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ABSTRACT

Medical error causes preventable death in nearly 100,000 patients per year in the

US alone. Common sources for error include medication related problems, technical

equipment failure, interruptions, complicated and error-prone devices, information

overload (providing too much patient data for one person to process effectively), and

environmental problems like inadequate lighting or distracting ambient noise.

Intensive care units are one of the riskiest locations in a hospital, with up to 9

reported events per 100 patient days. This risk is in large contrast to anesthesia in

the operating rooms. Here much advancement in the area of patient safety has been

made in the past, dropping the average risk for anesthesia related death to less than

1 in 200,000 anesthetics—an improvement by a factor of 20 in the past 30 years.

Improvements in technology and other innovations contributing to this success now

need to be adapted for and implemented in the intensive care unit setting.

Nurses are increasingly regarded as key decision makers within the healthcare

team, as they outnumber physicians 4:1. Reducing nurses’ workload and improving

medical decision making by providing decision support tools can have a significant

impact in reducing the chances of medical errors.

This dissertation consists of four manuscripts: 1) a review of previous medical

display evaluations, providing insight into solutions that have worked in the past;

2) a study on reducing false alarms and increasing the usefulness of the remaining

alarms by introducing alarm delays and detecting alarm context, such as suctioning

automatically silencing ventilator alarms; 3) a study of simplifying the frequent but

complicated task of titrating vasoactive medications by providing a titration support

tool that predicts blood pressure changes 5 minutes into the future; and 4) a study

on supporting the triage of unfamiliar patients by introducing a far-view display that

incorporates information from previously disparate devices and presents trend and

alarm information at one easy to scan and interpret location.



My parents.
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CHAPTER 1

INTRODUCTION

This dissertation is the compilation of my work at the University of Utah focusing

on reducing nurses’ workload and improving medical decision making, thereby reduc-

ing the chances of medical errors. It consists of four manuscripts. The first is a review

of previous medical display evaluations. The remaining three are studies suggesting

the following improvements to nurses’ work: a) reduction of false alarms and increased

usefulness of remaining alarms; b) simplification of a common but complicated task,

titration of vasoactive medications; and c) support for triaging unfamiliar patients

using a far-view display.

1.1 Background
1.1.1 Medical Error

In 1997 an Institute of Medicine report estimated the number of preventable

deaths caused by medical error to be between 44,000 and 98,000.1 This report started

the modern patient-safety movement. Preventable medication errors have been found

to occur in up to 1.5% of all hospital admissions.2 Medical errors are common in

intensive care units (ICUs), with 36-89 reported events per 1,000 ICU patient days.3, 4

Causes of errors include complicated and error-prone devices, information overload

(providing too much patient data for one person to process effectively), and environ-

mental problems like inadequate lighting or distracting ambient noise.5 The most

common medical errors in the ICU are medication errors, problems with intravenous

infusions, and technical equipment failure.6 Problems in patient identification,7 wrong

patients or wrong location in operations,8 interruptions,9 and team communication in

the operating room10 are only some of the areas where improvements are needed and

have been proposed. Computerized physician-order-entry or decision-support systems
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can reduce certain types of medication error but have the drawbacks of slowing clinical

workflow and introducing new errors if not performed carefully.11

1.1.2 Medical Decision Making

Evidence-based medicine12, 13 aims to address the problem of clinical-practice

variation by replacing personal clinical experience as the primary resource for medical

decision-making with practice recommendations and guidelines based on systematic

studies of populations.14 Sources of medical decision-making support15 include ar-

tificial neural networks,16, 17 statistical methods such as Bayesian interference18 or

fuzzy logic,19 case-based reasoning,20 and expert systems.21, 22 Data integration, using

clinical dashboards23 or single indicators combining multiple variables,24 has shown

promise for improving patient care.

Nurses are increasingly regarded as key decision makers within the healthcare

team25 and outnumber physicians 4:1. Nurses prefer humans as information sources

as these deliver context specific information when needed. Additionally, literature

use almost never occurs at the point of decision-making but rather after the fact.25

Research information needs to be presented in formats maximized for limited con-

sumption opportunities, as nurses have limited time to explore literature.26 Finally,

the follow-up report to “to err is human”1 specifically asked for decision support tools,

such as reminders and alerts.27

1.1.3 Human Factors

Human factors, the science of applying understanding of human capabilities and

limitations to the design, development, and deployment of systems and services, has

led to major safety improvements in aviation28 and nuclear engineering.29 More

recently it has been applied to medicine, starting as early as the 1980s in the field of

anesthesiology.1 In this field, collections of preventable incidents30 or closed insurance

claims31 led to recommendations for preventing and detecting such incidents.

Lack of situational awareness or inadequate situational awareness has been iden-

tified as one of the primary factors in accidents attributed to human error.32 There

are three levels of situational awareness: 1) perception, which includes detection of

elements or identification of values; 2) comprehension, which includes the synthesis
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of multiple elements towards understanding the current situation; and 3) projection,

which extrapolates trends forward in time (e.g., for therapy planning). All three levels

of situational awareness must be fulfilled to prevent errors.33–35

In the ICU, human factors techniques such as qualitative observations have been

used to identify problems in commonly occurring tasks; for example, interruptions to

a nurse’s attention during medication preparation and tasks being forgotten because

of large cognitive workload of nurses.36 Safety problems caused by shortcomings in

nontechnical skills such as task management, teamwork, situation awareness, and

decision making can be analyzed using root-cause analysis or observational studies.37

Clinical technologies such as graphical displays, medical-design interfaces and clinical-

application designs have been analyzed for their usability and improvements have been

reported, but they still need to focus more on nurses as their users.38

1.2 Goals and Contributions to the Literature
1.2.1 Motivation for Focusing on the Intensive

Care Unit

Anesthesiology has been at the forefront of technology and patient safety, as

practitioners of anesthesiology are enthusiastic about technological innovation.39 Ex-

amples of innovation in this field include the introduction of cardiac monitoring,

pulse oximetry, and capnography and have led to anesthesiology being acknowledged

as a model for patient safety in medicine.40 These technological improvements and

other innovations now need to be adapted for and implemented in the ICU. The

following four chapters contain manuscripts focusing on reducing nurses’ workload

and improving medical decision making, thereby reducing the chances of medical

errors.

1.2.2 Review of Physiologic Monitoring Display
Evaluations

The purpose of this evaluation, which forms Chapter 2 of this dissertation, was to

present the findings of past physiologic monitoring display evaluations that demon-

strate reductions in medical errors and provider workload (both physical and mental)

and improvements in medical decision making. It provides an opportunity to examine

past work across studies and learn which ideas worked well and which did not, and
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it sets the stage for the design and conduct of future evaluations in two subsequent

studies performed in this dissertation. Participants were faster detecting an adverse

event or making a diagnosis or decision in 57% of the evaluations. They showed an

improved accuracy in a clinical decision or diagnosis 67% of the studies measuring this

and a perceived workload decrease in 43% of the studies accessing this variable. The

majority of the evaluations (61%) used anesthesiologists, practitioners in a field from

which many medical innovations originate, and only 16% used nurses. This highlights

the need for future clinical studies to focus on participants besides anesthesiologists.

1.2.3 Alarm Reductions Using Delays and
Clinical Context

The purpose of this study, which comprises Chapter 3 of this dissertation, was to

identify methods for reducing the number of false alarms by using time delays and the

correlations between alarms and clinical context. This information was obtained by

observing health care providers caring for patients in the MICU. The study proposed

a 19 sec alarm delay, which would have reduced 67% of the ignored and ineffective

alarms, thereby reducing the noise level in the unit and potentially reducing nurses’

workload. It identified nurses as the main monitoring users, making 66% of all visits

to a patient’s room, which should lead future research to design displays supporting

nurses specifically. It also observed that nurses used equipment functions in a way not

intended by the manufacturers (e.g., intentionally entering a smaller infusate volume

than was available, so that the infusion pump alarm reminded them when the pump

was nearly empty). These behaviors lead to unnecessary alarms. Additionally, nurses

had to integrate information from many disparate sources, with only information from

the cardiac monitor being available outside the patient’s room. Finally, we observed

that the titration of vasoactive medications was a challenging task, requiring signifi-

cant nursing resources (in terms of staff availability as well as mental workload for the

nurse performing this task). Future work should allow for combining clinical context,

such as provider presence, performed tasks (suctioning causing alarm silencing, or

titrating medications with predictions of vitals sign changes), and the patient’s state

in the physiological monitor.
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1.2.4 Titration Advisory System with Patient
Specific Sensitivity Identification

Chapter 4 of this dissertation is the first example of supporting nurses in their

clinical practice, by reducing their workload and improving their decision making.

The purpose of this study was to use simulation to test the feasibility of using

small-step changes in infusion rates to automatically identify a patient’s sensitivity to

sodium-nitroprusside (SNP), dobutamine, or dopamine as the drug is being infused

and to evaluate whether an advisory system that predicts blood pressure values 5 min

in the future enhances a clinician’s ability to manage SNP infusion. Findings indicate

a 52-82% improvement in the accuracy of the mean arterial blood pressure (MAP)

prediction when using the identification system for the three investigated medications

(SNP, dopamine and dobutamine); a median time reduction of 6.1 min to reach the

desired MAP; and a significant reduction of mental workload and effort. Finally,

the sensitivity identification led to a proposed extension of existing therapy support

indicators, such as the inspired oxygen fraction and ventilator provided minute volume

supporting blood oxygen saturation, to vasoactive drugs altering heart rate, blood

pressure or cardiac output.

1.2.5 Intensive Care Unit Far-View Display
Supporting Triaging Tasks

Chapter 5 of this dissertation is the second example of supporting nurses in their

clinical practice, by supporting them in triaging unfamiliar patients. The goal of

the study was to test two hypotheses: a) the information provided by a far-view

display allows a clinician to faster identify which patients need the most immediate

attention, and b) the far-view display will reduce the clinicians’ mental workload and

improve situational awareness. The novel display was designed specifically for nurses

as its main users (proposed in the Chapter 2) and includes infusion pumps indicating

the time until they are empty (proposed in Chapter 3), as well as therapy support

indicators (proposed in Chapter 4). It might find a future application not only in

making triage decisions of unfamiliar patients but also in communicating patients’

vital signs in change-of-shift reports. A nurse-specific close-view display, integrating

multiple devices, such as cardiac patient monitors, infusion pumps, ventilators and
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the electronic medical record, into a single easy to use device for nurses was designed

and evaluated as a separate project performed by Sven Koch.41
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CHAPTER 2

EVALUATIONS OF PHYSIOLOGIC
MONITORING DISPLAYS: A

SYSTEMATIC REVIEW∗

2.1 Abstract
The purpose of this paper is to present the findings from a systematic review of

evaluation studies for physiologic monitoring displays, centered on empirical assess-

ments across all available settings and samples. The findings from this review give

readers the opportunity to examine past work across studies and set the stage for the

design and conduct of future evaluations.

A broad literature search of the literature from 1991 to June 2007 on PubMed and

PsycINFO databases was completed to locate data-based articles for physiologic mon-

itoring device display evaluations. The results of this search plus several unpublished

works yielded 23 publications and 31 studies.

Participants were faster detecting an adverse event, making a diagnosis or a clinical

decision in 18 of 31 studies. They showed improved accuracy in a clinical decision or

diagnosis in 13 of 19 studies and they perceived a decreased mental workload in 3 of 8

studies. Eighteen studies used a within subjects design (mean sample size 16.5), and

9 studies used a between group design (mean group size 7.6). Study settings were

usability laboratories for 15 studies and patient simulation laboratories for 6 studies.

Study participants were anesthesiologists or anesthesiology residents for 19 studies

and nurses for 5 studies.

The advent of integrated graphical displays ushered a new era into physiological

∗With kind permission from Springer Science+Business Media: Görges M, Staggers
N. Evaluations of physiological monitoring displays: a systematic review. J Clin
Monit Comput. 2008;22(1):45-66. ©Springer 2007
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monitoring display designs. All but one study reported significant differences between

traditional, numerical displays and novel displays; yet we know little about which

graphical displays are optimal and why particular designs work. Future authors

should use a theoretical model or framework to guide the study design, focus on

other clinical study participants besides anesthesiologists, employ additional research

methods and use more realistic and complex tasks and settings to increase external

validity.

2.2 Introduction
The use of physiological monitoring displays is an essential part of clinical care

in contemporary health settings. More to the point, the design and interpretation of

these displays allows clinicians to detect critical events in a time-sensitive manner, op-

timally leading to improved patient outcomes. Empirical evaluations of physiological

display designs have been published since the early 1990s when computer technology

was advanced enough for graphical, real-time monitoring to occur. Yet, no systematic

review of the field is currently available.

Two previous, less formal reviews are published. Sanderson et al.1 discussed

advantages and disadvantages of advanced display technology, comparing these dis-

play methods for anesthesiology: Advanced visual displays, head-mounted displays,

auditory displays and combinations thereof. As part of a literature review of 9

citations through the year 2002, Drews and Westenskow2 examined previous work on

traditional and graphical displays for detection, diagnosis and treatment modalities

in anesthesia. Both of these excellent reviews center on anesthesiology. However,

nurses are the largest group of clinical display users in clinical settings. This review

improves upon previous work by broadening the assessments to all evaluations in

all settings, including citations through mid-2007, and employing formal systematic

review techniques to analyze past work.

The purpose of this paper is to present the findings from a systematic review of

evaluation studies for physiologic monitoring displays, centered on empirical assess-

ments across all available settings and samples. The findings will give readers the

opportunity to examine past work across studies and set the stage for the design and
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conduct of future evaluations.

2.3 Background
The first recording of a human electrocardiogram (ECG) in 1887 and its im-

provements by Einthoven led to the development of cardiac patient monitors. Com-

puterized ECG was one of the first applications for continuous patient monitoring.3

Since then, standard cardiovascular patient monitoring has changed little. Only small

enhancements, such as color displays or trending (both tabular and graphical) have

been incorporated into displays available in the marketplace. A more significant but

rather hidden improvement occurred with better alarm algorithms, e.g., outlined by

Imhoff and Kuhls,4 and sensors to reduce the number of false alarms.

Current physiological patient monitoring displays follow the single-sensor, single

indicator paradigm, showing one waveform and/or numeric for each sensor.5 Some

sensors provide more than one indicator, such as pulse oximeters or pulmonary artery

catheters. Most important, all available monitors still require health care providers

to integrate multiple sources of pertinent information in their heads to make an

appropriate clinical decision.

Some novel graphical displays are available commercially; however, few have

been formally evaluated. Conversely, recent empirical evaluations for proposed in-

tegrated displays have been completed, but only two are commercially available in

the marketplace currently: (a) an anesthesia drug display evaluated by Syroid et

al.6 and Drews et al.7 is in the GE CareStation’s Navigator Applications Suite

(GE Healthcare, Waukesha, WI), and (b) a variation of George Blike’s display is in

Dräger’s Zeus anesthesia workstation (Dräger Medical AG, Germany). The numeric,

polygon and histogram displays evaluated by Gurushanthaiah et al.8 were initially

in the Ohmeda Modulus CD anesthesia machine (Ohmeda, Madison, WI now GE

Healthcare). However, this anesthesia machine is no longer available and newer

versions do not include the novel display. Thus, only two integrated displays in

the commercial market have had the benefit of an empirical evaluation.
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2.4 Methods
A broad literature search of the literature from 1991 to June 2007 was undertaken

to locate articles dealing with evaluations of physiologic monitoring device displays.

The search began with the year 1991 because the technical capabilities for displays

were not advanced enough before then to provide graphical displays. The search was

performed on PubMed and PsycINFO databases using the terms found in Appendix

A. The search yielded 1,012 (999 on PubMed and 13 on PsycINFO) references. Both

authors independently assessed citations for relevancy using the following criteria: (a)

physiological monitoring display evaluation, (b) empirical assessment, and (c) English

language. Exclusion criteria were: (a) editorials or opinion pieces, (b) descriptions of

usage or adoption only, (c) design explanations with no evaluation, (d) review articles,

and (e) qualitative research. The raters compared relevancy results and discussed

any differences in findings. Where differences existed, the citation was included for

further evaluation. Additionally, if relevancy could not be determined from the title,

the citation was included in the next step of the relevancy assessment.

From these initial references, 93 articles were identified as being potentially rel-

evant. The authors independently evaluated the abstracts and categorized them

into one of the following: relevant, questionably relevant and not relevant. The

raters compared the results for agreement; for any discrepancies, the raters discussed

each abstract. If any question about relevancy remained, the article was rated as

questionably relevant and the full article was retrieved for evaluation. At the end of

this process, all articles rated as relevant or questionably relevant were retrieved for

further evaluation.

A total of 59 articles were retrieved, read, rated and discussed by the two raters.

The articles were rated for relevancy in a dichotomous manner, yielding 18 articles.

One additional article,11 published in late 2007 while this manuscript was under

review, was added to the set because of its pertinence. Fugitive literature was included

when it was discovered: (a) 2 posters, (b) 1 doctoral dissertation and (c) one 1 paper

from a journal (Cognition, Technology & Work) not listed in PubMed or PsycINFO.

The final set consisted of 23 references.
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2.5 Results
The 23 articles matching the relevance criteria are listed in Table 2.1.

Several of the articles reported results of multiple studies; therefore, the total

number of completed studies is 31. Each of the studies was evaluated using a

quality assessment called QUASII.29 This new instrument was developed as a tool

specifically for assessing empirical studies in clinical informatics. Items are organized

around the four ‘‘threats to validity model’’ of Cook and Campbell30 and Shadish,

Cook and Campbell31 and were adapted from the general meta-analytic literature and

accepted texts on evaluating research quality.32–34 During the item development for

the instrument, clarification was achieved iteratively, until an inter-rater reliability

with a final overall kappa between two raters of 0.85–0.94 was obtained. The QUASII

scores for the articles ranged between 78 and 123 out of possible total of 126.

2.5.1 Study Settings

Studies were completed in laboratories in Australia, Canada, Germany, Sweden,

the United Kingdom and the United States; 12 of 31 were performed at the University

of Utah. The most common study settings were usability laboratories (15 studies)

or a patient simulation laboratory (6 studies). Two studies were conducted in a

naturalistic environment, one on a medical intensive care unit and one in a meeting

room of a neonatal intensive care unit. The remaining 8 studies used static computer

screens, computer simulations and in 2 cases, paper mock-ups of designs where the

setting was immaterial.

2.5.2 Study Participants

Researchers used both clinical and nonclinical participants. Nineteen studies used

anesthesiologists and anesthesiology residents. Six studies had various nurse, respira-

tory therapist and/or physician participants. Six study samples were nonclinical—2

each with engineering students, general public and anesthesia staff, and psychology

undergraduates.
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Nine of the 31 studies reported the sample’s mean age, ranging from 31–42.6

years. In one paper27 the ages of the nonclinical samples vary from 19–55 and 29–62

in comparison to the clinician group’s age range of 23–44 years. Six of the 31 studies

report the expertise of participants in mean postgraduate years, ranging from 5–13.9

years. Ten studies did not report expertise while 13 studies include samples with

2 or more levels of expertise. Doig15 mentioned that study groups were balanced

for intensive care nurses’ expertise. Other participant variables were measured: 5

studies measured hr of sleep in the previous night, 5 reported participants’ caffeine

and medication consumption and 1 obtained additional measures such as color vision,

vision quality, and dominant hand.

Average sample sizes ranged from 5–46 subjects. Within subjects designs had

a mean sample size of 16.5 while between group designs had an average of 7.6

participants per cell. Total sample sizes for between groups studies ranged from

5 to 30.

2.5.3 Display Type

A variety of displays were studied: 13 hemodynamic/cardiovascular, 6 pulmonary/

respiratory, 4 integrated anesthesia and 2 anesthesia drug graphical displays, 3 respi-

ratory sonifications, and 1 each vibro-tactile and sonification display, arterial blood

gas graphic and physiologic trend graphic. All but Görges et al.17 reported significant

improvements for accuracy and/or speed with the new designs.

2.5.4 Study Design

Eighteen studies used a within subjects design while 9 used a between groups

design. Two studies employed combined designs (both within subjects and between

groups), and two other studies were descriptive (an observation and a description

of design iterations for a pulmonary metaphor). Twenty-one studies randomized (or

counterbalanced) scenario order and 10 randomized display order. In fact, Gurushan-

thaiah et al.8 used Latin-squared randomization to guide the order of tasks.
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2.5.5 Tasks

Fifteen studies devised anesthesia scenarios and 2 others used medical decision

tasks. Seven studies used deviation or event detection tasks while 2 studies used

multiple choice questions about respiratory events. The 2 descriptive studies outlined

the use of the display in normal clinical workflow.

Nonclinical participants worked with the clinical scenarios in 6 studies. These

participants included psychology students,16 nonmedical anesthesia staff,8 engineering

students,23 the general public and IT postgraduates,27 and bioengineering students.28

Twenty-two authors reported giving training to participants while 2 studies pro-

vided ‘‘instruction.’’ Nineteen authors reported that participants were allowed to

practice with the new device. The combination of practice and training with displays

lasted from 2–45 min. One author allowed more practice if participants did not meet

cut scores. Seven authors either used cut scores for admitting participants into the

study or had participants practice until specific performance goals were met.

2.5.6 Dependent Variables

The most common dependent variable was time to complete a task (make a

diagnosis, detect an adverse event or initiate treatment), measured in 30 of the 31

evaluation studies. Participants were faster detecting an adverse event or making a

diagnosis or decision in 18 studies.7–14, 18, 19, 22, 24, 28 Participants in 13 of 19 studies

showed improved accuracy in a clinical decision or diagnosis.8, 9, 11, 13, 15, 19–23, 27 Five

studies used a control task, measuring the percentage of time spent within a target

range or deviations in vital signs. With graphical designs, participants6, 7, 10, 16 had

less vital sign deviations or deviations from a target range. Three of 8 studies showed

decreased perceived workload, with a graphical design,6, 9, 24 and 3 studies described

screen display regions of interest measured with an eye tracker. Other dependent

variables included 3 studies measuring satisfaction, subjective utility, situational

awareness, display usefulness and whether the scenario was realistic. Overall, these

studies demonstrated the positive impacts of a graphical design on speeding clinician

time to detect an event, determine a diagnosis, determine a correct diagnosis and stay

within a target range of variables.
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2.6 Discussion
None of the studies reported using a theoretical model or framework to guide the

study or its methods although a number of theoretical works are now available.35–39

Theoretical models or frameworks are organizing structures researchers can use to

assist with study design. These conceptual structures allow researchers to consider

major variables of interest as well as potential confounding variables. For instance,

frameworks with a developmental timeline37, 38 remind researchers to consider both

practice and training because users and technology change over time. Likewise,

individual characteristics guide researchers to measure and/or control for partici-

pant differences. These kinds of elements might appear straightforward to readers;

however, these variables were not consistently reported or considered in published

studies.

2.6.1 Study Settings

The most common settings for studies were usability laboratories or those sim-

ulating operating rooms (ORs). However, practicing clinicians use monitors in a

number of settings besides the OR, e.g., emergency departments, telemetry units,

intensive care units, and prehospital modes of transportation such as air transport and

ambulances. In particular, pediatric units, neonatal displays, and even battlefields are

not represented in available studies. Remote monitoring of critical care patients, e.g.,

as outlined by Breslow et al.,40 is a relatively new care delivery method, presenting a

novel setting for future evaluations. With the exception of select intensive care units,

settings mentioned here are as yet unexplored or simulated in usability laboratories.

Drews and Westenskow2 noted that, at this point, researchers cannot be clear

about how the studies performed in lab settings correlate to participants’ performance

in actual clinical settings. The combination of embedding the participant into a more

realistic environment, like a simulated clinical setting with a human patient simulator,

is a good step forward; however, researchers will want to test their displays in actual

clinical settings as well.
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2.6.2 Study Participants

Anesthesiologists comprised 61% of the total participants in past studies. Displays

are not yet designed and evaluated for the largest group of monitor users: Nurses.

Their concerns and tasks are distinct from anesthesiologists, so designs are needed

for nurses’ particular tasks and mental models. More important, current commercial

physiological displays do not supporting a walk-by, at-a-glance assessment of the

patient’s status, a benefit needed by nurses as they multitask during patient care.

Respiratory therapists (RTs) are another group of understudied monitor users.

Display users in various settings will not be homogeneous even within professions.

For instance, nurses performing trauma care in the emergency department may require

different display designs than nurses in intensive care units with the more routine

monitoring that occurs there. Likewise, physicians other than anesthesiologists have

not been included in evaluation studies, except in two studies.20, 25

Participant demographics and individual characteristics are inconsistently reported

and/or controlled.2 Age was not reported in 18 studies and caffeine intake was

not reported in 23 studies. Expanding upon that notion, the age range of study

participants, when reported at all, varied as much as 30 years. Factors such as age and

caffeine intake may be potential confounding variables in studies using response times

as a dependent variable. For example, Gurushanthaiah et al. [8, study 3] reported an

influence of age and caffeine consumption on participant response times for nonclinical

volunteers. Age and caffeine did not influence their results for clinicians; however, the

sample size of 5 was very small. Response time and age are positively correlated so

including participants in their 50s or 60s should be carefully considered in the future

and a more narrow age range should be contemplated. Expertise is another important

variable to track or control, especially if a between-groups experimental design is

used. Levels of expertise may be a confounder to the observed results, particularly

when students are combined with more seasoned clinicians. Future researchers should

routinely report participant demographics and pertinent variables such as caffeine

intake.

Last, using nonclinical participants, while convenient, raises questions about the

external validity and significance of the results. That anesthesiologists out-performed
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IT professionals or the general public is not surprising.

2.6.3 Study Designs

The majority of studies used within subjects designs. These are particularly

well suited to studies involving response time because they control for individual

differences which can vary widely across users. Studies using between groups designs

received lower quality ratings primarily due to the control for individual differences

and the larger sample size required to assure adequate power. Six of the 9 studies

with a between groups design had fewer than 15 participants per cell (mean = 7.6)

and did not assess group equivalence. No researcher reported conducting a power

analysis. Without a power analysis, researchers should have at least 15 per cell in a

between group study to assure adequate power.41

2.6.4 Tasks and Scenarios

A few authors reported validity assessments for clinical scenarios, e.g., Blike et al.12

or Doig,15 using clinical experts to validate scenarios or consulting sample case studies

from the medical literature. Other authors shortened scenarios for study purposes,

e.g., Syroid et al.6 or Wachter et al.24 While these abbreviated scenarios are likely

to increase the mental workload, they artificially condense time frames,2 which may

confuse the study participant or cause them to eliminate potentially correct diagnoses.

Future researchers can learn from these examples by including a scenario validity

assessment, e.g., using external experts and considering the use of more realistic

scenarios.

Multiple scenarios are likely to have different levels of complexity, e.g., detecting

bronchospasm compared to detecting an arrhythmia28 or detecting bronchospasm

compared to detecting a pulmonary embolism.17 Differences in task complexity

need to be assessed and controlled for carefully, as they may become additional

covariates that can mask valid results. Once understood, complexity levels can

either be randomized to reduce an order effect or controlled across groups to assure

equivalency. Of course, tasks can only be randomized if this technique does not

destroy the clinical relevancy of the scenario. Otherwise, several scenarios can be

presented with equivalent tasks in differing order.
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Low mental workload is common across current studies. Displays were essentially

isolated from other stimuli, merely showing waveforms and numeric information of

the different sensors familiar to clinicians. In most studies, participants can focus

exclusively on the required control or diagnostic task without competing demands.

Sanderson et al.1 warn that new displays reveal higher order properties of patient

states, yet their benefits in high mental workload situations is unknown. In a realistic

environment, a clinician often takes care of more than one patient and may need to

perform several tasks at once. Attention to clinician mental workload is needed in

the future.

New designs may include variables not typically measured in the clinical setting,

creating a dilemma for designers.22 Choices are: (a) to not display certain elements

of the design, (b) to not show the display at all, or (c) to assume values in order for

the display to function, all which might pose substantial problems for obtaining FDA

approval. Albert et al.11 offered one solution: condensing the Agutter et al.10 display

by the missing variables while preserving the overall metaphor.

Future researchers can eliminate nonclinical control tasks such as arithmetic dis-

tracter tasks, e.g., as in.19, 27 These do not assist with the external validity of

the study and they create a different mental workload than typical clinical tasks.

More relevant control tasks are participants’ pagers beeping during the scenario, staff

talking to the participant during the task, overhearing staff cell phone conversations

and other ambient noise. Interruptions are a common occurrence in all settings, yet

only a few studies7, 10, 24 integrated disruptions and distractions into their simulated

or actual study settings, e.g., having an investigator distract and interrupt the par-

ticipant by acting like a surgeon. Scenarios with distractions and requirements for

multitasking7, 42 provide for more realistic environments for participants and aid in

requirements development for designers.

Seven studies used cut-scores to test training adequacy before participants were

admitted to the study. Cut-scores or other competency assessments can be useful for

future researchers to decrease individual differences and variability across subjects.

Pilot tests are particularly useful to test study methods, training requirements and to

determine the number of tasks to display to ensure adequate practice. Researchers can
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display performance times plotted against tasks to observe the resulting performance

curves. When the performance curve flattens, the number of tasks and practice is

adequate.

2.6.5 Future Display Evaluations

Thirty of 31 studies reported significant findings with the new display. This is

likely a publication bias; however, from the collected studies, one might surmise

that any novel design is a significant one. The next logical step may be to compare

graphical designs to each other to find out why particular designs are significant.

Additionally, adding a qualitative portion to a study could identify why users find

particular designs optimal. Sanderson43 cites an interview with Matt Weinger about

future patient monitoring that would provide real-time, continuous information on

organ functions down to the cellular level. Designers will be challenged to integrate

vast numbers of values into logical displays to aid clinical decision-making under time

pressure.

The NASA-TLX44 is a tool used in 6 studies. The tool measures various aspects

of perceived mental workload, is easy for participants to use, and provides another

dimension to users’ work with displays. The development of this instrument is de-

scribed in an original paper44 and a comparison with alternative methods of workload

assessments instruments can be found in Rubio et al.45 Future researchers may wish

to incorporate one of these tools into their work and also perform formal psychometric

testing for the instrument to build upon the fine conceptual development of this tool.

All studies to date have examined only the dyad of user and display. However,

clinicians typically work as teams in clinical environments. How a monitor might be

devised to address the work of teams has not been studied. Last, the opportunities for

future researchers are great because many currently available displays lack empirical

evaluations.

2.7 Conclusions
The advent of integrated graphical displays ushered a new era into physiological

monitoring display designs. This systematic review analyzed 31 studies of these

novel designs. All but one study reported significant differences between traditional,
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numerical displays and novel displays using graphs or sound – decreasing the time

to detect an event or the time to make a diagnosis or increasing the accuracy of

the diagnosis. Yet we know little about which graphical displays are optimal and

why particular designs work. Most studies focused on anesthesia-related participants

while future work can explore nurses, respiratory therapists, nonanesthesia physician

users as well as teams of users. The majority of current studies were conducted in

laboratory settings. In the future, more realistic, complex tasks and settings would

provide greater external validity for studies. Most acute care clinical settings and

concomitant tasks in emergency departments, pediatric units, ambulances, neonatal

intensive care units, and even battlefields are, as yet, unexplored. Future researchers

can improve their studies by: (a) Using a theoretical model or framework to guide

the study, (b) Reporting and controlling for individual differences of participants, (c)

Completing validity assessments of clinical scenarios to ensure clinical realism, (d)

Assuring adequate power in the study by conducting a power analysis to estimate

numbers of required participants, and (e) Adding a qualitative component to studies

in order to better understand how designs work for clinical decision-making.

2.8 PubMed Search Terms
PubMed search terms (‘‘computer simulation’’[MeSH] OR ‘‘data display’’[MeSH]

OR ‘‘monitoring, physiologic’’ [MeSH:noexp] OR ‘‘patient Journal of Clinical Mon-

itoring and Computing simulation’’ [MeSH] OR ‘‘user–computer interface’’ [MeSH]

OR ‘‘models, biological’’[MeSH:noexp] OR ‘‘computer graphics’’[MeSH])

AND (‘‘blood pressure’’[MeSH] OR ‘‘heart rate’’ [MeSH] OR ‘‘intubation, intra-

tracheal/instrumentation’’ [MeSH] OR ‘‘hemodynamic processes’’[MeSH] OR ‘‘respi-

ration’’[MeSH] OR ‘‘respiration, artificial’’[MeSH] OR ‘‘anesthesiology’’[MeSH] OR

‘‘Anesthetics’’[MeSH] OR ‘‘Critical Care’’[MeSH] OR ‘‘Intensive Care Units’’ [MeSH])

AND (ecological[tiab] OR graphic[tiab] OR graphics [tiab] OR graphical[tiab] OR

GUI[tiab] OR visual[tiab] OR simulator[tiab] OR simulation[tiab])

AND English[lang]

AND (‘‘1991/01/01’’[EDAT] : ‘‘2007/06/01’’ [EDAT])

AND ‘‘Journal Article’’[ptyp]
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CHAPTER 3

IMPROVING ALARM PERFORMANCE
IN THE MEDICAL INTENSIVE CARE
UNIT USING DELAYS AND CLINICAL

CONTEXT∗

3.1 Abstract
In an intensive care unit, alarms are used to call attention to a patient, to alert a

change in the patient’s physiology, or to warn of a failure in a medical device; however,

up to 94% of the alarms are false. Our purpose in this study was to identify a means

of reducing the number of false alarms.

An observer recorded time-stamped information of alarms and the presence of

health care team members in the patient room; each alarm response was classified

as effective (action taken within 5 min), ineffective (no response to the alarm), and

ignored (alarm consciously ignored or actively silenced).

During the 200-hr study period, 1271 separate entries by an individual to the room

being observed were recorded, 1214 alarms occurred and 2344 tasks were performed.

On average, alarms occurred 6.07 times per hr and were active for 3.28 min per

hr; 23% were effective, 36% were ineffective, and 41% were ignored. The median

alarm duration was 17 sec. A 14 sec delay before alarm presentation would remove

50% of the ignored and ineffective alarms, and a 19 sec delay would remove 67%.

Suctioning, washing, repositioning, and oral care caused 152 ignored or ineffective

ventilator alarms.

∗With kind permission from Wolters Kluwer Health / Lippincott, Williams &
Wilkins: Görges M, Markewitz BA, Westenskow DR. Improving alarm performance
in the medical intensive care unit using delays and clinical context. Anesth Analg.
2009 May;108(5):1546-52. ©2009 International Anesthesia Research Society
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Introducing a 19 sec alarm delay and automatically detecting suctioning, reposi-

tioning, oral care, and washing could reduce the number of ineffective and ignored

alarms from 934 to 274. More reliable alarms could elicit more timely response, reduce

workload, reduce noise pollution, and potentially improve patient safety.

3.2 Introduction
Intensive care unit (ICU) alarms were designed to call attention to a patient,

to alert a change in the patient’s physiology or to alert staff to a device problem.

Alarms are triggered when a physiologic variable crosses a set threshold. In their

excellent literature review, Imhoff and Kuhls report alarm frequencies of 1.6 to 14.6

alarms/hr and a false alarm rate of up to 90%.1 Chambrin et al.2 reported the lowest

rate of alarms at 1.6 alarms/hr; however, their study did not include infusion pumps

(InfP) or alerts. Tsien and Fackler3 reported one of the highest alarm rates at 9.8

alarms/hr in a noisier environment, but limited their study to alarms from the cardiac

patient monitor. The problem with simple threshold alarms is that up to 94.5% of

the alarms that sound in the ICU are false, are provider-induced,4 and frequently

sound unnecessarily.1, 2, 4 Default settings by the equipment manufacturers are set to

avoid missing a single false negative alarm and thereby result in many false positive

alarms.5

New alarm algorithms and improvements in sensors are reported to reduce the

number of false alarms, but many of these suggestions have not been incorporated into

current monitors nor have their improvements been evaluated in patients.1 Rheineck-

Leyssius and Kalkman6 proposed a highly effective method for reducing pulse oxime-

ter (Spo2) alarms by introducing a 6 sec delay thereby reducing alarm rates by 50%.

One of the new and interesting approaches to reducing the number of false alarms

is the use of context awareness.7, 8 Dey8 defines context-awareness as: “A system is

context-aware if it uses context to provide relevant information and/or services to

the user, where relevancy depends on the user’s task.” Chambrin et al.2 report that

42% of the transient ICU alarms are triggered by patient movement or respiratory

effort. Therefore, an alarm system that knows the patient is moving or coughing

could suppress many motion induced alarms. Although other investigators2–4, 9, 10
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have classified false alarms into general categories, such as “staff manipulation” or

“the patient,” we propose using specific tasks performed by the health care provider

and each patient’s current condition and actions. Some work regarding alarms and

their context has been performed. For example, Seagull and Sanderson11 investi-

gated anesthesia alarms in the context of the surgical phase (induction, maintenance,

emergence). However, there is still more to explore in the ICU setting.

The purpose of this study was to observe alarms in the medical ICU (MICU) to

identify methods for reducing the number of false alarms by using time delays and

the correlations between alarms and clinical context.

3.3 Methods
Approval was obtained from the University of Utah Health Sciences Center’s IRB

and informed consent was obtained from 22 participating health care team members.

At the beginning of each day, for 24 days, the investigator randomly selected a

patient room in the MICU, where a tracheally intubated patient was receiving respi-

ratory support. A different patient and room were chosen every morning, except one

patient who was observed twice. The investigator recorded health care team members’

actions while they were in the patient’s room and whether they came into the room in

response to an alarm. Health care team members included attending physicians, fellow

physicians, resident physicians, nurses, respiratory therapists, health care assistants,

physical therapists, medical students, pharmacists, and other providers. Observations

began at approximately 7:30 am and ended before 7 pm.

3.3.1 Setting

The 12-bed adult MICU is organized in an H shape, with individual patient rooms

to the north and south, a central station in its center, and additional function rooms

between the two rows of rooms. The doors to the patient’s rooms were left open

unless procedures were performed or privacy was required. The unit was staffed

with one nurse for every two patients, one health care assistant, and one health unit

coordinator. Respiratory therapists checked a patient’s ventilator when paged or at

least once every 4 hr. Most patients had sepsis, respiratory failure, acute respiratory

distress syndrome, multisystem organ failure, or renal failure. Approximately 25% of
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the patients had myocardial infarction, cardiomyopathy, or arrhythmias.

A cardiac monitor with at least electrocardiography, Spo2, and noninvasive arterial

blood pressure (NBP) modules was present in each patient’s room (HP M1094B,

Philips Medical Systems, N.A., Bothell, WA). The unit’s central monitoring station

was generally not staffed. Ventilators included a Siemens Servo 300/300A (Draeger

Medical, Telford, PA), a Nellcor Puritan Bennett 840 (Nellcor Puritan Bennett LLC,

Pleasanton, CA), or a Viasys Avea (VIASYS Healthcare, Conshohocken, PA). Alaris

Medley infusion pumps were used in every room (Cardinal Health Dublin, OH).

Flexiflo Quantum feeding pumps (Abbott Laboratories, Abbott Park, IL) were used

in 13 observed rooms.

3.3.2 Data Recording

Time-stamped detailed information of alarms and the presence of health care

team members were recorded manually using a COMPAQ iPAQ Pocket PC (Hewlett-

Packard Company, Palo Alto, CA) and abcDB Database v.6.0 (PocketSOFT.ca,

Lloydminster, SA, Canada). For health care team members, the time of entrance

and exit as well as the provider category were recorded using a predefined list. When

an alarm occurred, the observer recorded the device sounding the alarm, the alarm

threshold settings, the alarm cause if identifiable, and the variable that produced

the alarm: heart rate, Spo2, arterial blood pressure or NBP, pulmonary artery

pressure, central venous pressure, temperature, peak airway pressure, minute volume

(MV), tidal volume (TV), respiratory rate (RR) and apnea, InfP faults and feeding

pump (FeedP) faults. For bedside tasks, the observer selected interventions from

a predefined list and added free text comments with more detail. The following

task categories were used: device alarm silenced, drug administered/dosage changed,

patient assessment, physical therapy, washing, oral care, patient monitor settings

changed, ventilator settings changed, data charted, arterial blood gas drawn, blood

glucose levels measured, patient repositioned, airway suctioned, or other action taken.

3.3.3 Alarm Classifications

During the study, the observer classified each alarm as true, true irrelevant or

false. However, the observer was not a clinician, so all alarms were reclassified after the
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conclusion of the study using the following categories: effective, ineffective, or ignored.

An alarm was classified as effective when an alarm-related action was performed by

a qualified health care provider within 5 min of the end of the alarm. A qualified

provider is one who has the authority to take alarm-related action. For example,

physical therapists, phlebotomists, and health care assistants were only qualified to

call for assistance, whereas nurses were qualified to administer medications, suction

the patient’s airway and change patient monitor settings. Only respiratory therapists

and physicians were qualified to change ventilator settings.

Effective alarms were separated into two categories based on the action performed:

(a) Technical actions include restarting infusion pumps, changing alarm thresholds,

remeasuring values, changing sensor positions, reconnecting breathing circuits and all

other equipment-related actions, and (b) patient actions included giving sedatives to

an agitated patient, suctioning the airway, changing vasoactive drug infusion rates,

repositioning agitated patients, and all other patient-related actions. An alarm was

classified as ineffective if the alarm sounded, but a qualified health care provider did

not enter the room in response to the alarm or was not present during the alarm. An

alarm was classified as ignored when a qualified health care provider was present in

the patient’s room and no alarm-related action was taken during or within 5 min of

the end of the alarm or the alarm was silenced from the nursing station and no action

occurred.

3.3.4 Data Analysis

Analysis of the data was performed using MATLAB (The MathWorks, Natick,

MA). The pocket PC generated ACCESS/EXCEL files (Microsoft Corporation, Red-

mond, WA) were parsed, events were categorized and alarm start and end times were

paired with the times a person entered and left the room.

3.4 Results
Twenty-two health care team members participated in the study and gave written

consent: 13 nurses, 3 nursing student interns, 3 respiratory therapists, 1 health care

assistant, and 2 attending physicians. Several others, including phlebotomists, techni-

cians and residents, who participated in the study gave verbal consent. Two-hundred
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hr of data were collected from 22 patients over 24 days (13 males and 9 females, mean

age 54.6 18.5 yr with a range from 21 to 93 yr). One day’s data were lost and during

1 day participating health care team members did not care for a patient who met the

inclusion criteria. Observations were made for an average of 9.16 hr per day (range,

6.25–10.5 hr). Two patients’ lungs were ventilated using a Viasys Avea ventilator,

10 patients using a Siemens Servo 300 or 300A ventilator and 10 patients using a

Nellcor Puritan Bennett 840 ventilator. Respiratory therapists, and occasionally the

attending physicians or fellow physicians, changed the ventilator alarm thresholds;

nurses changed the cardiac monitor alarm thresholds. We observed 10 changes to the

patient monitor’s alarm settings (5 NBP, 1 Spo2 and 4 not recorded) and 23 changes

to ventilator alarm settings (8 MV, 4 peak airway pressure, 4 TV, 1 RR, 1 multiple

changes, and 5 not recorded).

During the 200 hr of observation, 1214 alarms occurred (6.07 alarms per hr):

Table 3.1 shows that 5.3% were effective and patient-related, 17.7% were effective

and technically related, 36.3% were ineffective, and 40.7% were ignored. Figure 3.1

shows the number of alarms generated by each variable and the length of time each

alarm was active. The median alarm length was 17 sec (range, 1 sec to 17.25 min):

45.1% lasted for 15 sec, 74.4% for 30 sec, and 89.4% for 60 sec. Of all the alarms,

34.3% ended without any health care team member being present in the patient’s

room. Thus they canceled themselves when the alarming condition cleared. Many

more alarms cleared when no health care team member qualified to respond to this

alarm was present. Only the feeding pump and the infusion pump always required

user intervention for the alarm to stop. Figure 3.2 shows the total number of alarms

for each of the four alarm types. A 19 sec alarm delay would reduce the number of

ignored and ineffective alarms by 67.1%, whereas a 14 sec alarm delay would reduce

it by 51.3%. For the effective alarms, the median time between the end of the alarm

and the timestamp for the solution was 20 sec; 77 solutions were performed before

the alarm had ended.
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Figure 3.1: Number and duration of alarms per hr. The alarms are sorted by
the alarm frequency, starting with the device with the most alarms per hr. The
gray shading indicates the length the alarm was active, where each category does
not include alarms already included in shorter-length categories. Alarms are: HR
heart rate and arrhythmias; Spo2 pulse oximeter; ABP arterial or noninvasive blood
pressure; Pmax peak airway pressure; MV minute volume; TV tidal volume; RR
respiratory rate; InfP infusion pump; FeedP feeding pump; and Other all alarms not
fitting into these categories.
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3.4.1 Ventilator Alarms

Table 3.2 shows that ventilator manufacturers have taken different approaches for

MV, TV and RR alarms. The Servo 300/300A ventilator does not alarm with TV or

RR but with MV (TV times RR). The Nellcor 840 and Avea have separate alarms for

all three related variables. As a consequence, the Nellcor 840 and Avea produced 4.29

alarms/hr and 5.43 alarms/hr, respectively, whereas the Servo 300 produced only 1.03

alarms/hr. However, while the percentages of ineffective and ignored alarms of the

3 ventilators (Servo 300, Nellcor 840 and Avea) were similar (83%, 84%, and 88%),

our observation periods were not equal (94, 90, and 16 hr); therefore a statistical

comparison was only performed between the Servo 300 and the Nellcor 840 group.

3.4.2 Unnecessary Alarms Occurring During Patient Care

During or within 2 min after suctioning, washing, repositioning, and oral care,

152 ineffective and ignored ventilator alarms were recorded (Table 3.3). A 2-min time

window was chosen because the alarm silence button disabled alarms for 2 min. The

primary alarm reason for 57 ventilator alarms, coded during the observation, was

coughing. Patients’ spontaneous breathing efforts were the cause for 118 ventilator

alarms. Because no one was present in the room when 43.1% of the alarms started,

they were not caused by a health care team member’s actions.

3.4.3 Health Care Provider Presence and Tasks

During the 200-hr study period, 1271 separate entries by a health care team

member to the room being observed were recorded; their average stay was 4.6 min

(range, from 2 sec to 80.5 min). As seen in Figure 3.3, nurses made 65.7% of all visits;

the patient’s primary nurse made 44.8% of the visits. Of all providers, 15.6% stayed

30 sec and 70.8% 5 min. Nurses contributed to the longest duration of health care

team members’ stay in the patient’s room (62.6%, primary nurse 37.7%). During the

200-hr study period 2344 tasks were performed (Fig. 3.4). On average, 11.7 tasks per

hr were performed (range, 6.9 –21.5 task/hr), and most were done by the nursing staff.

The most common tasks were nurses administering medications or changing infusion

rates (2.3/hr), silencing alarms (1.3/hr), charting (1.1/hr), and patient assessments

(0.7/hr).
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Table 3.2: Number of ventilator alarms per hr

Tidal
volume

Respir-
atory
rate

Minute
volume

Airway
pressure

Apnea Total
number

of
alarms/hr

Servo
300

0.62 0.39 0.01 1.03

Nellcor
840

2.39 0.59 1.23 0.17 4.38§

Avea 2.04 1.40 1.72 0.19 5.36

Average ventilator alarm thresholds were set to 36.6±6.6 mm Hg for peak airway
pressure, 4.9±3.0 and 16.3±4.2 L/min for low and high minute volume, 37.6±7.1
L/min for respiratory rate, 283±78 and 954±144 mL for low and high tidal volume.
§ P<0.005 using a t-test with 2 tails and unpaired variance for alarms per day,
normalized by duration of use during each day, between the Servo and the Nellcor
group. No comparisons with the Avea group are reported because of its infrequent
use during our study.

Table 3.3: Ventilator alarms occurring during or within 2 min of patient care tasks

Task
name

Minute
volume
alarms

Tidal
volume
alarms

Respi-
ratory
rate

alarms

Peak
airway
pres-
sure

alarms

Apnea
alarms

Inspired
oxygen
fraction
(Fio2)
alarms

Total
number

of
alarms

Suc-
tioning

26
(21%)

27
(13%)

8
(19%)

3
(8%)

9
(47%)

1
(100%)

74

Reposi-
tioning

22
(18%)

19
(9%)

12
(28%)

4
(11%)

2
(11%)

0 59

Oral
care

6
(5%)

2
(1%)

1
(2%)

0 0 0 9

Washing 4
(3%)

1
(0%)

2
(5%)

3
(8%)

0 0 10

The number in parenthesis is the percentage of the total alarms in each alarm category
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Figure 3.3: Number and duration of health care provider visits to the patient’s
room. The providers are sorted by the number of visits, starting with the most
visits per hr. Physicians include attending physicians, fellow physicians, and resident
physicians. The gray shading indicates the duration a health care provider stayed
in the patient’s room. Each duration category does not include durations already
included in shorter-length categories.
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3.5 Discussion
Of the 1214 alarms that occurred during our 200-hr observation period, only 23%

were effective. If the alarm onset would be delayed for 19 sec, two-thirds of the ignored

and ineffective alarms could have been avoided (Fig. 3.2). Suctioning, washing,

repositioning, and oral care caused 152 ineffective and ignored ventilator alarms, of

which 33 were longer than 19 sec. If the alarm systems had been contextually aware

of patient care procedures and waited 19 sec before sounding an alarm, the combined

ineffective and ignored alarm rate could have been reduced from 934 (77%) to 274

(50%) and the total number of alarms reduced by 54%. This reduction in the number

of alarms would be clinically relevant as alarm noise has a detrimental effect on

patients’ sleep and ICU outcome.12 Additionally, this reduction should reduce alarm

fatigue, a problem commonly observed in ICUs.4, 13

3.5.1 Comparison with the Literature

Our observation of 6.1 alarms/hr is consistent with a literature review by Imhoff

and Kuhls1 reporting 1.6 to 14.6 alarms/hr. We did not classify alarms as false and

true; however, 77% of our alarms were ineffective and ignored alarms, which is similar

to the false alarm rate of 90% reported by Imhoff and Kuhls.1

3.5.2 Alarm Classification Method

Tsien and Fackler3 define true, true irrelevant, and false alarms as: “True Positive,

Clinically Relevant was used to indicate the monitoring device sounded an alarm, the

alarm was appropriate given the actual data value as compared with the set threshold

value, and the patient’s condition required prompt attention. . . . True Positive,

Clinically Irrelevant was used to indicate the monitor sounded an alarm, the alarm

was appropriate given the input data value as compared with the set threshold value,

but the patient’s condition had not changed in a way that required additional medical

attention. . . . False Positive was used to indicate that the monitor sounded an alarm,

but the alarm was inappropriate given the input data value. . . . The alarm was false

because the reported value did not reflect the patient condition.”

Classifying alarms into effective, ineffective, and ignored alarms has three advan-

tages over the traditional method using true, true irrelevant, and false alarms: (a)
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the alarm classification can be performed by a trained observer rather than an expert

clinician; (b) the classification can be performed after the completion of the study,

as long as tasks and providers’ actions are recorded; and (c) the criteria using a time

cutoff and a task requirement related to the alarm makes it more objective than a

single clinician’s decision. However, there are also three disadvantages associated with

this approach: (a) our method departs from the current alarm study literature using

true and false alarms,1 (b) an effective alarm might be misclassified as an ineffective

or ignored alarm if the response takes longer than 5 min to initiate, and (c) the alarm

records must include tasks and health care provider actions.

3.5.3 Introducing an Alarm Delay

A delay would improve alarm reliability at the expense of lengthening the response

time. It seemed that the staff currently respond selectively to alarms or wait before

responding. They went to the patient’s room in response to only 9.1% of the alarms,

yet of these alarms 69.4% were effective alarms. It would be better for the alarm

system to automatically introduce a delay rather than relying on the busy clinician

to keep track of alarm duration. This proposal is consistent with a pulse oximeter

study in which a 6 sec delay reduced the alarm rate by 50%.12 Waiting 19 sec before

sounding an alarm would have reduced the number of Spo2 alarms by 52%. Newer

Spo2 monitors claim to have reduced the false alarm rate to 15% with only minor

delays by using better signal processing techniques.14, 15 However, to keep the patient

safe, asystole and ventilator disconnect/apnea alarms should be exempt from this

delay.

3.5.4 Reducing Ventilator Alarms

TV was the most frequently occurring alarm; MV was the second most frequent

(Table 3.1). The TV signal from the ventilator is a noisy signal, especially in

patients with spontaneous breathing efforts and with active airway protection reflexes

(coughing). TV alarms frequently occurred after suctioning. Waiting 19 sec to

announce a low TV would have had very little consequence to the patients we

observed, as they all had MV and blood oxygenation saturation alarms that sound

before desaturation occurs. The 19 sec delay would have reduced the number of TV
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alarms in our observation period by 18% and the number of MV alarms by 37%. Apart

from the patients’ spontaneous respiratory efforts and coughing after suctioning, the

leading causes for ventilator alarms were the lack of adaptations of the alarm threshold

when ventilation modes were changed.

Perhaps TV and RR alarms are not necessary and an MV alarm is sufficient. The

Servo 300, with an MV alarm, produced only 1.03 alarms/hr, whereas the Nellcor 840

and Avea, with RR, TV and MV alarms, produced 4.29 alarms/hr and 5.43 alarms/hr,

respectively (Table 3.2). However, without tracking patient outcome, we cannot say

which strategy is best.

An even more conservative approach is taken by Philips with their Intellivue Event

Surveillance system in which both MV and Spo2 must cross alarm thresholds before

an event is identified (Philips Medical Systems, Andover, MA). This approach has

been well accepted in neonatal care units. Our proposed approach would significantly

improve the reliability of ventilator alarms and may result in more timely attention

when the patient is truly at risk.

3.5.5 Reducing InfP and FeedP Alarms

InfP alarms were the longest in duration. One possibility to explain this behavior is

that most InfP alarms did not identify a critical event, when the patient was in danger,

and therefore the staff tended to ignore them for longer periods of time. InfP alarms

had a high effective alarm rate (83%) because an alarm, once triggered, does not stop

until the technical problem is resolved. We observed the nursing staff intentionally

entering a smaller infusate volume than was available, so that the InfP alarm reminded

them when the pump was nearly empty. Such alarm tailoring indicates the need

for alarm redesign.16 Here manufacturers could implement a lower priority reminder

function to support this behavior. In general, InfP alarms signaled mechanical failures

and empty infusates, rather than patient trouble, and should be used only in situations

involving the delivery of a life-supporting drug.

The FeedP alarms had a high effective alarm rate (90.3%) because there was no

alarm silence button and the technical problem had to be fixed before the alarm would

stop.
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3.5.6 Reducing Alarms Occurring During Patient Care

Nursing care seems to generate a significant number of alarms. During our

observations, 57% of the alarms occurred when a health care team member was

in the room. Considering that nurses were in the room for only 18.3 min an hr,

a disproportionate number of alarms occurred while they were in the room.

If the 2-min alarm silence button had been activated before suctioning, 74 alarms

would have been prevented and the ventilator alarm rate would decrease from 2.8

alarms/hr to 2.5 alarms/hr.

Washing caused 10 unnecessary alarms; repositioning caused 59. If repositioning

the patient were automatically detected by a mattress detection system,17, 18 the

number of unnecessary ventilator alarms could have been reduced by approximately

10%.

3.5.7 Health Care Provider Presence and Tasks

Figure 3.4 shows that silencing alarms constitutes approximately 16% of a nurse’s

bedside tasks. A radio frequency identification tracking system19 that could identify

when a nurse arrives in the patient room and automatically silence alarms could

reduce workload. However, caution is needed when changing the way alarms function

because the new function might lead to unintended consequences known as “automa-

tion surprises.”20 Noise pollution could be reduced if alarms were to sound or be

visually signaled outside the patient’s room when a provider was not present in the

room.

3.6 Conclusions
The number of ignored and ineffective alarms in a MICU could decrease from 934

to 274 by introducing a 19 sec alarm delay, and by automatically detecting suctioning,

patient repositioning, oral care, and blood gas sampling. Hopefully, more reliable

alarms will elicit a more timely response, reduce workload, reduce noise pollution,

and potentially improve patient safety.
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CHAPTER 4

A TOOL PREDICTING MEAN ARTERIAL
BLOOD PRESSURE VALUES IMPROVES

THE TITRATION OF VASOACTIVE
DRUGS∗

4.1 Abstract
Vasoactive drug infusion rates are titrated to achieve a desired effect, e.g., mean

arterial blood pressure (MAP), rather than using infusion rates based on body weight.

The purpose of this study is to evaluate a method to automatically identify a pa-

tient’s sensitivity to sodium-nitroprusside, dobutamine or dopamine and to evaluate,

whether an advisory system that predicts MAP 5 min in the future enhances a

clinician’s ability to titrate sodium-nitroprusside infusions.

We used published models implemented in MATLAB to simulate the response

of 100 individual patients to infusions of sodium-nitroprusside, dopamine and dobu-

tamine. The simulated patient’s sensitivity to the three drugs was identified using an

adaptive filter approach, where MAP was altered in a binary stepwise fashion. Next,

9 nurses were asked to control the MAP of 6 of the simulated patients. For half of

the patients, we used the identified sensitivity to predict and display MAP 5 min into

the future.

Identifying each individual patient’s sensitivity improved the accuracy of the

MAP prediction by 75% for sodium-nitroprusside, 82% for dopamine and 52% for

dobutamine over the MAP prediction based on an “average” patient’s sensitivity.

∗With kind permission from Springer Science+Business Media: Görges M, West-
enskow DR, Kück K, Orr JA. A tool predicting future mean arterial blood pressure
values improves the titration of vasoactive drugs. J Clin Monit Comput. 2010. DOI:
10.1007/s10877-010-9238-0. ©Springer 2010



73

The advisory system shortened the median time to reach the desired MAP from 10.2

to 4.1 min, decreased the median number of infusion rate changes from 6 to 4, and

resulted in a significant reduction of mental workload and effort.

Patient-specific drug sensitivity identification significantly improved the prediction

of future MAP. By predicting and displaying the expected MAP 5 min in the future,

the advisory system helped nurses titrate faster, reduced their perceived workload

and might improve patient safety.

4.2 Introduction
Vasoactive drug infusion rates1–4 are titrated to achieve a desired effect,3 rather

than using standardized doses, because the interpatient variability in response to the

drug varies significantly. Current practice is to start with an initial infusion rate of

approximately 10-25% of a typical infusion rate for a drug and observe the change

in mean arterial blood pressure (MAP). Once the MAP looks stable, the dose is

increased or decreased until the MAP goal is reached. Because there is a time delay

between the change in an infusion rate and the subsequent change in the patient’s

MAP, considerable nursing or physician time is often required to titrate the infusion

rate until the desired effect is achieved.

4.2.1 Alternatives to Manual Titration

Syroid et al.5 and Drews et al.6 used pharmacologic models to predict drug effects

(sedation, analgesia and muscle relaxation) 10 min in the future. When their advisory

system was used, physicians better controlled their targeted drug effects, especially

towards the end of the procedure, which resulted in patients waking up more than

2 min earlier.6 A nonmedical application is the flight glide path adviser,7 which

enhances a pilot’s performance by predicting where the plane will be in relation to

the runway a few minutes in the future. DeLucia et al.8 state that predictive displays

of patient information that help nurses anticipate the short-term future states of

patients would be a particularly useful technology. Such a system could decrease

nurses’ and physicians’ workload by allowing faster titration and could potentially

improve patient safety by freeing up nurses’ time for other tasks.
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4.2.2 Purpose of the Study

The purpose of this study is to use simulation to test the feasibility of using small

step changes in infusion rate to automatically and continuously identify a patient’s

sensitivity to sodium nitroprusside (SNP), dobutamine or dopamine, as the drug is

being infused. The second purpose is to evaluate whether an advisory system that

predicts MAP 5 min in the future enhances a clinician’s ability to manage SNP

infusions.

4.3 Methods
To predict MAP 5 min into the future (as seen in Figure 4.1a) the change in MAP

caused by the SNP infusion (ISNP (t) ) needs to be calculated. One simple way, which

includes an infusion delay and models the patient’s delayed response to SNP like a

low pass filter, is

MAP (t) = MAPBaseline+KSNP ·((1 − α) · ISNP,filtered (t− 1) + α · ISNP (t− tDelay))

(4.1)

whereMAPBaseline is the MAP without SNP infusion, KSNP is the patients sensitivity

to SNP, α is the strength of the low-pass filter and tDelay is the infusion delay.

However, due to the large variability in patient’s sensitivity to SNP, it is necessary

to identify the individual’s sensitivity (see Figure 4.2) in order to provide a precise

prediction.

4.3.1 Identification of Patient Sensitivity

We identify the patient’s sensitivity as the drug was being delivered by increasing

and decreasing the infusion rate in a binary stepwise fashion and measuring the

corresponding changes in MAP. The following algorithm, with the goal of minimizing

the fit between the recorded infusion rate and the measured MAP, was used to identify

the patient’s sensitivity to SNP (see Figure 4.2):

1. Begin with an initial infusion transport delay (Ti) of 45 sec and choose a random

initial value for the filter strength α between 0.003 (corresponding to a of 370

sec) and 1 (no filter).
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Figure 4.1: Sodium-nitroprusside titration advisor. There are five main elements:
1) A 30 min trend of mean arterial blood pressure (MAP) and drug infusion rate, 2)
Numeric values for the current MAP and infusion rate, 3) A slider next to the infusion
rate trend to change the infusion rate and 4) A numeric keypad to set the infusion
rate and 5) the patient’s sensitivity in the upper right corner. The horizontal dashed
line indicates the current time. The plot to the right of this line shows predicted
values for MAP 5 min in the future. The top panel shows the advisory system, when
the prediction of future MAP is available. The bottom panel shows the advisor, when
predicted pressure and estimated sensitivity are not available.
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2. Shift the original infusion rate IDrug(t) (Figure 4.2a) forward in time by Ti

using Ishifted = IDrug(t− Ti) so that it is more closely aligned in time with the

corresponding changes in MAPmeasured(t) (Figure 4.2c).

3. Apply a low-pass infinite impulse response (IIR) filter to calculate a filtered drug

infusion rate (Ifiltered(t) ): Ifiltered(t) = (1 −α) · Ifiltered(t− 1) +α · Ishifted(t) to

make its shape the same as the MAP curve, where α is a value between 0 and

1.0 (Figure 4.2d).

4. Use a linear fit between Ifiltered(t) and MAPmeasured(t) to calculate the MAP

without drug MAPbaseline (from the “y axis” intercept) and drug sensitivity

(KDrug) (from the slope). (Figure 4.2b).

5. Use Ifiltered(t), KDrug and MAPbaseline to predict values for MAP:

MAPpredicted(t) = MAPbaseline +KDrug · Ifiltered(t), and calculate the root mean

square error (RMSE) betweenMAPpredicted(t) andMAPmeasured(t) (Figure 4.2e).

6. Select a new α and repeat steps 1-4 until MATLAB’s fminbnd optimization

(golden section search) reports that RMSE(t) − RMSE(t − 1) < 10−4 or the

number of iterations exceeds 500.

7. Increase and decrease Ti by 1 sec, repeat steps 1-5 for each Ti to find the direction

of Ti resulting in the lower RMSE. Continue in the direction that lowers RMSE,

limited to Ti= 0-80 sec, and repeat steps 1-5 until RMSE increases.

8. Finally, the patients sensitivity (KDrug), the infusion delay (Ti) and filter strength

(α) that result in the lowest RMSE are reported. The obtained KDrug, Ti and α

can now be used to predict MAP (t) 5 min into the future, e.g., using Equation

4.1.

4.3.2 Sensitivity Identification Performance Evaluation

To measure the accuracy of the sensitivity estimation algorithm we simulated the

blood pressure response to a SNP in 100 individual simulated patients and calculated

the estimation error (the difference between the sensitivity identified by the estimation
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algorithm and the sensitivity parameter used to simulate the individual patient’s

response).

4.3.2.1 Creating Unique Patient Responses to SNP
Infusions

Figure 4.3 shows the computer model, proposed by Slate9 that we used to predict

the change in a patient’s MAP (∆MAP (s) ) when SNP was given by intravenous

infusion (ISNP ) :

∆MAP (s) =
KSNP · e−Ti·s ·

(
1 + β · e−Tcr·s

)
1 + τ · s

· ISNP (s) (4.2)

where s is the independent variable (Laplace transformed time). The model was im-

plemented in MATLAB (The MathWorks Inc., Natick, MA). The model’s parameters

are listed in Table 4.1.9

The blood pressure transducer was modeled using by a low-pass filter to calculate

the measured MAP: MAPmeasured(s) = 1/ (4s+ 1) · MAP (s). Slate9 added two

sources of noise: a) Second order 30 Hz low-pass filtered white noise with an amplitude

ranging from 5-10 mmHg and b) A sinusoidal fluctuation of 2-4 mmHg to simulate

the change in MAP with respiration (rate 6-12/min, random initial phase of 0-10

sec). A renin-angiotensin reflex was added when the MAP fell below 63.3 mmHg:

∆MAPrenin(s) = Kr·e−Tr ·s

1+s·τr
· MAP (s), where Tr is the activation time delay (60 sec),

Kr is the reflex gain (2 mmHg), τr is the reflex time constant (4 min) and MAP (s)

is the measured MAP. The reflex was limited so that it could not increase MAP by

more than 35 mmHg.
Each of the simulated patients had a unique sensitivity to the drug and unique

responses to changes in its infusion rate. This was performed by randomly selecting

values for each of the model parameters listed in Table 4.1 . The value for the ith

parameter and the kth patient was:

Pi(k) = Meani + SDi ·Randni,k (4.3)

where k=1-100, i=1-7 and Randn is a number taken randomly from a normal distri-

bution where the distribution had a mean of 0 and a standard deviation of 1. Times

were rounded to the nearest sec.
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Figure 4.3: MATLAB implementation of Slate’s sodium-nitroprusside model that
includes two sources of noise, the baseline mean arterial pressure, the blood pressure
measurement transducer and the renin-angiotensin reflex. We added dopamine and
dobutamine transfer functions, converting an infusion rate into a mean arterial
pressure (MAP) change, to the upper summation node. The three infusions were
simulated one at a time.

Table 4.1: Sodium-nitroprusside model parameters

Parameter Description Symbol Mean±Standard
Deviation

Limiting Range

P1 Patient’s
sensitivity

KSNP 20 ±
10 mmHg

mcg·kg−1·min−1

6.5 −
171 mmHg

mcg·kg−1·min−1

P2 Recirculation
coefficient

β 0 ± 0.2 0 − 40%

P3 Infusion delay Ti 40 ± 10 sec 20 − 60 sec
P4 Recirculation

delay
Tc 45 ± 7.5 sec 30 − 75 sec

P5 System time
constant

τ 40 ± 5 sec 30 − 60 sec

P6 Baseline
MAP

MAPbaseline 168 ± 19 mmHg -

P7 Target MAP MAPgoal 90 ± 12.5 mmHg > 70 mmHg

Parameters used in the Sodium-Nitroprusside transfer function (Equation 4.1). Val-
ues for the parameters P1 − P5 were obtained from Slate’s PhD Thesis,9 P6 from
Devlin et al.,10 and P7 was picked to be in the range of “textbook” normal blood
pressures.
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4.3.2.2 Identification of SNP Sensitivity

For each of the 100 simulated patients, we used the patient’s KSNP (k) and the

recirculation factor (β(k)) to calculate the SNP infusion rate needed to lower the

MAP from the baseline (MAPbaseline(k)) to the target (MAPgoal(k)). The baseline

MAP was selected using Equation 4.3 with a mean and SD of 168±19 mmHg, which is

a typical value observed in patients requiring SNP infusion, before the administration

of the drug.10 The target MAP was selected using Equation 4.3 with a mean and SD

of 90±12 mmHg. After infusing SNP at this rate and waiting for 10 min to obtain

steady state, we made three step-increase/step-decrease changes in the infusion rate

to change MAP by ±3 mmHg. Each step was held for 5 min. The optimal number

of steps, step size, and step duration were identified using simulations (see Appendix

A).

The estimation algorithm used the response data from these three steps to identify

the patient’s sensitivity. We compared the sensitivity identified by the estimation

algorithm KSNP,estimated(k) with the patient’s sensitivity used to generate the re-

sponse KSNP (k). Finally, we compared the predicted MAP change caused by a

2 mcg · kg−1 · min−1 SNP infusion rate when given to each of the 100 simulated

patients with the MAP change when given to a patient with a typical sensitivity

of 20 mmHg
mcg·kg−1·min−1 .

4.3.3 Dopamine and Dobutamine Sensitivity Identifications

We applied our sensitivity identification method to Dopamine and Dobutamine,

both of which are used very frequently to manage MAP. For Dopamine we used a

well-established model from the literature.11 For Dobutamine, where such a model

does not exist, we propose a new model based on observations in canines.12 In both

cases we evaluated the performance of the proposed sensitivity estimation algorithms

in a similar fashion as for SNP (see Appendices B and C).

4.3.4 Blood Pressure Titration Tool

Approval from the University of Utah Health Sciences Center’s institutional review

board (ClinicalTrials.gov identifier: NCT00714012) was obtained. Nine medical in-

tensive care unit nurses participated in the study. We used a 2 x 3 repeated-measures
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within-subject experimental design, with the availability of the advisory system as

the independent variable and the scenario order as the controlled variable.

4.3.4.1 Apparatus

The titration screen shown in Figure 4.1 displayed a 30 min trend of MAP and

SNP infusion rate, numeric values for the current MAP and infusion rate, and a slider

and numeric keypad to change drug infusion rate. The target MAP was shown by

a green zone and given as a numeric value in the instruction section of the screen.

The advisory system, available in 3 of the 6 simulations, displayed the estimate of the

patient’s sensitivity to SNP and a prediction of the MAP 5 min into the future (Figure

4.1a). If the participant selected a MAP level, which could be different from the target

MAP, it calculated the infusion rate required to reach this MAP level. To identify

the patient’s sensitivity, a SNP infusion rate of 1 mcg · kg−1 · min−1 was administered

and the patient’s sensitivity to SNP identified using three 0.1 ± mcg · kg−1 · min−1

steps 5 min in duration.

4.3.4.2 Training

In a training session, participants were shown the advisor in Figure 4.1, asked to

increase the infusion rate, observe the delay between the increase in the infusion rate

and the decrease in MAP, and use the advisor to titrate MAP to a target pressure.

4.3.4.3 Scenario

Participants were asked to titrate a SNP infusion rate to reach a target MAP in 6

simulated patients. The 6 patients were randomly selected from a set of 200 patients

generated using the methods previously described. The availability of the advisor in 3

of the 6 simulated patients was randomized for each of participant. Target pressures

were selected randomly using Equation 4.3 with a mean and SD of 105±12.5 mmHg.

Each simulated patient and target MAP was used only once. To increase workload

the simulations were run at 3.6 times real time. Participants were encouraged to reach

the target MAP in the shortest amount of time using the least number of infusion

rate changes. They were asked to spend 100% of their attention on the task.
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4.3.4.4 Procedure

We recorded the time to reach each titration goal and the number of infusion

rate changes. We also counted the number of times the infusion rate was changed

when the MAP was below 70 mmHg or when the MAP was more than 10 mmHg

below the target MAP. A “finished I am done” button advanced the simulation to

the next patient if: a) the measured MAP was within 4mmHg of the target, b) the

infusion rate was within 0.15 mcg · kg−1 · min−1 of the required infusion rate needed

to reach the target MAP and c) the infusion rate was not changed for 8.3 sec (30 sec

of simulated time). These requirements prevented the participants from “cheating”

by pressing the finished button as the MAP passed transiently through the target

range. After each scenario, the participant completed a NASA Task Load Index

(TLX) questionnaire.13 The experiment was performed in the break room of the

ICU, providing realistic ambient noise.

4.3.5 Data Analysis

Data were analyzed using MATLAB, where a repeated measure Friedman’s ANOVA

(α = 0.05) was used to analyze the titration times, the number of infusion rate changes

and NASA-TLX scores and Fisher’s exact test was used to analyze both numbers

counting episodes of low MAPs.

4.4 Results
4.4.1 Sensitivity Identification Performance

Figure 4.4 shows that the patients’ sensitivity to SNPmust first be identified before

future values for MAP can be accurately predicted while SNP is being infused. When

100 simulated patients were given SNP at a typical infusion rate (2 mcg · kg−1 · min−1)

the prediction of MAP 5 min in the future had an error of −9.0 ± 18.5 mmHg

(mean±SD) if we assumed that all patients had the same population based sensitivity

to SNP (20 mmHg
mcg·kg−1·min−1 ). When each individual patient’s sensitivity was estimated

using our algorithm, the error was −1.8 ± 4.1 mmHg. The MAP prediction was 75%

more accurate when the individual patient’s sensitivity was identified. Figure 4.5

shows the difference between the simulated patients’ actual sensitivity to SNP and the

sensitivity estimated using our algorithm. After making three step changes in the SNP
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infusion rate, where each step resulted in a 3 mmHg change in MAP lasting 5 min, the

difference between the estimated and actual sensitivity had a mean value and standard

deviation of −0.91 ± 2.03 mmHg
mcg·kg−1·min−1 . The error in the estimation of infusion delay

was 3±9 sec. There is a trade-off between identification time and estimation error: a

5 min identification time results with an error of −0.22 ± 5.30 mmHg
mcg·kg−1·min−1 whereas

a 25 min identification time results in an error of −1.39 ± 1.10 mmHg
mcg·kg−1·min−1 .

Appendices B and C show the results for dopamine and dobutamine: For dopamine

(see Figure 4.6) the mean the difference between the estimated and actual sensitivity,

after three 15 min steps in the infusion rate, was 1.12 ± 0.85 mmHg
mcg·kg−1·min−1 . For

dobutamine (see Figure 4.7) the mean difference after a single 10 min step was

−1.88 ± 1.99 mmHg. Sensitivity estimation resulted in an 82% improvement in

the MAP prediction for Dopamine and a 52% improvement in the MAP prediction

for Dobutamine.

4.4.2 Blood Pressure Titration Tool Evaluation
The 9 nurses who participated in the evaluation of the blood pressure titration tool

had a median age of 29 years (range 25-63 years), 3 years of ICU experience (range

1-19 years) and 3 participants were male. The training session lasted an average of 3

min (range 1.4-4.1 min) before the participant completed the assigned training tasks

correctly.
Figure 4.8a shows that the median time to reach the target blood pressure was 4.1

min (range 1.6-7.8 min) when nurses used the advisory system and 10.2 min (range

4.1-26.8 min) when they did not. A repeated measures Friedman’s ANOVA found

the differences statistically significant (p = 9.1 · 10−6, χ2 = 16.69). Nurses made a

median of 4 SNP infusion rate changes (range 1-7) before reaching the target blood

pressure when the advisory system was used and 6 without the advisor (range 1-41),

see Figure 4.8. A repeated measures Friedman’s ANOVA found that these differences

were significant (p = 3.7 · 10−3, χ2 = 8.45).
An overshoot in MAP of more than 10 mmHg below the target MAP occurred in

three cases without the advisory system and in two cases with the advisory system

available (Fisher’s exact test p = 1). A MAP < 70 mmHg occurred during two cases

where the advisory system was not available (p = 0.49).
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Figure 4.6: The error in our estimation of sensitivity to dopamine for 100 simulated
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Figure 4.9 shows the participants’ self assessment of the workload involved in

bringing the blood pressure to the target with and without the advisory system.

A Friedman’s ANOVA found significant differences for all 6 workload scores. The

support tool’s greatest perceived benefit was a reduction in mental workload (p =

3.1 · 10−5), frustration (p = 3.8 · 10−5) and effort (p = 5.1 · 10−4).

4.5 Discussion
When nurses used an advisory system that predicted MAP 5 min into the future,

they reached a target blood pressures in significantly less time (4.1 vs. 10.2 min),

they made fewer changes in the SNP infusion rate (4 vs. 6) and avoided inducing

hypotension (MAP<70 mmHg). The clinical use of the advisory system in an ICU

could reduce nursing workload and inadvertent hypotension, thereby potentially in-

creasing patient safety. The decrease in self-reported mental workload and effort, for

this rather challenging titration test, was statistically significant. Many nurses asked

when the system would be available for clinical use.

Our simulations show that an individual patient’s sensitivity to SNP, dopamine

and dobutamine can be accurately identified as the drugs are being infused. When

the patient’s individual sensitivity is used to predict MAP, the steady-state prediction

improved in accuracy by 75% for SNP, 82% for dopamine and 52% for dobutamine

over the MAP predicted using the “average” patient’s sensitivity.

Population based models for SNP9, 14 dopamine11, 14 and phenylephrine15 exist.

Such models have been show to work well in predicting anesthesia effects for the

“average patient”.16, 17 However, the interpatient variability in response to a drug

can vary significantly. Given a 1 mcg · kg−1 · min−1 infusion of SNP will decreasing

a patient’s MAP anywhere from 6.5-171 mmHg (20 mmHg for the average patient),

knowing the patient’s specific sensitivity is important when predicting future MAP

values.

Our results add to previously reported work in two ways:

1. A new target blood pressure can be reached quicker and with fewer infusion

rate changes when nurses use an advisory system that identifies the patient’s

sensitivity to SNP and displays the predicted MAP 5 min in the future.
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2. The adaptive filter approach, using the MAP response to a small step change in

the drug infusion rate, can identify the patient’s sensitivity to SNP, dopamine

and dobutamine as the drug is being delivered. Previous methods identify

patient sensitivity using the large initial step change that occurs as the drug

infusion starts, or following a bolus injection.18

We expect that the performance improvements nurses demonstrated when titrating

SNP with our advisory system can be generalized to dopamine and dobutamine. As

seen in Appendices B and C it might work better for dopamine as the dobutamine

identification was less accurate, while the dopamine identification also took much

longer to produce an initial result (45 min instead of 10 min for dobutamine).

4.5.1 Existing Sensitivity Identification Methods

Interpatient variability in sensitivity is a significant problem when titrating drug

delivery to achieve a clinical effect.9 Two alternatives to nurses or physicians manu-

ally titrating blood pressure exist: Closed loop feedback controllers,9, 14, 19–24 which

automatically measure blood pressure and change infusion rates based on observed

responses, and open loop advisory systems, which predict future blood pressure

changes based on infusion rate changes but requires a clinician to adapt infusion

rates. Sheppard25–27 developed a closed loop controller that automatically adjusted a

SNP infusion to control MAP in patients after cardiac surgery. In his animal research,

Sheppard imposed pseudo-binary random changes in the SNP infusion rate to identify

the animal’s sensitivity but did not have the computing power or algorithms to

implement this method in real time. Later, IVAC developed the SNP Titrator,18, 22

which started by giving SNP at a slow infusion rate and measured the resulting

change in blood pressure to obtain an estimate of the patient’s sensitivity. Jaklitsch

and Westenskow’s vecuronium controller28 used two test doses during the induction

of neuromuscular blockage to measure patient sensitivity. While closed-loop feedback

controllers are faster, provide more precise MAP control, and offer a reduction in

nursing workload, there are risks associated with artifacts in the blood pressure

transducer, the loss of nursing staff supervision. In addition to the risks, there are

regulatory and product liability hurdles to be overcome.
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In the current study we used a small step change in infusion rate that caused

MAP to change by ±3 mmHg to estimate the patient’s sensitivity. One might argue

that using small step changes, which wait until steady state is reached, is superior

to pseudo-binary random changes, with a wide range of frequencies (durations) and

magnitude, as the step change method is less sensitive to noise, clinically more accept-

able as the resulting MAP changes are small and consistent, and potentially easier to

implement in a medical product. We also felt that the requirement for the clinician

to make infusion rate changes, which ensures checking of recommended changes for

plausibility and direct supervision by a clinician, reduces the risk associated with

using the system and therefore prefer this method.

4.5.2 Limitations
The main limitation of our identification algorithm is that takes at least 15 min

before a patient’s sensitivity can been identified with reasonable accuracy. If a blood

pressure change of ≥6 mmHg is acceptable, an estimate can be obtained in 3 min

for SNP (see Figure 4.10) or approximately 10 min for Dopamine. The waiting

period would not be a problem if the patient has already spend time in the ICU and

our sensitivity identification could have been performed continuously using historical

data from the immediate past. In this case a new targeted MAP can be achieved and

maintained without waiting for the sensitivity estimation.
Another limitation of this study is that all data were collected using simula-

tions. However, the SNP model9 has been carefully validated using observations

in humans,9, 18 and the dopamine and dobutamine models have been validated in

animals.11, 12 Additionally, both animal models show the same drug effect behavior

(linear and exponential saturating dose effect relationships respectively) as observed

in patients with congestive heart failure.29 While animal experiments could be per-

formed to evaluate the effectiveness of the proposed method, an evaluation with

patients could also be performed, as long as a vigilant clinician uses their best

judgment about the suggested infusion rates and the infusion rate changes required

to identify the patient’s sensitivity are performed by hand and not automatically.
Additionally, vasopressors are not utilized purely to increase blood pressure, but

are also used for inotropic and/or chronotropic support for the failing myocardium.
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taken into consideration.
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Thus, the titration algorithm would be much more complex for a drug like dobu-

tamine, compared to vasopressin. By challenging the system using small step changes

in vasopressor infusion rate one could not only identify the patient’s MAP sensitivity

but also the patients’ heart rate (HR) sensitivity. If both are available advice could

be based on a combination of clinician determined HR and MAP limits and with the

suggestion to switch to different medications if the expected effect with the current

medication could not reach the desired MAP goal.
We did not model norepinephrine, a drug commonly used in ICUs to increase

MAP, as norepinephrine population models are hard30 or impossible31 to obtain.

However, we feel that the dopamine sensitivity identification method (with a sat-

urating dose response) might be the solution for this problem, which has yet to be

explored using a swine model followed by observations in patients.
We assessed self-reported workload in simulations running 3.6 times faster-than-

real time. This artificially high simulation speed is likely going to alter the absolute

workload scores. However, as both the experimental condition and the control con-

dition were performed at the same speed, the results of the comparison (relative

changes) should still be valid. One might argue that a realistic distracter task could

have been used instead; however we feel that by performing the study in the nurses

break room, with realistic ambient noise and frequent alarm noises, as well as the fact

that nurses certainly kept their patients’ well-being and problems in mind during the

experiment, nurses were already sufficiently distracted.
Finally, our approach needs a bidirectional interface to the infusion pump to

change the rate, an arterial blood pressure transducer and an interface to the patient

monitor to obtain MAP. It is reasonable to assume that in the near future infusion

pumps will be connected directly to clinical information systems, where our advisory

system will reside.

4.5.3 Conclusions
When ICU nurses used our advisory system, which predicts MAP 5 min in the

future, they titrated blood pressure to the target faster with fewer infusion rate

changes. Our patient-specific sensitivity estimation algorithm improved predictions

of MAP during SNP, dopamine, and dobutamine infusions. Future work is needed to
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implement and evaluate our approach in patients and verify the observed reduction of

nursing workload, improved MAP control and shorter vasoactive drug titration times

in a clinical evaluation.
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4.7 Appendix A: Identification of Optimal
Step Size and Duration

We used Equation 4.2 to simulate the average patient’s blood pressure response

to SNP (KSNP = 20 mmHg
mcg·kg−1·min−1 ), MAPbaseline=140 mmHg, Ti=30 sec, Tc=45 sec,

β=0.2, τ=40 sec). In order to test the system at steady state a typical infusion rate

of 2 mcg
kg·min was administered to reach a goal MAP of 100 mmHg. As this extremely

large blood pressure change would not be clinically acceptable, the initial blood

pressure response was discarded. Next, the patient sensitivity identification algorithm

described above was used to identify the average patient’s sensitivity after simulating

1 to 9 step-increase/step-decrease iterations in the SNP infusion rate with MAP step

sizes that ranged from 0.1-6.0 mmHg (0.1 mmHg increments) and steps that ranged

in duration from 30-600 sec (1 sec increments). These simulations included white

noise (10 mmHg prefiltered amplitude) and respiratory induced oscillations (3 mmHg

amplitude with a frequency that ranged from 6-12/min).

Figure 4.10 shows the accuracy of the sensitivity estimation as a function of

step size, step duration and number of steps. The top right subplot shows that the

error was consistently below (4 mmHg
mcg·kg−1·min−1 ), for steps ranging from 2.8-3.5 mmHg

in amplitude and 250-350 sec in duration, and below 2 mmHg
mcg·kg−1·min−1 for 310-350 sec

duration at the same step amplitude. Therefore, we chose to use three steps, 3 mmHg

in amplitude and 5 min in duration to identify patient sensitivity. However, a much

quicker identification with bigger steps, e.g. using two 5 mmHg steps for 70 sec each

it is also possible (Figure 4.10 top center subplot).
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4.8 Appendix B: Dopamine Sensitivity
Identification

Dopamine has a MAP response to a change in infusion rate that is linear over the

clinical relevant range, just like SNP. Therefore the same identification algorithm can

be used. Therefore its evaluation was performed parallel to the procedure for SNP.

4.8.1 Methods

For dopamine we used the model from Gingrich and Roy11 to predict ∆MAP (s)

when dopamine is given by intravenous infusion (IDopa(s)):

∆MAP = KDopa · e−Ti·s · IDopa(s) −MAPoffset
1 + τ · s

(4.4)

for IDopa ≥ MAPoffset/KDopa. The model parameters are listed in Table 4.2.

4.8.2 Evaluation of Sensitivity Identification
Performance

We simulated 100 patients and measured the accuracy of the linear sensitivity

estimation methods described above. A baseline MAP MAPbaseline(k) with a mean

and SD of 74±11.5 mmHg, 20±2mmHg lower than the target MAP in the SNP

experiment was used. The patient sensitivity estimation algorithm used 3 mmHg

steps 15 min in duration and a filter strength α that ranged from 0.001 to 0.999,

to allow for the slower drug response. Fifteen min were required after each step

change in infusion rate, which is shorter than 25 min required ensuring steady state,

but still allowed sufficient MAP change to occur. Additionally, one change to step 4

of the proposed identification algorithm was required: Negative MAP changes were

not considered and instead replaced by the measured MAP. This prevents predicting

unrealistic MAP reductions for dopamine infusion rates below the activation threshold

(MAPoffset/KDopa).

4.8.3 Results

Figure 4.6 shows the difference between the algorithm’s estimation of the simulated

patient’s sensitivity and the simulated patient’s actual sensitivity to dopamine. After

three 15 min steps the mean difference was 1.12 ± 0.85 mmHg
mcg·kg−1·min−1 . Again there is a

trade-off between identification time and estimation error as a 1hr identification with
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Table 4.2: Dopamine model parameters

Parameter Description Symbol Mean±Standard Deviation

P1 Patient’s
sensitivity

KDopa 12.3 ± 10.09 mmHg
mcg·kg−1·min−1

(Limited to KDopa > 0)
P2 Minimum

MAP increase,
used to

calculate the
activation
threshold.

MAPoffset 24.3 ± 20.18 mmHg
(Always using the same SD value

as 2 ·KDopa)

P3 System time
constant

τ 5.74 ± 1 min

P4 Infusion delay Ti 40 ± 10 sec
(Same as for SNP)

P5 Baseline MAP MAPbaseline MAPgoal − 20 ± 2 mmHg
P6 Target MAP MAPgoal 90 ± 12.5 mmHg (>70 mmHg)

(Same as for SNP)

Parameters used in the Dopamine transfer function (Equation 4.4). Values for the
parameters P1 − P3 were obtained from Gingrich and Roy,11 P4 and P6 reuses the
value introduced for the SNP model and P5 was picked to be 20±2 mmHg below the
goal MAP to simulate a MAP with the need to raise it.
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an error of −0.32 ± 0.28 mmHg
mcg·kg−1·min−1 would also be possible. When 100 simulated

patients received a dopamine infusion of 2 mcg · kg−1 · min−1, the error in the steady-

state MAP prediction improved from 2.8±16.0 mmHg to 2.2±1.7 mmHg because of

the sensitivity identification (not shown). The estimation of the patient’s sensitivity

to dopamine had less patient-to-patient variability. The reason may be that the SNP

model included recirculation, while the dopamine model did not. Recirculation, while

physiologically true as the drug is not completely metabolized immediately, is only

important when transient changes of MAP are of interest. However, for determining

a patient’s sensitivity to a drug only the steady state changes are relevant, for which

the presence or absence of recirculation has no effect.

4.9 Appendix C: Dobutamine Sensitivity
Identification

For Dobutamine, the MAP response to a change in infusion rate is nonlinear:

For high infusion rates an increase in infusion rate causes a smaller change in MAP

than it does for the same change at a lower infusion rate, until it finally completely

disappears for very high infusion rates. Therefore, a different method to identify

nonlinear sensitivities has to be used.

Otherwise this evaluation was performed parallel to the procedure for SNP.

4.9.1 Methods

For Dobutamine we propose a new exponential saturating dose response model,

based on observations in canines by Kamijo et al.12 It predicts the change in a pa-

tient’s MAP (∆MAP (s)) when dobutamine is given by intravenous infusion IDobu(s)

as:

∆MAP =
MAPmax ·

(
1 − exp

(
−IDobu(s) · e−Ti·s/Islope

))
1 + τ · s

(4.5)

The model parameters are listed in Table 4.3.

4.9.2 Exponential Saturating Sensitivity Identification

The following algorithm was used to identify the patient’s sensitivity for Dobu-

tamine, because of its nonlinear sensitivity curve. It could potentially be expanded

to Norepinephrine, which demonstrates a similar behavior:
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Table 4.3: Dobutamine model parameters

Parameter Description Symbol Mean±Standard Deviation

P1 Infusion rate
contant

Islope 2.1 ± 0.5 mmHg
mcg·kg−1·min−1

(Limited to Islope > 0)
P2 Maximum

MAP increase
MAPmax 28.6 ± 11 mmHg

(Limited to MAPmax > 0)
P3 Infusion delay Ti 40 ± 10 sec

(Same as for SNP)
P4 System time

constant
τ 120 ± 30 sec

P5 Baseline MAP MAPbaseline 90 ± 14.5 mmHg (>70 mmHg)
(Same as for Dopamine)

Parameters used in the Dobutamine transfer function (Equation 4.5). Values for the
parameters P1 and P2 were obtained by fitting an exponential function to Kamijo et
al.’s12 response curve observed in canines. The best fit had a RMSE of 0.932 mmHg.
For P4 we made a reasonable assumption using the Dobutamine package insert and
for the P5 we reused the values introduced for the Dopamine model.
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1. Begin with an initial infusion transport delay (Ti) of 10 sec and initial values

for MAPmax of 25 mmHg
mcg·kg−1·min−1 and Islope of 2 mcg · kg−1 · min−1.

2. Shift the original infusion rate IDrug(t) forward in time using Ishifted = IDrug(t−

Ti) so that it is more closely aligned in time with the corresponding changes in

MAPmeasured(t).

3. Predict the patient’s MAP during a drug infusion using MAPpredicted =

MAPbaseline + MAPmax · (1 − exp (−Ishifted(t)/Islope)) and calculate the root

mean square error (RMSE) between MAPpredicted(t) and MAPmeasured(t). For

our work MAPbaseline was known from the initial MAP measurements before

the drug infusion began, but it could also become a parameter optimized for.

4. Select new values for Ti, within the limits of 0-100 sec, MAPmax, within the

limits of 1 − 100 mmHg
mcg·kg−1·min−1 , and Islope, within the limits of

0.5−3.5 mcg · kg−1 · min−1, and repeat steps 2 and 3 in a Hessian multiparame-

ter optimization, using MATLAB’s fmincon with changes between 10−8 −0.1, to

find a combination of these three parameters that results in the lowest RMSE.

5. When the optimization RMSE does not improve anymore (< 10−8 to previous

value) or the maximum number of iterations (250) is reached the identified

sensitivity values (MAPmax and Islope) and the infusion delay (Ti) are reported.

The obtainedMAPmax, Islope and Ti can now be used to predictMAP (t) 15 min

into the future. To better reflect the transient changes in the MAP prediction,

the infusion rate could be filtered using the low-pass filter described in step

3 of the linear sensitivity identification method. A filter strength α=0.0085,

corresponding to a system time constant τ=120 sec, would be a good initial

choice.

4.9.3 Evaluation of Sensitivity Identification
Performance

We simulated 100 patients and measured the accuracy of the sensitivity estimation.

For dobutamine, the exponential saturating sensitivity estimation algorithm was used

with infusion rate steps of ±0.5 mcg · kg−1 · min−1 10 min in duration. Maximum
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MAP MAPmax(k) was selected using Equation 4.3 with a mean and SD of 28.6±1.1

mmHg, the infusion rate constant Islope(k) with 2.1 ± 0.5 mcg · kg−1 · min−1, the

system time constant τ(k) with 120±30 sec, and the baseline MAP (k) the same

as for dopamine.

4.9.4 Results

When 100 simulated patients received a dobutamine infusion, and their sensitivity

was estimated by making a single +1 mcg · kg−1 · min−1 change of infusion rate, Figure

4.7 shows that the estimation of MAP was in error by -1.88±1.99 mmHg (range

-7.54. . . 1.41 mmHg). The error did not change significantly with more steps; the third

step error was -1.91±1.93 mmHg (range -7.84. . . 1.43 mmHg). Without sensitivity

estimation the predicted MAP was in error by 0.70±5.69 mmHg (range -8.52. . . 21.33

mmHg).
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CHAPTER 5

A FAR-VIEW INTENSIVE CARE UNIT
MONITORING DISPLAY ENABLES

FASTER TRIAGE∗

5.1 Abstract
Nurses perform the majority of the clinical tasks in an intensive care unit. How-

ever, current patient monitors were not designed to support a nurse’s monitoring

and work flow task. Nurses constantly triage patients, deciding which patient is

currently in most need of care. This includes integration of a patient’s vital signs with

therapeutic device information from multiple sources. To obtain this information they

often have to enter the patient’s room.

This study addresses three hypotheses: Information provided by far-view displays

a) reduces the amount of time that it takes to determine which patient needs care

first, b) increases the accuracy of assigning priority to the right patient and c) reduces

nurses mental workload.

We developed two far-view monitoring displays to be read from a distance of 3-5

meters. They display numeric values for five vital signs, trends and alarms, infusion

pump status, and therapy support indicators for blood oxygen saturation and minute

ventilation. To evaluate the displays nurses were asked to use the displays to decide

which of two patients required their attention first, making 20 decisions with each

display (Control: Patient monitor next to an infusion pump).

Sixteen nurses (median age of 27.5 years with 2.75 years of experience) participated

in the study. Using the two far-view displays, nurses more accurately and rapidly

∗Submitted to Nursing Research in June 2010: Görges M, Kück K, Koch SH,
Agutter J, Westenskow DR. A Far-view Intensive Care Unit Monitoring Display
Enables Faster Triage. Nurs Res. 2010 ©Lippincott, Williams & Wilkins 2010
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identified stable patients, and syringe pumps that were nearly empty. Median decision

times were 11.3 sec for the Bar display, 12.4 sec for the Clock display, and 17.2 sec

for the Control display.

Far-view displays reduced median decision making times by 4.8-5.9 sec, increased

accuracy in assignment of priority in 2/7 scenarios, and reduced nurses’ frustration

with the triaging task. In a clinical setting the proposed far-view display might reduce

nurses’ workload and thereby increase patient safety.

5.2 Introduction
5.2.1 Background

Nurses perform the majority of the clinical bedside tasks in an intensive care

unit, with the most frequent tasks being manually administering drugs or changing

drug infusion rates (2.3/hr per patient room), silencing an alarm (1.3/hr), charting

(1.1/hr), and performing patient assessments (0.7/hr).1 However, current bedside

patient monitors are not specifically designed to support the most common nursing

tasks and work flow.

5.2.2 Problems with Current Monitoring

The general presentation of information is the same for all clinicians, even though

nurses have a unique set of tasks that are different from the other clinicians’. The

reason for this is that the first patient monitors were oscilloscopes that displayed

electrocardiogram (ECG) and blood pressure (BP) waveforms. Later LED displays

showing numeric values and alarms were added to support vigilance and medical

decision making. Today LCD displays show essentially the same information in the

same format, still following the single-sensor, single indicator paradigm, showing one

waveform and/or numeric for each sensor.2

In addition, data from infusion pumps and ventilators are not integrated into

the bedside display, even though this has been shown to enhance decision making.3, 4

When information integration is performed, this is to facilitate documentation of vital

sign in the electronic medical record.
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5.2.3 Prioritizing Attention to Patients

Triaging patients, deciding which patient is currently in most need of nursing care,

is a frequently performed task when nurses care for more than one patient. In addition

to triaging patients, who they are assigned to and familiar with, nurses frequently

need to triage unfamiliar patients, e.g., when covering for their co-workers who have

left the unit for transports.5, 6

Triaging could be facilitated by integration or consolidation of disparate infor-

mation from multiple bedside devices, such as the vital signs patient monitor, the

ventilator, the infusion or syringe pumps and the continuous cardiac output monitor

into one display highlighting the patient’s need for attention. Ideally an integrated

display allows at-a-glance assessments of the patient’s condition without requiring

the clinician entering the patient’s room. The new display is not intended to replace

the traditional display, rather augment it by providing summary information when a

provider is not at the bedside. A monitor displaying our far-view display might revert

to displaying a traditional waveform display when a health care provider is present

at the bedside. Alternatively, the far-view display might be shown on a small LCD

display by the doorway to the patient’s room or on a small handheld mobile device,

like a cell phone.

5.2.4 Purpose of the Study

This study addresses the following three hypotheses: 1) the information provided

by far-view displays allow nurses to rapidly identify which of two patients needs

immediate attention most, 2) the accuracy of clinical decisions and assessments will

be increased with the consolidation of patient- and device information and 3) far-view

displays will reduce the nurses’ mental workload.

5.3 Methods
5.3.1 Far-View Display Development

We developed the far-view displays: the Bar display in Figure 5.1 and the Clock

display in Figure 5.2, using a user centered design process7 with an interdisciplinary

team of nurses, physicians, designers, engineers, and human factors experts. The

displays show a) numeric values and trends for heart rate (HR), blood oxygen satura-
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tion (SpO2), continuous cardiac output (CCO), mean arterial pressure (MAP), and

ventilation minute volume (MV), b) infusion or syringe pump information, c) alarm

status, and d) therapy support indicators for SpO2, MV, and MAP.

5.3.1.1 Trend Component

Both displays show five 12 hr trends, sampled in 2 min intervals and median

averaged over a 10 min window: The clock-like display (Clock), presents the trend

information on a circle with a time scale of 12 hr (Figure 5.2). The strip-chart display

(Bar), presents the trend information as a horizontal line, which collapses trends into

1 hr linear sections as they get older (Figure 5.1).

5.3.1.2 Alarm Indicator

The normal, nonalarming areas are indicated with a darker background color.

When a variable crosses an upper alarm limit the area between the alarm threshold

and the measured value is filled in red. When a variable crosses below the lower

alarm limit the area between the alarm threshold and the measured value is filled

in blue. Alarms are indicated by highlighting the out of range numeric variable in

yellow color, which could flash in an actual implementation.

5.3.1.3 Syringe Pump Information

The syringe pump icon shows the name of the medication and the time until

the bag (in case of a volumetric infusion pump) or syringe will be empty. Times

until empty are displayed to remind nurses to get more medications from a storage

location or order them from the pharmacy, as nurses were observed to use infusion

pump alarms as reminders.1 The infusion rate is indicated by the diameter of the

syringe icon (high, medium and low).

5.3.1.4 Therapy Support Indicator

A trend of FiO2 is shown alongside the SpO2 trend to indicate therapeutic

support; Ventilator provided MV (MVmech) trend is shown alongside the measured

MV trend. In the Bar display the support is indicated by filling of the box below

the trend, in the Clock display with 11 filled circles in 1 hr intervals as well as the

center circle for the current support. Therapy support for MAP, which predicted
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MAP changes caused by vasoactive drug infusions,8 was implemented but not tested

in this evaluation.

5.3.2 Far-View Display Evaluation

To evaluate the far-view displays nurses were placed in front of a computer monitor

showing two copies of Figures 5.1 and 5.2, one copy (size: 10” diagonal) for each of

2 patients. They were asked to use the displays to decide which of the 2 patients

required their attention first, making 20 decisions using each of the 2 novel far-view

displays. Additionally, the data from the same pairs of patients was shown on a

control display (Figure 5.3): a cardiac patient monitor alongside an infusion pump,

and the volunteers again made twenty decisions.

A 2-4 (scenario repetition) x 3 (displays) x 7 (scenarios) repeated-measures within-

subject experimental design was used with two independent variables, the display

presentation and the scenario presented, and one controlled variable, the scenario

order.

5.3.2.1 Scenarios

We selected 40 12-hr trend sections containing epochs of patient vital signs and

drug infusion rate data from the IMPROVE data library9 based on the criteria listed

in Table 5.1. Each selected epoch had MV and CO values available for at least 10

hours of the 12 hr period and contained at least one change in minute ventilation.

For all but 2 epochs, which were used to show near empty syringe pumps, we set the

time remaining for active infusion pumps to 60-150 min. In case a patient received

less than 3 medications we added a “Saline” infusion with a rate of 45-55 mL/hr.

As CO was only measured intermittently, we displayed the last measured value until

a new value was measured. As we wanted to keep the same alarm thresholds for

all scenarios, we added a constant bias to some vital signs to achieve the desired

presentation.
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Figure 5.3: Control display consisting of a Dräger Kappa XLT patient monitor and an Alaris Medley infusion pump. The
display is presenting a patient with multiple alarms: high heart-rate (HR), low blood oxygen saturation (SpO2) and high cardiac
output (CCO). Three infusion pumps are currently running.
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Table 5.1: Differences between critical and less critical patients

Scenario name and
description

Patient most in need
of attention

Patient less in need
of attention

Repeti-
tions
per

display
“Vital Signs
Stable” *
Two stable patients
with no alarms in
the past 12 hr.

0 alarms in the 12 hr trend 2

“Past Alarms” *
Two patients with
multiple alarms in
the past 12 hr but
no current alarms.

0 active alarms 3
20+ min with MAP
alarms and average
MAP >50 mmHg

OR
20+ min with HR
alarms and average
HR <115 bpm

Fewer, shorter and
smaller deviations

“One Alarm” §
Two previously
stable patients, of
which one has a
current HR or MAP
alarm.

0 HR and 0 MAP alarms in first 11 hr 4
10+ min of HR

alarms in last hr and
active HR alarm

OR
10+ min of MAP

alarms in last hr and
active MAP alarm

0 active alarms in
last hr

“Multiple
Alarms” *
Two very sick
patients, with
multiple alarms, of
which one has more
active alarms than
the other.

Average SpO2 <88% and average FiO2
>80%
OR

Average MAP <60 mmHg and average
HR>110 bpm

OR
Average CO <3.5 L/min

OR
Average CO > 10 L/min and more than

one vasopressor

4

2+ active alarms 1+ active alarms
(always fewer than

more critical
patient)
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Table 5.1 continued

Scenario name and
description

Patient most in need
of attention

Patient less in need
of attention

Repeti-
tions
per

display

“Ventilator
Setting” †
Two stable patient,
of which one has a
higher FiO2, more
ventilator support,
and a lower SpO2
than the other.

> 90% MVmech
88% < Average SpO2

< 91%
Average MV < 13.5

L/min
Average FiO2 > 50%

< 40% MVmech
Average SpO2 >

92%

2

“Pump
Reminder” *
Two stable patients
of which one has an
infusion running out
in less than 17 min.

0 alarms in the 12 hr trend 2
5-10 min until syringe

empty
OR

13-17 min until
syringe empty

All syringes > 60
min until empty

“Approaching
Alarm” §
Two patients, of
which one has a
HR, MAP or SpO2
trend heading
towards the alarm
threshold with an
alarm occurring in
the next 4min.

0 HR and 0 MAP and 0 SpO2 alarms in
first 11 hr of trend
0 active alarms

3

HR or MAP or SpO2
alarm will occur in 4

min
HR or MAP or SpO2
trend towards alarm
threshold for 45+ min

No HR or MAP or
SpO2 trend towards
alarm threshold

* Both epochs could be from different patients in the dataset.
§ The same patient was used but the epoch of the less urgent patient
started one hr earlier and ending one hr earlier than the epoch of the
more urgent patient.
† Search restricted to two patients with varying levels of SpO2 and
mechanical MV.
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5.3.2.2 Power Analysis

We assumed that when the new display is used 3 more of the 20 answers would

be correct than with the control display. To achieve a Power of 0.8 for Fisher’s exact

test, with an αcrit = 0.05, and 20 scenarios per display and participant, we found a

sample size requirement of n = 12 participants.

5.3.2.3 Participants

Approval from the University of Utah Health Sciences Center’s institutional review

board (ClinicalTrials.gov identifier: NCT00714012) was obtained. Sixteen medical

intensive care unit nurses participated in the study.

5.3.2.4 Training and Quiz

In a training session lasting 3.5-7 min we explained each element in the three

displays (both far-view displays and our control display) using six PowerPoint slides

(Microsoft Corporation, Redmond, WA). Examples when alarms were active and sy-

ringes were empty were demonstrated. Participants were encouraged to ask questions.

After completion of the training session the participants were given four questions to

test their ability to detect a MAP alarm, a SpO2/FiO2 support indicator difference, a

HR trend towards an alarm state and 2 stable patients. Participants were shown the

same information on all three displays placed side-by-side. If they could not answer

all four questions correctly, they received additional training and repeated the quiz.

Failure to complete the quiz the second time was an exclusion criterion.

5.3.2.5 Apparatus

We compared the two far-view displays with a Kappa XLT patient monitor (Draeger

Medical Inc, Telford, PA) and an Alaris Medley infusion pump (CareFusion, San

Diego, CA). The exact same data were shown on the two far-view displays (Figures

5.1 and 5.2) and on the XLT monitor and Medley infusion pump (Figure 5.3). Table

5.1 describes the trend section (data epoch) shown on each display.

The far-view displays were created using MATLAB (The MathWorks Inc., Natick,

MA). The control display used screenshots of the patient monitor and infusion pump,

which were stripped of numbers, text and the MAP waveform and consequently filled
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with the appropriate numbers, trends, medication names, and MAP waveforms using

MATLAB. The experiment was performed using a web-based testing system that

automatically measured decision time and accuracy.

5.3.2.6 Scenario and Procedure

At the start of each scenario the participant was told: “Your co-worker had to

leave the unit to help another nurse transfer a patient to the CT. She asked you to

take care of her two patients while she is gone.” and asked: “Please choose which of

the two patients requires your attention first.” In the event that the participant could

not decide they could select: “Both patients are equally in need of attention.”

Each participant was shown the data from all 20 scenarios, in all display condi-

tions, one display at a time. The scenario order was randomized and we counter-

balanced the order with the even numbered participant receiving the inverse order

of the odd numbered participant. The display order was blocked and repeated with

every 6 participants using a Latin-square design. The position of the correct answer

was randomly assigned to be equally often on top and bottom. Participants were

encouraged to make the right decision as fast as possible and spend 100% of their

attention on the decision task.

We recorded the times to reach the decision and whether the answer was correct.

After each block of questions were finished, participant completed the NASA Task

Load Index (TLX) rating sheet.10 After the conclusion of the study, participants

were asked to select which of the three displays they liked best. The experiment was

performed in the break room of the ICU, providing for realistic ambient noise and

distractions.

5.3.2.7 Data Analysis

We analyzed the data using MATLAB using a repeated measure Friedman’s

ANOVA (αcrit = 0.05) for the decision times and NASA-TLX workload scores, and

Fisher’s exact test for the accuracy of the decision. Four comparisons of answer times

(global times per display and times for each scenario per display) were performed

using a Bonferroni corrected αcrit = 0.05/4 = 0.0125. A 2x3 Fisher’s exact test

comparing all three displays for all scenario and a 2x2 Fisher’s exact test comparing
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the two new displays against the control scenario were performed at a Bonferroni

corrected αcrit = 0.05/3 = 0.0167.

5.4 Results
Sixteen nurses (3 males) with a median age of 27.5 years (range 21-53) and 2.75

years of ICU experience (0.5-30 years) participated in the study. One participant had

to repeat the training quiz before entering the study, but no one was excluded. The

median study duration was 23 min (range 19-39 min).

5.4.1 Decision Times

Figure 5.4 shows that nurses were statistically significantly faster in identifying

the more critical patient when using the Bar and Clock displays. Median decision

times were 11.3 sec for the Bar display, 12.4 sec for the Clock display and 17.2 sec

for the Control display. Using the Bar display nurses made their decision 34% faster

than the Control display (p < 1 · 10−38, χ2 = 75.84) and 9% faster than with the

Clock display (p = 4.3 · 10−3, χ2 = 8.17), while nurses using the Clock display made

their decisions 28% faster than with the Control display (p = 1.3 · 10−10, χ2 = 41.29).

Figure 5.5 shows that nurses were statistically significantly faster in identifying

the more critical patient for the “Vital Signs Stable,” “Past Alarms,” “One Alarm,”

“Ventilator Setting,” “Pump Reminder,” and “Approaching Alarm” scenarios, when

using the Bar display (p = 9.9 · 10−4, 1.3 · 10−3, 4.0 · 10−4, 6.8 · 10−4, 1.9 · 10−8, 8.8 ·

10−3), and “Vital Signs Stable,” “One Alarm,” and “Pump Reminder” scenarios, when

using the Clock display (p = 3.4 · 10−3, 1.3 · 10−4, 7.3 · 10−7). The only statistically

significant difference between the Bar and Clock displays was found for the “Past

Alarms” scenario (p = 4.5 · 10−3).

5.4.2 Decision Accuracy

The overall accuracy was 74.1% with the Clock display, 73.4% with the Bar display,

and 66.9% with the Control display. The overall accuracy for the “Past Alarms”

scenario was 48% and the overall accuracy of the “Approaching Alarm” scenario was

53%, indicating problems with these two scenarios.

Figure 5.6 shows the accuracy in identifying the more critical patient by scenario:
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Figure 5.5: Answer times for each display, grouped by scenario. Each icon shows
the lowest value, the lower quartile, the median value, the upper quartile and the
uppermost value. A plus sign (+) denotes outliers. The 7 scenarios (top left to
the right) were: 1) Stable patients with no alarms in the past 12 hr, 2) Identify
from trend analysis which patient had more past alarms, 3) Identify which patient
currently has one alarm, 4) Identify which patient currently has more alarms, 5)
Identify which patient requires more ventilator support (higher FiO2 and mechanical
MV), 6) Identify which patient has a medication running out in <15 min, and 7)
Identify which patient is trending towards an alarm limit.
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Statistically significant results in the comparison of all three displays were found

for the “Vital Signs Stable” (p = 4.6 · 10−3) and “Pump Reminder” (p = 0.015)

scenarios. We found a significant difference between the Bar display and the Control

display for the “Vital Signs Stable” scenario (p = 2.4 · 10−3), while the comparison

of the Clock and the Control display found a marginally significant difference in the

“Pump Reminder” scenario (p = 0.0164).

5.4.3 Workload Scores and Display Preference

Figure 5.7 shows the self-reported workload scores: For self-reported frustration

the two far-view displays performed significantly better than the control scenario (p =

0.03). When asked which display they liked best, 9 nurses preferred the traditional

display, 3 preferred the Bar display and 4 preferred the Clock display. All 16 nurses

mentioned that they liked the syringe icon, showing the infused medication name and

the time until this infusion was empty, and requested this information be available

outside the patient’s room in their unit.

5.5 Discussion
Using the two novel far-view displays shown in Figures 5.1 and 5.2, nurses iden-

tified the patient in most need of assistance quicker and with greater accuracy. The

median decision times were 11.3 sec with the Bar display, 12.4 sec with the Clock

display, and 17.2 with the Control display. The new display helped the user more

accurately identifying patients with active alarms and nearly empty syringe pumps.

5.5.1 Decision Times

The 4.8-5.9 sec reduction in decision time is small, but could lead to an increase in

the frequency at which nurses glance at the monitor because the information displayed

is easier to see and quickly comprehend. Anesthesiologists glance at their patient

monitors 4.3±1.3 times/min11 whereas nurses in an ICU glance at their patient

monitors only 0.3 times/hr to 4.1 times/hr,1 while both patient types might be

comparably critical. Having to enter the patient’s room to see the monitor might be

one of the reasons this frequency is significantly lower for ICU nurses. The far-view

display might increase nurses’ vigilance because patient information can be seen from
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outside the patient’s room and the workload for the triaging task is reduced.

5.5.2 Decision Accuracy

Improved accuracy was found in two scenarios: Detecting patients who did not

need the provider’s attention (with the Bar display) and detecting a nearly empty

syringe (with both far-view displays). However, our new displays did not help nurses

predict that HR, MAP or SpO2 would reach an alarm threshold within the next 4 min.

Miller et al.12 found that their integrated electronic display helped nurses correctly

identify a change in the patient’s variables. Adding visual clues that amplify the rate

of change13 could potentially mitigate the observed inattentional blindness problem.14

It was surprising that the new displays did not help nurses identify that the patient

receiving ventilator support and high FiO2 was more in need of attention than the

patient breathing spontaneously at low FiO2. It is most likely due to the fact that

nurses are trained to look at SpO2 in context of FiO2 and failed to see the more

subtle difference in ventilator support.

Finally, the traditional display had a slightly increased accuracy (but not sta-

tistically significant) over the two new far-view displays in triaging multiple alarms

(“Multiple Alarms” scenario), which could have been caused by longer trends in the

far-view displays distracting the nurse from the current state.

5.5.3 Accuracy Difference Between Both Far-View
Displays

A statistically significant improvement in accuracy for detecting near-empty sy-

ringe pumps was found for the Clock display (p = 0.016, αcrit = 0.017), but not

for the Bar display (p = 0.025), even though both displays showed identical syringe

icons. This is most likely due to the low frequency (10%), this scenario was used.

A retro perspective power analysis suggests that 11 additional subjects need to be

investigated for the difference to be statistically significant.

With the Bar display nurses were better able to identifying stable patients (94%

accuracy, p = 0.002) when compared with the Control display (60%). The clock

display accuracy (78%, p = 0.18) was not significantly better than the Control. This

might lead one to assume that the Bar display’s linear trend was easier to interpret
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and compare than the Clock display’s circular trend.

5.5.4 Workload Scores and Display Preference

Nurses experienced less frustration with the triage task when they used the new

displays. The new displays consolidate the data and reduced the amount of visual

scanning required to extract the necessary information. Reducing information over-

load, providing too much patient data for one nurse to process effectively, is important

as this is likely to reduce chances for medical error and thereby eliminate one risk

factor for bad patient outcome.15 However, the nurses felt they performed equally

well and had the same mental workload with all three displays. Perhaps the scenarios

were not challenging enough to separate workload differences between displays.

5.5.5 Comparison with Existing Solutions from the Literature

Information integration can lead to a greater understanding of the patient’s state.

Integrated information displays have helped anesthesiologists and nurses detect clin-

ical events faster and more accurately and have increased situation awareness.16–18

Artificial horizons indicate deviations from normal, pie-charts show changes in ven-

tilator settings,19 polygons and histograms show when vitals signs20 and blood gas

values deviate from normal,21 and changes in the shape and color of cardiovascular22

and pulmonary23 metaphors highlight change. In our Bar display and Clock display

deviations from normal may be more salient because regular shapes become distorted

and deviations from normal are filled with color.

Anesthesiologists prefer context-specific information24 and nurses prefer detailed

information that highlights cause-and-effect relationships.12 Our display shows a

trend of the patient’s minute ventilation plotted alongside a trend showing the minute

ventilation provided by the mechanical ventilator, and SpO2 alongside FiO2. Plotting

independent and dependent variables together highlights cause-and-effect relation-

ships and improves medical decision making.25–28

Multiple vital sign variables can be integrating into a single number to indicate a

patient’s need for attention.29, 30 We have added information from infusion pumps or

mechanical ventilators. The two far-view displays consolidate information related to

the patient’s state with information from medical devices in one central location to
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facilitate rapid triaging. The new display is not intended to replace the traditional

display, but rather augment it by providing summary information when a provider

is not at the bedside. A monitor displaying our far-view display might revert to

displaying a traditional waveform display when a health care provider is present at

the bedside. Alternatively, the far-view display might be shown on a small LCD

display by the doorway to the patient’s room. Finally, the new displays might find

application in remote-ICU monitoring, where physicians monitor multiple patients

from a site outside the unit.31, 32

5.5.6 Limitations

The main limitation of this study was our failure to validate our scenarios by a

Delphi method with expert users.33 In fact, we rechecked and changed the correct

answer in one of our “Past Alarms” scenarios when 79% of the volunteers selected that

both patients were in equal need of care. Otherwise we relied on the criteria listed

in Table 5.1 to designate which of the 2 patients was most in need of nursing care,

potentially eliminating more difficult scenarios where the differences between both

patients were more subtle. In selecting the patient data to display, we potentially

added investigator bias by choosing patients whose need for treatment is better

highlighted by features of the far-view displays.

Choosing blue to highlight abnormally low values in our new displays might not

have been a good choice, as yellow and red are traditionally used to indicate alarms.

However alarms were still highlighted in yellow. The support indicator elements in

our display were not intuitive. If users were to receive additional training on use

of the support indicators, they might have used them more effectively. One might

argue, that we should have evaluated the syringe icon separately, as we expected it

to perform well; however, our intent was to evaluate the display in its suggested final

form.

A final limitation was the short 3.5-7 min period of training provided for the new

displays. The nurses were very familiar with the traditional patient monitor, part of

our control display, and might have used it more effectively.
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5.5.7 Future Work

Information from a work domain analysis34 or a cognitive task analysis35 could be

used to redesign the display and improve its effectiveness in supporting the triaging

task. For a future evaluation we plan to provide the nurses with more training and

use think-aloud interviews or eye tracking to provide insight into why the display was

effective supporting the triaging task. More complex questions should be used to show

display benefits in scenarios, where we currently did not find significant differences.

Also higher-level situational awareness levels, with more predictive decision making,

should be explored in more detail.36

Finally, it would be interesting to evaluate a far-view display with physicians, who

are known to make long-term strategic decisions,37 as these providers could benefit

more from the long-term trend component of the display.

5.5.8 Conclusion

If implemented in a clinical setting the proposed far-view display might reduce

nurses’ workload and increase patient safety by enhancing vigilance in three ways:

1. By quickly assessing a patient, nurses could prioritize when to enter a patient’s

room, and which patient to attend to first. This may allow them to optimize

the order in which they perform their tasks

2. Less time required for patient triage could cause this task to be performed more

frequently, keeping the provider better informed about the current state of the

patient. This might allow initiation of treatment before alarms prompt them

to enter the room.

3. The syringe display could improve medication management by identifying empty

infusions and the need to order medications without having to enter the patient’s

room.
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CHAPTER 6

CONCLUSION

6.1 Central Theme
The central theme of this dissertation, titled “Signal processing, human factors,

and modelling to support intensive care unit bedside care,” is to advance technology

and improve patient care.

6.1.1 Four Manuscripts

It consisted of four manuscripts: 1) a review of previous medical display evalu-

ations, providing insight into solutions that have worked in the past; 2) a study on

reducing false alarms and increasing the usefulness of the remaining alarms by intro-

ducing alarm delays and detecting alarm context, such as suctioning automatically

silencing ventilator alarms; 3) a study of simplifying the frequent but complicated

task of titrating of vasoactive medications by providing a titration support tool

that predicts blood pressure changes 5 min into the future; and 4) a study on

supporting the triage of unfamiliar patients by introducing a far-view display, which

incorporates information from previously disparate devices and presents trend and

alarm information at one easy to scan and interpret location.

6.1.2 Contribution of the Four Parts to the
Central Theme

The four manuscripts tie together through their focus on reducing nurses’ workload

and improving nurses’ situational awareness, thereby improving medical decision

making, reducing chances for medical errors (see Figure 6.1). The review laid the

foundation of the work by identifying previous approaches that have worked in the

past and highlighting the need to focus on nurses. The observational study not only

provided a simple suggestion for reducing unnecessary alarms by introducing a short

alarm delay, but also identified opportunities for improvements: a) introducing a
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reminder of soon to be empty infusion pumps; b) designing monitoring devices with

nurses, their most frequent users, in mind; c) supporting vasoactive drug titration, a

common, challenging, and time consuming task; and d) helping nurses decide when

to enter a patient’s room, as we found that nurses most frequently entered the room

to respond to an effective alarm, which caused an action to be performed, rather than

to just silence the alarm. The evaluation of the titration advisory system not only

supported nurses in titrating vasoactive medications effectively, an area of potential

improvement identified in the observational study, but it also expanded the existing

concept of showing vital signs in terms of support, such as the blood oxygen saturation

in terms of inspired oxygen fraction and minute ventilation, to medication support

on arterial blood pressure. Finally, the far-view display evaluation incorporated

improvement opportunities previously identified, such as infusion pump reminders

and support indicators. Its development also focused on nurses as their main users

and acknowledged nurses’ information requirements by: a) combining information

from multiple devices at single location visible without having to enter the patient’s

room, b) providing trends, and c) converting infusion rates and volumes to be infused

into times infusions were empty.

6.2 Summary and Conclusions
6.2.1 Review of Physiologic Monitoring Display

Evaluations

The review of evaluation studies for physiologic monitoring displays (Chapter

2) found that study participants detected an adverse event or made a diagnosis or

decision more rapidly in 17 of 30 studies, were more accurate in a clinical decision

or diagnosis in 12 of 18 studies, and showed decreased perceived workload in 3 of

7 studies. These results demonstrate that improved displays have high potential in

improving medical decision making and reducing clinicians’ workload and chances for

medical error. Finally, the review highlighted the need to use study participants other

than anesthesiologists, who participated in 18 of 30 studies, and focus especially on

nurses, who participated in only 5 of the 30 studies, even though they are known to

conduct a majority of patient care tasks.
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6.2.2 Alarm Reductions Using Delays and
Clinical Context

The study in Chapter 3 recorded time-stamped information of alarms and the

presence of health care team members in the patient room for 200 hr. It found that

many alarms are transient (canceling themselves when the offending condition passes)

and/or associated with common patient care tasks, such as suctioning the airway

or manipulating the patient. Introducing a 19 sec alarm delay and automatically

detecting suctioning, repositioning, oral care, and washing could reduce the number

of ineffective and ignored alarms from 934 to 274—a 71% reduction. More reliable

alarms could elicit more timely responses, reduce workload, reduce noise pollution

and potentially improve patient safety. Finally, it was observed that nursing staff

intentionally entered a smaller infusate volume than was available so that the infusion

pump alarm reminded them when the pump was nearly empty—here, an automated

reminder could eliminate the number of duplicate alarms (the reminder and one or

more additional alarms when the infusion is really empty, depending on whether the

nurse correctly entered the remaining volume and did not want to waste any).

6.2.3 Titration Advisory System with Patient
Specific Sensitivity Identification

Titrating vasoactive drug infusion rates is a frequent but challenging nursing task,

because of significant variations in patients’ sensitivities and delays between changes

in infusion rates and observed changes in blood pressure exits. A potential solution

to this problem is providing an open-loop advisory system, which predicts mean

arterial pressure (MAP) 5 min into the future (Chapter 4). The proposed advisory

system shortened the median time required by nurses to reach the desired MAP from

10.2 to 4.1 min (a 60% reduction), decreased the median number of infusion rate

changes from 6 to 4 (a 33% reduction), and resulted in a significant reduction of

mental workload and effort. Identifying an individual patient’s sensitivity, instead of

predicting MAP based on an “average” patient’s sensitivity, improved the accuracy

of the prediction by 75% for sodium-nitroprusside, 82% for dopamine, and 52% for

dobutamine. By predicting and displaying the expected blood pressure 5 min in the

future, the advisory system helped nurses titrate faster and reduced their perceived
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workload and might improve patient safety.

6.2.4 Intensive Care Unit Far-View Display
Supporting Triaging Tasks

Triaging patients and deciding which of 2 patients to attend to first is a task

nurses perform multiple times each hr. This task requires integration of information

from three disparate devices—the patient monitor, the ventilator, and the infusion

pumps—and generally requires entering the patient’s room (as these devices might

not be readable from the door), thereby potentially disturbing the patient’s rest.

This task might be simplified by introducing a far-view display (Chapter 5), which

incorporates information from the three mentioned devices and presents trend and

alarm information at one easy to scan and interpret location. Additionally, infusion

pump reminders, a problem identified in the observational study, and therapy support

indicators, a modified approach to the prediction system introduced in the titration

advisor paper, were included. Finally, we designed the novel display for nurses as

the main users, incorporating lessons learned from the literature review (Chapter 2),

which identified nurses as a previously understudied population specifically, and the

alarm observation study (Chapter 3), which demonstrated that nurses are the main

monitor users. Using the two proposed far-view displays, nurses more accurately

identified stable patients and nearly empty syringe pumps. Median decision times

improved from 17.2 sec for the control display to 11.3 sec for the bar display and 12.4

sec for the clock display—a 33-35% reduction. By graphically integrating disparate

information, the far-view display might reduce nurses’ workload, improve nurses’

decision making, and increase patient safety by allowing nurses to more quickly detect

patients in immediate need of attention.

6.3 Impact
The presented work demonstrates two improvements towards nurses’ situational

awareness: a) reductions of nurses’ workload and chances for medical error by intro-

ducing the titration advisory system for vasoactive drug infusions and reducing the

number of irrelevant and ignored alarms; and b) improvements in medical decision

making by introducing a far-view display that supports the triaging of patients.
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The combination of improvements in signal processing (alarm reduction strategies

in Chapter 3 and titration advisor in Chapter 4), human factors (titration advisor

in Chapter 4 and far-view display in Chapter 5), and modeling (titration advisor

in Chapter 4) to support ICU bedside care have potential for reducing the number

of medical errors by improving nurses’ situational awareness, helping them make

more accurate and faster decisions, and reducing their workload. Finally, reducing

irrelevant and ignored alarms could reduce ICU noise levels and patient interruptions,

which might have beneficial effects on patient outcome.1, 2

6.4 Future Work
6.4.1 Review of Physiologic Monitoring Display

Evaluations
As the review, which formed Chapter 2 of this dissertation, was published a couple

of years ago, an update reviewing evaluation studies performed in the last 3.5 years

could lead to insights into recent improvements in evaluation techniques. Such an

update should also focus on explaining how frameworks may be used or designed by

the researcher performing an evaluation, and how information obtained through work

domain analyses can be included in display design.

6.4.2 Alarm Reductions Using Delays and
Clinical Context

Using the data collected in the alarm study, which formed chapter 3 of this

dissertation, one could reanalyze the effectiveness of past alarm systems in bringing a

provider into the room, e.g., it was observed that of the 524 alarms that sounded when

no healthcare provider was present in the patient’s room, a healthcare provider entered

during, or within 2 min, of these alarms only in 111 and 180 episodes, respectively.

This suggests that alarms are not felt to properly reflect the patient condition and

are thus not recognized as helpful. With noise in the ICU having a detrimental

effect on patients’ sleep and ICU outcome, auditory alarms should sound outside the

patient’s room or be transmitted directly to the responsible healthcare provider if

none is present at the bedside. Here, a personalized alarm system communicating

patient alarms directly to the nurse when he or she is not in the respective patient’s

room could be designed and evaluated.
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Other ways of reanalyzing the existing data include looking at the relative impor-

tance and optimal duration of delays for individual parameters, sensors or devices and

the analysis of repeated alarm efficacy, e.g., alarms for infusion pumps and feeding

pumps could be exempt from the delay as their alarms do not terminate themselves,

or TV, SpO2 and ABP could have different delays based on the desired reduction in

ineffective and ignored alarms. (For a 50% reduction TV alarm delays only need to

be 9 sec, while ABP delays need to be 22 sec.)

Finally, our study could be expanded in two ways: a) observing alarms during

different times of the day and in other units, and b) more importantly, repeating the

study in a ICU with modern equipment using current alarm delay settings and then

again after optimizing the alarm delays as proposed in the evaluation to demonstrate

the “real” clinical benefit suggested by our observations.

6.4.3 Titration Advisory System with Patient
Specific Sensitivity Identification

The improvements observed in the titration advisor evaluation in Chapter 4 should

be verified in a study using patients where nurses would manually change the infusion

rates to elicit small MAP changes and use their best clinical judgment to make infusion

rate changes based on our predictions. Next, the process of making small changes in

the infusion rate, which is required for the identification, could be automated.

Another area for future work is the expansion of this method to other drugs (e.g.,

norepinephrine3, 4), and the expansion of the method to predict changes in other vital

signs (e.g., heart rate and cardiac output). Animal experiments using swine could be

used to compare the performance of the proposed sensitivity identification method

using medications such as dopamine, dobutamine, epinephrine, norepinephrine. Ex-

ploring combinations thereof, which are frequently used in the clinical setting,5, 6

should also be considered. Another area of interest could be the administration of

small fluid boluses to identify the volume response of the patient and whether the

patient would benefit from additional volume increase.

An interesting expansion of this project would be the application of patient specific

sensitivity identification for the use in anesthesiology drug effect displays.7, 8 Before

induction and during stable phases of anesthetic maintenance the patient could be
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challenged using changes in sedative and analgesic drug infusion rates or anesthetic

vapor concentrations with measurements like processed EEG, heart rate variability

or skin conductance serving as surrogates for anesthetic depth measurements and

perceived pain levels respectively. A similar concept for mechanical ventilation could

be performed where FiO2, PEEP, and/or pressure support would be slightly reduced

to identify a change in the patients’ SpO2, thereby identifying whether the patient

could be adequately ventilated with less mechanical ventilator support.

6.4.4 Intensive Care Unit Far-View Display
Supporting Triaging Tasks

The improvements recorded in the far-view display evaluation, demonstrated in

Chapter 5, should be verified in clinical practice, with the number of “unnecessary”

patient-room entries counted. However, the problem with nurses missing trends

towards an alarm with the two new displays needs to be addressed first. It could

be mitigated by combining the display with change indicators suggested by Tappan

et al.,9 after which the efficacy of the improved far-view display should be evaluated

again using more- and less-obvious scenarios. Consequently, a display prototype that

interfaces the cardiac patient monitor, mechanical ventilator and infusion pumps

could be placed in the window of a patient’s room, allowing health care providers

to get more familiar with the display and learn its use in real patients. This learning

experience might mitigate the lack of training and lack of experience observed in the

present work, potentially leading to better performance in future evaluations.

The far-view display should also be combined with Sven Koch’s close-view nursing

display,10 in which the display content would depend on provider presence detection

technology, such as radio-frequency identification (RFID)11–13 or ultrasound identi-

fication (USID).14 This combined display could then be evaluated using a human

patient–simulator study looking at tasks that require entering the room and interact-

ing with the display (such as medication rate changes or adding drugs to be infused)

and tasks performed from the doorway, (such as triaging a patient or identifying

alarm sources). An interesting and potentially worth-while side project would be

the evaluation of effectiveness of using the clock display as an alternative to the

current paper information in communicating a patients’ performance in the ICU
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during change of shift reports, where the patient’s current nurse transfers care to

the next nurse.
Finally, the improvements in decision performance should also be verified with

physicians, who are more used to seeing trend information and making long term

decisions, rather than nurses, who make tactical decisions for the present. Here

it could be interesting to see how healthcare providers with different amounts of

ICU experience and different priorities, such as pulmonary fellow physicians, and

cardiology fellow physicians perform with the two new far-view displays.
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