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ABSTRACT

Given the trend of globalization, more and more firms are outsourcing their Research

and Development (R&D) projects to a second party overseas or domestically. Through

outsourcing, firms not only save costs but also build strategic capabilities such as tapping

global talents, building partnerships, boosting innovation, and maintaining a lean and

flexible operation. These capabilities help shorten the duration of R&D projects and

mitigate the risk of failures. However, the complexity of collaborative relationship in

outsourcing and risks inherent in an R&D project pose challenges to both the firm who

is doing the outsourcing (referred to as the principal) and the firm that the project is

outsourced to (referred to as the agent). It is likely that either or both parties have

private information regarding their capabilities as well as the likelihood of the success of

the project. In addition, the efforts of the firm that the project is outsourced to may be

unobservable to the firm who is doing outsourcing. In the dissertation, I investigate whether

stage-gate contracts can help firms manage the outsourcing of R&D projects and determine

the optimal form of the stage-gate contract when information asymmetry (adverse selection)

and unobservable effort (moral hazard) exist.

In Chapter 1, I explore the use of stage-gate contracts in the case where the agent has

private information and his effort is unobservable. The principal offers multiple contracts

to “screen” the agent. The main tool of the analysis is the screening model in the principal-

agent problem.

In Chapter 2, I examine the opposite case, the one where the principle is the firm with the

private information (the agent’s effort is again unobservable). In this situation a principal

may use the stage-gate contract to signal her private information with regard to the new

product development project. The main tool of the analysis is the signaling games.

In Chapter 3, I investigate the case of bilateral asymmetric information, namely, both

the principal and the agent have their own private information on the project. The main

tool of the analysis is the screening model and the signaling games.
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CHAPTER 1

USING STAGE-GATE CONTRACTS TO

SCREEN AN AGENT WITH INSIDE

INFORMATION

1.1 Introduction

Over the first decade of the new millennium, the global R&D spending increased rapidly

from $0.753 trillion in 2001 to $1.051 trillion in 2006 and then to $1.435 trillion in 2011,

averaging 6.4% annually over the first 5-year period and 6.7% annually over the 10-year

period (National Science Board, 2014). In contrast, the global GDP grew annually at the

rate of 4% from 2004 to 2007 and at a rate less than 3% from 2007 to 2013 because of the

Great Recession and slow recovery afterwards (World Bank, 2014). Across all the industries,

pharmaceutical has one of the highest levels of R&D expenditures. In 2012, 7 of the top

20 companies by R&D spending are pharmaceutical companies, such as Roche, Novartis,

Merck US, Johnson & Johnson, Pfizer, Sanofi-Aventis and Glaxosmithkline (PwC, 2014).

For the whole pharmaceutical industry, the worldwide total R&D spending increased at the

impressive rate of 11% from about $83 billion in 2004 to about $136 billion in 2008 and

then slowed its pace reaching about $140 billion in 2012 due to the Great Recession (Nature

Medicine, August 6, 2013).

Another noticeable trend is that the outsourcing of R&D grew at a faster pace than

R&D spending. For instance, for the pharmaceutical industry, over the period from 2008

to 2013, the global drug discovery grew at the annual rate of 10.5%, accounting for about

10% of the total global drug R&D spending in 2013. It is projected that with the annual

growth rate of 10.5%, the market value of the global drug discovery outsourcing will likely

reach $25 billion by 2018, nearly half of the R&D spending in pharmaceutical industry at

that time (Research and Markets, September, 2013). One of the major reasons a firm might

pursue outsourcing of R&D is to slow the expenditure growth; the cost of developing a new

drug increased almost eightfold from $199 million in 1979 to $1,506 in 2012 (European

Federation of Pharmaceutical Industry and Association, 2014). However, lack of measures

of prequalification and effective monitoring could result in the loss of quality management
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in outsourced R&D, especially for the new product development process in the knowledge-

intense pharmaceutical industry. The use of a stage-gate contract could help facilitate such

monitoring, which is another reason that we are interested in analyzing the type of contract

appropriate when using the stage-gate framework.

R&D is not only costly but also lengthy and risky. Related to the development of a new

medicine, the annual report from European Federation of Pharmaceutical Industry and

Association (2014) points out that for a synthesized active substance to reach the market,

on average, it has to go through a six-year process of patent application and preclinical

development (acute toxicity, phamarcology and chronic toxicity), four years of clinic trials

and two to three years of administrative procedures (registration, marketing, price etc.).

In the end, only one or two of every 10,000 synthesized substances passes through all

these stages to get commercialized. Strategic capabilities built through outsourcing such as

tapping global talent, building partnerships, boosting innovation, maintaining a lean and

flexible operation etc. (Hauser, Tellis, and Griffin, 2006) help shorten the duration of R&D

projects and mitigate the risk of failures.

R&D projects are also highly variable as to their potential for success. In 2005, the global

survey by Arthur D. Little (2005) of more than 800 companies across all major industries on

innovation excellence found that the top quartile of innovators have 10 times higher returns

from innovation investment and 2.5 times higher sales of new products than the ones in

the bottom quartile. Its survey in 2012 (Thuriaux-Alemán, Eagar, and Johansson, 2013)

showed that the top quartile innovators achieve 13% more profit from new products and

services and 30% shorter time-to-break-even.

Adding to R&D outsourcing risks is the uncertainty as to the capabilities of the party

to whom the project is outsourced to (we refer to this party as the agent, and will use

the male pronoun). There is a distinct possibility that the agent has inside information

regarding his capabilities and/or regarding the likely success of the project - this may not

be fully observable to the principal (the firm doing the outsourcing, who will be referred

to as being female). This is commonly referred to as a problem of “adverse selection.”

We address the setting where the principal has inside information regarding the project’s

potential in Chapter 2. In addition, the effort exerted by the agent is usually unobservable

- this is a problem involving “moral hazard.” In summary, R&D projects are very costly,

extremely risky, and outsourcing involves additional risks caused by information asymmetry

and unobservable effort. Accordingly, our general research question is: “How can a principal

best manage the outsourcing of costly, risky, and uncertain R&D projects to an agent with
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inside information and whose efforts are unobservable?”

We help answer this question by showing that a type of contract known as a stage-gate

contract can be used to incentivize the agent to exert a high level of effort even though

the principal cannot directly observe his effort, and can at the same time be used by the

principal to “screen” the agent as to whether he is of a “high-type” with a high level of

competency or of a “low-type” with lesser competency (equivalently, whether the agent

knows the project to be of a “high-type” with a high chance of success or of a “low-type”

with a lesser chance of success). While previous work has illustrated that an offering of a

menu of contracts can be used as a screening mechanism, and has shown that moral hazard

can be mitigated through contracting, our contribution is to explore how the combination of

these concepts plays out within the context of an outsourced development project, providing

closed-form mathematical results.

The stage-gate contract (Cooper 2001, 2008; Hauser, Tellis, and Griffin 2006) gains its

name from the fact that it breaks a project down into multiple phases or “stages,” with

a “gate” at the end of each stage which either lets the project continue (a “go” decision)

or terminates the project (a “no go” decision). Hauser, Tellis, and Griffin (2006) highlight

the stage-gate process as a formal process that has the attributes of increasing success and

reducing times for R&D and new product development. However a contribution of ours is

to explicitly show how a stage-gate contract can act as a screening tool in a setting where

the agent has private information and prefers to “shirk,” and how the contract thereby

increases the principal’s profit.

Our principal-agent model is set up as follows: 1) the success of the project depends on

the agent’s effort, but this effort is costly to the agent and the agent’s effort is unobservable

by the principal (this is a classic “moral hazard” problem); 2) the agent to whom the

project is being outsourced may be of either a “high-type” or of a “low-type,” with the

agent’s “type” known only to the agent (this is a classic “adverse selection” problem); 3) the

project consists of two periods (stages), with each stage’s probability of success dependent

on the agent’s type and his effort, and with the cost to the agent at each stage dependent on

the agent’s effort; 4) if the project is successful at stage two (which means, by definition, it

was also successful at stage one) then the principal receives some predetermined value; and

5) the principal has control over devising a contract (or pair of contracts) that the agent

can choose from (or reject entirely) before initiating work on the project which stipulates

the money transfers prior to initiation of work and upon success or failure at each stage.

In addition to showing the screening benefit of the stage-gate contract, we explore: 1)

the extent to which the principal suffers from not knowing the agent’s type a priori; 2)
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the roles of the money transfers before project initiation after success at the intermediate

stage; 3) whether offering the agent the choice between two different contracts is better

than providing one contract; and 4) whether it is sufficient for a contract to only include

money transfers upon success, or whether it should also allow for penalties upon failing.

The remainder of the paper is organized as follows. In 1.2 we provide a literature

review, and in 1.3 we establish the model setup. In 1.4 we discuss the optimal solution for

the different types of stage-gate contracts (i.e., with and without an intermediate payment,

etc.), as well as the potential impact of penalties, and in 1.5 we provide managerial insights

and concluding remarks.

1.2 Literature Review

Our model is related to management of R&D projects, and to principal-agent theory.

An empirical study by Girotra, Terwiesch, and Ulrich (2007) on portfolios of R&D projects

shows that a significant decrease in firm value can be caused by a late-stage failure of a

project. Similarly, Chao, Kavadias, and Gaimon (2009) study how funding authority and

incentives impact new product portfolio balance and Chan, Nickerson, and Owan (2007)

investigate the important roles played by the state of a firm’s pipeline, the magnitude of

adjustment, and the transaction costs in the decision making of R&D pipeline management.

While these papers explore the optimal portfolio, we focus on a single outsourced project

and investigate how a principal can maximize her expected profit from each given project.

Different types of outsourcing (R&D) contracts have been discussed in the literature.

For example, Bhaskaran and Krishnan (2009) study mechanisms such as revenue sharing,

investment sharing and innovation sharing. Xiao and Xu (2012) propose a model that

examines the impact of royalty revision in a two-stage R&D alliance with the possibility of

renegotiation, where both the marketer and innovator exert efforts in each of two periods.

Modeling joint effort can also be seen in Iyer, Schwarz, and Zenios (2005) on production

outsourcing. Alternatively, Savva and Scholtes (2014) show that, without assuming moral

hazard and hidden information, co-development with opt-out options has advantages over

either pure co-development or licensing. Furthermore, Crama, Reyck, and Degraeve (2008)

consider a licensing contract model where the licensee has private information on the

probability of technical success and whose action over the R&D phase is unobservable.

One key way in which our paper differs is that our model doesn’t involve co-development,

revenue sharing or licensing and falls into the category of contract research agreement in

which upon the completion of the project, the research party will hand over all of the

project results to the paying party. Binns and Driscoll (1998) illustrate the main features
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of three different types of R&D contracts - contract research agreement, collaborative

research agreement and joint collaboration agreement. Modeling an innovation search

process, Kim and Lim (2015) study a firm’s R&D outsourcing decision and the design

of R&D contest in an innovation-driven supply chain. With simultaneous sampling and/or

sequential sampling from any probability distribution, Poblete and Spulber (2013) show

that the optimal incentive contract for R&D takes the form of an option. Finally, the

empirical study of Hermosilla and Qian (2013) shows that adverse selection is the main

cause of the success gap between in-house compounds that outperform out-licensed ones.

An important insight from our work is that we effectively find that this success gap can be

reduced by the use of a stage-gate contract.

Turning to principal-agent theory, Levitt and Snyder (1997) consider a setting in which

the agent, whose effort is not observable, reports an observed intermediate signal to the

principal who can then decide to continue or cancel the project. Bhattacharya, Gaba,

and Hasija (2012) study a model on milestone-based contracts, which has three stages: 1)

research, 2) regulation verification and 3) development, with an investment from the agent

in the research stage, another investment from the principal in the development stage if

regulatory verification leads to approval, and an option-based contract to be exercised in the

research stage if the intermediate verifiable signal is successful or not. Chao, Lichtendahl,

and Grushka-Cockayne (2014) study a stage-gate process where the agent has private

information on the idea quality resulting from the first stage, usually referred to as the

research stage. The agent’s effort in the second stage, usually referred to as the development

stage, is also not observable to the principal, while the principal has the right to make a

go/no-go decision based on the agent’s report of idea quality. While both their models are

similar to ours, in our model there is no issue of reporting a signal (either truthfully or not),

and the principal and the agent have a consensus on whether each stage succeeds or fails.

An additional feature of our model is that both adverse selection and moral hazard exist in

each stage.

Our principal-agent model deals with a setting involving hidden action (moral hazard)

and hidden information for which Mas-Colell, Whinston, Green, et al. (1995) provide a

concise introduction to the general principal-agent framework. Research on information

asymmetry in supply chain management is abundant, and Cachon (2003) and Chen (2003)

provide a broad review of the literature in this field. For models involving adverse selection,

the mechanism design denoted as the “revelation principle” in Myerson (1979) and Myerson

(1982) is a very useful tool. The revelation principle states that a mechanism exists to
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entice the agent to truthfully reveal his type while still providing the principal as good

an outcome as can be achieved given the information asymmetry. Chao, Lichtendahl, and

Grushka-Cockayne (2014) apply the revelation principle to the optimal contract design

problem in a dual-channel supply chain where the retailer has private information that is

unknown to the manufacturer. We apply this tool to our model in which both moral hazard

and adverse selection exist.

Crama, De Reyck, and Degraeve (2013) use a similar setup to our approach, but there are

some distinct differences: in their model, the agent is assumed to buy the project, whereas

we allow the payments to flow in either direction and we find that the first payment in fact

does flow from the agent to the principal. Furthermore, in their model the probability that

a stage is a success is exogenous, whereas in our model it depends on the agent’s endogenous

effort. Finally, their agent is differentiated on his belief of the value of the project (which

is uncertain and can be improved by exerting a marketing effort in the second stage), while

ours are differentiated on capabilities and the project’s payoff upon success is fixed (although

the expected value of the project changes as a function of the effort levels and probabilities

of succeeding to the next stage).

1.3 Model Setup

We consider a setting in which a principal (“she”) wants to outsource a R&D project

to an agent (“he”). We are primarily interested in situations where the agent’s ability is

not known to the principal (a situation of incomplete information), but for reference we

compare to the situation where the agent’s ability is known by the principal (the case of

complete information). We study a two-period project with stage-gate features, meaning

the project either succeeds (and continues) or fails (and ends) at the end of each period.

Figure 1.1, which also shows the parameters and variables we discuss later, shows that

before the start of the project, the principal offers the agent a contract, which specifies the

payments that will be made to the agent. We study various possible contract forms, but

a general form, and our “baseline” model, is the case where the contract allows for money

transfers (the principal may pay the agent or vice versa) at three points - at the start of

the project (before period 1), after period 1 contingent on success in this period, and after

period 2 again contingent on this period 2’s success. The agent can enter the second period

only after the first period is successful; otherwise the project stops (the agent exits). The

agent exerts effort within each period; the higher the effort the higher the agent’s cost but

also the higher the probability of success. The agent’s ability also affects the likelihood

of success in each period. We assume the agent is either of high ability (i.e., high-type)
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or low ability (i.e., low-type). Equivalently, rather than the agent himself being of high

or low-type, it may be that the agent has private information as to the prospects of the

project (it may be the project itself that is of high or low-type). We assume that while the

principal does not know the agent’s type, she knows the probability that the agent will be

of high-type.

The principal designs a contract mechanism that maximizes her expected profit. This

optimal contract mechanism could take various forms: it could include two different con-

tracts each of which specifies the menu of money transfers at each point (with one contract

intended for a high-type agent and the other intended for a low-type), with the agent having

the choice of contract. In this case, the revelation principle applies (Myerson, 1979, 1982)

- the contract offered by the principal will be such that the agent will truthfully reveal his

type by picking the contract that has been designed for his type. We call this a “screening

model” because the contract screens the agent as to his type. Alternately, the principal

could offer only one contract (one menu of money transfers) to the agent, intending that

the agent accept regardless of his type (no screening). Finally, she could offer only one

contract, of a kind that only a high-type agent would be willing to accept (the project will

“die” if the agent is of low-type) - this again constitutes screening, since acceptance (or not)

divulges agent type. In section 4 we present results for the baseline model and the possible

variations as just discussed, along with an extension which allows for penalties to the agent

after each period if the project fails (in addition to rewards if it succeeds).

We assume that the project returns a value V if successful at the end of period 2, with

V known to all parties. The agent is of low-type with probability λ , with 0 < λ < 1, and of

high-type with probability 1−λ . The effort levels that the agent exerts in the two periods

if of low-type and high-type are denoted by {e1L, e2L} and {e1H , e2H}, respectively, which

all take values in the [0,1] interval. The parameters αL and αH describe agent type, with

the logical constraint that 0 < αL < αH < 1. The probabilities of success for the first and

the second periods for the agent if of low-type are αLe1L and αLe2L. Likewise, αHe1H

and αHe2H denote the corresponding probabilities of success for the agent if of high-type.

Thus, while V is a fixed and known amount, the expected value of the project endogenously

depends on the effort levels and unobservable agent capabilities.

The costs that the agent incurs in the respective periods are quadratic in effort exerted;

ke2
1L and ke2

2L for the agent if of low-type or ke2
1H and ke2

2H if of high-type, where k is the

cost coefficient (assumed to be the same regardless of agent type). We denote the upfront,

intermediate (after period 1) and final (after period 2) money transfers to the agent by m0L,
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m1L, and m2L, if of low-type and m0H , m1H , and m2H if of high-type. We do not constrict

these transfers to be positive. For example, a negative upfront payment is effectively a

participation fee paid by the agent. Finally, we assume the intermediate and final transfers

occur only when the first and second periods are successful, respectively, and we also briefly

discuss the situation where penalties are allowed in case a period fails.

The principal’s expected profit is:

λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L]

+ (1 − λ) [αHe1H (αHe2H(V −m2H) −m1H) −m0H] (1.1)

Given the offered contract(s) and the agent’s type (known to the agent), the agent chooses

a contract and effort levels in period 1 and (if the project succeeds in period 1) in period 2

that maximize its expected profit (or declines all contracts if none offers a positive expected

value). The agent’s expected profit (if of low-type and high-type, respectively) is:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (1.2)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (1.3)

This is a Stackleberg game, solved by backwards induction. Notice that the model with

“complete information” consists of (1.1), (1.2) and (1.3). But for the model with “incom-

plete information,” two incentive compatibility constraints have to be included, because the

principal wants to prevent one type agent from mimicking the other (e.g., if the agent is

low-type, its expected profit when accepting the contract intended for a low-type agent must

exceed its expected profit when accepting the contract intended for a high-type agent). Let

{ẽ1L, ẽ2L} and {ẽ1H , ẽ2H} denote the efforts exerted by a low-type agent and a high-type

agent, respectively, when the agent is dishonest about its type and pretends to be the other

type. Thus the incentive compatibility constraints are:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L

≥ m0H − kẽ21L + αLẽ1Lm1H − αLẽ1Lkẽ
2

2L + α2

Lẽ1Le2Lm2H (1.4)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H

≥ m0L − kẽ21H + αH ẽ1Hm1L − αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2Hm2L (1.5)

We chose this setup to show that the stage gate contract is meaningful in the presence of

asymmetric information even in the absence of rick aversion (note that risk-neutrality is
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assumed for both the principal and agent, and the effort exerted by the agent does not

contain a direct investment from the principal).

1.4 Results

We first (in 1.4.1) analyze the baseline model, where intermediate and end money

transfers depend on the success of the previous stage, while the upfront transfer does not.

We compare the complete and incomplete information cases to determine the extent of the

information rent. In 1.4.2 we then compare this baseline to the case where there is either

no upfront and/or no intermediate money transfer, to determine the benefit (if any) of the

stage-gate process. Next, in 1.4.3, we show that the principal is better off by offering two

contracts (one intended for a high-type agent and the other intended for a low-type) as

opposed to only offering one contract. Finally, in 1.4.4 we show that the full flexibility case

where the principal also has the ability to penalize the agent when he fails at a stage does

not impact her profit.

For all out analyses, we denote V < 2k/H as the maximum value condition. As long as

the value for the project falls below this maximum value, then there is an interior solution

(the agent, regardless of his type, trades off the cost of effort versus the desire to increase

probability of success). Throughout the analysis, this interior region will be the focus of

our discussion, since a value V greater than the maximum value condition would simply

result in 100% effort exerted by the agent since the possible reward is so high.

1.4.1 The baseline model and the extent of the
information rent

When upfront money transfers and intermediate and end money transfers (contingent

on success) are all included in the contract (i.e., the baseline model), we have the results

as shown in Theorem 1 under complete information and Theorem 2 under incomplete

information. All proofs are given in the Appendix.

Theorem 1 Under complete information, the outcomes with the baseline model are as

follows:

1. Money transfers if the agent is of low-type are m∗
0L = −

α6

L
V 4

64k3
, m∗

1L = 0 and m∗
2L = V ,

resulting in effort levels e∗
2L =

αLm
∗
2L

2k
and e∗

1L =
αLm

∗
1L
+α

3

L
m
∗
2L

2

4k

2k
and zero expected profit

for the agent.

2. Money transfers if the agent is of high-type are m∗
0H = −

α6

H
V 4

64k3
, m∗

1H = 0 and m∗
2H = V ,
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resulting in effort levels e∗
2H =

αHm∗
2H

2k
and e∗

1H =
αHm∗

1L
+α

3

H
m
∗
2H

2

4k

2k
and zero expected

profit for the agent.

3. The principal’s expected profit if λ
α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
.

Theorem 1 states that under complete information, there is no need for adding interme-

diate money transfers in helping the principal achieve the maximal profit. The expressions

for the optimal effort levels show that the effort in period two is proportional to the money

transfer following period two, and the effort in period one is proportional to the squared

money transfer in period two. As such, there is no influence of the intermediate payment.

Note that the upfront payment is negative, meaning the agent pays to join the project

and then if the project is successful the agent receives the full final payment m∗
2L =m∗

2H = V .

In addition, it can be shown that e∗
1L < αL

2
e∗
2L and e∗

1H < αH

2
e∗
2H . In other words, the effort

level in the second period is higher than in the first period. Furthermore, the upfront money

transfer is used by the principal to extract all profit from the agent. Finally, we see that

effort levels increase as the value of the project increases, and decrease as the cost coefficient

k increases.

Theorem 2 Under incomplete information, the outcomes with the baseline model are as

follows: The unique, closed form solution for the menu of money transfers and firm profits

is shown in the Appendix. The solution shows:

1. The principal’s expected profit is strictly lower than in the complete information case

in Theorem 1.

2. If the agent is low-type he receives no profit and if he is high-type he receives strictly

positive profit.

3. The money transfers satisfies the following: 0 >m∗
0L > −

α6

L
V 4

64k3
, m∗

1L > 0 and 0 <m∗
2L <

V , along with 0 >m∗
0H > −

α6

H
V 4

64k3
, m∗

1H = 0, m∗
2H = V .

4. The effort levels e∗
1L, e

∗
2L, e

∗
1H and e∗

2H have the same expression as in Theorem 1.

Thus, under incomplete information, the agent’s upfront payment (i.e., the buy-in) is smaller

than under complete information. Also, the principal won’t set m∗
1L = 0 in the optimal menu

of money transfers (m∗
0L,m

∗
1L,m

∗
2L) to the agent if he is a low-type, although m∗

1H is 0 in

the optimal menu of money transfers (m∗
0H ,m∗

1H ,m∗
2H) to the high-type agent. Theorem 2
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thus states that including the intermediate money transfers provides more expected profit

to the principal because the optimal intermediate payment to the agent if of low-type is

always greater than zero. So we find that intermediate money transfers play an important

role: they help the principal to identify the type of agent and through this screening she

is able to retain more expected profit. The agent (regardless of his type) pays less upfront

to participate in the project as compared to the full-information case. The principal still

extracts all the profits from the agent if he is a low-type, but the high-type agent expects

a strictly positive profit which effectively reflects an “information rent” (Mas-Colell et al.

1995).

Figure 1.2 illustrates the principal’s expected profits under complete and incomplete

information with the following parameter values: V = 2, k = 1 and αH = 0.8 satisfying the

maximum value condition, 1−λ
λ

and x = αH

αL
= 0.8

αL
. The difference between the two profit

curves represents the information rent caused by information asymmetry.

1.4.2 The role of a stage-gate setup and the impact of the
money transfers

To determine if the insights hold under variations to the baseline model, we investigate

the outcomes under the absence of either the upfront and/or the intermediate money

transfers (by “intermediate” money transfer we mean the one that is contingent upon success

at stage one). We have the results as shown in Theorem 3 under complete information and

Theorem 4 under incomplete information.

Theorem 3 Under complete information, the outcomes are as follows, in order of the

principal’s expected profit (from highest to lowest):

Case 1: the baseline case; reference Theorem 1.

Case 2: the baseline case minus the possibility of an intermediate money transfer.

The principal’s expected profit is equal to that of case 1 since all the money transfers

are exactly the same, and is strictly higher than in cases 3 and 4.

Case 3: the baseline case minus the possibility of an upfront money transfer. The

principal’s expected profit is 1

2
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
] which is strictly higher than in

case 4 in this Theorem. The payment scheme to the agent if of low and high-types are

m∗
1L = −

α2

L
V 2

8k
and m∗

2L = V , and m∗
1H = −

α2

H
V 2

8k
and m∗

2H = V , respectively.
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Case 4: the baseline case minus the possibility of either upfront or intermediate money

transfers. The principal’s expected profit is 27

64
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
] with m∗

2L =

m∗
2H = 3

4
V .

Theorem 3 then states that under complete information, the removal of the intermediate

money transfers yields results equivalent to the baseline model (this was already clear from

Theorem 1). Once upfront money transfers are eliminated, the principal’s expected profit

decreases by exactly 50% and to achieve the optimal profit, the intermediate money transfers

are no longer zero. In fact, the money transfers after the first period are now from the

agent to the principal and differ depending on the agent’s type. In essence, when there is

no upfront money transfer, the agent is willing to “buy-in” after the first stage is successful,

to continue working on the project in pursuit of the pay-off at the successful completion of

the project. The expected profit to the principal is then lower, predominantly because she

does not receive the buy-in when the first stage fails.

Finally, when neither upfront nor intermediate money transfers are allowed, the princi-

pal’s expected profit decreases a further 5/64 (or a total of 37/64 = 57.8% when compared

to the baseline), and is actually the same as in the incomplete information case to be

discussed shortly. The reason for this is rather straightforward: when there are only end

money transfers, upon a successful project completion, it does not matter whether the

principal is aware of the agent’s type. In fact, both agents receive the same payment upon

successfully completing the project. The high level type just has a higher probability of

attaining it, which is irrelevant to the principal’s expected profit.

Theorem 4 Under incomplete information, the strict ordering of the principal’s expected

profit is (from highest to lowest):

Case 1: The principal’s expected profit in the baseline case as presented in Theorem

2 is strictly higher than in Cases 2, 3, and 4 in this Theorem.

Case 2: The principal’s expected profit in a modified baseline case that excludes the

possibility of an intermediate money transfer is given in the Appendix and is strictly

higher than in Cases 3 and 4 in this Theorem.

Case 3: The principal’s expected profit in a modified baseline case that excludes the

possibility of an upfront money transfer is strictly higher than in Case 4 in this

Theorem.
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Case 4: The principal’s expected profit in a modified baseline case that excludes the pos-

sibility of either upfront or intermediate money transfers is 27

64
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
] .

Thus, Theorem 4 states that when intermediate money transfers are not allowed in the

incomplete information case, the principal’s expected profit declines somewhat. The per-

centage decline in the principal’s expected profit from case 1 to case 2 is shown in the

Appendix to only depend on the relative ability of a high-type versus a low-type agent, and

the ratio of the probability that the agent is of high-type to the probability that he is of

low-type. This means that the percentage profit increase and the percentage information

rent decrease does not depend on k or V . For a project with a large monetary value, the

relatively small percentage change in profit upon adding an intermediate stage is meaningful

and cannot be ignored.

When instead upfront money transfers are removed from the payment scheme (i.e., case

3), a closed form solution for the principal’s expected profit can no longer be determined, but

we can prove (in the Appendix) that it lies between the principal’s expected profit in cases

2 and 4. As an example for case 3, a numerical calculation shows that V =m∗
2H >m∗

2L > 0,

and 0 > m∗
1L > m∗

1H . When V = 2, k = 1, αH = 0.8, 1−λ
λ

= 0.4, and x = αH

αL
= 1.2, the optimal

solution is m∗
2H = 2, m∗

2L = 1.8173, m∗
1H = −0.2808, and m∗

1L = −0.1692, which provides the

principal with a profit of 0.01685. Notice again that in this case without upfront money

transfers the intermediate money transfers flow from the agent to the principal. Results

over a wider range for both the complete and incomplete cases are shown in Figure 1.3. In

Figure 1.3 the expected profit line for only end money transfers is the same under complete

and incomplete information, since the agents only get paid when the second stage was

successful, at which point it does not matter if he was of low or high-type. The parameter

values are the same as in Figure 1.2.

Figure 1.3 illustrates the difference of the principal’s expected profits under complete and

incomplete information for each of the four cases as discussed in Theorems 3 and 4. From

this we can see that adding an upfront money transfer (Case 2) to the most basic model

with only an end money transfer (Case 4) can dramatically increase the principal’s expected

profit, while adding an intermediate money transfer (Case 3) adds a less substantial but

possibly very significant amount (compare Case 3 to Case 4, and compare Case 1 to Case

2). Information rent can also be determined by comparing the similar cases under complete

(upper) and incomplete (lower) information (note the different scales on the y-axes).

Figures 1.4, 1.5, 1.6, 1.7 and 1.8 show the effort levels of the agent under complete and

incomplete information. We can see that adding more money transfers doesn’t necessarily
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imply that the first or the second effort level will increase.

1.4.3 The effect of a menu of multiple contracts

So far our discussion has centered on models in which the agent can choose his preferred

menu of money transfers based on his type, and is willing to participate regardless of

his type. The principal used these different menus to screen whether the agent was of

low-type or of high-type, while the participation of the agent regardless of his type implies

that his profit is always nonnegative. But it is possible that such screening that includes

the participation of the agent if of low-type is costly and thereby hurts the principal’s

expected profit. In other words, it is possible that contracts that exclude the agent if of

low-type or that offer the agent the same money transfer regardless of his type could be

more advantageous to the principal in terms of profit. The following two theorems give an

answer to this question. Both obviously deal with the incomplete information case, since in

the complete information case, no screening is necessary.

Theorem 5 For the baseline model (Case 1) under incomplete information, by offering two

different menus of money transfers to the agent, the principal can realize a strictly higher

expected profit than when she offers a contract with one menu of money transfers offered to

the agent such that he would be willing to participate regardless of his type.

Theorem 6 For the baseline model (Case 1) under incomplete information, by offering two

different menus of money transfers to the agent, the principal can realize a strictly higher

expected profit than when she offers a contract with one menu of money transfers to the

agent such that he would only be willing to participate if of high-type.

Theorem 5 and 6 combined state that offering a menu of two contracts increases the

principal’s expected profit as compared to offering just one contract. The reason that

two contracts perform better than one in Theorem 5 is that if the agent is of the high-type,

the screening contract tailored toward this agent entices him to exert more efforts in striving

to succeed in both periods, thus helping to create more value. On the other hand, if the

agent is of low-type, the principal will not lose anything by offering him a contract tailored

for a low-type - the principal can in this case appropriate all the agent’s profit. Theorem 6

states that excluding the agent if of low-type is not an optimal strategy either, because in

this case the principal would forgo any profit if the agent is of low-type (the project would

“die” at the outset if the agent is of low-type). By offering two contracts, the profit that

the principal expects due to the possibility that the agent is of low-type more than offsets
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the fact that the principal receives a lower profit if the agent is of high-type (as compared

to what the principal would get if she offered only a contract that only a high-type agent

would accept).

Taken together, these two theorems combined tell us that in the incomplete information

case, it is in the best interest of the principal to offer two different menus of money

transfers (m0L,m1L,m2L) and (m0H ,m1H ,m2H) such that the agent is willing to participate

regardless of his type. In other words, in the analysis to this point, the baseline case (Case

1) offers the highest expected profit to the principal.

1.4.4 Full flexibility and the role of possible penalties
contingent on failure

Another thing we are interested in is whether the addition of penalties (contingent on

failure at each stage, in addition to rewards that accrue upon success at a stage) leads to

different profits for the principal. To answer this question, we assume that U0L is the money

transfer to the agent if of low-type at the beginning of the project, R1L and R2L are the

rewards to the agent if of low-type when the first and the second periods are successful

individually, and P1L and P2L are the penalties to the agent if of low-type when the first

and the second periods are not successful respectively. Similar meanings of U0H , R1H , R2H ,

P1H and P2H apply if the agent is of high-type. This is the full flexibility model setup and

we call it “Case 5.”

The principal chooses U0L, R1L, R2L , P1L and P2L along with U0H , R1H , R2H , P1H

and P2H to maximize her expected profit, which is given by:

λ [αLe1L (αLe2L(V −R2L) + (1 − αLe2L)P2L −R1L) + (1 − αLe1L)P1L −U0L]

+ (1 − λ) [αHe1H (αHe2H(V −R2H) + (1 − αHe2L)P2H −R1H)]

+ (1 − λ) [(1 − αHe1H)P1H −U0H] (1.6)

In turn the agent, given his type and given U0L, R1L, R2L, P1L,P2L and U0H , R1H , R2H ,

P1H ,and P2H , maximizes his expected profit by choosing the most profitable contract along

with his effort level. The expected profits for a low-type agent and high-type agent are,

respectively:

U0L − ke21L + αLe1LR1L − (1 − αLe1L)P1L − αLe1Lke
2

2L

+ α2

Le1Le2LR2L − αLe1L(1 − αLe2L)P2L (1.7)

and
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U0H − ke21H + αHe1HR1H − (1 − αHe1H)P1H − αHe1Hke22H

+ α2

He1He2HR2H − αHe1H(1 − αHe2H)P2H (1.8)

These, again, need to be nonnegative in order for either type of agent to be willing to

participate. Equations (1.6), (1.7) and (1.8) form the full flexibility model with “complete

information.” For the full flexibility model with “incomplete information,” the incentive

compatibility constraints are:

U0L − ke21L + αLe1LR1L − (1 − αLe1L)P1L − αLe1Lke
2

2L

+α2

Le1Le2LR2L − αLe1L(1 − αLe2L)P2L

≥

U0H − kẽ21L + αLẽ1LR1H − (1 − αLẽ1L)P1H − αLẽ1Lkẽ
2

2L

+α2

Lẽ1Lẽ2LR2H − αLẽ1L(1 − αLẽ2L)P2H (1.9)

and

U0H − ke21H + αHe1HR1H − (1 − αHe1H)P1H − αHe1Hke22H

+α2

He1He2HR2H − αHe1H(1 − αHe2H)P2H

≥

U0L − kẽ21H + αH ẽ1HR1L − (1 − αH ẽ1H)P1L − αH ẽ1Hkẽ22H

+α2

H ẽ1H ẽ2HR2L − αH ẽ1H(1 − αH ẽ2L)P2H (1.10)

Similar to the original models with incomplete information, {ẽ1L, ẽ2L} and {ẽ1H , ẽ2H}

represent the efforts exerted by the agent if of low-type and the agent if of high-type,

respectively, when the agent deviates from its actual type and pretends to be the other

type. While the upfront money transfers U0L and U0H are still not restricted to be either

positive or negative, we restrict the rewards and penalties R1L, R2L, P1L, P2L , R1H ,

R2H , P1H and P2H to be nonnegative. Equations(1.6) through(1.10), representing the full

flexibility model, can be rewritten as

λ [αLe1L (αLe2L(V − (R2L + P2L)) − (R1L + P1L − P2L)) + P1L −U0L]

+ (1 − λ) [αHe1H (αHe2H(V − (R2H + P2H)) − (R1H + P1H − P2H))]

+ (1 − λ) [P1H −U0H] (1.11)
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subject to

(U0L − P1L) − ke21L + αLe1L(R1L + P1L − P2L)

−αLe1Lke
2

2L + α2

Le1Le2L(R2L + P2L) ≥ 0 (1.12)

(U0H − P1H) − ke21H + αHe1H(R1H + P1H − P2H)

−αHe1Hke22H + α2

He1He2H(R2H + P2H) ≥ 0 (1.13)

(U0L − P1L) − ke21L + αLe1L(R1L + P1L − P2L)

−αLe1Lke
2

2L + α2

Le1Le2L(R2L + P2L)

≥

(U0H − P1H) − kẽ21L + αLẽ1L(R1H + P1H − P2H)

−αLẽ1Lkẽ
2

2L + α2

Lẽ1Lẽ2L(R2H + P2H) (1.14)

and

(U0H − P1H) − ke21H + αHe1H(R1H + P1H − P2H)

−αHe1Hke22H + α2

He1He2H(R2H + P2L)

≥

(U0L − P1L) − ke21L + αH ẽ1H(R1L + P1L − P2L)

−αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2H(R2L + P2L) (1.15)

We now discuss a surprising equivalence between the baseline stage-gate contracts and the

full flexibility models that include penalties when stage one or two fails, under both complete

and incomplete information.

Theorem 7 Under complete information, the baseline model (Case 1, with upfront money

transfers along with intermediate and end money transfers contingent upon success) provides

the principal the same expected profit as full-flexibility contracts (Case 5, with upfront money

transfers along with intermediate and end rewards contingent upon success at each respective

stage and penalties contingent upon failure at each respective stage).

Theorem 8 Under incomplete information, the baseline model (Case 1) provides the prin-

cipal the same expected profit as full-flexibility contracts (Case 5). In fact, there are

infinitely-many possibly optimal solutions involving full-flexibility contracts (Case 5), in-

cluding one that specifies upfront money transfers equaling zero.
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Thus, under both complete information and incomplete information, the baseline stage-gate

contract gives the principal the maximal profit that is the same as that offered by the full

flexibility stage-gate contract where penalties are allowed. But it is not obvious to see that

the full flexibility stage-gate contract can do as well as the baseline model. Fortunately, the

closed form analytic solutions for the baseline model under both complete and incomplete

information offer us a useful tool to tackle this issue for the situation. At least one way to

see that these two models are equivalent is by setting the potential penalty after stage one’s

failure equal to the original model’s initial buy-in.

Theorems 7 and 8 thus establish the equivalence between the baseline stage-gate con-

tracts and the full flexibility stage-gate contracts under both complete information and

incomplete information. While this equivalence has not been rigorously proven in all the

other cases (i.e., Cases 2, 3, and 4 without upfront and/or intermediate payments), our work

suggests that the possibility of a penalty if a stage fails can basically replace the buy-in by

the agent to the principal that could occur in either the upfront or intermediate stage. As

such, the full flexibility model requires one fewer money transfer stage to achieve the same

results for the principal. It is thus up to the principal to decide which type of stage-gate

contract she prefers: the baseline, where she receives an initial “buy-in” (i.e., the upfront

or intermediate money transfer flows in the direction of the principal), or the full flexibility

contract where she receives a payment when a stage fails.

1.5 Summary

Given the increase in outsourcing of R&D, it is paramount that firms better understand

how to develop contracts that appropriately incentivize suppliers. The setting we examine

is one where the agent has private information as to the project’s potential success (leading

to a possible adverse selection problem due to information asymmetry) and must exert

costly effort (leading to a possible moral hazard issue). We find that a type of contract

known as a “stage-gate” can help mitigate the combination of adverse selection and moral

hazard - while the stage-gate framework has long been touted for other reasons, a key

contribution of ours is to delineate this aforementioned mitigating potential. We do so with

a classic textbook-style model which results in closed-form solutions for a number of model

variations.

In our two-stage model, the payment scheme consists of money transfers at the beginning

(upfront), after the first period contingent on the success in this period (intermediate), and

after the second period contingent on success of the entire project (end). We also look at

the role that penalties might play, where success in the current period leads to a reward
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(a payment from the principal to the agent) while failure leads to a penalty (a payment

from the agent to the principal). We focus predominantly on the incomplete information

case, where the agent has private information as to his ability or as to the project promise

(the agent’s “type” is assumed to be high or low). The principal does know the probability

that the agent is of high-type and also knows the agent’s cost of effort given the agent’s

possible effort levels. Given this information, the principal can create payment schemes that

“screen” the agent, i.e., that entice the agent to truthfully reveal his type. We compare the

resulting expected profits to the complete information case where the agent’s type is fully

known.

Importantly, we find that including the possibility of intermediate money transfers

increases the principal’s expected profit when she has incomplete information. In other

words, a stage-gate contract offers an advantage to the principal by inducing the agent to

truthfully reveal his capabilities (or his private knowledge as to the project viability). We

also find that the principal increases her expected profit by offering the agent a menu of

contracts (as opposed to offering only one contract that the agent would accept regardless

of his type; or as opposed to offering only one contract that the agent would accept only

if of high-type). In other words, from the principal’s perspective, the screening model

fully exploits the opportunities that screening offers in terms of preventing the agent, if of

high-type, from pretending to be of low-type (and vice versa). In the screening model the

agent, if of low-type, pays the principal upfront for the opportunity to participate, which

reduces the agent’s expected profit to zero, while if of high-type the agent again makes an

upfront payment but realizes a (relatively small) expected profit.

We find that a full flexibility stage-gate contract in which the principal can penalize the

agent when he fails a stage (in addition to rewarding the agent when he succeeds) does not

offer the principal higher expected profit - the full-flexibility contract is equivalent to one

including rewards for success (in addition to specifying that the agent pay an initial “buy-in

fee”). From a managerial perspective, such equivalence suggests the principal has multiple

options in designing the contract menus.

Given the stylized setting that we model, there is of course opportunity for future work

to more accurately capture other issues faced in real-life scenarios. For example, one could

consider possible risk aversion on the part of the agent, possible financial constraints of

the agent, the residual value of a project in case of a failure, and/or allowing second trials

after failures. In addition, one might look at the case where it is the principal (rather than,

as in our case, the agent) who has private information as to the potential success of the



20

project. In such case, the principal would like to find a way to credibly transmit this private

information to the agent, to entice the agent to exert appropriate effort in completion of

the project. All these potential research topics are left for future exploration.
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Figure 1.1: The Baseline Model (i = L or H)

Figure 1.2: Incomplete Information Exerts an Information Rent in the Baseline Model
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Figure 1.3: Adding More Money Transfer Points Increases the Principal’s Expected Profit
under Both Complete (Upper) and Incomplete (Lower) Information
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Figure 1.4: The Second Effort Levels of the Agents in Case 1 under Complete and
Incomplete Information

Figure 1.5: The First Effort Levels of the Agents in Case 1 under Complete and Incomplete
Information
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Figure 1.6: The Second Effort Levels of the Agents in Cases 1, 2, 3 and 4 under Incomplete
Information

Figure 1.7: The First Effort Level of the High-type Agent in Cases 1, 2, 3 and 4 under
Incomplete Information
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Figure 1.8: The First Effort Level of the Low-type Agent in Cases 1, 2, 3 and 4 under
Incomplete Information



CHAPTER 2

PRINCIPAL’S SIGNALING OF PRIVATE

INFORMATION WHEN OUTSOURCING

ITS PRODUCT DEVELOPMENT

2.1 Introduction

The complexity of collaborative relationship in outsourcing and risks inherent in an

R&D project pose challenges to both the principal, the firm who is outsourcing and the

agent, the firm to whom the project is outsourced. The principal would strongly prefer to

outsource its R&D to a top-tier agent, and on the other side of the coin, an agent would

strongly prefer to work for a top-tier principal (see also PwC (2014) on R&D Outsourcing

in Hi-tech Industries). But how does the principal know the agent’s capabilities - can the

principal trust the agent to correctly divulge his private information as to his capabilities

as they relate to the project at hand? Conversely, how does the agent know whether the

principal is offering a truly-exceptional opportunity for the agent to work on, as opposed to a

less-attractive opportunity - can (will) the principal credibly convey her private information

to the agent? We explored the first question in Chapter 1, and will tackle the second one

in Chapter 2. In both chapters, we also consider a further complicating factor, namely,

the fact that the success of the R&D project will likely hinge on the effort exerted by the

agent (here we use the term “effort” loosely; it could for example incorporate issues such

as the number of resources the agent allocates to the project). The principal would like the

agent to exert high effort, but effort is costly to the agent so he will not exert appropriate

effort unless sufficiently compensated for this effort (we assume that the principal is not

able to directly monitor the effort, and thus the agent’s exertion is directly determined by

the compensation scheme).

To reiterate, in this chapter, we will address the following research question on this issue:

“How can a principal with private information best manage the outsourcing of a costly and

risky R&D project to an agent whose efforts are unobservable?” The importance of this

research question is highlighted by a survey by PwC (2014) which showed that transparent

communication and information sharing were the most important action that the principal
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and the agent did to make successful relationship. In pursuit of our research question, we

examine whether stage-gate contract can (and should) be used by a principal to signal (i.e.,

reveal) her private information, and at the same time be used to elicit high levels of effort on

the part of the agent, in order for the principal to maximize her expected profit. We start

by analyzing a “baseline” stage-gate contract involving an upfront money transfer (we allow

the payment to go from the principal to the agent or vice versa), an intermediate money

transfer (contingent upon success at stage one) and an end money transfer (contingent upon

success at stage two). To entice the agent to participate, any contact must offer the agent

a positive expected profit. We consider the possibility of either a separating equilibrium

or a pooling equilibrium. Under the separating equilibrium, the principal signals to the

agent, via the contract, whether she (i.e., the project) is of high or low-type. Under the

pooling equilibrium, the principal offers the same money transfer regardless of her type (the

contract does not reveal information to the agent regarding the project’s type). Of course,

the principal will choose either the separating or pooling equilibrium depending on which

offers her the higher expected profit.

Since we are interested in determining the advantage (if any) of the stage gate framework,

we go on to examine some alternatives to the above baseline case. If the project does not

involve stages and gates, then there is no intermediate go/no-go decision so we analyze the

case lacking the intermediate money transfer. In addition, we examine the setting lacking

an upfront money transfer (with or without an intermediate money transfer) and analyze

both the separating and pooling equilibria.

Given that the principal has private information, the setting may involve an information

“rent.” That is, the principal’s expected profit may be reduced from what it would be if

there were no private information. We are interested in determining the magnitude of this

information rent, and thus in all cases we compare the case of incomplete information to

one where the agent knows the principal type (complete information).

The rest of the paper proceeds as follows. In 2.2 we review the relevant literature, and in

2.3 we present the model setup. In 2.4 we establish the main results on stage-gate contracts

under separating and pooling equilibria, including the baseline models and those with the

absence of upfront and/or intermediate money transfers. In 2.5 we provide managerial

insights and concluding remarks.

2.2 Literature Review

In Chapter 1, we had a broad review on literature involving new product development

and R&D, principal-agent theory, and outsourcing. In Chapter 2, our principal-agent model
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is a signaling game involving private information of the principal (adverse selection) and

unobservable effort of the agent (moral hazard). The extensive literature on signaling

games begins with the Spence (1973) education model, where the high-productive employees

may be forced to take actions to distinguish themselves from their less able counterparts.

Myerson (1983) establishes a general mechanism design for the principal-agent problem with

an informed principal. Different from the general setting and the focus of cooperate games

in Myerson (1983), Maskin and Tirole (1990) and Maskin and Tirole (1992) consider the

principal-agent problem with an informed principal under the framework of noncooperation

for two different scenarios, one in which the principal’s private information does not directly

affect the agent’s payoff and the other having the opposite setting. Both their models

are one-period and have observable efforts (actions). The main tool used to analyze the

games in their models is the Perfect Bayesian Equilibrium, which we will apply to our

two-stage (period) model involving both adverse selection (with an informed principal)

and moral hazard (with unobservable agent’s effort). Research on information asymmetry

and signaling games in supply chain management is quite rich; Cachon (2003) and Chen

(2003) give a broad review of the literature in this area. One notable article is Lariviere

and Padmanabhan (1997) which discusses slotting allowances. In their one-period model,

the principal (the manufacturer) signals her private information on demand to the agent

whose effort is unobservable through the wholesale price and the slotting allowance. In

comparison, the principal in our two-stage (period) model signals her private information

on the project to the agent whose effort is unobservable through money transfers stipulated

in the contract.

2.3 Model Setup

We consider a setting in which a principal (“she”) wants to outsource an R&D project

to an agent (“he”). The project can either have a relatively higher probability of success

(i.e., be of a high-type) or a lower probability (low-type), given some effort level on the part

of the agent. This information (the project type and its probability of success as a function

of the agent’s effort) is known to the principal but unknown to the agent; however, the

agent knows the two possible probabilities (as a function of his effort level) and has a prior

estimate of the likelihood that the principal is of high-type. When the project is of low-type,

the principal may want to fool the agent to get the agent to exert higher effort, which will in

turn increase the project’s probability of success and its expected profit. Therefore, when

the project is of high-type, a decision that the principal faces is whether to signal to the
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agent (through the contract) that this is in fact a high-type project, or to instead reveal

no information to the agent about the quality of the project. The first scenario (revelation

of the project type) is called a separating equilibrium and the second is referred to as a

pooling equilibrium.

The two-period project has stage-gate features, which means the project can succeed or

fail in each period, and the success of the project depends on each period’s success. The

principal can offer payments at the starting point, after the first period and (if it succeeds

in the first period) after the second period of the project. From here on we use the term

“money transfers” rather than “payments” to allow for the possibility of cash flows from

the agent to the principal, which can be seen as the price of “buy-in” that the agent has

to pay. A contract consists of a specified set of three money transfers, the first occurring

at the starting point (referred to as an upfront transfer), the second after the first period

(the intermediate money transfer) and the third after the second period (the end transfer).

The intermediate and end money transfers occur only when the first and second periods are

successful, respectively.

We assume the project returns the value of V if it succeeds in both periods. The agent

exert efforts {e1H , e2H} in the first and second periods if he believes that the project is of

high-type, and exerts efforts {e1H , e2H} if he believes that it is of low-type, or {e1, e2} if he

is not certain about the exact type of the project; all the efforts take on a value in [0,1]

interval. Correspondingly, costs {ke2
1H , ke2

2H} , {ke2
1L, ke

2

2L} or {ke
2

1
, ke2

2
} are incurred in the

two periods, where k is a (constant) cost coefficient. We let αH and αL denote the high-type

and low-type projects, respectively, where 0 < αL < αH < 1. Note that in Chapter 1 αL

and αH refer to agent type while in Chapter 2 they refer to principal type. Probabilities of

success in the first period and second periods for a high-type project are αHe1H and αHe2H

if the agent believes it is a high-type project and therefore exerts high efforts, and αHe1L and

αHe2L if the agent believes it is a low-type one and therefore exerts low efforts. Similarly,

probabilities of success for the first period and second periods for a low-type project are

αLe1H and αLe2H if the agent believes it is a high-type project and therefore exerts high

efforts, and αLe1L and αLe2L if the agent believes it is a low-type one and therefore exerts

low efforts.

If the agent is uncertain about the project type we let p denote his assessment regarding

the probability that the project is of high-type (he believes it is of low-type with probability

1 − p ). In this case the agent will exert efforts e1 and e2 in the first period and will infer

a probability of success for the first period is αe1 , where α = pαH + (1 − p)αL, a weighted
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average of αH and αL. If the project is successful in the first period, the agent will update

his belief regarding the probability that the project is of high-type, and he will infer a second

period probability of success is α̃e2 , where α̃ = (pα2

H + (1 − p)α2

L)/(pαH + (1 − p)αL) , the

Bayesian update of α. The principal knows the project type and, if it can infer the agent’s

efforts e1 and e2 then it knows the probabilities of success for the first period and second

periods: αHe1 and αHe2 for a high-type project and αLe1 and αLe2 for a low-type project.

We next proceed to analyze the baseline model involving all three money transfers.

Later on we will consider other cases when upfront and/or intermediate money transfers

are not included in the contract. For convenience, from here on, we use the term “high-

type principal” and “low-type principal” rather than principal with high-type project and

principal with low-type project, because the principal has private information regarding the

quality of the project.

2.3.1 Setup of the separating equilibrium

For the separating equilibrium of the baseline model, we denote the upfront, intermedi-

ate, and end money transfers by m0H , m1H and m2H for the high-type project, and m0L,

m1L and m2L for the low-type project (see Figure 2.1).

To find the principal’s optimal money transfers, denoted by (m∗
0H ,m∗

1H ,m∗
1H) if of

high-type, and by (m∗
0L,m

∗
1L,m

∗
1L) if of low-type, we proceed as follows. We consider

Perfect Bayesian Equilibria. Regardless of her type, the principal has no incentive to send a

wrong signal about the type of the project (this result follows from the revelation principle).

Thus the agent interprets the contract accordingly. By choosing the upfront, intermediate

and end money transfers m0H , m1H and m2H , the principal if of high-type maximizes her

expected profit:

−m0H − αHe1Hm1H + α2

He1He2H(V −m2H) (2.1)

Givenm0H , m1H andm2H , the agent accepts the contract if his efforts in two periods can

generate positive expected profit. Otherwise he rejects the contract. The agent maximizes

his expected profit, given by:

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (2.2)

Similarly, the principal if of low-type maximizes her expected profit by choosing m0L,

m1L and m2L. Letting LM denote the maximum of the following expected profit of the

principal if of low-type:

−m0L − αLe1Lm1L + α2

Le1Le2L(V −m2L) (2.3)
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If the principal is of low-type the agent similarly maximizes his expected profit (which must

be positive for the agent to accept the contract), with the agent’s expected profit given by:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (2.4)

This is a Stackleberg game that can be solved by backwards induction. Since we are

solving here for the separating equilibrium, the money transfers selected by a high-type

principal differ from those offered by a low-type principal. That is, a principal who is of

low-type makes more money by offering the money transfers m0L , m1L and m2L than it

makes by mimicking the high-type and offering the money transfers m0H , m1H and m2H .

This is insured by the constraint:

LM ≥ −m0H − αLe1Hm1H + α2

Le1He2H(V −m2H) (2.5)

In addition, the high-type principal requires higher profit when offering m0H , m1H and

m2H than that if she provides any other different money transfers, under the agent’s belief

that only m0H , m1H and m2H are from the high-type principal while other menus of money

transfers are all from the low-type principal. Therefore, money transfers m0H , m1H and

m2H satisfy the constraint:

−m0H − αHe1Hm1H + α2

He1He2H(V −m2H) ≥ LM (2.6)

where LM is the maximum of the following expected profit of the high-type principal by

offering any other contract m̃0L , m̃1L and m̃2L:

−m̃0L − αHe1Lm̃1L + α2

He1Le2L(V − m̃2L) (2.7)

Knowing that money transfers m̃0L , m̃1L and m̃2L are different from m0H , m1H and m2H ,

the agent believes they are provided by the low-type principal and accepts the contract

if his efforts in two periods can generate positive expected profit, otherwise he rejects the

contract. The agent maximizes his expected profit:

m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (2.8)

2.3.2 Setup of the pooling equilibrium

For the pooling equilibrium, we denote the upfront, intermediate) and end money

transfers by m0, m1 and m2 (see Figure 2.2). Again, the intermediate and end money

transfers occur only when the first and second periods are successful respectively. This

forms the baseline model of the pooling equilibrium. Later on we will consider other cases
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when upfront and/or intermediate money transfers are not included in the contract. With

the pooling equilibrium, the principal does not reveal her type, offering m∗
0
, m∗

1
and m∗

2

regardless of her type. The contract does not offer the agent information regarding the

principal type but the agent does update his probability belief in Bayesian fashion after the

first period. At the outset the agent believes the principal is of high-type with probability

p.

By choosing the upfront, intermediate and end money transfers m0, m1 and m2 in the

contract to the agent, the high-type principal maximizes her expected profit which is given

by:

−m0 − αHe1m1 + α2

He1e2(V −m2) (2.9)

Being offered the money transfers m0, m1 and m2, the agent bases his analysis on the

contract being from the high-type with probability p and from the low-type with probability

1 − p. The agent accepts the contract if his efforts in two periods can generate positive

expected profit. Otherwise he rejects the contract. The agent maximizes his expected

profit, given by:

m0 − ke21 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 (2.10)

where α equals pαH +(1− p)αL , and α̃ is the Bayesian update of α and equals (pα2

H +(1−

p)α2

L)/(pαH + (1 − p)αL) with αα̃ = pα2

H + (1 − p)α2

L. This is a Stackleberg game that can

be solved by backwards induction.

There are two constraints that need to be considered. One is to prevent a low-type

principal from offering different money transfers than m0 , m1 and m2. This constraint is

represented by:

−m0 − αLe1m1 + α2

Le1e2(V −m2) ≥ LM1 (2.11)

where the left side is the low-type principal’s expected profit if she offers m0 , m1 and m2,

and LM1 is the maximum of the following expected profit of the low-type principal:

−m0L − αLe1Lm1L + α2

Le1Le2L(V −m2L) (2.12)

because any deviation from offering m0 , m1 and m2 is seen by the agent as the signal from

the low-type principal. The agent accepts the contract consisting of m0L , m1L and m2L

if his efforts in two periods can generate positive expected profit. Otherwise he rejects the

contract. The agent maximizes his expected profit:

m0L − ke21L + αe1Lm1L − αe1Lke
2

L2 + αα̃e1Le2Lm2L (2.13)



33

Another constraint is to prevent a high-type principal herself from offering different

money transfers than m0, m1 and m2. It is represented by

−m0 − αHe1m1 + α2

He1e2(V −m2) ≥ LM1 (2.14)

where the left side is the high-type principal’s profit if she offers m0 , m1 and m2, and LM1

is the maximum of the following expected profit of the high-type principal:

−m̃0L − αHe1Lm̃1L + α2

He1Le2L(V − m̃2L) (2.15)

because any deviation from offering m0 , m1 and m2 is seen by the agent as the signal from

the low-type principal, and therefore efforts e1L and e2L are exerted by the agent. The

agent accepts the contract consisting of m̃0L, m̃1L and m̃2L if his efforts in two periods can

generate positive expected profit. Otherwise he rejects the contract. The agent maximizes

his expected profit:

m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (2.16)

For all the analysis, we assume that V ≤ 2k/αH . This condition ensures that there is an

interior solution where the agent trades off the cost of effort versus the desire to increase

probability of success. The interior solution is the focus of our discussion, because when

efforts reach their up bound, which is 1, any extra amount of effort would be useless in

improving the probability of success of the project, and only cause more loss.

2.3.3 Separating and pooling equilibria for the
baseline model

In 2.3.3 we delineate the pooling and separating equilibria for the baseline model (the

case involving upfront, intermediate and end money transfers). Later, in 2.3.4 we compare

this baseline to the cases where there is no upfront and/or no intermediate money transfer,

to determine the benefit (if any) of the stage-gate process.

As a reference point for interpreting the baseline model, we first consider the case

of complete information (the agent knows the principal’s type, but the agent’s effort is

unobservable). Theorem 9 expresses the result under complete information.

Theorem 9 Under complete information, the outcomes are as follows:

1. Money transfers if the principal is of low-type are m∗
0L = −

α6

L
V 4

64k3
, m∗

1L = 0 and m∗
2L =

V , resulting in effort levels e2L =
αLm

∗
2L

2k
and e1L =

αLm
∗
1L
+α

3

L
m
∗
2L

2

4k

2k
. The principal’s

expected profit is
α6

L
V 4

64k3
and the agent’s expected profit is zero.
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2. Money transfers if the principal is of high-type are m∗
0H = −

α6

H
V 4

64k3
, m∗

1H = 0 and

m∗
2H = V , resulting in effort levels e2H =

αHm∗
2H

2k
and e1H =

αHm∗
1H
+α

3

H
m
∗
2H

2

4k

2k
. The

principal’s expected profit is
α6

H
V 4

64k3
and the agent’s expected profit is zero.

Theorem 9 says that, in the case of complete information, allowing for an intermediate

money transfer does not help a principal of either type achieve maximal expected profit (the

transfer is zero). The agent’s optimal level of the effort in the second period is proportional

to the end money transfer and the effort in the first period is proportional to a weighted sum

of the intermediate money transfer and the square of the end money transfer. (These effort

level equations hold as the best responsive functions of the agent given any intermediate

and end money transfers, not only the money transfers representing the principal’s profit

maximization). The proof of Theorem 9 is the same as that of Theorem 1.

Note that the upfront money transfer is negative, meaning that the agent pays to join

the project and then receives the full project value if the project succeeds in both periods.

The upfront money transfer is set to yield zero expected profit left for the agent. Also

note that the agent’s effort level in the second period is higher than in the first period:

e∗
1L < αL

2
e∗
2L and e∗

1H < αH

2
e∗
2H . Finally, a higher V leads to higher effort levels, while a

higher cost coefficient results in the opposite.

2.3.3.1 Separating equilibrium for the baseline model

Next we look at the separating equilibrium under incomplete information, when the type

of the principal is unknown to the agent. Numerically we find that when 1 < x ≲ 1.063971

with x = αH

αL
, the agent earns zero expected profit, m∗

0H < 0 and m∗
1H < 0.

Theorem 10 The outcomes under the separating equilibrium of the baseline model for are

as follows:

1. If of low-type, then the principal offers m∗
0L = −

α6

L
V 4

64k3
, m∗

1L = 0 and m∗
2L = V .

2. If the principal is of high-type:

(a) For 1.063971 ≲ x ≲ 1.335236, the agent earns strictly positive expected profit,

m∗
0H < 0 and m∗

1H > 0.

(b) For 1.335263 ≲ x < 2, the agent earns strictly positive expected profit, m∗
0H > 0

and m∗
1H > 0.

(c) For x = 2 , the agent earns strictly positive expected profit, m∗
0H > 0 and m∗

1H = 0.
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(d) For x > 2 , the agent earns strictly positive expected profit, m∗
0H > 0 and m∗

1H < 0.

We can see that when x(= αH/αL) approaches 1, the high-type principal’s profit tends

to that under complete information, because of the diminishing information asymmetry.

Unlike the outcomes under complete information, for the separating equilibrium, adding

the intermediate money transfer does bring more profit to the high-type principal for all

x(= αH/αL), except at x = 2 where the intermediate money transfer plays no role. Also,

the agent earns positive expected profit for almost all x, except for those that are very

close to 1. This reflects the fact that when the ability of the high-type principal is close to

that of the low-type principal, differentiating herself from the low-type one is very costly

for the high-type principal, whose profit decreases dramatically as x increases from 1 to

1.063971 (Figure 2.3). The high-type principal has to decrease its end money transfer and

thereby the probability of success for the second the period decreases as x increases from 1

to 1.063971 (Figure 2.4 and 2.5). To shore up the probability of success for the first period,

the high-type principal chooses positive intermediate money transfer and increases it. But

such measure is not enough to compensate for the loss in profit resulting from the falling

effort level in the second period. At the same time, the upfront money transfer is increasing,

doesn’t have direct influence on the probabilities of success and only makes more payout.

Therefore this leads to the drop of the high-type agent’s profit. Notice that in Figure 2.3,

2.4 and 2.5 and those that follow, we set αH = 0.9, V = 2 and k = 1. In fact, the statement

of Theorem 10 and others and the features of graphs in all the figures are independent of

these parameters’ values. The proof is provided in the Appendix.

On the other hand, as the ability of the low-type principal departs from that of the

high-type to certain degree (x ≳ 1.063971), it becomes less costly for the high-type principal

to differentiate herself from the low-type one. The high-type principal increases the end

money transfer to enhance the probability of success in the second period. The agent

starts to earn positive profit. Although the probability of success in the first period is

still decreasing, because of the decline in the intermediate payment, overall, the high-type

principal’s profit increases.

2.3.3.2 Pooling equilibrium for the baseline model

Next we investigate the pooling equilibrium of the baseline model under incomplete

information; regardless of her type, the principal offers the same menu of upfront, interme-

diate and end money transfers to the agent and has no incentive to deviate. The agent’s

prior belief is that the principal is of high-type with probability p and of low-type with
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probability 1 − p, and if the contract differs from that in the pooling equilibrium location,

the contract comes from a low-type principal.

Theorem 11 For p ≳ 0.05, a unique pooling equilibrium exists as shown in the Appendix.

The solution has the following attributes:

1. m2 =
αHV
2αH−α̃ and m0 < 0 .

2. m1 > 0 if 2α2

H − 3αH α̃ + αα̃ > 0, m1 < 0 if 2α2

H − 3αH α̃ + αα̃ < 0 and m1 = 0 if

2α2

H − 3αH α̃ + αα̃ = 0.

From Theorem 11, we can see that adding the intermediate money transfer does improve

the high-type principal’s profit when 2α2

H − 3αH α̃ + αα̃ ≠ 0 . Furthermore, as x is close to

1 , both α̃ and α̃ are close to αH and thereby the end money transfer approaches V and

the intermediate money transfer tends to zero. In other words, as αL gets close to αH ,

information asymmetry between the low-type and high-type principals is disappearing and

the outcome in the pooling equilibrium approaches that under complete information. On

the other hand, as x goes to infinity, which means that αL tends to zero, information gets

most severely skewed, with α̃ increasing to αH and α decreasing to pαH . The reason why α̃

increases to αH is that with very low value of αL, after the first period’s success, the agent

knows that the project is very likely from a high-type principal and thereby has a high

probability (close to αH ) of succeeding in the second period. This process is the Bayesian

update of the agent’s belief. As a result, the end money transfer increases to V .

As to the effect of parameter p, since α equals pαH + (1 − p)αL, and α̃ is pα2

H + (1 −

p)α2

L/(pαH + (1 − p)αL), both α and α̃ are increasing functions of p . Since the end money

transfer m2 is an increasing function of α̃, m2 is an increasing function of p, which implies

that the effort in the second period is also an increasing function of p. Despite the fact

that the effort in the first period drops as p increases because m1 is a decreasing function

of p (numerically shown), overall, the high-type principal’s profit increases as p increases.

Regarding the effect of x : as a function of x, α̃ quickly decreases and then slowly increases

as x increases from 1 to infinity. As a increasing function of α̃, m2 shows the same pattern

and therefore the effort level in the second period has the same pattern. Although the effort

in the first period drops as x increases, eventually, the impact from the effort in the second

period will outweigh the one in the first period. As a result, the high-type principal’s profit

drops and then increases very slowly as x increases. This is shown in Figure 2.6.

To sustain the pooling equilibrium, the principal, regardless of her type, has to earn at

least the same profit as in the situations if she deviates. As pointed out earlier, a high-type
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principal tends to deviate only if she is treated as the low-type one. This can be seen in

Figure 2.7. The pooling equilibrium exists for the most part in the space of x and p , except

a narrow zone bounded by the solid line and the x axis, with p < 0.015. The area between

the dash line and the solid line represents the region that a low-type principal’s incentive

constraint binds while a high-type principal’s incentive constraint doesn’t bind.

2.3.3.3 The dominant equilibrium

Comparing the separating equilibrium of Theorem 10 with the pooling equilibrium

of Theorem 11, we would like to know when one of them dominates the other in terms

of the high-type principal’s profit. We find that when p is below 0.7, the separating

equilibrium mainly dominates and gives the high-type principal a higher profit than the

pooling equilibrium, except for a small area in the space of x and p . When p is greater than

0.7, the pooling equilibrium dominates and delivers more profit to the high-type principal.

Figure 2.8 illustrates the dominating areas for the equilibria. This phenomenon reflects the

fact that when the agent believes that the principal is likely to be of low-type, it would be

less expensive for the high-type principal to separate her contract from that which would be

offered if she were of low-type as compared to “pooling” her contract with that which would

be offered if she were of low-type. On the other hand, when the agent believes that the

principal is likely to be of high-type, it would be more costly for the high-type principal to

separate her contract. Therefore, the high-type principal chooses the separating or pooling

equilibrium depending on the value of p and x, yielding the profit shown in Figure 2.9.

2.3.4 The role of the upfront and intermediate
money transfers

To see the benefits of upfront and intermediate money transfers for separating and

pooling equilibria, we investigate the outcomes when one or both of the two money transfers

are absent from the baseline models. For comparison, there are four cases for consideration:

1) the baseline model that includes upfront, intermediate and end money transfers; 2) only

upfront and intermediate money transfers; 3) only intermediate and end money transfers;

and 4) only end money transfer is included in the menu.

2.3.4.1 The separating equilibrium

Results are given in Theorem 12 for the separating equilibrium.

Theorem 12 For the separating equilibrium, the high-type principal’s profit in case 1 is

strictly greater than that in case 2 except at the point where two profits are equal, the
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high-type principal’s profit in case 1 is strictly greater than that in case 3, the high-type

principal’s profit in case 2 is strictly greater than that in case 4, and the high-type principal’s

profit in case 3 is strictly greater than that in case 4.

Theorem 12 says that for the separating equilibrium, adding an intermediate money transfer

(case 1) as compared to having only upfront and end money transfers included (case 2 ), or

as compared to having only an end money transfer (case 4) weakly increases the profit of

the high-type principal. Since at x = 2 (i.e., αH = 2αL ) the intermediate payment becomes

zero in case 1, there is no advantage for adding it at this point when compared with case.

Otherwise the profit is strictly greater. Figure 2.10 shows the difference between the profit

of the high-type principal in case 1 and case 2. We see that when x is small, the profit of

a high-type principal in case 1 is not significantly higher than that in case 3. However, for

larger and larger x, the impact of an intermediate money transfer becomes more and more

conspicuous. This says that it is beneficial for a high-type principal to add an intermediate

money transfer to differentiate herself from a low-type one who has fairly poor ability.

In fact, adding an intermediate money transfer as compared to having only an end money

transfer (i.e., case 4) has a much more significant impact than the previous scenario. This

can be seen from Figure 2.11. In other words, without the presence of an upfront money

transfer, the intermediate money transfer plays a bigger role in increasing a high-type

principal’s profit. Figure 2.11 also shows that adding an upfront money transfer to the

menu with intermediate and end money transfers (i.e., case 3) brings a sizable amount of

profit to a high-type principal, and has an even more significant effect when added to the

contract with only an end money transfer. Another observation is that the profit curves

in cases 1, 2 and 3 have the same shape, the feature of a decrease followed by an increase,

while the one in case 4 is monotonically decreasing. This reflects the insight that by using

intermediate and end money transfers to differentiate herself, a high -type principal can

create more profit, especially when her ability is high as compared to what if would be if

she were of low-type.

Notice that Theorem 12 does not give a comparison between case 2) and case 3), because

the closed form solution of case 3) is not available. But Figure 2.11 (based on numerical

analysis) shows that a high-type principal’s profit in case 2) is higher than in case 3). This

again says that both the upfront and intermediate money transfers are valuable, but the

upfront money transfer is most effective.
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2.3.4.2 The pooling equilibrium

Results are given in Theorem 13 for the pooling equilibrium.

Theorem 13 For the pooling equilibrium, when the principal, regardless of her type, earns

more profit than in the situations if she deviates, the closed form solution of the menu of

money transfers at the equilibrium for each of the four cases is obtained and shown in the

Appendix and the following comparison holds: the high-type principal’s profit in case 1) is

greater than that in case 2) except on a segment of a curve 2α2

H − 3αH α̃ +αα̃ = 0 where the

two profits are equal; the high-type principal’s profit in case 1 is greater than that in case

3; the high-type principal’s profit in case 2 is greater than that in case 4; and the high-type

principal’s profit in case 3 is greater than that in case 4 except on a segment of a curve

3α̃ = 2αH where the two profits are equal. For each of the four cases, the agent earns zero

profit.

Theorem 13 tells us that for the pooling equilibrium, adding an intermediate money transfer

to the menu (case 1) as compared to only upfront and end money transfers (case 2), or to the

menu with only end money transfers included (case 4) adds profit for a high-type principal

for almost every combination of x and probability p. When 2α2

H − 3αH α̃ + αα̃ = 0, the

intermediate money transfer in case 1 equals zero, and therefore there is no advantage for

adding it at these locations when compared with case 2. When 3α̃ = 2αH , the intermediate

money transfer in case 3) equals zero and thus there is no advantage for adding it at these

locations when compared with case 4. Figure 2.12 shows that the difference between the

profits of the high-type principal in case 1 versus case 2 is so insignificant that the impact

of the intermediate money transfer is negligible.

Comparing the profits in cases 1, 2, 3 and 4, our numerical results not only verify

Theorem 13, but also show that the profit in case 2 is higher than that in case 3. In

addition, as p (the probability of the principal of being of high-type) increases, the profit

in each case increases. Furthermore, when p is small, the principal’s profit in the four cases

tends to converge together for increasing values of x up to x = 2, but for increasing values

of p , the differences among the profits in cases 2, 3 and 4 get larger, although profits in

case 1 and case 2 remain close to each other. This says that as the principal is more likely

to be of the high-type one, the benefit of adding an upfront money transfer (to a contract

with intermediate and end money transfers or with only an end money transfer) becomes

bigger. Figure 2.13, 2.14 and 2.15 illustrate these phenomena.

The dominating regions of the separating and pooling equilibria for case 1 were shown

previously in Figure 2.8. Similarly, for case 2, the dominating regions for the separating
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and pooling equilibria are plotted in Figure 2.16. The two figures are very similar, except

that the region for the separating equilibrium is smaller in Figure 2.16 for higher values of

x. This is because as x increases, the difference between the two separating profits (case 1

versus case 2) for a high-type principal gets larger and larger, while the two pooling profits

(case 1 versus case 2) for a high-type principal stay very close. Like case 1, there is a small

area in case 2 that has no pooling equilibrium, as shown in Figure 2.17.

For case 3, the dominating regions of the separating and pooling equilibria are shown

in Figure 2.18. We can see that compared with case 1 and case 2, for higher values of x

at higher values of p , the separating equilibrium generates more profit than the pooling

equilibrium. Unlike case 1 and case 2, a pooling equilibrium exists for all p and x.

For case 4, the pooling equilibrium always gives a high-type principal a higher profit

than the separating equilibrium (for any x and p, the pooling equilibrium dominates). A

high-type principal’s profit under the dominating equilibrium is compared across the various

cases in Figures 2.19, 2.20 and 2.21 for p = 0.3, 0.7, and 0.9, respectively. First of all, for

case 4, as we pointed out, the pooling equilibrium always gives a higher profit than the

separating equilibrium. Furthermore, when p = 0.3, the separating equilibrium dominates

in cases 1, 2 and 3 for higher values of x. This reflects the fact that for cases 1, 2, and

3, the separating equilibrium dominates for low p and for x values that are not too close

to 1. When p = 0.7, for higher values of x, the pooling equilibrium dominates in cases 1

and 2, while the separating equilibrium dominates in Case 3. This is because unlike cases

1 and 2, for p = 0.7, the separating equilibrium gives a high-type principal more profit for

higher values of x. When p = 0.9, the pooling equilibrium dominates each of cases 1, 2 and

3 for x that are not close to 1. This can be seen from the dominating regions depicted in

Figures 2.8, 2.16 and 2.18. Another phenomenon is that for higher values of p, a high-type

principal’s profit in each case is also higher as long as the pooling equilibrium dominates.

In addition, the difference among the profits in cases 2, 3 and 4 tends to become bigger

with higher values of p.

2.4 Managerial Insights and Concluding Remarks

When firms outsource their R&D projects, they often face two issues. The first is that

the firm outsourcing the project may possess information regarding the attractiveness of

the project, and may find it difficult to convey this information to the supplier in a credible

way. For example, if the principal offers the supplier the opportunity to work on what the

supplier claims is a highly desirable project, the supplier may think the outsourcing firm is

inflating the desirability of the project in order to elicit unduly high effort on the part of
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the supplier. This scenario also alludes to the second issue faced by the outsourcing firm,

which is that the supplier’s effort level is unobservable. We explore the issue of how to best

design a contract that mitigates the adverse effects of these two issues.

More specifically, we are interested in whether a stage-gate contract is superior to a

non-stage-gate contract in the presence of adverse selection (hidden information) and moral

hazard (unobservable effort). While stage-gate processes have been widely applied in new

product development, there is little known about how they can be incorporated in contract

design. Our research is one of the few research works that explore this new area. That is,

we investigate whether a firm with a high-quality project can use a stage-gate contract to

signal her private information regarding the project (in order to differentiate herself from the

situation in which the project is of low quality project) and thereby achieve higher expected

profit, or whether the firm should instead choose to not reveal her inside information and

instead offer the same contract as if the project were of low quality.

To study this question, we analyze signaling models in the context of a two-stage project

with stage-gate features. In our baseline model, the contract consists of an upfront money

transfer (at the beginning), an intermediate money transfer (contingent upon success of the

first stage), and an end money transfer (contingent upon success of second stage following

success after the first stage). We consider two types of models, one involving a separating

equilibrium and the other a pooling equilibrium. Under the separating equilibrium, to dif-

ferentiate herself from the contract that she would offer if her project were of low-quality, the

principal with a high quality project uses money transfers to signal her private information

regarding the project. Meanwhile, the money transfers induce the agent (supplier) to exert

appropriate effort; a higher effort level means a higher probability of success but more cost

to the agent. Under the pooling equilibrium, the principal with a high-quality contract

“pools” the contract with the contract that she would offer if her project were instead of

low quality (i.e, the principal’s contracts are the same regardless of the project quality); the

money transfers are such that the principal has no incentive to deviate from this pooling

equilibrium regardless of the project type. Again, the money transfers are also aimed to

elicit the agent (supplier) to exert effort.

A key result of our model is that, compared to the case of complete information (where

the quality of the project is known to both the principal and the agent), the intermediate

money transfer offered by the principal with a high quality project is not generally zero, and

by offering this intermediate payment the principal increases her expected profit. Another

way of saying this is to say that the stage gate contract is superior to a non-stage-gate
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contract, particularly when the quality difference between the high and low quality projects

is big. This shows that intermediate money transfer is especially useful when the information

asymmetry is large and the principal has a high quality project and wants to separate herself

from what would be the result if the project were instead of low quality. Furthermore, adding

an intermediate money transfer to the menu with only end money transfer brings signifi-

cantly more profit to the principal with a high quality project under both the separating

and pooling equilibria. This says that without the presence of an upfront money transfer,

the intermediate money transfer plays a big role in increasing the profit for a principal with

a high quality project. Regarding the upfront money transfer, its effect is conspicuous,

because it can add even higher profit to the principal with a high quality project than does

the intermediate money transfer under both equilibria.

For models involving a separating equilibrium, although costly differentiation results in

a dramatic drop in the profit of the principal with a high quality project when the quality

gap between the low and high quality project is narrow, both an upfront money transfer and

an intermediate money transfer help increase the profit of the principal with a high quality

project significantly as the gap becomes bigger. In contrast, the contract with only an end

money transfer is unable to increase the principal’s profit as the quality gap between the

low and high quality project gets bigger. For models involving a pooling equilibrium, with

a higher probability of the project being of high quality project (we call this the “show-up

probability”), the agent exerts more effort in the second period. As a result, the principal

with high quality project obtains higher profit.

As to which of separating and pooling equilibria would deliver more profit to the principal

with a high quality project, we find that for almost all models except the ones with only

end money transfers for separating and pooling equilibria, when the show-up probability

of the principal with a high quality project is not high and the quality difference between

the high and low quality projects is not too narrow, the separating equilibrium generates

higher profit than the pooling equilibrium. This shows that it is less costly to differentiate

herself than pooling herself for a principal with a high quality project in this scenario. On

the other hand, when the show-up probability of the principal with a high quality project

is high or the difference between the high and low quality projects is narrow, the pooling

equilibrium generates higher profit than the separating equilibrium. The reason is that

separating becomes more costly than pooling for the principal with a high quality project.

In addition, we point out that all effort levels exerted by the agent are “interior solutions”

(i.e., neither 0 nor 1). This reflects the fact that the agent strikes a subtle balance
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between exerting more effort to achieve higher probability of success and avoiding bigger

cost incurred. Moreover, the results we obtained only depend on the quality ratio of the

high quality project and the low quality project, independent of the value of the project,

the cost coefficient and the quality of either project. This would allow our findings to apply

to various practical situations.

Finally, we recognize that due to the simple structure of the models, our results only

serve as a theoretic guidance on how stage-gate contracts with multiple money transfers

can be used to either signal or not reveal the private information of the principal with a

high quality project and help increase her profit. To reflect the real situations in practice,

one could include more features in a model of stage-gate contract. For examples, both

principal and agent can have their own inside information, the principal may not only

provide money transfers but also exert her own effort in the project, the agent may have

different (erroneous) beliefs about the show-up probability of the principal with a high

quality project, the agent may be given a second chance after the failure in one stage, and

the project may have positive residual value left even after the failure in a stage. These are

the dimensions that may be worth future exploration in this promising research area.
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Figure 2.1: The Baseline Model for the Separating Equilibrium (i = L or H)

Figure 2.2: The Baseline Model for the Pooling Equilibrium
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Figure 2.3: Profit of a High-type Principal (Separating Equilibrium)

Figure 2.4: Money Transfers Offered by a High-Type Principal (Separating Equilibrium)
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Figure 2.5: Agent’s Efforts for an Offer from a High-Type Principal (Separating Equilib-
rium)

Figure 2.6: Profit of a High-Type Principal (Pooling Equilibrium)
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Figure 2.7: In the Region below the Lower Curve, the High-Type Principal’s Incentive
Constraint Is Violated and There Is No Pooling Equilibrium)

Figure 2.8: The Dominating Equilibrium (Separating Below the Line, Pooling Above)
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Figure 2.9: Profit of a High-type Principal Under the Dominating Equilibrium

Figure 2.10: Profit for a High-type Principal in Case 1 and Case 2
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Figure 2.11: Profit for a High-type Principal Under the Separating Equilibrium for Four
Cases

Figure 2.12: From Top to Bottom: Profit of a High-Type Principal Under Complete
Information, Then Pairs of Case 1 and Case 2 with p = 0.9,0.7,0.5,0.3,0.1
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Figure 2.13: Profits for a High-type Principal (Pooling Equilibrium) with p = 0.3

Figure 2.14: Profits for a High-type Principal (Pooling Equilibrium) with p = 0.7
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Figure 2.15: Profits for a High-type Principal (Pooling Equilibrium) with p = 0.9

Figure 2.16: In Case 2, Separating Equilibrium Dominates below the Solid (Pooling
Above)
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Figure 2.17: There Is No Pooling Equilibrium for the Area under the Solid line in Case 2

Figure 2.18: In Case 3, Separating Equilibrium Dominates below the Solid (Pooling
Above)
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Figure 2.19: Profit for a High-type Principal Under the Dominating Equilibrium, p = 0.3

Figure 2.20: Profit for a High-type Principal Under the Dominating Equilibrium, p = 0.7
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Figure 2.21: Profit for a High-type Principal Under the Dominating Equilibrium, p = 0.9



CHAPTER 3

BOTH PRINCIPAL AND AGENT HAVE

INSIDE INFORMATION

In practice, it is often the case that principal and agent have their own inside information

at the same time. Maskin and Tirole (1992) pointed out that this is a quite interesting

scenario that is worthy of study. In this chapter, we investigate stage-gate contracts when

both principal and agent have private information. To achieve the maximal expected profit,

the high-type principal not only needs to screen the low-type agent from the high-type one,

but also needs to consider whether she should differentiate her type through signalling or

pool her type with the low-type principal without signalling. In the following, we outline

the framework and model setup for this research.

We assume that there are two types of principals - high-type and low-type, and two

types of agents - high-type and low-type. For both types of principals, the project returns

the same value V if successful at the end of period 2. For each type of principal, the

agent is of low-type with the same probability λ, with 0 < λ < 1, and of high-type with the

same probability 1 − λ. When the principal is of high-type, the effort levels that the agent

exerts in the two periods if of low-type and high-type are denoted by {αH
L eH

1L, α
H
L eH

2L} and

{αH
HeH

1H , αH
HeH

2H}, respectively, which all take values in the [0,1] interval. The parameters

αH
L and αH

H describe agent type, with the logical constraint that 0 < αH
L < αH

H < 1. The

probabilities of success for the first and the second periods for the agent if of low-type are

αH
L eH

1L and αH
L eH

2L. Likewise, αH
HeH

1H and αH
HeH

2H denote the corresponding probabilities

of success for the agent if of high-type. When the principal is of low-type, the effort

levels that the agent exerts in the two periods if of low-type and high-type are denoted by

{αL
Le

L
1L, α

L
Le

L
2L} and {αL

HeL
1H , αL

HeL
2H} respectively, which all take values in the [0,1] interval.

The parameters αL
L and αL

H describe agent type, with the constraint that 0 < αL
L < αL

H < 1.

The probabilities of success for the first and the second periods for the agent if of low-type

are αL
Le

L
1L and αL

Le
L
2L. Likewise, α

L
HeL

1H and αL
HeL

2H denote the corresponding probabilities

of success for the agent if of high-type. As to the order among the parameters αH
L , αH

H ,

αL
L and αL

H , we assume that αH
L > αL

L and αH
H > αL

H to reflect the fact that the project has
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higher probability of success if the principal is of high-type.

When the principal is of high-type, the costs that the agent incurs in the two periods

are keH
1L

2
and keH

2L

2
for the agent if of low-type or keH

1H

2
and keH

2H

2
if of high-type, where

k is the cost coefficient. The upfront, intermediate and final money transfers to the agent

are denoted by mH
0L, m

H
1L and mH

2L if of low-type and mH
0H , mH

1H and mH
2H if of high-type.

Similar to what we assume in Chapter 1 and Chapter 2, these transfers can be either

positive or negative, depending on whether the principal pays the agent or the agent pays

the principal. The intermediate and final transfers occur only when the first and second

periods are successful, respectively.

Likewise, when the principal is of low-type, the costs that the agent incurs in the two

periods are keL
1L

2
and keL

2L

2
for the agent if of low-type or keL

1H

2
and keL

2H

2
if of high-type,

where k is the cost coefficient. The upfront, intermediate and final money transfers to

the agent are denoted by mL
0L, m

L
1L and mL

2L if of low-type and mL
0H , mL

1H and mL
2H if

of high-type. Similarly, these transfers can be either positive or negative, depending on

whether the principal pays the agent or the agent pays the principal. The intermediate and

final transfers occur only when the first and second periods are successful, respectively.

We consider two types of equilibria: separating and pooling. First we examine the

setting of the separating equilibrium.

The high-type principal’s expected profit is

λ [αH
L eH1L (αH

L eH2L(V −mH
2L) −mH

1L) −mH
0L]

+ (1 − λ) [αH
HeH1H (αH

HeH2H(V −mH
2H) −mH

1H) −mH
0H] (3.1)

To ensure the participation of both types of agents, the following two constraints have to

be satisfied:

mH
0L − keH1L

2

+ αH
L eH1Lm

H
1L − αH

L eH1Lke
H
2L

2

+ αH
L

2

eH1Le
H
2Lm

H
2L ≥ 0 (3.2)

and

mH
0H − keH1H

2

+ αH
HeH1HmH

1H − αH
HeH1HkeH2H

2

+ αH
H

2

eH1HeH2HmH
2H ≥ 0 (3.3)

where (3.2) is for the low-type agent and (3.3) is for the high-type agent.

Likewise, the low-type principal’s expected profit is

λ [αL
Le

L
1L (αL

Le
L
2L(V −mL

2L) −mL
1L) −mL

0L]

+ (1 − λ) [αL
HeL1H (αL

HeL2H(V −mL
2H) −mL

1H) −mL
0H] (3.4)
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and the participation constraints for the low-type and high-type agents are

mL
0L − keL1L

2

+ αL
Le

L
1Lm

L
1L − αL

Le
L
1Lke

L
2L

2

+ αL
L

2

eL1Le
L
2Lm

L
2L ≥ 0 (3.5)

and

mL
0H − keL1H

2

+ αL
HeL1HmL

1H − αL
HeL1HkeL2H

2

+ αL
H

2

eL1HeL2HmL
2H ≥ 0 (3.6)

In the separating equilibrium, the high-type principal needs not only to screen the

high-type agent from the low-type agent, but also to prevent the low-type principal from

mimicking her, and herself from mimicking the low-type principal.

To screen the high-type agent from the low-type agent, money transfers {mH
0L,m

H
1L,m

H
2L}

and {mH
0H ,mH

1H ,mH
2H} have to be set in such a way that the low-type agent won’t mimic

the high-type agent and the high-type agent won’t mimic the low-type agent, namely two

incentive compatibility constraints have to be satisfied:

mH
0L − keH1L

2

+ αH
L eH1Lm

H
1L − αH

L eH1Lke
H
2L

2

+ αH
L

2

eH1Le
H
2Lm

H
2L

≥ mH
0H − kẽH

2

1L + αH
L ẽH1Lm

H
1H − αH

L ẽH1Lkẽ
H2

2L + αH
L

2

ẽH1Lẽ
H
2Lm

H
2H (3.7)

and

mH
0H − keH1H

2

+ αH
HeH1HmH

1H − αH
HeH1HkeH2H

2

+ αH
H

2

eH1HeH2HmH
2H

≥ mH
0L − kẽH

2

1H + αH
H ẽH1HmH

1L − αH
H ẽH1HkẽH

2

2H + αH
H

2

ẽH1H ẽH2HmH
2L (3.8)

where ẽH
1L and ẽH

2L are the efforts that the low-type agent incurs when he mimics the

high-type agent, and ẽH
1H and ẽH

2H are the efforts that the high-type agent incurs when he

mimics the low-type agent.

To prevent the low-type principal from mimicking her, and herself from mimicking the

low-type principal, the high-type principal has to make money transfers {mH
0H ,mH

1H ,mH
2H}

to satisfy two incentive compatibility constraints:

LM ≥ −mH
0H − αL

HeH1HmH
1H + αL

H

2

eH1HeH2H(V −mH
2H) (3.9)

and

−mH
0H − αH

HeH1HmH
1H + αH

H

2

eH1HeH2H(V −mH
2H) ≥ LM (3.10)

where LM is the maximal expected profit of the low-type principal when she does her

own profit maximization profit, and LM is the maximal expected profit of the high-type

principal when she pretends to be the low-type principal.
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More specifically, to obtain LM , the low-type principal maximizes her expected profit:

λ [αL
Le

L
1L (αL

Le
L
2L(V −mL

2L) −mL
1L) −mL

0L]

+ (1 − λ) [αL
HeL1H (αL

HeL2H(V −mL
2H) −mL

1H) −mL
0H] (3.11)

with the participation constraints for the low-type and high-type agents

mL
0L − keL1L

2

+ αL
Le

L
1Lm

L
1L − αL

Le
L
1Lke

L
2L

2

+ αL
L

2

eL1Le
L
2Lm

L
2L ≥ 0 (3.12)

and

mL
0H − keL1H

2

+ αL
HeL1HmL

1H − αL
HeL1HkeL2H

2

+ αL
H

2

eL1HeL2HmL
2H ≥ 0 (3.13)

and two incentive compatibility constraints - one preventing the low-type agent mimicking

the high-type agent and the other preventing the high-type agent mimicking the low-type

agent:

mL
0L − keL1L

2

+ αL
Le

L
1Lm

L
1L − αL

Le
L
1Lke

L
2L

2

+ αL
L

2

eL1Le
L
2Lm

L
2L

≥ mL
0H − kẽ2L1L + αL

Lẽ
L
1Lm

L
1H − αL

Lẽ
L
1Lkẽ

L2

2L + αL2

Lẽ
L
1Lẽ

L
2Lm

L
2H (3.14)

and

mL
0H − keL1H

2

+ αL
HeL1HmL

1H − αL
HeL1HkeL2H

2

+ αL
H

2

eL1HeL2HmL
2H

≥ mL
0L − kẽL

2

1H + αL
H ẽL1HmL

1L − αL
H ẽL1HkẽL

2

2H + αL2

H ẽL1H ẽL2HmL
2L (3.15)

where ẽL
1L and ẽL

2L are the efforts that the low-type agent incurs when he mimics the

high-type agent, and ẽL
1H and ẽL

2H are the efforts that the high-type agent incurs when he

mimics the low-type agent. It is clear that the solution of the optimization problem in the

screen model in Chapter 1 would give the value of LM if αL and αH are replaced with αL
L

and αL
H .

As to LM , the high-type principal maximizes her expected profit while pretending to

be the low-type principal:

λ [αH
L eL1L (αH

L eL2L(V −mL
2L) −mL

1L) −mL
0L]

+ (1 − λ) [αH
HeL1H (αH

HeL2H(V −mL
2H) −mL

1H) −mL
0H] (3.16)

with the same participation constraints for the low-type and high-type agents (3.12) and

(3.13), and the same incentive compatibility constraints (3.14) and (3.15). It is not difficult

to see that by the same way of solving the maximization problem of the screen model in

Chapter 1, we can solve the above optimization problem and find LM .

Notice that when neither (3.9) nor (3.10) holds, the profit maximization problem for the

high-type principal is the same as the one of the screen model in Chapter 1, and thereby
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has the same solution. However, when either of (3.9) and (3.10) binds, the solution of the

screen model in Chapter 1 no longer applies to the profit maximization problem for the

high-type principal here. In fact, we are able to obtain the solution of the problem for the

case in which (3.9) binds but (3.10) does not bind. According to the results in Chapter 2,

this case seems to hold for most values of parameters and be the most interesting case. But

the closed form solution does not give good insights, because of complicated expressions

involving quite a few parameters. So numerical plotting would be an more intuitive way

that can lead to insights.

Next we examine the setting of the pooling equilibrium. In this equilibrium, both the

high-type and low-type principals offer the same contract with money transfers m0L, m1L

and m2L to the low-type agent and m0H , m1H and m2H to the high-type agent. We assume

that the agent believes that the principal is of high-type with probability p and of low-type

with probability 1 − p.

The high-type principal maximizes her expected profit:

λ [αH
L e1L (αH

L e2L(V −m2L) −m1L) −m0L]

+ (1 − λ) [αH
He1H (αH

He2H(V −m2H) −m1H) −m0H] (3.17)

with the participation constraints of the low-type and high-type agents:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + αLα̃Le1Le2Lm2L ≥ 0 (3.18)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + αH α̃He1He2Hm2H ≥ 0 (3.19)

where

αL = pαH
L + (1 − p)αL

L

α̃L =
pαH

L

2

pαH
L + (1 − p)αL

L

+
(1 − p)αL

L

2

pαH
L + (1 − p)αL

L

αH = pαH
H + (1 − p)αL

H

α̃H =
pαH

H

2

pαH
H + (1 − p)αL

H

+
(1 − p)αL

H

2

pαH
H + (1 − p)αL

H

(3.20)

and with two incentive compatibility constraints for the low-type and high-type agents:
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m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + αLα̃Le1Le2Lm2L

≥ m0H − kẽ21L + αLẽ1Lm1H − αLẽ1Lkẽ
2

2L + αLα̃Lẽ1Lẽ2Lm2H

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + αH α̃e1He2Hm2H

≥ m0L − kẽ21H + αH ẽ1Hm1L − αH ẽ1Hkẽ22H + αH α̃H ẽ1H ẽ2Hm2L (3.21)

where {ẽ1L, ẽ1L} and {ẽ1H , ẽ2H} are the efforts exerted by the low-type and high-type agents

respectively when they are dishonest about their types and pretend to be the other type. In

addition, the incentive compatibility constraints for the low-type and high-type principals

has to be satisfied:

λ [αL
Le1L (αL

Le2L(V −m2L) −m1L) −m0L]

+(1 − λ) [αL
He1H (αL

He2H(V −m2H) −m1H) −m0H] ≥ LM1 (3.22)

and

λ [αH
L e1L (αH

L e2L(V −m2L) −m1L) −m0L]

+(1 − λ) [αH
He1H (αH

He2H(V −m2H) −m1H) −m0H] ≥ LM1 (3.23)

where LM1 is the maximal expected profit of the low-type principal when her type is known,

and LM1 is the maximal expected profit of the high-type principal when she pretends to

be the low-type one. As we observe from the results of Chapter 2, the most interesting

case seems to be the one when neither (3.22) nor (3.23) binds. We are able to obtain the

closed form solution of this case. But due to its complicated expression involving various

parameters, it is not easy to derive insights. So numerical plotting would be a good way to

exhibit properties and features of this model.

In the above, we discussed the settings of the separating and pooling equilibria when

money transfers consists of upfront, intermediate and end transfers. We can also look at the

following cases: 1) only intermediate and end transfers are included. 2) only upfront and

end transfers are included. 3) only end transfer is included. We can compare the profits of

the high-type principal in all the cases and explore the benefits of adding upfront and/or

intermediate transfers. In addition, we can compare the profits of the high-type principal in

Chapter 3 with those in Chapter 1 to see how much profit would be lost when the high-type

principal wants to reveal or hide her private information.



APPENDIX A

CHAPTER 1 PROOFS
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A.1 Proof of Theorem 1

We will examine the baseline model (i.e., upfront, intermediate and end money transfers

are all included in the contract) under complete information.

By offering the menu of money transfers (m0L,m1L,m2L) to the low-type agent and

(m0H ,m1H ,m2H) to the high-type agent, the principal wants to maximize her expected

profit:

λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L]+(1−λ) [αHe1H (αHe2H(V −m2H) −m1H) −m0H]

(A.1)

Taking into account (m0L,m1L,m2L) and (m0H ,m1H ,m2H), the low-type and high-type

agents want to maximize their following expected profits, respectively:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (A.2)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (A.3)

where 0 ≤ e1L ≤ 1, 0 ≤ e2L ≤ 1, 0 ≤ e1H ≤ 1 and 0 ≤ e2H ≤ 1. To ensure both agents’

participation, (A.2) and (A.3) have to be nonnegative.

Since the model is of complete information, there are no incentive compatibility con-

straints involved. Thus the principal can maximize her expected profit from the part on the

low-type agent and the part from the high-type agent separately. In other words, the original

optimization problem can be decomposed into two independent optimization problems, one

involving the principal and the low-type agent and the other involving the principal and

the high-type agent.

For the first optimization problem, by providing (m0L,m1L,m2L) to the low-type agent,

the principal wants to maximize her expected profit from the part on the low-type agent:

λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L] (A.4)

Considering (m0L,m1L,m2L), the low-type agent would like to maximize his expected profit:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (A.5)

where 0 ≤ e1L ≤ 1 and 0 ≤ e2L ≤ 1 and (B.88) ≥ 0 as the participation constraint.
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For the second one, by offering (m0H ,m1H ,m2H) to the high-type agent, the principal

wants to maximize her expected profit from the part on the high-type agent:

λ [αHe1H (αHe2H(V −m2H) −m1H) −m0H] (A.6)

Regarding (m0H ,m1H ,m2H), the high-type agent would like to maximize his expected

profit:

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (A.7)

where 0 ≤ e1H ≤ 1 and 0 ≤ e2H ≤ 1 and (A.7) ≥ 0 as the participation constraint.

We can assume e1L, e2L, e1H and e2H are positive and don’t need to consider the

scenarios when some of them are 0. The reason is the following.

If e1L = 0, the low-type agent’s expected profit (B.88) becomes m0L, which has to be

nonnegative in order for the low-type agent to participate. Thus the part of the principal’s

expected profit (B.87) from the low-type agent λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L] =

λ[−m0L] ≤ 0. Clearly, this can’t be the maximum location the principal anticipates.

If e2L = 0, the low-type agent’s expected profit (B.88) becomes m0L − ke2
1L +αLe1Lm1L,

which is nonnegative to ensure the participation of the low-type agent. Therefore the part

of the principal’s expected profit (B.87) from the low-type agent λ [−αLe1Lm2L −m0L] ≤

λ [−ke2
1L] ≤ 0. It is clear that this won’t be the maximum location the principal looks for.

Similar argument goes for the scenarios when e1H = 0 or e2H = 0.

Next we will find the expressions of the optimal efforts e∗
1L and e∗

2L for given (m0L,m1L,m2L),

corresponding to (B.88).

Notice that the Lagrangian for the maximization problem of the low-type agent’s ex-

pected profit with e1L and e2L as the decision variables is

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L + λ1(1 − e1L) + λ2(1 − e2L) (A.8)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.

The first order conditions of (B.89) with respect to e1L and e2L as follows:

−2ke1L + αLm1L − αLke
2

2L + α2

Le2Lm2L − λ1 = 0 (A.9)

αLe1L (−2ke2L + αLm2L) − λ2 = 0 (A.10)

which lead to the optimal efforts e∗
1L and e∗

2L satisfying

e∗2L =
αLm2L − λ2

αLe
∗
1L

2k
(A.11)

e∗1L =
αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L − λ1

2k
(A.12)

where 0 < e∗
2L ≤ 1 and 0 < e∗

1L ≤ 1.
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There are four situations for consideration:

1. When λ1 > 0 and λ2 > 0, e∗
1L = 1 and e∗

2L = 1. By (B.88), the low-type agent’s expected

profit is

m0L − k + αLm1L − αLk + α2

Lm2L (A.13)

Since λ1 > 0, λ2 > 0, e∗
1L = 1 and e∗

2L = 1, (B.92) and (B.93) imply that
αLm1L−αLk+α2

L
m2L

2k
>

1 and αLm2L

2k
> 1.

2. When λ1 > 0 and λ2 = 0, e∗
1L = 1 and e∗

2L = αLm2L

2k
≤ 1. By (B.88), the low-type agent’s

expected profit is

m0L − k + αLm1L − αLk(
αLm2L

2k
)
2

+ α2

L

αLm2L

2k
m2L

= m0L − k + αLm1L +
α3

Lm
2

2L

4k
(A.14)

Since λ1 > 0 and e∗
1L = 1, (B.93) implies that

αLm1L+α
3

L
m

2

2L

4k

2k
> 1.

3. When λ1 = 0 and λ2 > 0, e∗
1L =

αLm1L−αLk+α2

L
m2L

2k
≤ 1 and e∗

2L = 1, namely, 2ke∗
1L =

αLm1L − αLk + α2

Lm2L. By (B.88), the low-type agent’s expected profit is

m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lke

∗
2L

2 + α2

Le
∗
1Le
∗
2Lm2L

= m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lk + α2

Le
∗
1Lm2L

= m0L − ke∗1L2
+ e∗1L [αLm1L − αLk + α2

Lm2L]

= m0L − ke∗1L2
+ e∗1L2ke∗1L

= m0L + ke∗1L2

= m0L + k(
αLm1L − αLk + α2

Lm2L

2k
)

2

(A.15)

Since λ2 > 0, (B.92) implies that αLm2L

2k
> 1.

4. When λ1 = 0 and λ2 = 0, by (B.92) and (B.93), e∗
2L = αLm2L

2k
≤ 1 and

e∗1L =
αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L

2k

=
αLm1L − αLk(

αLm2L

2k
)
2
+ α2

L
αLm2L

2k
m2L

2k

=
αLm1L +

α3

L
m2

2L

4k

2k
(A.16)

which is less than or equal to 1.
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By (B.88), the low-type agent’s expected profit is

m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lke

∗
2L

2 + α2

Le
∗
1Le
∗
2Lm2L

= m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lk + α2

Le
∗
1Lm2L

= m0L − ke∗1L2
+ e∗1L [αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L]

= m0L − ke∗1L2
+ e∗1L2ke∗1L

= m0L + ke∗1L2

= m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.17)

Similarly, for the expressions of the optimal efforts e∗
1H and e∗

2H for given (m0H ,m1H ,m2H),

corresponding to (A.7), we have that both are positive and

1. e∗
1H = 1 and e∗

2H = 1. The high-type agent’s expected profit is

m0H − k + αHm1H − αHk + α2

Hm2H (A.18)

and
αHm1H−αHk+α2

H
m2H

2k
> 1 as well as αHm2H

2k
> 1.

2. e∗
1H = 1 and e∗

2H = αHm2H

2k
≤ 1. The high-type agent’s expected profit is

m0H − k + αHm1H +
α3

Hm2

2H

4k
(A.19)

and
αHm1H+α

3

H
m

2

2H

4k

2k
> 1.

3. e∗
1H =

αHm1H−αHk+α2

H
m2H

2k
≤ 1 and e∗

2H = 1. The high-type agent’s expected profit is

m0H + k(
αHm1H − αHk + α2

Hm2H

2k
)

2

(A.20)

and αHm2H

2k
> 1.

4. e∗
1H =

αHm1H+α
3

H
m

2

2H

4k

2k
≤ 1 and e∗

2H = αHm2H

2k
≤ 1. The high-type agent’s expected profit

is

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.21)

With the availability of the expressions of the optimal efforts e∗
1L and e∗

2L for given

(m0L,m1L,m2L), and e∗
1H , e∗

2H for given (m0H ,m1H ,m2H), we are able to solve two

principal’s expected profit maximization problems, one consisting of (B.87) and (B.88)
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and the other consisting of (A.6) and (A.7). It is clear that once one of them is solved, the

solution for the other can be easily obtained, due to the symmetric structure. Next, we will

solve the maximization problem consisting of (A.6) and (A.7), which involves the principal

and the high-type agent.

Notice that (A.7) equals 0, instead of being just nonnegative. To show it, using the

fact that the optimal efforts e∗
1H , e∗

2H depend only on m1H and m2H , we can write e∗
1H

and e∗
2H as f1(m1H ,m2H) and f2(m1H ,m2H) respectively, functions of m1H and m2H .

Thus the first order condition with respect to m0H of the Lagrangian for the principal’s

expected profit maximization problem consisting (A.6) and (A.7) leads to the positivity of

the Lagrangian multiplier for the participation constraint–(A.7) ≥ 0. This means that (A.7)

equals 0, namely, the participation constraint is binding.

Using the binding participation constraint–(A.7) equals 0–to replace m0H in the expres-

sion (A.6) and taking into account the four scenarios we discussed in (A.18) through (A.21),

we have the following four scenarios for consideration for the the principal’s expected profit

maximization problem consisting (A.6) and (A.7).

1. when m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1, i.e., e∗

2H ≤ 1 and e∗
1H ≤ 1. The Lagrangian for

the maximum of the principal’s expected profit equals

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝
1 −

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

(A.22)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers.

The first order conditions of (B.99) with respect to m1H and m2H lead to

(1 − λ)
α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H) − λ2

αH

2k
= 0 (A.23)

(1 − λ) [α4

H

2m2H

8k2
(
α2

Hm2H

2k
(V −m2H) −m1H)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−λ1 − λ2α
3

H

2m2H

4k2
= 0 (A.24)



67

Multiplying (B.100) by α3

H
2m2H

4k2
and subtracting the product from (B.101) gives

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1 = 0 (A.25)

There are three cases for consideration:

(a) When λ1 > 0, m2H = 2k
αH

. The Lagrangian equals

(1 − λ) [αH (
αHm1H + αHk

2k
)(αH (V −

2k

αH

) −m1H) + k(
αHm1H + αHk

2k
)
2

]

+λ̃1 (1 −
αHm1H + αHk

2k
) (A.26)

where λ̃1 ≥ 0 is a Lagrangian multiplier.

The first order condition of (B.103) with respect to m1H is

(1 − λ) [
α2

H

2k
(αH (V −

2k

αH

) −m1H)] − λ̃1

αH

2k
= 0 (A.27)

When λ̃1 = 0, m1H = αH (V − 2k
αH

). So the principal’s expected profit equals

(1 − λ)k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

H (V − 2k
αH

) + αHk

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

= (1 − λ)k(
α2

HV − αHk

2k
)

2

(A.28)

Notice that
α2

H
(V − 2k

αH
)+αHk

2k
≤ 1.

When λ̃1 > 0, αHm1H+αHk
2k

= 1, namely m1H = 2k
αH

− k. Thus the principal’s

expected profit equals

(1 − λ) [αH (αH (V −
2k

αH

) + k −
2k

αH

)] = (1 − λ) (α2

HV − αHk − 2k) (A.29)

It is easy to see that (B.105) is greater than (B.106).

(b) When λ2 > 0,
αHm1H+α

3

H
m

2

2H

4k

2k
= 1 which implies that m1H = 2k

αH
−

α2

H
m2

2H

4k
. The

Lagrangian equals

(1 − λ) [αH (αH
αHm2H

2k
(V −m2H) −

2k

αH

+
α2

Hm2

2H

4k
) + k] + λ̃2 (

αH

2k
−m2H)

(A.30)

where λ̃2 ≥ 0 is a Lagrangian multiplier.
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The first order condition of (B.107) gives

(1 − λ)
α3

H

2k
(V −m2H) − λ̃2 = 0 (A.31)

When λ̃2 > 0, m2H = αH

2k
, which means that

αHm1H+α
3

H
m

2

2H

4k

2k
= 1 is equivalent to

αHm1H+αHk
2k

= 1. Thus the principal’s expected profit has the same value as in

(B.106), which is less than or equal to the value in (B.105).

When λ̃2 = 0, V =m2H . Thus the principal’s expected profit equals

(1 − λ)(−k +
α3

HV 2

4k
) (A.32)

which is ≤ −k + αHk < 0, since V = m2H ≤ 2k
αH

. Thus (B.109) can’t be the local

maximum, compared with (B.105).

(c) When λ1 = 0 and λ2 = 0, from (B.102) and (B.100), we have m2H = V and

m1H = 0. Since m2H ≤ 2k
αH

, V ≤ 2k
αH

. The principal’s expected profit equals

(1 − λ)k
⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

(A.33)

Notice that comparing (B.110) with (B.105), we have

(1 − λ)k
⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

≥ (1 − λ)k(
α2

HV − αHk

2k
)

2

(A.34)

where the equality holds only when V = 2k
αH

, because
α3

H
V 2

4k
≥ α2

HV − αHk.

One more thing we need to show is that the expected profit obtained from the above

discussion is local maximal. The reason is the following.

0 ≤ e∗
2H = αHm2H

2k
≤ 1 and 0 ≤ e∗

1H =
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1 ensure that m1H and m2H

are bounded in absolute value. This means that the expression of the principal’s

expected profit in (B.99) is also bounded in absolute value. Thus, the maximum

of the principal’s expected profit exists and the unique solution of the first order

conditions of the Lagrangian above provides the only candidate for the location of the

maximum. Therefore the expected profit obtained is local maximal.
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2. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1, i.e., e∗

2H ≤ 1 and e∗
1H = 1. The Lagrangian

for the maximum of the principal’s expected profit equals

(1 − λ) [αH ⋅ 1 ⋅ (αH
αHm2H

2k
(V −m2H) −m1H) + (−k + αHm1H +

α3

Hm2

2H

4k
)]

+λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k
− 1

⎞
⎟
⎠

(A.35)

The first order condition of (B.112) with respect to m1H and m2H are

λ2

αH

2k
= 0 (A.36)

(1 − λ) [
α3

H

2k
(V −m2H)] − λ1 + λ2α

3

H

m2H

4k2
= 0 (A.37)

where (B.113) gives λ2 = 0. Thus (B.114) becomes

(1 − λ) [
α3

H

2k
(V −m2H)] − λ1 = 0 (A.38)

When λ1 > 0, m2H = 2k
αH

. Thus (B.115) implies that V must be greater than 2k
αH

. The

principal’s expected profit equals

(1 − λ) [αH ⋅ 1 ⋅ (αH (V −
2k

αH

) −m1H) + (−k + αHm1H + αHk)]

= α2

HV − αHk − k (A.39)

When λ1 = 0, m2H = V . Thus the principal’s expected profit equals

(1 − λ)(−k +
α3

HV 2

4k
) (A.40)

which is less than or equal to −k + αHk < 0, because m2H ≤ 2k
αH

.

To show the expected profit obtained above is local maximal, we notice that with

0 ≤ e∗
2H = αHm2H

2k
≤ 1, the expression of the principal’s expected profit in (B.112) as

a function of m2H (with m1H being eliminated) is bounded in absolute value, and

thereby has a maximum. Thus the unique solution of the first order conditions must

be the location of the local maximal expected profit.
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3. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≤ 2k, i.e., e∗
2H = 1 and e∗

1H ≤ 1. The

Lagrangian for the maximum of the principal’s expected profit is

(1 − λ) [αH (
αHm1H − αHk + α2

Hm2H

2k
)(αH(V −m2H) −m1H)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
αHm1H − αHk + α2

Hm2H

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (m2H −
2k

αH

) + λ2(2k − αHm1H + αHk − α2

Hm2H) (A.41)

The first order conditions of (B.118) with respect to m1H and m2H are

(1 − λ) [
α2

H

2k
(αH (V −m2H) −m1H)] − λ2αH = 0 (A.42)

(1 − λ) [
α3

H

2k
(αH (V −m2H) −m1H)] + λ1 − λ2α

2

H = 0 (A.43)

Multiplying (B.119) by αH and subtracting the product from (B.120) gives λ1 = 0.

When λ2 > 0, αHm1H − αHk + α2

Hm2H = 2k, namely, αHm2H +m1H = 2k
αH

+ k. Then

the principal’s expected profit becomes

αH (αHV −
2k

αH

− k) + k = α2

HV − αHk − k (A.44)

When λ2 = 0, (B.119) implies that αH(V −m2H)−m1H = 0, which means that αHm2H+

m1H = αHV . The principal’s expected profit equals

(1 − λ)k(
α2

HV − αHk

2k
)

2

(A.45)

which is greater than or equal to (1 − λ) (α2

HV − αHk − k), with the equality holding

when α2

HV − αHk = 2k. Notice that the constraint αHm1H − αHk + α2

Hm2H ≤ 2k

implies that α2

HV − αHk ≤ 2k, because αHm2H + m1H = αHV . Therefore, when

α2

HV − αHk ≤ 2k,

(1 − λ)k(
α2

HV − αHk

2k
)

2

≥ (1 − λ) (α2

HV − αHk − k) (A.46)

where the equality holds only when α2

HV − αHk = 2k.

To show the expected profit obtained above is local maximal, we notice that with

0 ≤
αHm1H−αHk+α2

H
m2H

2k
≤ 1, the expression of the principal’s expected profit in (B.118)

as a function of αHm1H − αHk + α2

Hm2H is bounded in absolute value, and thereby

has a maximum. Thus the unique solution of the first order conditions must be the

location of the local maximal expected profit.
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4. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≥ 2k, i.e., e∗
2H = 1 and e∗

1H = 1. The

Lagrangian for the maximum of the principal’s expected profit equals

(1 − λ) [αH (αH(V −m2H) −m1H) + (−k + αHm1H − αHk + α2

Hm2H)]

+λ1 (m2H −
2k

αH

) + λ2 (αHm1H − αHk + α2

Hm2H − 2k) (A.47)

It is easy to see that the first order conditions of (B.124) give λ1 = 0 and λ2 = 0.

Notice that the principal’s expected profit equals

(1 − λ) [αH (αH(V −m2H) −m1H) + (−k + αHm1H − αHk + α2

Hm2H)]

= (1 − λ) (α2

HV − αHk − k) (A.48)

The constancy of the principal’s expected profit implies that it is also local maximum.

In summary, the optimal money transfers (m∗
0H ,m∗

1H ,m∗
2H) offered to the high-type

agent and the principal’s expected profit satisfies:

1. When V ≤ 2k
αH

, m∗
2H = V , m∗

1H = 0,

m∗0H = −
α6

HV 4

64k3
(A.49)

and the principal’s expected profit equals

(1 − λ)
α6

HV 4

64k3
(A.50)

2. When V ≥ 2k
αH

and α2

HV − αHk ≤ 2k, m∗
2H ≥ 2k

αH
, αHm∗

2H +m∗
1H = αHV .

m∗0H = −k(
α2

HV − αHk

2k
)

2

(A.51)

and the principal’s expected profit equals

(1 − λ)k(
α2

HV − αHk

2k
)

2

(A.52)

3. When V ≥ 2k
αH

and α2

HV − αHk ≥ 2k, m∗
2H ≥ 2k

αH
and αHm∗

1H − αHk + α2

Hm∗
2H ≥ 2k.

m∗0H = −k + αHm∗1H − αHk + α2

Hm∗2H ≥ k (A.53)

and the principal’s expected profit equals

(1 − λ)(α2

HV − αHk − k) (A.54)
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Similar argument can apply to the principal’s expected profit maximization problem

consisting of (B.87) and (B.88). The optimal money transfers (m∗
0L,m

∗
1L,m

∗
2L) offered to

the low-type agent and the principal’s expected profit satisfy

1. When V ≤ 2k
αL

, m∗
2L = V , m∗

1L = 0,

m∗0L = −
α6

LV
4

64k3
(A.55)

and the principal’s expected profit equals

λ
α6

LV
4

64k3
(A.56)

2. When V ≥ 2k
αL

and α2

LV − αLk ≤ 2k, m∗
2L ≥ 2k

αL
, αLm

∗
2L +m∗

1L = αLV .

m∗0L = −k(
α2

LV − αLk

2k
)

2

(A.57)

and the principal’s expected profit equals

λk(
α2

LV − αLk

2k
)

2

(A.58)

3. When V ≥ 2k
αL

and α2

LV − αLk ≥ 2k, m∗
2L ≥ 2k

αL
and αLm

∗
1L − αLk + α2

Lm
∗
2L ≥ 2k.

m∗0L = −k + αLm
∗
1L − αLk + α2

Lm
∗
2L ≥ k (A.59)

and the principal’s expected profit equals

λ(α2

LV − αLk − k) (A.60)

Notice that when V ≤ 2k
αH

, which implies V < 2k
αL

, the principal’s expected profit from

both the low-type and high-type agents is

λ
α6

LV
4

64k3
+ (1 − λ)

α6

HV 4

64k3
(A.61)

This concludes the proof of Theorem 1.

A.2 Proof of Theorem 2

The proof consists of three parts. In the first part, for given menu of money transfers

(m0L,m1L,m2L) and (m0H ,m1H ,m2H), we establish the expressions of optimal efforts of

both types of agents and the corresponding expressions of expected profits. In the second

part, we solve the principal’s expected profit maximization problem for a particular region

in which the money transfers take values, using the technique of decomposing the problem

into two independent problems with each of them only associated to one type of agent. In

the third part, we show that when V ≤ 2k
αH

, the local maximum obtained in the second part

is the global maximum by ruling out the possible local maxima in other regions.
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A.2.1 Expressions of optimal efforts

The principal maximizes her following expected profit by offering (m0L,m1L,m2L) to

the low-type agent and (m0H ,m1H ,m2H) to the high-type agent

λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L]+(1−λ) [αHe1H (αHe2H(V −m2H) −m1H) −m0H]

(A.62)

For given (m0L,m1L,m2L) and (m0H ,m1H ,m2H), the low-type and high-type agents max-

imize their following expected profits, respectively:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (A.63)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (A.64)

where 0 ≤ e1L ≤ 1, 0 ≤ e2L ≤ 1, 0 ≤ e1H ≤ 1 and 0 ≤ e2H ≤ 1.

To ensure both agents’ participation and prevent each agent from mimicking the other,

the following participation constraints and incentive compatibility constraints have to be

satisfied:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L ≥ 0 (A.65)

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (A.66)

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L

≥ m0H − kẽ21L + αLẽ1Lm1H − αLẽ1Lkẽ
2

2L + α2

Lẽ1Lẽ2Lm2H (A.67)

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H

≥ m0L − kẽ21H + αH ẽ1Hm1L − αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2Hm2L (A.68)

where (A.65) and (A.66) are the low-type and high-type agents’ participation constraints,

and (A.67) and (A.68) are the low-type and high-type agents’ incentive compatibility

constraints. Notice ẽ1L and ẽ2L are the efforts when the low-type agent pretends to be

the high one, while ẽ1H and ẽ2H are the efforts when the high-type agent pretends to be

the low-type one.

In fact, we can assume that e1L, e2L, e1H and e2H are all positive and don’t need to

consider the scenarios when some of them are 0. The reason is the same as that in the proof

of Theorem 1.

Therefore the Lagrangian for the maximization problem of the low-type agent’s expected

profit with e1L and e2L as the decision variables is

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L + λ1(1 − e1L) + λ2(1 − e2L) (A.69)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.
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Let e∗
1L, e

∗
2L, e

∗
1H , and e∗

2H denote the optimal efforts of the low-type and high-type

agents. Using the same argument in the proof of Theorem 1, we have four situations:

1. When λ1 > 0 and λ2 > 0, e∗
1L = 1 and e∗

2L = 1. The low-type agent’s expected profit is

m0L − k + αLm1L − αLk + α2

Lm2L (A.70)

with
αLm1L−αLk+α2

L
m2L

2k
> 1 and αLm2L

2k
> 1.

2. When λ1 > 0 and λ2 = 0, e∗
1L = 1 and e∗

2L = αLm2L

2k
≤ 1. The low-type agent’s expected

profit is

m0L − k + αLm1L +
α3

Lm
2

2L

4k
(A.71)

with
αLm1L+α

3

L
m

2

2L

4k

2k
> 1.

3. When λ1 = 0 and λ2 > 0, e∗
1L =

αLm1L−αLk+α2

L
m2L

2k
≤ 1 and e∗

2L = 1. The low-type agent’s

expected profit is

m0L + k(
αLm1L − αLk + α2

Lm2L

2k
)

2

(A.72)

with αLm2L

2k
> 1.

4. When λ1 = 0 and λ2 = 0, e∗
2L = αLm2L

2k
≤ 1 and

e∗1L =
αLm1L +

α3

L
m2

2L

4k

2k
(A.73)

which is less than or equal to 1. The low-type agent’s expected profit is

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.74)

Similarly, for the high-type agent, we have e∗
1H > 0 and e∗

2H > 0 and there are four

situations:

1. e∗
1H = 1 and e∗

2H = 1. The high-type agent’s expected profit is

m0H − k + αHm1H − αHk + α2

Hm2H (A.75)

and
αHm1H−αHk+α2

H
m2H

2k
> 1 as well as αHm2H

2k
> 1.

2. e∗
1H = 1 and e∗

2H = αHm2H

2k
≤ 1. The high-type agent’s expected profit is

m0H − k + αHm1H +
α3

Hm2

2H

4k
(A.76)

and
αHm1H+α

3

H
m

2

2H

4k

2k
> 1.
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3. e∗
1H =

αHm1H−αHk+α2

H
m2H

2k
≤ 1 and e∗

2H = 1. The high-type agent’s expected profit is

m0H + k(
αHm1H − αHk + α2

Hm2H

2k
)

2

(A.77)

and αHm2H

2k
> 1.

4. e∗
1H =

αHm1H+α
3

H
m

2

2H

4k

2k
≤ 1 and e∗

2H = αHm2H

2k
≤ 1. The high-type agent’s expected profit

is

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.78)

In addition, because of incentive constraints involved in the model, we have to consider

two scenarios where each type agent is not honest about his true type: one is that the

low-type agent pretends to be the high-type agent, and the other is that the high-agent

pretends to be the low-type agent.

When the low-type agent pretends to be the high-type agent, if successful, his expected

profit would be

m0H − kẽ21L + αLẽ1Lm1H − αLẽ1Lkẽ
2

2L + α2

Lẽ1Lẽ2Lm2H (A.79)

with λ [αLẽ1L (αLẽ2L(V −m2H) −m1H) −m0H] as the corresponding expected profit for the

principal. Thus by similar argument we did above, ẽ∗
1L > 0 and ẽ∗

2L > 0 and there are four

situations:

1. ẽ∗
1L = 1 and ẽ∗

2L = 1. The high-type agent’s expected profit is

m0H − k + αLm1H − αLk + α2

Lm2H (A.80)

and
αLm1H−αLk+α2

L
m2H

2k
> 1 as well as αLm2H

2k
> 1.

2. ẽ∗
1L = 1 and ẽ∗

2L = αLm2H

2k
≤ 1. The high-type agent’s expected profit is

m0H − k + αLm1H +
α3

Lm
2

2H

4k
(A.81)

and
αLm1H+α

3

L
m

2

2H

4k

2k
> 1.

3. ẽ∗
1L =

αLm1H−αLk+α2

L
m2H

2k
≤ 1 and ẽ∗

2L = 1. The high-type agent’s expected profit is

m0H + k(
αLm1H − αLk + α2

Lm2H

2k
)

2

(A.82)

and αLm2H

2k
> 1.
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4. ẽ∗
1L =

αLm1H+α
3

L
m

2

2H

4k

2k
≤ 1 and ẽ∗

2L = αLm2H

2k
≤ 1. The high-type agent’s expected profit

is

m0H + k
⎛
⎜
⎝

αLm1H +
α3

L
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.83)

When the high-type agent pretends to be the low-type agent, if successful, his expected

profit would be

m0L − kẽ21H + αH ẽ1Hm1L − αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2Hm2L (A.84)

with λ [αH ẽ1H (αH ẽ2H(V −m2L) −m1L) −m0L] as the corresponding expected profit for

the principal. Thus by similar argument we did above, ẽ∗
1H > 0 and ẽ∗

2H > 0 and there are

four situations:

1. ẽ∗
1H = 1 and ẽ∗

2H = 1. The high-type agent’s expected profit is

m0L − k + αHm1L − αHk + α2

Hm2L (A.85)

and
αHm1L−αHk+α2

H
m2L

2k
> 1 as well as αHm2L

2k
> 1.

2. ẽ∗
1H = 1 and ẽ∗

2H = αHm2L

2k
≤ 1. The high-type agent’s expected profit is

m0L − k + αHm1L +
α3

Hm2

2L

4k
(A.86)

and
αHm1L+α

3

H
m

2

2L

4k

2k
> 1.

3. ẽ∗
1H =

αHm1L−αHk+α2

H
m2L

2k
≤ 1 and ẽ∗

2H = 1. The high-type agent’s expected profit is

m0L + k(
αHm1L − αHk + α2

Hm2L

2k
)

2

(A.87)

and αHm2L

2k
> 1.

4. ẽ∗
1H =

αHm1L+α
3

H
m

2

2L

4k

2k
≤ 1 and ẽ∗

2H = αHm2L

2k
≤ 1. The high-type agent’s expected profit

is

m0L + k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.88)
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A.2.2 The local maximum of a particular region

In the following we will solve the principal’s expected profit maximization problem in

a particular described below, considering that the principal wants to prevent the low-type

agent from mimicking the high-type agent and the high-type agent from mimicking the

low-type agent, meanwhile ensuring both types participation.

Besides the positivity of e∗
1H , e∗

2H , ẽ∗
1H , ẽ∗

2H , e∗
1L, e

∗
2L, ẽ

∗
1L and ẽ∗

2L, we assume that

e∗
1H =

αHm1H+α
3

H
m2H

4k

2k
≤ 1, e∗

2H = αHm2H

2k
≤ 1, ẽ∗

1H =
αHm1L+α

3

H
m2L

4k

2k
≤ 1, and ẽ∗

2H = αHm2L

2k
≤ 1,

which imply ẽ∗
1L =

αLm1H+α
3

L
m2H

4k

2k
< 1, ẽ∗

2L = αLm2H

2k
< 1, e∗

1L =
αLm1L+α

3

L
m2L

4k

2k
< 1, and

e∗
2L = αLm2L

2k
< 1, because αL < αH . This describes a particular region where we will find

the local interior maximum for the principal’s expected profit maximization problem. In

the next subsection we will show that this local interior maximal solution is also a unique

global maximal solution when V ≤ 2k
αH

.

For this region, to screen the two different types of agent and maximize her expected

profit at the same time, the principal faces the following optimization problem:

max(m0L,m1L,m2L)(m0H ,m1H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.89)

where λΠL,P and (1 − λ)ΠH,P are the expected profits obtained from the low-type and the

high-type agents, respectively, satisfying

ΠL,P = αL

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

[αL
αLm2L

2k
(V −m2L) −m1L] −m0L (A.90)

ΠH,P = αH

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

[αH
αHm2H

2k
(V −m2H) −m1H] −m0H (A.91)

subject to

m0L + k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ m0H + k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1H +
α3

L
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.92)

m0L + k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ 0 (A.93)

m0H + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ m0L + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.94)

m0H + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ 0 (A.95)
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We claim that constraint (A.95) can be implied by constraints (A.93) and (A.94), i.e., (A.95)

is redundant. To show this statement, first note that

αHm1L +
α3

H
m2

2L

4k

2k
= αH

m1L +
α2

H
m2

2L

4k

2k
> αL

m1L +
α2

L
m2

2L

4k

2k
> 0 (A.96)

because 0 < e2L and 0 < e1L ensure that m2L ≠ 0 and
m1L+α

2

L
m

2

2L

4k

2k
> 0. Using (A.96), we have

m0L + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

>m0L + k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.97)

It is clear that (A.94), (A.97) and (A.93) imply that

m0H + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

> 0 (A.98)

which shows that constraint (A.95) is redundant.

Therefore the optimization problem consisting of (A.89), (A.92), (A.93), (A.94) and

(A.95) is equivalent to the optimization problem consisting of (A.89), (A.92), (A.93), and

(A.94), namely, without (A.95). In fact, constraint (A.92) is also redundant. To show

this, we use the following approach: first show that the optimization problem consisting

of (A.89), (A.93), and (A.94) can be solved, and then show that the solution set satisfies

(A.92).

Now we look at the optimization problem consisting of (A.89), (A.93), and (A.94). The

associated Lagrangian is

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L) −m0L

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) −m0H

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

−m0L − k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.99)

where λ1 and λ2 are the Lagrangian multipliers.
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The first order conditions of (A.99) with respect to m0L, m1L, m2L, m0H , m1H , and

m2H are

−λ + λ1 − λ2 = 0

(A.100)

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L) + αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 ⋅ 2k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

αL

2k
− λ2 ⋅ 2k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

αH

2k
= 0

(A.101)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V − 2m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 ⋅ 2k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

α3

L
2m2L

4k

2k
− λ2 ⋅ 2k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

α3

H
2m2L

4k

2k
= 0

(A.102)

−(1 − λ) + λ2 = 0

(A.103)

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H) + αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ2 ⋅ 2k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

αH

2k
= 0

(A.104)

(1 − λ)
⎡
⎢
⎢
⎢
⎣

α4

H
2m2H

4k

2k
(
α2

Hm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V − 2m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ2 ⋅ 2k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

α3

H
2m2H

4k

2k
= 0

(A.105)

From (A.100) and (A.103), we know that λ2 = 1 − λ > 0, and λ1 = 1, which means

that constraints (A.93) and (A.94) are binding. Substituting them into (A.101), (A.102),
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(A.104) and (A.105), we have

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)] + αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(−1)

+1 ⋅ 2k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

αL

2k
− (1 − λ) ⋅ 2k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

αH

2k
= 0

(A.106)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V − 2m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+1 ⋅ 2k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

α3

L
2m2L

4k

2k
− (1 − λ) ⋅ 2k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

α3

H
2m2L

4k

2k
= 0

(A.107)

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H) + αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
αH = 0

(A.108)

(1 − λ)
⎡
⎢
⎢
⎢
⎣

α4

H
2m2H

4k

2k
(
α2

Hm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V − 2m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
α3

H

2m2H

4k
= 0

(A.109)

which can be simplified as
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λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL −

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.110)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
−
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
α3

H

2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.111)

(1 − λ) [
α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H)] = 0

(A.112)

(1 − λ)
⎡
⎢
⎢
⎢
⎣

α4

H
2m2H

4k

2k
(
α2

Hm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.113)

It is easy to see that (A.112) leads to

(
α2

Hm2H

2k
(V −m2H) −m1H) = 0 (A.114)

Substituting (A.114) into (A.113), we obtain

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (A.115)

One thing we would like to point out is that the binding constraints (A.93) and (A.94)

make the expression of the principal’s expected profit in (A.89) become the sum of two

functions, one on (m1L,m2L) and the other on (m1H ,m2H). With the assumption that

0 ≤ e∗
1H =

αHm1H+α
3

H
m2H

4k

2k
≤ 1, 0 ≤ e∗

2H = αHm2H

2k
≤ 1, 0 ≤ ẽ∗

1H =
αHm1L+α

3

H
m2L

4k

2k
≤ 1, and

0 ≤ ẽ∗
2H = αHm2L

2k
≤ 1, variables m1L, m2L, m1H and m2H are bounded in absolute value.

This means that the expression of the principal’s expected profit in (A.89) is bounded and
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thereby has a local maximum. The uniqueness of the solution of the first order conditions

of the Lagrangian associated with (A.89) would ensure that this solution is the location of

the local maximum.

Let (m∗
0L,m

∗
1L,m

∗
2L) and (m∗

0H ,m∗
1H ,m∗

2H) be the location of the local maximum. Then

(A.115) and (A.114) imply that m∗
2H = V and m∗

1H = 0.

As for m∗
1L and m∗

2L, we have to rely on (A.110) and (A.111). First, we examine some

features of m1L and m2L. Note that 0 < e∗
1L =

αLm1L+α
3

L
m

2

2L

4k

2k
implies that

0 <
m1L +

α2

L
m2

2L

4k

2k
<
m1L +

α2

H
m2

2L

4k

2k
(A.116)

which leads to

α2

L

⎛
⎜
⎝

m1L +
α2

L
m2

2L

4k

2k

⎞
⎟
⎠
− α2

H

⎛
⎜
⎝

m1L +
α2

H
m2

2L

4k

2k

⎞
⎟
⎠
< 0 (A.117)

namely,

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL −

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
αH < 0 (A.118)

From (A.118) and (A.110), we can see that

α2

Lm2L

2k
(V −m2L) −m1L > 0 (A.119)

On the other hand, if we multiply (A.110) by α2

L
2m2L

4k
, then it becomes

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
−
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
αHα2

L

2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (A.120)

Subtracting (A.120) from (A.111), we have

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α

3

L
m

2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

m1L +
α

2

H
m

2

2L

4k

2k

⎞
⎟
⎠
(α2

Hα2

L − α4

H
)
2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.121)

Using (A.116) and the fact that m2L

4k
> 0, which results from the positivity of e∗

2L = αLm2L

4k
,

we obtain

V −m2L > 0 (A.122)

Combining this with the fact that m2L > 0, we have

0 <m2L < V (A.123)
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We will use (A.119) and (A.122) later to show that the redundancy of (A.92). Now we

want to find the expression of m1L in terms of m2L, when they satisfy both (A.110) and

(A.111). Note that (A.110) can be written as

λ
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L) + (1 − λ)(

α2

L − α2

H

2k
)m1L + (1 − λ)(

α4

L − α4

H

8k2
)m2

2L = 0

(A.124)

With the terms of m1L being collected on one side of the equal sign and the ones of m2L

on the other side, (A.124) becomes

λ
α4

L

4k2
m2L(V −m2L) + (1 − λ)(

α4

L − α4

H

8k2
)m2

2L = (λ
α2

L

2k
+ (1 − λ)(

α2

H − α2

L

2k
))m1L (A.125)

Therefore,

m1L =
λ

α4

L

4k2
m2L(V −m2L) + (1 − λ) (

α4

L
−α4

H

8k2
)m2

2L

λ
α2

L

2k
+ (1 − λ) (

α2

H
−α2

L

2k
)

(A.126)

Substituting (A.126) into (A.121), we obtain an equation involving only unknown vari-

able m2L, which can be solved.

Now we temporarily leave the discussion of solving for m1L andm2L, and turn to proving

that the solution set to the optimization problem consisting of (A.89), (A.93), and (A.94),

which we just discussed in the above, satisfies the constraint (A.92), namely, (A.92) is

redundant.

Note that for the optimization problem consisting of (A.89), (A.93), and (A.94), we

showed that both (A.93) and (A.94) are binding. This fact makes (A.92) equivalent to

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

−k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1H +
α3

L
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

−k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.127)

Substituting m2H = V and m1H = 0 into (A.127), we have

α6

HV 4

64k3
−
α6

LV
4

64k3
≥ k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.128)

which suggests that if we can show that the maximum of the function on the right side is

never bigger than the value on the left side, then we can prove (A.128).

Now we consider the following optimization problem:

max
m1L,m2L

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.129)
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subject to

α2

Lm2L

2k
(V −m2L) −m1L ≥ 0 (A.130)

0 ≤m2L (A.131)

0 ≤ V −m2L (A.132)

0 ≤
αLm1L +

α3

L
m2

2L

4k

2k
(A.133)

Note that when m1L and m2L satisfies (A.119) and (A.123), they also satisfy (A.130),

(A.131) and (A.132). When 0 < e∗
1L =

αLm1L+α
3

L
m

2

2L

4k

2k
, then e∗

1L also satisfies (A.133).

Let β1, β2, β3 and β4 be the Lagrangian multipliers of (A.130), (A.131), (A.132) and

(A.133). The Lagrangian function for the optimization problem consisting of (A.129),

(A.130), (A.131), (A.132) and (A.133) is

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

+ β1 (
α2

Lm2L

2k
(V −m2L) −m1L)

+β2m2L + β3(V −m2L) + β4
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

(A.134)

The first order conditions of the Lagrangian function (A.134) with respect to m1L and m2L

are

k ⋅ 2

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αH

2k
− k ⋅ 2

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αL

2k
− β1 + β4

αL

2k
= 0

(A.135)

k ⋅ 2

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

H
2m2L

4k

2k
− k ⋅ 2

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

L
2m2L

4k

2k

+β1
α2

L

2k
(V − 2m2L) + β2 − β3 + β4

α3

Lm2L

4k
= 0

(A.136)

If m1L and m2L as the solution of the optimal problem consisting of(A.129), (A.130),

(A.131), (A.132) and (A.133) satisfy

α2

Lm2L

2k
(V −m2L) −m1L > 0 (A.137)

0 <m2L (A.138)

0 < V −m2L (A.139)

0 <
αLm1L +

α3

L
m2

2L

4k

2k
(A.140)
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namely interior points, then β1 = β2 = β3 = β4 = 0 and (A.135) and (A.136) become

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αH −

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αL = 0 (A.141)

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

H

2m2L

4k
−

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

L

2m2L

4k
= 0 (A.142)

namely,

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αH =

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

αL (A.143)

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

H

2m2L

4k
=

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

α3

L

2m2L

4k
(A.144)

Dividing the both sides of (A.144) by the corresponding sides of (A.143), we have

α2

H

2m2L

4k
= α2

L

2m2L

4k
(A.145)

Since 0 < m2L, (A.145) implies that α2

H = α2

L, which can’t happen. Therefore, the optimal

solution m1L and m2L won’t satisfy all of (A.137), (A.138) and (A.139). Therefore, they

must be located at the boundaries. There are three possibilities:

1.
α2

L
m2L

2k
(V −m2L) −m1L = 0.

Thus m1L =
α2

L
m2L

2k
(V −m2L) and the objective function (A.129) becomes

k
α2

H

4k2
[
α2

Lm2L

2k
(V −m2L) + α2

H

m2

2L

4k
]

2

− k
α2

L

4k2
[
α2

Lm2L

2k
(V −m2L) + α2

L

m2

2L

4k
]

2

(A.146)

The derivative of (A.146) with respect to m2L is

k
α2

H

4k2
[
α2

Lm2L

2k
(V −m2L) + α2

H

m2

2L

4k
] ⋅ 2 [

α2

L

2k
(V − 2m2L) + α2

H

m2L

2k
]

− k
α2

L

4k2
[
α2

Lm2L

2k
(V −m2L) + α2

H

m2

2L

4k
] ⋅ 2 [

α2

L

2k
(V − 2m2L) + α2

L

m2L

2k
](A.147)

It is easy to see that when 0 ≤ m2L and 0 ≤ (V −m2L), (A.147) equals 0 for m2L = 0

and always greater than 0 for 0 < m2L ≤ V . When m2L = 0, m1L = 0. This leads to

(A.129) being 0.

2. m2L = 0. Thus the objective function (A.129) becomes

k[
αHm1L

2k
]
2

− k[
αLm1L

2k
]
2

= k [
α2

H − α2

L

4k2
]m2

1L (A.148)

Note that when m2L = 0, (A.130) implies that 0 ≤ m1L, while (A.133) gives m1L ≥ 0.

This means that m1L = 0, which leads to (A.148) being 0. Since 0 obviously can’t be

the maximum, this scenario can’t happen.
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3. m2L = V . It is easy to see that (A.130) implies that m1L ≤ 0, and (A.133) gives

m1L ≥ −α2

L
V 2

4k
. Under the condition of m2L = V , the objective function (A.129)

becomes

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
V 2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
V 2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.149)

The first order condition of (A.149) gives

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
V 2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

⋅ 2
αH

2k
− k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
V 2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

⋅ 2
αL

2k
(A.150)

namely,

(α2

H − α2

L)m1L + (α4

H − α4

L)
V 2

4k
= 0 (A.151)

which implies that m1L = −(α2

H + α2

L)
V 2

4k
. But this value does not satisfy −α2

H
V 2

4k
≤

m1L ≤ 0. Therefore, the maximum of the objective function (A.149) must be attained

at the endpoint m1L = 0 or m1L = −α2

H
V 2

4k
.

When m1L = 0, the objective function (A.149) achieves the value
α6

H
V 4

64k3
−

α6

L
V 4

64k3
.

When m1L = −α2

H
V 2

4k
, the objective function (A.149) has the value α2

H

(α2

H
−α2

L
)2V 4

64k3
.

To find which value is bigger, we use the following result:

α6

HV 4

64k3
−
α6

LV
4

64k3
− α2

H

(α2

H − α2

L)
2
V 4

64k3

= [(α2

H − α2

L) (α
4

H + α2

Hα2

L + α4

L)]
V 4

64k3
− [α2

H(α2

H − α2

L)
2
]

V 4

64k3

= [α4

H + α2

Hα2

L + α4

L − α2

H (α2

H − α2

L)] (α
2

H − α2

L)
V 4

64k3

= [2α2

Hα2

L + α4

L] (α
2

H − α2

L)
V 4

64k3

> 0 (A.152)

This shows that the value of the objective function (A.149) is bigger when m2L = V

and m1L = 0.

4.
αLm1L+α

3

L
V
2

4k

2k
= 0. The objective function equals

k

⎡
⎢
⎢
⎢
⎢
⎣

αH(α2

H − α2

L)
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.153)

which has the maximum α2

H

(α2

H
−α2

L
)2V 4

64k3
. As we showed above, this can’t be the

maximum of the objective function (A.129).
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To summarize, we find that the maximum of the optimization problem consisting of

(A.129), (A.130), (A.131), (A.132), and (A.133) is attained at m2L = V and m1L = 0, with

the value
α6

H
V 4

64k3
−

α6

L
V 4

64k3
. This shows that (A.128) holds for the solution set of the optimization

problem consisting (A.89), (A.93) and (A.94). Since (A.128) is equivalent to (A.92) when

(A.93) and (A.94) are binding, (A.92) holds for them the same solution set. This shows that

(A.92) is redundant to the optimization problem consisting of (A.89), (A.93) and (A.94).

Now we return to the discussion of solving for m1L and m2L which satisfy both (A.110)

and (A.111). As shown in (A.126), we already found the expression of m1L in term of m2L.

One thing worthy of mentioning is that we can easily show that m1L ≠ 0. The proof goes

as follows.

Suppose m1L = 0, then (A.110) and (A.111) become

λ [
α4

L

4k
m2L(V −m2L)] = (1 − λ) [

α4

Hm2

2L

8k2
−
α4

Lm
2

2L

8k2
] (A.154)

λ [
α6

Lm
2

2L

8k3
3

2
(V −m2L)] = (1 − λ)

(α6

H − α6

L)m
3

2L

16k3
(A.155)

Dividing both sides of (A.155) by the corresponding sides of (A.154), we obtain

α2

Lm2L

2k2
3

2
=
(α6

H − α6

L)m2L

2k2 (α4

H − α4

L
)

(A.156)

Using the fact that m2L > 0, (A.156) can be simplified to

α2

L

3

2
=
α6

H − α6

L

α4

H − α4

L

(A.157)

which clearly is not true. This results in a contradiction. Therefore m1L ≠ 0.

Next we will find the value of m2L, using the expression of m1L in terms of m2L.

For convenience, we introduce a new notation ρ and define it as 1−λ
λ
. Thus, (A.126) can

be written as

m1L =

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α4

H

8k2
)m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

(A.158)

In addition, (A.121) can be written as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ ρ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

m1L +
α2

H
m2

2L

4k

2k

⎞
⎟
⎠
(α2

Hα2

L − α4

H)
2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.159)



88

Using (A.158), we have

αLm1L +
α3

L
m2

2L

4k

2k

=
αL

2k
[m1L + α2

L

m2

2L

4k
]

=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α4

H

8k2
)m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

+ α2

L

m2

2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L + ρ
α2

L
(α2

H
−α2

L
)

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.160)

αHm1L +
α3

H
m2

2L

4k

2k

=
αH

2k
[m1L + α2

H

m2

2H

4k
]

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α4

H

8k2
)m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

+ α2

H

m2

2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α4

H

8k2
)m2

2L +
α2

L
α2

H

8k2
m2

2L + ρ
α2

H
(α2

H
−α2

L
)

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α2

H
α2

L

8k2
)m2

2L +
α2

L
α2

H

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.161)

and
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αL

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

(
α2

L

2k
(V −m2L))

=
α4

L

4k2
(V −m2L) [m1L + α2

L

m2

2L

4k
]

=
α4

L

4k2
(V −m2L)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
m2L

4k2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α8

L

4k2
(V −m2L)

2 + ρ(
α2

H
α6

L
−α4

L
α4

H

8k2
)m2L(V −m2L) +

α8

L

8k2
m2L(V −m2L)

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.162)

Therefore, by (A.161) and (A.162), we can write (A.159) as

m2L

4k2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α8

L

4k2
(V −m2L)

2 + ρ(
α2

H
α6

L
−α4

L
α4

H

8k2
)m2L(V −m2L) +

α8

L

8k2
m2L(V −m2L)

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ρ
m2L

4k2
(α4

H − α2

Hα2

L)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α2

H
α2

L

8k2
)m2

2L +
α2

L
α2

H

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.163)

Note that m2L > 0, because e∗
2L = αLm2L

2k
> 0. We can cancel a pair of m2L from both

sides of (A.163). Thus (A.163) is equivalent to

2α8

L(V −m2L)
2 + ρ (α2

Hα6

L − α4

Lα
4

H)m2L(V −m2L) + α8

Lm2L(V −m2L)

= ρ (α4

H − α2

Hα2

L) [2α
4

Lm2L(V −m2L) + ρ (α4

L − α2

Hα2

L)m
2

2L + α2

Lα
2

Hm2

2L] (A.164)

which is equivalent to the following quadratic equation in m2L:

Am2

2L +Bm2L +C = 0 (A.165)

with

A = 2α8

L − ρ (α2

Hα6

L − α4

Lα
4

H) − α8

L

+2ρα4

L (α4

H − α2

Hα2

L) − ρ2 (α4

H − α2

Hα2

L) (α
4

L − α2

Hα2

L) − ρα2

Lα
2

H (α4

H − α2

Hα2

L)

= α8

L + 3ρ (α4

Lα
4

H − α6

Lα
2

H) − ρ2 (2α4

Hα4

L − α6

Hα2

L − α6

Lα
2

H) − ρ (α6

Hα2

L − α4

Lα
4

H)

(A.166)

B = [−4α8

L + ρ (α2

Hα6

L − α4

Lα
4

H) + α8

L − 2ρ (α4

H − α2

Hα2

L)α
4

L]V

= [3ρ (α2

Hα6

L − α4

Lα
4

H) − 3α8

L]V (A.167)

C = 2α8

LV
2 (A.168)
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For convenience, we introduce a new notationX to denote αH

αL
, then (A.165) is equivalent

to the quadratic equation

Ãm2

2L + B̃m2L + C̃ = 0 (A.169)

with

Ã = 1 + 3ρ (X4 −X2) − ρ2 (2X4 −X6 −X2) − ρ (X6 −X4) (A.170)

B̃ = [3ρ (X2 −X4) − 3]V (A.171)

C̃ = 2V 2 (A.172)

The expression of the determinant

B̃2 − 4ÃC̃

= [3ρ (X2 −X4) − 3]
2
V 2

−4 [1 + 3ρ (X4 −X2) − ρ2 (2X4 −X6 −X2) − ρ (X6 −X4)] ⋅ 2V 2

= [9ρ2(X2 −X4)
2
− 18ρ (X2 −X4) + 9]V 2

−[8 + 24ρ (X4 −X2) − 8ρ2 (2X4 −X6 −X2) − 8ρ (X6 −X4)]V 2

= [9ρ2 (X4 − 2X6 +X8) − 18ρ (X2 −X4) + 9]V 2

−[8 + 24ρ (X4 −X2) − 8ρ2 (2X4 −X6 −X2) − 8ρ (X6 −X4)]V 2

= 1 ⋅ V 2 + ρ2 [25X4 − 26X6 + 9X8 − 8X2]V 2 + ρ [−14X4 + 6X2 + 8X6]V 2 (A.173)

Note that

25X4 − 26X6 + 9X8 − 8X2

= 25X4 − 25X6 −X6 +X8 + 8X8 − 8X2

= 25X4 (1 −X2) +X6 (X2 − 1) + 8X2 (X6 − 1)

= [−25X4 +X6] (X2 − 1) + 8X2 (X4 +X2 + 1) (X2 − 1)

= [−25X4 +X6 + 8X6 + 8X4 + 8X2] (X2 − 1)

= [9X6 − 17X4 + 8X2] (X2 − 1)

= [9X4 − 17X2 + 8]X2 (X2 − 1)

= [9X4 − 9X2 − 8X2 + 8]X2 (X2 − 1)

= [9X2 (X2 − 1) − 8 (X2 − 1)]X2 (X2 − 1)

= [9X2 − 8] (X2 − 1)X2 (X2 − 1) (A.174)

which is greater than 0, because X = αH

αL
> 1.



91

In addition

−14X4 + 6X2 + 8X6

= −6X4 + 6X2 − 8X4 + 8X6

= 6X2 (−X2 + 1) + 8X4 (X2 − 1)

= (8X4 − 6X2) (X2 − 1)

= (8X2 − 6)X2 (X2 − 1) (A.175)

which is also greater than 0, because X = αH

αL
> 1.

Therefore the determinant B̃2 − 4ÃC̃ is always greater than 0. This means that when

Ã ≠ 0, there always exist two real number roots for equation (A.169). The expressions of

these two roots are

m∗2L =
−B̃ +

√
B̃2 − 4ÃC̃

2Ã
(A.176)

and

m∗2L =
−B̃ −

√
B̃2 − 4ÃC̃

2Ã
(A.177)

It is clear that (A.176) is equivalent to

m∗2L =
−B̃ +

√
B̃2 − 4ÃC̃

2Ã
⋅
−B̃ −

√
B̃2 − 4ÃC̃

−B̃ −
√
B̃2 − 4ÃC̃

=
(−B̃)

2

− (B̃2 − 4ÃC̃)

2Ã(−B̃ −
√
B̃2 − 4ÃC̃)

=
4ÃC̃

2Ã(−B̃ −
√
B̃2 − 4ÃC̃)

=
2C̃

−B̃ −
√
B̃2 − 4ÃC̃

=
4V 2

−B̃ −
√
B̃2 − 4ÃC̃

(A.178)

Similarly, (A.177) is equivalent to

m∗2L =
−B̃ −

√
B̃2 − 4ÃC̃

2Ã
⋅
−B̃ +

√
B̃2 − 4ÃC̃

−B̃ +
√
B̃2 − 4ÃC̃

=
2C̃

−B̃ +
√
B̃2 − 4ÃC̃

=
4V 2

−B̃ +
√
B̃2 − 4ÃC̃

(A.179)
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Note that if Ã < 0, then −B̃ −
√
B̃2 − 4ÃC̃ < 0, as C > 0. Thus (A.178) is less than zero,

which means that such m∗
2L does not satisfy 0 <m2L < V , i.e., (A.123). On the other hand,

if Ã > 0, then −B̃ −
√
B̃2 − 4ÃC̃ > 0.

In the following, we will show that when (A.110) holds and Ã > 0, (A.178) does not

satisfy (A.158) and 0 < e∗
1L =

αLm1L+α
3

L
m

2

2L

4k

2k
at the same time.

The proof goes as follows.

From (A.160), we know that

αLm1L +
α3

L
m2

2L

4k

2k
=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.180)

which means that
αLm1L+α

3

L
m

2

2L

4k

2k
> 0 is equivalent to

α4

L

4k2
m2L(V −m2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

> 0 (A.181)

Multiplying (A.181) by 8k2

α4

L

(
α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)) and using the notation X for αH

αL
, we have

2m2L (V −m2L) + ρ (X2 −X4)m2

2L +m2

2L > 0 (A.182)

Dividing both sides of (A.182) by m2L which is > 0 and rearranging terms leads to

2V > (1 + ρ (X4 −X2))m2L (A.183)

namely,

m2L <
2V

1 + ρ (X4 −X2)
(A.184)

On the other hand, (A.174) gives

25X4 − 26X6 + 9X8 − 8X2

= [9X2 − 8] (X2 − 1)X2 (X2 − 1)

> X2 (X2 − 1)X2 (X2 − 1) (A.185)

and (A.175) results in

−14X4 + 6X2 + 8X6

= (8X2 − 6)X2 (X2 − 1)

> 2X2 (X2 − 1) (A.186)
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Therefore, by (A.172), we have

B̃2 − 4ÃC̃

= 1 ⋅ V 2 + ρ2 [25X4 − 26X6 + 9X8 − 8X2]V 2 + ρ [−14X4 + 6X2 + 8X6]V 2

> 1 ⋅ V 2 + ρ2X2 (X2 − 1)X2 (X2 − 1)V 2 + 2ρX2 (X2 − 1) (A.187)

which is equal to [1 + ρX2 (X2 − 1)]
2
V 2.

This shows that

−B̃ −
√
B̃2 − 4ÃC̃ < [3 + 3ρ (X4 −X2)]V − [1 + ρX2 (X2 − 1)]V

= [2 + 2ρ (X4 −X2)]V (A.188)

which means that when Ã > 0, (A.178) satisfies

4V 2

−B̃ −
√
B̃2 − 4ÃC̃

>
4V 2

[2 + 2ρ (X4 −X2)]V
=

2V

1 + ρ (X4 −X2)
(A.189)

This implies that the expression of m∗
2L given by (A.178) violates (A.184). Therefore the

root represented by (A.178) can be ruled out for consideration.

Next, we show that the expression of m∗
2L given by (A.179) satisfies (A.184). The proof

goes as follows.

Using (A.187), we have

−B̃ +
√
B̃2 − 4ÃC̃ > [3 + 3ρ (X4 −X2)]V + [1 + ρX2 (X2 − 1)]V

= [4 + 4ρ (X4 −X2)]V (A.190)

Thus

4V 2

−B̃ +
√
B̃2 − 4ÃC̃

<
4V 2

[4 + 4ρ (X4 −X2)]V
=

V

1 + ρ (X4 −X2)
(A.191)

This means that the expression of m∗
2L given by (A.179) satisfies (A.184), and m∗

2L < V .

On the other hand, it is clear that m2L of (A.179) is greater than 0, because both −B̃

and
√
B̃2 − 4ÃC̃ are greater than 0. Therefore, m2L of (A.179) is the root we want.

Up to now, we have discussed the roots of quadratic equation (A.169) of m2L when the

coefficient Ã ≠ 0. As for the degenerate case when Ã = 0, it is easy to see that

m∗2L = −
C̃

B̃
=

2V 2

[3 + 3ρ (X4 −X2)]V
<

V

1 + ρ (X4 −X2)
(A.192)

which means that 0 < m2L < V , and (A.184) is satisfied, namely, 0 < e∗
1L =

αLm1L+α
3

L
m

2

2L

4k

2k
is

satisfied. Therefore, m2L of (A.192) is the root we want when Ã = 0.
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It is clear that with Ã = 0, m∗
2L = 4V 2

−B̃+√B̃2−4ÃC̃
is the same asm∗

2L = − C̃

B̃
= 2V 2

[3+3ρ(X4−X2)]V .

Thus we can use the former as the unified expression without specifying whether Ã = 0 or

≠ 0.

In the following, we will show that when V ≤ 2k
αH

, m2L ≤ 2k
αH

, and m1L and m2L satisfy

(A.158), then

αHm1L +
α3

H
m2

2L

4k

2k
< 1, (A.193)

i.e., ẽ∗
1H < 1.

From (A.161) we know that

αHm1L +
α3

H
m2

2L

4k

2k
=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α2

H
α2

L

8k2
)m2

2L +
α2

L
α2

H

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.194)

where ρ(
α4

L
−α2

H
α2

L

8k2
) < 0 and m2L(V −m2L) ≤

V 2

4
. Thus

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L − α2

Hα2

L

8k2
)m2

2L +
α2

Lα
2

H

8k2
m2

2L

≤
α4

L

4k2
V 2

4
+
α2

Lα
2

H

8k2
m2

2L

≤
α4

L

4k2
4k2

4α2

H

+
α2

Lα
2

H

8k2
4k2

α2

H

=
α4

L

4α2

H

+
α2

L

2
(A.195)

It is clear that

αH [
α4

L

4α2

H

+
α2

L

2
] <

3

4
α2

L ≤
3

4
[α2

L + ρ (α2

H − α2

L)] (A.196)

Therefore

αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α4

L
−α2

H
α2

L

8k2
)m2

2L +
α2

L
α2

H

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<
3

4
< 1 (A.197)

which means that (A.193) holds. This result will be used later.
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In summary, by the above procedure, we have the location of the local interior maximum

as follows:

m∗2H = V

m∗1H = 0

m∗2L =
4V 2

−B̃ +
√
B̃2 − 4ÃC̃

m∗1L =

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α4

L
−α4

H

8k2
)m∗

2L
2

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

m∗0L = −k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

m∗0H = −k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1H +

α3

H
m∗

2H

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

+k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.198)

with

Ã = 1 + 3ρ (X4 −X2) − ρ2 (2X4 −X6 −X2) − ρ (X6 −X4)

B̃ = [3ρ (X2 −X4) − 3]V

C̃ = 2V 2

B̃2 − 4ÃC̃ = V 2 + ρ2 [25X4 − 26X6 + 9X8 − 8X2]V 2 + ρ [−14X4 + 6X2 + 8X6]V 2

αLm
∗

1L
+

α
3

L
m
∗

2L

2

4k

2k
=

αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
4

L

4k2m
∗

2L
(V −m∗

2L
) + ρ(

α
2

H
α

2

L
−α

4

H

8k2 )m∗
2L

2 +
α

4

L

8k2m
∗

2L

2

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

αHm∗
1L

+
α

3

H
m
∗

2L

2

4k

2k
=

αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
4

L

4k2m
∗

2L
(V −m∗

2L
) + ρ(

α
4

L
−α

2

H
α

2

L

8k2 )m∗
2L

2 +
α

2

L
α

2

H

8k2 m∗
2L

2

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.199)

where 25X4 − 26X6 + 9X8 − 8X2 > 0 and −14X4 + 6X2 + 8X6 > 0.

There are several observations about the above solution:

1. m∗
1L > 0 when αL < αH . The proof goes as follows:

It is clear that m∗
1L > 0 is equivalent to

α4

L

4k2
m∗2L(V −m∗2L) + ρ(

α4

L − α4

H

8k2
)m∗2L2

> 0 (A.200)

namely,

α4

L(V −m∗2L) + ρ(
α4

L − α4

H

2
)m∗2L > 0 (A.201)
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because m∗
2L > 0. (A.201) is equivalent to

α4

L > [α4

L + ρ(
α4

H − α4

L

2
)]m∗2L (A.202)

Using the expression of m∗
2L in (A.198), (A.202) is equivalent to

[−B̃ +
√
B̃2 − 4ÃC̃]α4

LV > [α4

L + ρ(
α4

H − α4

L

2
)] ⋅ 4V 2 (A.203)

which is equivalent to

[−B̃ +
√
B̃2 − 4ÃC̃] > [1 + ρ(

X4 − 1

2
)] ⋅ 4V (A.204)

Since

−B̃ +
√
B̃2 − 4ÃC̃ > [4 + 4ρ (X4 −X2)]V (A.205)

and

4 [α4

L + ρ(
α4

L − α4

H

2
)] < [4 + 2ρ (X4 − 1)] (A.206)

to show (A.203) holds, it is sufficient to show the following inequality holds:

[4 + 4ρ (X4 −X2)] > [4 + 2ρ (X4 − 1)] (A.207)

which is equivalent to X4 −2X2 +1 > 0, which is true when αL < αH . This shows that

m∗
1L > 0.

2. m∗
0H > −

α6

H
V 4

64k3
. This is because

m∗0H − [−
α6

HV 4

64k3
] = k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.208)

and

k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

> k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.209)

3. m∗
0L > −

α6

L
V 4

64k3
. The proof goes as follows.
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By (A.160), we have

αLm1L +
α3

L
m2

2L

4k

2k

=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m2

2L +
α4

L

8k2
m2

2L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<
αL

2k

⎡
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) +

α4

L

8k2
m2

2L

α2

L

2k

⎤
⎥
⎥
⎥
⎥
⎦

(A.210)

which has a unique maximum
α3

L
V 2

8k2
at m2L = V .

4. Using the fact that e∗
1L =

αLm
∗
1L
+α

3

L
m
∗
2L

2

4k

2k
, e∗

1H =
αHm∗

1H
+α

3

H
m
∗
2H

2

4k

2k
and ẽ∗

1H =
αHm∗

1L
+α

3

H
m
∗
2L

2

4k

2k
,

we have

m∗0L = −ke∗1L2

m∗0H = −ke∗1H2
− ke∗1L2

+ kẽ∗1H2

Expected Profit from the High-type Agent = (1 − λ)ΠH,P

= (1 − λ) (ke∗1H2
+ ke∗1L2

− kẽ∗1H2)

Expected Profit from the Low-type Agent = λΠL,P

= λ (2ρke∗1L2
− 2kρe∗1Lẽ∗1H + ke∗1L2

)

The High-type Agent’s Expected Profit = (1 − λ) (kẽ∗1H2 − ke∗1L2
) (A.211)

where e∗
1L, e

∗
1H and ẽ∗

1H are the first period efforts for the low-type agent, the high-type

agent and the high-type agent when pretending be the low-type, and ke∗
1L

2, ke∗
1H

2

and kẽ∗
1H

2 are the corresponding costs incurred.

Next we will show that this local maximal solution is actually the global maximal solution

when V ≤ 2k
αH

.

A.2.3 The global maximum when V ≤
2k
αH

One important observation we had from the procedure of solving the local maximization

problem in previous part is that the maximization problem consisting of (A.89) through

(A.95) can be written as

max(m0L,m1L,m2L)(m0H ,m1H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.212)
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where

ΠL,P = αL

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

[αL
αLm2L

2k
(V −m2L) −m1L] + k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.213)

ΠH,P = αH

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

[αH
αHm2H

2k
(V −m2H) −m1H] + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

+k

⎡
⎢
⎢
⎢
⎢
⎣

αLm1L +
α3

L
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1L +
α3

H
m2

2L

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

(A.214)

because constraints (A.93) and (A.94) are binding, while constraints (A.92) and (A.95) are

not binding.

We can rewrite λΠL,P + (1 − λ)ΠH,P as ΠL,P +ΠH,P , where

ΠL,P

= λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.215)

ΠH,P

= (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.216)

We can see that ΠL,P is a function of m1L and m2L and ΠH,P is a function of m1H and

m2H .

Thus the maximization problem consisting of (A.89) through (A.95) is equivalent to the

maximization problem

max(m1L,m2L)ΠL,P + max(m1H ,m2H)ΠH,P (A.217)

In fact, it is easy to check that the first order conditions of ΠL,P with respect tom1L andm2L

give (A.110) and (A.111), and the ones of ΠH,P with respect to m1H and m2H give (A.112)

and (A.113). In other words, we decompose the maximization problem consisting of (A.89)

through (A.95) into two separate maximization problems, with one about (m1L,m2L) and
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the other about (m1H ,m2H). We will apply the same procedure to the scenarios when

(m1L,m2L), (m1H ,m2H) belong to different regions. Notice that for these regions, the

expressions of ΠH,P and ΠL,P may take different forms.

First we look at ΠH,P . By taking into account of all possible expressions which m1H

and m2H can have, we will find the optimal payments of m1H and m2H to maximize ΠH,P

when V ≤ 2k
αH

.

There are four scenarios for consideration:

1. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1, i.e., e∗

2H ≤ 1 and e∗
1H ≤ 1. The Lagrangian

for the maximum of ΠH,P equals

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+ λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝
1 −

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

(A.219)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers.

The first order conditions of (A.218) with respect to m1H and m2H lead to

(1 − λ)
α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H) − λ2

αH

2k
= 0

(A.220)

(1 − λ) [α4

H

2m2H

8k2
(
α2

Hm2H

2k
(V −m2H) −m1H)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1 − λ2α
3

H

2m2H

4k2
= 0

(A.221)

Multiplying (A.220) by α2

H
2m2H

4k
and subtracting the product from (A.221) gives

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1 = 0 (A.222)

There are three cases for consideration:
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(a) When λ1 > 0, m2H = 2k
αH

. The Lagrangian for the maximum of ΠH,P equals

(1 − λ) [αH (
αHm1H + αHk

2k
)(αH (V −

2k

αH

) −m1H) + k(
αHm1H + αHk

2k
)
2

]

+λ̃1 (1 −
αHm1H + αHk

2k
) (A.223)

where λ̃1 ≥ 0 is a Lagrangian multiplier.

The first order condition of (A.223) with respect to m1H is

(1 − λ) [
α2

H

2k
(αH (V −

2k

αH

) −m1H)] − λ̃1

αH

2k
= 0 (A.224)

When λ̃1 = 0, m1H = αH (V − 2k
αH

). So ΠH,P equals

(1 − λ)k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

H (V − 2k
αH

) + αHk

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

= (1 − λ)k(
α2

HV − αHk

2k
)

2

(A.225)

Notice that
α2

H
(V − 2k

αH
)+αHk

2k
≤ 1.

When λ̃1 > 0, αHm1H+αHk
2k

= 1, namely m1H = 2k
αH

− k. Thus ΠH,P equals

(1 − λ) [αH (αH (V −
2k

αH

) + k −
2k

αH

)] = (1 − λ) (α2

HV − αHk − 2k) (A.226)

It is easy to see that (A.225) is greater than (A.226).

(b) When λ2 > 0,
αHm1H+α

3

H
m

2

2H

4k

2k
= 1 which implies that m1H = 2k

αH
−

α2

H
m2

2H

4k
. The

Lagrangian for the maximum of ΠH,P equals

(1 − λ) [αH (αH
αHm2H

2k
(V −m2H) −

2k

αH

+
α2

Hm2

2H

4k
) + k] + λ̃2 (

αH

2k
−m2H)

(A.227)

where λ̃2 ≥ 0 is a Lagrangian multiplier.

The first order condition of (A.227) gives

(1 − λ)
α3

H

2k
(V −m2H) − λ̃2 = 0 (A.228)

When λ̃2 > 0, m2H = αH

2k
, which means that

αHm1H+α
3

H
m

2

2H

4k

2k
= 1 is equivalent to

αHm1H+αHk
2k

= 1. Thus ΠH,P has the same value as in (A.226), which is less than

or equal to the value in (A.225).

When λ̃2 = 0, V =m2H . Thus ΠH,P equals

(1 − λ)(−k +
α3

HV 2

4k
) (A.229)

which is ≤ −k + αHk < 0, since V = m2H ≤ 2k
αH

. Thus (A.229) can’t be the local

maximum.
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(c) When λ1 = 0 and λ2 = 0, from (A.222) and (A.220), we have m2H = V and

m1H = 0. Since m2H ≤ 2k
αH

, V ≤ 2k
αH

. ΠH,P equals

(1 − λ)k
⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

= (1 − λ)
α6

HV 4

64k3
(A.230)

Notice that comparing (A.230) with (A.225), we have

(1 − λ)k
⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

≥ (1 − λ)k(
α2

HV − αHk

2k
)

2

(A.231)

where the equality holds only when V = 2k
αH

, because
α3

H
V 2

4k
≥ α2

HV − αHk.

2. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1, i.e., e∗

2H ≤ 1 and e∗
1H = 1. The Lagrangian

for the maximum of ΠH,P equals

(1 − λ) [αH ⋅ 1 ⋅ (αH
αHm2H

2k
(V −m2H) −m1H) + (−k + αHm1H +

α3

Hm2

2H

4k
)]

+λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k
− 1

⎞
⎟
⎠

(A.232)

The first order condition of (A.232) with respect to m1H and m2H are

λ2

αH

2k
= 0 (A.233)

(1 − λ) [
α3

H

2k
(V −m2H)] − λ1 + λ2α

3

H

m2H

4k2
= 0 (A.234)

where (A.233) gives λ2 = 0. Thus (A.234) becomes

(1 − λ) [
α3

H

2k
(V −m2H)] − λ1 = 0 (A.235)

When λ1 > 0, m2H = 2k
αH

. Thus (A.235) implies that V must be greater than 2k
αH

.

ΠH,P equals

(1 − λ) [αH ⋅ 1 ⋅ (αH (V −
2k

αH

) −m1H) + (−k + αHm1H + αHk)]

= α2

HV − αHk − k (A.236)

When λ1 = 0, m2H = V . Thus ΠH,P equals

(1 − λ)(−k +
α3

HV 2

4k
) (A.237)

which is less than or equal to −k + αHk < 0, because m2H ≤ 2k
αH

.
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3. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≤ 2k, i.e., e∗
2H = 1 and e∗

1H ≤ 1. The

Lagrangian for the maximum of ΠH,P is

(1 − λ) [αH (
αHm1H − αHk + α2

Hm2H

2k
)(αH(V −m2H) −m1H)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
αHm1H − αHk + α2

Hm2H

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (m2H −
2k

αH

) + λ2(2k − αHm1H + αHk − α2

Hm2H) (A.238)

The first order conditions of (A.238) with respect to m1H and m2H are

(1 − λ) [
α2

H

2k
(αH (V −m2H) −m1H)] − λ2αH = 0 (A.239)

(1 − λ) [
α3

H

2k
(αH (V −m2H) −m1H)] + λ1 − λ2α

2

H = 0 (A.240)

Multiplying (A.239) by αH and subtracting the product from (A.240) gives λ1 = 0.

When λ2 > 0, αHm1H − αHk + α2

Hm2H = 2k, namely, αHm2H +m1H = 2k
αH

+ k. Then

ΠH,P becomes

αH (αHV −
2k

αH

− k) + k = α2

HV − αHk − k (A.241)

When λ2 = 0, (A.239) implies that αH(V −m2H)−m1H = 0, which means that αHm2H+

m1H = αHV . ΠH,P equals

(1 − λ)k(
α2

HV − αHk

2k
)

2

(A.242)

which is greater than or equal to (1 − λ) (α2

HV − αHk − k), with the equality holding

when α2

HV − αHk = 2k. Notice that the constraint αHm1H − αHk + α2

Hm2H ≤ 2k

implies that α2

HV − αHk ≤ 2k, because αHm2H + m1H = αHV . Therefore, when

α2

HV − αHk ≤ 2k,

(1 − λ)k(
α2

HV − αHk

2k
)

2

≥ (1 − λ) (α2

HV − αHk − k) (A.243)

where the equality holds only when α2

HV − αHk = 2k.

4. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≥ 2k, i.e., e∗
2H = 1 and e∗

1H = 1. The

Lagrangian for the maximum of ΠH,P equals

(1 − λ) [αH (αH(V −m2H) −m1H) + (−k + αHm1H − αHk + α2

Hm2H)]

+λ1 (m2H −
2k

αH

) + λ2 (αHm1H − αHk + α2

Hm2H − 2k) (A.244)
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It is easy to see that the first order conditions of (A.244) give λ1 = 0 and λ2 = 0.

Notice that ΠH,P equals

(1 − λ) [αH (αH(V −m2H) −m1H) + (−k + αHm1H − αHk + α2

Hm2H)]

= (1 − λ) (α2

HV − αHk − k) (A.245)

One thing we would like to point out is that using the similar argument in the proof of

Theorem 1, we can show that the expressions of the principal’s expected profit in all cases

above are bounded and thereby have local maximum. The uniqueness of the solution of the

first order conditions in each case would ensure that the solution is the location of the local

maximum.

In summary, the optimal money transfers provided by the principal to the high-type

agent and the principal’s expected profit are

1. When V ≤ 2k
αH

, m∗
2H = V , m∗

1H = 0 and ΠH,P equals

(1 − λ)k
⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

(A.246)

2. When V ≥ 2k
αH

and α2

HV − αHk ≤ 2k, m∗
2H ≥ 2k

αH
and αHm∗

2H +m∗
1H = αHV . ΠH,P

equals

(1 − λ)k(
α2

HV − αHk

2k
)

2

(A.247)

3. When V ≥ 2k
αH

and α2

HV − αHk ≥ 2k, m∗
2H ≥ 2k

αH
and αHm∗

1H − αHk + α2

Hm∗
2H ≥ 2k.

ΠH,P equals

(1 − λ)(α2

HV − αHk − k) (A.248)

In the following, we look at the maximum of ΠL,P . There are three scenarios and each

scenario with several cases for consideration:

1. When m2L ≤ 2k
αH

, i.e., effort ẽ∗
2H ≤ 1, there are three cases:
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(a)
αHm1L+α

3

H
m

2

2L

4k

2k
≤ 1, which means that effort ẽ∗

2H ≤ 1. The Lagrangian for the

maximum of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ λ1 (
2k

αH

−m2L)

+λ2

⎛
⎜
⎝
1 −

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

(A.249)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers. Notice that
αLm1L+α

3

L
m

2

2L

4k

2k
≤

1, because
αLm1L+α

3

L
m

2

2L

4k

2k
≤

αHm1L+α
3

H
m

2

2L

4k

2k
. Thus there is no need to consider the

situation when
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 1.

In fact, the second constraint
αHm1L+α

3

H
m

2

2L

4k

2k
≤ 1 is redundant when m2L ≤ 2k

αH

and V ≤ 2k
αH

. This was proved in (A.193) through (A.197).

(b)
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 1 and

αLm1L+α
3

L
m

2

2L

4k

2k
≤ 1, which mean that efforts ẽ∗

1H = 1 and

e∗
1L ≤ 1. Notice that when m2L < 2k

αH
and

αHm1L+α
3

H
m

2

2L

4k

2k
≥ 1, ẽ∗

2H = αHm2L

2k
< 1

and ẽ∗
1H = 1. Therefore, when pretending to be the low-type one, the high-type

agent has the expected profit

m0L − k + αHm1L − αLkẽ
∗
2H

2 + α2

H ẽ∗2Hm2L (A.250)

which has the maximum occurring at ẽ∗
2H = αHm2L

2k
and the optimal expected

profit is

m0L − k + αHm1L −
α3

Hm2

2

4k
+
α3

Hm2

2L

2k
=m0L − k + αHm1L +

α3

Hm2

2L

4k
(A.251)

The Lagrangian for the maximum of ΠL,P is
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λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− (−k + αHm1L +
α3

Hm2

2L

4k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ λ1 (
2k

αH

−m2L)

+λ2

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k
− 1

⎞
⎟
⎠
+ λ3

⎛
⎜
⎝
1 −

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

(A.252)

where λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0, are Lagrangian multipliers.

(c)
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 1 and

αLm1L+α
3

L
m

2

2L

4k

2k
≥ 1, which mean that efforts ẽ∗

1H = 1 and

e∗
1L = 1. As we pointed out in previous case, when pretending to be the low-type

one, the high-type agent has the optimal expected profit m0L−k+αHm1L+
α3

H
m2

2

4k
.

Similarly, the low-type agent has the optimal expected profit m0L − k +αLm1L +

α3

L
m2

2

4k
. Notice that constraint

αHm1L+α
3

H
m

2

2L

4k

2k
≥ 1 becomes redundant, because

αLm1L+α
3

L
m

2

2L

4k

2k
≤

αHm1L+α
3

H
m

2

2L

4k

2k
. The Lagrangian for the maximum of ΠL,P is

λ [αL ⋅ 1 ⋅ (αL
αLm2L

2k
(V −m2L) −m1L) + (−k + αLm1L +

α3

Lm
2

2L

4k
)]

+(1 − λ) [(−k + αLm1L +
α3

Lm
2

2L

4k
) − (−k + αHm1L +

α3

Hm2

2

4k
)]

+λ1 (
2k

αH

−m2L) + λ2

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k
− 1

⎞
⎟
⎠

(A.253)

where λ1 ≥ 0, and λ2 ≥ 0 are Lagrangian multipliers.

2. When 2k
αH

≤ m2L ≤ 2k
αL

, i.e., effort ẽ∗
2H = 1 and effort e∗

2L ≤ 1, there are four following

cases. Notice that when ẽ∗
2H = 1, pretending to be the low one, the high-type agent

has expected profit:

m0L − kẽ∗1H2 + αH ẽ∗1Hm1L − αH ẽ∗1H + α2

Hm2L (A.254)

with the optimal location at ẽ∗
1H =

αHm1L−αHk+α2

H
m2L

2k
and the optimal expected profit

kẽ∗
1H

2 = k(
αHm1L−αHk+α2

H
m2L

2k
)
2

.
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(a) αHm1L − αHk + α2

Hm2L ≤ 2k, and
αLm1L+α

3

L
m

2

2L

4k

2k
≤ 1, which means ẽ∗

1H ≤ 1 and

e∗
1L ≤ 1. the Lagrangian for the maximum of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− k(
αHm1L − αHk + α2

Hm2L

2k
)

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 (m2L −
2k

αH

) + λ2 (
2k

αL

−m2L) + λ3 (2k − αHm1L + αHk − α2

Hm2L)

+λ4

⎛
⎜
⎝
1 −

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

(A.255)

where λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 and λ4 ≥ 0 are Lagrangian multipliers.

(b) αHm1L − αHk + α2

Hm2L ≤ 2k, and
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 1, which means ẽ∗

1H ≤ 1 and

e∗
1L = 1. As we pointed out previously,

αLm1L+α
3

L
m

2

2L

4k

2k
≥ 1 implies that the low-type

agent has the optimal expected profit m0L − k +αLm1L +
α3

L
m2

2

4k
. The Lagrangian

for the maximum of ΠL,P is

λ [αL ⋅ 1 ⋅ (αL
αLm2L

2k
(V −m2L) −m1L) + (−k + αLm1L +

α3

Lm
2

2L

4k
)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

(−k + αLm1L +
α3

Lm
2

2L

4k
) − k(

αHm1L − αHk + α2

Hm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (m2L −
2k

αH

) + λ2 (
2k

αL

−m2L) + λ3 (2k − αHm1L + αHk − α2

Hm2L)

+λ4

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k
− 1

⎞
⎟
⎠

(A.256)

where λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 and λ4 ≥ 0 are Lagrangian multipliers.

(c) αHm1L − αHk + α2

Hm2L ≥ 2k, and
αLm1L+α

3

L
m

2

2L

4k

2k
≤ 1, which means ẽ∗

1H = 1 and

e∗
1L ≤ 1. Notice that the high-type agent’s expected profit when pretending to be

the low-type is m0L − k + αHm1L − αHk + α2

Hm2L, because ẽ∗
1H = 1 and ẽ∗

2H = 1.

The Lagrangian for the maximum of ΠL,P is
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λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− (−k + αHm1L − αHk + α2

Hm2L)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 (m2L −
2k

αH

) + λ2 (
2k

αL

−m2L) + λ3 (αHm1L − αHk + α2

Hm2L − 2k)

+λ4

⎛
⎜
⎝
1 −

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

(A.257)

where λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 and λ4 ≥ 0 are Lagrangian multipliers.

(d) αHm1L − αHk + α2

Hm2L ≥ 2k, and
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 1, which means ẽ∗

1H = 1 and

e∗
1L = 1. As we pointed out previously,the high-type agent’s expected profit

when pretending to be the low-type is m0L − k + αHm1L − αHk + α2

Hm2L, and

αLm1L+α
3

L
m

2

2L

4k

2k
≥ 1 implies that the low-type agent has the optimal expected profit

m0L − k + αLm1L +
α3

L
m2

2

4k
. The Lagrangian for the maximum of ΠL,P is

λ [αL ⋅ 1 ⋅ (αL
αLm2L

2k
(V −m2L) −m1L) + (−k + αLm1L +

α3

Lm
2

2L

4k
)]

+(1 − λ) [(−k + αLm1L +
α3

Lm
2

2L

4k
) − (−k + αHm1L − αHk + α2

Hm2L)]

+λ1 (m2L −
2k

αH

) + λ2 (
2k

αL

−m2L) + λ3 (αHm1L − αHk + α2

Hm2L − 2k)

+λ4

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k
− 1

⎞
⎟
⎠

(A.258)

where λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 and λ4 ≥ 0 are Lagrangian multipliers.

3. When m2L ≥ 2k
αL

, m2L ≥ 2k
αH

. This means that ẽ∗
2H = 1 and e∗

2L = 1. Similar to

what we discussed before, ẽ∗
1H =

αHm1L−αHk+α2

H
m2L

2k
if

αHm1L−αHk+α2

H
m2L

2k
≤ 1, i.e.,

αHm1L − αHk + α2

Hm2L ≤ 2k, otherwise ẽ∗
1H = 1, and e∗

1L =
αLm1L−αLk+α2

L
m2L

2k
if

αLm1L−αLk+α2

H
m2L

2k
≤ 1, i.e., αHm1L−αHk+α2

Hm2L ≥ 2k , otherwise e∗
1L = 1. There are

three cases.



108

(a) αHm1L − αHk + α2

Hm2L ≤ 2k. Notice that αHm1L − αHk + α2

Hm2L ≤ 2k implies

αLm1L −αLk+α
2

Lm2L ≤ 2k, because 0 ≤ αLm1L −αLk+α
2

Lm2L ≤ αHm1L −αHk+

α2

Hm2L. The Lagrangian for the maximum of ΠL,P is

λ [αL (
αLm1L − αLk + α2

Lm2L

2k
)(αL(V −m2L) −m1L)]

+λ

⎡
⎢
⎢
⎢
⎢
⎣

k(
αLm1L − αLk + α2

Lm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
αLm1L − αLk + α2

Lm2L

2k
)

2

− k(
αHm1L − αHk + α2

Hm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αL

−m2L) + λ2 (2k − αHm1L + αHk − α2

Hm2L) (A.259)

where λ1 ≥ 0, and λ2 ≥ 0 are Lagrangian multipliers.

(b) αHm1L −αHk +α2

Hm2L ≥ 2k, but αLm1L −αLk +α2

Lm2L ≤ 2k. As we mentioned

earlier, when αHm1L −αHk +α2

Hm2L ≥ 2k, the high-type agent’s expected profit

when pretending to be the low-type one is m0L−k+αHm1L−αHk+α2

Hm2L. The

Lagrangian for the maximum of ΠL,P is

λ [αL (
αLm1L − αLk + α2

Lm2L

2k
)(αL(V −m2L) −m1L)]

+λ

⎡
⎢
⎢
⎢
⎢
⎣

k(
αLm1L − αLk + α2

Lm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
αLm1L − αLk + α2

Lm2L

2k
)

2

− (−k + αHm1L − αHk + α2

Hm2L)

⎤
⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αL

−m2L) + λ2 (2k − αLm1L + αLk − α2

Lm2L)

+λ3 (αHm1L − αHk + α2

Hm2L − 2k) (A.260)

where λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 are Lagrangian multipliers.

(c) When m2L ≥ 2k
αL

and αLm1L − αLk + α2

Lm2L ≥ 2k. Notice that αLm1L − αLk +

α2

Lm2L ≥ 2k implies αHm1L − αHk + α2

Hm2L ≥ 2k, because 0 ≤ αLm1L − αLk +

α2

Lm2L ≤ αHm1L − αHk + α2

Hm2L. The Lagrangian for the maximum of ΠL,P is

λ [αL (αL(V −m2L) −m1L) + (−k + αLm1L − αLk + α2

Lm2L)]

+(1 − λ) [(−k + αLm1L − αLk + α2

Lm2L) − (−k + αHm1L − αHk + α2

Hm2L)]

+λ1 (m2L −
2k

αL

) + λ2 (αLm1L − αLk + α2

Lm2L − 2k) (A.261)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.
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One thing worthy of mentioning is that using the similar argument in the proof of

Theorem 1, we can show that the expressions of the principal’s expected profit in all cases

above are bounded and thereby have local maximum. The uniqueness of the solution of the

first order conditions in each case would ensure that the solution is the location of the local

maximum.

Next we examine each scenario with their cases in detail.

1. For the first scenario, we don’t need to add constraints m2L ≥ 0,
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 0,

and
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 0. The reason is the following:

When m2L = 0,

ΠL,P in the first case becomes

λ [
α2

Lm1L

2k
(−m1L) + k

α2

Lm
2

1L

4k2
] + (1 − λ)(

α2

Lm
2

1L

4k
−
α2

Lm
2

1L

4k
)

= −λ
α2

Lm
2

1L

4k
+ (1 − λ) (α2

L − α2

H)
m2

1L

4k

≤ 0 (A.262)

ΠL,P in the second case becomes

λ [
α2

Lm1L

2k
(−m1L) + k

α2

Lm
2

1L

4k2
] + (1 − λ)(

α2

Lm
2

1L

4k
− (−k + αHm1L))

≤ −λ
α2

Lm
2

1L

4k

≤ 0 (A.263)

because
αHm1L+α

3

H
m

2

2L

4k

2k
= 1,

αLm1L+α
3

L
m

2

2L

4k

2k
≤ 1 andm2L lead tom1L ≤ 2k

αL
andm1L ≥ 2k

αH
,

which gives
α2

L
m2

1L

4k
− (−k + αHm1L) ≤ k − k = 0.

ΠL,P in the third case becomes

(1 − λ)(αL − αH)m1L < 0 (A.264)

because
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 1 implies m1L ≥ 2k

αH
> 0.

When
αHm1L+α

3

H
m

2

2L

4k

2k
= 0,
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In the first case,
αLm1L+α

3

L
m

2

2L

4k

2k
= 0, because 0 ≤

αLm1L+α
3

L
m

2

2L

4k

2k
≤

αHm1L+α
3

H
m

2

2L

4k

2k
.

Therefore, ΠL,P becomes

−(1 − λ)k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

≤ 0 (A.265)

As to the second and third cases, since
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 1, they can’t happen.

When
αLm1L+α

3

L
m

2

2L

4k

2k
= 0,

ΠL,P in the first case has the same expression as (A.265).

ΠL,P in the second case becomes

−(1 − λ)(−k + αHm1L +
α3

Hm2

2

4k
) ≤ 0 (A.266)

because −k + αHm1L +
α3

H
m2

2

4k
≥ 0.

As to the third case, since
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 1, it can’t happen.

On the other hand, we can show that for any V > 0, the global maximum of ΠL,P is

greater than zero. The proof as follows:

Fixing m1L = 0, ΠL,P in the first case becomes

λ [
α4

Lm
2

2L

8k2
α2

Lm2L

2k
(V −m2L) + k

α4

Lm
4

2L

64k4
] + (1 − λ)k

(α6

L − α6

H)m4

2L

64k4

=
m3

2L

16k3

⎡
⎢
⎢
⎢
⎣
λα6

L(V −m2L) + λk
α4

Lm2L

4k
+ (1 − λ)k

(α6

L − α6

H)m2L

4k

⎤
⎥
⎥
⎥
⎦

(A.267)

It is easy to see that for any V > 0, we can find a small positive m2L such that (A.267)

is greater than zero. Thus the maximum of ΠL,P in the first case of the first scenario

is greater than zero, which means that the global maximum of ΠL,P is greater than

zero.

Now we investigate each of the three cases in the first scenario.
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(a) For the first case, first we ignore the term λ2

⎛

⎝
1 −

αHm1L+α
3

H
m

2

2L

4k

2k

⎞

⎠
in the La-

grangian for the maximum of ΠL,P (see (A.249)). The corresponding first order

conditions with respect to m1L and m2L give

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL −

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.268)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
−
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠
α3

H

2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(A.269)

Multiplying (A.268) by α2

L
2m2L

4k
, and subtracting this product from (A.269) gives

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

m1L +
α2

H
m2

2L

4k

2k

⎞
⎟
⎠
(α2

Hα2

L − α4

H)
2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1α
2

L

2m2L

4k
= 0

(A.270)

This means that when V ≤ 2k
αH

, m2L = 2k
αH

can’t be the solution of (A.270),

because otherwise the left side of (A.270) would be negative instead of zero.

This shows that when V ≤ 2k
αH

, the maximum occurs when m2L < 2k
αH

, i.e.,

interior solution.

Notice that in (A.193) through (A.197), we proved that when V ≤ 2k
αH

and

m2L ≤ 2k
αH

αHm1L+α
3

H
m

2

2L

4k

2k
< 1. This shows that the term λ2

⎛

⎝
1 −

αHm1L+α
3

H
m

2

2L

4k

2k

⎞

⎠

in (A.249) is redundant. Notice that (A.179) and (A.192) imply that at the

location of the maximum, m2L is an increasing function of V .
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(b) For the second case, the first order conditions of the Lagrangian for the maximum

of ΠL,P (see (A.252)) with respect to m1L and m2L give

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL − αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ λ2

αH

2k
− λ3

αL

2k
= 0

(A.271)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
− α3

H

2m2L

4k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−λ1 + λ2

α3

H
2m2L

4k

2k
− λ3

α3

L
2m2L

4k

2k
= 0

(A.272)

Multiplying (A.271) by α2

L
2m2L

4k
, and subtracting this product from (A.272) gives

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ) [(αHα2

L − α3

H)
2m2L

4k
] − λ1 + λ2 (α

3

H − α2

LαH)
m2

2L

4k2
= 0

(A.273)

When
αHm1L+α

3

H
m

2

2L

4k

2k
= 1, it implies that

−k + αHm1L +
α3

Hm2

2L

4k
= k = k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

Thus ΠL,P in this case has the same expression as the one in the first case. In

other words, the situation goes back to the first case.

When
αHm1L+α

3

H
m

2

2L

4k

2k
> 1, λ2 = 0. Under this condition and λ2 = 0, (A.271)

becomes

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL − αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ3

αL

2k
= 0 (A.274)
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Since
αLm1L+α

3

L
m

2

2L

4k

2k
< 1 and λ3 ≥ 0, we have

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL −

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0 (A.275)

which leads to

m1L ≤

α4

L

4k2
m2L(V −m2L) + ρ

α3

L
m2

2L

8k2
(αL − αH)

α2

L

2k
+ ρ

αL(αH−αL)
2k

(A.276)

where ρ = 1−λ
λ
. Thus

αHm1L +
α3

H
m2

2L

4k

2k

≤
αH

2k

⎡
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ

α3

L
m2

2L

8k2
(αL − αH)

α2

L

2k
+ ρ

αL(αH−αL)
2k

+
α2

Hm2

2L

4k

⎤
⎥
⎥
⎥
⎥
⎦

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) + ρ

α3

L
(αL−αH)m2

2L

8k2
+

α2

H
α2

L
m2

2L

8k2
+ ρ

αLα
2

H
(αH−αL)m2

2L

8k2

α2

L

2k
+ ρ

αL(αH−αL)
2k

⎤
⎥
⎥
⎥
⎥
⎦

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m2L(V −m2L) +

α2

H
α2

L
m2

2L

8k2
+ ρ
(αLα

2

H
−α3

L
)(αH−αL)m2

2L

8k2

α2

L

2k
+ ρ

αL(αH−αL)
2k

⎤
⎥
⎥
⎥
⎥
⎦

(A.277)

Notice that when V ≤ 2k
αH

and m2L ≤ 2k
αH

,

α4

L

4k2
m2L(V −m2L) +

α2

Hα2

Lm
2

2L

8k2

≤
α4

L

4k2
V 2

4
+
α2

Hα2

Lm
2

2L

8k2

<
α4

L

4k2
(
2k

αH

)
2 1

4
+
α2

Hα2

L(
2k
αH

)
2

8k2

= (
αL

αH

)
4 1

4
+
α2

L

2

< α2

L (A.278)

and

ρ
(αLα

2

H − α3

L)(αH − αL)m
2

2L

8k2

≤ ρ(αLα
2

H − α3

L)(αH − αL)
4k2

α2

H

1

8k2

≤ ρ
1

α2

H

(αLα
2

H − α3

L)(αH − αL)
1

2

< ραL(αH − αL) (A.279)
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Therefore (A.277) is less than αH , which is less than 1. This means that

αHm1L+α
3

H
m

2

2L

4k

2k
< 1, which contradicts the assumption that

αHm1L+α
3

H
m

2

2L

4k

2k
> 1.

Thus, this situation is ruled out.

(c) For the third case, the first order condition of the Lagrangian of the maximum

of ΠL,P with respect to m1L gives

(1 − λ)(αL − αH) + λ2

αL

2k
= 0 (A.280)

This shows that λ2 > 0, which means that
αLm1L+α

3

L
m

2

2L

4k

2k
= 1, which means that

−k+αLm1L+
α3

L
m2

2L

4k
= k = k

⎛

⎝

αLm1L+α
3

L
m

2

2L

4k

2k

⎞

⎠

2

. The situation belongs to the second

case.

2. For the second scenario,
αLm1L+α

3

L
m

2

2L

4k

2k
can’t be zero in the first case, because otherwise

ΠL,P becomes

−(1 − λ)k(
αHm1L − αHk + α2

Hm2L

2k
)

2

≤ 0 (A.281)

In the third case,
αLm1L+α

3

L
m

2

2L

4k

2k
can’t be zero, because otherwise ΠL,P becomes

−(1 − λ) (−k + αHm1L − αHk + α2

Hm2L) ≤ 0 (A.282)

In the first and second cases, αHm1L−αHk+α2

Hm2L can’t be zero, because if αHm1L−

αHk + α2

Hm2L = 0, then m2L = k − αHm2L. Therefore

αLm1L +
α3

L
m2

2L

4k

2k
=
αL(k − αHm2L) +

α3

L
m2

2L

4k

2k
≤
αL (k − αH

2k
αH

) +
α3

L
( 2k

αL
)2

4k

2k
≤ 0

(A.283)

which causes ΠL,P ≤ 0 in the first case.

Notice that we already showed that for any V > 0, the global maximum of ΠL,P is

greater than zero.

Next we investigate the four cases in the second scenario.
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(a) For the first case, the first order conditions of (A.255) with respect to m1L and

m2L give

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL − (

αHm1L − αHk + α2

Hm2L

2k
)αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−λ3αH − λ4

αL

2k
= 0

(A.284)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
− (

αHm1L − αHk + α2

Hm2L

2k
)α2

H

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 − λ2 − λ3α
2

H − λ4

α3

Lm2L

4k2
= 0

(A.285)

Multiplying (A.284) by α2

L
2m2L

4k
, and subtracting this product from (A.285) gives

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ) [(
αHm1L − αHk + α2

Hm2L

2k
)(αHα2

L

2m2L

4k
− α2

H)]

+λ1 − λ2 − λ3 (α
2

H − αHα2

L

2m2L

4k
) = 0

(A.286)

where αHα2

L
2m2L

4k
− α2

H < 0, and α2

H − αHα2

L
2m2L

4k
> 0, because m2L ≤ 2k

αL
. When

V < 2k
αH

, V −m2L < 0, because m2L ≥ 2k
αH

. Thus, we must have λ1 > 0 for V < 2k
αH

,

which means that m2L = 2k
αH

is the location of the maximum of ΠL,P . When

V = 2k
αH

, if m2L > 2k
αH

, we also have λ1 > 0 for V < 2k
αH

, which implies m2L = 2k
αH

is still the location of the maximum of ΠL,P . Notice that when m2L = 2k
αH

,

αHm1L−αHk+α2

H
m2L

2k
=

αHm1L+α
3

H
m

2

2L

4k

2k
, which means that this situation belongs to

the first case of the first scenario.
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(b) For the second case, the first order condition of (A.256) with respect to m1L

gives

(1 − λ) (αL − αH) − λ3αH + λ4

αL

2k
= 0 (A.287)

This means that λ4 > 0.

When λ4 > 0,
αLm1L+α

3

L
m

2

2L

4k

2k
= 1, which means that −k + αLm1L +

α3

L
m2

2L

4k
= k =

k(αLm1L +
α3

L
m2

2L

4k
)
2

. Thus, the situation goes to the first case of the second

scenario.

(c) For the third case, the first order conditions of (A.257) with respect to m1L and

m2L give

λ [
α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)]

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
αL − αH

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ3αH − λ4

αL

2k
= 0

(A.288)

λ
⎡
⎢
⎢
⎢
⎣

α4

L
2m2L

4k

2k
(
α2

Lm2L

2k
(V −m2L) −m1L)

⎤
⎥
⎥
⎥
⎦

+λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
α3

L

2m2L

4k
− α2

H

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ1 − λ2 + λ3α
2

H − λ4

α3

Lm2L

4k2
= 0

(A.289)

Multiplying (A.288) by α2

L
2m2L

4k
, and subtracting this product from (A.289) gives

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ (1 − λ) [αHα2

L

2m2L

4k
− α2

H]

+λ1 − λ2 + λ3 (α
2

H − αHα2

L

2m2L

4k
) = 0

(A.290)

where αHα2

L
2m2L

4k
− α2

H < 0, and α2

H − αHα2

L
2m2L

4k
> 0, because m2L ≤ 2k

αL
. When

V ≤ 2k
αH

, V −m2L < 0, because m2L ≥ 2k
αH

. Thus, we must have λ1 > 0 or λ3 > 0
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for V ≤ 2k
αH

. Notice that λ1 > 0 means that m2L = 2k
αH

which implies that −k +

αHm1L−αHk+α2

Hm2L = −k+αHm1L+
α3

H
m2

2L

4k
. Thus αHm1L−αHk+α2

Hm2L ≥ 2k

implies
αHm1L+α

3

H
m

2

2L

4k

2k
≥ 1. The situation goes back to the second case of the first

scenario. λ3 > 0 means that −k+αHm1L−αHk+α2

Hm2L = k(
αHm1L−αHk+α2

H
m2L

2k
)
2

.

The situation goes to the first case of the second scenario.

(d) For the fourth case, the first order conditions of (A.258) with respect to m1L and

m2L give

(1 − λ)(αL − αH) + λ3αH + λ4

αL

2k
= 0

(A.291)

λ [
α3

L

2k
(V −m2L)] + (1 − λ)(

α3

Lm2L

2k
− α2

H) + λ1 − λ2 + λ3α
2

H + λ4

α3

Lm2L

4k2
= 0

(A.292)

From (A.291), we can see that either λ3 > 0 or λ4 > 0.

When λ3 > 0, αHm1L − αHk + α2

Hm2L = 2k, which implies that −k + αHm1L −

αHk + α2

Hm2L = k = k(
αHm1L−αHk+α2

H
m2L

2k
)
2

. The situation goes to the second

case of the second scenario.

When λ4 > 0,
αLm1L+α

3

L
m

2

2L

4k

2k
= 1. This belongs to the third case of the second

scenario.

3. For the third scenario, αHm1L −αHk +α2

Hm2L can’t be zero in the first case, because

otherwise αLm1L − αLk + α2

Lm2L = 0, which would lead to ΠL,P = 0. Here we use the

fact that 0 ≤ αLm1L − αLk + α2

Lm2L ≤ αHm1L − αHk + α2

Hm2L .

In the second case, αLm1L − αLk + α2

Lm2L can’t be zero, because otherwise ΠL,P

becomes

−(1 − λ)(−k + αHm1L − αHk + αHm2L) ≤ 0 (A.293)

Notice that we already showed that for any V > 0, the global maximum of ΠL,P is

greater than zero.

Next we investigate the three cases in the third scenario.
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(a) For the first case, the first order conditions of (A.259) with respect to m1L and

m2L are

λ [
α2

L

2k
(αL(V −m2L) −m1L)]

+(1 − λ) [(
αLm1L − αLk + α2

Lm2L

2k
)αL − (

αHm1L − αHk + α2

Hm2L

2k
)αH]

−λ2αH = 0

(A.294)

λ [
α3

L

2k
(αL(V −m2L) −m1L)]

+(1 − λ) [(
αLm1L − αLk + α2

Lm2L

2k
)α2

L − (
αHm1L − αHk + α2

Hm2L

2k
)α2

H]

+λ1 − λ2α
2

H = 0

(A.295)

Multiplying (A.294) by αL, and subtracting this product from (A.295) gives

(1 − λ)(
αHm1L − αHk + α2

Hm2L

2k
)(αLαH − α2

H) + λ1 + λ2 (αLαH − α2

H) = 0

(A.296)

This means that λ1 > 0, namely, m2L = 2k
αL

is the location of the maximum of

ΠL,P . Notice that when m2L = 2k
αL

,
αLm1L−αLk+α2

L
m2L

2k
=

αLm1L+α
3

L
m

2

2L

4k

2k
, which

means that the situation goes to the first case of the second scenario.

(b) For the second case, the first order conditions of (A.260) with respect to m1L

and m2L are

λ [
α2

L

2k
(αL(V −m2L) −m1L)]

+(1 − λ) [(
αLm1L − αLk + α2

Lm2L

2k
)αL − αH] − λ2αL + λ3αH = 0

(A.297)

λ [
α3

L

2k
(αL(V −m2L) −m1L)]

+(1 − λ) [(
αLm1L − αLk + α2

Lm2L

2k
)α2

L − α2

H] + λ1 − λ2α
2

L + λ3α
2

H = 0

(A.298)

Multiplying (A.297) by αL and subtracting the product from (A.298) gives

(1 − λ) (αLαH − α2

H) + λ1 + λ3 (α
2

H − αHαL) = 0 (A.299)

This means that either λ1 > 0 or λ3 > 0.
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When λ1 > 0, m2L = 2k
αL

, which implies that
αLm1L−αLk+α2

L
m2L

2k
=

αLm1L+α
3

L
m

2

2L

4k

2k
.

Thus the situation goes to the third case of the second scenario.

When λ3 > 0, αHm1L − αHk + α2

Hm2L = 2k, which means that −k + αHm1L −

αHk+α2

Hm2L = k(
αHm1L−αHk+α2

H
m2L

2k
)
2

. Thus the situation goes to the first case

of the third scenario.

(c) For the third case, the first order conditions of (A.261) with respect to m1L and

m2L are

(1 − λ)(αL − αH) + λ2αL = 0 (A.300)

(1 − λ) (α2

L − α2

H) + λ1 + λ2α
2

L = 0 (A.301)

Solving the above two equations, we have λ2 = (1 − λ) (αH

αL
− 1) > 0 and λ1 =

(1−)(α2

H − αHαL) > 0. This means thatm2L = 2k
αL

and αLm1L−αLk+α
2

Lm2L = 2k

which implies that m1L = 2k
αL

− k.

Notice that when m2L = 2k
αL

and m1L = 2k
αL

− k, ΠL,P equals

λ [αL (αL(V −m2L) −m1L) + (−k + αLm1L − αLk + α2

Lm2L)]

+(1 − λ) [(−k + αLm1L − αLk + α2

Lm2L) − (−k + αHm1L − αHk + α2

Hm2L)]

= λ (α2

LV − αLk − k) + (1 − λ) [(αL − αH)(m1L − k) + (α2

L − α2

H)m2L]

= λ (α2

LV − αLk − k) + (1 − λ) [(αL − αH) (
2k

αL

− 2k) + (α2

L − α2

H)
2k

αL

]

(A.302)

It is clear that when V ≤ 2k
αH

, the above value of ΠL,P is less than zero. So the

global maximum can’t occur here.

The following Table A.1 summarizes the discussion for V ≤ 2k
αH

.

From the above, we can see that when V ≤ 2k
αH

, eventually the first case of the first

scenario has the highest value of ΠL,P than any other case except for the third case of the

third scenario. Since the value of ΠL,P in the third case of the third scenario is less than

zero and we already showed that the highest value of ΠL,P in the first case of the first

scenario is positive, ΠL,P takes the global maximum in the first case of the first scenario.

Therefore when V ≤ 2k
αH

, the global optimal solution for the problem

max(m0L,m1L,m2L)(m0H ,m1H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.303)
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Table A.1

Scenarios Cases Status

a) local maximum achieved interiorly
1 b) this case is ruled out

c) goes to b) of the 1st scenario

a) goes to a) of the 1st scenario
b) goes to a) of the 2nd scenario

2 c) goes to b) of the 1st scenario
or goes to a) of the 2nd scenario

d) goes to c) of the 1st scenario
or goes to b) of the 2nd scenario

a) goes to a) of the 2nd scenario
3 b) goes to c) of the 2nd scenario

or goes to a) of the 3rd scenario
c) local maximum achieved at the boundary

is the following:

m∗2H = V

m∗1H = 0

m∗2L =
4V 2

−B̃ +
√
B̃2 − 4ÃC̃

m∗1L =

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α4

L
−α4

H

8k2
)m∗22L

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

m∗0L = −k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

m∗0H = −k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1H +

α3

H
m∗

2H

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

+k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

ΠH,P = −m∗0H
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ΠL,P = αL

⎡
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

[αL

αLm
∗
2L

2k
(V −m∗2L) −m∗1L] −m∗0L

= 2kρ
αL

αH

⎡
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎝

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎞
⎟
⎠

−2kρ

⎡
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎝

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎞
⎟
⎠
αL

+k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

The Principal’s Expected Profit = λΠL,P + (1 − λ)ΠH,P

The Low-type Agent’s Expected Profit = 0

The High-type Agent’s Expected Profit = k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.304)

with

Ã = 1 + 3ρ (X4 −X2) − ρ2 (2X4 −X6 −X2) − ρ (X6 −X4)

B̃ = [3ρ (X2 −X4) − 3]V

C̃ = 2V 2

B̃2 − 4ÃC̃

= V 2 + ρ2 [25X4 − 26X6 + 9X8 − 8X2]V 2 + ρ [−14X4 + 6X2 + 8X6]V 2

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

=
αL

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m∗

2L
2 +

α4

L

8k2
m∗

2L
2

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

=
αH

2k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α4

L
−α2

H
α2

L

8k2
)m∗

2L
2 +

α2

L
α2

H

8k2
m∗

2L
2

α2

L

2k
+ ρ(

α2

H
−α2

L

2k
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.305)
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where 25X4 − 26X6 + 9X8 − 8X2 > 0 and −14X4 + 6X2 + 8X6 > 0 (see (A.179), (A.158),

(A.160), (A.161), (A.170) through (A.175)). Notice that the second expression of ΠL,P is

obtained by using (A.110).

We pointed out at the end of previous subsection that m∗
1L > 0, m∗

0H > −
α6

H
V 4

64k3
and

m∗
0L > −

α6

L
V 4

64k3
.

As we mentioned, the reason why in (A.217) we can decompose the the problem

max(m0L,m1L,m2L)(m0H ,m1H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.306)

as max(m1L,m2L)ΠL,P + max(m1H ,m2H)ΠH,P is that we used the fact that the low-type

agent’s participation constraint and the high-type agent’s incentive constraint are binding,

which can be easily shown by the first order conditions of the Lagrangian with respect to

m0L. It is easy to show that the high-type’s participation constraint is satisfied. As for

the the low-type’s incentive constraint, we showed that it holds for the first case of the

first scenario. It is not difficult to show that it is true for other cases in various scenarios.

We leave the verification to the readers. Notice that when V ≤ 2k
αH

, we don’t need to go

through this process for every case in all the three scenarios mentioned above, because the

interior solution of the first case in the first scenario not only satisfies both constraints but

also gives the global maximum when those two constraints are not considered, and thereby

attains global maximum when the two constraints are taken into account.

This concludes the whole proof of Theorem 2.

A.3 Proof of Theorem 3

In the proof of Theorem 1, we obtained the principal’s expected profit in case 1) (i.e.,

the baseline model ) under complete information. The principal’s expected profit in case

2) (i.e., no intermediate money transfer) under complete information is the same as that in

case 1), since the optimal intermediate money transfer equaled 0.

In the following part, we will find the principal’s expected profit in case 3) and case 4).

First, we look at the principal’s expected profit maximization problem in case 3) under

complete information.

It is clear that because of complete information, the principal’s expected profit maxi-

mization problem can be decoupled into two separate problems, one involving the principal

and the high-type agent and the other involving the principal and the low-type agent.

Solving either of would easily lead to solving the other. In the following, we will solve the

problem faced by the principal and the high-type agent.
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The principal chooses optimal money transfers on (m1H ,m2H) to maximize her expected

profit:

(1 − λ)αHe1H (αHe2H(V −m2H) −m1H) (A.307)

such that the high-type agent is willing to participate, namely

−ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (A.308)

For given money transfers (m1H ,m2H), the high-type agent chooses optimal efforts on e1H

and e2H to maximize his expected profit, which is the right side of (A.308).

To solve this problem, same as what we will discuss in Theorem 1 for a similar problem

which includes upfront money transfers, there are four scenarios for consideration in terms

of various regions that m1H and m2H belong to.

1. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1, e∗

2H ≤ 1 and e∗
1H ≤ 1. The Lagrangian for

the maximum of the principal’s expected profit equals

(1 − λ)αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) + λ1 (

2k

αH

−m2H)

+λ2

⎛
⎜
⎝
1 −

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

(A.309)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers.

The first order conditions of with respect to m1H and m2H result in

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

H

2k
(
α2

Hm2H

2k
(V −m2H) −m1H) − αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ2

αH

2k
= 0

(A.310)

(1 − λ)α4

H

2m2H

8k2
(
α2

Hm2H

2k
(V −m2H) −m1H)

+(1 − λ)αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V − 2m2H)) − λ1 − λ2α

3

H

m2H

4k2
= 0

(A.311)

Multiplying (A.310) by α2

H
2m2H

4k
and subtracting the product from (A.311) leads to

(1 − λ)αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
α2

H

2k
(V −m2H)) − λ1 = 0 (A.312)

There are three cases for consideration:
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(a) When λ1 > 0, m2H = 2k
αH

. The Lagrangian for the maximum of the principal’s

expected profit equals

(1 − λ)αH (
αHm1H + αHk

2k
)(αH (V −

2k

αH

) −m1H) + λ̃1 (1 −
αHm1H + αHk

2k
)

(A.313)

where λ̃1 ≥ 0 is a Lagrangian multiplier.

The first order condition of (A.313) with respect to m1H is

(1−λ) [
α2

H

2k
(αH (V −

2k

αH

) −m1H) − αH (
αHm1H + αHk

2k
)]− λ̃1

αH

2k
= 0 (A.314)

When λ̃1 = 0, m1H = 1

2
αH (V − 3k

αH
). So the principal’s expected profit equals

(1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.315)

When λ̃1 > 0, αHm1H+αHk
2k

= 1, namely m1H = 2k
αH

− k. This means the principal’s

expected profit equals

(1 − λ)αH (αH (V −
2k

αH

) + k −
2k

αH

) (A.316)

(b) When λ2 > 0,
αHm1H+α

3

H
m

2

2H

4k

2k
= 1 which implies that m1H = 2k

αH
−

α2

H
m2

2H

4k
. The

Lagrangian for the maximum of the principal’s expected profit equals

(1 − λ)αH (αH
αHm2H

2k
(V −m2H) −

2k

αH

+
α2

Hm2

2H

4k
) + λ̃2 (

2k

αH

−m2H) (A.317)

where λ̃2 ≥ 0 is a Lagrangian multiplier.

The first order condition of (A.317) gives

(1 − λ)
α3

H

2k
(V −m2H) − λ̃2 = 0 (A.318)

When λ̃2 > 0, m2H = 2k
αH

, which means that
αHm1H+α

3

H
m

2

2H

4k

2k
= 1 is equivalent to

αHm1H+αHk
2k

= 1. Thus the principal’s expected profit has the same value as in

(A.316).

When λ̃2 = 0, V =m2H . Thus the principal’s expected profit equals

(1 − λ)(
α3

HV 2

4k
− 2k) (A.319)

which is ≤ −2k + αHk < 0, since V = m2H ≤ 2k
αH

. Thus (A.229) can’t be the local

maximum, compared with (A.315).
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(c) λ1 = 0 and λ2 = 0, from (A.312) and (A.310), we havem2H = V andm1H = −
α2

H
V 2

8k
.

Since m2H ≤ 2k
αH

, V ≤ 2k
αH

. The principal’s expected profit equals

(1 − λ)
k

2

⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

= (1 − λ)
α6

HV 4

128k3
(A.320)

Comparing (A.320) with (A.315), we have

(1 − λ)
k

2

⎛
⎜
⎝

α3

H
V 2

4k

2k

⎞
⎟
⎠

2

≥ (1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.321)

where the equality holds only when V = 2k
αH

, because
α3

H
V 2

4k
≥ α2

HV − αHk.

2. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1, e∗

2H ≤ 1 and e∗
1H = 1. The Lagrangian for

the maximum of the principal’s expected profit equals

(1 − λ)αH ⋅ 1 ⋅ (αH
αHm2H

2k
(V −m2H) −m1H) + λ1 (

2k

αH

−m2H)

+λ2

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k
− 1

⎞
⎟
⎠

(A.322)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.

The first order condition of (A.322) with respect to m1H and m2H is

−(1 − λ) + λ2

αH

2k
= 0 (A.323)

(1 − λ) [
α3

H

2k
(V − 2m2H)] − λ1 + λ2α

3

H

m2H

4k2
= 0 (A.324)

where (A.323) leads to λ2 > 0, because 1−λ > 0. This means that m1H = 2k
αH

−
α2

H
m2

2H

4k
.

Thus the Lagrangian for the maximum of the principal’s expected profit becomes

(1 − λ)αH ⋅ 1 ⋅ (αH
αHm2H

2k
(V −m2H) +

α2

Hm2

2H

4k
−

2k

αH

) + λ̃1 (
2k

αH

−m2H) (A.325)

where λ̃1 ≥ is a Lagrangian multiplier.

The first order condition of (A.325) gives

(1 − λ) [
α3

H

2k
(V −m2H)] − λ̃1 = 0 (A.326)

When λ̃1 > 0, m2H = 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
=

αHm1H−αHk+α2

H
m2H

2k
. This belongs to

the fourth scenario that will be discussed.
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When λ̃1 = 0, (A.326) implies that m2H = V . Thus the principal’s expected profit is

(1 − λ)(
α3

HV 2

4k
− 2k) (A.327)

Since m2H ≤ 2k
αH

and m2H = V , (A.327) is less than zero.

3. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≤ 2k, e∗
2H = 1 and e∗

1H ≤ 1. The

Lagrangian for the maximum of the principal’s expected profit is

(1 − λ)αH (
αHm1H − αHk + α2

Hm2H

2k
)(αH(V −m2H) −m1H) + λ1 (m2H −

2k

αH

)

+λ2(2k − αHm1H + αHk − α2

Hm2H) (A.328)

The first order conditions of (A.328) with respect to m1H and m2H are

(1 − λ) [
α2

H

2k
(αH (V −m2H) −m1H) − αH (

αHm1H − αHk + α2

Hm2H

2k
)]

−λ2αH = 0

(A.329)

(1 − λ) [
α3

H

2k
(αH (V −m2H) −m1H) − α2

H (
αHm1H − αHk + α2

Hm2H

2k
)]

+λ1 − λ2α
2

H = 0

(A.330)

Multiplying (A.329) by αH and subtracting the product from (A.330) gives λ1 = 0.

When λ2 > 0, αHm1H − αHk + α2

Hm2H = 2k, namely, αHm2H +m1H = 2k
αH

+ k. The

principal’s expected profit becomes

αH (αHV −
2k

αH

− k) = α2

HV − αHk − 2k (A.331)

When λ2 = 0, (A.329) implies that αH(V −m2H) −m1H = m1H − k + αHm2H , which

means that αHm2H +m1H = αHV +k
2

. The principal’s expected profit equals

(1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.332)
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4. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≥ 2k, e∗
2H = 1 and e∗

1H = 1. The

Lagrangian for the maximum of the principal’s expected profit equals

(1−λ)αH (αH(V −m2H) −m1H)+λ1 (m2H −
2k

αH

)+λ2 (αHm1H − αHk + α2

Hm2H − 2k)

(A.333)

The first order condition of (A.333) with respect to m1H gives

−(1 − λ) + λ2αH = 0 (A.334)

which implies λ2 > 0. Thus αHm1H −αHk+α2

Hm2H = 2k, namely, αHm1H +α2

Hm2H =

2k + αHk. Thus the principal’s expected profit is

(1 − λ)(α2

HV − αHk − 2k) (A.335)

One thing worthy of mentioning is that for all cases above, the expression of the

principal’s expected profit is bounded in absolute value and thereby has the maximum.

The uniqueness of the solution of the first order conditions of the associated Lagrangian

ensures the solution is the location of the local maximum.

In summary, the optimal money transfers (m∗
1H ,m∗

2H) offered by the principal to the

high-type agent and the principal’s expected profit satisfy

1. When V ≤ 2k
αH

, m∗
2H = V , m∗

1H = −
α2

H
V 2

8k
. The principal’s expected profit equals

(1 − λ)
α6

HV 4

128k3
(A.336)

2. When V ≥ 2k
αH

and k
2
(
α2

H
V −αHk

2k
)
2

≥ α2

HV − αHk − 2k, m∗
2H ≥ 2k

αH
, αHm∗

1H − αHk +

α2

Hm∗
2H ≤ 2k and αHm∗

2H +m∗
1H = αHV +k

2
. The principal’s expected profit equals

(1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.337)

3. When V ≥ 2k
αH

and k
2
(
α2

H
V −αHk

2k
)
2

≤ α2

HV − αHk − 2k, m∗
2H ≥ 2k

αH
and αHm∗

1H − αHk +

α2

Hm∗
2H = 2k. The principal’s expected profit equals

(1 − λ)(α2

HV − αHk − 2k) (A.338)
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As to the problem faced by the principal and the low-type agent, the principal chooses

optimal money transfers on (m1L,m2L) to maximize her expected profit:

(1 − λ)αLe1L (αLe2L(V −m2L) −m1L) (A.339)

such that the low-type agent is willing to participate, namely

−ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L ≥ 0 (A.340)

For given payments (m1L,m2L), the low-type agent chooses optimal efforts on e1L and e2L

to maximize his expected profit, which is the right side of (A.340).

Similar to what we did in the above for the problem faced by the principal and the

high-type agent, the optimal money transfers (m∗
1L,m

∗
2L) offered by the principal to the

low-type agent and the principal’s expected profit satisfy

1. When V ≤ 2k
αL

, m∗
2L = V , m∗

1L = −
α2

L
V 2

8k
. The principal’s expected profit equals

λ
α6

LV
4

128k3
(A.341)

2. When V ≥ 2k
αL

and k
2
(
α2

L
V −αLk

2k
)
2

≥ α2

LV −αLk−2k, m
∗
2L ≥ 2k

αL
, αLm

∗
1L−αLk+α

2

Lm
∗
2L ≤

2k and αLm
∗
2L +m∗

1L = αLV +k
2

. The principal’s expected profit equals

λ
k

2
(
α2

LV − αLk

2k
)

2

(A.342)

3. When V ≥ 2k
αL

and k
2
(
α2

L
V −αLk

2k
)
2

≤ α2

LV − αLk − 2k, m∗
2L ≥ 2k

αL
and αLm

∗
1L − αLk +

α2

Lm
∗
2L = 2k. The principal’s expected profit equals

λ(α2

LV − αLk − 2k) (A.343)

Notice that the principal’s expected profit from both the high-type and low-type agents

is the sum of two terms, with one from (A.336), (A.337) or (A.338), and the other from

(A.341), (A.342) or (A.343). In particular, when V ≤ 2k
αH

, which implies V < 2k
αL

, the

principal’s expected profit from both the low-type and high-type agents is

λ
α6

LV
4

128k3
+ (1 − λ)

α6

HV 4

128k3
(A.344)

which is exactly half of the principal’s expected profit in (B.131) when upfront money

transfer is included for both types of agent in the proof of Theorem 1.
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Next we will look at the principal’s expected profit maximization problem in case 4)

(i.e., only end money transfers included) under complete information. We will show that

when V ≤ 2k
αH

, the optimal solution consisting of m∗
2L and m∗

2H for this model is also the

optimal solution for the model under incomplete information with only end money transfers

included, because m∗
2L = m∗

2H implies that the incentive compatibility constraints for both

types of agents are satisfied.

As we argued before, due to complete information, the principal’s expected profit maxi-

mization problem can be decomposed into two separate problems, one involving the principal

and the high-type agent and the other involving the principal and the low-type agent.

Solving either of them will easily lead to solving the other. In the following, we will solve

the problem faced by the principal and the high-type agent.

The principal chooses optimal money transfer on m2H to maximize her expected profit:

(1 − λ)αHe1H (αHe2H(V −m2H)) (A.345)

such that the high-type agent is willing to participate, namely

−ke21H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (A.346)

For given money transfer m2H , the high-type agent chooses optimal efforts on e1H and e2H

to maximize his expected profit, which is the right side of (A.346).

Notice that with m2H ≤ 2k
αH

and m1H = 0,
αHm1H+α

3

H
m

2

2H

4k

2k
≤

α
3

H
( 2k
αH

)2

4k

2k
= αH

2
< 1, which

means
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1 can’t happen. Thus, to solve the principal’s expected profit

maximization problem, there are only three scenarios for consideration in terms of various

regions that m2H belongs to.

1. When m2H ≤ 2k
αH

, e∗
2H ≤ 1 and e∗

1H =
α
3

H
m

2

2H

4k

2k
≤

α
3

H
( 2k
αH

)2

4k

2k
= αH

2
< 1. The Lagrangian for

the maximum of the principal’s expected profit equals

(1 − λ)αH

⎛
⎜
⎝

α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H)) + λ1 (

2k

αH

−m2H) (A.347)

where λ1 ≥ 0 is a Lagrangian multiplier.

The first order conditions of with respect to m2H gives

(1 − λ)
α6

H

16k3
(3m2

2HV − 4m3

2H) − λ1 = 0 (A.348)
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When λ1 = 0, i.e., m2H ≤ 2k
αH

, (A.348) leads to m2H = 3

4
V , which results in the

principal’s expected profit as

(1 − λ)
27

32

α6

HV 4

128k3
(A.349)

Since m2H ≤ 2k
αH

and m2H = 3

4
V , V ≤ 8k

3αH
.

When λ1 > 0, i.e., m2H = 2k
αH

, the principal’s expected profit becomes

(1 − λ)αH

⎛
⎜
⎜
⎜
⎜
⎝

α3

H
( 2k

αH
)2

4k

2k

⎞
⎟
⎟
⎟
⎟
⎠

⎛

⎝
αH

αH
2k
αH

2k
(V −

2k

αH

)
⎞

⎠
= (1 − λ)

α3

H

2
(V −

2k

αH

) (A.350)

To compare (A.349) and (A.350), we let F (V ) = 27

32

α6

H
V 4

128k3
−

α3

H

2
(V − 2k

αH
). We can see

that F (0) = α2

Hk > 0 and the first order condition F ′(V ) = 0 gives V = 8k
3αH

. Since

the second derivative F ′′(V ) > 0, F (V ) is a strict convex function with the global

minimum at V = 8k
3αH

. Notice that at V = 8k
3αH

, F (V ) =
α3

H

2
−

α3

H

2
= 0. Therefore

(A.349) is greater than (A.350) when 0 ≤ V < 8k
3αH

and (A.349) equals (A.350) when

V = 8k
3αH

.

2. When m2H ≥ 2k
αH

and
−αHk+α2

H
m2H

2k
≤ 1, e∗

2H = 1 and e∗
1H ≤ 1. The Lagrangian for the

maximum of the principal’s expected profit is

(1−λ)αH (
−αHk + α2

Hm2H

2k
)(αH(V −m2H))+λ1 (m2H −

2k

αH

)+λ2(2k+αHk−α2

Hm2H)

(A.351)

where λ1 and λ2 are Lagrangian multipliers. Notice that since m2H ≥ 2k
αH

, to have a

positive expected profit for the principal, V ≥ 2k
αH

is needed.

The first order condition of with respect to m2H gives

(1 − λ) [
α3

H

2k
(αH(V −m2H)) − α2

H (
−αHk + α2

Hm2H

2k
)] + λ1 − λ2α

2

H = 0 (A.352)

When λ1 = 0 and λ2 = 0, (A.352) gives

α4

H

2k
V +

α3

H

2
−
α4

H

k
m2H = 0 (A.353)

Thus m2H = V
2
+ k

2αH
, which means the principal’s expected profit is

(1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.354)

Since m2H = V
2
+ k

2αH
, m2H ≥ 2k

αH
and

−αHk+α2

H
m2H

2k
≤ 1, 3k

αH
≤ V ≤ αHk+4k

α2

H

.



131

When λ1 > 0, m2H = 2k
αH

. The principal’s expected profit is

(1 − λ)
α3

H

2
(V −

2k

αH

) (A.355)

which is the same as (A.350).

To compare (A.354) with (A.355), we let G(V ) = k
2
(
α2

H
V −αHk

2k
)
2

−
α3

H

2
(V − 2k

αH
). We

can see that G(0) = 9

8
kα2

H > 0. The first order condition G′(V ) = 0 leads to V = 3k
αH

,

which is the global minimum because G(V ) is a strict convex function with the second

derivative G′′(V ) > 0. At this global minimum, G =
α2

H

2
k −

α2

H

2
k = 0. This shows that

(A.354) is greater than (A.355) when V ≠ 3k
αH

and V ≤ αHk+4k
α2

H

and (A.354) equals

(A.355) when V = 3k
αH

.

When λ2 > 0, −αHk + α2

Hm2H = 2k, which implies m2H = k
αH

+ 2k
α2

H

. The principal’s

expected profit becomes

(1−λ)α2

H(V −m2H) = (1−λ)α2

H (V −
k

αH

−
2k

α2

H

) = (1−λ)(α2

HV −αHk−2k) (A.356)

To compare (A.354) with (A.356), we let P (V ) = k
2
(
α2

H
V −αHk

2k
)
2

−(α2

HV −αHk−2k). We

can see that P (0) = 1

8
kα2

H +αHk + 2k > 0. The first order condition P ′(V ) = 0 results

in V = αHk+4k
α2

H

, which is the global minimum because P (V ) is a strict convex function

with the second derivative P ′′(V ) > 0. At this global minimum, P = 2k − 2k = 0.

This shows that (A.354) is greater than (A.356) when V < αHk+4k
α2

H

and (A.354) equals

(A.356) when V = αHk+4k
α2

H

.

Therefore compared with (A.354) and (A.356), when 8k
3αH

≤ V ≤ αHk+4k
α2

H

, (A.354) gives

the principal the highest expected profit.

3. When m2H ≥ 2k
αH

and
−αHk+α2

H
m2H

2k
≥ 1, i.e., e∗

2H = 1 and e∗
1H = 1. Notice that

−αHk+α2

H
m2H

2k
≥ 1 implies m2H ≥ 2k

α2

H

+ k
αH

. Thus m2H > 2k
αH

.

The Lagrangian for the maximum of the principal’s expected profit equals

(1 − λ)α2

H(V −m2H) + λ1 (−αHk + α2

Hm2H − 2k) (A.357)

where λ1 is a Lagrangian multiplier.
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The first order condition of (A.357) with respect to m1H gives

−(1 − λ) + λ1α
2

H = 0 (A.358)

which implies λ1 > 0. Thus −αHk +α2

Hm2H = 2k, namely, m2H = k
αH

+ 2k
α2

H

which gives

the principal’s expected profit as

(1 − λ)(α2

HV − αHk − 2k) (A.359)

which is the same as (A.356).

To know which one of (A.355) and (A.359) is bigger when V ≤ 3k
αH

, we let T (V ) =

(α2

HV − αHk − 2k) −
α3

H

2
(V − 2k

αH
). At V = 3k

αH
, T = 2kαH − 2k −

α2

H
k

2
< 0. Notice that

the first derivative T ′(V ) = α2

H −
α3

H

2
> 0. Thus (A.355) is greater than (A.359) when

V ≤ 3k
αH

.

In summary, the optimal money transfer m∗
2H offered by the principal to the high-type

agent and the principal’s expected profit satisfy

1. When V ≤ 8k
3αH

, m∗
2H = 3

4
V . The principal’s expected profit equals

(1 − λ)
27

32

α6

HV 4

128k3
(A.360)

2. When 8k
3αH

≤ V ≤ 3k
αH

, m∗
2H = 2k

αH
. The principal’s expected profit equals

(1 − λ)
α3

H

2
(V −

2k

αH

) (A.361)

3. When 3k
αH

≤ V ≤ αHk+4k
α2

H

, m∗
2H = V

2
+ k

2αH
. The principal’s expected profit equals

(1 − λ)
k

2
(
α2

HV − αHk

2k
)

2

(A.362)

4. When V ≥ αHk+4k
α2

H

, m∗
2H = k

αH
+ 2k

α2

H

which gives the principal’s expected profit as

(1 − λ)(α2

HV − αHk − 2k) (A.363)

One thing we would like to point out is that for all cases above, the expression of the

principal’s expected profit is bounded in absolute value and thereby has the maximum. The

uniqueness of the solution of the first order conditions of the associated Lagrangian ensures

the solution is the location of the local maximum.
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As to the problem faced by the principal and the low-type agent, the principal chooses

optimal money transfer on m2L to maximize her expected profit:

(1 − λ)αLe1L (αLe2L(V −m2L)) (A.364)

such that the low-type agent is willing to participate, namely

−ke21L − αLe1Lke
2

2L + α2

Le1Le2Lm2L ≥ 0 (A.365)

For given payment m2L, the low-type agent chooses optimal efforts on e1L and e2L to

maximize his expected profit, which is the right side of (A.365).

Similar to what we did in the above for the problem faced by the principal and the

high-type agent, the optimal payment m∗
2L offered by the principal to the low-type agent

and the principal’s expected profit satisfy

1. When V ≤ 8k
3αL

, m∗
2L = 3

4
V . The principal’s expected profit equals

(1 − λ)
27

32

α6

LV
4

128k3
(A.366)

2. When 8k
3αL

≤ V ≤ 3k
αL

, m∗
2L = 2k

αL
. The principal’s expected profit equals

(1 − λ)
α3

L

2
(V −

2k

αL

) (A.367)

3. When 3k
αL

≤ V ≤ αLk+4k
α2

L

, m∗
2L = V

2
+ k

2αL
. The principal’s expected profit equals

(1 − λ)
k

2
(
α2

LV − αLk

2k
)

2

(A.368)

4. When V ≥ αLk+4k
α2

L

, m2L = k
αL

+ 2k
α2

L

which gives the principal’s expected profit as

(1 − λ)(α2

LV − αLk − 2k) (A.369)

From the above, we can see that when V ≤ 2k
αH

, which implies V < 2k
αL

, m∗
2H =m∗

2L = 3

4
V .

This means that m∗
2H = m∗

2L = 3

4
V is also the optimal solution for the model under incom-

plete information with only end money transfer included, because the incentive compatibility

constraints for agents will be satisfied.

It is clear that the principal’s expected profit from both the high-type and low-type

agents is the sum of two terms, with one from (A.360), (A.361), (A.362) or (A.363) and

the other from (A.366), (A.367), (A.368), or (A.369). In particular, when V ≤ 2k
αH

, the

principal’s expect profit from both the low-type and high-type agents is

λ
27

32

α6

LV
4

128k3
+ (1 − λ)

27

32

α6

HV 4

128k3
(A.370)

This concludes the proof of Theorem 3.
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A.4 Proof of Theorem 4

This section has two parts. In part one, we prove the statement of Theorem 4. In part

two, we find the value of the principal’s expected profit in case 2), which is used in the

argument of part one.

A.4.1 Main result

First we show that the principal’s expected profit in case 1) (i.e., the baseline ) is higher

than that in case 2) (i.e., no intermediate money transfer).

Recall that in case 1), the principal maximizes her following expected profit by offering

(m0L,m1L,m2L) to the low-type agent and (m0H ,m1H ,m2H) to the high-type agent

λ [αLe1L (αLe2L(V −m2L) −m1L) −m0L]+(1−λ) [αHe1H (αHe2H(V −m2H) −m1H) −m0H]

(A.371)

For given (m0L,m1L,m2L) and (m0H ,m1H ,m2H), the low-type and high-type agents max-

imize their following expected profits, respectively:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (A.372)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (A.373)

where 0 ≤ e1L ≤ 1, 0 ≤ e2L ≤ 1, 0 ≤ e1H ≤ 1 and 0 ≤ e2H ≤ 1.

To ensure both agents’ participation and prevent each agent from imitating the other,

the following participation constraints and incentive compatibility constraints have to be

satisfied:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L ≥ 0 (A.374)

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (A.375)

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L

≥ m0H − kẽ21L + αLẽ1Lm1H − αLẽ1Lkẽ
2

2L + α2

Lẽ1Lẽ2Lm2H (A.376)

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H

≥ m0L − kẽ21H + αH ẽ1Hm1L − αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2Hm2L (A.377)

where (A.374) and (A.375) are the low-type and high-type agents’ participation constraints,

and (A.376) and (A.377) are the low-type and high-type agents’ incentive compatibility

constraints. In addition, ẽ1L and ẽ2L are the efforts when the low-type agent pretends to
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be the high one, while ẽ1H and ẽ2H are the efforts when the high-type agent pretends to be

the low-type one.

We know that by eliminating intermediate money transfers m1L and m1H from ex-

pressions (A.371) through (A.377), the principal maximizes her expected profit in case

2). Assuming that (m∗
0L,m

∗
2L) and (m∗

0H ,m∗
2H) is the solution for the menu of money

transfers in case 2), by adding 0 as intermediate money transfer, the menu of money

transfers (m∗
0L,0,m

∗
2L) and (m∗

0H ,0,m∗
2H) satisfy (A.374), (A.375), (A.376) and (A.377) in

case 1) and allow the principal to achieve the same expected profit in case 2). On the other

hand, in the proof of Theorem 2, we showed that the solution of the principal’s expected

profit maximization problem consisting of (A.371) through (A.377) has the feature that

the intermediate money transfer to the low-type agent m∗
1L > 0. Therefore, the principal’s

expected profit in case 1) must be greater than her expected profit in case 2).

Next we show that the principal’s expected profit in case 2) (i.e., no intermediate

money transfer) is greater than that in case 3) (i.e., no upfront money transfer). Instead

of using a direct approach, we are going to adopt a different way, namely, proving that

the principal’s expected profit in case 2) (i.e., no intermediate money transfer) is greater

than 1

2
[
α6

L
V 4

64k3
+

α6

H
V 4

64k3
] - the principal’s expected profit in case 3) (i.e., no upfront money

transfer) under complete information in Theorem 3, which serves as the upper bound of the

principal’s expected profit in case 3) under incomplete information.

Notice that with X denoting αH

αL
≥ 1, and ρ denoting 1−λ

λ
> 0, using similar argument in

the proof of Theorem 2, we can show that the principal’s expected profit in case 2) is

λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

16k3
(

3V

ρ (X6 − 1) + 3
)

3
⎛

⎝

ρ (X6 − 1)V

ρ (X6 − 1) + 3

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

+ (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α6

HV 4

64k3
+
(α6

L − α6

H)

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

(A.378)

The verification of (A.378) is allocated to the next subsection, due to its length.

We rewrite (A.378) as

λα6

L

⎡
⎢
⎢
⎢
⎣

1

64k3
108ρ (X6 − 1) + 81

(ρ (X6 − 1) + 3)4
+
ρX6

64k3
+
ρ (1 −X6)

64k3
81

(ρ (X6 − 1) + 3)4

⎤
⎥
⎥
⎥
⎦
V 4

= λ
α6

L

64k3

⎡
⎢
⎢
⎢
⎣

27ρ (X6 − 1) + 81

(ρ (X6 − 1) + 3)4
+ ρX6

⎤
⎥
⎥
⎥
⎦
V 4 (A.379)

Denoting ρ (X6 − 1) by Y , (A.379) can be written as
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λ
α6

L

64k3
[
27Y + 81

(Y + 3)4
+ Y + ρ]V 4 (A.380)

On the other hand,

1

2
[
α6

LV
4

64k3
+
α6

HV 4

64k3
]

= λ
α6

L

64k3
[
1

2
+
1

2
ρX6]

= λ
α6

L

64k3
[
1

2
+
1

2
Y +

1

2
ρ] (A.381)

Thus to show the principal’s expected profit in case 2) is greater than 1

2
[
α6

L
V 4

64k3
+

α6

H
V 4

64k3
] is

equivalent to show
27Y + 81

(Y + 3)4
+ Y + ρ >

1

2
+
1

2
Y +

1

2
ρ (A.382)

i.e.,
2 (27Y + 81)

(Y + 3)4
+ Y + ρ > 1 (A.383)

i.e.,

2 (27Y + 81) − (1 − Y )(Y + 3)4 + ρ(Y + 3)4 > 0 (A.384)

i.e.,

(Y + 3) [54 − (1 − Y )(Y + 3)3] + ρ(ρY + 3)4 > 0 (A.385)

Let F (Y ) = 54 − (1 − Y )(Y + 3)3, the derivative of F (Y ) with respect to Y is

(Y + 3)3 − (1 − Y ) ⋅ 3(Y + 3)2

= (Y + 3)2 [Y + 3 − 3 + 3Y ]

= (Y + 3)2 ⋅ 4Y

≥ 0 (A.386)

because Y ≥ 0. In fact the derivative of F (Y ) is strictly > 0 when Y > 0 i.e., X6 > 1. Since

F (0) = 54 − 27 = 27 > 0, F (Y ) must be positive for any Y ≥ 0. Therefore (A.385) holds

for any Y ≥ 0. This means that the principal’s expected profit in case 2) is greater than

1

2
[
α6

L
V 4

64k3
+

α6

H
V 4

64k3
]. Therefore, we proved that the principal’s expected profit in case 2) (i.e.,

no intermediate money transfer) is greater than that in case 3) (i.e., no upfront money

transfer).

Finally, we show that the principal’s expected profit in case 3) (i.e., no intermediate

money transfer) is greater than that in case 4) (i.e., only end money transfer).
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Recall that by the end of the proof of Theorem 3, we mentioned that the principal’s

expected profit in case 4) under incomplete information is 27

64
[
α6

L
V 4

64k3
+

α6

H
V 4

64k3
], with m∗

2L =

m∗
2H = 3

4
V . Considering the following principal’s expected profit maximization problem

λ
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L)

+ (1 − λ)
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) (A.387)

with m2L and m2H being set as 3

4
V . Then (A.387) is a function of m1L and m1H . The first

order conditions with respect to m1L and m1H are:

αL

2k
(α2

L

3

32k
V 2 −m1L) −

αLm1L

2k
−
α3

L
9

64
V 2

2k
= 0 (A.388)

αH

2k
(α2

H

3

32k
V 2 −m1H) −

αHm1H

2k
−
α3

H
9

64
V 2

2k
= 0 (A.389)

which gives m∗
1L = −

3α2

L

128
V 2 and m∗

1H = −
3α2

L

128
V 2. It is clear that this is the location of

maximum, because the concavity of the part of (A.387) on m1L and the part of (A.387)

on m1H . With m1L = m1H = −
3α2

L

128
V 2 and m2L = m2H = 3

4
V , (A.387) yields an expected

profit of 225

512
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
], which is greater than 27

64
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
], the

principal’s expected profit in case 4).

On the other hand, it is clear that with e1L =
αLm1L+α

3

L
m

2

2L

4k

2k
, e2L = αLm2L

2k
, e1H =

αHm1H+α
3

H
m

2

2H

4k

2k
, e2H = αHm2H

2k
, ẽ1L =

αLm1H+α
3

L
m

2

2H

4k

2k
, ẽ2L = αLm2H

2k
, ẽ1H =

αHm1L+α
3

H
m

2

2L

4k

2k
,

and ẽ2H = αHm2L

2k
, the menu of money transfers (m1L,m2L) and (m1H ,m2H) with m1L =

m1H = −
3α2

L

128
V 2 and m2L = m2H = 3

4
V satisfy (A.374), (A.375), (A.376), and (A.377), when

m0L and m0H are eliminated from them. This means that the principal’s expected profit

in case 3) must be greater or equal to 225

512
[λ

α6

L
V 4

64k3
+ (1 − λ)

α6

H
V 4

64k3
]. Therefore the principal’s

expected profit in case 3) is greater than the principal’s expected profit in case 4).

A.4.2 The principal’s expected profit in case 2)

In this subsection, we show that the principal’s expected profit in case 2) is (A.378),

which was used in the previous subsection. Similar to the proof of Theorem 2, the discussion

consists of three progressive parts. In the first part, for given money transfers (m0L,m2L)

and (m0H ,m2H), we establish the expressions of optimal efforts of both types of agents

and their profits. In the second part, we solve the principal’s expected profit maximization

problem for a particular region where the money transfers take values, using the technique of
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decomposing the problem into two independent problems with each of them only associated

to one type of agent. In the third part, we show that when V ≤ 2k
αH

, the local maximum

obtained in the second part is the global maximum by ruling out the possible local maxima

in other regions.

A.4.2.1 Expressions of optimal efforts

By offering two different menus of money transfers (m0L,m2L) and (m0H ,m2H) to the

low-type and high-type agents separately, the principal maximizes her expected profit:

λ [αLe1LαLe2L(V −m2L) −m0L] + (1 − λ) [αHe1HαHe2H(V −m2H) −m0H] (A.390)

For given money transfers (m0L,m2L) and (m0H ,m2H), the low-type and high-type agents

maximize their following expected profits, respectively

m0L − ke21L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (A.391)

and

m0H − ke21H − αHe1Hke22H + α2

He1He2Hm2H (A.392)

where 0 ≤ e1L ≤ 1, 0 ≤ e2L ≤ 1, 0 ≤ e1H ≤ 1 and 0 ≤ e2H ≤ 1. (A.391) and (A.392) have to be

nonnegative in order for both agents to participate.

Using a similar argument as in the proof of Theorem 2, we can assume the positivity of

e1L, e2L, e1H and e2H and have following situations for the high-type and low-type agents,

respectively.

For the high-type agent, there are three situations:

1. m2H ≤ 2k
αH

and
α3

H
m2

2H

8k2
≤ 1, i.e., e∗

2H ≤ 1 and e∗
1H ≤ 1. The high-type agent’s expected

profit is

m0H + k(
α3

Hm2

2H

8k2
)

2

(A.393)

2. m2H > 2k
αH

and −αHk + α2

Hm2H ≤ 2k, i.e., e∗
2H = 1 and e∗

1H ≤ 1. The high-type agent’s

expected profit is

m0H + k(
−αHk + α2

Hm2H

2k
)

2

(A.394)

3. m2H > 2k
αH

and −αHk + α2

Hm2H > 2k, i.e., e∗
2H = 1 and e∗

1H = 1. The high-type agent’s

expected profit is

m0H − k − αHk + α2

Hm2H (A.395)
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Notice that the case where m2H ≤ 2k
αH

and
α3

H
m2

2H

8k2
> 1 does not exist, because m2H ≤ 2k

αH

leads to
α3

H
m2

2H

8k2
≤ αH

2
< 1.

For the low-type agent, there are three situations:

1. m2L ≤ 2k
αL

and
α3

L
m2

2L

8k2
≤ 1, i.e., e∗

2L ≤ 1 and e∗
1L ≤ 1. The low-type agent’s expected

profit is

m0L + k(
α3

Lm
2

2L

8k2
)

2

(A.396)

2. m2L > 2k
αL

and −αLk + α2

Lm2L ≤ 2k, i.e., e∗
2L = 1 and e∗

1L ≤ 1. The low-type agent’s

expected profit is

m0L + k(
−αLk + α2

Lm2L

2k
)

2

(A.397)

3. m2L > 2k
αL

and −αLk + α2

Lm2L > 2k, i.e., e∗
2L = 1 and e∗

1L = 1. The high-type agent’s

expected profit is

m0L − k − αLk + α2

Lm2L (A.398)

Since m2L ≤ 2k
αL

leads to
α3

L
m2

2L

8k2
≤ αL

2
, there is no case in which m2L ≤ 2k

αL
and

α3

L
m2

2L

8k2
> 1.

In addition, because of incentive constraints involved in the model, it is necessary to

consider two scenarios when each type agent is not honest about his true type: one is that

the low-type agent pretends to be the high-type agent, and the other is that the high-agent

pretends to be the low-type agent.

When the low-type agent pretends to be the high-type agent, if successful, his expected

profit would be

m0H − kẽ21L − αLẽ1Lkẽ
2

2L + α2

Lẽ1Lẽ2Lm2H (A.399)

There are three situations:

1. m2H ≤ 2k
αL

and
α3

L
m2

2H

8k2
≤ 1, i.e., ẽ∗

2L ≤ 1 and ẽ∗
1L ≤ 1. The low-type agent’s expected

profit is

m0H + k(
α3

Lm
2

2H

8k2
)

2

(A.400)

2. m2H > 2k
αL

and −αLk + α2

Lm2H ≤ 2k, i.e., ẽ∗
2L = 1 and ẽ∗

1L ≤ 1. The low-type agent’s

expected profit is

m0H + k(
−αLk + α2

Lm2H

2k
)

2

(A.401)

3. m2H > 2k
αL

and −αLk + α2

Lm2H > 2k, i.e., ẽ∗
2L = 1 and ẽ∗

1L = 1 . The low-type agent’s

expected profit is

m0H − k − αLk + α2

Lm2H (A.402)
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When the high-type agent pretends to be the low-type agent, if successful, his expected

profit would be

m0L − kẽ21H − αH ẽ1Hkẽ22H + α2

H ẽ1H ẽ2Hm2L (A.403)

There are three situations:

1. m2L ≤ 2k
αH

and
α3

H
m2

2L

8k2
≤ 1, i.e., ẽ∗

2H ≤ 1 and ẽ∗
1H ≤ 1. The high-type agent’s expected

profit is

m0L + k(
α3

Hm2

2L

8k2
)

2

(A.404)

2. m2L > 2k
αH

and −αHk + α2

Hm2L ≤ 2k, i.e., ẽ∗
2H = 1 and ẽ∗

1H ≤ 1. The high-type agent’s

expected profit is

m0L + k(
−αHk + α2

Hm2L

2k
)

2

(A.405)

3. m2L > 2k
αH

and −αHk + α2

Hm2L > 2k, i.e., ẽ∗
2H = 1 and ẽ∗

1H = 1 . The high-type agent’s

expected profit is

m0L − k − αHk + α2

Hm2L (A.406)

In the following we will solve the principal’s expected profit maximization problem for

the region where e∗
2H = αHm2H

2k
≤ 1 ẽ∗

2H = αHm2L

2k
≤ 1, which imply that e∗

1H =
α
3

H
m2H

4k

2k
< 1,

ẽ∗
1H =

α
3

H
m2L

4k

2k
< 1, e∗

1L =
α
3

L
m2L

4k

2k
< 1, e∗

2L = αLm2L

2k
< 1, ẽ∗

1L =
α
3

L
m2H

4k

2k
< 1, and ẽ∗

2L = αLm2H

2k
< 1.

This means that for given money transfers, we have the best response functions of efforts,

which can be used in the optimization problem.

A.4.2.2 The local maximum of a particular region

Similar to what we did in the proof of Theorem 2, we can assume the positivity of e∗
1H ,

e∗
2H , ẽ∗

1H , ẽ∗
2H , e∗

1L, e
∗
2L, ẽ

∗
1L and ẽ∗

2L. There are four constraints for consideration: the

participation constraints and the incentive compatibility constraints for for both types of

agents. We will find the local interior maximum for the region described above. Later on we

will show that this local interior maximal solution is also a unique global maximal solution

when V ≤ 2k
αH

.
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To differentiate the two different types of agent and meanwhile maximize her expected

profit, the principal faces the following optimization problem:

max(m0L,m2L)(m0H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.407)

where λΠL,P and (1 − λ)ΠH,P are the expected profits obtained from the low-type and the

high-type agents, respectively, satisfying

ΠL,P =
α4

Lm
2

2L

8k2
[
α2

Lm2L

2k
(V −m2L)] −m0L (A.408)

ΠH,P =
α4

Hm2

2H

8k2
[
α2

Hm2H

2k
(V −m2H)] −m0H (A.409)

subject to

m0L + k[
α3

Lm
2

2L

8k2
]

2

≥ m0H + k[
α3

Lm
2

2L

8k2
]

2

(A.410)

m0L + k[
α3

Lm
2

2L

8k2
]

2

≥ 0 (A.411)

m0H + k[
α3

Hm2

2H

8k2
]

2

≥ m0L + k[
α3

Hm2

2L

8k2
]

2

(A.412)

m0H + k[
α3

Hm2

2H

8k2
]

2

≥ 0 (A.413)

It is clear that (A.413) is redundant, because (A.411) and (A.412) imply that

m0H + k[
α3

Hm2

2H

8k2
]

2

≥m0L + k[
α3

Hm2

2L

8k2
]

2

≥m0L + k[
α3

Lm
2

2L

8k2
]

2

(A.414)

Therefore the optimization problem consisting of (A.407), (A.410), (A.411), (A.412) and

(A.413) is equivalent to the optimization problem consisting of (A.407), (A.410), (A.411),

and (A.412), namely, excluding (A.413). In fact, constraint (A.410) is also redundant. To

show this, we first show that the optimization problem consisting of (A.407), (A.411), and

(A.412) can be solved and then prove that the solution set satisfies (A.410).

Now we solve the optimization problem consisting of (A.407), (A.411), and (A.412).

The corresponding Lagrangian is

λ [
α4

Lm
2

2L

8k2
(
α2

Lm2L

2k
(V −m2L)) −m0L]

+(1 − λ) [
α4

Hm2

2H

8k2
(
α2

Hm2H

2k
(V −m2H)) −m0H]

+λ1

⎡
⎢
⎢
⎢
⎢
⎣

m0L + k(
α3

Lm
2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+ λ2

⎡
⎢
⎢
⎢
⎢
⎣

m0H + k(
α3

Hm2

2H

8k2
)

2

−m0L − k(
α3

Hm2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦
(A.415)
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The first order conditions of (A.415) with respect to m0L, m0H , m2L and m2H are

−λ + λ1 − λ2 = 0 (A.416)

−(1 − λ) + λ2 = 0 (A.417)

λ [
α6

L3m
2

2L

16k3
(V −m2L) −

α6

Lm
3

2L

16k3
] + λ1

α6

Lm
3

2L

16k3
− λ2

α6

Hm3

2L

16k3
= 0 (A.418)

(1 − λ) [
α6

H3m2

2H

16k3
(V −m2H) −

α6

Hm3

2H

16k3
] + λ2

α6

Hm3

2H

16k3
= 0 (A.419)

where (A.417) and (A.416) imply that λ2 = 1 − λ and λ1 = 1. Substituting 1 − λ for λ2 in

(A.419), we have

(1 − λ)
α6

H3m2

2H

16k3
(V −m2H) = 0 (A.420)

which means that m∗
2H = V , because e∗

2H > 0 implies m2H > 0. Thus when V ≤ 2k
αH

,
αHm∗

2H

2k
< 1 and

αLm
∗
2H

2k
< 1.

Substituting 1 for λ1 and 1 − λ for λ2 in (A.418) and rearranging the terms gives

λ [
α6

L3m
2

2L

16k3
(V −m2L)] = (1 − λ)(

α6

H − α6

L

16k3
)m3

2L (A.421)

namely,

3α3

L(V −m2L) = ρ (α6

H − α6

L)m2L (A.422)

where ρ = 1−λ
λ
. Solving (A.422) leads to

m∗2L =
3V

ρ (X6 − 1) + 3
(A.423)

where X = αH

αL
> 1. This means that

V −m∗2L =
ρ (X6 − 1)V

ρ (X6 − 1) + 3
(A.424)

It is clear that 0 <m∗
2L < V . Thus when V ≤ 2k

αH
,
αHm∗

2L

2k
< 1 and

αLm
∗
2L

2k
< 1, namely, m∗

2L is

an interior solution.

Since λ1 > 0 and λ2 > 0, constraints (A.411) and (A.412) are binding. Therefore

m∗0L = −k[
α3

Lm
∗
2L

2

8k2
]

2

= −
α6

L

64k3
[

3V

ρ (X6 − 1) + 3
]

4

(A.425)

and

m∗0H = −
α6

Lm
4

2L

64k3
+
α6

Hm4

2L

64k3
−
α6

Hm4

2H

64k3
= [

α6

H − α6

L

64k3
] [

3V

ρ (X6 − 1) + 3
]

4

−
α6

H

64k3
V 4 (A.426)
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In this situation, the principal’s expected profit equals

λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

16k3
(

3V

ρ (X6 − 1) + 3
)

3
⎛

⎝

ρ (X6 − 1)V

ρ (X6 − 1) + 3

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

+ (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α6

HV 4

64k3
+
(α6

L − α6

H)

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

(A.427)

Now we verify that (A.410) is redundant. Notice that using binding constraints (A.411)

and (A.412), (A.410) is equivalent to

0 ≥ −k[
α3

Hm2

2H

8k2
]

2

− k[
α3

Lm
2

2H

8k2
]

2

+ k[
α3

Hm2

2L

8k2
]

2

+ k[
α3

Lm
2

2L

8k2
]

2

(A.428)

namely,

(α6

H − α6

L)m
4

2H ≥ (α6

H − α6

L)m
4

2L (A.429)

Clearly, the interior solution set m∗
2H = V and m∗

2L = 3V
ρ(X6−1)+3 < V satisfy (A.429). This

shows that (A.410) is redundant.

Notice that the maximization problem consisting of (A.407) through (A.413) is equiva-

lent to

max(m0L,m2L)(m0H ,m2H)
λΠL,P + (1 − λ)ΠH,P (A.430)

where

ΠL,P =
α4

Lm
2

2L

8k2
[
α2

Lm2L

2k
(V −m2L)] + k[

α3

Lm
2

2L

8k2
]

2

(A.431)

ΠH,P =
α4

Hm2

2H

8k2
[
α2

Hm2H

2k
(V −m2H)] + k[

α3

Hm2

2H

8k2
]

2

+ k[
α3

Lm
2

2L

8k2
]

2

− k[
α3

Hm2

2L

8k2
]

2

(A.432)

because constraints (A.411) and (A.412) are binding, while constraints (A.410) and (A.413)

are not binding.

We can rewrite λΠL,P + (1 − λ)ΠH,P as ΠL,P +ΠH,P , where

ΠL,P = λ

⎡
⎢
⎢
⎢
⎢
⎣

α4

Lm
2

2L

8k2
(
α2

Lm2L

2k
(V −m2L)) + k(

α3

Lm
2

2L

8k2
)

2

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
α3

Lm
2

2L

8k2
)

2

− k(
α3

Hm2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

(A.433)

ΠH,P = (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α4

Hm2

2H

8k2
(
α2

Hm2H

2k
(V −m2H)) + k(

α3

Hm2

2H

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

(A.434)
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Thus the maximization problem consisting of (A.407) through (A.413) is equivalent to

the maximization problem

max
m2L

ΠL,P +max
m2H

ΠH,P (A.435)

In other words, we decompose the maximization problem consisting of (A.407) through

(A.413) into two separate maximization problems, with one about m2L and the other about

m2H . We will apply the same procedure to the scenarios when m2H and m2L belong to

different regions.

A.4.2.3 The global maximum when V ≤
2k
αH

Notice that for different regions, the expressions of ΠH,P and ΠL,P may take different

forms.

First we look at the maximization problem of ΠH,P . Considering all possible expressions

which m1H and m2H can take, we will find the expressions of optimal money transfers m1H

and m2H to maximize ΠH,P .

Like what we discussed in (A.393), (A.394) and (A.395), there are three scenarios for

consideration:

1. m2H ≤ 2k
αH

and
α3

H
m2

2H

8k2
≤ 1, i.e., e∗

2H ≤ 1 and e∗
1H ≤ 1. The Lagrangian for the maximum

of ΠH,P is

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α4

Hm2

2H

8k2
(
α2

Hm2H

2k
(V −m2H)) + k(

α3

Hm2

2H

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+ λ1 (
2k

αH

−m2H) (A.436)

The first order condition with respect to m2H of (A.436) gives

(1 − λ)
α6

H3m2

2H

16k3
(V −m2H) − λ1 = 0 (A.437)

When λ1 > 0, m2H = 2k
αH

. It is clear that to make (A.438) hold, V has to be greater

than 2k
αH

. Thus ΠH,P equals

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α4

Hm2

2H

8k2
(
α2

Hm2H

2k
(V −m2H)) + k(

α3

Hm2

2H

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

= (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
( 2k

αH
)

H
2

8k2
⎛

⎝

α2

H( 2k
αH

)

2k
(V − (

2k

αH

))
⎞

⎠
+ k

⎛
⎜
⎝

α3

H( 2k
αH

)
2

8k2

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (1 − λ) [
α3

H

2
(V −

2k

αH

) +
α2

H

4
k] (A.438)
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When λ1 = 0, (A.438) implies V =m2H ≤ 2k
αH

. Thus ΠH,P equals

(1 − λ)k(
α3

Hm2

2H

8k2
)

2

= (1 − λ)k
⎛
⎜
⎝

α3

H( 2k
αH

)
2

8k2

⎞
⎟
⎠

2

= (1 − λ)
α2

H

4
k (A.439)

2. m2H > 2k
αH

and −αHk + α2

Hm2H ≤ 2k, i.e., e∗
2H = 1 and e∗

1H ≤ 1. The Lagrangian for

the maximum of ΠH,P is

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

αH (
−αHk + α2

Hm2H

2k
)(αH(V −m2H)) + k(

−αHk + α2

Hm2H

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αH

−m2H) + λ2 (2k + αHk − α2

Hm2H) (A.440)

The first order condition of (A.440) with respect to m2H gives

(1 − λ)
α4

H

2k
(V −m2H) + λ1 − λ3α

2

H = 0 (A.441)

When λ1 > 0, m2H = 2k
αH

, which implies that −αHk+α2

Hm2H = αHk < 2k. So constraint

−αHk+α2

Hm2H ≤ 2k is not binding. This means that λ3 = 0. Therefore (A.441) implies

V <m2H = 2k
αH

. ΠH,P equals

(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛

⎝

−αHk + α2

H
2k
αH

2k

⎞

⎠
(αH (V −

2k

αH

)) + k
⎛

⎝

−αHk + α2

H
2k
αH

2k

⎞

⎠

2⎤⎥
⎥
⎥
⎥
⎥
⎦

= (1 − λ) [
α3

H

2
(V −

2k

αH

) +
α2

H

4
k] (A.442)

which is less than (1 − λ)
α2

H

4
k for V <m2H = 2k

αH
.

When λ1 = 0 and λ2 > 0, −αHk + α2

Hm2H = 2k which means that m2H = 2k+αHk

α2

H

> 2k
αH

.

Thus ΠH,P equals

(1 − λ) [αH ⋅ 1 ⋅ αH(V −m2H) + k]

= (1 − λ) [α2

H (V −
2k + αHk

α2

H

) + k]

= (1 − λ) [α2

HV − αHk − k] (A.443)

Notice that if V ≤ 2k
αH

, (A.443) is less than or equal to 2αHk − αHk − k which is less

than 0.

When λ1 = 0 and λ2 = 0, (A.442) gives V = m2H ≥ 2k
αH

. Since −αHk + α2

Hm2H ≤ 2k,

m2H ≤ 2k+αHk

α2

H

. Thus V ≤ 2k+αHk

α2

H

, i.e., α2

HV − αHk − 2k. ΠH,P equals



146

(1 − λ)k(
−αHk + α2

HV

2k
)

2

(A.444)

Notice that

k(
−αHk + α2

HV

2k
)

2

≥ α2

HV − αHk − k (A.445)

with the equality holding only when α2

HV −αHk = 2k. To show it, let x = α2

HV −αHk

and use the inequality x2

4k
≥ x − k.

On the other hand, we have

k(
−αHk + α2

HV

2k
)

2

≥ [
α3

H

2
(V −

2k

αH

) +
α2

H

4
k] (A.446)

because (A.446) is equivalent to

α2

H (α2

HV 2 − 2αHV k + k2)

4k
≥ [

α3

H

2
(V −

2k

αH

) +
α2

H

4
k] (A.447)

which is equivalent to

αHV (V − 2k
αH

)

4k
≥
1

2
(V −

2k

αh

) (A.448)

It is clear that when V = 2k
αH

, (A.448) holds with equality, and when V > 2k
αH

, (A.448)

is equivalent to αHV
4k

≥ 1

2
which is true and in fact the strict inequality holds.

3. m2H > 2k
αH

and −αHk + α2

Hm2H > 2k, i.e., e∗
2H = 1 and e∗

1H = 1. ΠH,P is

(1 − λ) [α2

H(V −m2H) − k − αHk + α2

Hm2H]

= (1 − λ) [α2

HV − αHk − k] (A.449)

which gives the highest value of ΠH,P when V > 2k+αHk

α2

H

, because (A.445) only holds

when V ≤ 2k+αHk

α2

H

i.e., α2

HV − αHk ≤ 2k.

One thing worthy of mentioning is that for all cases above, the expression of ΠH,P is

bounded in absolute value and thereby has the maximum. The uniqueness of the solution

of the first order conditions of the Lagrangian associated to ΠH,P ensures the solution is

the location of the local maximum.

In summary,

1. When V ≤ 2k
αH

, m∗
2H = V , and ΠH,P = (1 − λ)

α2

H

4
k.

2. When V > 2k
αH

and α2

HV − αHk ≤ 2k, m∗
2H = V , and ΠH,P = (1 − λ)k(

−αHk+α2

H
V

2k
)
2

.
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3. When V > 2k
αH

and α2

HV − αHk > 2k, −αHk + α2

Hm∗
2H ≥ 2k which implies m∗

2H ≥

2k+αHk

α2

H

> 2k
αH

, m∗
2H = −k − αHk + α2

Hm∗
2H ≥ k and ΠH,P = (1 − λ)(α2

HV − αHk − k).

In the following, we look at the maximization problem of ΠL,P . There are three scenarios

and each scenario with several cases for consideration:

1. When m2L ≤ 2k
αH

, ẽ∗
2H ≤ 1. It is clear that ẽ∗

1H =
α
3

H
m

2

2L

4k

2k
=

α3

H
m2

2L

8k2
≤

α3

H
( 2k

αH
)2

8k2
= αH

2
< 1,

and e∗
1L =

α
3

L
m

2

2L

4k

2k
≤

α
3

L
m

2

2L

4k

2k
≤ αL

2
< 1. The Lagrangian for the maximum of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎣

αL

α3

Lm
2

2L

8k2
(
α2

Lm2L

2k
(V −m2L)) + k(

α3

Lm
2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
α3

Lm
2

2L

8k2
)

2

− k(
α3

Hm2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+ λ1 (
2k

αH

−m2L) (A.450)

where λ1 is a Lagrangian multiplier.

The first order condition of (A.450) with respect to m2L gives

λ [
α6

L3m
2

2L

16k3
(V −m2L)] + (1 − λ) [

α6

Lm
3

2L

16k3
−
α6

Hm3

2L

16k3
] − λ1 = 0 (A.451)

When λ1 > 0, m2L = 2k
αH

. It is clear that to make (A.451) hold, V has to be greater

than 2k
αH

. ΠL,P equals

λ1 [αL

α3

L

α2

H

1

2
(
α2

L

αH

(V −
2k

αH

)) + k
α6

L

4α4

H

] + (1 − λ) [k
α6

L

4α4

H

− k
α2

H

4
] (A.452)

When λ1 = 0, (A.451) becomes

λ [
α6

L3m
2

2L

16k3
(V −m2L)] + (1 − λ) [

α6

Lm
3

2L

16k3
−
α6

Hm3

2L

16k3
] = 0 (A.453)

which is equivalent to

3m2L(V −m2L) + ρ (1 −X6)m2

2L = 0 (A.454)

where ρ = 1−λ
λ

and X = αH

αL
. Since m2L > 0, (A.454) is equivalent to

3(V −m2L) + ρ (1 −X6)m2L = 0 (A.455)

which gives

m∗2L =
3V

ρ (X6 − 1) + 3
(A.456)

It is the exactly same interior solution given by (A.423).
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2. When 2k
αH

≤ m2L ≤ 2k
αL

, ẽ∗
2H = 1. ẽ∗

1H =
−αHk+α2

H
m2L

2k
if
−αHk+α2

H
m2L

2k
≤ 1 and ẽ∗

1H = 1 if

−αHk+α2

H
m2L

2k
≥ 1. It is clear that when m2L ≤ 2k

αL
, e∗

1L =
α
3

L
m

2

2L

4k

2k
≤

α
3

L
m

2

2L

4k

2k
≤ αL

2
< 1.

Therefore there are two cases for consideration: (1) −αHk +α2

Hm2L ≤ 2k; (2) −αHk +

α2

Hm2L ≥ 2k.

For the first case in which −αHk +α2

Hm2L ≤ 2k , the Lagrangian for the maximum of

ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎣

αL

α3

Lm
2

2L

8k2
(
α2

Lm2L

2k
(V −m2L)) + k(

α3

Lm
2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
α3

Lm
2

2L

8k2
)

2

− k(
−αHk + α2

Hm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+ λ1 (m2L −
2k

αH

)

+λ2 (
2k

αL

−m2L) + λ3 (2k + αHk − α2

Hm2L) (A.457)

where λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 are Lagrangian multipliers.

The first order condition of (A.457) with respect to m2L gives

λ [
α6

L
3m2

2L

16k3
(V −m2L)]+(1−λ) [

α6

L
m3

2L

16k3
− (

−αHk + α2

H
m2L

2k
)α2

H]+λ1−λ2−λ3α
2

H = 0 (A.458)

Notice that when 2k
αH

≤m2L ≤ 2k
αL

,

α6

Lm
3

2L

16k3
< (

−αHk + α2

Hm2L

2k
)α2

H (A.459)

because (A.459) holds when m2L = 2k
αH

and 2k
αL

, and
α6

L
m3

2L

16k3
− (

−αHk+α2

H
m2L

2k
)α2

H is a

convex function which has a negative second order derivative with respect to m2L.

When λ1 > 0, m2L = 2k
αH

. This means that m2L < 2k
αL

and −αHk + α2

Hm2L = αHk =
α3

H
m2

2L

8k2
. This situation goes back to the first scenario.

When λ2 > 0, m2L = 2k
αL

which implies m2L > 2k
αH

. Therefore λ1 = 0. Clearly, to make

(A.458) hold, V has to be greater than 2k
αL

. ΠL,P equals

λ [αL
αL

2
(αL (V −

2k

αL

)) + k
α2

L

4
] + (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
α2

L

4
− k

⎛
⎜
⎝

−αHk +
α2

H

αL
2k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.460)
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When λ3 > 0, −αHk + αHm2H = 2k which means that m2L = 2k+αHk

α2

H

> 2k
αH

. Therefore

λ1 = 0 and V has to be greater than 2k
αL

to make (A.458) hold. ΠL,P equals

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αL

α3

L(
2k+αHk

α2

H

)
2

8k2

⎛
⎜
⎜
⎜
⎝

α2

L (2k+αHk

α2

H

)

2k
(V − (

2k + αHk

α2

H

))

⎞
⎟
⎟
⎟
⎠

+ k

⎛
⎜
⎜
⎜
⎝

α3

L(
2k+αHk

α2

H

)
2

8k2

⎞
⎟
⎟
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k

⎛
⎜
⎜
⎜
⎝

α3

L(
2k+αHk

α2

H

)
2

8k2

⎞
⎟
⎟
⎟
⎠

2

− k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.461)

When λ1 = λ2 = λ3 = 0, (A.458) is a cubic equation of m2L. To make (A.458) hold,

V has to be greater than m2L which is no less than 2k
αH

, namely V has to be greater

than 2k
αH

.

For the second case in which −αHk + α2

Hm2L ≥ 2k, the Lagrangian for the maximum

of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎣

αL

α3

Lm
2

2L

8k2
(
α2

Lm2L

2k
(V −m2L)) + k(

α3

Lm
2

2L

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
α3

Lm
2

2L

8k2
)

2

− (−k − αHk + α2

Hm2L)

⎤
⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αL

−m2L) + λ2 (2k + αHk − α2

Hm2L) (A.462)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers. Notice that m2L > 2k
αH

, namely,

not binding, because −αHk + α2

Hm2L ≥ 2k implies m2L ≥ 2k+αHk

α2

H

> 2k
αH

.

The first order condition of (A.462) with respect to m2L gives

λ [
α6

L
3m2

2L

16k3
(V −m2L)] + (1 − λ) [

α6

L
m3

2L

16k3
− α2

H] − λ1 + λ2α
2

H = 0 (A.463)

When λ1 > 0 and λ2 = 0, m2L = 2k
αL

. To make (A.463) hold, V has to be greater than

2k
αL

because
α6

L
m3

2L

16k3
− α2

H when m2L = 2k
αL

. ΠL,P equals

λ [αL
αL

2
(αL (V −

2k

αL

)) + k
α2

L

4
] + (1 − λ) [k

α2

L

4
− (−k − αHk + α2

H (
2k

αH

))] (A.464)

When λ2 > 0, −αHk + α2

Hm2L = 2k. This situation goes back to the first case.

When λ1 = λ2 = 0, (A.463) is a cubic equation of m2L. It is clear that V has to be

greater than m2L which is no less than 2k
αH

. Thus V has to be greater than 2k
αH

.
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3. When m2L ≥ 2k
αL

, ẽ∗
2H = 1. ẽ∗

1H =
−αHk+α2

H
m2L

2k
if
−αHk+α2

H
m2L

2k
≤ 1 and ẽ∗

1H = 1 if
−αHk+α2

H
m2L

2k
≥ 1. e∗

1L =
−αLk+α2

L
m2L

2k
if
−αLk+α2

L
m2L

2k
≤ 1 and e∗

1L = 1 if
−αLk+α2

L
m2L

2k
≥ 1.

There are three cases for consideration: (1) −αHk+α2

Hm2L ≤ 2k; (2) −αHk+α2

Hm2L ≥

2k but −αLk +α2

Lm2L ≤ 2k; (3) −αLk +α2

Lm2L ≥ 2k. Notice that −αHk +α2

Hm2L ≤ 2k

implies −αLk + α2

Lm2L ≤ 2k, because −αLk + α2

Lm2L < −αHk + α2

Hm2L by m2L > 0.

For the first case, the Lagrangian for the maximum of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎣

αL (
−αLk + α2

Lm2L

2k
)(αL(V −m2L)) + k(

−αLk + α2

Lm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
−αLk + α2

Lm2L

2k
)

2

− k(
−αHk + α2

Hm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αL

−m2L) + λ2(2k + αHk − α2

Hm2L) (A.465)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.

The first order condition of (A.465) with respect to m2L gives

λ [
α4

L

2k
(V −m2L)]+(1−λ) [(

−αLk + α2

Lm2L

2k
)α2

L − (
−αHk + α2

Hm2L

2k
)α2

H]−λ1−λ2α
2

H

(A.466)

Notice that (
−αLk+α2

L
m2L

2k
)α2

L < (
−αHk+α2

H
m2L

2k
)α2

H , because −αLk + α2

Lm2L < −αHk +

α2

Hm2L.

It is clear that to make (A.466) hold, V has to be greater than m2L which is greater

than 2k
αL

. Thus V has to be greater than 2k
αL

.

When λ1 > 0, m2L = 2k
αL

. ΠL,P has the same expression as in (A.464).

When λ2 > 0, −αHk + α2

Hm2L = 2k, i.e., m2L = 2k+αHk

α2

H

. ΠL,P equals

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

−αLk + α2

L
(2k+αHk

α2

H

)

2k

⎞
⎟
⎠
(αL (V −

2k + αHk

α2

H

)) + k
⎛
⎜
⎝

−αLk + α2

L
(2k+αHk

α2

H

)

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

−αLk + α2

L
(2k+αHk

α2

H

)

2k

⎞
⎟
⎠

2

− k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.467)

When λ1 = λ2 = 0, (A.466) is a cubic function of m2L.
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For the second case, the Lagrangian for the maximum of ΠL,P is

λ

⎡
⎢
⎢
⎢
⎢
⎣

αL (
−αLk + α2

Lm2L

2k
)(αL(V −m2L)) + k(

−αLk + α2

Lm2L

2k
)

2⎤⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

k(
−αLk + α2

Lm2L

2k
)

2

− (−k − αHk + α2

Hm2L)

⎤
⎥
⎥
⎥
⎥
⎦

+λ1 (
2k

αL

−m2L) + λ2(−αHk + α2

Hm2L − 2k) + λ3(2k + αLk − α2

Lm2L)(A.468)

where λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 are Lagrangian multipliers.

The first order condition of (A.465) with respect to m2L gives

λ [
α4

L

2k
(V −m2L)]+(1−λ) [(

−αLk + α2

Lm2L

2k
)α2

L − α2

H]−λ1+λ2α
2

H−λ3α
2

L = 0 (A.469)

Notice that (
−αLk+α2

L
m2L

2k
)α2

L < α2

H because 0 ≤
−αLk+α2

L
m2L

2k
≤ 1.

When λ2 > 0, −αHk + α2

Hm2L = 2k. This situation belongs to the first case (see the

situation related to (A.467)).

When λ2 = 0, (A.469) implies that V has to be greater than m2L which is no less than

2k
αL

, in order to make (A.469) holds.

There are three situations for λ2 = 0:

(a) When λ1 > 0, then m2L = 2k
αL

, ΠL,P equals

λ [αL
1

2
αL (V −

2k

αL

) +
k

4
] + (1 − λ) [

k

4
− (−k − αHk + α2

H

2k

αL

)] (A.470)

(b) When λ3 > 0, −αLk + α2

Lm2L = 2k, i.e., m2L = 2k+αLk

α2

L

. ΠL,P equals

λ [α2

L (V −
2k + αLk

α2

L

) + k]

+(1 − λ) [k − (−k − αHk + α2

H (
2k + αLk

α2

L

))]

= λ [α2

LV − αLk − k] + (1 − λ) [αHk −
α2

H

α2

L

2k −
α2

H

αL

k] (A.471)

(c) When λ1 = λ3 = 0, (A.469) is a cubic function of m2L.

For the third case, the Lagrangian for the maximum of ΠL,P is

λ [αL ⋅ 1 ⋅ (αL(V −m2L)) + (−k − αLk + α2

Lm2L)]

+(1 − λ) [(−k − αLk + α2

Lm2L) − (−k − αHk + α2

Hm2L)]

+λ1(−αLk + α2

Lm2L − 2k) (A.472)

where λ1 ≥ 0 is a Lagrangian multiplier.
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The first order condition of (A.472) with respect to m2L gives

(1 − λ) (α2

L − λ2

H) + λ1α
2

L = 0 (A.473)

which implies that λ1 > 0. Thus −αLk +α2

Lm2L = 2k. This belongs to the second case

(see the situation related to (A.471)).

One thing we would like to point out is that for all cases above, the expression of ΠL,P

is bounded in absolute value and thereby has the maximum. The uniqueness of the solution

of the first order conditions of the Lagrangian associated to ΠL,P ensures the solution is the

location of the local maximum.

From the above discussion, we can see that when V ≤ 2k
αH

, the global maximum of ΠH,P

is obtained at m∗
2H = V and the global maximum of ΠL,P is obtained at m∗

2L = 3V
ρ(X6−1)+3 .

Because of the equivalence between the maximization of λΠL,P + (1 − λ)ΠH,P and the

maximization of ΠL,P +ΠH,P , the global maximum of λΠL,P + (1−λ)ΠH,P is also achieved

at m∗
2H = V and m∗

2L = 3V
ρ(X6−1)+3 . Using the binding participation constraint for the

low-type agent and the incentive compatibility constraint for the high-type (see (A.425)

and (A.426)),

m∗0L = −
α6

L

64k3
[

3V

ρ (X6 − 1) + 3
]

4

m∗0H = [
α6

H − α6

L

64k3
] [

3V

ρ (X6 − 1) + 3
]

4

−
α6

H

64k3
V 4 (A.474)

and the principal’s expected profit (see (A.427)) equals

λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

16k3
(

3V

ρ (X6 − 1) + 3
)

3
⎛

⎝

ρ (x6 − 1)V

ρ (x6 − 1) + 3

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ λ

⎡
⎢
⎢
⎢
⎢
⎣

α6

L

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

+ (1 − λ)

⎡
⎢
⎢
⎢
⎢
⎣

α6

HV 4

64k3
+
(α6

L − α6

H)

64k3
(

3V

ρ (X6 − 1) + 3
)

4⎤⎥
⎥
⎥
⎥
⎦

(A.475)

with

ΠL,P =
α6

L

16k3
(

3V

ρ (X6 − 1) + 3
)

3
⎛

⎝

ρ (x6 − 1)V

ρ (x6 − 1) + 3

⎞

⎠
+

α6

L

64k3
(

3V

ρ (X6 − 1) + 3
)

4

ΠH,P =
α6

HV 4

64k3
+
(α6

L − α6

H)

64k3
(

3V

ρ (X6 − 1) + 3
)

4

(A.476)

This concludes the proof of Theorem 4.
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A.5 Proof of Theorem 5

Notice that if we add constraints m0L = m0H , m1L =m1H and m2L = m2H to the

principal’s expected maximization problem for the baseline model in which two different

menus (m0L,m1L,m2L) and (m0H ,m1H ,m2H) are offered to two different types of agents

such that both agents are willing to participate, then we obtain the principal’s expected

profit maximization problem for the model in which only one menu (m0,m1,m2) is offered

to two different types of agents such that both agents are willing to participate. Therefore

the principal’s expected profit of the former model is at least as big as the one of the latter

model. For the former model, we know that when V ≤ 2k
αH

, m∗
1L ≠ m∗

1H in the optimal

solution. Therefore in this situation, the principal would obtain higher expected profit in

the former model than in the latter.

This concludes the proof of Theorem 5.

A.6 Proof of Theorem 6

We will show that under incomplete information, when V ≤ 2k
αH

and upfront, intermediate

and end money transfers are all included, it is always better for the principal to offer two

menus of money transfers to the high-type and low-type agents separately than to offer one

menu to the high-type agent with the exclusion of the low-type agent.

We assume that αHm2L

2k
≤ 1 and

αHm1L+α
3

H
m

2

2L

4k

2k
≤ 1. Thus αLm2L

2k
≤ 1 and

αLm1L+α
3

L
m

2

2L

4k

2k
≤

1. As a result, the low-type agent’s expected profit when he is honest about his type is

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.477)

and the high-type agent’s expected profit when he pretends to be the low-type one is

m0L + k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.478)

We set m2H = V and m1H = 0. Thus αHm2H

2k
≤ 1 and

αHm1H+α
3

H
m

2

2H

4k

2k
=

α3

H
V 2

8k2
≤ αH

2
< 1

and
αLm1H+α

3

L
m

2

2H

4k

2k
< 1, because

αLm1H+α
3

L
m

2

2H

4k

2k
≤

αHm1H+α
3

H
m

2

2H

4k

2k
. According to (A.78) and

(A.83), the high-type agent’s expected profit when being honest about his type is

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

=m0H +
α6

HV 4

64k3
(A.479)
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and the low-type agent’s expected profit when he pretends to be the high-type one is

m0H + k
⎛
⎜
⎝

αLm1H +
α3

L
m2

2H

4k

2k

⎞
⎟
⎠

2

=m0H +
α6

LV
4

64k3
(A.480)

Notice that the participation constraints for both types of agents are

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

≥ 0 (A.481)

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

≥ 0 (A.482)

and the incentive compatibility constraints are

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

≥ m0H + k
⎛
⎜
⎝

αLm1H +
α3

L
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.483)

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

≥ m0L + k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.484)

Choosing appropriate m0H such that the high-type agent’s incentive compatibility con-

straint (A.484) is binding, then

m0H = −k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+m0L + k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.485)

Thus the low-type agent’s incentive compatibility constraint (A.483) becomes

m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

≥ m0L − k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+ k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

+ k
⎛
⎜
⎝

αLm1H +
α3

L
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.486)

which is equivalent to

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

≥ −k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+ k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

+ k
⎛
⎜
⎝

αLm1H +
α3

L
m2

2H

4k

2k

⎞
⎟
⎠

2

(A.487)
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namely,

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

≥ −
α6

HV 4

64k3
+
α6

LV
4

64k3
+ k

⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2

(A.488)

Here we use the fact that m2H = V and m1H = 0.

Therefore, for any V > 0, which satisfies V ≤ 2k
αH

, there exists a small ε1 > 0 such that as

long as 0 ≤ m2L < ε1 and m1L = 0, (A.488) holds. This means that the low-type incentive

compatibility constraint is satisfied. We can set m0L = −k
⎛

⎝

αLm1L+α
3

L
m

2

2L

4k

2k

⎞

⎠

2

, which implies

the low-type’s participation constraint is satisfied. The binding of the high-type agent’s

incentive compatibility constraint means that the high-type agent’s incentive compatibility

constraint is satisfied. Notice that it is easy to show that the high-type agent’s participation

constraint is also satisfied, using the low-type agent’s participation constraint and the high-

type agent’s incentive compatibility constraint. According to (A.215), (A.216) and (A.217),

with m2H = V , m1H = 0 and m1L = 0, the principal’s expected profit is

λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

= λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+(1 − λ)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

− k
⎛
⎜
⎝

αHm1L +
α3

H
m2

2L

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ (1 − λ)
α6

HV 4

64k3

= λ
α6

Lm
3

2L

16k3
[(V −m2L) +

m2L

4
+ (

1 − λ

λ
)
m2L

4
− (

1 − λ

λ
)
α6

H

α6

L

m2L

4
] + (1 − λ)

α6

HV 4

64k3

(A.489)

where for any V > 0, the first term involving m2L must be greater than 0, as long as m2L

is positive and less than a positive real number ε2. Therefore when 0 < m2L < ε2, the

principal’s expected profit is greater than (1 − λ)
α6

H
V 4

64k3
.
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Now we see that when 0 < m2L < min(ε1, ε2), all the participation constraints and

incentive compatibility constraints are satisfied and the principal’s expected profit is greater

than (1 − λ)
α6

H
V 4

64k3
, which is greater than or equal to the expected profit for the principal

when one menu is offered to the high-type agent with exclusion of the low-type one. This

shows that in this scenario when two menus are given to the high-type and low-type agents,

the expected profit for the principal is bigger than that when one menu is offered to the

high-type agent without including the low-type one.

This concludes the proof of Theorem 6.

A.7 Proof of Theorem 7 and Theorem 8

In this section we will show two things: 1) under complete information, the full flexibility

model (i.e., upfront money transfer, intermediate and end rewards are included) can achieve

the same expected profit for the principal as the baseline model (i.e., upfront, intermediate

and end money transfers are included), no matter what value V takes; 2) under incomplete

information, when V ≤ 2k
αH

, the full flexibility model can attain the same expected profit

for the principal as the one of the baseline model does. Notice that the optimal solutions

obtained in the proofs of Theorem 1 and Theorem 2 will be used here.

We assume that the baseline model has optimal solution made up of of m∗
0L, m

∗
1L, m

∗
2L,

m∗
0H , m∗

1H , and m∗
2H , which would take different values under complete information and

under incomplete information, respectively. The full flexibility model has upfront money

transfers, intermediate and end rewards and penalties U0L, R1L, P1L, R2L, P2L for the

low-type agent and U0H , R1H , P1H , R2H , P2H for the high-type agent.

For both complete information and incomplete information cases, we use the following

common procedure at the beginning: set m0L = m∗
0L, m1L = m∗

1L, m2L = m∗
2L, m0H = m∗

0H ,

m1H = m∗
1H , and m2H = m∗

2H . Recall that we introduced the transformations m0L =

U0L−P1L, m1L = R1L+P1L−P2L, m2L = R2L+P2L, m0H = U0H−P1H , m1H = R1H+P1H−P2H

and m2H = R2H + P2H . Thus U0L − P1L = m∗
0L, R1L + P1L − P2L = m∗

1L, R2L + P2L = m∗
2L,

U0H − P1H =m∗
0H , R1H + P1H − P2H =m∗

1H , and R2H + P2H =m∗
2H .

1. For the complete information case, according to the part involving (A.49) through

(B.131) in the proof of Theorem 1, we can set m∗
1L = 0 and m∗

1H = 0. Let us first look

at the upfront money transfer, intermediate and end rewards and penalties related to

the high-type agent in the full flexibility model. There are two scenarios, according

to m∗
0H ≤ 0 or m∗

0H ≥ 0.
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(a) If m∗
0H ≤ 0, we set U0H = 0. Thus −P1H = m∗

0H . Substituting P1H = −m∗
0H into

R1H+P1H−P2H =m∗
1H gives R1H+(−m∗

0H)−P2H =m∗
1H . Setting R1H = 0 leads to

P2H = −m∗
0H , because m∗

1H = 0. Substituting P2H = −m∗
0H into R2H +P2H =m∗

2H

gives R2H =m∗
2H−(−m∗

0H). If we can show that m∗
2H−(−m∗

0H) ≥ 0, then R2H ≥ 0.

Thus R1H , P1H , R2H and P2H are all nonnegative.

In the following, we show that m∗
2H − (−m∗

0H) ≥ 0.

From the part involving (A.49) through (A.54) in the proof of Theorem 1, we

know that

i. When V ≤ 2k
αH

, m∗
2H = V , m∗

1H = 0 and m∗
0H = −

α6

H
V 4

64k3
, which implies

−m∗0H ≤
α6

HV 4

64k3
≤
α6

H( 2k
αH

)
3

V

64k3
=
α3

HV

8
<
1

8
V =

1

8
m∗2H (A.490)

which means 1

8
m∗

2H − (−m∗
0H) > 0. Thus m∗

2H − (−m∗
0H) ≥ 0.

ii. When V ≥ 2k
αH

and α2

HV − αHk ≤ 2k, m∗
2H ≥ 2k

αH
, αHm∗

2H +m∗
1H = αHV and

m∗
0H = −k(

α2

H
V −αHk

2k
)
2

. It is clear that −m∗
0H ≤ k. We can set m∗

1H = 0,

then m∗
2H = V , which is ≥ 2k

αH
. This means 1

2
m∗

2H − (−m∗
0H) > 0. Thus

m∗
2H − (−m∗

0H) ≥ 0.

iii. When V ≥ 2k
αH

and α2

HV −αHk ≥ 2k, m∗
2H ≥ 2k

αH
, αHm∗

1H −αHk+α2

Hm∗
2H ≥ 2k

and m∗
0H = −k + αHm∗

1H − αHk + α2

Hm∗
2H ≥ k. Since m∗

0H > 0, we don’t need

to consider this situation.

(b) When m∗
0H ≥ 0, we set U0H = m∗

0H , then P1H = 0. Substituting P1H = 0 into

R1H + P1H − P2H = m∗
1H gives R1H − P2H = m∗

1H . Setting R1H = 0 leads to

P2H = 0, because m∗
1H = 0. Substituting P2H = 0 into R2H + P2H = m∗

2H gives

R2H =m∗
2H ≥ 0. Thus R1H , P1H , R2H and P2H are all nonnegative.

Similarly, we can show that there exist U0L, R1L ≥ 0, P1L ≥ 0, R2L ≥ 0 and P2L ≥ 0

such that U0L − P1L =m∗
0L, R1L + P1L − P2L =m∗

1L and R2L + P2L =m∗
2L.

Therefore such U0L, R1L, P1L, R2L and P2L for the low-type agent and U0H , R1H ,

P1H , R2H and P2H for the high-type agent in the full flexibility model will give the

principal the same expected profit as the expected profit given in the baseline model.

On the other hand, using transformations m0L, m1L, m2L, m0H , m1H , and m2H , it is

easy to see that the expected profit given in the baseline model is greater or equal to

that given in the full flexibility model.

This concludes the proof of Theorem 7.
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2. For the incomplete information case, when V ≤ 2k
αH

, the optimal solution for the

principal’s maximization problem of the baseline model is given by (A.304) and

(A.305) in the proof of Theorem 2. Notice that m∗
1L > 0 and m∗

1H = 0. Set R1L =m∗
1L

and R1H = 0, then both R1L and R1H satisfy the nonnegativity requirement. Thus

P2L = −m∗
0L > 0 and P2H = −m∗

0H > 0. Substituting them into R2L + P2L = m∗
2L and

R2H + P2H =m∗
2H leads to R2L =m∗

2L − (−m∗
0L) and R2H =m∗

2H − (−m∗
0H). If we can

show that m∗
2L − (−m∗

0L) ≥ 0 and m∗
2H − (−m∗

0H) ≥ 0, then such choices for R2L and

R2H will satisfy the nonnegativity requirement, and thereby what are established in

the above for U0L, U0H , P1L, P1H , R2L, R2H , P2L and P2H form a solution that gives

the principal the same expected profit as the expected profit of the baseline model

when V ≤ 2k
αH

. Notice that using transformations m0L, m1L, m2L, m0H , m1H , and

m2H , it is easy to see that the expected profit given in the baseline model is greater

or equal to that given in the full flexibility model.

In the following, we show that m∗
2L − (−m∗

0L) ≥ 0 and m∗
2H − (−m∗

0H) ≥ 0.

According to (A.304) and (A.305) in the proof of Theorem 2, when V ≤ 2k
αH

,

k
⎛
⎜
⎝

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎞
⎟
⎠
= αL

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m∗

2L
2 +

α4

L

8k2
m∗

2L
2

α2

L

k
+ ρ(

α2

L
−α2

H

k
)

(A.491)

We want to show the left side of (A.491) is less than 1

2
m∗

2L. This is equivalent to show

the right side of (A.491) is less than 1

2
m∗

2L, namely,

αL

α4

L

4k2
m∗

2L(V −m∗
2L) + ρ(

α2

H
α2

L
−α4

H

8k2
)m∗

2L
2 +

α4

L

8k2
m∗

2L
2

α2

L

k
+ ρ(

α2

L
−α2

H

k
)

≤
1

2
m∗2L (A.492)

which is equivalent to

α5

L

4k2
(V −

1

2
m∗2L) + ρ(

α2

Hα2

L − α4

H

8k2
)m∗2L <

1

2

α2

L

k
+
1

2
(
α2

L − α2

H

k
) (A.493)

because m∗
2L > 0 is a common factor on both sides can can be canceled. To show

(A.493), it is sufficient to show

α5

L

4k
(V −

1

2
m∗2L) <

1

2
α2

L (A.494)

Since 0 <m∗
2L < V and V ≤ 2k

αH
,

α5

L

4k
(V −

1

2
m∗2L) <

α5

L

4k
V <

α5

L

4k

2k

αH

<
α2

L

2
(A.495)



159

Therefore

k
⎛
⎜
⎝

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎞
⎟
⎠
≤
1

2
m∗2L (A.496)

On the other hand, by (A.197) in the proof of Theorem 2,

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k
<
3

4
(A.497)

Since
αLm

∗
1L
+α

3

L
m
∗
2L

2

4k

2k
≤

αHm∗
1L
+α

3

H
m
∗
2L

2

4k

2k
,

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k
≤
3

4
(A.498)

Combining (A.498) with (A.496), we have

k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

≤
3

8
m∗2L (A.499)

namely, 3

8
m∗

2L − (−m∗
0L) ≥ 0. Therefore m∗

2L − (−m∗
0L) ≥ 0.

As to the verification of m∗
2H − (−m∗

0H) ≥ 0, notice that when V ≤ 2k
αH

,

m∗0H = −k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1H +

α3

H
m∗

2H

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

+ k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.500)

with and m∗
1H = 0 and m∗

2H = V .

We know that

α6

HV 4

64k3
−
α6

LV
4

64k3
≥ k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1L +

α3

H
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

− k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLm
∗
1L +

α3

L
m∗

2L

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

(A.501)

using the fact that
αHm∗

1L
+α

3

H
m
∗
2L

2

4k

2k
≥

αLm
∗
1L
+α

3

L
m
∗
2L

2

4k

2k
.

Thus to show m∗
2H − (−m∗

0H) ≥ 0, it is sufficient to show that

m∗2H − k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αHm∗
1H +

α3

H
m∗

2H

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

≥ 0 (A.502)

which is equivalent to

V −
α6

HV 4

64k3
≥ 0 (A.503)

Since V ≤ 2k
αH

,

α6

HV 4

64k3
<
α6

HV 3

64k3
V <

α6

H( 2k
αH

)
3

64k3
V =

α6

H

8
V <

V

8
(A.504)

This shows that 1

8
m∗

2H − (−m∗
0H) ≥ 0. Therefore m∗

2H − (−m∗
0H) ≥ 0.
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In conclusion, when V ≤ 2k
αH

, m∗
2H − (−m∗

0H) ≥ 0 and m∗
2L − (−m∗

0L) ≥ 0 hold.

It is clear that when V ≤ 2k
αH

, there are infinitely many solutions because U0L−P1L =m∗
0L

and U0H−P1H =m∗
0H . One of them is to let U0L = 0, P1L = −m∗

0L, U0H = 0 and P1H = −m∗
0H ,

and R1L, R2L, P2L, R1H , R2H and P2H take values specified above.

This concludes the proof of Theorem 8.
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B.1 Proof of Theorem 10

We examine the separating equilibrium when upfront, intermediate and end money

transfers are all included in the menu.

For the high-type principal, her maximal profit satisfies

max(m0H ,m1H ,m2H){−m0H − αHe1Hm1H + α2

He1He2H(V −m2H)} (B.1)

subject to

LM ≥ −m0H − αLe1Hm1H + α2

Le1He2H(V −m2H) (B.2)

and

−m0H − αHe1Hm1H + α2

He1He2H(V −m2H) ≥ LM (B.3)

with the agent’s profit satisfying:

max(e1H ,e2H)m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (B.4)

and

m0H − ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (B.5)

where

LM = max(m0L,m1L,m2L){−m0L − αLe1Lm1L + α2

Le1Le2L(V −m2L)} (B.6)

as the low-type principal’s maximal profit, and

LM = max(m̃0L,m̃1L,m̃2L){−m̃0L − αHe1Lm̃1L + α2

He1Le2L(V − m̃2L)} (B.7)

with the agent satisfying:

max(e1L,e2L) m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (B.8)

and

m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L ≥ 0 (B.9)

where (B.2) is the constraint of preventing the low-type principal from mimicking the high-

type one, (B.3) is the constraint of preventing the high-type principal from mimicking the

low-type one, (B.5) is the agent’s participation constraint for the high-type principal’s offer.

From the supplemental part allocated at the end, we know that LM =
α6

L
V 4

64k3
and LM =

α6

L
x6

64k3(2x−1)3 with x = αH

αL
. Since LM equals to the profit that the low-type principal earns

under complete information, which means that the agent knows her type, the optimal menu

offered by the low-type principal is m0L = −
α6

L
V 4

64k3
, m1L = 0 and m2L = V .
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The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the agent earns positive profit and the low-type principal does

not want to mimic the high-type one, i.e., (B.2) binding, but (B.5) not binding. This is the

first scenario. Then we study the high-type principal’s profit maximization problem when

the agent earns zero profit and the low-type principal wants to mimic the high-type one,

i.e., both (B.2) binding and (B.5) binding. This is the second scenario.

There are four cases for consideration:

1. when m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1, i.e., e∗

2H ≤ 1 and e∗
1H ≤ 1.

2. when m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1, i.e., e∗

2H ≤ 1 and e∗
1H = 1.

3. when m2H ≥ 2k
αH

and
αHm1H−αHk+α2

H
m2H

2k
≤ 1, i.e., e∗

2H = 1 and e∗
1H ≤ 1.

4. when m2H ≥ 2k
αH

and
αHm1H−αHk+α2

H
m2H

2k
≥ 1, i.e., e∗

2H = 1 and e∗
1H = 1.

where e∗
1H and e∗

2H are the solution of the agent’s profit maximization problem (B.4), when

the payments are (m0H ,m1H ,m2H). In fact we only need to consider case 1, namely effort

levels in two periods take the forms e∗
2H = αHm2H

2k
and e∗

1H =
αHm1H+α

3

H
m

2

2H

4k

2k
. The reason is

allocated to the supplemental part.

Next we study the first scenario of the high-type principal’s profit maximization problem

in which the agent earns positive profit and the constraint to prevent the low-type principal

from mimicking the high-type one binds, i.e., (B.2) binding, but (B.5) not binding.

B.1.1 The first scenario

It is clear that when e∗
2H = αHm2H

2k
and e∗

1H =
αHm1H+α

3

H
m

2

2H

4k

2k
, (B.4) is solved and (B.5)

can be written as

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

≥ 0 (B.10)

Therefore, we can study the high-type principal’s profit maximization problem consisting

of (B.1), (B.2) and (B.10).

In fact, it will be shown later that the binding condition of (B.2) implies (B.10) under

certain conditions. Thus, we focus on the high-type principal’s profit maximization problem

consisting of (B.1) and (B.2). Its Lagrangian is



164

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) −m0H

+ λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α6

LV
4

64k3
+m0H − αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦
(B.11)

The first order condition of (B.11) with respect to m0H gives

−1 + λ1 = 0 (B.12)

which leads to λ1 = 1.

With λ1 = 1, the first order conditions of (B.12) with respect to m1H and m2H result in

α2

H

2k
[
α2

Hm2H

2k
(V −m2H) −m1H] − αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

−
αHαL

2k
[
αLαHm2H

2k
(V −m2H) −m1H] + αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
= 0 (B.13)

and

α4

Hm2H

4k2
[
α2

Hm2H

2k
(V −m2H) −m1H] + αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
α2

H

2k
(V − 2m2H)]

−
αLα

3

Hm2H

4k2
[
αLαHm2H

2k
(V −m2H) −m1H]

− αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
αLαH

2k
(V − 2m2H)] = 0

(B.14)

From (B.13), we have

α4

H

4k2
m2H(V −m2H) −

α2

H

2k
m1H −

α2

H

2k
m1H −

α4

Hm2

2H

8k2

−
α2

Hα2

L

4k2
m2H(V −m2H) +

αHαL

2k
m1H +

αHαL

2k
m1H +

αLα
3

Hm2

2H

8k2
= 0 (B.15)

Simplifying (B.15) gives

(α4

H − α2

Hα2

L)

4k2
m2H(V −m2H) −

(α4

H − αLα
3

H)m2

2H

8k2
=
(α2

H − αHαL)m1H

k
(B.16)

Dividing both sides of (B.16) by α2

H − αHαL leads to

(α2

H + αHαL)

4k2
m2H(V −m2H) −

α2

Hm2

2H

8k2
=
m1H

k
(B.17)
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namely,
(α2

H + αHαL)

4k
m2H(V −m2H) −

α2

Hm2

2H

8k
=m1H (B.18)

which implies

αHm1H +
α3

Hm2

2H

4k
=
(α3

H + α2

HαL)

4k
m2H(V −m2H) +

α3

Hm2

2H

8k
(B.19)

On the other hand, dividing (B.14) leads to

m2H [
α2

Hm2H

2k
(V −m2H) −m1H] + (m1H +

α2

Hm2

2H

4k
)(V − 2m2H)

−
αL

αH

m2H [
αLαHm2H

2k
(V −m2H) −m1H] − (

αL

αH

)
2

(m1H +
α2

Hm2

2H

4k
)(V − 2m2H) = 0

(B.20)

namely,

m2H [
α2

Hm2H

2k
(V −m2H) −m1H] + [1 − (

αL

αH

)
2

](m1H +
α2

Hm2

2H

4k
)(V − 2m2H)

−
αL

αH

m2H [
αLαHm2H

2k
(V −m2H) −m1H] = 0

(B.21)

Substituting (B.19) into (B.21) and canceling m2H from both sides of the equation gives

[
α2

Hm2H

2k
(V −m2H) −m1H]

+ [1 − (
αL

αH

)
2

]
⎡
⎢
⎢
⎢
⎣

(α2

H + αHαL)

4k
(V −m2H) +

α2

Hm2H

8k

⎤
⎥
⎥
⎥
⎦
(V − 2m2H)

−
αL

αH

[
αLαHm2H

2k
(V −m2H) −m1H] = 0 (B.22)

Substituting the expression of m1H in into (B.22) gives

(α2

H − αHαL)

4k
m2H(V −m2H) +

α2

Hm2

2H

8k

+ [1 − (
αL

αH

)
2

]
⎡
⎢
⎢
⎢
⎣

(α2

H + αHαL)

4k
(V −m2H) +

α2

Hm2H

8k

⎤
⎥
⎥
⎥
⎦
(V − 2m2H)

−
αL

αH

⎡
⎢
⎢
⎢
⎣

(αHαL − α2

H)

4k
m2H(V −m2H) +

α2

Hm2

2H

8k

⎤
⎥
⎥
⎥
⎦
= 0 (B.23)

which implies

(1 +
αL

αH

)
(α2

H − αHαL)

4k
m2H(V −m2H) + (1 −

αL

αH

)
α2

Hm2

2H

8k

+ [1 − (
αL

αH

)
2

]
⎡
⎢
⎢
⎢
⎣

(α2

H + αHαL)

4k
(V −m2H) +

α2

Hm2H

8k

⎤
⎥
⎥
⎥
⎦
(V − 2m2H) = 0 (B.24)
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namely,

(αH + αL)
(αH − αL)

4k
m2H(V −m2H) + (αH − αL)

αHm2

2H

8k

+ (α2

H − α2

L)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 + αL

αH
)

4k
(V −m2H) +

m2H

8k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(V − 2m2H) = 0 (B.25)

Multiplying both sides of (B.25) by 8k αH

αH−αL
gives

2αH(αH + αL)m2H(V −m2H) + α2

Hm2

2H

+ (αH + αL) [2(αH + αL)(V −m2H) + αHm2H] (V − 2m2H) = 0 (B.26)

which is

2αH(αH + αL)m2HV − 2αH(αH + αL)m
2

2H + α2

Hm2

2H

+ 2(αH + αL)
2 (V 2 − 3m2HV + 2m2

2H) + αH(αH + αL)m2HV − 2(αH + αL)αHm2

2H = 0

(B.27)

namely,

[3αH(αH + αL) − 6(αH + αL)
2]m2HV

+ [4(αH + αL)
2 − 4αH(αH + αL) + α2

H]m2

2H + 2(αH + αL)
2
V 2 = 0 (B.28)

Notice that (B.28) can be simplified as

(αH + 2αL)
2m2

2H − 3(αH + αL)(αH + 2αL)m2HV + 2(αH + αL)
2
V 2 = 0 (B.29)

namely,

[(αH + 2αL)m2H − (αH + αL)V ] [(αH + 2αL)m2H − 2(αH + αL)V ] = 0 (B.30)

The roots of (B.30) are

m2H = (
αH + αL

αH + 2αL

)V (B.31)

and

m2H = (
2αH + 2αL

αH + 2αL

)V (B.32)

Notice that when m2H = (2αH+2αL

αH+2αL
)V ,

m1H +
α2

Hm2

2H

4k
=

α2

H + αHαL

4k
m2H(V −m2H) +

α2

Hm2

2H

8k

= [
α2

H + αHαL

4k
(

−αH

αH + 2αL

)V +
α2

H

4k

(αH + αL)

αH + 2αL

V ]m2H

= 0 (B.33)

which implies e∗
1H = 0. Clearly this won’t give the high-type principal the maximal profit.

Therefore this root can be ruled out.
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When m2H = ( αH+αL

αH+2αL
)V ,

m1H +
α2

Hm2

2H

4k
=

α2

H + αHαL

4k
(V −m2H) +

α2

Hm2

2H

8k

= [
α2

H + αHαL

4k
(

αL

αH + 2αL

)V +
α2

H

8k

(αH + αL)

αH + 2αL

V ](
αH + αL

αH + 2αL

)V

> 0 (B.34)

which means e∗
1H > 0.

For this value of m2H ,

m1H =
α2

H + αHαL

4k
m2H(V −m2H) −

α2

Hm2

2H

8k

= [
α2

H + αHαL

4k
(

αL

αH + 2αL

)V −
α2

H

8k

(αH + αL)

αH + 2αL

V ](
αH + αL

αH + 2αL

)V

= [
α2

HαL + 2αHα2

L − α3

H

8k(αH + 2αL)
](

αH + αL

αH + 2αL

)V 2 (B.35)

Next we show that when V ≤ 2k
αH

, m2H < 1 and
αHm1H+α

3

H
m

2

2H

4k

2k
< 1.

Note that

m2H = (
αH + αL

αH + 2αL

)V < V ≤
2k

αH

(B.36)

and

αHm1H +
α3

H
m2

2H

4k

2k
=

αH

2k
[
α2

H + αHαL

4k
(

αL

αH + 2αL

)V +
α2

H

8k

(αH + αL)

αH + 2αL

V ](
αH + αL

αH + 2αL

)V

≤
αH

2k
[
α2

H + αHαL

4k
(

αL

αH + 2αL

) +
α2

H

8k

(αH + αL)

αH + 2αL

](
αH + αL

αH + 2αL

)
4k2

α2

H

<
αH + αL

2

1

3
+
αH

4

≤
7

12

< 1 (B.37)

Next we want to find when the agent’s participation constraint (B.5) i.e., (B.10) is

binding.

Notice that (B.5) is binding means that

m0H = αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) −

α6

LV
4

64k3
(B.38)
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Thus

m0H + k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

= αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

−
α6

LV
4

64k3
+ k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

=
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

⎡
⎢
⎢
⎢
⎢
⎣

α2

L

αHm2H

2k
(V −m2H) − αLm1H +

αHm1H +
α3

H
m2

2H

4k

2

⎤
⎥
⎥
⎥
⎥
⎦

−
α6

LV
4

64k3

(B.39)

Using (B.17), (B.18) and (B.31), we have

α2

L

αHm2H

2k
(V −m2H) − αLm1H +

αHm1H +
α3

H
m2

2H

4k

2k

=
αL (αHαL − α2

H)

4k
m2H(V −m2H) +

αLα
2

Hm2

2H

8k

+
α3

H + α2

HαL

4k
m2H(V −m2H) +

α3

Hm2

2H

16k

= m2H

αL (αHαL − α2

H)

4k
(

αL

αH + 2αL

V ) +m2H

αLα
2

H(αL + αH)

8k(αH + 2αL)
V

+m2H

α3

H + α2

HαL

8k
(

αL

αH + 2αL

V ) +m2H

α3

L(αL + αH)

16k(αH + 2αL)
V

= m2H

2αL (αLαH − α2

H)αLV + αLα
2

H (αL + αH)V + (α3

HαL + α2

Hα2

L)V

8k(αH + 2αL)

+m2H

1

2
α3

H(αL + αH)V

8k(αH + 2αL)

= m2H

(2α3

LαH − 2α2

Hα2

L)V + (α2

Lα
2

H + αLα
3

H)V + (α3

HαL + α2

Hα2

L)V

8k(αH + 2αL)

+m2H

1

2
α3

H(αL + αH)V

8k(αH + 2αL)

= m2H

2α3

LαHV + 2α3

HαLV + 1

2
α3

H(αL + αH)V

8k(αH + 2αL)
(B.40)

On the other hand, we have

αHm1H +
α3

H
m2

2H

4k

2k
=
(α3

H + α2

HαL)

8k2
αL(αL + αH)

(αH + 2αL)
2
V 2 +

α3

H

16k2
(αH + αL)

2

(αH + 2αL)
2
V 2 (B.41)
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It is clear that expression (B.40) is greater or equal to
5α3

L

24
V , expression (B.41) is greater

than or equal to
α3

L

12
V 2 and m2H is greater than or equal to 2

3
V . Therefore (B.39) is greater

than or equal to
5α6

L

144 × 3
V 4 −

α6

L

64
V 4 (B.42)

which is negative. This means that when αL and αH are close to each other, (B.39) is

negative. It is clear to see that when when the difference between αL and αH is large,

(B.39) is positive.

Notice that

αL
αHm2H

2k
(V −m2H)−m1H =m2H

αL (αHαL − α2

H)

4k
(

αL

αH + 2αL

V )+m2H

αLα
2

H(αL + αH)

8k(αH + 2αL)
V

(B.43)

Using the (B.21), (B.38) and (B.43), we can see that

αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) −

α6

LV
4

64k3
> 0 (B.44)

when the difference between αL and αH is large.

Denote αH

αL
by x, then m2H = ( αH+αL

αH+2αL
)V can be expressed as m2H = (x+1

x+2)V .

By expression (B.34), we have

m1H +
α2

Hm2

2H

4k
= α2

L (
x2 + x

4k(x + 2)
+
x2(x + 1)

8k(x + 2)
)(

x + 1

x + 2
)V 2 (B.45)

Thus

αH

⎛
⎜
⎝

m1H +
α2

H
m2

2H

4k

2k

⎞
⎟
⎠
=
α3

Lx

2k
(

x2 + x

4k(x + 2)
+
x2(x + 1)

8k(x + 2)
)(

x + 1

x + 2
)V 2 (B.46)

Using expression (B.35), i.e.,

m1H =
α2

H + αHαL

4k
m2H(V −m2H) −

α2

Hm2

2H

8k
(B.47)

we have

αH
αHm2H

2k
(V −m2H) −m1H

=
α2

H − αHαL

4k
m2H(V −m2H) +

α2

Hm2

2H

8k

= α2

L (
x2 − x

4k(x + 2)
+
x2(x + 1)

8k(x + 2)
)(

x + 1

x + 2
)V 2 (B.48)
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and

αL
αHm2H

2k
(V −m2H) −m1H

=
αHαL − α2

H

4k
m2H(V −m2H) +

α2

Hm2

2H

8k

= α2

L (
x − x2

4k(x + 2)
+
x2(x + 1)

8k(x + 2)
)(

x + 1

x + 2
)V 2 (B.49)

Notice that (B.38) gives

m0H = αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) −

α6

LV
4

64k3
(B.50)

Therefore

m0H +
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

= αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) −

α6

LV
4

64k3
+
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

=
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

⎛
⎜
⎝
αL

αHαL − α2

H

4k
m2H(V −m2H) + αLα

2

H

m2

2H

8k
+
αHm1H +

α3

H
m2

2H

4k

2

⎞
⎟
⎠

−
α6

LV
4

64k3
(B.51)

where
αHm1H+α

3

H
m

2

2H

4k

2k
can be expressed as (B.46), and

αL

αHαL − α2

H

4k
m2H(V −m2H) + αLα

2

H

m2

2H

8k
+
αHm1H +

α3

H
m2

2H

4k

2

= α3

L

(x − x2)(x + 1)

4k(x + 2)2
V 2 + α3

L

x2(x + 1)2

8k(x + 2)2
V 2 + α3

L

x2(x + 1)2

8k(x + 2)2
V 2 + α3

L

x3(x + 1)2

16k(x + 2)2
V 2

= α3

L

(x − x2)(x + 1)

4k(x + 2)2
V 2 + α3

L

x2(x + 1)2

4k(x + 2)2
V 2 + α3

L

x3(x + 1)2

16k(x + 2)2
V 2

= α3

L

(x + x3)(x + 1)

4k(x + 2)2
V 2 + α3

L

x3(x + 1)2

16k(x + 2)2
V 2 (B.52)

where for the first equality, we apply (B.46).

It is easy to show that (B.46) and (B.52) are increasing functions in x which equals

αH

αL
≥ 1, because x+1

x+2 and x2+1(x+2)2 are increasing functions in x. Let x = 1, then
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m0H +
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

=
α3

L

2k
(
2

4k

1

3
+

1

8k

2

3
)(

2

3
)V 2 ⋅ (α3

L

1

9k
+

1

36k
)V 2 −

α6

LV
4

64k3

= α6

L

1

12
⋅
5

36
V 2 −

α6

LV
4

64k3
(B.53)

which is less than 0. We can see that as long as x is greater than a critical value, the

(B.10) is no longer binding. In fact, we can find this critical value by solving the following

equation:

x

2
(
(x2 + x)(x + 1)

4(x + 2)2
+
x2(x + 1)2

8(x + 2)2
) ⋅ (

(x + x3)(x + 1)

4(x + 2)2
+
x3(x + 1)2

16(x + 2)2
) =

1

64
(B.54)

namely,

x (2(x2 + x)(x + 1) + x2(x + 1)2) (4(x + x3)(x + 1) + x3(x + 1)2) − 4(x + 2)4 = 0 (B.55)

Numerical result shows that x ≈ 1.063971 is the only real root of (B.55) which is great

than 1. Therefore this the critical point we want to find. This means that as long as

αH > 1.063971αL, the agent will participate when the high-type principal offers the contract.

Next, we want to know then m0H > 0.

By (B.38), we know that

m0H = αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) −

α6

LV
4

64k3

=
α6

Lx

2k
(
(x2 + x)(x + 1)

4k(x + 2)2
+
x2(x + 1)2

8k(x + 2)2
) ⋅ (

(x − x2)(x + 1)

4k(x + 2)2
+
x2(x + 1)2

8k(x + 2)2
)V 4 −

α6

LV
4

64k3

(B.56)

Thus m0H > 0 is equivalent to

x (2(x2 + x)(x + 1) + x2(x + 1)2) (2(x − x2)(x + 1) + x2(x + 1)2) − 2(x + 2)4 > 0 (B.57)

Numerical result shows that when x > 1.335236, (B.57) holds, while 1 ≤ x < 1.335236,(B.57)

is violated and equality does not hold. This means that as long as αH > 1.335236αL,

m0H > 0.
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The high-type principal’s profit is

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) −m0H

=
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
α3

L (
x(x2 − x)(x + 1)

4k(x + 2)2
+
x3(x + 1)2

8k(x + 2)2
−
(x − x2)(x + 1)

4k(x + 2)2
)V 4

−
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
α3

L (
x2(x + 1)2

8k(x + 2)2
)V 4 +

α6

LV
4

64k3

=
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
α3

L (
(x3 − x)(x + 1)

4k(x + 2)2
+
(x3 − x2)(x + 1)2

8k(x + 2)2
)V 4 +

α6

LV
4

64k3

=
α3

Lx

2k
(
(x2 + x)(x + 1)

4k(x + 2)2
+
x2(x + 1)2

8k(x + 2)2
) ⋅ α3

L (
(x3 − x)(x + 1)

4k(x + 2)2
)V 4

+
α3

Lx

2k
(
(x2 + x)(x + 1)

4k(x + 2)2
+
x2(x + 1)2

8k(x + 2)2
) ⋅ α3

L (
(x3 − x2)(x + 1)2

8k(x + 2)2
)V 4 +

α6

LV
4

64k3

=
α6

L [x2 (2(x + 1)2 + x(x + 1)2)x ((x2 − 1)(x + 1) + 1

2
(x2 − x)(x + 1)2) + (x + 2)4]

64k3(x + 2)4

(B.58)

It is clear that (B.58) is an increasing function in x, namely the high-type principal’s profit

increases as x increases when αL being held constant. On the other hand, the high-type

principal’s profit increases as αL increases when x being held constant.

On thing we want to show is that when (B.2) binds and (B.5) does not bind, (B.3) is

redundant.

In order to show that (B.147) is less than or equal to (B.58), it is equivalent to show

that

(4x8 − 4x7 + x6)(x + 2)4

≤ [x2 (2(x + 1)2 + x(x + 1)2)x((x2 − 1)(x + 1) +
1

2
(x2 − x)(x + 1)2) + (x + 2)4] (2x − 1)5

(B.59)

where

4x8 − 4x7 + x6 = x6(4x2 − 4x + 1) = x6(2x − 1)2 (B.60)

Thus, to show (B.59), it is equivalent to show

x6(x + 2)4

≤ [x2 (2(x + 1)2 + x(x + 1)2)x((x2 − 1)(x + 1) +
1

2
(x2 − x)(x + 1)2) + (x + 2)4] (2x − 1)3

(B.61)
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namely,

x6(x + 2)4

≤ [x3 (x3 + 4x2 + 5x + 2)(
1

2
x4 +

3

2
x3 +

1

2
x2 −

3

2
x − 1) + (x + 2)4] (2x − 1)3

(B.62)

Denote F (x) be the expression

[x3 (x3 + 4x2 + 5x + 2)(
1

2
x4 +

3

2
x3 +

1

2
x2 −

3

2
x − 1) + (x + 2)4] (2x − 1)3 −x6(x + 2)4 (B.63)

Using Maple we can find that polynomial F (x) has only a real root at x = 1, when x ≥ 0.

Since F (x) increases to positive infinity as x increases, this means F (x) is positive when

x > 1 and equals 0 when x = 1. This shows that (B.63) always holds when x ≥ 1.

For the separating equilibrium, one interesting question is whether m1H > 0 or < 0.

Applying x = αH

αL
to (B.35), we have

m1H =
α2

H + αHαL

4k
m2H(V −m2H) −

α2

Hm2

2H

8k

= (
α2

H + αHαL

4k

αL

αH + 2αL

−
α2

H(αH + αL)

8k(αH + 2αL)
)

αH + αL

αH + 2αL

= (
2(α2

H + αHαL)αL − α3

H − α2

HαL

8k(αH + 2αL)
)

αH + αL

αH + 2αL

= (
α2

HαL + 2αHα2

L − α3

H

8k(αH + 2αL)
)

αH + αL

αH + 2αL

= α2

L (
x2 + 2x − x3

8k(x + 2)
)
x + 1

x + 2

= α2

L

x(2 − x)(x + 1)2

8k(x + 2)2
(B.64)

Thus, m1H > 0 when 0 ≤ x < 2, and m1H < 0 when x > 2.

Taking the derivative of (B.64) with respect to x gives

(2 − 2x)(x + 1)2 + (2x − x2) ⋅ 2(x + 1)) (x + 2)2 − (2x − x2)(x + 1)2 ⋅ 2(x + 2)

8k(x + 2)4

=
[((2 − 2x)(x + 1) + (2x − x2) ⋅ 2) (x + 2) − (2x − x2)(x + 1) ⋅ 2] (x + 1)(x + 2)

8k(x + 2)4

=
[(2 + 4x − 4x2)(x + 2) − (4x − 2x2)(x + 1)] (x + 1)(x + 2)

8k(x + 2)4

=
(2x + 4x2 − 4x3 + 4 + 8x − 8x2 − 4x2 + 2x3 − 4x + 2x2) (x + 1)(x + 2)

8k(x + 2)4

=
(−2x3 − 6x2 + 6x + 4) (x + 1)(x + 2)

8k(x + 2)4
(B.65)
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Numerical result shows that (B.65) is positive when 1 ≤ x < 1.145103, and negative when

x > 1.145103. This means that m1H is an increasing function in x when 1 ≤ x < 1.145103,

and a decreasing function in x when x > 1.145103.

Next we study the second scenario of the high-type principal’s profit maximization

problem in which the agent earns zero profit and the constraint to prevent the low-type

principal from mimicking the high-type one binds, i.e., both (B.2) binding and (B.5) binding.

B.1.2 The second scenario

In the second scenario, the Lagrangian for the high-type principal’s profit maximization

problem is

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) −m0H

+ λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α6

LV
4

64k3
+m0H − αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+λ2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.66)

Since (B.10) is binding, we have

m0H = −k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

(B.67)

Using this, the Lagrangian of the high-type principal’s profit maximization problem becomes

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) + k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

+ λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α6

LV
4

64k3
− k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

− λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.68)

We claim that (B.3) does not bind, i.e., redundant. Notice that constraint (B.3) can be

written as
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αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) + k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

≥
α6

Lx
6V 4

64k3(2x − 1)3

(B.69)

where the right side is LM (see (B.147)).

Since both (B.2) and (B.5) are binding, from the expression of the constraint in (B.66),

we have

α6

LV
4

64k3
= k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

− αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

(B.70)

Let

m2H =
1

x1.5
V (B.71)

with x = αH

αL
and

m1H = αL
αHm2H

2k
(V −m2H) = α2

L

x 1

x1.5V

2k
(V −

1

x1.5
V ) (B.72)

Substituting the expressions of m1H and m2H into the left side of (B.69) results in an

expression in x. Denoting it by F (x). Thus to show (B.69) does not bind is equivalent to

show

F (x) >
α6

Lx
6V 4

64k3(2x − 1)3
(B.73)

when x > 1. Notice that α6

L and V 4 can be canceled from both sides of (B.73). Using

Maple, either directly calculating the difference between the right side and the left side of

(B.73) or calculating the real roots of an polynomial equation which is equivalent to (B.73)

with equality holding, we find that (B.73) always holds for x > 1. This shows that (B.69)

does not bind, namely, (B.3) is redundant.

Next we look at the first order conditions of the Lagrangian (B.68).

The first order condition of (B.68) with respect to m1H gives

α2

H

2k
[
α2

Hm2H

2k
(V −m2H) −m1H] − αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
+ αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

+λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(αH − αL)
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
−
αHαL

2k
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(B.74)
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which means that

α4

H

4k2
m2H(V −m2H) −

α2

H

2k
m1H − λ1

(α2

H − 2αHαL)

2k
m1H

−λ1

(α4

H − αLα
3

H)m2

2H

8k2
− λ1

α2

Hα2

L

4k2
m2H(V −m2H) = 0 (B.75)

Simplifying (B.75) leads to

α2

H + λ1α
2

H − 2λ1αHαL

2k
m1H =

(α4

H − λ1α
2

Hα2

L)

4k2
m2H(V −m2H) −

λ1 (α
4

H − αLα
3

H)

8k2
m2

2H

(B.76)

which gives

m1H =
(α4

H − λ1α
2

Hα2

L)

2k (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) −

λ1 (α
4

H − αLα
3

H)

4k (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

(B.77)

The first order condition with respect to m2H gives

α4

Hm2H

4k2
[
α2

Hm2H

2k
(V −m2H) −m1H] + αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
α2

H

2k
(V −m2H)]

+λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
α3

Hm2H

2k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
−
αLα

3

Hm2H

4k2
(
αHαLm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(
αLαH

2k
(V − 2m2H))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(B.78)

Notice that

αHm1H +
α3

H
m2

2H

4k

2k

=
(α5

H − λ1α
3

Hα2

L)

4k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) −

λ1 (α
5

H − αLα
4

H)

8k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

+
α3

Hm2

2H

8k2

=
(α5

H − λ1α
3

Hα2

L)

4k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) +

(α5

H − λ1αLα
4

H)

8k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

(B.79)

α2

Hm2H

2k
(V −m2H) −m1H

=
(λ1α

4

H − 2λ1α
3

HαL + λ1α
2

Hα2

L)

2k (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) +

λ1 (α
4

H − αLα
3

H)

4k (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

(B.80)
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and

αLαHm2H

2k
(V −m2H) −m1H

=
(α3

HαL + λ1α
3

HαL − λ1α
2

Hα2

L − α4

H)

2k (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) +

λ1 (α
4

H − αLα
3

H)

4k (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

(B.81)

Substituting (B.79), (B.80) and (B.81) into (B.78) and multiplying it by 16k3 leads to

2α4

H (λ1α
4

H − 2λ1α
3

HαL + λ1α
2

Hα2

L)m
2

2H(V −m2H) + λ1α
4

H (α4

H − αLα
3

H)m3

2H

+2α3

H (α5

H − λ1α
3

Hα2

L)m2H(V −m2H)2 + α3

H (α5

H − λ1αLα
4

H)m2

2H(V −m2H)

−2λ1α
3

H (α5

H − λ1α
3

Hα2

L)m
2

2H(V −m2H) − λ1α
3

H (α5

H − λ1αLα
4

H)m3

2H

−αLα
3

H (α3

HαL + λ1α
3

HαL − 2λ1α
2

Hα2

L − α4

H)m2

2H(V −m2H)

+λ1αLα
3

H (α4

H − αLα
3

H)m3

2H

−2λ1α
2

LαH (α5

H − λ1α
3

Hα2

L)m2H(V −m2H)(V − 2m2H)

−λ1α
2

LαH (α5

H − λ1αLα
4

H)m2

2H(V − 2m2H)

= 0

(B.82)

It is clear that one m2H can be factored out of the equation (B.82). Thus we can obtain a

quadratic equation of m2H with unknown parameter λ1. Notice that the binding constraint

that appears in (B.68) forms another equation of m2H and λ1, namely

α6

LV
4

64k3
−k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

−αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) = 0

(B.83)

where
αHm1H+α

3

H
m

2

2H

4k

2k
and αL

αHm2H

2k
(V −m2H) −m1H have expressions (B.79) and (B.81).

Thus with these two equations of m2H and λ1, we are able to solve for them.

We claim that as the solution of (B.82) and (B.83), m2H and λ1 are functions of x = αH

αL

and V .

By (B.79) and (B.80), we have

αHm1H +
α3

H
m2

2H

4k

2k

=
(α5

H − λ1α
3

Hα2

L)

4k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) +

(α5

H − λ1αLα
4

H)

8k2 (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

=
α3

L (x5 − λ1x
3)

4k2 (x2 + λ1x2 − 2λ1x)
m2H(V −m2H) +

α3

L (x5 − λ1x
4)

8k2 (x2 + λ1x2 − 2λ1x)
m2

2H (B.84)
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and

α2

Hm2H

2k
(V −m2H) −m1H

=
(λ1α

4

H − 2λ1α
3

HαL + λ1α
2

Hα2

L)

2k (α2

H + λ1α
2

H − 2λ1αHαL)
m2H(V −m2H) +

λ1 (α
4

H − αLα
3

H)

4k (α2

H + λ1α
2

H − 2λ1αHαL)
m2

2H

=
α2

L (λ1x
4 − 2λ1x

3 + λ1x
2)

2k (x2 + λ1x2 − 2λ1x)
m2H(V −m2H) +

α2

Lλ1 (x
4 − x3)

4k (x2 + λ1x2 − 2λ1x)
m2

2H

(B.85)

Substituting (B.84) and (B.85) into (B.83) and dividing it by
α6

L

k3
, we obtain an equation

in m2H , λ1, V and x.

On the other hand, (B.82) can be rewritten as

2α8

L (λ1x
8 − 2λ1x

7 + λ1x
6)m2

2H(V −m2H) + λ1α
8

L (x8 − x7)m3

2H

+2α8

L (x8 − λ1x
6)m2H(V −m2H)2 + α8

L (x8 − λ1x
7)m2

2H(V −m2H)

−2λ1α
8

L (x8 − λ1x
6)m2

2H(V −m2H) − λ1α
8

L (x8 − λ1x
7)m3

2H

−α8

L (x6 + λ1x
6 − 2λ1x

5 − x7)m2

2H(V −m2H) + λ1α
8

L (x7 − x6)m3

2H

−2λ1α
8

L (x6 − λ1x
4)m2H(V −m2H)(V − 2m2H) − λ1α

8

L (x6 − λ1x
5)m2

2H(V − 2m2H)

= 0

(B.86)

Dividing (B.86) by α8

L gives another equation in m2H , λ1, V and x.

Therefore the solution for m2H and λ of these two new equations would only depends

on x and V . It is easy to see that the high-type principal’s maximum profit can be written

as
α
L

k3
f(x,V ), where f(x,V ) is a function only depends on x and V .

B.1.3 Supplements

In this part, we will calculate LM and LM and show that we only need to consider

the situation in which effort levels in two periods take the forms e∗
2H = αHm2H

2k
and e∗

1H =

αHm1H+α
3

H
m

2

2H

4k

2k
.

First we show that LM =
α6

L
V 4

64k3
.

Under complete information, which means that the low-type principal’s type is known

to the agent, by offering the menu of money transfers (m0L,m1L,m2L) to the low agent

and (m0H ,m1H ,m2H) to the high-type agent, the low-type principal wants to maximize her

expected profit:

αLe1L (αLe2L(V −m2L) −m1L) −m0L (B.87)
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Considering (m0L,m1L,m2L), the low-type agent would like to maximize his expected profit:

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (B.88)

where 0 ≤ e1L ≤ 1 and 0 ≤ e2L ≤ 1 and (B.88) ≥ 0 as the participation constraint.

We can assume e1L and e2L are positive and don’t need to consider the scenarios when

some of them are 0. The reason is the following.

If e1L = 0, the agent’s expected profit (B.88) becomes m0L, which has to be nonnegative

in order for the agent to participate. Thus the principal’s expected profit (B.87) satisfies

αLe1L (αLe2L(V −m2L) −m1L) − m0L = −m0L ≤ 0. Clearly, this can’t be the maximum

location the principal anticipates.

If e2L = 0, the agent’s expected profit (B.88) becomes m0L − ke2
1L + αLe1Lm1L, which

is nonnegative to ensure the participation of the agent. Therefore the principal’s expected

profit (B.87) satisfies −αLe1Lm2L − m0L ≤ −ke2
1L ≤ 0. It is clear that this won’t be the

maximum location the principal looks for.

Next we will find the expressions of the optimal efforts e∗
1L and e∗

2L for given m0L, m1L

and m2L, corresponding to (B.88).

Notice that the Lagrangian for the maximization problem of the low-type expected profit

with e1L and e2L as the decision variables is

m0L − ke21L + αLe1Lm1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L + λ1(1 − e1L) + λ2(1 − e2L) (B.89)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers.

The first order conditions of (B.89) with respect to e1L and e2L as follows:

−2ke1L + αLm1L − αLke
2

2L + α2

Le2Lm2L − λ1 = 0 (B.90)

αLe1L (−2ke2L + αLm2L) − λ2 = 0 (B.91)

which lead to the optimal efforts e∗
1L and e∗

2L satisfying

e∗2L =
αLm2L − λ2

αLe
∗
1L

2k
(B.92)

e∗1L =
αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L − λ1

2k
(B.93)

where 0 < e∗
2L ≤ 1 and 0 < e∗

1L ≤ 1.

There are four situations for consideration:
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1. When λ1 > 0 and λ2 > 0, e∗
1L = 1 and e∗

2L = 1. By (B.88), the low-type agent’s expected

profit is

m0L − k + αLm1L − αLk + α2

Lm2L (B.94)

Since λ1 > 0, λ2 > 0, e∗
1L = 1 and e∗

2L = 1, (B.92) and (B.93) imply that

αLm1L − αLk + α2

Lm2L

2k
> 1

and αLm2L

2k
> 1.

2. When λ1 > 0 and λ2 = 0, e∗
1L = 1 and e∗

2L = αLm2L

2k
≤ 1. By (B.88), the low-type agent’s

expected profit is

m0L − k + αLm1L − αLk(
αLm2L

2k
)
2

+ α2

L

αLm2L

2k
m2L

= m0L − k + αLm1L +
α3

Lm
2

2L

4k
(B.95)

Since λ1 > 0 and e∗
1L = 1, (B.93) implies that

αLm1L+α
3

L
m

2

2L

4k

2k
> 1.

3. When λ1 = 0 and λ2 > 0, e∗
1L =

αLm1L−αLk+α2

L
m2L

2k
≤ 1 and e∗

2L = 1, namely, 2ke∗
1L =

αLm1L − αLk + α2

Lm2L. By (B.88), the low-type agent’s expected profit is

m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lke

∗
2L

2 + α2

Le
∗
1Le
∗
2Lm2L

= m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lk + α2

Le
∗
1Lm2L

= m0L − ke∗1L2
+ e∗1L [αLm1L − αLk + α2

Lm2L]

= m0L − ke∗1L2
+ e∗1L2ke∗1L

= m0L + ke∗1L2

= m0L + k(
αLm1L − αLk + α2

Lm2L

2k
)

2

(B.96)

Since λ2 > 0, (B.92) implies that αLm2L

2k
> 1.

4. When λ1 = 0 and λ2 = 0, by (B.92) and (B.93), e∗
2L = αLm2L

2k
≤ 1 and

e∗1L =
αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L

2k

=
αLm1L − αLk(

αLm2L

2k
)
2
+ α2

L
αLm2L

2k
m2L

2k

=
αLm1L +

α3

L
m2

2L

4k

2k
(B.97)

which is less than or equal to 1.
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By (B.88), the low-type agent’s expected profit is

m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lke

∗
2L

2 + α2

Le
∗
1Le
∗
2Lm2L

= m0L − ke∗1L2
+ αLe

∗
1Lm1L − αLe

∗
1Lk + α2

Le
∗
1Lm2L

= m0L − ke∗1L2
+ e∗1L [αLm1L − αLke

∗
2L

2 + α2

Le
∗
2Lm2L]

= m0L − ke∗1L2
+ e∗1L2ke∗1L

= m0L + ke∗1L2

= m0L + k
⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

(B.98)

With the availability of the expressions of the optimal efforts e∗
1L and e∗

2L for given

(m0L,m1L,m2L), we are able to solve two principal’s expected profit maximization problem

consisting of (B.87) and (B.88). Next, we will solve the maximization problem consisting

of (B.87) and (B.88).

Notice that (B.88) equals 0, instead of being just nonnegative. To show it, using the

fact that the optimal efforts e∗
1L, e

∗
2L depend only on m1L and m2L, we can write e∗

1L and

e∗
2L as f1(m1L,m2L) and f2(m1L,m2L), respectively, functions of m1L and m2L. Thus the

first order condition with respect to m0L of the Lagrangian for the principal’s expected

profit maximization problem consisting of (B.87) and (B.88) leads to the positivity of the

Lagrangian multiplier for the participation constraint–(B.88) ≥ 0. This means that (B.88)

equals 0, namely, the participation constraint is binding.

Using the binding participation constraint–(B.88) equals 0–to replace m0L in the ex-

pression (B.87) and taking into account the four scenarios we discussed in (B.94) through

(B.98), we have the following four scenarios for consideration for the the principal’s expected

profit maximization problem consisting (B.87) and (B.88).

1. When m2L ≤ 2k
αL

and
αLm1L+α

3

L
m

2

2L

4k

2k
≤ 1, i.e., e∗

2L ≤ 1 and e∗
1L ≤ 1. The Lagrangian for

the maximum of the principal’s expected profit equals

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αL

αLm2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

+λ1 (
2k

αL

−m2L) + λ2

⎛
⎜
⎝
1 −

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

(B.99)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers.
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The first order conditions of (B.99) with respect to m1L and m2L lead to

α2

L

2k
(
α2

Lm2L

2k
(V −m2L) −m1L) − λ2

αL

2k
= 0 (B.100)

α4

L

2m2L

8k2
(
α2

Lm2L

2k
(V −m2L) −m1L)

+αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L)) − λ1 − λ2α

3

L

2m2L

4k2
= 0 (B.101)

Multiplying (B.100) by α3

L
2m2L

4k2
and subtracting the product from (B.101) gives

αL

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(
α2

L

2k
(V −m2L)) − λ1 = 0 (B.102)

There are three cases for consideration:

(a) When λ1 > 0, m2L = 2k
αL

. The Lagrangian equals

αL (
αLm1L + αLk

2k
)(αL (V −

2k

αL

) −m1L) + k(
αLm1L + αLk

2k
)
2

+λ̃1 (1 −
αLm1L + αLk

2k
) (B.103)

where λ̃1 ≥ 0 is a Lagrangian multiplier.

The first order condition of (B.103) with respect to m1L is

α2

L

2k
(αL (V −

2k

αL

) −m1L) − λ̃1

αL

2k
= 0 (B.104)

When λ̃1 = 0, m1L = αL (V − 2k
αL

). So the principal’s expected profit equals

k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α2

L (V − 2k
αL

) + αLk

2k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

= k(
α2

LV − αLk

2k
)

2

(B.105)

Notice that
α2

L
(V − 2k

αL
)+αLk

2k
≤ 1.

When λ̃1 > 0, αLm1L+αLk
2k

= 1, namely m1L = 2k
αL

−k. Thus the principal’s expected

profit equals

αL (αL (V −
2k

αL

) + k −
2k

αL

) = α2

LV − αLk − 2k (B.106)

It is easy to see that (B.105) is greater than (B.106).
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(b) When λ2 > 0,
αLm1L+α

3

L
m

2

2L

4k

2k
= 1 which implies that m1L = 2k

αL
−

α2

L
m2

2L

4k
. The

Lagrangian equals

αL (αL
αLm2L

2k
(V −m2L) −

2k

αL

+
α2

Lm
2

2L

4k
) + k + λ̃2 (

αL

2k
−m2L) (B.107)

where λ̃2 ≥ 0 is a Lagrangian multiplier.

The first order condition of (B.107) gives

α3

L

2k
(V −m2L) − λ̃2 = 0 (B.108)

When λ̃2 > 0, m2L = αL

2k
, which means that

αLm1L+α
3

L
m

2

2L

4k

2k
= 1 is equivalent to

αLm1L+αLk
2k

= 1. Thus the principal’s expected profit has the same value as in

(B.106), which is less than or equal to the value in (B.105).

When λ̃2 = 0, V =m2L. Thus the principal’s expected profit equals

−k +
α3

LV
2

4k
(B.109)

which is ≤ −k + αLk < 0, since V = m2L ≤ 2k
αL

. Thus (B.109) can’t be the local

maximum, compared with (B.105).

(c) When λ1 = 0 and λ2 = 0, from (B.102) and (B.100), we have m2L = V and

m1L = 0. Since m2L ≤ 2k
αL

, V ≤ 2k
αL

. The principal’s expected profit equals

k
⎛
⎜
⎝

α3

L
V 2

4k

2k

⎞
⎟
⎠

2

(B.110)

Notice that comparing (B.110) with (B.105), we have

k
⎛
⎜
⎝

α3

L
V 2

4k

2k

⎞
⎟
⎠

2

≥ k(
α2

LV − αLk

2k
)

2

(B.111)

where the equality holds only when V = 2k
αL

, because
α3

L
V 2

4k
≥ α2

LV − αLk.

One more thing we need to show is that the expected profit obtained from the above

discussion is local maximal. The reason is the following.

0 ≤ e∗
2L = αLm2L

2k
≤ 1 and 0 ≤ e∗

1L =
αLm1L+α

3

L
m

2

2L

4k

2k
≤ 1 ensure that m1L and m2L

are bounded in absolute value. This means that the expression of the principal’s
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expected profit in (B.99) is also bounded in absolute value. Thus, the maximum

of the principal’s expected profit exists and the unique solution of the first order

conditions of the Lagrangian above provides the only candidate for the location of the

maximum. Therefore the expected profit obtained is local maximal.

2. When m2L ≤ 2k
αL

and
αLm1L+α

3

L
m

2

2L

4k

2k
≥ 1, i.e., e∗

2L ≤ 1 and e∗
1L = 1. The Lagrangian for

the maximum of the principal’s expected profit equals

αL ⋅ 1 ⋅ (αL
αLm2L

2k
(V −m2L) −m1L) + (−k + αLm1L +

α3

Lm
2

2L

4k
)

+λ1 (
2k

αL

−m2L) + λ2

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k
− 1

⎞
⎟
⎠

(B.112)

The first order condition of (B.112) with respect to m1L and m2L are

λ2

αL

2k
= 0 (B.113)

α3

L

2k
(V −m2L) − λ1 + λ2α

3

L

m2L

4k2
= 0 (B.114)

where (B.113) gives λ2 = 0. Thus (B.114) becomes

α3

L

2k
(V −m2L) − λ1 = 0 (B.115)

When λ1 > 0, m2L = 2k
αL

. Thus (B.115) implies that V must be greater than 2k
αL

. The

principal’s expected profit equals

αL ⋅ 1 ⋅ (αL (V −
2k

αL

) −m1L) + (−k + αLm1L + αLk)

= α2

LV − αLk − k (B.116)

When λ1 = 0, m2L = V . Thus the principal’s expected profit equals

−k +
α3

LV
2

4k
(B.117)

which is less than or equal to −k + αLk < 0, because m2L ≤ 2k
αL

.

To show the expected profit obtained above is local maximal, we notice that with

0 ≤ e∗
2L = αLm2L

2k
≤ 1, the expression of the principal’s expected profit in (B.112) as

a function of m2L (with m1L being eliminated) is bounded in absolute value, and

thereby has a maximum. Thus the unique solution of the first order conditions must

be the location of the local maximal expected profit.
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3. When m2L ≥ 2k
αL

and αLm1L − αLk + α2

Lm2L ≤ 2k, i.e., e∗
2L = 1 and e∗

1L ≤ 1. The

Lagrangian for the maximum of the principal’s expected profit is

αL (
αLm1L − αLk + α2

Lm2L

2k
)(αL(V −m2L) −m1L)

+k(
αLm1L − αLk + α2

Lm2L

2k
)

2

+λ1 (m2L −
2k

αL

) + λ2(2k − αLm1L + αLk − α2

Lm2L) (B.118)

The first order conditions of (B.118) with respect to m1L and m2L are

α2

L

2k
(αL (V −m2L) −m1L) − λ2αL = 0 (B.119)

α3

L

2k
(αL (V −m2L) −m1L) + λ1 − λ2α

2

L = 0 (B.120)

Multiplying (B.119) by αL and subtracting the product from (B.120) gives λ1 = 0.

When λ2 > 0, αLm1L − αLk + α2

Lm2L = 2k, namely, αLm2L +m1L = 2k
αL

+ k. Then the

principal’s expected profit becomes

αL (αLV −
2k

αL

− k) + k = α2

LV − αLk − k (B.121)

When λ2 = 0, (B.119) implies that αL(V −m2L)−m1L = 0, which means that αLm2L+

m1L = αLV . The principal’s expected profit equals

k(
α2

LV − αLk

2k
)

2

(B.122)

which is greater than or equal to α2

LV − αLk − k, with the equality holding when

α2

LV − αLk = 2k. Notice that the constraint αLm1L − αLk + α2

Lm2L ≤ 2k implies that

α2

LV − αLk ≤ 2k, because αLm2L +m1L = αLV . Therefore, when α2

LV − αLk ≤ 2k,

k(
α2

LV − αLk

2k
)

2

≥ α2

LV − αLk − k (B.123)

where the equality holds only when α2

LV − αLk = 2k.

To show the expected profit obtained above is local maximal, we notice that with

0 ≤
αLm1L−αLk+α2

L
m2L

2k
≤ 1, the expression of the principal’s expected profit in (B.118)

as a function of αLm1L − αHk + α2

Lm2L is bounded in absolute value, and thereby

has a maximum. Thus the unique solution of the first order conditions must be the

location of the local maximal expected profit.
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4. When m2L ≥ 2k
αL

and αLm1L − αLk + α2

Lm2L ≥ 2k, i.e., e∗
2L = 1 and e∗

1L = 1. The

Lagrangian for the maximum of the principal’s expected profit equals

αL (αL(V −m2L) −m1L) + (−k + αLm1L − αLk + α2

Lm2L)

+λ1 (m2L −
2k

αL

) + λ2 (αLm1L − αLk + α2

Lm2L − 2k) (B.124)

It is easy to see that the first order conditions of (B.124) give λ1 = 0 and λ2 = 0.

Notice that the principal’s expected profit equals

αL (αL(V −m2L) −m1L) + (−k + αLm1L − αLk + α2

Lm2L)

= α2

LV − αLk − k (B.125)

The constancy of the principal’s expected profit implies that it is also local maximum.

In summary, the optimal money transfers (m∗
0L,m

∗
1L,m

∗
2L) offered to the agent by the

low-type principal and the principal’s expected profit satisfy

1. When V ≤ 2k
αL

, m∗
2L = V , m∗

1L = 0,

m∗0L = −
α6

LV
4

64k3
(B.126)

and the principal’s expected profit equals

α6

LV
4

64k3
(B.127)

2. When V ≥ 2k
αL

and α2

LV − αLk ≤ 2k, m∗
2L ≥ 2k

αL
, αLm

∗
2L +m∗

1L = αLV .

m∗0L = −k(
α2

LV − αLk

2k
)

2

(B.128)

and the principal’s expected profit equals

k(
α2

LV − αLk

2k
)

2

(B.129)

3. When V ≥ 2k
αL

and α2

LV − αLk ≥ 2k, m∗
2L ≥ 2k

αL
and αLm

∗
1L − αLk + α2

Lm
∗
2L ≥ 2k.

m∗0L = −k + αLm
∗
1L − αLk + α2

Lm
∗
2L ≥ k (B.130)

and the principal’s expected profit equals

α2

LV − αLk − k (B.131)
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Using the same procedure as that of finding LM above , we can show that LM is the

maximum of the following expression

αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + k

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠

2

(B.132)

In the following, we calculate LM .

The first order condition of (B.132) with respect to m̃1L is

αHαL

2k
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + (αL − αH)

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
= 0 (B.133)

The first order condition of (B.132) with respect to m̃2L is

αHα3

Lm2

4k2
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(
αHαL

2k
(V − 2m̃2L))

+
α3

Lm̃2L

2k

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
= 0 (B.134)

Notice that (B.133) is equivalent to

α2

Hα2

L

4k
m̃2L(V − m̃2L) +

α4

Lm̃
2

2L

8k2
−
αHα3

Lm̃
2

2L

8k2
−
αHαL

k
m̃1L +

α2

L

2k
m̃1L = 0 (B.135)

namely

α2

Hα2

L

4k
m̃2L(V − m̃2L) +

α4

Lm̃
2

2L

8k2
−
αHα3

Lm̃
2

2L

8k2
=
2αHαL − α2

L

2k
m̃1L (B.136)

On the other hand, multiplying (B.133) by
α2

L
m̃2L

2k
and subtracting it from (B.134) gives

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(
α2

HαL

2k
(V − 2m̃2L) +

α2

L

2k
m̃2L − (αL − αH)

α2

L

2k
m̃2L) = 0 (B.137)

which means that

V = (2 −
αL

αH

) m̃1L (B.138)

because
⎛

⎝

αLm̃1L+α
3

L
m̃

2

2L

4k

2k

⎞

⎠
as the effort in the first stage has to be positive. Thus (B.138)

gives

m̃2L =
αH

2αH − αL

V (B.139)

Substituting (B.139) into (B.136) gives

α2

Hα2

LαH(αH − αL)V
2

4k2(2αH − αL)
2

+
(α4

L − αHα3

L)α
2

HV 2

8k2(2αH − αL)
2

=
2αHαL − α2

L

2k
m̃1L (B.140)
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namely

2α2

Hα2

LαH(αH − αL)V
2 + (α4

L − αHα3

L)α
2

HV 2

8k2(2αH − αL)
2

=
2αHαL − α2

L

2k
m̃1L (B.141)

which is equivalent to

m̃1L =
(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H)V 2

4k(2αH − αL)
3

(B.142)

Therefore, we have

αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠

=
αHαL

2k
(m̃1L +

α2

Lm̃
2

2L

4k
)

=
αHαL

2k

⎡
⎢
⎢
⎢
⎣

(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H)V 2

4k(2αH − αL)
3

+
α2

Lα
2

HV 2

4k(2αH − αL)
2

⎤
⎥
⎥
⎥
⎦

=
αHαL

2k

(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H + α2

Lα
2

H(2αH − αL))V
2

4k(2αH − αL)
3

=
α4

Hα2

L(2αH − αL)V
2

8k2(2αH − αL)
3

=
α4

Hα2

LV
2

8k2(2αH − αL)
2

(B.143)

αH
αLm̃2L

2k
(V − m̃2L) − m̃1L

= αHαL
αH

2k(2αH − αL)
(
αH − αL

2αH − αL

)V 2 −
(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H)V 2

4k(2αH − αL)
3

=
2α2

HαL(αH − αL)(2αH − αL) − 2α4

HαL + 3α3

Hα2

L − α3

Lα
2

H

4k(2αH − αL)
3

V 2

=
(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H)V 2

4k(2αH − αL)
3

(B.144)

and

k
⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠

2

= k(
α3

Hα2

LV
2

8k2(2αH − αL)
2
)

2

=
α6

Hα4

LV
4

64k3(2αH − αL)
4

(B.145)

Thus
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αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + k

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠

2

=
α4

Hα2

LV
2

8k2(2αH − αL)
2

(2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H)V 2

4k(2αH − αL)
3

+
α6

Hα4

LV
4

64k3(2αH − αL)
4

=
2α4

Hα2

L (2α4

HαL − 3α3

Hα2

L + α3

Lα
2

H) + α6

Hα4

L(2αH − αL)

64k3(2αH − αL)
5

V 4

=
4α8

HαL − 4α7

Hα4

L + α6

Hα5

L

64k3(2αH − αL)
5

V 4 (B.146)

Denoting αH

αL
by x, (B.146) can be expressed as

α6

L (4x8 − 4x7 + x6)V 4

64k3(2x − 1)5
=

α6

LV
4

64k3(2x − 1)3
(B.147)

Next we show that for the discussion of the separating equilibrium, we only need to

consider the situation in which effort levels in two periods take the forms e∗
2H = αHm2H

2k
and

e∗
1H =

αHm1H+α
3

H
m

2

2H

4k

2k
.

As we mentioned, there are four cases depending on the different ranges that m2H and

αHm1H+α
3

H
m

2

2H

4k

2k
take.

1. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1, namely e∗

2H = 1 and e∗
1H = 1.

Assuming (B.10) is not binding, the Lagrangian of the high-type principal’s profit is

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α6

LV
4

64k3
− αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝
1 −

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

(B.148)

The first order conditions of (B.148) with respect to m1H and m2H result in

α2

H

2k
[
α2

Hm2H

2k
(V −m2H) −m1H] − αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

−
αHαL

2k
[
αLαHm2H

2k
(V −m2H) −m1H] + αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
− λ2

αH

2k
= 0

(B.149)
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and

α4

H
m2H

4k2
[
α2

H
m2H

2k
(V −m2H) −m1H] + αH

⎛
⎜
⎝

αHm1H +
α

3

H
m

2

2H

4k

2k

⎞
⎟
⎠
[
α2

H

2k
(V − 2m2H)]

−
αLα

3

H
m2H

4k2
[
αLαHm2H

2k
(V −m2H) −m1H] − αL

⎛
⎜
⎝

αHm1H +
α

3

H
m

2

2H

4k

2k

⎞
⎟
⎠
[
αLαH

2k
(V − 2m2H)]

−λ1 − λ2

α3

H
m2H

4k2
= 0

(B.150)

There are several cases:

(a) When λ1 = 0 and λ2 = 0, this is the situation we discussed in (B.11), (B.12),

(B.13) and (B.14).

(b) When λ1 > 0 and λ2 = 0, m2H = 2k
αH

. Then (B.149) becomes

α2

H

2k
[αH (V −

2k

αH

) −m1H] − αH (
αHm1H + αHk

2k
)

−
αLαH

2k
[αL (V −

2k

αH

) −m1H] + αL (
αHm1H + αHk

2k
) = 0 (B.151)

The first order condition of (B.151) with respect to m1H , which is also the second

order condition of (B.148) with respect to m1H , is equal to

−
α2

H

2k
−
α2

H

2k
+
αHαL

2k
+
αHαL

2k
(B.152)

which is less than 0. Therefore the critical point m2H = 2k
αH

and

m1H =
(αH + αL)

2
(V −

2k

αH

) −
k

2

is the local maximum. Notice that

αHm1H + αHk

2k
=
αH(αH + αL)

2
(V −

2k

αH

) +
αHk

2
< 2k (B.153)

Notice that we can use the argument below (B.66) to show that the solution (the root

in the middle) is the location of the global maximum even without the constraints

that m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≤ 1.
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2. When m2H ≤ 2k
αH

and
αHm1H+α

3

H
m

2

2H

4k

2k
≥ 1, namely e∗

2H = 1 and e∗
1H = 1. The Lagrangian

of the high-type principal’s profit is

αH ⋅ 1 ⋅ (αH
αHm2H

2k
(V −m2H) −m1H)

+ [
α6

LV
4

64k3
− αL ⋅ 1 ⋅ (αL

αHm2H

2k
(V −m2H) −m1H)]

+ λ1 (
2k

αH

−m2H) + λ2

⎛
⎜
⎝
1 −

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

(B.154)

The first order condition of (B.154) with respect to m1H gives

−αH + αL + λ2

αH

2k
= 0 (B.155)

which means λ2 > 0. Thus
αHm1H+α

3

H
m

2

2H

4k

2k
= 1. This boundary situation is included in

previous case.

3. When m2H ≥ 2k
αH

and αHm1H −αHk+α2

Hm2H ≤ 2k, namely e∗
2H = 1 and e∗

1H leq1. The

Lagrangian of the high-type principal’s profit is

αH (
αHm1H − αHk + α2

Hm2H

2k
)(αH(V −m2H) −m1H)

+ [
α6

LV
4

64k3
− αL ⋅ 1 ⋅ (

αHm1H − αHk + α2

Hm2H

2k
)(αL

αHm2H

2k
(V −m2H) −m1H)]

+ λ1 (m2H −
2k

αH

) + λ2 (1 − (αHm1H − αHk + α2

Hm2H)) (B.156)

The first order conditions of (B.156) with respect to m1H and m2H are

α2

H

2k
(αHV − αHm2H −m1H) −

α2

H

2k
(m1H − k + αHm2H)

−
αLαH

2k
(αLV − αLm2H −m1H) +

αLαH

2k
(m1H − k + αHm2H) − λ2αH = 0

(B.157)

and

α3

H

2k
(αHV − αHm2H −m1H) −

α3

H

2k
(m1H − k + αHm2H)

−
αLα

2

H

2k
(αLV − αLm2H −m1H) +

α2

LαH

2k
(m1H − k + αHm2H) + λ1 − λ2α

2

H = 0

(B.158)

Notice that multiplying (B.158) by αH and then subtracting (B.157) from it gives

(αHαL − α2

L)(
αHm1H − αHk + α2

Hm2H

2k
) − λ1 = 0 (B.159)
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Since αH > αL and e∗
1
=

αHm1H−αHk+α2

H
m2H

2k
> 0, λ1 > 0. This means that m2H =

2k
αH

, which implies that
αHm1H−αHk+α2

H
m2H

2k
=

αHm1H+α
3

H
m

2

2H

4k

2k
. Therefore this situation

belongs to the second case.

4. When m2H ≥ 2k
αH

and αHm1H − αHk + α2

Hm2H ≥ 2k, namely e∗
2H = 1 and e∗

1Hgeq1.

The high-type principal’s profit is

αH (αH(V −m2H) −m1H) + [
α6

LV
4

64k3
− αL (αL(V −m2H) −m1H)]

+ λ1 (m2H −
2k

αH

) + λ2 (αHm1H − αHk + α2

Hm2H − 2k) (B.160)

The first order condition of (B.160) with respect to m1H gives

−αH + αL + αHλ2 = 0 (B.161)

which means that λ2 =
αH−αL

αH
> 0. Thus αHm1H − αHk + α2

Hm2H = 2k. This belongs

to the boundary situation in previous case.

B.2 Proof of Theorem 11

We examine the pooling equilibrium when upfront, intermediate and end money transfers

are all included in the menu.

We assume that the agent believes that the high-type principal appears with probability

p while the low-type principal appears with probability 1 − p. For convenience, we denote

pαH +(1−p)αL by α and
pα2

H

pαH+(1−p)αL
+

(1−p)α2

L

pαH+(1−p)αL
by α̃. Notice that αα̃ = pα2

H +(1−p)α2

L.

In the pooling equilibrium, both high-type and low-type principals offer the same pay-

ment menu (m0,m1,m2). The high-type principal’s profit satisfies

max(m0,m1,m2){−m0 − αHe1m1 + α2

He1e2(V −m2)} (B.162)

such that the agent’s profit satisfies

max(e1,e2)m0 − ke21 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 (B.163)

and

m0 − ke21 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 ≥ 0 (B.164)

There are two other constraints that have to be satisfied:

−m0 − αLe1m1 + α2

Le1e2(V −m2) ≥ LM1 (B.165)
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and

−m0 − αHe1m1 + α2

He1e2(V −m2) ≥ LM1 (B.166)

where

LM1 = max(m0L,m1L,m2L){−m0L − αLe1Lm1L + α2

Le1Le2L(V −m2L)} (B.167)

and

LM1 = max(m̃0L,m̃1L,m̃2L){−m̃0L − αHe1Lm̃1L + α2

He1Le2L(V − m̃2L)} (B.168)

with the agent satisfying

max(e1L,e2L) m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (B.169)

and

m̃0L − ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L ≥ 0 (B.170)

where (B.164) is the agent’s participation constraint, (B.166) is the constraint of preventing

high-type principal’s deviation and (B.165) is the constraint of preventing the low-type

principal’s deviation.

The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the agent earns zero profit and the low-type principal does

not want to deviate, i.e., (B.164) binds, but (B.166) does not bind. In this scenario, we

show that the high-type principal does not want to deviate, i.e., (B.165) is redundant. Then

we look at the high-type principal’s profit maximization problem when the agent earns zero

profit and the low-type principal wants to deviate, i.e., both (B.164) and (B.166) bind. In

this scenario, there exist two subscenarios, one in which the high-type principal does not

want to deviate, i.e., (B.165) does not bind, and the other in which the high-type principal

wants to deviate, i.e., (B.165) binds.

Comparing (B.167) and (B.168) with (B.6) and (B.7) in the part for the separating

equilibrium, clearly LM1 = LM and LM1 = LM . Therefore, LM1 =
α6

L
V 4

64k3
and LM1 is the

maximum of expression (B.132), namely

αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + k

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠

2

(B.171)

We can see that (B.171) has the same expression as that of (B.132). This means that they

share the same solution for corresponding maximization problems with m̃2L = αH

2αH−αL
V and

0 < m̃2L < V . Thus LM1 equals
α6

LV
4

64k3(2x − 1)3
(B.172)
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Next we study the first scenario in which the agent earns zero profit and the low-type

principal does not want to deviate, i.e., (B.164) binds, but (B.166) does not bind.

B.2.1 The first scenario

Notice that the Lagrangian for the maximization problem of the agent’s profit with

respect to e1 and e2 as the decision variables is

m0 − ke21 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 + λ1(1 − e1) + λ2(1 − e2) (B.173)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrangian multipliers. It is clear that we can assume e1 > 0

and e2 > 0, because neither e1 = 0 nor e2 = 0 would lead to the maximal profit for the

high-type principal.

The first order condition of (B.163) with respect to e1 and e2 gives

−2ke1 + αm1 − αke22 + αα̃e2m2 − λ1 = 0 (B.174)

−αe1 ⋅ 2ke2 + αα̃e1m2 − λ2 = 0 (B.175)

which lead to the optimal efforts e∗
1
and e∗

2
satisfying

e∗2 =
α̃m2 −

λ2

αe∗
1

2k
(B.176)

e∗1 =
αm1 − αke∗

2

2 + αα̃e∗
2
m2 − λ2

2k
(B.177)

where 0 < e∗
2
≤ 1 and 0 < e∗

1
≤ 1.

There are four situations for consideration:

1. When λ1 > 0 and λ2 > 0, e∗
1
= 1 and e∗

2
= 1. By (B.163), the agent’s profit is

m0 − k + αm1 − αk + αα̃m2 (B.178)

Since λ1 > 0, λ2 > 0, e∗
1
= 1 and e∗

2
= 1, (B.176) and (B.177) imply that αm1−αk+αα̃m2

2k
> 1

and α̃m2

2k
> 1.

2. When λ1 > 0 and λ2 = 0, e∗
1
= 1 and e∗

2
= α̃m2

2k
≤ 1. By (B.163), the agent’s profit is

m0 − k + αm1 − αk(
α̃m2

2k
)
2

+ αα̃
α̃m2

2k
m2

= m0 − k + αm1 +
αα̃2m2

2

4k
(B.179)

Since λ1 > 0 and e∗
1
= 1, (B.177) implies that

αm1+αα̃
2
m

2
2

4k

2k
> 1.
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3. When λ1 = 0 and λ2 > 0, e∗
1
= αm1L−αk+αα̃m2

2k
≤ 1 and e∗

2
= 1, namely, 2ke∗

1
= αm1L −

αk + αα̃m2. By (B.163), the agent’s profit is

m0 − ke∗12 + αe∗1Lm1L − αe∗1ke∗22 + αα̃e∗1e∗2m2

= m0 − ke∗12 + αe∗1Lm1L − αe∗1k + αα̃e∗1m2

= m0L − ke∗12 + e∗1 [αm1L − αk + αα̃m2]

= m0L − ke∗12 + e∗12ke∗1
= m0L + ke∗12

= m0L + k(
αm1L − αk + αα̃m2

2k
)
2

(B.180)

Since λ2 > 0, (B.176) implies that α̃m2

2k
> 1.

4. When λ1 = 0 and λ2 = 0, by (B.176) and (B.177), e∗
2
= α̃m2

2k
≤ 1 and

e∗1 =
αm1 − αke∗

2

2 + αα̃e∗
2
m2

2k

=
αm1 − αk( α̃m2

2k
)
2

+ αα̃ α̃m2

2k
m2

2k

=
αm1 +

αα̃2m2

2

4k

2k
(B.181)

which is less than or equal to 1.

By (B.163), the agent’s profit is

m0 − ke∗12 + αe∗1m1 − αe∗1ke∗22 + αα̃e∗1e∗2m2

= m0 − ke∗12 + e∗1 [αm1 − αke∗22 + αα̃e∗2m2]

= m0 − ke∗12 + e∗12ke∗1
= m0 + ke∗12

= m0 + k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

(B.182)

Although there are four cases for the expressions of e∗
1
and e∗

2
, we only need to consider

the fourth case in which e∗
2
= α̃m2

2k
≤ 1 and e∗

1
=

αm1+αα̃
2
m

2
2

4k

2k
≤ 1. We allocate the proof of this

statement to the supplemental part at the end.
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When e∗
2
= α̃m2

2k
≤ 1 and e∗

1
=

αm1+αα̃
2
m

2
2

4k

2k
≤ 1, the Lagrangian of the high-type principal’s

profit is

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) −m0 + λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m0 + k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.183)

Notice that the boundary conditions for α̃m2

2k
≤ 1 and

αm1+αα̃
2
m

2
2

4k

2k
≤ 1 are not included

in (B.183). We will show that when V ≤ 2k
αH

, the location of the local maximum of the

high-type principal’s profit won’t occur at the boundaries.

The first order condition of (B.183) with respect to m0 gives

−1 + λ = 0 (B.184)

This means that λ = 1 and m0 = −k
⎛

⎝

αm1+αα̃
2
m

2
2

4k

2k

⎞

⎠

2

.

Therefore the high-type principal’s profit becomes

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) + k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

(B.185)

The first order condition of (B.185) with respect to m1 gives

αHα

2k
(αH

α̃m2

2k
(V −m2) −m1) − αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
+ α

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
= 0 (B.186)

which means that

α2

Hαα̃

4k
m2(V −m2) −

αHαα̃2

8k2
m2

2 +
α2α̃2

8k2
m2

2 =
(2αHα − α2)

2k
m1 (B.187)

namely,

m1 =
α2

Hαα̃m2(V −m2)

2k (2αHα − α2)
−
(αHαα̃2 − α2α̃2)m2

2

4k (2αHα − α2)
(B.188)

The first order condition of (B.185) with respect to m2 gives

αHαα̃2

4k2
m2 (αH

α̃m2

2k
(V −m2) −m1) + αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(
αH α̃

2k
(V − 2m2))

+
αα̃2

2k
m2

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
= 0 (B.189)
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Using the expression of m1 obtained in (B.188), we have

αH α̃m2

2k
(V −m2) −m1

=
αH α̃m2

2k
(V −m2) −

α2

Hαα̃m2(V −m2)

2k (2αHα − α2)
+
(αHαα̃2 − α2α̃2)m2

2

4k (2αHα − α2)

=
(α2

Hαα̃ − αHα2α̃)

2k (2αHα − α2)
m2(V −m2) +

(αHαα̃2 − α2α̃2)

4k (2αHα − α2)
m2

2 (B.190)

and

αm1 +
αα̃2m2

2

4k

2k
=

α

2k

⎛

⎝

α2

Hαα̃

2k (2αHα − α2)
m2(V −m2) +

αHαα̃2

4k (2αHα − α2)
m2

2

⎞

⎠
(B.191)

Therefore (B.189) becomes

αHαα̃2

4k2
m2

⎡
⎢
⎢
⎢
⎣

(α2

Hαα̃ − αHα2α̃)

2k (2αHα − α2)
m2(V −m2) +

(αHαα̃2 − α2α̃2)

4k (2αHα − α2)
m2

2

⎤
⎥
⎥
⎥
⎦

+
αHα

2k

⎡
⎢
⎢
⎢
⎣

α2

Hαα̃

2k (2αHα − α2)
m2(V −m2) +

αHαα̃2

4k (2αHα − α2)
m2

2

⎤
⎥
⎥
⎥
⎦
(
αH α̃

2k
(V − 2m2))

+
α2α̃2

2k
m2

⎡
⎢
⎢
⎢
⎣

α2

Hαα̃

2k (2αHα − α2)
m2(V −m2) +

αHαα̃2

4k (2αHα − α2)
m2

2

⎤
⎥
⎥
⎥
⎦

= 0

(B.192)

Multiplying both sides of (B.192) by 4k2

m2
and 4k (2αHα − α2), (B.192) becomes

αHαα̃2 [2 (α2

Hαα̃ − αHα2α̃)m2(V −m2) + (αHαα̃2 − α2α̃2)m2

2
]

+α2

Hαα̃ [2α2

Hαα̃(V −m2) + αHαα̃2m2] (V − 2m2)

+α2α̃2 [2α2

Hαα̃m2(V −m2) + αHαα̃2m2

2
] = 0 (B.193)

In equation (B.193), the coefficient of m2

2
equals

−2α3

Hα2α̃3 + 2α2

Hα3α̃3 + α2

Hα2α̃4 − αHα3α̃4

+ 4α4

Hα2α̃2 − 2α3

Hα2α̃3 − 2α2

Hα3α̃3 + αHα3α̃4 (B.194)

which can be simplified as

4α4

Hα2α̃2 − 4α3

Hα2α̃3 + α2

Hα2α̃4 (B.195)

The coefficient of m2V equals

2α3

Hα2α̃3 − α2

Hα3α̃3 − 6α4

Hα2α̃2 + α3

Hα2α̃3 + 2α2

Hα3α̃3 = 3α3

Hα2α̃3 − 6α4

Hα2α̃2 (B.196)
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The coefficient of V 2 is α4

Hα2α̃2. Therefore (B.193) can be simplified as

(4α4

Hα2α̃2 − 4α3

Hα2α̃3 + α2

Hα2α̃4)m2

2 + (3α3

Hα2α̃3 − 6α4

Hα2α̃2)m2V + α4

Hα2α̃2V 2 = 0

(B.197)

Dividing both sides of (B.197) by α2

Hα2α̃2 gives

(4α2

H − 4αH α̃ + α̃2)m2

2 + (3αH α̃ − 6α2

H)m2V + 2α2

HV 2 = 0 (B.198)

which is

[(2αH − α̃)m2 − 2αHV ] [(2αH − α̃)m2 − αHV ] = 0 (B.199)

The roots of (B.199) are

m2 = (
2αH

2αH − α̃
)V (B.200)

and

m2 = (
αH

2αH − α̃
)V (B.201)

Notice that m2 is the root we exclude through factorization. The root in (B.200) can

be ruled out, using either the reasoning below (B.66) or the following argument.

When m2 = ( 2αH

2αH−α̃)V ,

αm1 +
αα̃2m2

2

4k

2k
=

α

2k

⎛

⎝

α2

Hαα̃

2k (2αHα − α2)
m2(V −m2) +

αHαα̃2

4k (2αHα − α2)
m2

2

⎞

⎠

=
α

2k

⎛

⎝

α2

Hαα̃ ⋅ 2αH (−α̃)

2k (2αHα − α2) (2αH − α̃)2
+

αHαα̃2 ⋅ 4α2

H

4k (2αHα − α2) (2αH − α̃)2
⎞

⎠

=
α

2k

⎛

⎝

α2

Hαα̃ ⋅ 4αH (−α̃) + αHαα̃2 ⋅ 4α2

H

4k (2αHα − α2) (2αH − α̃)2
⎞

⎠

= 0 (B.202)

which means the effort level e∗
1
= 0. Clearly such m2 can’t be the location for the high-type

principal’s maximal profit.

For the second root of m2, when V ≤ 2k
αH

, m2 <
2k
αH

, because αH > α̃ gives ( αH

2αH−α̃) < 1.

The corresponding m1 satisfies

m1 =
α2

Hαα̃αH (αH − α̃)V 2

2k (2αHα − α2) (2αH − α̃)2
−

(αHαα̃2 − α2α̃2)α2

HV 2

4k (2αHα − α2) (2αH − α̃)2

=
2α4

Hαα̃ − 3α3

Hαα̃2 + α2

Hα2α̃2

4k (2αHα − α2) (2αH − α̃)2
V 2

=
α2

Hαα̃ (2α2

H − 3αH α̃ + αα̃)

4k (2αHα − α2) (2αH − α̃)2
V 2 (B.203)



199

Notice that when V ≤ 2k
αH

, (B.203) satisfies

α2

Hαα̃ (2α2

H − 3αH α̃ + αα̃)

4k (2αHα − α2) (2αH − α̃)2
V 2 ≤

α2

Hαα̃ (2α2

H − 3αH α̃ + αα̃)

4k (2αHα − α2) (2αH − α̃)2
⋅
4k2

α2

H

=
αα̃ (2α2

H − 3αH α̃ + αα̃)k

(2αHα − α2) (2αH − α̃)2

<
αα̃ (2α2

H − 3αHα + α2)k

(2αHα − α2) (2αH − α̃)2

=
α̃(αH − α)k

(2αH − α̃)2

< k (B.204)

Therefore, when V ≤ 2k
αH

,

αm1 +
αα̃2m2

2

4k

2k
<
αk +

αα̃2 4k
2

α2

4k

2k
<
2αk

2k
= α < 1 (B.205)

This shows that when V ≤ 2k
αH

, the local maximum is an interior point and does not hit

either of the boundaries α̃m2

2k
= 1 and =

αm1+αα̃
2
m

2
2

4k

2k
= 1.

Notice that we can express m2, V −m2, m1 and other terms in αL, x and p.

m2 =
αH

2αH − α̃
V

=
αH/αL

2αH/αL − α̃/αL

V

=
αH/αL

2αH/αL −
pα2

H
/αL+(1−p)α2

L
/αL

pαH+(1−p)αL

V

=
αH/αL

2αH/αL −
pα2

H
/α2

L
+(1−p)

pαH/αL+(1−p)
V

=
x

2x −
px2+(1−p)
px+(1−p)

V

=
px2 + (1 − p)x

px2 + (1 − p)(2x − 1)
V (B.206)

V −m2 =
(1 − p)(x − 1)

px2 + (1 − p)(2x − 1)
V (B.207)

By (B.203), we have



200

m1 =
α2

Hαα̃ (2α2

H − 3αH α̃ + αα̃)

4k (2αHα − α2) (2αH − α̃)2
V 2

=
α2

H (pα2

H + (1 − p)α2

L)(2α
2

H − 3αH
pα2

H
+(1−p)α2

L

pαH+(1−p)αL
+ pα2

H + (1 − p)α2

L)

4k (2αH(pαH + (1 − p)αL) − (pαH + (1 − p)αL)
2)(2αH −

pα2

H
+(1−p)α2

L

pαH+(1−p)αL
)
2
V 2

=
α3

Lx
2 (px2 + (1 − p)) (2x2 − 3x

px2+(1−p)
px+(1−p) + px2 + (1 − p))

4k (2px2 + 2(1 − p)x − (px + (1 − p))2) (2x −
px2+(1−p)
px+(1−p) )

2
V 2

(B.208)

It is clear that m1 > 0 is equivalent to 2x2 − 3x
px2+(1−p)
px+(1−p) + px2 + (1 − p) > 0 , namely,

(p2 − p)x3 + (1 − p)(2 + p)x2 + (4p − p2 − 3)x + (1 − p)2

px + (1 − p)
> 0 (B.209)

The denominator of (B.209) is always positive, so (B.209) is positive when its numerator is

positive. Plotting implicit function, we obtain the area in the space of x and p that indicates

that positivity of (B.209), i.e., the positivity of m1.

In the following, we show that (B.166) is redundant, i.e., the high-type principal has no

incentive to deviate from the equilibrium location.

For the maximization problem for (B.171), according to (B.136), the first order condition

with respect to m1L gives

m1L =
α2

Hα2

Lm2L(V −m2L)

2k(2αHαL − α2

L)
−
(αHα3

L − α4

L)m
2

2L

4k(2αHαL − α2

L)
(B.210)

Thus

αH
αLm2L

2k
(V −m2L) −m1L

=
αHαL(2αHαL − α2

L) − α2

Hα2

L

2k(2αHαL − α2

L)
m2L(V −m2L) +

(αHα3

L − α4

L)m
2

2L

4k(2αHαL − α2

L)

=
α2

Hα2

L − αHα3

L

2k(2αHαL − α2

L)
m2L(V −m2L) +

(αHα3

L − α4

L)m
2

2L

4k(2αHαL − α2

L)
(B.211)

Since m2L = αH

2αH−αL
V with 0 <m2L < V , (B.211) is greater than 0.

As to
αLm1L+α

3

L
m

2

2L

4k

2k
, since it represents the effort in the first stage, it must be greater

than zero.
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On the other hand, by (B.185), the principal’s profit function is

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) + k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

(B.212)

By (B.190), we have

αH α̃m2

2k
(V −m2) −m1 =

(α2

Hαα̃ − αHα2α̃)

2k (2αHα − α2)
m2(V −m2) +

(αHαα̃2 − α2α̃2)

4k (2αHα − α2)
m2

2 (B.213)

Since (B.201) gives m2 = ( αH

2αH−α̃)V , which means 0 <m2 < V . Thus (B.213) is greater than

0. As to
αm1+αα̃

2
m

2

2

4k

2k
, since it represents the effort in the first stage, it must be greater than

zero.

Replacing variables m1 and m2 with m1L and m2L in (B.212) , then (B.212) becomes

αH

⎛
⎜
⎝

αm1L +
αα̃2m2

2L

4k

2k

⎞
⎟
⎠
(αH

α̃m2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αm1L +
αα̃2m2

2L

4k

2k

⎞
⎟
⎠

2

(B.214)

Maximize the new profit function (B.214) with respect to m1L and m2L, then it will give the

same maximum value as that of (B.212). In addition, we have αH
α̃m2L

2k
(V −m2L)−m1L > 0

and
αm1L+αα̃

2
m

2

2L

4k

2k
> 0 at the location of the maximum.

Since

αH
α̃m2L

2k
(V −m2L) −m1L ≥ αH

αLm2L

2k
(V −m2L) −m1L > 0 (B.215)

and

αm1L +
αα̃2m2

2L

4k

2k
≥
αLm1L +

α3

L
m2

2L

4k

2k
> 0 (B.216)

Therefore (B.214) is greater than or equal to (B.210). This shows that (B.166) always holds,

i.e., the high-type principal has no incentive to deviate from the equilibrium location.

Next we look at the scenario when the agent earns zero profit and the low-type principal

wants to deviate, i.e., both (B.164) and (B.166) bind.

B.2.2 The second scenario

In this scenario, there exist subscenarios, one in which the high-type principal does not

want to deviate, i.e., (B.165) does not bind, and the other in which the high-type principal

wants to deviate, i.e., (B.165) binds.
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For the first subscenario, the Lagrangian corresponding to the high-type principal’s

profit maximization problem is

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) + k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

+λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

+ αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃m2

2k
(V −m2) −m1) −

α6

LV
4

64k3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.217)

Notice that (B.165) is

k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

+ αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃m2

2k
(V −m2) −m1) ≥

α6

LV
4

64k3
(B.218)

(B.166) is

k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

+ αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) ≥

α6

LV
4

64k3
(B.219)

If we choose m1 = 0 and m2 = V , then (B.218) and (B.219) both hold with strict inequality.

This shows that (B.219) holds with strict inequality when the high-type principal optimizes

her profit, because the left side of (B.219) is the expression for the high-type principal’s

profit. Thus (B.166) is redundant.

The first order condition of (B.217) with respect to m1 is

αHα

2k
(αH

α̃m2

2k
(V −m2) −m1) − αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
+ α

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

+ λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(α − αL)
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
−
αLα

2k
(αL

α̃m2

2k
(V −m2) −m1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (B.220)

Thus

α2

Hαα̃

4k2
m2(V −m2) + (−

αHα

2k
−
αHα

2k
+
α2

2k
)m1 −

αHαα̃2

8k2
m2

2 +
α2α̃2

8k2
m2

2

+ λ1

α2

2k
m1 + λ1(α − αL)

αα̃2

8k2
m2

2 − λ1

α2

Lαα̃

4k2
m2(V −m2) = 0 (B.221)

which implies

m1 =
α2

Hαα̃ − λ1α
2

Lαα̃

2k(2αHα − α2 − λ1α
2)
m2(V −m2) −

λ1(α − αL)αα̃
2 − α2α̃2 + αHαα̃2

4k(2αHα − α2 − λ1α
2)

(B.222)
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The first order condition of (B.217) with respect to m2 is

αHαα̃2

4k2
(αH

α̃m2

2k
(V −m2) −m1) + αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃

2k
(V − 2m2))

+
αα̃2

2k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
m2 + λ1

αα̃2

2k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
m2

+ λ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLαα̃
2

4k2
(αL

α̃m2

2k
(V −m2) −m1) − αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃

2k
(V − 2m2))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(B.223)

By the expression of m1 in (B.222), we have

αm1 +
αα̃2m2

2

4k

2k

=
α

2k
(

α2

Hαα̃ − λ1α
2

Lαα̃

2k(2αHα − α2 − λ1α
2)
m2(V −m2))

−
α

2k
(
λ1(α − αL)αα̃

2 − α2α̃2 + αHαα̃2 − α̃2(2αHα − α2 − λ1α
2)

4k(2αHα − α2 − λ1α
2)

m2

2) (B.224)

αH
α̃m2

2k
(V −m2) −m1

=
αH α̃ (2αHα − (1 + λ1)α

2) − α2

Hαα̃ − λ1α
2

Lαα̃

2k(2αHα − α2 − λ1α
2)

m2(V −m2)

+
λ1(α − αL)αα̃

2 − α2α̃2 + αHαα̃2

4k(2αHα − α2 − λ1α
2)

m2

2 (B.225)

and

αL
α̃m2

2k
(V −m2) −m1

=
αLα̃ (2αHα − (1 + λ1)α

2) − α2

Hαα̃ − λ1α
2

Lαα̃

2k(2αHα − α2 − λ1α
2)

m2(V −m2)

+
λ1(α − αL)αα̃

2 − α2α̃2 + αHαα̃2

4k(2αHα − α2 − λ1α
2)

m2

2 (B.226)

Substituting (B.224), (B.225), and (B.226) into (B.223) and multiplying it by 4k(2αHα−

α2 − λ1α
2) and 16k3 gives
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αHαα̃2 [2αH α̃(2αHα − (1 + λ1)α
2) − (α2

Hαα̃ − λ1α
2

Lαα̃)]m2(V −m2)

+ αHαα̃2 [λ1(α − αL)αα̃
2 − α2α̃2 + αHαα̃2]m2

2

+ 2α (α2

Hαα̃ − λ1α
2

Lαα̃)m2(V −m2) [α
2

H α̃(V − 2m2) + (1 + λ1)αα̃
2m2]

− α [λ1(α − αL)αα̃
2 − α2α̃2 + αHαα̃2]

− α [α̃2 (2αHα − (1 + λ1)α
2)]m2

2
[α2

H α̃(V − 2m2) + (1 + λ1)αα̃
2m2]

+ λ1αLαα̃
2 [2αLα̃(2αHα − (1 + λ1)α

2) − (α2

Hαα̃ − λ1α
2

Lαα̃)]m2(V −m2)

+ λ1αLαα̃
2 [λ1(α − αL)αα̃

2 − α2α̃2 + αHαα̃2]m2

2

− 2λ1α
2

Lαα̃ (α2

Hαα̃ − λ1α
2

Lαα̃)m2(V −m2)

+ λ1α
2

Lαα̃ [λ1(α − αL)αα̃
2 − α2α̃2 + αHαα̃2 − α̃2 (2αHα − (1 + λ1)α

2)]m2

2 = 0

(B.227)

Using x = αH

αL
, α = αL (px + (1 − p) and α̃ = αL

px2+(1−p)
px+(1−p) , we can see that (B.228) can be

written as a8Lg1(m2, λ1, x, V ), where g1(m2, λ1, x, V ) is a function only depending on m2,

λ1, x, and V . Thus (B.223) is equivalent to g1(m2, λ1, x, V ) = 0.

On the other hand, it is not difficult to see that the binding constraints (B.164) can be

written as
α6

L

k3
g2(m2, λ1, x, V ) = 0, where g2(m2, λ1, x, V ) only depends on m2, λ1, x, and V .

Therefore, from equations g1 = 0 and g2 = 0, we can solve for m2 and λ1. The solution of

them only depend on x and V . Applying the solution of m2 and λ1 and the corresponding

expression of m1 to the following profit function of the high-type principal

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1) + k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

(B.228)

we can see that the high-type principal’s profit can be expressed as
α6

L

k3
g3(x,V ), where

the function g3(x,V ) only depends on x and V . Therefore we prove that at the pooling

equilibrium, the high-type agent’s maximal profit is a function of x and V , in spite of the

unavailability of the analytic expression of m2 and λ1.

Next, we look at the high-type principal’s profit maximization problem with (B.164),

(B.166) and (B.165) all binding, i.e., the second subscenario.

In this subscenario, (m1,m2) as the location of the high-type principal’s profit maxi-

mization problem satisfies

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1)+k

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

=
α6

LV
4

64k3(2x − 1)3
(B.229)
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and

k
⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

2

+ αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃m2

2k
(V −m2) −m1) =

α6

LV
4

64k3
(B.230)

Numerical result shows that when (B.164), (B.166) and (B.165) all bind, this situation

holds on a boundary which encloses an area with p small and p going to zero as x going to

positive infinity. Inside the region, there is no solution there.

B.2.3 Supplements

In the discussion above, the effort levels in two periods take the forms e∗
2
= α̃m2

2k
≤ 1 and

e∗
1
=

αm1+αα̃
2
m

2

2

4k

2k
≤ 1. In fact, there are three other cases. We argue that we don’t need to

consider them.

1. m2 ≤
2k
α̃

and
αm1+αα̃

2
m

2

2

4k

2k
≥ 1, i.e., e∗

2
≤ 1 and e∗

1
= 1.

In this case, the Lagrangian of the high-type principal’s profit is

αH ⋅ 1 ⋅ (αH
α̃m2

2k
(V −m2) −m1) −m0 + λ [m0 − k + αm1 +

αα̃2m2

2

4k
] + λ1 (

2k

α̃
−m2)

+λ2

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k
− 1

⎞
⎟
⎠

(B.231)

The first order condition with respect to m0 gives λ = 1. Thus the Lagrangian of the

high-type principal’s profit becomes

αH ⋅ 1 ⋅ (αH
α̃m2

2k
(V −m2) −m1) + [−k + αm1 +

αα̃2m2

2

4k
] + λ1 (

2k

α̃
−m2)

+λ2

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k
− 1

⎞
⎟
⎠

(B.232)

The first order condition with respect to m1 gives

−αH + α + λ3

α

2k
= 1 (B.233)

Since αH > α, (B.233) implies λ3 > 0, which means that
αm1+αα̃

2
m

2
2

4k

2k
= 1. This belongs

to the case we discussed above.
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2. m2 ≥
2k
α̃

and αm1−αk+αα̃m2

2k
≤ 1, i.e., e∗

2
= 1 and e∗

1
≤ 1. The Lagrangian of the high-type

principal’s profit is

αH (
αm1 − αk + αα̃m2

2k
)(αH(V −m2) −m1) −m0 + λ [m0 + k(

αm1 − αk + αα̃m2

2k
)
2

]

+λ1 (
2k

α̃
−m2) + λ2

⎛
⎜
⎝
1 −

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

(B.234)

The first order condition with respect to m0 gives λ = 1. Thus the Lagrangian of the

high-type principal’s profit is

αH (
αm1 − αk + αα̃m2

2k
)(αH(V −m2) −m1) −m0 + [m0 + k(

αm1 − αk + αα̃m2

2k
)
2

]

+λ1 (
2k

α̃
−m2) + λ2

⎛
⎜
⎝
1 −

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

(B.235)

The first order condition of (B.235) with respect to m1 gives

αHα

2k
(αH(V −m2) −m1) + (−αH + α) (

αm1 − αk + αα̃m2

2k
) − λ2

α

2k
= 0 (B.236)

The first order condition of (B.235) with respect to m2 gives

αHαα̃

2k
(αH(V −m2) −m1)+(−α

2

H + αα̃)(
αm1 − αk + αα̃m2

2k
)−λ1−λ2

αα̃

2k
= 0 (B.237)

Multiplying (B.236) by α̃ and subtracting (B.238) from it gives

(−αH α̃ + α2

H)(
αm1 − αk + αα̃m2

2k
) + λ1 = 0 (B.238)

Since e∗
1
= αm1−αk+αα̃m2

2k
> 0, λ1 > 0, which means that m2 = 2k

α̃
. Notice that when

m2 =
2k
α̃
, αm1−αk+αα̃m2

2k
=

αm1+αα̃
2
m

2
2

4k

2k
. Thus this belongs to previous case.

3. m2 ≥
2k
α̃

and αm1−αk+αα̃m2

2k
≥ 1, i.e., e∗

2
= 1 and e∗

1
≤ 1. The Lagrangian of the high-type

principal’s profit is

αH ⋅ 1 ⋅ (αH ⋅ (V −m2) −m1) −m0 + λ [m0 − k + αm1 − αk + αα̃m2] + λ1 (
2k

α̃
−m2)

+λ2 (
αm1 − αk + αα̃m2

2k
− 1) (B.239)

The first order condition with respect to m0 gives λ = 0. Thus the Lagrangian of the

high-type principal’s profit becomes

αH ⋅ 1 ⋅ (αH ⋅ (V −m2) −m1) −m0 + [m0 − k + αm1 − αk + αα̃m2] + λ1 (
2k

α̃
−m2)

+λ2 (
αm1 − αk + αα̃m2

2k
− 1) (B.240)
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The first order condition with respect to m1 gives

−αH + α + λ2

α̃

2k
= 0 (B.241)

which implies that λ2 > 0. Thus αm1−αk+αα̃m2

2k
= 1. This belongs to previous case.

B.3 Proof of Theorem 12

We need to examine the separating equilibrium of case 2, case 3 and case 4, and then

compare the high-type principal’s profit in the separating equilibria of case 1 (studied in

Theorem 10), case 2, case 3 and case 4. First we look at case 2.

B.3.1 Separating equilibrium when upfront and end money
transfers are included in the payment menu

We study the separating equilibrium when intermediate and end money transfers are

included from the menu.

For the high-type principal, her maximal profit satisfies

max(m0H ,m2H){−m0H + α2

He1He2H(V −m2H)} (B.242)

subject to

LM2 ≥ −m0H + α2

Le1He2H(V −m2H) (B.243)

and

−m0H + α2

He1He2H(V −m2H) ≥ LM2 (B.244)

with the agent’s profit satisfying:

max(e1H ,e2H)m0H − ke21H − αHe1Hke22H + α2

He1He2Hm2H (B.245)

and

m0H − ke21H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (B.246)

where

LM2 = max(m0L,m2L){−m0L + α2

Le1Le2L(V −m2L)} (B.247)

and

LM2 = max(m̃0L,m̃2L){−m̃0L + α2

He1Le2L(V − m̃2L)} (B.248)

with the agent satisfying:

max(e1L,e2L) m̃0L − ke21L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (B.249)
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and

m̃0L − ke21L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L ≥ 0 (B.250)

where (B.243) is the constraint of preventing the low-type principal from mimicking the

high-type one, (B.244) is the constraint of preventing the high-type principal from mimicking

the low-type one, (B.246) is the agent’s participation constraint for the high-type principal’s

offer.

The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the low-type principal wants to mimic the high-type one and

the agent earns positive profit, i.e., (B.243) binds, but (B.246) does not bind. In this

scenario, we show that the high-type principal does not want to deviate, i.e., (B.244) is

redundant. Then we look at the high-type principal’s profit maximization problem when

the low-type principal wants to mimic the high-type one and the agent earns zero profit,

i.e., both (B.243) and (B.246) bind. In this scenario, there exist two subscenarios, one in

which the high-type principal does not want to deviate, i.e., (B.244) not binding and the

other in which the high-type principal wants to deviate, i.e., (B.244) binding.

Before we go to discussion in detail, we calculate LM2 and LM2.

As what we did in previous sections, it is easy to see that LM2 =
α6

L
V 4

64k3
and LM2 is the

maximum of the following expression:

αH (
α3

Lm̃
2

2L

8k2
)(αH

αLm̃2L

2k
(V − m̃2L)) +

α6

Lm̃
4

2L

64k3
(B.251)

The first order condition of (B.251) with respect to m2L gives

α2

Hα4

L

16k3
m̃2

2L (3V − 4m̃2L +
α2

L

α2

H

m̃2L) = 0 (B.252)

which gives m̃2L = 3x2V
4x2−1 with x = αH

αL
. It is easy to check that the second derivative of

(B.251) is negative at the location. This means that it is local maximum. Since it is a

unique critical point, it is the location of the global maximum. Thus LM2 equals

αHα3

L

8k2
(

3x2V

4x2 − 1
)

2

[
αHαL

2k
(

3x2V

4x2 − 1
)(

(x2 − 1)V

4x2 − 1
)] +

α6

L

64k3
(

3x2V

4x2 − 1
)

4

(B.253)

Let y = x2 and using x = αH

αL
, then LM2 can be written as

α6

Ly

16k3
(

9y2V 2

(4y − 1)2
)(

3y(y − 1)V 2

(4y − 1)2
) +

α6

L

64k3
(
3yV

4y − 1
)
4

= α6

L

108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.254)

According to the same reason we discussed in the previous section, the effort levels of

the agent for the high-type principal’s offer takes the form e∗
1H =

α3

H
m2

2H

8k2
and e∗

2H = αHm2H

2k
.
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Next we study the first scenario in which the low-type principal wants to mimic the

high-type one and the agent earns positive profit, i.e., (B.243) binds, but (B.246) does not

bind.

B.3.1.1 The first scenario

The Lagrangian for the high-type principal’s profit is

αH (
α3

Hm2

2H

8k2
)(αH

αHm2H

2k
(V −m2H)) −m0H

+ λ1 [
α6

LV
4

64k3
+m0H − αL (

α3

Hm2

2H

8k2
)(αL

αHm2H

2k
(V −m2H))] (B.255)

The first order conditions with respect to m0H and m2H are

−1 + λ1 = 0 (B.256)

and

α4

Hm2H

4k2
[
α2

Hm2H

2k
(V −m2H)] + αH (

α3

Hm2

2H

8k2
)[

α2

H

2k
(V − 2m2H)]

− λ1

αLα
3

Hm2H

4k2
[
αLαHm2H

2k
(V −m2H)] − λ1αL (

α3

Hm2

2H

8k2
)[

αLαH

2k
(V − 2m2H)] = 0

(B.257)

From (B.256), we obtain λ1 = 1. This means the the high-type principal’s profit equals

(α2

H − α2

L)(
α3

Hm2

2H

8k2
)(

αHm2H

2k
(V −m2H)) +

α6

LV
4

64k3
(B.258)

Substituting λ1 = 1 into (B.257) and dividing the both sides of (B.257) by
α4

H

16k3
gives

2α2

Hm2

2H(V −m2H) + α2

Hm2

2H(V − 2m2H) − 2α2

Lm
2

2H(V −m2H) − α2

Lm
2

2H(V − 2m2H) = 0

(B.259)

which is equivalent to

2 (α2

H − α2

L)m
2

2H(V −m2H) + (α2

H − α2

L)m
2

2H(V − 2m2H) = 0 (B.260)

namely,

(α2

H − α2

L)m
2

2H(3V − 4m2H) = 0 (B.261)

It is clear that (B.261) has three roots, with two being 0 and the third one being 3

4
V . Thus

the high-type principal’s profit (B.258) equals

(α2

H − α2

L)α
4

H

⎛

⎝

(3
4
V )

2

8k2
⎞

⎠
(
3

8k
V ⋅

1

4
V ) +

α6

LV
4

64k3

= α6

L (x6 − x4)(
27

642k3
+

81

4 ⋅ 642k3
)V 2 +

α6

LV
4

64k3
(B.262)

with x = αH

αL
.
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Substituting m2H = 3

4
V into the constraint associated with λ1 gives

α6

LV
4

64k3
+m0H − αL

⎡
⎢
⎢
⎢
⎢
⎣

α3

H(3
4
V )

2

8k2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣
αL

αH (3
4
V )

2k
(V −

3

4
V )

⎤
⎥
⎥
⎥
⎦
= 0 (B.263)

which can be simplified as

α6

LV
4

64k3
+m0H −

27

32

α2

Lα
4

HV 4

128k3
= 0 (B.264)

Thus

m0H =
27

32

α2

Lα
4

HV 4

128k3
−
α6

LV
4

64k3
(B.265)

From (B.265), we can see that m0H is negative when αL is close to αH , and m0H is positive

when αL is far away from αH .

From m2H = 3

4
V and (B.255), we have

m0H + k
⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

=
27

32

α2

Lα
4

HV 4

128k3
−
α6

LV
4

64k3
+

α6

HV 4

16 ⋅ 16 ⋅ 64k3
(B.266)

Therefore (B.266) being zero is equivalent to

27

32 ⋅ 128
x4 −

1

64
+

81

16 ⋅ 16 ⋅ 64
x6 = 0 (B.267)

Let F3(x) be the left side of (B.267). Using Maple, we find that (B.267) has only one

real root x ≈ 1.064048 for x ≥ 1. Since F3(x) increases to positive infinity as x increases to

positive infinity, F3(x) > 0 when x > 1.064048, i.e., case 1) and F3(x) < 0 when x < 1.064048,

i.e., case 2).

Next we show that constraint (B.244) is redundant.

Notice that according to (B.254), LM2 can be written as

108y4(y − 1) + 81y4

64k3(4y − 1)4
(B.268)

On the other hand, we know that (B.262) can be written as

α6

L (y3 − y2)(
27

642k3
+

81

4 ⋅ 642k3
)V 2 +

α6

LV
4

64k3
(B.269)

We want to show that (B.269) is greater or equal to (B.254) when y ≥ 1, namely x ≥ 1.

We can see that it is equivalent to show that

108y4(y − 1) + 81y4 ≤ [(y3 − y2)(
27

64
+

81

4 ⋅ 64
) + 1] (4y − 1)4 (B.270)
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Let F1(y) be the expression

[(y3 − y2)(
27

64
+

81

4 ⋅ 64
) + 1] (4y − 1)4 − 108y4(y − 1) − 81y4 (B.271)

Using Maple, we can find that F1(y) has only one real root at y = 1 when y ≥ 1. Since F1(y)

goes to positive infinity when y increases to positive infinity, F1(y) ≥ 0 holds for all y ≥ 1.

This means that (B.244) is automatically satisfied, namely redundant.

Next we look at the second scenario in which the low-type principal wants to mimic the

high-type one and the agent earns zero profit, i.e., both (B.243) and (B.246) bind.

B.3.1.2 The second scenario

In this scenario, there exists subscenarios, one in which the high-type principal does not

want to deviate, i.e., (B.244) not binding and the other in which the high-type principal

wants to deviate, i.e., (B.244) binding.

We know that binding constraints (B.243) and (B.246) imply that as the location of the

maximum of the high-type principal’s profit m2H satisfies

α6

LV
4

64k3
=
α6

Hm4

2H

64k3
− αL (

α3

Hm2

2H

8k2
)(αL

αHm2H

2k
(V −m2H)) (B.272)

namely,
α6

Hm4

2H

64k3
+
α2

Lα
4

Hm3

2H

16k3
(V −m2H) =

α6

LV
4

64k3
(B.273)

Suppose constraint (B.244) is either binding or violated. This means that implies that

αH (
α3

Hm2

2H

8k2
)(αH

αHm2H

2k
(V −m2H)) +

α6

Hm4

2H

64k3
≤
108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.274)

namely
α6

Hm4

2H

64k3
+
α6

Hm3

2H

16k3
(V −m2H) ≤ α6

L

108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.275)

The right side of (B.275) are the high-type principal’s profit and the right side equals LM2

with y = x2 =
α2

H

α2

L

.

Multiplying both sides of (B.273) by
α2

H

α
L

and then subtracting (B.275) from this new

identity from gives

(
α8

H

α2

L

− α6

H)m4

2H

64k3
≥
α4

Lα
2

HV 4

64k3
− α6

L

108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.276)

which is equivalent to

(y4 − y3)m4

2H ≥ y −
108y4(y − 1) + 81y4

(4y − 1)4
V 4 (B.277)
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i.e.,

m2H ≥

⎛
⎜
⎜
⎝

y −
108y4(y−1)+81y4

(4y−1)4
(y4 − y3)

⎞
⎟
⎟
⎠

1

4

V 4 (B.278)

Using Maple, we can find that polynomial

y(4y − 1)4 − (108y4(y − 1) + 81y4) − (y4 − y3) (4y − 1)4

has only one real root at y = 1. Since the polynomial decreases to −∞ as y increases to +∞,

this shows that it is less than 1 when y > 1 and equals 1 when y = 1. This means that the

right side of (B.278) is less than 1 when y > 1. Letting mT be the right side of (B.278), it

is easy to show that mT must satisfy the following expression when (B.275) holds.

y3m4

T + 4y2m3

T (V −mT ) ≤
108y4(y − 1) + 81y4

(4y − 1)4
V 4 (B.279)

However, using Maple, either directly calculating the difference between the left side and

right side of (B.279) or calculating the roots of an equivalent polynomial for (B.279) with

equality holding, we find that the left side of (B.279) is always greater than the right side

of (B.279) when y > 1. We leave the verification to the readers. This shows that (B.275)

does not hold. Therefore constraint (B.244) is redundant.

B.3.2 Separating equilibrium when intermediate and end money
transfers are included in the payment menu

We study the separating equilibrium in which intermediate and end money transfers are

included in the menu.

For the high-type principal, her maximal profit satisfies

max(m1H ,m2H){−αHe1Hm1H + α2

He1He2H(V −m2H)} (B.280)

subject to

LM4 ≥ −αLe1Hm1H + α2

Le1He2H(V −m2H) (B.281)

and

−αHe1Hm1H + α2

He1He2H(V −m2H) ≥ LM4 (B.282)

with the agent’s profit satisfying:

max(e1H ,e2H)−ke
2

1H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H (B.283)

and

−ke21H + αHe1Hm1H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (B.284)
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where

LM4 = max(m1L,m2L){−αLe1Lm1L + α2

Le1Le2L(V −m2L)} (B.285)

as the low-type principal’s maximal profit, and

LM4 = max(m̃1L,m̃2L){−αHe1Lm̃1L + α2

He1Le2L(V − m̃2L)} (B.286)

with the agent satisfying:

max(e1L,e2L)−ke
2

1L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (B.287)

and

−ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L ≥ 0 (B.288)

where (B.281) is the constraint of preventing the low-type principal from mimicking the

high-type one, (B.282) is the constraint of preventing the high-type principal from mimicking

the low-type one, (B.284) is the agent’s participation constraint for the high-type principal’s

offer.

The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the low-type principal wants to mimic the high-type one, i.e.,

(B.281) binds, but the high-type principal does not want to deviate i.e.,(B.282) does not

bind. Then we look at the high-type principal’s profit maximization problem when when the

low-type principal wants to mimic the high-type one, i.e., (B.281) binds, but the high-type

principal wants to deviate, i.e.,(B.282) binds. We will point out that (B.284) always holds,

namely, it is redundant.

Before we go to discussion in detail, we calculate LM4 and LM4.

Using the same way of calculating LM , we can find LM4 =
α6

L
V 4

128k3
. As to LM4, it is the

maximum of the following expression:

αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) (B.289)

The first order condition of (B.289) with respect to m̃1L gives

αHαL

2k
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) − αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
= 0 (B.290)

and the first order condition of (B.289) with respect to m̃2L gives

αHα3

Lm̃2L

4k
(αH

αLm̃2L

2k
(V − m̃2L) − m̃1L) + αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(
αHαL

2k
(V − 2m̃2L))

(B.291)
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Multiplying (B.290) by
α2

L
m̃2L

2k
and subtracting it from (B.291), we have

αH

⎛
⎜
⎝

αLm̃1L +
α3

L
m̃2

2L

4k

2k

⎞
⎟
⎠
(
αHαL

2k
(V − 2m̃2L +

αL

αH

) (B.292)

Since αH

⎛

⎝

αLm̃1L+α
3

L
m̃

2

2L

4k

2k

⎞

⎠
as the effort level in the first period has to be positive, we have

m̃2L = αH

2αH−αL
.

Notice that (B.290) is equivalent to

m̃1L =
αHαLm̃2L(V − m̃2L)

4k
−
α2

Lm̃
2

2L

8k
(B.293)

Thus

m̃1L +
α2

Lm̃2L

4k
=

αHαLm̃2L(V − m̃2L)

4k
+
α2

Lm̃
2

2L

8k

=
2αHαLαH(2αH − αL)

8k(2αH − αL)
2

=
α2

HαL

8k(2αH − αL)
(B.294)

and

αH
αLm̃2L

2k
(V − m̃2L) − m̃1L =

αHαLm̃2L(V − m̃2L)

4k
+
α2

Lm̃
2

2L

8k

=
α2

HαL

8k(2αH − αL)
(B.295)

Therefore LM4 equals
α5

Hα3

L

128k3(2αH − αL)
2

(B.296)

By similar argument in previous sections, the effort levels in two periods take the forms

e∗
2H = αHm2H

2k
and e∗

1H =
αHm1H+α

3

H
m

2

2H

4k

2k
, the agent’s participation constraint (B.284) when

the high-type principal offers a contract can be written as

k

⎡
⎢
⎢
⎢
⎢
⎣

αHm1H +
α3

H
m2

2H

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ 0 (B.297)

Thus (B.284) always holds, namely it is redundant. Therefore, for the two scenarios

mentioned above, we don’t need to consider this constraint.

Next we look at the first scenario in which the low-type principal wants to mimic the

high-type one, i.e., (B.281) binds, but the high-type principal does not want to deviate

i.e.,(B.282) does not bind.
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B.3.2.1 The first scenario

The Lagrangian for the high-type principal’s profit is

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H)

+ λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α6

LV
4

128k3
− αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.298)

The first order condition of (B.298) with respect to m1H gives

α2

H

2k
[
α2

Hm2H

2k
(V −m2H) −m1H] − αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

− λ
αHαL

2k
[
αLαHm2H

2k
(V −m2H) −m1H] + λαL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
= 0 (B.299)

which means that

α4

H − λα2

Hα2

L

4k2
m2H(V −m2H) +

(λαLα
3

H − α4

H)m2

2H

8k2
−
(α2

H − λαHαL)m1H

k
= 0 (B.300)

This gives

m1H =
α4

H − λα2

Hα2

L

4k (α2

H − λ1αHαL)
m2H(V −m2H) +

(λαLα
3

H − α4

H)m2

2H

8k (α2

H − λ1αHαL)
(B.301)

The first order condition of (B.298) with respect to m2H gives

α4

Hm2H

4k2
[
α2

Hm2H

2k
(V −m2H) −m1H] + αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
α2

H

2k
(V − 2m2H)]

− λ
αLα

3

Hm2H

4k2
[
αLαHm2H

2k
(V −m2H) −m1H]

− λαL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
αLαH

2k
(V − 2m2H)] = 0 (B.302)

Multiplying (B.299) by
α2

H

2k
m2H and subtracting the product from (B.302) gives

αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
α2

H

2k
(V −m2H)]

= λαL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
[
αLαH

2k
(V − 2m2H +

αH

αL

m2H)] (B.303)

Since
αHm1H+α

3

H
m

2

2H

4k

2k
as the effort in the first period cannot be zero, (B.303) becomes

αH [
α2

H

2k
(V −m2H)] = λαL [

αLαH

2k
(V − 2m2H +

αH

αL

m2H)] (B.304)
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which implies that

λ =

α2

H

α2

L

(V −m2H)

[V − (2 − αH

αL
)m2H]

(B.305)

Therefore

α4

H − λα2

Hα2

L

= α4

H −
α4

H(V −m2H)

[V − (2 − αH

αL
)m2H]

=
α4

H (αH

αL
− 1)m2H

[V − (2 − αH

αL
)m2H]

(B.306)

and

α2

H − λαHαL

= α2

H −

α3

H

αL
(V −m2H)

[V − (2 − αH

αL
)m2H]

=
(α2

H −
α3

H

αL
)V − (2α2

H − 2
α3

H

αL
)m2H

[V − (2 − αH

αL
)m2H]

m2

2H (B.307)

Notice that
(λαLα

3

H − α4

H)m2

2H

α2

H − λαHαL

= −α2

Hm2

2H (B.308)

Applying (B.306), (B.307) and (B.308) to (B.301), we have

m1H =
α4

H (αH

αL
− 1)m2

2H(V −m2H)

4k [(α2

H −
α3

H

αL
)V − (2α2

H − 2
α3

H

αL
)m2H]

−
α2

H

8k
m2

2H

=
α2

Hm2

2H(V −m2H)

4k(−V + 2m2H)
−
α2

H

8k
m2

2H

=
2α2

Hm2

2H(V −m2H)

8k(−V + 2m2H)
−
α2

H(−V + 2m2H)m2

2H

8k(−V + 2m2H)

=
3α2

Hm2

2HV − 4α2

Hm3

2H

8k(−V + 2m2H)
(B.309)

Thus

m1H +
α2

Hm2

2H

4k
=

3α2

Hm2

2HV − 4α2

Hm3

2H

8k(−V + 2m2H)
+
α2

Hm2

2H

4k

=
3α2

Hm2

2HV − 4α2

Hm3

2H + 2α2

Hm2

2H(−V + 2m2H)

8k(−V + 2m2H)

=
α2

Hm2

2HV

8k(−V + 2m2H)
(B.310)
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and

αL
αHm2H

2k
(V −m2H) −m1H

= αL
αHm2H

2k
(V −m2H) −

3α2

Hm2

2HV − 4α2

Hm3

2H

8k(−V + 2m2H)

=
4αLαHm2H(V −m2H)(−V + 2m2H) − 3α2

Hm2

2HV + 4α2

Hm3

2H

8k(−V + 2m2H)
(B.311)

Since
αHm1H+α

3

H
m

2

2H

4k

2k
as the effort in the first period has to be positive, (B.310) means that

−V + 2m2H > 0, namely m2H > V /2.

From (B.298), we know that when (B.281) is binding, it can be written as

α6

LV
4

128k3
= αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H) (B.312)

Substituting (B.310) and (B.311) into (B.312) gives

α6

LV
4

128k3
=

αLαH

2k
[

α2

Hm2

2HV

8k(−V + 2m2H)
] [

4αLαHm2H(V −m2H)(−V + 2m2H)

8k(−V + 2m2H)
]

+
αLαH

2k
[

α2

Hm2

2HV

8k(−V + 2m2H)
] [

−3α2

Hm2

2HV + 4α2

Hm3

2H

8k(−V + 2m2H)
] (B.313)

Letting V y =m2H and x = αH

αL
, (B.313) can be simplified as

1 =
x3y2 [4xy(1 − y)(2y − 1) − 3x2y2 + 4x2y3]

(−1 + 2y)2
(B.314)

Notice that (B.314) is equivalent to

x3y2 [4xy(1 − y)(2y − 1) − 3x2y2 + 4x2y3] − (−1 + 2y)2 (B.315)

When x = 1, (B.315) is equivalent to

y2 [4y(1 − y)(2y − 1) − 3y2 + 4y3] − (−1 + 2y)2 = 0 (B.316)

Notice that according to (B.298), the high-type principal’s profit equals

αHαH

2k
[

α2

Hm2

2HV

8k(−V + 2m2H)
] [

4αHαHm2H(V −m2H)(−V + 2m2H) − 3α2

Hm2

2HV + 4α2

Hm3

2H

8k(−V + 2m2H)
]

(B.317)

Next we look at the second scenario in which the low-type principal wants to mimic the

high-type one, i.e., (B.281) binds, but the high-type principal wants to deviate i.e.,(B.282)

binds.
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B.3.2.2 The second scenario

Our numerical calculation shows that this does not happen. In other words, when

(B.402) holds, the high-type principal’s profit in (B.317) is always bigger than LM4, which

equals
α5

Hα3

L

128k3(2αH − αL)
2

(B.318)

(see (B.296) ).

B.3.3 Separating equilibrium when only end money transfers
are included in the payment menu

First we look at the separating equilibrium when only end money transfers are included

in the menu .

For the high-type principal, her maximal profit satisfies

max
m2H

{α2

He1He2H(V −m2H)} (B.319)

subject to

LM6 ≥ α2

Le1He2H(V −m2H) (B.320)

and

α2

He1He2H(V −m2H) ≥ LM6 (B.321)

with the agent’s profit satisfying:

max(e1H ,e2H)−ke
2

1H − αHe1Hke22H + α2

He1He2Hm2H (B.322)

and

−ke21H − αHe1Hke22H + α2

He1He2Hm2H ≥ 0 (B.323)

where

LM6 =max
m2L

{α2

Le1Le2L(V −m2L)} (B.324)

as the low-type principal’s maximal profit, and

LM6 =max
m2L

{α2

He1Le2L(V −m2L)} (B.325)

with the agent satisfying:

max(e1L,e2L)−ke
2

1L − αLe1Lke
2

2L + α2

Le1Le2Lm2L (B.326)

and

−ke21L − αLe1Lke
2

2L + α2

Le1Le2Lm2L ≥ 0 (B.327)

where (B.320) is the constraint of preventing the low-type principal from mimicking the

high-type one, (B.321) is the constraint of preventing the high-type principal from mimicking
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the low-type one, (B.323) is the agent’s participation constraint for the high-type principal’s

offer.

Before we go to the discussion in detail, we want to find LM6 and LM6.

As what we did in previous sections, it is easy to see that when V ≤ 2k
αL

, LM6 =
27

32

α6

L
V 4

128k3
.

As to LM6, it is the maximum of the following expression

α2

H

α3

Lm
2

2H

8k2
αLm2H

2k
(V −m2H) (B.328)

with the constraint that

27

32

α6

LV
4

128k3
= α2

L

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H) (B.329)

Thus LM6 =
27

32

α4

L
α2

H
V 4

128k3
.

As we discussed in previous sections, when V ≤ 2k
αL

, LM = 27

32

α6

L
V 4

128k3
. There are three

cases for consideration:

1. when m2H ≤ 2k
αH

, which means that e∗
2H = αHm2H

2k
≤ 1, e∗

1H =
α3

H
m2

2H

8k2
≤ 1.

2. when m2H ≥ 2k
αH

, which means that e∗
2H = 1, e∗

1H =
α3

H
m2

2H

8k2
≤ 1.

3. when m2H ≥ 2k
αH

, which means that e∗
2H = 1,

α3

H
m2

2H

8k2
≥ 1 and e∗

1H = 1.

where e∗
2H is the solution of the agent’s profit maximization problem (B.326) when the

payment is m2H .

We will focus the discussion on the first one of the three cases, because using a similar

argument to what we did for the scenario when upfront, intermediate and end payments

are all included, we can show that the global optimal solution won’t occur in the second

case (area). We leave the proof to readers.

With e∗
2H = αHm2H

2k
and e∗

1H =
α3

H
m2

2H

8k2
, (B.319) and (B.320) become

max
m2H

{α2

H

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H)} (B.330)

subject to
27

32

α6

LV
4

128k3
≥ α2

L

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H) (B.331)

It is clear that m2H as the solution to the optimization problem consisting of (B.330) and

(B.331) is also the solution of (B.331) when it is binding, i.e.,

27

32

α6

LV
4

128k3
= α2

L

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H) (B.332)

We can solve (B.332) for m2H .
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From (B.329), we know that LM6 = 27

32

α4

L
α2

H
V 4

128k3
. On the other hand, by (B.330) and

(B.332), the high-type principal’s profit equals 27

32

α2

L
α4

H
V 4

128k3
which is greater than LM6.

Therefore we showed that (B.321) is redundant.

Notice that the agent’s profit for the high-type principal’s offer is

k(
α3

Lm
2

2H

8k2
)

2

≥ 0 (B.333)

which means that the agent’s participation constraint (B.323) is redundant.

B.3.4 Compare the high-type principal’s profits of the four cases

Next we prove the claim that for separating equilibrium, the high-type principal’s profit

in case 1) is greater than that in case 2), the high-type principal’s profit in case 1) is greater

than that in case 3), and the high-type principal’s profit in case 3) is greater than that in

case 4).

Recall that case 1) refers to the situation in which upfront, intermediate and end money

transfers are all included, case 2) refers to the situation in which the intermediate money

transfers are missed, case 3) refers to the situation in which upfront money transfers are

missed, and case 4) refers to the situation in which end money transfers are missed.

First we show that the high-type principal’s profit in case 1) is greater than that in case

2).

Assume that (m∗
0H ,m∗

2H) and (m∗
0L,m

∗
2L) are the solution for the high-type principal’s

profit maximization problem in case 2). We know that both LM in case 1) and LM2 in

case 2) are equal to
α6

L
V 4

64k3
, thus (m∗

0H ,0,m∗
2H) and (m∗

0L,0,m
∗
2L) satisfy (B.2). It is clear

that (m∗
0H ,0,m∗

2H) and (m∗
0L,0,m

∗
2L) also satisfy (B.5).

Now we look at (B.3). We know that LM in case 1) is the maximum of the following

profit function (see (B.132)):

αH

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠
(αH

αLm2L

2k
(V −m2L) −m1L) + k

⎛
⎜
⎝

αLm1L +
α3

L
m2

2L

4k

2k

⎞
⎟
⎠

2

(B.334)

and LM2 in case 2) is the maximum of the following profit function (see (B.251)):

αH (
α3

Lm
2

2L

8k2
)(αH

αLm2L

2k
(V −m2L)) +

α6

Lm
4

2L

64k3
(B.335)

Clearly, LM > LM . Thus there are two scenarios: one is that (m∗
0H ,0,m∗

2H) satisfies (B.3),

and the other is that (m∗
0H ,0,m∗

2H) does not satisfy (B.3). When the second scenario occurs,

the high-type principal’s profit in case 1) must be higher than the high-type principal’s
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profit in case 2). Now we look at the first scenario. We want to show that the high-type

principal’s profit in case 1) must be higher than the high-type principal’s profit in case 2)

for this scenario.

Notice that for case 1) there are two situations: one is that (B.2) binds but (B.5) not

binds, and the other is that both (B.2) and (B.5) bind. We assume that (m∗
0H ,m∗

1H ,m∗
2H)

is the menu of money transfers to the agent when the high-type principal maximizes her

profit. In the first situation which occurs when x = αH

αL
> 1.063971 , we showed that

m∗1H = α2

L

x(2 − x)(x + 1)2

8k(x + 2)2
(B.336)

and

m∗2H = (
αH + αL

αH + 2αL

)V (B.337)

where x = αH

αL
. (see (B.64) and (B.31) ) We can see that only when x = 2, m∗

1H = 0 andm∗
2H =

3

4
V . According to (B.50), we have the upfront money transfer m∗

0H = 27

32

α2

L
α4

H
V 4

128k3
−

α6

L
V 4

64k3
,

same as (B.265) -the upfront money transfer in case 2). This says that when x > 1.063971

and x ≠ 2, the intermediate money transfer m∗
1H in the optimal menu from the high-type

principal to the agent is not zero. Therefore, when x > 1.063971 and x ≠ 2, the high-type

principal’s profit in case 1) is strictly higher than that in case 2).

As for the second situation, namely, x ≤ 1.063971, both (B.2) and (B.5) bind, we no

longer have analytic solution for the location of the high-type principal’s profit maximization

problem. We will use contrapostion argument to show that the intermediate money transfer

can’t be zero in case 1), therefore the high-type principal’s profit in case 1) is strictly higher

than that in case 2).

First we need to show that the high-type principal’s profit maximization problem (B.1)

with both (B.2) and (B.5) being binding has a solution. In other words, there exist m1H

and m2H that satisfy both (B.2) and (B.5) which are binding, and (B.3). It is clear that

with (B.5) being binding, the binding constraint (B.2) can be written as

α6

LV
4

64k3
= k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

− αL

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αL

αHm2H

2k
(V −m2H) −m1H)

(B.338)

(see the binding constraint in (B.68)). On the other hand, constraint (B.3) can be written

as
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αH

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠
(αH

αHm2H

2k
(V −m2H) −m1H) + k

⎛
⎜
⎝

αHm1H +
α3

H
m2

2H

4k

2k

⎞
⎟
⎠

2

≥
α6

LV
4

64k3(2x − 1)3
(B.339)

(see (B.146) and (B.147) ) where LM =
α6

L
V 4

64k3
and LM =

α6

L
V 4

64k3(2x−1)3 .
Setting m1H = 0, then (B.338) gives

α6

LV
4

64k3
=
α6

Hm4

2H

64k3
+
α2

Lα
4

Hm3

2H

8k2
(V −m2H) (B.340)

and (B.339) becomes

m3

2H(V −m2H)

8k2
+
m4

2H

64k3
≥

V 4

64k3(2x − 1)3
(B.341)

using the fact that x = αH

αL
. From (B.340), we have

m3

2H(V −m2H)

8k2
=

1

α2

Lα
4

H

(
α6

LV
4

64k3
−
α6

Hm4

2H

64k3
) (B.342)

Substituting (B.342) into (B.341) and setting m2H = 1

2
V gives

V 4 (1 −
x6

16
+
x4

16
−

1

(2x − 1)3
) ≥ 0 (B.343)

which is equivalent to

(16 − x6 + x4) (2x − 1)3 − 16 ≥ 0 (B.344)

because V > 0 and x ≥ 1.

Let F2(x) be the right side of the inequality of (B.344). Using Maple we find that

x = 1 and x ≈ 1.684523 are the only two real roots that are greater than or equal to 1.

Since F2(x) goes to positive infinity as x increases to positive infinity, so F2(x) > 0 when

1 < x < 1.684523. Thus we showed that m1H = 0 and m2H = 1

2
V satisfies both (B.338)

and (B.339) when 1 ≤ x ≤ 1.063971. This means that the high-type principal’s profit

maximization problem (B.1) with both (B.2) and (B.5) being binding has a solution.

Next we will show that when 1 ≤ x ≤ 1.063971, the intermediate money transfer m1H ≠ 0

in the solution of the high-type principal’s profit maximization problem. Notice that we

already showed that (B.3) is not all binding.
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Setting m1H = 0, (B.75) can be simplified as

α4

Hm2H(V −m2H) = λ1 (α
2

Hα2

L(V −m2H) + (α4

H − αLα
3

h))m2H (B.345)

Since m2H cannot be 0, dividing both sides of (B.345) by m2H gives

α4

H(V −m2H) = λ1 (α
2

Hα2

L(V −m2H) + (α4

H − αLα
3

H)m2H) (B.346)

On the other hand, with m1H = 0, (B.78) can be simplified as

3α6

Hm2

2H(V −m2H) = λ1 (−α
6

Hm2H − α2

Lα
4

H(3V − 4m2H))m2

2H (B.347)

Since m2H cannot be 0, dividing both sides of (B.3.4) m2

2H gives

3α6

H(V −m2H) = λ1 (−α
6

Hm2H − α2

Lα
4

H(3V − 4m2H)) (B.348)

Substituting (B.29) into the right side of gives

3α2

Hλ1 (α
2

Hα2

L(V −m2H) + (α4

H − αLα
3

H)m2H) = λ1 (−α
6

Hm2H − α2

Lα
4

H(3V − 4m2H))

(B.349)

Since λ1 > 0 which means that (B.2) and (B.5) are binding, solving (B.349) for m2H gives

m2H = 0 which cannot happen, because this would lead to zero effort for the second period.

Therefore, this forms a contradiction. This says that m1H ≠ 0 for the second scenario.

In conclusion, we showed that for separating equilibrium, the high-type principal’s profit

in case 1) is strictly higher than that in case 2) for all x ≠ 2, and the two are equal when

x = 2.

Next we show that the high-type principal’s profit in case 1) is strictly greater than that

in case 3).

Assume (m0H ,m1H ,m2H) be the location of the high-type principal’s profit maximiza-

tion problem in case 1). We know that m0H ≠ 0when x ≠ 1.335236, and m0H = 0 when

x = 1.335236. Thus, we can see that when x ≠ 1.335236, the high-type principal’s profit in

case 1) is greater than that in case 3).

As to the case when x = 1.335236. Since 1.335236 > 1.063971, m2H = x+1
2x+1V . We claim

that m2H = x+1
2x+1V is not part of the location of the high-type principal’s maximal profit in

case 3). We use contraposition argument. Suppose m2H = x+1
2x+1V satisfies (B.313), namely

α6

LV
4

128k3
=

αLαH

2k
[

α2

Hm2

2HV

8k(−V + 2m2H)
] [

4αLαHm2H(V −m2H)(−V + 2m2H)

8k(−V + 2m2H)
]

+
αLαH

2k
[

α2

Hm2

2HV

8k(−V + 2m2H)
] [

−3α2

Hm2

2HV + 4α2

Hm3

2H

8k(−V + 2m2H)
] (B.350)
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Letting y =m2H/V = x+1
2x+1 , then y satisfies

1 =
x3y2 [4xy(1 − y)(2y − 1) − 3x2y2 + 4x2y3]

(−1 + 2y)2
(B.351)

However, Using Maple to either directly calculate the difference between the right side and

the left side of (B.351) or the real roots of a polynomial which is equivalent to the (B.351),

we find that the right side of (B.351) is always strictly greater than its left side when y > 0.

This means that m2H = x+1
2x+1V does not satisfy (B.313), and thereby can not be part of the

location of the high-type principal’s maximal profit in case 3). This shows x = 1.335236,

the high-type principal’s profit in case 1) is greater than that in case 3).

Next we show that the high-type principal’s profit in case 3) is strictly greater than that

in case 4).

Let m2H be the money transfer for the location of the high-type principal’s profit in

case 4). According to (B.332), m2H satisfies

27

32

α6

LV
4

128k3
= α2

L

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H) (B.352)

Since LM4 =
α6

L
V 4

128k3
, LM4 >

27

32

α6

L
V 4

128k3
. Let m2H =m2H , we have

LM4 >
27

32

α6

LV
4

128k3
= α2

L

α3

Hm2

2H

8k2
αHm2H

2k
(V −m2H) (B.353)

Let m1H = 0, then (m1H ,m2H) satisfies (B.281) with strictly inequality holds. We also

know that the agent’s profit for the high-type principal’s money transfers is strictly positive

when m2H > 0 (see (B.333). Thus we can increase m2H a little bit such that (B.281) still

holds. If (m1H ,m2H) satisfies (B.282), then this shows that the high-type principal’s profit

in case 3) is greater than that in case 4). If (m1H ,m2H) does not satisfy (B.282), this

clearly shows that the high-type principal’s profit in case 3) is greater than that in case 4),

since the left side of (B.282) equals the high-type principal’s profit in case 3).

B.4 Proof of Theorem 13

We need to examine the pooling equilibrium of case 2, case 3 and case 4, and then

compare the high-type principal’s profits in case 1 (studied in Theorem 11), case 2, case 3

and case 4.

B.4.1 Pooling equilibrium when upfront and end money transfers
are all included in the payment menu

We study the pooling equilibrium when intermediate money transfers are excluded from

the menu. We assume that the agent believes that the high-type principal appears with
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probability p while the low-type principal appears with probability 1 − p. For convenience,

we denote pαH + (1 − p)αL by α and
pα2

H

pαH+(1−p)αL
+

(1−p)α2

L

pαH+(1−p)αL
by α̃. Notice that αα̃ =

pα2

H + (1 − p)α2

L.

In the pooling equilibrium, both high-type and low-type principals offer the same pay-

ment menu (m0,m2). The high-type principal’s profit satisfies

max(m0,m2){−m0 + α2

He1e2(V −m2)} (B.354)

such that the agent’s profit satisfies

max(e1,e2)m0 − ke21 − αe1ke
2

2 + αα̃e1e2m2 (B.355)

and

m0 − ke21 − αe1ke
2

2 + αα̃e1e2m2 ≥ 0 (B.356)

There are two other constraints that have to be satisfied:

−m0 + α2

Le1e2(V −m2) ≥ LM3 (B.357)

and

−m0 + α2

He1e2(V −m2) ≥ LM3 (B.358)

where

LM3 = max(m0L,m2L){−m0L + α2

Le1Le2L(V −m2L)} (B.359)

and

LM3 = max(m0L,m2L){−m0L + α2

He1Le2L(V −m2L)} (B.360)

with the agent satisfying:

max(e1L,e2L)m0L − ke21L − αLe1Lke
2

2L + α2

Le1Le2L (B.361)

and

m0L − ke21L − αLe1Lke
2

2L + α2

Le1Le2L ≥ 0 (B.362)

where (B.356) is the agent’s participation constraint, (B.357) is the constraint of preventing

low-type principal’s deviation and (B.358) is the constraint of preventing the high-type

principal’s deviation.

The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the agent earns zero profit and the low-type principal does

not want to deviate, i.e., (B.356) binds, but (B.357) does not bind. In this scenario, we

show that the high-type principal does not want to deviate, i.e., (B.165) is redundant. Then
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we look at the high-type principal’s profit maximization problem when the agent earns zero

profit and the low-type principal wants to deviate, i.e., both (B.356) and (B.357) bind. In

this scenario, there exist two subscenarios, one in which the high-type principal does not

want to deviate, i.e., (B.358) does not bind, and the other in which the high-type principal

wants to deviate, i.e., (B.358) binds.

Before we go to discussion in detail, we calculate LM3 and LM3. It is clear that

LM3 =
α6

L
V 4

64k3
. As to LM3, it is the maximum of the following expression:

αH (
α3

Lm̃
2

2L

8k2
)(αH

αLm̃2L

2k
(V − m̃2L)) + k(

α3

Lm̃
2

2L

8k2
)

2

(B.363)

It is clear that LM3 equals LM2, which has the expression

α6

L

108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.364)

(see (B.254)).

For the same reason we mentioned in previous section, the effort levels in two periods

take the forms e∗
2
= α̃m2

2k
≤ 1 and e∗

1
=

αα̃2m2

2

8k2
≤ 1.

Next we look at the first scenario in which the agent earns zero profit and the low-type

principal does not want to deviate, i.e., (B.356) binds, but (B.357) does not bind.

B.4.1.1 The first scenario

The Lagrangian of the high-type principal’s profit is

αH (
αα̃2m2

2

8k2
)(αH

α̃m2

2k
(V −m2)) −m0 + λ

⎡
⎢
⎢
⎢
⎢
⎣

m0 + k(
αα̃2m2

2

8k2
)

2⎤⎥
⎥
⎥
⎥
⎦

(B.365)

Notice that the boundary conditions for α̃m2

2k
≤ 1 and

αα̃
2
m

2
2

4k

2k
≤ 1 are not included in (B.365).

We will show that when V ≤ 2k
αH

, the location of the local maximum of the high-type

principal’s profit won’t occur at the boundaries.

The first order condition of (B.365) with respect to m0 gives

−1 + λ = 0 (B.366)

This means that λ = 1 and m0 = −k(
αα̃2m2

2

8k2
)
2

.
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Therefore the high-type principal’s profit becomes

αH (
αα̃2m2

2

8k2
)(αH

α̃m2

2k
(V −m2)) + k(

αα̃2m2

2

8k2
)

2

(B.367)

The first order condition of (B.367) with respect to m2 gives

αHαα̃2m2

4k2
(αH

α̃m2

2k
(V −m2)) +

αHαα̃2m2

2

8k2
(
αH α̃

2k
(V − 2m2)) + 2k (

αα̃2m2

2

8k2
)
αα̃2

4k2
m2 = 0

(B.368)

Multiplying both sides of (B.368) by 16k3 gives

2α2

Hαα̃3m2

2(V −m2) + α2

Hαα̃3m2

2(V − 2m2) + α2α̃4m3

2 = 0 (B.369)

namely,

αα̃3m2

2
(α2

H(3V − 4m2) + αα̃m2) = 0 (B.370)

There are three roots for equation (B.370). Two of them are 0 and can be ruled out, because

they lead to e1 = 0 and e2 = 0. The third one is

m2 =
3α2

HV

4α2

H − αα̃
(B.371)

This means that

m0 = −
α2α̃4m4

2

64k3
(B.372)

Next we will show that (B.358) is redundant.

Recall that LM3 is the maximum of the following expression (replace m̃2L in (B.363)

with m2 )

αH (
α3

Lm
2

2

8k2
)(αH

αLm2

2k
(V −m2)) + k(

α3

Lm
2

2

8k2
)

2

(B.373)

which has m2 =
3α2

H
V

4α2

H
−α2

L

as the location of the maximum. This means that V −m2 > 0 at

the location of the maximum.

On the other hand, from (B.367), we know that the high-type principal’s profit is the

maximum of

αH (
αα̃2m2

2

8k2
)(αH

α̃m2

2k
(V −m2)) + k(

αα̃2m2

2

8k2
)

2

(B.374)

which has m2 =
3α2

H
V

4α2

H
−αα̃ as the location of the maximum. This means that V −m2 > 0 at

the location of the maximum.

Clearly, (B.374) is greater than or equal to (B.373) when V −m2 > 0, because α̃ > α > αL.

This means that the high-type principal’s profit is greater than or equal to LM3. In other

words, (B.358) is redundant.
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Next we look at the high-type principal’s profit maximization problem when the agent

earns zero profit and the low-type principal wants to deviate, i.e., both (B.356) and (B.357)

bind.

B.4.1.2 The second scenario

In this scenario, there exist two subscenarios, one in which the high-type principal does

not want to deviate, i.e., (B.358) does not bind, and the other in which the high-type

principal wants to deviate, i.e., (B.358) binds.

The Lagrangian for the high-type principal’s profit is

αH (
αα̃2m2

2

8k2
)(αH

α̃m2

2k
(V −m2H)) +

α2α̃4m4

2

64k4

+ λ1 [
α2α̃4m4

2

64k4
+ αL (

αα̃2m2

2

8k2
)(αL

α̃m2

2k
(V −m2)) −

α6

LV
4

64k3
] (B.375)

Assuming m2 is the location for the maximum of high-type principal’s profit, it satisfies

αL (
αα̃2m2

2

8k2
)(

αLα̃

2k
(V − 2m2)) =

α2α̃4m3

2

16k4
(B.376)

Numerical result shows that when (B.376) holds, (B.358) does not hold, namely

αH (
αα̃2m2

2

8k2
)(

αH α̃

2k
(V − 2m2H)) +

α2α̃4m3

2

16k4
< LM3 (B.377)

where LM3 has the following expression

α6

L

108y4(y − 1) + 81y4

64k3(4y − 1)4
V 4 (B.378)

In other words, numerical results suggest that there are no pooling equilibria when both

(B.356) and (B.357) bind.

B.4.2 Pooling equilibrium when intermediate and end money
transfers are all included in the payment menu

Next we look at the pooling equilibrium when the upfront money transfers are excluded

from the menu. We assume that the agent believes that the high-type principal appears with

probability p while the low-type principal appears with probability 1 − p. For convenience,

we denote pαH + (1 − p)αL by α and
pα2

H

pαH+(1−p)αL
+

(1−p)α2

L

pαH+(1−p)αL
by α̃. Notice that αα̃ =

pα2

H + (1 − p)α2

L.
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In the pooling equilibrium, both high-type and low-type principals offer the same menu

(m1,m2). The high-type principal’s profit satisfies

max(m1,m2){−αHe1m1 + α2

He1e2(V −m2)} (B.379)

such that the agent’s profit satisfies

max(e1,e2)−ke
2

1 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 (B.380)

and

−ke21 + αe1m1 − αe1ke
2

2 + αα̃e1e2m2 ≥ 0 (B.381)

There are two other constraints that have to be satisfied:

−αLe1m1 + α2

Le1e2(V −m2) ≥ LM5 (B.382)

and

−αHe1m1 + α2

He1e2(V −m2) ≥ LM5 (B.383)

where

LM5 = max(m1L,m2L){−αLe1Lm1L + α2

Le1Le2L(V −m2L)} (B.384)

as the low-type principal’s maximal profit, and

LM5 = max(m̃1L,m̃2L){−αHe1Lm̃1L + α2

He1Le2L(V − m̃2L)} (B.385)

with the agent satisfying:

max(e1L,e2L)−ke
2

1L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L (B.386)

and

−ke21L + αLe1Lm̃1L − αLe1Lke
2

2L + α2

Le1Le2Lm̃2L ≥ 0 (B.387)

where (B.381) is the agent’s participation constraint, (B.382) is the constraint of preventing

low-type principal’s deviation and (B.383) is the constraint of preventing the high-type

principal’s deviation.

The proof consists of two parts. First we look at the high-type principal’s profit

maximization problem when the low-type principal wants to deviate, i.e., (B.382) binds, but

the high-type principal does not want to deviate, i.e., (B.383) does not bind. Then we look

at the high-type principal’s profit maximization problem when the low-type principal wants

to deviate, i.e., (B.382) binds, and the high-type principal wants to deviate, i.e., (B.383)

binds. We will point out that the gent earn positive profit, i.e., (B.381) is redundant.
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It is clear that LM5 in (B.384) and LM5 in (B.385) equal LM4 in (B.285) and LM4 in

(B.286).

As we discussed in the screening model, when V ≤ 2k
α̃
, there are four cases for consider-

ation:

1. when m2 ≤
2k
α̃

and
αm1+αα̃

2
m

2

2

4k

2k
≤ 1, i.e., e∗

2
≤ 1 and e∗

1
≤ 1.

2. when m2 ≤
2k
α̃

and
αm1+αα̃

2
m

2

2

4k

2k
≥ 1, i.e., e∗

2
≤ 1 and e∗

1
= 1.

3. when m2 ≥
2k
α̃

and
αm1+αα̃

2
m

2

2

4k

2k
≤ 1, i.e., e∗

2
= 1 and e∗

1
≤ 1.

4. when m2 ≥
2k
α̃

and
αm1+αα̃

2
m

2

2

4k

2k
≥ 1 , i.e., e∗

2
= 1 and e∗

1
= 1.

where e∗
1
and e∗

2
are the solution of the agent’s profit maximization problem (B.380), when

the payments are (m1,m2).

We will focus the discussion on the first one of the four cases in which the effort levels

in two periods take the forms e∗
2
= α̃m2

2k
and e∗

1
=

αm1+αα̃
2
m

2
2

4k

2k
, because using a similar

argument to what we did for the scenario when upfront, intermediate and end payments

are all included, we can show that the global optimal solution won’t occur in three other

cases (areas). We leave the proof to readers.

Since e∗
2
= α̃m2

2k
and e∗

1
=

αm1+αα̃
2
m

2

2

4k

2k
, the agent’s participation constraint (B.381) when

the high-type principal offers a contract can be written as

k

⎡
⎢
⎢
⎢
⎢
⎣

αm1 +
αα̃2m2

2

4k

2k

⎤
⎥
⎥
⎥
⎥
⎦

2

≥ 0 (B.388)

Thus (B.381) holds true, namely redundant. This means that the high-type principal’s

profit maximization problem consisting of (B.379) through (B.382) is equivalent to the one

consisting of (B.379), (B.380), (B.383), and (B.382).

Next we look at the first scenario in which the low-type principal wants to deviate, i.e.,

(B.382) binds, but the high-type principal does not want to deviate, i.e., (B.383) does not

bind.

B.4.2.1 The first scenario

The Lagrangian for the high-type principal’s profit is

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αH

α̃m2

2k
(V −m2) −m1)

+ λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃m2

2k
(V −m2) −m1) −

α6

LV
4

128k3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.389)
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The first order condition of (B.389) with respect to m1 is

αHα

2k
(αH

α̃m2

2k
(V −m2) −m1) − αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

+ λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLα

2k
(αL

α̃m2

2k
(V −m2) −m1) − αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (B.390)

which can be written as

α2

Hαα̃ + λα2

Lαα̃

4k2
m2(V −m2) −

αHα + λαLα

k
m1 −

αHαα̃2 + λαLαα̃
2

8k2
m2

2 = 0 (B.391)

namely,

m1 =
1

αHα + λαLα
[
α2

Hαα̃ + λα2

Lαα̃

4k2
m2(V −m2) −

αHαα̃2 + λαLαα̃
2

8k2
m2

2]

=
α2

Hαα̃ + λα2

Lαα̃

4k(αHα + λαLα)
m2(V −m2) −

α̃2

8k
m2

2 (B.392)

The first order condition of (B.389) with respect to m2 is

αHαα̃2m2

4k2
(αH

α̃m2

2k
(V −m2) −m1) + αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(
αH α̃

2k
(V − 2m2))

+ λ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αLαα̃
2m2

4k2
(αL

α̃m2

2k
(V −m2) −m1) + αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(
αLα̃

2k
(V − 2m2))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

(B.393)

Multiplying (B.391) by α̃2m2

2k
and subtracting the product from (B.393) gives

αH

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(
αH α̃

2k
(V − 2m2 +

α̃

αH

m2))

= −λ1αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(
αLα̃

2k
(V − 2m2 +

α̃

αL

m2)) (B.394)

Since
αm1+αα̃

2
m

2
2

4k

2k
as the effort in the first period is positive, (B.394) implies that

λ1 = −
−
α2

H

α2

L

(V − 2m2 +
α̃
αH

m2)

[V − (2 − α̃
αL

)m2]
(B.395)
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Thus

α2

Hαα̃ + λα2

Lαα̃

=
α2

Hαα̃ [V − (2 − α̃
αL

)m2] − α2

Hαα̃ (V − 2m2 +
α̃
αH

m2)

[V − (2 − α̃
αL

)m2]

=
α2

Hαα̃ ( α̃
αL

− α̃
αH

)

[V − (2 − α̃
αL

)m2]
(B.396)

and

αHα + λαLα =
αHα [V − (2 − α̃

αL
)m2] −

α2

H
α

αL
(V − 2m2 +

α̃
αH

m2)

[V − (2 − α̃
αL

)m2]

=
(αHα −

α2

H
α

αL
)V − 2(αHα −

α2

H
α

αL
)m2

[V − (2 − α̃
αL

)m2]
(B.397)

Thus according to (B.392)

m1 =
α2

Hαα̃ ( α̃
αL

− α̃
αH

)

4k [(αHα −
α2

H
α

αL
)V − 2(αHα −

α2

H
α

αL
)m2]

m2

2(V −m2) −
α̃2

8k2
m2

2

=
α̃2

4k(−V + 2m2)
m2

2(V −m2) −
α̃2

8k2
m2

2

=
3α̃2m2

2
V − 4α̃2m3

2

8k(−V + 2m2)
(B.398)

which implies that

m1 +
α̃2

4k
m2

2 =
3α̃2m2

2
V − 4α̃2m3

2

8k(−V + 2m2)
+
α̃2

4k
m2

2

=
3α̃2m2

2
V − 4α̃2m3

2
+ 2α̃2m2

2
(−V + 2m2)

8k(−V + 2m2)

=
α̃2m2

2
V

8k(−V + 2m2)
(B.399)

and

αL
α̃m2

2k
(V −m2) −m1 = αL

α̃m2

2k
(V −m2) −

3α̃2m2

2
V − 4α̃2m3

2

8k(−V + 2m2)

=
4αLα̃m2

2k
(V −m2)(V − 2m2) − 3α̃2m2

2
V + 4α̃2m3

2

8k(−V + 2m2)
(B.400)

From the binding condition that appears in (B.389), we know

α6

LV
4

128k3
= αL

⎛
⎜
⎝

αm1 +
αα̃2m2

2

4k

2k

⎞
⎟
⎠
(αL

α̃m2

2k
(V −m2) −m1) (B.401)
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Substituting (B.399) and (B.400) into (B.401) gives

α6

LV
4

128k3
=
αLα̃

2k
[

α̃2m2

2
V

8k(−V + 2m2)
] [

4αLα̃m2(V −m2)(V − 2m2) − 3α̃2m2

2
V + 4α̃2m3

2

8k(−V + 2m2)
] (B.402)

Since (B.402) has only one variable - m2, we can solve it for m2.

Notice that according to (B.389), the high-type principal’s profit equals

αH α̃

2k
[

α̃2m2

2
V

8k(−V + 2m2)
] [

4αH α̃m2(V −m2)(V − 2m2) − 3α̃2m2

2
V + 4α̃2m3

2

8k(−V + 2m2)
] (B.403)

Next we look at the second scenario when the low-type principal wants to deviate, i.e.,

(B.382) binds, and the high-type principal wants to deviate, i.e., (B.383) binds.

B.4.2.2 The second scenario

Our numerical calculation shows that this does not happen. In other words, when

(B.402) holds, the high-type principal’s profit in (B.403) is always bigger than LM5, which

equals
α5

Hα3

L

128k3(2αH − αL)
2

(B.404)

namely, the expression of LM4 in (B.296).

Similar to what we did before, with x = αH

αL
, we can prove that the maximal profit of the

high-type principal can be written as α6

Lg(x, k, V ), where g is a function of x, k and V .

B.4.3 Pooling equilibrium when only end money transfers
are included in the payment menu

Next we look at the pooling equilibrium when only end money transfers are included

in the menu. We assume that the agent believes that the high-type principal appears with

probability p while the low-type principal appears with probability 1 − p. For convenience,

we denote pαH + (1 − p)αL by α and
pα2

H

pαH+(1−p)αL
+

(1−p)α2

L

pαH+(1−p)αL
by α̃. Notice that αα̃ =

pα2

H + (1 − p)α2

L.

In the pooling equilibrium, both high-type and low-type principals offer the same pay-

ment menu m2. The high-type principal’s profit satisfies

max
m2

{α2

He1e2(V −m2)} (B.405)

such that the agent’s profit satisfies

max(e1,e2)−ke
2

1 − αe1ke
2

2 + αα̃e1e2m2 (B.406)

and

−ke21 − αe1ke
2

2 + αα̃e1e2m2 ≥ 0 (B.407)
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There are two other constraints that have to be satisfied:

α2

Le1e2(V −m2) ≥ LM7 (B.408)

and

α2

He1e2(V −m2) ≥ LM7 (B.409)

where

LM7 =max
m2L

{α2

Le1Le2L(V −m2L)} (B.410)

as the low-type principal’s maximal profit, and

LM7 =max
m2L

{α2

He1Le2L(V −m2L)} (B.411)

with the agent satisfying:

max(e1L,e2L)−ke
2

1L − αLe1Lke
2

2L + α2

Le1Le2L (B.412)

and

−ke21L − αLe1Lke
2

2L + α2

Le1Le2L ≥ 0 (B.413)

where (B.407) is the agent’s participation constraint, (B.408) is the constraint of preventing

low-type principal’s deviation and (B.409) is the constraint of preventing the high-type

principal’s deviation.

We will show that (B.409) and (B.408) are redundant.

Before we go to the discussion in detail, we want to find LM7 and LM7.

It is easy to see that LM7 =
27

32

α6

L
V 4

128k3
. Notice that the principal’s profit function is

α2

H

α̃m2

2k

αα̃2m2

2

8k2
(V −m2) (B.414)

Without any constraint, (B.414) has the maximum at m2 =
3

4
V . We will show that (B.409)

and (B.408) are redundant.

Notice that LM7 is the maximum of the following function

α2

H

αLm2L

2k

α3

Lm
2

2L

8k2
(V −m2L) (B.415)

which has m2L = 3

4
V as the location of the maximum.

On the other hand, LM7 is the maximum of the following function

α2

L

αLm2L

2k

α3

Lm
2

2L

8k2
(V −m2L) (B.416)

which has m2L = 3

4
V as the location of the maximum.
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Replacing variable m2L with m2 in (B.415) and (B.416), we can see that (B.414) is

greater than both of (B.415) and (B.416) when m2L > 0, because αH > α̃ > α > αL. This

shows that (B.409) and (B.408) are not binding, i.e., they are redundant.

There are three cases for consideration:

1. When m2 ≤
2k
α̃
, which means that e∗

2
= α̃m2

2k
≤ 1, e∗

1
=

αα̃2m2

2

8k2
≤ 1.

2. When m2 ≥
2k
α̃
, which means that e∗

2
= α̃m2

2k
≥ 1, e∗

1
=

αα̃2m2

2

8k2
≤ 1.

3. When m2 ≥
2k
α̃
, which means that e∗

2
= α̃m2

2k
≥ 1, e∗

1
=

αα̃2m2

2

8k2
≥ 1.

where e∗
1
and e∗

2
are the solution of the agent’s profit maximization problem (B.326) when

the payment is m2.

We will focus the discussion on the first one of the three cases, in which the effort levels

in two periods take the forms e∗
2
= α̃m2

2k
and e∗

1
=

αα̃2m2

2

8k2
, because using a similar argument to

what we did for the scenario when upfront, intermediate and end payments are all included,

we can show that the global optimal solution won’t occur in second case (area). We leave

the proof to readers.

With e∗
2
= α̃m2

2k
and e∗

1
=

αα̃2m2

2

8k2
, the solution to the optimization problem consisting of

(B.405) through (B.408) is m∗
2
= 3

4
V . The principal’s maximal profit equals

27

32

α2

Hα2α̃2V 4

128k3
(B.417)

B.4.4 Compare the high-type principal’s profits of the four cases

It is clear that if we restrict m1 = 0 in case 1, we obtain case 2. This means that the

high-type principal’s profit in case 2 cannot be bigger than that in case 1. We know that

only on the segment 2α2

H − 3αH α̃ + αα̃ = 0, the optimal solution of case 1 has m∗
1
= 0. This

shows that the high-type principal’s profit in case 1 is strictly greater than that in case

2 except when 2α2

H − 3αH α̃ + αα̃ = 0 where the two profits are equal. Notice that if we

restrict m0 = 0, we obtain case 3. But since the optimal solution of case has m∗
0
≠ 0, the

high-type principal’s profit in case 1 is strictly bigger than that in case 3. Similarly, if we

restrict m0 = 0 and m1 = 0, we obtain case 4. But since the optimal solution of case 4 has

m∗
0
≠ 0, the high-type principal’s profit in case 1 strictly bigger than that in case 4. As

for the comparison of case 3 and case 4, if we restrict m1 = 0 in case 3, we obtain case 4.

But for case 3, the optimal solution has m∗
1
≠ 0 except on the segment 3α̃ = 2αH . Thus

the high-type principal’s profit in case 3 is strictly bigger than that in case 4 except on the

segment 3α̃ = 2αH where the two profits are equal.
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