
BOUNDS FOR NEAREST NEIGHBOR ALGORITHMS AND

EMBEDDINGS

by

Amirali Abdullah

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276267012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Amirali Abdullah 2016

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Amirali Abdullah

has been approved by the following supervisory committee members:

Suresh Venkatasubramanian , Chair 25th August, 2015

Date Approved

Alexandr Andoni , Member 4th September, 2015

Date Approved

Feifei Li , Member 31st August, 2015

Date Approved

Jeffrey Phillips , Member 28th August, 2015

Date Approved

Robert Michael Kirby II , Member 25th August, 2015

Date Approved

and by Robert Michael Kirby II , Chair of

the Department of School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

In the last two decades, an increasingly large amount of data has become available.

Massive collections of videos, astronomical observations, social networking posts, network

routing information, mobile location history and so forth are examples of real world data

requiring processing for applications ranging from classification to predictions. Compu-

tational resources grow at a far more constrained rate, and hence the need for efficient

algorithms that scale well.

Over the past twenty high quality theoretical algorithms have been developed for two

central problems: nearest neighbor search and dimensionality reduction over Euclidean

distances in worst case distributions. These two tasks are interesting in their own right.

Nearest neighbor corresponds to a database query lookup, while dimensionality reduction is

a form of compression on massive data. Moreover, these are also subroutines in algorithms

ranging from clustering to classification.

However, many highly relevant settings and distance measures have not received similar

attention to that of worst case point sets in Euclidean space. The Bregman divergences

include the information theoretic distances, such as entropy, of most relevance in many

machine learning applications and yet prior to this dissertation lacked efficient dimen-

sionality reductions, nearest neighbor algorithms, or even lower bounds on what could be

possible. Furthermore, even in the Euclidean setting, theoretical algorithms do not leverage

that almost all real world datasets have significant low-dimensional substructure.

In this dissertation, we explore different models and techniques for similarity search

and dimensionality reduction. What upper bounds can be obtained for nearest neighbors for

Bregman divergences? What upper bounds can be achieved for dimensionality reduction

for information theoretic measures? Are these problems indeed intrinsically of harder

computational complexity than in the Euclidean setting? Can we improve the state of the

art nearest neighbor algorithms for real world datasets in Euclidean space? These are the

questions we investigate in this dissertation, and that we shed some new insight on.

In the first part of our dissertation, we focus on Bregman divergences. We exhibit

nearest neighbor algorithms, contingent on a distributional constraint µ on the datasets. We

next show lower bounds suggesting that µ is in some sense inherent to the problem com-

plexity. After this we explore dimensionality reduction techniques for the Jensen-Shannon

and Hellinger distances, two popular information theoretic measures.

In the second part, we show that even for the more well-studied Euclidean case, worst

case nearest neighbor algorithms can be improved upon sharply for real world datasets with

spectral structure.

iv

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1
1.1 Problem statement and prior work . 2

1.1.1 Recursive subdivision of space . 3
1.1.2 Embedding, sketching and dimensionality reduction 3
1.1.3 Other notes and results . 5

1.2 Bregman divergences . 5
1.3 Thesis statement . 7
1.4 Organization of this dissertation . 8

2. UPPER BOUND FOR BREGMAN ANN
IN LOW DIMENSIONS . 9
2.1 Definitions and overview of techniques . 9

2.1.1 Reverse triangle inequality . 10
2.1.2 µ-defectiveness . 10
2.1.3 A generic approximate near-neighbor algorithm 11
2.1.4 Definitions . 11
2.1.5 Two technical notes . 12
2.1.6 Some notes on terminology and computation model 13

2.2 Properties of Bregman divergences . 13
2.3 Packing and covering bounds . 17

2.3.1 Covering bounds in one dimension . 17
2.3.2 Properties of cubes and their coverings . 18
2.3.3 Covering with balls in higher dimensions . 20

2.4 Computing a rough approximation . 23
2.4.1 Algorithm and quality analysis . 29

2.5 Computing a 1+ ε approximation . 32
2.5.1 Preprocessing . 32
2.5.2 Query handling . 32

2.6 Logarithmic bounds, with further assumptions . 36
2.7 The general case: Asymmetric divergences . 39

2.7.1 Asymmetric ring-trees . 40
2.7.2 Asymmetric quadtree decomposition . 45

2.7.3 Logarithmic bounds for asymmetric Bregman divergences 47
2.8 Numerical arguments for bisection . 50

3. A DIRECTED ISOPERIMETRIC INEQUALITY WITH APPLICATION
TO BREGMAN NEAR NEIGHBOR LOWER BOUNDS 53
3.1 Main results . 54

3.1.1 Approximate nearest neighbor (ANN) and partial match (Partial Match) 54
3.2 Overview of our approach . 55
3.3 Related work . 56
3.4 The Bregman cube and redefining µ . 57

3.4.1 Quantifying asymmetry . 58
3.4.2 The Bregman cube . 58

3.5 Preliminaries of Fourier analysis . 59
3.5.1 Basis and Fourier coefficients . 59
3.5.2 Noise operator and hypercontractivity . 60

3.6 Isoperimetry in the directed hypercube . 61
3.6.1 The asymmetric noise operator . 61
3.6.2 Hypercontractivity of Rp,0 . 62

3.7 Hard input distributions for the Bregman cube . 66
3.7.1 Generating our input and query on the cube . 66

3.8 Shattering a query . 68
3.9 Alternate construction . 72
3.10 From hypercontractivity to a lower bound . 73
3.11 Lower bounds via classical problems on the

Hamming cube . 78
3.11.1 A lower bound via `1 . 78
3.11.2 A lower bound via Partial Match . 79
3.11.3 Comparisons and comments on the behavior of the lower

bounds with µ . 80

4. EMBEDDINGS AND DIMENSIONALITY REDUCTION FOR
INFORMATION THEORETIC DISTANCES . 82
4.1 Our contributions . 83
4.2 Related work . 84
4.3 Background . 85
4.4 Embedding JS into `22 . 86

4.4.1 Deterministic embedding . 87
4.4.2 Randomized embedding . 90

4.5 Embedding χ2 into `22 . 93
4.5.1 Deterministic embedding . 93
4.5.2 Randomized embedding . 96

4.6 Dimensionality reduction . 98
4.7 Experiments . 100

5. SPECTRAL ALGORITHMS FOR NEAREST NEIGHBOR SEARCH 103
5.1 Background and motivation . 103

5.1.1 Algorithmic results . 105
5.1.2 Related work . 106

vi

5.1.3 Techniques and ideas . 108
5.2 The model . 110

5.2.1 Preliminary observations . 110
5.3 Short review of spectral properties of matrices . 112

5.3.1 Spectral norm and principal component analysis 112
5.3.2 Spectral norms of random matrices . 113

5.4 Warmup: Iterative PCA under small adversarial noise 114
5.5 Stability of a top PCA subspace . 116

5.5.1 Wedin’s sinθ Theorem . 117
5.5.2 Instantiating the sinθ theorem . 118

5.6 Iterative PCA algorithm . 118
5.6.1 Algorithm description . 119
5.6.2 Analysis . 121
5.6.3 Analysis: Characterization of the PCA space of the sampled set 122
5.6.4 Analysis: Noise inside the PCA space . 125
5.6.5 Analysis: Projection of the data into the PCA space 126
5.6.6 Analysis: Number of iterations . 127
5.6.7 Analysis: Correctness . 128

5.7 PCA tree . 134
5.7.1 Algorithm description . 134
5.7.2 Analysis: Tree depth . 135
5.7.3 Analysis: Correctness . 139
5.7.4 Analysis: Performance . 141

6. CONCLUSION . 142
6.1 Open questions and challenges . 142

APPENDIX: UPPER BOUND FOR BREGMAN ANN IN LOW DIMENSIONS 144

REFERENCES . 152

DISSEMINATION OF THIS WORK . 163

vii

LIST OF FIGURES

1.1 Illustration of approximate nearest neighbor . 3

1.2 Quadtree parameters . 4

2.1 A cube of directed side length s subdivided into cubes of side length x≤ s
2 . 20

2.2 x is within ds distance under Dφ of every other point of the cube. 22

2.3 The points are split into Pin and Pout with some point duplication 28

2.4 q is outside (1+ t
2)rin so we search wout, but nnq ∈ win 43

3.1 Asymmetric distances. 59

4.1 The error due to the number of samples, the JL-lemma, and the simplex
embedding. 102

5.1 Illustration of Wedin’s sinθ theorem . 117

5.2 Take sl as the last singular value included in Ũ j. 124

5.3 Uin is projection of Ũ into U , and Uout is the orthogonal complement of Uin
in U . 129

LIST OF TABLES

1.1 Results for Euclidean casea . 6

4.1 Relative error of the JS divergence after embedding into 300 dimensions . . . 101

ACKNOWLEDGMENTS

After five years, it is my deepest pleasure to thank all those who helped this dream

become a reality.

A beginning Ph.D. student meeting his advisor may feel as a journeyman mage would

in Merlin’s presence, pondering how to match the legend summoning celestial dragons

down with his spells when all he can conjure up himself are weak puffs of smoke. Suresh

Venkatasubramanian was to show me that research is not magic, but rather science but-

tressed by healthy doses of enthusiasm and caffeine. My words cannot adequately convey

the value of his astute technical advice, his belief in my capabilities, and his seemingly

supernatural grasp of just when he should be patient and when to push me harder in my

work. But most of all, my deepest gratitude goes to Suresh for reminding me that first

and foremost, research can be fun and inspirational, and that few pleasures compare to an

afternoon of coffee, whiteboard scribbling and brainstorming.

I have been priveleged to work with many senior co-authors, all of whom have of-

fered invaluable lessons, both in terms of technical insights as well as the oppportunity

to observe exemplary work practices. Alexandr Andoni, Robert Krauthgamer, Ravindran

Kannan, Jeff Phillips, Andrew Mcgregor, Ravi Kumar and Sergei Vassilvitskii were all

wonderful collaborators that any graduate student would love to work with. I especially

thank Alexandr Andoni for his willingness to mentor and advise me closely over many

meetings in San Fransisco coffee shops and the offices of MSR Silicon Valley, and to give

invaluable advice on best practices for a young researcher. Nabil Mustafa I am indebted

to for introducing me to theoretical computer science, and the joys of mulling over a

combinatorial or mathematical puzzle in the wee hours of morning.

Beyond my interaction with senior researchers, surviving through my Ph.D. was only

possible due to a great deal of support from enthusiastic lab mates both in research and

life. In this regard, I particularly want to mention Parasaran Raman for giving me a couch

to crash on my first few weeks in the States, Samira Daruki for multiple collaborations

and some lovely shared life experiences in Brazil and Berkeley, John Moeller for ever wry

company and extensive writing help, Avishek Saha for providing me a senior’s words of

wisdom, and Mina Ghashami for wielding an inspirational work ethic.

On the personal front, this space cannot suffice to credit all who have been by my side

in this process. Abdul Basit has been a constant companion and support since we both

entered algorithm research six years ago back in Lahore, Pakistan. I have long lost count

of the stories we have exchanged over graduate school frustrations, and idle philsophical

musings. Ali Yost has always provided a shoulder to lean on, a penpal to correspond with,

a home to celebrate Thanksgiving and Christmas in and a fellow bibliophile with whom to

exchange books and ideas. As my comrades in being long standing Ph.D. students, Raheel

Samuel and Abhijit Mondal always grounded my perspective that this Ph.D. journey will

eventually reach its conclusion. Before I even started my research, Ammar Zafar believed

in and encouraged me, as did my captain “O-cap” Bilal Iqbal and my friend Moonis Hashmi

helped me make the transition between continents. To mention just a few of the multitude

of friends who supported and encouraged me - Tehmina Pirzada, Sehrish Javaid, Mudassir

Shabbir, Ankit Agarwal, Rahma Jawad, Hitesh Tolani and Darron Brown.

And finally the foundation and core of my life has always been my family. I wish to

thank my dear Magda for placing my dream above all else in her life and little Ruckus

for bringing mirth, kisses and a baby’s joyous bawl to my home. I end on a special note

of appreciation to my mother Gulshan for instilling in me a love of learning, along with

my favorite niece Natasha, my aunt Almas, my sisters Saira and Fatima and my adoptive

parents Yasmin and Iqbal for always being here for me.

xi

CHAPTER 1

INTRODUCTION

The nearest neighbor problem is one of the most extensively studied problems in data

analysis. The past 20 years has seen tremendous research into the problem of computing

near neighbors efficiently as well as approximately in different kinds of metric spaces.

An important application of the nearest-neighbor problem is in querying content databases

(images, text, and audio databases, for example). In these applications, the notion of simi-

larity is based on a distance metric that arises from information-theoretic or other consid-

erations. Popular examples include the Kullback-Leibler divergence (53), the Itakura-Saito

distance (71) and the Mahalanobis distance (104). These distance measures are examples

of a general class of divergences called the Bregman divergences (37), and this class

has received much attention in the realm of machine learning, computer vision and other

application domains.

Let us give a potential use case of nearest neighbor search. Suppose one had a pretty

Siamese cat Paddy, that was beloved to all in the family, with soft paws and curved whiskers.

After a happy life, the cat passes away peacefully at night, and the children wish to buy

a similar looking feline. So of course, the parent searches for matches to pictures of a

young Paddy from a database maintained by local pet shops – essentially a nearest neighbor

search in the space of kitten images. More immediately to machine learning applications,

consider the voting k nearest neighbor (k-NN) classification rule broadly used in machine

learning (60). Given a large labelled dataset (say of images) and an appropriate distance

measure, one may assign a label to any unknown query point q corresponding to the most

frequent in the k-NN to q. Cover and Hart (52) show that as the number of neighbors k

and point set size n approach infinity, in a manner such that k/n→ 0, this rule converges to

the optimal Bayes error rate. The only expensive algorithmic primitive required here is the

quick computation of the k-NN to any incoming data point.

As may have been implicit in the examples, a large component of such problems is

2

the representation of the data (typically as points in Rd) such that the distance measure

of choice (say Euclidean distance) captures well the real world notion of similarity we

care about. We do not consider the problems of learning or constructing such features

over the course of this dissertation, but one major motivation for our work is that not all

cases can be shoehorned into the Euclidean setting. One natural example is to consider a

distance measure between probability distributions, say perhaps representing frequencies

of keywords in documents. Here the distances which are most suitable are information

theoretic measures such as the Hellinger, Jensen-Shannon or Kullback-Leibler, and it is

precisely for high quality approximations in these settings for which we develop algorithms

and embedding techniques. We continue now to define the basic problem and setting.

1.1 Problem statement and prior work
In the nearest neighbor (NN) problem, we are given a set P of n points in a d-dimensional

space and the goal is building a data structure that reports a nearest neighbor to a query point

q. Here clearly the space storage is at least Ω(nd) and one trivial approach is to simply

perform a linear scan in O(nd) time to return the nearest neighbor to q. In the Euclidean

setting, another approach is to partition space so that each cell corresonds to the “nearest

neighbor” region for a point. Once this partitioning is done, q may be assigned to the correct

cell, for example by means of a binary tree. The space requirement of such a partitioning

unfortunately may be very high, on the order of O(nd
d
2e). (See the paper by Clarkson on

nearest neighbor using Voronoi diagrams (46), or the survey by Aurenhammer (24).)

In most applications, an approximate nearest neighbor (ANN) suffices. This is a point

within a (1+ ε) multiplicative factor of the distance to the exact nearest neighbor, where

ε is a parameter controlling the approximation quality. See for example Figure 1.1. The

structure of the ANN problem varies greatly over the choice of distance measure. Be-

sides the ubiquitous Euclidean distance (`22), other measures of interest include the `p

distances (58, 115), the Frechet distance (83), variants of the edit distance (15) and metrics

with certain restrictions (47, 79, 95). A broad range of techniques have been devised for

ANN in various spaces. We do not give a comprehensive survey here, but we will touch

upon three powerful tools that recur in the literature and which we draw upon in our work.

3

r∗

(1 + ε)r∗

Figure 1.1. Illustration of approximate nearest neighbor

1.1.1 Recursive subdivision of space

In Euclidean spaces of fixed dimension, Arya et al. (23) gave the first algorithms for

(1+ ε)-ANN, with dependence exponential in dimension, logarithmic in the number of

points n, ε specified at query time and with linear space. Their structure is a hierarchical

subdivision of the domain by a balanced box-decomposition (BBD) tree, such that given a

query point, the algorithm performs a restricted BFS for an approximate nearest neighbor.

Key technical aspects of this work and subsequent research involves bounding the depth

of the tree to be logarithmic in n, cutting off the search without necessarily expanding to

the leaves, and limiting the number of cells explored at each level. See Figure 1.2 for an

illustration of how the parameters control the algorithmic complexity.

Har-Peled and Mendel (79) showed this idea could be extended to low-dimensional

metrics, whereas a number of works have presented hierachical trees that depend on some

notion of low-dimensionality in the ambient space (32, 49, 90, 94, 95, 152). We refer to

the book by Har-Peled (139) for an excellent exposition of low-dimensional algorithms

for ANN in the Euclidean case. These ideas find utilization in our dissertation both for

algorithms for low-dimensional ANN for the Bregman divergences, as well as for devising

a new notion of low “spectral” dimension for ANN in the `2 setting.

1.1.2 Embedding, sketching and dimensionality reduction

A sketch for a set of points with respect to a property P is a function that maps

the data to a small summary from which property P can be evaluated, albeit with some

approximation error. Linear sketches are especially useful for estimating a derived property

of a data stream in a fast and compact way. Sketches are by now well studied in Euclidean

4

Depth < O(log n)

Expansion < 1/εd

Figure 1.2. Quadtree parameters

and Hamming spaces (11, 84), as well as in graphs (7, 44) in which domain all streaming

turnstile algorithms are known to be equivalent to a sketch (102).

Complementing sketching, embedding techniques are one to one mappings that trans-

form a collection of points lying in one space X to another (presumably easier) space Y ,

while approximately preserving distances between points. In particular, a low distortion

(D) embedding f : X→Y satisfies that for appropriate choice of scaling constant t we have

that

∀x,y ∈ X ,dY (f (x1), f (x2))≤ tdX (x1,x2)≤ Ddy(f (x1), f (x2)).

Among well known results in a vast literature are embeddings of arbitrary metrics into

tree metrics (29, 65), and average distortion embeddings (100, 133) as well as nearest

neighbor preserving embeddings (85). Andoni, Krauthgamer and Razenshteyn (18) show

that sketching and embedding into `1−ε are essentially equivalent for normed spaces.

Dimensionality reduction is a special kind of embedding which preserves the structure

of the space, while reducing its dimension, i.e., mapping from a space Xd to X ′d for d′ � d.

These embedding techniques can be used in an almost “plug-and-play” fashion to speed up

many algorithms in data analysis: for example for near neighbor search (and classification),

clustering, and closest pair calculations. In particular, the Johnson-Lindenstrauss lemma

(88) states that any set of n points in Euclidean space can be embedded into O(logn)

dimensions with constant distortion, and has found wide application in applications from

clustering (36, 48), to classification (67) and nearest neighbor (9, 14) search. The Johnson-

5

Lindenstrauss lemma is based on random projection, and Chapter 5 studies whether for

certain point sets and models in `2, a “data-aware” projection may provide superior bounds.

1.1.3 Other notes and results

For spaces that are truly high-dimensional (i.e, the point set does not lie on a low-

dimensional manifold or other corresponding notion of small intrinsic dimension), there is

a whole line of work based on Locality Sensitive Hashing, both in the data dependent and

independent sense. Indyk and Motwani first give a hashing scheme for high-dimensional

data in the Hamming cube (84) based on a reduction to the problem of point location

in equal balls, and selecting nonzero bits of binary vectors. This was improved in later

work for `22 by Indyk and Andoni (14) to an optimal hashing scheme for data oblivious

methods. However by allowing the hash functions to depend on the dataset, Andoni,

Indyk, Nguyen and Razenshteyn (16) give a further improved algorithm, with Andoni

and Razenshteyn (19) obtaining near optimal results. With great oversimplification, their

scheme may be described as recursively clustering a point set and then noting that improved

(oblivious) hashing schemes exist on the low-diameter families of points so induced. We

provide here a summary of known results, Table 1.1, for `2 to compare against as the

aim for our later bounds in this dissertation both for the Bregman divergences, and the

Euclidean case where the data has low intrinsic dimension.

1.2 Bregman divergences
Bregman divergences are important distance measures that are used extensively in data-

driven applications such as computer vision, text mining, and speech processing, and are a

key focus of interest in machine learning. They were first introduced by Bregman (37) and

are the unique divergences that satisfy certain axiom systems for distance measures (55),

as well as being key players in the theory of information geometry (12).

For example, as discussed in (81), the KL-divergence (also known as relative entropy)

between probability distributions, has found a multitude of applications such as determin-

ing how confusable two Hidden Markov Models are (141), finding a best match between

histogram image models (70) or assigning important classes of geospatial distributions on

Instagram images (147). The Jensen-Shannon divergence, which is linked to the concept of

information gain, has found applications in coding theory (114), theoretical physics (108),

or for computing distances between graphs (26). More generally, the important learning

6

Table 1.1. Results for Euclidean casea

Approximation Space Query time
Exact O(nd) O(nd)

Exact O(nd
d
2e) O(logn)

1+ ε O(nd) O
(

1
εO(d) logn

)

c O(dn+n1+ρ) O(dnρ)
a ρ = 1/(2c2−1)

problems of boosting and logistic regression can be cast as an optimization of Bregman

distances (51) and unify different mixture-model density estimation problems (27).

We now formally define the Bregman divergences. Let φ : M ⊂ Rd → R be a strictly

convex function that is differentiable in the relative interior of M. Strict convexity implies

that the second derivative is never 0 and will be a convenient technical assumption. The

Bregman divergence Dφ is defined as

Dφ (x,y) = φ(x)−φ(y)−〈∇φ(y),x− y〉. (1.1)

More geometrically, the Bregman divergence Dφ (x,y) can be viewed as the difference

of f (x) from that estimated by taking the linearization of f at y. In general, Dφ is asym-

metric. We note too that symmetrized Bregman divergence can be defined by averaging

Dsφ (x,y) =
1
2
(Dφ (x,y)+Dφ (y,x)) =

1
2
〈x− y,∇φ(x)−∇φ(y)〉. (1.2)

An important subclass of Bregman divergences are the decomposable Bregman diver-

gences. Suppose φ has domain M = ∏
d
i=1 Mi and can be written as φ(x) = ∑

d
i=1 φi(xi),

where φi : Mi⊂R→R is also strictly convex and differentiable in relint(Si). Then Dφ (x,y)=

∑
d
i=1 Dφi

(xi,yi) is a decomposable Bregman divergence. The majority of commonly used

Bregman divergences are decomposable; (40, Chapter 3) illustrates some of the commonly

used ones, including the Euclidean distance, the KL-divergence, and the Itakura-Saito

distance.

A first study of the algorithmic geometry of Bregman divergences was performed by

Boissonnat, Nielsen, and Nock (34). They observed since Bregman divergences retain

the same combinatorial structures as `2, many exact algorithms from the Euclidean do-

main carry over naturally with the same bounds. For example, they showed that exact

7

near neighbors can be computed in O(nb
d
2c) via a Voronoi diagram. Nielsen and Nock

also observed that the smallest enclosing disk can be computed exactly in polynomial

time (122). These parallels do not carry over to the approximate setting with the lack of a

triangle inequality and symmetry rendering most tools for algorithm design useless. The

algorithms that do exist attempt a work around via a structure constant µ . This constant

is at least 1, and grows larger as the space becomes increasingly nonmetric. There are

many algorithms for clustering whose resources are parametrized by µ: Mänthey and

Roglin (106) compute approximate k-means with an extra µ6 factor under a certain per-

turbation model. Ackermann and Blömer (3) exhibit a O
(

µ2 logk
)

-approximate solution

to k-means clustering via a k-means++-like procedure. The same authors give a O(µ)

approximate k-median clustering for a certain class of well behaved input instances (2).

McGregor and Chaudhuri (43) avoid dependence on µ in an approximate algorithm for

k-means clustering under the KL-divergence, but at the cost of a log(n) factor in approx-

imation. They also show k-means is NP hard to approximate within a constant factor if

the centers are restricted to be from the point set and implicitly leverage the nonmetric

nature of the space in their bound. There are numerous heuristic algorithms for computing

with Bregman divergences approximately, including algorithms for the minimum enclosing

ball (117) and near neighbor search (40, 159), but prior to the work in this dissertation, there

has not been extensive study of what algorithmic guarantees can be obtained.

1.3 Thesis statement
This dissertation explores nearest neighbor algorithms and embeddings over certain

more specialized settings. We will discuss upper bounds for approximate nearest neighbor

search for general Bregman divergences. We will then present lower bounds that conversely

show ANN search is hard in high dimensions due to the asymmetry of these spaces.

We will consider next a subclass of metric information distances which do not suffer

from the “curse of asymmetry,” including the popular Jensen-Shannon divergence, and

demonstrate that they admit efficient dimensionality reduction on the simplex and succinct

sketches. Our final result given here is devising spectral “data-aware” algorithms over

high-dimensional data that contains a low-dimensional substructure, and showing that such

an adaptive approach can provide exponentially better guarantees than worst-case analysis.

8

1.4 Organization of this dissertation
The remainder of this dissertation has five chapters, which we summarize below.

Chapter 2 presents nearest neighbor algorithms for Bregman divergences in low-dimensions.

We propose parametrizing the degree of violation of triangle inequality, µ , and showing

that we can bound the efficacy of ring-tree and quad-tree search thereby. We also leverage

that Bregman divergences admit packings and grid-like decomposition in obtaining our

bounds.

Following on from the results of the last chapter, Chapter 3 explores whether in some

respects an algorithmic dependence on µ is essential. We show that indeed, in the high-

dimensional case, µ does control the space requirement of any algorithm that uses a small

number of queries.

In Chapter 4, we confine ourselves to a subclass of information divergences that are

metrics and admit infinite-dimensional Hilbert space embeddings. We show that as opposed

to more general Bregman divergences, these more structured spaces admit both dimension-

ality reduction from the simplex to simplex, as well as efficient sketching schemes.

In Chapter 5, we focus on ANN algorithms for data with some low dimensional spectral

substructure. This corresponds with many heuristics used in practice, as well as the ma-

jority of real-world data sets. We show that theoretical bounds obtained in this setting far

outperform hashing and randomized projection techniques used for worst-case data sets.

Finally, a short note in Chapter 6 suggests future directions.

CHAPTER 2

UPPER BOUND FOR BREGMAN ANN

IN LOW DIMENSIONS

Our first algorithm resolves a query for a d-dimensional (1+ ε)-ANN time

O

((
µ logn

ε

)O(d)
)

and O
(

n logd−1 n
)

space and holds for generic µ-defective distance

measures satisfying a Reverse Triangle Inequality (RTI). Our second algorithm is more

specific in analysis to the Bregman divergences and uses a further structural parameter, the

maximum ratio of second derivatives over each dimension of our allowed domain (c0).

This allows us to locate a (1+ ε)-ANN in O(logn) time and O(n) space, where there is a

further (c0)
d factor in the big-Oh for the query time.

2.1 Definitions and overview of techniques
At a high level (139), low-dimensional Euclidean approximate near-neighbor search

works as follows. The algorithm builds a quadtree-like data structure to search the space

efficiently at query time. Cells reduce exponentially in size, and so a careful application

of the triangle inequality and some packing bounds allows us to bound the number of cells

explored in terms of the “spread” of the point set (the ratio of the maximum to minimum

distance). Next, terms involving the spread are eliminated by finding an initial crude

approximation to the nearest neighbor. Since the resulting depth to explore is bounded

by the logarithm of the ratio of the cell sizes, any c-approximation of the nearest neighbor

results in a depth of O(log(c/ε)). A standard data structure that yields such a crude bound

is the ring-tree (94).

Unfortunately, these methods (which work also for doubling metrics (32, 50, 94))

require two key properties: the existence of the triangle inequality, as well as packing

c©2012 ACM. This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive version of record was published in SoCG 2012,
http://dx.doi.org/10.1145/2261250.2261255.

10

bounds for fitting small-radius balls into large-radius balls. Bregman divergences in general

are not symmetric and do not even satisfy a directed triangle inequality! We note in passing

that such problems do not occur for the exact nearest neighbor problem in constant dimen-

sion; this problem reduces to point location in a Voronoi diagram, and Bregman Voronoi

diagrams possess the same combinatorial structure as Euclidean Voronoi diagrams (34).

2.1.1 Reverse triangle inequality

The first observation we make is that while Bregman divergences do not satisfy a

triangle inequality, they satisfy a weak reverse triangle inequality: along a line, the sum

of lengths of two contiguous intervals is always less than the length of the union. This

immediately yields a packing bound: intuitively, we cannot pack many disjoint intervals

in a larger interval because their sum would be too large, violating the reverse triangle

inequality.

2.1.2 µ-defectiveness

The second idea is to allow for a relaxed triangle inequality. We do so by defining a

distance measure to be µ-defective w.r.t. a given domain if there exists a fixed µ ≥ 1 such

that for all triples of points x,y,z, we have that |D(x,y)−D(x,z)| ≤ µD(y,z). This notion

was employed by Farago et al. (66) for an algorithm optimizing average case complexity.

A different natural way to relax the triangle inequality would be to show there exists a

fixed µ < 1 such that for all triples (x,y,z), the inequality D(x,y)+D(y,z) ≥ µD(x,z). In

fact, this is the notion of µ-similarity used by Ackermann et al. (3) to cluster data under a

Bregman divergence. However, this version of a relaxed triangle inequality is too weak for

the nearest-neighbor problem.

In fact, the relevant relaxation of the triangle inequality that we require is slightly differ-

ent. Rearranging terms, we instead require that there exists a parameter µ ≥ 1 such that for

all triples (x,y,z), |D(x,y)−D(x,z)| ≤ µD(y,z). We call such a distance µ-defective. It is

fairly straightforward to see that a µ-defective distance measure is also 2/(µ +1)-similar,

but the converse does not hold, as the example above shows.

Without loss of generality, assume that D(x,y) ≥ D(x,z) ≥ D(y,z). Then D(x,y)−
D(x,z)≤ µD(y,z) and D(x,y)−D(y,z)≤ µD(x,z), so 2D(x,y)≤ (µ+1)(D(x,z)+D(y,z)).

Since D(x,y) is the greatest of the three distances, this inequality is the strongest and

implies the corresponding 2/(µ +1)-similarity inequalities for the other two distances.

11

Unfortunately, Bregman divergences do not satisfy µ-defectiveness for any size domain

or value of µ! One of our technical contributions is demonstrating in Section 2.2 that

surprisingly, the square root of Bregman divergences does satisfy this property with µ

depending on the boundedness of the domain and choice of divergence.

2.1.3 A generic approximate near-neighbor algorithm

After establishing that Bregman divergences satisfy the reverse triangle inequality and

µ-defectiveness (Section 2.2), we first show (Section 2.4) that any distance measure satis-

fying the reverse triangle inequality, µ-defectiveness, and some mild technical conditions

admit a ring-tree-based construction to obtain a weak near neighbor. However, applying it

to a quadtree construction creates a problem. The µ-defectiveness of a distance measure

means that if we take a unit length interval and divide it into two parts, all we can expect is

that each part has length between 1/2 and 1/(µ +1). This implies that while we may have

to go down to level dlog2 `e to guarantee that all cells have side length O(`), some cells

might have side length as little as `log2(µ+1), weakening packing bounds considerably.

We deal with this problem in two ways. For Bregman divergences, we can exploit

geometric properties of the associated convex function φ (see Section 2.1.4) to ensure that

cells at a fixed level have bounded size (Section 2.6); this is achieved by reexamining the

second derivative φ ′′. For more general abstract distances that satisfy the reverse triangle

inequality and µ-defectiveness, we instead construct a portion of the quad tree “on the fly”

for each query (Section 2.5). While this is expensive, it still yields polylog(n) bounds for the

overall query time in fixed dimensions. Both of these algorithms rely on packing/covering

bounds that we prove in Section 2.3.

An important technical point is that for exposition and simplicity, we initially work with

the symmetrized Bregman divergences (of the form Dsφ (x,y) = Dφ (x | y)+Dφ (y | x)), and

then extend these results to general Bregman divergences (Section 2.7). We note that the

results for symmetrized Bregman divergences might be interesting in their own right, as

they have also been used in applications (116, 118, 119, 120).

2.1.4 Definitions

In this chapter we study the approximate nearest neighbor problem for distance func-

tions D: Given a point set P, a query point q, and an error parameter ε , find a point nnq ∈ P

such that D(nnq,q)≤ (1+ε)minp∈P D(p,q). We start by defining general properties that

12

we will require of our distance measures. In what follows, we will assume that the distance

measure D is reflexive: D(x,y) = 0 if and only if x = y and otherwise D(x,y)> 0.

Definition 1 (Monotonicity) Let M ⊂ R, D : M×M→ R be a distance function. We say

that D is monotonic if and only if for all a < b < c we have that D(a,b) ≤ D(a,c) and

D(b,c)≤ D(a,c).

For a general distance function D : M×M → R, where M ⊂ Rd , we say that D is

monotonic if it is monotonic when restricted to any subset of M parallel to a coordinate

axis.

Definition 2 (Reverse Triangle Inequality (RTI)) Let M be a subset of R. We say that a

monotone distance measure D : M×M→R satisfies a reverse triangle inequality or RTI if

for any three elements a≤ b≤ c ∈M, D(a,b)+D(b,c)≤ D(a,c).

Definition 3 (µ-defectiveness) Let D be a symmetric monotone distance measure satisfy-

ing the reverse triangle inequality. We say that D is µ-defective with respect to domain M

if for all a,b,q ∈M,

|D(a,q)−D(b,q)|< µD(a,b). (2.1)

For an asymmetric distance measure D, we define left and right sided µ-defectiveness

respectively as

|D(q,a)−D(q,b)|< µD(a,b) (2.2)

and

|D(a,q)−D(b,q)|< µD(b,a). (2.3)

Note that by interchanging a and b and using the symmetry of the modulus sign, we

can also rewrite left and right sided µ-defectiveness respectively as |D(q,a)−D(q,b)| <
µD(b,a) and |D(a,q)−D(b,q)|< µD(a,b).

2.1.5 Two technical notes

The distance functions under consideration are typically defined over Rd . We will

assume in this chapter that the distance D is decomposable: roughly, that D((x1, . . . ,xd),

13

(y1, . . . ,yd)) can be written as g(∑i f (xi,yi)), where g and f are monotone. This captures

all the Bregman divergences that are typically used (with the exception of the Mahalanobis

distance and matrix distances), as discussed in Chapter 1.

We will also need to compute the diameter of an axis parallel box of side-length `.

Our results hold as long as the diameter of such a box is O(`dO(1)): note that this cap-

tures standard distances like those induced by norms, as well as decomposable Bregman

divergences. In what follows, we will mostly make use of the square root of a Bregman

divergence, for which the diameter of a box is `(µ +1)
√

d or `
√

d, and so without loss of

generality we will use this in our bounds.

In this chapter we will hence limit ourselves to considering decomposable distance

measures. We note that due to the primal-dual relationship of Dφ (a,b) and Dφ∗(b
∗,a∗),

for our results on the asymmetric Bregman divergence we need only consider right-sided

nearest neighbors and left-sided results follow symmetrically.

2.1.6 Some notes on terminology and computation model

We note now that whenever we refer to “bisecting” an interval [ab] under a distance

measure D satisfying an RTI, we shall precisely mean finding x s.t. D(a,x) = D(x,b).

The RTI now implies that D(a,x) = D(x,b)≤ 1
2D(a,b) and that repeated bisection quickly

reduces the length of subintervals. Computing such a bisecting point of an interval exactly,

or even placing a point at a specified distance from a given point p is not trivial. However

we argue in Section 2.8 that both tasks can be approximately done by numerical procedures

without significantly affecting our asymptotic bounds. For the remainder of the chapter we

shall take an idealized context and assume any such computations can be done to the desired

accuracy quickly.

We also stipulate that the “diameter” of any subset of our domain X ⊂M under distance

measure D shall be maxx,y∈X D(x,y). Where the choice of distance measure D may appear

ambiguous from the context, we shall explicitly refer to the D-diameter.

2.2 Properties of Bregman divergences
Section 2.1 defined key properties that we desire of a distance function D. The Bregman

divergences (or modifications thereof) satisfy the following properties, as can be shown by

direct computation.

14

Lemma 2.2.1 Any one-dimensional Bregman divergence is monotonic.

Lemma 2.2.2 Any one-dimensional Bregman divergence satisfies the reverse triangle in-

equality. Let a≤ b≤ c be three points in the domain of Dφ . Then it holds that

Dφ (a,b)+Dφ (b,c)≤ Dφ (a,c) (2.4)

and

Dφ (c,b)+Dφ (b,a)≤ Dφ (c,a). (2.5)

Proof. We prove the first case, the second follows almost identically.

Dφ (a,b)+Dφ (b,c) = φ(a)−φ(b)−φ
′(b)(a−b)+φ(b)−φ(c)−φ

′(c)(b− c)

= φ(a)−φ(c)−φ
′(b)(a−b)−φ

′(c)(b− c).

But since φ ′′(x)≥ 0 for all x ∈ R, by convexity of φ we have that φ ′(b)≤ φ ′(c). This

allows us to make the substitution.

Dφ (a,b)+Dφ (b,c) = φ(a)−φ(c)−φ
′(b)(a−b)−φ

′(c)(b− c)

≤ φ(a)−φ(c)−φ
′(c)(a−b)−φ

′(c)(b− c)

= φ(a)−φ(c)−φ
′(c)(a− c) = Dφ (a,c).

Note that this lemma can be extended similarly by induction to any series of n points

between a and c. Further, using the relationship between Dφ (a,b) and the “dual” distance

Dφ∗(b
∗,a∗), we can show that the reverse triangle inequality holds going “left” as well:

Dφ (c,b)+Dφ (b,a) ≤ Dφ (c,a). These two separate reverse triangle inequalities together

yield the result for Dsφ . We also get a similar result for
√

Dsφ by algebraic manipulations.

Lemma 2.2.3
√

Dsφ satisfies the reverse triangle inequality.

Proof. Fix a≤ x≤ b, and assume that the reverse triangle inequality does not hold:

√
Dsφ (a,x)+

√
Dsφ (x,b)>

√
Dsφ (a,b)

√
(x−a)(φ ′(x)−φ ′(a))+

√
(b− x)(φ ′(b)−φ ′(x))>

√
(b−a)(φ ′(b)−φ ′(a)).

15

Squaring both sides, we get:

(x−a)(φ ′(x)−φ
′(a))+(b− x)(φ ′(b)−φ

′(x))

+2
√

(x−a)(b− x)(φ ′(x)−φ ′(a))(φ ′(b)−φ ′(x))> (b−a)(φ ′(b)−φ
′(a))

(b− x)(φ ′(x)−φ
′(a))+(x−a)(φ ′(b)−φ

′(x))

−2
√
(x−a)(b− x)(φ ′(x)−φ ′(a))(φ ′(b)−φ ′(x))< 0

(√
(b− x)(φ ′(x)−φ ′(a))−

√
(x−a)(φ ′(b)−φ ′(x))

)2
< 0,

which is a contradiction, since the LHS is a perfect square.

While the Bregman divergences satisfy both monotonicity and the reverse triangle

inequality, they are not µ-defective with respect to any domain! An easy example of this is

`22, which is also a Bregman divergence. A surprising fact however is that
√

Dsφ and
√

Dφ

do satisfy µ-defectiveness (with µ depending on the bounded size of our domain). While

we were unable to show precise bounds for µ in terms of the domain, the values are small.

For example, for the symmetrized KL-divergence on the simplex where each coordinate

is bounded between 0.1 and 0.9, µ is 1.22. If each coordinate is between 0.01 and 0.99,

then µ is 2.42. We discuss the empirical values of µ in greater detail in the Appendix. The

proofs showing µ is bounded are somewhat tedious and not highly insightful, so we place

those in the appendix as well for the interested reader.

Lemma 2.2.4 Given any interval I = [x1x2] on the real line, there exists a finite µ such

that
√

Dsφ is µ-defective with respect to I. We require all order derivatives of φ to be

defined and bounded over the closure of I, and φ ′′ to be bounded away from zero.

Proof. Refer to Appendix.

We note that the result for
√

Dφ is proven by establishing the following relationship

between Dφ (a,b) and Dφ (b,a) over a bounded interval I ⊂ R, and with some further

computation.

Lemma 2.2.5 Given a divergence Dφ and a bounded interval I⊂R,
√

Dφ (a,b)/
√

Dφ (b,a)

is bounded by a parameter c0 ∀a,b ∈ I where c0 depends on the choice of divergence and

interval. We also require the derivatives of φ to be defined and bounded over the closure of

I, and φ ′′ to be bounded away from zero.

16

Proof. By continuity, compactness and the strict convexity of φ , we have that over a finite

interval I c0 = maxx φ ′′i (x)/miny φ ′′i (y) is bounded. Now by using the Lagrange form of√
Dφ (a,b), we get that

√
Dφ (a,b)/

√
Dφ (b,a)<

√c0.

Lemma 2.2.6 Given any interval I = [x1x2] on the real line, there exists a finite µ such

that
√

Dφ is right-sided µ-defective with respect to I. We require all order derivatives of

φ to be defined and bounded over the closure of I, and φ ′′ to be bounded away from zero.

Proof. Refer to Appendix.

We extend our results to d dimensions naturally now by showing that if M is a domain

such that
√

Dsφ and
√

Dφ are µ-defective with respect to the projection of M onto each

coordinate axis, then
√

Dsφ and
√

Dφ are µ-defective with respect to all of M.

Lemma 2.2.7 Consider three points, a = (a1, . . . ,ai, . . . ,ad), b = (b1, . . . ,bi, . . . ,bd), q =

(q1, . . . ,qi, . . . ,qd) such that |
√

Dsφ (ai,qi)−
√

Dsφ (bi,qi)| < µ

√
Dsφ (ai,bi),∀1 ≤ i ≤

d. Then ∣∣∣
√

Dsφ (a,q)−
√

Dsφ (b,q)
∣∣∣< µ

√
Dsφ (a,b). (2.6)

Similarly, if |
√

Dφ (ai,qi)−
√

Dφ (bi,qi)|< µ

√
Dφ (ai,bi),∀1≤ i≤ d. Then

∣∣∣
√

Dφ (a,q)−
√

Dφ (b,q)
∣∣∣< µ

√
Dφ (b,a). (2.7)

Proof.
∣∣∣
√

Dsφ (a,q)−
√

Dsφ (b,q)
∣∣∣< µ

√
Dsφ (a,b)

Dsφ (a,q)+Dsφ (b,q)−2
√

Dsφ (a,q)Dsφ (b,q)< µ
2Dsφ (a,b)

d
∑

i=1

(
Dsφ (ai,qi)+Dsφ (bi,qi)

)
−2
√

Dsφ (a,q)Dsφ (b,q)< µ
2

d
∑

i=1
Dsφ (ai,bi)

d
∑

i=1

(
Dsφ (ai,qi)+Dsφ (bi,qi)−µ

2Dsφ (ai,bi)
)
< 2
√

Dsφ (a,q)Dsφ (b,q).

The last inequality is what we need to prove for µ-defectiveness with respect to a,b,q. By

assumption we already have µ-defectiveness w.r.t. each ai,bi,qi, for every 1≤ i≤ d,

17

Dsφ (ai,qi)+Dsφ (bi,qi)−µ
2Dsφ (ai,bi)< 2

√
Dsφ (ai,qi)Dsφ (bi,qi)

d
∑

i=1

(
Dsφ (ai,qi)+Dsφ (bi,qi)−µ

2Dsφ (ai,bi)
)
< 2

d
∑

i=1

√
Dsφ (ai,qi)Dsφ (bi,qi).

So to complete our proof we need only show

d
∑

i=1

√
Dsφ (ai,qi)

√
Dsφ (bi,qi)≤

√
Dsφ (a,q)

√
Dsφ (b,q). (2.8)

But notice the following:

√
Dsφ (a,q) =

(
d
∑

i=1
Dsφ (ai,qi)

)1
2
=

(
d
∑

i=1

(√
Dsφ (ai,qi)

)2
)1

2
.

√
Dsφ (b,q) =

(
d
∑

i=1
Dsφ (bi,qi)

)1
2
=

(
d
∑

i=1

(√
Dsφ (bi,qi)

)2
)1

2
.

So inequality 2.8 is simply a form of the Cauchy-Schwarz inequality, which states that for

two vectors u and v in Rd , that |〈u,v〉| ≤ ‖u‖‖v‖, or that

∣∣∣∣∣
d
∑

i=1
uivi

∣∣∣∣∣≤
(

d
∑

i=1
u2
i

)1
2
(

d
∑

i=1
v2
i

)1
2
.

The second part of the proposition can be derived by an essentially identical argument.

2.3 Packing and covering bounds
The aforementioned key properties (monotonicity, the reverse triangle inequality, de-

composability, and µ-defectiveness) can be used to prove packing and covering bounds for

a distance measure D. We now present some of these bounds.

2.3.1 Covering bounds in one dimension

Lemma 2.3.1 (Interval packing) Consider a monotone distance measure D satisfying the

reverse triangle inequality, an interval [ab] such that D(a,b) = s and a collection of disjoint

intervals intersecting [ab], where I = {[xx′] | [xx′],D(x,x′)≥ `}. Then |I| ≤ s
` +2.

Proof. Let I′ be the intervals of I that are totally contained in [ab]. The combined length

under D of all intervals in I′ is at least |I′|`, but by the reverse triangle inequality their

18

total length cannot exceed s, so |I′| ≤ s
` . There can be only two members of I not in I′, so

|I| ≤ s
` +2.

A simple greedy approach yields a constructive version of this lemma.

Corollary 2.3.1 Given any two points, a≤ b on the line s.t. D(a,b) = s, we can construct

a packing of [ab] by r≤ 1
ε intervals [xixi+1], 1≤ i≤ r s.t. D(a,x0) = D(xi,xi+1) = εs, ∀i

and D(xr,b)≤ εs. Here D is a monotone distance satisfying the reverse triangle inequality.

We recall here that Dφ , Dsφ and
√

Dsφ satisfy the conditions of lemma 2.3.1 and

corollary 2.3.1 as they satisfy an RTI and are decomposable. However, since
√

Dφ may

not satisfy the reverse triangle inequality, we instead prove a weaker packing bound on
√

Dφ by using Dφ .

Lemma 2.3.2 (Weak interval packing) Given distance measure
√

Dφ and an interval

[ab] such that
√

Dφ (a,b) = s and a collection of disjoint intervals intersecting [ab] where

I = {[xx′] | [xx′],
√

Dφ (x,x
′) ≥ `}. Then |I| ≤ s2

`2 + 2. Such a set of intervals can be

explicitly constructed.

Proof. We note that here Dφ (a,b) = s2, and I = {[xx′] | [xx′],Dφ (x,x
′)≥ `2}. The result

then follows trivially from lemma 2.3.1, since Dφ satisfies the conditions of lemma 2.3.1.

2.3.2 Properties of cubes and their coverings

The one-dimensional bounds can be generalized to higher dimensions to provide pack-

ing bounds for balls and cubes (which we define below) with respect to a monotone,

decomposable distance measure.

Definition 4 Given a collection of d intervals ai,bi and distance measure D, s.t. D(ai,bi)=

s where 1 ≤ i ≤ d, the cube in d dimensions is defined as ∏
d
i=i[aibi] and is said to have

side-length s. We shall specify the choice of D by referring to the cube as either a Dφ -cube,

Dsφ -cube,
√

Dφ -cube,
√

Dφ -cube or a
√

Dsφ -cube. Where we make an argument that

holds for more than one of these types of cubes, we shall refer to simply a D-cube where

the possible values of D will be specified. We follow the same convention for balls.

19

We add that for a given distance measure D, a box H can be defined similarly to a cube, ex-

cept that the side lengths need not necessarily be equal. In this case we let H = ∏
d
i=i[aibi]

and let the ith side-length be D(ai,bi). Again where the choice of distance measure D

appears at all ambiguous we shall refer to the D side-length.

We pause here to note that for an asymmetric decomposable measure D in d dimensions,

every D-box has an implied associated ordering on each of the d composing intervals. For

a D-box defined as prod ∏
d
i=1[aibi] and bisected by a collection of xi such that D(ai,xi) =

D(xi,bi), there will be 2d subboxes produced such that their ith composing interval will be

either [aixi] or [xibi]. See Figure 2.1. In what can be viewed as a generalization of bisection

to splitting each side of a D-cube into multiple subintervals, we show the following useful

lemma that acts as a building block:

Lemma 2.3.3 Given a d-dimensional D-cube B of side-length s under distance measure D,

we can cover it with at most 1
εd D-cubes of side-length exactly εs under the same measure

D, where D may be either Dφ , Dsφ and
√

Dsφ .

Proof. Note that Dsφ , Dφ and
√

Dsφ satisfy all the conditions of corollary 2.3.1. Hence

we can employ the packing of at most 1
ε points in each dimension spaced εs apart. We

then take a product over all d dimensions, and the lemma now follows in a straightforward

manner.

Weaker packing bounds for
√

Dφ as noted in lemma 2.3.2 yield us a weaker version of

lemma 2.3.3.

Lemma 2.3.4 Given a d-dimensional
√

Dφ -cube B of side-length s, we can cover it with

at most 1
ε2d

√
Dφ -cubes of side-length exactly εs.

Proof. Identical to the proof of lemma 2.3.3 and using lemma 2.3.2 to obtain packing

bounds.

We note that this subdivision of D-cubes corresponds to placing an equal number of

points (the vertices of the cubes), and this is what we shall refer to more loosely as gridding

in the remainder of our chapter. We shall employ this subdivision next to show results for

covering of balls.

20

s

s

s

s

x

x

x x

Figure 2.1. A cube of directed side length s subdivided into cubes of side length x≤ s
2

2.3.3 Covering with balls in higher dimensions

Covering a D-ball with a number of smaller D-balls is a key ingredient in our results.

Our approach is to divide a D-ball into 2d orthants, then to show each orthant can be

covered by a certain number of smaller D-cubes, and then finally that each such D-cube

can be covered by a D-ball of a certain radius.

We show now results for Dsφ , Dφ ,
√

Dφ and
√

Dsφ . We present first the easier cases

for the two symmetric measures, Dsφ and
√

Dsφ .

Lemma 2.3.5 A Dsφ -cube in d dimensions of side-length s can be covered by a Dsφ -ball

of radius ds. Similarly, a
√

Dsφ -cube in d dimensions of side-length s can be covered by a
√

Dsφ -ball of radius
√

ds.

Proof. Recall that a Dsφ -cube is defined as ∏
d
i=1[aibi] s.t Dsφi

(ai,bi)= s (where Dsφi
(ai,bi)

is induced by restricting Dsφ to the ith dimension). Let the vertex space of the Dsφ -cube

be V = ∏
d
i=1 vi, where vi ∈ {ai,bi}. Now pick an arbitrary vertex x ∈ V , and consider

the Dsφ -ball B of radius ds with center v. By decomposability and monotonicity, for any

y ∈V , we have

Dsφ (x,y) =
d
∑

i=1
Dsφi

(xi,yi)≤
d
∑

i=1
Dsφi

(ai,bi)

=
d
∑

i=1
s = ds.

Hence an Dsφ -cube of side-length s can be covered by an Dsφ -ball of radius ds. The

second result follows by noting that an
√

Dsφ -cube of side-length s is an Dsφ -cube of

side-length s2. Hence this can be covered by an Dsφ -ball of radius ds2, which is simply

an
√

Dsφ ball of radius
√

ds.

21

Lemma 2.3.6 A Dφ -cube in d dimensions of side-length s can be covered by a Dφ -ball of

radius ds. Similarly, a
√

Dφ -cube in d dimensions of side-length s can be covered by a
√

Dsφ -ball of radius
√

ds.

Proof. Similar to lemma 2.3.5, we begin by recalling that a Dφ -cube is defined as ∏
d
i=1[aibi]

s.t Dφi
(ai,bi) = s (where Dφi

(ai,bi) is induced by restricting Dφ to the ith dimension).

We again let the vertex space of the Dφ -cube be V = ∏
d
i=1 vi, where vi ∈ {ai,bi}. Now

we have to be somewhat more careful in our choice of center for the Dφ -ball B of radius

ds than we were in lemma 2.3.5. We choose the “lowest” point of the Dφ -cube, which is

x=∏
d
i=1 ai (see Figure 2.2) and term this as a canonical corner.We note that our definition

does not require that ai ≤ bi. Now for any other y ∈V we have

Dφ (x,y) =
d
∑

i=1
Dφi

(xi,yi)≤
d
∑

i=1
Dφi

(ai,bi) =
d
∑

i=1
s = ds.

The argument for
√

Dφ follows analogously to that for
√

Dsφ in lemma 2.3.5.

We will also find the following relation of the diameter of a
√

Dsφ -cubes to the
√

Dφ

side-length useful later in this chapter.

Lemma 2.3.7 The diameter of an
√

Dsφ -cube of side-length s is bounded by
√

ds.

Proof. Consider any two points x and y in the
√

Dsφ -cube of
√

Dsφ -side-length s and

defined as ∏
d
i=1[aibi]. Note that since xi,yi ∈ [aibi] we have that Dsφ (xi,yi)≤ s2. Hence

Dsφ (x,y)≤ ds2 and
√

Dsφ (x,y)≤
√

ds.

Corollary 2.3.2 For any
√

Dsφ -box of maximum
√

Dsφ -side length s, the diameter of the

box is bounded by
√

ds.

We now proceed to showing covering bounds for
√

Dsφ and
√

Dφ using the geometry

we have developed thus far.

Lemma 2.3.8 Consider a D-ball B of radius s and center c. Then in the case of D = Dsφ ,

B can be covered with 2d

εd Dsφ -balls of radius dεs. In the case of D =
√

Dsφ , B can be

covered with 2d

εd

√
Dsφ -balls of radius

√
dεs.

22

s
s

s
x

Figure 2.2. x is within ds distance under Dφ of every other point of the cube.

Proof. We divide the D-ball into 2d orthants around the center c. Each orthant can be

covered by a D-cube of size s. For both D = Dsφ and D =
√

Dsφ , by lemma 2.3.3

each such D-cube can be broken down into 1
εd sub-D-cubes of side-length εs. By lemma

2.3.5, we can cover each such Dsφ -cube by a Dsφ -ball of radius dεs placed at any corner.

Similarly, for
√

Dsφ , we can cover each sub-
√

Dsφ -cube by a
√

Dsφ -ball of radius
√

dεs

placed at any corner. Since there are 1
εd sub-D-cubes to each of the 2d orthants whether

D=
√

Dsφ or D=Dsφ , respectively, the lemma now follows by covering each sub-D-cube

with a D-ball of the required radius.

Lemma 2.3.9 Consider a D-ball B of radius s and center c with respect to distance mea-

sure D. Then in the case of D = Dφ , B can be covered with 2d

εd Dφ -balls of radius dεs.

And for D =
√

Dφ , B can be covered by 2d

ε2d

√
Dφ -balls of radius

√
dεs.

Proof. We divide the D-ball into 2d orthants around the center c. Each orthant can be

covered by a D-cube of size s. We now consider each case separately. For Dφ , by lemma

2.3.3 each such Dφ -cube can be broken down into 1
εd Dφ -cubes of side-length εs. For

√
Dφ , by lemma 2.3.4 we can break down each

√
Dφ -cube into 1

ε2d sub-
√

Dφ -cubes of

side-length εs.

By lemma 2.3.6, we can cover each such Dφ -cube by a Dφ -ball of radius dεs placed at

a canonical corner. Similarly for
√

Dφ , by lemma 2.3.6 we can cover each sub-
√

Dφ -cube

by a
√

Dφ -ball of radius
√

dεs placed at a canonical corner. Since there are 1
ε2d and 1

εd

sub-D-cubes to each of the 2d orthants for D =
√

Dφ and D =Dφ , respectively, the lemma

now follows by covering each sub-D-cube with a D-ball of the required radius.

23

2.4 Computing a rough approximation
To illustrate our techniques, we will focus on finding approximate nearest neighbors

under
√

Dsφ over the next two sections. When we define our notation more generally, e.g.,

of a ring separator, we may use a more generic distance measure D.

Later we will show how our results can be extended to the asymmetric case with mild

modifications and careful attention to directionality. We now describe how to compute a

O(logn) rough approximate nearest-neighbor under
√

Dsφ on our point set P, which we

will use in the next section to find the (1+ε)-approximate nearest neighbor. The technique

we use is based on ring separators. Ring separators are a fairly old concept in geometry,

notable appearances of which include the landmark paper by Indyk and Motwani (84). Our

approach here is heavily influenced by Har-Peled and Mendel (78), and by Krauthgamer

and Lee (94), and our presentation is along the template of the textbook by Har-Peled (139,

Chapter 11).

We note here that the constant of dd/2 which appears in our final bounds for storage

and query time is specific to
√

Dsφ . However, an argument on the same lines will yield

a constant of dO(d) for any µ-defective, symmetric RTI-satisfying decomposable distance

measure D such that the D-diameter of a cube of side-length 1 is bounded by dO(1).

Let B(m,r) denote a D-ball of radius r centered at m, and let B′(m,r) denote the

complement (or exterior) of B(m,r). A ring R is the difference of two concentric D-balls:

R = B(m,r2)\B(m,r1),r2 ≥ r1. We will often refer to the larger D-ball B(m,r2) as Bout

and the smaller D-ball as Bin. We use Pout(R) to denote the set P∩B′out, and use Pin(R) as

P∩Bin, where we may drop the reference to R when the context is obvious. A t-ring sepa-

rator RP,c on a point set P is a ring such that n
c < |Pin|< (1− 1

c)n, n
c < |Pout|< (1− 1

c)n,

r2 ≥ (1+ t)r1 and Bout \Bin is empty of points of P. A t-ring-tree is a binary tree obtained

by repeated dispartition of our point set P using a t-ring separator. (We shall make the

choice of distance measure D explicit whenever using a t-ring separator.)

Note that later on in this section, we will abuse this notation slightly by using ring-

separators where the annulus is not actually empty, but we will bound the added space

complexity and tree depth introduced. Finally, denote the minimum sized D-ball containing

at least n
c points of P by Bopt,c; its radius is denoted by ropt,c.

We demonstrate that for any point set P a ring separator exists under
√

Dsφ and

secondly, it can always be computed efficiently. Applying this “separator” recursively

24

on our point structure yields a ring-tree structure for searching our point set. Before we

proceed further, we need to establish some properties of disks under a µ-defective distance.

lemma 2.4.1 is immediate from the definition of µ-defectiveness, lemma 2.4.2 is similar

to one obtained by Har-Peled and Mazumdar (77) and the idea of repeating points in both

children of a ring-separator derives from a result by Har-Peled and Mendel (78).

Lemma 2.4.1 Let D be a µ-defective distance, and let B(m,r) be a D-ball. Then for any

two points x,y ∈ B(m,r), D(x,y)< (µ +1)r.

Proof. Follows from the definition of µ-defectiveness.

D(x,y)−D(m,y)< µD(m,x)

D(x,y)< µr+D(m,y)≤ (µ +1)r.

Corollary 2.4.1 For any
√

Dsφ -ball B(m,r) and two points x,y ∈ B(m,r),
√

Dsφ (x,y)<

(µ +1)r.

Proof. Since
√

Dsφ is µ-defective over a prespecified restricted domain.

Lemma 2.4.2 Given a parameter 1≤ c≤ n, we can compute in O(nc) expected time a µ +

1 approximation to the smallest radius
√

Dsφ -ball containing n
c points by the algorithm 1.

Proof. As described by Har-Peled and Mazumdar (77) we let S be a random sample from

P, generated by choosing every point of P with probability c
n . Next, compute for every

p∈ S, the smallest
√

Dsφ -ball centered at p containing c points of P. By median selection,

this can be done in O(n) time and since E(|S|) = c, this gives us the expected running time

of O(nc). Now, let r′ be the minimum radius computed. Note that by lemma 2.4.1, if

|S∩Bopt,c| > 0 then we have that r′ ≤ (µ + 1)ropt . But since Bopt,c contains n
c points,

we can upper bound the probability of failure as the probability that we do not select any

of the n
c points in Bopt in our sample. Hence,

Pr(|S∩Bopt,c|> 0) = 1−
(

1− c
n

)n
c ≥ 1− 1

e
.

Note that one can obtain a similar approximation deterministically by brute force search,

but this would incur a prohibitive O(n2) running time.

25

n← |P|
Choose S by picking every p ∈ P with probability n

c
r← ∞

B← NULL
for all s ∈ S do

Compute smallest
√

Dsφ -ball B(s,rs) with center s that contains c points of P.

if rs < r then
B← B(s,rs)
r← rs

end if
end for
return B

Algorithm 1: ApproxSmallestBall(P,c)

26

We can now use lemma 2.4.2 and the corresponding algorithm 2 to construct our ring-

separator.

{Here t > 1, and the thickness of the separating ring is O
(

1
t rin

)
}

n← |P|
NODE IN← NULL
NODE OUT← NULL
c← 2(4(µ +1)

√
d)d

B1(m1,r1)← ApproxSmallestBall(P,c)
B2(m2,r2)← B(m1,2r1)
ANNULUS← B2 \B1
Divide ANNULUS into t rings of equal thickness, such that RINGS[i] is the i-th ring.
COUNT← ∞

rin← r1
for all i = 1→ t do

if |P∩RINGS[i]|< COUNT then
COUNT← |P∩RINGS[i]|
rin← r1+

(
i−1

t
)

r1
end if

end for
for all p ∈ P do

if
√

Dsφ (m1, p)≤ rin then
Add p to IN

else if
√

Dsφ (m1, p)≥ rin+
r1
t then

Add p to OUT
else

Add p to IN and OUT
end if

end for
COUNT-IN← number of points in IN
COUNT-OUT← number of points in OUT
if COUNT-IN≥

(
1− 1

c
)

n or COUNT-OUT≥
(

1− 1
c
)

n then
return MakeRing (P, t)
{This checks implictly that our earlier call to the randomized
ApproxSmallestBall(P,c) returned our desired approximation. If not, we try our
procedure again as standard for Las Vegas algorithms.}

else
return IN and OUT

end if
Algorithm 2: MakeRing(P, t)

27

Lemma 2.4.3 For arbitrary t s.t 1 < t < n and
√

Dsφ in a µ-defective domain, we can

construct a 1
t -ring separator RP,c under

√
Dsφ in O(n) expected time on a point set P by

repeating points. See Algorithm 2.

Proof. Using lemma 2.4.2, we compute a
√

Dsφ -ball S = B(m,r1) (where m ∈ P) con-

taining n
c points such that r1 ≤ (µ + 1)ropt,c where c is a parameter to be set. Consider

the
√

Dsφ -ball S̄ = B(m,2r1). We shall argue that there must be n
c points of P in the

complement of S̄, S̄′, for careful choices of c. As described in lemma 2.3.8, S̄ can be

covered by 2d hypercubes of side-length 2r1, the union of which we shall refer to as

H. Set L = (µ + 1)
√

d. Imagine a partition of H into a grid, where each cell is of
√

Dsφ -side-length r1
L and hence of diameter at most ∆(

r1
L ,d) = r1

µ+1 ≤ ropt,c (by lemma

2.3.7). A
√

Dsφ -ball of radius ropt,c on any corner of a cell will contain the entire cell,

and so it will contain at most n
c points, by the definition of ropt,c.

By lemma 2.3.3 the grid on H has at most 2d(2r1/
r1
L)d = (4(µ + 1)

√
d)d cells. Set

c = 2(4(µ + 1)
√

d)d . Then we have that S̄ ⊂ H contains at most n
c (4(µ + 1)

√
d)d = n

2
points. Since the inner

√
Dsφ -ball S contains at least n

c points, and the outer
√

Dsφ -ball

S̄ contains at most n
2 points, hence the annulus S̄ \ S contains at most n

2 −
n
c points. Now,

divide S̄\S into t rings of equal width, and by the pigeonhole principle at least one of these

rings must contain at most O(n
t) points of P. Now let the inner

√
Dsφ -ball corresponding

to this ring be Bin and the outer
√

Dsφ -ball be Bout. Let Pin = P∩Bin, Pout = P∩B′out.

Add any remaining points of P to both Pin and Pout(see Figure 2.3), i.e., consider that these

points are duplicated and are in both sets.

Assign Pin and Pout to two nodes vin and vout, respectively. Even for t = 1, each node

contains at most n
2 +(n

2−
n
c) = (1− 1

c)n points. Also, the thickness of the ring is bounded

by 2r1−r1
t /2r1 = 1

2t , i.e., it is a O(1
t) ring separator. Finally, we can check in O(n) time

if the randomized process of lemma 2.4.2 succeeded simply by verifying the number of

points in the inner and outer ring is bounded by the values just computed.

Lemma 2.4.4 Given any point set P under
√

Dsφ in a µ-defective domain, we can con-

struct a O(1
logn) ring-separator tree T of depth O(d

d
2 (µ +1)d logn) by algorithm 3.

Proof. Repeatedly partition P by lemma 2.4.2 into Pv
in and Pv

out where v is the parent

28

rin
Pin

Both

Pout

rout

Figure 2.3. The points are split into Pin and Pout with some point duplication

node. Store only the single point repv = m ∈ P in node v, the center of the
√

Dsφ -ball

B(m,r1). We continue this partitioning until we have nodes with only a single point

contained in them. Since each child contains at least n
c points (by proof of lemma 2.4.3),

each subset reduces by a factor of at least 1− 1
c at each step, and hence the depth of the

tree is logarithmic.

We calculate the depth more exactly, noting that in lemma 2.4.3, c = O(d
d
2 (µ +1)d).

Hence, the depth x can be bounded as

n(1− 1
c
)x = 1

(1− 1
c
)x =

1
n

x =
ln 1

n
ln(1− 1

c)
=

−1

ln(1− 1
c)

lnn

x≤ c lnn = O
(

d
d
2 (µ +1)d logn

)
.

Finally, we verify that the storage space required is not excessive.

Lemma 2.4.5 To construct a O(1
logn) ring-separator tree under

√
Dsφ in a µ-defective

domain requires O(n) storage and O(d
d
2 (µ +1)dn logn) time.

29

{Here t < 1 is the thickness of the ring w.r.t. radius of the inner ball.}
Add P to ROOT
(IN, OUT)←MakeRing

(
P, 1

t
)

Set IN as a child of ROOT
Set OUT as a child of ROOT
MakeTree(P∩ IN , IN, t)
MakeTree(P∩ OUT , OUT, t)

Algorithm 3: MakeTree(P,NODE ROOT, t)

Proof. By lemma 2.4.4, the depth bounds still hold upon repeating points. For storage, we

have to bound the total number of points in our data structure after repetition, let us say PR.

Since each node corresponds to a splitting of PR, there may be only O(PR) nodes and total

storage. We aim to show |PR| = O(|P|) = O(n). We begin by noting that in the proof of

lemma 2.4.3, for a node containing x points, at most an additional x
logn may be duplicated

in the two children.

To bound this over each level of our tree, we sum across each node to obtain that the

number of points Ti in our structure at the i-th level, as

Ti = Ti−1

(
1+

1
logTi−1

)
. (2.9)

Note also by lemma 2.4.4, the tree depth is O(logn) or bounded by k logn where k is a

constant. Hence we only need to bound the storage at the level i = O(logn). We solve the

recurrence, noting that T0 = |P|= n (no points have been duplicated yet) and Ti > n for all

i and hence Ti < Ti−1(1+
1

logn). Thus the recurrence works out to

Ti < n
(

1+
1

logn

)O(logn)
< n

((
1+

1
logn

)logn
)k

< n(ek),

where the main algebraic step is that (1+ 1
x)

x < e. This proves that the number of points,

and hence our storage complexity is O(n). Multiplying the depth by O(n) for computing

the smallest under
√

Dsφ -ball across nodes on each level gives us the time complexity of

O(n logn). We note that other tradeoffs are available for different values of approximation

quality (t) and construction time / query time.

2.4.1 Algorithm and quality analysis

Let bestq be the best candidate for nearest neighbor to q found so far and Dnear =√
Dsφ (bestq,q). Let nnq be the exact nearest neighbor to q from point set P and Dexact =

30

curr← rep(ROOT)
bestq← curr
Dnear←

√
Dsφ (q,curr)

while ROOT has children do
curr← rep(ROOT)
B(m,rin) is the inner ball associated with ROOT.
if
√

Dsφ (q,curr)< Dnear then

bestq← rep(ROOT)
Dnear←

√
Dsφ (q,bestq)

end if
if
√

Dsφ (q,curr)< (1+ t
2)rin then

ROOT← INNER CHILD
else

ROOT← OUTER CHILD
end if

end while
return bestq

Algorithm 4: FindRoughNN(P,q, t,NODE ROOT)

√
Dsφ (nnq,q) be the exact nearest neighbor distance. Finally, let curr be the tree node

currently being examined by our algorithm, and repcurr be a representative point p ∈ P

of curr. By convention rv represents the radius of the inner
√

Dsφ -ball associated with a

node v, and within each node v we store repv = mv, which is the center of Bin(mv,rv). The

node associated with the inner
√

Dsφ -ball Bin is denoted by vin and the node associated

with Bout is denoted by vout.

Lemma 2.4.6 Given a t-ring-tree T for a point set with respect to
√

Dsφ in a µ-defective

domain, where t ≤ 1
logn and query point q we can find a O(µ +

2µ2
t) nearest neighbor to

q in O((µ +1)dd
d
2 logn) time.

Proof. Our search algorithm is a binary tree search. Whenever we reach node v, if

D(repv,q) < Dnear set bestq = repv and Dnear =
√

Dsφ (repv,q) as our current nearest

neighbor and nearest neighbor distance, respectively. Our branching criterion is that if
√

Dsφ (repv,q) < (1+ t
2)rv, we continue search in vin, else we continue the search in

vout. Since the depth of the tree is O(logn) by lemma 2.4.4, this process will take O(logn)

time.

31

Turning now to quality, let w be the first node such that nnq ∈ win but we searched

in wout, or vice-versa. After examining repw, Dnear ≤
√

Dsφ (repw,q) and Dnear can

only decrease at each step. An upper bound on
√

Dsφ (q, repw)/
√

Dsφ (q,nnq) yields

a bound on the quality of the approximate nearest neighbor produced. In the first case,

suppose nnq ∈ win, but we searched in wout. Then
√

Dsφ (repw,q) >
(

1+ t
2

)
rw and

√
Dsφ (repw,nnq)< rw. Now µ-defectiveness implies that

µ

√
Dsφ (q,nnq)>

√
Dsφ (repw,q)−

√
Dsφ (repw,nnq)

µ

√
Dsφ (q,nnq)>

(
1+

t
2

)
rw− rw

√
Dsφ (q,nnq)>

t
2µ

rw.

And for the upper bound on
√

Dsφ (repw,q)/
√

Dsφ (q,nnq), we again apply µ-defectiveness

to conclude that
√

Dsφ (repw,q)−
√

Dsφ (q,nnq)< µ

√
Dsφ (nnq, repw), which yields

√
Dsφ (repw,q)
√

Dsφ (q,nnq)
< 1+µ

rw√
Dsφ (q,nnq)

< 1+µ
rw
t

2µ
rw

= 1+2
µ2

t
.

We now consider the other case. Suppose nnq ∈ wout and we search in win instead.

By construction we must have
√

Dsφ (repw,q) <
(

1+ t
2

)
rw and

√
Dsφ (repw,nnq) >

(1+ t)rw. Again, µ-defectiveness yields
√

Dsφ (q,nnq) > t
2µ

rw. Now we can simply

take the ratios of the two:

√
Dsφ (repw,q)√
Dsφ (q,nnq)

<
(1+ t

2)rw
t

2µ
rw

= µ +
2µ
t . Taking an upper

bound of the approximation provided by each case, the ring-tree provides us a µ + 2µ2
t

approximation. The space/running time bound follows from lemma 2.4.5, and noting that

taking a thinner ring (t ≤ 1
logn) in the proof there only decreases the depth of the tree due

to lesser duplication of points.

Corollary 2.4.2 Setting t = 1
logn, given a point set with respect to

√
Dsφ in a µ-defective

domain we can find a O(µ +2µ2 logn) approximate nearest neighbor to a query point q in

32

O(d
d
2 (µ+1)d log(n)) time, using a O(1

logn) ring separator tree constructed in O(d
d
2 (µ+

1)dn log(n)) expected time.

Proof. The query time is bounded by the depth of the tree, which is bounded in lemma

2.4.4. That we can construct a ring of our desired thickness at each step in reasonable

expected time is guaranteed by 2.4.3. The space guarantee comes from lemma 2.4.5 and

the quality of nearest neighbor obtained from our ring-tree analyzed by lemma 2.4.6. Note

that we are slightly abusing notation in lemma 2.4.3, in that the separating ring obtained

there and which we use is not empty of points of P as originally stipulated. However

remember that if nnq is in the ring, then nnq repeats in both children and cannot fall off the

search path. Hence we can “pretend” the ring is empty as in our analysis in lemma 2.4.6.

2.5 Computing a 1+ ε approximation
We give our overall algorithm for obtaining a 1+ε nearest neighbor in O

(
1

εd log2d n
)

query time under
√

Dsφ . We note that although our bounds are for
√

Dsφ , similar bounds

follow in the same manner for any decomposable symmetric distance measure D, which

satisfies an RTI and for which the ratio of diameter to side length of a cube is bounded by

O(dO(1)).

2.5.1 Preprocessing

We first construct an improved ring-tree R on our point set P in O(n logn) time as

described in lemma 2.4.5, with ring thickness O(1
logn). We then compute an efficient or-

thogonal range reporting data structure on P in O(n logd−1 n) time, such as that described

in (5) by Afshani et al.We note the main result we need:

Lemma 2.5.1 We can compute a data structure from P with O(n logd−1 n) storage (and

same construction time), such that given an arbitrary axis parallel box H we can determine

in O(logd n) query time a point p ∈ P∩H if |P∩H|> 0.

2.5.2 Query handling

Given a query point q, we use R to obtain a point qrough in O(logn) time such that

Drough =
√

Dsφ (q,qrough) ≤ (1+ µ2 logn)
√

Dsφ (q,nnq). Given qrough, we can use

33

lemma 2.3.8 to find a family F of 2d √Dsφ -cubes of side-length exactly Drough such that

they cover the
√

Dsφ -ball B(q,Drough). We use our range reporting structure to find a

point p ∈ P for all nonempty cubes in F in a total of 2d logd n time. These points act as

representatives of the
√

Dsφ -cubes for what follows. Note that nnq must necessarily be in

one of these
√

Dsφ -cubes, and hence there must be a (1+ε)-nearest neighbor qapprox ∈ P

in some G ∈ F . To locate this qapprox, we construct a quadtree (139, Chapter 11) (64) for

repeated bisection and search on each G ∈ F .

Algorithm 5 describes the overall procedure. We call the collection of all cells produced

during the procedure a quadtree. We borrow the presentation in Har-Peled’s book (139)

with the important qualifier that we construct our quadtree at runtime. The terminology

here is as introduced earlier in Section 2.4.

Instantiate a queue Q containing all cells from F along with their representatives and
enqueue root.
Let Dnear =

√
Dsφ (reproot,q), bestq = reproot

repeat
Pull off the head of the queue and place it in curr.
if
√

Dsφ (repcurr,q)<
√

Dsφ (bestq,q) then

Let bestq = repcurr, Dnear =
√

Dsφ (bestq,q)

Bisect curr according to procedure of lemma 2.5.3; denote the result as {Gi}.
for all Gi do

As described in 2.5.3, check if Gi is nonempty by passing it to our range
reporting structure, which will also return us some p ∈ P if Gi is not empty.
Also check if Gi may contain a point closer than (1− ε

2)Dnear to q. (This may
be done in O(d) time for each cell, given the coordinates of the corners.)
if Gi is nonempty AND has a close enough point to q then

Let repGi
= p

Enqueue Gi
end if

end for
end if

until Q is empty
Return bestq

Algorithm 5: QueryApproxNN(P,root,q)

Lemma 2.5.2 Algorithm 5 will always return a (1+ ε)-approximate nearest neighbor.

34

Proof. Let bestq be the point returned by the algorithm at the end of execution. By the

method of the algorithm, for all points p for which the distance is directly evaluated, we

have that
√

Dsφ (bestq,q) <
√

Dsφ (p,q). The terminology here is as in Section 2.4. We

look at points p which are not evaluated during the running of the algorithm, i.e., we did

not expand their containing cells. But by the criterion of the algorithm for not expanding

a cell, it must be that
√

Dsφ (bestq,q)(1− ε
2) <

√
Dsφ (p,q). For ε < 1, this means that

(1+ ε)
√

Dsφ (p,q)>
√

Dsφ (bestq,q) for any p ∈ P, including nnq. So bestq is indeed a

1+ ε approximate nearest neighbor.

We must analyze the time complexity of a single iteration of our algorithm, namely the

complexity of a subdivision of a
√

Dsφ -box G and determining which of the 2d √Dsφ -

subcells of G are nonempty.

Lemma 2.5.3 Let G be a
√

Dsφ -box with maximum
√

Dsφ -side-length s and Gi its sub-

cells produced by bisecting along each side of G under
√

Dsφ . For all nonempty
√

Dsφ -

subcubes Gi of G, we can find pi ∈ P∩Gi in O(2d logd n) total time complexity, and the

maximum
√

Dsφ -side-length of any Gi is at most s
2 .

Proof. Note that G is defined as a product of d intervals. For each interval, we can find

an approximate bisecting point under
√

Dsφ in O(1) time and by the RTI each subinterval

is of length at most s
2 under

√
Dsφ . This leads to an O(d) cost to find a bisection point

for all intervals, which define O(2d)
√

Dsφ -subboxes or children of G. We pass each
√

Dsφ -subbox of G to our range reporting structure. By lemma 2.5.1, this takes O(logd n)

time to check emptiness or return a point pi ∈ P contained in the child, if nonempty. Since

there are O(2d) nonempty children of G, this implies a cost of 2d(logd n) time incurred.

Checking each of the nonempty subboxes Gi to see if it may contain a point closer than

(1− ε
2)Dnear to q takes a further O(d) time per cell or O(d2d) time.

We now bound the number of cells that will be added to our search queue. We do so

indirectly, by placing a lower bound on the maximum
√

Dsφ -side-length of all such cells.

Lemma 2.5.4 Algorithm 5 will not add the children of node C to our search queue if the

maximum side-length of C is less than
ε

√
Dsφ (q,nnq)

2µ
√

d
.

Proof. Let ∆(C) represent the
√

Dsφ -diameter of cell C. By construction, we can expand

35

C only if some subcell of C contains a point p such that
√

Dsφ (p,q)≤ (1− ε
2)Dnear. Note

that since C is examined, we have Dnear ≤
√

Dsφ (repC,q). Now assuming we expand C,

then we must have:

µ∆(C)>
√

Dsφ (repC,q)−
√

Dsφ (p,q)≥ Dnear− (1− ε

2
)Dnear =

ε

2
Dnear (2.10)

So ε/(2µ)Dnear < ∆(C). First note
√

Dsφ (repC,q) < Dnear. Also, by definition,
√

Dsφ (q,nnq)< Dnear. And ∆(C)<
√

ds by lemma 2.3.7 where s is the maximum side-

length of C. Making the appropriate substitutions yields us our required bound.

Given the bound on quadtree depth (lemma 2.5.4), and using the fact that at most 2xd

nodes are expanded at level x, we have:

Lemma 2.5.5 Given a
√

Dsφ -cube G of
√

Dsφ -side-length Drough, we can compute a

(1+ ε)-nearest neighbor to q in O


 1

εd 2dµdd
d
2


 Drough√

Dsφ (q,nnq)




d

logd n


 time.

Proof. Consider a quadtree search from q on a
√

Dsφ -cube G of
√

Dsφ -side-length

Drough. By lemma 2.5.4, our algorithm will not expand cells with all
√

Dsφ -side-lengths

smaller than
ε

√
Dsφ (q,nnq)

2µ
√

d
. But since the

√
Dsφ -side-length reduces by at least half

in each dimension upon each split, all
√

Dsφ -side-lengths are less than this value after

x = log


Drough/

ε

√
Dsφ (q,nnq)

2µ
√

d


 repeated bisections of our root cube.

Noting that O(logd n) time is spent at each node by lemma 2.5.3, and that at the xth

level the number of nodes expanded is 2xd , we get a final time complexity bound of

O


 1

εd 2dµdd
d
2


 Drough√

Dsφ (q,nnq)




d

logd n


.

Substituting Drough = µ2 logn
√

Dsφ (q,nnq) in lemma 2.5.5 gives us a bound of

O
(

2d 1
εd µ3dd

d
2 log2d n

)
. This time is per

√
Dsφ -cube of F that covers B(q,Drough).

Noting that there are 2d such
√

Dsφ -cubes gives us a final time complexity of

O
(

22d 1
εd µ3dd

d
2 log2d n

)
. For the space complexity of our run-time queue, observe that

the number of nodes in our queue increases only if a node has more than one nonempty

36

child, i.e., there is a split of our n points. Since our point set may only split n times, this

gives us a bound of O(n) on the space complexity of our queue.

2.6 Logarithmic bounds, with further assumptions

For a given Dsφ , let c0 = maxi∈[1..d]

√
maxx φ ′′i (x)
miny φ ′′i (y)

over our bounded subset of the

domain (c0 may be infinity over the unrestricted domain, or on a subset over whose closure

φ ′′ tends to infinity or zero). c0 is susceptible to the choice of bounded subset of the domain

and in general grows as we expand our allowed subset. We conjecture that c0 = Θ(µ)

although we cannot prove it. In particular, we show that if we assume a bounded c0 (in

addition to µ), we can obtain a 1+ ε nearest neighbor in time O(logn+(1
ε)

d) time for
√

Dsφ . We do so by constructing a Euclidean quadtree T on our set in preproccessing and

using c0 and µ to express the bounds obtained in terms of
√

Dsφ .

We will refer to the Euclidean distance l2 as De and note first the following key relation

between
√

Dsφ and De, where c0 serves to relate the two measures by some constant

factor. Nock et al. (121) use a comparable measure to c0 as do Sra et al. (144), for similar

purposes of establishing a constant factor approximation to the Euclidean distance.

Lemma 2.6.1 Suppose we are given an interval I = [x1x2]⊂R s.t. x1 < x2, De(x1,x2) =

re, and
√

Dsφ (x1,x2) = rφ . Suppose we divide I into m subintervals of equal length with

endpoints x1 = a0,a1, . . .am−1,am = x2, where ai < ai+1 and De(ai,ai+1) = re/m,

∀i ∈ [0..m−1]. Then
rφ

c0m ≤
√

Dsφ (ai,ai+1)≤
c0rφ

m .

Proof. We can relate
√

Dsφ to De via the Taylor expansion of
√

Dsφ :
√

Dsφ (a,b) =√
φ ′′(x̄)De(a,b) for some x̄ ∈ [ab]. Combining this with c0 yields

mini
√

Dsφ (ai,ai+1)
√

Dsφ (x1,x2)
≥

De(ai,ai+1)
c0De(x1,x2)

=
1

c0m
(2.11)

and
maxi

√
Dsφ (ai,ai+1)

√
Dsφ (x1,x2)

≤ c0
De(ai,ai+1)
De(x1,x2)

=
c0
m
. (2.12)

37

Corollary 2.6.1 If we recursively bisect an interval I = [x1x2]⊂R s.t. De(x1,x2)= re and√
Dsφ (x1,x2)= rφ into 2i equal subintervals (under De), then

rφ

c02i ≤
√

Dsφ (ak,ak+1)≤
c0rφ

2i for any of the subintervals [akak+1] so obtained. Hence after log
c0rφ

x subdivisions,

all intervals will be of length at most x under
√

Dsφ . Also, given a cube of initial side-

length rφ , after log
c0rφ

x repeated bisections (under De) the diameter will be at most
√

dx

under
√

Dsφ .

We find the smallest enclosing
√

Dsφ -cube C that bounds our point set, and then

construct our compressed Euclidean quadtree in preprocessing on this cube. Say C is of

side-length s. Corollary 2.6.1 gives us that for cells formed at the i-th level of decomposi-

tion, the side-length under
√

Dsφ is between s
c02i and c0s

2i . Refer to these cells formed at

the i-th level as Li.

Lemma 2.6.2 Given a
√

Dsφ -ball B of radius r, let i = log s
c0r . Then |Li ∩B| ≤ O(2d)

and the side-length of each cell in Li is between r and c0
2r under

√
Dsφ . We can also

explicitly retrieve the quadtree cells corresponding to |Li∩B| in O(2d logn) time.

Proof. Note that for cells in Li, we have side-lengths under
√

Dsφ between s
c02i and

c0s
2i by Corollary 2.6.1. Substituting i = log s

c0r , these cells have side-length between r

and c0
2r under

√
Dsφ . By the reverse triangle inequality and lemma 2.3.1, we get our

required bound for |Li ∩B|. In preconstruction of our quadtree T we maintain for each

dimension the corresponding interval quadtree Tk, ∀k ∈ [1..d]. Observe this incurs at most

O(n) storage, with d in the big-Oh. For retrieving the actual cells |Li ∩B|, we first find

the O(1) intervals from level i in each Tk that may intersect B. Taking a product of these,

we get O(2d) cells which are a superset of the canonical cells Li ⊂ T . Each cell may be

looked up in O(logn) time from the compressed quadtree (139) so our overall retrieval time

is O(2d logn).

Given query point q, we first obtain in O(logn) time with our ring-tree a rough O(n)

ANN qrough under
√

Dsφ s.t. Drough =
√

Dsφ (q,qrough) = µ2n
√

Dsφ (q,nnq). Note

that we can actually obtain a O(logn)-ANN instead, using the results of Section 2.4.4.

But a coarser approximation of O(n)-ANN suffices here for our bound. The tree depth

(and implicitly the storage and running time) is still bounded by the O(d
d
2 (µ + 1)d logn)

38

of lemma 2.4.4, since in using thinner rings we have less point duplication and the same

proportional reduction in number of points in each node at each level.

Now lemma 2.6.2, we have O(2d) quadtree cells intersecting B(q,
√

Dsφ (q,qrough)).

Let us call this collection of cells Q. We then carry out a quadtree search on each ele-

ment of Q. Note that we expand only cells which may contain a point nearer to query point

q than the current best candidate. We bound the depth of our search using µ-defectiveness

similar to lemma 2.5.4:

Lemma 2.6.3 We will not expand cells of
√

Dsφ -diameter less than

ε

√
Dsφ (q,nnq)

2µ
or cells whose all side-lengths w.r.t.

√
Dsφ are less than

ε

√
Dsφ (q,nnq)

2µ
√

d
.

For what follows, refer to our spread as β =
Drough√

Dsφ (q,nnq)
.

Lemma 2.6.4 We will only expand our tree to a depth of k = log(2c0
3µβ
√

d/ε).

Proof. Using lemma 2.6.3 and Corollary 2.6.1, each cell of Q will be expanded only to a

depth of k = log


c0c0

2Drough/
ε

√
Dsφ (q,nnq)

2µ
√

d


.

This gives us a depth of log(2c0
3µβ
√

d/ε).

Lemma 2.6.5 The number of cells examined at the i-th level is

ni < 2d
(

µ
dd

d
2 c4d

0 +(
2ic0

β
)d
)
.

Proof. Recalling that the cells of Q start with side-length at most c2
0Drough under

√
Dsφ ,

at the i-th level the
√

Dsφ -diameter of cells is at most
c3
0
√

dDrough
2i , by Corollary 2.6.1.

Hence by µ-defectiveness, there must be some point examined by our algorithm at
√

Dsφ -

distance at most Dbest =
√

Dsφ (q,nnq)+
µc3

0
√

dDrough
2i . Note that our algorithm will

only expand cells within this distance of q.

The
√

Dsφ side-length of a cell C at this level is at least ∆(C) =
Drough

c02i . Applying the

packing bounds from lemma 2.3.3, and the fact that (a+ b)d < 2d(ad + bd), the number

39

of cells expanded is at most

ni =
(

Dbest
∆(C)

)d
< 2d


µ

dd
d
2 c4d

0 +

(
c02i

β

)d

 .

Finally we add the ni to get the total number of nodes explored,

∑
i

ni = O
(

2d
µ

dd
d
2 c4d

0 log(2c0
3

µβ
√

d/ε)+22dc4d
0 µ

dd
d
2 /ε

d
)
.

Recalling that β =
Drough√

Dsφ (q,nnq)
= µ2n, substituting back and ignoring lower order terms,

the time complexity is

O
(

2d
µ

dd
d
2 c4d

0 logn+22dc4d
0 µ

dd
d
2 /ε

d
)
.

Accounting for the 2d cells in Q that we need to search, this adds a further 2d multi-

plicative factor. This time complexity of this quadtree phase (number of cells explored) of

our algorithm dominates the time complexity of the ring-tree search phase of our algorithm,

and hence is our overall time complexity for finding a (1 + ε) ANN to q. For space

and preconstruction time, we note that compressed Euclidean quadtrees can be built in

O(n logn) time and require O(n) space (139), which matches our bound for the ring-tree

construction phase of our algorithm requiring O(n logn) time and O(n) space.

2.7 The general case: Asymmetric divergences
Without loss of generality we will focus on the right-sided nearest neighbor: given

a point set P, query point q and ε ≥ 0, find x ∈ P that approximates minp∈P D(p,q) to

within a factor of (1+ ε). Since a Bregman divergence is not in general µ-defective, we

will consider instead
√

Dφ : by monotonicity and with an appropriate choice of ε , the result

will carry over to Dφ .

We list three issues that have to be resolved to complete the algorithm. Firstly, because

of asymmetry, we cannot bound the diameter of a quadtree cell C of side-length s by s
√

d.

However, as the proof of lemma 2.3.6 shows, we can choose a canonical corner of a cell

such that a (directed) ball of radius s
√

d centered at that corner covers the cell. By µ-

defectiveness, we can now conclude (see lemma 2.7.7) that the diameter of C is at most

40

(µ + 1)s
√

d (note that this incurs an extra factor of µ + 1 in all expressions). Secondly,

since while
√

Dφ satisfies µ-defectiveness (unlike Dφ) the opposite is true for the reverse

triangle inequality, which is satisfied by Dφ but not
√

Dφ . This requires the use of a weaker

packing bound based on lemma 2.3.2, introducing dependence in 1/ε2 instead of 1/ε . And

thirdly, the lack of symmetry means we have to be careful of the use of directionality when

proving our bounds. Perhaps surprisingly, the major part of the arguments carry through

simply by being consistent in the choice of directionality.

Note that for this section we are referring to
√

Dφ . With some small adjustments,

similar bounds can be obtained for more generic asymmetric, monotone, decomposable

and µ-defective distance D measures satisfying packing bounds. The left-sided asymmetric

nearest neighbor can be determined analogously.

Finally, given a bounded domain M, we have that
√

Dφ is left-sided µ-defective for

some µL and right sided µ-defective for some µR (see lemma 2.2.6 for detailed proof). For

what follows, let µ = max(µL,µR) and describe M as simply µ-defective.

Most of the proofs here mirror their counterparts in Sections 2.4 and 2.5.

2.7.1 Asymmetric ring-trees

Since we focus on right-near-neighbors, all balls and ring separators referred to will

use left-balls i.e., balls B(m,r) = {x | D(m,x) < r}. As in Section 2.4, we will design a

ring-separator algorithm and use that to build a ring-separator tree.

Lemma 2.7.1 Let D be a µ-defective distance, and let B(m,r) be a left-ball with respect

to D. Then for any two points x,y ∈ B(m,r), D(x,y)< (µ +1)r.

Proof. Follows from the definition of right sided µ-defectiveness,

D(x,y)−D(m,y)< µD(m,x)

D(x,y)< µr+D(m,y) = (µ +1)r.

Corollary 2.7.1 For any
√

Dφ -left-ball B(m,r) and two points x,y∈B(m,r),
√

Dφ (x,y)<

(µ +1)r.

41

Proof. Since
√

Dφ is µ-defective over a prespecified restricted domain.

As in lemma 2.4.2 we can construct (in O(nc) expected time) a (µ + 1)-approximate
√

Dφ -left-ball enclosing n
c points. This in turn yields a ring-separator construction, and

from it a ring-tree with an extra (µ + 1)dd
d
2 factor in depth as compared to symmetric

ring-trees, due to the weaker packing bounds for
√

Dφ .

We note that the asymptotic bounds for ring-tree storage and construction time follow

from purely combinatorial arguments and hence are unchanged for
√

Dφ . Once we have

the ring-tree, we can use it as before to identify a rough near-neighbor for a query q;

once again, exploiting µ-defectiveness gives us the desired approximation guarantee for

the result.

Lemma 2.7.2 Given any parameter 1≤ c≤ n, we can compute in O(nc) randomized time

a
√

Dφ -left-ball B(m,r′) such that r′ ≤ (µ +1)ropt,c and B(m,r′)∩P≥ n
c .

Proof. Follows identically to the proof of lemma 2.4.2.

Lemma 2.7.3 There exists a parameter c (which depends only on d and µ), such that for

any d-dimensional point set P and any µ-defective
√

Dφ , we can find a O(1
logn) left-ring

separator RP,c in O(n) expected time.

Proof. First, using our randomized construction, we compute a
√

Dφ -left-ball S=B(m,r1)

(where m ∈ P) containing n
c points such that r1 ≤ (µ +1)ropt,c, where c is a parameter to

be set. Consider the
√

Dφ -left-ball S̄ = B(m,2r1). As described in lemma 2.3.9, S̄ can be

covered by 2d √Dφ -hypercubes of side-length 2r1, the union of which we shall refer to as

H. Set L=(µ+1)
√

d. Imagine a partition of H into a grid, where each cell is of side-length
r1
L . Each cell in this grid can be covered by a

√
Dφ -ball of radius ∆(

r1
L ,d)= r1

µ+1 ≤ ropt,c

centered on it’s lowest corner. This implies any cell will contain at most n
c points, by the

definition of ropt,c.

By lemma 2.3.4 the grid on H has at most 2d(2r1/
r1
L)2d = (4(µ + 1)

√
d)2d cells.

Each cell may contain at most n
c points. In particular, set c = 2(4(µ +1)

√
d)2d . Then we

have that H may contain at most n
c (4(µ +1)

√
d)2d = n

2 points, or since S̄⊂H, S̄ contains

at most n
2 points and S̄′ contains at least n

2 points. The rest of the proof goes through as in

42

lemma 2.4.3.

We proceed now to the construction of our ring-tree using the basic ring-separator

structure of lemma 2.7.3.

Lemma 2.7.4 Given any point set P, we can construct a O(1
logn) left ring-separator tree

T under
√

Dφ of depth O(dd(µ +1)2d logn).

Proof. Repeatedly partition P by lemma 2.7.3 into Pv
in and Pv

out where v is the parent node.

Store only the single point repv = m ∈ P in node v, the center of the ball B(m,r1). We

continue this partitioning until we have nodes with only a single point contained in them.

Since each child contains at least n
c points, each subset reduces by a factor of at least

1− 1
c at each step, and hence the depth of the tree is logarithmic. We calculate the depth

more exactly, noting that in lemma 2.7.3, c = O(dd(µ +1)2d). Hence the depth x can be

bounded as

n(1− 1
c
)x = 1

(1− 1
c
)x =

1
n

x =
ln 1

n
ln(1− 1

c)
=

−1

ln(1− 1
c)

lnn

x≤ c lnn = O
(

dd(µ +1)2d logn
)
.

Note that lemma 2.7.4 also serves to bound the query time of our data structure. We

need only now bound the approximation quality. The derivation is similar to lemma 2.4.6,

but with some care about directionality.

Lemma 2.7.5 Given a t-ring-tree T for a point set with respect to a µ-defective
√

Dφ ,

where t ≤ 1
logn, and query point q we can find a O(µ +

2µ2
t) nearest neighbor to query

point q in O((µ +1)2ddd logn) time.

Proof. Our search algorithm is a binary tree search. Whenever we reach node v, if
√

Dφ (repv,q)< Dnear set bestq = repv and Dnear =
√

Dφ (repv,q) as our current nearest

neighbor and nearest neighbor distance, respectively. Our branching criterion is that if

43

√
Dφ (repv,q)< (1+ t

2)rv, we continue search in vin, else we continue the search in vout.

Since the depth of the tree is O(logn) by lemma 2.7.4, this process will take O(logn) time.

Let w be the first node such that nnq ∈win but we searched in wout, or vice-versa. The

analysis goes by cases. In the first case as seen in Figure 2.4, suppose nnq ∈ win, but we

searched in wout. Then

√
Dφ (repw,q)>

(
1+

t
2

)
rw

√
Dφ (repw,nnq)< rw.

Now left-sided µ-defectiveness implies a lower bound on the value of
√

Dφ (nnq,q):

µ

√
Dφ (nnq,q)>

√
Dφ (repw,q)−

√
Dφ (repw,nnq)

µ

√
Dφ (nnq,q)>

(
1+

t
2

)
rw− rw

√
Dφ (nnq,q)>

t
2µ

rw,

and for the upper bound on
√

Dφ (repw,q)/
√

Dφ (nnq,q). First by right-sided µ-defectiveness,

w

Bout

Bin q

nnq

Figure 2.4. q is outside (1+ t
2)rin so we search wout, but nnq ∈ win

44

√
Dφ (repw,q)−

√
Dφ (nnq,q)< µ

√
Dφ (repw,nnq)

√
Dφ (repw,q)<

√
Dφ (nnq,q)+µrw

√
Dφ (repw,q)
√

Dφ (nnq,q)
< 1+µ

rw√
Dφ (nnq,q)

√
Dφ (repw,q)
√

Dφ (nnq,q)
< 1+µ

rw
t

2µ
rw

√
Dφ (repw,q)
√

Dφ (nnq,q)
< 1+µ

2µ

t
= 1+2

µ2

t
.

We now consider the other case. Suppose nnq ∈ wout and we search in win instead.

The analysis is almost identical. By construction we must have:

√
Dφ (repw,q)<

(
1+

t
2

)
rw

√
Dφ (repw,nnq)> (1+ t)rw.

Again, left-sided µ-defectiveness yields:

√
Dφ (nnq,q)>

t
2µ

rw.

We can simply take the ratios of the two:
√

Dφ (repw,q)
√

Dφ (nnq,q)
<

(1+ t
2)rw

t
2µ

rw
= µ +

2µ

t
.

Taking an upper bound of the approximation quality provided by each case, we get that

the ring separator provides us a µ + 2µ2
t rough approximation. Substitute t ≤ 1

logn and

the time bound follows from the bound of the depth of the tree in lemma 2.7.4.

Corollary 2.7.2 We can find a O(µ + 2µ2 logn) nearest neighbor to query point q in

O((µ + 1)2ddd logn) time
√

Dφ using a O(1
logn) ring-tree constructed in O(dd(µ +

1)2dn log(n)) expected time.

Proof. Set t = 1
logn , using lemma 2.7.4. The construction time for the ring-tree follows by

combining lemmas 2.7.4 and 2.7.3.

45

2.7.2 Asymmetric quadtree decomposition

As in Section 2.5, we use the approximate near-neighbor returned by the ring-separator-

tree query to progressively expand cells, using a subdivide-and-search procedure similar to

Algorithm 5 albeit with
√

Dsφ replaced with
√

Dφ . A key difference is the procedure

used to bisect a cell.

Lemma 2.7.6 Let G be a
√

Dφ -box with maximum
√

Dφ -side-length s and Gi its subcells

produced by partitioning each side of G into two equal intervals under
√

Dφ . For all

nonempty subboxes Gi of G, we can find pi ∈ P∩Gi in O(2d logd n) total time complexity,

and the maximum
√

Dφ -side-length of any Gi is at most s√
2

.

Proof. Note that G is defined as a product of d intervals. For each interval, we can find

an approximate bisecting point under
√

Dφ in O(1) time. Here the bisection point x of

interval [ab] is such that
√

Dφ (a,x) =
√

Dφ (x,b). By resorting to the RTI for Dφ , we

get that Dφ (a,x) + Dφ (x,b) < s2 and hence Dφ (a,x) = Dφ (x,b) <
s2
2 which implies√

Dφ (a,x) =
√

Dφ (x,b)<
s√
2

. The rest of our proof follows as in lemma 2.5.3.

We now bound the number of cells that will be added to our search queue. We do so

indirectly, by placing a lower bound on the maximum
√

Dφ -side-length of all such cells,

and note that for the asymmetric case we get an additional factor of 1
µ+1.

Lemma 2.7.7 The
√

Dφ -diameter of an
√

Dφ -cube C of
√

Dφ -side-length s is bounded

by (µ +1)
√

ds.

Proof. Since the cube may be covered by a
√

Dφ -left-ball of radius
√

ds placed at a

suitably chosen corner (by lemma 2.3.6), lemma 2.7.1 bounding the diameter of such a ball

gives the required bound on the diameter of the cube.

Lemma 2.7.8 Algorithm 5 (with
√

Dsφ replaced by
√

Dφ) will not add the children of

node C to our search queue if the maximum
√

Dφ -side-length of C is less than
εD(nnq,q)

2µ(µ+1)
√

d
.

Proof. Let ∆(C) represent the diameter or maximum distance between any two points of

cell C.

46

By construction, we can expand C only if some subcell of C contains a point p such that
√

Dφ (p,q)≤ (1− ε
2)Dnear. Note that since C is examined, we have Dnear ≤ p(repC,q).

Now assuming we expand C, then we must have:

√
Dφ (repC,q)−

√
Dφ (p,q)< µ∆(C)

Dnear−
(

1− ε

2

)
Dnear < µ∆(C)

ε

2
Dnear < µ∆(C)

ε

2µ
Dnear < ∆(C).

Note that we substitute
√

Dφ (repC,q) < Dnear and that by the definition of Dnear as

our candidate nearest neighbor distance,
√

Dφ (nnq,q) < Dnear. Our main modification

from the symmetric case is that here ∆(C) < (µ + 1)
√

ds by lemma 2.7.7, where s is the

maximum side-length of C, as opposed to
√

ds.

The main difference between this lemma and lemma 2.5.4 is the extra factor of µ + 1

that we incur (as discussed) because of asymmetry. We only need do a little more work to

obtain our final bounds:

Lemma 2.7.9 Given a
√

Dφ -cube G of
√

Dφ -side-length Drough, and letting x= 1
εd 2dµd(µ+

1)dd
d
2


 Drough√

Dφ (nnq,q)




d

we can compute a (1+ ε)- right sided nearest neighbor to q in

G in O(x2 logd n) time.

Proof. Consider a quadtree search from q on a
√

Dφ -cube G of
√

Dφ -side-length Drough.

By lemma 2.7.8, our algorithm will not expand cells with all
√

Dφ -side-lengths smaller

than ε

√
Dφ (nnq,q)/2µ(µ + 1)

√
d. But since the

√
Dφ -side-length reduces by at least a

factor of
√

2 in each dimension upon each split, all
√

Dφ -side-lengths are less than this

value after k = log√2

(
2Droughµ(µ +1)

√
d/ε

√
Dφ (nnq,q)

)
repeated bisections of our

root cube. Observe now that O(logd n) time is spent at each node by lemma 2.7.6, that at

the k-th level the number of nodes expanded is 2kd , and that log√2 n = (log2 n)2. We then

get a final time complexity bound of

O

(
(1/ε

2d)22d
µ

2d(µ +1)2ddd
(

Drough/
√

Dφ (nnq,q)
)2d

logd n

)
.

47

Substituting Drough = µ2 log(n)
√

Dφ (nnq,q) in lemma 2.7.9 gives us a bound of

O
(

22d 1
ε2d µ6d(µ +1)2ddd log3d n

)
. This time is per cube of F that covers right-ball

B(q,Drough). Noting that there are 2d such cubes gives us a final time complexity of

O
(

23d 1
ε2d µ6d(µ +1)2ddd log3d n

)
. The space bound follows as in Section 2.5.

2.7.3 Logarithmic bounds for asymmetric Bregman divergences

We now extend our logarithmic bounds from Section 2.6 to asymmetric Bregman di-

vergence
√

Dφ . First note that the following lemma goes through by identical argument to

lemma 2.6.1.

Lemma 2.7.10 Given an interval I = [x1x2]⊂ R s.t. x1 < x2, De(x1,x2) = re and
√

Dφ (x1,x2) = rφ , suppose we divide I into m subintervals of equal length under De with

endpoints x1 = a0 < a1 < .. . < am−1 < am = x2 where De(ai,ai+1) = re/m, for all

i ∈ [0 . . .m−1]. Then
rφ

c0m ≤
√

Dφ (ai,ai+1)≤
c0rφ

m .

Corollary 2.7.3 If we recursively bisect an interval I = [x1x2]⊂R s.t. De(x1,x2)= re and√
Dφ (x1,x2) = rφ into 2i equal subintervals (under De), then

rφ

c02i ≤
√

Dφ (ak,ak+1)≤
c0rφ

2i for any of the subintervals [akak+1] so obtained. Hence after i = dlog
c0rφ

x e subdi-

visions, all intervals will be of length at most x under
√

Dφ .

We now construct a compressed Euclidean quad tree as before, modifying the Section

2.6 analysis slightly to account for the weaker packing bounds for
√

Dφ and the extra µ+1

factor on the diameter of a cell.

Theorem 2.7.1 Given an asymmetric decomposable Bregman divergence Dφ that is µ-

defective over a domain with associated c0 as in Section 2.6, we can compute a (1+ ε)-

approximate right-near-neighbor in time O

(
(µ +1)dd

d
2 logn+

(
2c0

4(µ+1)µ3√d
ε

)d)
.

We note our first new lemma, a slightly modified packing bound due to
√

Dφ not

having a direct RTI.

48

Lemma 2.7.11 Given an interval [x1x2]⊂R s.t.
√

Dφ (x1,x2) = r > 0, and intervals with

endpoints a0 < a1 < .. . < am−1 < am, s.t. for all i ∈ [0 . . .m− 1],
√

Dφ (ai,ai+1) ≥ l,

at most O(
c0r

l) such intervals intersect [x1x2].

Proof. By the Lagrange form,

l
r
<

√
Dφ (ai,ai+1)
√

Dφ (x1,x2)
< c0

De(ai,ai+1)
De(x1,x2)

, (2.13)

or we can say that
De(ai,ai+1)
De(x1,x2) > l

rc0
. The RTI for De then gives us the required result.

Corollary 2.7.4 Given a ball B of radius r under
√

Dφ , there can be at most cd
0(

r
l)

d

disjoint
√

Dφ -cubes that can intersect B where each cube has side-length at least l under
√

Dφ .

As before, we find the smallest enclosing Bregman cube of side-length s that encloses

our point set, and then construct a compressed Euclidean quadtree in preprocessing. Let Li
denote the cells at the i-th level.

Lemma 2.7.12 Given a
√

Dφ right-ball B of radius r under
√

Dφ , let i = log s
c0r . Then

|Li ∩B| ≤ O(c0
d) and the side-lengths of each cell in Li are between r and c0

2r under
√

Dsφ . We can also explicitly retrieve the quadtree cells corresponding to |Li ∩ B| in

O(c0
d logn) time.

Proof. Note that for cells in Li, we have
√

Dφ -side-lengths between s
c02i and c0s

2i by

Corollary 2.7.3. Substituting i = log s
c0r , these cells have side-length between r and c0

2r

under
√

Dsφ . Now, we look in each dimension at the number of disjoint intervals of length

at least r that can intersect B. By lemma 2.7.11, this is at most c0. The rest of the proof

follows as in lemma 2.6.2.

We first obtain in O(logn) time with our asymmetric ring-tree an O(n) ANN qrough to

query point q, such that Drough =
√

Dφ (qrough,q) = O
(

µ2n
√

Dφ (nnq,q)
)

.

We then use lemma 2.7.12 to get O(c0
d) cells of our quadtree that intersect right-ball

B
(

q,
√

Dφ (qrough,q)
)

. Let us call this collection of cells as Q. We then carry out a

49

quadtree search on each element of Q. Note that we expand only cells which may contain

a point nearer to query point q than the current best candidate. We bound the depth of our

search using µ-defectiveness similar to lemma 2.6.4.

Lemma 2.7.13 We need only expand cells of
√

Dφ -diameter greater than
ε

√
Dφ (nnq,q)

2µ

Proof. By µ-defectiveness, similar to lemma 2.5.4.

Corollary 2.7.5 We will not expand cells where the length of each side is less than x =

ε

√
Dφ (nnq,q)

2µ(µ+1)
√

d
under

√
Dφ .

Proof. Note that a quadtree cell C where every side-length is less than x can be covered

by a ball of radius
√

dx under
√

Dφ with appropriately chosen corner as center of ball,

as explained in proof of lemma 2.3.6. Now by lemma 2.7.1,
√

Dφ (a,b) ≤ (µ + 1)
√

dx,

∀a,b ∈ C. Substituting for x from lemma 2.7.13, the
√

Dφ -diameter of C is at most

ε

√
Dφ (nnq,q)

2µ
.

Let the spread be β =
Drough√
Dφ (nnq,q)

= O(µ2n).

Lemma 2.7.14 We will only expand our tree to a depth of k = log(2c3
0µ(µ +1)β

√
d/ε).

Proof. Note first that Drough = O
(

β

√
Dφ (nnq,q)

)
. Then by lemma 2.7.12, each of the

cells of our corresponding quadtree is of
√

Dφ -side-length at most c2
0Drough. Using 2.7.5

to lower bound the minimum
√

Dφ -side-length of any quadtree cell expanded, and 2.7.3

to bound number of bisections needed to guarantee all
√

Dφ -side lengths are within this

gives us out bound.

Lemma 2.7.15 ni < 2d(µdd
d
2 c5d

0 +(
c2
02i

β
)d) cells are expanded at the i-th level.

Proof. Recalling that the cells of Q start with all
√

Dφ -side-lengths at most c2
0Drough, at

the i-th level the side-length of a cell C is at most
c3
0Drough

2i under
√

Dφ by Corollary 2.7.3.

50

And using lemma 2.7.1, ∆C <
√

d(µ +1)
c3
0Drough

2i . Hence by µ-defectiveness there must

be a point at distance at most Dbest =
√

Dφ (nnq,q)+
µ(µ+1)c3

0
√

dDrough
2i .

The
√

Dφ -side-length of a cell C at this level is at least
Drough

c02i , so the number of cells

expanded is at most ni = cd
0(

Dbest
∆c)d = cd

0(µ(µ +1)
√

dc4
0 +

c02i

β
)d , by Corollary 2.7.4.

Using the fact that (a+b)d < 2d(ad+bd), we get ni < 2d
(

µd(µ +1)dd
d
2 c5d

0 +(
c2
02i

β
)d
)

.

Simply summing up all i, the total number of nodes explored is

O(2d
µ

d(µ +1)dc5d
0 log(2c3

0µβ
√

d/ε)+22dc5d
0 µ

d(µ +1)dd
d
2 /ε

d),

or

O
(

2d
µ

d(µ +1)dc5d
0 logn+22dc5d

0 µ
d(µ +1)dd

d
2 /ε

d
)
,

after substituting back for β and ignoring smaller terms. Recalling that there are cd
0 cells

in Q adds a further cd
0 multiplicative factor. This time complexity of this quadtree phase

(number of cells explored) of our algorithm dominates the time complexity of the ring-

tree search phase of our algorithm, and hence is our overall time complexity for finding a

(1+ε) ANN to q. For space and preconstruction time, we note that compressed Euclidean

quadtrees can be built in O(n logn) time and require O(n) space (139), which matches our

bound for the ring-tree construction phase of our algorithm requiring O(n logn) time and

O(n) space.

2.8 Numerical arguments for bisection
In our algorithms, we are required to bisect a given interval with respect to the distance

measure D, as well as construct points that lie a fixed distance away from a given point.

We note that in both these operations, we do not need exact answers: a constant factor

approximation suffices to preserve all asymptotic bounds. In particular, our algorithms

assume two procedures:

1. Given interval [ab]⊂R, find x̄ ∈ [ab] such that (1−α)
√

Dsφ (a, x̄)<
√

Dsφ (x̄,b)<

(1+α)
√

Dsφ (a, x̄).

51

2. Given q ∈ R and distance r, find x̄ s.t |
√

Dsφ (q, x̄)− r|< αr.

Cayton presents a similar bisection procedure (39) as ours for the second task above,

although our analysis of the convergence time is more explicit in our parameters of µ

and c0. For a given
√

Dsφ : R→ R and precision parameter 0 < α < 1, we describe a

procedure that yields an 0 < α < 1 approximation in O(logc0 + log µ + log 1
α) steps for

both problems, where c0 implicitly depends on the domain of convex function φ :

c0 =

√
max

1≤i≤d

(
max

x
φ ′′i (x)/min

y
φ ′′i (y)

)
. (2.14)

Note that this implies linear convergence. While more involved numerical methods

such as Newton’s method may yield better results, our approximation algorithm serves as

proof-of-concept that the numerical precision is not problematic.

A careful adjustment of our NN-analysis now gives a time complexity to compute a (1+

ε)-ANN to query point q of O
((

log µ + logc0+ log 1
α

)
22d(1+α)d 1

εd µ3dd
d
2 log2d n

)
.

We now describe some useful properties of Dsφ .

Lemma 2.8.1 Consider
√

Dsφ : R→R such that c0 =
√

maxx φ ′′(x)/miny φ ′′(y). Then

for any two intervals [x1x2], [x3x4]⊂ R ,

1
c0

|x1− x2|
|x3− x4|

<

√
Dsφ (x1,x2)

√
Dsφ (x3,x4)

< c0
|x1− x2|
|x3− x4|

. (2.15)

Proof. The lemma follows by the definition of c0 and by direct computation from the

Lagrange form of
√

Dsφ (a,b), i.e.,
√

Dsφ (a,b) =
√

φ ′′(x̄ab)|b−a|, for some x̄ab ∈ [ab].

Lemma 2.8.2 Given a point q ∈ R, distance r ∈ R, precision parameter 0 < α < 1 and a

µ-defective
√

Dsφ : R→ R, we can locate a point xi such that |
√

Dsφ (q,xi)− r|< αr in

O(log 1
α + log µ + logc0) time.

Proof. Let x be the point such that
√

Dsφ (q,x) = r. We outline an iterative process,

Algorithm 6, with i-th iterate xi that converges to x.

52

Let x0 > q be such that
√

φ ′′(q)
c0

(x0−q) = r
Let step = (x0−q)/2
repeat

if
√

Dsφ (q,xi)< r then
xi+1 = xi+ step

else
xi+1 = xi− step

end if
step = step/2

until |
√

Dsφ (q,xi)− r| ≤ αr

Return x̄ = xi
Algorithm 6: QueryApproxDist(q,r,c0,α)

First note that
√

φ ′′(q)
c0

≤
√

miny φ ′′(y) and
√

φ ′′(q)
c0

≥ maxz
√

φ ′′(z)
c2
0

. It immedi-

ately follows that r ≤
√

Dsφ (q,x0)≤ c2
0r.

By construction, |xi− x| ≤ |x0− q|/2i. Hence by lemma 2.8.1,
√

Dsφ (xi,x) <
c3
0r
2i .

We now use µ-defectiveness to upper bound our error |
√

Dsφ (q,xi)−
√

Dsφ (q,x)| at the

i-th iteration:

∣∣∣
√

Dsφ (q,xi)−
√

Dsφ (q,x)
∣∣∣<

µc3
0r

2i , (2.16)

choosing i such that (µc3
0)/2i ≤ α implies that i≤ log 1

α + log µ +3logc0.

An almost identical procedure can locate an approximate bisection point of interval

[ab] in O(log µ + logc0 + log 1
α) time, and similar techniques can be applied for

√
Dφ .

We omit the details here.

CHAPTER 3

A DIRECTED ISOPERIMETRIC INEQUALITY

WITH APPLICATION TO BREGMAN NEAR

NEIGHBOR LOWER BOUNDS

Bregman divergences retain many of the combinatorial properties of `2 and so exact

geometric algorithms based on space decomposition (Voronoi diagrams, convex hulls and

so on) can be used to compute the corresponding Bregman counterparts (34). But the diver-

gences are asymmetric1 and violate triangle inequality, and so break most approximation

algorithms for distance problems (clustering, near neighbor search and the like) that make

heavy use of these properties.

This “degree of violation” can be quantified as a scalar parameter µ that depends only

on the functional form of the divergence (not the size of input or its dimension). There are

many ways µ is defined in the literature (1, 4, 107), and these are all loosely related to the

view of µ as a measure of asymmetry: given a Bregman divergence D over a domain ∆,

define µ as maxx,y∈∆
D(x,y)
D(y,x) .

To the best of our knowledge, µ appears as a term in theoretical guarantees for all

constant factor approximation algorithms for geometric problems in these spaces. Indeed in

Chapter 2, our upper bounds for a (1+ε)-ANN for Bregman divergences in low dimensions

incorporated an exponential dependence on µ . This is highly unsatisfactory because µ can

grow without bound independent of the data size or dimensionality. It is therefore natural

to ask the question:

Is this dependence on µ intrinsic? Or are there clever algorithms that can

circumvent the effect of asymmetry for such problems?

c©2015 ACM. This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive version of record was published in STOC 2015,
http://dx.doi.org/10.1145/2746539.2746595.

1In fact the squared Euclidean distance is the unique symmetric Bregman divergence.

54

In this chapter we provide the first evidence that this dependence is indeed intrinsic

under a broad range of the parameters n and d (namely d � logn). We focus on the

fundamental problem of ANN search, which has been studied extensively for Bregman

divergences.

3.1 Main results
We show the following under the cell probe model for uniform Bregman divergences

(loosely speaking, distances composed as a sum of d identical measures):

Theorem 3.1.1 For a uniform Bregman divergence D with measure of asymmetry µ in each

dimension, let L = min
(

d
logn ,µ

)
. Any nonadaptive data structure which in r probes can

return even a c′ approximation to the nearest neighbor under D with constant probability

(over the choice of query) requires Ω(dn1+Ω(L/c′r)) space.

In particular, this lower bound applies to methods based on locality-sensitive hashing

and to several popularly used divergences such as the Kullback-Leibler or Itakura-Saito

distances. Note that in comparison to the space lower bound of Ω(dn1+Ω(1/cr)) for

Euclidean (or `1) ANN (128) which is subquadratic and near linear for sufficiently high c,

the space lower bound here is polynomial in n with an exponent of Ω(µ) for constant factor

approximations and (as we show later) strengthens upto µ = Θ(d/ logn).2 This indicates

the increased hardness introduced by asymmetry.

3.1.1 ANN and Partial Match

There is one aspect of our work that may be of independent interest. Separately from

our main result, we can show a direct reduction from geometric problems on the Hamming

cube to the equivalent problems for Bregman divergences. In Section 3.11.2 we find a

very interesting “interpolation” of lower bounds parametrized by µ: a constant factor

approximation for Bregman ANN with µ = O(1) implies a constant factor approximation

for ANN under `1, and a similar approximation for Bregman ANN with µ = Ω(d) implies

a constant factor approximation for Partial Match, which is a notoriously hard problem.

Intriguingly while lower bounds for Partial Match are in general higher than those of ANN,

2Note that since there are 2d points on the cube, we must have that d > logn just to fit all the point set in
the cube.

55

at the intermediate point µ = Θ(d
logn) in the interpolation we already obtain lower bounds

that are as strong as those known for Partial Match (with the qualifier that our analysis

restricts to nonadaptive algorithms).

One interpretation of this is that µ captures the intuition that Partial Match is an “asym-

metric” version of ANN. It would also be interesting if this directed perspective allows

us to obtain improved lower bounds for Partial Match itself by a reduction in the opposite

direction. Indeed in the strictly linear space regime, the lower bound of Ω(d) queries for our

asymmetric ANN is stronger than those known for Partial Match (Ω(d/ logd) for adaptive

algorithms by (131)).

3.2 Overview of our approach
Our approach makes use of the Fourier-analytic approach to proving lower bounds for

(randomized) near-neighbor data structures that has been utilized in a number of prior

works (112, 128, 129). This approach generally works as follows: one thinks of the

purported data structure as a partition of the Hamming cube, and in particular as a function

defined on the Hamming cube. Then one shows that any such function is “expansive”

with respect to small perturbations: in effect, that points scatter all over the cube. As a

consequence, probing any particular cell of a data structure does not yield enough use-

ful information because of the scattering, and one has to make many probes to be sure.

The key technical result is showing that the function is expansive, and this is done using

Fourier-analytic machinery, and hypercontractivity of the noise operator in particular (124).

One also needs to construct a “gap instance” where the gap between nearest neighbor and

second nearest neighbor is large.

While black-box reductions from `1-ANN can yield weak lower bounds for Bregman

divergences (see Section 3.11.1), we need a much stronger argument to get a µ-sensitive

bound. Specifically, we need the following components:

• A gap instance: We create an instance that separates a near neighbor at distance

εd from a second nearest neighbor at distance µd. To do so, we define a Bregman

hypercube and associated asymmetric noise operator (with different probabilities of

changing 0 to 1 and 1 to 0) and observe our gap is far stronger than the natural

symmetric analog - Ω

(
µ
ε

)
vs Ω

(
1
ε

)
.

56

• Directed hypercontractivity: The Fourier-analytic machinery breaks down for our

noise operator because of lack of symmetry. Indeed, a simple example shows that

a natural directed analog of the Bonami-Beckner (BB) inequality cannot be true.

Instead, we prove a directed BB inequality in Section 3.6 that is true “on average”, or

on a subset of the hypercube, which will be sufficient for our lower bound. We prove

this by relating the norm of the directed noise operator to related norms on biased

(but symmetric) measure spaces, allowing us to make use of BB-type inequalities in

these spaces.

• A scatter lemma: Showing that points “scatter” is relatively easy in symmetric

spaces: in the directed setting, the argument can be made in a similar way but requires

a nontrivial analysis of associated collision rates and inner products which we carry

out in Section 3.8.

• An information-theoretic argument: We borrow the argument used by (128). Es-

sentially, the scatter lemma shows a small sampling of the cells of a successful

data structure must resolve many query points and thus will have high information

content. This allows us to lower bound the space required by such a structure in

Section 3.10 and obtain Theorem 3.1.1.

3.3 Related work
As discussed earlier in this dissertation, while exact algorithms for Euclidean case can

often be applied to the Bregman divergences almost unchanged, the parallels to do not

carry over to the approximate setting with the lack of a triangle inequality and symmetry

rendering most tools for algorithm design useless. The algorithms that do exist in the

literature generally attempt a work around via a structure constant µ . This constant is at

least 1, and grows larger as the space becomes increasingly nonmetric. For ANN search,

in Chapter 2 we gave an algorithm that is efficient in constant dimensions. Our algorithm

yielded a 1+ ε approximate nearest neighbor with an additional dependence on µO(d)

besides standard dependence on factors of 1
εO(d) and logn. Indeed, the results in this

chapter emerged as a consequence of attempting to extend our results to higher dimensions.

Lower bounds for near neighbor search in metric spaces have been studied exten-

sively. Borodin, Ostrovsky and Rabani (35) show a lower bound that any randomized

57

cell probe algorithm for the exact match problem that must probe at least Ω(logd) cells.

Barkol and Rabani improve this bound to Ω(d
logn) cells (28). Liu (103) proves a lower

bound of d1−o(1) on the query time of a deterministic approximate nearest neighbor

algorithm in the cell probe model, whereas Chakrabarti and Regev give a lower bound

of Ω

(log logd
log loglogd

)
for the randomized case (41).

Our work is in the spirit of the program initiated by Motwani, Naor and Panigrahy (112),

who analyze a random walk in the Hamming cube to lower bound the LSH quality parame-

ter ρ as 1
2c (c is the separation between near and far points). O’Donnell, Wu and Zhou (125)

later tighten this to 1
c . Panigrahy, Talwar and Wieder (128) use the Boolean noise operator

to simulate perturbations on the Hamming cube, and use hypercontractivity to show that

these Hamming balls touch many cells of a data structure and obtain space-query trade off

cell probe lower bounds. They then extend these to broader classes of metric spaces with

certain isoperimetric properties of vertex and edge expansion (129). This is not a compre-

hensive survey; (129) gives a good overview of several of the known lower bounds. All of

the above approaches use Fourier analysis on Boolean functions over the hypercube. This

is a vast literature that we will not survey here: the reader is pointed to Ryan O’Donnell’s

lecture notes (124). In particular, we make use of results by Keller (91) and Ahlberg et

al. (6) on the analysis of the noise operator in biased spaces.

3.4 The Bregman cube and redefining µ

We recall from Chapter 1 the definition of decomposable Bregman divergences. Sup-

pose the inducing convex function φ has domain M = ∏
d
i=1 Mi and can be written as

φ(x) = ∑
d
i=1 φi(xi), where φi : Mi ⊂ R→ R is also strictly convex and differentiable in

relint(Mi). Then

Dφ (x,y) =
d
∑

i=1
Dφi

(xi,yi)

is a decomposable Bregman divergence. We introduce here the special case of a uni-

form Bregman divergence which is a decomposable Dφ where all the φi,1 ≤ i ≤ d are

identical. In this case, we simply refer to each φi as φR : R → R and we have that

φ(x) = ∑
d
i=1 φR(xi). Note that most commonly used Bregman divergences are uniform,

including the Kullback-Leibler, Itakura-Saito, Exponential distance and Bit entropy. In

what follows we will limit ourselves to uniform Bregman divergences.

58

3.4.1 Quantifying asymmetry

It is clear from the definition of Dφ that in general Dφ (x,y) 6=Dφ (y,x). In what follows,

we redefine the measure of asymmetry as µ = maxx,y∈M
Dφ (x,y)
Dφ (y,x)

.

By construction, µ ≥ 1. But it is not arbitrary; rather, it is a function of the generating

convex function φ and the domain over which it is defined. To see this, recall that the Breg-

man divergence Dφ (x,y) can be viewed as the error (evaluated at x) incurred in replacing φ

by its first-order approximation φ̃(x) = φ(y)+〈∇φ(y),x−y〉. By the Lagrange mean-value

theorem, this error can be written as the quadratic form Dφ (x,y) = 〈x− y,∇2φ(c)(x− y)〉
where ∇2φ is the Hessian associated with φ , and c = c(x,y) is some point on the line

connecting x and y. Note that this point c will general be different to the point c′ that

achieves equality when measuring Dφ (y,x).

Thus
Dφ (x,y)
Dφ (y,x)

is bounded by the ratio of the maximum to minimum eigenvalue that the

Hessian ∇2φ realizes over the domain M. In particular, µ need not depend on the number

of points n or the dimension d.

Most prior work on algorithms with Bregman divergences focus on violations of the

triangle inequality, rather than symmetry, including our own definition of µ in Chapter 2.

However, the different variants of µ defined there all relate in similar fashion to the ratio of

eigenvalues of the Hessian of φ , and can be shown to be loosely equivalent to each other; in

the sense that if the measure of asymmetry µ grows without bound, so do these measures.

3.4.2 The Bregman cube

We introduce a new structure, the Bregman cube Bφ = {0,1}d along with asymmetric

distance measure D. This is combinatorially equivalent to a regular Hamming cube, but

where distances of 1 and µ are associated with flipping a bit from 1 to 0 and 0 to 1,

respectively. More precisely, given D : {0,1}d ×{0,1}d → R and asymmetry parameter

µ , we stipulate:

D(x,y) = µ|{i : yi > xi}|+ |{ j : x j > y j}|,∀x,y ∈ {0,1}d . (3.1)

We note now how Bφ and the associated measure D can be induced from a uniform

Bregman divergence Dφ on Rd . Let the asymmetry parameter µ of DφR
be realized by

points a, b ∈ R. W.l.o.g. (due to scaling) assume DφR
(b,a) = 1 and DφR

(a,b) = µ . Then

59

distances on Bφ with parameter µ correspond exactly to those on {a,b}d ⊂Rd under Dφ .

See Figure 3.1.

We use standard notation to define a “c-approximate nearest neighbor” (c-ANN) for

query point q and point set P under D. Namely, let p′ ∈ P be a “c-approximate nearest

neighbor” to q if D(q, p′)≤ cminp∈P D(q, p). We also fix q to be the first argument in the

asymmetric distance D to maintain consistency.

3.5 Preliminaries of Fourier analysis
3.5.1 Basis and Fourier coefficients

Let the p-biased measure κp = (pδ{1} + (1− p)δ{0})⊗d be the product measure

defined over the hypercube {0,1}d . Note that for p = 1/2 this is the uniform measure over

binary strings of length d. All expectations and norms are implicitly defined according to

the choice of measure κp as follows:

For any function f : {0,1}d → R, let

1. Ep[f] = ∑x∈{0,1}d κp(x) f (x).

2. ‖ f‖ j,p =

(
∑x∈{0,1}d κp(x) f (x) j

)1/ j
.

It is well known that there is a natural Fourier basis for the space Fp of all functions f :

{0,1}d → R with respect to κp (see for example, (6, 91, 124)). For each x ∈ {0,1}d and

i ∈ [d] let

χ
p
i =





√ p
1−p xi = 0

−
√

1−p
p xi = 1

.

10 11

00 01

1

1µ

µ

Figure 3.1. Asymmetric distances.

60

The set of χ
p
i corresponds to a bit wise parity basis which we can extend to arbitrary

S ⊂ [n] as χ
p
S (x) = ∏i∈S χ

p
i (x). The resulting χ

p
S form an orthonormal basis of Fp. That

is, we can define the Fourier coefficient corresponding to a S⊂ [n] as:

f̂ (p)(S) = ∑
x∈{0,1}d

κp(x) f (x)χ p
S (x). (3.2)

And hence obtain that

f = ∑
S⊆[n]

f̂ (p)(S)χ p
S . (3.3)

The orthonormality of the χ
p
S immediately yields the Parseval identity

‖ f‖22,p = Ep[f 2] = ∑
S⊆[n]

(
f̂ (p)(S)

)2
. (3.4)

See (124) for a full discussion of the parity basis. We note that wherever we drop the

superscript and simply write f̂ (S) or χS, we intend f̂ (1/2)(S) and χ

1
2
S , respectively.

3.5.2 Noise operator and hypercontractivity

For x ∈ {0,1}d , let y be the random variable obtained by flipping each bit of x with

probability p. The noise operator T
δ

f for a function f is defined as the expectation of f

over y of T
δ

f (x) = Ey[f (y)]:

T
δ

f (x) = Ey[f (y)].

In the case of the uniform measure κ1
2

, T
δ

f can be written as

T
δ

f = ∑
S
(1−2δ)|S| f̂ (1/2)(S)χS.

More generally, given a function f and choice of measure κp we define the operator

τ
δ

f = ∑
S

δ
|S| f̂ p(S)χS. (3.5)

And we note that T
δ
= τ1−2δ

for the uniform measure.

Theorem 3.5.1 (Hypercontractivity(124))

‖τ
δ

f‖
2,12
≤ ‖ f‖

1+δ 2,12
. (3.6)

61

The above result holds for the uniform measure space (p = 1/2) but can also be considered

in general p-biased measure spaces. The hypercontractivity problem in this context is

to find C(p,δ) such that ‖τ
δ

f‖2,p ≤ ‖ f‖1+C(p,δ),p. Partial results were obtained by

Talagrand (146), Friedgut (68) and Kindler (93), whereas stronger bounds were obtained

by Diaconis and Saloff-Coste (62) and the optimal known value of C(p,δ) was obtained

by Oleskiewicz (126).

We prefer the following formulation of a bound on C(p,δ) by Keller (91) due to

convenience in some algebraic cancellations:

Theorem 3.5.2 Let p̄ = min(p,1− p), where 0≤ p≤ 1. Then for any δ ≥ 0,

s.t. δ2

√
p̄blog 1

p̄c
1−p̄ ≤ 1, we have 3

‖τ
δ

f‖2,p ≤ ‖ f‖1+δ 2(1−p̄)/(p̄blog1/p̄c),p. (3.7)

Observe that if we set p = 1/2 the general expression described in Theorem 3.5.2 reduces

to the special case of Theorem 3.5.1. We also note that the constants in our main result of

Theorem 3.1.1 may improve slightly if we use, for instance, the optimal value of the hyper-

contractivity parameter from Oleskiewicz (126); however the asymptotics are unaffected.

3.6 Isoperimetry in the directed hypercube
3.6.1 The asymmetric noise operator

For any point x ∈ {0,1}d , let νp1,p2(x) be the distribution obtained by independently

flipping each 0 bit of x to 1 with probability p1 and each 1 bit of x to 0 with probability p2.

Definition 5 (Asymmetric noise operator) The asymmetric noise operator Rp1,p2 is an

operator defined on functions over {0,1}d and is defined as

[Rp1,p2 f](x) = Ey∼νp1,p2(x)
[f (y)].

We note that Benjamini, Kalai and Schramm (30) study a version of this asymmetric noise

in the context of percolation crossings, and that the formulation of Rp,0 by Ahlberg et

al.(6) as a Fourier operator is highly useful in our analysis. We observe first that if we set

3In the remainder of the chapter we drop the floor arguments, which do not affect any of the asymptotics
of our result.

62

p = p1 = p2, then Rp1,p2 = Tp. There is in fact a stronger relationship between the two

operators.

Theorem 3.6.1 If p1 ≥ p2, p1 ≤ 1− p2 then Rp1,p2 = Tp2R p1−p2
1−2p2

,0
.

Proof. The overall transition probabilities from a 0 to a 1 and vice versa must match on

both sides of the equation. Therefore if we set Rp1,p2 = Tp′Rp′′,0, then the following two

equations must hold true:

p2 = p′.

p1 = (p′′)(1− p′)+(1− p′′)p′.

Solving this system yields us p′ = p2 and p′′ = p1−p2
1−2p2

.

Our goal is to prove hypercontractivity for Rp1,p2 . By the decomposition given in

Theorem 3.6.1 and known hypercontractivity bounds for Tp, it will suffice to study how

Rp,0 affects the Fourier coefficients of f . This turns out to be intimately related to the

p-biased measure κp. We will combine this with standard hypercontractivity results for

Tp to obtain the desired bound. (Bounds for R0,p follow by easy analogy and are also

presented, although not needed for our main results.) Since we are looking at asymptotic

bounds, it will be best to think of both p1 and p2 as smaller than a fixed constant, say 1
100.

3.6.2 Hypercontractivity of Rp,0
Suppose we are given a function f : {0,1}d → R.

Lemma 4.2 (6) shows that the Fourier coefficients of the asymmetric perturbation of f

in a uniform space are related to the Fourier coefficients of f in a biased space.

Theorem 3.6.2 ((6))

R̂0,p f
(1/2)

(S) =

(√
1− p
1+ p

)|S|
f̂

(
1−p

2

)
(S).

R̂p,0 f
(1/2)

(S) =

(√
1− p
1+ p

)|S|
f̂

(
1+p

2

)
(S).

Using this, we obtain the following result relating the asymmetric operator Rp,0 and R0,p
to the symmetric operator τ

δ
in a biased space.

63

Theorem 3.6.3

‖R0,p f‖
2,12

= ‖τ√
1−p
1+p

f‖
2,1−p

2
. (3.8)

‖Rp,0 f‖
2,12

= ‖τ√
1−p
1+p

f‖
2,1+p

2
. (3.9)

Proof. The proof follows by combining Parseval’s identity with the definition of τ
δ

in

Equation (3.5).

Theorem 3.6.3 does not directly imply hypercontractivity for Rp,0 under the uniform

measure. Instead, it relates the l2 norm of Rp,0 f to the norm of f in a biased measure space.

Indeed there can be adversarial choices of f where the norm increases under perturbation

by Rp,0.

We give an example. Consider the function f : {0,1}→R. Let f (0) = 0 and f (1) = 1.

Then Rp,0 f (0)= p and Rp,0 f (1)= 1. In particular ‖Rp,0 f‖22,1/2 =
p2+1

2 > ‖ f‖2,1/2 =

1
2 which indicates no hypercontractivity.

We address this issue in two parts. Firstly, we use the biased Bonami-Beckner inequal-

ity (Theorem 3.5.2) to relate the right-hand side of Eq. (3.9) to the norm of f .

Theorem 3.6.4

‖τ√
1−p
1+p

f‖
2,1−p

2
≤ ‖ f‖

1+ 1
1−log(1−p) ,

1−p
2

. (3.10)

‖τ√
1−p
1+p

f‖
2,1+p

2
≤ ‖ f‖

1+ 1
1−log(1−p) ,

1+p
2

. (3.11)

Proof. We recall first the statement of Theorem 3.6.3:

‖Rp,0 f‖
2,12

= ‖τ√
1−p
1+p

f‖
2,1+p

2
.

We combine this with the biased hypercontractivity claim of Theorem 3.5.2 which states:

‖τ
δ

f‖2,p̄ ≤ ‖ f‖
1+ 1−p̄

p̄blog 1
p̄c

δ 2,p̄
.

64

We note the p̄ there is the smaller of the measures of 0 or 1 in the product space. Hence we

plug in p̄ =
1−p

2 and δ =

√
1−p
1+p to obtain:

1+δ
2 1− p̄

p̄ log 1
p̄

=1+

(√
1− p
1+ p

)2(
1− 1− p

2

)
/

(
1− p

2
log
(

1/
1− p

2

))

=1+
(

1− p
1+ p

)(
1+ p
1− p

)
/

1

log 2
1−p

=1+
1

1− log(1− p)
.

The second result claimed in the theorem statement follows almost identically.

The second and final part of the argument is to relate the norms of f in the unbiased and

biased spaces. Recall that our ultimate aim is to bound ‖Rp,0 f‖
2,12

by ‖ f‖
1+ 1

1−log(1−p) ,
1
2

.

Let us limit f : {0,1}d → {0,1} to take its support from the lower half of the Hamming

cube, which we stipulate as L = {x : ∑i xi ≤ 1
2d}. We can define the upper half of the

Hamming cube L analogously. Whenever we refer to a function fU , this will be understood

to have support only on the upper half of the Hamming cube, whereas fL will have support

only on the lower half.

Theorem 3.6.5 For any parameters δ > 1 and 1
2 ≤ p≤ 1, we have:

‖ fL‖δδ ,p ≤ ‖ fL‖δ
δ ,12

. (3.12)

And for 0≤ p≤ 1
2 , we have:

‖ fU‖δδ ,p ≤ ‖ fU‖δ
δ ,12

. (3.13)

Proof. The first inequality follows because points in the lower half of the hypercube

have larger measure under the uniform distribution than under the p-biased distribution

for p > 1
2. The second claimed inequality follows by symmetry.

By Theorems 3.6.3, 3.6.4 and 3.6.5 we finally obtain that:

65

Theorem 3.6.6

‖R0,p fU‖2,12
≤ ‖ fU‖1+ 1

1−log(1−p) ,
1
2
. (3.14)

‖Rp,0 fL‖2,12
≤ ‖ fL‖1+ 1

1−log(1−p) ,
1
2
. (3.15)

We will find the following asymptotic form of our result useful, and indeed this is our

main tool employed in Section 3.8.

Corollary 3.6.1

‖R0,p fU‖2,12
≤ ‖ fU‖2−p loge+O(p2),12

. (3.16)

‖Rp,0 fL‖2,12
≤ ‖ fL‖2−p loge+O(p2),12

. (3.17)

Proof. By employing the Taylor expansions of log(1− x) and 1/(1− x).

We can now generalize to the case of Rp1,p2 . Let p1 ≥ p2 , and define fL as before.

We do not use the following theorem in the remainder of this chapter, but we include it for

the interested reader who seeks a complete statement of the hypercontractivity result.

Theorem 3.6.7 For p1 ≥ p2, and both p1, p2 ≤ 1
4 , we have that:

‖Rp1,p2 fL‖2,12
≤ ‖ fL‖1+(1−2p2)

2/
(

1−log
(1−p1−p2

1−2p2

))
,12
. (3.18)

Proof. First note by Theorem 3.6.1, we have Rp1,p2 = Tp2R p1−p2
1−2p2

,0
. Now let p =

p1−p2
1−2p2

. Recalling Theorem 3.6.2 and that Tp2 = τ1−2p2
, we obtain

‖Tp2Rp,0 fL‖2,12
= ‖τ(1−2p2)

τ√
1−p
1+p

fL‖2,1+p
2

. (3.19)

Now using the fact that τaτb = τab , and by a similar calculation as in Theorem 3.6.4 for

hypercontractivity in a biased measure space, we obtain

‖ τ

(1−2p2)

√
1−p
1+p

fL‖2,1+p
2
≤ ‖ fL‖

1+
(1−2p2)

2
1−log(1−p) ,

1+p
2

. (3.20)

We can combine equation 3.20 with Theorem 3.6.5 to get:

‖Tp2Rp,0 fL‖2,12
≤ ‖ fL‖

1+
(1−2p2)

2
1−log(1−p) ,

1
2

. (3.21)

Now substituting back the value of p =
p1−p2
1−2p2

into equation 3.21 we obtain the claimed

result.

66

3.7 Hard input distributions for the Bregman cube
We now describe the construction of a hard input distribution for the Bregman cube.

The key properties of this distribution will be that a query point will (in expectation) either

have a near neighbor within distance O(εd), or will not have any neighbor closer than

Ω(µd). Note that in contrast, the corresponding gap distribution for the Hamming cube via

the symmetric noise operator has a gap of O(εd) for the nearest neighbor versus Ω(d) for

the second nearest neighbor. Finally, for the purposes of our result and this paper we will

assume µ ≥ 1
ε .

3.7.1 Generating our input and query on the cube

Define a random perturbation ν : {0,1}d→{0,1}d as a random binary string νp1,p2(x)

obtained by flipping any 0 bit in x to 1 with probability p1 and a 1 bit to 0 with probability

p2. In what follows, assume that p1 = ε < 1
100 and p2 = ε

µ .

Uniformly at random pick n elements S = {s1,s2, . . .sn} from the set L = {x ∈ {0,1}d

s.t ∑(x) ≤ d
2}, which is the lower half of the Bregman cube. We first perturb S to obtain

P = ν
ε/µ,ε (S). We then perturb S in the opposite direction, to obtain Q = ν

ε,ε/µ
(S). We

now assign P to be our data set and choose our query point q uniformly at random from Q.

Theorem 3.7.1 Let q be the perturbation of s ∈ S, and p ∈ P be the corresponding point

of P. Then for µ = O
(

εd
logn

)
and with high probability (at least 1−1/poly(n)):

1. ∀p′ 6= p, p′ ∈ P, D(q, p′) = Ω(µd).

2. D(q, p) = Θ(εd).

3. ∀p′ 6= p, p′ ∈ P , D(q,p′)
D(q,p) = Ω(µ/ε).

Proof. We focus on the distance induced by a single bit, and multiply by d to get the overall

distance (follows from each bit being chosen identically and independently).

For the first claim, we show that D(qi, p′i) = Ω(µ) with high probability. To aid our

argument, we define the Hamming weight of a point as H(x) = ∑i(xi). Now Chernoff

concentration bounds give us that if C = {x ∈U |0.5 ≤ H(x) ≤ 0.55}, then |C|/|U | ≥ 1−
e−Ω(d). Therefore each bit of randomly chosen p′ ∈ U is 0 with probability at least

0.5−1/poly n. We obtain similarly that qi is 1 with probability at least 0.5−1/poly(n) for

ε smaller than a suitable choice of constant.

67

Since D(0,1) = µ and q is independent of p′ for p′ 6= p, we can argue now that

E[D(q, p′)] = Ω(µd). A standard Chernoff analysis shows that D(q, p′) = Ω(µd) holds

true for all p′ 6= p with high probability.

We consider now the second claim. Refer to the j-th bit of s , q and p as s j, q j and

p j, respectively, and recall again that D(0,1) = µ and D(1,0) = 1. Consider first the case

where s j = 0. Then,

E[D(q j, p j)|s j = 0] =Pr[q j = 1|s j = 0]Pr[p j = 0|s j = 0]D(1,0) +

Pr[q j = 0|s j = 0]Pr[p j = 1|s j = 0]D(0,1)

=ε

(
1− ε

µ

)
D(1,0)+(1− ε)

(
ε

µ

)
D(0,1)

=ε

(
1− ε

µ

)
+(1− ε)

(
ε

µ

)
(µ)

=2ε− ε
2− ε2

µ
= Θ(ε).

Similarly when s j = 1, we have

E[D(q j, p j)|s j = 1] =Pr[q j = 1|s j = 1]Pr[p j = 0|s j = 1]D(1,0)+

Pr[q j = 0|s j = 1]Pr[p j = 1|s j = 1]D(0,1)

=

(
1− ε

µ

)
(ε)D(1,0)+

ε

µ
(1− ε)D(0,1)

=

(
1− ε

µ

)
(ε)+

ε

µ
(1− ε)µ

= 2ε− ε
2− ε2

µ
= Θ(ε).

We show now these distances concentrate around the expectation. Recall the classic

Chernoff bounds: given a collection of independent 0-1 random variables Xi and X =

∑i Xi such that ux is the mean of X , then Pr[|X −ux| ≥ σux]≤ e
−σ2ux

2 + e
−σ2ux

3 . Note

that here that we can represent our distances in the form Y = ∑
d
i=1Yi and Z = ∑

d
i=1 Zi

where i is an index over the number of bits d and the probability of success is ε
µ (1− ε)

and ε

(
1− ε

µ

)
, respectively. (Or asymptotically ε and ε

µ , respectively.) For Y and Z to

concentrate around uy and uz, respectively, for all n points and suitable choice of constant

σ , we clearly require uy = Ω(logn) and uz = Ω(logn). This requires ε
µ d = Ω(logn).

And finally, the third claim can be seen to follow directly from the first two.

We note that it can be shown even for arbitrarily large µ and some constant ε , that a

68

“gap” of Ω(d
logn) can be achieved by setting µ ′ = d/ logn and applying perturbations

P = ν
ε/µ ′,ε (S) and Q = ν

ε,ε/µ ′(S), respectively.

3.8 Shattering a query
We are now ready to assemble the parts that make up the proof of Theorem 3.1.1. In

this section, we show that a point “shatters”: namely, that if we perturb a point by a little,

then it is likely to go to many different hash buckets. In the next section, we will show

that this implies an information-theoretic lower bound on the number of queries needed to

recover the original point that generates the query.

We prove the shattering bound in two steps. In lemma 3.8.1 we show that if we fix any

sufficiently small subset of the cube, then the set of points that are likely to fall into this

subset under perturbation is small. Then in lemma 3.8.2, we use this lemma to conclude

that for any partition of the space into sufficiently small sets (think of each set as the entries

mapped to a specific hash table entry), any perturbed query will be sent to many of these

sets (or equivalently, no entry contains more than a small fraction of the “ball” around the

query).

As mentioned in Section 3.2, the structure of this section mirrors the argument pre-

sented by Panigrahy et al.(128). The difficulty is that we can no longer directly work with

the (symmetric) operator Tε , and so the analysis becomes more intricate.

We consider sets of points restricted to L = {x : ∑i xi ≤ d
2}. Let A be a light cell,

where we stipulate a light cell to be such that |A| ≤ a2d for some small 0 < a < 1. Define

γy,ε, ε
µ

(A) = Pr[ν
ε, ε

µ

(y) ∈ A]. Let B ⊆ L be the set of points for which a perturbation is

likely to fall in A, i.e. B = {y ∈ L | γy,ε, ε
µ

(A) ≥ ac0ε} for some 0 < c0 < 1 to be chosen

later.

We shall show that |B| ≤ 2da1+c1ε , where once again 0 < c1 < 1 can be set later.

To this purpose, we will use Taylor approximations to simplify the algebra to asymptotic

behavior.

Lemma 3.8.1 Let A ⊆ {0,1}d with |A| ≤ a.2d. Let ε ∈ (0,1), µ ≥ 1
ε and B = {y ∈ L |

γy,ε, ε
µ

(A) ≥ ac0ε}. Then for suitable choices of constants c0 and c1 less than 1, and for

sufficiently small ε ,

|B|< 2da1+c1ε . (3.22)

69

Proof. Suppose on the contrary that |B| > 2da1+c1ε . By definition, for every y ∈ B,

Pr[ν
ε, ε

µ

(y) ∈ A] ≥ ac0ε . Let QB denote the random variable obtained by picking an

element from B uniformly at random and then applying ν
ε, ε

µ

.

Now,

Pr[QB ∈ A] =
2d

|B|〈Rε, ε
µ

1B,1A〉 (By definition of R
ε, ε

µ

.)

=
2d

|B|〈Tε
µ

R(
ε− ε

µ

)
/
(

1−2 ε
µ

)
,0

1B,1A〉 (By Theorem 3.6.1 .)

=
2d

|B|〈τ1−2 ε
µ

R(
ε− ε

µ

)
/
(

1−2 ε
µ

)
,0

1B,1A〉. (By the definition of τ .)

For convenience, let δ1 =

√√√√
(

1−
ε− ε

µ

1−2 ε
µ

)/(
1+

ε− ε
µ

1−2 ε
µ

)
, δ2 = 1−2 ε

µ and

p =
(

ε− ε
µ

)
/
(

1−2 ε
µ

)
.

We abuse notation slightly, and introduce the function:

1

(
1+p

2

)

B = ∑
S⊂{0,1}d

1̂B
1+p

2 (S)χ
1
2
S , (3.23)

i.e., the Fourier coefficients in the uniform measure are the coefficients of 1B in measure

1+p
2 . By Theorem 3.6.2, we can transform R(

ε− ε
µ

)
/
(

1−2 ε
µ

)
,0

1B as τ
δ1

1
(1+p

2)
B :

Pr[QB ∈ A] =
2d

|B|〈τδ2
τ
δ1

1
(1+p

2)
B ,1A〉

=
2d

|B|〈τδ1δ2
1
(1+p

2)
B ,1A〉 (Since τ is multiplicative.)

=
2d

|B|〈τ(δ1δ2)
3/41

(1+p
2)

B ,τ
(δ1δ2)

1/41A〉. (Since τ can be distributed

in a dot product.)

We now proceed using Cauchy Schwarz to upper bound the dot product as a product

of two norms, Parseval’s to claim ‖τ
(δ1δ2)

3/41p′
B ‖2,12

= ‖τ
(δ1δ2)

3/41B‖2,p′ and then

70

hypercontractivity to upper bound each of the norms in biased and uniform measure space

respectively. Setting p′ = 1+p
2 ,

Pr[QB ∈ A]≤ 2d

|B|‖τ(δ1δ2)
3/41p′

B ‖2,1/2‖τ(δ1δ2)
1/41A‖2,1/2

=
2d

|B|‖τ(δ1δ2)
3/41B‖2,p′‖τ(δ1δ2)

1/41A‖2,1/2

≤ 2d

|B|‖1B‖
1+ p′

(1−p′) log(1/(1−p′))(δ1δ2)
1.5,p′

‖1A‖1+
√

δ1δ2,1/2.

And finally, since B ⊂ L, by 3.6.5 we have ‖1B‖
1+ p′

(1−p′) log(1/(1−p′))(δ1δ2)
1.5,p′

will only increase if we measure the norm in uniform space instead of the biased space with

p′ > 1
2:

Pr[QB ∈ A]≤ 2d

|B|‖1B‖
1+ p′

(1−p′) log(1/(1−p′))(δ1δ2)
1.5,1/2

‖1A‖1+
√

δ1δ2,1/2.

(3.24)

On a high level now, our approach is simply to show that the power in the norm on

both expressions is 2−Ω(ε). This would show that the collision or intersection size

Pr[QB ∈ A] ≤ 2d
|B| is much smaller than the product of the set sizes. To simplify these

expressions, we focus now on p′
(1−p′) log(1/(1−p′))(δ1δ2)

1.5 and
√

δ1δ2. For
√

δ1δ2,

some straightforward substitution and the assumption that µ ≥ 1
ε shows:

√
δ1δ2 =

√√√√√
(

1−2
ε

µ

)√√√√ 1− ε− ε
µ

1+ ε−3 ε
µ

= 1− ε

2
+O(ε2).

We come now to p′
(1−p′) log(1/(1−p′))(δ1δ2)

1.5. Simply plugging in the values for

p′, δ1 and δ2 now shows:

71

p′
(1− p′) log(1/(1− p′))(δ1δ2)

1.5 =

(
1+ ε−3 ε

µ

1− ε− ε
µ

)1/4
(

1−2 ε
µ

)1.5

(
1− log

(
1−
(

ε− ε
µ

)
/
(

1−2 ε
µ

)))

<
(

1+2ε +O(ε2)
)1/4 1

1− log
(

1− ε +O(ε2)
)

≤
(

1+
ε

2
+O(ε2)

)(
1− ε loge+O(ε2)

)

<
(

1− ε

2
+O(ε2)

)
.

Or for sufficiently small ε , that p′
(1−p′) log(1/(1−p′))(δ1δ2)

1.5 = 1−Ω(ε). We can now

see the asymptotic behavior of the norms in Equation 3.24:

Pr[QB ∈ A]≤ 2d

|B|‖1B‖2−Ω(ε),1/2‖1A‖2−Ω(ε),1/2. (3.25)

Hence there exists a constant k, such that:

Pr[QB ∈ A]≤ 2d

|B|‖1B‖2−kε,1/2‖1A‖2−kε,1/2.

Now let kε = 2ε ′, and also set c0ε and c1ε to be ε ′
6 . By the assumptions of our

lemma, we have Pr[QB ∈ A] ≥ a
ε ′
6 . Recalling that ‖1B‖2−2ε ′,12

= |B|1/(2−2ε ′) and

‖1A‖2−2ε ′,12
= |A|1/(2−2ε ′) , we obtain

Pr[QB ∈ A]≤ 2d

|B|‖1B‖2−2ε ′,1/2‖1A‖2−2ε ′,1/2

=
2d

|B|

(|B|
2d

)1/(2−2ε ′)(|A|
2d

)1/(2−2ε ′)

=

(|A|
2d

)1/(2−2ε ′)(|B|
2d

)1/(2−2ε ′)−1
.

Now recalling that |A| ≤ a2d and claiming for contradiction that |B| ≥ 2da1+ε ′/6, we

obtain

Pr[QB ∈ A]≤ a1/(2−2ε ′)a
(1+ε ′/6)(1

2−2ε ′−1) ≤ aε ′/6.

However this is impossible, since by our lemma assumptions Pr[QB ∈ A]≥ aε ′/6. Hence

we must have that if Pr[QB ∈ A]≥ aε ′/6 then |B| ≤ 2da1+ε ′/6. Noting that ε ′ = kε and

72

k is some constant, our lemma follows.

The following lemma is now an easy consequence.

Lemma 3.8.2 Let A1, . . . ,Am be partitions of {0,1}d and let LC = {i : ‖Ai‖ ≤ 2d/
√

m}
be the set of light cells. Then:

Pr
y∈LC

[max
i∈LC

γy,ε, ε
µ

(Ai)≥ m−
c0ε

2]< m−
c1ε

2 . (3.26)

Proof. Let ai =
|A|
2d and note ∑i ai = 1. By lemma 3.8.1 Pry∈LC[γy,ε, ε

µ

(Ai) ≥ a
c0ε

i] ≤

a
1+c1ε

i]. And we also have by the bound on light cells that a
c0ε

i ≤ m−
c0ε

2 . Then by a

union bound, we have that the desired probability is:

Pr
y∈LC

[max
i∈LC

γy,ε, ε
µ

(Ai)≥ m−
c0ε

2]≤∑
i

Pr
y∈LC

[γy,ε, ε
µ

(Ai)≥ a
c0ε

i]

≤ a
1+c1ε

i ≤max
i

a
c1ε

i ∑
i

ai ≤max
i

a
c1ε

i ≤ (
√

m)−c1ε .

3.9 Alternate construction
For the sake of completeness, we give here an alternate, simpler construction inspired

by Panigrahy, Talwar and Weider (128) for lower bounds on partial match which yields a

weaker shattering result. Let H
δ

denote the set of points in {0,1}d with exactly δd 1’s.

Each entry in the dataset P is chosen uniformly and independently in H
δ

. Once the data

structure is built, we sample a query point q around a random dataset point p as follows:

first we convert the 1’s in p to 0’s. Then of the remaining bits, we convert an additional(
d
2 −δd

)
0’s to 1’s at random so that the resulting query point q has exactly d/2 0’s and

d/2 1’s.

Note here that D(q, p) is µδd + d
2 − δd, by the straightforward definition we have

that D(0,1) = µ and D(1,0) = 1. Similarly, for D(q, p′) where p′ 6= p we have that

E[D(q, p′)] =Ω(µd). Setting δ to be 1
µ we get that D(q, p) =O(d), whereas E[D(q, p′)] =

Ω(µd). Using Chernoff bounds along the line of Section 3.7 we obtain that for µ =

O(d/ logn) this bound in expectation is true with high probability for every p′ 6= p and

so the ratio between the second and first nearest neighbor distance is O(µ).

73

The authors of (128) show that this distribution satisfies shattering properties, saving us

the need to rederive their result. In the following, define vp to be the distribution obtained

from a query point q from our process, and let F be an arbitrary hash function from {0,1}d

to our set of cells [m]. Let Ai denote the set of query points that are mapped to a cell i by F .

Lemma 3.9.1 Let A1, . . . ,Am be partitions of {0,1}d and let LC = {i : ‖Ai‖ ≤ 2d/
√

m}
be the set of light cells. There exists a constant c0 such that:

Pr
p
[max
i∈LC

vp(Ai)≥ m−
c0
2]< m−

c0
2 . (3.27)

-

This is a weaker form of lemma 3.8.2 without dependence on ε and with a smaller first

to second nearest neighbor gap of Ω(µ) rather than Ω

(
µ
ε

)
. This can still obtain a cruder

version of our overall result Theorem 3.10.1, which is asymptotically equivalent in terms

of µ for constant ε .

3.10 From hypercontractivity to a lower bound
First we lay out the notation and preliminaries of our argument, including our model.

An (m,r,w) nonadaptive algorithm is an algorithm in which given n input points p1, . . . , pn

in {0,1}d we prepare in preprocessing a table T which consists of m words, each w

bits long. Given a query point q, the algorithm queries the table at most r times and let

l1, l2, . . . , lr denote the set of indices looked up by the algorithm. For every t ≤ r, the

location of the t-th probe, lt = lt(q) depends only upon the query point q and no t upon

the content that was read in the previous queries. In other words, the functions l1, l2, . . . , lr

depend on q only. In this section, we show a time-space cell probe lower bound. We mostly

use the machinery given in (128), but for the sake of explication and clarity we reproduce

the argument and expand some of the steps.

The high level idea of (128), and also work by Larsen (97) and Wang and Yin (153) is

“cell sampling” of a data structure T on input P. If T resolves a large number of queries

which do not err in a few probes, then a small sample of the cells will resolve many queries

with high probability. Now if such a sample of cells can be described in fewer bits than the

information complexity of these queries, then there would be a contradiction. This lower

bounds the size of T .

74

We prepare our dataset and query point as described in Section 3.7. We first pick a set

of n elements S = {s1,s2, . . .sn} from the lower half of the Bregman cube. More precisely,

we pick from the set of strings U = {x ∈ {0,1}d s.t ∑(x)≤ d
2}. We first perturb S to obtain

P = ν ε
µ
,ε
(S). We then pick i uniformly at random from [1 . . .n] and set q to be ν

ε, ε
µ

(si).

In what follows, we will let si denote the point of S which is perturbed to obtain q and pi
be the corresponding point in P. Theorem 3.7.1 guarantees that D(q, pi) = Θ(εd) whereas

D(q, p j) = Ω(µd) for j 6= i with high probability. Hence recovering a µ
ε nearest neighbor

to q from P is equivalent to recovering pi exactly. The table is populated in preprocessing

based on P as the ground set.

Our assumption on the correctness of the algorithm is that when the input is sampled in

this way, then for each i with probability 1
2 over the choice of si and pi, with probability

2
3 over the choice of qi the algorithm can reconstruct pi. We can fix the coin tosses of the

algorithm and assume the algorithm is deterministic, and we assume the query algorithm is

given access to not only P but also S.

The main result of this section is as follows.

Theorem 3.10.1 A (m,r,w) nonadaptive algorithm to recover a O(
µ
ε) nearest neighbor

to a query point q with constant probability has mw ≥ Ω(εdn1+Ω(ε
r)) as long as w is

polynomial in d, logn.

Note that Theorem 3.10.1 yields Theorem 3.1.1 as a corollary, by setting c′ = µ/ε .

Proof. We recall some standard information theoretic notation. Let H(A) be the entropy

of a distribution A, and let I(A,B) be the mutual information of two distributions, such that

I(A,B) = H(A)−H(A|B) = H(B)−H(B|A). We have the following well-known rules for

simplifying expressions:

1. I(X ,Y) = I(Y,X).

2. I(X ;Y |Z) = H(X |Z)−H(X |Y,Z).

3. I(X ;Y) = 0 if X and Y are independent random variables.

4. I(Z;X ,Y) = I(Z;X)+ I(Z|X ;Y). If X and Y are independent.

5. For n independent random variables X1 through Xn, we have

I(Y ;X1:n) = ∑i I(Y |X1:i−1;Xi).

75

Now let L be a set of k locations picked at random from the table, where k is a parameter

to be fixed later, and T [L] = {T [i] : i ∈ L} be the corresponding set of words.

Claim 3.10.1 I(T [L]; pi|S,L,q) = I(T [L]; pi|S,L).

Proof. When S and L are fixed, pi is independent of q, and T [L] is determined by P. So we

may simply drop q here.

For the remainder of our proof, for ease of notation we will implicitly assume S and L

are known to the algorithm and pi is conditioned on them.

Claim 3.10.2 ∑
n
i=1 I(T [L]; pi)≤ H(T [L])≤ wk.

Proof. First note that H(T [L])≤wk simply from the fact that there are only wk bits in T [L],

and H(T [L])≤wk. For ∑
n
i=1 I(T [L]; pi), we note that I(T [L]; pi)≤ I(T [L]|p1, p2, . . . pi−1;

pi). To note this, we see the direct comparison:

I(T [L]; pi)− I(T [L]|p1, p2, . . . pi−1; pi)

=H(pi)−H(pi|T [L])−H(pi)+H(pi|T [L], p1, p2, . . . pi−1)

=H(pi|T [L], p1, p2, . . . pi−1)−H(pi|T [L])

≤0.

Hence ∑
n
i=1 I(T [L]; pi)≤ ∑

n
i=1 I(T [L]|p1, p2, . . . pi−1; pi). Applying the chain rule, this

latter quantity equals I(T [L]; p1, p2, . . . pn)≤ H(T [L]).

Taking expectations on both sides w.r.t. L and S, we have:

n
∑

i=1
EL,S[I(H(T [L]; pi|S,L)]≤ wk. (3.28)

Set k = m/nΩ(ε
r). Our goal therefore is to show that EL,S[I(T [L]; pi|S,L)] ∈ Ω(εd), as

this would immediately imply the theorem.

We will prove the slightly stronger result that I(T [L]; pi|S,L) = Ω(εd). Suppose that

our algorithm can reconstruct pi given T [L] with constant probability α . We can lower

bound H(pi|S,L) as follows. Note that it suffices to examine H(pi|si). In each 1-bit

of si there is an induced entropy of −ε logε − (1− ε) log(1− ε) ≥ −ε log(1− ε)− (1−

76

ε) log(1−ε) =− log(1−ε) =Ω(ε). Similarly, in each 0-bit of si, the entropy is ε
µ log ε

µ +

(1− ε
µ) log(1− ε

µ) = Ω(ε
µ). Note that H(pi|S) is at least Ω(εd), just from the entropy of

the 0-bits of si.

We now use the following simplification of Fano’s inequality, which in slightly different

form was described by Regev (135):

Lemma 3.10.1 Let X be a random variable, and let Y = g(X) where g(·) is a random

process. Assume the existence of a procedure f that given y = g(x) can reconstruct x with

probability p. Then

I(X ;Y)≥ pH(X)−H(p).

Proof. The proof follows from the usual statement of Fano’s inequality in terms of the

conditional entropy H(X |Y).

Consider now the mutual information I(T [L]; pi|S,L). By Fano’s inequality and the

lower bound on H(pi|S,L), the desired lower bound on I(T [L]; pi|S,L) will follow if we

can present a procedure that with constant probability will reconstruct pi from T [L] given

S and L. Note that i is fixed in this process.

Denote by l j(q) the location of the j-th query when the query point is q. We write l[r]
to denote l1(q)∪ . . .∪ lr(q). We say a point q j is good for p j if D(q j,s j) is at most εd and

p j can be reconstructed from q j, s j and T [L[r](q j)] (the set of table lookups on q) with

constant probability. Let Qi denote the set of points which are good for pi. We make the

following useful observations about Qi.

Lemma 3.10.2

1. With probability at least 1
2 over the choice of si, we have Pr[ν

ε, ε
µ

(si) ∈ Qi] ≥ 2
3

(where the latter probability is taken over the perturbation).

2. |Qi| ≥ nε with probability at least 1
2 .

Proof. The correctness of the algorithm and definition of Qi implies the first claim, i.e., for

a large fraction of the points in S, with constant probability the perturbed point generated

qi = ν
ε, ε

µ

(si) will be a good point for reconstructing pi.

77

For the second claim observe that there are Ω(d)Ω(εd) points q within at most εd

distance of si. Since our algorithm reconstructs pi with constant probability, the majority

of these points must be good for pi. Since n≤ 2d , hence n≤ dd as well and we must have

that |Qi| ≥ nε with probability at least 1
2 for sufficiently large d.

Now define At
j to be the set of q ∈ {0,1}d such that j = lt(q). In the nonadaptive

domain we can assume that all cells are light, i.e., w.l.o.g for every 1≤ j≤m and 1≤ t ≤ r

it holds that |At
j| ≤

2d
m . The reason is that a cell j for which At

j is large (for some t)

could be split into |At
j|/

2d
m light cells with the total number of new cells bounded by m.

Our argument now analyzes shattered points, which fall into any light cell with very low

probability after perturbation.

Definition 6 A point si is shattered if max j,t [Prν
ε, ε

µ

(si) ∈ At
j] ≤ n

−c1ε

2 for suitable

choice of constant c1.

Note first that mw ≥ Ω(nd), just because the table needs enough space to store all

the points to report. Since w is upper bounded by a constant polynomial in d, we have

that m is polynomial in n. Now for every nonadaptive algorithm, our isoperimetry bound

implies that the probability over the choice of si that si is not shattered is at most m
−c1ε

2

by lemma 3.8.2. This probability is also at most n−c2ε for suitable choice of constant c2.

Hence with probability at least 1
3, it holds that si is shattered and |Qi| ≥ nε .

We show that in such a case with constant probability there exists a q∗ ∈ Qi , such that

l[r] ⊂ L, i.e., all the table lookups for point q∗ are contained in T [L]. Our procedure will

simply sample points from ν ε
µ
,ε
(si) until it finds such a point q∗ ∈ Qi. Then by definition

of good points, we can reconstruct p.

Since si is shattered it holds that there are at most rQi/nc2ε points in Q that are mapped

to the same cell. Now since |Qi| ≥ nε we have that there are at least nc2ε/r different good

q which map into different rows of the table. Each of these q has all its probe locations map

into T [L] with probability at least r
nc2ε so with probability≥ 1

2 at least one point maps into

T [L] and we can reconstruct pi thereby.

78

3.11 Lower bounds via classical problems on the
Hamming cube

In this section we will lay out lower bounds on the Bregman approximate near neighbor

via reductions from the Hamming cube. The first reduction follows from “symmetrizing”

our input by a simple bit trick and hence is independent of any asymmetry or µ parameter.

The second reduction follows from the observation that for large enough µ (µ ≥ cd for

suitable constant c), only one direction of bit flip essentially determines the nearest neigh-

bor. Under this regime, Partial Match can be reduced to our problem and hence the latter

inherits the corresponding lower bounds.

3.11.1 A lower bound via `1
We start by defining a combinatorial structure isomorphic to the Hamming cube, which

we term the pseudo-Hamming-cube.

Definition 7 Given any uniform Bregman divergence Dφ : R2d ×R2d → R, a pseudo-

Hamming-cube C2φ ⊂ R2d is a set of 2d points with a bijection fφ : {0,1}d →Cφ and a

fixed constant c0 ∈ R so that Dφ (fφ (x), fφ (y)) = c0||x− y||1, ∀x,y ∈ {0,1}d.

Given a specific uniform Bregman divergence Dφ , we can compute a corresponding pseudo-

Hamming cube explicitly.

Lemma 3.11.1 For any uniform Dφ : R2d ×R2d → R, there exists a pseudo-Hamming-

cube Cφ ⊂ R2d and a suitable constant c0 ∈ R.

Proof. Recall that for uniform Dφ , we have that φ(x) = ∑
d
i=1 φR(xi). Pick arbitrary

a,b in the domain of φR and hence obtain the two ordered pairs (a,b) and (b,a) in R2.

Now stipulate Cφ = {x1× x2 . . .xd s.t xi ∈ {(a,b),(b,a)}} ⊂ R2d . Note that |Cφ = 2d |.
We define the isomorphism fφ : {0,1}d → Cφ by using the helper function f̄ : {0,1} →
{(a,b),(b,a)} where f̄ (0) = (a,b) and f̄ (1) = (b,a). Now we state for x ∈ {0,1}d ,

fφ (x) = f̄ (x1)× f̄ (x2)× . . . f̄ (xd).

The insight is that the component DφR
of Dφ on f̄ (xi) and f̄ (yi) between any two x,y∈Cφ

is symmetrized, as

DφR×R((a,b),(b,a)) = DφR×R((b,a),(a,b)) = DφR
(b,a)+DφR

(a,b). (3.29)

79

Direct computation now shows that ∀x,y ∈ {0,1}d , we have that:

Dφ (fφ (x), fφ (y)) =
(

DφR
(b,a)+DφR

(a,b)
)
||x− y||1. (3.30)

This completes our proof, with c0 = DφR
(b,a)+DφR

(a,b).

Now that we have defined a distance preserving mapping from the `1 Hamming cube in

Rd with a Dφ pseudo-Hamming-cube in R2d , it follows that LSH and ANN lower bounds

for the `1 Hamming cube now transfer over to Dφ . In particular (and we list just a few

here):

• A cell probe lower bound of Ω(d
logn) queries for any randomized algorithm that

solves exact nearest neighbor search on the Bregman cube in polynomial space and

word size polynomial in d, logn via (35).

• A cell probe lower lower bound of Ω(d1−o(1)) queries for any deterministic algo-

rithm that returns a constant factor approximation to the Bregman nearest neighbor

via (103).

• A cell probe lower bound of Ω

(log logd
log loglogd

)
for any randomized algorithm that

returns a constant factor approximation to the Bregman nearest neighbor via (41).

3.11.2 A lower bound via Partial Match

We consider the following version of the Partial Match problem: given point set P ⊂
{0,1}d and q ∈ {0,1}d determine whether q dominates any point in P, i.e., output YES

if ∃p ∈ P, s.t. qi ≥ pi, ∀1 ≤ i ≤ d and NO otherwise. This is known by folklore to be

equivalent to the more popular statement of the problem where q ∈ {0,1,∗}d and we must

determine whether q matches any string in P (and where ∗ can match anything). See for

instance (130) for a statement of this equivalence.

We construct our reduction from an instance of the Partial Match problem to a Bregman

approximate near neighbor instance as follows. Set µ = 2d + 1, and define D as given in

Section 3.4.2. It is clear that D(q,x) ≤ d if and only if x is a Partial Match for q and that

D(q,x)≥ 2d +1 otherwise. We immediately obtain the following:

Theorem 3.11.1 Let P ⊂ {0,1}d, q ∈ {0,1}d and µ ≥ 2d + 1. Any algorithm which

returns a 2-approximate Bregman nearest neighbor p ∈ P to query point q with constant

probability will solve the Partial Match problem with constant probability.

80

This simple reduction immediately implies that for µ ≥ Ω(d) and a constant factor

approximate nearest neighbor, our problem inherits the lower bounds on Partial Match.

These include, but are not limited to, the following:

• An Ω

(
d

logd

)
lower bound on the number of cell probes for any randomized near-

linear space algorithm, via a result by Patrascu and Thorup (131).

• An Ω

(
2Ω(d/r)

)
lower bound on the space required by any randomized algorithm

which uses r queries, via the result by Patrascu (130).

3.11.3 Comparisons and comments on the behavior of the lower
bounds with µ

It is worthwhile to contrast the bounds obtained from the simple reduction of Section

3.11.2 to our more involved main result of Theorem 3.1.1.

• The simple reduction from Partial Match in Section 3.11.2 implies a lower bound

only for µ ≥ Ω(d), whereas our main result of Theorem 3.1.1 holds for far smaller

asymptotic ranges of µ , upto O
(

d
logn

)
.

• For µ =Ω

(
d

logn

)
, Theorem 3.1.1 already implies a lower bound of dn1+Ω(d/r logn) =

2
Ω

(
d
r

)
on the space required by a (nonadaptive) data structure that uses only r

queries. The reduction from Partial Match achieves this same space lower bound at

a far higher µ = Ω(d) via the result of (130).

• For the strictly linear space (O(nd)) regime, Theorem 1.1 implies a lower bound of

Ω(d) on number of queries required for our Bregman ANN. (Set dnΩ(1+d/r logn) =

O(nd), to get that nΩ(d/r logn) = 2Ω(d/r) must be O(1) and hence r = Ω(d).)

This is in fact stronger than any lower bound for number of queries known on

Partial Match (the best we are aware of is Ω(d/ logd) by (131) under any polynomial

space).

As such, the parameter µ appears a natural way to interpolate between the well known

problems of approximate nearest neighbor under `1 and the Partial Match problem. At

constant values of µ , a constant factor ANN under D corresponds to a constant factor ANN

under `1, whereas at µ ≥ Ω(d), a constant ANN under D solves Partial Match. The point

81

µ = Ω(d
logn) then appears to be an interesting point along this interpolation where the

space lower bounds are already asymptotically equal to those for Partial Match, with the

qualifier that Theorem 3.1.1 holds for nonadaptive data structures. The question remains

open of whether Partial Match lower bounds themselves could in fact be strengthened by a

reduction to Bregman ANN.

CHAPTER 4

EMBEDDINGS AND DIMENSIONALITY

REDUCTION FOR INFORMATION

THEORETIC DISTANCES

The space of information distances includes many distances that are used extensively

in data analysis. These include the well-known Bregman divergences, the α-divergences,

and the f -divergences. In our previous two chapters, we explored fairly generic Bregman

divergences, and the tradeoff between upper and lower bounds attainable for ANN. Here

we show that by focusing on the specific geometry of a restricted subset of these measures,

we can devise algorithmic primitives not otherwise generally attainable.

In particular, in this chapter we focus on a subclass of the f -divergences that admit em-

beddings into some (possibly infinite-dimensional) Hilbert space, with a specific emphasis

on the JS divergence. These divergences are used in statistical tests and estimators (31),

as well as in image analysis (132), computer vision (82, 105), and text analysis (61, 63).

They were introduced by (54), and, in the most general case, also include measures such as

the Hellinger, JS, and χ2 divergences (here we consider a symmetrized variant of the χ2

distance).

To work with the geometry of these divergences effectively at scale and in high di-

mensions, we need algorithmic tools that can provide provably high quality approximate

representations of the geometry. The techniques of sketching, embedding, and dimension-

ality reduction have evolved as ways of dealing with this problem, as discussed briefly in

Chapter 1. Unfortunately, while these tools have been well developed for norms like `1
and `2, we lack such tools for information distances. This is not just a theoretical concern:

information distances are semantically more suited to many tasks in machine learning, and

building the appropriate algorithmic toolkit to manipulate them efficiently would expand

greatly the places where they can be used.

83

4.1 Our contributions
Our main result is a structure-preserving dimensionality reduction for information dis-

tances, where we wish to preserve not only the distances between pairs of points (distribu-

tions), but also the underlying simplicial structure of the space, so that we can continue to

interpret coordinates in the new space as probabilities. The notion of a structure-preserving

dimensionality reduction is implicit when dealing with normed spaces (since we always

map a normed space to another), but requires an explicit mapping when dealing with more

structured spaces. We prove an analog of the classical JL–lemma :

Theorem 4.1.1 Given a set of n points in the high-dimensional simplex ∆d, there exists

a structure-preserving dimensionality reduction to a low-dimensional simplex ∆k, that

preserves the Jenson-Shannon, Hellinger, and χ2 divergences, up to a factor of (1+ ε)

when k = O((logn)/ε2).

The theorem extends to “well-behaved” f -divergences (See Section 4.6) for a precise

definition). Moreover, the dimensionality reduction is constructive for any divergence with

a finite-dimensional kernel (such as the Hellinger divergence), or an infinite-dimensional

Kernel that can be sketched in finite space, as we show is feasible for the JS and χ2

divergences. We note f -divergences that are not well-behaved (e.g., `1) do not admit a

similar dimensionality reduction (13, 38, 101, 135). Establishing the above result requires

us to show how to embed information distances into `22; this result will allow us to prove

sketching results as well.

Theorem 4.1.2 A set of points P in ∆d under the Jensen–Shannon(JS) or χ2 divergence

can be deterministically embedded into O(d2
ε log d

ε) dimensions under `22 with ε additive

error. The same space bound holds when sketching JS or χ2 in the aggregate stream model.

Corollary 4.1.1 Assuming polynomial precision, an AMS sketch for Euclidean distance

can reduce the dimension to O
(

1
ε2 log 1

ε logd
)

for a (1+ ε) multiplicative approximation

in the aggregate stream setting.

Theorem 4.1.3 A set of points P under the JS or χ2 divergence can be embedded into `d̄2

with d̄ = O
(

n2d3

ε2

)
with (1+ ε) multiplicative error.

84

For both the techniques, applying the Euclidean JL–lemma can further reduce the dimen-

sion to O
(logn

ε2

)
in the offline setting.

These results are significant because (73) showed that these divergences cannot be

sketched even up to a constant factor in sublinear space under a related streaming model

(where the distributions are presented as incremental updates to individual probabilities, as

opposed to all at once in the model we consider). In fact our result resolves affirmatively

an open problem posed by them. We also give the first results on sketching of infinite-

dimensional kernels, a challenge posed in (25).

The unifying approach of our three results—sketching, embedding into `22, and di-

mensionality reduction—is to analyze carefully the infinite-dimensional kernel of the in-

formation divergences. Quantizing and truncating the kernel yields the sketching result,

and sampling repeatedly from it produces an embedding into `22. Finally given such an

embedding, we show how to perform dimensionality reduction by proving that each of the

divergences admits a region of the simplex where it is similar to `22. We point out that to the

best of our knowledge, this is the first result that explicitly uses the kernel representation of

these information distances to build approximate geometric structures; while the existence

of a kernel for the Jensen–Shannon distance was well-known, this structure had never been

exploited to give algorithms with robust theoretical guarantees.

4.2 Related work
The works of Fuglede and Topsøe (69), and later Vedaldi and Zisserman (150) study

embeddings of information divergences into an infinite-dimensional Hilbert space by repre-

senting them as integrals along a one-dimensional curve in C. Vedaldi and Zisserman give

an explicit formulation of this kernel for JS and χ2 divergences, for which a discretization

(by quantizing and truncating) yields an additive error embedding into a finite-dimensional

`22. However, they do not obtain explicit bounds on the target space dimension needed to

derive a sketching algorithm; furthermore, they do not get any multiplicative approxima-

tion.

Kyng, Phillips and Venkatasubramanian (96) show a limited structure-preserving di-

mensionality reduction result for the Hellinger distance. Their approach works by showing

that if the input points lie in a specific region of the simplex, then a standard random pro-

jection will keep the points on a lower-dimensional simplex while preserving the distances

85

approximately. Unfortunately, this region is a small ball centered in the interior of the

simplex, which further shrinks with the dimension. This is in sharp contrast to our work

here, where the input points are unconstrained.

One can achieve a multiplicative approximation in the aggregate streaming model for

information divergences that have a finite-dimensional embedding into `22. For instance,

Guha, Mcgregor and Venkatasubramanian (74) observe that for the Hellinger distance that

has a trivial such embedding, sketching is equivalent to sketching `22 and hence may be

done up to a (1+ ε)-multiplicative approximation in 1
ε2 logn space. This immediately

implies a constant factor approximation of JS and χ2 divergences in the same space, but

no bounds have been known prior to our work for a (1+ ε)-sketching result for JS and χ2

divergences in any streaming model.

There has been a wide range of work done on embedding in other spaces as well.

Rahimi and Recht (134) embed shift-invariant kernels into `22 via random Fourier features;

however their result does not hold for the more general kernels we consider in this paper.

Avron, Nguyen and Woodruff (25) give a sketching technique for the polynomial kernel and

pose the open question we address here of obtaining similar results for infinite-dimensional

kernels. One of the most famous applications of dimension reduction is the Johnson–

Lindenstrauss (JL) lemma, which states that any set of n points in `22 can be embedded

into O
(logn

ε2

)
dimensions in the same space while preserving pairwise distances to within

(1± ε). The general literature of sketching and embeddability in normed spaces is too

extensive to be reviewed here: see the work by Andoni, Krauthgamer and Razenshteyn (18)

for a brief survey.

4.3 Background
In this section, we define precisely the class of information divergences that we work

with, and their specific properties that allow us to obtain sketching, embedding, and dimen-

sionality results. For what follows ∆d denotes the d-simplex: ∆d = {(x1, . . . ,xd) |∑xi = 1

and xi ≥ 0,∀i}. We will assume in this paper that all distributions are defined over a finite

ground set [n] = {1, . . . ,n}.

Definition 8 The Jensen–Shannon (JS), Hellinger, and χ2 divergences between distribu-

tions p and q are defined as JS(p,q)=∑i pi log 2pi
pi+qi

+qi log 2qi
pi+qi

, He(p,q)=∑i(
√pi−

86

√qi)
2 and χ2(p,q) = ∑i

(pi−qi)
2

pi+qi
, respectively.

Definition 9 (Regular distance) We call a distance function D : X → R regular if there

exists a feature map φ : X →V , where V is a (possibly infinite-dimensional) Hilbert space,

such that:

D(x,y) = ‖φ(x)−φ(y)‖2 ∀x,y ∈ X .

The works by Fuglede and Topsøe (69), and later Vedaldi and Zisserman (150) show

that the JS divergence is regular: they give a feature map φ(x) =
∫+∞
−∞

Ψx(ω)dω , where

Ψx(ω) : R→ C is given by Ψx(ω) = exp(iω lnx)
√

2xsech(πω)

(ln4)(1+4ω2)
.

Hence we have for x, y∈R, JS(x,y) = ‖φ(x)−φ(y)‖2 =
∫+∞
−∞
‖Ψx(ω)−Ψy(ω)‖2 dω .

The infinite-dimensional “embedding” for a given distribution p ∈ ∆d is then the concate-

nation of the functions φ(pi), i.e., φ(p) = (φp1 , . . . ,φpd).

4.4 Embedding JS into `2
2

We present two algorithms for embedding JS into `22. The first is deterministic and gives

an additive error approximation whereas the second is randomized but yields a multiplica-

tive approximation in an offline setting. The advantage of the first algorithm is that it can

be realized in the streaming model, and if we make a standard assumption of polynomial

precision in the streaming input, yields a (1+ ε)-multiplicative approximation as well in

this setting.

We derive some terms in the kernel representation of JS(x,y) which we will find con-

venient. First, the explicit formulation in Section 4.3 yields that for x, y ∈ R:

JS(x,y) =
∫ +∞

−∞

∥∥∥∥∥eiω lnx
√

2xsech(πω)

(ln4)(1+4ω2)
− eiω lny

√
2ysech(πω)

(ln4)(1+4ω2)

∥∥∥∥∥

2
dω

=
∫ +∞

−∞

(
2sech(πω)

(ln4)(1+4ω2)

)
‖√xeiω lnx−√yeiω lny‖2 dω.

For convenience, we now define:

h(x,y,ω) = ‖√xeiω lnx−√yeiω lny‖2

= (
√

xcos(ω lnx)−√ycos(ω lny))2+(
√

xsin(ω lnx)−√ysin(ω lny))2,

87

and

κ(ω) =
2sech(πω)

(ln4)(1+4ω2)
.

We can then write JS(p,q) = ∑
d
i=1 fJ(pi,qi) where

fJ(x,y) =
∫

∞

−∞
h(x,y,ω)κ(ω)dω = x log

(
2x

x+ y

)
+ y log

(
2y

x+ y

)
.

It is easy to verify that κ(ω) is a distribution, i.e.,
∫

∞−∞
κ(ω)dω = 1.

4.4.1 Deterministic embedding

We will produce an embedding φ(p) = (φp1 , . . . ,φpd), where each φpi is an integral

that we can discretize by quantizing and truncating carefully.

Input: p = {p1, . . . , pd} where coordinates are ordered by arrival.

Output: A vector cp of length O
(

d2
ε log d

ε

)

`← 1; J← d32d
ε ln

(
8d
ε

)
e,

for j←−J to J do
w j← j× ε/32d

end
for i← 1 to d do

for j←−J to J−1 do

ap
`
←√pi cos(ω j ln pi)

√
∫ω j+1
ω j

κ(ω)dω

bp
`
←√pi sin(ω j ln pi)

√
∫ω j+1
ω j

κ(ω)dω

`← `+1

end
end
return ap concatenated with bp.

Algorithm 7: Embed p ∈ ∆d under JS into `22.

To analyze Algorithm 7, we first obtain bounds on the function h and its derivative.

Lemma 4.4.1 For 0≤ x,y,≤ 1, we have 0≤ h(x,y,ω)≤ 2 and
∣∣∣∣
∂h(x,y,ω)

∂ω

∣∣∣∣≤ 16.

88

Proof. Clearly h(x,y,ω)≥ 0. Furthermore, since 0≤ x,y≤ 1, we have

h(x,y,ω)≤
∣∣∣
√

xeiω lnx
∣∣∣
2
+
∣∣∣√yeiω lny

∣∣∣
2
= x+ y≤ 2.

Next,
∣∣∣∣
∂h(x,y,ω)

∂ω

∣∣∣∣
=

∣∣2
(√

xcos(ω lnx)−√ycos(ω lny)
)(
−√xsin(ω lnx) lnx+

√
ysin(ω lny) lny

)

+2
(√

xsin(ω lnx)−√ysin(ω lny)
)(√

xcos(ω lnx) lnx−√ycos(ω lny) lny
)∣∣

≤
∣∣2
(√

x+
√

y
)(√

x lnx+
√

y lny
)∣∣+2

∣∣(√x+
√

y
)(√

x lnx+
√

y lny
)∣∣ ≤ 16,

where the last inequality follows since max0≤x≤1 |
√

x lnx|< 1.

The next two steps are useful to approximate the infinite-dimensional continuous rep-

resentation by a finite-dimensional discrete representation by appropriately truncating and

quantizing the integral.

Lemma 4.4.2 (Truncation) For t ≥ ln(4/ε),

fJ(x,y)≥
∫ t

−t
h(x,y,ω)κ(ω)dω ≥ fJ(x,y)− ε .

Proof. The first inequality follows since h(x,y,ω) ≥ 0. For the second inequality, we use

h(x,y,ω)≤ 2:

∫ −t

−∞
h(x,y,ω)κ(ω)dω +

∫
∞

t
h(x,y,ω)κ(ω)dω ≤ 4

∫
∞

t
κ(ω)dω

< 4
∫

∞

t
4e−πω

ln4
dω < 4e−t ≤ ε,

where the last line follows if t ≥ ln(4/ε).

Define ωi = εi/16 for i∈ {. . . ,−2,−1,0,1,2, . . .} and h̃(x,y,ω) = h(x,y,ωi) where i =

max{ j | ω j ≤ ω}.

Lemma 4.4.3 (Quantization) For any a,b,

∫ b

a
h(x,y,ω)κ(ω)dω =

∫ b

a
h̃(x,y,ω)κ(ω)dω± ε .

89

Proof. First note that

|h̃(x,y,ω)−h(x,y,ω)| ≤
(

ε

16

)
· max
x,y∈[0,1],ω

∣∣∣∣
∂h(x,y,ω)

∂ω

∣∣∣∣≤ ε .

Hence,
∣∣∣
∫ b−a h̃(x,y,ω)κ(ω)dω− ∫ b−a h(x,y,ω)κ(ω)dω

∣∣∣≤
∣∣∣
∫ b−a εκ(ω)dω

∣∣∣≤ ε .

Given a real number z, define vectors vz and uz indexed by i∈ {−i∗, . . . ,−2,−1,0,1,2,

. . . i∗} where i∗ =
⌈

16ε−1 ln(4/ε)
⌉

by:

vz =
√

zcos(ωi lnz)

√∫
ωi+1

ωi
κ(ω)dω, uz =

√
zsin(ωi lnz)

√∫
ωi+1

ωi
κ(ω)dω,

and note that

(vx
i −vy

i)
2+(ux

i −uy
i)

2 = h(x,y,ωi)
∫

ωi+1

ωi
κ(ω)dω.

Therefore,

‖vx−vy‖22+‖u
x−uy‖22 =

∫ wi∗+1
w−i∗

h̃(x,y,ω)κ(ω)dω

=
∫ wi∗+1
w−i∗

h(x,y,ω)κ(ω)dω± ε

=
∫

∞

−∞
h(x,y,ω)κ(ω)dω±2ε = fJ(x,y)±2ε,

where the second to last line follows from lemma 4.4.3 and the last line follows from lemma

4.4.2, since min(|w−i∗|,wi∗+1)≥ ln(4/ε).

Define the vector ap to be the vector generated by concatenating vpi and upi for i∈ [d].
Then it follows that

‖ap−aq‖22 = JS(p,q)±2εd.

Hence we have reduced the problem of estimating JS(p,q) to `2 estimation. Rescaling

ε ← ε/(2d) ensures the additive error is ε while the length of the vectors ap and aq is

O
(

d2
ε log d

ε

)
.

Theorem 4.4.1 Algorithm 7 embeds a set P of points under JS into O
(

d2
ε log d

ε

)
dimen-

sions under `22 with ε additive error, independent of the size of |P|.

Note that using the JL-lemma, the dimensionality of the target space can be reduced to

O
(

log |P|
ε2

)
. Theorem 4.4.1, along with the AMS sketch of (11), and the standard as-

sumption of polynomial precision immediately implies:

90

Corollary 4.4.1 There is an algorithm that works in the aggregate streaming model to

approximate JS to within (1+ ε)-multiplicative factor using O
(

1
ε2 log 1

ε logd
)

space.

As noted earlier, this is the first algorithm in the aggregate streaming model to obtain

an (1+ ε)-multiplicative approximation to JS, which contrasts against linear space lower

bounds for the same problem in the update streaming model.

4.4.2 Randomized embedding

In this section we show how to embed n points of JS into `d̄2 with (1+ ε) distortion

where d̄ = O(n2d3ε−2). 1 This can be reduced further to a dimension O(logn/ε2) by

simply applying the Eucllidean JL-lemma.

In spirit, our approach is along the lines of Rahimi and Recht (134) in that we sample

from the kernel repeatedly to obtain each coordinate of the embedding, so that the final `22
distance is an unbiased estimate of the divergence. Showing this estimate is sufficiently

concentrated is the main technical contribution of this section.

For fixed x,y,∈ [0,1], we first consider the random variable T where T takes the value

h(x,y,ω) with probability κ(ω). (Recall that κ(·) is a distribution.) We compute the first

and second moments of T .

Theorem 4.4.2 E[T] = fJ(x,y) and var[T]≤ 36(fJ(x,y))
2.

Proof. The expectation follows immediately from the definition:

E[T] =
∫

∞

−∞
h(x,y,ω)κ(ω)dω = fJ(x,y).

To bound the variance, it will be useful to define the function fH(x,y) = (
√

x−√y)2 cor-

responding to the one-dimensional Hellinger distance that is related to fJ(x,y) as follows.

We now state two claims regarding fH(x,y) and fχ (x,y):

Claim 4.4.1 For all x,y ∈ [0,1], fH(x,y)≤ 2 fJ(x,y).

Proof. Let fχ (x,y) =
(x−y)2

x+y correspond to the one-dimensional χ2 distance. Then, we

have

1If we ignore precision constraints on sampling from a continuous distribution in a streaming algorithm,
then this also would yield a sketching bound of O(d3ε−2) for a (1+ ε) multiplicative approximation.

91

fχ (x,y)
fH(x,y)

=
(x− y)2

(x+ y)(
√

x−√y)2
=

(
√

x+
√

y)2

x+ y
=

x+ y+2
√

xy
x+ y

≥ 1 .

This shows that fH(x,y) ≤ fχ (x,y). To show fχ (x,y) ≤ 2 fJ(x,y) we refer the reader

to (148, Section 3). Combining these two relationships gives us our claim.

We then bound h(x,y,ω) in terms of fH(x,y) as follows.

Claim 4.4.2 For all x,y ∈ [0,1],ω ∈ R, h(x,y,ω)≤ fH(x,y)(1+2|ω|)2.

Proof. Without loss of generality, assume x≥ y.
√

h(x,y,ω) = |√x · eiω lnx−√y · eiω lny|

≤ |√x · eiω lnx−√y · eiω lnx|+ |√y · eiω lnx−√y · eiω lny|

= |√x−√y|+√y · |eiω lnx− eiω lny|

= |√x−√y|+√y ·2 · |sin(ω ln(x/y)/2)|

≤
√

fH(x,y)+
√

y ·2 · |ω ln(
√

x/y)|

≤
√

fH(x,y)+
√

y ·2 · |
√

x/y−1| · |ω|

=
√

fH(x,y)+2
√

fH(x,y) · |ω|

and hence h(x,y,ω)≤ fH(x,y)(1+2|ω|)2 as required.

These claims allow us to bound the variance:

var[T]≤ E[T 2] =
∫

∞

−∞
(h(x,y,ω))2κ(ω)dω ≤ fH(x,y)2

∫
∞

−∞
(1+2|ω|)4κ(ω)dω

= fH(x,y)2 ·8.94 < 36 fJ(x,y)
2,

This naturally gives rise to the following Algorithm 8. Let ω1, . . . ,ωt be t independent

samples chosen according to κ(ω). For any distribution p on [d], define vectors vp,up ∈
Rtd where, for i ∈ [d], j ∈ [t],

vp
i, j =

√
pi · cos(ω j ln pi)/t, up

i, j =
√

pi · sin(ω j ln pi)/t.

Let vp
i be a concatenation of vp

i, j and up
i, j over all j ∈ [t]. Then note that E[‖vp

i −vq
i ‖

2
2] =

fJ(pi,qi) and var[‖vp
i − vq

i ‖
2
2] ≤ 36(fJ(pi,qi))

2/t. Hence, for t = 36n2d2ε−2, by an

application of the Chebyshev bound,

Pr[|‖vp
i −vq

i ‖
2
2− fJ(pi,qi)| ≥ ε fJ(x,y)]≤ 36ε

−2/t = (nd)−2. (4.1)

92

Input: p = {p1, . . . , pd}.
Output: A vector cp of length O

(
n2d3ε−2

)

`← 1; s← d36n2d2ε−2e

for j← 1 to s do
ω j← a draw from κ(ω);

end
for i← 1 to d do

for j← 1 to s do
ap
`
←
(√pi cos(ω j ln pi)/

√
s
)

bp
`
←
(√pi sin(ω j ln pi)/

√
s
)

`← `+1

end
end
return ap concatenated with bp.

Algorithm 8: Embeds point p ∈ ∆d under JS into `22.

93

By an application of the union bound over all pairs of points:

Pr[∃i ∈ [d] , p,q ∈ P|‖vp
i −vq

i ‖
2
2− fJ(pi,qi)| ≥ ε fJ(pi,qi)]≤ 1/d.

And hence, if vp is a concatenation of vp
i over all i ∈ [d], then with probability at least

1−1/d it holds for all p,q ∈ P:

(1− ε)JS(p,q)≤ ‖vp−vq‖ ≤ (1+ ε)JS(p,q).

The final length of the vectors is then td = 36n2d3ε−2 for approximately preserving

distances between every pair of points with probability at least 1− 1
d . This can be reduced

further to O(logn/ε2) by simply applying the JL-lemma.

4.5 Embedding χ2 into `2
2

We give here two algorithms for embedding the χ2 divergence into `22. The compu-

tation and resulting two algorithms are highly analogous to Section 4.4. First, the explicit

formulation given by (150) yields that for x, y ∈ R:

χ
2(x,y) =

∫ +∞

−∞

∥∥∥eiω lnx√xsech(πω)− eiω lny√ysech(πω)
∥∥∥

2
dω

=
∫ +∞

−∞
(sech(πω))‖√xeiω lnx−√yeiω lny‖2 dω.

For convenience, we now define:

h(x,y,ω) = ‖√xeiω lnx−√yeiω lny‖2

and κχ (ω) = sech(πω).

We can then write χ2(p,q) = ∑
d
i=1 fχ (pi,qi) where

fχ (x,y) =
∫

∞

−∞
h(x,y,ω)κχ (ω)dω =

(x− y)2

x+ y
.

It is easy to verify that κχ (ω) is a distribution, i.e.,
∫

∞−∞
κχ (ω)dω = 1.

4.5.1 Deterministic embedding

We will produce an embedding φ(p) = (φp1 , . . . ,φpd), where each φpi is an integral

that we discretize appropriately.

Lemma 4.5.1 For 0≤ x,y,≤ 1, we have 0≤ h(x,y,ω)≤ 2 and
∣∣∣∣
∂h(x,y,ω)

∂ω

∣∣∣∣≤ 16.

94

Input: p = {p1, . . . , pd} where coordinates are ordered by arrival.

Output: A vector cp of length O
(

d2
ε log d

ε

)

`← 1; J← d32d
ε ln

(
6d
ε

)
e,

for j←−J to J do
w j← j× ε/32d

end
for i← 1 to d do

for j←−J to J−1 do

ap
`
←√pi cos(ω j ln pi)

√
∫ω j+1
ω j

κχ (ω)dω

bp
`
←√pi sin(ω j ln pi)

√
∫ω j+1
ω j

κχ (ω)dω

`← `+1

end

end
return ap concatenated with bp.

Algorithm 9: Embed p ∈ ∆d under χ2 into `22.

95

Similar to Section 4.4, the next two steps analyze truncating and quantizing the integral.

Lemma 4.5.2 (Truncation) For t ≥ ln(3/ε),

fχ (x,y)≥
∫ t

−t
h(x,y,ω)κχ (ω)dω ≥ fχ (x,y)− ε .

Proof. The first inequality follows since h(x,y,ω) ≥ 0. For the second inequality, we use

h(x,y,ω)≤ 2:
∫ −t

−∞
h(x,y,ω)κχ (ω)dω +

∫
∞

t
h(x,y,ω)κχ (ω)dω ≤ 4

∫
∞

t
κχ (ω)dω

< 4
∫

∞

t
2e−πωdω < 3e−t ≤ ε,

where the last line follows if t ≥ ln(3/ε).

Define ωi = εi/16 for i∈ {. . . ,−2,−1,0,1,2, . . .} and h̃(x,y,ω) = h(x,y,ωi) where i =

max{ j | ω j ≤ ω}. We recall the following lemma from Section 4.4:

Lemma 4.5.3 (Quantization) For any a,b,
∫ b

a
h(x,y,ω)κχ (ω)dω =

∫ b

a
h̃(x,y,ω)κχ (ω)dω± ε .

Given a real number z, define vectors vz and uz indexed by i∈ {−i∗, . . . ,−2,−1,0,1,2,

. . . i∗} where i∗ = d16ε−1 ln(3/ε)e by:

vz =
√

zcos(ωi lnz)

√∫
ωi+1

ωi
κχ (ω)dω, uz =

√
zsin(ωi lnz)

√∫
ωi+1

ωi
κχ (ω)dω,

and note that

(vx
i −vy

i)
2+(ux

i −uy
i)

2 = h(x,y,ωi)
∫

ωi+1

ωi
κχ (ω)dω.

Therefore,

‖vx−vy‖22+‖u
x−uy‖22 =

∫ wi∗+1
w−i∗

h̃(x,y,ω)κχ (ω)dω

=
∫ wi∗+1
w−i∗

h(x,y,ω)κχ (ω)dω± ε

=
∫

∞

−∞
h(x,y,ω)κχ (ω)dω±2ε = fχ (x,y)±2ε,

where the second to last line follows from lemma 4.5.3 and the last line follows from lemma

4.5.2, since min(|w−i∗|,wi∗+1)≥ ln(3/ε).

96

Define the vector ap to be the vector generated by concatenating vpi and upi for i∈ [d].
Then it follows that

‖ap−aq‖22 = χ
2(p,q)±2εd.

Hence we have reduced the problem of estimating χ2(p,q) to `2 estimation. Rescaling

ε ← ε/(2d) ensures the additive error is ε while the length of the vectors ap and aq is

O
(

d2
ε log d

ε

)
.

Theorem 4.5.1 Algorithm 9 embeds a set P of points under χ2 into O
(

d2
ε log d

ε

)
dimen-

sions under `22 with ε additive error, independent of the size of |P|.

Theorem 4.5.1, along with the AMS sketch of (11), and the standard assumption of poly-

nomial precision immediately implies:

Corollary 4.5.1 There is an algorithm that works in the aggregate streaming model to

approximate χ2 to within (1+ ε)-multiplicative factor using O
(

1
ε2 log 1

ε logd
)

space.

4.5.2 Randomized embedding

In this section we show how to embed n points of χ2 into `d̄2 with (1+ ε) distortion

where d̄ = O(n2d3ε−2). 2

For fixed x,y,∈ [0,1], we first consider the random variable T where T takes the value

h(x,y,ω) with probability κχ (ω). (Recall that κχ (·) is a distribution.) We compute the

first and second moments of T .

Theorem 4.5.2 E[T] = fχ (x,y) and var[T]≤ 23(fχ (x,y))2.

Proof. The expectation follows immediately from the definition:

E[T] =
∫

∞

−∞
h(x,y,ω)κχ (ω)dω = fχ (x,y).

To bound the variance we will again use the function fH(x,y) = (
√

x−√y)2 corresponding

to the one-dimensional Hellinger distance. We now state two claims relating fH(x,y) and

fχ (x,y):

2If we ignore precision constraints on sampling from a continuous distribution in a streaming algorithm,
then this also would yield a sketching bound of O(d3ε−2) for a (1+ ε) multiplicative approximation.

97

Claim 4.5.1 For all x,y ∈ [0,1], fH(x,y)≤ fχ (x,y).

Proof. Let fχ (x,y) =
(x−y)2

x+y correspond to the one-dimensional χ2 distance. Then, we

have

fχ (x,y)
fH(x,y)

=
(x− y)2

(x+ y)(
√

x−√y)2
=

(
√

x+
√

y)2

x+ y
=

x+ y+2
√

xy
x+ y

≥ 1 .

This shows that fH(x,y)≤ fχ (x,y).

We then recall Claim 4.4.2 bounding h(x,y,ω) in terms of fH(x,y) as follows.

Claim 4.5.2 For all x,y ∈ [0,1],ω ∈ R, h(x,y,ω)≤ fH(x,y)(1+2|ω|)2.

These claims allow us to bound the variance:

var[T]≤ E[T 2] =
∫

∞

−∞
(h(x,y,ω))2κχ (ω)dω ≤ fH(x,y)2

∫
∞

−∞
(1+2|ω|)4κχ (ω)dω

= fH(x,y)2 ·22.77 < 23 fχ (x,y)2,

This naturally gives rise to the following Algorithm 10.

Input: p = {p1, . . . , pd}.
Output: A vector ap of length O

(
n2d3ε−2

)

`← 1; s← d23n2d2ε−2e

for j← 1 to s do
ω j← a draw from κχ (ω);

end
for i← 1 to d do

for j← 1 to s do
ap
`
←
(√pi cos(ω j ln pi)/

√
s
)

bp
`
←
(√pi sin(ω j ln pi)/

√
s
)

`← `+1
end

end
return ap concatenated with bp.

Algorithm 10: Embeds point p ∈ ∆d under χ2 into `22.

98

Let ω1, . . . ,ωt be t independent samples chosen according to κχ (ω). For any distribu-

tion p on [d], define vectors vp,up ∈ Rtd where, for i ∈ [d], j ∈ [t],

vp
i, j =

√
pi · cos(ω j ln pi)/t, up

i, j =
√

pi · sin(ω j ln pi)/t.

Let vp
i be a concatenation of vp

i, j and up
i, j over all j ∈ [t]. Then note that E[‖vp

i −vq
i ‖

2
2] =

fχ (pi,qi) and var[‖vp
i − vq

i ‖
2
2] ≤ 23(fχ (pi,qi))

2/t. Hence, for t = 23n2d2ε−2, by an

application of the Chebyshev bound,

Pr[|‖vp
i −vq

i ‖
2
2− fχ (pi,qi)| ≥ ε fχ (x,y)]≤ 23ε

−2/t = (nd)−2. (4.2)

By an application of the union bound over all pairs of points:

Pr[∃i ∈ [d] , p,q ∈ P|‖vp
i −vq

i ‖
2
2− fχ (pi,qi)| ≥ ε fχ (pi,qi)]≤ 1/d.

And hence, if vp is a concatenation of vp
i over all i ∈ [d], then with probability at least

1−1/d,

(1− ε)χ2(p,q)≤ ‖vp−vq‖ ≤ (1+ ε)χ2(p,q).

The final length of the vectors is then td = 23n2d3ε−2 for approximately preserving

distances between every pair of points with probability at least 1− 1
d . This can be reduced

further to O(logn/ε2) by simply applying the JL-lemma.

4.6 Dimensionality reduction
The JL-lemma has been instrumental for improving the speed and approximation ratios

of learning algorithms. In this section, we give a proof of the JL-analogue for a general

class of divergences that includes the information divergences studied here. Specifically,

we show that a set of n points lying on a high-dimensional simplex can be embedded to

a k = O(logn/ε2)-dimensional simplex, while approximately preserving the information

distances between all pairs of points. This dimension reduction amounts to reducing the

support of the distribution from d to k, while approximately maintaining the divergences.

Our proof uses `22 as an intermediate space. On a high level, we first embed the points

into a high (but finite) - dimensional `22 space, using the techniques we developed in Section

4.4.2. We then use the Euclidean JL-lemma to reduce the dimensionality, and remap the

points into the interior of a simplex. Finally, we show that far away from the simplex

boundaries, this class of divergences has the same structure as `22, hence the embedding

99

back into information spaces can be done with a simple translation and rescaling. Note that

for divergences that have an embedding into finite-dimensional `22, the proof is constructive.

Definition 10 (f -divergence) Let p and q be two distributions on [n]. A convex function

f : [0,∞)→R such that f (1)= 0 gives rise to an f -divergence D f : ∆d→R as: D f (p,q)=

∑
d
i=1 pi · f

(qi
pi

)
, where we define 0 · f (0/0) = 0, a · f (0/a) = a · limu→0 f (u), and 0 ·

f (a/0) = a · limu→∞ f (u)/u.

Definition 11 (Well-behaved divergence) A well-behaved f -divergence is a regular f -

divergence such that f (1) = 0, f ′(1) = 0, f ′′(1)> 0, and f ′′′(1) exists.

Input: Set P = {p1, . . . , pn} of points on ∆d , error parameter ε , constant c0(ε, f)
Output: A set P̄ of points on ∆k where k = O

(
logn
ε2

)

1. Embed P into `2
2 to obtain P1 with error parameter ε/4.

2. Apply Euclidean JL–lemma with error ε

4 to obtain P2 in dimension k = O
(

logn
ε2

)

3. Remap P2 to the plane L = {x ∈ Rk+1 | ∑i xi = 0} to obtain P3

4. Scale P3 to a ball of radius c0 · ε

k+1 and center at the centroid of ∆k+1 to obtain P̄.

Algorithm 11: Dimension reduction for D f

To analyze the above algorithm, we recall the JL–lemma (33, 88):

Lemma 4.6.1 For any set of points P in a (possibly infinite-dimensional) Hilbert space H,

there exists a randomized map f : H→ Rk, k = O(
logn
ε2) such that whp, ∀p,q ∈ P,

(1− ε)‖p−q‖22 ≤ ‖ f (p)− f (q)‖22 ≤ (1+ ε)‖p−q‖22.

Corollary 4.6.1 For any set of points P in H there exists a constant t and a randomized

map f : H→ ∆k+1, k = O(
logn
ε2) such that ∀p,q ∈ P:

(1− ε)‖p−q‖22 ≤ t‖ f (p)− f (q)‖22 ≤ (1+ ε)‖p−q‖22.

Furthermore for any small enough constant r, we may bound the domain of f to be a

ball B of radius r centered at the simplex centroid, (1/k+1,1/k+1, . . . ,1/k+1) .

100

We now show that any well-behaved f divergence is nearly Euclidean near the simplex

centroid.

Lemma 4.6.2 Consider any well-behaved f divergence D f , and let Br be a ball of radius r

such that Br ⊂ ∆k and Br is centered at the simplex centroid. Then for any fixed 0 < ε < 1,

there exists a choice of r and scaling factor t (both dependent on k) such that ∀p,q ∈ B:

(1− ε)‖p−q‖22 ≤ tD f (p,q)≤ (1+ ε)‖p−q‖22.

We note that the required value of r can be computed easily for the Hellinger and χ2

divergence, and that r behaves as 1
k · c where c = c(f ,ε) is a sufficiently small constant

depending only on ε and the function f and not on k or n . To conclude the proof note that

the overall distortion is bounded by the combination of errors due to the initial embedding

into P1, the application of JL-lemma, and the final reinterpretation of the points in ∆k+1.

The overall error is thus bounded by, (1+ ε/4)3 ≤ 1+ ε .

Theorem 4.6.1 Consider a set P ∈ ∆d of n points under a well-behaved f -divergence D f .

Then there exists a (1+ ε) distortion embedding of P into ∆k under D f for some choice

of k bounded as O
(logn

ε2

)
. Furthermore this embedding can be explicitly computed even

for a well-behaved f -divergence with an infinite-dimensional kernel, if the kernel can be

approximated in finite dimensions within a multiplicative error as we show for JS and χ2.

4.7 Experiments
We analyze the empirical performance of our algorithms and demonstrate the effect

that each of the parameters has on the quality of the final solution. We show that there is

very little loss incurred both in sampling from the kernel (embedding the points into `22),

and in remapping the points to lie on the d-dimensional simplex, for a set of parameters far

smaller than those guaranteed by the analysis.

Recall that the dimension reduction procedure in Algorithm 11 has three parameters:

s, the number of samples used to embed the points into `22; k, the target dimension of the

Euclidean JL-lemma, and c0, the scaling parameter used to embed the points in the final

simplex.

Synthetic data. To study the quality of the embedding with respect to these three

parameters, we generated distributions on d = 100,1000, and 10,000 dimensions. We used

101

the Cauchy distribution, and the Log-Factorial3 distribution as the seeds. To generate a

point in the dataset, we randomly permuted the coordinates in one of these distributions.

To explore the dependence on the parameters, we set the defaults to s = 100, k = 300,

and c0 = 0.1. Note that the value of s is far lower than that implied by the analysis (the

value of c0 is far higher). In the three panels of Figure 4.1 we vary one of the parameters

while keeping the others fixed; all of these are averaged over 100 pairwise computations.

We track the error introduced by embedding into `22, reducing the dimension to d, and re-

embedding back into the simplex ∆d . As expected, we show that the overall error decreases

with increasing the number of samples, and with lowering c0. These contributions are on

the order of 0.075% to 0.3%, and far outweighed by the error introduced by the JL-lemma

itself, which is on the order of 9-10% and forms the core of the reduction.

The only known method for dimension reduction in the simplex is due to (96), which

essentially eschews the kernel embedding into `22 and proceeds to apply the JL-lemma

directly on the distribution points. While it provably works only in a limited domain, we

nevertheless investigate its performance. While the error of our method on the synthetic

dataset ranges from 5-30% depending on the value of the target dimension, k, the error

produced by the baseline method ranges from 95-430%, that is the baseline approximates

the distances by a factor of 2−4, instead of 5-30%.

To further demonstrate the efficacy of our approach we use the word distributions in

different book genres as gathered from the free sample on http://www.wordfrequency.info.

We use Algorithm 11 to reduce the dimensionality twenty-fold from 6000 to just 300

dimensions. Using the same fixed set of parameters, we show the average (over 10 runs)

error between the different genres in the Table 4.1.

Table 4.1. Relative error of the JS divergence after embedding into
300 dimensions

Spoken Fiction Popular Newspaper Academic
Spoken - 1.5% 3.3% 1.87% 0.3%
Fiction - - 1.4% 3.75% 2.95%
Popular - - - 5.2% 5.15%
Newspaper - - - - 1.25%

3The distribution has values p1, . . . , pd , where pi ∝ log(1+ i) = log(1+i)
log(d+1)! .

102

Figure 4.1. The error due to the number of samples, the JL-lemma, and the simplex
embedding.

CHAPTER 5

SPECTRAL ALGORITHMS FOR NEAREST

NEIGHBOR SEARCH

We study spectral algorithms for the high-dimensional Nearest Neighbor Search prob-

lem (NNS). In particular, we consider a semirandom setting, where a dataset P in Rd is

chosen arbitrarily from an unknown subspace of low dimension k� d, and then perturbed

by fully d-dimensional Gaussian noise. We design spectral NNS algorithms whose query

time depends polynomially on d and logn (where n= |P|) for large ranges of k, d and n. Our

algorithms use a repeated computation of the top PCA vector/subspace, and are effective

even when the random-noise magnitude is much larger than the interpoint distances in P.

Our motivation is that, in practice, a number of NNS algorithms use spectral methods,

which still lack a good theoretical justification, often outperforming the random-projection

methods that seem otherwise to be theoretically optimal.

5.1 Background and motivation
A fundamental tool in high-dimensional computational geometry is the random projec-

tion method. Most notably, the Johnson-Lindenstrass lemma (88) says that projecting onto

a uniformly random k-dimensional subspace of Rd approximately preserves the distance

between any (fixed) points x,y ∈ Rd (up to scaling), except with probability exponentially

small in k. This turns out to be a very powerful approach as it effectively reduces the

dimension from d to a usually much smaller k via a computationally cheap projection,

and as such has had a tremendous impact on algorithmic questions in high-dimensional

geometry.

A classical application of random projections is to the high-dimensional Nearest Neigh-

c©2014 IEEE. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. An extended abstract of this work was published in FOCS 2014,
http://dx.doi.org/10.1109/FOCS.2014.68.

104

bor Search (NNS) problem. Here, we are given a dataset of n points from Rd , which we

preprocess to subsequently find, given a query point q ∈ Rd , its closest point from the

dataset. It is now well-known that exact NNS admits algorithms whose running times have

good dependence on n, but exponential dependence on the dimension d (46, 110); however

these are unsatisfactory for moderately large d.

To deal with this “curse of dimensionality,” researchers have studied algorithms for

approximate NNS, and indeed in the high-dimensional regime, many, if not all, of these

algorithms rely heavily on the random projection method. Consider the case of Locality-

Sensitive Hashing (LSH), introduced in (84), which has been a theoretically and practically

successful approach to NNS. All known variants of LSH for the Euclidean space, including

(16, 58, 84), involve random projections.1 For example, the space partitioning algorithm of

(58) can be viewed as follows. Project the dataset onto a random k-dimensional subspace,

and impose a randomly-shifted uniform grid. Then, to locate the near(est) neighbor of a

point q, look up the points in the grid cell q falls into. Usually, this space partitioning is

repeated a few times to amplify the probability of success (see also (127)).

While random projections work well and have provable guarantees, it is natural to ask

whether one can improve the performance by replacing “random” projections with “best”

projections. Can one optimize the projection to use — and the space partitioning more

generally — as a function of the dataset at hand? For example, in some tasks requiring

dimensionality reduction, practitioners often rely on Principal Component Analysis (PCA)

and its variants. Indeed, in practice, this consideration led to numerous successful heuristics

such as PCA tree (109, 143, 152) and its variants (called randomized kd-tree) (113, 140),

spectral hashing (155), semantic hashing (138), and WTA hashing (157), to name just a few.

Oftentimes, these heuristics outperform algorithms based on vanilla random dimension

reductions. All of them adapt to the dataset, including many that perform some spectral

decomposition of the dataset. However, in contrast to the random projection method, none

of these methods have rigorous correctness or performance guarantees.

Bridging the gap between random projections and data-aware projections has been

recognized as a big open question in Massive Data Analysis, see, e.g., a recent National

1While (84) is designed for the Hamming space, their algorithm is extended to the Euclidean space by an
embedding of `2 into `1, which itself uses random projections (87).

105

Research Council report (123, Section 5). The challenge here is that random projections

are themselves (theoretically) optimal not only for dimensionality reduction (10), but also

for some of its algorithmic applications (86, 156), including NNS in certain settings (17).

We are aware of only one line of work addressing this question: data-dependent LSH,

which were introduced recently (16, 19), provably improve the query time polynomially.

However, their space partitions are very different from the aforementioned practical heuris-

tics (e.g., they are not spectral-based), and do not explain why data-aware projections help

at all.

In this chapter, we formulate a semirandom model of data and show that data-aware

projections provably guarantee good performance in this model, in contrast to random

projections, which will not do the job.

As argued above, for worst-case inputs we are unlikely to beat the performance of

random projections, and thus it seems justified to revert to the framework of smoothed

analysis (142). We thus consider a semirandom model, where the dataset is formed by

first taking an arbitrary (worst-case) set of n points in a k-dimensional subspace of Rd ,

and then perturbing each point by adding to it Gaussian noise Nd(0,σ
2Id). The query

point is selected using a similar process. Our algorithms are able to find the query’s nearest

neighbor as long as there is a small gap (1 vs 1+ ε) in the distance to the nearest neighbor

versus other points in the unperturbed space — this is a much weaker assumption than

assuming the same for the perturbed points.

Most importantly, our results hold even when the noise magnitude is much larger than

the distance to the nearest neighbor. The noise vector has length (about) σ
√

d, and so

for σ � 1/
√

d, the noise magnitude exceeds the original distances. In such a case, a

Johnson-Lindenstrauss projection to a smaller dimension will not work — the error due to

the projection will lose all the information on the nearest neighbor, and it’s not even clear

what would be gained.

We describe the precise model in Section 5.2.

5.1.1 Algorithmic results

We propose two spectral algorithms for nearest neighbor search, which achieve es-

sentially the same performance as NNS algorithms in k and O(k logk)-dimensional space,

respectively. These spectral algorithms rely on computing a PCA subspace or vector, re-

106

spectively — the span of the singular vectors corresponding to the top singular values of an

n×d matrix representing some n points in Rd . Our algorithms are inspired by PCA-based

methods that are commonly used in practice for high-dimensional NNS, and we believe

that our rigorous analysis may help explain (or direct) those empirical successes. We defer

the precise statements to the respective technical sections (specifically, Theorems 5.6.1 and

5.7.1), focusing here on a qualitative description.

The first algorithm performs iterative PCA. Namely, it employs PCA to extract a sub-

space of dimension (at most) k, identifies the points captured well by this subspace, and then

repeats iteratively on the remaining points. The algorithm performs at most O(
√

d logn)

PCAs in total, and effectively reduces the original NNS problem to O(
√

d logn) instances

of NNS in k dimensions. Each of these NNS instances can be solved by any standard

low-dimensional (1+ ε)-approximate NNS, such as (21, 22, 23, 45, 49, 75), which can

give, say, query time (1/ε)O(k) log2 n. See Section 5.6, and the crucial technical tool

it uses in Section 5.5. As a warmup, we initially introduce a simplified version of the

algorithm for a (much) simpler model in Section 5.4.

The second algorithm is a variant of the aforementioned PCA tree, and constructs a tree

that represents a recursive space partition. Each tree node corresponds to finding the top

PCA direction, and partitioning the dataset into slabs perpendicular to this direction. We

recurse on each slab until the tree reaches depth 2k. The query algorithm searches the tree

by following a small number of children (slabs) at each node. This algorithm also requires

an additional preprocessing step that ensures that the dataset is not overly “clumped.” The

overall query time is (k/ε)O(k) · (d logn)O(1). See Section 5.7.

While the first algorithm is randomized, the second algorithm is deterministic and its

failure probability comes only from the semirandom model (randomness in the instance).

5.1.2 Related work

There has been work on understanding how various tree data structures adapt to a

low-dimensional point set, including (57, 152). For example, (152) shows that PCA trees

adapt to a form of “local covariance dimension,” a spectrally-inspired notion of dimension,

in the sense that a PCA tree halves the “diameter” of the pointset after a number of levels

dependent on this dimension notion (as opposed to the ambient dimension d). Our work

differs in a few respects. First, our datasets do not have a small local covariance dimen-

107

sion. Second, our algorithms have guarantees of performance and correctness for NNS

for a worst-case query point (e.g., the true nearest neighbor can be any dataset point). In

contrast, (152) proves a guarantee on diameter progress, which does not necessarily imply

performance guarantees for NNS, and, in fact, may only hold for average query point (e.g.,

when the true nearest neighbor is random). Indeed, for algorithms considered in (152), it is

easy to exhibit cases where NNS fails.2

For our model, it is tempting to design NNS algorithms that find the original k-

dimensional subspace and thus “de-noise” the dataset by projecting the data onto it. This

approach would require us to solve the `∞-regression problem with high precision.3 Un-

fortunately, this problem is NP-hard in general (72), and the known algorithms are quite

expensive, unless k is constant. Har-Peled and Varadarajan (80) present an algorithm

for `∞-regression achieving (1+ ε)-approximation in time O(ndeeO(k2)ε−2k−3
), which

may be prohibitive when k ≥ Ω(
√

log logn). In fact, there is a constant δ > 0 such that

it is Quasi-NP-hard, i.e., implies NP ⊆ DTIME(2(logn)O(1)
), to even find a (logn)δ

approximation to the best fitting k-subspace when k ≥ dε for any fixed ε > 0 (149).

We also note that the problem of finding the underlying k-dimensional space is some-

what reminiscent of the learning mixtures of Gaussians problem (56); see also (20, 111,

151) and references therein. In the latter problem, the input is n samples generated from

a mixture of k Gaussian distributions with unknown mean (called centers), and the goal

is to identify these centers (the means of the k Gaussians). Our setting can be viewed as

having n centers in a k-dimensional subspace of Rd , and the input contains exactly one

sample from each of the n centers. Methods known from learning mixtures of Gaussians

rely crucially on obtaining multiple samples from the same center (Gaussian), and thus do

not seem applicable here.

Finally, the problem of nearest neighbor search in Euclidean settings with “effective

low-dimension” has received a lot of attention in the literature, including (32, 49, 78,

85, 90, 95) among many others. Particularly related is also the work (76), where the

authors consider the case when the dataset is high-dimensional, but the query comes from a

2For example, if we consider the top PCA direction of a dataset and the median threshold, we can plant
a query–near-neighbor pair on the two sides of the partition. Then, this pair, which won’t affect top PCA
direction much, will be separated in the PCA tree right from the beginning.

3As we explain later, related problems, such as `2-regression, would not be sufficient.

108

(predetermined) low-dimensional subspace. These results do not seem readily applicable in

our setting because our dataset is really high-dimensional, say in the sense that the doubling

dimension is Ω(d).

5.1.3 Techniques and ideas

We now discuss the main technical ideas behind our two algorithms. First, we explain

why some natural ideas do not work. The very first intuitive line of attack to our problem is

to compute a k-dimensional PCA of the pointset, project it into this k-dimensional subspace,

and solve the k-dimensional NNS problem there. This approach fails because the noise

is too large, and PCA only optimizes the sum of distances (i.e., an average quantity, as

opposed to the “worst case” quantity). In particular, suppose most of the points lie along

some direction ~u and only a few points lie in the remaining dimensions of our original

subspace S (which we call sparse directions). Then, the k-PCA of the dataset will return a

top singular vector close to~u, but the remaining singular vectors will be mostly determined

by random noise. In particular, the points with high component along sparse directions may

be very far away from the subspace returned by our PCA, and hence “poorly-captured” by

the PCA space. Then, the NNS data structure on the projected points will fail for some

query points. If the difference between a query point q and its nearest neighbor p∗ is

along ~u, whereas the difference between q and the other, poorly-captured points is along

the sparse directions, the poorly-captured points will cluster around q in the k-PCA space,

at a distance much closer than ‖q− p∗‖.
Our first algorithm, instead, runs k-PCAs iteratively, while pruning away points “well-

captured” by the PCA (i.e., close to the PCA subspace). In particular, this allows us to

discover the points in sparse directions in later iterations. Furthermore, to ensure correct-

ness of nearest neighbor queries in the presense of large noise, we do not necessarily take all

the top k singular values, but only those that exceed some threshold value; this guarantees

that all directions in our PCA subspace have a large component inside U . Showing this

guarantee analytically is nontrivial, starting with even the definition of what it means to

be “close” for two spaces, which may have different dimensions. For this purpose, we

employ the so-called sinθ machinery, which was developed by Davis and Kahan (59) and

by Wedin (154), to bound the perturbations of the singular vectors of a matrix in presence

of noise. Notice the difference from the more usual theory of perturbations of the singular

109

values. For example, in contrast to singular values, it is not true that the top singular vector

is “stable” when we perturb a given matrix.

The actual algorithm has one more important aspect: in each iteration, the PCA space is

computed on a sample of the (surviving) data points. This modification allows us to control

spurious conditioning induced by earlier iterations. In particular, if instead we compute

the PCA of the full data, once we argue that a vector p̃ “behaves nicely” in one iteration,

we might effectively condition on the direction of its noise, potentially jeopardizing later

iterations. (While we do not know if sampling is really necessary for the algorithm to work,

we note that, practically, it is a very reasonable idea to speed up preprocessing nonetheless.)

The second algorithm is based on the PCA-tree, which partitions the space recursively,

according to the top PCA direction. This can be seen as another (extreme) form of “iterative

PCA.” At each node, the algorithm extracts one top PCA direction, which always contains

the “maximum” information about the dataset. Then it partitions the dataset into a few

slabs, thereby partitioning the datasets into smaller parts “as quickly as possible.” This

allows the tree to narrow down on the sparse directions quicker. The performance of

the PCA tree depends exponentially on its depth; hence the crux of the argument is to

bound the depth. While it seems plausibly easy to show that a partitioning direction should

never be repeated, this would give too loose a bound, as there could be a total of ≈ exp(k)

essentially distinct directions in a k-dimensional space. Instead, we perform a mild form

of orthonormalization as we progress down the tree, to ensure only O(k) directions are

used in total. In the end, the query time is roughly kO(k), i.e., equivalent to a NNS in an

O(k logk)-dimensional space.

We note that this algorithm has two interesting aspects. First, one has to use centered

PCA, i.e., PCA on the data centered at zero: otherwise, every small error in the PCA

direction may move points a lot for subsequent iterations, misleading a noncentered PCA.

Second, from time to time, we need to do “de-clumping” of the data, which essentially

means that the data is sparsified if the points are too close to each other. This operation

also appears necessary; otherwise, a cluster of points that are close in the original space

might mislead the PCA due to their noise components. Furthermore, in contrast to the first

algorithm, we cannot afford to iterate through ≈ d iterations to eliminate “bad” directions

one by one.

110

5.2 The model
We assume throughout the dataset is generated as follows.4 Let U be a k-dimensional

subspace of Rd . Let P = {p1, . . . , pn} be a set of n points all living in U and having at least

unit norm, and let q ∈U be a query point. We assume that d = Ω(logn). The point set P is

perturbed to create P̃ = { p̃1, . . . , p̃n} by adding to each point independent Gaussian noise,

and the query point q is perturbed similarly. Formally,

p̃i = pi+ ti where ti ∼ Nd(0,σ Id), ∀pi ∈ P, (5.1)

q̃ = q+ tq where tq ∼ Nd(0,σ Id). (5.2)

Let us denote the nearest neighbor to q in P by p∗ and let p̃∗ be its perturbed version.

We shall actually consider the near-neighbor problem, by assuming that in the unperturbed

space, there is one point p∗ ∈ P within distance 1 from the query, and all other points are

at distance at least 1+ ε from the query, for some known 0 < ε < 1. Formally,

∃p∗ ∈ P such that ‖q− p∗‖ ≤ 1 and ∀p ∈ P\{p∗}, ‖q− p‖ ≥ 1+ ε. (5.3)

We note that even if there is more than one such point p∗ so that ‖q− p∗‖ ≤ 1, our

algorithms will return one of these close p∗ correctly. Also our analysis in Section 5.6

extends trivially to show that for any x such that x≥ 1 and ‖q− p∗‖= x, our first algorithm

the iterative PCA actually returns a (1+ ε)-approximate nearest neighbor to q. We omit

the details of this extended case for ease of exposition.

5.2.1 Preliminary observations

For the problem to be interesting, we need that the perturbation does not change the

nearest neighbor, i.e., p̃∗ remains the closest point to q̃. We indeed show this is the case

as long as σ � ε/ 4√d logn. Notice that the total noise magnitude is roughly σ
√

d, which

can be much larger than 1 (the original distance to the nearest neighbor). Hence after the

noise is added, the ratio of the distance to the nearest neighbor and to other (nearby) points

becomes very close to 1. This is the main difficulty of the problem, as, for example, it is

the case where random dimensionality reduction would lose nearest neighbor information.

We recommend keeping in mind the following parameter settings: k = 20 and ε = 0.1 are

4An exception is the warm-up Section 5.4, where the noise is small adversarial.

111

constants, while d = log3 n and σ = Θ(1/ logn) depend asymptotically on n = |P|. In this

case, for example, our algorithms actually withstand noise of magnitude Θ(
√

logn)� 1.

Here and in the rest of the chapter, we will repeatedly employ concentration bounds

for Gaussian noise, expressed as tail inequalities on the χ2 distribution. We state here for

reference bounds from (99), where χ2
d is the same distribution as ‖Nd(0, Id)‖22. The term

with high probability (w.h.p.) will mean that probability 1− n−C for sufficiently large

C > 0.

Theorem 5.2.1 ((99)) Let X ∼ χ2
d . For all x≥ 0,

Pr
[
X ≥ d

(
1+2

√
x
d

)
+ x
]
≤ e−x, and Pr

[
X ≤ d

(
1−2

√
x
d

)]
≤ e−x.

Corollary 5.2.1 For n≥ 1, let X ∼ χ2
d . Then Pr[|X−d| ≥ d +4

√
d logn+4logn]≤ 2

n4 .

We now show that after the perturbation of P,q, the nearest neighbor of q̃ will remain

p̃∗, w.h.p.

Lemma 5.2.1 Consider the above model (5.1)-(5.3) for n > 1, ε ∈ (0,1), dimensions k <

d = Ω(logn), and noise standard deviation σ ≤ cε/ 4√d logn, where c > 0 is a sufficiently

small constant. Then w.h.p. the nearest neighbor of q̃ (in P̃) is p̃∗.

Proof. Write (X1, . . . ,Xd)
T = q̃−q∼Nd(0,σ Id), and similarly (Y1, . . . ,Yd)

T = p̃∗− p∼
Nd(0,σ Id). Let Zi = Xi−Yi, and note that the Zi’s are independent Gaussians, each with

mean 0 and variance 2σ2. Then by direct computation

‖q̃− p̃∗‖2 = 1+
d
∑

i=1
(Xi−Yi)

2+
d
∑

i=1
(Xi−Yi)(qi− p∗i) = 1+

d
∑

i=1
Z2

i +
d
∑

i=1
Zi(qi− p∗i).

(5.4)

For the term ∑
d
i=1 Z2

i , Theorem 5.2.1 gives us

Pr

[∣∣∣∣∣
d
∑

i=1
Z2

i −2σ
2d

∣∣∣∣∣≥ 2σ
2
(

x+d ·2
√

x
d

)]
≤ 2e−x.

Setting x = 4logn ≤ O(d), observe that 2σ2(x+ 2
√

xd) ≤ O(σ2√xd) ≤ O(c2ε2), and

thus we have Pr
[∣∣∣∑d

i=1 Z2
i −2dσ2

∣∣∣≥ O(c2ε2)
]
≤ 2

n4 .

Now the term ∑
d
i=1 Zi(qi− p∗i) is a Gaussian with mean 0 and variance ∑

d
i=1(qi−

p∗i)
2 var[Zi] = 2σ2‖q− p∗‖2 = 2σ2, and thus with high probability |∑d

i=1 Zi(qi− p∗i)| ≤

112

O(σ
√

logn). Substituting for σ and recalling d = Ω(logn), the righthand-side can be

bounded by O(cε). Altogether, with high probability

‖q̃− p̃∗‖2 ≤ 1+2dσ
2±O(c2

ε
2)±O(cε). (5.5)

Similarly, for every other point p 6= p∗, with high probability,

‖q̃− p̃‖2 ≥ ‖q− p‖2+2dσ
2±O(c2

ε
2)±O(cε)‖q− p‖, (5.6)

and we can furthermore take a union bound over all such points p 6= p∗. Now comparing

Eqns. (5.5) and (5.6) when ‖q− p‖2 ≥ 1+ ε and c > 0 is sufficiently small, gives us the

desired conclusion.

Remark 5.2.1 The problem remains essentially the same if we assume the noise has no

component in the space U. Indeed, we can absorb the noise inside U into the “original”

points (P and q). With high probability, this changes the distance from q to every point in

P by at most O(σ
√

k logn)� ε . Hence, in the rest of the article, we will assume the noise

is perpendicular to U.

5.3 Short review of spectral properties of matrices
We review some basic definitions of spectral properties of matrices.

5.3.1 Spectral norm and principal component analysis

The spectral norm of a matrix X ∈ Rn×d is defined as ‖X‖ = supy∈Rd :‖y‖=1‖Xy‖,
where all vector norms ‖·‖ refer throughout to the `2-norm. The Frobenius norm of X is

defined as ‖X‖F = (∑i j X2
i j)

1/2, and let XT denote the transpose of X . A singular vector

of X is a unit vector v ∈Rd associated with a singular value s ∈R and a unit vector u ∈Rn

such that Xv = su and uTX = svT. (We may also refer to v and u as a pair of right-singular

and left-singular vectors associated with s.)

Fact 5.3.1 For every two real matrices X and Y of compatible dimensions (i) ‖X +Y‖ ≤
‖X‖+‖Y‖; (ii) ‖XY‖ ≤ ‖X‖ · ‖Y‖; and (iii) ‖X‖= ‖XT‖.

We can think of i-th row in X as a point xi ∈Rd , and define the corresponding point set

P(X) = {x1, . . . ,xn}. Then a unit vector y ∈Rd maximizing ‖Xy‖ corresponds to a best-fit

line for the point set P(X). The PCA (and Singular Value Decomposition (SVD) more

113

generally) is a classical generalization of this notion to a best-fit k-dimensional subspace

for P(X), as described next (see, e.g., (89, Chapter 1)).

Theorem 5.3.1 ((89)) Let X ∈ Rn×d, and define the vectors v1, . . . ,vd ∈ Rd inductively

by

v j = argmax
‖v‖=1; ∀i< j,vTvi=0

‖Xv‖

(where ties for any argmax are broken arbitrarily). Then each Vj = span{v1, . . . ,vk}
attains the minimum of ∑

n
i=1 d(xi,W)2 over all j-dimensional subspaces W. Furthermore,

v1, . . . ,vd are all singular vectors with corresponding singular values s1 = ‖Xv1‖, . . . ,sd =

‖Xvd‖, and clearly s1 ≥ . . .≥ sd.

We will later need the following basic facts (see, e.g., (145)). We denote the singular

values of a matrix X ∈ Rn×d by s1(X)≥ s2(X)≥ . . .≥ sd(X).

Fact 5.3.2 Let P(X) ⊂ Rd be the point set corresponding to the rows of a matrix X ∈
Rn×d. Then

1. ‖X‖2F = ∑p∈P(X) ‖p‖2 = ∑
d
i=1 si(X)2 and ‖X‖= s1(X).

2. P(X) lies in a subspace of dimension k if and only if sk+1(X) = 0.

Fact 5.3.3 For any matrix X, let XTX be the covariance matrix of X. Then the right

singular vectors of X are also right singular vectors of XTX. Also, si(X
TX) = s2

i (X).

Fact 5.3.4 For matrices X and E of compatible dimensions, |s j(X +E)− s j(X)| ≤ ‖E‖.

5.3.2 Spectral norms of random matrices

In our analysis, we will also need bounds on norms of random matrices, which we

derive using standard random matrix theory. We state below a bound on the spectral norm

of T ∈ Rn×d , a matrix of iid Gaussian vectors. We also consider its restriction TA to any

subset of rows of T , and bound the spectral norm in terms of the size of the subset, s = |A|,
expressed as a function η(s) = O(σ

√
s · logn).

114

Theorem 5.3.2 ((98, 137)) Let matrix T ∈ Rn×d have entries drawn independently from

N(0,σ). Then with probability approaching 1 asymptotically as n and d increase, ‖T‖ ≤
3σ max{√n,

√
d}.

Lemma 5.3.1 With high probability, for every subset A of the rows of T , with |A| ≥ d, the

corresponding submatrix TA of T , has spectral norm ‖TA‖ ≤ η(|A|) = O(σ
√
|A| · logn).

Proof. Fix some A of size s. It is known from random matrix theory that ‖TA‖≤σ
√

Cs logn

with probability at least 1− e−Ω(Cs logn) = 1− n−Ω(Cs) (137, Proposition 2.4). For a

large enough constant C > 1, since there are at most
(n

s
)
≤ (n/s)O(s) such subsets A, by a

union bound, with high probability none of the sets will fail. Another union bound over all

sizes s completes the claim.

5.4 Warmup: Iterative PCA under small adversarial noise
To illustrate the basic ideas in our “iterative PCA” approach, we first study it in an

alternative, simpler model that differs from Section 5.2 in that the noise is adversarial but

of small magnitude. The complete “iterative PCA” algorithm for the model from Section

5.2 will appear in Section 5.6.

In the bounded noise model, for fixed ε ∈ (0,1), we start with an n-point dataset P and

a point q, both lying in a k-dimensional space U ⊂ Rd , such that

∃p∗ ∈ P such that ‖q− p∗‖ ≤ 1 and ∀p ∈ P\{p∗}, ‖q− p‖ ≥ 1+ ε. (5.7)

The set P̃ consists of points p̃i = pi + ti for all pi ∈ P, where the noise ti is arbitrary,

but satisfies ‖ti‖ ≤ ε/16 for all i. Similarly, q̃ = q+ tq with ‖tq‖ ≤ ε/16.

Theorem 5.4.1 Suppose there is a (1+ ε/4)-approximate NNS data structure for n points

in a k-dimensional Euclidean space with query time Fquery, space Fspace, and prepro-

cessing time Fprep. Then for the above adversarial-noise model, there is a data structure

that preprocesses P̃, and on query q̃ returns p̃∗. This data structure has query time

O((dk+Fquery) logn), space O(Fspace), and preprocessing time O(n+d3+Fprep).

First we show that the nearest neighbor “remains” p∗ even after the perturbations

(similarly to lemma 5.2.1. Let α = ε/16.

115

Claim 5.4.1 The nearest neighbor of q̃ in P̃ is p̃∗.

Proof. For all i, we have ‖p̃i− pi‖≤ ‖ti‖≤α , hence by the triangle inequality, ‖q̃− p̃∗‖≤
‖q̃−q‖+‖q− p∗‖+‖p∗− p̃∗‖≤ ‖q− p∗‖+2α . For all p 6= p∗, a similar argument gives

‖q̃− p̃‖ ≥ ‖q− p∗‖+ ε−2α .

We now describe the algorithm used to prove Theorem 5.4.1. Our algorithm first finds

a small collection U of k-dimensional subspaces, such that every point of P̃ is “captured

well” by at least one subspace in U . We find this collection U by iteratively applying PCA,

as follows (see Algorithm 12). First compute the top (principal) k-dimensional subspace of

P̃. It “captures” all points p̃ ∈ P̃ within distance
√

2α from the subspace. Then we repeat

on the remaining noncaptured points, if any are left. In what follows, let pŨ denote the

projection of a point p onto Ũ , and define the distance between a point x and a set (possibly

a subspace) S as d(x,S) = infy∈S‖x− y‖.

j← 0; P̃0← P̃
while P̃j 6= /0 do

Ũ j← the k-dimensional PCA subspace of P̃j
Mj←{ p̃ ∈ P̃j : d(p̃,Ũ j)≤

√
2α}

P̃j+1← P̃j \Mj
j← j+1

end while
return Ũ = {Ũ0, . . . ,Ũ j−1} and the associated point sets {M0,M1, . . . ,Mj−1}.

Algorithm 12: Iteratively locate subspaces

The remainder of the preprocessing algorithm just constructs for each subspace Ũ ∈
U a data structure for k-dimensional NNS, whose dataset is the points captured by Ũ

projected onto this subspace Ũ (treating Ũ as a copy of Rk). Overall, the preprocessing

phase comprises of O(logn) PCA computations and constructing O(logn) data structures

for a k-dimensional NNS.

The query procedure works as follows. Given a query point q̃, project q̃ onto each

Ũ ∈ U to obtain q̃Ũ , and find in the data structure corresponding to this Ũ a (1+ ε/4)-

approximate nearest neighbor point p̃Ũ to q̃Ũ . Then compute the distance between q̃ and

each p̃ (original points corresponding to p̃Ũ), and report the the closest one to q̃.

We now proceed to analyze the algorithm.

116

Claim 5.4.2 Algorithm 12 terminates within O(logn) iterations.

Proof. Let U be the PCA subspace of P and let Ũ be the PCA subspace of P̃. Since

Ũ minimizes (among all k-dimensional subspaces) the sum of squared distances from all

p̃ ∈ P̃ to Ũ ,

∑
p̃∈P̃

d(p̃,Ũ)2 ≤ ∑
p̃∈P̃

d(p̃,U)2 ≤ ∑
p̃∈P̃
‖ p̃− p‖2 ≤ α

2n.

Hence, at most half of the points in P̃ may have distance to Ũ which is greater than
√

2α .

The current set M will capture the other (at least a half fraction) points, and the algorithm

then proceeds on the remaining set. Each subsequent iteration thus decreases the number

of points by a constant factor. After O(logn) iterations all points of P̃ must be captured.

Claim 5.4.3 The data structure for the subspace Ũ that captures p̃∗ always reports this

point as the (1+ ε/4)-approximate nearest neighbor of q̃ (in Ũ).

We can now complete the proof of Theorem 5.4.1. By Claim 5.4.3, p̃∗ is always

reported by the k-dimensional data structure it is assigned to. But this is the closest point

overall, by Claim 5.4.1, and thus our algorithm eventually reports this point p̃∗, which

proves the correctness part of Theorem 5.4.1. To argue the time and space guarantees, we

just note that computing one PCA on n points takes time O(n+d3), and there are in total

O(logn) PCAs to compute, and obviously also k-dimensional NNS data structures to query

against.

5.5 Stability of a top PCA subspace
Before continuing to the full iterative-PCA algorithm, we need to address the challenge

of controlling the stability of the PCA subspace under random noise. In particular, we will

need to show that the PCA subspace Ũ computed from the noisy dataset P̃ is “close” to the

original subspace U . We establish this rigorously using the sinθ machinery developed by

Davis and Kahan (59) and by Wedin (154).

Throughout, s j(M) denotes the j-th largest singular value of a real matrix M, and

‖M‖ = s1(M) denotes its spectral norm, while ‖M‖F denotes the Frobenius norm of M.

All vector norms, i.e. ‖v‖ for v ∈ Rd , refer to the `2-norm.

117

5.5.1 Wedin’s sinθ Theorem

The sinθ distance between two subspaces B and A of Rd is defined as

sinθ(B,A) = max
x∈B,‖x‖=1

min
y∈A
‖x− y‖.

Observe that the minimum here is just the distance to a subspace dist(x,A), and it is attained

by orthogonal projection. Thus, for all x′ ∈ B (not necessarily of unit length) dist(x′,A) =
‖x′‖ ·dist

(
x′
‖x′‖ ,A

)
≤ ‖x′‖ · sinθ(B,A). See Figure 5.1 for an example.

For a matrix X ∈Rn×d and an integer m∈ {1, . . . ,d}, let Rm(X) (resp. Lm(X)) denote

the matrix formed by the top m right (resp. left) singular vectors of X taken in column

(resp. row) order, and define SRm(X) (resp. SLm(X)) as the subspace whose basis is these

right (resp. left) singular vectors.

Now consider a matrix X ∈ Rn×d , and add to it a “perturbation” matrix Y ∈ Rn×d ,

writing Z = X +Y . The theorem below bounds the sinθ distance between the top singular

spaces before and after the perturbation, namely the subspaces SRm(Z) and SRk(X) for

some dimensions m and k, in terms of two quantities:

1. The projection of the perturbation Y on SRm(Z) and on SLm(Z). Let YR = ‖Y Rm(Z)‖
and YL = ‖Lm(Z)Y T‖.

θ

B

A

Figure 5.1. Illustration of Wedin’s sinθ theorem

118

2. The gap between the top m singular values of Z and the bottom d−k singular values

of X . Formally, define γ = sm(Z)− sk+1(X).

Theorem 5.5.1 (Wedin’s sinθ Theorem (154)) In the above setting, if m≤ k≤ d and γ >

0, then

sinθ(SRm(Z),SRk(X))≤ max{YR,YL}
γ

.

5.5.2 Instantiating the sinθ theorem

We now apply the sinθ -Theorem to our semirandom model from Section 5.2. Let

X ∈Rn×d be the matrix corresponding to our original point set P (of size n≥ d) lying in a

subspace U of dimension k ≤ d. Let T ∈ Rn×d be a perturbation matrix (noise), and then

X̃ = X +T corresponds to our perturbed point set P̃. Our next theorem uses ‖T‖ directly

without assuming anything about its entries, although in our context where the entries of T

are drawn from independent Gaussians of magnitude σ , Theorem 5.3.2 implies that w.h.p.

‖T‖ ≤O(σ
√

n+d). In fact, if the matrix T is random, then m (and possibly also γ) should

be interpreted as random variables that depend on T .

Theorem 5.5.2 Let X̃ = X +T be defined as above, and fix a threshold γ1 > 0. If m≤ k is

such that at least m singular values of X̃ are at least γ1, then

sinθ(SRm(X̃),SRk(X))≤ ‖T‖
γ1

,

where SRk(M) denotes, as before, the span of the top k right-singular vectors of a matrix

M.

Proof. Towards applying Theorem 5.5.1, define TR = ‖T Rm(X̃)‖ and TL = ‖Lm(X̃)T T‖.
The columns of Rm(X̃) being orthonormal implies ‖Rm(X̃)‖ ≤ 1, and now by Fact 5.3.1,

TR = ‖T Rm(X̃)‖ ≤ ‖T‖. We can bound also TL similarly. Recalling Fact 5.3.2, X has at

most k nonzero singular values because the point set P lies in a k-dimensional subspace,

hence the gap is γ = sm(X̃)−0≥ γ1. Plugging this into the sinθ Theorem yields the bound

sinθ(SRm(X̃),SRk(X))≤ ‖T‖/γ ≤ ‖T‖/γ1.

5.6 Iterative PCA algorithm
We now present the iterative PCA algorithm, that solves the NNS problem for the

semirandom model from Section 5.2. In particular, the underlying pointset lives in a

119

k-dimensional space, but each point is also added a Gaussian noise Nd(0,σ
2Id), which has

norm potentially much larger than the distance between a query and its nearest neighbor.

The algorithm reduces the setting to a classical k-dimensional NNS problem.

Theorem 5.6.1 Suppose there is a (1+ ε/8)-approximate NNS data structure for n points

in a k-dimensional space with query time Fquery, space Fspace, and preprocessing time

Fprep. Assume the Gaussian-noise model (5.1)-(5.3), with σ(k1.5√logn+ 4
√

k3d logn)<

cε for sufficiently small constant c > 0.

Then there is a data structure that preprocesses P̃, and on query q̃ returns p̃∗ with high

probability. This data structure has query time O((dk+Fquery)
√

d logn+ dO(1)), uses

space O(Fspace
√

d logn+dO(1)), and preprocessing time O((nd2+d3+Fprep)
√

d logn).

5.6.1 Algorithm description

The iterative-PCA algorithm computes a collection U of O(
√

d logn) subspaces, such

that every point in the perturbed dataset P̃ is within squared distance Ψ = dσ2 +0.001ε2

of some subspace in the collection U . For each such subspace Ũs
j ∈ U , we project onto

Ũs
j the points captured by this subspace Ũs

j , and construct on the resulting pointset a

k-dimensional NNS data structure. We consider only singular vectors corresponding to

sufficiently large singular values, which helps ensure robustness to noise. In particular, this

threshold is δ (n), cε

√
n
k for small constant c≤ 0.001. Also, the PCA space is computed

on a sample of the current pointset only.

See Algorithm 13 for a detailed description of computing U .

We now present the overall NNS algorithm in detail. The preprocessing stage runs

Algorithm 13 on the pointset P̃, stores its output, and constructs a k-dimensional NNS data

structure for each of the pointsets M0, . . . ,Mj−1 (here j refers to the final value of this

variable). Note that we also have a “left-over” set R = P̃j
⋃∪ j−1

l=0 P̃s
l , which includes the

points remaining at the end plus the sampled points used to construct the subspaces U .

The query stage uses those j data structures to compute a (1+ε/8)-approximates NNS

of q in each of M0, . . . ,Mj−1, and additionally finds the NNS of q inside R by exhaustive

search. It finally reports the closest point found. In the rest of this section, we will analyze

this algorithm, thus proving Theorem 5.6.1.

We make henceforth three assumptions that hold without loss of generality. First, we

120

Define Ψ , dσ2+0.001ε2, r , O(d9k3 logn
ε2σ2), and δ (n), cε

√
n
k for a small

constant c≤ 0.001.
j← 0, P̃0← P̃
while |P̃j|> r do

Sample r points from P̃j (with repetition) to form the set/matrix P̃s
j

m← number of singular values of P̃s
j that are at least δ (r)

Ũs
j ← the subspace spanned by the m top singular vectors of P̃s

j
Mj← all p̃ ∈ P̃j \ P̃s

j at distance dist(p̃,Ũs
j)≤

√
Ψ

P̃j+1← P̃j \ (Mj ∪ P̃s
j)

j← j+1
end while
return the subspaces Ũ = {Ũs

0, . . . ,Ũ
s
j−1}, their pointsets {M0,M1, . . . ,Mj−1},

and the remaining set R = P̃j
⋃∪ j−1

l=0 P̃s
l .

Algorithm 13: Iteratively locate subspaces.

121

assume that ‖pi‖ ≥ 1, which is without loss of generality as we can always move the

pointset away from the origin. Overall, this ensures that ‖P‖2F ≥ |P|.
Second, we assume that all points P̃ have norm at most L , d3/2, which follows by

applying a standard transformation of partitioning the dataset by a randomly shifted grid

with side-length d. This transformation ensures that the query and the nearest neighbor, at

distance O(σ
√

d) are in the same grid cell with probability at least 1−o(1) (see, e.g., (8)).

Third, we assume that σ � ε/
√

d, as otherwise we can apply the algorithm from

Section 5.4 directly. (The algorithm in the current section works also for small σ , but

the exposition becomes simpler if we assume a larger σ .) In the context of our model of

Section 5.2 and lemma 5.2.1, this is equivalent to asserting d� logn.

Finally, we remark that the algorithm can be changed to not use explicitly the value of

σ , by taking only the closest O

(√
logn

d

)
fraction of points to a given space Ũs

j . We omit

the details.

5.6.2 Analysis

We now present a high-level overview of the proof. First, we characterize the space Ũs
j ,

and in particular show that it is close to (a subspace of) the original space U , using the sinθ

machinery and matrix concentration bounds. Second, we use the closeness of Ũs
j to U to

argue that: (a) projection of the noise onto Ũs
j is small; and (b) the projection of a point p̃

is approximately ‖p‖, on average. Third, we use these bounds to show that the space Ũs
j

captures a good fraction of points to be put into Mj, thus allowing us to bound the number

of iterations. Fourth, we show that, for each point p̃ = p+ t that has been “captured” into

Mj, its projection into Ũs
j is a faithful representation of p, in the sense that, for such a point,

the distance to the projection of q̃ onto Ũs
j is close to the original distance (before noise).

This will suffice to conclude that the k-dimensional NNS for that set Mj shall return the

right answer (should it happen to have the nearest neighbor p∗).
Slightly abusing notation, let P represent both the pointset and the corresponding n×d

matrix, and similarly for P̃ or a subset thereof like P̃j. Let T be the noise matrix, i.e., its

rows are the vectors ti and P̃ = P+T .

Using bounds from random matrix theory (see lemma 5.3.1), w.h.p. every restriction

of T to a subset of at least d rows gives a submatrix T ′ of spectral norm ‖T ′‖ ≤ η(|T ′|) =
O(σ

√
|T ′| · logn). In addition, by Corollary 5.2.1 and the parameters of our model in

122

Theorem 5.6.1, w.h.p.

∀pi ∈ P, |‖ti‖2−σ
2d| ≤ 0.0001ε

2. (5.8)

We assume in the rest of the proof that these events occur. Since both are high probability

events, we may use a union bound and assume they occur over all iterations without any

effect of conditioning on the points.

The thrust of our proof below is to analyze one iteration of Algorithm 13. We henceforth

use j to denote an arbitrary iteration (not its final value), and let n j = |P̃j| > r denote the

number of points at that iteration.

5.6.3 Analysis: Characterization of the PCA space of the sampled set

Define Ũs
j and Ũ j to be the PCA space of P̃s

j and P̃j, respectively, i.e., full current set

and sampled set. Suppose the dimension of Ũs
j and Ũ j is m≤ k and m≤ `≤ k, respectively,

where m is set according to the thresholding step in Algorithm 13 and ` will be specified

later. We show that the computed PCA space Ũs
j is close to U using the sinθ machinery

established in Section 5.5.2. We consider the point sets as matrices, and concatenate the

following two observations for deriving our result:

• The PCA space of sampled noisy set (scaled) is close to that of the full noisy set.

• The PCA space of the noisy set is close to that of the unperturbed set.

We now analyze the effects of sampling. We sample r points from the current set P̃j of size

n j. We use the following standard matrix concentration.

Theorem 5.6.2 (Rudelson and Vershynin (136), Thm 3.1) Suppose we sample (with re-

placement) r row vectors from an n-size set A ⊂ Rd (represented as a n× d matrix), and

call them set Y = {y1, . . .yr}. Then, for any t ∈ (0,1), and L = maxa∈A ‖a‖:

Pr



∥∥∥∥∥∥

n
r ∑

y∈Y
yTy−ATA

∥∥∥∥∥∥
> t‖ATA‖


≤ 2e

−Ω

((
t2/L2

)
·r/ logr

)
.

Corollary 5.6.1 For t ∈ (0,1) if we sample r = O(log2 n ·L2/t2) vectors from P̃j to obtain

P̃s
j , we have that w.h.p.:

‖n j
r (P̃s

j)
TP̃s

j − P̃T
j P̃j‖ ≤ L2n j · t.

123

Proof. Instantiate the theorem for A = P̃j to obtain ‖n j
r (P̃s

j)
TP̃s

j − P̃T
j P̃j‖ ≤ t‖P̃TP̃‖. We

simplify the right hand side of this equation. First, by Fact 5.3.3 we have that t‖P̃T
j P̃j‖ =

t‖P̃j‖2. Next by Fact 5.3.2, t‖P̃j‖2 = ∑p̃∈P̃j
‖p̃‖2t ≤ n j max p̃∈P̃j

‖p̃‖2t ≤ L2n jt. To

prove this event succeeds with high probability over all points n, we need only substitute

the value of r directly into the theorem statement.

Corollary 5.6.2 We set t = O
(

εσ
√

logn
L2k1.5

)
, for which we need to sample

r = Ω(L6k3 logn/ε2σ2) = Ω(d9k3 logn/ε2σ2). Then we obtain:

‖n j
r (P̃s

j)
TP̃s

j − P̃T
j P̃j‖ ≤ n j ·O

(
εσ

√
logn

k1.5

)
�
(

δ (n j)

k

)2
,

for σ in the range given by our model of Theorem 5.6.1.

We now aim to show that sinθ(Ũs
j ,Ũ j) and sinθ(Ũ j,Uj) are small, and the triangle

inequality for sinθ will then show that sinθ(Ũs
j ,Uj) is also small. Recall first that the

sinθ machinery of Theorem 5.5.2 requires a “gap” between the bottom most singular value

considered in one subspace and the top most not considered in the other. We observe the

following lemma:

Lemma 5.6.1 There exists `, where m≤ `≤ k+1, such that

s`(P̃j)− s`+1(P̃j)≥Ω

(
δ (n j)

k

)
. Hence s`(P̃j)− sk+1(Pj)≥Ω

(
δ (n j)

k

)
.

Proof. First recall that by the threshold step of our algorithm, sm
(n j

r (P̃s
j)

TP̃s
j

)
≥ δ (n j)

2.

Now by Fact 5.3.4 and r set as in Corollary 5.6.2, we have that sm(P̃T
j P̃j) ≥ δ (n j)

2−
δ (n j)

2/k2 ≥ 3
4δ (n j)

2. Hence we have sm(P̃j) > 3δ (n j)/4. Also since Pj is drawn

from a k- dimensional subspace, sk+1(Pj) = 0 and therefore sk+1(P̃j) ≤ ‖Pj − P̃j‖ =
O(σ

√
n j logn) < δ (n j)/16 by lemma 5.3.1 and the parameters of our model. Now since

sm(P̃j)≥ 3δ (n j)/4 and sk+1(P̃j)≤ δ (n j)/16, then there must exist ` with m≤ `≤ k+1

that satisfies the claim. See Figure 5.2 for illustration of the argument.

Using now that a2−b2 ≥ (a−b)2 for a≥ b≥ 0 we obtain:

Corollary 5.6.3 There exists `, m ≤ ` ≤ k+ 1, such that s`
(

P̃j
TP̃j

)
− s`+1

(
P̃j

TP̃j
)
≥

Ω

(
δ (n j)

2

k2

)
. Hence sm

(
n j
r
(

P̃s
j

)T
P̃s

j

)
− s`+1(P̃

T
j P̃j)≥Ω

(
δ (n j)

2

k2

)
.

124

Ũsj Ũj
s1 s1 s1

s` − s`+1 ≥ Ω


δ(n)
k




Uj

sm ≥ δ(n)

sk+1 = 0

Figure 5.2. Take sl as the last singular value included in Ũ j.

Now crucially using this ` of lemma 5.6.1 to define our cut off point for the singular

vectors included in Ũ j, and instantiating the sinθ theorem, we obtain the following:

Lemma 5.6.2 sinθ(Ũs
j ,Ũ j)≤O

(
σk1.5√logn

ε

)
and sinθ(Ũ j,Uj)≤O

(
σk1.5√logn

ε

)
.

Proof. First by lemma 5.6.1, we have sl(P̃j)−sk+1(Pj)≥O
(

δ (n)
k

)
and recall by lemma

5.3.1, ‖P̃j−Pj‖= O(σ
√

n j logn). So instantiating the sinθ theorem, Theorem 5.5.2:

sinθ(Ũ j,Uj) =
‖P̃j−Pj‖

sl(P̃j)− sk+1(Pj)

= O




σ

√
n j logn

δ (n j)/k




= O




σ

√
n j logn

ε
√n j/k1.5


= O

(
σk1.5√logn

ε

)
.

Similarly for sinθ(Ũs
j ,Ũ j), we upper bound ‖n j

r (P̃s
j)

TP̃s
j − P̃T

j P̃j‖ by Corollary 5.6.2.

We lower bound the “gap” in singular values using Corollary 5.6.3, and hence by instanti-

ating the sinθ theorem:

125

sinθ(Ũs
j ,Ũ j) = O


εn jσ

√
logn/k1.5

δ (n j)2/k2




= O


εn jσ

√
logn/k1.5

ε2n j/k3


= O

(
σk1.5√logn

ε

)
.

Since sinθ is concave in the right regime, lemma 5.6.2 now gives us as a simple

corollary the main claim of this subsection:

sinθ(Ũs
j ,Uj)≤ O

(
σk1.5√logn

ε

)
. (5.9)

5.6.4 Analysis: Noise inside the PCA space

We now show that the noise vector ti of each point p̃i = pi+ ti has a small component

inside Ũs
j . We use the sinθ bound in Eqn. (5.9) for this. (Tighter analysis is possible

directly via the randomness of the vector ti on the first iteration, but conditioning of points

selected together at each iteration of our algorithm makes this complicated at latter stages.)

Following Remark 5.2.1, we shall assume that noise ti is perpendicular to U . Define

V ∈ Rd×k as the projection matrix onto the space U , so e.g. tiV is the zero vector, and

define analogously Ṽ s
j ∈ Rd×m to be the projection matrix onto the m-dimensional space

Ũs
j .

Lemma 5.6.3 ‖tiṼ s
j ‖ ≤ ‖ti‖ · sinθ(Ũs

j ,U).

Proof. Let x be a unit vector in the direction of tiṼ
s
j , namely, x =

tiṼ
s
j

‖tiṼ s
j ‖

. This implies

‖tiṼ s
j ‖= xTti. Now decompose x ∈ Ũs

j as x =
√

1−β2u+βv for unit vectors u ∈U and

v⊥U and some β ≥ 0. Then β = d(x,U)≤ sinθ(Ũs
j ,U), and we conclude

‖tiṼ s
j ‖= xTti =

√
1−β2uTti+βvTti = 0+βvTti ≤ ‖ti‖ · sinθ(Ũs

j ,U).

Corollary 5.6.4 For every point pi and iteration j, ‖tiṼ s
j ‖ ≤ O

(
1
ε σ2k1.5√d logn

)
.

126

Proof. Substitute into lemma 5.6.3 the bounds ‖ti‖ ≤ O(σ
√

d) from Eqn. (5.8) and from

Eqn. (5.9),

sinθ(Ũs
j ,U)≤ O

(
1
ε

σk1.5√logn
)
.

We note that according to our model parameters in Theorem 5.6.1, this implies that

‖tiṼ s
j ‖ ≤ cε for a small constant c that depends only on the choice of constant in our

model, and we shall use this assumption henceforth.

5.6.5 Analysis: Projection of the data into the PCA space

We now show that the component of a data point p̃i inside the PCA space Ũs
j of some

iteration j, typically recovers most of the “signal,” i.e., the unperturbed version pi. More

precisely, we compare the length seen inside the PCA space ‖p̃iṼ
s
j ‖with the original length

‖pi‖. While the upper bound is immediate, the lower bound holds only on average.

Lemma 5.6.4 W.h.p., for all p̃i ∈ P̃j, ‖p̃iṼ
s
j ‖

2−‖pi‖2 ≤ dσ2+0.0001ε2.

Proof. Using Pythagoras’ Theorem, ‖p̃iṼ
s
j ‖

2 ≤ ‖p̃i‖2 = ‖pi‖2 + ‖ti‖2, and the lemma

follows by the noise bound (5.8).

Lemma 5.6.5 ∑p̃i∈P̃j
(‖p̃iṼ

s
j ‖

2−‖pi‖2)≥−kδ (n j)
2.

Proof. Let V be the projection matrix into U and Pj the non-noised version of P̃j. Observe

that P̃jV = Pj, since the noise is orthogonal to U . Hence, by definition of PCA space

(Theorem 5.3.1):

∑
pi∈Pj

‖pi‖2 = ‖Pj‖2F = ‖P̃jV‖2F ≤
k
∑

l=1
s2
l (P̃j).

By Corollary 5.6.2, we further have that

n j
r

k
∑

l=1
s2
l (P̃

s
j)≥

k
∑

l=1
s2
l (P̃j)− k ·

(
δ (n j)

k

)2
≥∑

i
‖pi‖2− k ·

(
δ (n j)

k

)2
.

Or simply,
n j
r

k
∑

l=1
s2
l (P̃

s
j)≥∑

i
‖pi‖2− k ·

(
δ (n j)

k

)2
. (5.10)

127

We also have:

n
r

m
∑

l=1
s2
l (P̃

s
j) =

n
r ‖(Ṽ s

j)
T (P̃s

j)
TP̃s

jṼ
s
j ‖F = ‖(Ṽ s

j)
T n

r (P̃
s
j)

TP̃s
jṼ

s
j ‖F

= ‖(Ṽ s
j)

T (P̃T
j P̃j +Z)Ṽ s

j ‖F ≤ ∑
p̃i∈P̃j

‖p̃iṼ
s
j ‖

2+‖(Ṽ s
j)

T ZṼ s
j ‖F ,

where Z has spectral norm at most δ (n j)
2/k2, and hence ‖(Ṽ s

j)
T ZṼ s

j ‖F ≤
kδ (n j)

2

k2 ≤
δ (n j)

2

k .

Rearranging yields us:

n
r

m
∑

l=1
s2
l (P̃

s
j)≤ ∑

p̃i∈P̃j

‖p̃iṼ
s
j ‖

2+
δ (n j)

2

k .

Finally, we have:

n j
r

k
∑

l=1
s2
l (P̃

s
j) =

n j
r

m
∑
j=1

s2
j(P̃

s
j)+

n j
r

k
∑

j=m+1
s2

j(P̃
s
j)

≤ ∑
pi∈P̃j

‖p̃iṼ
s
j ‖

2+
δ (n j)

2

k +
n j
r

k
∑

j=m+1
s2

j(P̃
s
j)

≤ ∑
pi∈P̃j

‖ p̃iṼ
s
j ‖

2+
δ (n j)

2

k +
n j
r (k−1)δ (r)2

≤ ∑
pi∈P̃j

‖ p̃iṼ
s
j ‖

2+
δ (n j)

2

k +(k−1)δ (n j)
2.

where we employed the threshold s j ≤ δ (r) for singular values taken by Algorithm 13

with j > m, and that
n j
r δ (r)2 = δ (n j)

2 by straightforward substitution of the formula

δ (x) = cε
√

x√
k

. The lemma follows by combining the above with Equation 5.10.

5.6.6 Analysis: Number of iterations

We now show that each iteration captures in Mj a good fraction of the remaining points,

thereby bounding the number of iterations overall. In particular, we give a lower bound on

the number of indexes i such that p̃i is close to the m dimensional PCA subspace Ũs
j , using

128

results from Section 5.6.5. Note that the square of this distance for a point p̃i is precisely

‖p̃i‖2−‖ p̃iṼ‖2. Let X and Y be quantities according to lemmas 5.6.4 and 5.6.5, such that

‖p̃iṼ
s
j ‖

2−‖pi‖2 ≤ Y. (5.11)

Xn j ≤∑
i
(‖p̃iṼ

s
j ‖

2−‖pi‖2). (5.12)

Now let f be the fraction of i’s such that ‖p̃iṼ
s
j ‖

2−‖pi‖2 ≤−0.0002ε2. Then

Xn j ≤∑
i
‖p̃iṼ

s
j ‖

2−∑
i
‖pi‖2 ≤ (1− f)n jY −0.0002 f n jε

2. (5.13)

Rearrangement of terms gives us that f ≤ Y−X
Y+0.0002ε2 . By lemma 5.6.5 , we can set

Xn j = −kδ2 = −c2ε2n j = −0.00001ε2n j and so X ≤ −0.00001ε2. And by lemma

5.6.4, we have Y ≤ dσ2+0.0001ε2. Elementary calculations now yield

f ≤ 1−Ω

(
ε2

dσ2

)
≤ 1−Ω

(√
logn

d

)
.

(This last upper bound on f can be made tighter as dependence on σ , but we opt for the

looser bound which holds in our range of parameters for simplicity.) Now for the rest of

the (1− f) ≥ Ω

(√
logn

d

)
fraction of the points, the distance to the PCA subspace Ũ is,

by Pythagoras’ Theorem,

‖ p̃‖2−‖ p̃Ṽ s
j ‖

2 = ‖p‖2+‖t‖2−‖ p̃Ṽ s
j ‖

2 ≤ ‖t‖2+0.0002ε
2.

Since ‖t‖2 ≤ dσ2 + 0.0001ε2, we get the required inequality that a large fraction of the

points is within squared distance dσ2+0.001ε2 = Ψ. It follows that the fraction of points

captured by Ũs
j , i.e., in a single iteration, is at least Ω

(√
logn

d

)
, which immediately

implies a bound on the number of iterations, as follows.

Lemma 5.6.6 Algorithm 13 terminates in at most O
(√

d
logn logn

)
= O(

√
d logn) itera-

tions.

5.6.7 Analysis: Correctness

It now remains to show that the data structure that captures the actual nearest neighbor

p̃∗ will still report p̃∗ as the nearest neighbor to q̃ in the k-dimensional data structure.

129

Suppose p̃∗ has been captured in jth iteration, i.e., p̃∗ ∈Mj. For simplicity of exposition,

let Ũ = Ũs
j and Ṽ = Ṽ s

j .

Note that all distance computations for a query q̃ are of the form ‖q̃Ṽ − p̃Ṽ‖ = ‖(q̃−
p̃)Ṽ‖, where p̃ is a point that is close to Ũ . Let q̃ = q+ tq and p̃ = p+ t. Then we have for

a point p̃:

‖(q̃− p̃)Ṽ‖= ‖(q− p)Ṽ‖±O
(
‖tqṼ‖+‖tṼ‖

)
.

Considering the noise of the query point q, by Corollary 5.2.1, we have ‖tqṼ‖ ≤
O(σ
√

k+σ
√

logn) w.h.p. Similarly, considering the noise t of a point, by Corollary 5.6.4,

we have ‖tṼ‖ ≤O(σ2
ε k1.5√d logn). By the model specified in Theorem 5.6.1, we can set

both these terms to be smaller than 0.01ε . Hence we have:

‖(q̃− p̃)Ṽ‖= ‖(q− p)Ṽ‖±0.02ε. (5.14)

Furthermore, we have sinθ(Ũ ,U) ≤ 0.01ε . We now decompose U into two components.

Let Uin be the projection of Ũ onto U , and Uout be the space orthogonal to Uin but lying in

U . See Figure 5.3. We note that Uout is also orthogonal to Ũ : otherwise some component

of Uout would lie in the projection of Ũ onto U , which is a contradiction. Let Vin and

Vout be the corresponding projection matrices. We likewise decompose each point p as

pin ∈Uin and pout ∈Uout .

We make the following claim, which shows that bounding ‖pout‖ for all points in Mj
suffices for correctness of our algorithm.

Ũ

Uout

Uin

U

Figure 5.3. Uin is projection of Ũ into U , and Uout is the orthogonal complement of Uin
in U .

130

Lemma 5.6.7 If ‖pout‖ ≤ 0.1ε for all p captured by subspace Ũ (also capturing p∗), then

p̃∗ remains a nearest neighbor to q̃ after projection to Ũ. Also for any p′ 6= p∗, we have

that ‖(q̃− p̃′)Ṽ‖ ≥
(

1+ ε
8

)
‖(q̃− p̃∗)Ṽ‖.

Proof. Consider Equation 5.14.

‖(q̃− p̃)Ṽ‖= ‖(q− p)Ṽ‖±0.02ε

= ‖(qin− pin+qout − pout)Ṽ‖±0.02ε

(Decomposing q, p into components in Uin and Uout)

= ‖(qin− pin)Ṽ +(qout − pout)Ṽ‖±0.02ε

= ‖(qin− pin)Ṽ‖±0.02ε (Since Uout ⊥ Ũ)

= (1±0.01ε)‖qin− pin‖±0.02ε (Since sinθ(Uin,Ũ)≤ 0.01ε).

To summarize these last calculations, we have:

‖(q̃− p̃)Ṽ‖= (1±0.01ε)‖qin− pin‖±0.02ε. (5.15)

Next note by Pythagoras:

‖qin− pin‖2 = ‖q− pin‖2−‖qout‖2. (5.16)

Also observe from the triangle inequality and the assumption of our lemma that ‖pout‖≤
0.1ε , ∀p ∈ P captured by the subspace, ‖q− pin‖= ‖q− p‖±‖pout‖= ‖q− p‖±0.1ε .

Hence, if p∗ is captured by the data structure, ‖q− p∗in‖
2 = (‖q− p∗‖± 0.1ε)2 ≤

1+0.25ε . Similarly for p′ 6= p∗, we have ‖q− p′in‖
2 ≥ (1+ ε−0.1ε)2 ≥ 1+1.8ε . This

gives:

1+1.8ε

1+0.25ε
≤
‖q− p′in‖

2

‖q− p∗in‖2
≤
‖q− p′in‖

2−‖qout‖2

‖q− p∗in‖2−‖qout‖2
=
‖qin− p′in‖

2

‖qin− p∗in‖2
,

where we crucially used in the second step the fact that subtracting the same quantity

from both numerator and denominator of a fraction can only increase it. Some elementary

algebraic manipulation shows then:

131

‖qin− p′in‖
‖qin− p∗in‖

≥ 1+
ε

4
. (5.17)

Now we lower bound ‖qin− p′in‖. We do so as follows:

‖qin− p′in‖
2−‖qin− p∗in‖

2 =‖q− p′in‖
2−‖q− p∗in‖

2 (By Equation 5.16)

≥(1+0.9ε)2− (1+0.1ε)2 ≥ 1.6ε.

This implies:

‖qin− p′in‖ ≥ 1.2ε. (5.18)

Finally, we come to our main claim of the ratio of ‖(q̃− p̃′)Ṽ‖ to ‖(q̃− p̃∗)Ṽ‖. By

Equation 5.15, this is at least:

‖(q̃− p̃′)Ṽ‖
‖(q̃− p̃∗)Ṽ‖ ≥

(1−0.01ε)‖qin− p′in‖−0.02ε

(1+0.01ε)‖qin− p∗in‖+0.02ε
.

Substituting the lower bound on
‖qin−p′in‖
‖qin−p∗in‖

from Equation 5.17, and the lower bound on

‖qin− p′in‖ from Equation 5.18 completes our claim.

Next we derive a sufficient condition for ‖pout‖ to be bounded as desired. For a vector

a, we define aṼ and a⊥Ũ to be the components lying in and orthogonal to subspace Ũ ,

respectively.

The quantity of interest is cp, defined as the cosine of the angle between (pin)
⊥Ũ and

t⊥Ũ , for a point p̃ = pin+ pout + t.

Lemma 5.6.8 Decompose p as p = pin + pout + t, where t ⊥U. Suppose cp ≤ C ε

σ
√

d
for suitable choice of constant C. Then ‖pout‖ ≤ 0.1ε w.h.p.

Proof. We show first that to upper-bound pout , it suffices to lower bound ‖
(

pin+ t
)⊥Ũ‖2

by dσ2−0.009ε2. Indeed, for captured points, we have by construction:

‖ p̃‖2−‖ p̃Ṽ‖2 ≤Ψ, (5.19)

where Ψ = dσ2+0.001ε2.

132

We convert the inequality to our desired condition as follows:

‖ p̃‖2−‖ p̃Ṽ‖2 ≤ dσ
2+0.001ε

2

‖pout‖2+‖pin+ t‖2−‖ p̃Ṽ‖2 ≤ dσ
2+0.001ε

2

(Since by Pythagoras, ‖p̃‖2 = ‖pout‖2+‖pin+ t‖2.)

‖pout‖2+‖(pin+ t)Ṽ‖2+‖(pin+ t)⊥Ũ‖2−‖ p̃Ṽ‖2 ≤ dσ
2+0.001ε

2

(Decomposing pin+ t orthogonal to and lying in subspace Ũ .)

‖pout‖2+‖p̃Ṽ‖2+‖(pin+ t)⊥Ũ‖2−‖ p̃Ṽ‖2 ≤ dσ
2+0.001ε

2

(Since pout ⊥ Ṽ by construction, hence p̃Ṽ = (pin+ t)Ṽ .)

‖pout‖2+‖(pin+ t)⊥Ũ‖2 ≤ dσ
2+0.001ε

2

‖pout‖2 ≤ 0.001ε
2+dσ

2−‖(pin+ t)⊥Ũ‖2.

Clearly now if ‖
(

pin+ t
)⊥Ũ‖2 ≥ dσ2− 0.009ε2, then ‖pout‖2 ≤ 0.01ε2 and would

complete our proof.

We now show how the bound on cp implies the required lower bound on ‖
(

pin+ t
)⊥Ũ‖2.

First note by the law of cosines, that

‖(pin+ t)⊥Ũ‖2 = ‖p⊥Ũ
in ‖

2+‖t⊥Ũ‖2−2‖p⊥Ũ
in ‖‖t

⊥Ũ‖cp. (5.20)

Next note that ‖t⊥Ũ‖2 = dσ2±0.001ε2 w.h.p. and a suitably small constant c in our

bound on σ in the model parameters. This follows from decomposing ‖t‖2 = ‖t⊥Ũ‖2 +

‖tṼ‖2 by Pythagoras, the concentration on ‖t‖2 by Equation 5.8 and the upper bound on

‖tṼ‖2 by Corollary 5.6.4. We now solve to find the desired condition on cp.

‖p⊥Ũ
in ‖

2+‖t⊥Ũ‖2−2‖p⊥Ũ
in ‖‖t

⊥Ũ‖cp ≥ dσ
2−0.009ε

2

‖p⊥Ũ
in ‖

2+(dσ
2±0.001ε

2)−2‖p⊥Ũ
in ‖‖t

⊥Ũ‖cp ≥ dσ
2−0.009ε

2

‖p⊥Ũ
in ‖

2−2‖p⊥Ũ
in ‖‖t

⊥Ũ‖cp ≥−0.008ε
2

2‖p⊥Ũ
in ‖‖t

⊥Ũ‖cp ≤ ‖p⊥Ũ
in ‖

2+0.008ε
2

cp ≤
1

2‖t⊥Ũ‖

(
‖p⊥Ũ

in ‖+0.008

(
ε2

‖p⊥Ũ
in ‖

))
.

133

Noting that the minimum of x+ α
x is
√

α for any fixed α and that ‖t⊥Ũ‖ is O(
√

dσ)

we obtain that cp ≤C ε√
dσ

is a sufficient constraint for suitable choice of constant C.

The final component is to prove that cp is indeed small. Since the vector t is random,

this is generally not an issue: tŨ and (pin)
Ũ will be independent for all points p̃ ∈ P̃j \ P̃s

j
(but not for the sampled points – this is the reason they are never included in Mj). However,

in subsequent iterations, this may introduce some conditioning on ti, so we need to be

careful and argue about all iteration “at once.” In fact, we show a result slightly stronger

than that required by lemma 5.6.8 (within the parameters of our model):

Lemma 5.6.9 Fix a “horizon” j, and a point p̃ = p+ t that has not been sampled into

any set P̃s
l for all iterations l ≤ j (p̃ may or may not have been captured at some iteration

l ≤ j). Then cp ≤ O
(√

logn√
d

)
at iteration j, with high probability.

Proof. The assumption on not having been sampled means that we can think of running

the algorithm, disallowing p̃ to be in the sample. In this situation, we can run the entire

algorithm, up to iteration j, without p̃ — it does not affect the rest of the points in any way.

Hence, the algorithm can sample sets P̃s
0, . . . P̃

s
j , and fix spaces Ũs

0, . . .Ũ
s
j , without access

to p̃. Furthermore, for each l = 0 . . . j, the vector p
⊥Ũs

l
in is some vector, independent of

the noise t. Hence we can “reveal” the vector t, after having fixed all vectors p
⊥Ũs

l
in , for

l = 0 . . . j. The vector t will have angle O(

√
logn√

d
) with all of them, with high probability.

Note that, at this moment, it does not actually matter whether p̃ was captured early on or

not. (Again, t is admittedly conditioned via bounds on ‖T‖ and ‖t‖, but since these are

“whp” events, they do not affect the conclusion.)

We now remark on the resulting parameters of the algorithm. Processing an itera-

tion of the preprocessing stage takes O(rd2 + d3 + ndk) = O(nd2) time for: computing

P̃s
j , the PCA space, and Mj, respectively. Hence, over O(

√
d logn) iterations, together

with preprocessing of the k-dimensional NNS data structures, we get preprocessing time

O((nd2+d3+Fprep)
√

d logn).

Space requirement is essentially that of O(
√

d logn) instances of k-dimensional NNS

data structure, plus the space to store O(
√

d logn) spaces Ũs
j , and the left-over set R.

The query time is composed of: computing the projections into O(
√

d logn) subspaces,

134

querying the k-dimensional NNS data structures, and computing the distances to left-over

points in R. Overall, this comes out to O(dk ·√d logn+
√

d logn ·Fquery+d|R|).

5.7 PCA tree
We now present our second spectral algorithm, which is closely related to the PCA tree

(143, 152). We first give the algorithm and then present its analysis. Overall, we prove the

following theorem.

Theorem 5.7.1 Consider the Gaussian-noise model (5.1)-(5.3), and assume its parameters

satisfy σ < κ ·min
{

ε√
k logn

, ε√
k 4√d logn

}
, for sufficiently small constant κ > 0. There

exists a data structure that preprocesses P̃, and then given the query q̃, returns the nearest

neighbor p̃∗ w.h.p.5 And w.h.p. the query time is (k/ε)O(k) ·d2, the space requirement is

O(nd), and the preprocessing time is O(n2d +nd3).

The algorithm itself is deterministic.

5.7.1 Algorithm description

The algorithm constructs one-space partitioning tree hierarchically, where each tree

node is associated with a subset of the pointset P̃. We start with the root of the tree,

associated with all n points P̃. Now at each tree node x, we take the pointset associated

with x, termed P̃in
x . First, we perform a process called “de-clumping,” which just discards

part of the dataset, to obtain a set P̃x ⊆ P̃in
x . We describe this process at the end.

The main operation at a node is to take the top centered-PCA direction of P̃x, termed

vx. By centered-PCA we mean subtracting from each vector in P̃x their average a =

1
|P̃x|∑ p̃∈P̃x

p̃, and then taking the top PCA direction. Now, let θ , ε

1000k3/2 and let Θ be

the partition of the real line into segments of length θ , namely Θ = {[θ i,θ(i+1)) | i ∈ Z}.
Then we partition P̃x into parts depending on which segment from Θ the projection of

a point p̃ ∈ P̃x onto vx falls into. Then, we orthogonalize with respect to vx, namely,

transform each point p̃ ∈ P̃x into p̃′ = p̃− 〈p̃,vx〉vx. For each nonempty segment of Θ

we produce a child of x associated with the points that fall into that segment, and repeat

recursively on it. We stop once the current tree node has at most d points associated with

5The probability is over the randomness from the model.

135

it.

During a query, we follow the tree into all the buckets (slabs) that intersect a ball of

radius 1+ ε/2 around q̃. In each leaf, compute the exact distance from q to all points

associated to that leaf. Finally, we report the closest point found.

We now describe the de-clumping procedure that is done at each node. We compute the

top centered-singular value of P̃in
x . If this value is at least λc = λc(|P̃in

x |), ε
16

√
|P̃in

x |/k,

then set P̃x , P̃in
x . Otherwise, find the closest pair of points in P̃in

x , and let δ denote their

squared-distance. Remove all the pairs of points in P̃in
x that have squared-distance at most

δ + ε2/2, to obtain P̃x. (The removal is iterative, proceeding in arbitrary order.)

5.7.2 Analysis: Tree depth

The key to the analysis is to show that our PCA tree has depth at most 2k. The rest of

the analysis will follow as we show in later sections.

In the analysis, we use the centered-PCA directions. For this purpose, we first define

the centering operation c(A) for a set/matrix of points: c(A) , A− 1
|A|∑p∈A p. Then the

centered singular value, denoted ‖A‖c, is ‖c(A)‖. Note that the norm still satisfies the

triangle inequality.

Lemma 5.7.1 (Tree Depth) The constructed PCA tree has depth at most 2k.

Proof. We first analyze the effect of orthogonalization on the points p̃. Fix some node x at

a level 1 ≤ l ≤ 2k, and some point p̃ = p+ tp reaching it. Call p̃x ∈ P̃in
x as its version at

node x, after the anterior orthogonalizations at the ancestor nodes. Also, define nx , |P̃x|.
We view each step of orthogonalization as two displacement processes. If we have

orthogonalized the point with respect to some vector v, this is equivalent to snapping

(projecting) the point p̃x to the hyperplane defined by {z ∈ Rd | zv = θ · b p̃x·v
θ
c}, and

then moving the hyperplane towards the origin. Most importantly, all points from node

x going to the same child will be all snapped to the same hyperplane. The snapping to

the hyperplane moves the point p̃x by a vector of norm at most θ . Note that, while the

algorithm also moves the hyperplane to pass through the origin, this does not change the

relative distances of the points in this hyperplane.

Thus we can write each point p̃x reaching node x as p̃x = p̃+mx+mx
p, where mx is the

sum of all the hyperplane moves (and is dependent on the node x only), and mx
p which is

136

the sum of the “snapping moves” and depends on the actual point. We observe that mx
p has

small norm, and, in particular ‖mx
p‖2 ≤ l ·θ2 ≤ 2kθ2, since each move is in an orthogonal

direction with respect to the previous moves.

Below we assume that lemma 5.3.1 holds. Also, for any two points p1, p2, the norm of

difference of the noises is ‖tp1 − tp2‖
2 = 2σ2d± 0.1ε2 according to Corollary 5.2.1 for

σ � ε/ 4√d logn.

The main part of the proof is to prove that the top PCA direction vx at each node x is

close to U . We prove this by induction over levels.

Claim 5.7.1 (Induction hypothesis) Consider some node x at level l, which contains at

least d = Ω(logn) points. Let vx be the top centered-PCA direction of P̃x. The projection

of vx onto U⊥ is at most γ = O(σ
√

logn ·
√

k/ε).

Before proving the induction hypothesis, we need to show an additional claim, which

characterizes the result of de-clumping in the current node x: essentially that the top PCA

direction is heavy in the space U . For the claim below, we assume that Claim 5.7.1 is true

at all levels above the current node x.

For a node x, we define helper sets/matrices Px,Mx,Tx as follows. First, consider points

P̃x, take their non-noised versions living in U (as in the model), and move using the vector

mx; this gives the set Px. Also, let Tx be the noise vectors of P̃x. Define matrix Mx as being

composed of movements mx
p for all points p in P̃x. Note that P̃x = Px +Mx +Tx, and that

‖Tx‖c ≤ ‖Tx‖ ≤ η(nx)≤ λc(nx), where η(nx) is the function from lemma 5.3.1.

Claim 5.7.2 Suppose we performed the de-clumping step on P̃in
x , to obtain P̃x. For vx the

top centered-PCA direction of P̃x, we have that ‖c(Px)vx‖ ≥ λc−η(nx).

Proof. Suppose the top singular value of c(P̃in
x) is at least λc (in which case no de-clumping

is done and P̃x = P̃in
x). Hence, considering Px = P̃x−(P̃x−Px), which also implies c(Px) =

c(P̃x)− c(P̃x−Px), we have

‖c(Px)vx‖ ≥ ‖c(P̃x)vx‖−‖c(P̃x−Px)vx‖ ≥ λc−η(|P̃x|),

since ‖c(P̃x−Px)vx‖= ‖c(Tx)vx‖ ≤ η(|P̃x|) by lemma 5.3.1, and the fact that Mxvx = 0.

Otherwise, the algorithm throws out some points from P̃in
x . Define Pin

x similarly to

Px: take original (nonmoved, no noise) versions of the points from P̃in
x , plus the overall

137

movement mx. In this situation, there must be two points p1, p2 ∈ Pin
x such that ‖p1−

p2‖ ≤ ε/4: otherwise, the top singular value of P̃in
x = Pin

x − (Pin
x − P̃in

x) would be at least

‖Pin
x ‖c−η(|P̃in

x |)≥
‖p1−p2‖

2 ·
√
|P̃in

x |/k−η(|P̃in
x |)≥ λc, a contradiction.

We now want to characterize the minimal distance δ in P̃in
x . Note that the projection of

mx
p1 and mx

p2 into U⊥ is at most 2kθγ , since each of the basis vectors of mx
p has projection

into U⊥ at most γ . Hence, the square of the component of p̃1− p̃2 in U⊥ is equal to:

(‖tp1− tp2‖±2kθγ)2 = 2σ
2d±0.1ε

2± (2kθγ)2±5σ
√

d ·2kθγ

= 2σ
2d±0.1ε

2±0.01ε
2±0.01ε

2,

for σ � ε/
√

logn and σ � ε
4√d logn

. Thus, for p̃1 = p1+ t1 and p̃2 = p2+ t2:

δ = ‖p̃1− p̃2‖2 ≥ (‖t1− t2‖−2kθγ)2 ≥ 2σ
2d−0.12ε

2. (5.21)

After the de-clumping, the distance between any two distinct points p′, p′′ ∈ Px, with

noise vectors t′, t′′, respectively, must satisfy:

(‖p′ − p′′‖+2
√

2kθ)2 ≥ δ + ε
2/2− (‖t′ − t′′‖+2kθγ)2 ≥ ε

2/2−2 ·0.12ε
2 ≥ ε

2/4.

Hence ‖p′ − p′′‖ ≥ ε/2− 0.01ε > ε/4, which means that ‖P̃x‖c ≥ λc (as already

argued above). Hence we can apply the same argument as above, this time for P̃x instead

of P̃in
x .

We now prove the induction hypothesis, namely Claim 5.7.1, for the current node x.

Proof.[Proof of Claim 5.7.1] Let P̃x be the points contained in x. By Claim 5.7.2, we have

λPM , ‖Px+Mx‖c ≥ ‖c(Px+Mx)vx‖= ‖c(Px)vx‖ ≥ λc−η(|P̃x|)≥ λc/2.

Decompose the top centered-PCA direction vx of P̃x as vx =
√

1−α2u+αu′, where

u ∈U and u′ ⊥U are of norm 1. Note that α is exactly the projection of vx onto U⊥.

We will bound α by lower and upper bounding ‖P̃x‖c as a function of α and λPM . We

start with the upper bound on ‖P̃x‖c. For this we decompose the matrix c(Px +Mx) into

the component in U , called c(Px +MU
x), and the perpendicular one, called c(M⊥x). Note

that c(Px) lies inside U , despite the movement mx, because of the centering c(·). We now

bound the spectral norm of ‖c(M⊥x)‖, using the inductive hypothesis that the projection of

each of at most 2k basis vectors of mx
p onto U⊥ is at most γ:

‖c(M⊥x)‖ ≤max
p
√

nx‖mx
p‖ ·
√

2kγ ≤ γ ·√nx2k ·θ

≤ γ · ε
500

√
nx/k ≤ γ

9 ·
ε
32
√

nx/k ≤ γ

9λPM.

138

Thus, we have that λPMU , ‖Px+MU
x ‖c = λPM±

γ

9λPM .

We can now upper bound the norm of P̃x:

‖P̃x‖c ≤ ‖c(Px+Mx)vx‖+‖c(Tx)vx‖ ≤ ‖c(Px+Mx)vx‖+αη(nx). (5.22)

We need to bound the first term now. For this, we compute the following ratio, using

that the projection of vx into U⊥ is of magnitude α:

‖c(Px+Mx)vx‖2

λ2
PMU

≤ ‖c(Px+MU
x)vx‖2+‖c(M⊥x)vx‖2+2‖c(Px+MU

x)vx‖‖c(M⊥x)vx‖
λ 2

PMU

≤
(1−α2)λ 2

PMU+α2·(γ/9)2·λ 2
PM+2α

√
1−α2·λPMU ·(γ/9)λPM

λ 2
PMU

≤ (1−α2)+α2(γ/9)2(1+ γ/9)2+2α
γ

9 · (1+ γ/9)

≤ 1−α2/2+αγ/3. (5.23)

On the other hand, we want to prove a lower bound on ‖P̃x‖c. We define uPMU to be

the centered-PCA direction of Px+MU
x : λPMU = ‖(Px+MU

x)uPMU ‖c. Remember that

uPMU lies inside U .

‖P̃x‖c ≥ ‖c(P̃x)uPMU ‖= ‖c(Px+MU
x)uPMU ‖= λPMU . (5.24)

Putting together the upper bound (5.22), (5.23) and the lower bound (5.24), we obtain

λPMU ≤ λPMU

√
1−α2/2+αγ/3+αη(nx)

and, using that
√

1− x≤ 1− x/2 for all 0≤ x≤ 1, we conclude:

α ≤ 4 ·
(

η(nx)
λPMU

+ γ/6
)
≤ γ,

as long as 4 η(nx)
λPMU

< γ/3. Since λPMU ≥ λPM/2≥ λc/4, this is satisfied if

γ = Θ(σ
√

logn
√

k/ε).

We are done proving the inductive hypothesis.

The final step is to show that, because all vectors vx along a root-to-leaf path are

perpedicular to each other and are heavy in U , there cannot be too many of them, and

hence the tree depth is bounded.

139

Claim 5.7.3 Fix some dimension k > 1 subspace U ⊂ Rd. Suppose there exist 2k + 1

vectors v1, . . .v2k+1, such that the projection of each into U has norm at least 1− 1/4k.

Then at least two of the vectors are not orthogonal to each other.

Proof. For the sake of contradiction assume that all vectors v1 . . .v2k+1 are mutually

orthogonal. Then let ui be the projection of vi into U , and let δi = vi− ui. We want to

bound the dot product uiu j. Consider

0 = vT
i · v j = (uT

i +δ
T
i)(u j +δ j) = uT

i u j +δ
T
i δ j.

Since |δT
i δi| ≤ 0.25/k, we have that |uT

i u j| ≤ 0.25/k. Even after normalization, we have

that

∣∣∣∣∣
uT

i u j
‖ui‖·‖u j‖

∣∣∣∣∣ ≤ 1/k. Following Alon’s result (10), we conclude that ui’s have rank at

least (2k+1)/2 > k, which is impossible if all ui live in the k-dimensional space U . Thus

we have reached a contradiction.

We now combine the two claims together. Note that α ≤ 1/4k. We conclude that the

height of the tree is at most 2k, thus concluding the proof of lemma 5.7.1.

5.7.3 Analysis: Correctness

Now that we have established an upper bound on the tree depth, we will show that the

query algorithm will indeed return the nearest neighbor p̃∗ for the query q̃ (modelled as in

Section 5.2). We show this in two steps: first we prove the result, assuming the point p̃∗

was not thrown out during de-clumping. Then we show that the de-clumping indeed does

not throw out the point p̃∗.

Lemma 5.7.2 The query algorithm returns the point p̃∗, assuming it was not thrown out

during the de-clumping process.

Proof. Consider some nonleaf tree node x containing p̃∗. We need to argue that, at node x,

the query algorithm follows the child where p̃∗ goes.

As before, let p̃x be the orthogonalized version of p̃∗ (above x) and mx
p is the total

amount of “hyperplane snapping” that happened to p̃∗. We also have that vx has projection

at most γ onto U⊥ (from Claim 5.7.1). Hence, we have:

|vx p̃x− vxq̃| ≤ |vx(tp∗− tq)|+ |vx(p∗−q)|,

140

again using that vxmx
p = 0. Note that, with high probability,

|vx(tp∗− tq)| ≤ 3σ
√

d · γ ≤ ε/8
√

k.

Since this is true also for all ancestors y of x, and since all vy, together with vx, are mutually

orthogonal, we have that:

∑
y ancestor of x

|vy(p̃x− q̃)|2

= ∑
y ancestor of x

|vy(tp∗− tq)+ vy(p∗−q)|2

≤



√√√√ ∑

y ancestor of x

∣∣∣vy(m
y
p+ |tp∗− tq|)

∣∣∣
2

+

√
∑

y ancestor of x
|vy(p∗−q)|2




2

≤



√

2k ·
(

ε/8
√

k
)2

+

√
∑

y ancestor of x
|vy(p∗−q)|2




2

≤ (ε/4
√

2+1)2

< ε/2+1.

This means that the bucket (child node of x) of p̃x intersects a ball of radius 1+ε/2 around

q̃, and hence the query algorithm will go into that bucket (child).

To complete the correctness argument, we also need to prove that p∗ is never thrown

out due to the de-clumping process.

Claim 5.7.4 p∗ is never thrown out due to the de-clumping process.

Proof. For the sake of contradiction, suppose p̃∗x is thrown out at some node x. This means

there is some point p̃x such that ‖p̃x− p̃∗x‖2 ≤ δ + ε2/2. Since ‖q− p‖−‖q− p∗‖ ≥ ε ,

we have that ‖p− p∗‖ ≥ ε .

We have:

δ + ε
2/2≥ ‖ p̃x− p̃∗x‖2 = ‖p− p∗+(mx

p−mx
p∗)+(tp− tp∗)‖

2

= ‖(p− p∗+(mx
p−mx

p∗))U‖
2+‖(mx

p−mx
p∗+ tp− tp∗)U

⊥‖2.

141

We want to bound ‖(mx
p−mx

p∗ + tp− tp∗)U⊥‖2. Indeed, note that the projection of

mx
p onto U⊥ can be at most 2kθ · γ ≤ O(σ

√
logn), by Claim 5.7.1. Hence:

‖(mx
p−mx

p∗+ tp− tp∗)U⊥‖ ≥−O(σ
√

logn)+
√

2σ2d−0.1ε2

≥−O(σ
√

logn)+σ
√

2d− 0.06ε2

σ
√

2d

≥ σ
√

2d− 0.09ε2

σ
√

2d
,

as long as O(σ
√

logn)< 0.03ε2

σ
√

2d
, which is equavalent to saying that σ ≤O

(
ε

4√d 4√logn

)
.

Putting it all together, we have:

δ + ε
2/2≥ ‖ p̃x− p̃∗x‖2 ≥ (ε−2 ·

√
2kθ)2+(σ

√
2d− 0.09ε2

σ
√

2d
)2

≥ 0.8ε
2+2σ

2d−0.2ε
2

> 2σ
2d +0.6ε

2.

But, as proven in Eqn. (5.21), we have that δ ≤ 2σ2d + 0.12ε2. We’ve reached a

contradiction.

5.7.4 Analysis: Performance

The space and preprocessing bounds follow immediately from the construction. We

just need to argue about the query time.

Claim 5.7.5 The query time is (k/ε)O(k)d2.

Proof. At each node of the tree, there are at most O(1/θ) = O(k3/2/ε) child nodes that

are followed. Hence, in total, we reach O(1/θ)2k = (k/ε)O(k) leaves. The factor of d2

comes from the fact that each leaf has at most d points to check the distance against.

CHAPTER 6

CONCLUSION

6.1 Open questions and challenges
During the course of this dissertation, we encountered several questions as natural

followups, and avenues for deeper investigation. We highlight a few specific ones that

we feel can lead to productive research contributions in the future. In general, we feel the

entire domain of non-Euclidean algorithmic geometry has barely been scratched upon, and

that the next decade will see richer theory emerge in these fields.

• In Chapter 2, we show that with some structural assumptions, Euclidean algorithms

for (1+ ε)-ANN can be adapted for the low-dimensional case. Can Euclidean con-

structions also be adapted for approximate Minimum Enclosing Ball or high- dimen-

sional ANN in the case of the Bregman divergences?

• One open question is to convert our lower bounds of Chapter 3 to be nonadaptive.

Panigrahy, Talwar and Wieder (128) do give such a conversion for `22 under symmet-

ric perturbations, but it is not immediately clear how to generalize their argument to

asymmetric perturbation operators. A second intriguing direction we have already

referred to is whether our analysis of asymmetric isoperimetry can open a different

avenue of attack for lower bounds on Partial Match.

• Finally, the question remains as to whether directed hypercontractivity offers insights

or generalizations for other expansion related problems previously considered on the

undirected hypercube. In this regard, recent work by Chakrabarty and Seshadhri

(42) and Khot et al.(92) on formulations of directed hypercontractivity for property

testing represent a promising direction.

• We gave bounds for embedding certain classes of information divergences in Chap-

ter 4. Can we show corresponding lower bounds for embedding more generic Breg-

143

man divergences in low dimensions? In particular, we feel the KL-divergence is a

good starting point for proving the unfeasibility of such an embedding.

• In Chapter 5, we presented a model of data lying close to a low-dimensional sub-

space. Can our models be extended to data lying close to a low dimensional mani-

fold? A popular spectral heuristic is converting Euclidean data to binary codewords

for succinct representation, and fast search algorithms. Xinyang, Price and Con-

stantine (158) give theoretical bounds and analysis for codes derived from random

projections. In the spirit of our work, can more “data-aware” bounds be given for

codes derived from PCA based heuristics such as those employed by Torralba and

Weiss (155)?

APPENDIX

UPPER BOUND FOR BREGMAN ANN IN LOW

DIMENSIONS

Lemma A.1 Given any interval I = [x1x2] on the real line, there exists a finite µ such that
√

Dsφ is µ-defective with respect to I. We require all order derivatives of φ to be defined

and bounded over the closure of I, and φ ′′ to be bounded away from zero.

Proof. Consider three points a,b,q ∈ I.

Due to symmetry of the cases and conditions, there are three cases to consider: a < q <

b, a < b < q and q < b < a.

Case 1: Here a < q < b. The following is trivially true by the monotonicity of
√

Dsφ .

∣∣∣
√

Dsφ (q,a)−
√

Dsφ (q,b)
∣∣∣<
√

Dsφ (a,b). (A.1)

Cases 2 and 3: For the remaining symmetric cases, a < b < q and q < b < a, note that

since
√

Dsφ (q,a)−
√

Dsφ (q,b) and
√

Dsφ (a,b) are both bounded, continuous

functions on a compact domain (the interval [x1x2]), we need only show that the

following limit exists:

lim
a→b

∣∣∣∣
√

Dsφ (q,a)−
√

Dsφ (q,b)
∣∣∣∣

√
Dsφ (a,b)

. (A.2)

First consider a < b < q, and we assume limb→a. For ease of computation, we

replace φ ′ by ψ , to be restored at the last step. We will use the following Taylor

expansions repeatedly in our derivation: b = a + h, ψ(b) = ψ(a + h) = ψ(a) +

hψ ′(a) + E(h2), and
√

1+h = 1+ h/2+ E(h2). Here E(hx) denotes a tail of a

Taylor expansion around a (or equivalently a Maclaurin expansion in h) where the

lowest order term is hx. Since we will be handling multiple Taylor expansions in

145

what follows, we will use subscripts of the form E1, E2, etc. to distinguish the tails

of different series.
√

Dsφ (a,q)−
√

Dsφ (b,q)
√

Dsφ (a,b)
=

(√
(q−a)(ψ(q)−ψ(a))−

√
(q−b)(ψ(q)−ψ(b))

)

√
(b−a)(ψ(b)−ψ(a))

.

(A.3)

Computing the denominator, using the expansion that ψ(b) = ψ(a+ h) = ψ(a)+

hψ ′(a)+E1(h
2), we get:

√
(b−a)(ψ(b)−ψ(a))

=
√

h(ψ(a+h)−ψ(a))

=

√
h(ψ(a)+hψ ′(a)+E1(h

2)−ψ(a))

=

√
h(hψ ′(a)+E1(h

2))

=
√

h(hψ ′(a)+hE2(h))

=

√
h2(ψ ′(a)+E2(h))

=h
√

ψ ′(a)+E2(h),

where in the third last step we set hE2(h) = E1(h
2).

We now address the numerator, and begin by taking the same Taylor expansion.

√
(q−a)(ψ(q)−ψ(a))−

√
(q−b)(ψ(q)−ψ(b))

=
√
(q−a)(ψ(q)−ψ(a))−

√
(q−a−h)(ψ(q)−ψ(a)−hψ ′(a)−E1(h

2))

=
√
(q−a)(ψ(q)−ψ(a))

−

√√√√(q−a)
(

1− h
q−a

)
(ψ(q)−ψ(a))

(
1− hψ ′(a)+E1(h

2)
ψ(q)−ψ(a)

)

=
√
(ψ(q)−ψ(a))(q−a)


1−

√
1− h

q−a

√
1− hψ ′(a)+E1(h

2)
ψ(q)−ψ(a)


 .

We now take the McLaurin expansion of the square roots and note for the second

such expansion we gain more higher order terms of h which we merge with E1 to

obtain a E3(h
2).

146

√
(q−a)(ψ(q)−ψ(a))−

√
(q−b)(ψ(q)−ψ(b))

=
√

(ψ(q)−ψ(a))(q−a)

×
(

1−
(

1− h
2(q−a)

+E4(h
2)
)(

1− hψ ′(a)
2(ψ(q)−ψ(a))

+E3(h
2)

))

=
√

(ψ(q)−ψ(a))(q−a)

(
h

2(q−a)
+h

ψ ′(a)
2(ψ(q)−ψ(a))

+E5(h
2)

)

=h
√
(ψ(q)−ψ(a))(q−a)

(
1

2(q−a)
+

ψ ′(a)
2(ψ(q)−ψ(a))

+E6(h)

)
,

where the E5(h
2) is again obtained in the second last step from merging products

involving one of E3(h
2) or E4(h

2) , as well as of the two terms involving h with

each other. And in the last step, we set E5(h
2) = hE6(h).

Now combine numerator and denominator back in equation A.3 and observe a factor

of h cancels out.√
Dsφ (a,q)−

√
Dsφ (b,q)

√
Dsφ (a,b)

=

h
√

(ψ(q)−ψ(a))(q−a)
(

1
2(q−a) +

ψ ′(a)
2(ψ(q)−ψ(a)) +E6(h)

)

h
√

ψ ′(a)+E2(h)

=

√
(ψ(q)−ψ(a))(q−a)

ψ ′(a)+E2(h)

(
1

2(q−a)
+

ψ ′(a)
2(ψ(q)−ψ(a))

+E6(h)

)
.

Note now that since φ is strictly convex, neither the numerator nor denominator of

this expression approach 0 as limh→0 (or equivalently, limb→a). So we can safely

drop the higher order terms in the limit to obtain:

lim
h→0

√
Dsφ (a,q)−

√
Dsφ (b,q)

√
Dsφ (a,b)

=

√
(ψ(q)−ψ(a))(q−a)

ψ ′(a)

(
1

2(q−a)
+

ψ ′(a)
2(ψ(q)−ψ(a))

)

=
1
2

√
(ψ(q)−ψ(a))(q−a)

ψ ′(a)

(
1√

q−a
√

q−a
+

√
ψ ′(a)

√
ψ ′(a)√

ψ(q)−ψ(a)
√

ψ(q)−ψ(a)

)

=
1
2



√

ψ(q)−ψ(a)
ψ ′(a)(q−a)

+

√
ψ ′(a)(q−a)
ψ(q)−ψ(a)


 .

147

Substituting back φ ′(x) for ψ(x), we see that limit A.2 exists, provided φ is strictly

convex:

1
2

(√
φ ′(q)−φ ′(a)
φ ′′(a)(q−a)

+

√
φ ′′(a)(q−a)
φ ′(q)−φ ′(a)

)
. (A.4)

The analysis follows symmetrically for case 3, where q < b < a.

Lemma A.2 Given any interval I = [x1x2] on the real line, there exists a finite µ such that
√

Dφ is right-sided µ-defective with respect to I.We require all order derivatives of φ to

be defined and bounded over the closure of I, and φ ′′ to be bounded away from zero.

Proof. Consider any three points a,b,q ∈ I. We will prove that there exists finite µ such

that: ∣∣∣
√

Dφ (a,q)−
√

Dφ (b,q)
∣∣∣< µ

√
Dφ (b,a). (A.5)

Here there are now six cases to consider: a < q < b, b < q < a, a < b < q, b < a < q,

q < b < a, and q < a < b .

Cases 1 and 2: Here a < q < b. By monotonicity we have that:
∣∣∣
√

Dφ (a,q)−
√

Dφ (b,q)
∣∣∣<
√

Dφ (a,b)+
√

Dφ (b,a). (A.6)

But by lemma 2.2.5, we have that
√

Dφ (a,b)< c
√

Dφ (b,a) for some parameter c0

defined over I. This implies that
∣∣∣∣
√

Dφ (a,q)−
√

Dφ (b,q)
∣∣∣∣/
√

Dφ (b,a) < c0 + 1,

i.e, it is bounded over I. A similar analysis works for Case 2 where b < q < a.

Cases 3 and 4: For these two cases, a < b < q and b < a < q, note that since
√

Dφ (q,a)−√
Dφ (q,b) and

√
Dφ (b,a) are both bounded, continuous functions on a compact

domain (the interval [x1x2]), we need only show that the following limit exists:

lim
a→b

∣∣∣∣
√

Dφ (a,q)−
√

Dφ (b,q)
∣∣∣∣

√
Dφ (b,a)

. (A.7)

First consider a < b < q, and we assume limb→a. For ease of computation, we

replace φ ′ by ψ , to be restored at the last step. We will use the following Taylor ex-

pansions repeatedly in our derivation: b = a+h, φ(b) = φ(a+h) = φ(a)+hφ ′(a)+

148

E(h2), φ(b) = φ(a) + hψ(a) + h2ψ ′(a)
2 +E(h3) and

√
1+h = 1+ h/2+E(h2).

Here E(hx) denotes a tail of a Taylor expansion where the lowest order term is hx.

Since we will be handling multiple Taylor expansions in what follows, we will use

subscripts of the form E1, E2, etc. to distinguish the tails of different series.

lim
a→b

√
Dφ (a,q)−

√
Dφ (b,q)

√
Dφ (b,a)

= lim
a→b

√
φ(a)−φ(q)−ψ(q)(a−q)−

√
φ(b)−φ(q)−ψ(q)(b−q)√

φ(b)−φ(a)−ψ(a)(b−a)
.

(A.8)

Computing the denominator by replacing b−a with h and taking the Taylor expan-

sion of φ(b):

√
φ(b)−φ(a)−ψ(a)(b−a)

=

√√√√
(

φ(a)+hψ(a)+
h2ψ ′(a)

2
+E1(h

3)

)
−φ(a)−ψ(a)h

=

√
h2ψ ′(a)

2
+E1(h

3)

= h

√
ψ ′(a)

2
+E2(h

2),

where in the last step, we let E1(h
3) = hE2(h

2). We now address the numerator:

(√
φ(a)−φ(q)−ψ(q)(a−q)−

√
φ(b)−φ(q)−ψ(q)(b−q)

)

=
√

φ(a)−φ(q)−ψ(q)(a−q)−
√

φ(b)−φ(q)−ψ(q)(b−a+a−q)

=
√

φ(a)−φ(q)−ψ(q)(a−q)−
√

φ(b)−φ(q)−ψ(q)(h+a−q)

=
√

φ(a)−φ(q)−ψ(q)(a−q)

−
√

φ(a)+hψ(a)+E3(h
2)−φ(q)−ψ(q)(h+a−q),

where in the last step we took the Taylor Expansion of φ(b). Collecting terms of h

and continuing, we obtain:

149

√
φ(a)−φ(q)−ψ(q)(a−q)

−
√

φ(a)−φ(q)−ψ(q)(a−q)+h(ψ(a)−ψ(q))+E3(h
2)

=
√

Dφ (a,q)−

√√√√Dφ (a,q)

(
1+

h(ψ(a)−ψ(q))+E3(h
2)

Dφ (a,q)

)

=
√

Dφ (a,q)


1−

√√√√1− h(ψ(q)−ψ(a))−E3(h
2)

Dφ (a,q)




=
√

Dφ (a,q)

(
1−
(

1− h(ψ(q)−ψ(a))
2Dφ (a,q)

+E4(h
2)

))

=
h
(

ψ(q)−ψ(a)−E4(h
2)
)

2
√

Dφ (a,q)
,

where we note in the above that the new error term of E4(h
2) was produced by

combining E3(h
2) with the error term produced by taking the Maclaurin expansion

of the square root.

Now combine numerator and denominator back in equation A.8 and cancel a factor

of h accordingly, we get:
√

φ(a)−φ(q)−ψ(q)(a−q)−
√

φ(b)−φ(q)−ψ(q)(b−q)√
φ(b)−φ(a)−ψ(a)(b−a)

=




h
(

ψ(q)−ψ(a)−E4(h
2)
)

2
√

Dφ (a,q)


/

(
h

√
ψ ′(a)

2
+E2(h

2)

)

=




(
ψ(q)−ψ(a)−E4(h

2)
)

2
√

Dφ (a,q)


/

(√
ψ ′(a)

2
+E2(h

2)

)
.

Now if we take limh→0 or equivalent lima→b, neither the numerator nor denomina-

tor of this new expression become 0 and indeed we may drop the higher order terms

of h safely. Noting that Dφ (a,q) =
1
2(ψ
′(x))(q−a)2, for some x ∈ [ab].

lim
a→b

√
Dφ (a,q)−

√
Dφ (b,q)

√
Dφ (b,a)

=

(ψ(q)−ψ(a))
2
√

Dφ (a,q)
√

ψ ′(a)
2

=
(ψ(q)−ψ(a))

q−a

√
ψ ′(a)√
ψ ′(x)

.

150

Substituting back φ ′(x) for ψ(x), we see that limit A.7 exists, provided φ is strictly

convex:

(φ ′(q)−φ ′(a))
q−a

√
φ ′′(a)√
φ ′′(x)

. (A.9)

The analysis follows symmetrically for case 4, by noting that lima→b

√
Dφ (a,b)√
Dφ (b,a)

=

1 and that
√

Dφ (a,q)−
√

Dφ (b,q) = −(
√

Dφ (b,q)−
√

Dφ (a,q)), i.e we may

suitably interchange a and b.

Cases 5 and 6: Here q < a < b or q < b < a. Looking more carefully at the analysis for

cases 3 and 4, note that the ordering q < a < b vs a < b < q does not affect the

magnitude of the expression for limit A.7, only the sign. Hence we can use the same

analysis to prove µ-defectiveness for cases 5 and 6.

Corollary A.1 Given any interval I = [x1x2] on the real line, there exists a finite µ such

that
√

Dφ is left-sided µ-defective with respect to I.

Proof. Follows from similar computation.

A.1 Discussion of empirical values of µ

We calculate now the values of µ observed for a selection of Bregman divergences

points spread over a range of intervals, namely [0.10.9], [0.010.99] and [0.0010.999]. Note

that each of the values below is for the square root of the relevant divergence and that for

the Itakura Saito, Kullback-Liebler and Symmetrized Kullback-Liebler, 0 is a boundary

point where distances approach infinity. Interestingly, lemma 2.2.7 implies that whatever

bounds for µ hold for points spread on an interval I ∈ R also hold for points in the box

∏
d
i=1 Id ∈Rd . We observe that for reasonable spreads of points, while µ is not necessarily

always small, it is also not a galactic constant as well.

151

Name Interval Range Value of µ

[0.1 0.9] 2.35
Itakura-Saito [0.01 0.99] 7.17

[0.001 0.999] 22.42
[0.1 0.9] 1.65

Kullback-Liebler [0.01 0.99] 3.67
[0.001 0.999] 9.18

[0.1 0.9] 1.22
Symmetrized Kullback-Liebler [0.01 0.99] 2.42

[0.001 0.999] 6.05
[0.1 0.9] 1.14

Exponential [0.001 0.999] 1.18
[0.001 100] 9.95

REFERENCES

[1] ABDULLAH, A., MOELLER, J., AND VENKATASUBRAMANIAN, S. Approximate
Bregman near neighbors in sublinear time: Beyond the triangle inequality. In Pro-
ceedings of the 2012 Symposium on Computational Geometry (2012), ACM, pp. 31–40.

[2] ACKERMANN, M., AND BLÖMER, J. Bregman clustering for separable instances. In
Algorithm Theory - SWAT 2010, H. Kaplan, Ed., vol. 6139 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2010, pp. 212–223.

[3] ACKERMANN, M. R., AND BLÖMER, J. Coresets and approximate clustering for Breg-
man divergences. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms (Philadelphia, PA, USA, 2009), SODA ’09, Society for Industrial
and Applied Mathematics, pp. 1088–1097.

[4] ACKERMANN, M. R., BLÖMER, J., AND SOHLER, C. Clustering for metric and
nonmetric distance measures. ACM Transactions on Algorithms (TALG) 6, 4 (2010),
59.

[5] AFSHANI, P., ARGE, L., AND LARSEN, K. D. Orthogonal range reporting in three
and higher dimensions. Foundations of Computer Science, Annual IEEE Symposium on
0 (2009), 149–158.

[6] AHLBERG, D., BROMAN, E., GRIFFITHS, S., AND MORRIS, R. Noise sensitivity in
continuum percolation. arXiv preprint arXiv:1108.0310 (2011).

[7] AHN, K. J., GUHA, S., AND MCGREGOR, A. Graph sketches: sparsification, span-
ners, and subgraphs. In Proceedings of the 31st Symposium on Principles of Database
Systems (2012), ACM, pp. 5–14.

[8] AIGER, D., KAPLAN, H., AND SHARIR, M. Reporting neighbors in high-dimensional
euclidean spaces. In SODA (2013), pp. 784–803.

[9] AILON, N., AND CHAZELLE, B. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the Thirty-eighth Annual ACM Symposium
on Theory of Computing(STOC) (2006), ACM, pp. 557–563.

[10] ALON, N. Problems and results in extremal combinatorics I. Discrete Mathematics
273 (2003), 31–53.

[11] ALON, N., MATIAS, Y., AND SZEGEDY, M. The space complexity of approximating
the frequency moments. In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing (1996), ACM, pp. 20–29.

[12] AMARI, S., AND NAGAOKA, H. Methods of Information Geometry, vol. 191 of
Translations of Mathematical Monographs. Oxford University Press, 2000.

153

[13] ANDONI, A., CHARIKAR, M. S., NEIMAN, O., AND NGUYEN, H. L. Near linear
lower bound for dimension reduction in `1. In Proceedings of the Fifty-second Annual
IEEE Symposium on Foundations of Computer Science (FOCS) (2011), IEEE, pp. 315–
323.

[14] ANDONI, A., AND INDYK, P. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proceedings of the Forty-seventh Annual IEEE
Symposium on Foundations of Computer Science(FOCS) (2006), IEEE, pp. 459–468.

[15] ANDONI, A., INDYK, P., AND KRAUTHGAMER, R. Overcoming the `1 non-
embeddability barrier: algorithms for product metrics. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms (2009), Society for Industrial
and Applied Mathematics, pp. 865–874.

[16] ANDONI, A., INDYK, P., NGUYEN, H. L., AND RAZENSHTEYN, I. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms (2014), SIAM, pp. 1018–1028.

[17] ANDONI, A., INDYK, P., AND PǍTRAŞCU, M. On the optimality of the dimensionality
reduction method. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS) (2006), pp. 449–458.

[18] ANDONI, A., KRAUTHGAMER, R., AND RAZENSHTEYN, I. Sketching and embed-
ding are equivalent for norms. arXiv preprint arXiv:1411.2577 (2014).

[19] ANDONI, A., AND RAZENSHTEYN, I. Optimal data-dependent hashing for approxi-
mate near neighbors. arXiv preprint arXiv:1501.01062 (2015).

[20] ARORA, S., AND KANNAN, R. Learning a mixture of gaussians. Proceedings of the
Symposium on Theory of Computing (STOC) (2001).

[21] ARYA, S., AND MALAMATOS, T. Linear-size approximate voronoi diagrams. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2002),
pp. 147–155.

[22] ARYA, S., MALAMATOS, T., AND MOUNT, D. M. Space-time tradeoffs for approxi-
mate nearest neighbor searching. Journal of the ACM (JACM) 57, 1 (2009), 1.

[23] ARYA, S., MOUNT, D. M., NETANYAHU, N. S., SILVERMAN, R., AND WU, A. Y.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM 45 (November 1998), 891–923.

[24] AURENHAMMER, F. Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345–405.

[25] AVRON, H., NGUYEN, H., AND WOODRUFF, D. Subspace embeddings for the
polynomial kernel. In NIPS (2014), pp. 2258–2266.

[26] BAI, L., AND HANCOCK, E. R. Graph kernels from the Jensen-Shannon divergence.
Journal of Mathematical Imaging and Vision 47, 1-2 (2013), 60–69.

[27] BANERJEE, A., MERUGU, S., DHILLON, I. S., AND GHOSH, J. Clustering with
bregman divergences. J. Mach. Learn. Res. 6 (December 2005), 1705–1749.

154

[28] BARKOL, O., AND RABANI, Y. Tighter bounds for nearest neighbor search and related
problems in the cell probe model. In Proceedings of the Thirty-second Annual ACM
Symposium on Theory of Computing (2000), ACM, pp. 388–396.

[29] BARTAL, Y. On approximating arbitrary metrices by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing (1998), ACM, pp. 161–168.

[30] BENJAMINI, I., KALAI, G., AND SCHRAMM, O. Noise sensitivity of Boolean
functions and applications to percolation. Publications Mathématiques de l’Institut des
Hautes Études Scientifiques 90, 1 (1999), 5–43.

[31] BERAN, R. Minimum hellinger distance estimates for parametric models. The Annals
of Statistics (1977), 445–463.

[32] BEYGELZIMER, A., KAKADE, S., AND LANGFORD, J. Cover trees for nearest
neighbor. In Proceedings of the 23rd International Conference on Machine Learning
(New York, NY, USA, 2006), ICML ’06, ACM, pp. 97–104.

[33] BIAU, G., DEVROYE, L., AND LUGOSI, G. On the performance of clustering in
Hilbert spaces. IEEE Transactions on Information Theory 54, 2 (2008), 781–790.

[34] BOISSONNAT, J.-D., NIELSEN, F., AND NOCK, R. Bregman voronoi diagrams. Dis-
crete and Computational Geometry 44 (2010), 281–307. 10.1007/s00454-010-9256-1.

[35] BORODIN, A., OSTROVSKY, R., AND RABANI, Y. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proceedings of the Thirty-first Annual
ACM Symposium on Theory of Computing (New York, NY, USA, 1999), STOC ’99,
ACM, pp. 312–321.

[36] BOUTSIDIS, C., ZOUZIAS, A., AND DRINEAS, P. Random projections for k-means
clustering. In Advances in Neural Information Processing Systems (2010), pp. 298–306.

[37] BREGMAN, L. M. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics 7 (1967), 200–217.

[38] BRINKMAN, B., AND CHARIKAR, M. On the impossibility of dimension reduction in
l1. Journal of the ACM (JACM) 52, 5 (2005), 766–788.

[39] CAYTON, L. Fast nearest neighbor retrieval for bregman divergences. In Proceedings
of the 25th International Conference on Machine Learning (New York, NY, USA, 2008),
ICML ’08, ACM, pp. 112–119.

[40] CAYTON, L. Bregman proximity search. PhD thesis, University of California, San
Diego, 2009.

[41] CHAKRABARTI, A., AND REGEV, O. An optimal randomised cell probe lower bound
for approximate nearest neighbour searching. In Foundations of Computer Science,
2004. Proceedings. 45th Annual IEEE Symposium on (2004), IEEE, pp. 473–482.

[42] CHAKRABARTY, D., AND SESHADHRI, C. A o(n) monotonicity tester for Boolean
functions over the hypercube. In Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing (2013), ACM, pp. 411–418.

155

[43] CHAUDHURI, K., AND MCGREGOR, A. Finding metric structure in information
theoretic clustering. In Conference on Learning Theory(COLT) (2008), vol. 8, Citeseer,
p. 10.

[44] CHITNIS, R., CORMODE, G., ESFANDIARI, H., HAJIAGHAYI, M., MCGREGOR,
A., MONEMIZADEH, M., AND VOROTNIKOVA, S. Kernelization via sampling with
applications to dynamic graph streams. arXiv preprint arXiv:1505.01731 (2015).

[45] CLARKSON, K. An algorithm for approximate closest-point queries. Proceedings of
the Tenth Annual ACM Symposium on Computational Geometry (1994), 160–164.

[46] CLARKSON, K. L. A randomized algorithm for closest-point queries. SIAM Journal
on Computing 17, 4 (1988), 830–847.

[47] CLARKSON, K. L. Nearest-neighbor searching and metric space dimensions. Nearest-
neighbor Methods for Learning and Vision: Theory and Practice (2006), 15–59.

[48] COHEN, M., ELDER, S., MUSCO, C., MUSCO, C., AND PERSU, M. Dimension-
ality reduction for k-means clustering and low rank approximation. arXiv preprint
arXiv:1410.6801 (2014).

[49] COLE, R., AND GOTTLIEB, L.-A. Searching dynamic point sets in spaces with
bounded doubling dimension. In Proceedings of the Thirty-eighth Annual ACM Sympo-
sium on Theory of Computing (2006), ACM, pp. 574–583.

[50] COLE, R., AND GOTTLIEB, L.-A. Searching dynamic point sets in spaces with
bounded doubling dimension. In Proceedings of the Thirty-eighth Annual ACM Sym-
posium on Theory of Computing (New York, NY, USA, 2006), STOC ’06, ACM,
pp. 574–583.

[51] COLLINS, M., SCHAPIRE, R., AND SINGER, Y. Logistic regression, adaboost and
bregman distances. Machine Learning 48, 1 (2002), 253–285.

[52] COVER, T. M., AND HART, P. E. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on 13, 1 (1967), 21–27.

[53] COVER, T. M., AND THOMAS, J. A. Elements of Information Theory. Wiley-
Interscience, New York, NY, USA, 1991.

[54] CSISZÁR, I. Information-type measures of difference of probability distributions and
indirect observations. Studia Scientiarum Mathematicarum Hungarica 2 (1967), 299–
318.

[55] CSISZÁR, I. I-divergence geometry of probability distributions and minimization
problems. The Annals of Probability 3 (1975), 146–158.

[56] DASGUPTA, S. Learning mixtures of gaussians. In 40th Annual Symposium on
Foundations of Computer Science (1999), IEEE Computer Society, pp. 634–.

[57] DASGUPTA, S., AND FREUND, Y. Random projection trees and low dimensional
manifolds. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(2008), ACM, pp. 537–546.

156

[58] DATAR, M., IMMORLICA, N., INDYK, P., AND MIRROKNI, V. S. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry (2004), ACM, pp. 253–262.

[59] DAVIS, C., AND KAHAN, W. M. The rotation of eigenvectors by a perturbation. III.
SIAM J. Numer. Anal. 7 (1970), 1–46.

[60] DENOEUX, T. A k-nearest neighbor classification rule based on dempster-shafer theory.
Systems, Man and Cybernetics, IEEE Transactions on 25, 5 (1995), 804–813.

[61] DHILLON, I. S., MALLELA, S., AND KUMAR, R. A divisive information theoretic
feature clustering algorithm for text classification. The Journal of Machine Learning
Research 3 (2003), 1265–1287.

[62] DIACONIS, P., SALOFF-COSTE, L., ET AL. Logarithmic sobolev inequalities for finite
markov chains. The Annals of Applied Probability 6, 3 (1996), 695–750.

[63] EIRON, N., AND MCCURLEY, K. S. Analysis of anchor text for web search. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval (2003), ACM, pp. 459–460.

[64] EPPSTEIN, D., GOODRICH, M. T., AND SUN, J. Z. The skip quadtree: a simple
dynamic data structure for multidimensional data. In Proceedings of the Twenty-first
Annual Symposium on Computational Geometry (New York, NY, USA, 2005), SCG
’05, ACM, pp. 296–305.

[65] FAKCHAROENPHOL, J., RAO, S., AND TALWAR, K. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing (2003), ACM, pp. 448–455.

[66] FARAGO, A., LINDER, T., AND LUGOSI, G. Fast nearest-neighbor search in dissim-
ilarity spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 15, 9
(sep 1993), 957 –962.

[67] FRADKIN, D., AND MADIGAN, D. Experiments with random projections for machine
learning. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2003), ACM, pp. 517–522.

[68] FRIEDGUT, E. Boolean functions with low average sensitivity depend on few coordi-
nates. Combinatorica 18, 1 (1998), 27–35.

[69] FUGLEDE, B., AND TOPSØE, F. Jensen-Shannon divergence and Hilbert space em-
bedding. In Proceedings of the 2004 IEEE International Symposium on Information
Theory(ISIT) (2004), pp. 31–31.

[70] GOLDBERGER, J., GORDON, S., AND GREENSPAN, H. An efficient image similarity
measure based on approximations of kl-divergence between two gaussian mixtures. In
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on (2003),
IEEE, pp. 487–493.

[71] GRAY, R., BUZO, A., GRAY JR, A., AND MATSUYAMA, Y. Distortion measures for
speech processing. Acoustics, Speech and Signal Processing, IEEE Transactions on 28,
4 (Aug 1980), 367–376.

157

[72] GRITZMANN, P., AND KLEE, V. Computational complexity of inner and outer j-radii
of polytopes in finite-dimensional normed spaces. Mathematical Programming 59, 1-3
(1993), 163–213.

[73] GUHA, S., INDYK, P., AND MCGREGOR, A. Sketching information divergences. In
Learning Theory. Springer, 2007, pp. 424–438.

[74] GUHA, S., MCGREGOR, A., AND VENKATASUBRAMANIAN, S. Streaming and
sublinear approximation of entropy and information distances. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms(SODA) (2006),
ACM, pp. 733–742.

[75] HAR-PELED, S. A replacement for voronoi diagrams of near linear size. In Proceed-
ings of the 42nd IEEE Symposium on Foundations of Computer Science (Washington,
DC, USA, 2001), FOCS ’01, IEEE Computer Society, pp. 94–105.

[76] HAR-PELED, S., AND KUMAR, N. Approximate nearest neighbor search for low-
dimensional queries. SIAM J. Comput. 42, 1 (2013), 138–159. Previously in SODA’11.

[77] HAR-PELED, S., AND MAZUMDAR, S. Fast algorithms for computing the smallest
k-enclosing circle. Algorithmica 41 (2005), 147–157. 10.1007/s00453-004-1123-0.

[78] HAR-PELED, S., AND MENDEL, M. Fast construction of nets in low dimensional
metrics, and their applications. In Proceedings of the Twenty-first Annual Symposium on
Computational Geometry (New York, NY, USA, 2005), SCG ’05, ACM, pp. 150–158.

[79] HAR-PELED, S., AND MENDEL, M. Fast construction of nets in low-dimensional
metrics and their applications. SIAM Journal on Computing 35, 5 (2006), 1148–1184.

[80] HAR-PELED, S., AND VARADARAJAN, K. R. High-dimensional shape fitting in linear
time. Discrete & Computational Geometry 32, 2 (2004), 269–288.

[81] HERSHEY, J. R., OLSEN, P., ET AL. Approximating the kullback leibler divergence
between gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on (2007), vol. 4, IEEE, pp. IV–317.

[82] HUANG, X., LI, S. Z., AND WANG, Y. Jensen-Shannon boosting learning for object
recognition. In Proceedings of the 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition(CVPR) (2005), vol. 2 of CVPR ’05, pp. 144–149.

[83] INDYK, P. Approximate nearest neighbor algorithms for fréchet distance via product
metrics. In Proceedings of the Eighteenth Annual Symposium on Computational Geom-
etry (2002), ACM, pp. 102–106.

[84] INDYK, P., AND MOTWANI, R. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing (New York, NY, USA, 1998), STOC ’98, ACM, pp. 604–613.

[85] INDYK, P., AND NAOR, A. Nearest-neighbor-preserving embeddings. ACM Transac-
tions on Algorithms (TALG) 3, 3 (2007), 31.

[86] INDYK, P., AND WOODRUFF, D. Tight lower bounds for the distinct elements problem.
Proceedings of the Symposium on Foundations of Computer Science (FOCS) (2003),
283–290.

158

[87] JOHNSON, W., AND SCHECHTMAN, G. Embedding `mp into `n1. Acta Mathematica
149 (1982), 71–85.

[88] JOHNSON, W. B., AND LINDENSTRAUSS, J. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics 26, 189-206 (1984), 1.

[89] KANNAN, R., AND VEMPALA, S. Spectral algorithms. Found. Trends Theor. Comput.
Sci. 4, 3–4 (Mar. 2009), 157–288.

[90] KARGER, D., AND RUHL, M. Finding nearest neighbors in growth-restricted metrics.
Proceedings of the Symposium on Theory of Computing (STOC) (2002).

[91] KELLER, N. A simple reduction from a biased measure on the discrete cube to the
uniform measure. arXiv preprint arXiv:1001.1167 (2010).

[92] KHOT, S., MINZNER, D., AND SAFRA, M. On monotonicity testing and Boolean
isoperimetric type theorems. Electronic Colloquium on Computational Complexity,
TR15-011 (2015). http://eccc.hpi-web.de/report/2015/011/.

[93] KINDLER, G. PCP, Property Testing and Juntas. PhD thesis, Tel-Aviv University,
2002.

[94] KRAUTHGAMER, R., AND LEE, J. The black-box complexity of nearest neighbor
search. In Automata, Languages and Programming, J. Daz, J. Karhumki, A. Lepist, and
D. Sannella, Eds., vol. 3142 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2004, pp. 153–178.

[95] KRAUTHGAMER, R., AND LEE, J. R. Navigating nets: simple algorithms for proxim-
ity search. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Philadelphia, PA, USA, 2004), SODA ’04, Society for Industrial and
Applied Mathematics, pp. 798–807.

[96] KYNG, R. J., PHILLIPS, J. M., AND VENKATASUBRAMANIAN, S. Johnson-
Lindenstrauss dimensionality reduction on the simplex. In 20th Fall Workshop on
Computational Geometry (2010).

[97] LARSEN, K. G. Higher cell probe lower bounds for evaluating polynomials. In
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on
(2012), IEEE, pp. 293–301.

[98] LATAŁA, R. Some estimates of norms of random matrices. Proceedings of the
American Mathematical Society 133, 5 (2005), 1273–1282.

[99] LAURENT, B., AND MASSARAT, P. Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics 28 (1998), 1303–1338.

[100] LEE, J. R., MENDEL, M., AND NAOR, A. Metric structures in l1: dimension,
snowflakes, and average distortion. European Journal of Combinatorics 26, 8 (2005),
1180–1190.

[101] LEE, J. R., AND NAOR, A. Embedding the diamond graph in Lp and dimension
reduction in L1. Geometric & Functional Analysis GAFA 14, 4 (2004), 745–747.

http://eccc.hpi-web.de/report/2015/011/

159

[102] LI, Y., NGUYEN, H. L., AND WOODRUFF, D. P. Turnstile streaming algorithms might
as well be linear sketches. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing(STOC) (2014), ACM, pp. 174–183.

[103] LIU, D. A strong lower bound for approximate nearest neighbor searching. Information
Processing Letters 92, 1 (2004), 23–29.

[104] MAHALANOBIS, P. C. On the generalised distance in statistics. Proc. National
Institute of Sciences in India 2, 1 (1936), 49–55.

[105] MAHMOUDI, M., AND SAPIRO, G. Three-dimensional point cloud recognition via
distributions of geometric distances. Graphical Models 71, 1 (2009), 22–31.

[106] MANTHEY, B., AND RÖGLIN, H. Worst-case and smoothed analysis of k-means
clustering with bregman divergences. In Algorithms and Computation, Y. Dong, D.-Z.
Du, and O. Ibarra, Eds., vol. 5878 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, pp. 1024–1033.

[107] MANTHEY, B., AND RÖGLIN, H. Worst-case and smoothed analysis of k-means
clustering with bregman divergences. In Algorithms and Computation. Springer, 2009,
pp. 1024–1033.

[108] MARTÍN, A., LÓPEZ-ROSA, S., ANGULO, J., AND ANTOLÍN, J. Jensen–shannon
and kullback–leibler divergences as quantifiers of relativistic effects in neutral atoms.
Chemical Physics Letters 635 (2015), 75–79.

[109] MCNAMES, J. A fast nearest-neighbor algorithm based on a principal axis search tree.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 23, 9 (2001), 964–
976.

[110] MEISER, S. Point location in arrangements of hyperplanes. Information and Compu-
tation 106 (1993), 286–303.

[111] MOITRA, A., AND VALIANT, G. Settling the polynomial learnability of mixtures
of gaussians. In 51st Annual IEEE Symposium on Foundations of Computer Science
(2010), IEEE, pp. 93–102.

[112] MOTWANI, R., NAOR, A., AND PANIGRAHY, R. Lower bounds on locality sensitive
hashing. SIAM Journal on Discrete Mathematics 21, 4 (2007), 930–935.

[113] MUJA, M., AND LOWE, D. G. Fast approximate nearest neighbors with automatic
algorithm configuration. In VISAPP (1) (2009), pp. 331–340.

[114] NAGHSHVAR, M., JAVIDI, T., AND WIGGER, M. Extrinsic jensen–shannon diver-
gence: Applications to variable-length coding. Information Theory, IEEE Transactions
on 61, 4 (2015), 2148–2164.

[115] NGUYÊN, H. L. Approximate nearest neighbor search in `p. arXiv preprint
arXiv:1306.3601 (2013).

[116] NIELSEN, F., AND BOLTZ, S. The burbea-rao and bhattacharyya centroids. CoRR
abs/1004.5049 (2010).

160

[117] NIELSEN, F., AND NOCK, R. On the smallest enclosing information disk. Information
Processing Letters 105, 3 (2008), 93 – 97.

[118] NIELSEN, F., AND NOCK, R. Sided and symmetrized bregman centroids. IEEE Trans.
Inf. Theor. 55 (June 2009), 2882–2904.

[119] NIELSEN, F., PIRO, P., AND BARLAUD, M. Bregman vantage point trees for efficient
nearest neighbor queries. In Proceedings of the 2009 IEEE International Conference
on Multimedia and Expo (Piscataway, NJ, USA, 2009), ICME’09, IEEE Press, pp. 878–
881.

[120] NIELSEN, F., PIRO, P., AND BARLAUD, M. Tailored bregman ball trees for effective
nearest neighbors. In In European Workshop on Computational Geometry (2009).

[121] NOCK, R., LUOSTO, P., AND KIVINEN, J. Mixed bregman clustering with approx-
imation guarantees. In Machine Learning and Knowledge Discovery in Databases.
Springer, 2008, pp. 154–169.

[122] NOCK, R., AND NIELSEN, F. Fitting the smallest enclosing bregman ball. In Machine
Learning: ECML 2005. Springer, 2005, pp. 649–656.

[123] Frontiers in Massive Data Analysis. The National Academies Press, 2013.

[124] O’DONNELL, R. Analysis of Boolean Functions. Cambridge University Press, 2014.

[125] O’DONNELL, R., WU, Y., AND ZHOU, Y. Optimal lower bounds for locality-sensitive
hashing (except when q is tiny). ACM Trans. Comput. Theory 6, 1 (Mar. 2014), 5:1–
5:13.

[126] OLESZKIEWICZ, K. On a nonsymmetric version of the khinchine-kahane inequality.
In Stochastic Inequalities and Applications. Springer, 2003, pp. 157–168.

[127] PANIGRAHY, R. Entropy-based nearest neighbor algorithm in high dimensions. Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2006).

[128] PANIGRAHY, R., TALWAR, K., AND WIEDER, U. A geometric approach to lower
bounds for approximate near-neighbor search and partial match. In Foundations of
Computer Science, 2008. FOCS ’08. IEEE 49th Annual IEEE Symposium on (oct. 2008),
pp. 414 –423.

[129] PANIGRAHY, R., TALWAR, K., AND WIEDER, U. Lower bounds on near neighbor
search via metric expansion. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on (oct. 2010), pp. 805 –814.

[130] PĂTRAŞCU, M. Unifying the landscape of cell-probe lower bounds. SIAM Journal on
Computing 40, 3 (2011), 827–847.

[131] PĂTRAŞCU, M., AND THORUP, M. Time-space trade-offs for predecessor search. In
Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing
(2006), ACM, pp. 232–240.

[132] PETER, A. M., AND RANGARAJAN, A. Maximum likelihood wavelet density esti-
mation with applications to image and shape matching. IEEE Transactions on Image
Processing 17, 4 (2008), 458–468.

161

[133] RABINOVICH, Y. On average distortion of embedding metrics into the line and into l
1. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing
(2003), ACM, pp. 456–462.

[134] RAHIMI, A., AND RECHT, B. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems (2007), Neural Information
Processing Systems, pp. 1177–1184.

[135] REGEV, O. Entropy-based bounds on dimension reduction in l 1. Israel Journal of
Mathematics 195, 2 (2013), 825–832.

[136] RUDELSON, M., AND VERSHYNIN, R. Sampling from large matrices: an approach
through geometric functional analysis. Journal of the ACM (JACM) 54, 4 (2007), 21.

[137] RUDELSON, M., AND VERSHYNIN, R. Non-asymptotic theory of random matrices:
extreme singular values. In Proceedings of the International Congress of Mathemati-
cians. Volume III (New Delhi, 2010), Hindustan Book Agency, pp. 1576–1602.

[138] SALAKHUTDINOV, R., AND HINTON, G. Semantic hashing. International Journal of
Approximate Reasoning 50, 7 (2009), 969–978.

[139] SARIEL-HAR-PELED. Geometric Approximation Algorithms. AMS, 2011. http://goo.
gl/pLiEO.

[140] SILPA-ANAN, C., AND HARTLEY, R. Optimised kd-trees for fast image descriptor
matching. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on (2008), IEEE, pp. 1–8.

[141] SILVA, J., AND NARAYANAN, S. Average divergence distance as a statistical discrim-
ination measure for hidden markov models. Audio, Speech, and Language Processing,
IEEE Transactions on 14, 3 (2006), 890–906.

[142] SPIELMAN, D. A., AND TENG, S.-H. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Commun. ACM 52, 10 (Oct. 2009), 76–84.

[143] SPROULL, R. Refinements to nearest-neighbor searching in k-dimensional trees. Algo-
rithmica 6 (1991), 579–589.

[144] SRA, S., JEGELKA, S., AND BANERJEE, A. Approximation algorithms for Bregman
clustering, co-clustering and tensor clustering. Tech. rep., Technical Report 177, MPI
for Biological Cybernetics, 2008.

[145] STEWART, G. W. On the early history of the singular value decomposition. SIAM
review 35, 4 (1993), 551–566.

[146] TALAGRAND, M. On russo’s approximate zero-one law. The Annals of Probability
(1994), 1576–1587.

[147] TANG, K., PALURI, M., FEI-FEI, L., FERGUS, R., AND BOURDEV, L. Improving
image classification with location context. arXiv preprint arXiv:1505.03873 (2015).

[148] TOPSØE, F. Some inequalities for information divergence and related measures of
discrimination. IEEE Transactions on Information Theory 46, 4 (2000), 1602–1609.

http://goo.gl/pLiEO
http://goo.gl/pLiEO

162

[149] VARADARAJAN, K. R., VENKATESH, S., AND ZHANG, J. On approximating the radii
of point sets in high dimensions. In 43rd Annual IEEE Symposium on Foundations of
Computer Science (2002), IEEE, pp. 561–569.

[150] VEDALDI, A., AND ZISSERMAN, A. Efficient additive kernels via explicit feature
maps. IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI) 34, 3
(2012), 480–492.

[151] VEMPALA, S., AND WANG, G. A spectral algorithm for learning mixture models.
Journal of Computer and System Sciences 68, 4 (2004), 841–860. Previously in
FOCS’02.

[152] VERMA, N., KPOTUFE, S., AND DASGUPTA, S. Which spatial partition trees are
adaptive to intrinsic dimension? In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence (2009), AUAI Press, pp. 565–574.

[153] WANG, Y., AND YIN, Y. Certificates in data structures. arXiv preprint
arXiv:1404.5743 (2014).

[154] WEDIN, P.-Å. Perturbation bounds in connection with singular value decomposition.
BIT Numerical Mathematics 12, 1 (1972), 99–111.

[155] WEISS, Y., TORRALBA, A., AND FERGUS, R. Spectral hashing. In Advances in
neural information processing systems (2008), pp. 1753–1760.

[156] WOODRUFF, D. Optimal space lower bounds for all frequency moments. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2004).

[157] YAGNIK, J., STRELOW, D., ROSS, D. A., AND LIN, R.-S. The power of comparative
reasoning. In Computer Vision (ICCV), 2011 IEEE International Conference on (2011),
IEEE, pp. 2431–2438.

[158] YI, X., CARAMANIS, C., AND PRICE, E. Binary embedding: Fundamental limits and
fast algorithm. arXiv preprint arXiv:1502.05746 (2015).

[159] ZHANG, Z., OOI, B. C., PARTHASARATHY, S., AND TUNG, A. K. H. Similarity
search on bregman divergence: towards non-metric indexing. Proc. VLDB Endow. 2
(August 2009), 13–24.

DISSEMINATION OF THIS WORK

• Approximate Bregman near neighbors in sublinear time: Beyond the triangle in-

equality.

Amirali Abdullah, John Moeller and Suresh Venkatasubramanian.

c©ACM, Proceedings of Symposium on Computational Geometry (SOCG), June 2012.

• A directed isoperimetric inequality with application to Bregman near neighbor

lower bounds.

Amirali Abdullah and Suresh Venkatasubramanian.

c©ACM, Proceedings of Symposium on Theory of Computing (STOC), June 2015

• Spectral Approaches to Nearest Neighbor Search.

Amirali Abdullah, Alexandr Andoni, Ravindran Kannan and Robert Krauthgamer.

c©IEEE, Proceedings of Symposium on Foundations of Computer Science (FOCS), Octo-

ber 2014.

• Sketching, Embedding, and Dimensionality Reduction for Information Spaces.

Amirali Abdullah, Ravi Kumar, Andrew McGregor, Sergei Vassilvitskii and Suresh Venkata-

subramanian.

Under submission.

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgments
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Problem statement and prior work
	Recursive subdivision of space
	Embedding, sketching and dimensionality reduction
	Other notes and results

	Bregman divergences
	Thesis statement
	Organization of this dissertation

	=10000=10000=0Upper bound for Bregman ANN in low dimensions
	-22pt
	Definitions and overview of techniques
	Reverse triangle inequality
	-defectiveness
	A generic approximate near-neighbor algorithm
	Definitions
	Two technical notes
	Some notes on terminology and computation model

	Properties of Bregman divergences
	Packing and covering bounds
	Covering bounds in one dimension
	Properties of cubes and their coverings
	Covering with balls in higher dimensions

	Computing a rough approximation
	Algorithm and quality analysis

	Computing a 1+ approximation
	Preprocessing
	Query handling

	Logarithmic bounds, with further assumptions
	The general case: Asymmetric divergences
	Asymmetric ring-trees
	Asymmetric quadtree decomposition
	Logarithmic bounds for asymmetric Bregman divergences

	Numerical arguments for bisection

	=10000=10000=0A directed isoperimetric inequality with application to Bregman near neighbor lower bounds
	-22pt
	Main results
	ANN and Partial Match

	Overview of our approach
	Related work
	The Bregman cube and redefining
	Quantifying asymmetry
	The Bregman cube

	Preliminaries of Fourier analysis
	Basis and Fourier coefficients
	Noise operator and hypercontractivity

	Isoperimetry in the directed hypercube
	The asymmetric noise operator
	Hypercontractivity of Rp,0

	Hard input distributions for the Bregman cube
	Generating our input and query on the cube

	Shattering a query
	Alternate construction
	From hypercontractivity to a lower bound
	Lower bounds via classical problems on the Hamming cube
	A lower bound via 1
	A lower bound via Partial Match
	Comparisons and comments on the behavior of the lowerbounds with

	=10000=10000=0Embeddings and dimensionality reduction for information theoretic distances
	-22pt
	Our contributions
	Related work
	Background
	Embedding JS into 22
	Deterministic embedding
	Randomized embedding

	Embedding 2 into 22
	Deterministic embedding
	Randomized embedding

	Dimensionality reduction
	Experiments

	=10000=10000=0Spectral algorithms for nearest neighbor search
	-22pt
	Background and motivation
	Algorithmic results
	Related work
	Techniques and ideas

	The model
	Preliminary observations

	Short review of spectral properties of matrices
	Spectral norm and principal component analysis
	Spectral norms of random matrices

	Warmup: Iterative PCA under small adversarial noise
	Stability of a top PCA subspace
	Wedin's sin Theorem
	Instantiating the sin theorem

	Iterative PCA algorithm
	Algorithm description
	Analysis
	Analysis: Characterization of the PCA space of the sampled set
	Analysis: Noise inside the PCA space
	Analysis: Projection of the data into the PCA space
	Analysis: Number of iterations
	Analysis: Correctness

	PCA tree
	Algorithm description
	Analysis: Tree depth
	Analysis: Correctness
	Analysis: Performance

	=10000=10000=0Conclusion
	-22pt
	Open questions and challenges

	=10000=10000=0APPENDIX: Upper bound for Bregman ANN in low dimensions
	REFERENCES
	DISSEMINATION OF THIS WORK

