe a 

parameters, though conservative, provides a starting point for more sophisticated methods.
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Figure 5.12. An MRI of a frog with (top) structured and (bottom) unstructured 
background meshes.

Its major drawback is being symmetric around a vertex. This means that as the difference 

in relative size of neighbor tetrahedra increases, the parameters will be increasingly more 

conservative. Detaching this symmetry constraint would be a significant step towards 

solving for truly optimal a  parameters.

As a whole, this work suggests that the union of traditional and combinatoric mesh

ing techniques promises to provide a fertile ground for new developments in high-quality 

conforming mesh generation for unstructured meshes.



CHAPTER 6

DISCUSSION AND FUTURE WORK

This dissertation has presented several novel advances in the area of tetrahedral mesh 

generation. The particle system from Chapter 3 demonstrated how parametric models are 

particularly well suited for variational meshing techniques. Optimization and triangulation 

in parameter space is efficient and does not suffer the complications of working in 3D. 

The work also showed that a precomputed sizing field is not a requirement for achieving 

high-quality graded meshes that adapt to feature size. The strategy of inferring a sizing 

field during optimization adds little cost to the variational approach while still achieving 

adequate adaptation.

The largest contributions of this work are the lattice and unstructured mesh cleaving 

algorithms of Chapters 4 and 5. The lattice cleaving algorithm provides the first conforming, 

multimaterial, tetrahedral meshing algorithm with angle quality guarantees. The speed of 

the algorithm makes it amenable not only to standard meshing problems, but especially 

to problems that require iterative remeshing to represent moving geometries. Moreover, 

the bounds of quality on the lattice cleaving method are significant, enabling numerically 

well-conditioned simulations. An open-source implementation of this algorithm, called 

Cleaver [90], has been made publicly available, and has been incorporated into several 

other open-source projects [46, 58, 91].

The generalization of lattice cleaving to unstructured domains is the second largest 

contribution of this work. Unstructured meshes offer the most flexibility while often re

quiring fewer elements than structured alternatives. Structured meshes are also unsuitable 

for some domains such as solid mechanics, where regular structure can introduce bias into 

solutions. By extending the lattice cleaving algorithm to arbitrary unstructured background 

meshes, we provided the ability to interchange background meshing algorithms for the 

desired purpose, while ensuring that these meshes eventually conform to boundary domain 

without creating degenerate elements.

The methods developed in this paper are by no means complete and leave behind several
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new open research problems. The remainder of this final chapter discusses various issues 

and shortcomings of the methods, with an eye toward future work. It concludes with some 

previously unpublished early work towards improving topological robustness of the lattice 

cleaving algorithm.

6.1 Discussion
Looking back at the work in this dissertation, there are a number of shortcomings and 

areas where improvements are desirable. Some of these shortcomings manifest as necessary 

trade-offs required for the algorithms to work, while others represent good candidates for 

further investigation. In this section, we reflect on some of these issues and discuss potential 

directions of research for addressing them.

In Chapter 5, we presented a proof that lattice cleaving generates bounded quality 

elements. Unfortunately, this proof does not tell us what the bound actually is, nor what 

the optimal values of alpha happen to be. The values we used to produce an empirical bound 

were found through trial and error. While a full computational proof of the style produced 

for isosurface stuffing appears intractable, an automated routine for pushing the empirical 

bound would be a highly attractive addition to this work. Conversely, our theoretical proof 

hints that there may be a noncomputational method of proving the angle bounds for the 

simpler case of isosurface stuffing. Such a proof would be not only be a great contribution 

in and of itself, but would also serve as a starting point towards a similar proof for lattice 

cleaving.
This dissertation focused on tetrahedral mesh generation. However, hexahedra are also 

a popular finite element for numerical methods. Looking at the success of lattice cleaving, 

it appears plausible that a similar strategy could be taken for achieving guaranteed quality 

hexahedral meshes of multimaterial domains. One of the biggest challenges in transferring 

this technique over to hexahedra is grappling with the space of topologies that can be 

produced by eight uniquely labeled vertices of a hexahedron. Even the two-material case 

has confounding many marching cubes implementations with ambiguous topological cases. 

A technique for automatically enumerating the space of topologies would be essential to 

tackling this problem.

The biggest shortcoming of the unstructured cleaving algorithm of Chapter 6  is the alpha 

value selection algorithm. This algorithm was instrumental in proving that the technique 

produces bounded quality output meshes, but leaves much to be desired. Aside from 

generating a conservative choice of alpha values, the method forces an unnecessary symmetry 

on alpha values around vertices. This symmetry corresponds well to the idea of the enclosing
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ball used in the proof, but it places an artificial and unnecessary restriction on alpha values. 

The true space of potential alpha values permits a unique alpha for every vertex-edge 

pair. This leaves huge potential for improved heuristics, approximations, and algorithms for 

generating alpha values. Even modest improvement to these routines could yield significant 

gains in output quality bounds for any given mesh. Rather than fixing alpha values prior 

to cleaving, one could also imagine a mesh-improvement algorithm that alternates between 

a cleaving step and an alpha improvement step. A cleaving implementation that supports 

reversible operations could even selectively optimize the poorest quality regions of any given 

mesh, preventing the waste of resources on portions of the mesh which, by good fortune, 

require no improvement.

As shown in the results of Chapter 6, a poor-quality input mesh leaves little room for 

cleaving to produce an adequate mesh. While the electrostatic particle formulation we used 

to generate the unstructured background meshes reliably produces point distributions that 

adapt to feature size, we ultimately rely on the problematic 3D Delaunay tetrahedralization 

of these points. In order for our method to robustly produce high-quality elements for the 

background mesh, some measure of volume or tetrahedral quality needs to be incorporated 

into the solution. If a single formulation is too problematic, a scheme that alternates 

between optimizing for electrostatic charge and tetrahedral quality might prove sufficient.

On the subject of feature size, our strategy for computing local feature size from a 

multimaterial field of indicator functions is not particularly robust. Detecting discontinuities 

in the distance field is a numerically sensitive operation. Further research into robust feature 

size computation would be indispensable not only to the work of this dissertation, but to 

every adaptive mesh generation technique that utilizes a sizing field. On the other hand, 

we ultimately use this sizing field to drive the creation of our background mesh via a 

particle system. In Chapter 4, we also showed that particle systems can use information 

passing to infer feature size. This strategy could possibly be adapted to work with our 

electrostatic formulation. One of the challenges of adapting the same strategy is that unlike 

the parametric models of Chapter 4, which provided explicit structure as a k-complex, 

the cleaving algorithm operates over volumetric indicator functions. The topology of the 

material interfaces defined by these functions is implicit. Overcoming this challenge would 

be a valuable contribution to this work.

Finally, the mesh cleaving algorithms presented in Chapters 4 and 5 rely on the sim

plifying assumption that only a single material crossing appears on any background edge. 

This simplification makes the number of topological cases tractable and representable with
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only a limited number of output stencils. Unfortunately, this simplification also means 

that both sharp and very small features may not be captured properly, depending on their 

orientation to the background mesh. This can lead to puckering and other artifacts around 

three-material interfaces. These artifacts are frustrating in that they are the single largest 

source of geometric error from the method and yet they are caused by a simplification that 

is crucial for the algorithm to be well formulated. The next section details some early work 

towards addressing this problem.

6.2 Future Work
As discussed in Chapter 4, the problem of topological aliasing is partially caused by 

the orientation of the background mesh with respect to the material interfaces. We have 

observed that small changes to the input background mesh can reduce and sometimes en

tirely eliminate these topological inaccuracies. We have experimented with two approaches 

to making these changes systematically. Both of these approaches rely on detecting when 

a topological error would be made, and modifying the background mesh either during or 

after construction to avoid it.

In order to detect a topological error, each edge of the background input mesh with 

a material interface must be evaluated. If an edge properly represents the underlying 

topology, only two materials will ever appear on the edge. If three or more materials 

appear on an edge, there must be intersections of the material indicator functions where 

these additional materials begin to overtake those which are maximum on the vertices. Thus, 

a straightforward way to detect if a third material is present on the interior of an edge is to 

compute all material transition points and evaluate whether or not the maximum material 

is also maximum on an edge vertex. If it is not, then we have found a transition point where 

an interior material has become maximum. Figure 6.1 illustrates such an example. Every 

pair of materials must be evaluated, leading to Q) evaluations, where n is the number of 

materials.

The first approach to solving this problem is routine subdivision. This is good for struc

tured, octree-based meshes. If an octree cell contains at least one topologically problematic 

edge, the cell is divided. There is no guarantee that this subdivision will not reintroduce a 

new topological problem at a smaller scale. However, the amount of visual error will always 

be reduced. That makes this a cheap and attractive approach for visualization purposes. It 

has the added advantage that it has no impact on the quality bounds of the output mesh. 

Figure 6.2 illustrates this procedure on the same sharp corner from Chapter 4.

Figures 6.3 and 6.4 illustrate this procedure on planar and spherical input datasets. In
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Figure 6.1. An edge with materials a and b maximum on its endpoints, but with a third 
material c becoming maximum on the interval between. Each pair of material indicator 
functions is examined for crossings. If the maximum material(s) at a crossing are not also 
maximum on one of the vertices, then it must be the case that a third material appears on 
the interior of the simplex.

both cases, the subdivision leads to better accuracy along the three-material interfaces at 

the cost of a higher number of elements.

The second approach is to subdivide a background tetrahedron precisely where necessary 

to eliminate topological problems. The idea is to label topologically incorrect edges, and 

use these labels to output a set of stencil tetrahedra that subdivide missed topologies into 

a set of smaller more well-behaved background elements. The lattice cleaving algorithm 

can be hijacked to perform this operation simply by changing the definition of a material 

interface. Therefore, it seems fitting that we call this approach topological cleaving.

Figure 6.5 illustrates this procedure on the same sharp corner. This strategy is diamet

rically opposed to the previous one. It guarantees that after each iteration, the number of 

topologically misrepresented materials will be reduced by one. However, it does this at the 

expense of element quality. This trade-off is partially a bi-product of the fact that material 

interfaces can meet at arbitrarily sharp angles. Figure 6 . 6  shows the procedure operating 

on a corner in 3D. Snapping and warping is disabled to better illustrate the cleaving.

Figure 6.7 shows a comparison of the two approaches within an octree cell of a more 

problematic dataset. The topological cleaving is able to resolve the missed interfaces in 

only a single iteration. However, multiple iterations of subdivision only push the problem 

to a smaller resolution.

These two approaches are both easy to implement and practical, but are not perfect. 

Ultimately, any method that aims to accurately capture these pathological geometries will 

have to choose some metric to sacrifice. The subdivision is safe in the sense that it does
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(c) cleaved

Figure 6.2. The interaction of sharp features on the background lattice. (a) Three 
materials meet in a sharp corner feature. (b) Each background cell with multiple crossings 
per edges is subdivided. (c) The subdivided background mesh is cleaved and better resolves 
the topology. Error has been pushed below the resolution of one cell. Snapping and warping 
have been skipped to better illustrate the algorithm.
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Figure 6.3. Three planar material interfaces meet at a sharp angle. Octree subdivision 
leads to over-refinement along the three-material junction.

F igure 6.4. Two sphere materials intersect to form an ellipse. Octree subdivision leads to 
over-refinement along the three-material junction.
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Figure 6.5. Topological cleaving can be used to eliminate aliasing. (a) Three materials 
meet in a sharp corner feature. (b) Background tetrahedra with multiple crossings are 
cleaved along the virtual material interface. (c) The altered background mesh is now cleaved 
to capture true material interfaces. Snapping and warping have been skipped to better 
illustrate the algorithm.

not lower the output mesh quality bounds. However, it can greatly increase the element 

count and is not guaranteed to completely fix the topology, only push errors down. On 

the other hand, the topological cleaving is guaranteed to resolve topology, because each 

iteration removes precisely one topological ambiguity. It does this at the cost of output 

mesh quality. Any strategy that could provably fix topological problems while preserving 

angle bound guarantees would be a valuable extension to this line of work.
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Figure 6 .6 . Surface view of a sharp corner before and after topological cleaving. (left) A 
corner formed by three materials suffers from topological logical aliasing. (right) Topological 
Cleaving corrects the aliasing issue in one pass.

Figure 6.7. This illustration shows the difference between refinement and topological 
cleaving on a more problematic interface. (left) In this case, cleaving can resolve the 
topological problem in a single iteration. (right) However, the grid refinement can subdivide 
multiple times and still not properly capture the topology.
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