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ABSTRACT

Verification and validation (V&V) principles are applied to assess massively parallel

simulations of hypervelocity perforation of a well bore casing and subsequent penetration

into oil-laden sandstone via shaped-charge jet. This technique for liberating oil from

geological formations has the potential to be optimized through development of robust

and accurate computational frameworks. Accordingly, the overarching objective of this

research is to systematically assess the accuracy of the numerical algorithms used (verifica-

tion) and the appropriateness of those equations for this engineering purpose (validation).

Automated methods for single-element verification of constitutive models under a variety of

loading modes are developed. This modular test suite incorporates previously documented

verification tests, both generally applicable to plasticity models reducing to von Mises

plasticity, as well as model specific tests of the geomechanics model (Arenisca) under

continual development. These tools are extended to extract the deformation histories of

single particles from full-scale Material Point Method (MPM) simulations, which helps to

analyze problematic loading modes of a larger simulation on a single-processor workstation.

The velocity gradient in these single-element tests must be evaluated in a manner consistent

with the underlying integration algorithm used in the source simulation, which is a nontrivial

observation making this new capability novel. Testing capabilities are extended to provide

arbitrary loading paths similar to those extracted from full-scale penetration problems to

serve as robustness and verification tests in future regression testing. A key focus of the

work was devising methods to automate the testing of Arenisca and its implementation.

As MPM is a relatively new approach to modeling large deformation problems, novel

visualization methods are developed along with supporting Python postprocessing scripts.

Analytical penetration models in the literature, which have historically been developed

for hydrodynamic flow of metals, are tested for their applicability to the penetration of

sandstone. A representative sampling of simulation results (some using new methods to

account for confining stress) are presented to illustrate how full-scale V&V trend testing

often reveals issues not evident in smaller tests, thereby helping code developers better

understand, and eliminate, undesired trends or anomalies in the results.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. DEFINITIONS AND TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Verification & Validation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Penetration Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Simulating Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. BUILDING MODEL CONFIDENCE THROUGH V&V PRACTICES 19

4.1 Automation of Current Verification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Single Element Verification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Robustness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Reproduction of Particle Histories as Extracted from

Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Automated Single Element Testing Driven by

Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. PENETRATION SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.1 Sensitivity to Simulated Boundary Conditions . . . . . . . . . . . . . . . . . . . . 45

5.2 Simulation of Hypervelocity Long-Rod
Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Simulated Overburden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



6. ISSUES EXPOSED BY V&V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Shear Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Volumetric Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Residual Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Kinematic Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Erosion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7. POSTPROCESSING SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . 105

7.1 Improved Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Automated Data Decimation and Visualization . . . . . . . . . . . . . . . . . . . . . . . 109

8. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.1.1 Resolution of the kinematic anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.1.2 Implementation of More Effective Anti-Locking

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.3 Accurate Computation of the Strain Rate . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.4 Splitting/Deletion/Freezing of Damaged/Failed

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.5 Continued Validation Through Comparison Against

Analytical Theory and Experimental Observations
using Simplified Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1.6 Development of a plastic strain and Damage/Permeability Correlation . 118
8.1.7 Nonlinear Non-Drucker-Prager Limit Surface . . . . . . . . . . . . . . . . . . . . . 118
8.1.8 Texture, Both Intrinsic and Induced . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.1.9 Development of Path Dependent Plasticity Verification

Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

APPENDIX: SIMULATION INPUTS AND SOURCE CODE . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

v



LIST OF FIGURES

1.1 Illustrations of (a) a shaped charge, and (b) the well-bore completions process. 1

3.1 Birkoff Bernoulli penetration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Illustration of basic frame-indifference test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Basic frame-indifference test results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Comparison of von Mises and Arenisca yield surfaces. . . . . . . . . . . . . . . . . . . . 22

4.4 Comparison of uniaxial strain and uniaxial stress loading. . . . . . . . . . . . . . . . . 23

4.5 Basic uniaxial strain single element test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Uniaxial-strain test results both with and without hardening. . . . . . . . . . . . . . 25

4.7 Constant eigen vectors with transient eigen values. . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Geometry of Drucker-Prager verification test. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 Linear Drucker-Prager verification test results. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.10 Linear Drucker-Prager verification test results. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.11 Evolving porosity as a result of yield surface cap evolution test results. . . . . . . 31

4.12 Hydrostatic load-unload verification test results. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.13 Fluid effects verification test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.14 Error in comparing extracted and expected deformation histories of a particle
at three stages of the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Illustration representing a simulations domain and discretization. . . . . . . . . . . 37

5.2 Illustration of the discrete shaped-charge jet model. . . . . . . . . . . . . . . . . . . . . . 37

5.3 The discrete jet description’s individual cylinder properties. . . . . . . . . . . . . . . 38

5.4 The discrete jet description’s properties as they vary with time. . . . . . . . . . . . 39

5.5 Pressure histories at different points in space without using viscous damping. . 40

5.6 Multiple pressure histories demonstrating the effectiveness of viscous damping. 41

5.7 Comparison of penetration histories obtained for three different background
grid resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 The effects of free surface boundary type selection. . . . . . . . . . . . . . . . . . . . . . 47

5.9 Comparison of fixed outer boundary effects for two versions of Arenisca each
using different erosion options and penetrators. . . . . . . . . . . . . . . . . . . . . . . . . 48



5.10 Illustration of ∂(R−Y )/∂V 2 over a range of slopes (b) in the linear relationship
between penetration velocity and rate of penetration. . . . . . . . . . . . . . . . . . . . 50

5.11 Plot of the linear relationship between rate of penetration and penetrating rod
velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.12 Normalized penetration velocity versus penetrating rod velocity. . . . . . . . . . . . 51

5.13 Dynamic strength difference (R − Y ) versus penetrating rod velocity. . . . . . . . 53

5.14 Plot of penetration velocity versus penetrating rod density. . . . . . . . . . . . . . . . 54

5.15 Plot of normalized penetration depth versus penetrating rod density. . . . . . . . 54

5.16 Legend for combined plots of volumetric plastic strain and pressure. . . . . . . . . 55

5.17 Penetration histories for simulations investigating the combined effects of
density and length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.18 Rate of penetration histories for simulations investigating the combined effects
of density and length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.19 Plots of the resulting penetration channel for simulations investigating the
combined effects of density and length that used erosion option none. . . . . . . . 58

5.20 Plots of the resulting penetration channel for simulations investigating the
combined effects of density and length that used erosion option ZeroStress . . . 58

5.21 Depth of penetration results for simulations having an anisotropic preconfining
stress state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.22 Normalized penetration depth of a rod penetrator penetrating into drained and
undrained targets at various levels of preconfinement using different erosion
options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.23 Penetration histories for a tungsten rod penetrator using erosion option none
to penetrate drained and undrained targets at various levels of preconfinement. 62

5.24 Penetration histories for a tungsten rod penetrator using erosion option Ze-
roStress to penetrate drained and undrained targets at various levels of pre-
confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.25 Rate of penetration histories for a tungsten rod penetrator using erosion
option none to penetrate drained and undrained targets at various levels of
preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.26 Rate of penetration histories for a tungsten rod penetrator using erosion option
ZeroStress to penetrate drained and undrained targets at various levels of
preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.27 Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option none to penetrate drained targets at various
levels of preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.28 Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option none to penetrate undrained targets at various
levels of preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



5.29 Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option ZeroStress to penetrate drained targets at
various levels of preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.30 Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option ZeroStress to penetrate undrained targets at
various levels of preconfinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Example of the characteristic checkerboarding of solution fields that presents
in locking phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Shear locking benchmark problem illustration. . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Shear locking benchmark problem results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Shear locking benchmark problem results comparing the effects of basic strain
regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Energy versus time for third order B-spline interpolator solving the cantilever
beam shear locking problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Volumetric locking benchmark problem illustration. . . . . . . . . . . . . . . . . . . . . . 73

6.7 Error plots for 2-d volumetric locking problem varying Poisson’s ratio by
means of the bulk modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 Convergence plots for 2-d volumetric locking problem varying Poisson’s ratio
by means of the bulk modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Error plots for 2-d volumetric locking problem varying Poisson’s ratio by
means of the shear modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.10 Convergence plots for 2-d volumetric locking problem varying Poisson’s ratio
by means of the shear modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.11 Error plots for 2-d volumetric locking problem varying Poisson’s ratio by
means of the bulk modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.12 Error plots for 2-d and 3-d volumetric locking problem varying Poisson’s ratio
by means of the shear modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.13 Comparison of manufactured solution problems with and without basic strain
regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.14 Residual pressure along the penetration cavity walls. . . . . . . . . . . . . . . . . . . . . 81

6.15 Kinematic anomaly over ten �s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.16 Total kinetic energy of jet material, demonstrating energy spike. . . . . . . . . . . . 83

6.17 Comparison of manufactured solution problems with and without enhance-
ments to the computation of velocity gradient. . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.18 Von Mises equivalent stress legend for tungsten penetration of steel simulations. 85

6.19 Kinematic anomaly without using Arenisca in simulating perforation of a thick
steel plate by a tungsten penetrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.20 Kinematic anomaly breaking dam problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.21 Simulating perforation of a thick steel plate by a segmented rod tungsten
penetrator to evaluate the effects of basic strain regularization. . . . . . . . . . . . . 87

viii



6.22 Simulated liner perforation and penetration into sandstone using the erosion
option none. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.23 Simulated well-liner perforation and penetration into sandstone using the
erosion option RemoveMass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.24 Simulated well-liner perforation and penetration into sandstone using the
erosion option AllowNoTension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.25 Simulated well-liner perforation and penetration into sandstone using the
erosion option AllowNoShear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.26 Simulated well-liner perforation and penetration into sandstone using the
erosion option ZeroStress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.27 Comparison of penetration though time for different erosion algorithms solving
perforation of a well liner followed by penetration into sandstone. . . . . . . . . . . 93

6.28 Comparison of von Mises equivalent stress, using the erosion algorithms none
(left) and ZeroStress (right), for tungsten long-rod penetration of a steel billet. 94

6.29 Comparison of von Mises equivalent stress, using the erosion algorithms none
(left) and ZeroStress (right), for tungsten segmented-rod penetration of a steel
billet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.30 Constant velocity discrete jet penetrator description. . . . . . . . . . . . . . . . . . . . . 98

6.31 Comparing erosion algorithm effects on depth of penetration through time,
for tungsten into sandstone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.32 Combined legend for Jacobian and von Mises equivalent stress. . . . . . . . . . . . . 100

6.33 Plots of Jacobian and equivalent stress for tungsten long-rod penetrator using
erosion algorithm none to penetrate into sandstone without a steel liner. . . . . 101

6.34 Plots of Jacobian (left) and equivalent stress (right) for tungsten long-rod
penetrator using erosion algorithm ZeroStress to penetrate into sandstone
without a steel liner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.35 Plots of Jacobian and equivalent stress for a tungsten discrete jet penetrator
having a constant velocity and using erosion algorithm none to penetrate into
sandstone without a steel liner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.36 Plots of Jacobian and equivalent stress for a tungsten discrete jet penetrator
having a constant velocity and using erosion algorithm ZeroStress to penetrate
into sandstone without a steel liner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Comparison of different glyphs used to visualize particle data. . . . . . . . . . . . . . 107

7.2 Comparison of different glyphs used to visualize particle data. . . . . . . . . . . . . . 108

7.3 Example video frame generated using automated visualization methods. . . . . . 109

7.4 Example depth of penetration plots generated using automated visualization
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Example rate of penetration plots generated using automated visualization
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Example penetrator total kinetic energy plots generated using automated
visualization methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



7.7 Example penetrator segment total kinetic energy plots generated using auto-
mated visualization methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.8 Example penetration histories of individual penetrator particles. . . . . . . . . . . . 114

7.9 Example frame from an animated history of particle velocity, acceleration, and
position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



LIST OF TABLES

5.1 Target and equilibrium times for simulations with confinement. . . . . . . . . . . . . 42

5.2 Simulation results investigating the effects of patching and number of proces-
sors on runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Penetrator properties and resulting depth of penetration used to investigate
the combined effects of rod density and length. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Anisotropic confinement used to obtain the results of Fig. 5.21. . . . . . . . . . . . 60

5.5 Depth of penetration results from simulations of a tungsten rod using different
erosion options to penetrate a target with and without fluid effects at differing
levels of confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Shear locking problem interpolators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Material properties for volumetric locking test. . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Convergence rates for 2-d volumetric locking problem varying Poisson’s ratio
by means of the bulk modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Convergence rates for 2-d volumetric locking problem varying Poisson’s ratio
by means of the shear modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Comparing erosion algorithm effects on depth of penetration, for tungsten into
a steel billet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Comparing erosion algorithm effects on the dimensionless penalty parameter,
for tungsten into a steel billet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 comparing erosion algorithm effects on the dimensionless segmentation param-
eter, for tungsten into a steel billet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 Comparing erosion algorithm effects on depth of penetration, for tungsten into
sandstone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CHAPTER 1

INTRODUCTION

In the late 1800’s it was discovered almost in unison by German engineer Max von

Foerster and America Professor Charles E. Munroe that the force of an explosive device can

be focused through incorporation of a hollow cavity into the devices design [1, 2]. This effect

was later termed the Munroe, Neumann, von Foerster or shaped-charge effect [3]. Nearly

forty years later Dr. Henry Mohaupt of Switzerland would discover that by lining this hollow

cavity with material, a charge’s ability to defeat a target could be significantly improved [4].

Most commonly associated with weapons of war (the bazooka, rocket propelled grenade,

and torpedo), the shaped charge sees a great deal of use in other applications. For instance,

shaped charges are used in cutting, demolition, geophysical prospecting, mining, hyperve-

locity impact studies, and prevalently in the petroleum industry during the completions

process for well-bore perforation and reservoir stimulation, which is the subject of this

research (a shaped charge and the completions process are demonstrated in Fig. 1.1). In

fact, the petroleum industry uses more shaped charges per year than any other industry

(including the defense industry) [5, 2].

(a) (b)

Figure 1.1: Illustrations of (a) a shaped charge, and (b) the well-bore completions process.
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After a wellbore has been drilled into a geologic formation, it is typically cased, wherein

a steel liner is cemented in place along its length. This liner acts both to stabilize the

wellbore and to provide a clean and consistent means of product transmission to the surface.

In order to re-establish contact with the geologic reservoir after casing, a “carrier-tube” or

“charge-gun” is loaded with multiple shaped charges and lowered downhole. As illustrated

in Fig. 1.1, charges of this device are oriented so that they face radially outward. The

extremely high pressures of the detonation front act to invert a conical liner, forming an

elongated hypervelocity jet (velocities of 2-10 km/s are common), which acts to perforate the

casing and subsequently penetrate deep into the surrounding formation. Shaped charges

are also used in the absence of a liner to stimulate oil and natural gas recovery, which

Walters [2] points out is an important goal as drilling costs roughly one million dollars

per mile drilled. The task of shaped-charge design for use in completion tasks presents a

considerable challenge because of the limited usable space available within a wellbore, the

hostile downhole conditions, interplay of multiple charges detonating simultaneously, and

the need to control debris along with formation damage.

1.1 Motivation

Many analytical and experimental models exist to predict the penetrative characteristics

of a shaped charge [6, 7]. Some of these models have seen widespread use and can successfully

predict the penetration of metal jets into metal targets after sufficient experimental calibra-

tion of material properties. For tractability, these models rely on simplifying assumptions

(strength and viscous effects are ignored, constant velocity and radius jet, steady state

penetration, no rate effects, etc.), which should preclude their use in predicting shaped

charge penetration into geologic targets. While models having less restrictive assumptions

do exist, they are often difficult to solve as a result of the nonlinear nature of the governing

equations. Where solutions do exist, such as in the case of the Alekseevski-Tate equations

[8, 9], exact solutions were first found as an implicit function of time [10], failing to provide

explicit functional dependence of the penetration event on material properties [11]. Explicit

solution of these equations exist [10], but as a result of involved mathematical acrobatics the

importance of different prameters is not clearly evident [12]. Further, many of these models

fail to provide predictions of the resulting cavity dimensions, its growth, or the effects of

penetration on the surrounding material properties (especially permeability). Each of which

are important, insomuch as they ultimately affect the flow properties of a completed well

and the ability to better design new shaped charges.
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In the past thirty years the Finite Element Method (FEM) and more recently the

Material Point Method (MPM) have been employed successfully to model complicated

dynamic phenomena not easily presenting themselves to analytical solution, such as the

above problem of wellbore perforation/penetration. To this end, Schlumberger contracted

the University of Utah to research and develop a phenomenological geoplasticity model,

herein referred to as Arenisca (which is Spanish for sandstone). Quoting from the Arenisca

users manual [13],

Arenisca is a two-surface plasticity model combining a linear Drucker-Prager
pressure- dependent strength (to model influence of friction at microscale sliding
surfaces) and a cap yield function (to model influence of microscale porosity).
The latter cap part reflects the fact that plastic deformations can occur even
under purely hydrostatic compression as a consequence of void collapse. This
model uses a multi-stage return algorithm published in [14].

This material model is currently being developed using the Uintah research code frame-

work, which the Uintah manual [15] describes as “an environment for scientists to solve

coupled multi-physics problems using modern parallel computing resources.” This frame-

work extensively makes use of the Material Point Method (MPM), originally developed

at Sandia National Laboratories [16, 17]. MPM is an extension to the Particle-In-Cell

(PIC) method using a mixed Eulerian-Lagrangian formulation which preserves the integrity

of history-dependent internal state variables developed in each discrete material particle

throughout a loading process, at the same time allowing massive deformations to develop

without encountering the problem of mesh entanglement in its traditional form. By virtue

of the MPM algorithm’s nature, no-slip no-stick contact is free (assumed) between material

particles sharing a computational cell, provided that the particles were initially separated

by more than one grid cell. This property reduces the cost of multibody interactions such

as impact events. More information on MPM and its implementation within Uintah is

available in the following resources: [15, 18, 19, 20, 21, 22, 23, 24].

Development of Arenisca has been ongoing for four years, the aims of which are ulti-

mately to improve the predictive capability of numerical models of well bore completion. To

achieve this goal, a hierarchical approach to verification and validation (V&V) is employed

[25], progressing through the following sequence of increasingly complicated simulations:

1. Numerous straightforward single-element verification tests, including confirmation of

frame indifference [26].

2. Tests of code convergence behavior using the method of manufactured solutions [22,

27].
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3. Calibration simulations (reproducing observed unconfined and confined uniaxial stress

data for drained and undrained sandstone) [28, 29].

4. Partial validation of the host code for penetration of aluminum plates [30].

5. Development and testing of methods to establish appropriate initial and boundary

conditions.

6. Ultimately, full-scale simulations of the entire well-bore completion process.

Most of these efforts are summarized in detailed annual reports for this project [28,

29, 31, 32]. The primary aim of this research has been to aid this endeavor through

automation of V&V testing, development of novel and automated postprocessing techniques

for visualization and decimation of simulation results, as well as comparisons between model

predictions and currently available experimental results and theory during development.

1.2 Objectives

The present research focuses on the following areas and objectives:

• A review of current literature concerned with shape charge penetration, with special

attention paid to models and results involving penetration of tungsten-lined shaped-

charge jets into sandstone and similar targets where available.

• The automation of currently existing V&V tests in order to ensure code confidence

as it is rapidly developed.

• Improvement of current single element (constitutive model) V&V testing methods.

Extension of current capabilities to use existing simulation results as part of the

design and test loop.

• Improvement and automation of current post processing techniques to increase both

the fidelity and information content of visualizations.

• Development of new data decimation methods as necessitated by the large amounts

of data (10-100 GB) produced by a single simulation.

• Execution of a large number of simulations meant to serve as qualitative validation in

comparison against available experimental data and analytical theory.

• Investigation of unexpected results, their cause, and proposed resolution as such

results emerge.



CHAPTER 2

DEFINITIONS AND TERMINOLOGY

Throughout this document, a clear and consistent notation is used to differentiate

between tensors of different rank. The use of an under-tilde will explicitly denote the

rank of a tensor. A scalar is a tensor of rank zero and so will have no under-tilde. A

vector is a first rank tensor and so has two. The typical second-order tensor will have two

under-tildes and so on. For instance: P is a scalar measure of penetration depth, V∼ is a

materials velocity vector at a point, and F∼∼ is the deformation gradient tensor at a point.

2.1 Verification & Validation Testing

The American Society of Mechanical Engineers (ASME) recently published a guide on

V&V practices in the field of computational solid mechanics, and has defined verifcation

and validation as follows [33],

• Verification: The process of determining that a computational model

accurately represents the underlying mathematical model and its solution.

– Code Verification: establishing confidence, through the collection of

evidence, that the mathematical model and solution algorithms are

working correctly.

– Calculation Verification: establishing confidence, through the collec-

tion of evidence, that the discrete solution of the mathematical model

is accurate.

• Validation: The process of determining the degree to which a model is

an accurate representation of the real world from the perspective of the

intended uses of the model.

– Validation Experiments: The process of determining that a computa-

tional model accurately represents the underlying mathematical model

and its solution.
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– Accuracy Assesment: The process of determining the degree to which

a model is an accurate representation of the real world from the per-

spective of the intended uses of the model.

This definition will be used in refering to the principles of V&V throughout the body of

this text.

2.2 Stress Tensor

Throughout this document in referring to stress σ∼∼, the cauchy stress tensor is meant.

This measure of stress is a real valued, second-rank, symmetric tensor defining the stress

state at a point inside a material in the spatial (deformed) configuration [34]. Caucy stress

when dotted with a unit vector perpandicular to a plane (n∼), returns the the stress in the

direction of that vector acting across the plane (T∼ ).

T∼ = n∼ · σ∼∼ (2.1)

This property of the Cauchy stress tensor is not universally true of all stress measures. A

real symmetric second-rank tensor such σ∼∼ can have up to three independant invariants. On

occasion a memeber of the following specific subset of invariants, the “mechanics invariant

triplet” [35] will be referred to.

I1 = tr(σ∼∼) (2.2)

J2 =
1

2
tr

??
σ∼∼ − 1

3
tr(σ∼∼)I∼∼

?2
?

(2.3)

J3 =
1

3
tr

??
σ∼∼ − 1

3
tr(σ∼∼)I∼∼

?3
?

(2.4)

The invariant I1 acts to measure the magnitude of the isotropic portion of a stress state,

while J2 and J3 measure the deviatoric (shear) component. Pressure, P , then is defined in

terms of I1 as

P =
−I1
3

(2.5)
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2.3 Strain Tensor

The constitutive model belongs to the general framework of small-elastic-strain platicity

theories [36] for which the symmetric part of the velocity gradient D∼∼ is treated as an

approximation to the Hencky (logarithmic) strain rate. To satisfy the principle of material

frame indifference, the model accommodates large rotations by working in the so-called

“unrotated” frame so that the constitutive model is called with the approximation of strain

rate being set as

D̄∼∼ = R∼∼
T ·D∼∼ ·R∼∼ (2.6)

in which R∼∼ is the rotation from the polar decomposition of the deformation gradient F∼∼
as F∼∼ = R∼∼ · U∼∼ , where the right-stretch tensor U∼∼ is symmetric and positive definite (c.f.

[37]). The strain rate ?̇∼∼ appearing later in the constitutive model is, in the numerical

implementation, actually given by ?̇∼∼ ≈ D̄∼∼ . This approximation is exact if the principal

directions of the right-stretch tensor U∼∼ do not rotate (which is not the case in penetration)

and it is a very good approximation if strains are small (which is presumed to be the case

for sandstone penetration since the material is expected to fail at small strains).



CHAPTER 3

LITERATURE REVIEW

A wealth of algebraic models exist to predict penetration depth, and in some instances,

other attributes of a penetration process. The majority of these models are best suited to

metal-on-metal penetration, as they are based on the Bernoulli principle for incompressible

hydrodynamic flows and might therefore fail to be predictive for porous quasibrittle media

like sandstone. The purpose of this section is to review and outline such models for use

later in validating simulation results. Further, following a discussion of penetration models

relevant and seminal works pertaining to MPM, the development of Arenisca, and simulation

of penetration phenomena within this framework will be briefly reviewed.

3.1 Penetration Models

Penetration phenomena as driven by explosively formed penetrators, or by other means,

have been studied for some time now. As a result, a large amount of literature on the

subject exists. The following is not a comprehensive review of all the models and theory

in existence, but instead meant as a review of those models which might be useful in early

validation of a numerical scheme meant to be predictive of the aforementioned phenomena.

Walters et al. [6] on the other hand did conduct such an extensive survey of penetration

models, from their infancy, to the late 1980s. Walters also provides an overview of the

shaped charge concept in [2] and [38].

The first of the basic 1-d analytical penetration models was developed by Birkoff et al.

[3], who assumed that the pressures produced during penetration significantly exceed the

yield strength of either the jet or target and therefore they neglect strength and viscous

effects by treating the jet as incompressible and inviscid (hydrodynamic). For steady-state

penetration occurring at velocity U into a semi-infinite target of density ρt, driven by a

penetrating jet of length L, density ρp, and velocity V , using a frame of reference that is

fixed at the forefront of penetration as illustrated in Fig. 3.1 allows application of Bernoulli’s

principal to equate pressures in the target and jet at their interface resulting in
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Figure 3.1: Birkoff Bernoulli penetration.

1

2
ρp(V − U)2 =

1

2
ρtU

2 (3.1)

which assuming that penetration ceases once the jet is consumed (i.e., once the last jet/pen-

etrator particle strikes the target) produces a total penetration depth of P , found by the

penetration velocity times the duration of penetration.

P = U
L

V − U
= L

?
ρp
ρt

(3.2)

A simple modification was made to this theory by Birkoff to account for the particula-

tion/breakup of real jets:

λρavg(V − U)2 = ρtU
2 (3.3)

where λ is a measure of jet particulation ranging from 1 for a continuous jet to 2 for a

fully particulated jet, and ρavg is the average jet density, defined to be the mass of the jet

divided by the volume of its convex hull. This formulation then has the ability to represent

penetration by jets at intermediate stages of particulation producing a penetration depth

of

P = L

?
λρavg
ρt

(3.4)



10

Despite failure to incorporate the physical effects of material strength, strain, and strain-

rate dependence in determining penetration depth, as well as being unable to account

explicitly for the spatially varying nature of actual shaped charge jets, the Birkoff model

frequently sees use as a first approximation, and (arguably) even theoretical limit, because

of the reduced importance of these effects with increasing impact velocities [6].

Later work by Pack and Evans [39] built on this foundation to incorporate target strength

and secondary penetration effects. Pack suggested that target strength could be accounted

for by comparing pressure at the penetration front and the target’s yield strength. Doing

so resulted in the nondimensional quantity σy/ρpV
2, a factor of which was used to penalize

Birkoff’s penetration depth (Eqn. 3.4). To account for afterflow, Pack reasoned that

secondary penetration is the result of continued plastic flow in the target material, similar to

that observed laterally in a soft target, reaching the conclusion that secondary penetration

depth should be approximately equal to the radius of the cavity. Total penetration then is

the combination of these two effects, given by

P = L

?
λρp
ρt

?
1− ασy

ρpV 2

?
+ r (3.5)

where r is the radius of the penetration channel, and α is understood to be a function of

the jet and target densities.

Eichelberger [40] a contemporary of Birkoff, Pack, and Evans, after establishing a means

to measure penetration through time, postulated the virtual origin concept, proposed an

alternative interpretation of λ, and devised a new method to incorporate strength effects.

Using penetration through time measurements, he determined that the particulated velocity

varies affinely over the length of the jet, and therefore the impacting particle velocity varies

through time. For an affine velocity profile, the virtual origin is defined to be the location

in space all jet particles appear to originate from. Using this relationship he posits that

λ can be used as a statistical factor to capture jet variance such as changes in mode of

transfer of momentum (dependent on particle size, shape, and velocity), particulation of

the jet (dependent on standoff, velocity gradient, strength, and ductility of the jet), and

variance in the material properties of the charge and liner. Motivated by experimental

results, Eichelberger also modifies Eqn. 3.4 to incorporate strength effects in the following

way:

λρp(V − U)2 = ρtU
2 + 2σ (3.6)
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where σ in the above equation represents the difference in dynamic resistance to plastic

deformation between the target (R) and jet (Y ) materials

σ = R − Y (3.7)

The strength terms R and Y were found to be one to three times the quasistatic uniaxial

yield stress for metals, attributed to the combined effects of the strain-rate and nonunix-

iallity of the stress state. The above governing equation leads to the following depth of

penetration:

P = L

?
λρp
ρt

− 2σ

ρt(V − U)2
(3.8)

Note two important aspects of incorporating strength in this way, one strength effects dom-

inate as V approaches the steady state penetration velocity U , and two that jet/penetrator

and target strength work to offset one another [41]. Further notice that Eichelberger’s

penetration depth can be reduced to that of Birkoff (3.4) in like material penetration

(R − Y = 0) or situations where ρt(V − U)2 = 2(R − Y ) suggesting the potential for

optimization through materials and penetrator velocity selection. Eichelberger concludes

his theory with an alternative understanding of residual penetration, remarking that Packs’

definition is limited to jets traveling overall at very high velocities and which terminate

abruptly, which would only account for five percent of the observed residual penetration

in his experiments. Instead Eichelberger interprets residual penetration to result from the

slower moving tail portion of the jet being able to defeat target materials having a low

dynamic strength, as the impact pressures generated by this portion of the jet are similarly

low. This understanding is supported by the remarkably increased penetration (40%) in

lead versus that into aluminum or steel using the same shaped charge jet.

Independently, Alekseevskii [8] and Tate [9] developed a modified version of the Bernoulli

equation taking into account dynamic strength effects similar in nature to Eichelberger’s

formulation:

Y +
1

2
ρp(V − U)2 =

1

2
ρtU

2 + R (3.9)

where R is the target’s resistance to penetration frequently taken as the Vickers hardness,

and Y is the ‘dynamic yield point’ of the penetrator. The Alekseevskii-Tate equations have

become the standard representation of long-rod penetration into semi-infinite targets [42].
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While these equations account for strength of both the target and penetrator, this model

suffers from making the assumption that at the interface both the target and penetrator

behave as incompressible inviscid fluids, failing to account for the onset and termination of

this behavior where quasistatic strength dominates. Further the Alekseevskii-Tate model

involves solution of a differential system, often requiring somewhat involved mathematical

acrobatics and frequently numerical solution methods [43]. An exact solution exists as

obtained by Walters and Segletes [10], which Segletes admits fails to provide any insight

into the underlying mechanics involved and is in practice difficult to use [12].

Gladkikh et al. [7] describe a simple penetration equation, based on integration of the

Birkhoff-Bernoulli model (Eqn. 3.1) to account for jets having a linear velocity gradient.

This model assumes the velocity gradient acts to stretch the jet axially as it contracts

radially in a proportional manner, while maintaining a constant density, arriving at pen-

etration depth represented by the density ratio γ =
?

ρp
ρt
, and ratio of the tip (Vtip) tail

(Vtail) velocities R = Vtip/Vtail. The assumption of a constant density jet results in an

infinitesimally thin jet tip which is nonphysical and is reported to overpredict depth of

penetration. Therefore the model was reformulated to assume a constant diameter jet

having a time/spatial density variation subject to conservation of mass, which produce a

penetration depth of

P = Lγ

?
(2 + γ)Γ− 2(1 + γ)

√
Γ + γ

Γ− 1

?
(3.10)

Gladkikh reports this to provide a more reasonable penetration prediction given the under-

lying assumptions [7]. Still this model suffers from failure to incorporate strength effects or

compressibility and breaks down for jets having a small/nonexistent velocity gradient.

A number of authors have approached the problem of particulation/segmentation of

shaped-charge jets [44, 45, 46], but either as a result of the current discretization used to

describe the jet [30] , or the assumption that incremental jet segments penetrate at the same

rate regardless of their spacing – which has been repeatedly and compellingly been disputed

in the literature [47, 48, 49] – they will not be reviewed presently. More recently, Grove [41],

building on the work of Flis and Crilly [50], developed a model to account for a particulated

jets compressibility. This is important as Grove reports that typical oil well perforators

use a pressed powder metal liner to prevent large solid debris, in the form of slugs, from

clogging the penetration channel. The jets formed by such liners exhibit no tensile strength,

and in stretching distend to very low densities, which according to Grove calls into question
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analysis based on solid incompressible theory, such as those of Birkoff, Pack and Evans, and

Eichelberger. Grove then describes penetration as a two-step process using a sequence of

shock compaction of the distended jet to its pore-free density, and following this process,

the compacted jet then penetrates according to incompressible Bernoulli theory like that of

Eichelberger. This viewpoint results in a pressure within the target given by

R +
1

2
ρtU

2 (3.11)

Next, the Rankine-Hugonoit shock-jump conservation equations are used to arrive at the

pressure in the jet given by

Y +
1

2
ρd(V − U)2(1 + φ) (3.12)

where φ = 1 − ρd/ρs is jet porosity, representing the difference between the distended

(porous) jet density prior to impact ρd and its initially solid (pore-free) density ρs. Equating

pressure in the target (Eqn. 3.11) and jet (Eqn. 3.12) and solving for depth of penetration

results in

P = L

?
ρd
ρt

(1 + φ)− 2σ

ρt(V − U)2
(3.13)

which, for hydrodynamic penetration, reduces to the Birkoff model where λ = 1+φ. Grove

concludes by warning that nonsteady effects are likely significant in a noncontinuous jet,

precluding application of any continuum steady-state treatment, including his own.

Other authors ([51, 52, 5]) have made attempts to predict the development of 2-d

penetration channels but frequently suffer the same shortcomings as all the above models

in that they also are primarily applicable to hydrodynamic (incompressible and inviscid

and frequently strengthless) penetration of constant velocity penetrators, require extensive

experimentation to be calibrated, and/or are only applicable to specific material types.

When used to predict penetration of geomaterials (such as sandstone) by an explosively

formed penetrator, the above models are in practice overly simplistic and fail to provide

accurate predictions for depth of penetration [7]. This result can likely be attributed to

a failure to account for compressibility, strength effects, rate effects, and failure modes,

which are thought to play critical roles in the hypervelocity response of such materials [53].

The problems of inaccuracy are further compounded by an inability to predict the damage
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that results in the surrounding formation and accompanying changes in permeability (70-

90%), which together result in significant productivity losses [54]. Together these problems

have prevented widespread use of such models in the design of shaped charges for wellbore

perforation jobs.

Alternatively, the oil services industry widely uses experimental correlations to predict

the performance of explosively formed penetrators [7, 55]. Many of these proprietary models

are based on experimental data obtained from penetration into unstressed concrete targets,

and as a result, are not accurate predictors of a charges performance under downhole

conditions [56, 55]. Further there is considerable discrepancy between models, which in

some instances predict nearly double the penetration into the same target, for the same

conditions, using the same calibrating data [55].

Despite what can be wildy different predictions concerning penetration depth these

models all incorporate the following correlations in some form or another as reported by

Behrmann et al. [55] and Harvey et al. [57]:

1. API Section I test penetration ⇒ Penetration of Berea sandstone unconfined com-

pressive strength of 7 ksi

2. Berea penetration ⇒ different strength rock (strength effect)

3. Unstressed rock ⇒ Stressed rock (influence of effective stress)

4. Effects of cement, casing, and wellbore fluid, etc.

Harvey attributes this to the factors of economics (its expensive to quarry rock), consistency

(assumption that concrete targets will be inherently more consistent than real rock targets),

and the assumption that optimization of a charges performance into concrete results in a

corresponding increase in performance under downhole conditions. Further, both Behrmann

and Harvey come to the conclusion that this method suffers from the following shortcomings:

use of old lab data and fits, assumption of a monotonic concrete-sandstone relationship, and

the effects of changing API Section I concrete targets from RP 43 to RP 19B in 2006 (which

have been shown to be more difficult to penetrate).

Grove et al. [58] initially suggest a more predictive model in the form of an exponential

correlation. They also introduce the ballistic pore pressure coefficient, a, which they claim

is an intrinsic rock property. The pore pressure coefficient decreases with increasing rock

strength, acting to decrease the penetration depth in stronger rocks by means of pore

pressure. This coefficient ranges from 0 to 1, and for Berea sandstone is reported to be
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limited to a range of 0.5 – 0.7. Harvey et al. [57] build on the work of Grove et al. to

develop a correlation in the form of a polynomial fit to material and penetration data

(dependent on thirteen fitting parameters in total), which despite being unwieldy to use, is

able to predict data across multiple rocks, at multiple stress levels, using multiple charges,

with an average error of only 8% [57]. Harvey et al. later revise this model to an exponential

formulation [59] based on the work of Thompson [60], which results in predicted penetration

depth taking the following exponential form in US Imperial units

P = Pref exp(α0(10000− FBI)) (3.14)

FBI = σucs + bPeff (3.15)

Peff = Pc = aPp (3.16)

a (φ) = 0.0967φ0.428 (3.17)

b (σucs) =

?
0.7336− 1.813x10−5σucs σucs < 30000 (psi)

3.33 exp(−9.55x10−5σucs) σucs ≥ 30000 (psi)
(3.18)

Where FBI is the so called ballistic indicator function of a formation having units of pressure,

and Pref is the reference penetration depth for a formation having a ballistic indicator

function equal to 10000 psi, α0 is the charge coefficient, σucs is the unconfined compressive

strength of the formation, b is the stress influence coefficient, Peff is the effective stress which

accounts for fluid pressure, Pp is the fluid pressure, Pc is the confining stress or overburden,

a is the ballistic pore pressure coefficient, and φ is the material porosity in percent ranging

from 0 to 100. Harvey et al. demonstrate this model to be significantly more accurate at

predicting depth of penetration under downhole conditions. Despite this success, use of this

correlation requires a minimum of twelve calibrating experiments for each new charge, makes

the assumption of isotropic confining stress (which is rarely the case [61]), and does not

resolve temporal behavior or resulting channel geometry. Further, to account for differences

in formation lithography, pore fluid, casing material, and casing cement, would require

added experimentation which is expensive and time consuming. For the above reasons, and

the relative shortcoming of both analytical formulations and predictive correlations, work

has focused on predictively simulating the dynamic process of hypervelocity penetration.
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3.2 Simulating Penetration

Many numerical solution schemes for penetration problems exist. In particular, two

promising particle methods are the smoothed particle method (SPH) and the material point

method (MPM). Ma et al. [62] compared MPM against SPH and came to the conclusion

that MPM has many advantages over SPH. MPM is simpler than SPH and its formulation

is similar to tradition FEM, MPM does not require particle neighbor searching at each step,

does not suffer from the tensile instability that SPH does, boundary conditions are easily

implemented in MPM, and no-slip contact is free/assumed.

MPM is an arbitrary Eulerian-Lagrangian method whereby the solution is obtained

using discretization of the domain by an arbitrary Eulerian background grid. The governing

momentum equations are solved on this grid, and frequently to avoid mesh entanglement

problems, deformation of this background grid is discarded at each timestep. When im-

plemented this way (as is done in Uintah) MPM is particularly well suited to problems

involving massive deformations, such as the problem of shaped charge jet formation and

penetration. Materials within the domain are further discretized to Lagrangian material

points, which contain material state data and deformation histories. These particle are used

by the background grid as points of integration, in fact if deformations are sufficiently small

MPM can be reduced to traditional FEM, where the particles become Gauss integration

points.

Development of the material model Arenisca is currently being done within the MPM

research code Uintah [19, 15]. Previously Burghardt et al. [30] demonstrated that Uintah

is capable of representing the penetration phenomena of metals. This was done using a

simplified representation of a shaped charge jet. The intent of Arenisca is to extend this work

to the penetration of geomaterials, and eventually, use as a design aid in the development

of shaped charges. The development of Arenisca has has been similar in nature to that

of the plasticity code Kayenta. Kayenta was originally developed as a geomaterials model

at Sandia National Labs [35] and has since grown to incorporate the features of many

other materials. Both models use a composite yield surface formed by a linear Drucker-

Prager surface with a curved cap, the likes of which is frequently used to numerically model

geomaterials [63]. Both support nonlinear elasticity to account for fluid filled porosity,

support softening to account for weakening in dilatation, and multiple forms of hardening

to account for strengthening during pore collapse as well as the microscale frictional effects

accounting for shear dependent strength. Arenisca’s development was motivated by the

need for a phenomenologically based geomaterials plasticity model that was unencumbered



17

by the restrictive licensing agreements of a national lab.

Progress to date for the Arenisca material model is summarized in project reports,[28,

29, 31, 28]. and the development manual [13]. Arenisca further, has the ability to reduce

to a von Mises plasticity surface. This is a beneficial feature as it can simplify V&V

testing, givent that von Mises plasticity solutions more readily lend themselves to analytical

solution resulting in a number of such problems existing to verify both the material model

and its implementation within a given host code. [14, 64, 27, 22]. Many of these tests

may appear simple, but it is often such simple tests that reveal the most fundemental

algorithmic implementation errors [26], stressing the need to formalize such testsing in the

continued development of any numerical constitutive model. Though it is desired to perform

a verification of Arenisca’s full history dependent plasticity algorithms, there exist few such

tests, making development of such testing an active research area having considerable impact

potential.

Following basic verification testing, systematic validation should be performed. Numeri-

cal solution methods frequently lend themselves to a bottom up approach, whereby features

can be tested addatively. Using this method allows the employ of the previously reviewed

analytical solutions, which in practice elsewhere have only limitied applicability. After this,

full model validation can be performed in comparing numerical results against experimental

data sets. This leads to greater confidence in the model and extension of use to domains

outside those tested.

3.3 Summary

While a variety of analytical penetration models exist, as a result of the simplifying

assumptions made in their formulation, they fail to accurately predict the penetration of

geomaterials. This failure can be attributed to neglecting the effects of compressibility,

material strength, strain rate, stress state triaxiality, and material failure modes, all of which

are thought to play important roles in the impact loading response of such materials. These

same models further fail to predict material damage, which can have a significant impact

of the resulting productivity of a completed well. Recently, new experimental correlations

have been developed, which are more accurate, but also fail to provide fundemental insights

in the penetration process, or its effects on surrounding rock properties.

To both solve the problem of not being predictive of the resulting penetration cavities

properties as well as to better understand the more subtle effects that a penetration process

can have on a surrounding formation’s flow properties, physically motivated numerical

solution schemes have been employed. Doing this requires both a suitable framework and
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the development of an appropriate constitutive model, which captures the nuanced response

of geomaterials to a variety of loadings.

To this end, the Uintah MPM framework was selected, and the Arenisca material model

developed. Verification and validation practices are important during such an undertaking.

The selected form of V&V used is that of a ground up approach, which requires the

use/development of relatively simple verification tests to substantiate the model in a reduced

form. Following such tests, the model can then be validated against analytical theory

using simulations tailored to the limitations of each theory. Lastly, the model in full form,

should then be validated against experimental data sets. This approach serves to highlight

shortcomings in the model and/or its implementation early during development, thereby

preventing the unescessary wasting of human and computational resources, ultimately

providing more accurate and insightful results, and the extension to domains outside of

those which have been adeqautely tested with a certain level of confidence.



CHAPTER 4

BUILDING MODEL CONFIDENCE

THROUGH V&V PRACTICES

Code verification will be the primary focus of this chapter with calculation verifica-

tion (primarily convergence analysis) being discussed in Chapter 5. The inputs to the

material model are input strain, strain rate, and an element’s associated internal state

variables (ISVs). The outputs are the updated stress state and updated ISVs. Accordingly,

prescribed-deformation single-element tests are the most appropriate method of constitutive

model verification. Inherent to this method are the laborious and even intractable solutions

that arise in trying to solve analytically, tortuous deformation histories, using the full

features of a complicated plasticity code such as Arenisca. For this reason relatively few such

tests exist, making this an active research area. Tests that do exist often apply simplifying

constraints (reduction to a simpler model such as J2 plasticity, solution in the principle basis,

nonhardening/softening, etc.), or are merely qualitative verification, acting to confirm that

the expected trends are reproduced under certain loading conditions (reduction in porosity,

hardening effects, fluid effects, etc.).

4.1 Automation of Current Verification Tests

Many verification tests were developed concurrently with Arenisca [31], and are specific

to model features; these tests are documented in the Arenisca developers manual [13] and

in the open literature [26, 14]. Despite this accomplishment, such tests have not seen

regular use by model developers as a result of the inconvenience and time-consuming process

of having to manually execute and postprocess them. Some consequences of neglecting

verification are errors in the algorithm, implementation, and/or theory being carried forward

in each successive version of the model. To resolve this problem the benchmark tests above

were incorporated into the currently available Uintah nightly regression tester as well as into

an automated standalone verification suite. Making the verification process pain free and

information rich in this manner has provided greater insight into the cause and subsequent
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resolution of errors. Because this test suite was done entirely in the open source Python

programming language, it is operating-system independent. To see the Python code, refer

to the Appendix. To follow is documentation of tests included in the aforementioned testing

suite.

4.1.1 Single Element Verification Tests

4.1.1.1 Testing for frame indifference

According to Noll [65], the principle of material frame indifference is that the consti-

tutive laws governing the internal interactions of a system should not depend on whatever

external frame of reference is used to describe them. Stated mathematically for an arbitrary

time-dependent orthogonal rotation tensor Q
∼∼
(t), connecting two frames φ and φ∗, which

themselves are used to describe the spatial scalar field s(φ), vector field u∼(φ), and tensor field

T∼∼ (φ), then these fields are said to be frame indifferent (observer indifferent, or objective)

spatial fields if they satisfy the following relationships

s(φ∗) = s(φ)

u∼(φ
∗) = Q

∼∼
(t) · u∼(φ)

T∼∼ (φ∗) = Q
∼∼
(t) ·Q

∼∼
(φ) ·Q

∼∼
(t)T

(4.1)

A simple yet surprisingly effective test of material model frame indifference prescribes

uniaxial strain with large superimposed rotations. In this test, a single material element

is simultaneously pulled along a given reference axis while undergoing rigid rotation. At

the end of the test, the material element has undergone a full 360◦ rotation. Such a test is

illustrated in Fig. 4.1. To pass this test, the spatial Cauchy stress must rotate according

to Eqn. 4.1, while the unrotated Cauchy stress (σ̄∼∼ := R∼∼
T · σ∼∼ ·R∼∼ in which R∼∼ is the polar

rotation) must not be affected.

This test has previously been shown [26] to reveal problems in a common approach to

strong objectivity [66] as implemented in many finite element codes. In fact this test has

repeatedly proven effective at catching errors in both Uintah and Arenisca [26, 31, 32], and is

so simple it is recommended as a verification test before assigning any amount of confidence

to a given solid mechanics code. The results of a successful test are presented below in

Fig. 4.2. At 0.25, 0.50, 0.75, and 1.00 seconds into the test a successive rotation of 90◦

CCW has been completed with respect to the previous interval, this results in the primary
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(a) (b) (c)

Figure 4.1: Illustration of basic frame-indifference test. (a) Stretching begins in the ref-
erence configuration; (b) while applying continued loading, the material element undergoes
CCW rotation and, as shown, has undergone 90◦ of rotation and one quarter the total
deformation; (c) the material element in its final state fully deformed and having gone
through 360◦ of rotation returning to its original orientation.
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Figure 4.2: Frame indifference test results as produced using Arenisca’s automated test
suite. Solution without superimposed rotation in blue, with sequential rotation and then
stretch in green, and spatial output from Uintah in red. At all times, the red solution line
should lie between the green and blue lines.

components of stress in each instance trading place. Concurrently a small elastic uniaxial

stretch – reaching a magnitude of λ = 0.998 – is applied in a primary direction of the

reference configuration. The solution without superimposed rotation (reference solution) is

indicated by the blue line, while the solution with sequential rotation and stretch (solution

in final spatial configuration) is indicated by the green dashed line, the red line represents

parallel application of the stretch and rotation (instantaneous spatial solution).



22

4.1.1.2 Model reduction to J2 (von Mises) plasticity

Arenisca supports reduction to J2 (von Mises) plasticity. Figure 4.3 illustrates the

differences between the initial yield surface using a J2 specification versus that of the

combined linear Drucker-Prager with curved cap yield surface used to represent various

geomaterials. The reduced form lends itself to analytical solutions use in single-element

verification tests. Many of these tests for J2 plasticity are uniaxial-strain tests. This loading

mode is of interest in the field of shock physics as the fastest elastic wave to propagate in

isotropic media (P-wave) and initially subjects the material to uniaxial-strain loading upon

first passage through the material [64]. Uniaxial strain is also convenient because it is purely

strain-driven, consistent with the nature of inputs of the constitutive model.

One such uniaxial-strain test is the Hugoniot uniaxial-strain shock test. Hugoniot

according to Zukas et al. [67], refers to all stress states achievable under shock loading

given known material properties and constitutive relationships. The objective of this test

is to reproduce the results of Brannon [64], specifically the stress versus strain plots of Fig.

4.4. The axial stress state, when plotted against the axial strain, is expected to initially

increase with a slope equal to the constrained modulus C. Upon reaching yield, the stress

state then increases with a shallower slope equal to the bulk modulus K. After reaching

the maximum strain, the load is released at the initial slope until yield is again reached,

after which the slope is again the bulk modulus. The results of this test are presented as

Fig. 4.5.

(a) von Mises (b) Arenisca

Figure 4.3: Comparison of von Mises and Arenisca yield surfaces in stress invariant space.
The parameters defining Arenisca’s yield surface consist of the tensile verticie for the linear
Drucker-Prager portion (PEAKI1), the slope for this same region (FLOPE), transition to
the cap portion (κ), the caps major and minor radii (R and b, respectively), thier eccentricity
(Cr), and the compressive limit (X).
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Figure 4.4: Comparison of uniaxial strain and uniaxial stress loading. Source – [64]
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Figure 4.5: Results of uniaxial strain single element test. (a) and (b) correspond to the
left and right sides of Fig. 4.4, respectively.

In reduced form a number of qualitative checks are performed on yield surface evolution

in the forms of isotropic and kinematic hardening. Isotropic hardening is a form of hardening

where a yield function that is initially isotropic – that is the function depends only on the

invariants of stress – will remain isotropic. It is a common misconception that isotropic

hardening results in uniform expansion of the yield surface for all plasticity models, this is

a result of confusing the terms isotropic function and isotropic mapping, which is further

compounded by isotropic hardening resulting in a uniform expansion of the von Mises

cylinder in J2 plasticity. Kinematic hardening fixes the size and shape of the yield surface

while translating it in space by a backstress tesor (α∼∼). For J2 plasticity this corresponds

to the von Mises cylinder moving up/down from the hydrostat. Three uniaxial-strain tests

are used to verify the implementation of hardening, for each test Arenisca is reduced to
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von Mises plasticity. In the first test, both isotropic and kinematic hardening are disabled,

for the second and third tests respectively isotropic and then kinematic hardening are

independently enabled.

The results of each test are presented as a plot on the meridional profile. For simplified J2

theory this is the side view of an infinite cylinder. The results for nonhardening (von Mises

perfect plasticity), which are presented in Fig. 4.6, therefore correspond to the following

phases of loading:

1. The stress state evolves elastically until it reaches the cylinder’s surface as indicated

by the dashed line.

2. The stress state moves tangentially along the cylinder surface under continuued plastic

deformation.

3. The stress state is elastically unloaded, crosses the isomorphic pressure axis, and

elastically loaded until it again reaches the cylinders surface.

4. The stress state moves tangentially along the cylinder surface under continuued plastic

deformation as before.

A hardening response would instead result in the stress state upon reaching yield, continuing

to evolve beyond the initial cylinder radius. For both isotropic and kinematic hardening

as implemented in Arenisca this would initially take the same form. Upon reaching yield,

continued loading would result in an increased stress state at a slope shallower than the

initial elastic loading. Unloading occurs at the same slope as the initial elastic portion.

The unloading leg is followed by an elastic loading leg in the opposite direction as before.

For the case of isotropic hardening, yield is reached at a now increased radius as a result

of the earlier isotropic expansion of the von Mises cylinder, and then continued loading

further expands the cylinder. For the case of kinematic hardening, the second yielding

is reached earlier, which is a result of the von Mises cylinder having translated along

the initial loading trajectory in stress space. Both of these features were initially present

within the Arenisca framework, but (as a result of other work) they have been temporarily

removed. Consequently, these benchmarks are not currently passing. Results obtained using

a previous version having these features are also presented in Fig. 4.6. It is expected these

features will be added in the future, at which point these tests will serve as verification.

Another verification test recommended for material models supporting J2 plasticity was

formulated by Brannon and Leelavanichkul [14]. Deformation is prescribed in such a way
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Figure 4.6: Uniaxial-strain test results both with and without hardening. View of the
stress state (solid line) and yield surface (dashed line) as meridional profile.

that both the stress and strain have fixed eigen vectors with transient eigen values. Further,

the strain rate is intentionally misaligned from the yield normal. This test served to verify

that the nested return algorithm is able to keep the stress state on the yield surface despite

this surface’s curvature. The result of this test is presented as Fig. 4.7.

4.1.1.3 Drucker-Prager yield function

Arenisca uses a linear Drucker-Prager yield criterion of the form

J2 + α(I1 − Imax
1 )2 (4.2)

in which α and Imax
1 are material parameters. Brannon and Leelavanichkul [14] propose

a test having a tortuous path meant to comprehensively evaluate the implementation of

such a material model (without hardening) near the yield surface’s vertex acting both as

algorithmic verification and a check of code robustness. Brannon and Leelavanichkul write
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Figure 4.7: Constant eigen vectors with transient eigen values.

the yield criterion in the form

r

r0
+

z

z0
= 1 (4.3)

where r is the cylindrical Lode radius (r =
√
2J2), z is the isomorphic pressure (z = I1/

√
3),

and r0 and z0 are experimentally determined constants determining the friction angle and

tensile yield strength, respectively. Comparing the above two equations permits identifying

the following relationships between parameters:

α = − r20
6z20

and Imax
1 =

√
3z0 (4.4)

As illustrated in Fig. 4.8 the material initially undergoes hydrostatic compression followed

by loading and unloading legs. The yield events were intentionally devised such that they

occur exactly halfway through the second and third legs. Further, the first yield event

may appear to only just briefly contact the yield surface prior to unloading, but in fact by

design, dwells at this point undergoing extended plastic deformation, the dwell period being

the result of alignment between the trial stress rate and the return projection direction P∼∼ .

On the last leg, the trial stress rate is exactly parallel to the yield surface normal N∼∼ , not

to be confused with the flow direction M∼∼ . The results of this test, presented as Fig. 4.9,

demonstrate that the model is performing accurately on all but the last leg, thus highlighting

as-yet unresolved problems in the return algorithm used to compute plastic stress updates.



27

Figure 4.8: Geometry of Drucker-Prager verification test. Alignment of the trial-stress rate
with the return projection direction (P∼∼ ) results in stagnation at the stress states intersection

with the yield surface under continued plastic deformation by design. From [14]
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Figure 4.9: Linear Drucker-Prager verification test results.
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4.1.1.4 Yield surface with curved cap

Arenisca uses an associative multisurface Drucker-Prager cap model. This class of model

is widely used to predict the constitutive behavior of geomaterials in numerical analyses [63].

The first portion of this surface is described by a linear Drucker-Prager model, while the

second portion, the cap, is described by an ellipse having eccentricity which allows porosity

to affect material shear strength [32].

Similar tests to those of section 4.1.1.2 are now performed as a qualitative evaluation

of the full curved-cap linear Drucker-Prager yield surface. Analytical solutions of these

problems do not currently exist because of the complicated path-dependent evolution of

the ISVs describing the yield surface. These tests therefore are meant to serve as trend

verifications built on the previous analytical uniaxial-strain J2 verification tests. For the first

test, compressive uniaxial strain brings about yielding while hardening and cap evolution

are suppressed, fixing the yield surface in place. By design, the stress path first intersects the

Drucker-Prager portion of the surface. With increasing stress, the stress state transitions

from the linear to the curved cap portion of the yield surface. As hardening and cap

evolution are not allowed, the expected outcome is one where the stress history traces

the fixed yield surface, and this result along with those discussed below for hardening are

presented in Fig. 4.10.

A second test of the full yield surface allowing hardening through cap evolution (repre-

senting changes in porosity) serves as test of these features. In this instance, upon reaching

yield, the stress state is expected to move outwards from the initial yield surface in order

to stay always on the outwardly expanding yield surface. This trend is exhibited in Fig.

4.10b, though more rigorous verification against analytical solutions is warranted.

Hydrostatic compression is another important loading mode in geomaterials specifically

in the simulation of penetration. Currently, in order to achieve preconfinement (overbur-

den/confining stress), the process of applying this pressure (hydrostatic compression) must

be simulated, which requires verification. Similar to the approach taken for verification

in uniaxial strain, first the material model is tested without hardening. In hydrostatic

compression the stress state is expected to be purely isotropic (have no shear components,

i.e., lying on the hydrostat), which upon reaching the yield surface should dwell at this

intersection, as is verified in Fig. 4.10c.
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Figure 4.10: Linear Drucker-Prager verification test results.
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Now verification of cap evolution is performed. Cap evolution results from pore com-

paction (i.e., changes in porosity). In hydrostatic pressure vs. volumetric strain data,

pore compaction is inferred from the observered accumulation of plastic volumetric strain.

Specifically, the following empirical relationship is assumed to exist between the cap location

on the hydrostat and the material porosity:

φ =

?
1− exp(−P3 exp(P1(I1 − P0))) I1 < P0

1− exp(1− P0P1P3

?
I1
P0

?
− P3) I1 ≥ P0

(4.5)

where φ is material porosity, I1 is the first invariant of stress, and the material parameters

P0, P1, and P3 are inferred from experimental undrained hydrostatic compression data, and

are used to establish the initial yield surface. Plastic stress states where I1 < P0 represent

plastic pore compression with respect to the initial material properties and conversely I1 ≥
P0 is a state representing plastic pore expansion. In post processing of simulation results

the relationship

φ = 1− exp(−(P3 + ?pvol)) (4.6)

is used to determine porosity from the plastic volumetric strain ?pvol and P3 parameter.

Fig. 4.11 presents the results of a hydrostatic compression test. Initially porosity remains

constant (horizontal component of the red line) until the material yields and plastic pore

compaction occurs, at which point simulated porosity follows the dashed-green compressive

analytical solution line.

Having performed basic qualitative verification of the porosity model, simulation of a

complicated hydrostatic load-unload curve – like those used experimentally to calibrate the

model – is undertaken. On the first leg of the test the material undergoes elastic compression

(1 to 2), followed by plastic compression (2 to 3) and then elastic relaxation (3 to 4) to a

tensile state, followed by further plastic dilatation (4 to 5) resulting in increased material

porosity after which the material is compressed elastically (5 to 6) before transitioning to

plastic deformation and nearly being completely crushed to a nonporous state (6 to 7). The

results of this test are presented as Fig. 4.12.

Incorporation of fluid effects into the Arenisca geomodel has been a continued focus of

model developers. As in both laboratory and in-situ testing environments, fully drained

sandstone is rarely used, making a properly functioning fluid effects model of high im-

portance. A challenge to this continued effort is the development of verification tests to
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Figure 4.11: Evolving porosity as a result of yield surface cap evolution test results.
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Figure 4.12: Hydrostatic load-unload verification test results.

ensure that the fluid model is functioning as desired. One such (qualitative) verification test

compares the response of a material element undergoing hydrostatic compressive loading

with and without fluid effects enabled. The desired trend is an apparent increase in material

stiffness with fluid in the pore space. Interpreted physically, this fluid carries a portion of

the applied pressure and accordingly the change in porosity is smaller. This desired trend is

demonstrated in Fig. 4.13. Currently Arenisca does not pass this test. The effective-stress

concept, meant to account for this result in analytical penetration models, is an important
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Figure 4.13: Fluid effects verification test. Hydrostatic compression demonstrating the
expected trend when simulating the effects of fluid in the porespace.

part of the Grove penetration correlation formulas discussed previously in Chapter 3.

4.2 Robustness Testing

While the above verification tests and tools are important in maintaining confidence in

the model, these tests because of their relatively simple nature frequently fail to capture

material states leading to nonphysical solutions and/or code-halting events. This breakdown

of simple verification tests in preventing such failures is largely due to the extremes associ-

ated with a hypervelocity penetration event, which can be characterized by high velocities

(6–10 km/s), strains (> 10), strain rates (107/s), rotation rates, pressures (200+ Gpa),

and temperatures (500-600 C) [5, 2]. In this loading domain, carefully crafted analytical

solutions are not readily available, though model confidence is needed if predictions in this

regime (the purpose of its development) are to be meaningful. Further it is most typically

under these conditions that unexpected model failures occur. Frequently such failures

appear without apparent cause. The ability to extract particle histories from existing

simulation datasets was therefore undertaken so that those histories could be analyzed

in single-element testing in order to understand and resolve these issues.

4.2.1 Reproduction of Particle Histories as Extracted from
Simulation Results

Previous work [28] added the ability to apply homogeneous deformation histories to a

material within the Uintah computational framework. This feature was intended for use

in single element testing whereby time varying deformation/rotation of a material element
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is specified in the form of an F-table. An F-table consists of discrete time entries and

the associated components of a material’s deformation gradient tensor F∼∼, with an option

to include a superimposed rotation matrix Q
∼∼

(specified by angle of rotation in degrees θ

about a specified axis a∼). Simulation timesteps during the execution of a single-element

test were originally controlled by host-code/input specifications, where the deformation

gradient at any given time is obtained by linearly interpolating between F∼∼ values in the

F-table, while the superimposed rotation was constructed by linearly interpolating the angle

and axis individually (then applying the Euler-Rodrigues formula to construct Q
∼∼
). While

this interpolation scheme served well for the above simple verification tests, it is inher-

ently unable to reproduce the exact deformation histories experienced by a particle in the

simulation from which the F-table values were extracted. These small interpolation errors

accumulated over time, resulting in particle histories that were initially very similar to those

in the source simulation, but which eventually deviated enough to preclude reproducing the

particle failure. The source of this problem, as well as its resolution, is rooted in the need

to compute changes in kinematical quantities in a manner that is exactly consistent with

kinematics assumptions in the host code. Specifically, the constitutive model at each step

takes as input the velocity gradient tensor L∼∼, as computed by the host code from the

deformation gradient tensor F∼∼ and its rate Ḟ∼∼ by the well-known relationship

L∼∼ = Ḟ∼∼ · F∼∼
−1 (4.7)

Initially, when F-tensors were interpolated linearly, the velocity gradient was approximated

as

L∼∼
n+1/2 =

F∼∼
n+1 − F∼∼

n

∆t
·
?
F∼∼

n+1 + F∼∼
n

2

?−1

(4.8)

In a collaborative analysis of this problem with an original Uintah developer [68], it was

proposed to change the interpolation scheme to be consistent with the kinematics updates

actually performed in the source simulation, where the velocity gradient L∼∼
n+1/2 is taken

to be constant thoughout the step. During a full simulation, the velocity gradient L∼∼ is

computed and, taking it to be constant though the step, the deformation gradient F∼∼ is then

evaluated using a the first-order updated-Lagrangian integration of Ḟ∼∼ = L∼∼ · F∼∼ as follows:

F∼∼
n+1 =

?
I∼∼ + ∆tL∼∼

n+1/2
?
· F∼∼

n (4.9)
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Solving this equation for L
∼∼
n+1/2 ensures that the velocity gradient sent to the constitutive

model in a single element test would be consistent with the source simulation providing its

F-table. This correction was made where, instead of Eqn. 4.8, the following discrete update

is now used:

L
∼∼
n+1/2 =

F
∼∼
n+1 · (F

∼∼
n)−1 − I

∼∼

∆t
(4.10)

Making the above change resulted in the ability to exactly reproduce a particle’s history,

or any arbitrary history, so long as the material model is able to track the intended strain

rate at each step. As a result of these changes, additional inspection of the results [68]

suggested that the current calculation of L
∼∼
n+1/2 used as input to the constitutive model

might also need revision.

Figure 4.14 illustrates accumulated absolute L2 error in comparing the expected and

extracted deformation history of a single-element test, as generated from an extracted

particle’s history, at various stages of the solution. At first, inability to reproduce particle

histories was recognized. Then the use of exactly specified time steps resulted in overall

reduction in the error, and ultimately the method as described above resolved the issue

resulting in exact reproduction of the particle history up to and including particle failure.

The single error spike at the last step is in fact the sought-after particle failure.

4.2.2 Automated Single Element Testing Driven by
Simulation Results

A python script was written (see Appendix) in order to automate the process of parsing

a simulation log file, extracting failed particles histories, converting them to input F-tables,

writing a corresponding input file for Uintah, executing said test, and comparing the results.

The purpose of this effort was two-fold: first to determine if consistent particle failure can

be achieved using only the available output data, and second to create a database of failed

particle histories that might be useful in determining characteristic load paths that might

induce q model failure. These archived histories can be perturbed by a user using the same

script in a variety of manners in order to generate an infinite number of unique but similar

histories, which will hopefully provide future insight into what algorithmically causes failures

of this type under large-deformation high-rate loading. The intent being development of

verification tests to capture these problems, and ultimately their resolution.
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Figure 4.14: Error in comparing extracted and expected deformation histories of a particle
at three stages of the solution. At first the problem was recognized as in the top frame.
Then a more exact time step was used, resulting in the reduction in error of the middle
frame. Ultimately, the described method of section 4.2.1 was used to reproduce particle
failure, which is the cause of the small error spike on the last step of the bottom frame. For
numerical reasons, especially considering that the source simulation was run using different
processors than the single-element simulation, it is not surprising that the end state might
be slightly different.



CHAPTER 5

PENETRATION SIMULATION RESULTS

This chapter focuses on full-scale simulations of the wellbore completions process. Simu-

lations of this nature are very complex, as they require multiple numerical solution schemes

in order to model the behavior of very different materials, each of which undergoes rapid

and extensive deformations during a simulation. Further, such numerical solutions are com-

putationally expensive and frequently necessitate simplifying assumptions for tractability.

Additionally, both the model and host code are in a constant state of flux as they undergo

continued and extensive modification, making direct comparison of results obtained at differ-

ent points in time problematic. Despite these challenges, a large number of simulations were

executed, the purpose of which was twofold: to validate the model against the experimental

and simulation results of others and to test the material-model and host-code robustness.

5.1 Simulation Setup

All penetration simulation results presented in the following sections take advantage of

axisymmetry. In each, a 2-d plane is used to simulate a larger 3-d cylinder of sandstone like

those used to obtain experimental results. This plane represents the computational domain,

which is represented by a structured background grid of cells much like in a traditional finite

element scheme. In contrast to FEM, the material point method represents materials within

this domain not by the aforementioned grid but by an overlaid discretization of particles.

A typical simulation domain and discretization is illustrated in Fig. 5.1.

Another simplification used to reduce computational costs is a model developed by

Burghardt et al. [30] to represent a shaped charge jet. This model represents the jet by

discretization to cylinders, each of which is separated by a void space (Fig. 5.2). Such a

representation is similar in nature to the way Birkoff [3] originally represented particulation

and breakup of a jet in his modified Bernoulli model (Eqn. 3.4). Each cylinder has the same

density and has its own velocity and geometrical properties. These parameters are tailored

to represent the spatially varying properties of a given jet. Hereafter in referring to the ‘jet’
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(a) 3-d (b) 2-d slice (c) Simulation

Figure 5.1: Illustration representing a simulations domain and discretization.

Figure 5.2: Illustration of the discrete shaped-charge jet model. Each cylindrical segment
has the same density (ρt), but has its own velocity (Vseg) and geometrical properties
(diameter Dseg and length Lseg).

penetrator, the discrete cylinder properties of Figures 5.3 through 5.4 are being used. This

model was shown by Burghardt et al. as capable of accurately capturing the penetration

history of a shaped-charge jet in penetrating an aluminum target. It was discovered that

this model is more susceptible to certain issues as discussed later in Chapter 6. As a result,

this penetrator is frequently replaced by a long-rod penetrator preventing these issues; doing

so has the added benefit of being more directly comparable to many analytical penetration

models used as a form of validation.

The motivation of Arenisca’s development, as mentioned previously, is to improve the

predictive capabilities of numerical models for well bore completion. Overburden, which is

the rock or soil overlying a target geologic formation, is recognized as playing a significant

role in the resulting depth of penetration of a shaped charge. To obtain experimental results

capturing the influence of overburden, the oil industry uses a fluid bath and hydraulic

cylinders to hydrostatically compress a target sample of rock mimicking overburden. While
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Figure 5.3: The discrete jet description’s individual cylinder properties. (a) contains
profiles for cylinder radius, length and mass, while (b) contains profiles of cylinder insert
velocity, momentum, and kinetic energy. Figure 5.4 correlates these properties with time.

this entire process could in theory be simulated by Uintah, it would significantly increase the

cost and complexity of a simulation. Instead, this confining stress is modeled by pressures on

the outside, top, and bottom of a target. These pressures are represented by discretization

to a group of point loads, each of appropriate magnitude and direction, which are then

individually applied to particle centers of the layer of particles nearest to the material’s

free surface. Because of the way this is done, simulations making use of this method
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Figure 5.4: The discrete jet description’s properties as they vary with time. (a) correlates
cylinder number with time of arrival/insert time, while (b) contains plots of the cumulative
deposition of mass, momentum, and kinetic energy into the simulation domain throughout
time. Refer to Fig. 5.3 for the properties of an individual cylindrical segment of the jet.

must necessarily have a free surface, and be placed at least two (and preferably five) cells

away from the outer edge of the overlaid grid to avoid having these particle point loads

anomalously influence the nodal forces at the grid boundary. Further, while the pressure

could be applied at its full magnitude as an initial condition, doing so results in stress

waves that propagate throughout the material over time. The constructive/destructive

interference of these waves with one another results in large fluctuations throughout time.

To mitigate this problem the applied pressures can be prescribed by linear interpolation of
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a table of times and values. This method was then used to ramp the pressure from zero

to a desired value. Using this pressure ramp failed to prevent the significant fluctuations

observed in the stress field, which is demonstrated in Fig. 5.5.

Uintah has a viscous damping feature meant to achieve quasistatic solutions. This

feature uses an artificial damping coefficient (c) to compute penalized nodal accelerations

(a∗∼ ) using the computed nodal accelerations (a∼) and velocities (v∼∼) by

a∗∼ = a∼ − cv∼ (5.1)

Using this feature, a damping coefficient able to critically damp out the pressure oscil-

lations was selected for both material parameterizations with and without fluid effects. To

determine these parameters, a sandstone cylinder with a radius of 20 cm and length of 30

cm was subjected to a uniform confining pressure of 6.895 MPa (1 ksi) having a target time

of 50 �s at a cell resolution of 1 mm and particle resolution of two particles per cell per

direction. Through trial and error, a damping value of 75,000 1/s was found to be most

effective (see Fig. 5.6a). For the case of the material parameterization with fluid effects

(i.e., for saturated sandstone), it was determined in a similar manner that a value of 90,000

1/s was effective, though minor overshoot above the target value occurs (Fig. 5.6b). Given

(a) (b)

Figure 5.5: Pressure histories at different points in space without using viscous damping
demonstrating large fluctuations in the pressure field throughout time.
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(a) without fluid effects (b) with fluid effects

Figure 5.6: Multiple pressure histories demonstrating the effectiveness of viscous damping.
In both cases the histories were obtained from a point near point A of Fig. 5.5a.

that, at the time, including fluid effects caused considerable robustness issues, a value of

c closer to critically damped was not sought. Further, as the model has undergone, and

continues to undergo extensive changes, a similar study should be carried out in order to

determine appropriate damping coefficient values, as they may change. The same is true

of any new material specification until a better method of applying a confining stress is

developed. After the most recent code changes, the viscous damping coefficients value was

reassessed and the selected value found to be acceptable despite now being slightly under

damped.

Having selected an appropriate damping coefficient, target ramp and equilibrium times

were determined. The target ramp time is the time used as the input to the pressure

condition and the equilibrium time is the time at which the entire target should be within

±5% of the target pressures value and can then be shot with a penetrator. It was found

that using the above method, pressure increases at a rate of approximately 0.2 cm�s−1.

Using this rate, a rule of thumb was developed that is able to produce satisfactory pressure

fields in the target material. First, the expected target time is calculated using the inverse

of the ramp rate. Second, this time is multiplied by three and rounded up to the nearest

50 �s, this value is the target time. Third, the satisfactory equilibrium time is set to be

approximately 300 �s later rounded up to the nearest 100 �s. It was later determined

that the lowest pressure simulations were able to equilibrate earlier, and so the target and
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equilibrium times of Table 5.1 were used.

Having taken all of the above steps, a simulation must then be stopped at the equilibrium

time, and the damping coefficient manually set to zero prior to restarting the simulation

and shooting the target with a penetrator. As this must be done frequently, and further,

because these simulations must be performed using shared high speed computing resources,

this process was automated using a simple Python script (listed in the Appendix) in order

to avoid what can be long wait times in the batch queuing system prior to a job’s execution.

Uintah’s parallelization makes it possible to solve solid mechanics problems like that of

the wellbore completions process. Despite this impressive ability, such parallelization is not

without certain drawbacks. One such drawback revealed itself as a result of the way the

discrete jet is initialized. At the beginning of a simulation, each of the discrete cylinders

of the jet is placed in a location sufficiently far away from the target in order to avoid

unintended interaction with the debris that results during a penetration event. Initially

each cylinder has zero velocity and will stay at rest until a user specified point in time is

reached, at which point this cylinder is instantaneously transported along the axial direction

towards the target a set distance, and then prescribed a user specified initial velocity. This

method allows the jet standoff to be controlled independently from the initial distance to the

target. When parallelizing a Uintah simulation, the computational domain is again further

subdivided into patches. Each patch is a rectangular selection of background grid cells. The

solution of each patch is then computed independently by a single processor. To enforce

compatibility, adjacent patches communicate information pertaining to particles as they

cross a shared patch boundary. Generally speaking, the greater the number of patches, the

smaller a given patch’s portion of the solution will be. This approach results in decreased

time to solution as the wall time required to compute each timestep is decreased. To better

understand the effect of different divisions of the domain into patches, a large number of

simulations were executed that varied the patching. These simulations revealed a subtle

Table 5.1: Target and equilibrium times for simulations with confinement.

Pressure Target time Equilibrium time
(MPa) (ksi) (�s) (�s)
6.895 1 50 250
34.48 5 200 500
68.96 10 350 700
103.4 15 550 900
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nuance to the way consistency between individual patches is enforced. If a particle travels

sufficiently fast in comparison to patch length in the direction of travel, so that it crosses

two patch boundaries in a single timestep, then it will be deleted. This is done because

the patch this particle would enter is unable to access the particle’s information as it is not

adjacent to the source cell of the particle at the beginning of the timestep. As part of this

investigation into the effect of patching, it was determined that it is preferable to have a

greater number of patches in the axial direction. At the time of this investigation, each

simulation used 128 processor cores and would take approximately two hours to complete.

Accordingly, the simulation domain was regularly patched to have 128 subdivisions along

its length. This had the effect of making two patch lengths in some instances small enough

that the fastest moving jet particles would be deleted upon being prescribed their initial

velocity.

To combat this problem, a Python script was written (see Appendix) which is able to

read the input deck, and the two files describing the jet, and then shift each cylinder’s initial

position and insert distance to avoid crossing multiple patches when prescribed its initial

velocity. While effective, care should be taken in using this utility as it does not have an

awareness of the relative sizes of a given cylinder in comparison to the background grid’s

cells. As a result, with short enough patches in the axial direction, a jet cylinder can be

prescribed an insert distance that is short enough so that it will interact with the stationary

cylinders not yet in free flight upon being inserted. To avoid the problems associated with

the way a jet cylinder enters the domain, each could instead initially be prescribed its initial

velocity, and then positioned with appropriate spacing along the axis. This is not advisable

as doing so increases the computational cost of a simulation. This cost is associated with the

domain having to be significantly extended in the axial direction. Further, this cost would

be wasteful as the added cells and patches would, throughout the duration of a simulation,

remain largely unoccupied by material particles. The above described script also has added

functionality allowing the user to easily modify an existing jet description in two ways: first,

all cylinders can be shifted in time by some amount to have a new insert time, and second,

all the cylinders can be moved up or down along the axial direction by some amount.

The results of the aforementioned study of patching effects are presented in Table 5.2.

The first key finding is that over patching – where the number of patches is greater than the

number of processor cores – can increase efficiency relative to the same number of patches

using a greater number of cores. The second key finding is that axial patching tends to

increase both efficiency and speed, appearing to have an optimum at 128 axial patches for
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Table 5.2: Simulation results investigating the effects of patching and number of processors
on runtime. In each the simulation used the same jet and a domain with a cell resolution
of 1 mm containing 85,932 cells and 39,735 particles.

Batch Number Number patches Runtime
number CPU cores (radial) (axial) (hours) (CPU hours)

28

32 8 8 4.72 151.0
64 8 8 3.79 242.6
128 8 16 2.80 358.4
256 8 32 1.51 386.6

31

32 16 32 7.83 250.6
64 16 32 4.80 307.2
128 16 32 3.33 426.2
256 16 32 2.27 581.1
512 16 32 1.98 1013.8

32

512 2 256 1.03 527.4
512 4 128 0.93 476.2
512 8 64 0.90 460.8
512 16 32 1.63 818.3

33

128 1 128 0.81 103.7
128 2 64 1.23 157.4
128 4 32 2.50 320.0
128 8 16 1.67 213.8
128 16 8 1.40 179.2

34

256 1 256 0.83 212.5
256 2 128 1.22 312.3
256 4 64 2.12 542.7
256 8 32 2.22 568.3
256 16 16 5.09 1303.0

128 processors. The increase in efficiency observed for cases with over patching is apparent

in both batches twenty-eight and thirty-one. While over patching can increase efficiency, this

is not generally true, and the practice is advised against as it results in extraneous iterations

within nested for loops and an increase in the number of cross processor communications

required. Further, the use of fewer processors takes considerably longer. Accordingly, if time

to solution is the critical factor, then the use of an appropriately patched domain and proper

number of processors is recommended. It was found that for this setup, approximately 670

cells per patch with all patch divisions along the axial direction is both the fastest and

most efficient scheme. As changes to Arenisca have recently caused a significant increase in

average run times, this becomes increasingly important.

Another useful method to decrease the computational cost is the use of a multiple particle
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resolution domain. Typically this involves having a higher resolution (two particles per cell

per direction and is considered the most efficient particle resolution when using the GIMP

method [21]) core where the penetration channel is expected to occur. This high resolution

core is surrounded by a low resolution elastic zone that is discretized at one particle per cell

per direction (which reduces to standard single-point FEM where deformations are small).

The jet is modeled at an even higher resolution than the core (four particles per cell per

direction), as the objects it is comprised of represent the smallest length scales. This higher

resolution is intended to provide more accurate deformations and corresponding stresses.

Doing the above frequently reduces the number of particles in a simulation by one half.

Instead of using different resolutions for the penetrator and core target regions it would be

preferred to use a resolution of two particles per cell per direction for both. As a result

of the small length scales of jet objects, doing so might require increased refinement of the

background cell size in comparison to what is needed for convergence within the sandstone.

This remains an unknown as repeated attempts to determine spatial convergence have been

unsuccessful because of code robustness issues. More recently, code halting errors have

become less common, but because timestep size is controlled by the host code, and based

on the Courant-Friedrichs-Lewy condition (CFL number [69]), these problems have been

replaced by small timestep issues as a result of particle deformation. Early work (Fig.

5.7) indicates that rate of penetration is influenced by cell size and it is hypothesized that

depth of penetration likely demonstrates a similar pattern. All of the results in this and

following chapters, when using Arenisca, are reported for a cell spacing of 1 mm in each

direction, as this was repeatedly robust against the above issues. Further, unless otherwise

indicated each simulation uses the same material parameterization for steel, tungsten, and

sandstone, respectively. Both these standard material parameters and individual simulation

input decks with other needed files needs (where available) can be found in the Appendix.

5.1.1 Sensitivity to Simulated Boundary Conditions

Depending on whether a simulation is intended to represent a finite or semi-infinite

domain, different boundary conditions should be used. For the case of a finite domain – like

those frequently used to research shaped charge penetration phenomena in the laboratory

– the material boundary should modeled as a free surface. Doing so acts to reflect the

stress waves produced by the penetration event in the same way that these waves would

be expected to reflect and interfere in an experimental target. Alternatively, to represent

a semi-infinite domain, either a free or fixed boundary condition can be used, but in both
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Figure 5.7: Comparison of penetration histories obtained for three different background
grid resolutions. While neither the 0.5 m or 0.25 m resolution simulations successfully ran
to completion (a result of particle domain inversion errors), the rate of penetration clearly
has yet to spatially converege. The same is likely true of other measurable quantities.

cases requires a domain sufficiently extending in radial direction. An extended domain

in the radial direction should provide dissipation of stress waves prior to their reflection,

which in turn prevents large constructive interference (e.g., spall) at the centerline where

penetration takes place. A large number of simulations, using an early version of Arenisca

confirmed these results. Using a free surface boundary, penetration depth for large diameter

targets is insensitive to target diameters greater than approximately 0.35 m. Otherwise,

penetration depth increases with decreasing target diameter. This result, presented in Fig.

5.8, agrees with the finding of Wesson and Pratt [70] who conducted similar experiments

in order to determine the effect of differences in standard test sizes used to report the

capabilities of a shaped charge. Conversely, for a fixed boundary, as used to simulate a

semi-infinite target, penetration depth decreases with decreasing target diameter. This

qualitatively makes sense, given that as the fixed boundary gets closer to the centerline the

effective radial stiffness increases as outward radial expansion is resisted. More importantly,

as the target diameter is increased, both the fixed and free boundary conditions approach

the same depth of penetration, which is the qualitatively expected trend. The reason for the

penetration depths versus diameter lines of Fig. 5.8 crossing for the two different boundary

conditions is not well understood and could be the result of wave phenomena like those
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Figure 5.8: The effects of free surface boundary type selection. The legend entry ‘Fixed’
corresponds to simulating a target cylinder having a fixed (Dirichlet condition to enforce
zero velocity on the) outer surface, while ‘Free’ corresponds to the outer surface being free
from the effects of any boundary condition.

previously discussed or possibly of the issues discussed in Chapter 6. A subset of these

simulations were repeated for a fixed boundary using a recent version of Arenisca. In this

instance, a long-rod tungsten penetrator using a different erosion algorithm was used to

penetrate a sandstone target without the steel liner. A comparison of the normalized depth

of penetration versus target diameter is presented in Fig. 5.9. In each case, depth of

penetration is normalized by the maximum of the dataset. A similar trend is apparent,

although the new one is better behaved, with the exception of a small nonmonotonicity as

the target diameter was reduced. Though this small jump in penetration depth is currently

not well understood, it is not particularly concerning as a fixed boundary target this small

would not be used in practice.

A similar study on the effects of target length was conducted in conjunction with the

above long-rod penetration simulations. It was found that target length for a fixed boundary

has less of an effect on the resulting penetration depth. Only a maximum difference in depth

of penetration of approximately 3% was observed over target lengths ranging from 0.2 m to

1.0 m. It is recommended that a similar study be repeated for targets with a free boundary

as the reflection of stress off the tail end of a long-rod penetrator is frequently reported to

end the initially transient penetration phase for such a penetrator, and it is possible that a
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Figure 5.9: Comparison of fixed outer boundary effects for two versions of Arenisca each
using different erosion options and penetrators. The blue line of this figure corresponds to
the blue line of Fig. 5.8 and uses an older version of Arenisca with the discrete jet as a
penetrator and the RemoveMass erosion option. The red line on the other hand uses the
most recent version of Arenisca, a rod penetrator, and the erosion option none.

similar effect might result from wave reflection as the distance from the free surface at the

end of the target to the penetration front is reduced.

5.2 Simulation of Hypervelocity Long-Rod
Penetration

Largely as a result of issues reported in the next chapter, use of the discrete jet model

was abandoned. In its place, long-rod penetrators were used to evaluate Arenisca’s ability to

simulate hypervelocity penetration phenomena. In each instance, a target having a radius of

20 cm and length of 25 cm (or longer) was used so that boundary effects may be neglected.

Recently Orphal and Anderson [71] came to the conclusion that there is fundamentally

a linear relationship between the steady-state rate of penetration (U) for an eroding rod

penetrator and its initial impact velocity (V ).

U = a+ bV (5.2)

where a and b are constants for a given penetrator-target pairing. If hydrodynamic penetra-

tion is assumed, a and b become zero and one half, respectively. Though this relationship
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does not account for the onset of eroding rod penetration it does, where applicable, lead to

the observation that the dynamic strength difference (as used in many models) also has to

depend on impact velocity. Substituting the above equation for U into the governing equa-

tions of Eichelberger/Alekseevskii-Tate (Eqn. 3.9) results in a dynamic strength difference

of

(R − Y ) =

?
(a2 + 2ab+ b2V 2)

?
ρp − ρt

2

??
− aρpV −

?
b− 1

2

?
ρpV

2 (5.3)

which, by taking the partial derivative of the this equation with respect to impact velocity,

then setting the result equal to zero and solving for V, gives the location of the maximum

or minimum Vm:

Vm =
aρp − (ρp − ρt)(ab)

ρp + (ρp − ρt)b2 − 2ρpb
(5.4)

To determine if this is a maximum or minimum the second partial derivative is found by

∂2(R − Y )

∂V 2
= ρp(b− 1)2 − ρtb

2 (5.5)

If this value for ∂2(R − Y )/∂V 2 is negative then the strength difference at V = Vm is a

maximum. On the other hand, for a value that is positive at V = Vm the strength difference

is at a minimum. Figure 5.10 illustrates these two regions for penetration of sandstone (ρt =

2300 kgm) by tungsten (red), copper (cyan), and penetrators with a density between these

materials (intermediary colors), as these are materials used to manufacture sintered shaped-

charge liners. The region where ∂(R − Y )/∂V 2 is negative corresponding to a maximum

strength difference and is indicated by the cross hatching. The two vertical dashed lines on

the left side of Fig. 5.10 indicate the transition from this region (penetration characterized

by having a maximum strength difference), to the region characterized by having a minimum

strength difference. These values of b, 0.743 and 0.664 for tungsten (red) and copper (cyan),

respectively represent hydrodynamic penetration, where strength effects are unimportant.

Further, for the same material combinations, there is theoretically a second root crossing

as indicated by the dashed vertical lines on the right of Fig. 5.10, but based on the fact

that Orphal and Anderson, for a wide range of material pairings, reported values of b

only between 0.269 (Al/Au) and 0.836 (tungsten/Al2O3), it is not expected for b to lie

outside this range. To determine if Arenisca produces similar trends, long-rod penetration
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Figure 5.10: Illustration of ∂(R − Y )/∂V 2 over a range of slopes (b) in the linear
relationship between penetration velocity and rate of penetration. The lines represent
penetrators having a different densities (ρp) being used to penetrate sandstone (ρt = 2300
kgm−3) The region where ∂(R−Y )/∂V 2 is negative and R−Y (Eqn. 5.3) has a maximum
is indicated by hatching. The dashed vertical lines indicate transition from the lower
(hatched) to upper region (characterised by R − Y having a minimum). The four dots
represent different types of penetration: hydrodynamic (black), a ‘strengthless’ dense water
penetrator (blue), tungsten rod using ZeroStress as its erosion algorithm (green), and a
tungsten rod using none as its erosion algorithm (red). These dots correspond to lines of
the same colors in Figures 5.11 through 5.13

was simulated for three rods, each having a different material specification, for velocities

ranging from 1.5 to 3.9 km/s. Two of the rods used the standard material characterization

for tungsten and are only different by use of different erosion algorithms, which where none

and ZeroStress as indicated in the figure legends to follow. The third was intended to

approximate penetration by a rod without strength using Uintah’s water material model

to simulate water with the same density as tungsten. The water model used is unvalidated

and not inviscid [15], which may explain some behaviour highlighted in the discussion to

follow. For each, a rod with a diameter of 1.5 mm and a length of 0.492 m was used. This

length was selected to prevent the onset of secondary penetration phenomena. A line was

then fit to the resulting penetration history of each to determine the penetration velocity

U . Good agreement with the theory of Orphal and Anderson was produced in comparing

the behavior of penetration velocity. Figure 5.11 is a plot of penetration velocity versus

initial rod velocity, consistent with Orphal and Anderson’s prediction of a linear relationship

between penetration velocity and initial rod velocity. As shown in Fig. 5.12, these same

penetration velocities, when normalized by the hydrodynamic limit (Uh = V/(1+(ρt/ρp)
1
2 )),

approach unity asymptotically from below, which is the expected behavior.



51

1 .5 2 .0 2 .5 3 .0 3 .5
Penet r at ing r od veloci t y, V 

�km
s2
�

1 .0

1 .5

2 .0

2 .5

P
en

et
ra

ti
on

 v
el

oc
it

it
y,

 U
 �
km s
�

er osion:none
U  =  V�6 .3 4 e-0 1  - 2 .3 8 e-0 1
r2  =  0 .9 9 9
er osion:Zer oSt r ess
U  =  V�6 .7 2 e-0 1  - 1 .0 3 e-0 1
r2  =  0 .9 9 8

water
U  =  V�7 .0 2 e-0 1  - 1 .6 5 e-0 1
r2  =  1 .0 0 0
Ber noull i  Lim it
U  =  V�7 .4 3 1 e-0 1

1 .5 2 .0 2 .5 3 .0 3 .5
Penet r at ing r od veloci t y, V 

�km
s2
�

1 .0

1 .5

2 .0

2 .5
P

en
et

ra
ti

on
 v

el
oc

it
it

y,
 U

 �
km s
�

Figure 5.11: Plot of the linear relationship between rate of penetration and penetrating
rod velocity. The slope (b), intercept (a), and correlation coefficient (r2) of each line is
indicated in the legend.
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Figure 5.12: Normalized penetration velocity versus penetrating rod velocity. The data of
Fig. 5.11 are normalized by the hydrodynamic penetration velocity (Uh, which is the black
line in the same figure).
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In the legend of Fig. 5.11 are values for the parameters a and b (where a has units of

km/s), as well as the correlation coefficient r2 of the linear fit performed. For the tungsten

penetrators, using none and ZeroStress , b was determined to be 0.634 (red dot in Fig. 5.10)

and 0.672 (green dot in Fig. 5.10), respectively, both of which are in the second region of

Fig. 5.10 as they are less than the hydrodynamic value of 0.743 (black dot in Fig. 5.10)

and therefore expected to experience a minimum at Vm. Using Eqn. 5.4, the predicted

values of Vm were all negative. Noting that a negative penetrator velocity is nonphysical,

this result precludes confirmation of the predicted minimum. The reported value of b for

the dense water penetrator is 0.702 (blue dot in Fig. 5.10) predicting the same behavior as

for the tungsten rods, suggesting the possibility that such behavior, if repeatedly observed

in future simulations, may be an intrinsic characteristic of porous geologic formations when

penetrated within this regime or an indication of a fundamental computational problem.

Data to support either claim is currently unavailable. Orphal and Anderson did not have

results for materials with both a value of b less than the hydrodynamic value and a value for

a less than zero. As indicated previously, mesh refinement was observed to influence the rate

of penetration and so specific parameters that depend on this rate (such as a, b, and Vm)

can be expected to change until spatial convergence is achieved. Specifically, recalling that

rate of penetration increased with mesh refinement, it is suspected that b might increase

beyond the hydrodynamic limit. This might result in agreement with the results for other

materials, and prediction of a testable value for Vm.

Dynamic strength differences were also calculated for each of the penetrators using Eqn.

5.3 and are presented in Fig. 5.13. Assuming that the dense water represents a penetrator

without strength, this value could then be used to determine the dynamic strength of the

tungsten penetrators. The dynamic strength difference of the dense water simulation (blue

line) was, on average, lowest though it cross the ZeroStress simulation (green line) at low

velocities, and would therefore predict negative penetrator strengths which is nonphysical, if

used in this way. As pointed out earlier though, this model is not inviscid which may explain

these results. Further, it is expected that the values of each will change as convergence is

achieved and so this is not particularly troubling at this time. It is reccommended that a

strengthless model unaffected by viscosity be used in the future, at which point such an

analysis should produce both physically realistic values and some insight into the behaviour

of sandstone (as modeled) within this loading regime.

A similar investigation was performed to determine the effects of penetrator density on

penetration velocity. The same setup and analysis as before was used and the results are
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Figure 5.13: Dynamic strength difference (R − Y ) versus penetrating rod velocity. The
dynamic strength differences were calculated using Eqn. 5.3 and the linear fit of Fig. 5.11
legend.

presented in Fig. 5.14. The expected trend of increasing penetration with density, in a

self-similar fashion with hydrodynamic penetration (black line), is observed. Moreover, the

results exhibit the expected increase in penetration with decreasing penetrator strength,

where the dense water penetrator is closest to hydrodynamic penetration and the line

for the tungsten penetrator using erosion option none is th furthest from hydrodynamic

penetration.

Density effects were further investigated in terms of their impact on the resulting depth

of penetration and cavity geometry. The penetrator velocity and diameter were held

constant at 3.3 km/s and 3.0 mm, respectively. This was done in order to maintain a

total mass, momentum, and energy deposition of 10 g, 33 N s, and 54.5 kJ, respectively. To

accomplish this, rod length was varied in inverse proportion to density. Table 5.3 correlates

density, length, and penetration results, while Fig. 5.15 is a plot of the same penetration

results. In that figure, it is observed (from the impending crossing of the lines) that use

of either erosion option would likely predict increasing depth of penetration as density is

increased, beyond that of the hydrodynamic value. Partom [72] provides experimental and

computational results from a variety of sources that penetration beyond the Bernoulli limit

can be attributed to residual penetration associtated with kinetic energy of the penetrator’s

debris after being consumed during the initial penetration event. As this energy increases

with density, it is anticipated that penetration might significantly increase in comparison

to the value predicted by hydrodynamic theory, which does not account for these secondary

penetration effects. The legend presented in Fig. 5.16 will be used repeatedly in following
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2 )).

Table 5.3: Penetrator properties and resulting depth of penetration used to investigate the
combined effects of rod density and length. Each row corresponds to a point in Fig. 5.15,
a line in Figures 5.17 and 5.18 , and in certain instances an image in Figures 5.19 and 5.20.

Density (g/cm3) Length (mm) Penetration (cm)
none ZeroStress Hydrodynamic

9.618 147.08 19.08 19.15 30.08
14.426 98.05 17.34 17.07 24.56
19.235 73.54 15.54 15.81 21.27
24.044 58.83 15.03 15.16 19.02
38.470 36.78 14.49 14.86 15.04
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Figure 5.15: Plot of normalized penetration depth versus penetrating rod density. Each
line is representing by a column in Table 5.3, while each point corresponds to a row.
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Figure 5.16: Legend for combined plots of volumetric plastic strain and pressure. The
pressure limits were selected for their ability to distinguish different overburden values,
while also having the ability to capture the shock front. The limits for plastic volumetric
strain were selected to indicate the maximum allowable plastic strain in both extension and
compression.

presentation and discussion of penetration results in this and the following chapters. Indi-

vidual penetration histories, rate of penetration histories, and snapshots of each simulation’s

penetration channel are presented in Figures 5.17 through 5.20.

In comparing the penetration histories of Fig. 5.17, one difference in particular stands

out when using the ZeroStress erosion option in comparison option none. Using ZeroStress ,

there is a clear transition from primary to secondary penetration (for all but the lowest

density simulation), as indicated by a decrease in the slope of each line prior to leveling out

at a final penetration depth. This same behavior is also evidenced in the rate of penetration

history (Fig. 5.18) as a sudden and rapid drop in the rate of penetration followed by a small

and brief increase. These same effects are present but do not stand out as clearly in the

results obtained using erosion option none. Further similarities can be found in comparing

the resulting penetration cavities. For instance, the results for a density of ρp= 19.235

g/cm3, for both none (Fig. 5.19b) and ZeroStress (Fig. 5.20b), exhibit variation in the

channel’s diameter at similar locations but of differing magnitudes. The cavity at the end

of the penetration channel in Fig. 5.19a is the nonphysical result of a kinematic anomaly,

discussed in a subsequent chapter.

It is also reported that the resulting channel geometry presented herein for decreasing

density and increasing length (holding mass, momentum, and energy constant), is similar to

that observed experimentally by Lach et al. [73] for heavy tungsten penetrating hardened

steel with increasing velocity (energy and momentum are not fixed), though the significance

of this is not understood.
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Figure 5.17: Penetration histories for simulations investigating the combined effects of
density and length. Each line corresponds to a row in Table 5.3
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Figure 5.18: Rate of penetration histories for simulations investigating the combined
effects of density and length. Each line corresponds to a row in Table 5.3
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(a) ρp=9.618 g/cm3

L=147.08 mm
(b) ρp=19.24 g/cm3

L=73.54 mm
(c) ρp=38.47 g/cm3

L=36.78 mm

Figure 5.19: Plots of the resulting penetration channel for simulations investigating
the combined effects of density and length that used erosion option none. Each image
corresponds to a row of Table 5.3. Legend in Fig. 5.16.

(a) ρp=9.618 g/cm3

L=147.08 mm
(b) ρp=19.24 g/cm3

L=73.54 mm
(c) ρp=38.47 g/cm3

L=36.78 mm

Figure 5.20: Plots of the resulting penetration channel for simulations investigating the
combined effects of density and length that used erosion option ZeroStress . Each image
corresponds to a row of Table 5.3. Legend in Fig. 5.16.
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5.3 Simulated Overburden

Throughout the course of this work simulations with confining stress were frequently

executed. At first this was done using the discrete jet description. Generally the desired

trend was reproduced, for which depth of penetration decreases with increasing confinement.

The one exception to this was the unconfined depth of penetration, which was consistently

less than the results produced for minimal confinement (e.g., 1 ksi). There were other

issues as well, such as observing residual pressures in the area surrounding the penetration

cavity, which is discussed in the following chapter. Despite these shortcoming the model was

continually tested for its ability to replicate observed trends. One such trend is that for the

same hydrostatic pressure (e) found from the axial (σaxial) and radial (σradial) components

of the confining stress by

e =
σaxial + 2σradial

3
(5.6)

that penetration will be increase or decrease respectively, for a hydrostatic stress state with

a higher (σaxial > σradial), or lower (σaxial < σradial) axial confinement when compared to

isotropic confinement (σaxial = σradial) [74]. To determine whether or not Arenisca had this

predictive capability several simulations were executed. The axial, radial, and hydrostatic

components of the confining stress for these tests are presented in Table 5.4, and the results

are presented in Fig. 5.21. In two of the three cases (for e of 2 and 6 ksi) the expected

trend was produced. This is indicated in the figure by the highest point being marked by

an upwards triangle indicating a higher axial component, the middle being marked by a

right facing triangle denoting an isotropic stress state, and the bottom most marker being a

downwards triangle indicating higher radial confinement. For the case of e = 4, the depth of

penetration for isotropic and higher radial component stress states traded places. Further,

the no confinement reference depth of penetration is indicated by the large black circle and

is lower than both the isotropic and high axial component stress states for a hydrostatic

stress of 2 ksi.

Again as a result of the aforementioned issues associated with using the discrete jet

penetrator, it is currently replaced in simulations with overburden, by a long-rod penetrator.

The penetrator used is the 19.235 g cm−3 of Table 5.3 representing penetration by a solid

pure tungsten rod with a length close to that of the collapsed length of the discrete jet.

Recently Arenisca’s fluid model again became usable providing an opportunity to check two

trends, first that penetration depth monotonically decreases with increasing confinement,
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Table 5.4: Anisotropic confinement used to obtain the results of Fig. 5.21.

Test σaxial σradial e
number (ksi)

1 4 1 2
2 0 3 2
3 2 2 2
4 8 2 4
5 0 6 4
6 4 4 4
7 10 4 6
8 2 8 6
9 6 6 6

Figure 5.21: Depth of penetration results for simulations having an anisotropic preconfin-
ing stress state. Each point corresponds to a row of Table 5.4. An upwards arrow indicates
a confining stress state that has a higher axial component, the right facing arrow indicates
a stress state was isotropic, and the downwards facing arrow indicates a confining stress
state having a larger radial component.

and second that simulations using fluid effects go deeper than those without for the same

level of confinement. A summary of the maximum (or as discussed below final) depths of

penetration are presented in Table 5.5. These same results are also presented as plots of

normalized depth of penetration (P/L) versus confining stress in Fig. 5.22 for both erosion

option none and ZeroStress . In each instance, the set of points were fit to a polynomial,

which is the line drawn. Use of none (Fig. 5.22a) exhibited a greater degree of scatter, and

for the drained case was nonmonotonic for the highest confining stress, though the trend



61

Table 5.5: Depth of penetration results from simulations of a tungsten rod using different
erosion option to penetrate a target with and without fluid effects at differing levels of
confinement. Each row corresponds to a line/lines in Figures 5.22 through 5.26 or a figure
in Figures 5.27 through 5.30.

Group Depth of penetration (cm)

confining stress (ksi)
erosion – none 0 1 5 10 15

drained 16.58 16.42 15.06 14.91 15.01
undrained 18.61 17.15 16.70 15.60 15.51

erosion – ZeroStress

drained 16.69 16.30 15.30 14.89 14.69
undrained 17.91 17.31 16.19 15.80 15.69
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Figure 5.22: Normalized penetration depth of a rod penetrator penetrating into drained
and undrained targets at various levels of preconfinement using different erosion options.
The lines in each case represent a polynomial fit to the data points as indicated by the
square or diamond markers. Each fit had a correlation coefficient of 0.999 or greater.

of increased depth of penetration when using fluid effects is reported for all levels of

confining stress. Using ZeroStress (Fig. 5.22b) on the other hand, produced polynomial fits

having high correlation coefficients (both greater than 0.9999), and more importantly, both

with and without fluid effects, is observed to be monotonically decreasing for increasing

confinement. Simulations using the options ZeroStress and fluid effects produced the

desired trend of increased depth of penetration, over those without fluid effects, for all

levels of confinement. In comparing the penetration histories of simulations that use the
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same erosion and fluid effects options (Figures 5.23 and 5.24), it is observed that steady

state penetration is nearly identical, having only minor difference in the time (and as a

result the depth of penetration) at which the onset of secondary penetration effects occurs.

Further, a separation between high a low confinement results is observed. This effect is

particularly well illustrated in Fig. 5.23a where the zero confinement and a confining stress

of 1 ksi have similar histories, while confining stresses of 5,10, and 15 ksi cluster together to

share similar histories. Figure 5.23b demonstrates the greatest disparity with the preceding

observation in that the 5 ksi confinement solution is closer to the 1 ksi solution. Also, for

that same group of simulations (erosion option none with fluid effects) the no confinement

case was run an extra 100 �s before reaching a final depth of penetration, which is the

deepest of any group. The same simulation using ZeroStress and fluid effects (Fig. 5.24b)

exhibited similar prolonged secondary penetration, but as a result of small timestep issues

was manually terminated prior to reaching its final depth. Based on its slope at this point,

it is hypothesized that it would likely, if able to complete the solution, have had a history

similar to the erosion none option with fluid effects (Fig. 5.23b). The highest confinement

case of the same group (ZeroStress with fluid effects) was also manually terminated for the

same reasons, but unlike the zero confinement case had already reached its final penetration

depth.
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Figure 5.23: Penetration histories for a tungsten rod penetrator using erosion option
none to penetrate drained and undrained targets at various levels of preconfinement. The
maximum penetration achieved in each history is presented in Table 5.5. Corresponding
rate of penetration histories, obtained by numerical differentiation of the lines in this plot,
are presented in Fig. 5.25. The final state of each target is presented in Figures 5.27 and
5.28
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Figure 5.24: Penetration histories for a tungsten rod penetrator using erosion option
ZeroStress to penetrate drained and undrained targets at various levels of preconfinement.
The maximum penetration achieved in each history is presented in Table 5.5. Corresponding
rate of penetration histories, obtained by numerical differentiation of the lines in this plot,
are presented in Fig. 5.26. The final state of each target is presented in Figures 5.29 and
5.30

In comparing rates of penetration through time (Figures 5.25 and 5.26) the same obser-

vations can be made, namely that the difference between simulations with and without fluid

effects is in the nature of terminal penetration phenomena. Further, when using erosion

option none, the noise in the rate of penetration (resulting from numerical differentiation)

is noticeably reduced when incorporating fluid effects (Fig. 5.25b). Resulting channel

geometries for each group are compared in Figures 5.27 through 5.30. In comparing

the results of erosion option none and ZeroStress an issues was revealed. During recent

migration of kinematics algorithms from within individual constitutive models to a central

location within the host code an unintended change was made. As discussed in the following

chapter, if the erosion option ZeroStress is used, then particle deformation is frozen in time

after a particle becomes sufficiently damaged. At the same point in time, the particle

is also no longer able to support stress of any kind. When the aforementioned changes

were made, the portion of code responsible for freezing a damaged particle deformation was

omitted, this resulted in damaged particles undergoing continued and massive deformations,

as observed in Figures 5.29 and 5.30. As a result of these simulations this has since been

remedied. Focusing now on the results obtained using the erosion option none (Figures 5.27

and 5.28), it can be observed that simulations with fluid effects exhibit wider penetration

channels with a more rounded tip, this is especially noticeable in comparing Figures 5.27a
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Figure 5.25: Rate of penetration histories for a tungsten rod penetrator using erosion
option none to penetrate drained and undrained targets at various levels of preconfinement.
Each history was obtained by numerical differentiation of a line in Fig. 5.23.

and 5.28a. Further, the simulations with fluid effects appear to form a shorter and more

pronounced slug at the end of the channel, which is particularly evident at lower confining

pressures. Higher confining pressure simulations with fluid effects tend to exhibit large

residual pressures away from the penetration channel. This phenomena, also presents for

simulations using erosion option ZeroStress and is the focus of section 6.2 in the following

chapter.
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Figure 5.26: Rate of penetration histories for a tungsten rod penetrator using erosion
option ZeroStress to penetrate drained and undrained targets at various levels of precon-
finement. Each history was obtained by numerical differentiation of a line in Fig. 5.24.

(a) 0 ksi (b) 1 ksi (c) 5 ksi (d) 10 ksi (e) 15 ksi

Figure 5.27: Plots of the resulting penetration channel for simulations of a tungsten
rod penetrator using erosion option none to penetrate drained targets at various levels of
preconfinement. This set of images correspond to the red line of Fig. 5.22a and a row
in Table 5.5. Further, the depth of penetration history that developed each channel is
presented in Fig. 5.23a, and a corresponding plot of the rate of penetration in Fig. 5.25a.
Legend in Fig. 5.16.
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(a) 0 ksi (b) 1 ksi (c) 5 ksi (d) 10 ksi (e) 15 ksi

Figure 5.28: Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option none to penetrate undrained targets at various levels of
preconfinement. This set of images correspond to the blue line of Fig. 5.22a and a row
in Table 5.5. Further, the depth of penetration history that developed each channel is
presented in Fig. 5.23b, and a corresponding plot of the rate of penetration in Fig. 5.25b.
Legend in Fig. 5.16.

(a) 0 ksi (b) 1 ksi (c) 5 ksi (d) 10 ksi (e) 15 ksi

Figure 5.29: Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option ZeroStress to penetrate drained targets at various levels
of preconfinement. This set of images correspond to the red line of Fig. 5.22b and a row
in Table 5.5. Further, the depth of penetration history that developed each channel is
presented in Fig. 5.24a, and a corresponding plot of the rate of penetration in Fig. 5.26a.
Legend in Fig. 5.16.
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(a) 0 ksi (b) 1 ksi (c) 5 ksi (d) 10 ksi (e) 15 ksi

Figure 5.30: Plots of the resulting penetration channel for simulations of a tungsten rod
penetrator using erosion option ZeroStress to penetrate undrained targets at various levels
of preconfinement. This set of images correspond to the blue line of Fig. 5.22b and a
row in Table 5.5. Further, the depth of penetration history that developed each channel is
presented in Fig. 5.24b, and a corresponding plot of the rate of penetration in Fig. 5.26b.
Legend in Fig. 5.16.



CHAPTER 6

ISSUES EXPOSED BY V&V

This chapter describes a number of unexpected results that were revealed through

verification and validation testing. These results at times pointed to fundamental issues

for which simple litmus tests exist, and for which solutions are actively being developed,

while others have been problematic in that currently they can be neither explained nor

resolved.

6.1 Locking

As a result of improved visualization techniques (refer to section 5.1.1), one characteristic

symptom of locking (checkerboarding of solution fields) was identified in many simulation

results, and is demonstrated in Fig. 6.1. Locking is defined by Mast [75] as ‘the build-up

of fictitious stiffness due to an element’s/cell’s inability to reproduce correct deformation

mode shapes. The end result is a system that is too stiff, leading to poor kinematics

and erroneous strains.’ Two common forms of locking inherited by MPM from FEM are

volumetric and shear locking. Locking can significantly affect problem convergence, and

so is a serious concern where high computational overhead is already an issue. Having

identified a symptom of locking, testing to confirm the presence and prevalence of locking

within the Uintah framework was undertaken and is the focus of this section. As a result

of this work, development of antilocking methods is now a project objective.

6.1.1 Shear Locking

Shear locking results when element interpolation functions are unable to accurately

approximate the strain distribution associated with bending. The name shear locking

stems from the large unphysical shear strains found in bent elements susceptible to this

form of locking [76, 75]. Stiffness is also noted to increase anomalously with the aspect

ratio of an element [77] (e.g., in an axisymmetric 2-d simulation the aspect ratio of a

particle/cell is the ratio of its edge lengths). Common indicators of shear locking are the
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Figure 6.1: Example of the characteristic checkerboarding of solution fields that presents
in locking phenomena.

aforementioned presence of checker boarding in solution fields – particularly in the shear

components of stress – and slow solution convergence, both of which were identified in

penetration simulations. Massively sheared high-aspect-ratio particles have also frequently

been observed in simulating the perforation/penetration process. If possible, sufficient mesh

refinement should significantly improve solution accuracy, though this convergence is often

characterized by a sudden change in the rate of convergence (i.e., a bilinear convergence

plot); no theory yet exists for predicting the threshold value of mesh size at which the

rate of convergence suddenly improves. Unconventional integration schemes like those

described by Bower [76] have been effective at countering this problem in FEM, and strain

regularization techniques like those described by Mast [75] have been effective in MPM.

Despite previous work being able to accurately capture penetration into aluminum targets

using a different material model [30], the degree to which locking plays a deleterious role

in Arenisca simulations remains unclear. For this reason the simple bending beam problem

proposed by Mast [75] was solved using Uintah and its basic NeoHookean elastic material

model; this was done to confirm the presence of shear locking and better understand its

pervasiveness within this framework.

The problem solved is that of an elastic cantilever beam subjected to an initial velocity

field corresponding to the first mode of free vibration, this problem is illustrated in Fig.
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6.2. Both a more in depth explanation of the problem setup and shear locking is provided

by Mast in [75]. Shear locking is reported to be a problem predominantly in using linear

interpolators (which are usually selected for their high efficiency, algorithmic simplicity, and

ability to avoid negative values of field interpolation in high gradient problems) [75, 77].

For this reason, different interpolators were used to describe fields on the background grid,

and their respective performances were evaluated. These interpolators are listed in Table

6.1 and include single point integration which uses the linear shape functions inherited from

FEM, the generalized interpolation material point (GIMP [21]) method, which uses smooth

differentiable support functions over the initial domain of a particle, the convected particle

domain interpolation (CPDI [24] ) method, which accounts for the evolving extents of a

particle as it deforms using a 4-node FEM interpolation over this domain, and B-Splines,

which provide smoother gradients over a greater support domain than linear shape functions

[78]. Each of these interpolation methods, other than single point integration, is meant to

counteract the cell crossing and/or tensile instability inherent to most basic formulation of

MPM.

Parameter Value (m)

L 10
h 1
t 1

Figure 6.2: Shear locking benchmark problem illustration. The initial velocity field of a
cantilever beam undergoing the first mode of free vibration, V0(x), is applied to a cantilever
beam of length L, height h, and thickness t.

Table 6.1: Shear locking problem interpolators.

Interpolator Description

Single point integration Effectively a lumped mass solution.
GIMP Accounts for the initial spatial extent of particles.

CPDI
Accounts for deforming particles by using dif-
ferent shape functions.

3rd order B-Spline Like GIMP, uses higher-order B-spline shape functions.
4th order B-Spline Like GIMP, uses higher-order B-spline shape functions.
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The above problem was executed at three background grid cell sizes consistent with the

work of Mast, which are 1.0, 0.5, and 0.25 m, respectively. Each resolution was further

carried out at two amplitudes: large displacement with associated high bending stress and

small displacement with low bending stress. The aim was to determine if the resultant

error was a combination of shear locking and the cell crossing instability as described by

Bardenhagen and Kober [21]. Shear locking was found to be present at all resolutions, for

both amplitudes, using all interpolators, though solution quality does appear marginally

improved at higher resolutions using high-order B-spline interpolators. This result indicates

that shear locking is unrelated to the cell-crossing instability, and therefore a currently

unresolved concern even in quasistatic problems.

The single-point integration interpolator simulations often failed to run to completion,

with the code reporting a negative Jacobian. Given the small deformations of this test

problem, such an error was unexpected and not yet understood. The earliest simulation

failure occurred at the 25th of 24,000 steps. For this reason, the comparisons of interpolators

in this section are all evaluated at this point in time. The axial-lateral (σxy) shear stress

component results very early in the solution for each resolution of the large-displacement

problem specification are presented as Fig. 6.3.

(a) cell size = 1.00 meter (b) cell size = 0.50 meter

(c) cell size = 0.25 meter

Figure 6.3: Shear locking benchmark problem results. Plots of shear stress σxy. Each has
a particle resolution of 2 per direction per cell.
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Though the high-order B-spline interpolators appear less susceptible to shear locking, they

too produce nonphysical discontinuous fields at later stages of the solution.

Uintah is currently equipped with a basic strain regularization method to counteract

volumetric locking like that of Mast et al. [75]. Though this method is not expected to be

particularly effective for the case of shear locking, the effect of this feature was investigated.

Results using this strain regularization method are presented as Fig. 6.4. Use of the strain

regularization method was found to be ineffective at combating the effects of shear locking,

producing no visible changes in the checkerboarding of shear stress.

Upon closer inspection it was found that, for all interpolators, energy was not conserved.

Further, the use of strain regularization worsened this problem resulting in rapid energy

loss. These effects, presented in Fig. 6.5, are more pronounced when using both strain

regularization and a high-order B-spline interpolator. The reasons for this behavior are not

currently well understood.

(a) without regularization (b) with regularization

Figure 6.4: Shear locking benchmark problem results comparing the effects of basic strain
regularization. Each is for the 0.50 m resolution and uses the legend of Fig. 6.3

(a) without regularization (b) with regularization

Figure 6.5: Energy versus time for a third order B-spline interpolator solving the cantilever
beam shear locking problem.



73

6.1.2 Volumetric Locking

Similar to shear locking, volumetric locking is also the result of the interpolating function

being unable to accurately approximate physical phenomena, in this case the interpolation

is unable to approximate volume-preserving strain fields [76]. Traditionally, volumetric

locking has been a more serious issue than shear locking in FEM, as it cannot be resolved

with increasing mesh refinement. The solution in FEM again is to use modified integration

schemes like those described by Bower [76], in MPM the methods of Mast et al. [75]

have proven effective at improving simulation results where volumetric locking plays a

dominant role. Mast proposed using the same problem to test for both volumetric and

shear locking. However, because that problem is slow to solve, and because there was a

desire to concurrently test other features crucial to penetration problems (2-d axisymmetry

and pressure boundary conditions), a different benchmark problem was selected. Namely, a

linear-elastic thick-walled cylinder is subjected to plane strain by application of an externally

applied pressure, as described by Bower for traditional FEM [76]. This problem is illustrated

in Fig. 6.6.

Volumetric locking occurs as material properties approach incompressibility, which is

achieved in the limit as the Poisson ratio of a material approaches one half (ν → 0.5).

The two material input parameters, bulk modulus (K) and shear modulus (G), were

independently varied to achieve each desired Poisson ratio by means of

ν =
3K − 2G

2(3K +G)
(6.1)

Both elastic moduli were initially set to have values similar to aluminum (K = 70.28

Parameter Value

ra 0.5 m
rb 0.2 m
t 0.1 m
Pa 6.895 MPa (1.0 ksi)

Figure 6.6: Volumetric locking benchmark problem illustration. The pressure Pa is applied
at the outer surface of the thick walled cylinder described by an outer radius ra, inner radius
rb, and thickness t. The problem solved is plane strain using a linear elastic constitutive
model.
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MPa, G = 26.23 MPa, and ν = 0.334). This baseline material specification was selected as

it is well parameterized, in the middle of the range of ν’s to be tested, and is expected to

converge with mesh refinement. The specific material parameters tested are listed in Table

6.2.

Computed radial particle displacements were compared directly to the analytical dis-

placements (δr). These analytical displacements were obtained using the circumferential-

strain solution in Eqn. 6.2 and the strain-displacement relationship in Eqn. 6.3 as provided

by Bower [76].

?θθ(r) =
Par

2
a(ν − 1)(r2b + r2(1− 2ν))

3r2K(1− 2ν)(r2a − r2b )
(6.2)

δr(r) = r?θθ (6.3)

The absolute L2 error norm over the simulation domain was then computed as

L2 =

?????
N?
p=1

(δs(rp)− δe(rp))
2

N
(6.4)

where N is the number of particles in the simulation, rp is the radius at particle p’s center,

and δs and δe are the simulation and analytical radial displacements, respectively. This

Table 6.2: Material properties for volumetric locking test. Table (a) varies the bulk
modulus (K) to achieve different values for Poisson’s ratio using Eqn. 6.1, while (b) achieves
the same end by varying shear modulus (G).

(a) G =26.230 GPa

ν K (GPa)

0.1000 24.044
0.1500 28.728
0.2000 34.973
0.2500 43.717
0.3000 56.832
0.3340 70.280
0.3500 78.690
0.4000 122.41
0.4500 253.56
0.4950 261.43
0.4990 1310.6

(b) K =70.280 GPa

ν G (GPa)

0.1000 76.669
0.1500 64.169
0.2000 52.710
0.2500 42.168
0.3000 32.437
0.3340 26.230
0.3500 23.427
0.4000 15.060
0.4500 7.270
0.4950 0.727
0.4990 0.141
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error norm was used to compare solution accuracy at a given mesh resolution, as well as to

establish the presence of convergent behavior with increasing mesh refinement. According to

ASME [33] the rate of convergence can be obtained by comparison of multiple computational

solution results, each using different levels of discretization. For each Poisson’s ratio, linear

regression [79] was applied to fit the log of error versus the log of the number of particles. The

fitted slope, m, is the rate of convergence. The correlation coefficient r2 (is a measure of how

well the linear fit represents the data) was also computed for each fit. Table 6.3 and Figures

6.7 and 6.8 are the results obtained by varying the bulk modulus. Table 6.4 and Figures

6.9 and 6.10 are the results as obtained by varying the shear modulus. While volumetric

locking is typically associated with incompressibility by means of a large bulk modulus,

these results indicate that a small shear modulus has a significantly greater influence on

error across a greater range of ν’s. Error increases at both ends of the spectrum when

varying the bulk modulus, while by varying the shear modulus causes a nearly monotonic

increase in error with increasing values of ν. On average, a rate of convergence of 0.30

was achieved by varying the bulk modulus; a much lower average of 0.07 was achieved by

varying the shear modulus. In both cases, a number of poor linear fits were obtained, as

seen by some low correlation coefficients in Table 6.3a and Table 6.4a.

The previously discussed basic strain regularization algorithm was also applied to the

volumetric locking problem. In this instance, strain regularization was largely effective at

counteracting the volumetric locking phenomena. All modified bulk modulus exhibited a

decrease in error (Fig. 6.7b) and became convergent (Fig. 6.8b).

Table 6.3: Convergence rates (m) and corresponding correlation coefficients (r2) for the
2-d volumetric locking problem varying Poisson’s ratio (ν) by means of the bulk modulus
(K).

(a) without strain regularization

ν m r2

0.1000 +4.6884× 10−3 0.9474
0.1500 +2.7525× 10−2 0.9270
0.2000 +2.2748× 10−2 0.0039
0.2500 −3.9798× 10−1 0.9972
0.3000 −1.1055× 10−1 0.8455
0.3340 −2.1325× 10−1 0.9669
0.3500 −1.3578× 10−1 0.9252
0.4000 −2.5741× 10−1 0.9843
0.4500 −5.4268× 10−1 0.9992
0.4950 −7.4141× 10−1 0.9352
0.4990 −8.6783× 10−1 0.9995

(b) with strain regularization

ν m r2

0.1000 −1.4261× 10−1 0.9125
0.1500 −2.6914× 10−1 0.9599
0.2000 −5.1146× 10−1 0.9978
0.2500 −9.1558× 10−1 0.9730
0.3000 −9.5649× 10−1 0.9631
0.3340 −7.5995× 10−1 0.9862
0.3500 −6.7305× 10−1 0.9950
0.4000 −5.3119× 10−1 0.9999
0.4500 −5.0339× 10−1 0.9993
0.4950 −5.3690× 10−1 0.9999
0.4990 −5.3910× 10−1 1.0000
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Figure 6.7: Error plots for 2-d volumetric locking problem varying Poisson’s ratio (ν) by
means of the bulk modulus (K).
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Figure 6.8: Convergence plots for 2-d volumetric locking problem varying Poisson’s ratio
(ν) by means of the bulk modulus (K).
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Table 6.4: Convergence rates (m) and corresponding correlation coefficients (r2) for 2-d
volumetric locking problem varying Poisson’s ratio (ν) by means of the shear modulus (G).

(a) without strain regularization

ν m r2

0.1000 −6.4836× 10−2 0.1688
0.1500 −1.9781× 10−3 0.0002
0.2000 −9.1563× 10−2 0.0817
0.2500 −8.5804× 10−1 0.9838
0.3000 −1.8949× 10−1 0.9889
0.3340 −2.1325× 10−1 0.9669
0.3500 −1.5560× 10−1 0.9502
0.4000 +1.2907× 10−1 0.8505
0.4500 +7.8433× 10−1 0.6037
0.4950 +6.1927× 10−2 0.7520
0.4990 +1.2142× 10−2 0.7590

(b) with strain regularization

ν m r2

0.1000 −6.5957× 10−1 0.9481
0.1500 −8.0607× 10−1 0.9901
0.2000 −5.2876× 10−1 0.9987
0.2500 −4.5464× 10−1 0.9954
0.3000 −5.3294× 10−1 0.9998
0.3340 −2.1325× 10−1 0.9669
0.3500 −8.7044× 10−1 0.9705
0.4000 −3.3151× 10−1 0.9839
0.4500 +2.9348× 10−1 0.8491
0.4950 +9.9767× 10−4 0.9216
0.4990 +1.7599× 10−4 0.8827
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Figure 6.9: Error plots for 2-d volumetric locking problem varying Poisson’s ratio (ν) by
means of the shear modulus (G).

These same tests also had largely improved linearity (r2), with an improved average rate

of convergence of 0.5 (Table 6.3b). The modified shear modulus tests behaved similarly (Fig.

6.9b), though the three highest values of Poisson ratio remain borderline divergent (Fig.

6.10b). The modified shear modulus tests also exhibited improvment in linearity (r2) with

the average rate of convergence improving to a value of 0.49 (Table 6.4b).

To assess the axisymmetric implementation, these same tests were run again, this time

in full 3-d. As a result of the significantly increased computational cost associated with
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Figure 6.10: Convergence plots for 2-d volumetric locking problem varying Poisson’s ratio
(ν) by means of the shear modulus (G).

an increase in the dimensionality of the problem, fewer tests were executed. The results

mimicked those as obtained using axisymmetry and are presented as Fig. 6.11 and Fig. 6.12

for modified bulk and shear modulus tests, respectively. It is not surprising that the error,

while having the same profile when plotted against Poisson’s ratio, is noticeably increased.

This is believed to be due to the fact that the pressure boundary condition in the 3-d

implementation is not exact, while it is in the 2-d formulation. Work is underway to take

advantage of the particle domain information available when using the convected particle

domain method [80] in order to improve the pressure boundary condition in 3-d.

While improvement for this particular benchmark problem is observed when using basic

strain regularization, this is not universally true. In observing the effects of the basic strain

regularization on manufactured solution problems, an overall increase in error is reported

(Fig. 6.13). This is not surprising as a result of the accumulative averaging of a cell’s strain

performed at each step. For this reason, the basic strain regularization is recommended

only when volumetric locking is expected to exist.

6.2 Residual Pressures

In simulations with preconfining stress high residual pressures were observed along the

penetration channel walls (Fig. 6.14a). This pressure is the combined effect of large stresses

in each of the principal directions (radial, axial, and circumferential), and does not reduce

to zero at the cavity’s edge. In particular, the normal component of stress is not zero. As

the boundary of the penetration channel is effectively a free surface, this is not the expected
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Figure 6.11: Error plots for 2-d volumetric locking problem varying Poisson’s ratio (ν) by
means of the bulk modulus (K).
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Figure 6.12: Error plots for 2-d and 3-d volumetric locking problem varying Poisson’s
ratio (ν) by means of the shear modulus (G).
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Figure 6.13: Comparison of manufactured solution problems with and without basic strain
regularization enabled.
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(a) Previous version of Arenisca (b) Newest version of Arenisca

Figure 6.14: Residual pressure along the penetration cavity walls. Using the older version
of Arenisca the discrete jet description was used, also the jet and steel material in this image
are not colored by pressure. Using the newest version a long-rod penetrator was used and
a small hole was placed in the pressure boundary condition as discussed above. In both
instances an unspected residual pressure field results. Pressure legend in Fig. 5.16

result.

One possible explanation is that the jet material acts to clog the channel, thus making

the penetration channel’s surface in fact not a free surface and thereby preventing full elastic

relaxation of the surrounding sandstone. If this were the case though, the pressure in the jet

and sandstone at the interface would be expected to agree, which was found not to be the

case. In further testing of this hypothesis, the jet material’s strength was reduced by one –

and then two – orders of magnitude. No significant decrease was observed in the residual

pressure fields of simulations with preconfinement. Unexpectedly, a significant increase

in the penetration depth of simulations without confinement did result. This observation,

amongst others, led to the realization that the penetrator’s properties have a more significant

impact on the results than previously realized. Residual stresses have not been reported

in the literature for the penetration of semibrittle geomaterials, and regardless of this fact,

such residual stresses would be expected to have a gradient, for which normal component

of stress reduces to zero at the free surface, or to that of the jet material at their interface.

It was also conjectured that the residual pressure might be a result of the way that the

pressure boundary condition – used to simulate overburden – is enforced. This pressure

boundary condition is enforced by applying point loads of appropriate magnitudes and

directions to the particles at the boundary. These point loads were maintained throughout
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the duration of a simulation; this remained true even for the particles that were drawn

into the penetration channel and hence no longer at the outer boundary. Accordingly, it

was thought that the observed residual stresses might be attributable to boundary particles

moving into the penetration channel in such a way to load the the inner surface of the

penetration cavity. Subsequent simulations discredited this idea, first by turning off the

pressure boundary condition at the time of jet impact, and second by placing a hole in

the pressure boundary condition through which the jet was able to pass. In both cases no

significant decrease in residual stresses was observed.

The nature of the residual stress profile has changed recently (Fig. 6.14b), as a result of

extensive code modifications. These modification changed both the plastic-return algorithm

and the curved-cap portion of the yield surface. Additionally, these simulations employed

different treatments for the penetrator and the casing. While these changes affected the

residual stress field, they did not eliminate it, thus leaving the causes of these stresses

unclear. In short, these investigations have demonstrated that this phenomenon needs

explanation.

6.3 Kinematic Anomalies

In visual postprocessing of early work, the presence of a kinematic anomaly was observed.

Further review of other simulation results revealed similar anomalies. The aforementioned

anomaly presents in the form of a small ‘explosion’ (Fig. 6.15) characterized by a sudden

energy jump (Fig. 6.16). These events occur seemingly at random other than they tend to

originate from highly deformed regions. Neither the cause nor resolution of these anomalies

have yet to present themselves. Despite failing to resolve this problem, a number of code

improvements were implemented, and potential causes ruled out.

Initially these events were thought to be the result of questionable nonphysical limits

imposed on particle velocity, which were used temporarily during code development. These

were removed in subsequent versions, yet the problem persisted. The anomaly then was

thought to be the result of particle deletion algorithms, which are used to remove a prob-

lematic (primarily inverted domain) particle during a simulation. This also proved not the

be the cause of the anomaly; after altering the deletion criteria – and even disabling deletion

all together – failed to prevent these event.

The continued investigation of this problem has revealed issues associated with the use

of a certain erosion algorithm. An investigation into the physics behind this algorithm

revealed it to be apparently an incomplete and inadequately tested option, so it was

removed from the code. This same work also led to the conclusion that massively deformed



83

(a) 222 �s (b) 227 �s (c) 232 �s

Figure 6.15: Kinematic anomaly over 10 �s. Each image is a plot of volumetric plastic
strain on the left and pressure on the right. Legend in Fig. 5.16. This event occurred
during elastic relaxation long after the primary penetration event had completed (maximum
penetration was achieved by 80 �s).

Figure 6.16: Total kinetic energy of jet material, demonstrating energy spike associated
with a kinematic anomaly event.
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particles (highly stretched and sheared – beyond what would be physically realistic of any

geomaterial), appear to coincide with the occurrence of this issue. Further, it was found that

currently used algorithms for updating position, velocity, and acceleration can result in an

effective decoupling of these quantities, resulting in particle motion and velocity becoming

tangential or even opposed to one another. The exact cause of this problem is not currently

well understood and has led to the discovery of issues associated with the enforcement of

boundary conditions that are used with the general interpolative method. None of the

above observations have led to resolution the kinematic anomaly problem.

Error attributed to computation of the velocity gradient as reported by Wallstedt and

Guilkey [20] was also investigated as a potential cause of kinematic anomalies. Movement

of all kinematics from each constitutive model to a centralized algorithm within the Uintah

framework, and the subsequent revision of the velocity gradient algorithm, resulted in a

reduction in error for simple manufactured solution problems (such as for the generalized

vortex [27] and axis-aligned displacement [22] problems Fig. 6.17). Despite this improve-

ment, these changes ultimately led to earlier and more frequently occurring kinematic

anomalies. The reason for this behavior is not well understood.

Throughout the course of this investigation kinematic anomalies were also observed in

penetration simulations not using the Arenisca material model (such as the steel penetration

problem discussed later – legend in Fig. 6.18 and kinematic anomaly in Fig. 6.19), as well as

in the simulation of other phenomena all together (such as the water dam problem of [75] Fig.

6.20). This observation indicates that the kinematic anomaly problem is not associated with

any particular constitutive model, which prompted the previously mentioned investigation
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Figure 6.17: Comparison of manufactured solution problems with and without enhance-
ments to computation of the velocity gradient as proposed in [20].
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Figure 6.18: Von Mises equivalent stress legend for tungsten penetration of steel simula-
tions

(a) Minimum 1 subcycles (b) Minimum 4 subcycles (c) Minimum 6 subcycles

Figure 6.19: Kinematic anomaly without using Arenisca in simulating perforation of a
thick steel plate by a segmented rod tungsten penetrator. In each, equivalent stress is
plotted (legend in Fig. 6.18). The right side of each corresponds to use of velocity gradient
code enhancements, while the left was does not use these modifications. In both cases,
only Uintah’s ElasticPlastic material model was used without material strength erosion
(i.e., using option none). In each a different minimum number of subcycles is used to
compute the deformation gradient tensor F∼∼. The expected behavior would be more realistic

deformations for an increasnig number of subcycles, up until the solution converges after a
sufficiently high number is used. This is not what is observed in these results.
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(a) Initial configuration (b) 12000 steps (c) 12500 steps

Figure 6.20: Kinematic anomaly breaking dam problem of [75]. Particles are color by
particle number, which is meant to demonstrate the large mixing that occurs. The dynamic
event is largely over by (b). A large kinematic anomaly is first observed in (c), this event
was proceeded by many small ’pops’.

of velocity gradient enhancement, as well as the effect of subcycling. As seen in Fig. 6.19,

however, there is no consistent correlation of these options with reduction in the likelihood of

an anomaly. Therefore, because this unexplained and nonnegligible problem is so prevalent

across many models, it is reccommended that further work should focus on the enforcement

of fundemental governing equations within the host code.

Despite an earlier warning regarding the use of strain regularization, simulations meant

to determine the effect of this feature in penetration simulations suffering from kinematic

anomalies were carried out. The steel-billet penetration problem – discussed later in detail

– was selected as it has a relatively low computational overhead. As a result of using

strain regularization, small time-step issues prevented these simulations from reaching a

point where kinematic anomalies were previously observed. The combined effects of strain

regularization and the velocity gradient update were also evaluated, and the small timestep

problem remained an issue. The results of these simulations are presented in Fig. 6.21.

Initially up to 37 �s the results of both simulations are very similar to one another, and

the previously executed steel penetration simulations. At approximately 50 �s into the

simulation with only strain regularization enabled, the penetrator, as a result of interacting

with the penetration debris, begins to come apart. This simulation ran 2 �s further, before

small timesteps prevented further progress and the simulation was manually terminated.

In the simulation with both strain regularization and velocity gradient enhancements

behavior more similar to previous simulations without these features was displayed, until

being manually terminated at 79 �s. This was done as a result of the aforementioned small

timestep problem.
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(a) 3 �s (b) 55 �s (c) 57 and 79 �s, respectively

Figure 6.21: Simulating perforation of a thick steel plate by a segmented rod tungsten
penetrator to evaluate the effects of basic strain regularization. In each image, equivalent
stress is plotted (legend in Fig. 6.18). The right side of each corresponds to use of only strain
regularization, while the left deomonstrates the combined effects of strain regularization
and enhancments to computation of the velocity gradient. In both cases, only Uintah’s
ElasticPlastic material model was used without material strength erosion (i.e., using option
none). In each case the simulation had to be manually terminated as a result of small
timestep issues and is shown in the last frame at its final state.

6.4 Erosion Algorithm

In investigating the cause of both the previously discussed kinematic anomaly phenom-

ena, and the problem of residual stresses, it was found that the erosion algorithm used at

the time (RemoveMass) had been at one point partially removed from the elastic plastic

material model. Further inspection led to the conclusion that this was causing spurious

results in the materials using the ElasticPlastic material model. As a result, this option

was subsequently removed in its entirety. After which, the effects of each erosion algorithm

were compared in penetration simulations. The primary oberservation of which being that

simulation results are highly dependent on erosion algorithm selection. This influence is

especially apparent when using a segmented jet penetrator. Long-rod penetration, while

less sensitive to erosion algorithm selection, is also noticably influenced.

Erosion algorithms are used to describe the way a material loses strength after satisfying

a predefined failure criterion. Once triggered, the selected algorithm plays a critical role in

the simulated material response under continued loading. A number of failure modes are

supported within Uintah, as follows:
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• Accumulation of material damage (d) by the Johnson-Cook damage model [81]. The

constant damage rate over a step is

ḋ =
?̇p?

D1 +D2 exp

?
D3Tr(σ∼∼)

3σeq

?? ?
1 +D4 ln(

?̇p

?̇p0
)
? ?

1 +D5

?
T−T0
Tm−T0

?? (6.5)

where the numerator is the equivalent plastic strain at fracture (?pf ), ?̇
p = (2

3 ?̇∼∼ :

?̇∼∼)
1
2 is the equivalent plastic strain rate, σ∼∼ is the Cauchy stress, ?̇p0 is a user-defined

characteristic strain rate , T is the material temperature, Tm is the melt temperature,

T0 is the reference temperature, and D1, D2, D3,D4, and D5 are material constants.

A particle has fully damaged, and fails suddenly, after accumulating a damage value

of one or greater.

• Softening as a result of material melting.

T ≥ Tm (6.6)

As a metal deforms plastically, heat is generated. In shock loading of metals, adiabatic

heating is frequently assumed to occur, as there is not sufficient time for the conduction

of this heat away from the highly localized shock front [82, 83, 84]. Accordingly, a

portion of the plastic work is converted to heat. This heat is then used to increment

material temperature (∆T ) at each step by

∆T =
χσy
ρCp

∆?p (6.7)

where, χ is the Taylor-Quinney coefficient, Cp is the material’s specific heat, and σy

is the current material yield/flow stress.

• Material fracture by the TEPLA-F fracture condition [85], which is satisfied when

?
f

fc

?2

+

?
?p

?fp

?2

= 1 (6.8)

where f is the current porosity, and fc is the maximum allowable porosity. Once the

above equation is satisfied, fracture within the material is said to have occurred.

• Material instability, which leads to bifurcation by the Drucker stability postulate [86],

σ̇∼∼ : D∼∼
p > 0 (6.9)
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where σ̇∼∼ is the time rate of Cauchy stress and D∼∼
p is the rate of plastic deformation.

Once the above inequality is violated, material bifurcation occurs.

• Exceeding the material’s maximum critical stress.

σmax > σeqv (6.10)

where σmax is the maximum critical stress, and σeqv = (3
2σ∼∼ : σ∼∼)

1
2 is the equivalent

stress.

Once any of the above criteria have been satisfied, the erorsion algorithm modifies the

material’s ability to carry a load through modification of the material stress and, in the

case of the ZeroStress criterion, the deformation gradient to the new values of σ∼∼
∗ and F∼∼

∗,

respectively. The following erosion algorithms are largely unvalidated and meant only to

approximately mimic physically observed behavior of different materials [87]. The available

erosion algorithms are:

• none: eroded particle strength remains unchanged. For this option, the damage state

is still evolved, but the aforementioned revisions of stress is not applied, which is

equivalent to turning off material strength erosion, and is the default.

• RemoveMass : eroded particle mass is reduced. The intended result is a reduced

weighting of damaged particles in equations involving mass integrals. The algorithmic

implementation of this method was not entirely clear even to some of the original

developers [87]. As a result of this work, this erosion algorithm (which was erroneously

left partially available) has been removed.

• AllowNoTension : particle supports no stress if there is a tensile hydrostatic compo-

nent. Otherwise particle stress becomes hydrostatic.

σ∼∼∗ =

?
I1
3 I∼∼ , I1 ≤ 0

0∼∼ , I1 > 0
(6.11)

• AllowNoShear : eroded particle supports only hydrostatic stresses.

σ∼∼∗ =
I1
3
I∼∼ (6.12)

• ZeroStress : eroded particle cannot support stress, and its deformation is frozen.

σ∼∼∗ = 0∼∼ (6.13)
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F∼∼
∗ = F∼∼

n (6.14)

where F∼∼
n is the deformation gradient at the beginning of the step.

Figures 6.22 through 6.26 show snapshots at different points in time of simulations using

the discrete jet description for each of the above erosion algorithms. The left side of each

frame is a plot of plastic volumetric strain, while the right side is of pressure (legend – Fig.

5.16). Figure 6.27 is a plot of penetration depth through time for the same same simulations.

The first 30 �s of each simulation are very similar, exhibiting only minor differences in

deformation of the steel liner. After which, the results cluster into two groups: the first

being composed of AllowNoTension and ZeroStress , and the second being composed of

none, AllowNoShear , and RemoveMass .

(a) 18 �s (b) 75 �s (c) 107 �s

Figure 6.22: Simulated liner perforation and penetration into sandstone using the erosion
option none. The left and right are plots of volumetric plastic strain and pressure,
respectively (legend in Fig. 5.16). (c) is the final state at 107 �s where the simulation
was terminated by the host code as a result of a negative Jacobian error.
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(a) 18 �s (b) 75 �s (c) 150 �s

Figure 6.23: Simulated well-liner perforation and penetration into sandstone using the
erosion option RemoveMass . The left and right are plots of volumetric plastic strain and
pressure, respectively (legend in Fig. 5.16). This simulation ran successfully to a final time
of 350 �s, and penetration depth of 0.22 m.

(a) 18 �s (b) 75 �s (c) 76 �s

Figure 6.24: Simulated well-liner perforation and penetration into sandstone using the
erosion option AllowNoTension . The left and right are plots of volumetric plastic strain
and pressure, respectively (legend in Fig. 5.16). (c) is the final state at 76 �s where the
simulation was terminated manually as a result of having an intractably small timestep.
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(a) 18 �s (b) 75 �s (c) 150 �s

Figure 6.25: Simulated well-liner perforation and penetration into sandstone using the
erosion option RemoveMass . The left and right are plots of volumetric plastic strain and
pressure, respectively (legend in Fig. 5.16). This simulation would later encounter multiple
kinematic anomalies, and terminate as a result of a negative Jacobian error at 260 �s.

(a) 18 �s (b) 75 �s (c) 150 �s

Figure 6.26: Simulated well-liner perforation and penetration into sandstone using the
erosion option ZeroStress . The left and right are plots of volumetric plastic strain and
pressure, respectively (legend in Fig. 5.16). This simulation ran successfully to a final time
of 350 �s, and penetration depth of 0.35 m, though the rate of penetration had not yet
reached zero.
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Figure 6.27: Comparison of penetration though time for different erosion algorithms
solving perforation of a well liner followed by penetration into sandstone.

In the first group, the penetration channel walls are smoother, and the region of highly

distended sandstone particles (blue particles on the left half of each) is considerably smaller;

also the steel liner (black at the bottom on both sides of each frame) tends to come apart,

which results in a larger diameter entry into into the sandstone. In contrast, the second

group has a smaller diameter entry through the steel, which then opens to a wider diameter

channel having greater, and more abrupt, variations in diameter in the sandstone. The

second group also appears to focus the jet more abruptly into a point at the tip of the

penetration channel, this is particularly noticeable in both the results for AllowNoShear

and none. AllowNoShear and RemoveMass both exhibited kinematic anomalies, with

AllowNoShear having repeated events prior to failing at 260 �s because of a negative

Jacobian. The simulation for none also terminated abruptly at 107 �s for the same reason

but did not suffer from the occurrence of kinematic events. AllowNoTension failed even

earlier at 76 �s, and also did not exhibit kinematic anomalies. Of the five simulations, only

RemoveMass and ZeroStress ran to completion at 350 �s. These also, in terms of both

penetration history, and the nature of the resultant channel, are the the most different.

Further, RemoveMass exhibited a large single kinematic anomaly at 129 �s, accounting for

the unusual shape of the penetration channel at its tip.
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Other simulations were run comparing the two most promising, and different, erosion

algorithms, none and, ZeroStress . Both long-rod and segmented penetrators were used to

penetrate a 0.0495 m thick, 0.040 m diameter, 4130 armor-steel billet using the material

properties of [88]. In each instance, the penetrator had a constant velocity of 1700 m/s,

mass of 0.0111 kg, length of 0.05 m, and diameter of 0.0040 m. For the case of a segmented

penetrator, the long-rod penetrator was cut into sections each having a length of one half

the rods diameter, each of which was then separated by a void of the same length. The

segments of the segmented rod are expected to exhibit an increase in penetration efficiency

(penetration of an individual segment divided by its length) as a result of their length

(Lseg) to diameter ratio (Lseg/D = 1/2) [89, 90]. Further, because of this effect, the total

penetration of the segmented-rod penetrator should be greater than its solid rod counterpart

[91, 48, 92, 49, 93]. Figures 6.28 and 6.29 are plots of von Mises equivalent stress (σeqv) for

long-rod and discrete penetrators, respectively. The left half of each corresponds to using

option none, while the right corresponds to using ZeroStress .

In comparing the results for both long-rod and segmented penetrators (Table 6.5), the

penetration depth and cavity radius increased when using the ZeroStress option. As re-

ported in the literature for segmented penetrators of the same aspect ratio as the segmented

penentrator being used herein, the desired trend of increased penetration is produced by

(a) 3 �s (b) 39 �s (c) 100 �s

Figure 6.28: Comparison of von Mises equivalent stress, using the erosion algorithms none
(left) and ZeroStress (right), for tungsten long-rod penetration of a steel billet (legend in
Fig. 6.18).
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(a) 3 �s (b) 39 �s (c) 100 �s

Figure 6.29: Comparison of von Mises equivalent stress, using the erosion algorithms none
(left) and ZeroStress (right), for tungsten segmented-rod penetration of a steel billet (legend
in Fig. 6.18).

Table 6.5: Comparing erosion algorithm effects on depth of penetration, for tungsten into
a steel billet.

Simulation Penetration (mm) Average channel radius (mm)

Solid Rod - none 47.59 3.65
Solid Rod - ZeroStress 52.27 4.21
Segmented Rod - none 41.12 3.13
Segmented Rod - ZeroStress 54.75 3.50

the ZeroStress option.

Viewed from the perspective of Pack and Evans [39], to account for both strength effects

and secondary penetration Eqn. 3.5 can solved for the unknown coefficient α

α =
ρpV

2

σy

?
1−

?
ρt
ρp

?
P − r

L

??
(6.15)

The rod and target’s material paramters (σy = 1.5 GPa and λ = 1) are then plugged into

the above equation, the value returned is then subsequently used to obtain the reported

values of ασy/ρpV
2 in Table 6.6. Equation. 3.5 then must be further manipulated in order

to solve for the segmentation parameter of the segmented penetrator as
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Table 6.6: Comparing erosion algorithm effects on the dimensionless penalty parameter,
for tungsten into a steel billet.

Erosion algorithm Dimensionless penalty parameter (ασy/ρpV
2)

none 0.413
ZeroStress 0.358

λ =
ρt
ρp


 P − r

L
?
1− ασy

ρpV 2

?




2

(6.16)

Using the the previously determined dimensionless penalty parameter (which should be con-

stant for a particular material pairing) and the above equation the segmentation paramters

reported in Table 6.7 were obtained. It is reported that better agreement with this theory

is produced for both penetrators when using the ZeroStress option. This is true both for

the nondimensional quantity ασy/ρpV
2 and the segmentation parameter λ.

On the other hand, use of none for the long-rod penetrator appears to aggree better

with the work of Anderson et al. [88], in terms of penetration depth, cavity radius, and the

resulting bulge at the bottom of the penetrator as observed in Fig. 6.28c. For reference, the

predicted hydrodynamic penetration would be in each case 0.0749 m, which represents a full

perforation of the billet, something that was only just barely achieved for the segemented

penetrator (Fig. 6.29c).

Other differences are observed in the nature of the resulting debris, as demonstrated for

long rods in Fig. 6.28c. Using none the penetrator inverts to smoothly coat the penetration

channel, something frequently observed in hypervelocity penetration by high-density ductile

metals penetrating low density targets of sufficient depth [94]. Using ZeroStress , the

penetrator’s remains broke into three largely coherent clusters (seen clearly separated from

Table 6.7: comparing erosion algorithm effects on the dimensionless segmentation param-
eter, for tungsten into a steel billet.

Erosion algorithm Dimensionless segmentation parameter (λ)

none 0.747
ZeroStress 1.137
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the target material in Fig. 6.28c), which do not cling to the channel walls. This difference

is thought to result from the combined effects of zeroing the stress, and freezing the

deformation gradient of damaged particles by the ZeroStress option. In comparing the

results for a segmented penetrator, these differences become more apparent. For ZeroStress ,

the debris is more dispersed, and observed interacting to a greater degree with the incoming

segments of the penetrator. The influence of crater ejecta on the penetration of individual

segments, and ultimately final depth of penetration, plays a critical role, though how, and

to what degree, is currently not well understood [95]. For both long-rod and segmented

penetrators using ZeroStress , the resultant target stress field is generally lower in magnitude

in comparison to none, as seen in the figures by the smaller size of the red areas. When

using a segmented penetrator with the erosion algorithm option none, a kinematic anomaly

occured. This was the first instance of such an anomaly observed in Uintah simulations not

using the Arenisca model, which led to the use of this simulation in exploring that problem

as previously discussed above.

Now simulations are presented comparing the effects of erosion algorithm selection in

long-rod and discretized jet penetration. In each, Arenisca was used to simulate a sandstone

target (ρt = 2300kg/m3) without the steel liner. Further, the discrete jet description

representing a shaped-charge jet was used in a role similar to the previous segmented-rod

penetrator (refer to Figures 5.3 and 5.4). In order for the results to be directly comparable,

the segments of the discrete jet were prescribed a constant velocity (see Fig. 6.30). The

velocity of both the discrete jet and rod penetrators was set to 3266 m/s, as this velocity

is roughly the mass-weighted average of the variable-velocity shaped-charge jet description.

In both instances, the penetrators have a total mass of 0.0101 kg, total momentum of 33

N·S, and total kinetic energy of 54 kJ. Further, both the collapsed length of the discrete-jet

penetrator (sum of the lengths of the individual segments), and length of the rod, are the

same at 0.0795 m. The diameter of the rod was selected to be 2.9 mm in order to enforce the

preceding relationships; this value is nearly the average diameter of the discrete jet which

is 3.1 mm.

The results for this sandstone problem specification are somewhat different from those

previously discussed for the penetration of a steel billet. Referring to Fig. 6.31, the following

observations may be made about the influence of the type of penetrator and choice of erosion

algorithm:

• Not all simulations reached their final penetration depth (where the slope asymptotes

to zero). The values cited in Table 6.8 are the peak values reached in each simulation.

The rod simulation with option none was terminated normally by reaching
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Figure 6.30: Constant velocity (3266 m/s) discrete jet penetrator description. (a) contains
plots of individual cylinder properties, and (b) contains plots of the cumulative mass,
momentum, and energy, entering the simulation domain over time. Figures 5.3 through
5.4 are the same plots for the discrete segmented penetrator, which was formulated to
match a shaped-charge jet.
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Figure 6.31: Comparing erosion algorithm effects on depth of penetration through time,
for tungsten into sandstone.

Table 6.8: Comparing erosion algorithm effects on depth of penetration, for tungsten into
sandstone.

Simulation Penetration (cm)

Solid Rod - none 25.85
Solid Rod - ZeroStress 25.71
Discrete Jet - none 19.68
Discrete Jet - ZeroStress 26.22

its preselected end time, but it is clear from the positive slope at the stop time in

the figure that the penetration depth for that simulation was still increasing and

was thus expected to ultimately match or exceed the reported penetration depth for

the other simulations. The jet with option none terminated prematurely because

the particle deletion algorithm suddenly removed the majority of particles in the

simulation. Because output is only generated at prdefined intervals the cause of this

is not known but it is suspected to be a chain reaction of kinematic anomalies. For

reference the hydrodynamic depth of penetration predicted for both penetrators is

0.23 m.

• For jet segments all having a length-to-diameter ratio significantly smaller than unity,

it is expected that the final penetration depth would be deeper than its solid-rod

counterpart, and this behavior is seen in comparing the zero-slope portions of the

dashed and solid blue lines.
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• The steady-state phase of the penetration process, defined by the nearly linear initial

portion of each line, is similar for both rod simulations, neither exhibiting sensitivity

to the erosion option. However, the erosion option does show strong influence on the

steady-state phase of penetration for the jet.

• The secondary penetration phase, defined to occur after the initial nearly linear

portion, is influenced by the erosion option to varying degrees in all simulations.

The changes in slope during the secondary penetration might also be attributable to

boundary effects. In particular, the simulated target appears to have had too small

a diameter (0.0508 m) for use with a free surface condition and such highly energetic

penetrators, especially when combined with the use of a solid-rod penetrator. This

conclusion is based on the significant radial crater growth, and associated bulging

observed in the figures to follow. The cause of the difference between the rod and

jet penetrations is suspected to be a combination of this boundary effect, and too

small a computational domain, which combinecd to allow mass to flux out of the

computational domain. This in turn produced reducing resistance to deformation,

allowing unchecked radial expansion, and increased axial penetration.

The development of the penetration channel for both the rod and segmented penetrators

using each erosion option is illustrated by a sequence of plots. Each plot is of the Jacobian

of the deformation gradient (indicating volumetric expansion/contraction) on the left, and

von Mises equivalent stress on the right, with the legend for each found in Fig. 6.32. Rod

simulation results are found in Figures 6.33 and 6.34, while the discrete jet results are found

in Figures 6.35 and 6.36.

Figure 6.32: Combined legend for Jacobian and von Mises equivalent stress.
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(a) 25 �s (b) 75 �s (c) 150 �s (d) 300 �s

Figure 6.33: Plots of Jacobian (left) and equivalent stress (right) for tungsten long-rod
penetrator using erosion algorithm none to penetrate into sandstone without a steel liner
(legend in Fig. 6.32). This simulation went on to successfully terminate at 500 �s.

(a) 25 �s (b) 75 �s (c) 150 �s (d) 300 �s

Figure 6.34: Plots of Jacobian and equivalent stress for tungsten long-rod penetrator using
erosion algorithm ZeroStress to penetrate into sandstone without a steel liner (legend in
Fig. 6.32). This simulation went on to successfully terminate at 500 �s.



102

(a) 25 �s (b) 75 �s (c) 150 �s (d) 278 �s

Figure 6.35: Plots of Jacobian (left) and equivalent stress (right) for a tungsten discrete
jet penetrator having a constant velocity and using erosion algorithm none to penetrate
into sandstone without a steel liner (legend in Fig. 6.32). This simulation ran to the full
time of 500 �s, but encountered numerous kinematic anomalies, and ultimately deleted the
majority of its particles between 278 and 279 �s.

(a) 25 �s (b) 75 �s (c) 150 �s (d) 300 �s

Figure 6.36: Plots of Jacobian (left) and equivalent stress (right) for a tungsten discrete jet
penetrator having a constant velocity and using erosion algorithm ZeroStress to penetrate
into sandstone without a steel liner (legend in Fig. 6.32). This simulation went on to
successfully terminate at 500 �s.
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For both the rod penetrator simulations, primary penetration, defined by the penetration

depth at which the intial rod is fully consumed, is nearly complete by 75 �s. This is evi-

denced both by the abrupt change in the slope of the penetration history of these simulation

at this point (in Fig. 6.31), and also by observing the nearly complete consumption of each

rod in Figures 6.33b and 6.34b. The penetration occuring in each of these simulations

after this point is secondary penetration and a result of the large amount of energy still in

the penetrators debris. In Figures 6.33b and 6.34b it is observed that this debris is heavily

influenced by erosion algorithm selection. The debris field using none is longer, more broken

up, and has both large and small particles as indicated on the left of the figure (Fig. 6.33b)

by the debri being both pink and black. Conversely, using option ZeroStress (Fig. 6.34b)

the debris is largely coherent, slightly shorter, and as indicated on the left of the plot is

largely dilatated as indicated by the pink particles which denote volumetric expansion by

a factor of approximately two or greater (Fig. 6.32).

The effects these differences have on secondary penetration are illustrated in Figures

6.33c and 6.34c, where for none (Fig. 6.33c) the magnitude of the equivalent stress (on the

right side) at the forefront of the penetration channel is low in comparison to ZeroStress

(Fig. 6.34c). This is despite the fact that none has significantly more penetration debris left

still acting to penetrate, serving also to indicate that the residual velocity of the debris using

none is likely considerably lower. Further, the debris of none at this point is radially some

distance from the centerline, while that of ZeroStress is focused along the axial centerline;

this is likely responsible for the rounded channels end obtained using none (Fig. 6.33d),

compared to the more pointed tip of ZeroStress (Fig. 6.34d), as viewed 150 �s later.

It is difficult to make simillar observations for the discrete penetrator on account of the

simulation using erosion option none exhibiting multiple kinematic events. These events

caused the unusual penetration channel observed in Figures 6.35c and 6.35d. Alternatively,

using option ZeroStress formed a bulbous but otherwise not unusual penetration channel

(Fig. 6.36d). One significant difference in comparing the discrete penetration simulation

direction to their long-rod counterparts is that the discrete penetrator simulations present

very few highly dilatated particles as indicated by the absence of pink on the left side of

the plots in Figures 6.35 and 6.36. The reason for this is not well understood, though it

is suspected that it may be related to the aforementioned boundary problem in the rod

simulations.

It is also possible that the erosion algorithm only being active in the penetrator, not

both the penetrator and target, may have played a role in producing the different responses
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observed here in comparison to the above steel billet problem used to investigate erosion

option effects. It is reccomended that simulations such as these be used to further inves-

tigate the effects of the discrete penetrator and erosion algorithm in the future, though a

more structured approach should be used, starting with a segmented penetrator like that

used above in the steel billet problem and progressing incrementally towards the discrete

description of a shaped charge jet as described in Chapter 5.



CHAPTER 7

POSTPROCESSING SIMULATION RESULTS

In tandem to the execution of a large number of full-scale simulations, both data

decimation and visualization methods were improved. This was necessitated by the large

amounts of data produced by a single simulation, which can regularly range from 10-100 GB,

and in some instances be over 500 GB. In order to make the best use of high-speed computing

resources, this data needed to be quickly processed, archived, and then deleted. To this

end, automated Python scripts were developed to satisfy the problem-specific needs of the

research group. Further, both generalized and automated visualization tools were developed,

again using Python, both to improve the content and fidelity of these visualizations.

7.1 Improved Visualization Techniques

The open source visualization tool VisIt [96] is used to perform postprocessing of sim-

ulation data. VisIt was selected because it is open source, designed to take advantage

of multiple processors, and also compatible with massive data sets. Working with the

university’s scientific computing and imaging institute (SCI), as well as the developers

of VisIt, previous work to represent the physical deformation in particle simulations was

debugged and improved. Doing this required development of small tests, which were used

by the developers in resolving issues, in order to replicate problematic phenomena.

A bug was resolved which caused plot colors to be drawn from garbage numbers, as well

as a bug which caused particle glyphs to dissapear at random during rendering. Further, as a

direct result of fixing these problems, and as well as interactions with both SCI, and VisIt’s

developers, deforming glyph features were incorporated into the standard VisIt release.

According to Neeman [97], glyphs can be defined as ‘a graphical icon that uses color and

shape to illustrate features of the object it represents’. There exist a number of different

glyphs which can be used to represent different dimensionalities of data. The most basic

type of glyph uses scalar fields to represent both color and shape. These were initially used

to visualize penetration simulations, but have fundemental shortcomings when used in this



106

way. A variety of shapes are frequently used as glyphs, amongst them, the cube, sphere, and

icosahedron are the most prevalent, each of which suffer from the same shortcoming when

used with scalar measures of shape in large-deformation problems. In MPM simulations,

a finite particle domain is assumed, which changes throughout a simulation as a result of

deformation. The aforementioned glyphs suffer from failing to account for these changes in

the domain’s shape and size.

The sphere and icosahedron capture neither a particle’s deformed domain nor the

continuum nature of a material prior to deformation (i.e., they do not fill space, and

thus may have gaps and/or overlaps, either of which masks the data of visualizations).

The cube, while able to represent the initial continuum (under circumstances where initial

particle domains coincide with this description) suffers from the same masking problem

during deformation. While the Jacobian of the deformation gradient and other measures

of deformation can be used to scale these descriptions, they only serve to mitigate and not

eliminate this problem. To overcome these deficiencies, a superior method proposed by

Choudhury et al. is used [98], whereby particle domains are represented by parallelepipeds

(providing support for nonuniform cuboids), which are then deformed by the tensor field of

particle deformation gradients (F∼∼). This method is able to provide 3-d insight throughout

the deformation process into the deformation of materials at multiple scales. More impor-

tantly this method is able to faithfully represent extreme deformations, as in hypervelocity

penetration processes. Further, as the deformation gradient itself is at the foundation of

the algorithms used in any solid mechanics code, use of this deformed glyph method can be

a valuable V&V tool in assesssing code qaulity.

Figures 7.1 and 7.2 represent the use of different glyhs in visualizing penetration simula-

tion data. For both sphere and cube glyphs, significant overlapping occurs. This is markedly

prevalent in the crushed zone at the free surface of the penetration channel. This area, and

its surroundings, are particularly important in studying the effects of penetration on rock

properties such as porosity and permeability. When using deformed parallelepiped glyphs,

the continuum of the material being represented by discrete particles is better expressed.

Further, the exact deformation of each particle is accurately represented. While overlapping

also occurs when using this glyph, it is minimal and real, only serving to highlight the need

for methods to deal with particle failure, as it is unlikely a material element would in reality

be able to withstand such extreme stretches and shearing. These features are especially well

demonstrated in Fig. 7.2c. During this simulation a number of kinematic events occured,

which resulted in the unusual cavity, and the extreme deformation of particles. The ‘x’ that
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(a) sphere (b) cube

(c) deformed parallelepiped

Figure 7.1: Comparison of sphere, cube, and deformed parallelepiped glyphs to visualize
particle data. Each plot is of equivalent stress (legend in Fig. 6.18), for two different
tungsten penetrators (long-rod left and segmented-rod right) penetrating a cylinderdrical
armor steel billet from above. (a) uses spherical glyphs to represent each particle and despite
there being small gaps in the intial configuration significant overlapping occurs in the debris
of the penetrator. (b) uses cube glyphs and faithfully represents the initial configuration,
but suffers from more sever overlapping of the glyphs in the debris field. (c) uses deformed
parallelepiped glyphs which are able to accurately portray both the intitial, and current
configuration of particle domains, providing greater clarity with regard to the deformation
of the penetrator, and to particle-particle interactions.

crosses the center of the figure is in fact a stretched and sheared particle, which has been

reflected in the process of generating this image from axisymmetric simulation data. Such

observations of extreme material deformation, inconsistent with the overall deformation

of the particles as a group, has led new research to focus on better coupling the updates

of particle deformations with particle positions uncovering opportunities for improvement

through boundary enrichment.



108

(a) sphere (b) cube

(c) deformed parallelepiped

Figure 7.2: Comparison of sphere, cube, and deformed parallelepiped glyphs to visualize
particle data. Each plot is of equivalent stress (legend in Fig. 6.18), for penetration of
a cylinderdrical armor steel billet from above by a tungsten long-rod penetrator. This
simulation suffered from multiple erroneous kinematic events causing the unusual nature
of the penetration channel and extreme deformation particles. (a) using spherical glyphs,
and (b) using cube glyphs, suffer from the same problem of overlapping which serves to
mask information. (c) alternately uses deformed parallelepiped glyphs which are able to
accurately portray the massively deformed particle domains, including those which are
physically unrealistic, such as the ‘x’ at the center of the screen, which is a single extremely
stretched and sheared particle..
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7.2 Automated Data Decimation and Visualization

A large Python script was developed to automate the visualization of penetration

simulation results. This tool was further extended to be more generally applicable to

other large solid mechanics Uintah data-sets. This script takes advantage of VisIt’s Python

scripting features and the increased efficiency gained by using VisIt from the command line.

This was neccesitated by the size of each simulation data set and the delay that results from

using VisIt remotely while making use of the university’s high speed computing resources.

This tool has the ability to indicate the depth of penetration on each frame (horizontal

lines and text in Fig. 7.3) of a video and can easily be modified in order to highlight other

quantities/features of interest. Using Python, scripts were also developed to generate plots

of other useful information, such as depth of penetration through time (Fig. 7.4); rate

of penetration through time (Fig. 7.5); penetrator total kinetic energy content through

time (Fig. 7.6); discrete-penetrator individual segment kinetic energy content through time

(Fig. 7.7); penetrator particle positions through time (Fig. 7.8); discrete jet segment radius,

length, and mass profiles (Fig. 5.3) with associated velocity, momentum and kinetic energy

(a) RemoveMass (b) ZeroStress

Figure 7.3: Example video frame generated using automated visualization methods,
demonstrating the ability to mark and label quantities of interest such as depth of pen-
etration (DoP). (a) uses erosion algorithm RemoveMass while (b) uses erosion algorithm
ZeroStress . Each is displayed at 56�s, with the left half corresponding to plastic volumetric
strain (center legend), and the right half corresponding to pressure (bottom legend), having
the jet particles colors according to cylinder number (top legend).

.
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Figure 7.4: Example depth of penetration plots generated using automated visualization
methods. A linear fit to steady state penetration, like that of Orphal and Anderson [71],
is shown by the dashed red line and indicated in the legend. These plots demonstrate the
combined effects of varying the penetrators density and length. In each case, the penetrator
and target properties where otherwise the same.

deposition through time (Fig. 5.4); animations of particle/cell velocity, acceleration, and

position through time including the same content for other particles within the same sphere

of influence (Fig. 7.9), each of which has proved useful as a verification tool. The labels

appearing in some of these plots were generated as part of the python script, not added in

a photo editor after the fact. The source code used to achieve each of these different plots

is available in the Appendix.
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Figure 7.5: Example depth of penetration plots generated using automated visualization
methods, demonstrating numerical differentiation by means of a Lagrange interpolating
polynomial. In both cases, the steady-state penetration velocity of Fig. 7.4 is indicated
by the dashed red line. Different information and plot formats can easily be specified by
different argumentation or by setting default flags.
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(a) RemoveMass

(b) ZeroStress

Figure 7.6: Example penetrator total kinetic energy plots generated using automated
visualization methods. (a) corresponds to Fig. 7.3a, while (b) corresponds to Fig. 7.3b
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(a)

(b)

Figure 7.7: Example penetrator segment total kinetic energy plots generated using
automated visualization methods. (a) corresponds to Fig. 7.3a, while (b) corresponds
to Fig. 7.3b. Each is colored according to intial velocity as indicated in the legend.
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(a)

(b)

Figure 7.8: Example penetration histories of individual penetrator particles. (a) corre-
sponds to Fig. 7.3a, while (b) corresponds to Fig. 7.3b. Each is colored according to intial
velocity as indicated in the legend of Fig. 7.7, demonstrating the different behavior of both
low and high speed jet particles, as they contribute to total penetration.
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Figure 7.9: Example frame from an animated history of particle velocity, acceleration,
and position. Black circles indiate the cell nodes that the particle represented by a magenta
star interacts with. Other particles with the potential to influence these same grid nodes
are drawn as small black dots. The large blue and red arrows, respectively, indicate the
contribution of a node to the velocity and acceleration of the particle of interest. The black
vectors represent the velocity of a particle, while the magenta and green vectors indicate
the particle’s velocity and acceleration mapped from the background grid. This animation
demonstrated that, because particle position is updated by the cell velocity (magenta) while
particle velocity (black) is updated by cell acceleration (green), there can be an effective
decoupling of these quantities. The symptom is markedly different velocities reported by
the code (black) and actual velocities (magenta). Vectors are not drawn to scale.



CHAPTER 8

SUMMARY AND FUTURE WORK

This research has provided a solid foundation for the application of V&V principles in

the continued development of the material model Arenisca, as well as the MPM component

of the Uintah computational framework. This foundation is built on tools that provide

non-disruptive – often time-saving – verification testing as well as information-rich visual-

ization of verification tests and larger validating simulations. Beyond contribution in the

form of V&V tools, a strong dependence of simulation results on material parametrization

and model options has been demonstrated. This is particularly evidenced by the discus-

sion surrounding erosion algorithm selection. This calls in to question the use of larger

simulations in validating the material model without first gaining credibility through the

use of smaller verification tests, and further should serve as a warning to others concerning

the use of features that have not been fully validated or documented. A large number of

software bugs and algorithmic shortcomings were exposed and solved as a result of V&V,

but many of these problems remain unsolved and thus represent avenues for future work

with the potential for broad impact. These avenues, summarized below, relate both to the

continued development of Arenisca, as well as to the larger host code framework Uintah.

8.1 Future Work

8.1.1 Resolution of the kinematic anomaly

This work has shown that the observed kinematic anomaly phenomenon is inherent to

the implementation of kinematics within the host code Uintah. The cause and resolution

of this issue should be first and foremost prior to approaching the other suggested items on

this list, for the reason that without understanding the cause of such unusual and clearly

nonphysical behavior, the accuracy of all unvalidated results have to be called into question.

It is suspected that this issue is a problem associated with accumulative error, similar in

nature to that produced when overdriving the integrator algorithms. While not covered

in detail herein this suspicion is the result of probing simulations using the water dam
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problem of Mast et al. [75], which showed that the kinematic anomaly could be brought

about earlier and more dramatically, or prevented altogether, by forcing the timestep to be

larger or smaller than the stable CFL timestep.

8.1.2 Implementation of More Effective Anti-Locking
Methods

It was shown that shear locking is prevalent within the host code Uintah, but without a

better understanding of its cause or a validated resolution of this phenomena it cannot

be determined how much this may be adversely affecting the predictive capabilities of

simulations using Arenisca. Further, the development of a resolution different than that of

Mast et al. [75] or a better understanding of the underlying mechanics of this phenomena

has the potential for broad impact within the MPM and numerical methods communities.

8.1.3 Accurate Computation of the Strain Rate

Some points in simulations of hypervelocity impact are exhibiting very high shear and

hence large rotation of the principal directions of reference stretch, possibly resulting in large

errors in the constitutive model’s approximation of Hencky strain rate by the symmetric part

of the velocity gradient. Accordingly, one avenue for improvement might be to accurately

compute the Hencky strain. To validate such an improvement, controlled experimental data

at large shear would be advisable.

8.1.4 Splitting/Deletion/Freezing of Damaged/Failed
Particles

If the previous method is deemed to cost to much computationally or be ineffective at

preventing massively sheared and stretched particles it is suggested that alternative means

of preventing these particles states from occurring be sought out as is not entirely clear

what affect such deformations might have the underlying kinematics algorithms. It was

shown that use of the erosion option ZeroStress , which acts to freeze the deformation of

damaged particles produced more robust, albeit unvalidated results, demonstrating that

particle domain freezing, and the modification of a particles state in other ways may be

an effective solution. Alternatively, particle deletion has been explored, though this has

the unintended consequence of failing to conserve mass, and depending on implementation,

momentum. Yet another alternative is particle splitting, which has shown some promise in

the SPH community. This method though, is not without its drawbacks. As a result of the

way the stable timestep is computed within Uintah, the splitting of a particle results in a
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decrease of the stable time step. As small timesteps are already an issue this is a troubling

side effect.

In this same category, it is also noted that the ability of the convected particle domain

interpolation (CPDI) method to accommodate fractional particles [24] makes this method

a good candidate to use fractional particles (i.e., particles spanning over multiple cells)

in regions like the outer boundaries, which are of low interest and subjected to small

deformations. Doing this could significantly reduce the computational cost of these regions

without a loss in the accuracy of simulation results.

8.1.5 Continued Validation Through Comparison Against
Analytical Theory and Experimental Observations

using Simplified Tests

It has been shown that simulations of hypervelocity penetration produce a linear rela-

tionship between penetration velocity and penetrator velocity as pointed out by Orphal An-

derson [71]. Further validation could be produced through use of the Eichelberger/Alekseevskii-

Tate governing equations and this relationship by first establishing the values of a and b used

to compute R−Y . This equation for R−Y could then be used to produce a situation where

ρt(V − U)2 = 2(R − Y ), for which the penetration should reduce to that of hydrodynamic

Bernoulli theory.

8.1.6 Development of a plastic strain and Damage/Permeability
Correlation

In its present form, the Arenisca model supports softening only in the limited form that

allows the cap to retract, representing an increase in porosity. However, softening ought to

also degrade the shear strength of the material by collapsing the limit surface, and this effect

is not yet supported in Arenisca. Basic formulations of softening have proved to significantly

improve predictions of the more complicated Kayenta model, but incorporation of softening

generally also requires explicitly including Aleatory uncertainty and its associated scale

effects. Moreover, the tendency of softening to induce strongly mesh dependent predictions

remains as an active area of research in the Literature.

8.1.7 Nonlinear Non-Drucker-Prager Limit Surface

The constitutive model currently predicts an ever-increasing shear strength with con-

finement pressures. However, at the extremely high pressures expected in the vicinity of

a penetrator, it is reasonable to assume the the shear strength should eventually become

pressure-independent. This behavior might be accommodated by revising the current linear
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Drucker-Prager limit surface to become a nonlinear Drucker-Prager surface (c.f. [35]) or

such a response might even be achieved by allowing the CR ratio of the cap to evolve

appropriately.

At low pressures, on the other hand, pressure-sensitivity of strength not only tends

to be pronounced (e.g., from frictional effects at sliding microscale flaws), but the limit

surface should also include third-invariant dependence, generally giving the cross-section a

triangular (non-Drucker-Prager) shape at low pressures.

8.1.8 Texture, Both Intrinsic and Induced

Natural geological formations are layered and thus tend to be at least transversely

isotropic, which is not included in the Arenisca model. Some support for rock jointing

is included in the more sophisticated Kayenta model, but even that model has no means

of predicting the texturing that results from deformation itself. Although ample evidence

exists to show that rock is textured, very little progress has been made to model it. In

addition to difficulties in constitutive model development, many host codes inadvertently

include assumptions of isotropy. These codes, for example, often use a Courant timestep

condition based on a single wave velocity that is the same in all directions, which does not

apply to textured media. Transmitting boundary conditions likewise rarely work correctly

for anisotropic media, since these also are typically written only for linear-elastic media.

8.1.9 Development of Path Dependent Plasticity Verification
Tests

As simulated phenomenon become increasingly complex, the existence of models against

which to validate results will become increasingly scarce. For this reason, the existence of

well-formulated model-specific verification problems becomes more important as part of the

V&V process. The method of manufactured solutions [27] appears to be a good candidate

for developing nontrivial path-dependent verification tests.

8.2 Summary

This research has addressed the incorporation of basic V&V methods into the continued

development of the Arenisca plasticity model. As part of this effort, tools that are also

generally applicable to other solid mechanics problems have been made available to users of

the research code Uintah and visualization tool VisIt. Further, a large number of avenues

for future work have been identified, both within the host code Uintah and material model

Arenisca. Many of which may represent fundamental problems, which will need to be
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addressed, prior to the wellbore completions process being simulated within this framework

with high confidence. The deliverables of this research are:

• Literature review This focused review will help others attempting to simulate the

wellbore completions process as it highlights the strengths and weaknesses of current

analytical formulations, which might serve as verification or validation. This will be

particularly valuable to researchers continuing the development of Arenisca whom will

need a way to validate this model in the future.

• Automation of existing V&V testing A testing suite was devised, which meets the

needs of model developers. This suite makes verification fast and simple, providing

quick and painless confirmation that features have been correctly implemented, or

in the event of an error, an information rich way to visually debug a problem. The

framework is easy to modify and has already been extended to use outside this project

by other developers.

• Improvement and extension of single element testing abilities The ability to

faithfully repeat a single particles deformation history in the form a single element

test was added to the list of Uintah’s features. This is, to the this author’s knowledge,

a first for a code of this type and/or on this scale. So that users might better take

advantage of this feature a number of tools were developed, which provide users with

a way to modify and compare these particle histories.

• Improvement of postprocessing methods Data visualization methods were signif-

icantly improved to provide high fidelity representations of actual particle deformation

throughout a simulation. This is particularly important as these deformations serve as

input to the constitutive model at the most fundamental level making an understand-

ing of their development crucial to an understanding of a models response. Other

visualization tools were also developed, which will serve researchers as they continue

to predictively model hypervelocity impact and penetration phenomena with Uintah

and its associated material models.

• Execution of a large number of simulations meant to serve as validation A

large number of simulations were executed and their results compared quantitatively

against analytical theory as well as qualitatively against expected trends. These

comparisons indicate both that significant progress has been made in the development

of Arensica as well as that certain issues remain unresolved.

• Investigation of unexpected results The simulations above highlighted a number

of fundamental problems with the Uintah host code and Arenisca. These problems
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were explored at length and a number of possible causes ruled out. Resolution of these

problems has the potential to greatly impact all users of the Uintah MPM framework

and even provide fundamental insight to the greater MPM community at large.



APPENDIX

SIMULATION INPUTS AND SOURCE CODE

Simulation input decks (a term originating from when punch cards where still used in

computer science) used with Uintah to obtain the results herein as well as the various scripts

written to postprocess the results are available on the ‘csm-users’ subversion repository.

Speak with Dr. Brannon or her lab manager to obtain access to this resource.

A.1 Simulation Inputs

Input decks can be found at the path ‘.../csm-users/Dave/thesis/inputs/’. The text file

at the same path named ’readme.txt’ gives a brief explanation of each simulation. Where

available, results (such as a the jet history ‘jetHistory.dat’) for use with the penetration

postprocessor, can be found within the sub folder ‘results’ for each simulation.

A.2 Source Code

The automated visualization script (and associated files“) for use with the visualization

tool VisIt can be found at the path ‘.../csm-users/Dave/thesis/code/autoVis/’ with a read-

me file documenting methods and use found at the same path by the name ’readme.txt’.

Penetration postprocessing scripts (past and present including some helpful misc utili-

ties) can be found at the path ‘.../csm-users/Dave/thesis/code/postProc/’ with a read-me

file documenting methods and use for each found at the same path by the name ’readme.txt’.
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