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ABSTRACT

Transport in disordered composite media is a problem that arises throughout the sciences

and engineering and has attracted significant theoretical, computational, and experimental

interest. One of the key features of these types of problems is the critical dependence of the

effective transport properties on system parameters, such as volume fraction, component

contrast ratio, applied field strength, etc. In recent years a broad range of mathematical

techniques have been developed to study phase transitions exhibited by such composites,

revealing features which are virtually ubiquitous in disordered systems. Here we construct a

multifaceted mathematical framework describing phase transitions exhibited by two phase

random media, using techniques from: statistical mechanics, percolation theory, random

matrix theory, and a critical theory for Stieltjes functions of a complex variable involving

the spectral measure of a self-adjoint random operator (or matrix). In particular, we

present a general theory for critical behavior of transport in two phase random media.

The theory holds for lattice and continuum percolation models in both the static case with

real parameters and the frequency dependent quasi-static case with complex parameters.

Through a direct, analytic correspondence between the magnetization of the Ising model

and the effective parameter problem of two phase random media, we show that the critical

exponents of the transport coefficients satisfy the standard scaling relations for phase

transitions in statistical mechanics. Our work also shows that delta components form in

the underlying spectral measures at the spectral endpoints precisely at the percolation

threshold pc and 1 − pc. This is analogous to the Lee–Yang–Ruelle characterization of the

Ising model phase transition, and identifies these transport transitions with the collapse of

spectral gaps in these measures. Using random matrix theory, we also characterize these

transport transitions via transitions in the eigenvalue statistics of the underlying random

matrix. Finally, we construct a canonical ensemble statistical mechanics framework for

general transport models of two phase random dielectric media, which parallels the Ising

model. Our physically consistent model is formulated from first principles in physics, and

is both physically transparent and mathematically tractable.
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CHAPTER 1

INTRODUCTION

Composite media arise naturally throughout the physical and biological sciences, and

are employed in a broad range of engineering and technological applications. The behavior

of those media exhibiting a critical transition as system parameters are varied is particularly

challenging to describe physically, and to predict mathematically. We now introduce ex-

amples of such media that have motivated much of the work presented in this dissertation,

and review work that does not appear here.

Electrorheological (ER) fluids, which are suspensions of spherical particles in a dielectric

liquid host, exhibit a liquid to solid phase transition as the strength E0 of an applied electric

field surpasses a critical value Ec [70, 120, 127, 128]. As the field increases, plastic or glass

dielectric spheres, with diameters on the scale of tens of microns, form clusters and then

chains which coalesce into columns with periodic lattice arrangements of the spheres, as

shown in Figure 1.1 (a). Metal spheres form fractal net structures as shown in Figure 1.1

(b). This system undergoes an electrically-induced transition in the connectedness of the

spheres. With an increase in viscosity of these suspensions by several orders of magnitude

within a few milliseconds [126], they have been used in clutches, brakes, micro-fluidic valves,

human prosthetics, and active mechanical elements capable of responding to environmental

variations [120].

Another composite which displays complex critical behavior is sea ice, consisting of pure

ice with submillimeter brine inclusions, as shown in Figure 1.1 (c), whose volume fraction φ,

geometry, and connectedness vary significantly with temperature T . The polar ice packs are

both indicators and agents of climate change. They also host extensive algal and bacterial

communities, which live in the brine inclusions and sustain life in the polar oceans. Fluid

flow through porous sea ice mediates a broad range of processes such as the growth and

decay of seasonal ice, the evolution of surface melt ponds and ice pack reflectance, and

biomass build-up [61]. In [62] an on-off switch was identified for fluid transport in sea ice.

For brine volume fractions φ below about 5%, columnar sea ice is effectively impermeable
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to fluid flow, while for φ above 5%, it is increasingly permeable. This critical brine volume

fraction φc ≈ 5% corresponds to a critical temperature Tc ≈ −5◦ C for a typical bulk sea ice

salinity of 5 parts per thousand, which is known as the rule of fives. Fluid flow is facilitated

by brine channels − connected brine structures ranging in scale from a few centimeters for

horizontal cross-sections to a meter or more in the vertical direction, as shown in Figure 1.1

(d). The critical behavior of fluid flow through sea ice was postulated in [62] to result from a

temperature-driven transition in connectedness of the brine microstructure, or a percolation

threshold. The 5% critical brine volume fraction in sea ice was predicted by noting the close

similarity of its microstructure to that of stealthy, radar absorbing materials, and adapted

for sea ice a continuum percolation model for compressed powders [78, 79] used in the design

of these materials.

Bone also displays a complex, porous microstructure whose characteristics depend on

(a) (b)

(d) (e) (f )

(c)

Figure 1.1. Systems which undergo phase transitions. (a) Columnar ground states of
dielectric spheres in an ER fluid (Martin Whittle). (b) Fractal network of metal spheres
in an ER fluid (Weijia Wen). (c) X-ray CT volume rendering of the brine phase within a
lab-grown sea-ice single crystal (Golden et al. [63]). (d) Vertical brine channels (Kenneth.
M. Golden (left) and David M. Cole (right)). (e) The porous microstructure in a proximal
femur (Maria–Grazia Ascenzi). (f) A realization of the two-dimensional lattice percolation
model.
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its macrostructure. The strength of bone and its ability to resist fracture depend strongly

on a porous microstructure, like that shown in Figure 1.1 (e), and in particular, on the

quality of the connectedness of the hard, solid phase. Osteoporotic cancellous bone can

become more disconnected and remaining connections can become more tenuous or fragile.

It is crucial that nondestructive methods of analyzing bone microstructure are developed

in order to facilitate the comfort and long term well being of patients stricken with this

crippling disease. In [64] we applied spectral methods to investigate osteoporosis-driven

transitions in trabecular bone microstructure. This introduces important nondestructive

methods of analyzing bone microstructure and its properties, which may eventually help in

clinical applications.

Lattice and continuum percolation models have been used to study a broad range of

materials including rocks [20, 21], semiconductors [113], thin films [38], glacial ice [53],

bone [64, 109], polycrystalline metals [30], radar absorbing coatings [79], carbon nanotube

composites [80], and sea ice [62, 63]. In the simplest case of the two-dimensional square

lattice [116, 122], as shown in Figure 1.1 (f), the bonds are open with probability p and

closed with probability 1 − p. Connected sets of open bonds are called open clusters. The

average cluster size grows as p increases, and there is a critical probability pc, 0 < pc < 1,

called the percolation threshold, where an infinite cluster of open bonds first appears. In

dimension d = 2, pc = 1/2, and in d = 3, pc ≈ 0.25. Now consider transport through

the associated random resistor network (RRN), where the bonds are assigned electrical

conductivities σ1 with probability 1−p, and σ2 with probability p. The effective conductivity

σ∗ exhibits critical behavior as σ1 −→ 0, σ∗ = 0 for p < pc while σ∗ > 0 for p > pc, with

σ∗(p, 0) ∼ (p − pc)t, as p −→ p+
c , where t is the conductivity critical exponent. believed to

be universal for lattices depending only on dimension.

The critical behavior of the random resistor network is reminiscent of a phase transition

in statistical mechanics [13, 37, 52, 72], like that exhibited by an Ising ferromagnet [36, 121]

around its Curie point at a critical temperature T = Tc, as the applied magnetic field

strength H −→ 0. The formulations and basic physics of these two classes of problems

are nevertheless quite different. In [59, 60], however, it was observed that the analytic

continuation method (ACM) for bounding effective transport properties of composites [11,

65, 86] provides a mathematical link between them, through the Lee–Yang Theorem in

statistical mechanics [3, 4, 81]. This theorem, which states that the zeros of the partition

function lie on the unit circle in the activity variable, yields a logarithmic integral for the free
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energy of an Ising model, and a Stieltjes integral representation for the magnetization M(H).

In the ACM,m = σ∗/σ2 is an analytic function of h, taking the upper half plane to the upper

half plane. A Stieltjes integral representation for F (s) = 1 −m(h), where s = 1/(1 − h),
is used to obtain rigorous bounds on σ∗ given microstructural information. This formula

is based on a resolvent representation for the electric field, involving a self-adjoint random

operator (or matrix) M1, say, not to be confused with magnetization. All the geometry

of the composite is incorporated through a spectral measure µ of this operator. Through

these mathematical parallels the two classes of problems can be placed on an equal footing.

This analytic parallel has been exploited to show that the critical exponents of transport

in both lattice and continuum percolation models obey the classical scaling relations of

statistical mechanics [60, 89]. Moreover, as in the Ising critical transition [106], we have

shown [89] that the critical behavior in these models is due to the collapse of spectral gaps

of the underlying spectral measure, and the subsequent formation of delta components at

the spectral endpoints. This theory holds for lattice and continuum percolation models

in both the static case with real parameters and the frequency dependent quasi-static

case with complex parameters [89]. It has also been extended from insulator/conductor

systems to conductor/superconductor systems [89]. These results help lay the groundwork

for the analysis of sea ice permittivity data collected in the polar regions. Moreover, it can

potentially be used to monitor changes in the microstructure, the fluid transport properties,

and the biogeophysical processes that are controlled by fluid flow, by remotely monitoring

the effective electromagnetic properties of sea ice, such as its effective complex permittivity

ǫ∗. The general theory of spectral representations for effective parameters and system

energy, and the spectral characterization of critical behavior in transport is the topic of

Chapter 2. While critical behavior of percolation models of two-phase random media is

discussed in Chapter 3.

On finite two-component RRN, the operator M1 is a real symmetric random matrix.

In this case, detailed information regarding transport transitions may be gleaned from the

eigenvalue statistics of this matrix [88]. In Chapter 5 we study transport transitions of

various finite RRN percolation models using techniques of random matrix theory (RMT).

As a function of the volume fraction p, we demonstrate that the eigenvalue spacing statistics,

and the well known RMT eigenvalue statistics Σ2 and ∆3, ofM1 have a transitional behavior

much like that of the Anderson transition of mesoscopic and quantum conductors [117]. Our

results illustrate strikingly, that the spectrum associated with macroscopic electrical systems
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exhibit the same universal fluctuations as the energy spectrum of mesoscopic electrical

systems of size 10−6m and quantum systems nine orders of magnitude smaller.

In [90, 92] we calculated the spectral measures and random matrix statistics for brine

channels, melt pond networks, and large scale ice floes. To our knowledge, this is the first

time that spectral measures and random matrix statistics of sea ice structures have been

calculated. Our results provide a new way of obtaining important structural information

that can eventually give key parameters in climate models through novel techniques of

upscaling, aiding the prediction and understanding of climate change.

The theory of polynomials orthogonal to a measure naturally arises in the ACM through

Padé approximants Fn = P
[1]
n /Pn of F (s;µ), a ratio of polynomials with exponential

convergence as n −→ ∞ [125]. Both the denominator Pn and the numerator P
[1]
n are

examples of “generalized numerator polynomials” {P [i]
n }∞n=0 of order i = 0, 1, . . ., which

are orthogonal with respect to a measure µ[i], where P
[0]
n = Pn and µ[0] = µ [57, 125]. They

satisfy a three-term recursion relation [57, 124] which may be written as J [i] ~P [i] = λ~P [i],

where ~P [i] = (P
[i]
0 , P

[i]
1 , . . .) and J [i] is an infinite tridiagonal Jacobi matrix [118]. In finite

RRN, the operators M1 and J [i] are finite real symmetric random matrices of size N ,

say, and eigenvalues of J [i] are the roots of the polynomial P
[i]
N−i. Moreover, the roots of

P
[0]
N = PN are the eigenvalues of J [0] and M1 [57]. This theory, presented in Chapter 4,

gives physical significance for the Stieltjes transforms F [i](s;µ[i]) of the measures µ[i]. We

also provide a closed form solution for the moments µ
[i]
j of µ[i] in terms of the moments µj

of µ.

In [91] we constructed a canonical ensemble statistical mechanics framework for general

transport models of two-phase random dielectric media, and used it to study general features

of ER fluids. In this model, we incorporate a detailed decomposition of the system energy,

in terms of Herglotz functions involving µ, which separates parameter information in s

and E0 from complicated geometric interactions incorporated in the measure µ. These

energy representations are exact in the infinite volume limit. Due to this parameter

separation property, the physically consistent model is mathematically tractable, physically

transparent, and closely parallels the Ising model. This mathematical framework is the

topic of Chapter 6.

In order to motivate the effective parameter problem for general two-phase stationary

conductive media in lattice and continuum settings, given in Section 2.1, we first ana-

lyze canonical examples of two-component RRN in Section 1.1, and two-phase continuum
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composite microstructures in Section 1.2. There, we derive integral representations for

the associated effective parameters. The analysis of these simple lattice and continuum

composites reveals important features of the effective parameters of general two-component

stationary random media.

1.1 Hierarchical Series-Parallel Random
Resistor Network

In this section we derive an integral representation for the effective conductance σ∗ of

hierarchical series-parallel RRN, involving a positive, discrete measure. This representation

for σ∗ was originally introduced by Bergman and Milton [11, 86], and was later shown by

Golden and Papanicolaou [65] to have theoretical foundations in the functional analysis of

bounded linear operators. In this dissertation, we demonstrate that this representation has

deep, far reaching physical and mathematical implications.

Consider a RRN of n resistors of resistance Rj = 1/σj , j = 1, . . . , n, where σj is

the conductance of resistor j, which randomly takes values σ1 and σ2 in the proportions

p1 = (n − k)/n and p2 = k/n, respectively. Here, k = 0, . . . , n, p1 + p2 = 1, and σj for

j = 1, 2 is not to be confused with the values σ1 and σ2. Let Ω be the space of all 2nn!

permutations of the set {σj}nj=1 of binary conductances, and let Ωp ⊂ Ω be those which

satisfy the constraint p1 + p2 = 1.

We focus on RRN which are wired in a hierarchical series-parallel topology. More specif-

ically, consider the networks shown in Figure 1.2. We will call these 0th order hierarchical

series-parallel network. We define 1st order hierarchical series-parallel network as follows.

First, consider the network of parallel conductors shown in Figure 1.2 (a) with conductor

σl replaced by nl conductors wired in series, where l = 1, . . . , L. For every l = 1, . . . , L

and j = nl−1 + 1, . . . , nl, with n0 = 0, the conductances σj randomly take values σ1 and

σ2 in the proportions p1,l = (nl − kl)/nl and p2,l = kl/nl, respectively, with
∑L

l=1 kl = k

and
∑L

l=1 nl = n. For simplicity, we have suppressed the notation L = L(ω), kl = kl(ω)

and nl = nl(ω), where ω ∈ Ωp. Second, consider the network of series conductors shown in

Figure 1.2 (b) with conductor σl replaced by nl conductors wired in parallel, l = 1, . . . , L,

with the σj randomly determined as before. In this way, we iteratively construct M th order

hierarchical series-parallel RRN. Theorem 1 displays the main result of this section.

Theorem 1 Consider a M th order hierarchical series-parallel RRN, as described above,

subject to a (constant) voltage potential V0. For each ω ∈ Ωp, there exists a positive measure
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σ 1V0 σ 2 σn V0

σ 1 σ 2

σn

(b)(a)

I 0I 0 I 1 I 2 I n

Figure 1.2. (a) RRN of parallel resistors subject to a voltage V0 and total current I0. (b)
RRN of series resistors subject to a voltage V0 and total current I0.

µω supported on [0, 1] and a number Nω such that the effective conductance σ∗ω and the power

Hω dissipated by the network satisfies

Hω =
V 2

0 σ
∗
ω

Nω
, σ∗ω = σ2(1− F (s;µω)), F (s;µω) =

∫ 1

0

dµω(λ)

s− λ , (1.1)

µω(dλ) =

L0
∑

l=1

mlδλl
(dλ), 0 ≤ λl(ω) ≤ 1, ml(ω) ≥ 0

where s = 1/(1 − σ1/σ2), V0, Nω > 0, L0 = L0(ω), and δλl
(dλ) is the delta measure

concentrated at λl.

Proof: We will prove Theorem 1 inductively. First, let ω ∈ Ωp be a statistical realization

of the 0th order RRN shown in Figure 1.2 (a), subject to a voltage potential V0. Here σj

is the conductance of resistor j, which randomly take values σ1 and σ2 in the proportions

p1 = (n−k)/n and p2 = k/n, respectively, where k = 0, . . . , n and p1+p2 = 1. By Kirchoff’s

voltage law, the voltage drop Vj across each resistor is V0 so that Vj = V0 for all j = 1, . . . , n.

The electrical current Ij through resistor j is given by Ohm’s law, Ij = σjVj , and the power

dissipated by resistor j is given by IjVj = σjV
2
j . The total power Hω dissipated by the

RRN is thus

Hω =

n
∑

j=1

σjV
2
j = V 2

0 σeff, σeff =

n
∑

j=1

σj , (1.2)

where σeff/n is the arithmetic mean of the {σj}. In the variable s = 1/(1 − σ1/σ2),

σeff

σ2
=

1

σ2

n
∑

j=1

σj =
1

σ2
((n − k)σ1 + kσ2) = n

(

p1

(

1− 1

s

)

+ p2

)

= n
(

1− p1

s

)

. (1.3)

Therefore in (1.1), Nω = 1/n, σ∗ω = σ2(1 − p1/s), L0 = 1, and µω(dλ) = m1δλ1
(dλ), where

m1 = p1 and λ1 = 0 satisfy 0 ≤ m1, λ1 ≤ 1. We note that, for this simple resistor topology,

σ∗ω is invariant under permutations of the {σj}, and the randomness plays no role.
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Second, let ω ∈ Ωp be a statistical realization of the 0th order RRN shown in Figure 1.2

(b), subject to a voltage potential V0, with the σj randomly determined as before. By

Kirchoff’s current law and Ohm’s law, the electrical current through each resistor is Ij =

σjVj = I0 for all j = 1, . . . , n, where I0 is the (constant) total electrical current generated

by the battery supplying the voltage potential V0 to the RRN. Kirchoff’s voltage law now

yields

V0 =
n
∑

j=1

Vj = I0

n
∑

j=1

σ−1
j =

I0
σeff

, σeff =

(

n
∑

i=1

σ−1
i

)−1

, (1.4)

where σeff/n is the harmonic mean of the {σj}. Together, we have Vj = I0/σj = V0σeff/σj .

This implies that the total power Hω dissipated by the RRN is given by

Hω =
n
∑

j=1

σjV
2
j = (V0σeff)2

n
∑

i=1

σ−1
i = V 2

0 σeff, (1.5)

In the variable s we have

σeff

σ2
=

1

σ2





n
∑

j=1

σ−1
j





−1

=
1

σ2

(

n− k
σ1

+
k

σ2

)−1

=
1

n

(

p1

(

1− 1

1− s

)

+ p2

)−1

(1.6)

=
1

n

(

1− p1

1− s

)−1

=
1

n

s− 1

s− p2
=

1

n

(

1− p1

s− p2

)

Therefore in (1.1), Nω = n, σ∗ω = σ2(1 − p1/(s − p2)), L0 = 1, and µω(dλ) = m1δλ1
(dλ),

where m1 = p1 and λ1 = p2 satisfy 0 ≤ m1, λ1 ≤ 1. As before, for this simple resistor

topology, σ∗ω is invariant under permutations of the {σj}, and the randomness plays no role.

We now verify equation (1.1) for 1st order hierarchical series-parallel RRN. First, let

ω ∈ Ωp be a statistical realization of the RRN shown in Figure 1.2 (a) with conductor

σl replaced by nl conductors wired in series, l = 1, . . . , L. For each l = 1, . . . , L and

j = nl−1 + 1, . . . , nl, with n0 = 0, the σj randomly take values σ1 and σ2 in the proportions

p1,l = (nl − kl)/nl and p2,l = kl/nl, respectively, where
∑L

l=1 kl = k,
∑L

l=1 nl = n, and

p1,l+p2,l = 1. For simplicity we suppress the notation L = L(ω), kl = kl(ω) and nl = nl(ω).

In contrast to the network topologies considered above, the randomness of the {σj} plays

a key role here. By iterating our previous analysis of series and then parallel RRN, we find

that the total power Hω dissipated by the RRN in configuration ω ∈ Ωp is given by

Hω = V 2
0 σeff, σeff =

L
∑

l=1





nl
∑

j=nl−1+1

σ−1
j





−1

, (1.7)
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In the variable s, we have

σeff

σ2
=

1

σ2

L
∑

l=1

(

nl − kl
σ1

+
kl
σ2

)−1

=
L
∑

l=1

1

nl

(

p1, l

(

1− 1

1− s

)

+ p2,l

)−1

(1.8)

=

L
∑

l=1

1

nl

(

1− p1, l

1− s

)−1

=

L
∑

l=1

1

nl

s− 1

s− p2,l
=

L
∑

l=1

1

nl

(

1− p1, l

s− p2,l

)

=
1

n∗h

(

1−
L
∑

l=1

p1, l n
∗
h/nl

s− p2,l

)

=
1

n∗h

(

1−
L
∑

l=1

ml

s− λl

)

,

where n∗h = (
∑L

l=1 n
−1
l )−1 and n∗h/L is the harmonic mean of the numbers {nl}. Therefore in

equation (1.1), Nω = n∗h, σ
∗
ω = σ2(1−

∑L0

l=1ml/(s−λl)), L0 = L, µω(dλ) =
∑L

l=1mlδλl
(dλ),

ml = p1, l n
∗
h/nl, and λl = p2,l. As 0 < n∗h/nl ≤ 1 and 0 ≤ p2,l ≤ 1, we have 0 ≤ ml, λl ≤ 1.

Second, let ω ∈ Ωp be a statistical realization of the RRN shown in Figure 1.2 (b) with

conductor σl replaced by nl conductors wired in parallel, l = 1, . . . , L. For every l = 1, . . . , L

and j = nl−1 + 1, . . . , nl, with n0 = 0, the σj randomly take values σ1 and σ2 as before. By

iterating our previous analysis of parallel then series RRN, we find that the total power Hω
dissipated by the RRN in configuration ω ∈ Ωp is given by

Hω = V 2
0 σeff, σeff =





L
∑

l=1





nl
∑

j=nl−1+1

σj





−1



−1

, (1.9)

In the variable s, we have

σeff

σ2
=

1

σ2

(

L
∑

l=1

((nl − kl)σ1 + klσ2)
−1

)−1

=

(

L
∑

l=1

1

nl

(

p1,l

(

1− 1

s

)

+ p2,l

)−1
)−1

=

(

L
∑

l=1

1

nl

(

1− p1,l

s

)−1
)−1

=

(

L
∑

l=1

1

nl

s

s− p1,l

)−1

=

(

L
∑

l=1

1

nl

(

1 +
p1,l

s− p1,l

)

)−1

= n∗h

(

1 +

L
∑

l=1

p1,l n
∗
h/nl

s− p1,l

)−1

= n∗h

(

1 + F̃ (s)
)−1

= n∗h

(

1− F̃ (s)

1 + F̃ (s)

)

= n∗h(1− F (s)) = n∗h

(

1−
L
∑

l=1

ml

s− λl

)

. (1.10)

Here we have defined

F̃ (s) =
L
∑

l=1

m̃l

s− λ̃l
=
QL(s)

PL(s)
, F (s) =

F̃ (s)

1 + F̃ (s)
=

L
∑

l=1

ml

s− λl
=

QL(s)

PL(s) +QL(s)

PL(s) =

L
∏

l=1

(s− λ̃l), QL(s) =

L
∑

l=1

m̃l

L
∏

l 6=j=1

(s− λ̃j) =

L
∑

l=1

ml

L
∏

l 6=j=1

(s− λl), (1.11)
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where λ̃l = p1,l and m̃l = p1,l n
∗
h/nl. Therefore in equation (1.1), we have Nω = 1/n∗h,

σ∗ω = σ2(1 −
∑L0

l=1ml/(s − λl)), L0 = L, µω(dλ) =
∑L

l=1mlδλl
(dλ), and the values of

ml and λl in (1.10) are determined as follows. The {λl} are the roots of the polynomial

QL(s)+PL(s) and, multiplying F (s) =
∑L

l=1ml/(s−λl) = QL(s)/(QL(s)+PL(s)) by s−λl
and letting s −→ λl, L’Hôpital’s rule shows that

ml = lim
s−→λl

(s− λl)F (s) =
QL(λl)

Q ′(λl) + P ′
L(λl)

(1.12)

where the prime denotes differentiation in the variable s. We now prove that λl and ml are

real and satisfy 0 ≤ λl,ml ≤ 1.

The roots λ̃l = p1,l of PL(s) and the numbers m̃l = p1,l n
∗
h/nl are clearly real, and

satisfy 0 ≤ m̃l, λ̃l ≤ 1. However, as m̃l = 0 when λ̃l = 0 we may assume, without loss

of generality, that we have 0 < m̃l, λ̃l ≤ 1. Moreover by redefining the m̃l and m̃j for

l 6= j such that p1,l = p1,j, we may also assume, without loss of generality, that the {λ̃l}
are distinct. Let’s order them so that λ̃1 < λ̃2 < · · · < λ̃L. The roots of QL(s) and

PL(s) are the zeros and poles of F̃ (s), respectively. For s < λ̃1 we have F̃ (s) < 0, and

for s > λ̃L we have F̃ (s) > 0. As the m̃l are positive, the function F̃ (s) is monotonic

decreasing: F̃ ′(s) = −∑L
l=1 m̃l/(s− λ̃l)2 < 0. This implies that F̃ (s) has precisely one root

in each of the intervals (λ̃l, λ̃l+1), l = 1, . . . , L − 1. Therefore the roots and poles of F̃ (s)

interlace, as shown in Figure 1.3. By equation (1.11), the roots of F̃ (s) and F (s) coincide,

and the poles λl of F (s) are defined by F̃ (λl) = −1. As F ′(s) = F̃ ′(s)/(1 + F̃ (s))2 < 0,

the function F (s) is monotonic decreasing. This implies that the poles λl of F (s) satisfy

λl < λ̃l < λl+1 < λ̃l+1 ≤ 1, l = 1, . . . , L − 1, with λ̃1 > 0, which implies that the poles of

F (s) interlace the poles of F̃ (s) (see Figure 1.3). As F̃ (0) = −1, we have λ1 = 0:

F̃ (0) =
L
∑

l=1

p1,l n
∗
h/nl

−p1,l
= −n∗h

L
∑

l=1

1

nl
= −1, (1.13)

so that 0 ≤ λl ≤ 1, l = 1, . . . , L. The ml satisfy ml = lims−→λl
(s− λl)F (s), or

ml = lim
s−→λl

(s− λl)F̃ (s)

1 + F̃ (s)
= lim

s−→λl

F̃ (s) + (s − λl)F̃ ′(s)

F̃ ′(s)
=

F̃ (λl)

F̃ ′(λl)
=
−1

F̃ ′(λl)
(1.14)

where we have used L’Hôpital’s rule. As 0 ≤ λl < λ̃l ≤ 1 for all l = 1, . . . , L, we have

−F̃ ′(λl) =

L
∑

i=1

m̃i

(λl − λ̃i)2
>

L
∑

i=1

m̃i

|λl − λ̃i|
≥
∣

∣

∣

∣

∣

L
∑

i=1

m̃i

λl − λ̃i

∣

∣

∣

∣

∣

= |F̃ (λl)| = 1 (1.15)

This implies that ml = −1/F̃ ′(λl) =
(

∑L
i=1 m̃i/(λl − λ̃i)2

)−1
satisfies 0 ≤ ml ≤ 1. This

concludes our verification of equation (1.1) for 1st order hierarchical series-parallel RRN. It
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λ1 λ2 λ3 λn-1 λn
~ ~ ~ ~ ~

Figure 1.3. Pole and root structure of Stieltjes transforms of a positive measure.

is worth noting that n∗h/nl is a probability measure over the set {1, . . . , L}, with expectation

〈·〉L, say. As m̃l = p1,ln
∗
h/nl, and λ̃l = p1,l we may write

mi =

〈

p1,l

(λi − p1,l)2

〉−1

L

. (1.16)

We now verify equation (1.1) for M th order hierarchical series-parallel RRN. By in-

duction, we assume that σ∗ω satisfies (1.1) for such RRN, for all M = 0, 1, . . . ,M0. We

construct (M0 + 1)th order of hierarchical series-parallel RRN as follows. First, let ω ∈ Ωp

be a realization of the RRN shown in Figure 1.2 (a) with the σl replaced by a M th
0 order

RRN, l = 1, . . . , L. By induction, the power Hω is given by Hω = V 2
0 σeff, with

σeff

σ2
=

1

σ2

L
∑

l=1

σ2

Ñω(l)



1−
L̃(l)
∑

j=1

m̃j(l)

s− λ̃j(l)



 =
1

ñ∗h



1−
L
∑

l=1

L̃(l)
∑

j=1

m̃j(l)ñ
∗
h/Ñω(l)

s− λ̃j(l)



 , (1.17)

where ñ∗h = (
∑L

l=1 Ñω(l)−1)−1 and ñ∗h/L is the harmonic mean of the numbers {Ñω(l)}.
Define mi = m̃j(l)ñ

∗
h/Ñω(l) and λi = λ̃j(l), where i takes values i = 1, . . . , L̃(l) × L, and

is defined by i = i(j, l) = j + (l − 1)L̃(l) for l = 1, . . . , L and j = 1, . . . , L̃(l). With these
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definitions, (1.17) implies that (1.1) holds with Nω = ñ∗h, σ
∗
ω = σ2(1 −

∑L0

i=1mi/(s − λi)),
L0 = L̃(l) × L, and µω(dλ) =

∑L0

i=1miδλi
(dλ). By induction, for each l = 1, . . . , L, 0 ≤

m̃j(l), λ̃j(l) ≤ 1, for all j = 1, . . . , L̃(l). As 0 < ñ∗h/Ñω(l) ≤ 1, we have 0 ≤ λi,mi ≤ 1.

Second, let ω ∈ Ωp be a statistical realization of the RRN shown in Figure 1.2 (b) with

the σl replaced by a M th
0 order hierarchical series-parallel RRN, where l = 1, . . . , L. By

induction, the power Hω dissipated by the RRN is given by Hω = V 2
0 σeff, where

σeff

σ2
=

1

σ2







L
∑

l=1





σ2

N̂ω(l)



1−
L̃(l)
∑

j=1

m̂j(l)

s− λ̂j(l)









−1






−1

=

(

L
∑

l=1

Ñω(l)(1 − F̂l(s))−1

)−1

=

(

L
∑

l=1

Ñω(l)

(

1 +
F̂l(s)

1− F̂l(s)

))−1

=

(

n∗a

(

1 +

L
∑

l=1

Ñω(l)

n∗a

F̂l(s)

1− F̂l(s)

))−1

=
1

n∗a
(1 + F̃ (s))−1 =

1

n∗a

(

1− F̃ (s)

1 + F̃ (s)

)

=
1

n∗a
(1− F (s)) =

1

n∗a

(

1−
L0
∑

i=1

mi

s− λi

)

.

(1.18)

Here we have defined

F̂l(s) =

L̃(l)
∑

j=1

m̂j(l)

s− λ̂j(l)
, F̃ (s) =

L
∑

l=1

Ñω(l)

n∗a

F̂l(s)

1− F̂l(s)
=

L
∑

l=1

L̃(l)
∑

j=1

m̃j(l)

s− λ̃j(l)
=

L0
∑

i=1

m̃i

s− λ̃i

F (s) =
F̃ (s)

1 + F̃ (s)
=

L0
∑

i=1

mi

s− λi
, (1.19)

and n∗a =
∑L

l=1 Ñω(l), where n∗a/L is the arithmetic mean of the numbers {Ñω(l)}, i = i(j, l)

is defined as before, and L0 = L̃(l)×L. With these definitions, (1.18) implies that (1.1) holds

with Nω = ñ∗a, σ
∗
ω = σ2(1−

∑L0

i=1mi/(s−λi)), L0 = L̃(l)×L, and µω(dλ) =
∑L0

i=1miδλi
(dλ).

We now prove that 0 ≤ λi ≤ 1 and ml ≥ 0 for all i = 1, . . . , L0.

Analogous to equation (1.11), we write F̂l(s) = Q̂L̃(l)(s)/P̂L̃(l)(s), a ratio of polynomi-

als. This implies that F̃ (s) = QL0
(s)/PL0

(s), a ratio of polynomials, and that F (s) =

QL0
(s)/(PL0

(s) + QL0
(s)). The roots and poles of F̂l(s) are the roots of the polynomials

Q̂L̃(l)(s) and P̂L̃(l)(s), respectively, and similarly for F̃ (s) and F (s). As before, without

loss of generality, we may assume that the poles of F̃ (s) and F (s) are distinct and or-

dered, e.g. λi < λi+1. By induction, we have 0 ≤ m̂j(l) ≤ 1, for all l = 1, . . . , L and

j = 1, . . . , L̃(l). Therefore F̂l(s) is monotonic decreasing for all l = 1, . . . , L: F̂ ′
l (s) =

−
∑L̃(l)

j=1 m̂j(l)/(s − λ̂j(l))2 < 0. This implies that, for every l = 1, . . . , L, there is precisely

one root of F̂l(s) in the each of the intervals (λ̂j(l), λ̂j+1(l)), j = 1, . . . , L̃(l)− 1, so that the
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roots and poles of F̂l(s) interlace. Moreover, the functions F̃ (s) and F (s) are also monotonic

decreasing:

F̃ ′(s) =
L
∑

l=1

Ñω(l)

n∗a

F̂ ′
l (s)

(1− F̂l(s))2
< 0, F ′(s) =

F̃ ′
l (s)

(1 + F̃l(s))2
< 0. (1.20)

This implies that the roots and poles of F̃ (s) interlace, and the roots and poles of F (s)

interlace. Clearly, the roots of F (s) coincide with the roots of F̃ (s), and the poles λi of

F (s) are determined by the equation F̃ (λi) = −1. This, implies that the poles of F̃ (s) and

F (s) interlace: λi < λ̃i < λi+1 < λ̃i+1, i = 1, . . . , L0 − 1. Exactly as in (1.14) we have

mi = −1/F̃ ′(λi), and by equation (1.20) we have F̃ ′(s) < 0, which implies that mi > 0

for all i = 1, . . . , L0. Furthermore as lims−→λ̃i
|F̃ (s)| = ∞, (1.19) implies that there exist

l ∈ {1, . . . , L} such that F̂l(λ̃i) = 1. Denoting the set of such l by L∞, we have

m̃i =
∑

l∈L∞

Ñω(l)

n∗a

−1

F̂ ′
l (λ̃i)

> 0. (1.21)

We now prove that 0 ≤ λi ≤ 1. By induction, for all l = 1, . . . , L, the poles λ̂j(l) of

F̂l(s) satisfy 0 ≤ λ̂1(l) < λ̂2(l) < · · · < λ̂L̃(l)(l) ≤ 1. Thus, for all l = 1, . . . , L, and s < 0 we

have F̂l(s) < 0, and F̂l(s) > 0 for s > 1. We first prove that λi ≥ 0 for all i = 1, . . . , L0.

Assume the contrary, that the minimum value λ1 of the {λi} satisfies λ1 < 0, which implies

that F̂l(λ1) < 0 for all l = 1, . . . , L. Therefore, as the λi are determined by the condition

F̃ (λi) = −1, we have

1 = −F̃ (λ1) = −
L
∑

l=1

Ñω(l)

n∗a

F̂l(λ1)

1− F̂l(λ1)
=

L
∑

l=1

Ñω(l)

n∗a

|F̂l(λ1)|
1 + |F̂l(λ1)|

(1.22)

=

L
∑

l=1

Ñω(l)

n∗a

1

1 + 1/|F̂l(λ1)|
<

L
∑

l=1

Ñω(l)

n∗a
= 1,

a contradiction, which implies that λi ≥ 0, for all i = 1, . . . , L0. Similarly, assume that the

maximum value λL0
of the {λi} satisfies λL0

> 1, which implies that F̂l(λL0
) > 0 for all

l = 1, . . . , L. Therefore,

1 = −F̃ (λL0
) = −

L
∑

l=1

Ñω(l)

n∗a

F̂l(λ1)

1− F̂l(λ1)
= −

L
∑

l=1

Ñω(l)

n∗a

|F̂l(λ1)|
1− |F̂l(λ1)|

(1.23)

=

L
∑

l=1

Ñω(l)

n∗a

1

1− 1/|F̂l(λ1)|
>

L
∑

l=1

Ñω(l)

n∗a
= 1, (1.24)

a contradiction, which implies that λi ≤ 1. In summary, we have 0 ≤ λi ≤ 1. This concludes

our induction step of the proof. Therefore equation (1.1) holds for all M th order hierarchical

series-parallel RRN, M = 0, 1, 2, . . . ✷.
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We now discuss the possibility that 0 ≤ mi ≤ 1 for all M th order hierarchical series-

parallel RRN, M ∈ Z+. We already proved that mi ≥ 0 for all i = 1, . . . , L0. Recall that

the poles λ̃i and λi of F̃ (s) and F (s), respectively, interlace: 0 ≤ λi < λ̃i < λi+1 < λ̃i+1,

i = 1, . . . , L0 − 1, with λL0
≤ 1. If λ̃L0

< 1 or if |λi − λ̃j| < 1 for all i, j = 1, . . . , L0, then

exactly as in (1.15) we have −F̃ ′(λi) ≥ 1, which implies that mi ≤ 1 for all i = 1, . . . , L0.

Clearly |λi − λ̃j | < 1 for all i = 1, . . . , L0 and j = 1, . . . , L0 − 1, but we may have λ̃L0
> 1

and |λi − λ̃L0
| > 1 for some i = 1, . . . , L0. In this case, the following argument provides

substantial evidence that mi ≤ 1, i.e. −F̃ ′(λi) ≥ 1, but does not constitute a proof. Denote

by J+ and J− the set of j ∈ {1, . . . , L0} such that λi− λ̃j > 0 and λi− λ̃j < 0, respectively.

As F̃ (λi) = −1, we have

− F̃ ′(λi)− 1 = −F̃ ′(λi) + F̃ (λi) =

L0
∑

j=1

m̃j

(λi − λ̃j)2
+

L0
∑

j=1

m̃j

λi − λ̃j
(1.25)

=
∑

j∈J+

m̃j

[

1 + |λi − λ̃j|
|λi − λ̃j|2

]

+
∑

L0 6=j∈J−

m̃j

[

1− |λi − λ̃j |
|λi − λ̃j |2

]

+
m̃L0

|λi − λ̃j |2
− m̃L0

|λi − λ̃j |
.

We have |λi − λ̃j | < 1 for all i = 1, . . . , L0 and j = 1, . . . , L0 − 1, and by hypothesis

|λi − λ̃L0
| > 1. Therefore, only the last term of the second line of (1.25) is negative. Thus,

mi ≤ 1 only if the magnitude of this last term is less than the sum of all the others. This

is very likely but the proof is unclear, given what we have established so far. The details of

the condition mi ≤ 1, as well as the mass of the measures µω and the infinite number limit

n −→∞, will be further explored in future work. We now give an analogue of equation (1.16)

for mi = −1/F̃ ′(λi). Note that Ñω(l)/n∗a is a probability measure on the set {1, . . . , L}
with expectation 〈·〉L, say. This analogue thus follows from (1.19):

mi =

〈

−F̂ ′
l (λi)

(1− F̂l(λi))2

〉−1

L

=

〈

∑L̃(l)
j=1

m̂j(l)

(s−λ̂j(l))2

(

1−
∑L̃(l)

j=1
m̂j(l)

s−λ̂j(l)

)2

〉

−1

L

. (1.26)

We have shown that, for each ω ∈ Ωp, the effective conductance σ∗ω satisfies equation

(1.1) for all M th order hierarchical series-parallel RRN, M ∈ Z+. The ensemble averaged

effective conductance σ∗ may be defined by H = 〈Hω〉 = Ṽ 2
0 σ

∗ = Ṽ 2
0 σ2(1− F (s;µ)), where

the expectation 〈·〉 is over Ωp, H is the average power dissipated by the RRN, and Ṽ0 is the

average voltage of the RRN. By equation (1.1) we have
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H =

〈

V 2
0 σ2

Nω
(1− F (s, µω))

〉

=
V 2

0 σ2

〈N−1
ω 〉−1

(

1−
〈

F (s, µω)

〈N−1
ω 〉Nω

〉)

= Ṽ 2
0 σ2(1− F (s;µ)),

F (s;µ) =

∫ 1

0

dµ(λ)

s− λ , µ(dλ) =

L0
∑

i=1

〈

mi(ω)δλi
(dλ)

〈N−1
ω 〉Nω

〉

, Ṽ0 = V0

√

〈N−1
ω 〉 (1.27)

A key feature of equations (1.1) and (1.27) is that parameter information in s and V0 is

separated from the geometry of the RRN, which is incorporated in the measures µω and µ,

respectively. This is a very useful property which will be used extensively in this dissertation.

In [65], Golden and Papanicolaou formulated an abstract theory was given which yields

Stieltjes integral representations of σ∗ for general two-component stationary random media

in lattice and continuum settings. This work reveals that the theoretical foundations of

the theory is in functional analysis, and demonstrates that µ is the spectral measure of a

self-adjoint random operator (or matrix). In [58], Golden explicitly formulated this abstract

framework for RRN with arbitrary graph topology and for the bond lattice. The explicitness

of our construction of equation (1.27) illuminates many key features of the general abstract

theory, discussed in Section 2.1, and introduces methods of Padé approximation and the

theory of polynomials orthogonal to the measure µ, discussed in Chapter 4. In Section 1.2

we analyze a continuum analogue of the RRN shown in Figure 1.2.

1.2 Laminate Dielectric Media

This section is devoted to an analysis of two-phase random laminate media. These simple

continuum microstructures are central to the theory of two-phase composites as they are,

in a limiting sense, the building blocks of all such composite media [87]. These canonical

examples of two-phase random media are analogous to the parallel and series RRN shown

in Figure 1.2 of Section 1.1.

In continuum composite media, the electric field ~E(~x, ω) plays the role of the voltage Vj

across resistor j of a RRN, while the random geometry ω ∈ Ω of a continuum composite plays

the role of the random configuration of resistors of a RRN, where ~x ∈ Rd, d is the physical

dimension of the medium, and Ω is the set of all geometric realizations of the random

medium. Here we demonstrate that an analogue of the parameter separation property,

H = Ṽ 2
0 σ2(1− F (s;µ)), displayed in (1.27), holds for two-phase laminate media, where the

norm E0 of the average electric field ~E0 = 〈~E〉 plays the role of Ṽ0 in RRN. While this

parameter separation property holds for general two-component stationary random media

in lattice and continuum settings [65], for laminate geometry, we prove that the condition
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〈 ~E〉 = ~E0 is necessary and sufficient for this property.

We now briefly review the effective parameter problem for two-phase random dielectric

media. A more detailed discussion of the effective parameter problem will be given in

Section 2.1. Let (Ω, P ) be a probability space and let ǫ(~x, ω) be the local permittivity,

where Ω is the set of all realizations of our random medium and P (dω) is the underlying

probability measure [65]. We assume ǫ(~x, ω) takes the values ǫ1 and ǫ2 and write ǫ(~x, ω) =

ǫ1χ1(~x, ω) + ǫ2χ2(~x, ω), where χj is the characteristic function of medium, j = 1, 2, which

equals one for all ω ∈ Ω having medium j at ~x, and zero otherwise [65]. Let ~E(~x) and ~D(~x)

be the random electric and displacement fields, related by ~D = ǫ ~E, satisfying [65]

~∇× ~E = 0, ~∇ · ~D = 0, ~E = ~E0 + ~Ef , 〈 ~E〉 = ~E0, (1.28)

where 〈·〉 denotes averaging and ~Ef is the fluctuating field with mean zero about ~E0. We

write ~E0 = E0~e0, where ~e0 is a unit vector which gives the direction of ~E0. For simplicity,

we have assumed that the constituents are ideal (perfect electrical insulators [102]), so that

~∇· ~D = ρf = 0, and linear, so that the bound charge distribution ρb is directly proportional

to the free charge density ρf , ρb ∝ ρf = 0 [103]. Therefore, the system may be thought

of as free space partitioned by the boundaries of the constituents, which may host bound

surface charge densities σb, where σ is not to be confused with conductance.

The effective permittivity tensor ǫ
∗ is defined as

〈 ~D〉 = ǫ
∗〈 ~E〉. (1.29)

Central to our studies is the system energy given by 1
2 〈~D · ~E〉 [74]. A key variational

calculation [65] yields the energy constraint 〈~D · ~Ef 〉 = 0. Therefore the energy may be

expressed as

1

2
〈~D · ~E〉 =

1

2
〈 ~D〉 · ~E0 =

1

2
ǫ∗E2

0 , (1.30)

where ǫ∗ = ǫ
∗~e0 · ~e0. For laminates, we will show that the energy constraint 〈~D · ~Ef 〉 = 0

is a direct consequence of the property 〈 ~E〉 = ~E0 and boundary conditions, where 〈·〉 will

denote volume average over all Rd for the remainder of this section.

As the results of this section are valid for multicomponent media, we will use the notation

〈χj〉 = pj for the characteristic function χj and volume fraction pj of material component

j = 1, . . . , n. By linearity of the material, we have the following identities

ǫ0 ~E = ~D − ~P0 = ǫ ~E − (ǫ− ǫ0) ~E ⇐⇒ ǫ2 ~E = ~D − ~P2 = ǫ ~E − (ǫ− ǫ2)~E, (1.31)
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where ~P is the polarization density. Therefore ǫ2 can be used in place of the permittivity of

free space ǫ0 in the definition ǫ0~∇ · ~E = ρT of the total charge density ρT = ρf + ρb [66, 74],

without physical nor mathematical inconsistencies.

1.2.1 Laminates Parallel to an Applied Field

Consider a n phase dielectric random medium filling all of Rd with laminate geometry

parallel to a uniform, applied electric field ~E, as shown in Figure 1.4 (a) for n = 2. This

composite geometry is analogous to the network of parallel resistors shown in Figure 1.2.

The effective permittivity ǫ∗ of this geometry is known [110] to be given by ǫ∗ = ǫ∗a, where

ǫ∗a =
∑n

j=1 pjǫj is the arithmetic mean of the {ǫj}, ǫ∗a = ǫ2(1 − p1/s) when n = 2, and

s = 1/(1 − ǫ1/ǫ2). We will derive this formula for ǫ∗ through energetic considerations.

Let ω ∈ Ω be a random configuration of a such a n phase dielectric medium. The

electric field is curl free ~∇× ~E = 0. This causes its tangential component to be continuous

across the constituent boundaries [74], (~Ej − ~Ej+1) × ~n = 0, so that it remains parallel to

these boundaries throughout the system, and constant in each of the constituents, where ~n

is a unit vector, perpendicular to these boundaries and ~E(~x) = ~Ej when ǫ(~x) = ǫj. This

and symmetry implies that ~Ej = ~Ej+1 for all j which, in turn implies that ~Ej = ~Ei for

all i, j, and that no surface charge densities are induced on the contrast boundaries [74]:

σj,j+1 = ǫ2( ~Ej − ~Ej+1) · ~n = 0. The condition 〈~E〉 = ~E0 now implies that ~Ej = ~E0 for all

j, or ~E ≡ ~E0. As ~E ≡ ~E0, ~D = ǫ ~E, and ǫ =
∑n

j=1 ǫjχj , the energy H is given by

H =

〈

1

2
~D · ~E

〉

=

〈

1

2





n
∑

j=1

ǫjχj



E2
0

〉

=
1

2
ǫ∗aE

2
0 =

1

2
ǫ2E

2
0

(

1− p1

s

)

, (1.32)

where the last equality holds only for two-component composite media. Like its RRN

analogue, ǫ∗a is independent of the configuration ω ∈ Ω of the laminate.

We stress that it was boundary conditions which caused ~E to be constant. In this case

of laminate geometry parallel to an applied field, the conditions 〈 ~E〉 = ~E0 and 〈 ~Ef 〉 = 0,

where ~Ef = ~E − 〈~E〉, are trivial definitions of the vectors ~E0 and ~Ef . Consequently, the

energy H in (1.32) is trivially given by H = 1
2 〈 ~D〉 · ~E0. The converse, if 〈~D · ~Ef 〉 = 0 then

〈 ~Ef 〉 = 0, is equally trivial in this case. However, we demonstrate in Section 1.2.2 that, in

the case of laminate geometry perpendicular to an applied field, this nontrivial equivalence

continues to hold.
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(a) (b)

Figure 1.4. (a) Laminates parallel to an applied electric field (b) Laminates perpendicular
to an applied electric field

1.2.2 Laminates Perpendicular to an Applied Field

Consider a n phase dielectric random medium filling all of Rd with laminate geometry

perpendicular to a uniform, applied electric field ~E, as shown in Figure 1.4 (b) for n = 2.

This composite geometry is analogous to the network of series resistors shown in Figure 1.2.

The effective permittivity ǫ∗ of this geometry is known [110] to be given by ǫ∗ = ǫ∗h, where

ǫ∗h = (
∑n

j=1 pj/ǫj)
−1 is the harmonic mean of the {ǫj} and ǫ∗h = ǫ2(1 − p1/(s − p2)) when

n = 2. We will derive this formula for ǫ∗ through energetic considerations and explore

its consequences, which will illuminate features of the effective permittivity ǫ∗ for general

two-component stationary random media, discussed in Section 2.1.

Let ω ∈ Ω be a random configuration of such a n phase dielectric medium. As the

dielectric constituents are ideal, the free charge density is zero and the displacement field

is divergence free ~∇ · ~D = ρf = 0. This causes its normal component to be continuous

across the constituent boundaries [74], (ǫj ~Ej − ǫj+1
~Ej+1) · ~n = 0, so that the electric field

~E remains perpendicular to these boundaries throughout the system and the displacement

field ~D is constant in each of the laminate layers. Here ~n = ~e0 is the unit normal to the

contrast boundaries and ~E(~x) = ~Ej = Ej~e0 when ǫ(~x) = ǫj. This and symmetry implies

that ǫj ~Ej = ǫj+1
~Ej+1 for all j which, in turn implies that ǫj ~Ej = ǫi ~Ei for all i, j.

By the above analysis, the local permittivity ǫ and electric field ~E may be written as

ǫ =
∑n

j=1 ǫjχj and ~E =
∑n

j=1 χj
~Ej , respectively. Focusing on ~E1, we have ǫj ~Ej = ǫ1 ~E1 for

all j. The condition 〈 ~E〉 = ~E0 then implies that
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~E0 =

n
∑

j=1

pj ~Ej = ǫ1 ~E1

n
∑

j=1

pj
ǫj

=
ǫ1
ǫ∗h

~E1. (1.33)

Equation (1.33) yields a global continuity equation for the displacement field:

ǫj ~Ej = ǫ∗h
~E0, j = 1, 2, . . . , n. (1.34)

By (1.34) and the orthogonality of the χi, χiχj = δijχj, the system energy H is given by

H =
1

2
〈 ~D · ~E〉 =

1

2
〈ǫ ~E · ~E〉 = 1

2

〈





n
∑

j=1

ǫjχj









n
∑

j=1

χj ~Ej



 ·





n
∑

j=1

χj ~Ej





〉

(1.35)

=
1

2

n
∑

j=1

pjǫjE
2
j =

1

2

n
∑

j=1

pjǫj

(

ǫ∗hE0

ǫj

)2

=
1

2
ǫ∗hE

2
0 =

1

2
ǫ2E

2
0

(

1− p1

s− p2

)

,

where the last equality holds only for two-component media. Like its RRN analogue, ǫ∗a

is independent of the configuration ω ∈ Ω of the laminate. By (1.34) the surface charge

densities induced on the constituent boundaries are given by [74]

σi,i+1 = ǫ2( ~Ei − ~Ei+1) · ~n = E0ǫ2ǫ
∗
h

(

1

ǫi
− 1

ǫi+1

)

(1.36)

= ±E0ǫ2ǫ
∗
h

(

1

ǫ1
− 1

ǫ2

)

= ±E0ǫ
∗
h

1− h
h

= ±E0ǫ
∗
h

s− 1
,

where the equalities in the second line of equation (1.36) hold only for two-component

composite media, and we have used h = ǫ1/ǫ2 = (s− 1)/s.

The following theorem illustrates that, for this special geometry, the energy constraint

〈 ~D · ~Ef 〉 = 0, the condition 〈 ~E〉 = ~E0, and equation (1.34) are equivalent statements.

Theorem 2 Consider a n phase dielectric random medium filling all of Rd with laminate

geometry perpendicular to a uniform, applied electric field ~E, with ~E = ~E0 + ~Ef , where ~Ef

is the fluctuating field of mean zero about its average 〈 ~E〉 = ~E0, and 〈·〉 denotes volume

averaging. Let ~D = ǫ ~E be the displacement field, where ǫ is the local permittivity of the

medium. Let the constituent permittivities ǫj take volume fractions pj and define ǫ∗h =

(
∑n

j=1 pj/ǫj)
−1. Then the following statements are equivalent:

(1) 〈 ~Ef 〉 = 0, (2) ǫj ~Ej = ǫ∗h
~E0, j = 1, 2, . . . , n, (3) 〈~D · ~Ef 〉 = 0.
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Proof: The proof of (1)⇒(2) has already been established by equation (1.34). Conversely,

(1)⇐(2), if ǫj ~Ej = ǫ∗h
~E0 for j = 1, 2, . . . , n then

〈 ~Ef 〉 =
〈

n
∑

j=1

χj ~Ej

〉

− ~E0 = ~E0



ǫ∗h

n
∑

j=1

pj
ǫj
− 1



 = 0.

The property (2)⇒(3) follows from the definition ~E = ~Ef + ~E0, the orthogonality of

the χj, χiχj = δijχj , and the symmetry of the problem, which yields ~Ej = Ej~e0, for all

j = 0, 1, . . . , n, and ~E0 = E0~e0. Indeed, if ǫj ~Ej = ǫ∗h
~E0 for all j = 1, 2, . . . , n, then

〈 ~D · ~Ef 〉 = 〈ǫ ~E · ~Ef 〉 =
〈





n
∑

j=1

ǫjχj









n
∑

j=1

χj ~Ej



 ·





n
∑

j=1

χj ~Ej − ~E0





〉

(1.37)

=

〈

n
∑

j=1

χj(ǫjE
2
j − ǫjEjE0)

〉

=

n
∑

j=1

pj

(

ǫj

(

ǫ∗h
ǫj

)2

− ǫj
ǫ∗h
ǫj

)

E2
0 = 0,

where we have used
∑n

j=1 pj = 1 in the last line. Conversely (2)⇐(3), the electric field

definition, the symmetry of the problem, and the orthogonality of the χj implies all but

the last two equalities of equation (1.37). Therefore if 〈 ~D · ~Ef 〉 = 0 then the boundary

condition, ǫjEj = ǫ1E1 for j = 1, 2, . . . , n, yields

0 = 〈 ~D · ~Ef 〉 =
n
∑

j=1

pj(ǫjE
2
j − ǫjEjE0) =

n
∑

j=1

pj

(

ǫj

(

ǫ1E1

ǫj

)2

− ǫj
ǫ1E1

ǫj
E0

)

= ǫ1E1

(

ǫ1E1

ǫ∗h
− E0

)

.

This and the boundary condition then implies that ǫj ~Ej = ǫ∗h
~E0 for all j = 1, 2, . . . , n.

The equivalence (1) ⇐⇒ (3) is therefore also established. This concludes the proof of

Theorem 2 ✷.

In Theorem 3 we provide a detailed decomposition of the system energy.

Theorem 3 Consider the dielectric random medium described in Theorem 2. In addition to

the definitions given there, denote by ǫ∗a =
∑n

j=1 ǫjpj the arithmetic mean of the constituent

permittivities {ǫj}. Then we have the following decomposition of the system energy 1
2 〈 ~D ·

~E〉 = 1
2〈ǫ ~E · ~E〉:

〈ǫ ~E · ~E〉 = E2
0ǫ

∗
h, 〈ǫ ~E · ~Ef 〉 = 0, 〈ǫ ~E · ~E0〉 = E2

0ǫ
∗
h,

〈ǫ ~Ef · ~E0〉 = E2
0(ǫ∗h − ǫ∗a), 〈ǫ ~Ef · ~Ef 〉 = E2

0(ǫ∗a − ǫ∗h),
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Proof: The formula 〈ǫ ~E · ~E〉 = E2
0ǫ

∗
h has already been established in equation (1.35). By

Theorem 2, 〈ǫ ~E · ~Ef 〉 = 0, therefore ~E = ~E0 + ~Ef implies that 〈ǫ ~E · ~E0〉 = E2
0ǫ

∗
h. By the

orthogonality of the χj , χiχj = δijχj, the definition ~E = ~E0 + ~Ef , equation (1.34), and the

symmetry of the problem, which yields ~Ej = Ej~ek, for all j = 0, 1, . . . , n, and ~E0 = E0~ek,

we have

〈ǫ ~Ef · ~E0〉 =

〈





n
∑

j=1

ǫjχj









n
∑

j=1

χj ~Ej − ~E0



 · ~E0

〉

=

〈

n
∑

j=1

ǫjχj(Ej − E0)E0

〉

= E2
0

n
∑

j=1

pjǫj

(

ǫ∗h
ǫj
− 1

)

= E2
0(ǫ∗h − ǫ∗a),

where we have used
∑n

j=1 pj = 1. By 〈ǫ ~E · ~Ef 〉 = 0 and ~E = ~E0 + ~Ef we therefore have

〈ǫ ~Ef · ~Ef 〉 = E2
0(ǫ∗a − ǫ∗h). This concludes the proof of Theorem 3 ✷.

In Theorem 4 we give the analogue of this result for general two-component stationary

random media. This theorem makes many results of this dissertation physically transparent.

We will use the intuition gained from Section 1.1 and Section 1.2 to guide us in our

exploration of the general features of two-phase random media, in lattice and continuum

settings.



CHAPTER 2

EFFECTIVE PARAMETERS OF

TWO-PHASE RANDOM MEDIA

We now formulate the effective parameter problem for general two-phase stationary

conductive media, in lattice and continuum settings. By the symmetries in the equations

governing two-phase dielectric and conductive media [87], the results given here also hold

for binary dielectric composites. The mathematical objects arising in this chapter lead to

connections with percolation theory, statistical mechanics, orthogonal polynomial theory,

and random matrix theory.

2.1 The Analytic Continuation Method

Let (Ω, P ) be a probability space, and let σ(~x, ω) and ρ(~x, ω) be the local conductivity

and resistivity tensors, respectively, which are (spatially) stationary random fields in ~x ∈ Rd

and ω ∈ Ω. Here Ω is the set of all geometric realizations of our random medium, P (dω) is

the underlying probability measure, which is compatible with stationarity, and ρ = σ
−1 [65].

Define the Hilbert space of stationary random fields Hs ⊂ L2(Ω, P ), and the underlying

Hilbert spaces of stationary curl free H× ⊂Hs and divergence freeH• ⊂Hs random fields

H× = {~Y (ω) ∈Hs | ~∇× ~Y = 0 weakly and 〈~Y 〉 = 0}, (2.1)

H• = {~Y (ω) ∈Hs | ~∇ · ~Y = 0 weakly and 〈~Y 〉 = 0},

where ~Y : Ω 7→ Rd and 〈·〉 means ensemble average over Ω, or by an ergodic theorem spatial

average over all of Rd [65].

Consider the variational problems [65]: find ~Ef ∈H× and ~Jf ∈H• such that

〈σ( ~E0 + ~Ef ) · ~Y 〉 = 0 ∀ ~Y ∈H× and 〈ρ( ~J0 + ~Jf ) · ~Y 〉 = 0 ∀ ~Y ∈H• , (2.2)

respectively. When the bilinear forms a(~u,~v) = ~uTσ ~v and ã(~u,~v) = ~uTρ~v are bounded

and coercive, these problems have unique solutions satisfying [65]
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~∇× ~E = 0, ~∇ · ~J = 0, ~J = σ ~E, ~E = ~E0 + ~Ef , 〈 ~E 〉 = ~E0, (2.3)

~∇× ~E = 0, ~∇ · ~J = 0, ~E = ρ ~J, ~J = ~J0 + ~Jf , 〈 ~J 〉 = ~J0,

respectively. Here ~Ef and ~Jf are the fluctuating electric field and current density of mean

zero, respectively, about the (constant) averages ~E0 and ~J0, respectively.

We assume that the local conductivity σ(~x, ω) of the medium takes the complex values σ1

and σ2 and write σ(~x, ω) = σ1χ1(~x, ω)+σ2χ2(~x, ω), where χj is the characteristic function of

medium j = 1, 2, which equals one for all ω ∈ Ω having medium j at ~x, and zero otherwise,

with χ1 = 1−χ2 [65]. Similarly, we assume that the local resistivity ρ(~x, ω) takes the values

1/σ1 and 1/σ2 and write ρ(~x, ω) = χ1(~x, ω)/σ1 + χ2(~x, ω)/σ2.

As ~Ef ∈H× and ~Jf ∈H•, equation (2.2) yields the energy (power density) constraints

〈 ~J · ~Ef 〉 = 〈 ~E · ~Jf 〉 = 0, which lead to the reduced energy representations

〈 ~J · ~E〉 = 〈 ~J〉 · ~E0 and 〈~E · ~J〉 = 〈 ~E〉 · ~J0 . (2.4)

The effective complex conductivity and resistivity tensors, σ
∗ and ρ

∗, are defined by

〈 ~J 〉 = σ
∗ ~E0 and 〈 ~E 〉 = ρ

∗ ~J0, (2.5)

respectively, yielding 〈 ~J · ~E〉 = σ
∗ ~E0 · ~E0 = ρ

∗ ~J0 · ~J0. For simplicity we focus on one diagonal

component of these tensors, σ∗ = σ∗kk and ρ∗ = ρ∗kk, for some k = 1, . . . , d. Assuming that

0 < |σ1| < |σ2| <∞, these functions have the following bounds [87, 122]

|σ1 |≤ |σ∗| ≤ |σ2|, |σ2|−1 ≤ |ρ∗| ≤ |σ1|−1. (2.6)

Due to the homogeneity of these functions, e.g. σ∗(aσ1, aσ2) = aσ∗(σ1, σ2) for any complex

number a, they depend only on the ratio h = σ1/σ2, and we define the functions

m(h) = σ∗/σ2, w(z) = σ∗/σ1, m̃(h) = σ1ρ
∗, w̃(z) = σ2ρ

∗, (2.7)

where z = 1/h. The dimensionless functions m(h) and m̃(h) are analytic off the negative

real axis in the h-plane, while w(z) and w̃(z) are analytic off the negative real axis in the

z-plane [65]. Each take the corresponding upper half plane to the upper half plane, so that

they are examples of Herglotz functions [65]. As a function of h, z : (−∞, 0) 7→ (−∞, 0).
Therefore the functions w(z(h)) and w̃(z(h)) are also analytic off the negative real axis in

the h-plane. We henceforth restrict h in the complex plane to the set

Uε = {h ∈ C : |h| < 1 and |h− h0| > ε for all h0 ∈ (−1, 0]}, (2.8)

which is parameterized by 0 < ε≪ 1. When ε = 0 in equation (2.8) we write U0.
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A key step in the method is obtaining integral representations for σ∗ and ρ∗ in terms of

Herglotz functions Ai,j and Si,j, i, j = 0, 1, 2, . . ., of the form [71]

Ai,j(ξ; ν) =

∫ 1

0

λidν(λ)

(ξ − λ)j
, Si,j(ξ; ν) =

∫ ∞

0

yidν(y)

(1 + ξy)j
, (2.9)

which follow from resolvent representations of the electric field ~E and current density ~J ,

~E = s(s− Γχ1)
−1 ~E0 = t(t− Γχ2)

−1 ~E0 and ~J = s(s−Υχ2)
−1 ~J0 = t(t−Υχ1)

−1 ~J0,
(2.10)

respectively. Here we have defined s = 1/(1 − h), t = 1/(1 − z) = 1 − s, Γ = ~∇∆−1 ~∇·,
and Υ = −~∇ × ∆−1 ~∇×, where ∆ = ∇ 2 is the Laplacian. These formulas follow from

manipulations of equation (2.3), which will be discussed in more detail below.

The operator Γ is a projection onto curl-free fields, based on convolution with the free-

space Green’s function for the Laplacian [65]. More specifically Γ :Hs 7→H×, and for every

~ζ ∈H× we have Γ~ζ = ~ζ. For the convenience of the reader we recall a few vector calculus

facts. For every ~ζ ∈H• we have ~ζ = ~∇× ( ~A+ ~C) weakly, where ~∇× ~C = 0 weakly [54, 74].

The arbitrary vector ~C can be chosen so that the vector potential ~A satisfies ~∇ · ~A = 0

weakly [74]. Hence, ~∇ × ~ζ = ~∇ × ~∇ × ~A = ~∇(~∇ · ~A) − ∆ ~A = −∆ ~A weakly. The vector

~C chosen in this manner gives the Coulomb (or transverse) gauge of ~ζ [74]. Choosing the

members of the Hilbert space H• to have Coulomb gauge, one can similarly show that the

operator Υ is a projection onto divergence-free fields. More specifically Υ :Hs 7→H•, and

for every ~ζ ∈H• we have Υ~ζ = ~ζ.

We now discuss the derivation of the resolvent formulas displayed in equation (2.10).

Recall that ~E0 and ~J0 are constant vectors and that ~Ef ∈ H× and ~Jf ∈ H•, so that

Γ ~Ef = ~Ef and Υ ~Jf = ~Jf . Therefore, applying the operator ∇∆−1 to ~∇ · ~J = 0 in the first

line of equation (2.3) and the operator ∇×∆−1 to ~∇× ~E = 0 in the second line, and noting

that σ = σ2(1− χ1/s) and ρ = σ−1
1 (1− χ2/s), for example, we obtain

~Ef =
1

s
Γχ1

~E =
1

t
Γχ2

~E, ~Jf =
1

s
Υχ2

~J =
1

t
Υχ1

~J. (2.11)

Equation (2.10) follows from (2.11) and the formulas ~E = ~E0 + ~Ef and ~J = ~J0 + ~Jf .

It is more convenient to consider the functions F (s) = 1−m(h) and E(s) = 1− m̃(h),

which are analytic off [0, 1] in the s-plane, and G(t) = 1−w(z) and H(t) = 1− w̃(z), which

are analytic off [0, 1] in the t-plane [10, 65]. By equation (2.6) they satisfy

0 < |F (s)|, |E(s)| < 1, 0 < |G(t)|, |H(t)| <∞, h ∈ U0. (2.12)
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We write ~E0 = E0 ~ek and ~J0 = J0
~jk, where ~ek and ~jk are standard basis vectors, for some

k = 1, . . . , d. Using equations (2.3), (2.5), (2.10), and the spectral theorem [101], we obtain

the following integral representations of F (s), E(s), G(t), and H(t) [10, 12, 65]

F (s) = 〈χ1(s− Γχ1)
−1~ek · ~ek〉 =

∫ λ1

λ0

dµ(λ)

s− λ , (2.13)

E(s) = 〈χ2(s−Υχ2)
−1~jk ·~jk〉 =

∫ λ̃1

λ̃0

dη(λ)

s− λ ,

G(t) = 〈χ2(t− Γχ2)
−1~ek · ~ek〉 =

∫ λ̂1

λ̂0

dα(λ)

t− λ ,

H(t) = 〈χ1(t−Υχ1)
−1~jk ·~jk〉 =

∫ λ̌1

λ̌0

dκ(λ)

t− λ ,

or in the compact notation of (2.9), F (s) = A0,1(s;µ), E(s) = A0,1(s; η), G(t) = A0,1(t;α),

and H(t) = A0,1(t;κ). Equation (2.13) displays Stieltjes transforms of the bounded positive

measures µ, η, α, and κ which are supported on Σµ,Ση,Σα,Σκ ⊆ [0, 1], respectively, and

depend only on the geometry of the medium [12, 65]. The supremum and infimum of these

sets are defined to be the upper and lower limits of integration displayed in equation (2.13).

The integro-differential operators Mj = χjΓχj and Kj = χjΥχj, j = 1, 2, are compo-

sitions of projection operators on the associated Hilbert spaces H× and H•, respectively,

and are consequently positive definite and bounded by 1 in the underlying operator norm

[104]. They are self-adjoint on L2(Ω, P ) [65]. Consequently, in the Hilbert space L2(Ω, P )

with weight χ2 in the inner product, for example, Γχ2 is a bounded self-adjoint operator

[65]. Equation (2.13) is based upon spectral representations of resolvents involving these

self-adjoint operators. The measures µ, η, α, and κ are spectral measures of the family of

projections of these operators in the respective 〈~ek, ~ek〉 or 〈~jk,~jk〉 state [65, 101].

A key feature of equations (2.4), (2.5), and (2.13) is that the parameter information in

s and E0 is separated from the geometry of the composite, which is encapsulated in the

measures µ, η, α, and κ through their moments µn, ηn, αn, and κn, n ≥ 0, respectively,

which depend on the correlation functions of the medium [65]. For example, α0 = η0 = p

and µ0 = κ0 = 1−p. A principal application of the analytic continuation method is to derive

forward bounds on σ∗ and ρ∗, given partial information on the microgeometry [11, 12, 65, 86].

One can also use the representations in (2.13) to obtain inverse bounds, allowing one to use

data about the electromagnetic response of a sample to bound its structural parameters

such as p [19, 31–34, 40, 64, 131].
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We conclude this section by demonstrating that the energy constraints 〈 ~J · ~Ef 〉 = 〈 ~E ·
~Jf 〉 = 0 lead to detailed decompositions of the system energy in terms of Herglotz functions

involving µ, η, α, and κ. For example, the formulas 〈 ~J · ~Ef 〉 = 0, ~E = ~E0 + ~Ef , 〈 ~Ef 〉 = 0,

and σ = σ2(1− χ1/s) imply that

0 = 〈σ ~E · ~Ef 〉 = 〈σ2(1− χ1/s)(~Ef · ~E0 +E2
f )〉 = σ2

(

〈E2
f 〉 −

1

s

(

〈χ1
~Ef · ~E0〉+ 〈χ1E

2
f 〉
)

)

.

Denote by Rs = (s − Γχ1)
−1 the resolvent of the operator Γχ1. As Γχ1 is self-adjoint in

the L2(Ω, P ) inner product weighted by χ1 [65], Rs is also self-adjoint in this inner product

[118] for s ∈ C\[0, 1]. Writing ~E = sRs ~E0 and ~E0 = E0~ek, the spectral theorem [101] then

yields

〈E2
f 〉 =

E2
0

s

(

〈χ1(sRs~ek · ~ek − 1)〉+ 〈χ1‖(sRs − 1)~ek‖2〉
)

(2.14)

=
E2

0

s

(

∫ 1

0

[

s

s− λ − 1

]

dµ(λ) +

∫ 1

0

[

s

s− λ − 1

]2

dµ(λ)

)

=
E2

0

s

∫ 1

0

λ(s− λ) + λ2

(s− λ)2
dµ(λ) = E2

0

∫ 1

0

λdµ(λ)

(s− λ)2
= A1,2(s;µ),

where Ai,j(s;µ) is defined in equation (2.9). By the symmetries of (2.13), we then have

〈E2
f 〉/E2

0 = A1,2(s;µ) = A1,2(t;α), 〈J2
f 〉/J2

0 = A1,2(s; η) = A1,2(t;κ). (2.15)

In Theorem 4 we show that equation (2.15) leads to Herglotz representations of all such

energy components involving µ, η, α, and κ, We will focus on µ, as results associated with

α, η and κ follow by symmetry.

Theorem 4 Let Ai,j(s;µ) be defined as in equation (2.9). Then (2.15) implies that

〈χ1E
2
f 〉/E2

0 = A2,2(s;µ), 〈E2
f 〉/E2

0 = A1,2(s;µ), (2.16)

〈χ1
~Ef · ~E0〉/E2

0 = A1,1(s;µ), 〈~Ef · ~E0〉/E2
0 = 0,

〈χ1E
2〉/E2

0 = s2A0,2(s;µ), 〈E2〉/E2
0 = 1 +A1,2(s;µ),

〈χ1
~E · ~E0〉/E2

0 = sA0,1(s;µ), 〈 ~E · ~E0〉/E2
0 = 1,

〈χ1
~E · ~Ef 〉/E2

0 = s2A0,2(s;µ)− sA0,1(s;µ), 〈 ~E · ~Ef 〉/E2
0 = A1,2(s;µ),

where the formulas involving χ2 are given by the relation χ2 = 1− χ1 and (2.16).
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Proof: Using equation (2.14) and the spectral theorem [101] we have

〈χ1E
2
f 〉

E2
0

= 〈χ1(sRs − 1)2~ek · ~ek〉 =

∫ 1

0

(

s

s− λ − 1

)2

dµ(λ) =

∫ 1

0

λ2dµ(λ)

(s− λ)2
= A2,2(s;µ),

〈E2
f 〉

E2
0

= 〈‖(sRs − 1)~ek‖2〉 =

∫ 1

0

λdµ(λ)

(s− λ)2
= A1,2(s;µ),

〈χ1
~Ef · ~E0〉
E2

0

= 〈χ1(sRs − 1)~ek · ~ek〉 =

∫ 1

0

λdµ(λ)

s− λ = A1,1(s;µ),

〈 ~Ef · ~E0〉
E2

0

= 0.

〈χ1E
2〉

E2
0

= 〈χ1‖sRs~ek‖2〉 = 〈χ1s
2R2

s~ek · ~ek〉 = s2
∫ 1

0

dµ(λ)

(s− λ)2
= s2A0,2(s;µ),

〈E2〉
E2

0

=
〈(E2

0 + 2~Ef · ~E0 + E2
f )〉

E2
0

= 1 +

∫ 1

0

λdµ(λ)

(s− λ)2
= 1 +A1,2(s;µ),

〈χ1
~E · ~E0〉
E2

0

= 〈〈χ1sRs~ek · ~ek〉 = s

∫ 1

0

dµ(λ)

s− λ = sA0,1(s;µ),

〈 ~E · ~E0〉
E2

0

= 1.

〈χ1
~E · ~Ef 〉
E2

0

=
〈χ1E

2〉 − 〈χ1
~E · ~E0〉

E2
0

= s2A0,2(s;µ)− sA0,1(s;µ),

〈 ~E · ~Ef 〉
E2

0

=
〈E2〉 − 〈~E · ~E0〉

E2
0

=

∫ 1

0

λdµ(λ)

(s− λ)2
= A1,2(s;µ),

These formulas hold for general two-component stationary random media in the lattice and

continuum settings [60]. This concludes the proof of Theorem 4 ✷.

2.2 Stieltjes Function Representations of σ
∗ and ρ

∗

In Section 2.1, we formulated the effective parameter problem for two-component con-

ductive media and obtained integral representations of the effective complex conductivity

σ∗ and resistivity ρ∗. In this section we derive Stieltjes function representations of σ∗ and

ρ∗. These alternate representations will be used in Section 2.3 and Section 3.2 to provide

spectral characterizations of critical behavior exhibited by σ∗ and ρ∗.

In order to illuminate the many symmetries of this mathematical framework, we will

henceforth focus on the complex variable h = hr + ihi, where hr = Reh and hi = Imh.

Moreover, in the last two formulas of equation (2.13), we will make the change of variables

t(s) = 1− s and λ 7→ 1− λ, so that

G(t(s)) = −
∫ 1−λ̂0

1−λ̂1

[−dα(1− λ)]

s− λ , H(t(s)) = −
∫ 1−λ̌0

1−λ̌1

[−dκ(1 − λ)]

s− λ .
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The change of variables s(h) = 1/(1−h) and λ(y) = y/(1+ y) ⇐⇒ y(λ) = λ/(1−λ) yield

Stieltjes function representations [4] of the formulas in (2.13). For example,

F (s) = (1− h)
∫ S

S0

(1 + y)dµ(λ(y))

1 + hy
, G(t(s)) = (h− 1)

∫ Ŝ

Ŝ0

(1 + y)[−dα(1 − λ(y))]

1 + hy
,

(2.17)

where S0 = λ0/(1 − λ0), S = λ1/(1 − λ1), Ŝ0 = (1 − λ̂1)/λ̂1, Ŝ = (1 − λ̂0)/λ̂0, and the

supports Σµ = [λ0, λ1] and Σα = [λ̂0, λ̂1] are defined in (2.13). Therefore, limλ0−→0 S0 =

limλ̂1−→1 Ŝ0 = 0 and limλ1−→1 S = limλ̂0−→0 Ŝ = ∞. Moreover, dµ(λ(y)) is the measure

dµ(λ) under the variable change λ 7→ λ(y) = y/(1 + y) and [−dα(1− λ(y))] is the measure

dα(λ) under the variable change λ 7→ 1 − λ(y), where the negative sign accounts for the

switch of integration limits in the second formula of (2.17). By equations (2.13) and (2.17),

the Stieltjes function representations of m(h) and w(z(h)) are given by

m(h) = 1 + (h− 1)g(h), g(h) =

∫ ∞

0

dφ(y)

1 + hy
, dφ(y) = (1 + y)dµ(λ(y)), (2.18)

w(z(h)) = 1− (h− 1)ĝ(h), ĝ(h) =

∫ ∞

0

dφ̂(y)

1 + hy
, dφ̂(y) = (1 + y)[−dα(1 − λ(y))],

and, by symmetry, analogous formulas for m̃(h) and w̃(z(h)) involving Stieltjes functions

g̃(h) = S0,1(h; φ̃) and ǧ(h) = S0,1(h; φ̌), respectively. The Stieltjes functions g(h), g̃(h), ĝ(h),

and ǧ(h) are analytic for all h ∈ U0 [65]. As µ, η, α, and κ are positive measures on [0, 1], φ,

φ̃, φ̂, and φ̌ are positive measures on [0,∞]. Consequently, the following inequalities hold

(see Lemma 1)

∂2nζ

∂h2n
> 0,

∂2n+1ζ

∂h2n+1
< 0,

∣

∣

∣

∣

∂nζ

∂hn

∣

∣

∣

∣

> 0, ζ = g(h), g̃(h), ĝ(h), ǧ(h), h ∈ U0, (2.19)

The first two inequalities in (2.19) hold for h ∈ U0 ∩R, n ≥ 0, and the last inequality holds

for h ∈ U0 ∩ R such that hi 6= 0.

By equation (2.18), the moments φn of φ satisfy

φn =

∫ ∞

0
yndφ(y) =

∫ ∞

0
yn(1 + y)dµ(λ) =

∫ 1

0

λndµ(λ)

(1− λ)n+1
= An,n+1(1;µ) . (2.20)

A partial fraction expansion of λn/(1− λ)n+1 then shows that (see Lemma 1 below)

(−1)n

n!
lim
s−→1

∂nF (s)

∂sn
=

∫ 1

0

dµ(λ)

(1− λ)n+1
=

n
∑

j=0

(

n

j

)

φj . (2.21)

Equation (2.21) demonstrates that φn depends on
∫ 1
0 dµ(λ)/(1 − λ)n+1 and all the lower

moments φj, j = 0, 1, . . . , n−1, of φ. Equations (2.12) and (2.20) imply that φ0 is bounded.

In Lemma 2 below, we prove that the higher moments φn, n ≥ 1, diverge as sup{Σµ} −→ 1.
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We now show that Theorem 4 provides physical significance to the moments φj. Equa-

tions (2.13), (2.20), and (2.15) show that the first two moments, φ0 and φ1, of φ are identified

with energy components:

φ0 = lim
s−→1

〈χ1
~E · ~E0〉
E2

0

, φ1 = lim
s−→1

〈E2
f 〉

E2
0

. (2.22)

By equation (2.21), all of the higher moments φj, j ≥ 2, depend on these energy compo-

nents.

Similarly, the moments φ̂n of φ̂ satisfy (see Lemma 1)

φ̂n =

∫ 1

0

(1− λ)ndα(λ)

λn+1
,

(−1)n+1

n!
lim
s−→1

∂nG(t(s))

∂nt
=

∫ 1

0

dα(λ)

λn+1
=

n
∑

j=0

(

n

j

)

φ̂j . (2.23)

Equations (2.13), (2.15), and (2.23) also identify the first two moments, φ̂0 and φ̂1, of φ̂ with

energy components. Equation (2.23) then implies that all of the higher moments φ̂j , j ≥ 2,

depend on these energy components. We prove in Lemma 2 below that all the moments

φ̂n, n ≥ 0, diverge as inf{Σα} −→ 0. By the symmetries in equations (2.13) and (2.18),

equations (2.20) and (2.21) hold for φ̃ with E(s) and η in lieu of F (s) and µ, respectively,

and equation (2.23) holds for φ̌ with H(t(s)) and κ in lieu of G(t(s)) and α, respectively.

We now give some key formulas that will be used extensively. Equations (2.4) and

(2.5) yield the energy representations 〈 ~J · ~E〉 = σ2m(h)E2
0 = σ1w(z(h))E2

0 and 〈 ~E · ~J〉 =

m̃(h)J2
0 /σ1 = w̃(z(h))J2

0 /σ2 involving σ∗ and ρ∗, which imply that

m(h) = hw(z(h)) ⇐⇒ 1− F (s) = (1− 1/s)(1 −G(t(s))), h ∈ U0 (2.24)

and an analogous formula linking m̃(h) and w̃(z(h)). Equations (2.18) and (2.24) then yield

g(h) + hĝ(h) = 1, g̃(h) + hǧ(h) = 1, h ∈ U0. (2.25)

For h ∈ U0, the functions g(h), ĝ(h), g̃(h), and ǧ(h) are analytic [65] and have bounded h

derivatives of all orders [104]. An inductive argument applied to equation (2.25) yields

∂ng

∂hn
+ n

∂n−1ĝ

∂hn−1
+ h

∂nĝ

∂hn
= 0,

∂ng̃

∂hn
+ n

∂n−1ǧ

∂hn−1
+ h

∂nǧ

∂hn
= 0, n ≥ 1. (2.26)

When h ∈ U0 such that hi 6= 0, the complex representation of equation (2.26) is, for example,

∂ngr
∂hn

+ n
∂n−1ĝr
∂hn−1

+ hr
∂nĝr
∂hn

− hi
∂nĝi
∂hn

= 0,
∂ngi
∂hn

+ n
∂n−1ĝi
∂hn−1

+ hr
∂nĝi
∂hn

+ hi
∂nĝr
∂hn

= 0,

∂ngr
∂hn

= Re
∂ng

∂hn
,

∂ngi
∂hn

= Im
∂ng

∂hn
,

∂nĝr
∂hn

= Re
∂nĝ

∂hn
,

∂nĝi
∂hn

= Im
∂nĝ

∂hn
, (2.27)

and analogous equations involving g̃ and ǧ.
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The integral representations of (2.26) and (2.27) follow from equation (2.28) of Lemma 1

below, involving the functions Si,j defined in (2.9). In the remainder of this section, we focus

on the measures φ and φ̂, as the analogous results involving φ̃ and φ̌ follow by symmetry.

Lemma 1 For all h ∈ U0 and i, j ∈ Z satisfying 0 ≤ i ≤ j, we have |Si,j(h;φ)| < ∞,

and for 0 ≤ i ≤ j − 1, |Si,j(h; φ̂)| < ∞. Consequently ([55] Theorem 2.27), the Stieltjes

functions g(h) and ĝ(h) may be repeatedly differentiated under the integral sign:

∂ng(h)

∂hn
= (−1)nn!

∫ ∞

0

yndφ(y)

(1 + hy)n+1
,

∂nĝ(h)

∂hn
= (−1)nn!

∫ ∞

0

yndφ̂(y)

(1 + hy)n+1
, n ≥ 0.

(2.28)

Before we prove Lemma 1, we note that equations (2.26) and (2.28) imply that

∫ ∞

0

yndφ(y)

(1 + hy)n+1
=

∫ ∞

0

yn−1dφ̂(y)

(1 + hy)n
− h

∫ ∞

0

yndφ̂(y)

(1 + hy)n+1
, n ≥ 1, h ∈ U0. (2.29)

Moreover, equation (2.28) also yields the integral representations of (2.27) using

(−1)n

n!

∂ng(h)

∂hn
=

∫ ∞

0

yndφ(y)

|1 + hy|2(n+1)
(1 + h̄y)n+1 =

n+1
∑

j=0

(

n+ 1

j

)

h̄j
∫ ∞

0

yn+jdφ(y)

|1 + hy|2(n+1)
,

(2.30)

for example, where h̄ denotes complex conjugation of the complex variable h.

Proof of Lemma 1 Let Si,j(ξ; ν) be defined as in equation (2.9). The supports of the

measures φ and φ̂ are Σφ = [S0, S ] and Σφ̂ = [Ŝ0, Ŝ ], respectively, which are defined in terms

of Σµ = [λ0, λ1] and Σα = [λ̂0, λ̂1], respectively, directly below equation (2.17). Recalling

that λ(y) = y/(1 + y) ⇐⇒ y(λ) = λ/(1 − λ) and s = 1/(1 − h), equation (2.18) implies

that

Si,j(h;φ) = sj
∫ λ1

λ0

λi(1− λ)j−i−1dµ(λ)

(s− λ)j
, Si,j(h; φ̂) = sj

∫ λ̂1

λ̂0

(1− λ)iλj−i−1dα(λ)

(s− (1− λ))j
.

(2.31)

We now show that |Si,j(h;φ)| and |Si,j(h; φ̂)| in (2.31) are uniformly bounded for all h ∈ Uε.
Set 0 < ε≪ 1 and let h ∈ Uε, so that |h| < 1 and |h− h0| > ε for all h0 ∈ (−1, 0]. As a

complex variable, s = 1/(1 − h) = |s|2(1− hr + ihi). Therefore, by the lower bound

|s|2 =
1

|1− h|2 =
1

1− 2hr + |h|2 >
1

2(1 − hr)
>

1

2(1 − ε) >
1

2
, (2.32)

when hi 6= 0, we have |si| = |s|2|hi| > ε/2 > 0, and when hi = 0, s > 1/(1 − ε) =

1+ε/(1−ε) > 1+ε. Moreover, t = 1−s then implies that, when hi 6= 0, |ti| > ε/2 > 0, and
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when hi = 0, t < −ε < 0. By equation (2.6) we also have F (1) =
∫ 1
0 dµ(λ)/(1 − λ) ∈ [0, 1].

Thus, for i, j ∈ Z such that 0 ≤ i ≤ j and 0 ≤ i ≤ j − 1, equation (2.31) now implies that

[104]

|Si,j(h;φ)| ≤ |s|j λi1 (1− λ0)
j−i F (1) sup

λ∈[λ0,λ1]
|s− λ|−j <∞ and (2.33)

|Si,j(h; φ̂)| ≤ |s|j (1− λ̂0)
i λ̂j−i−1

1 α0 sup
λ∈[λ̂0,λ̂1]

|t− λ|−j <∞,

respectively, where α0 is the mass of the measure α. We stress that these bounds, hence

(2.28) hold even if λ0 = λ̂0 = 0 and λ1 = λ̂1 = 1 when h ∈ Uε. Because g(h) and ĝ(h) are

analytic on U0 [65], they have bounded derivatives of all orders n = 1, 2, 3, ... [104], and we

may now let ε −→ 0 ✷.

All of the equations given in this section display general formulas holding for two-

component stationary random media in lattice and continuum settings [60]. In Section 3.2,

we will investigate a class of composites for which the transport properties of σ∗ exhibit

critical behavior in the limit |h| −→ 0 (|s| −→ 1, |t| −→ 0). When h = 0, the bounds in (2.33)

are violated when λ1 = 1 and λ̂0 = 0, respectively. However, there is a class of composites

for which there are gaps in the support of the measures µ and α about the spectral endpoints

λ = 0, 1, such as matrix/particle composites [23], and the composite underlying effective

medium theory (EMT) [87] (see, for example, Section 3.2.1). For such composite media,

the bounds (2.33) and equation (2.28) are valid for h ∈ U0 ∪ {0}. However, we will show in

Section 2.3 that the limit of equation (2.29) as h −→ 0 is more subtle than simply setting

h = 0.

While in general the spectra of µ and α extend all the way to λ = 0, 1, it has been argued

that there are composites for which the spectrum close to λ = 0, 1 give exponentially small

contributions to the transport properties of σ∗ as h −→ 0 (Lifshitz phenomenon) [37, 75].

However, in this case, |∂ng(h)/∂hn| and |∂nĝ(h)/∂hn| may diverge as h −→ 0 for some n ≥ 1.

We make this situation more precise by introducing a class Bnν of composites in Definition 1

below.

Definition 1 Define Bnν to be the class of composites such that the functions Si,j(h; ν) in

(2.9) satisfy lim|h|−→0 |Sn,n+1(h; ν)| <∞, where ν = φ, φ̂ , for all 0 ≤ n ≤ nν.

By equation (2.29), we have nφ ≥ nφ̂ . The class Bnν , ν = φ, φ̂ , will be used extensively in

the proof of Theorem 5 below.
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2.3 Spectral Characterization of Criticality
in Transport

In this section we construct measures ̺ and ˜̺ that are supported on {0, 1} which link the

measures µ and α, and η and κ, respectively. The properties of ̺ and ˜̺ imply that critical

transitions in the transport properties of σ∗ and ρ∗ are due to the formation of delta function

components in the underlying spectral measures at λ = 0, 1. In Section 3.2, this identifies

these transport transitions with the collapse of spectral gaps in these measures and leads to

a precise spectral characterization of critical transport behavior in binary composite media.

The Stieltjes transform of the spectral measures µ, α, η, and κ completely determines

the effective transport properties of the medium. Conversely, given the Stieltjes transform

of a measure, the Stieltjes–Perron Inversion Theorem [71] recovers the underlying measure,

µ(υ) = − 1

π
lim
ǫ↓0

ImF (υ + iǫ) , υ ∈ Σµ, (2.34)

for example. To evoke this theorem directly, in equation (2.13) we define the measures

dα̃(λ) = [−dα(1 − λ)] and dκ̃(λ) = [−dκ(1 − λ)], and write G(t(s)) = −
∫ 1
0 dα̃(λ)/(s − λ)

and H(t(s)) = −
∫ 1
0 dκ̃(λ)/(s − λ). Setting s = υ + iǫ, equations (2.24) and (2.34) imply

that

υµ(υ) = (1− υ)[−α(1 − υ)] − υ̺(υ), ̺(υ) = lim
ǫ↓0

−ǫ/π
υ2 + ǫ2

∫ 1

0

(υ + λ− 1) dα(λ)

(υ + λ− 1)2 + ǫ2
,

(2.35)

and an analogous formula involving a measure ˜̺ which links η and κ. We now demonstrate

that equations (2.24), (2.25), and (2.35) explicitly determine the measures ̺ and ˜̺.

The integral representations of equation (2.25) follow from equation (2.18), and are given

by

∫ ∞

0

dφ(y)

1 + hy
+ h

∫ ∞

0

dφ̂(y)

1 + hy
= 1,

∫ ∞

0

dφ̃(y)

1 + hy
+ h

∫ ∞

0

dφ̌(y)

1 + hy
= 1. (2.36)

Due to the underlying symmetries of this framework, without loss of generality, we hence-

forth focus on F (s(h);µ), G(t(h);α), g(h;φ), and ĝ(h; φ̂). We wish to re-express the first

formula in equation (2.36) in a more suggestive form by adding and subtracting the quantity

h
∫∞
0 y dφ(y)/(1 + hy). This is permissible if the modulus of this quantity is finite for all

h ∈ U0 [55, 104]. The affirmation of this fact is given by Lemma 1 and we may therefore

add and subtract it in equation (2.36), yielding

h

∫ ∞

0

dΦ0(y)

1 + hy
≡ 1− φ0 = m(0), dΦ0(y) = dφ̂(y)− y dφ(y), h ∈ U0, (2.37)
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as 1 − φ0 = 1 − F (s)|s=1 = m(h)|h=0 (see equation (2.20)). We stress that σ1 6= σ2 when

h = 0 so that in (2.6) 0 ≤ m(0) < 1. Equation (2.37) provides another representation

for the quantity m(0) and shows that the transform h
∫∞
0 dΦ0(y)/(1 + hy) of Φ0, a signed

measure [104], is independent of h for all h ∈ U0. Equation (2.18) and the identity y =

λ/(1 − λ) ⇐⇒ λ = y/(1 + y) relates this representation of m(0) to the measure ̺ defined

in equation (2.35):

dΦ0(y) =
1

(1− λ)2
((1 − λ) [−dα(1 − λ)]− λdµ(λ)) =

λd̺(λ)

(1− λ)2
= y(1 + y) d̺ (λ(y)) .

We may now express equation (2.37) in terms of ̺(dλ) as follows:

m(0) = h

∫ ∞

0

dΦ0(y)

1 + hy
= h

∫ ∞

0

y(1 + y)d̺(λ(y))

1 + hy
=

∫ 1

0

λd̺(λ)

(1− λ)2/h+ λ(1− λ)
. (2.38)

Remark 1 Define the transform D(h; ̺) of the measure ̺ by

D(h; ̺) =

∫ 1

0

λd̺(λ)

(1− λ)2/h+ λ(1− λ)
. (2.39)

Equations (2.6) and (2.38) show that D(h; ̺) has the following properties for all h ∈ U0:

(1) D(h; ̺) is independent of h, (2) 0 ≤ |D(h; ̺)| < 1, and (3) D(h; ̺) = m(0) 6≡ 0.

Lemma 2 Let the quantities m(0) = m(h)|h=0 = 1 − F (s)|s=1 and w(0) = w(z)|z=0 =

1−G(t)|t=1 be defined as in equation (2.13), which satisfy 0 ≤ m(0), w(0) < 1. If D(h; ̺),

defined in equation (2.39), satisfies the properties of Remark 1 for all h ∈ U0, then

̺(dλ) = −w(0)δ0(dλ) +m(0)(1 − λ)δ1(dλ), (2.40)

where δλ0
(dλ) is the Dirac measure concentrated at λ0.

Proof : Let D(h; ̺), defined in equation (2.39), satisfy properties (1)–(3) of Remark 1.

The measure ̺ is independent of h [65]. If the support Σ̺ of the measure ̺ is over

continuous spectrum [101] then D(h; ̺) depends on h, contradicting property (1). Therefore

the measure ̺ is defined over pure point spectrum [101]. The most general pure point set

Σ̺ which satisfies properties (1)–(3) is given by Σ̺ = {0, 1}. This implies that the measure

̺ is of the form

̺(dλ) = W0(λ)δ0(dλ) +W1(λ)δ1(dλ),

where the Wj(λ), j = 0, 1, are bounded functions of λ ∈ [0, 1] which are to be determined.

In view of the numerator of the integrand in equation (2.39), we may assume that the
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function W0(λ) ≡W0(0) = W0 6≡ 0 is independent of λ. In order for properties (2) and (3)

to be satisfied we must have W1(λ) ∼ (1 − λ)1 as λ −→ 1 (any other power of 1 − λ would

contradict one of these two properties). Therefore without loss of generality, we may set

W1(λ) = w1 (1− λ), where w1 is independent of λ. Property (3) now yields w1 = m(0).

We have shown that ̺(dλ) = W0 δ0(dλ) + m(0)(1 − λ)δ1(dλ), W0 6≡ 0. By plugging

this formula into equation (2.35) (λdµ(λ) = (1 − λ)[−dα(1 − λ)] − λd̺(λ) ), we are able

determine W0. Indeed using equation (2.24) (F (s)− (1−1/s)G(t(s)) = 1/s ), the definition

of F (s) in equation (2.13), and (1 − λ)/(λ(s − λ)) = −(1 − 1/s)/(s − λ) + 1/(sλ), we find

that

F (s) = −
(

1− 1

s

)∫ 1

0

[−dα(1 − λ)]

s− λ +
1

s

∫ 1

0

[−dα(1 − λ)]

λ
−
∫ 1

0

d̺(λ)

s− λ (2.41)

=

(

1− 1

s

)

G(t(s)) +
1

s

∫ 1

0

dα(λ)

1− λ −
W0

s
−m(0) lim

λ−→1

1− λ
s− λ, ∀ h ∈ U0

which implies that −W0 = 1−
∫ 1
0 dα(λ)/(1 − λ) = w(0) ✷.

Corollary 1 If we instead focus on the contrast variables z and t in lieu of h and s,

respectively, equations (2.35) and (2.40) become

υα(υ) = (1− υ)[−µ(1− υ)]− υ̺(υ), ̺(dλ) = −m(0)δ0(dλ) + w(0)(1 − λ)δ1(dλ), (2.42)

It is worth mentioning that equation (2.29) can be written in terms of the signed measure

dΦn−1(y) = yn−1dΦ0(y):
∫∞
0 dΦn−1(y)/(1 + hy)n+1 ≡ 0, for all n ≥ 1. Furthermore in

equation (2.27) for n = 1, equation (2.30) implies that
∫∞
0 dΦ1(y)/|1 + hy|4 ≡ 0. By

Lemma 1, these integral involving Φn−1(dy) are defined for all h ∈ U0. These formulas are

consistent with equation (2.40) of Lemma 2.

Lemma 2 and Corollary 1 are the key results of this section. They provide a rigorous

justification, and a generalization of an analogous result found in [39] by heuristic means.

They demonstrate that λ = 1 is a removable simple singularity under µ, α, η, and κ, and

illustrate how the relations in (2.12), 0 < |F (s)|, |E(s) |< 1, can hold even when s = 1

(h = 0) and the spectra extend all the way to λ = 1. For percolation models, Lemma 2

and Corollary 1 also demonstrate that delta components form in the underlying spectral

measures at the spectral endpoints precisely at the percolation threshold pc and 1−pc. This

is analogous to the Lee–Yang–Ruelle characterization of the Ising model phase transition,

and identifies these transport transitions with the collapse of spectral gaps in these measures.

In Section 3.2, we discuss in more detail how these general features relate to percolation

models of binary composite media.



CHAPTER 3

CRITICAL BEHAVIOR OF TRANSPORT

IN BINARY COMPOSITE MEDIA

In this chapter we construct a mathematical framework which unifies the critical theory

of transport in two-phase random media. By adapting techniques developed by G. A.

Baker for the Ising model [4], we provide a detailed description of percolation-driven critical

transitions in transport exhibited by such media. The most natural formulation is in terms

of the conduction problem in the continuum Rd, which includes the lattice Zd as a special

case [59, 65]. Although, symmetries in Maxwell’s equations [87] immediately extend our

results to the effective parameter problem of electrical permittivity and the critical behavior

of two-phase random dielectric media.

An original motivation for this work was to gain a better understanding of critical

transitions in the transport properties of sea ice. In particular, fluid flow through sea ice

mediates a broad range of processes that are important to studying its role in the climate

system, and the impact of climate change on polar ecosystems [61]. In fact, the brine

microstructure of sea ice displays a percolation threshold at a critical brine volume fraction

φ of about 5% in columnar sea ice [62, 63, 98]. This leads to critical behavior of fluid flow,

where sea ice is effectively impermeable to fluid transport for φ below 5%, and is increasingly

permeable for φ above 5%, which is known as the rule of fives [62]. Percolation theory can

then be used to capture the behavior of the fluid permeability of sea ice [63]. There has also

been evidence [68, 95] that this critical behavior in the microstructure also induces similar

behavior in the effective electromagnetic properties of sea ice, such as its effective complex

permittivity ǫ∗. In [68] and [95], for example, microstructural properties of the brine phase

were recovered from measurements of the complex permittivity of sea ice. The current

chapter helps lay the groundwork for the analysis of sea ice permittivity data collected in

the polar regions, and how it can be used to monitor changes in the microstructure, the

fluid transport properties, and the geophysical and biological processes that are controlled

by fluid flow.
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3.1 Background and Summary of the Results

The partition function Z of the Ising model is a polynomial in the activity variable

[4, 81, 105, 107]. In 1952, Lee and Yang [81] showed that the roots of Z lie on the unit

circle, which is known as the Lee–Yang Theorem [81, 105]. They also demonstrated that

the distribution of the roots determines the associated equation of state [130], and that the

properties of the system, in relation to phase transitions, are governed by the behavior of

these roots near the positive real axis.

In 1968 Baker [3] used the Lee–Yang Theorem to represent the Gibbs free energy per

spin f = −(Nβ)−1 lnZ as a logarithmic potential [108], where N is the number of spins,

β = (kT )−1, k is Boltzmann’s constant, and T is the absolute temperature. He used this

special analytic structure to prove that the magnetization per spin M(T,H) = −∂f/∂H
[103] may be represented in terms of a Stieltjes function G in the variable τ = tanhβmH,

M

m
= τ(1 + (1− τ2)G(τ2)), G(τ2) =

∫ ∞

0

dψ(y)

1 + τ2y
, (3.1)

where H is the applied magnetic field strength, m is the (constant) magnetic dipole moment

of each spin [66], and ψ is a nonnegative definite measure [3, 4]. Equation (3.1) should

be compared to equation (2.18) regarding the two-phase conductive media. The integral

representation in (3.1) immediately leads to the inequalities

G ≥ 0,
∂G

∂u
≤ 0,

∂2G

∂u2
≥ 0, (3.2)

where u = τ2, which are analogs of equation (2.19) for two-phase conductive media [59].

The last formula in equation (3.2) is the GHS inequality, which is an important tool in the

study of the Ising model [4, 59].

In 1970, Ruelle [106] extended the Lee–Yang Theorem and proved that there exists a gap

θ0(T ) > 0 in the roots of Z about the positive real axis for high temperatures. Moreover,

he proved that the gap collapses, θ0(T ) −→ 0, as T decreases to a critical temperature Tc >

0. Consequently, the temperature-driven phase transition (spontaneous magnetization) is

unique, and is characterized by the pinching of the real axis by the roots of Z [105].

Baker [4, 5] then exploited the Lee–Yang–Ruelle Theorem to provide a detailed descrip-

tion of the critical behavior of the parameters characterizing the phase transition exhibited

by the Ising model [36]. He defined a critical exponent ∆ for the gap in the distribution of

the Lee–Yang–Ruelle zeros, θ0(T ) ∼ (T − Tc)∆, as T −→ T+
c , and proved that the measure

ψ is supported on the compact interval [0, S(T )] for T > Tc , with S(T ) ∼ (T − Tc)−2∆ as
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T −→ T+
c . He demonstrated that the moments ψn =

∫∞
0 yn dψ(y) of ψ diverge as T −→ T+

c

according to the power law ψn ∼ (T−Tc)−γn , n ≥ 0, by proving that the sequence γn satisfies

Baker’s inequalities γn+1−2γn+γn−1 ≥ 0. They imply that this sequence increases at least

linearly with n. He later proved that this sequence is actually linear in n, γn = γ + 2∆n,

with constant gap γi − γi−1 = 2∆ [4]. The critical exponent γ is defined via the magnetic

susceptibility per spin χ = ∂M/∂H = −∂2f/∂H2 ∼ (T − Tc)−γ , as T −→ T+
c .

The phase transition may be concisely described with two other critical exponents.

When H = 0, M(T, 0) ∼ (T − Tc)β, as T −→ T−
c , where the critical exponent β is not to be

confused with (kT )−1, and along the critical isotherm T = Tc, M(Tc,H) ∼ H1/δ, as H −→ 0

[4, 36]. Using the integral representation in (3.1), Baker obtained (two-parameter) scaling

relations for these critical exponents [4]

β = ∆− γ, δ = ∆/(∆− γ), γn = γ + 2∆n. (3.3)

The critical exponent γ, for example, is defined in terms of the following limit, and γ exists

when this limit exists [4],

γ = lim sup
T−→T+

c , H=0

(− lnχ(T,H)

ln(T − Tc)

)

. (3.4)

In 1997 Golden [60] demonstrated that Baker’s critical theory may be adapted to provide

a precise description of percolation-driven critical transitions in transport, exhibited by

two-phase random media in the static regime. This result puts these two classes of seemingly

unrelated problems on an equal mathematical footing. He did so by considering percolation

models of classical conductive two-phase composite media, where the connectedness of the

system is determined, for example, by the volume fraction p of inclusions with conductance

σ2 in an otherwise homogeneous medium of conductivity σ1, with h = σ1/σ2 ∈ [0, 1]. He

demonstrated that the function m(p, h) = σ∗(p, h)/σ2 plays the role of the magnetization

M(T,H), where σ∗ is the effective conductivity of the medium [10, 65, 86]. Moreover, he

showed that the volume fraction p mimics the temperature T while the contrast ratio h is

analogous to the applied magnetic field strength H. More specifically, critical behavior of

transport arises when h = 0 (σ1 = 0, 0 < σ2 < ∞), as p −→ p+
c [60], and critical behavior

of the magnetization in the Ising model arises when H = 0, as T −→ T+
c [36]. Using these

mathematical parallels, it was shown that the critical exponents of transport satisfy an

analogue of Baker’s scaling relations (3.3).

Here, using a novel unified approach, we reproduce Golden’s static results (h ∈ R) and

obtain the analogous static results associated with a conductive-superconductive medium
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in terms of w(p, z) = σ∗(p, z)/σ1, where z = 1/h. Using Stieltjes function integral represen-

tations of m(p, h;µ) and w(p, z;α), where µ and α are each spectral measures of a random

self-adjoint operator, we determine the (two-parameter) critical exponent scaling relations

of each system. We then extend these results to the frequency dependent quasi-static regime

(h ∈ C). We also link these two sets of critical exponents and, assuming a symmetry in

the properties of µ and α, the resultant scaling relations linking the two sets of critical

exponents are in agreement with the seminal paper by A. L. Efros and B. I. Shklovskii [52].

We remark that there are similar critical exponents involving ǫ∗ for two-phase dielectric

media [13, 37], and there are direct analogs of our results regarding such media.

In arbitrary finite lattice systems we also explicitly show that there are gaps in the

supports of the measures α(dλ) and µ(dλ) about the spectral endpoints λ = 0, 1 for p≪ 1

and 1 − p ≪ 1, respectively. Recall that in Section 2.3 we demonstrated, for infinite

lattice or continuum composite systems, that critical transitions in transport are due to the

formation of delta components in µ and α located at λ = 0, 1. We did so by constructing

a measure ̺ which is supported on the set {0, 1} that links µ and α. This general result

demonstrates that, for percolation models, the onset of criticality (the formation of these

delta components) occurs precisely at the percolation threshold pc and at 1− pc .

3.2 Scaling Laws for Critical Exponents of Transport
in Lattice and Continuum

Percolation Models

We now formulate the problem of percolation-driven critical transitions in transport

exhibited by two-component conductive media. In modeling transport in such materials,

one often considers a two-component random medium with component conductivities σ1

and σ2, in the volume fractions 1− p and p, respectively. The medium may be continuous,

like the random checkerboard [14, 112] and Swiss cheese models [13, 69, 116], or discrete,

like the random resistor network (RRN) [13, 37, 116]. In the simplest case of the 2-d square

RRN [116, 122], the average cluster size of the σ2 inclusions grows as p increases, and

there is a critical volume fraction pc, 0 < pc < 1, called the percolation threshold, where

an infinite cluster of σ2 bonds first appears. In the limit h = σ1/σ2 −→ 0, the system

exhibits two types of critical behavior. First, as h −→ 0 (σ1 −→ 0 and 0 < |σ2| < ∞), the

effective complex conductivity σ∗(p, h) = σ2m(p, h) and the effective complex resistivity

ρ∗(p, z(h)) = w̃(p, z(h))/σ2 undergo a conductor-insulator critical transition [13]:
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|σ∗(p, 0)| = 0, for p < pc, and 0 = |σ1| < |σ∗(p, 0)| < |σ2| <∞, for p > pc, (3.5)

lim
p−→p+c

|ρ∗(p, z(0))| =∞, and 0 < |σ2|−1 < |ρ∗(p, z(0))| < |σ1|−1 =∞, for p > pc.

Second, as h −→ 0 (|σ2| −→ ∞ and 0 < |σ1| < ∞), the effective complex conductivity

σ∗(p, z(h)) = σ1w(p, z(h)) and the effective complex resistivity ρ∗(p, h) = m̃(p, h)/σ1

undergo a conductor-superconductor critical transition [13]:

0 < |σ1| < |σ∗(p, z(0))| < |σ2| =∞, for p < pc, and lim
p−→p−c

|σ∗(p, z(0))| =∞. (3.6)

0 = |σ2|−1 < |ρ∗(p, 0)| < |σ1|−1 <∞, for p < pc, and |ρ∗(p, 0)| = 0, for p > pc.

We will focus on the conductor-insulator critical transition of the effective complex con-

ductivity σ∗(p, h) = σ2m(p, h) and the conductor-superconductor critical transition of

the effective complex conductivity σ∗(p, z(h)) = σ1w(p, z(h)). It is clear from equations

(2.18), (3.5), and (3.6) that our results immediately generalize to ρ∗(p, h) = m̃(p, h)/σ1 and

ρ∗(p, z(h)) = w̃(p, z(h))/σ2, respectively, with p 7→ 1− p.

This critical behavior in transport is made more precise through the definition of critical

exponents. Recall that the existence of a critical exponent is determined by the existence

of a limit like that given in (3.4). In the static limit, h ∈ U0 ∩ R, as h −→ 0 the effective

conductivity σ∗(p, h) = σ2m(p, h) exhibits critical behavior near the percolation threshold

σ∗(p, 0) ∼ (p − pc)t, as p −→ p+
c . Here, the critical exponent t, not to be confused with the

contrast parameter, is believed to be universal for lattices, depending only on dimension [60].

At p = pc, σ
∗(pc, h) ∼ h1/δ as h −→ 0. We assume the existence of the critical exponents

t and δ, as well as γ, defined via a conductive susceptibility χ(p, 0) = ∂m(p, 0)/∂h ∼
(p − pc)−γ , as p −→ p+

c . For p > pc, we assume that there is a gap θµ ∼ (p − pc)∆ in the

support of µ around h = 0 or s = 1 which collapses as p −→ p+
c , or that any spectrum in

this region does not affect power law behavior [60]. Consequently, for p > pc we think of

the support of φ as being contained in the interval [0, S(p)], with S(p) ∼ (p − pc)
−∆ as

p −→ p+
c . We demonstrated in (2.20) that the moments φj of φ become singular as θµ −→ 0.

We therefore assume the existence of critical exponents γn such that φn(p) ∼ (p − pc)−γn

as p −→ p+
c , n ≥ 0. When h ∈ U0 such that hi 6= 0, we also assume the existence of critical

exponents tr, δr, ti and δi corresponding tomr(p, h) = Rem(p, h) andmi(p, h) = Imm(p, h).

In summary:
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m(p, 0) ∼ (p− pc)t, mr(p, 0) ∼ (p− pc)tr , mi(p, 0) ∼ (p − pc)ti , as p −→ p+
c (3.7)

m(pc, h) ∼ h1/δ, mr(pc, h) ∼ |h|1/δr , mi(pc, h) ∼ |h|1/δi , as |h| −→ 0,

χ(p, 0) ∼ (p− pc)−γ , φn ∼ (p− pc)−γn , S(p) ∼ (p− pc)−∆, as p −→ p+
c .

In a similar way we define critical exponents for the conductor-superconductor system:

w(p) ∼ (pc − p)−s, wr(p) ∼ (pc − p)−sr , wi(p) ∼ (pc − p)−si , as p −→ p−c

w(pc, z(h)) ∼ h−1/δ̂, wr(pc, z(h)) ∼ |h|−1/δ̂r , wi(pc, z(h)) ∼ |h|−1/δ̂i , as |h| −→ 0,

χ̂(p, z(0)) ∼ (pc − p)−γ̂
′

, φ̂n ∼ (pc − p)−γ̂
′

n , Ŝ(p) ∼ (pc − p)−∆̂′

, as p −→ p−c ,
(3.8)

where we have defined w(p) = w(p, z(0)) and s is the superconductor critical exponent,

not to be confused with the contrast parameter. We also assume the existence of critical

exponents γ′, γ′n, and ∆′, associated with m(p, h;φ) for the left hand limit p −→ p−c , and

critical exponents γ̂, γ̂n, and ∆̂, associated with w(p, z(h); φ̂) for the right hand limit p −→
p+
c . The critical exponents γ, δ, ∆, and γn for transport are different from those defined in

Section 3.1 for the Ising model in (3.3).

The key result of this section is the two-parameter scaling relations between the critical

exponents of the conductor-insulator system, defined in equation (3.7), and that of the

conductor-superconductor system, defined in equation (3.8). Moreover, Lemma 2 shows

that measures µ and α, hence φ and φ̂ are related, and we therefore anticipate that these two

sets of critical exponents are also related. This is indeed the case and, assuming a symmetry

in the properties of µ and α, the resultant relationship between the critical exponents t and

s is in agreement with the seminal paper by A. L. Efros and B. I. Shklovskii [52].

These results are summarized in Theorem 5 below. In this theorem, we assume that

the percolation model under consideration is of class Bnφ
and Bn

φ̂
for p > pc and p < pc,

respectively (see Definition 1). By equations (2.29), (3.5), and (3.6), the 2-d square RRN

is of class Bn
φ̂

and Bnφ
for p > pc and p < pc with 0 ≤ nφ̂ ≤ nφ. We assume that this holds

for the percolation model under consideration, and we further assume that 1 ≤ nφ̂ ≤ nφ so

that χ(p, 0) = ∂m(p, 0)/∂h and χ̂(p, z(0)) = ∂w(p, z(0))/∂h in (3.7) and (3.8) exist.

Theorem 5 Consider a percolation model of a binary conductive medium of class Bnφ
and

Bn
φ̂

for p > pc and p < pc, respectively, and 1 ≤ nφ̂ ≤ nφ. Let the critical exponents

associated with the model: t, tr, ti, δ, δr, δi, γ, γn, ∆, γ′, γ′n, and ∆′, and s, sr, si, δ̂, δ̂r,
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δ̂i, γ̂
′, γ̂′n, ∆̂′, γ̂, γ̂n, and ∆̂, be defined as in equations (3.7) and (3.8), respectively, and in

the paragraph following equation (3.8). Then the following scaling relations hold:

1) γ1 = γ, γ′1 = γ′, γ̂1 = γ̂, and γ̂′1 = γ̂′.

2) γ′0 = 0, γ0 < 0, γ′n > 0 and γn > 0, n ≥ 1. 3) γ̂′n > 0 for n ≥ 0.

4) γ = γ̂0 and ∆ = ∆̂. 5) γ′ = γ̂′0 and ∆′ = ∆̂′.

6) γn = γ + ∆(n− 1) for 1 ≤ n ≤ nφ.

7) γ̂′n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n− 1) for 1 ≤ n ≤ nφ̂.

8) t = ∆− γ. 9) s = γ̂′0 = γ̂′ − ∆̂′.

10) δ =
∆

∆− γ . 11) δ̂ =
∆̂′

γ̂′0
=

∆̂′

γ̂′ − ∆̂′
.

12) tr = ti = t. 13) sr = si = s. 14) δr = δi = δ . 15) δ̂r = δ̂i = δ̂.

16) If ∆ = ∆′ and γ = γ′, then t+ s = ∆ and 1/δ + 1/δ̂ = 1.

17) In general 1/δ + 1/δ̂ = 1.

If 1 ≤ nφ̂ ≤ nφ , then t/∆ + s/∆̂′ = 1, ∆ = ∆̂′ ⇐⇒ γ = γ̂′0.

It is important to note that the scaling relations tr = ti = t and sr = si = s are a

fundamental identity, as these sets of critical exponents are defined in terms of m(p, 0) and

w(p, z(0)), where h = 0 ∈ R. The relation 1/δ+1/δ̂ = 1 is also a fundamental identity which

follows from equation (2.24) and the definition of these critical exponents. The calculation

of these scaling relations will serve as a consistency check of this mathematical framework.

Before we present the proof of Theorem 5, which is given in Section 3.2.2 below, we

first demonstrate that the critical exponents of EMT satisfy the critical exponent scaling

relations therein. This verification is essential, as there exists a binary composite medium

which realizes the effective parameter of EMT [87]. Through our exploration of EMT, we will

uncover aspects which illuminate general features of critical transport transitions exhibited

by two-phase random media. These features will be discussed in detail in Section 3.3.

3.2.1 Effective Medium Theory

An EMT for the effective parameter problem may be constructed from dilute limits [39].

The EMT approximation for σ∗ with percolation threshold pc is given by [39]

p
σ2 − σ∗

1 + pc (σ2/σ∗ − 1)
+ (1− p) σ1 − σ∗

1 + pc (σ1/σ∗ − 1)
= 0. (3.9)
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Equation (3.9) leads to quadratic formulas involving m(p, h) = σ∗/σ2 and w(p, z(h)) =

σ∗/σ1. The quadratic equation demonstrates that the relation m(p, h) = hw(p, z(h)) in

(2.24) is exactly satisfied and that

m(p, h(s)) =
−b (s, p, pc) +

√

−ζ(s, p)
2s(1 − pc)

, ζ(λ, p) = −λ2 + 2(1 − ϕ)λ + υ2 − (1− ϕ)2,

(3.10)

w(p, z(t)) =
−b (s, 1− p, pc) +

√

−ζ(t, 1− p)
2t(1− pc)

, ζ(λ, 1− p) = −λ2 + 2ϕλ+ υ2 − ϕ2,

where b(λ, p, pc) = (2pc − 1)λ + (1 − p − pc), ϕ = ϕ(p, pc) = p (1 − pc) + pc(1 − p), and

υ = υ(p, pc) = 2
√

p (1− p) pc(1− pc).
The spectral measures µ and α in (2.13) may be extracted from equation (3.10) using the

Stieltjes–Perron Inversion Theorem in (2.34). These measures are absolutely continuous,

i.e., there exist density functions such that µ(dλ) = µ(λ)dλ and α(dλ) = α(λ)dλ. Direct

calculation shows that, for p 6= pc, 1 − pc, these measures have gaps in the spectra about

λ = 0, 1: µ(λ) = 0 ⇐⇒ ζ(λ, p) ≤ 0 ⇐⇒ |λ−(1−ϕ)| ≥ υ and α(λ) = 0 ⇐⇒ ζ(λ, 1−p) ≤
0 ⇐⇒ |λ − ϕ| ≥ υ. Therefore, the composite medium underlying the percolation model

of EMT [87] is of class Bnφ
and Bn

φ̂
for p 6= pc, 1 − pc with nφ , nφ̂ = ∞ (see Definition 1).

The Stieltjes transforms of µ and α are given by

F (p, s) =

∫ 1−θ

λ0

√

ζ(λ, p) dλ

2π(1 − pc)λ(s − λ)
, G(p, t) =

∫ λ̂1

θ

√

ζ(λ, 1− p) dλ
2π(1− pc)λ(t− λ)

, (3.11)

where θ = θ(p, pc) = ϕ − υ and λ̂1 = 1 − λ0 = ϕ + υ define spectral gaps, which satisfy

limp−→1−pc λ0 = 0, limp−→pc θ = 0, and limp−→1−pc λ̂1 = 1.

Define a critical exponent ∆ for the spectral gap θ(p) ∼ |p − pc|∆, as p −→ pc, in µ(dλ)

about λ = 1 and α(dλ) about λ = 0. Using the definition of a critical exponent in (3.4)

and L’Hôpital’s rule we have shown that ∆ = 2. Moreover λ0 = 1 − λ̂1 ∼ |p − (1 − pc)|∆,

as p −→ 1 − pc, with the same critical exponent. The absolutely continuous nature of the

measures µ and α in EMT implies that critical indices are the same for p −→ p+
c and p −→ p−c .

Therefore the spectral symmetry properties in the hypothesis of Lemma 13 hold for EMT.

We have explicitly calculated the integrals in equation (3.11) for real and complex h using

the symbolic mathematics software Maple 15. Using the exact representation in (3.11) of

G(p, t(h)), as a function of 0 ≤ θ ≪ 1 and 0 ≤ |h| ≪ 1, we have calculated the critical

exponents s, δ̂, δ̂r, δ̂i, and γ̂n, for n = 0, 1, 2, . . . These results are in agreement with our

general theory. With h = 0 and 0 < θ ≪ 1, we found that w(p, z(0)) ∼ θ−1/2 which yields
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s = ∆/2 = 1. When θ = 0 and 0 < h ≪ 1, one must split up the integration domain,

Σα ⊃ (0, h− ǫ)∪ (h+ ǫ, λ̂1), and take the principal value of the integral as ǫ −→ 0. Doing so

yields δ̂ = δ̂r = δ̂i = 2. As in our general theory, the values of the exponents are independent

of the path of h to zero. More specifically, these relations hold for 0 < |hr| = |ahi| ≪ 1 with

arbitrary a ∈ R, and for independent hr and hi satisfying 0 < |hr|, |hi| ≪ 1. The critical

exponents γ̂n associated with the moments φ̂n of the measure φ̂ satisfy our general relation

γ̂n = γ̂0 + ∆n with γ̂0 = ∆ = 2 so that γ̂n = ∆(n+ 1).

Similarly, using the exact representation of F (p, s(h)) in (3.11), as a function of 0 ≤
θ ≪ 1 and 0 ≤ |h| ≪ 1, we have calculated the critical exponents t, δ, δr, δi, and γn, for

n = 0, 1, 2, . . . These results are also in agreement with our general theory. In accordance

with [39], we obtain t = ∆/2 = 1, so that the relation s+ t = ∆ = 2 is satisfied. By direct

calculation we have obtained δ = δr = δi = 2. We have also obtained these values using

m(p, h) = hw(p, z(h)) and the associated relations for complex h, mr = hrwr − hiwi and

mi = hrwi + hiwr, with δ̂ = δ̂r = δ̂i and 1/δ + 1/δ̂ = 1. The mass φ0(p) = F (p, 1) of the

measure φ behaves logarithmically as θ −→ 0, yielding γ0 = 0. The exponents of the higher

moments satisfy our general relation γn = γ0 + ∆n = γ + ∆(n− 1), or γn = ∆n, n ≥ 0.

In summary, we have extended EMT to the complex quasi-static regime and shown that

the critical exponents of EMT exactly satisfy our scaling relations displayed in Theorem 5.

Moreover we have shown that, in EMT, the percolation threshold pc and 1 − pc coincide

with the collapse of gaps in the spectral measures about the spectral endpoints λ = 0, 1.

This is the behavior displayed in Lemma 2 and Corollary Corollary 1, which hold for general

percolation models of stationary two-phase random media with m(0) = m(p, 0) and w(0) =

w(p, 0). We will discuss this link between spectral gaps and the percolation threshold in

more detail in Section 3.3.

3.2.2 Proof of Theorem 5

Baker’s critical theory characterizes phase transitions of a given system via the asymp-

totic behavior of the underlying Stieltjes functions near a critical point. This powerful

method has been very successful for the Ising model, precisely characterizing the phase

transition (spontaneous magnetization) [4]. We will now show how this method may be

adapted to provide a detailed description of phase transitions in transport, exhibited by

binary composite media. Theorem 5 will be proven via a sequence of lemmas as we collect

some important properties of m(p, h), g(p, h), w(p, z(h)), and ĝ(p, h), and how they are
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related. We stress that the only assumption needed for Theorem 5 is that our percolation

model is of class Bnφ
and Bn

φ̂
for p > pc and p < pc, respectively, and 1 ≤ nφ̂ ≤ nφ (see

Definition 1). The following theorem [4] characterizes Stieltjes functions (series of Stieltjes).

Theorem 6 Let D(i, j) denote the determinant

D(i, j) =

∣

∣

∣

∣

∣

∣

∣

ξi ξi+1 · · · ξi+j
...

...
. . .

...
ξi+j ξi+j+1 · · · ξi+2j

∣

∣

∣

∣

∣

∣

∣

. (3.12)

The ξn form a series of Stieltjes if and only if D(i, j) ≥ 0 for all i, j = 0, 1, 2, . . .

Baker’s inequalities for the sequences γn and γ̂n of transport follow directly from Theorem

6. For example, φn ∼ (p − pc)−γn and Theorem 6 with φi = ξi, i = n, and j = 1, imply

that, for 0 < p− pc ≪ 1,

(p− pc)−γn−γn+2 − (p− pc)−2γn+1 ≥ 0 ⇐⇒ (p − pc)−γn−γn+2+2γn+1 ≥ 1

⇐⇒ −γn − γn+2 + 2γn+1 ≤ 0 ⇐⇒ γn+1 − 2γn + γn−1 ≥ 0 . (3.13)

The sequence of inequalities in (3.13) are Baker’s inequalities for transport, corresponding

to m(p, h), and they imply that the sequence γn increases at least linearly with n. The

symmetries in equations (2.18), (3.7), and (3.8) imply that Baker’s inequalities also hold

for the sequences γ̂′n, γ
′
n, and γ̂n.

The following lemma provides the asymptotic behavior of the h derivatives of g(p, h)

and ĝ(p, h), which will be used extensively in this section.

Lemma 3 Let h ∈ U0 and 0 < |h| ≪ 1 and |p − pc| ≪ 1. Then the integrals in equation

(2.28) have the following asymptotics for n ≥ 0
∣

∣

∣

∣

∂ng(p, h)

∂hn

∣

∣

∣

∣

∼ φn,
∣

∣

∣

∣

∂nĝ(p, h)

∂hn

∣

∣

∣

∣

∼ φ̂n. (3.14)

Proof : The asymptotic behavior in equation (3.14) follows from equations (2.20), (2.21),

(2.23), Baker’s inequalities (3.13), and equation (2.18) (g(p, h) = sF (p, s) and ĝ(p, h) =

−sG(p, t(s))). These equations imply that, for cj, bj ∈ Z and |p− pc| ≪ 1,

lim
h−→0

∂ng(p, h)

∂hn
=

n
∑

j=0

cj lim
s−→1

∂jF (p, s)

∂sj
∼ φn ,

lim
h−→0

∂nĝ(p, h)

∂hn
=

n
∑

j=0

bj lim
s−→1

∂jG(p, t(s))

∂tj
∼ φ̂n ✷.

Lemma 3 demonstrates that the numbers nφ and nφ̂ introduced in Definition 1 are also

related to the number of finite moments of the measures φ and φ̂, respectively.
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Lemma 4 γ1 = γ, γ′1 = γ′, γ̂1 = γ̂, and γ̂′1 = γ̂′

Proof : Set 0 < p − pc ≪ 1. By equations (2.18) (g(p, h) = sF (p, s)), (2.21), (3.7), and

(3.13)

(p− pc)−γ ∼ χ(p, 0) =
∂m(p, 0)

∂h
= lim

s−→1

[

−∂F (p, s)

∂s

]

= φ0 + φ1 ∼ φ1 ∼ (p − pc)−γ1 ,

(3.15)

hence γ1 = γ. Similarly for 0 < pc − p ≪ 1, we have γ′1 = γ′. By equation (3.15),

the symmetries between m(p, h) and w(p, z(h)) given in (2.18), and the critical exponent

definitions given in (3.7) and (3.8), we also have γ̂1 = γ̂ and γ̂′1 = γ̂′ ✷.

Equation (2.24) is consistent with, and provides a link between equations (3.5) and (3.6).

We will see that the fundamental asymmetry between m(p, h) and w(p, z(h)) (γ′0 = 0 and

γ̂′0 > 0), given in Theorem 5.2–3, is a direct and essential consequence of equation (2.24),

and has deep and far reaching implications.

Lemma 5 Let the sequences γn and γ′n, n ≥ 0, be defined as in equation (3.7). Then

1) γ′0 = 0, γ0 < 0, γ′n > 0, and γn > 0, for n ≥ 1.

2) 0 < lim
h−→0

〈χ1
~E · ~E0〉/E2

0 < 1 for all p ∈ [0, 1].

Proof : By equation (3.6) |w(p, z(0))| is bounded for all p < pc. Thus for all p < pc,

equations (2.21), (2.24), and (3.7) imply that

0 = lim
h−→0

hw(p, z(h)) = lim
h−→0

m(p, h) = lim
s−→1

(1 − F (p, s)) = 1− φ0(p) ∼ 1− (pc − p)−γ
′

0 ,

where the rightmost relation holds for 0 < pc−p≪ 1 and the leftmost relation is consistent

with equation (3.5). Therefore, γ′0 = 0 and φ is a probability measure for all p < pc. The

strict positivity of the γ′n, for n ≥ 1, follows from Baker’s inequalities in (3.13). Thus, from

the analogy of equation (3.15) for p < pc, we have

∞ = lim
p−→p−c

φ1(p) = − lim
p−→p−c

∂m(p, 0)

∂h
. (3.16)

For p > pc, equations (2.21) and (3.5) imply that 0 < limh−→0 |m(p, h)| = 1 − φ0 < 1.

Therefore, (p − pc)−γ0 ∼ φ0 < 1 for all 0 < p− pc ≪ 1, hence γ0 < 0. The strict positivity

of γ1 follows from equation (3.16), and the strict positivity of the γn for n ≥ 2 follows from

Baker’s inequalities (3.13). Equation (2.22) and the inequality 0 < limh−→0 |m(p, h)| =

1− φ0 < 1 imply that 0 < limh−→0〈χ1
~E · ~E0〉/E2

0 < 1 for all p ∈ [0, 1].
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Lemma 6 Let the sequence γ̂′n, n ≥ 0, be defined as in equation (3.8). Then

1) γ̂′n > 0 for all n ≥ 0. 2) lim
p−→pc,h−→0

〈E2
f 〉 =∞.

Proof : By equation (3.5) we have 0 < limh−→0 |m(p, h)| < 1, for all p > pc. Therefore

equation (2.24) implies that limh−→0w(p, z(h)) = limh−→0m(p, h)/h = ∞, for all p > pc,

which is consistent with equation (3.6). More specifically, for all p > pc, equations (2.24)

and (3.5) imply that 0 < limh−→0 |m(p, h)| = limh−→0 |hw(p, z(h))| = L(p) < 1, where

L(p) = 0 for all p < pc. Therefore, by equation (2.18), we have

lim
h−→0

|hw(p, z(h))| = lim
h−→0

|h ĝ(p, h)| ∈ (0, 1), for all p > pc, (3.17)

lim
h−→0

|hw(p, z(h))| = lim
h−→0

|h ĝ(p, h)| = 0, for all p < pc .

By equations (2.23), (3.6), and (3.8) we have, for all p > pc,

∞ = lim
p−→p−c

lim
h−→0

w(p, z(h)) = lim
p−→p−c

lim
s−→1

(1−G(p, t(s))) = 1 + lim
p−→p−c

φ̂0(p)

∼ 1 + lim
p−→p−c

(pc − p)−γ̂
′

0 ,

hence γ̂′0 > 0. Baker’s inequalities then imply that γ̂′n > 0 for all n ≥ 0. Equation (2.22)

and the analogy thereof involving φ̂1, and the strict positivity of γ̂′1, γ1, and γ′1, shown here

and in Lemma 5, imply that limp−→pc,h−→0〈E2
f 〉 =∞ ✷.

The asymptotic behavior of |ĝ(p, h)| in equation (3.14), and Lemma 6 motivates the

following fundamental homogenization assumption of this section [4]:

Remark 2 Near the critical point (p, h) = (pc, 0), the asymptotic behavior of the Stieltjes

function ĝ(p, h) is determined primarily by the mass φ̂0(p) of the measure φ̂ and the rate of

collapse of the spectral gap θα.

By Remark 2, and in light of Lemmas 4–6, we make the following variable changes:

q̂ = y(pc − p)∆̂
′

, Q̂(p) = Ŝ(p)(pc − p)∆̂
′

, dπ̂(q̂) = (pc − p)γ̂
′

0 dφ̂(y), (3.18)

q = y(p− pc)∆, Q(p) = S(p)(p − pc)∆, dπ(q) = (p − pc)γ y dφ(y),

so that, by equations (3.7) and (3.8), Q̂(p), Q(p) ∼ 1 and the masses π̂0 and π0 of the

measures π̂ and π, respectively, satisfy π̂0, π0 ∼ 1 as p −→ pc.
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Equation (3.18) defines the following scaling functions Gn−1(x), Ĝn(x̂), Gn−1,j(x), and

Ĝn,j(x̂) as follows. For h ∈ U0 ∩R, equations (2.28) and (3.18) imply, for all n ≥ 1, that

∂ng

∂hn
∝ (p − pc)−(γ+∆(n−1))Gn−1(x),

∂nĝ

∂hn
∝ (pc − p)−(γ̂′

0
+∆̂′n)Ĝn(x̂), (3.19)

Gn−1(x) =

∫ Q(p)

0

qn−1dπ(q)

(1 + xq)n+1
, Ĝn(x̂) =

∫ Q̂(p)

0

q̂ ndπ̂(q̂)

(1 + x̂q̂)n+1
,

x = h(p− pc)−∆, 0 < p− pc ≪ 1, x̂ = h(pc − p)−∆̂′

, 0 < pc − p≪ 1,

respectively, and an analogue of (3.19) for the opposite limits involving ∆̂, γ̂0, ∆′, and γ′.

For h ∈ U0 such that hi 6= 0, we define the scaling functions Rn−1(x), In−1(x), R̂n(x̂), and

În(x̂) as follows. Using equations (2.30) and (3.18) we have, for 0 < p− pc ≪ 1,

∂ng

∂hn
= (−1)nn!

n+1
∑

j=0

(

n+ 1

j

)

h̄j
∫ S(p)

0

yn+jdφ(y)

|1 + hy|2(n+1)
(3.20)

= (−1)nn!

n+1
∑

j=0

(

n+ 1

j

)

[x̄(p− pc)∆]j(p − pc)−(γ+∆(n−1+j))Gn−1,j(x)

= (−1)nn!(p− pc)−(γ+∆(n−1))Kn−1(x), Kn−1(x) = Rn−1(x) + iIn−1(x),

∂nĝ

∂hn
= (−1)nn!(p− pc)−(γ̂0+∆̂n)K̂n(x̂), K̂n(x̂) = R̂n(x̂) + i În(x̂).

Here, x and x̂ are defined in equation (3.19) and

Gn−1,j(x) =

∫ Q(p)

0

qn−1+jdπ(q)

|1 + xq|2(n+1)
, Ĝn,j(x̂) =

∫ Q̂(p)

0

q̂ n+jdπ̂(q̂)

|1 + x̂q̂|2(n+1)
, (3.21)

Kn−1(x) =

n+1
∑

j=0

(

n+ 1

j

)

x̄ jGn−1,j(x), K̂n(x̂) =

n+1
∑

j=0

(

n+ 1

j

)

¯̂xjĜn,j(x̂),

where we have made the definitionsRn−1(x) = ReKn−1(x), In−1(x) = ImKn−1(x), R̂n(x̂) =

Re K̂n(x̂), and În(x̂) = Im K̂n(x̂). Analogous formulas are defined for the opposite limit,

0 < pc − p≪ 1, involving ∆̂′, γ̂′0, ∆′, and γ′. By (2.19) we have, for p ∈ [0, 1] and n ≥ 0,

Gn−1(x) > 0, Gn−1,j(x) > 0, Ĝn(x̂) > 0, Ĝn,j(x̂) > 0. (3.22)

By hypothesis, our percolation model is of class Bnφ
and Bn

φ̂
for every p > pc and p < pc,

respectively, and 1 ≤ nφ ≤ nφ̂ (see Definition 1). We therefore have

lim
h−→0

Gn−1(x) <∞, lim
h−→0

Gn−1,j(x) <∞, for all p > pc, 0 ≤ n ≤ nφ (3.23)

lim
h−→0

Ĝn(x̂) <∞, lim
h−→0

Ĝn,j(x̂) <∞, for all p < pc, 0 ≤ n ≤ nφ̂.



48

Lemma 7 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (3.19), for p > pc. Then, if nφ ≥ 1,

1) Gn−1(x) ∼ 1 as x −→ 0 (h −→ 0 and 0 < p− pc ≪ 1) for all 1 ≤ n ≤ nφ.

2) [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ 1 as x̂ −→ 0 (h −→ 0 and 0 < p− pc ≪ 1)

for all 1 ≤ n ≤ nφ̂.

3) γ = γ̂0 . 4) ∆ = ∆̂ .

Proof : oLet h ∈ U0 ∩R and p > pc. Equations (2.29), (3.19), (3.22), and (3.23) imply that

we have, for all 1 ≤ n ≤ nφ, 0 < p− pc ≪ 1, and 0 < h≪ 1,

(0,∞) ∋ (p− pc)−(γ+∆(n−1))Gn−1(x) = (p − pc)−(γ̂0+∆̂(n−1))[Ĝn−1(x̂)− x̂Ĝn(x̂)]. (3.24)

Equations (3.22) and (3.23) imply that Gn−1(x) ∼ 1 as x −→ 0, for all 1 ≤ n ≤ nφ. Equation

(3.24) then implies that [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ 1 as x̂ −→ 0, for all 1 ≤ n ≤ nφ (a possible

competition in sign between two diverging terms). Or equivalently, generalizing equation

(3.17), [Ĝ0(x̂)− x̂nĜn(x̂)] ∼ 1. Therefore, equation (3.24) implies that

γ + ∆(n− 1) = γ̂0 + ∆̂(n− 1), 1 ≤ n ≤ nφ, (3.25)

which in turn, implies that γ = γ̂0 and ∆ = ∆̂ ✷.

Lemma 8 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (3.19), for p < pc. Then, if nφ̂ ≥ 1,

1) [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ 1 as x̂ −→ 0 (h −→ 0 and 0 < pc − p≪ 1),

for all 1 ≤ n ≤ nφ̂.

2) Gn−1(x) ∼ 1 as x −→ 0 (h −→ 0 and 0 < pc − p≪ 1, for all 1 ≤ n ≤ nφ̂.

3) γ′ = γ̂′0. 4) ∆′ = ∆̂′.

Proof : Let h ∈ U0 ∩R and p < pc. Equations (2.29), (3.19), (3.22), and (3.23) imply that,

for all 1 ≤ n ≤ nφ̂, 0 < pc − p≪ 1, and 0 < h≪ 1,

(0,∞) ∋ (pc − p)−(γ̂′
0
+∆̂′(n−1))[Ĝn−1(x̂)− x̂Ĝn(x̂)] = (pc − p)−(γ′+∆′(n−1))Gn−1(x) (3.26)

Equations (3.22) and (3.23) imply that [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ 1 as x̂ −→ 0 for every 1 ≤ n ≤
nφ̂. Equation (3.26) then implies that Gn−1(x) ∼ 1 as x −→ 0 for all 1 ≤ n ≤ nφ̂. Therefore,

γ′ + ∆′(n− 1) = γ̂′0 + ∆̂′(n− 1), 1 ≤ n ≤ nφ̂.

Which in turn, implies that γ′ = γ̂′0 and ∆′ = ∆̂′
✷.
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Lemma 9 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (3.19). Then, if 1 ≤ nφ̂ ≤ nφ,

1) γn = γ + ∆(n− 1), for all 1 ≤ n ≤ nφ.

2) γ̂′n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n− 1), for all 1 ≤ n ≤ nφ̂.

3) t = ∆̂− γ̂0 = ∆− γ.

4) s = γ̂′0 = γ̂′ − ∆̂′.

Proof : Let 0 < p− pc ≪ 1. By equations (3.7), (3.14), and (3.19), and Lemma 7 we have,

for all 1 ≤ n ≤ nφ,

(p− pc)−γn ∼ φn ∼ lim
h−→0

∂ng(p, h)

∂hn
∼ (p− pc)−(γ+∆(n−1)) lim

x−→0
Gn−1(x)

∼ (p− pc)−(γ+∆(n−1)).

Therefore γn = γ + ∆(n − 1) for all 1 ≤ n ≤ nφ, with constant gap γi − γi−1 = ∆. When

this is true for all n ≥ 0, as in EMT where nφ = ∞, this is consistent with the absence of

multifractal behavior for the bulk conductivity σ∗(p, h) = σ2m(p, h) [116].

Now let 0 < pc − p ≪ 1. By equations (3.8), (3.14), (3.19), (3.22) and (3.23) we have,

for all 1 ≤ n ≤ nφ̂,

(pc − p)−γ̂n ∼ φ̂n ∼ lim
h−→0

∂nĝ(p, h)

∂hn
∝ (pc − p)−(γ̂′0+∆̂′n) lim

x̂−→0
Ĝn(x̂) ∼ (pc − p)−(γ̂′0+∆̂′n).

Therefore, by Lemma 4, we have γ̂n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n − 1) for all 1 ≤ n ≤ nφ̂,

with constant gap γ̂′i − γ̂′i−1 = ∆̂. When this is true for all n ≥ 0, as in EMT where

nφ̂ =∞, this is consistent with the absence of multifractal behavior for the bulk conductivity

σ∗(p, z(h)) = σ1w(p, z(h)) [116].

Again let 0 < p− pc ≪ 1. Equations (2.18), (2.25), (3.7), (3.17), and (3.19) yield

(p − pc)t ∼ lim
h−→0

m(p, h) = 1− lim
h−→0

g(p, h) = lim
h−→0

hĝ(p, h) = (p− pc)∆̂−γ̂0 lim
x̂−→0

x̂Ĝ0(x̂)

∼ (p− pc)∆̂−γ̂0 . (3.27)

Therefore, by Lemma 7 we have, for nφ ≥ 1, t = ∆̂− γ̂0 = ∆− γ.
Finally let 0 < pc − p ≪ 1. By equations (2.18), (3.8), (3.19), (3.22), and (3.23), and

Lemma 6, we have

(pc − p)−s ∼ lim
h−→0

w(p, z(h)) ∼ 1 + lim
h−→0

ĝ(p, h) = 1 + (pc − p)−γ̂
′

0 lim
x̂−→0

Ĝ0(x̂)

∼ (pc − p)−γ̂
′

0 .

Therefore, by Lemma 9.2 we have, for nφ̂ ≥ 1, s = γ̂′0 = γ̂′ − ∆̂′
✷.
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Lemma 10 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (3.19), for p > pc and p < pc. Then for all 1 ≤ n ≤ nφ̂ ≤ nφ

1) Gn−1(x) ∼ [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ x−(γ+∆(n−1))/∆ ,

as x̂ −→∞ (p −→ p+
c and 0 < h≪ 1) .

2) Gn−1(x) ∼ [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ x−(γ′+∆′(n−1))/∆′

,

as x −→∞ (p −→ p−c and 0 < h≪ 1) .

3) δ = ∆̂/(∆̂ − γ̂0) = ∆/(∆− γ) .

4) δ̂ = ∆̂′/γ̂′0 = ∆̂′/(γ̂′ − ∆̂′) .

Proof : Let 0 < h ≪ 1, so that g(p, h) and ĝ(p, h) are analytic for all p ∈ [0, 1] [65]. The

analyticity of g(p, h) and ĝ(p, h) implies that all orders of h derivatives of these functions

are bounded as p −→ pc, from the left or the right. Therefore, equation (3.24) holds for

0 < p− pc ≪ 1, and equation (3.26) holds for 0 < pc − p≪ 1. Moreover, in order to cancel

the diverging p dependent prefactors in (3.24) and (3.26) we must have, in general, for all

n ≥ 1,

Gn−1(x) ∼ x−(γ+∆(n−1))/∆ , [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ x̂−(γ̂0+∆̂(n−1))/∆̂ , as p −→ p+
c ,

(3.28)

Gn−1(x) ∼ x−(γ′+∆′(n−1))/∆′

, [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ x̂−(γ̂′0+∆̂′(n−1))/∆̂′

, as p −→ p−c .

For 1 ≤ n ≤ nφ̂ ≤ nφ, lemma 10.1 and 10.2 follow from (3.28) and Lemmas 7 and 8.

Now by equations (2.18), (2.24), (3.7), (3.19), and (3.28) for n = 1, we have

h1/δ ∼ lim
p−→p+c

m(p, h) = lim
p−→p+c

hw(p, z(h)) ∼ lim
p−→p+c

hĝ(p, h) = h lim
p−→p+c

(p− pc)−γ̂0Ĝ0(x̂)

(3.29)

∼ h(p − pc)−γ̂0h−γ̂0/∆̂(p − pc)−∆̂(−γ̂0/∆̂) = h(∆̂−γ̂0)/∆̂.

Therefore δ = ∆̂/(∆̂− γ̂0), and for 1 ≤ nφ̂ ≤ nφ, Lemma 7 implies δ = ∆/(∆−γ). Similarly

by equations (2.18), (3.8), (3.19), and (3.28) for n = 1, and Lemma 6, we have

h−1/δ̂ ∼ lim
p−→p−c

w(p, z(h)) ∼ 1 + lim
p−→p−c

ĝ(p, h) = 1 + lim
p−→p−c

(p − pc)−γ̂
′

0Ĝ0(x̂) = h−γ̂
′

0
/∆̂ ′

,

(3.30)

in general. By Lemma 9, for 1 ≤ nφ̂ ≤ nφ, we have δ̂ = ∆̂′/γ̂′0 = ∆̂′/(γ̂′ − ∆̂′) ✷.
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Lemma 11 Let h ∈ U0 such that hi 6= 0, and Ĝn,j(x̂), R̂n(x̂), În(x̂), and the associated

critical exponents be defined as in equations (3.20) and (3.21) for p > pc and p < pc.

Furthermore, let sr, si, tr, and ti be defined as in equations (3.7) and (3.8). Then,

1) [Ĝ0,0(x̂) + x̂rĜ0,1(x̂)] ∼ x̂iĜ0,1(x̂) ∼ 1 as x̂ −→ 0 (h −→ 0 and 0 < pc − p≪ 1) .

2) lim
x̂−→0

[x̂rĜ0,0(x̂) + |x̂|2Ĝ0,1(x̂)] ∼ lim
x̂−→0

[x̂iĜ0,0(x̂)] ∼ 1 for 0 < p− pc ≪ 1.

3) sr = si = γ̂′0 = s.

4) tr = ti = ∆− γ = t.

Proof : Let 0 < pc − p≪ 1, h ∈ U0 such that hi 6= 0, and 0 < |h| ≪ 1. By equations (3.20)

and (3.21), for n = 0, we have

ĝ(p, h) =

∫ Ŝ(p)

0

dφ̂(y)

|1 + hy|2 + h̄

∫ Ŝ(p)

0

y dφ̂(y)

|1 + hy|2 = (pc − p)−γ̂
′

0 [Ĝ0,0(x̂) + ¯̂xĜ0,1(x̂)], (3.31)

so that

ĝr(p, h) = (pc − p)−γ̂
′

0R̂0(x̂) = (pc − p)−γ̂
′

0 [Ĝ0,0(x̂) + x̂rĜ0,1(x̂)] (3.32)

ĝi(p, h) = (pc − p)−γ̂
′

0 Î0(x̂) = −(pc − p)−γ̂
′

0 x̂iĜ0,1(x̂).

Equations (3.17) and (3.22) imply that R̂0(x̂) ∼ Î0(x̂) ∼ 1 as x̂ −→ 0 (h −→ 0 and 0 <

pc − p≪ 1). Therefore, equations (2.18), (3.8), (3.32) and Lemma 6 imply that

(pc − p)−sr ∼ wr(p, z(0)) ∼ 1 + ĝr(p, 0) ∼ 1 + (pc − p)−γ̂
′

0 lim
x̂−→0

R̂0(x̂) ∼ (pc − p)−γ̂
′

0 ,

(3.33)

(pc − p)−si ∼ wi(p, z(0)) ∼ ĝi(p, 0) ∼ (pc − p)−γ̂
′

0 lim
x̂−→0

Î0(x̂) ∼ (pc − p)−γ̂
′

0 .

Equation (3.33) and Lemma 9 imply that sr = si = γ̂′0 = s.

Now let 0 < p − pc ≪ 1 with h as before. In equation (3.27) we demonstrated that

m(p, 0) = limh−→0 hĝ(p, h). Therefore equation (3.32), for p > pc, implies that

mr(p, 0) ∼ lim
h−→0

[hrĝr(p, h)− hiĝi(p, h)] = (p− pc)∆̂−γ̂0 lim
x̂−→0

[x̂rĜ0,0(x̂) + |x̂r|2Ĝ0,1(x̂)]

mi(p, 0) ∼ lim
h−→0

[hiĝr(p, h) + hr ĝi(p, h)] = (p− pc)∆̂−γ̂0 lim
x̂−→0

[x̂iĜ0,0(x̂)] (3.34)

By equation (3.17) we have limx̂−→0[x̂rĜ0,0(x̂)+ |x̂|2Ĝ0,1(x̂)] ∼ limx̂−→0[x̂iĜ0,0(x̂)] ∼ 1 for all

0 < p− pc ≪ 1. Therefore, equations (3.7) and (3.34) imply that

(p − pc)tr ∼ mr(p, 0) ∼ (p− pc)∆̂−γ̂0 , (p− pc)ti ∼ mi(p, 0) ∼ (p − pc)∆̂−γ̂0 . (3.35)

Equation (3.35) and Lemmas 7 and 9 imply that, for 1 ≤ nφ̂ ≤ nφ, tr = ti = ∆̂ − γ̂0 =

∆− γ = t ✷.
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Lemma 12 Let h ∈ U0 such that hi 6= 0, and Ĝn,j(x̂), R̂n(x̂), În(x̂), and the associated

critical exponents be defined as in equations (3.20) and (3.21) for p > pc and p < pc.

Furthermore, let δ̂r, δ̂i, δr, and δi be defined as in equations (3.7) and (3.8). Then,

1) R̂0(x̂) ∼ Î0(x̂) ∼ |x̂|−γ̂′0/∆̂′

, as x̂ −→∞ (p −→ p−c and 0 < |h| ≪ 1).

2) [x̂rR̂0(x̂)− x̂iÎ0(x̂)] ∼ [x̂rÎ0(x̂) + x̂iR̂0(x̂)] ∼ |x̂|(∆̂−γ̂0)/∆̂, as x̂ −→∞.

3) δ̂r = δ̂i = ∆̂′/γ̂′0 = δ̂ .

4) δr = δi = ∆/(∆ − γ) = δ .

Proof : Let h ∈ U0 such that hi 6= 0 and 0 < |h| ≪ 1, so that g(p, h) and ĝ(p, h) are analytic

for all p ∈ [0, 1] [65]. Equations (2.18), (3.8), (3.32) and Lemma 6 imply that

|h|−1/δ̂r ∼ wr(pc, z(h)) ∼ 1 + ĝr(pc, h) ∼ lim
p−→p−c

(pc − p)−γ̂
′

0R̂0(x̂), (3.36)

|h|−1/δ̂i ∼ wi(pc, z(h)) ∼ ĝi(pc, h) ∼ lim
p−→p−c

(pc − p)−γ̂
′

0 Î0(x̂).

The analyticity of g(p, h) and ĝ(p, h) implies that they are bounded for all p ∈ [0, 1].

Therefore, in order to cancel the diverging p dependent prefactors in equations (3.36), we

must have R̂0(x̂) ∼ Î0(x̂) ∼ |x|−γ̂′0/∆̂′

as x̂ −→∞ (p −→ p−c and 0 < h≪ 1). Equation (3.36)

then implies

|h|−1/δ̂r ∼ (pc − p)−γ̂
′

0 |h|−γ̂′0/∆̂′

(pc − p)−∆̂′(−γ̂′0/∆̂
′) = |h|−γ̂′0/∆̂′

, |h|−1/δ̂i ∼ |h|−γ̂′0/∆̂′

.
(3.37)

Therefore, by Lemma 10, δ̂r = δ̂i = ∆̂′/γ̂′0 = δ̂. It is worth mentioning that these scaling

relations are independent of the path of the limit h −→ 0.

Equations (2.18) and (2.24) imply that m(pc, h) ∼ limp−→p+c
hĝ(p, h), for 0 < |h| ≪ 1.

Therefore equations (3.7) and (3.34) imply that

|h|1/δr ∼ mr(pc, h) = (p− pc)∆̂−γ̂0 lim
p−→p+c

[x̂rĜ0,0(x̂) + |x̂r|2Ĝ0,1(x̂)], (3.38)

|h|1/δi ∼ mi(pc, h) = (p− pc)∆̂−γ̂0 lim
p−→p+c

[x̂iĜ0,0(x̂)].

The analyticity of g(p, h) and ĝ(p, h) implies that they are bounded for all p ∈ [0, 1].

Therefore, in order to cancel the diverging p dependent prefactors in equations (3.38), we

must have [x̂rĜ0,0(x̂) + |x̂r|2Ĝ0,1(x̂)] ∼ x̂iĜ0,0(x̂) ∼ |x|(∆̂−γ̂0)/∆̂ as x̂ −→ ∞ (p −→ p+
c and

0 < h ≪ 1). Therefore equation (3.38) implies that δr = δi = ∆̂/(∆̂ − γ̂0) in general, and

for 1 ≤ nφ̂ ≤ nφ, Lemmas 7 and 10 imply that δr = δi = ∆̂/(∆̂− γ̂0) = ∆/(∆− γ) = δ. As

before, these scaling relations are independent of the path of h −→ 0 ✷.
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Lemma 13 For 1 ≤ nφ̂ ≤ nφ, the measure y dφ(y) has the symmetry property (∆ = ∆′ and

γ = γ′) if and only if the measure dφ̂(y) has the symmetry property (∆̂ = ∆̂′ and γ̂0 = γ̂′0).

If either measure has this symmetry, then

1) s+ t = ∆ . 2) 1/δ + 1/δ̂ = 1. 3) ∆ = ∆̂ = ∆′ = ∆̂′. 4) γ = γ′ = γ̂0 = γ̂′0.

Proof : We have shown in Lemmas 7 and 8 that, for 1 ≤ nφ̂ ≤ nφ, γ = γ̂0, ∆ = ∆̂,

γ′ = γ̂′0, and ∆′ = ∆̂′. Therefore, it is clear that, (∆ = ∆′ and γ = γ′) ⇐⇒ (∆̂ = ∆̂′ and

γ̂0 = γ̂′0). Assume that either of the measures, dφ̂(y) or y dφ(y), has this symmetry. Thus,

∆ = ∆̂ = ∆̂′ = ∆′ and γ = γ̂0 = γ̂′0 = γ′. By Lemma 9 we have t = ∆ − γ and s = γ̂′0, and

by Lemma 10 we have δ = ∆/(∆ − γ) and δ̂ = ∆̂′/γ̂′0. Therefore,

s+ t = γ̂′0 + ∆− γ = γ̂0 + ∆− γ = ∆ .

δ = ∆/(∆ − γ) = 1/(1 − γ/∆) = 1/(1 − γ̂0/∆̂) = 1/(1 − γ̂′0/∆̂′) = 1/(1 − 1/δ̂) ✷.

As mentioned above, the scaling relations tr = ti = t and sr = si = s that we proved in

Lemma 11 are fundamental identities, and serve as a consistency check of this mathematical

framework. Another consistency check was given in Lemma 13, where we proved that

1/δ+1/δ̂ = 1. This is also a fundamental identity which follows from the relation in (2.24),

m(p, h) = hw(p, z(h)), and the definition of these critical exponents in (3.7) and (3.8), for

0 < |h| ≪ 1: h1/δ ∼ m(pc, h) = hw(pc, z(h)) ∼ hh−1/δ̂ ∼ h1−1/δ̂ . It follows that the relation

in (2.24) provides a partial converse to the assumption underlying Lemma 13. Indeed as

1/δ + 1/δ̂ = 1 in general, and for all 1 ≤ nφ̂ ≤ nφ we have δ = ∆/(∆ − γ) = ∆/t and

δ̂ = ∆̂′/γ̂′0 = ∆̂′/s, then 1− γ/∆ = 1/δ = 1− 1/δ̂ = 1− γ̂′0/∆̂′ implies that t/∆ + s/∆̂′ = 1,

and ∆ = ∆̂′ ⇐⇒ γ = γ̂′0. This concludes the proof of Theorem 5 ✷.

3.3 Spectral Gaps and Critical Behavior
of Transport

We now discuss the gaps θµ and θα in the spectral measures µ and α, respectively. As the

operators Γ and Υ are projectors on the associated Hilbert spacesH× andH•, respectively,

their eigenvalues are confined to the set {0, 1} [101]. The associated operators Mj = χjΓχj

and Kj = χjΥχj, j = 1, 2 are positive definite compositions of projection operators, thus

their eigenvalues are confined to the set [0, 1] [65, 104]. While in general, the spectrum

actually extends all the way to the spectral endpoints λ = 0, 1, it has been argued that the

part close to λ = 0, 1 corresponds to very large, but very rare connected regions (Lifshitz
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phenomenon). It is believed that this phenomenon gives exponentially small contributions

to the effective complex conductivity (resistivity), and does not affect power law behavior

[60].

In [23] O. Bruno has proven the existence of spectral gaps in matrix/particle systems

with polygonal inclusions, and studied how the gaps vanish as the inclusions touch (like

p −→ pc). In Figure 3.1 and Figure 3.2 we give graphical representations of the components

αik of the (symmetric) tensor valued spectral measure α for finite, square 2-d and 3-d

RRN with independent and identically distributed (i.i.d.) x and y bonds (explained in

more detail below). In the 2-d RRN, as p −→ pc = 0.5 the gaps in the spectrum of the

diagonal components αii of α near λ = 0, 1 shrink to 0 symmetrically. In the 3-d RRN, as

p −→ pc ≈ 0.2488 the spectral gap near λ = 0 shrinks to 0, and as p −→ 1− pc ≈ 0.7512 the

spectral gap near λ = 1 shrinks to 0. As p surpasses pc and 1− pc the spectrum piles up at

λ = 0 and λ = 1, respectively, forming delta function-like components in the measure. In

Section 3.2.1 we showed that, for EMT, there are gaps in the spectral measures µ and α for

p 6= pc, 1−pc. The gaps in µ and α about λ = 1 and λ = 0, respectively, collapse as p −→ pc,

and the gaps in µ and α about λ = 0 and λ = 1, respectively, collapse as p −→ 1− pc.

This is the behavior displayed in Lemma 2 and Corollary 1, which hold for general

percolation models of stationary two-phase random media with m(0) = m(p, 0) and w(0) =

w(p, 0). In this way the spectral measures µ and α truly are independent of the material

contrast ratio, and are independent of how we define it. For example, we have focused on

the contrast ratio h = σ1/σ2 and defined an insulator-conductor system by letting σ1 −→ 0,

resulting in critical behavior (the formation of a delta component in µ at λ = 1 with weight

m(p, 0)) as p surpasses pc, where p = 〈χ2〉 (see Lemma 2). We could have instead focused

on z = σ2/σ1 and defined an insulator-conductor system by letting σ2 −→ 0, resulting in

critical behavior (the formation of a delta component in α at λ = 1 with weight w(p, 0))

as p surpasses 1 − pc (see Corollary 1). Lemma 2 and Corollary 1 demonstrate, through

spectral means, the equivalence of these two systems. Moreover these lemmas rigorously

prove, for general percolation models of two-phase stationary random media in lattice and

continuum settings, that the onset of critical behavior in transport is identified with the

formation of delta components in µ and α at λ = 0, 1 precisely at p = pc and p = 1− pc.

For bond lattice systems with a finite number of bonds, N say, the differential equations

in (2.3) become difference equations (Kirchoff’s laws) [59]. Consequently, the operators Mj ,

j = 1, 2 are given [59, 64] by n × n matrices, say, and the spectral measure αik(dλ) of the
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Figure 3.1. In the 2-d RRN (a)-(d), as the volume fraction p increases from top to bottom,
the width of the gaps in the spectrum near λ = 0, 1 shrink to 0 symmetrically with increasing
connectedness as p −→ pc = 1 − pc = 0.5. In (c) the effective medium theory prediction of
the spectral measure, which coincides with the exact duality prediction, is also displayed.
Consistent with the isotropy of the system, to numerical accuracy and finite size affects,
the (positive) diagonal components α11(λ) and α22(λ) of the spectral functions in (a)–(c)
are identical, and the (signed) off-diagonal component α12(λ) in (d) is zero.
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Figure 3.2. In the 3-d RRN (a)–(f), as the volume fraction p increases from let to right
and top to bottom, the width of the gaps in the spectrum near λ = 0, 1 shrink to 0. As
p −→ pc ≈ 0.2488 the width of the gap near λ = 0 shrinks to 0, and as p −→ 1− pc ≈ 0.7512
the width of the gap near λ = 1 shrinks to 0. Similar to the 2-d RRN shown above, to
numerical accuracy and finite size affects, the (positive) diagonal components α11(λ), α22(λ),
and α33(λ) of the spectral functions in (a)–(f) are identical, and the (signed) off-diagonal
components α12(λ) and α13(λ) are zero, which is consistent with the isotropy of the RRN.

matrix M2 is given by a sum of “Dirac δ functions,”

αik(dλ) =





n
∑

j=1

mjδλj
(dλ)



 dλ = αik(λ)dλ, (3.39)

where δλj
(dλ) is the delta measure concentrated at λj, mj = 〈~e Ti [~vj~v

T
j ]~ek〉, ~ek is a standard

basis vector on the lattice, for some k = 1, . . . , d, and λj and ~vj are the eigenvalues and

eigenvectors of M2, respectively [64]. The associated Stieltjes transform of the measure in

(2.13) is given by the sum G(t) =
∑n

j=1mj/(t− λj), and αik(λ) in equation (3.39) is called

“the spectral function,” which is defined only pointwise on the set of eigenvalues {λj}.
In Figure 3.1 and Figure 3.2 we give graphical representations of the components αik

of the tensor valued spectral measure α for finite, square 2-d and 3-d RRN with i.i.d. x

and y bonds. These figures display linearly connected peaks of histograms with bin sizes on
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the order of 10−2. The apparent smoothness of these graphs in is due to the large number

(∼ 106) of eigenvalues and eigenvectors calculated, and ensemble averaged. Consistent with

the isotropy of these RRN, for each p, the diagonal components αkk in Figures 3.1 and 3.2

are identical, positive measures of equal mass 1/d, while the αik, i 6= k, are signed measures

of zero mass, up to numerical accuracy and finite size effects. The αkk do not have mass

p, as the eigenvectors are normalized in the l2 inner product, not that weighted by the

characteristic function χ2, like in the general theory. The mass of the measures have been

scaled in these figures to have volume fraction p.

Figures 3.3-3.5 display graphical representations of αik for 2-d RRN that have i.i.d. x

bonds with volume fraction px and i.i.d. y bonds with volume fraction py, with px+ py = p.

Consistent with the anisotropy of the RRN, the diagonal components are different and,

consistent with the i.i.d. nature of the x and y bonds, the αik for i 6= k are signed measures

of zero mass, up to numerical accuracy and finite size effects. For px = 0.5 we recover the

αik of Figure 3.1, and for px > 0.5 the measures α11(λ) and α22(λ) switch roles, which is

consistent with the symmetry of the RRN.

We now provide an analytical proof for the existence of spectral gaps in αik about

the spectral endpoints λ = 0, 1 for arbitrary, finite lattice systems. More specifically, for

p ≪ 1, inf{Σα} > 0 and sup{Σα} < 1. We focus on M2 = χ2Γχ2 and αik, as our results

extend to M1 = χ1Γχ1 and µik by symmetry. In this lattice setting, Γ is a real symmetric

projection matrix which can be diagonalized: Γ = QDQT , where D = diag(1,. . . ,1,0,. . . ,0)

is a diagonal matrix of L ones and n − L zeros, 0 < L < n when n ≫ 1, and Q is a real

orthogonal matrix with columns ~qi, i = 1, . . . , n, which are the eigenvectors of Γ. More

specifically,

Γij = (~qi · ~qj)L

where (~qi · ~qj)L =
∑L

l=1(~qi)l(~qj)l, and (~qi)l is the lth component of the vector ~qi ∈ Rn. Here,

we consider the nondegenerate case L < n.

In the matrix case, the action of χ2 is given by that of a square diagonal matrix of zeros

and ones [64]. The action of χ2 in the matrix χ2Γχ2 introduces a row and column of zeros

in the matrix Γ, corresponding to every diagonal entry of χ2 with value 0. When there is

only one σ2 inclusion (p = 1/N) located at the jth bond, χ2 has all zero entries except at

the jth diagonal: χ2 = diag(0, · · · , 0, 1, 0, · · · , 0) = diag(~vj). Therefore, the only nontrivial

eigenvalue is given by λ̂0 = (~qj · ~qj)L =
∑L

l=1(~qj)
2
l = 1 −∑n

l=L+1(~qj)
2
l , with eigenvector ~vj
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(b)

(c)

(d)

Figure 3.3. Random realizations of anisotropic 2-d square RRN with corresponding
spectral functions α11(λ) and α22(λ) to the right. These RRN have i.i.d. x bonds with
volume fraction px and i.i.d. y bonds with volume fraction py, with px + py = p. These
RRN are disconnected for p = 0.1 and the spectral functions have gaps in the spectra near
λ = 0, 1. For px = 0 the x component of the spectral function α11(λ) is identically zero.
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Figure 3.4. Random realizations of anisotropic 2-d square RRN with corresponding
spectral functions α11(λ) and α22(λ) to the right. These RRN have i.i.d. x bonds with
volume fraction px and i.i.d. y bonds with volume fraction py, with px + py = p. These
RRN are disconnected for p = 0.3 and the spectral functions have gaps in the spectra near
λ = 0, 1. However, these gaps are smaller than those displayed in Figure 3.3 where p = 0.1.
For px = 0 the x component of the spectral function α11(λ) is identically zero.
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Figure 3.5. Random realizations of anisotropic 2-d square RRN with corresponding
spectral functions α11(λ) and α22(λ) to the right. These RRN have i.i.d. x bonds with
volume fraction px and i.i.d. y bonds with volume fraction py, with px + py = p. These
RRN are connected in the x and y directions for p = 0.5 and the gaps in spectra near
λ = 0, 1, displayed in Figures 3.3 and 3.4, have shrunk to 0. For px = 0 the x component
of the spectral function α11(λ) is identically zero, while the y component of the spectral
function α22(λ) is a delta function concentrated at λ = 0.



61

and weight m0 = ~e Ti ~vj~v
T
j ~ek. This implies that there is a gap at λ = 0, θ0 =

∑L
l=1(~qj)

2
l > 0,

and a gap at λ = 1, θ1 =
∑n

l=L+1(~qj)
2
l > 0. It is clear that these bounds hold for all ω ∈ Ω

such that p = 1/N when L < n. We have already mentioned that the eigenvalues of M2

are restricted to the set {0, 1} when p = 1 (χ2 ≡ In). Therefore, there exists 0 < p0 < 1

such that, for all p ≥ p0, there exists a ω ∈ Ω such that θ0(ω) = 0 and/or θ1(ω) = 0. This

concludes our proof ✷.

3.4 Concluding Remarks

We have constructed a mathematical framework which unifies the critical theory of

transport for binary composite media, in continuum and lattice settings. We have focused on

critical transitions exhibited by the effective complex conductivity σ∗ = σ2m(h) = σ1w(z),

as the symmetries underlying this framework extend our results to that regarding the

effective complex resistivity ρ∗ = m̃(h)/σ1 = w̃(z)/σ2. We have shown in Section 2.3 that

critical transitions in transport properties are, in general, characterized by the formation of

delta components in the underlying spectral measures at the spectral endpoints. Moreover,

for percolation models, we have shown that the onset of the critical transition (the formation

of these delta components) occurs precisely at the percolation threshold pc and 1− pc.

The mathematical transport properties of such systems, displayed in Section 2.1 and

Section 2.2, hold for general two-component stationary random media in lattice and contin-

uum settings [65]. While the critical exponent scaling relations and the various transport

properties, displayed in Lemmas 4–13, hold for percolation models of the composites class

Bnφ
and Bn

φ̂
for p > pc and p < pc, respectively (see Definition 1). Under the condition

that nφ, nφ̂ ≥ 1, i.e., that m(p, 0) and χ(p, 0) in (3.7) exist for p > pc, and w(p, z(0)) and

χ̂(p, z(0)) in (3.8) exist for p < pc, we linked the two sets of critical exponents in (3.7)

and (3.8). We showed that, for percolation models like EMT where nφ, nφ̂ = ∞, they are

all determined by only three critical exponents, and are determined by only two critical

exponents under the symmetry condition of Lemma 13. This type of critical behavior

has been studied before for the lattice [13, 37, 52], and alternate methods have shown that

∆ = s + t, δ = (s + t)/t, and γ = s. These are precisely the relations that we have

shown to hold for lattice and continuum percolation models of this class, under these

conditions. The EMT percolation model satisfies these conditions, however, there is no

apparent mathematical necessity for these conditions to hold, in general. Although they

lead to the well known two-dimensional duality relation s = t for the lattice [13, 37, 52].
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Numerical and analytical work on the sequence of critical exponents ψ̃(q) for the mo-

ments of the current distribution in RRN, e.g., [17, 45, 116], has shown that this sequence

exhibits nonlinear dependence in q, or multifractal behavior. We proved in Lemma 9 that

the exponents γn have linear dependence in n for all 1 ≤ n ≤ nφ̂ ≤ nφ. This is consistent

with the absence of multifractal behavior for percolation models of class B∞, such as EMT.

However for percolation models with nφ̂, nφ <∞, multifractal behavior is not ruled out by

Lemma 9. It is interesting, though, that the ψ̃(q) satisfy Baker’s inequalities (3.13) [17].

As in EMT, our general scaling relations involving |h| are independent of the limiting

path as h −→ 0. This represents an alternative to the results of other workers [13, 37, 52] who

have used heuristic scaling forms as a starting point. For our critical theory the starting

point is equation (2.13), which displays exact formulas for infinite systems [60].



CHAPTER 4

ORTHOGONAL POLYNOMIALS

The theory of orthogonal polynomials is intimately entwined within the spectral theory

of bounded self-adjoint linear operators with simple spectrum [41, 118]. In this chapter

we explore the connection between orthogonal polynomials and the theory of two-phase

random media. We introduce numerator and denominator polynomials in Section 4.1 by

reviewing their role in Padé approximants of F (s;µ), the Stieltjes transform of the measure µ

introduced in Section 2.1. In Section 4.2 we review the theory of denominator polynomials

and provide a mapping structure, associated with two-phase stationary random media,

between various measure and operator spaces. In Section 4.3 we give the key results of

this chapter. There, we introduce generalized numerator polynomials P [i], i = 0, 1, . . .,

and we demonstrate the physical significance of the Stieltjes transforms F [i](s;µ[i]) of the

orthogonality measures µ[i] associated with these families of polynomials. More specifically,

for i = 0, 1, 2, the F [i](s;µ[i]) are completely determined by components of the energy

decomposition given in Theorem 4. Moreover, we derive a novel, closed form solution for

the moments µ
[i]
j of the measures µ[i] in terms of the moments µj of µ, for all i ∈ N,

j = 0, 1, . . .. This novel solution for the µ
[i]
j uniquely determines these measures, as moment

problem is determined for the measures µ[i] [35, 114].

4.1 Padé Approximants

In Section 2.1 we derived integral representations for the effective complex conductivity

and resistivity tensors σ
∗ and ρ

∗, respectively, which involve Stieltjes transforms of the

tensor valued measures µ, α, η, and κ. These are spectral measures associated with the

bounded linear operators Mj = χjΓχj and Kj = χjΥχj, j = 1, 2, which are self-adjoint

on L2(Ω, P ). Following Van Assche [125], in this section we review Padé approximants of

the Stieltjes transform of a measure. We will limit our attention to the Stieltjes transform

of the measure µ associated with the operator M = M1 = χ1Γχ1, as results associated

with the other operators and measures follow by symmetry. For simplicity, we focus on a
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diagonal component µ = µkk of the measure and its Stieltjes transform F (s;µ) = Fkk(s;µ)

associated with σ∗ = σ∗kk, for some k = 1, . . . , d.

Geometric information of a two-phase random medium is incorporated into the measure

µ through its moments µj, j = 0, 1, . . ., which depend on the correlation functions of the

medium [65]. This can be seen by expanding σ∗ around a homogeneous medium σ1 = σ2

(s = ∞), or equivalently expanding the integral for F (s;µ) in (2.13) in powers of 1/s for

|s| > 1, yielding [59]

F (s) =
∞
∑

j=0

µj
sj+1

. (4.1)

Performing the same s expansion for F (s;µ) = 〈χ1(s− Γχ1)
−1~ek · ~ek〉 yields [59, 65]

µj =

∫ 1

0
λjdµ(λ) =

∫

Ω
P (dω)[χ1(Γχ1)

j~ek] · ~ek, j = 0, 1, . . . (4.2)

Clearly, in general we have

µ0 = 〈χ1〉 = p1, (4.3)

where p1 is the volume fraction of the σ1 phase, with p2 = 1−p1, where 〈·〉 denotes ensemble

average over Ω. When the medium is isotropic it can be shown that [24, 65]

µ1 =
p1p2

d
. (4.4)

Equation (4.2) shows that µn depends on the (n + 1)-point correlation function of the

medium under consideration [59, 65]. In principle, if all the n-point correlation functions

are known then the spectral measure may be uniquely determined and F (s), hence σ∗, is

exactly known [114]. This shows the usefulness of the representation (4.1): by analytic

continuation, local information at s =∞ yields global information [87] for s ∈ C\Σµ, where

the support of µ is denoted Σµ = supp(µ) ⊆ [0, 1].

In practice, complete information regarding the composite is unavailable and one often

resorts to approximations of F (s) = F (s;µ). Taylor polynomials are clearly not a good

class of functions to approximate F (s) as they do not capture the singularities of this

function. Rational functions of polynomials are the simplest approximating functions with

singularities [125]. The [m,n] Padé approximant of F (s) is the rational function of monic

polynomials Qm/Pn, with Qm of degree ≤ m and Pn of degree ≤ n. For the Padé
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approximation of F (s) near infinity one takes m = n − 1, which leads to the following

interpolation condition [125]:

Pn(s)F (s)−Qn−1(s) = O(s−n−1), |s| −→ ∞. (4.5)

The denominator polynomials Pn are orthogonal with respect to the measure µ [125],

∫ 1

0
λkPn(λ)dµ(λ) = 0, k = 0, 1, . . . , n− 1, (4.6)

which we will normalize p̃n = Pn/‖Pn‖µ, where ‖ ·‖µ is the L2(µ) norm. The corresponding

numerator polynomials, q̃n−1 = Qn−1/‖Pn‖µ are given by [125]

q̃n−1(s) =

∫ 1

0

p̃n(s)− p̃n(λ)

s− λ dµ(λ), (4.7)

and the error may be written as [125]

F (s)− q̃n−1(s)

p̃n(s)
=

1

p̃2
n(s)

∫ 1

0

p̃2
n(λ)

s− λdµ(λ). (4.8)

In order to illuminate some important properties of orthogonal polynomials, we sketch a

convergence analysis of (4.8) for s in a compact set K ⊂ C\Σµ.

The integral on the right hand side of (4.8) may be bounded independent of n [125],

so the convergence of the Padé approximants is completely determined by the asymptotic

behavior of p̃n as n −→ ∞. By orthogonality, the zeros of p̃n are simple and contained in

(0, 1) [41]. Denote them by 0 < λ1,n < λ2,n < · · · < λn,n < 1, and denote the leading

coefficient of p̃n by γn = ‖Pn‖−1
µ , so that

p̃n(s) = γn

n
∏

j=1

(s− λj,n). (4.9)

The asymptotic behavior of p̃n is thus determined by that of γn and the asymptotic

distribution of the zeros {λj,n}.
First, consider the normalized counting measure of the zeros

νn(dλ) =
1

n

n
∑

j=1

δλj,n
(dλ), (4.10)

which defines a sequence of probability measures supported on the interval (0, 1), and

describes the distribution of the zeros of p̃n. Helly’s selection principle tells us [41, 125] that
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there is a subsequence {nk} that converges weakly to a probability measure ν supported on

the interval [0, 1]. For the monic polynomial Pn we have

1

n
log |Pn(s)| =

1

n

n
∑

j=1

log |s− λj,n| =
∫ 1

0
log |s− λj,n|dνn(λ), (4.11)

so that, by weak convergence for s ∈ K,

lim
j−→∞

|Pnj
(s)|1/nj = exp (Uν(s; ν)) , Uν(s;m) =

∫

Σν

log |s− λ|dm(λ), (4.12)

where Σµ ⊆ Σν ⊆ [0, 1] and we use νn(dλ) and dνn(λ) interchangeably.

Second, just as the Chebyshev polynomials minimize the L∞([−1, 1]) norm, the Pn

minimize the L2(µ) norm [41]. Indeed, the leading coefficient γn = ‖Pn‖−1
µ solves the

minimization problem:

γ−2
n = infπn(λ)=λn+···(‖πn‖2µ), (4.13)

so that the minimum is attained at the monic orthogonal polynomial Pn [125]. This extremal

problem for γn may be used to show that the asymptotic behavior of γ
1/n
n and the asymptotic

distribution ν of the zeros are described by an equilibrium problem for logarithmic potentials

[125].

More specifically, if µ is sufficiently regular [108, 115] and if we denote by M1(Σν) the

set of probability measures supported on Σν , then the measure ν is the unique minimizer

(the equilibrium measure for Σν) of the logarithmic functional

Eν [ν] = inf
m∈M1(Σν)

Eν [m], Eν [m] = −
∫

Σν

Uν(λ;m)dm(λ), (4.14)

were Uν(λ;m) is defined in equation (4.12). This standard variational problem of potential

theory, which has the electrostatic interpretation of ν being the equilibrium distribution of

a distribution m of positive charges on a conductor Σν, is equivalent [108] to the relations:

− 2Uν(λ; ν) = −lν , λ ∈ Σν, (4.15)

− 2Uν(λ; ν) ≥ −lν , λ ∈ R\Σν .

Formulas (4.15) are the Euler–Lagrange equations for (4.14), the quantity exp(lν/2) is the

logarithmic capacity of Σν , and −lν/2 is known as the Robin constant [97]. It can be shown,

on the potential curves

Cr =
{

s ∈ C\Σν |
(

lim
n−→∞

γ1/n
n

)

exp(Uν(s; ν)) = r
}

, (4.16)
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with r > 1, that

lim
n−→∞

∣

∣

∣

∣

F (s)− q̃n−1(s)

p̃n(s)

∣

∣

∣

∣

1/n

=
1

r2
, (4.17)

demonstrating that the convergence is exponential [125].

A Padé approximation of F (s) thus gives an idea of the singularities {λj} of F (s). The

singularities of the Padé approximant are the roots of the polynomial Pn. From equation

(2.13) we see that F (s) is a linear mapping of B0, the set of positive finite Borel measures

on [0, 1], to the complex plane. Let

B(µ1, µ2, . . . , µn) =

{

µ ∈ B0 | µj =

∫ 1

0
λjdµ(λ), j = 1, 2, . . . , n

}

. (4.18)

The set of measures B(µ1, µ2, . . . , µn) is a compact, convex subset of B0 with the topology

of weak convergence [65]. One can show that the measure µ is a weak limit of convex

combinations of n-point measures, i.e., measures of the form [65]

µ(dλ) =
n
∑

j=1

mjδλj
(dλ), (4.19)

where dµ(λ) and µ(dλ) are used interchangeably and

mj ≥ 0, 0 ≤ λ1 < λ2 < · · · < λn < 1, µi =

n
∑

j=1

mjλ
i
j , i = 0, 1, . . . , n− 1. (4.20)

In finite lattice systems, the random operator Mn = M = χ1Γχ1 is a sparse random

matrix [58] of size n, say. In this case, the discrete measure µ is given exactly by equation

(4.19), and F (s) may be written [58]

F (s) =

n
∑

j=1

mj

s− λj
, mj = 〈~e Tk Eλj

~ek〉, Eλj
= ~vj~v

T
j , Mn~vj = λj~vj , (4.21)

where ~vTi ~vj = δi,j , ~ek is a standard basis vector on the lattice, and 〈·〉 denotes ensemble

average. The family of projection operators Eλ is called the resolution of the identity,
∑n

j=1Eλj
= In, where In is the identity operator on Rn. In this finite lattice setting the

Padé approximants of F (s) are exact:

F (s) = p1
Qn−1(s)

Pn(s)
, Pn(s) =

n
∏

j=1

(s− λj), Qn−1(s) = p−1
1

n
∑

j=1

mj

n
∏

j 6=l=1

(s− λl), (4.22)

where the normalization by the volume fraction, p1 =
∑n

j=1mj =
∫ 1
0 dµ(λ), makes Qn−1(s)

a monic polynomial. In this case, the singularities of F (s) (the eigenvalues of Mn) are
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precisely the zeros of Pn(s). By multiplying F (s) in (4.21) by s−λi and letting s −→ λi one

can easily see from (4.22) that the weights (Christoffel numbers) {mj}nj=1 are given by

mj = p1
Qn−1(λj)

P ′
n(λj)

, (4.23)

where the prime denotes differentiation in the variable s.

4.2 Denominator Polynomials

In this section, from the spectral parameters {mj , λj} of the matrix Mn, we construct

the Jacobi matrix Jn which determines the denominator polynomials Pj , j = 0, . . . , n − 1.

We also provide a mapping structure, associated with two-phase stationary random media,

between various measure and operator spaces. In the infinite operator case, the spectral

theorem [101] generates a mapping ϕµ from M to a spectral measure µ: M
ϕµ7→ µ. We discuss

another (one-to-one) map µ
ψ7→ J from µ to a bounded Jacobi matrix J of infinite order

which acts on l2. The construction of ψ turns out to be the classical problem of generating

a family of polynomials orthogonal to µ. This problem demonstrates that the inverse map

ϕ = ψ−1 is the spectral map J
ϕ7→ τ from the operator J to a positive measure τ , and it

extends to a unitary map l2
U7→ L2(µ). In the matrix case the map ψ becomes a bijection.

It is important to note that the measure µ defined by (4.19)–(4.21), for n <∞, can only

generate polynomials orthogonal to µ up to order n− 1. This can be easily seen [41] as the

polynomial π(s) =
∏n
j=1(s−λj) = 0 in L2(µ) so that {1, s, s2, . . . , sn−1} spans {1, s, s2, . . .}

in L2(µ). Conversely [41] observe that for some i, the set of polynomials {1, s, s2, . . . , si} is

linearly dependent in L2(µ) only if i < n. Indeed, if this set is dependent for some i ≥ n,

then there exists a polynomial π(s) =
∑i

j=1 cjs
j, with not all cj = 0, such that π(s) = 0 in

L2(µ). But π(s) has at most i ≥ n real zeros, a contradiction, hence i < n.

The Gram–Schmidt procedure can be carried out on the set {1, s, s2, . . .} as long as the

L2(µ) norm ‖ · ‖µ is strictly positive definite. If we denote by P the set of real polynomials

on [0, 1] and Pi ⊂ P the space of polynomials of degree ≤ i, then the above argument shows

that ‖·‖µ is strictly positive definite on Pi only if i < n. Moreover, the L2(µ) norm is strictly

positive definite on Pi if and only if the Hankel determinants Dj are strictly positive Dj > 0,

for j = 1, 2, . . . , i, where

Dj =

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 µ2 · · · µj
µ1 µ2 µ3 · · · µj+1

· · · · · · · · · · · · · · ·
µj µj+1 µj+2 · · · µ2j

∣

∣

∣

∣

∣

∣

∣

∣

(4.24)
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and the {µj} are the moments of the measure µ defined in (4.2). This can be easily seen

[57] by writing πj(λ) =
∑i

j=1 cjλ
j so that

‖πj‖2µ =

∫ 1

0
dµ(λ)

i
∑

j,l=0

cjclλ
j+l =

i
∑

j,l=0

cjclµj+l. (4.25)

Therefore, the norm ‖ · ‖µ is strictly positive definite if and only if the Hankel matrix

[µj+l]j,l=0,1,2,··· ,i is strictly positive definite if and only if Dj > 0 for j = 1, 2, . . . , i.

In the case of an infinite two-phase random medium (n = ∞), an infinite sequence of

orthogonal polynomials may be generated. The polynomials p̃i = Pi/‖Pi‖µ orthonormal in

L2(µ),

〈p̃i, p̃j〉µ =

∫

Σµ

p̃i(λ)p̃j(λ)dµ(λ) = δi,j , (4.26)

are given by [41, 119]

p̃i(s) = (Di−1Di)
−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 µ2 · · · µi
µ1 µ2 µ3 · · · µi+1

· · · · · · · · · · · · · · ·
µi−1 µi µi+1 · · · µ2i−1

1 s s2 · · · si

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.27)

where Di is defined in equation (4.24). The zeros of p̃i−1 interlace those of p̃i [73], and

p̃′n(s)/p̃n(s) =
∑n

j=1(s − λj,n)−1 [124].

The polynomials p̃i satisfy the following three term recursion relation [57]

√

βj+1p̃j+1(s) = (s − αj)p̃j(s)−
√

βj p̃j−1(s), j = 0, 1, 2, . . . (4.28)

p̃−1(s) = 0, p̃0(s) = 1/
√

β0,

where [41, 57]

αj =
〈λPj , Pj〉µ
〈Pj , Pj〉µ

= 〈λp̃j, p̃j〉µ, j = 0, 1, 2, . . . (4.29)

βj =
〈Pj , Pj〉µ
〈Pj−1, Pj−1〉µ

= 〈λp̃j−1, p̃j〉2µ, j = 1, 2, . . . ,

and β0 = 〈P0, P0〉µ =
∫ 1
0 dµ(λ) = p1, hence ‖Pn‖2µ = βnβn−1 · · · β1β0. Using the recursion

coefficients {αj , βj}, the numerator polynomial Qn−1 in (4.23) can be replaced, giving the

Christoffel numbers mj in terms of the p̃j and their derivatives [124]

mj = p1
Qn−1(λj,n)

P ′
n(λj,n)

= −(
√

βn+2p̃
′
n+1(λj,n)p̃n+2(λj,n))

−1 = (
√

βn+1p̃
′
n+1(λj,n)p̃n(λj,n))

−1

(4.30)
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Denote the essentially self-adjoint Jacobi operator J(µ) [41, 57, 118] by

J(µ) =















α0
√
β1 0√

β1 α1
√
β2√

β2 α2
√
β3

. . .
. . .

. . .

0















(4.31)

and its n× n leading principal minor matrix by

Jn = [J(µ)][1:n,1:n]. (4.32)

Setting ~pn(s) = [p̃0(s), p̃1(s), . . . , p̃n−1(s)]
T , equation (4.28) may be expressed in matrix

form as [57]

Jn~pn(λ) = λ~pn(λ)−
√

βnp̃n(λ)~en, (4.33)

where ~en = [0, 0, . . . , 1] is the nth standard basis vector in Rn. Therefore, the simple zeros

{λj,n}nj=1 of p̃n are the eigenvalues of the Jacobi matrix Jn, and the {~pn(λi,n)}ni=1, are the

corresponding eigenvectors:

Jn~vi = λi,n~vi, ~v Ti ~vi = 1, ~vi =
~pn(λi,n)

‖~pn(λi,n)‖
, ‖~pn(λi,n)‖2 =

n−1
∑

j=0

[p̃j(λi,n)]
2. (4.34)

As Σµ ⊂ [0, 1], the coefficients of the Jacobi matrix satisfy the following bounds [57]

0 < αj < 1, 0 < βj ≤ 1. (4.35)

Therefore, the matrix J(µ) is a bounded Jacobi matrix, which in turn implies the measure

of orthogonality µ uniquely defines J(µ) [73].

We now construct the Jacobi matrix Jn(µ) for finite lattices, where the spectral measure

µ of the matrix Mn is given by equations (4.19)–(4.21). In general, given a real symmetric

matrix A, there is an orthogonal similarity transformationQTAQ = T , where the orthogonal

matrix Q and the tridiagonal symmetric matrix T , having nonnegative off diagonal elements,

are uniquely determined by A and the first column of Q [96]. Theorem 7 explicitly

determines Q and implicitly determines Jn. Although, the proof thereof defines a numerical

algorithm for determining Jn. Parts of this proof may be found in separate discussions given

in [57]. We provide a complete proof here.

Theorem 7 Let µ(dλ) =
∑n

j=1mjδλj
(dλ) be the spectral measure of Mn given in (4.21),

and define the diagonal matrix Λn = diag[λj ]
n
j=1 and the vectors ~m = [m1,m2, . . . ,mn]

T and
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√
~m = [

√
m1,
√
m2, . . . ,

√
mn]

T . Furthermore, let Jn(µ) be the Jacobi matrix of order n de-

fined by equations (4.31)–(4.34) with eigenvalues {λj,n}nj=1 and eigenvectors {~pn(λj,n)}nj=1,

where ~pn(s) = [p̃0(s), p̃1(s), . . . , p̃n−1(s)]
T and {p̃j}n−1

j=0 are the polynomials which are or-

thonormal in L2(µ). Denote by ~P = [~pn(λ1,n), ~pn(λ2,n), . . . , ~pn(λn,n)] the matrix of orthog-

onal eigenvectors with norms ξi = ‖~pn(λi,n)‖, and Vn = [~v1, ~v2, . . . , ~vn] the corresponding

matrix of orthonormal eigenvectors ~vi = ~pn(λi,n)/‖~pn(λi,n)‖. Then there exists a unique

orthogonal matrix Qn of order n and a unique tridiagonal symmetric matrix Tn, with

nonnegative off diagonal elements, given by

[

1 ~0T

~0 QTn

]

[

1
√
~m
T

√
~m Λn

]

[

1 ~0T

~0 Qn

]

=

[

1
√
~m
T
Qn

QTn
√
~m QTnΛnQn

]

=

[

1
√
β0~e

T
1√

β0~e1 Tn

]

, (4.36)

where ~e1 and ~0 are the 1st standard basis and null vectors of Rn, respectively, and the

constant β0 = µ0, the mass of µ, depends on n through this measure. Furthermore, Qn ≡
V T
n , Tn ≡ Jn(µ), and mi = ξ−2

i .

Proof: Define a real symmetric matrix A of order n+ 1 by

A =

[

1
√
~m
T

√
~m Λn

]

. (4.37)

As mentioned above, there exists [96] a similarity transformation QTAQ = T , where

the orthogonal matrix Q and the tridiagonal symmetric matrix T , having nonnegative off

diagonal elements, are uniquely determined by A and the first column of Q. Set the first

column of Q to ~e1:

Q =

[

1 ~0T

~0 Qn

]

. (4.38)

Therefore, the orthogonal matrix Qn of order n and the tridiagonal matrix T of order n+1

are unique [96].

By construction, as T is tridiagonal,

T = QTAQ =

[

1
√
~m
T
Qn

QTn
√
~m QTnΛnQn

]

=

[

1 c~e T1
c~e1 Tn

]

, (4.39)

where Tn is a unique tridiagonal symmetric matrix with nonnegative off diagonal ele-

ments and c ≥ 0 is a constant. Therefore Tn = QTnΛnQn and Qn is a unique orthogo-

nal matrix. In the discussion directly below equation (4.22) we already established that
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{λj,n} ≡ {λj}. Therefore by definition, Jn(µ) = V T
n ΛnVn, whereby ordering the simple

eigenvalues, λ1,n < λ2,n < · · · < λn,n, Vn is a unique orthogonal matrix and Jn(µ) is a

tridiagonal symmetric matrix with nonnegative off diagonal elements. Therefore we have

that QnTnQ
T
n = VnJn(µ)V T

n where Qn, Tn, and Vn are unique, which implies that Vn ≡ QTn
and Tn ≡ Jn(µ).

We now show that c =
√
β0, i.e. Vn

√
~m =

√
β0 ~e1. Recalling that the mass µ0 of the

measure µ is β0 = p1 and from (4.28) we have p̃0 = β
−1/2
0 , by orthonormality we have

β
1/2
0 δ0,l = 〈1, p̃l〉µ =

∑n
j=1mj p̃l(λj,n), l = 0, 1, . . . , n− 1, or in matrix form

~P ~m = β
1/2
0 ~e1, (4.40)

with ~P and ~m defined in the statement of the theorem. Therefore if we define the diagonal

matrix Ξ = diag[ξ1, ξ2, . . . , ξn], with ξi = ‖~pn(λi,n)‖, and ~1 = [1, 1, . . . , 1]T ∈ Rn, then

multiplying (4.40) from the left by ~P T we obtain

Ξ2 ~m = β
1/2
0

~P T~e1 = β
1/2
0 β

−1/2
0

~1 = ~1 (4.41)

From (4.41) we recover the Christoffel numbers mj of Mn in (4.30) from the norms of the

eigenvectors of Jn: ~m = Ξ−2~1, or in coordinate form

mi = ξ−2
i , ξi = ‖~pn(λi,n)‖, i = 1, 2, . . . , n. (4.42)

Equivalent to (4.42) is
√
mi = ‖~pn(λi,n)‖−1. Therefore, recalling that the first compo-

nent of the vectors vi,1 are given by vi,1 = β
−1/2
0 ‖~pn(λi,n)‖−1, we have

√
mi = β

1/2
0 vi,1. Or

in matrix form
√
~m
T

=
√
β0~e

T
1 V , where

√
~m
T

is defined in the statement of the theorem.

Therefore, by the orthogonality of the matrix V , this expression yields

V
√
~m =

√

β0~e1, (4.43)

which concludes the proof of Theorem 7 ✷.

The procedure leading to equation (4.36) defines a Lanczos-type algorithm. Given the

spectral parameters {mj , λj} of Mn, which define the matrix A, a stable variant of this

algorithm [57] accurately produces Q and T . The matrix T is the “extended” Jacobi

matrix on the far right of equation (4.36). The nonzero elements of the submatrix Jn are

the recursion coefficients, {αj,n}nj=0 and {
√

βj,n}nj=1, with β0 =
∑n

j=1mj = p1 [57].

In Figure 4.1, we give a graphical representation of the eigenvalue densities ρ(λ) for

the matrix χ2Γχ2 associated with 2-d and 3-d RRN with i.i.d. bonds. These eigenvalue
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Figure 4.1. In the 2-d RRN (a)–(c), as the volume fraction p increases from left to right, the
width of the gaps in the spectrum near λ = 0, 1 shrink to 0, symmetrically with increasing
connectedness as p −→ pc = 1 − pc = 0.5. Displayed directly below each of the panels
(a)–(c) for volume fraction p, are the corresponding eigenvalue densities (d)–(f) for volume
fraction 1−p, illustrating the symmetry ρ(p, λ) = ρ(1−p, 1−λ). In the 3-d RRN (g)–(l), as
p −→ pc ≈ 0.2488 the width of the gap near λ = 0 shrinks to 0, and as p −→ 1− pc ≈ 0.7512
the width of the gap near λ = 1 shrinks to 0. These eigenvalue densities also have the
symmetry ρ(p, λ) = ρ(1− p, 1− λ).
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densities are precisely that of the Jacobi matrix associated with χ2Γχ2, as they have the

same eigenvalues, which we have numerically verified using the above mentioned Lanczos

algorithm [57]. These figures display linearly connected peaks of histograms with bin sizes

on the order of 10−2. The apparent smoothness of these graphs in is due to the large

number (∼ 106) of eigenvalues calculated, and ensemble averaged. These figures illustrate

the symmetry ρ(p, λ) = ρ(1−p, 1−λ) in the bulk of the spectrum, where p = p2. This follows

from the invariance of the binary model, under the simultaneous interchange p ↔ 1 − p,
σ1 ↔ σ2 [39, 65]. As p surpasses the percolation threshold pc, the gaps in the spectrum near

λ = 0, 1 collapse and the spectra subsequently pile up into δ function-like singularities at

λ = 0, 1.

Let us review what we have established so far. Given an infinite stationary two-phase

random medium, the spectral theorem [101] applied to the associated bounded self-adjoint

operator M = χ1Γχ1 provides us with a positive measure µ with compact support Σµ ⊆
[0, 1]. This measure defines an infinite sequence of orthogonal polynomials which, in turn

defines a bounded essentially self adjoint Jacobi matrix J of infinite order. There is, in

fact, a one-to-one mapping between bounded Jacobi matrices of infinite order and positive

measures with compact support. In the matrix case this map becomes a bijection and the

spectral measure for Jn is parameterized by 2n real numbers (see Theorem 7):







(λ1 < λ2 < · · · < λn, ξ
−1
1 , ξ−1

2 , . . . , ξ−1
n ) : ξi > 0,

n
∑

j=1

(

ξ−1
j

)2
= p1







. (4.44)

These results are summarized in Theorem 8 below [41]. For simplicity, in this theorem we

consider measures with unit mass, e.g. µ 7→ µ/p1. To characterize the mapping between

positive probability measures and Jacobi operators for the finite matrix case, we define

A1 =







(γ1 < γ2 < · · · < γn, θ1, θ2, . . . , θn)| θi > 0,
n
∑

j=1

θ2
j = 1







. (4.45)

Theorem 8 (Spectral Theorem for Jacobi Matrices) Denote by BJ and BJn the set

of bounded Jacobi matrices of infinite order and order n, respectively. Moreover, denote by

B the set of positive Borel measures on R with compact support and denote M1 = {τ ∈
B|
∫

dτ = 1}. There exists a one-to-one map ψ = ϕ−1, ψ : M1 7→ BJ , such that for all

τ ∈ M1 there exists J ∈ BJ such that τ = ϕ(J) = ϕ ◦ ψ(τ). Furthermore, for all J ∈ BJ
there exists a unique measure τ ∈M1 such that
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〈(s− J)−1 ~e0, ~e0〉 =
∫

dτ(λ)

s− λ (4.46)

Moreover, J
ϕ7→ dτ is the spectral map in the sense that the map U defined by

l2 ∋ π(J)~e0
U7→ π(λ) ∈ L2(τ), π a polynomial, (4.47)

extends to a unitary map and

(UJU−1f)(λ) = λf(λ), ∀f ∈ L2(τ). (4.48)

In the matrix case, the spectral map

BJn

ϕ7→ τ =

n
∑

j=1

ξ−2
j δλj

7→ (λ1, λ2, · · · , λn, ξ−1
1 , ξ−1

2 , . . . , ξ−1
n ) ∈ A1

is a bijection, where the weights ξi = ‖~pn(λi)‖ are defined in Theorem 4.36 and A1 is

defined in (4.45). In particular, for fixed Λ0 = diag(λ10, λ20, . . . , λn0), the isospectral set

MΛ0
, where

MΛ0
= {J ∈ BJ : spec J = (λ10, λ20, . . . , λn0)},

is the positive n-tant of the unit sphere Sn−1
1 in Rn.

For a proof of Theorem 8 see [41]. Geometrically speaking, in the infinite order case, the

spectral map J
ϕ7→ τ takes BJ into the hyperplane M1 ⊂ B [41]. More specifically, given

J ∈ BJ , one considers the isospectral set M0 = {J0 ∈ BJ : spec J0 = spec J}. Under ϕ,

the set M0 is injected into the hyperplane M1 [41]. The geometry of this injection, i.e.,

how ϕ(M0) lies insideM1, can be conveniently described in terms of basic notations of real

analysis [41, 44].

We conclude this section by summarize the mapping structure associated with two-phase

stationary random media. Such a medium is determined by a probability space (Ω, P ),

introduced in Section 2.1. Denote by B× the class of operators with domainH× ⊂ L2(Ω, P )

that are: bounded, linear, self-adjoint, and have simple spectrum, where H× is defined in

equation (2.1). For each ω ∈ Ω, the resolvent representation of the electric field in (2.10)

defines a map ψω : H× 7→ B× ∋ M = χ1Γχ1. The spectral theorem [101] then provides a

map ϕµ : B× 7→ Mp1 ∋ µ = 〈Eλ~e0, ~e0〉, where 〈·, ·〉 is the L2(Ω, P ) inner product weighted

by χ1, Eλ is the resolution of the identity associated with the operator M , and ~e0 is a

“cyclic vector” [101]. The one-to-one map ψ :Mp1 7→ BJ defines a bounded Jacobi matrix

J(µ) of infinite order, with orthogonality measure µ, which acts on l2. The map ϕ = ψ−1,
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extends to a unitary map U : l2 7→ P ⊂ L2(µ), where P denotes the set of real polynomials

on [0, 1]. Pictorially, we have

(H× ⊂ L2(Ω, P ))
ψω−→ (M ∈ B×)

ϕµ−→ (µ ∈Mp1)
ψ←→
ϕ

(J(µ) ∈ BJ) U←→
U−1

(π(s) ∈ L2(µ)).

We note that every two-phase stationary random medium (Ω, P ) defines a (bounded)

random operator M ∈ B×, and there is a one-to-one correspondence [101] between M and

the projection valued measures Eλ. Moreover, each “cyclic vector” [101] ~e0 ∈H× gives rise

to a positive spectral measure µ = 〈Eλ~e0, ~e0〉 such that µ ∈ Mp1, hence a bounded Jacobi

matrix. However, the measure µ is not uniquely determined by Eλ and ~e0 [101] and it is

known [65] that not every measure µ ∈ B(µ1, µ2, . . . , µn) ⊂ Mp1 gives rise to a function

m(h) = 1 − F (s;µ) that is the effective (relative) dielectric constant of a random medium

for d > 2 [87], where B(µ1, µ2, . . . , µn) is defined in equation (4.18).

4.3 Generalized Numerator Polynomials

In this section we introduce generalized numerator polynomials P [i], where i = 0, 1, . . ..

We also derive a novel, closed form solution for the moments µ
[i]
j of the measures µ[i] in

terms of the moments µj of µ, for all i ∈ N, j = 0, 1, . . .. Finally, we make connections

from the Stieltjes transforms F [i](s;µ[i]) of the orthogonality measures µ[i] underlying these

families of polynomials, to the energy components of Theorem 4.

The generalized monic numerator polynomials of order i = 0, 1, 2, . . . are defined to be

the solution of the three-term recursion relation [57, 124]

P
[i]
n+1(s) = (s− αn+i)P

[i]
n (s)− βn+iP

[i]
n−1(s), n = 0, 1, 2, . . . (4.49)

P
[i]
−1(s) = 0, P

[i]
0 (s) = 1,

where the recursion coefficients {αj , βj} are defined in equation (4.29) and, Pn = P
[0]
n and

Qn−1 = P
[1]
n−1 are the monic denominator and numerator polynomials arising in the Padé

approximants of F (s) = F (s;µ) in (4.5), respectively [57, 124]. It is an elementary exercise

to show that a sequence of orthogonal polynomials satisfies a three-term recursion relation

[41, 57, 73]. The converse is known as Favard’s Theorem [57], which states: if an infinite

sequence of polynomials satisfy a three-term recurrence relation, like that in (4.49) with

βk > 0 and αk ∈ R, then there exists an orthogonality measure for this sequence.
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Even though the orthogonality measures µ[i] associated with the P
[i]
n in (4.49) are not

known in general, their Stieltjes transforms F [i](s) = F [i](s;µ[i]) can be expressed in terms

of Cauchy integrals of µ (see equation 3.7 in [124]):

F [i](s) =

∫

R

dµ[i](λ)

s− λ =
1

βi

ρi(s)

ρi−1(s)
, ρi(s) =

∫

R

Pi(λ)dµ(λ)

s− λ , ρ−1(s) = 1, (4.50)

for s ∈ C\co(supp(µ)), where co(supp(µ)) is a compact interval defined in [35]. Define

the functions Fj(s), j = 0, 1, . . ., as in equation (4.51) below. If we define the polynomials

Pi(s) =
∑i

j=0 ajs
j and Pi−1(s) =

∑i−1
j=0 bjs

j , then we may write ρi(s) =
∑i

j=0 ajFj(s) and

ρi−1(s) =
∑i−1

j=0 bjFj(s). Therefore equation (4.50) may be written as

βi





i−1
∑

j=0

bjFj(s)



F [i](s) =

i
∑

j=0

ajFj(s), Fj(s) =

∫ 1

0

λjdµ(λ)

s− λ . (4.51)

We prove in Theorem 9 below that equation (4.51) leads to a closed form solution for the

moments µ
[i]
j =

∫ 1
0 λ

jdµ[i](λ) of µ[i], in terms of the moments µj of µ. This solution uniquely

determines the measures µ[i]. More specifically, as µ is compactly supported, Σµ ⊂ [0, 1],

the supports of the measures µ[i] are compact intervals, for all i ≥ 0 [35]. Therefore the

moment problem for the measures µ[i] is determined, i.e., the µ[i] are uniquely determined

by their moments {µ[i]
j }∞j=0 [114]. It is worth noting that the orthogonality measures µ[i]

may be found using the spectral resolution of the corresponding essentially self-adjoint

Jacobi operator defined by (4.49) (see Theorem 10.23 page 531 in [118]). Furthermore, by

equation (4.51), the measures µ[i] may also be found in terms of the measures λjµ(dλ), for

j = 0, 1, 2, . . . , i, via the Stieltjes–Perron Inversion Theorem in (2.34) (see the formula after

equation 3.7 in [124]).

Theorem 9 Let µ
[i]
j and µj denote the moments of the measures µ[i] and µ, respectively,

and Pn = P
[0]
n be the polynomials in (4.49). Then the µ

[i]
j are defined recursively by

µ
[i]
j =

1

〈λi−1, Pi−1〉µ

[

〈λi+j , Pi〉µ
βi

−
j−1
∑

l=0

〈λ(i+j−1)−l, Pi−1〉µ µ[i]
l

]

(4.52)

for all i = 1, 2, . . . and j = 0, 1, . . ., where 〈·, ·〉µ is the L2(µ) inner-product and empty sums

are understood to be zero.



78

Proof: By applying the expansion (4.1) to the Fj(s) in equation (4.51) and F [i](s) in

(4.50), and switching the order of the infinite and finite sums, we have

βi

[

∞
∑

l=i−1

〈λl, Pi−1〉µ
sl+1

][

∞
∑

l=0

µ
[i]
l

sl+1

]

=

∞
∑

l=i

〈λl, Pi〉µ
sl+1

, (4.53)

where 〈·, ·〉µ denotes the L2(µ) inner product. The change in the lower sum indices in

equation (4.53) follows from the orthogonality of the Pj in L2(µ). The moments µ
[i]
j of the

measures µ[i] may now be found by equating the coefficients of powers of s−1 in equation

(4.53). Doing so defines an infinite (linear) system equations, Li~x = ~b, where xj = µ
[i]
j and

bj = 〈λi+j , Pi〉µ/βi, for j = 0, 1, 2, . . ., and Li is a lower triangular Toeplitz convolution

matrix:











〈λi−1, Pi−1〉µ 0 0 0 · · ·
〈λi, Pi−1〉µ 〈λi−1, Pi−1〉µ 0 0 · · ·
〈λi+1, Pi−1〉µ 〈λi, Pi−1〉µ 〈λi−1, Pi−1〉µ 0 · · ·

...
...

...
. . . · · ·























µ
[i]
0

µ
[i]
1

µ
[i]
2
...













=











〈λi, Pi〉µ/βi
〈λi+1, Pi〉µ/βi
〈λi+2, Pi〉µ/βi

...











. (4.54)

Therefore the moments of the measure µ[i] may be found by back substitution, and are

given recursively by equation (4.52). This concludes the proof of Theorem 9 ✷.

We now show that the F [i](s), for i = 0, 1, 2, are completely determined by energy

components of the decomposition given in Theorem 4. From equation (4.51) we see that

F [0](s) = F (s)/p1, and F [1](s) and F [2](s) are given in terms of the functions F1(s) and

F2(s) defined in equation (4.51). Theorem 4 shows that

sF (s) = 〈χ1
~E · ~E0〉/E2

0 , F1(s) = 〈χ1
~Ef · ~E0〉/E2

0 , F2(s) = −
∫ s

∞
〈χ1E

2
f 〉/E0 ds, (4.55)

where lim|s|−→∞ F2(s) = 0 and 〈·〉 denotes the averaging defined in Section 2.1. Equation

(4.49) with i = 0 implies that P0(λ) = 1, P1(λ) = λ− α0, and P2(λ) = λ2 − (α0 + α1)λ +

α0α1 − β1. Therefore equations (4.51) and (4.55) yield [35]

F [1](s) =
〈χ1

~Ef · ~E0〉 − (α0/s)〈χ1
~E · ~E0〉

(β1/s)〈χ1
~E · ~E0〉

, (4.56)

F [2](s) =
−
∫ s
∞ ds〈χ1E

2
f 〉 − (α0 + α1)〈χ1

~Ef · ~E0〉+ [(α0α1 − β1)/s]〈χ1
~E · ~E0〉

β2(〈χ1
~Ef · ~E0〉 − (α0/s)〈χ1

~E · ~E0〉)
.

Clearly, for all i ≥ 0, the F [i](s) may be expressed in terms of the Fj(s), for j = 0, 1, . . . , i,

and therefore may be expressed in terms of the energy components in (4.55). However, for

i = 0, 1, 2 the F [i](s) are given completely in terms of these energy components.
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Equations (4.50), (4.51), (4.55), and (4.56) are general formulas that hold for two-

component stationary random media in the lattice and continuum settings [60], and hold

for all s ∈ C\co(supp(µ)) [35]. It is interesting to note that, as the roots of P
[1]
n interlace

those of Pn and the roots of P
[2]
n interlace those of P

[1]
n etc. [118], the root densities ρ[i](λ)

of these polynomials are very similar to that shown in Figure 4.1. We have calculated

histogram representations of ρ[i](λ) for several values of i using the above mentioned Lanczos

algorithm [57] and, even though the roots of these polynomials are different, the graphs of

these histograms look identical.



CHAPTER 5

RANDOM MATRIX THEORY FOR

COMPOSITES

In Section 2.1 we introduced four self-adjoint random operators Mj = χjΓχj and Kj =

χjΥχj , j = 1, 2, which are at the heart of Stieltjes integral representations [11, 65, 86] of the

effective conductivity and resistivity tensors σ
∗ and ρ

∗, respectively. In the lattice setting

of a finite RRN, these random operators are real-symmetric random matrices [58, 64, 89].

In this chapter, we demonstrate that, for percolation models of RRN [60, 89, 116, 122], the

eigenvalue statistics of the random matrices Mj = χjΓχj, j = 1, 2, exhibit a transitional

behavior like that of a universality class of q-deformed random matrix ensembles (RME)

[93, 94]. We will focus on the operator M2 as the results associated with the operator M1

follow by the symmetry χ1 = 1− χ2.

5.1 q-Random Matrix Ensembles

Random matrix theory (RMT) was introduced by Wigner [129] and Dyson [47–49] to

provide a statistical description of the quantized energy levels of heavy nuclei. Since then, it

has been applied in studies of quantum chaos [1, 22, 67], biological networks [82, 99], random

graphs [7, 77], the Anderson transition of quantum/mesoscopic conductors [28, 29, 76, 93, 94,

117], log-gases [56], and even the Riemann hypothesis of analytic number theory [15, 84,

85]. Poisson statistics of a random matrix are characterized by the absence of eigenvalue

correlations [67]. Wigner–Dyson (WD) statistics of a random matrix are characterized by

strong eigenvalue correlations, giving rise to the phenomenon of eigenvalue repulsion [26,

67, 117]. WD eigenvalue correlations typically exist among the eigenvalues of the Gaussian

ensemble (GE) of a real-symmetric random matrix H, that is, an ensemble of matrices

randomly distributed with probability measure [6, 41, 42, 84, 97]

Pn[H]d[H] = Z̃−1
n exp[−βTrH2]d[H], d[H] =

∏

k≥j

dHkj (5.1)
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defined on the space of n×n real-symmetric matrices, where β = 1, Z̃n is the normalization

factor, d[H] is the “Lebesgue” measure for real-symmetric matrices [6], and Tr denotes

matrix trace. The GE of a real-symmetric random matrix is called the Gaussian orthogonal

ensemble (GOE). WD eigenvalue correlations also arise in GEs of complex Hermitian

and quaternion self-dual random matrices [84], and they are called the Gaussian unitary

ensemble (GUE) and the Gaussian symplectic ensemble (GSE), respectively. In equation

(5.1), β = 2 for the GUE and β = 4 for the GSE. The random matrices that we consider

here are real-symmetric, and we will henceforth focus on the GOE and its variants.

The GEs, and the associated WD statistics, do not bear any hint of the spatial di-

mensionality d of a physical system, and are parameter independent [26]. Furthermore,

by definition, they are invariant under similarity transformations [42] and thus have no

basis preference in them [26]. This means [26] that they describe systems where (1) all

the normalized linear combinations of the eigenstates have similar properties and (2) the

dimensionality, in some sense, is irrelevant.

Early on, numerical simulations demonstrated that GEs with a modified probability

density also exhibit WD statistics: Pn(H) ∝ exp[−TrV (H)], with V a real valued bounded

below function satisfying V (λ) ∼ |λ|a for a ≥ 1, as |λ| −→ ∞ [26, 84, 97]. More specifically,

the mean density of eigenvalues ρ is highly sensitive to the form of the function V , although

the fluctuations about ρ are universal. Recently, universality in the bulk, and at the edge

of the spectrum has been established for V in the class of even ordered polynomials [41–43].

Remarkably, when one changes variables from matrix elements Hjk to eigenvalues {λl}
and eigenvectors {~ql}, with H =

∑n
l=1 λl~ql~q

T
l , the probability density in (5.1) becomes

exactly that [41, 43, 97] of the canonical ensemble of n unit charges on a line at temperature

β−1 = 1, confined by a potential V , and repelling one another logarithmically:

Pn[H]d[H] = Z−1
n exp(−βHn)dλ1 · · · dλndQ, Hn = β−1

n
∑

i=1

V (λi)−
n
∑

i>j=1

ln |λi − λj|,

(5.2)

where Hn is the energy Hamiltonian, Zn is the normalization factor, and dQ is the Haar

measure on Q(n), the group of orthogonal transformations on Rn×n [42]. The logarithmic

term in (5.2) comes from the Jacobian of the variable change, and is independent of the

choice of the function V [6, 26, 42]. Equation (5.2) demonstrates that the eigenvalues and

eigenvectors of these RMEs are statistically independent, and that the eigenvectors are

always distributed “uniformly” over the part of the orthogonal groupQ(n) specified by {~ql =
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(q1l, . . . , qnl), q1l ≥ 0}nl=1 [97]. Integrating over eigenvectors, and absorbing the resultant

constant in the normalization Zn, yields a theory of only eigenvalues.

In total agreement with statistical mechanics [50, 97], for functions V satisfying a Lips-

chitz type condition, and having the asymptotic behavior V (λ) & (2 + ǫ) ln |λ| as |λ| −→ ∞,

where ǫ > 0, the ground state distribution of the eigenvalues is given by the minimum

“electrostatic energy” whose distribution is given by the unique equilibrium measure ρ of

the associated infinite volume free energy: f [ρ] = infm f [m] = limn−→∞ n−2 lnZn. Here

f [m] =

∫
(

V (λ)− β

2
U(λ;m)

)

dm(λ), U(λ;m) =

∫

ln |λ− λ′|dm(λ′), (5.3)

is varied over eigenvalue distributions described by the measure m [26, 97]. We stress that

the corresponding variational problem determines both the (compact) support and the form

of the measure ρ [97].

In [6] Balian demonstrated that this connection from RMT to statistical mechanics

is even deeper, by proving that the form of the probability density in (5.2) follows from

maximizing an entropy functional S{P [H]} =
∫

d[H]P [H] lnP [H]. The function V acts like

a generalized Lagrange multiplier, which is determined by a constraint such as 〈TrV (H)〉 =

C or, for example, by requiring that the density of eigenvalues is a given function ρ(λ),

which is taken directly from the microscopic system being investigated [6, 26, 117]: ρ(λ) =

〈Tr[δ(λ −H)]〉. This yields V (λ) =
∫

ln |λ− λ′|ρ(λ′)dλ′ to order n−1 lnn [8].

Dyson formulated [46, 50] a Brownian-motion model for the evolution of an ensemble of

random matrices. He introduced a fictitious “time” τ , and modeled the τ dependence of

the distribution of eigenvalues ~λ(τ) = (λ1(τ), . . . , λn(τ)) at temperature β−1, in a fictitious,

viscous fluid with friction coefficient γ. The associated probability distribution P (~λ, τ) of

the eigenvalues evolves [8, 50] according to the Fokker–Planck equation

γ
∂P

∂τ
= ~∇λ · (βP ~∇λHn + ~∇λP ), (5.4)

where ~∇λ is the gradient operator with respect to the {λj} and Hn is defined in equation

(5.2). The limiting solution P (~λ, τ) of (5.4) as τ −→ ∞ is the “equilibrium” distribution

Peq = Z−1
n exp(−βHn) of the eigenvalues given by equation (5.2) [8, 46, 50]. In [8], Beenakker

and Rejaei have shown that one can actually identify the fictitious time τ with an external

perturbation parameter X, with τ = X2. The parameter X can be, for example, an

electric field or magnetic field acting on the system. This allows one to obtain various

eigenvalue correlation functions at different values of X, which are usually called parametric

correlations [16].
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There are many examples [26] of disordered systems that are governed by a random

matrix, which exhibits WD statistics in one disorder regime, while the statistics significantly

deviate away toward Poisson-like statistics, as a function of disorder. Studies of these

systems have inferred that the transition from universal WD statistics of eigenvalues toward

Poisson-like statistics of eigenvalues is given by a “soft” confining potential of the form

V (λ) = A ln2 |λ|, 0 < A < 1 [94]. More specifically, decreasing A causes the eigenvalues

of the RME in (5.2) to transition from WD-like statistics towards Poisson-like statistics

[26]. It has been suggested [26] that the Poissonian behavior of such RMEs is due to the

spontaneous breakdown of the Q(n) symmetry at the transition from a power-law potential

V (λ) ∼ |λ|a, with a ≥ 1, to the logarithmic potential V (λ) = A ln2 |λ| as a −→ 0, yielding

RMEs with multifractal eigenvectors [76]. In [26], Canali generalized Dyson’s mean field

theory [50] to such RMEs, which holds in the bulk of the spectrum, and accurately describes

the Anderson transition of mesoscopic/quantum conductors [117].

Using a class of potentials V (λ; q) that depends on a disorder parameter q, this transition

from WD statistics towards Poisson-like statistics has been captured by a single model

[93, 94]. As the value of q varies, the asymptotic behavior of V (λ; q) transitions from strong

confinement V (λ; q) & |λ| to soft confinement V (λ; q) ∼ ln2 |λ|. This new one parameter

universality class of RMEs have been called q-deformed random matrix ensembles (q-RME).

By a generalization of Mehta’s method of orthogonal polynomials [84], this problem has

been analytically solved [93, 94] for q-deformed GUEs (q-GUE). However, the associated

analytical work for the q-deformed GOE (q-GOE) and q-deformed GSE (q-GSE), are

currently open problems. Dyson’s Brownian-motion model in (5.4) has also been generalized

to q-RMEs in [16] and solved for q-GUEs. This stochastic model should be relevant for

conductors at stronger disorder, and could potentially provide details regarding the scaling

regime of two-phase conductive media. In Section 5.2, we numerically demonstrate that,

for percolation models of finite RRN, the eigenvalue statistics associated with the random

matrix M2 = χ2Γχ2 transition from WD-like statistics toward Poisson-like statistics as a

function of the disorder parameter p, the volume fraction of σ2 bonds.

5.2 Random Matrix Statistics

In this section, we introduce some important eigenvalue statistics of RMT, and present

the key results of this chapter. These RMT statistics were originally created by Dyson

and Mehta [51] to study short and long-range correlations of the quantized energy levels
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of heavy nuclei. In percolation models of two-phase random media, such as RRN, these

statistics provide valuable insight regarding critical connectedness transitions exhibited by

such media.

Consider the real-symmetric random matrix M2 = χ2Γχ2, introduced in Section 3.3,

underlying the effective conductance σ∗ a finite RRN. Each geometric configuration ω ∈ Ω

of the RRN determines a statistical realization of the random matrixM2(ω) = χ2(ω)Γχ2(ω),

and an ordered sequence of eigenvalues ~λ(ω) = {λ1(ω), . . . , λn(ω)}. This family of sequences

defines a mean eigenvalue density ρ. In order to analyze the fluctuation properties of the

eigenvalues ~λ(ω) about ρ, the spectrum has to be unfolded [67], i.e., the system-specific

mean eigenvalue density must be removed from the data ~λ(ω), for each ω ∈ Ω. The variable

that serves this purpose is the integrated density of states [26]

u(λ) =

∫ λ

0
ρ(λ′)dλ′. (5.5)

This maps λj 7→ uj, for each j = 1, . . . , n, and in this new variable the spectra {uj} has

uniform spacing [26, 67], which we will normalize to have unit mean spacing.

The nearest neighbor spacing distribution P (s) is the observable most commonly used

to study short-range correlations in the spectrum, where the spacing variable s is not to be

confused with the conductance contrast parameter. It is equal to the probability density for

two neighboring eigenvalues un and un+1 having the spacing s. For the Poisson spectrum

without correlations P (s) = exp(−s), and for WD spectrum with strong correlations P (s) ≈
π
2 s exp(−πs2/2), known as the Wigner surmise [67]. The Wigner surmise approximates

the actual spacing distribution quite well and illustrates the phenomenon of eigenvalue

repulsion, i.e., the probability of zero spacings is zero.

The nearest neighbor spacing distribution contains information about the spectrum

which involves short scales (a few mean spacings). Long-range correlations are measured by

quantities such as the eigenvalue number variance Σ2(L) and the spectral rigidity ∆3(L).

Let η(L, us) denote the number of eigenvalues in the interval [us, us + L], on the unfolded

scale. The number variance is given by

Σ2(L) = 〈η2(L, us)〉 − 〈η(L, us)〉2, (5.6)

where 〈·〉 denotes averaging over starting points us. By construction, on the unfolded scale

one has 〈η(L, us)〉 = L. Therefore, in an interval of length L one expects, on average,

L ±
√

Σ2(L) eigenvalues. For the Poisson spectrum without correlations Σ2(L) = L, and
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for WD spectrum Σ2(L) = (2/π2)(ln(2πL)+γ+1−π2/8), to order 1/L, where γ = 0.5772 . . .

is Euler’s constant [67].

The spectral rigidity ∆3(L) is closely related to Σ2(L). Denote the counting measure ν

of a sequence of calculated eigenvalues by ν(u) =
∑

j δ(u − uj). The cumulative spectral

function η(u) =
∫ u
−∞ ν(u′)du′ counts the number of eigenvalues which have a value less than

u, and is referred to as the staircase function. In an interval of length L, ∆3(L) is defined

as the least square deviation of the staircase function from the best fit to a straight line,

∆3(L) =
1

L

〈

min
A,B

∫ us+L

us

(η̂(u)−Au−B)2du

〉

. (5.7)

where 〈·〉 denotes averaging over starting points us. When the spectra occurs quite regularly

there is a small root-mean-square deviation from a line, and a small contribution to ∆3(L).

When some of the levels are nearly degenerate, the succession of the stairs becomes irregular,

which gives a larger contribution to ∆3(L). For the Poisson spectrum without correlations

∆3(L) = L/15, and for WD spectrum ∆3 = (ln(2πL) + γ − 5/4 − π2/8)/π2, to order 1/L

[67].

In Figure 5.1 and Figure 5.2, we display the RMT statistics P (s), Σ2, and ∆3 for 2-d

and 3-d RRN with i.i.d. bonds, respectively. They illustrate that these statistics have

the transitional behavior of q-GOEs, described in Section 5.1. More specifically, these

simulations demonstrate that for p≪ 1 the eigenvalues are virtually uncorrelated, and are

governed by Poisson-like statistics, and as p increases and the system becomes increasingly

connected, the eigenvalues become increasingly correlated, approaching WD statistics. It is

important to note that the spectra of these RRN can not be determined by universal WD

statistics for any p ∈ [0, 1] since, as we discussed above, WD statistics are independent of

the dimension d of the system, which is inconsistent with what is known about these RRN

[60, 116, 122]. However, these simulations demonstrate that the spectra are governed by the

one parameter universality class of q-GOEs.

By the symmetry property of the eigenvalue density ρ(λ, p) = ρ(1 − λ, 1 − p), in the

bulk of the spectrum, these RMT statistics have the following symmetry in the bulk of the

spectrum: P (s, p) = P (s, 1−p), Σ2(p) = Σ2(1−p), and ∆3(p) = ∆3(1−p). It is important to

mention that we performed a local unfolding procedure to obtain these figures. As described

in [67], for each ω ∈ Ω, this procedure uses a polynomial fit Pk(λ, ω) of the staircase function

η(λ, ω) =
∫ λ
0 ν(λ

′, ω)dλ′ involving the counting measure ν(λ, ω) =
∑

j δ(λ − λj(ω)), where

k is the order of the polynomial. The variable change in (5.5) is then accomplished using
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Figure 5.1. Random matrix eigenvalue statistics for 2-d square RRN with i.i.d. bonds.
Random realizations of 2-d square RRN are displayed in (a)–(c), with the corresponding
eigenvalue statistics (d)–(l) directly below. The conducting regime p = pc = 0.5, is
characterized by WD-like statistics which transition, with decreasing p, toward Poisson-like
statistics in the insulating regime.
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Figure 5.2. Random matrix eigenvalue statistics for 3-d square RRN with i.i.d. bonds. The
conducting regime p ≥ pc ≈ 0.2448, is characterized by WD-like statistics which transition,
with decreasing p, toward Poisson-like statistics in the insulating regime.
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the local integrated density of states via uj = Pk(λj). As can be seen from Figure 5.2 (c),

this procedure is quite accurate in the bulk of the spectrum. In order to study eigenvalue

correlations near the spectral edges, we need to use the global density ρ evaluated directly

from the numerical simulation. However this is highly nontrivial to implement numerically

[26, 67], and will be a part of future work. Doing so will also allow us to fit our statistics to

that of the mean field theory [26] of the q-GOE, which will provide analytical expressions

for these statistics and give deeper insight into critical connectedness transitions exhibited

by two-phase random media.



CHAPTER 6

STATISTICAL MECHANICS OF

HOMOGENIZATION

FOR COMPOSITES

In this chapter we construct, from first principles in physics, a canonical ensemble

statistical mechanics framework for general transport models of two-phase dielectric media,

and use it study general features of ER fluids. A statistical mechanics model of such a

random medium is given entirely by energetic contributions of the system. It is therefore

very important to understand these underlying energies. Our novel approach uses an energy

representation arising in the ACM, which becomes exact in the infinite volume limit.

The decomposition of system energy given in Theorem 4 provides detailed information

regarding various energetic contributions, and represents them in a way which completely

separates parameter information from complicated geometric interactions. Consequently,

our physically consistent model is both physically transparent and mathematically tractable.

6.1 Introduction

Thermodynamics was originally a self contained theory of heat and work, based firmly

on experimental evidence. Statistical mechanics was subsequently developed to provide a

micro-physical foundation for this empirical subject. Thermodynamics was founded as a

science by R. Clausius when he gave a kinematic description of thermodynamical systems

[9]. He postulated that every thermodynamical system may be characterized by some

generalized coordinates (or parameters), which may vary over a physically realizable range.

For instance, a solid body experiencing homogeneous deformation may be characterized

by the six independent components of the (symmetric) deformation tensor (e1, e2, · · · , e6)
[9, 103]. We will denote generalized coordinates by y = (y1, y2, . . . , yn). A thermodynamic

system is also characterized by the empirical temperature T . The (n+1)-dimensional state

space of points with coordinates (y1, y2, . . . , yn, T ) describes the thermodynamic state of

the system [9].
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Clausius formulated two statements, which are now commonly known as the first and

second laws of thermodynamics [9]. The first law postulates that every infinitesimal ther-

modynamic process may be characterized by a work function which is a differential form of

the {dy1, dy2, . . . , dyn}, δW =
∑n

j=1Aidyi, and a heat supply δQ which is a differential form

of the {dy1, dy2, . . . , dyn, dT}, and that the sum is the differential form of some function of

state U(y1, y2, . . . , yn, T ) called the internal energy [9, 18, 103, 121],

dU = δW + δQ =
n
∑

j=1

Ajdyj + TdS. (6.1)

The term TdS is given by the second law, which Clausius derived by arguing: for any cycle,

the following equation holds [9]

∮

δQ

T
= 0 ⇐⇒ δQ = TdS. (6.2)

The existence of the state function S(y1, y2, . . . , yn), which Clausius called the entropy,

is equivalent to the vanishing of the integral in equation (6.2) [9]. He called T the absolute

temperature. Neither δQ nor δW are exact differentials [9, 18, 121]. The symbols δQ and δW

are used to indicate the linear differential forms or pfaffins of these functions [18]. Although,

dU as well as dS are exact [18]. More generally, the existence of the state functions T ≥ 0

and S, related by δQ = TdS, may be established by means of a theorem on canonical

presentation of differential forms ([9] and references therein).

By the first and second laws of thermodynamics (6.1) and (6.2), we have

1

T
=
∂S(U, y)

∂U
, Aj = −T ∂S(U, y)

∂yj
, j = 1, 2, . . . , n. (6.3)

The two laws of thermodynamics are thus reduced to the statement that there exists and en-

tropy function S(U, y) such that the absolute temperature T and generalized forces {Aj}nj=1

are expressed in terms of the entropy by the constitutive equations (6.3) [9]. The term

“entropy” has since been generalized and used in science in many different senses, and has

been used in many areas of mathematics and physics, including: dynamical systems, random

matrix theory, topology, and information theory [2, 83, 111]. The ideas of information theory

and information entropy form a solid foundation for statistical thermophysics [103].

6.1.1 Information Theory and the Canonical Ensemble

In statistical physics, one is faced with the task of assigning probabilities to events asso-

ciated with complex many body systems, based on a few significant bits of information. In
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practice, this information is far from sufficient to obtain objective nor unique probabilities.

In order to develop a theory that describes macroscopic properties of a system, based on

underlying microscopic properties which are not precisely known, it is common to use a

maximum entropy principle. The prediction of macroscopic behavior based on insufficient

or incomplete data is part of information theory.

An entropy function S is a measure of the amount of uncertainty in a statistical model

[103]. The idea behind entropy is that one is not entitled to assume more knowledge,

less uncertainty, than that given by subsidiary conditions such as average values and

unity measure of the probability space. Any assignment of probabilities that satisfy these

conditions but yield a value of S other than its maximum is unjustified on the basis of

known data. Therefore, the common attitude is to use probability measures which maximize

entropy, thereby maximizing the uncertainty of a system, subject to known information.

The analysis of Shannon [1948] provides a remarkably clear, quantitative measure of

the uncertainty inherent in a set of probabilities {fω} [6, 103]. He derived the following

expression widely known as Shannon’s information entropy

S[{fω}] = −k
∑

ω

fω ln fω, (6.4)

where fω is the probability of event ω ∈ Ω, where Ω is the set of all such events, and k is

an arbitrary positive constant which sets the units of S. One can show that the entropy

is a strictly concave function [111] with a global minimum S = 0, attained when f(ω) = 1

for some ω ∈ Ω (no uncertainty) [103], and with a global maximum S = k ln |Ω| attained

when f(ω) = f(ω′) = 1/|Ω| for all ω, ω′ ∈ Ω [100, 111] (no information), where |Ω| is the

cardinality of the set Ω. Therefore the entropy is inherently positive S ≥ 0.

A common method for maximizing functions with given constraints is the method of

Lagrange multipliers. Of course one always has the constraint
∑

ω fω = 1. When only

the average of some quantity is known, U = 〈Uω〉 =
∑

ω fωUω, the resultant probability

distribution is called the canonical ensemble [103]. The canonical ensemble is found by

maximizing S/k−α∑ω fω−β
∑

ω fωUω over probability distributions {fω}, where α and β

are Lagrange multipliers. Regarding the {fω} as independent variables, one arrives at the

following probability distribution [6, 100, 103]

fω = Z−1 exp (−βUω), Z =
∑

ω

exp(−βUω). (6.5)

The distribution {fω} and its normalization Z = exp(α + 1) [103] are widely known

as the Gibbs–Boltzmann (GB) distribution and the partition function respectively. The
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exponential nature of the canonical ensemble allows averages to be calculated via the

pressure function lnZ = α+ 1. For example [27, 103],

U = 〈Uω〉 = −∂ lnZ

∂β
, Var(Uω) = 〈U2

ω〉 − 〈Uω〉2 =
∂2 lnZ

∂β2
, (6.6)

where 〈·〉 denotes averaging with respect to the distribution {fω} in (6.5).

The function F = −β−1 lnZ is widely known as the Helmholtz free energy, or simply

free energy. Using the free energy, one may write the entropy in the following form [103]

U = ST + F , T = (kβ)−1, (6.7)

where, as we will see in equation (6.8) below, the function U is identified with the internal

energy (6.1). Equation (6.7) shows that the internal energy and free energy are Legendre

transformations of each other (see Section 6.1.2). In statistical thermophysics the absolute

temperature is defined by T = (kβ)−1 [121]. Under the information theoretic approach

to statistical mechanics the (universal [100]) constant k is arbitrary. If one sets k = 1,

then T has units of energy and β is the inverse temperature. If one sets k to Boltzmann’s

constant, then T has units of Kelvin. In statistical thermophysics, the quantity Q defines

processes such as heat transfer and/or radiation [18]. Although, in the information theoretic

framework, Q encompasses all energetic processes in which information, −S, is lost.

The {Uω} have been identified by energy states of Hamiltonian systems and the {fω} as

the corresponding equilibrium distribution [103]. This identification has been generalized

to Hamiltonian systems with a continuum of energy states. The macroscopic energy is

given by the system Hamiltonian H and the corresponding partition function is given by

Z =
∫

ω∈Ω P (dω) exp (−βH(ω)), where ω ∈ Ω is the space of all statistical realizations,

P (dω) is the reference measure of the system when β = 0, and Z−1P (dω) exp (−βH(ω)) is

the equilibrium probability (Gibbs) measure. To simplify notation, we will continue to use

that of a discrete probability space as its generalization is now clear.

The relation (6.7) was obtained without making any assumptions regarding the nature

of the system and is therefore a fundamental relation of the information theoretic approach

to statistical mechanics. It is a statement of conservation of energy and is therefore a

constraint imposed on the system [18]. In order to see this we look at the differential form

of this equation [103]

dU = TdS −
∑

ω

fωdUω = δQ+ δW, (6.8)
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which recovers the first law of Thermodynamics (6.1) and identifies U = 〈Uω〉 with the

internal energy. The term δW = −∑ω fωdUω represents the differential of work done

by the surroundings on the system, changing the characteristic energy states {Uω} [103].

Conservation of energy in Hamiltonian systems then identifies −δW with the work done

by the system on the surroundings [4, 121]. Various work terms Ajdyj may be identified

by expanding the differential dUω in state variables {yj}nj=1 and examining the physical

relevance of the generalized forces Aj = 〈∂Uω/∂yj〉 [103]:

dU = TdS −
n
∑

j=1

Ajdyj , Aj =

〈

∂Uω
∂yj

〉

. (6.9)

Equations (6.8) and (6.9) recover the constitutive equations in (6.3).

Equation (6.9) gives the differential dU of the internal energy in terms of the state

functions T and {Aj}nj=1, and state variables S and {yj}nj=1: U = U(S, y), T = T (S, y),

and Aj = Aj(S, y). A simple calculation, using equations (6.7) and (6.9), shows that the

differential dF of the free energy is given in terms of the state functions S and {Aj}nj=1,

and state variables T and {yj}nj=1: F = F(T, y), S = S(T, y), Aj = Aj(T, y) [103]

dF = −SdT −
n
∑

j=1

Ajdyj, S = −∂F
∂T

Aj = −∂F
∂yj

. (6.10)

The details regarding such Legendre transformations are postponed until section 6.1.2.

In the derivation of the first law (6.8) no assumptions were made about the nature of

the system nor the evolution to equilibrium. Therefore, it is valid for reversible, irreversible,

quasi-static, and even non-quasi–static evolutions during which the thermodynamic state

cannot be defined at all [18]. This is important when one is studying systems with elec-

tromagnetic processes which are generally irreversible [18]. See [18, 103, 121] for a detailed

discussion of thermodynamic state, reversibility, and related concepts.

If other subsidiary conditions are known, say the averages 〈gn〉 = cn of functions gn(Uω)

(again one always has the constraint f0 = 1, c0 = 1), the GB distribution becomes [6, 103]

fω = Z−1 exp

(

−
∑

n

βngn(Uω)

)

, Z =
∑

ω

exp

(

−
∑

n

βngn(Uω)

)

, (6.11)

and the resultant value of S is either reduced or left unchanged [103]. From equation (6.11),

one has the analogue of equation (6.7) S/k = lnZ +
∑

n βn〈gn〉 showing that the entropy
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and the pressure function are Legendre transforms of one another [103]. If we regard S as

a function of the {〈gn〉}, we have the generalized constitutive equations

βn =
∂(S/k)

∂〈gn〉
, 〈gn〉 = −∂ lnZ

∂βn
(6.12)

giving the {βn} in terms of the {cn} [103]. The Helmholtz free energy F contains the same

amount of information as the entropy, and every result which can be calculated from one,

can be calculated from the other [103]. Moreover, the symmetric matrices

[B1]n,m =
∂2(S/k)

∂〈gn〉∂〈gm〉
, [B2]l,j = −∂

2 lnZ

∂βl∂βj
, B1 = B−1

2 , (6.13)

are inverses of one another [103].

In the information theoretic framework, the second law is a maximum entropy principle.

It states that the entropy S will increase to a maximum value at equilibrium for isolated

systems (fixed total energy and mass), with fixed internal energy U and external state

variables (volume, electric field, etc.) [18, 103, 121]. Unconstrained state variables, such as

temperature, evolve to the equilibrium values as the entropy becomes maximum [25]. The

minimum internal energy principle is essentially a restatement of the second law [25]. It

states that the internal energy U will decrease to a minimum value at equilibrium for closed

systems (only energetic transfers), with fixed entropy S and external state variables.

Mathematically, the second law states that if yi is an unconstrained variable of state

which varies as a system approaches equilibrium, then at equilibrium

∂S

∂yi

∣

∣

∣

∣

U

= 0,
∂2S

∂y2
i

∣

∣

∣

∣

U

< 0. (6.14)

Although, from the properties of an exact differential [103], Legendre transformations [18],

and the first law (6.8), we have at equilibrium

∂U

∂yi

∣

∣

∣

∣

S

= −T ∂S

∂yi

∣

∣

∣

∣

U

= 0,
∂2U

∂y2
i

∣

∣

∣

∣

S

= −T ∂2S

∂y2
i

∣

∣

∣

∣

U

> 0, (6.15)

showing that the internal energy is in fact at a minimum. Therefore, we have shown that

(see [25] chapter 5)

U0(S0) = inf
ỹ
U(S0, ỹ) (6.16)

where the minimization is with respect to the unconstrained variables ỹ. As the system

approaches equilibrium, the unconstrained variables take their equilibrium values and the

internal energy U0 is a function only of the entropy S0 [25].
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Using the maximum entropy principle and the equivalent minimum internal energy

principle, one may argue the minimum Helmholtz free energy principle. It states that,

for closed systems with fixed external state variables and temperature, the Helmholtz

free energy is minimized at equilibrium with respect to any unconstrained internal vari-

ables. To see this let ỹ be the set of unconstrained internal variables. By definition of

the Helmholtz free energy and the maximum entropy principle, at equilibrium we have

F(T, ỹ) = supS(U(S, ỹ) − TS). Since T = (∂U/∂S)ỹ , the maximum occurs when the

variable T becomes the equilibrium temperature T0 [25]. By the minimum internal energy

principle (6.16), at equilibrium the Helmholtz free energy will be

F0(T0) = sup
S0

(U0(S0)− T0S0) = sup
S0

(inf
ỹ

(U(S0, ỹ))− T0S0) (6.17)

= inf
ỹ

(sup
S0

(U(S0, ỹ)− T0S0)) = inf
ỹ

(F0(T0, ỹ)),

where we have assumed that the order of the extrema can be exchanged. Equation (6.17)

states that the Helmholtz free energy is minimized at equilibrium. These physical arguments

[25] can be made rigorous using concepts of measure theory, free entropy, specifications, and

large deviation theory under Gibbs measures [100].

6.1.2 Thermodynamic Potentials and Maxwell’s Relations

In order to use the methods of statistical mechanics to uniquely determine the macro-

scopic behaviors of a system, one must assume a set of constitutive relations which define

the state variables and the state functions [18]. It is typically assumed that the functions

of state are invertible, at least locally. Therefore, the functions of state and state variables

may change roles.

The change of variables is accomplished through Legendre transformations [4, 18, 103].

Through these transformations, various thermodynamic potentials determine the corre-

sponding state functions through constitutive equations like those in equations (6.9) and

(6.10). Depending on which variables are chosen as state variables, one may use different

thermodynamic potentials which make calculations of certain functions of state much easier

[25] as, in the new coordinate system, the state functions are simply derivatives of the

corresponding thermodynamic potential with respect to the conjugate state variables.

For a concrete example, we now derive equation (6.10). By equations (6.7)-(6.9),

the internal energy U = U(S, y) is a function of the entropy S and the state variables

y = (y1, . . . , yn), with total differential dU = TdS −∑n
j=1Ajdyj. We claim that the free
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energy F , given by the Legendre transformation F = U − TS in (6.7), is a function of the

temperature T and the state variables y = (y1, . . . , yn), F = F(T, y), with total differential

dF = −SdT −∑n
j=1Ajdyj . Indeed,

dF = dU − TdS − SdT = TdS −
n
∑

j=1

Ajdyj − TdS − SdT = −SdT −
n
∑

j=1

Ajdyj.

In this way, we may define many “thermodynamic potentials” U , F , etc.

Often a thermodynamic system is completely described by the absolute temperature

T and two state variables y1 and y2 with conjugate state functions A1 and A2, say. For

example, consider a vessel filled with a gas, separated by a semi-permeable membrane, and

one of the walls is a movable piston [103, 121]. In this case, y1 = V is the volume of the

vessel, A1 = P is the external pressure on the piston, y2 = N is the number of gas molecules

to the left of the membrane, say, and A2 = µ is the chemical potential.

In Section 1.2 and Section 2.1, we found that the natural state variables for two-phase

dielectric media are given by: the average electric field strength E0 = y1 and the dielectric

contrast parameter t = y2, where t = 1/(1 − ǫ2/ǫ1). The natural conjugate state functions

are the effective dipole moment p∗ = A1 and the “contrast potential” Ψ = A2. As this is

the system of interest in this chapter, we will henceforth use this notation.

We will see in Section 6.2, that the parameter separation property of the system energy,

displayed in equations (2.4), (2.5), and (2.13) of Section 2.1, yields an especially convenient

representation of p∗, involving the Stieltjes transform G(t;α) of the spectral measure α

introduced in Section 2.1. From this representation and the Maxwell’s relations given

in equations (6.18)-(6.20) below, we will show that the contrast potential Ψ and electric

component of the entropy S are explicitly given by GB canonical ensemble averages of

Herglotz functions involving α. Moreover, the decomposition of energy given in Theorem 4

then explicitly identifies the contrast potential Ψ with a specific component of the system

energy. This in turn, leads to a physically consistent statistical mechanics model of two-

phase dielectric media which is both physically consistent and mathematically tractable.

Maxwell’s relations are found by equating commuted mixed partial derivatives of thermo-

dynamic potentials, with respect to the state variables. The following formulas summarize

Maxwell’s relations for two-phase dielectric media.
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F = U − TS, dF = −SdT − p∗dE0 −Ψdt (6.18)

− ∂2F
∂E0∂T

=
∂S

∂E0
=
∂p∗

∂T

− ∂2F
∂E0∂t

=
∂Ψ

∂E0
=
∂p∗

∂t

− ∂2F
∂T∂t

=
∂S

∂t
=
∂Ψ

∂T

G = F + p∗E0, dG = −SdT + E0dp
∗ −Ψdt (6.19)

− ∂2G
∂t∂p∗

= −∂E0

∂t
=
∂Ψ

∂p∗

− ∂2G
∂T∂p∗

= −∂E0

∂T
=

∂S

∂p∗

Φ = F + tΨ, dΦ = −SdT − p∗dE0 + tdΨ (6.20)

− ∂2Φ

∂T∂Ψ
= − ∂t

∂T
=
∂S

∂Ψ
,

where F is the Helmholtz free energy, G is the Gibbs free energy, and Φ is the Grand

potential [103]. For this system, there are a total of eight thermodynamic potentials, with

three Maxwell’s relations each. However the identity [103] ∂a/∂b = (∂b/∂a)−1 makes many

of these relations redundant. It is true that any of these statistical mechanics potentials

determines any other. For example [4]

U = F + TS = F − T ∂F
∂T

(6.21)

G = F + p∗E0 = F − E0
∂F
∂E0

F = G − p∗E0 = G − p∗ ∂G
∂p∗

.

However, the formulas in equation (6.21) indicate why certain thermodynamic potentials

make calculations of certain state functions much more convenient.

We will see in section 6.2 that Maxwell’s relations provide important information regard-

ing phase transitions exhibited by two-phase dielectric media. These results are physically

consistent with experimental observations of ER fluids [126]. In section 6.1.3 we first review

the statistical origin of the temperature T arising in the canonical ensemble of statistical

mechanics.

6.1.3 Temperature and the Generalized Equipartition Theorem

Within the canonical ensemble, the variables that naturally characterize the macroscopic

state of the system are the temperature T , state variables which describe intrinsic properties
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of the system such as the particle number N or the dielectric contrast parameter t, and state

variables which describe external work done on the system such as the volume V or the

average electric field strength E0. Energy fluctuations are allowed since the system has been

placed in direct thermal contact with an external heat bath, or temperature reservoir, with

fixed temperature T . Consequently, the temperature naturally appears in various canonical

ensemble averages, whereby one can obtain useful relations between various mechanical

quantities and T .

The mathematical meaning of the temperature, within the canonical ensemble, is given

by the Generalized Equipartition Theorem [123]. Consider a matrix/particle system, and

denote by ~pi = (p1, . . . , pd)i and ~ri = (r1, . . . , rd)i the linear momentum and position vectors

of particle i = 1, . . . , N , respectively, where d is the dimension of the system. The partition

function Z is given by [123]

Z =

∫

R2dN

e−βHd~p1 · · · d~pNd~r1 · · · d~rN , (6.22)

where β = 1/kT , k is Boltzmann’s constant, and H is the Hamiltonian of the system. We

assume that the Hamiltonian has the following asymptotic behavior

lim
|~pi|−→∞

exp(−βH) = lim
|~ri|−→∞

exp(−βH) = 0, (6.23)

for all i = 1, . . . , N . Integration by parts then yields the Equipartition Theorem [123]:

〈

pm
∂H
∂pn

〉

= Z−1

∫

R2dN

pm(−kT )
∂e−βH

∂pn
dp1 · · · dpdNdr1 · · · drdN = kTδnm, (6.24)

where δnm is the Kronecker delta. Similarly, using ri in lieu of the pi, we obtain the Virial

Theorem, 〈rm∂H/∂rn〉 = kTδnm. Together we have

〈~pm · ∇~pn
H〉 = 〈~rm · ∇~rnH〉 = dkTδnm. (6.25)

Equation (6.25) is called the Generalized Equipartition Theorem. It indicates that each

particle is coupled to the external bath in an identical manner. When derived within the

canonical ensemble, the above relations are valid for any system size (neglecting the energy

of interaction between particles within the system and particles within the heat bath) [123].

Moreover, the explicit form of the Hamiltonian is not needed, and the theorem is valid for

any Hamiltonian system satisfying (6.23).
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Consider a more explicit form of the system Hamiltonian:

H =

N
∑

j=1

|~pj |2
2mj

+ I(~r1, . . . , ~rN ), (6.26)

where |~pj |2/2mj is the kinetic energy particle j of mass mj and I is the inter-particle

interaction potential satisfying lim|~rj |−→∞ I = ∞ for all j = 1, . . . , N . In this case we

obtain a well known consequence of the Equipartition Theorem [123]:

〈

~pi · ~pj
2mj

〉

=
dkT

2
δij , ⇒

N
∑

j=1

〈 |~pj|2
2mj

〉

=
dNkT

2
, (6.27)

which follows by direct substitution of formula (6.26) in equation (6.25). Equation (6.27)

states that the average kinetic energy of each degree of freedom is given by dkT/2, i.e., the

kinetic energy is equally partitioned between its degrees of freedom. This secondary result

is known as the Principle of Equipartition. It is important to note that the Generalized

Equipartition Theorem (6.25) is the fundamental result from which one determines how the

translational degrees of freedom are related to the temperature of the heat bath. The equal

sharing of kinetic energy is a secondary result that follows from taking the kinetic energy

to be a homogeneous quadratic function of the generalized momenta, and is not a necessary

consequence of Hamiltonian systems. In fact, the Generalized Equipartition Theorem (6.25)

holds in systems where the principle of equipartition (6.27) is no longer valid [123].

In section 6.1.4 we explore general, asymptotic features of canonical ensemble statistical

mechanics models, of Hamiltonian systems with a finite number of energy levels. There we

show that for high temperatures T ≫ 1, the system asymptotically behaves according to

the reference measure. While for T ≪ 1, the system evolves toward configurations of low

intrinsic energy, due to an exponentially decreasing probability of high intrinsic energy as

the temperature decreases.

6.1.4 Asymptotic Analysis of the Canonical Ensemble

In this section, we explore how phase transitions in the canonical ensemble may be

characterized by transitions in the GB probability measure, its energy moments, Helmholtz

free energy, and entropy. We show that for high temperatures, T ≫ 1 (β ≪ 1), the system

behaves according to the reference probability measure, and as the temperature vanishes,

T −→ 0 (β −→ ∞), the probability measure becomes highly localized about the system’s

minimum energy state. In the canonical ensemble, a phase transition is characterized by
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a sudden change in the behavior of the probability measure, largely deviating away from

the reference measure (RM), near a critical temperature Tc, towards the delta measure

concentrated at the minimum energy state. This asymptotic analysis will provide us with

intuition for the general transport models of two-phase dielectric media discussed in section

6.2.

For simplicity, consider a Hamiltonian system with a finite number of (distinct) energy

states

−∞ < Hmin = H1 < H2 < · · · < HM = Hmax <∞. (6.28)

The above assumptions allow us to put the underlying probability space Ω into one-to-one

correspondence with the set of integers Ω = {1, 2, . . . ,M}, with |Ω| = M . Therefore, the RM

is the uniform distribution over this set. In general, the RM can be much more complicated.

For example, in ER fluids, the underlying RM P (dω) characterizes the modified Poisson

distribution of hard noninteracting spheres. Theorem 10 is the main result of this section.

Theorem 10 Let Hmin and Hmax be defined as in equation (6.28), and denote by Hω the

energy of state ω ∈ Ω, ∆Hω = Hω − Hmin, fω = Z−1 exp(−βHω) the GB probability

distribution with average 〈·〉H and variance Var(·)H, Z =
∑

ω exp(−βHω) its normalizing

partition function, β the inverse temperature, F = −β−1 lnZ the free energy, S = (〈Hω〉H−
F)/T the entropy, 〈·〉 averaging with respect to the RM, and Var(·) variance with respect to

the RM. Then in the high temperature regime, β ≪ 1, we have

(1) fω = |Ω|−1 +O(β), (2) 〈Hnω〉H = 〈Hnω〉+O(β),

(3) Var(Hω)H = Var(Hω) +O(β) (4) F = −β−1 ln |Ω|+ 〈Hω〉+O(β),

(5) S = k ln |Ω|+O(β/T )

Moreover, for β ≫ 1 the low temperature regime

(6) fω = e−β∆Hω +O(exp(−β∆H2)), (7) 〈Hnω〉H = Hnmin +O(exp(−β∆H2)),

(8) Var(Hω)H = O(exp(−β∆H2)) (9) F = Hmin +O(β−1 exp(−β∆H2)),

(10) S = O(β exp(−β∆H2))

Before we prove Theorem 10, we state what is says. For β ≪ 1, to O(β), it says that the

probability measure is given by the RM, the energy moments and the variance are given

by that with respect to the RM , the free energy F is given by that of the RM plus the
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average energy with respect to the RM, and to O(β/T ) the entropy S is given by its global

maximum. For β ≫ 1, to O(exp(−β∆H2)), the probability measure behaves like the delta

measure concentrated at the minimum energy Hmin, the nth energy moment is the nth

power of Hmin, the variance is exponentially small, to O(β−1 exp(−β∆H2)) the free energy

F is given by Hmin and the entropy is exponentially small.

Proof: First, when β ≪ 1, we may expand exp (−βHω) in a Taylor series, and the

partition function may be represented by

Z =
∑

ω

e−βHω = |Ω|(1 + V0({Hω})), Vj({Hω}) = 〈Ṽj〉 =
∞
∑

n=1

(−1)nβn

n!
〈Hn+j

ω 〉, (6.29)

where 〈·〉 denotes averaging with respect to the RM. Therefore by the geometric series, the

GB probability measure is given by

fω = |Ω|−1(1 + Ṽ0)(1 +R({Hω})), R({Hω}) =

∞
∑

j=1

[−V0({Hω})]j , (6.30)

fω ∼ |Ω|−1 + β(Hω − 〈Hω〉) +
β2

2
[H2

ω − 〈H2
ω〉 − 2(Hω〈Hω〉 − 〈Hω〉2)] +O(β3),

where β ≪ 1 has been chosen so that |V0| < 1. Equation (6.30) shows that, for β ≪ 1, the

GB probability measure behaves like the reference probability measure, to O(β).

By equation (6.30) and the identity Ṽn = HnωṼ0, the energy moments 〈Hnω〉H of the GB

probability measure are given by

〈Hnω〉H = [〈Hnω〉+ Vn({Hω})][1 +R({Hω})]

∼ 〈Hnω〉 − βCov(Hnω,Hω) +
β2

2
[Cov(Hnω,H2

ω)− 2〈Hω〉Cov(Hnω,Hω)] +O(β3),

where 〈·〉H denotes the GB average and Cov(·, ·) is the covariance with respect to the RM.

In particular, the GB variance of the Hamiltonian, Var(Hω)H, satisfies

Var(Hω)H ∼ Var(Hω)− β[Cov(H2
ω,Hω)− 2〈Hω〉Var(Hω)] +O(β2), (6.31)

where Var(·) is the variance with respect to the RM. By equation (6.29), the Helmholtz

free energy F and the entropy S are given by

F = −β−1 lnZ = −β−1 ln |Ω| − β−1 ln(1 + V0) (6.32)

∼ −β−1 ln |Ω|+ 〈Hω〉 −
β

2
Var(Hω) +O(β2),

S = (〈Hω〉H −F)/T ∼ k ln |Ω| − β

2T
Var(Hω) +O

(

β2

T

)

.

Therefore, to O(β), when β ≪ 1 the Helmholtz free energy follows the average energy 〈Hω〉
and, to O(β/T ), the entropy is at its global maximum S = k ln |Ω|.
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In the opposite limit, β ≫ 1, the partition function is represented by

Z =
∑

ω

e−βHω = e−βHmin



1 +
∑

ω 6=1

e−β∆Hω



 = e−βHmin(1 + Z∆), (6.33)

where ∆Hω = Hω − Hmin ≥ 0 with equality only if ω = 1. Therefore, by the geometric

series, the GB probability measure is given by

fω = e−β∆Hω



1 +

∞
∑

j=1

(−Z∆)j



 , (6.34)

where β ≫ 1 has been chosen so that Z∆ ∼ e−β∆H2 < 1. As exp(−β∆Hω) ≪ 1 for all

ω 6= 1 when β ≫ 1, Z∆ is exponentially small. Therefore, equation (6.34) and the identity

exp(−β∆H1) ≡ 1 shows that the GB probability measure is highly localized about the

system minimum energy Hmin.

By equation (6.34), the energy moments 〈Hnω〉H of the GB probability measure are given

by

〈Hnω〉H =



Hnmin +
∑

ω 6=1

Hnωe−β∆Hω







1 +

∞
∑

j=1

(−Z∆)j



 (6.35)

∼ Hnmin + (Hn2 −Hnmin)e
−β∆H2 +O

(

e−β∆H3

)

In particular, the GB variance Var(Hω)H of the Hamiltonian satisfies

Var(Hω)H ∼ ∆H2
2e

−β∆H2 +O
(

e−β∆H3

)

. (6.36)

This indicates that the GB variance of the Hamiltonian is exponentially small when β ≫ 1,

and vanishes exponentially fast in the limit β −→ ∞, so that the GB probability measure

approaches the delta measure concentrated at the minimum energy Hmin. By equation

(6.33), the Helmholtz free energy F and the entropy S are given by

F = −β−1 lnZ = Hmin − β−1 ln(1 + Z∆) = Hmin +O
(

β−1e−β∆H2

)

(6.37)

S = (〈Hω〉H −F)/T = O
(

βe−β∆H2

)

.

Therefore when β ≫ 1, to exponential order, the Helmholtz free energy follows the minimum

energy Hmin, and the entropy is at its global minimum S = 0.

In conclusion, we gave an asymptotic analysis of the GB probability measure, its energy

moments, Helmholtz free energy, and entropy, for arbitrary Hamiltonian systems with a
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finite number of energy levels. We demonstrated that for β ≪ 1, the system evolves

according to the reference probability measure, while for β ≫ 1 the system evolves according

to a probability measure which is highly localized about the system minimum energy Hmin.

We say that the system undergoes a phase transition when there is a crossover between these

two regimes, near a critical temperature Tc, which is so dramatic that the Helmholtz free

energy F loses its analytic properties (in the infinite volume limit). This is the well known

behavior of the Ising model, shown in Figures 2.26 and 2.27 in [36], which describes the

phenomena of spontaneous magnetization near the Curie temperature. While the existence

of a phase transition for general transport models of two-phase dielectric media is beyond

the scope of this dissertation, in Section 6.2 we demonstrate that these general models have

a behavior analogous to that shown in this section.

6.2 Statistical Mechanics for Two-Phase
Dielectric Media

In this section we present a canonical ensemble statistical mechanics framework for

general transport models of two-phase dielectric media. In Section 6.2.1 we derive, from

first principles in physics, the system Hamiltonian and electric work term for such media.

In Section 6.2.2 we explore the consequences of Maxwell’s relations. There, we demonstrate

that the electric components of state functions are determined by the GB statistics of

Herglotz functions, which arise in the decomposition of system energy given in Theorem 4.

The physical consistency, local stability, and asymptotic analysis of our model is given in

Theorem 11.

6.2.1 The System Hamiltonian and Electric Work Term

In this section we derive an appropriate system Hamiltonian Hω and electric work term

δW for general transport models of two-phase dielectric media. By the linearity of the

governing equations [87], the Hamiltonian is the sum of pure electric energies, pure elastic

energies, pure thermal energies, and mutual coupling energies [103]. In order to model

two-phase dielectric media using methods of statistical mechanics, we must decompose

the system Hamiltonian into these various contributions and identify the associated work

terms, to be inserted into the first law (6.18) for such media. When multiple energetic

sources are considered which exhibit coupling, such as the electric/elastic phenomenon of

electrostriction exhibited by all dielectrics, this decomposition can be highly nontrivial [18].

For simplicity, we focus solely on the electric aspects of two-phase dielectric media.
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From equation (1.30) of Section 1.2, the electric energy (density) associated with an

infinite two-phase dielectric medium is given by

1

2
〈 ~D · ~E〉 =

1

2
ǫ∗E2

0 , ǫ∗ = ǫ1(1−G(t;α)), (6.38)

where 〈·〉 will denote volume averaging in this section. Recall from Section 1.2 that the

local electric field ~E is given by ~E = ~E0 + ~Ef , where ~Ef is the fluctuating electric field of

mean zero 〈 ~Ef 〉 = 0 about the (constant) average 〈~E 〉 = ~E0 = E0~e0, the unit vector ~e0

is the direction of ~E0 and E0 is its magnitude, ǫ∗ = ǫ
∗~e0 · ~e0, ǫ

∗ is the effective complex

permittivity tensor, G(t;α) is the Stieltjes transform of α, defined in (2.13), which is a

spectral measure of the operator Γχ2, t = 1/(1 − ǫ2/ǫ1), and 〈 ~D · ~Ef 〉 = 0.

Here we consider a finite two-phase dielectric medium contained in V ⊂ Rd with volume

V satisfying 1 ≪ V < ∞. As 〈 ~D · ~Ef 〉 = 0 and 〈 ~Ef 〉 = 0 for an infinite system, we

have for this finite system the existence of constants a, b > 0 such that 〈~D · ~Ef 〉 = o(V −a)

and 〈 ~Ef 〉 = o(V −b) as V −→ ∞ [65]. As the infinite volume, thermodynamic limit of our

statistical mechanics model is beyond the scope of this dissertation, we simplify our notation

and streamline our analysis by dropping the o(V −a) and o(V −b) notation, associated with

setting these quantities to zero. For now on we will denote by 〈·〉 spatial average over the

region V.

For this finite system, effective quantities depend on boundary conditions and the

geometric configuration ω ∈ Ω through a family of spectral measures {αω}ω∈Ω:

1

2
〈~D · ~E〉 =

1

2
ǫ∗ωE

2
0 , ǫ∗ω = ǫ1(1 + χ∗

ω(t)), χ∗
ω(t) = −G(t;αω), (6.39)

where χ∗
ω(t) plays the role of the electric susceptibility and Ω denotes the space of all

geometric configurations accessible to the dielectric medium, contained in the vessel V
with volume V . These physically accessible configurations are determined by the reference

probability measure P (dω) defined in Section 2.1. A key feature of equation (6.39) is that

parameter information in t and E0 is separated from complicated geometric interactions,

which are incorporated in the {αω}ω∈Ω [65]. For simplicity we assume that t is real with

ǫ2 > ǫ1, so that t < 0 and −G(t;αω) > 0 [89]. For each ω ∈ Ω, G(t;αω) is an analytic

function of t for all t < 0 [65], and is uniformly bounded for all t < −ε < 0 [89]. We will see

that these properties are inherited by the system Hamiltonian Hω, and yield an especially

convenient representation for the electric work term δW .
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We now derive the system Hamiltonian and electric work term, following the suggestive

analysis of Robertson for homogeneous dielectric media [103]. Since ~E = ~E0 + ~Ef and

~D = ǫ ~E, the energy is given by

〈

1

2
ǫ
(

E2
0 + 2~Ef · ~E0 + E2

f

)

〉

=W0 +Wint +Wf =W0 +
1

2
Wint, (6.40)

as 〈 ~D · ~Ef 〉 = 1
2Wint +Wf = 0. Recalling that ǫ = ǫ1(1− χ2/t) and 〈 ~Ef 〉 = 0, we have

W0 +
1

2
Wint =

1

2
ǫ1E

2
0

(

1− p

t
−
(

G(t;αω)− p

t

))

, (6.41)

where p = 〈χ2〉 is the volume fraction of material phase 2. Each term in equation (6.40)

must be analyzed in order to correctly obtain the Hamiltonian and electric work term, to

be inserted in the first law of thermodynamics (6.18) for binary dielectrics.

By the linearity of Maxwell’s equations, the Hamiltonian is the sum of Coulomb energy

terms representing the potential energy of all charged particles associated with the system

[103]. These terms include charged particles both within the system and in the surroundings.

The mutual energies of the particles within the system, in the absence of an external field,

are macroscopically regarded as part of the internal energy [103]. Furthermore, by electric

neutrality of the system ρf = ρb = 0, the volume average of all electric fields generated by

such charges must be zero.

More specifically [18], in the lack of an external field there still exists a nonzero mi-

croscopic field energy density. The question is, how is this energy accounted for in the

macroscopic continuum description? This energy cannot be viewed as a mere shift in

the zero level of internal energy because it is dependent on interparticle distances and

is therefore, in general, density and temperature dependent. Thus, this energy effectively

contributes to changes in internal energy and must be included in the thermodynamic

internal energy of the system [18].

The mutual energies of the external particles are not part of the Hamiltonian, as these

interactions are no more of interest than that of the heat bath in thermal systems. The

Hamiltonian includes all Coulomb terms associated with the energy stored within the system

and the interaction energy of the external field with the dielectric body. The electric

work done on the dielectric medium is part of the mutual energies of the external/internal

interactions. Where do these external/internal energies belong? The surprising answer is

that the microscopic Hamiltonian places the entire energy within the system [103]. Therefore

the macroscopic treatment must also do so in order to be compatible [103].
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The term W0 in (6.40) represents the mutual energy density of the external charges,

in the presence of an infinite two-phase dielectric composite of laminates parallel to the

applied field (see Section 1.2.1). The analysis done in Section 1.2.1 demonstrates that the

electric field is uniform throughout the system, and is therefore independent of any charges

within the dielectric body. Moreover, the interaction does not induce charge densities, and

therefore performs no work on the medium. Consequently, this term is not included in the

Hamiltonian nor the electric work term.

The term Wf is analogous to the pairwise self interaction term of the Ising model. It

represents the mutual self-energy density of the dielectric body in its state of polarization,

induced by the external charges. This term is included in the system Hamiltonian.

The termWint represents the external charges interacting with, and polarizing a homoge-

neous dielectric medium with electric susceptibility −(G(t;αω)−p/t). The above discussion

of the term W0 illustrates why the contribution p/t is removed from this external/internal

interaction term. One may be inclined to partition this interaction energy between the

system and the surroundings, but the previous discussion has already indicated that it

must be regarded as part of the system energy to be compatible with the microscopic

description [103]. This interaction polarizes the dielectric body, changing the characteristic

energy levels of the system, and determines the electric work done on the dielectric medium

by the external charges. Consequently, it is this term that is to be placed in the first law

for two-phase dielectric media (6.18), and is included in the Hamiltonian. In summary, the

system Hamiltonian Hω is determined by Wint +Wf = 1
2Wint and the electric work term

δW is determined by Wint.

In the interaction term Wint, the quantity p/t represents a mere shift in the zero energy

level of the system. This additive term is independent of the geometric configuration ω and

can therefore be absorbed into the normalization of the probability measure. We will omit

this contribution in the system Hamiltonian and the first law of thermodynamics. Results

relative to the original basal level are recovered via the mapping G(t;αω) 7→ G(t;αω)− p/t.
In order to make natural connections to physics, we define the following quantities

χ∗
ω(t) = −G(t;αω), P ∗

ω(E0, t) = ǫ1χ
∗
ω(t)E0, p∗

ω(E0, t) =
P ∗
ω(E0, t)

N
. (6.42)

For two-phase dielectric media, χ∗
ω plays the role of the effective electric susceptibility, P ∗

ω

plays the role of the effective polarization, p∗
ω plays the role of the effective dipole moment,

and N−1 has units of volume. For matrix particle systems, N represents the number density
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of ǫ2 inclusions, e.g., the number density of spheres in an ER fluid. We will use the language

of matrix particle systems from now on, however our analysis holds for general two-phase

stationary dielectric media in lattice and continuum settings [65].

We identify the permittivity of the matrix and particles by ǫ1 and ǫ2, respectively. We

assume that the permittivity of the matrix is held fixed, and that it is independent of the

temperature T . Metal particles are modeled by letting ǫ2 −→ ∞ (t −→ 0) [74]. When the

inclusions are identical particles, such as spheres in an ER fluid, the number density may

be expressed by N = p/Vp where p is the volume fraction of the particles and Vp is the

volume of a single particle. Therefore N introduces a length scale into the problem.

A classical problem of electrostatics shows [66, 74] that the work done by external charges

to initially polarize a homogeneous dielectric medium of permittivity ǫ∗ω is −p∗
ωE0. Including

this energy contribution in the Hamiltonian Hω, the above analysis shows that

Hω = −ǫ1E
2
0

2N
χ∗
ω(t) = −1

2
p∗
ω(E0, t)E0. (6.43)

Furthermore, the work term to be inserted in the first law (6.18) of thermodynamics for

two-phase dielectric media is given by

W = −ǫ1E
2
0

N
〈χ∗
ω(t)〉H = −p∗(T,E0, t)E0, (6.44)

where 〈·〉H means GB canonical ensemble averaging. By the parameter separation property

of the Hamiltonian and the first law (6.18), dF = −SdT − p∗dE0 −Ψdt, we have

p∗(T,E0, t) = − ∂F
∂E0

, F = −β−1 lnZ, Z =
∑

ω

exp(−βHω). (6.45)

Regardless of the physical arguments leading to (6.43) and (6.44), these equations define

an especially convenient statistical mechanics model for two-phase dielectric media. In

Theorem 11, we will show that the predictions of the model are consistent with experi-

mental observations of ER fluids, and that the model is both physically transparent and

mathematically tractable.

6.2.2 Maxwell’s Relations and Stability

In this section we explore the consequences of Maxwell’s relations in (6.18)-(6.20), and

the physical consistency and stability of our model. Maxwell’s relations provide represen-

tations for the state functions which are explicitly given in terms of the energy components

of Theorem 4, and inherit the beautiful analytic properties of the system Hamiltonian. The

main result of this chapter is given by Theorem 11.
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Theorem 11 The system Hamiltonian Hω and electric work term given in equations (6.43)

and (6.44), respectively, define a statistical mechanics model of the purely electric aspects

of two-phase dielectric media with the following properties.

(1) For each ω ∈ Ω, Hω is an is an analytic function of E0, and t, for all t < 0, and

is uniformly bounded for all t < −ε < 0. Moreover, in the infinite volume limit,

V −→ ∞, the model captures all complicated geometric interactions exactly.

(2) The Electric components of the state functions are determined by the GB statistics

of Herglotz functions involving the family of spectral measures {αω}ω∈Ω, and are

explicitly given in terms of the energy decomposition of Theorem 4. For example,

the electric component Se of the entropy S is determined by the GB variance of

χ∗
ω(t) = |G(t;αω)| = |〈χ2

~E · ~E0〉/tE2
0 |.

(3) The positivity of the entropy, S(T,E0, t) > 0, is equivalent to

0 ≤
∫ E0

0
(E′

0)
3Var(χ∗

ω(t))HdE
′
0 < (2N2k/ǫ21) T

2 S0(T, t),

where S0(T, t) = S(T, 0, t). Let T = {(T, t) ∈ R+ ⊗ R− : S0(T, t) < ∞}, where

R+ = (0,∞) and R− = (−∞, 0). Then, for all (T, t) ∈ T , the GB variance of Hω
vanishes as E0 −→ ∞. Specifically, for all (T, t) ∈ T , there exists a constant δ > 0

such that

Var(χ∗
ω(t))H = o(E

−(4+δ)
0 ), Var(Hω)H = o(E−δ

0 ), E0 ≫ 1.

Furthermore, let T0 = {t ∈ R− : limT−→0 S0(T, t) < ∞}. Then, for all E0 > 0 and

t ∈ T0, the GB variance of Hω vanishes as T −→ 0. Specifically, for all t ∈ T0,
Var(χ∗

ω(t))H = o(T 2), as T −→ 0.

(6) Consistent with experimental observations of ER fluids, the GB average of the effective

permittivity 〈ǫ∗ω〉H increases with E0 and levels off as E0 −→∞,

∂〈ǫ∗ω〉H/∂E0 > 0, ∂〈ǫ∗ω〉H/∂E0 = o(E
−(3+δ)
0 ), E0 ≫ 1.

(5) The entropy decreases with E0, ∂S/∂E0 < 0, a necessary condition for solidification

in ER fluids.

(6) The model is locally stable in E0 and T .
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We will prove Theorem 11 via a sequence of lemmas.

Proof: Property (1) of Theorem 11 has already been established in Section 2.1. More

specifically, Hω = (ǫ1E
2
0/2N)χ∗

ω(t) is clearly analytic in E0, and it was shown in [65] that

χ∗
ω(t) = −G(t;αω) an analytic function of t for all t < 0, and is uniformly bounded for all

t < −ε < 0 [89]. Moreover, an ergodic theorem was given in [65] which proves that, in the

infinite volume limit, the model captures all complicated geometric interactions exactly.

In order to make the proof of property (2) more transparent, we first prove some

preliminary lemmas.

Lemma 14 Let gω and hω be uniformly bounded random variables for ω ∈ Ω, and define

∆gω = gω−〈gω〉H. Then the GB covariance Cov(hω, gω)H = 〈hω∆gω〉H and 〈hω∆gω∆hω〉H
satisfy

(a) 〈hω∆gω〉H = 〈gω∆hω〉H, (b) 〈hω∆gω∆hω〉H = 〈h2
ω∆gω〉H − 〈hω∆gω〉H〈hω〉H

Proof: Properties (a) and (b) follow from

〈hω∆gω〉H = 〈hω(gω − 〈gω〉H)〉H = 〈hωgω〉H − 〈hω〉H〈gω〉H = 〈gωhω〉H − 〈gω〉H〈hω〉H,

〈hω∆gω∆hω〉H = 〈hω∆gω(hω − 〈hω〉H)〉H = 〈h2
ω∆gω〉H − 〈hω∆gω〉H〈hω〉H, ✷

Lemma 15 Let fω = Z−1 exp(βeχ
∗
ω(t)), where βe = βǫ1E

2
0/2N , and ∆χ∗

ω = χ∗
ω − 〈χ∗

ω〉H.

Then for ξ = E0, T

(a)
∂fω
∂ξ

=
∂βe
∂ξ

fω∆χ∗
ω, (b)

∂fω
∂t

= βefω∆
∂χ∗

ω

∂t

Proof:

(a)
∂fω
∂ξ

=
∂

∂ξ
Z−1 exp(βeχ

∗
ω(t)) =

∂βe
∂ξ

χ∗
ωfω − Z−2 exp(βeχ

∗
ω(t))

∂Z

∂ξ

=
∂βe
∂ξ

χ∗
ωfω − fωZ−1

∑

ω∈Ω

∂βe
∂ξ

χ∗
ω exp(βeχ

∗
ω(t)) =

∂βe
∂ξ

fω∆χ∗
ω ✷.

(b)
∂fω
∂t

=
∂

∂t
Z−1 exp(βeχ

∗
ω) = βe

∂χ∗
ω

∂t
fω − Z−2 exp(βeχ

∗
ω(t))

∂Z

∂t

= βe
∂χ∗

ω

∂t
fω − fωZ−1

∑

ω∈Ω

βe
∂χ∗

ω

∂t
exp(βeχ

∗
ω) = βefω∆

∂χ∗
ω

∂t
✷.

Lemma 16 shows that the mixed derivative commutators of the free energy F are zero,

which establishes Maxwell’s relations in (6.18)-(6.20).
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Lemma 16 Let F = −β−1 lnZ, Z =
∑

ω exp(βeχ
∗
ω(t)), and βe = βǫ1E

2
0/2N . Define the

mixed derivative commutator by [Cx,y] = [(∂2/∂x∂y) − (∂2/∂y∂x)]. Then

(a) [CE0,t]F = 0, (b) [CT,t]F = 0. (c) [CE0,T ]F = 0,

Proof: Properties (a)-(b) follow from Lemma 15, yielding

∂2F
∂t∂ξ

=
∂

∂t

[

−∂β
−1

∂ξ
lnZ − β−1∂βe

∂ξ
〈χ∗
ω〉H

]

=

[

−∂β
−1

∂ξ
βe

〈

∂χ∗
ω

∂t

〉

H

− β−1∂βe
∂ξ

(〈

∂χ∗
ω

∂t

〉

H

+ βe

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

)]

= − ∂

∂ξ
(β−1βe)

〈

∂χ∗
ω

∂t

〉

H

− β−1βe
∂βe
∂ξ

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

∂2F
∂ξ∂t

=
∂

∂ξ

[

−β−1βe

〈

∂χ∗
ω

∂t

〉

H

]

= − ∂

∂ξ
(β−1βe)

〈

∂χ∗
ω

∂t

〉

H

− β−1βe
∂βe
∂ξ

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

,

where ξ = E0, T ✷. Property (c) similarly follows by

∂2F
∂E0∂T

=
∂

∂E0

[

−∂β
−1

∂T
lnZ − β−1∂βe

∂T
〈χ∗
ω〉H

]

= −∂β
−1

∂T

∂βe
∂E0
〈χ∗
ω〉H − β−1 ∂2βe

∂E0∂T
〈χ∗
ω〉H − β−1 ∂βe

∂T

∂βe
∂E0
〈χ∗
ω∆χ∗

ω〉H

= − ∂

∂T

(

β−1 ∂βe
∂E0

)

〈χ∗
ω〉H − β−1 ∂βe

∂T

∂βe
∂E0
〈χ∗
ω∆χ∗

ω〉H

∂2F
∂T∂E0

=
∂

∂T

[

−β−1 ∂βe
∂E0
〈χ∗
ω〉H

]

= − ∂

∂T

(

β−1 ∂βe
∂E0

)

〈χ∗
ω〉H − β−1 ∂βe

∂E0

∂βe
∂T
〈χ∗
ω∆χ∗

ω〉H ✷.

Lemma 17 will be used in the analysis of Maxwell’s relations.

Lemma 17 Let 〈χ∗
ω〉H = Z−1

∑

ω χ
∗
ω exp(βeχ

∗
ω), βe = βǫ1E

2
0/2N , ∆χ∗

ω = χ∗
ω−〈χ∗

ω〉H, and

[Cx,y] = [(∂2/∂x∂y)− (∂2/∂y∂x)]. Then, for ξ = E0, T

(a) [CE0,T ]〈χ∗
ω〉H = 0, (b) [Cξ,t]〈χ∗

ω〉H = βe
∂βe
∂ξ
〈χ∗
ω〉HCov

(

χ∗
ω,
∂χ∗

ω

∂t

)

H

Proof: Property (a) follows from Lemma 14 and Lemma 15:

∂2〈χ∗
ω〉H

∂T∂E0
=

∂

∂T

[

∂βe
∂E0
〈χ∗
ω∆χ∗

ω〉H
]

=
∂2βe
∂T∂E0

〈χ∗
ω∆χ∗

ω〉H +
∂βe
∂E0

∂βe
∂T
〈χ∗
ω∆χ∗

ω∆χ∗
ω〉H

∂2〈χ∗
ω〉H

∂E0∂T
=

∂

∂E0

[

∂βe
∂T
〈χ∗
ω∆χ∗

ω〉H
]

=
∂2βe
∂E0∂T

〈χ∗
ω∆χ∗

ω〉H +
∂βe
∂T

∂βe
∂E0
〈χ∗
ω∆χ∗

ω∆χ∗
ω〉H.
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Therefore, as [CE0,T ]βe = 0 we have [CE0,T ]〈χ∗
ω〉H = 0 ✷. Properties (b)-(c) similarly follow

from Lemma 14 and Lemma 15. For ξ = E0, T ,

∂2〈χ∗
ω〉H

∂ξ∂t
=

∂

∂ξ

[〈

∂χ∗
ω

∂t

〉

H

+ βe

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

]

=
∂βe
∂ξ

[

2

〈

∂χ∗
ω

∂t
∆χ∗

ω

〉

H

+ βe

〈

χ∗
ω∆

∂χ∗
ω

∂t
∆χ∗

ω

〉

H

]

∂2〈χ∗
ω〉H

∂t∂ξ
=

∂

∂t

[

∂βe
∂ξ
〈χ∗
ω∆χ∗

ω〉H
]

=
∂βe
∂ξ

∂

∂t

(〈

(χ∗
ω)2
〉

H
− 〈χ∗

ω〉2H
)

=
∂βe
∂ξ

[〈

2χ∗
ω

∂χ∗
ω

∂t

〉

H

+ βe

〈

(χ∗
ω)2 ∆

∂χ∗
ω

∂t

〉

H

]

− ∂βe
∂ξ

[

2〈χ∗
ω〉H

(〈

∂χ∗
ω

∂t

〉

H

+ βe

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

)]

=
∂βe
∂ξ

[

2

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

+ βe

〈

χ∗
ω∆

∂χ∗
ω

∂t
∆χ∗

ω

〉

H

]

− βe
∂βe
∂ξ
〈χ∗
ω〉H

〈

χ∗
ω∆

∂χ∗
ω

∂t

〉

H

The result now follows from Lemma 14 ✷. We are now ready to establish property (2) of

Theorem 11.

We now show that first law, dF = −SdT − p∗dE0 − Ψdt, and Maxwell’s relations in

(6.18) explicitly determine the state functions. Indeed, by equation (6.44), and Lemma 16,

we have

∂S

∂E0
=
∂p∗

∂T
=
ǫ1E0

N

∂〈χ∗
ω〉H
∂T

,
∂Ψ

∂E0
=
∂p∗

∂t
=
ǫ1E0

N

∂〈χ∗
ω〉H
∂t

. (6.46)

Therefore, if we denote by S0 and Ψ0 the entropy and contrast potential when E0 = 0,

respectively, then integrating (6.46) with respect to E0 yields

S(T,E0, t) = S0(T, t) + Se(T,E0, t), Se(T,E0, t) =

∫ E0

0

ǫ1E
′
0

N

∂〈χ∗
ω〉H
∂T

dE′
0, (6.47)

Ψ(T,E0, t) = Ψ0(T, t) + Ψe(T,E0, t), Ψe(T,E0, t) =

∫ E0

0

ǫ1E
′
0

N

∂〈χ∗
ω〉H
∂t

dE′
0,

where Se and Ψe are the electric components of the entropy and contrast potential, respec-

tively. The third of Maxwell’s relations in (6.18), ∂S/∂t = ∂Ψ/∂T , then yields the following

lemma

Lemma 18

Cov

(

χ∗
ω,
∂χ∗

ω

∂t

)

H

≡ 0, (6.48)

independent of the values of the state variables T , E0, and t, and the details of the underlying

random medium (Ω, P ).



112

Proof: Equations (6.18) and (6.47), and Lemma 17 imply that

∂S0

∂t
− ∂Ψ0

∂T
=

∫ E0

0

ǫ1E
′
0

N
[CT,t]〈χ∗

ω〉H dE′
0

=

∫ E0

0

ǫ1E
′
0

N
βe
∂βe
∂T
〈χ∗
ω〉H Cov

(

χ∗
ω,
∂χ∗

ω

∂t

)

H

dE′
0 .

The E0 independence of S0 and Ψ0 implies that there exists a constant c, say, such that

∂S0

∂t
− ∂Ψ0

∂T
= c =

∫ E0

0

ǫ1E
′
0

N
βe
∂βe
∂T
〈χ∗
ω〉H Cov

(

χ∗
ω,
∂χ∗

ω

∂t

)

H

dE′
0

Since (ǫ1E
′
0βe/N)(∂βe/∂T ) 6≡ 0 and 〈χ∗

ω〉H > 0 (χ∗
ω > 0 for all ω ∈ Ω), the condition

∂c/∂E0 = 0 yields equation (6.48), independent of the values of the state variables T , E0,

and t, and the details of the underlying medium.

Lemma 18 has two immediate corollaries.

Corollary 2

(a) [CE0,T ]〈χ∗
ω〉H = 0, (b) [CE0,t]〈χ∗

ω〉H = 0, (c) [CT,t]〈χ∗
ω〉H = 0.

Corollary 2 follows directly from Lemma 17 and Lemma 18.

Corollary 3

∂

∂t
〈χ∗

ω〉H =

〈

∂χ∗
ω

∂t

〉

H

Corollary 3 follows directly from Lemma 15 and Lemma 18.

Lemma 15 and Corollary 3 shows that the electric components Se and Ψe of the entropy

and contrast potential in (6.47) are given by

Se(T,E0, t) =

∫ E0

0

ǫ1E
′
0

N

∂βe
∂T

Var(χ∗
ω)H dE

′
0, Ψe(T,E0, t) =

∫ E0

0

ǫ1E
′
0

N

〈

∂χ∗
ω

∂t

〉

dE′
0.

(6.49)

We note that, as ∂β/∂T = −β/T < 0, the electric component of the entropy Se is negative

Se < 0. Recalling that χ∗
ω(t) = −G(t;αω), the decomposition of system energy given in

Theorem 4 shows that

χ∗
ω = −

∫ 1

0

dαω(λ)

t− λ = −〈χ2
~E · ~E0〉
tE2

0

> 0,
∂χ∗

ω

∂t
=

∫ 1

0

dαω(λ)

(t− λ)2
=
〈χ2E

2〉
t2E2

0

> 0. (6.50)

Therefore the electric components Se and Ψe of these state functions are determined by

GB statistics of Herglotz functions involving the family of spectral measures {αω}ω∈Ω, and
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are explicitly given in terms of the energy decomposition of Theorem 4. This establishes

property (2) of Theorem 11.

The remainder of Maxwell’s relations in (6.19) and (6.20) can be expressed in terms of

the logarithmic functional Λ(T,E0, t) = ln 〈χ∗
ω〉H. A perturbation analysis shows that these

relations constitute a detailed balance of energy in the system.

Lemma 19

(a) − ∂E0

∂t
=
∂Ψ

∂p∗
= E0

∂Λ

∂t

(

1 + E0
∂Λ

∂E0

)−1

, (6.51)

(b) − ∂E0

∂T
=

∂S

∂p∗
= E0

∂Λ

∂T

(

1 + E0
∂Λ

∂E0

)−1

,

(c) − ∂t

∂T
=
∂S

∂Ψ
=
∂Λ

∂T

(

∂Λ

∂E0

)−1

.

Proof: Property (a) follows from the properties of partial differentiation [103], and

equations (6.19), (6.20), (6.44), and (6.46), yielding

−∂E0

∂t
=
∂Ψ

∂p∗
=

∂Ψ

∂E0

(

∂p∗

∂E0

)−1

=
∂p∗

∂t

(

∂p∗

∂E0

)−1

=
ǫ1E0

N

∂〈χ∗
ω〉H
∂t

(

ǫ1
N
〈χ∗
ω〉H +

ǫ1E0

N

∂〈χ∗
ω〉H

∂E0

)−1

= E0
∂Λ

∂t

(

1 + E0
∂Λ

∂E0

)−1

,

which are, in turn given by the energy components in (6.50). Similarly,

−∂E0

∂T
=

∂S

∂p∗
=

∂S

∂E0

(

∂p∗

∂E0

)−1

=
∂p∗

∂T

(

∂p∗

∂E0

)−1

=
ǫ1E0

N

∂〈χ∗
ω〉H
∂T

(

ǫ1
N
〈χ∗
ω〉H +

ǫ1E0

N

∂p∗

∂E0

)−1

= E0
∂Λ

∂T

(

1 + E0
∂Λ

∂E0

)−1

Finally,

− ∂t

∂T
=
∂S

∂Ψ
=

∂S

∂E0

(

∂Ψ

∂E0

)−1

=
∂p∗

∂T

(

∂p∗

∂t

)−1

=
ǫ1E0

N

∂〈χ∗
ω〉H
∂T

(

ǫ1E0

N

∂〈χ∗
ω〉H
∂t

)−1

=
∂Λ

∂T

(

∂Λ

∂E0

)−1

.

It is worth mentioning that through Padé approximants Gn(t;αω) = P
[1]
n (t, ω)/Pn(t, ω) of

G(t;αω) (see section Section 4.1), we have, with exponential convergence,

ln (Gn(t, ω)) = ln

(

P
[1]
n (t, ω)

Pn(t, ω)

)

=

∫ 1

0
ln(t− λ)[dρ[1]

n − dρn](λ, ω), (6.52)

where ρ
[1]
n and ρn are the root distributions of the polynomials P

[1]
n (t, ω) and Pn(t, ω),

respectively. This suggests that the logarithmic functional Λ may also have a representation

similar to (6.52), with respect to a signed measure.
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Now we establish property (3) of Theorem 11. Recall that βe = βǫ1E
2
0/2N , where

β = 1/kT . Equations (6.47) and (6.49), and ∂β/∂T = −β/T imply that the positivity of

the entropy, S(T,E0, t) > 0, is equivalent to

0 ≤
∫ E0

0
(E′

0)
3Var(χ∗

ω(t))HdE
′
0 < (2N2k/ǫ21) T

2 S0(T, t), (6.53)

Define the sets R+ = (0,∞), R− = (−∞, 0), T = {(T, t) ∈ R+ ⊗ R− : S0(T, t) < ∞}, and

T0 = {t ∈ R− : limT−→0 S0(T, t) < ∞}. Then, analogous to Theorem 10, (6.53) implies

that, for all (T, t) ∈ T , the GB variance of Hω vanishes as E0 −→ ∞. More specifically, for

all (T, t) ∈ T , there exists a constant δ > 0 such that

Var(χ∗
ω(t))H = o(E

−(4+δ)
0 ), Var(Hω)H = o(E−δ

0 ), E0 ≫ 1. (6.54)

Furthermore, for all t ∈ T0, E0 > 0, equation (6.53) implies that the GB variance of Hω
vanishes as T −→ 0. More specifically, Var(χ∗

ω(t))H = o(T 2), as T −→ 0, for all t ∈ T0.

Property (4) of Theorem 11 also follows from equation (6.54). It implies that the GB

average of the effective permittivity 〈ǫ∗ω〉H = ǫ1(1 + 〈χ∗
ω〉H) increases with E0 and levels off

as E0 −→∞:

∂〈ǫ∗ω〉H
∂E0

= ǫ1
∂〈χ∗

ω〉H
∂E0

= ǫ1
∂βe
∂E0

Var(χ∗
ω(t))H =

βǫ21E0

N
Var(χ∗

ω(t))H > 0,

∂〈ǫ∗ω〉H
∂E0

= o(E
−(3+δ)
0 ), E0 ≫ 1.

We have, en route, already established property (5) of Theorem 11, which follows from

∂β/∂T = −β/T , equation (6.46), and Lemma 15, which imply

∂S

∂E0
=
ǫ1E0

N

∂〈χ∗
ω〉H
∂T

=
ǫ1E0

N

∂βe
∂T

Var(χ∗
ω(t))H =

ǫ1E0

N

(

−βǫ1E
2
0

2NT

)

Var(χ∗
ω(t))H < 0.

(6.55)

We now establish property (6) of Theorem 11. For thermodynamic stability, it is

necessary that the free energy F be a concave function of its intensive parameters T , E0,

and t, and a convex function of its extensive ones [103]. These conditions are restricted by

the differential based analysis given in this section, which apply only to the local shape of

the potential F . If the full potential surface resembles a hilly terrain, it is possible that

there could be neighboring deeper valleys or higher peaks that offer improved stability. The
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following calculation confirms property (6) of Theorem 11. By equations (6.44) and (6.49),

and Lemma 15 we have

−∂
2F
∂E2

0

=
∂p∗

∂E0
=

∂

∂E0

ǫ1E0

N
〈χ∗
ω〉H =

ǫ1
N

(

〈χ∗
ω〉H + E0

∂βe
∂E0

Var(χ∗
ω)H

)

> 0 (6.56)

−∂
2F
∂T 2

=
∂S

∂T
=
∂S0

∂T
+

∫ E0

0

ǫ1E
′
0

N

∂

∂T

[

∂βe
∂T

Var(χ∗
ω)H

]

dE′
0

=
∂S0

∂T
+

∫ E0

0

ǫ1E
′
0

N

[

∂2βe
∂T 2

Var(χ∗
ω)H +

(

∂βe
∂T

)2

〈χ∗
ω∆χ∗

ω∆χ∗
ω〉H

]

dE′
0 > 0,

where 〈χ∗
ω∆χ∗

ω∆χ∗
ω〉H = 〈χ∗

ω(∆χ∗
ω)2〉H > 0 and we have assumed the local stability of the

thermodynamic system when E0 = 0: ∂S0/∂T > 0. The positivity of all other terms has

already been discussed above. This concludes Theorem 11 ✷.

In this chapter, we reviewed the information theory approach to statistical mechanics,

yielding the canonical ensemble. In Theorem 10, we characterized the behavior of this

ensemble by the deviation of its statistics, away from that of the underlying reference mea-

sure, toward that of a probability measure which is highly localized around minimum energy

states. The Hamiltonian of our model is given by Hω = −(ǫ1E
2
0/2N)χ∗

ω . Therefore, the GB

probability measure is precisely the reference measure P (dω) when E0 = 0. Theorem 10

suggests that, as E0 increases and/or T decreases, the statistics of the ensemble should

tend toward that of a probability measure which is highly localized around maximum χ∗
ω

states. This is indeed the behavior of our model, which is indicated by parts (3) and

(6) of Theorem 11. They illustrate that, as E0 increases, the GB probability measure

becomes increasingly localized around states ω ∈ Ω that maximize 〈ǫ∗ω〉H = ǫ1(1 + 〈χ∗
ω〉H),

i.e., maximize 〈χ∗
ω〉H, and as E0 −→ ∞, Var(χ∗

ω)H −→ 0. This behavior is consistent with

experimental observations of ER fluids [126, 128]. In future work we will further explore the

predictions of this model, including the existence of a phase transition.

Figure 6.1 displays an ordered sequence of configurations of the square 2-d bond network,

with increasing ǫ∗xx, the x component of the effective permittivity. As ǫ∗xx increases, the

system orders itself into increasingly connected structures, elongated in the x direction.

This is analogous to an ER fluid with average electric field ~E0 = E0~ex, where ~ex is a

unit vector pointing in the x direction. Similarly, Figure 6.2 displays an ordered sequence

of configurations of the square 2-d bond network, with increasing ǫ∗yy. This is analogous

to an ER fluid with average electric field ~E0 = E0~ey, and as ǫ∗yy increases, the system

orders itself into increasingly connected structures, elongated in the y direction. Finally

Figure 6.3 displays an ordered sequence of configurations of the square 2-d bond network,
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Figure 6.1. An ordered sequence of configurations of the square 2-d bond network, with
increasing ǫ∗xx, the x component of the effective permittivity. As ǫ∗xx increases, from left
to right and top to bottom, the system orders itself into increasingly connected structures,
elongated in the x direction.
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Figure 6.2. An ordered sequence of configurations of the square 2-d bond network, with
increasing ǫ∗yy, the y component of the effective permittivity. As ǫ∗yy increases, from left
to right and top to bottom, the system orders itself into increasingly connected structures,
elongated in the y direction.
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Figure 6.3. An ordered sequence of configurations of the square 2-d bond network, with
increasing ǫ∗xx + ǫ∗yy, the trace of the effective permittivity tensor. As ǫ∗xx + ǫ∗yy increases,
from left to right and top to bottom, the system orders itself into increasingly connected
structures.
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with increasing ǫ∗xx + ǫ∗yy, the trace of the effective permittivity tensor ǫ
∗. As ǫ∗xx + ǫ∗yy

increases, the system orders itself into increasingly connected fractal-like structures. This

is analogous to an ER fluid with metallic inclusions.

These figures were generated by directly calculating the components of the tensor valued

spectral measure α in (3.39), from the random matrix M2 = χ2Γχ2, by the method outlined

in Section 3.3. The calculation of α yields the effective permittivity tensor ǫ
∗ for the

network. The first frame of these figures is a randomly generated configurations of the

bonds. The evolution of the system is determined as follows. Let us focus on ǫ∗xx as the

procedure involving ǫ∗yy and ǫ∗xx + ǫ∗yy is identical. Let ω0 denote the initial configuration of

the bonds. The x component αxx(ω0) of the spectral measure is calculated from the matrix

M2(ω0) associated with this initial configuration. This yields ǫ∗xx(ω0) via G(t;αxx(ω0)) =
∑n

j=1mj/(t− λj), where the mj are defined directly below equation (3.39) and t = 1/(1−
ǫ2/ǫ1) = −1.8. Another random configuration ω1 is then generated and ǫ∗xx(ω1) is computed

in the same manner. If ǫ∗xx(ω1) > ǫ∗xx(ω0) then the move is accepted. Otherwise it is rejected

and the process repeats. These simulations indicate, by spectral means, that equilibrium

configurations of ER fluids are local states of maximum ǫ∗ = ǫ
∗~e0 · ~e0, where ~E0 = E0~e0,

and further validate our model.

We conclude this chapter by noting a possible extension of this statistical mechanics

model to our critical theory discussed in Chapter 3. There, we studied critical behavior

exhibited by percolation models of two-phase conductive media, as a function of the volume

fraction p of the σ2 phase. In such models, as p increases, the system becomes increasingly

connected, and there is a critical transition in the transport properties of the effective

conductivity σ∗ as p surpasses the percolation threshold pc.

In ER fluids, it is E0 that controls the connectedness of the system. Experiments have

shown [70, 120, 128] that, as E0 increases, the system becomes increasingly connected, and

there is a critical transition in the transport properties of the effective permittivity ǫ∗ as

E0 surpasses a critical value Ec . From equation (2.18) of Section 2.2, we have ĝ(h; φ̂ω) =

(t − 1)G(t;αω) = (1 − t)χ∗
ω(t), in the variables h = ǫ1/ǫ2 and t = h/(h − 1), and metal

particles are modeled by letting h −→ 0 (ǫ2 −→ ∞, 0 < ǫ1 < ∞) [74]. Therefore, assuming

a Fubini theorem, equation (6.45) implies that
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− ∂F
∂E0

= p∗(T,E0, t) =
ǫ1E0

N
〈χ∗
ω〉H =

ǫ1E0

N(1− t)

〈

∫ ∞

0

dφ̂ω(y)

1 + hy

〉

H

=
ǫ1E0

N(1− t)

∫ ∞

0

〈dφ̂ω(y)〉H
1 + hy

.

Recall that the fundamental assumption of our critical theory is the following. For p < pc,

there is a “gap” θα about λ = 0 which shrinks as p increases and the system becomes

increasingly connected, and θα −→ 0 as p −→ p−c . In the case of ER fluids, assume that, for

E0 < Ec, there is a gap θα about λ = 0 which shrinks as E0 increases and the system becomes

increasingly connected, and θα −→ 0 as E0 −→ E−
c . With this parallel in the language of

critical these transitions, under the substitution ĝ(h; φ̂) 7→ ĝ(h; 〈φ̂ω〉H), the ideas underlying

Theorem 5 extend to our statistical mechanics model of ER fluids, with metallic particles.

However, recall that the measure φ̂ is independent of the contrast parameter h, and the

measure 〈φ̂ω〉H is dependent on h, E0, and T , in a highly nonlinear way. Therefore the

proof of such an extension requires some care. This is a key part of our future work.
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