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ABSTRACT

Optical methods are well-established in the fields of neuroscience, medical imaging, and 

diagnostics, etc. Optogenetics, for example, enables molecular specificity in optical neural 

stimulation and recording and has been named the “Method of the Year 2010” by Nature 

Methods. A novel microdevice was designed, fabricated, developed, and tested to facilitate 

three-dimensional (3D) deep-tissue light penetration with the capacity to accommodate 

spatiotemporal modulation of one or more wavelengths to advance a broad range of appli

cations for optical neural interfaces. A 3D optrode array consisting of optically transparent 

“needles” can penetrate >1 mm directly into tissue, thereby creating multiple independent 

paths for light propagation tha t avoid attenuation due to tissue absorption and scattering, 

providing a high level of selectivity and comprehensive access to tissue not available in 

current interfaces.

Arrays were developed based upon silicon and glass. The silicon optrode array is based 

upon the well-established Utah electrode array architectures and is suitable for near-infrared 

(NIR) applications; glass optrodes are appropriate waveguides for both visible and NIR 

wavelengths. Arrays were bulk-micromachined with high-aspect ratio, a process tha t has 

not been reported to be applied to glass previously. In addition to device fabrication, 

extensive laboratory testing was performed with various optical sources to determine loss 

mechanisms and emitted beam profiles in tissue across the relevant wavelength ranges, with 

particular focus on performance metrics for optogenetic and infrared neural stimulation 

applications. Optrode arrays were determined to be amenable to integration with typical 

neural stimulation and imaging light delivery mechanisms such as optical fibers and mi

croscopes. Glass optrodes were able to transm it light at ~90% efficiency through depths 

many times greater than the tissue attenuation length, with negligible light in-coupling 

loss. Si optrodes were determined to be only ~40% efficient with losses mostly from high



index contrast, tip backreflection, and taper radiation. The in-coupling technique and 

optrode geometry may be modified to produce illumination volumes appropriate for various 

experimental paradigms.

While the focus of this work is on optical neural stimulation, optrode array devices have 

application in basic neuroscience research, highly selective photodynamic therapy, and deep 

tissue imaging for diagnostics and therapy.
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CHAPTER 1

INTRODUCTION

Control of neural activity for neuroscience research and neuroprosthesics applications 

is being developed using neural interface devices. The current gold standard for interfac

ing neural tissue is by electrical methods, and three-dimensional (3D) penetrating micro

electrode arrays, such as the Utah electrode array (UEA), have been widespread for high- 

channel count electrical stimulation and recording. However, optical methods are becoming 

established in the fields of neuroscience, medical imaging and diagnostics, etc., because of 

several key advantages: lack of stimulus artifact, potential for longer-term stability, and 

intrinsic biocompatibility. A device structure facilitating 3D spatiotemporal high-density 

light delivery in deep tissue is a critical need and has yet to be demonstrated. In this 

work, optical neural interfaces similar in form to UEAs were designed, fabricated, and 

characterized for optical neural control.

This introduction consists of 6 sections. Neural interfaces and their role in neural 

control are first introduced, followed by a focus on photonic methods for brain and nerve 

stimulation. Considerations on tissue optics for light delivery in neural tissue are discussed 

next. The motivation and significance of this study is presented in section 1.4, succeeded by 

an overview of the proposed approach towards creating effective neural interfaces for light 

delivery. The last section discusses the specific aims of the study.

1.1 Neural control and neural interfaces
The nervous system coordinates all processes within the body. In neuroscience, the 

goal is to understand the structural, functional, and computational aspects of the nervous 

system. This objective is intimidating as there are billions of neurons making thousands of 

specific connections with one another to pass on dynamic information to control behavior,
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memory, perception, physiology, etc. The brain has several cortical regions, each having 

layers of distinct combinations of various neuronal cell types and links to other regions. 

To advance the field, research employs external neural control and recording methods to 

isolate local networks of neurons/cells for identification of various specific functions and 

relationships within the nervous system. Artifical control also has serious implications for 

health; it is the basis of emerging prostheses and treatm ent for spinal cord and brain injury, 

sensory inadequacy, and neurological disorders. For example, spatial mapping of the visual 

cortex and its artifical stimulation has led to modalities for vision substitution [1, 2]; on the 

other hand, current techniques are still unable to determine exactly which cells or circuits 

are responsible for depression [3].

Approaches for neural control includes electrical, magnetic, and optical methods. Elec

trodes inject low-level pulsed current to generate signals called action potentials, or use 

senstivie amplifiers to record neural signals. Magnetic stimulation is commonly applied 

to studying the human brain and performed using fields produced from brief high-current 

pulses through a coil over the head. Depending on the stimulus parameters, neurons can 

either be excited or inhibited [4, 5]. Modern optical methods include micro-Watt optogenetic 

(visible light) and infrared stimulation in mammals [6, 7].

Because the nervous system functions via spatial and temporal patterns of electrical 

activity, neural interfaces are developed to transduce these patterns in tissue. Neural 

interfaces for electrical stimulation and recording have been extensively developed and 

utilized to progress neuronal information processing studies and functional rehabilitation. 

The most advanced control systems include cochlear prostheses to restore hearing capabil

ities to the otherwise profoundly deaf patients [8], deep brain stimulation to treat motor 

symptoms of Parkinson’s disease [9], functional electrical stimulation to reanimate paralyzed 

limbs [10-14], and high-count electrode arrays to record brain signals and restore aspects 

of motor control to paralyzed individuals [15].

Among electrode array interfaces, the Utah architecture is distinguised as it is the 

only high-density penetrating micro-electrode array tha t is approved for human use by the 

Federal Drug Administration. The Utah electrode array (UEA) and Utah slant electrode 

array (USEA) are shown in Figures 1.1(a) and 1.1(b). These are doped silicon arrays
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typically consisting of 100 tapered electrodes in a 10x10 configuration with a 4 0 0 pitch. 

The UEA has 1.5-mm long electrodes used for interfacing with the cortex, while the USEA 

has electrode lengths varying form 0.5 to 1.5 mm in one direction to gain access to nerve 

fibers (i.e., axons) across the cross-section of peripheral nerves. The UEA/USEAs have 

been designed for restoration of vision, hearing, bladder control, and motor function among 

others [16-19]. In addition, both wired and wireless U tah arrays have been developed; 

the wireless integrated neural interface in Figure 1.1(c) is designed for neuroprothetic 

applications and can allow the study of free-moving animals without the implanted device 

affecting experimental results [20].

The UEA/USEAs have been demonstrated to provide multiple independent focal stim

ulation/recording sites across the 3D structure of neural tissue, a high degree of selec

tivity, chemical and mechanical stability, and ease of implantation [21-25]. Despite the 

invasiveness of the penetrating array, chronic studies have demonstrated the UEA/USEA 

long-term functionality. Behavioral responses of cats to chronic sciatic nerve implants 

are generally benign, and long-term chronic physiology and device stability have shown 

considerable improvement [23] relative to initial investigations [26]; stimulation remains 

highly selective among individual electrodes four months (terminal experimental time point) 

after implantation. Longer-term reliability of implanted arrays in rhesus macaque motor 

cortex was observed for over 31 months, although a slow decline of recorded action potential 

amplitude was recognized [27, 28]; degradation was not discernable for a study period of 

569 days [29]. In paralyzed humans, the commercialized version of the UEA device has 

been tested successfully [15]. Furthermore, no adverse results were reported in one human 

subject who had an array implanted in the median nerve [30].

Interest in optical methods has grown in the last couple of years. Optogenetics, for 

example, despite being a nascent field of study, has been named the Method of the Year 

2010 by Nature Methods. Due to the infancy of optical neural control, development of neural 

interfaces for light transmission is also in its early stages and experiments typically utilize 

optical fibers or optical microscopy hardware to couple light into tissue (see Chapter 2).
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(c)

F ig u re  1.1. 10x10 silicon micro-electrode arrays with 400^m  pitch. (a) U tah electrode 
arrays primarily implanted in the brain consist of 1.5-mm long missile-shaped needles. (b) 
U tah slant electrode arrays provide comprehensive access to peripheral nerves by having 
0.5 to 1.5-mm long electrodes. (c) An array can be integrated as a wireless neural interface 
composed of an inductive power receiving coil, a custom-designed signal processing and 
telemetry IC, and surface-mount capacitors.
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1.2 Neurophotonics
Neurophotonics, which is the use of light to investigate and interact with neuronal tissue, 

is an emerging alternative to electrical-based strategies. Methods for neural control include 

infrared (IR) stimulation and optogenetics using visible light (sections 1.2.1 and 1.2.2). 

Optical stimulation and/or recording of neural activity has several advantages. First, optical 

stimulation is more biocompatible; it eliminates potentially harmful by-products of electro

chemical reactions involved in electrical stimulation [31], and under some circumstances 

does not require direct contact between the probe and tissue. In cases where penetrating 

probes are implanted, rejection or destruction of an optical neural interface is less likely 

to occur as its materials (e.g., fused silica, polydimethylsiloxane) are chemically inert 

and/or have excellent biocompatibility [32, 33]. Further, encapsulation methods may be 

applied to optical probes; biocompatibility of electrical neural interfaces has been enforced 

by encapsulation techniques involving use of silicon carbide, polymide, silicon nitride, silicon 

dioxode, silicone, or FDA-approved polydimethylsiloxane (PDMS) or parylene-C [24, 34, 35].

Penetrating probes for optical stimulation can also potentially perform with longer-term 

stability. After implantation, the formation of glial scar encapsulates the active sites and 

isolates the device from electrical communication with the neurons [36-38]. Whereas the 

glial scar acts as an insulator that degrades signals during electrical stimulation/recording, 

formation of glial scars is not problematic from a neurophotonics perspective; glial scars are 

mainly composed of reactive astrocytes within an extracellular matrix consisting of lamina 

and other structural networks [39, 40]. Although there are inadequate data on the optical 

properties of glial scar, glia is largely optically transparent and is not expected to hinder 

optical stimulation [41].

W ith optical stimulation, there is also absence of electrical current spread that can 

reduce the selectivity of stimulation and produce a stimulus artifact [42]. Consequently, 

one can potentially stimulate optically and record electrically at or near the same time and 

location, which is a great advantage. Lastly, cell-type specific stimulation of neuronal or 

glial subpopulations are possible with optogenetic methods [7, 43]; illumination within a 

volume full of neurons will only activate cell types genetically coded for manipulation.
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1 .2 .1  O p to g e n e t ic s

Optogenetics is an optical approach to excite or inhibit neurons to trigger or prevent 

explicit events in specific cells. This method has a temporal precision in the millisecond-scale 

and is achieved through the use of light-sensitive control tools tha t may be targeted by 

gene delivery [44, 45]. Only specific cell types will express the control tools (e.g., only 

oligodendrocytes but not astrocytes, which are both glial cells [46]). The control tools are 

mainly light-gated ion channels in the microbial opsin family; examples of microbial opsins 

characterized for optogenetics include channelrodopsin-2 (ChR2; responsive to blue light 

for neuronal excitation), halorhodopsin (NpHR; responsive to yellow light for inhibition), 

archaerhodopsin-3 (Arch; responsive to yellow-green light for inhibition), channelrhodopsin 

from Volvox carteri (VChR; activated by green light), and various ChR2 chimeras (e.g., 

ChR2(T159C), ChR2(H1s3R), ChETA) [47-51]. W ith typical ChR2 expression levels in 

cells illuminated with A =473nm , ~1 m W /m m 2 intensity at ~10 ms exposure time is 

required to achieve depolarization across the cell membrane, leading to the generation 

of compound action potentials [7]. However, light delivery requirements (e.g., intensity, 

exposure time) for each type of rhodopsin is influenced by its light sensitivity and kinetic 

properties as well as the animal model [45, 52]. In nonhuman primates, a minimum of

2.6 m W /m m 2 is needed to produce a 1 kHz spike rate from activation of ChR2-expressing 

cells [52]. Also, NpHR is reported to have a threshold intensity of 21.8 m W /m m 2 for 100% 

spike suppression during illumination [48].

Optogenetics was first demonstrated using ChR2 in scattered hippocampal neurons in 

the mammalian brain with noninvasive delivery of brief pulses of blue light, which prompted 

neuronal depolarization at the resolution of single spikes [7]. Noncontact transmission of 

light into tissue necessitates optical input that is >100 x of the intensity required at the 

target cell to compensate for scattering [41]; research with the mammalian brain with 

illumination at A =  473 nm on the brain surface from a 100-^m fiber of 0.22 NA estimates 

tha t the irradiance decreases rapidly to 10% of the value on the surface within only 300 ^m 

deep [45].
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1 .2 .2  I n f r a r e d  n e u ra l  s t im u la t io n

A method of directly stimulating neural tissue with IR radiation is referred to as 

infrared neural stimulation (INS). Nerve stimulation with infrared light at 1.064^m  was 

demonstrated in Aplysia (sea slug) in 1971 [53]. However, stimulation with IR light 

(A =2.1  to 6.1 ^m) was first systematically analyzed in 2005 using rat sciatic nerve with a 

laser-coupled 600-^m optical fiber emitting a pulsed laser beam on a single spot on the nerve 

surface [6, 54]. Action potentials were selectively evoked without causing histological tissue 

damage. Stimulation and ablation fluence thresholds were determined; wavelengths having 

lower absorption coefficients (i.e., higher penetration depth) in tissue had larger safety 

margins, while those having high absorption only stimulated at energies above the damage 

threshold. Wavelengths of 2.1 and 4 ^m, which are at relative valleys of the absoprtion 

spectrum, were found to be particularly well suited for extraneural infrared stimulation of 

rat peripheral nerves. Both stimluation and ablation trends were observed to depend on the 

absorption spectrum of water; the damage threshold was strongly affected by the absorption 

coefficient, but stimulation threshold levels varied less. Activation and damage levels are 

about the same for A = 3  ^m because the dose needed to surpass the epineurium (connective 

tissue layer surrounding nerve) is likely equal to the minimum dose for IR energy deposition 

in fibers beneath the epineurium. For 2.1-^m wavelength, light is able to penetrate further 

than the epineurium but requires more input energy for stimulation due to lower absorption; 

the location of stimulation is probably in the inner fibers.

Other INS applications including cochlear prosthesis, embryonic heart pacing, brain 

stimulation, and nerve fiber identification for diagnostics emerged using noncontact delivery 

of pulsed light via a single fiber as well [55-58]. Wavelengths of ~1.45, ~1.87 and 2.12^m, 

which have similar absorption, have also been used to balance optimal penetration with 

stimulation efficacy.

Measurements of surface nerve temperatures suggest that INS acts via the induction of 

a spatiotemporal heat gradient in the tissue (4°C at the axonal level with about 3 m J/m m 2 

extraneural threshold dose) [59]. The underlying physiological mechanism is still under 

investigation, although it has been posed that IR is absorbed in tissue during INS and causes 

local tissue heating tha t depolarizes the target cell by changing the membrane electrical
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capacitance [60].

Infared-triggered temperature changes have also been demonstrated to activate thermal 

transient receptor potential (TRP) ion channels [61], which can be genetically targeted 

to perform thermogenetic stimulation (similar to rhodopsins for optogenetic stimulation); 

these TRP channels are ~  1000x more sensitive than optogenetic tools (i.e., produce the 

same current at much lower expression levels) and have mainly been useful in the study 

of the relationship between specific neuronal activation to behavioral outputs in fruit flies, 

which does not require high temporal resolution [62-64].

1.3 Tissue optics for neurophotonics
Light-tissue interactions are limited by the penetration depth of light into tissue, which 

is limited by absorption and/or scattering; these limitations are strongly wavelength de

pendent and can only be partially overcome by increasing light fluence due to the potential 

for damage. Figure 1.2 plots a tissue attenuation spectrum, which is the combination of 

absorption and scattering [65]. Tissue components that absorb light are known as the 

chromophores, which in skin are melanin, hemoglobin, and water. Tissue absorption is 

dominated by amino acids, nucleic acids, and hemoglobin below 450-nm wavelength, while 

absorption is dominated by (oxy)hemoglobin and melanin between 450 and 700 nm; beyond 

about 1400 nm, the dominant chromophore is water [66]. Scattering is typically described 

by a combination of Rayleigh and Mie scattering. Rayleigh scattering scales as 1/A4, and 

Mie scattering scales as 1/Ap with p determined by the effective particle size [65]. Scattering 

dictates the light transport for wavelengths in the visible range and less strongly impacts 

total attenuation at infrared wavelengths, making IR light at the water absorption bands 

effective for heat generation at useful depths in tissue [6, 59]. Penetration depth (i.e., depth 

where intensity falls to 1/e  of surface value) is roughly limited in the range of 100 ^m to 

1 mm from the blue to near-IR.

W ith visible light, the practical depth limit for many applications is a few hundred 

microns, which has significance to tissue spectroscopy, optogenetic methods, and pho

tomedicine, for example. In the IR, one may argue tha t the limit is deeper as the 650-950 nm 

window have been used in imaging to effective depths of ~1 cm below the tissue surface.
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Wavelength (nm)

F ig u re  1.2. Representative components of tissue attenuation. Absorption in skin is 
due primarily to melanin, and in perfused tissue, hemoglobin, while water is the primary 
chromophore in the infrared. Scattering more strongly affects visible to short wavelength 
propagation. Penetration depth (i.e., depth where intensity falls to 1/e of surface value) is 
limited in the range of 100 ̂ m  to 1 mm from the blue to near-IR. Relevant wavelengths for 
neurophotonic stimulation are indicated as well.

However, most imaging results are gathered from scattering data [67]; scattering makes the 

signal at such depth weak and insufficient for optical stimulation. The intensity of light 

concentrated in a defined area is of interest in optical stimulation. Indeed, higher light 

intensity incident on cells expressing channelrhodopsin variants result in higher levels of 

action potential recordings [50]. Results of extraneural INS also reveal tha t wavelengths 

having approximately zero penetration depths easily created nerve damage with threshold 

stimulation fluence, and wavelengths with very low absorption will likely fail to deliver 

sufficient amounts of energy to evoke a response [54].

The NIR wavelength range is also popular for optical methods based upon two-photon 

absorption to excite chromophores in the visible, but scattering of excitatation light and 

recording return light in the visible imposes similar depth limitations as with visible exci

tation, to ~800 ^m [68]. Two-photon excitation with wavelengths in this NIR window (i.e., 

900-920 nm) have been applied for optogenetic stimulation, reaching as deep as 240 ^m into
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Cissue [69-71]. Still, two-photon strategies typically operate at depths of only ~500 ̂ m  and 

may be limited to ~1 mm [72, 73].

1.4 Motivation and significance
Although numerous experiments have been performed for the study of neurological 

function and neuroprosthesis using optical control, neural interfaces providing the vital 

capabilities for light delivery in tissue have yet to be presented.

The advantages of neural control via light activation discussed in section 1.2 open up 

opportunities for neurological studies not possible with electrical stimulation. Optogenetics 

now allows the identification of the role of specific neurons in brain function, health and 

disease; the absence of a stimulus artifact with light stimulation also allows simultaneous 

recording of sensory inputs and stimulation. Many studies in neuroscience are based 

upon the stimulation and/or recording of activity in the neocortex. In mammals, the 

neocortex consists of up to six layers of different neuronal subtypes; neocortex thickness 

ranges from 0.5 to 1 mm in rodents to 2 to 4 mm in primates. Optical stimulation tech

niques have also been applied to the peripheral nervous system. Specific and selective 

stimulation of the peripheral nerves with both optogenetic and infrared techniques has 

been demonstrated, aiming towards the restoration of optimal neural or muscle control of 

disabled subjects [2, 55, 74-76]. The dimensions and operations of the brain and nerves 

necessitate deep penetration of light for optical neural control. Consequently, deeper brain 

sections or innermost nerve fibers are inaccessible, which restricts the location of optical 

manipulation and/or observation. 3D access along the width, length, and depth in tissue 

with patterned stimulation has been implemented for electrical stimulation using Utah 

micro-electrode arrays, as already mentioned in section 1.1. The success of the UEA/USEA 

makes its blueprint a good candidate for optical neural interface design. The architecture 

is well suited to the neocortex—depth can be adjusted according to the specific layer/s 

to be accessed, and the pitch is ideally matched to the width of the columnar units. The 

multiple needles available within the array allow utilization of complex stimuli combinations 

tha t imitate natural nervous system processes/responses. As previously demonstrated, the 

high-channel electrode count allows successive recruitment of neurons to evoke maximal
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tatigue-resistant forces in various muscles [77]; furthermore, a graceful feline stance with 

paralyzed hind limbs of the cat was produced by the graded activation of several muscles 

using the USEA [78]. Across a wide range of mammalian species, the array architecture 

maps well to the architecture of large peripheral nerves.

Beyond 3D access to tissue, optical neural control may require several other features. 

Optical input delivered into tissue may be comprised of multiple wavelengths. In optogenetic 

applications facilitating bidirectional interrogation of neural circuits, multiple independent 

light sources over the same area/volume are needed because of the simultaneous expression 

of ChR2 and NpHR for exciting and inhibiting the same target cell, respectively [48, 79, 80]. 

Neural modulation advances understanding of synaptic connectivity between excitatory 

and inhibitory neurons within neocortical microcircuits to reveal processing of sensory 

information and high-speed functional operation of neuronal networks in general [81]. Iden

tification of disease-related neuronal types to improve therapy may also be conducted using 

bidirectional modulation [48].

Different wavelengths of light experience different scattering and absorption in different 

types of tissue [45], which makes control of the illuminated volume harder to control. The 

same set of illumination parameters will not guarantee the same illumination profile for 

different wavelengths and thus, functional performance can vary with wavelength. Illumina

tion volume control may be achieved by varying light source characteristics (e.g., numerical 

aperture, size, power), input coupling mechanism (e.g., through aperture, lens, attenuator), 

and even waveguide geometry (if waveuide is used) to influence the morphology of the 

volume illuminated above threshold.

Given the multifarious experimental paradigms and the complex operation and 3D 

structure of tissue, the features of an ideal light delivery interface for optical neural control 

are summarized as follows. Features include:

(a) effective deep tissue light penetration

(b) input spatiotemporal patterning capability

(c) adaptability to various light sources, possibly including integration of multiple light 

sources of varying wavelengths and/or to existing experimental platforms
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(d) flexibility in manufacturing to alter geometry as well as performance characteristics 

to cater to diverse animal models and test platforms for a wide range of optical 

neural control applications

(e) versatility as an in-vitro or in-vivo and acute or chronic device for stationary or 

mobile subjects

(f) implantability

(g) biocompatibility

1.5 Hypothesis
The overarching hypothesis of this work is tha t an optical neural array based on the 

UEA/USEA architectures is an excellent light delivery device for optical neural control ex

periments for neuroengineering and neuroscience research. Instead of electrodes, each needle 

in the array constitutes a waveguide and is optimized for light transmission. Such design 

may meet efficiency, depth access and emission profile requirements of optical stimulation 

of a range of tissue structures.

A neural waveguide array, which is essentially an optrode array (analogous to an electrode 

array), breaks the penetration depth barrier for m ultipath light propagation into tissue 

under all modes of operation, ranging from visible to the near infrared, and including 

multiphoton techniques. Admittedly, the 3D resolution of a 10x10 or even a 40x40 array 

will not match tha t obtained with scanning confocal microscopy. Nevertheless, even with 

the reduced spatial resolvability, the optrode array offers unprecedented depth access (as 

with any penetrating probe approach) combined with the application of any light stimulus 

combination tha t is not limited to the raster patterns of scanning microscopy. Like the 

UEA/USEA again, the optrode array may be wired or wireless in the long term, depending 

on the power in-coupling mechanism integrated with it. A wireless optrode array would be 

best for chronic in-vivo implantations for mobile subjects.

The optrode device may thus introduce transformative benefits relative to current optical 

approaches to tissue interactions in the contexts of fundamental neuroscience studies and 

neuroengineering applications. The advantages offered by penetrating optical probe archi

tectures are already recognized [82-84]. An optrode array is perhaps the most flexible device
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in offering quasi-3D spatially-multiplexed (and possibly input wavelength time-multiplexed) 

optical neural control, and it is based upon an architecture that has been deployed success

fully for decades in electrical stimulation and recording studies [85, 86]. In fact, the UEA 

device has been successfully implanted for chronic studies, with operational lifetimes in 

primates exceeding 31 months [27]. Furthermore, one of the in-vivo penetrating optical 

neural interfaces in use today is based upon a single tapered optical fiber inserted at a 

central position within a commercial USEA device [82], which has had a demonstrated 

chronic implant lifetime of eight months [87] in the neocortex of a transgenic rat.

1.6 Specific aims and thesis outline
The overall objective of this work is to design, characterize, and develop waveguide array 

interfaces for optical neural control. The specific aims are as follows:

(a) Adapt the Utah electrode array architecture for infrared light delivery. Silicon neural 

array fabrication is well established and well documented. Intrinsic silicon, which is 

transparent to near-infrared wavelengths, can be fabricated using processes similar 

to the traditional device for enabling light transmission. Infrared neural stimula

tion is most commonly applied to peripheral nerves. In electrical stimulation of 

peripheral nerves with micro-electrode arrays, the slanted architecture (i.e., USEA) 

is used because it provides comprehensive access along the width and the depth of 

the nerve. The USEA is taken and optimized for light transmission. The electrodes 

became optrodes, and the USEA becomes the Utah slant optrode array (USOA). 

Changes in the fabrication processes due to the change in substrate and application 

must be identified; the transmission efficiency is the most important metric to 

be characterized. To this end, several bench test setups are designed to quantify 

and/or characterize the losses (e.g., Fresnel, in-couplin, taper) suffered by optrodes 

of different physical dimensions. Illumination volumes from the optrode tips must 

also be sufficient for INS; output beam profiles must be extracted and analyzed.

(b) Extend the use of optical neural arrays to optogenetic applications. Fused silica/quartz 

is a very good candidate material for a light delivery interface from an optics 

perspective, especially if coupled from optical fibers (also made of fused silica).
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Glass has a refractive index close to tha t of tissue (i.e., n  =1.45 compared to 

n =  1.36 for tissue) and is transparent to both visible and near-infrared. Fabrication 

of glass optrode arrays leverages off the extensive work done on UEA engineering. 

Still, there are differences in chemical and mechanical properties between glass and 

silicon; etching and dicing parameters (e.g., feed speed, revolutions) needs to be 

investigated a great deal until yield is satisfactory. Efficiency, emission profile, and 

losses are also characterized. Light in-coupling is explored in greater depth compared 

to the USOA because of the more varied techniques/requirements of light delivery for 

optogenetics. In addition, insertion of glass optrodes into tissue must be examined, 

especially if geometry is different from the well-established silicon electrodes.

(c) Characterize device performance in tissue. The aim is to further understand the 

suitability of optrodes for optical neural control light delivery and develop methods 

to predict transm itted intensity and profile in tissue. The effect of tissue opti

cal properties on the transmission efficiency of the optrodes is investigated. An 

ideal result is to get a transmission tha t is barely influenced by wavelength and 

the surrounding media; this would imply tha t light delivery depth is practically 

independent of tissue optical properties, but is rather dictated by the optrode 

length. The output beam profiles in tissue for different optrode geometries are 

also measured to verify spatial coverage of target tissue structures (e.g., neuron, 

cell, brain layer) in optical neural control. The profiles are compared with results 

from modeling and bench tests in air in order to examine whether estimates from 

models or theoretical derivations from results in air will suffice to determine optrode 

geometries appropriate for specific tissues/applications.

(d) Investigate light in-coupling mechanisms for highly-efficient optrode arrays. Mea

surements and analysis of coupling from various sources (e.g., lasers) and via differ

ent methods (e.g., lenses) are performed to evaluate the ease to which current light 

delivery techniques may be modified to include optrode arrays. More importantly, 

this will provide insight on enabling techniques towards a fully-integrated optical 

neural interface.
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In summary, the study aims to establish fabrication and application methods for highly 

efficient optrode arrays and systematically evaluate performance metrics with respect to a 

wide range of optogenetic and infrared neural stimulation applications. The primary metrics 

are transmission efficiency and illumination volume from the output beam profile.

This dissertation starts with an overview of neural control, neural interfaces, and neu

rophotonics here in Chapter 1. Chapter 2 then describes currently developed or implemented 

optical techniques or devices for optogenetic and infrared stimulus delivery in tissue, and 

compares the proposed optrode arrays to other architectures. Chapter 3 introduces the 

USOA for infrared neural stimulation (INS) and gives a comprehensive discussion on its 

fabrication, sources of loss, light transmission charateristics and output beam profiles depen

dent on geometry, and practical efficiency with standard INS platform. The glass optrode 

array for both INS and optogenetics is presented in Chapter 4 with similar analysis as the 

USOA in the previous chapter. Chapter 5 provides the characterization in tissue for both 

types of optical neural arrays. This chapter includes the modeling and analysis of the effect 

on the transimission efficiency of tissue optical properties as well as emission profiles in 

tissue for various wavelengths with modeling and estimation from bench tests in air. Also 

included is a remark on how various optrode illumination profiles are appropriate for varying 

optical neural control applications. Various light in-coupling mechanisms are investigated in 

Chapter 6; analysis on coupling from fibers, Lambertian and Gaussian sources, collimated 

beams, and through lenses (e.g., microscope obectives) is the scope of this chapter. Finally, 

the findings are summarized in Chapter 7; conclusions and suggestions for future study are 

also outlined.
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CHAPTER 2

BACKGROUND AND STATE OF THE 
ART: LIGHT DELIVERY FOR 

OPTICAL NEURAL  
STIMULATION

The desired features and capabilites of an optical neural interface were stated in Chap

ter 1. This chapter reviews devices and methodologies previously devised and/or used for 

achieving optogenetic or infrared stimulation of the brain and nerves, in-vivo or in-vitro. 

Details on the relevant optics and physiology for neural control are discussed to develop an 

understanding of the merits and shortcomings of these techniques. A survey of literature 

reveals tha t penetrating probes and patterned illumination have almost been mutually 

exclusive; there are also diverse applications requiring different architectures for effective 

light transmission.

2.1 Optics for light delivery for neural control
To obtain design targets for an implantable light delivery interface for neural control, one 

must start with an understanding of how light can be transm itted, how light is propagated 

in tissue, and the mechanisms for optogenetic and infrared stimulation.

2.1.1 W aveguides

Light is typically transm itted along dielectric waveguides. Common materials for micro

fabricated waveguides include semiconductors, silica, titanium  dioxide, silicon oxynitride, 

and polymers; characteristics are listed in Table 2.1. Figure 2.1 depicts a step-index 

waveguide, which consists of a core and a surrounding lower refractive index cladding.

From a simple ray perspective, light travels through the core via total internal reflection
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acceptance
cone

Guided mode profiles

optical axis

Evanescent waves

F ig u re  2.1. An optical waveguide is typically composed of a higher index core material 
surrounded by a lower index cladding. Multiple rays are transm itted through multimode 
waveguides, but only rays incident at an angle within the acceptance/emission cone angle 
dmax will be coupled to/from  the waveguide. This ensures total internal reflection (TIR) 
above the critical angle dc at the core-cladding interface. TIR gives rise to guided modes 
and evanescent waves.

as long as it is reflected off of the core-cladding interface at an angle greater than the critical 

angle dc (see Section 2.1.1.1). Waveguides can be single mode or multimode, meaning that 

one or multiple rays of light are carried throughout, respectively; multimode waveguides 

generally have core diameters that are much larger than the transm itted wavelength. Light 

is also modeled as waves derivative of Maxwell’s equations; the wave representation allows 

determination of the discrete modes permitted within the waveguide. The lowest order 

mode corresponds to a ray almost parallel to the optical axis and the highest order mode is 

a ray trajectory close to the critical angle. The modes are established by the wave equation 

eigenvalue solutions depending on waveguiding parameters such as refractive index, core 

size and transmission wavelength A. The approximate number of modes is

m  =  I n t [hk0y /(ncore -  n L J /n] (2.1)

where h is half of the core thickness and k0 =  2n/A. The expression hk0^ ( n 2core — nC1ad) is 

the V-number tha t indicates how the waveguide parameters influence the number of modes 

and provides a general description of the mode cut-off condition. The guided modes are 

standing waves within the core with power exponentially decaying into the cladding; the 

decaying tail of the waves are referred to as evanescent waves. A higher contrast between 

the core and cladding refractive indices maximizes power confinement in the core. Mode 

profiles in the y-plane may be described mathemetically as
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( A e-Y(x-h/2) x  > h/2  
Ey =  ACcoTh or A - h/ 2 < x > h/ 2 (2.2)

[ ±A eY(x+h/2) x < - h /2

in a symmetric waveguide with x =  0 along the optical axis, where A is the amplitude, h is 

the core thickness, k is the tranverse wavevector, and 7 is the wave attenuation (i.e., decay) 

coefficient in the cladding. Figure 2.1 shows the lowest even (cosine) and odd (sin) modes 

within the waveguide core with evanescent waves decaying into the surrounding cladding. 

Note that the existence of evanescent waves provides the physical continuity of electric and 

magnetic fields at the boundary during total internal reflection; it does not give a net power 

flow in the x-direction.

2.1 .1 .1  C oupling into step -in d ex  m u ltim od e w aveguides

High efficiency coupling between waveguides, or sources and waveguides, is especially 

important for light delivery in deep-tissue to prevent surface heating. Factors to consider 

during coupling include the numerical aperture (NA), aperture and/or beam area, mis

alignment, and reflection losses at the interface. Figure 2.2 illustrates the typical sources of 

coupling loss.

First, the waveguide can only accept or emit light tha t is incident over a limited range 

of angles characterized by the numerical aperture

F ig u re  2.2. Coupling losses may arise from (a) core size mismatch, (b) numerical aperture 
mismatch, (c) refractive index mismatch, (d) end separation, (e) lateral misalignment, or 
(f) angular misalignment.
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where dmax is the half-angle of the acceptance/emission cone, and ncore and nc1ad are the core 

and cladding refractive indices. The NA is visualized as an acceptance cone in Figure 2.1.

requirement between the core and cladding. The values of 9max and Qc are both determined 

from Snell’s Law,

where n and 0 are the refractive index and incidence angle with respect to the optical 

axis (i.e., line of propagation direction) in the incident (i) or transm itting (t) media. The 

transm itted angle reaches 90° when the incident angle is increased sufficiently, beyond 

which light cannot be transm itted across the interface. The critical angle for total internal 

reflection in a waveguide is then computed as 0c =  sin- 1(nc1ad/n core); note tha t this dictates 

tha t the core refractive index must be larger than that of the cladding for total internal 

reflection to occur. The 0c is traced back to the input interface to calculate the maximum 

acceptance angle as 0max =  sin- 1[(ncore/n 0) sin(90 — 0c)] with n 0 as the refractive index 

of the medium surrounding the waveguide at the input interface (e.g., air). For lossless 

coupling with nNA =  1, the numerical aperture of the source waveguide must be smaller 

than tha t of the receiving waveguide, N A s < N A r (i.e., emitted cone is narrower than 

acceptance cone). The coupling efficiency with NA mismatch is

Aside from the NA, the aperture area (i.e., opening through which light is emitted or 

accepted) of the source must also be smaller than that of the receiving waveguide, as < ar , 

to collect all light. Otherwise, the maximum coupling efficiency given an area mismatch is

Fresnel reflection loss also decreases the efficiency in cases where the source and receiv

ing waveguides have different core refractive indices or are not in physical contact, as in 

Figure 2.2c. The efficiency accounting for Fresnel loss when there is physical contact is

Rays entering the waveguide at angles greater than the cone do not meet the critical angle 0c

ni sin 0i =  n t sin 0t , (2.4)

VNA =  (N A r /N A s )2,nNA =  N A s  > N A r . (2.5)

(2.6)

(2.7)
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If a gap is present, this coupling efficiency equation is applied twice to include both source 

and receiving interfaces such that

Vref,gap —
, ns — no1 —

2-1 1 | n0 n r 
no +  nr

2
(2.8)

_ns +  no,

End separation will result in further loss when the source light beam is diverging. 

Although the core area and NA may be matched between source and receving waveguide, 

the beam is broadened such tha t the area a's at the receiving interface is considered in the 

coupling efficiency instead

Vend — ar/a^. (2.9)

A longer end separation causes a wider beam at the receiving interface.

Lastly, mechanical misalignment influences the coupling efficiency as it evidently pre

vents “line of sight” transmission of all light power from one waveguide to another. Lateral 

misalignment leads to coupling efficiency equal to the overlapping area of the cores

mat — ars/as, (2.10)

where ars is the area of overlap between the source and receiving cores. For example, 

two congruent square waveguides with thickness t and optical axes displacement d in one 

direction will have niat — t(t — d). On the other hand, angular misalignment yields a 

maximum efficiency of

Vang — 1 — nN A  (2.11)

found by computing the overlap of the transm itting and receiving cones with no as the 

interface medium refractive index and 0 as the angle between the optical axes.

The overall coupling efficiency is the product of all efficiency factors in consideration. 

To summarize the preceeding discussion, a source may be coupled into the waveguide with 

minimal losses if:

(a) source NA is less than waveguide NA,

(b) source aperture is less than the area of the waveguide core,

(c) source and waveguide optical axes are aligned and in physical contact,

(d) source and waveguide index of refraction is matched or input interface has antire

flection coating.
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2.1 .1 .2  Lensed coupling into m u ltim od e w aveguides

Coupling through converging lenses is a common method to achieve high efficiency 

coupling. Lens images are mostly described by geometric optics from where the thin lens 

equation is derived as
1 1 1
f  =  tj +  tO ■ (212)

or as (tO — f  )(U — f ) =  f 2 in the Newtonian form. The variables are depicted in Figure 2.3. 

The object and image distance from the lens is tO and tj, respectively; the distance between 

the lens and its focal point is the focal length f .  The image location occurs at the intersection 

of the ray traces tha t are drawn according to the fundamental rules of lens imaging:

(a) A light ray parallel to the optical axis will pass through the focal point located at a 

distance f  from the vertex of the lens on the other side.

(b) A light ray through the center of the lens will pass straight through undeviated.

(c) A light ray through the focal point will be refracted parallel to the optical axis on 

the other side of the lens.

Thus, a collimated beam (i.e., beam consisting of rays parallel to the optical axis due to 

an object at an infinite distance) will be focused to a spot at the focal point, although the 

smallest focused spot radius is actually diffraction limited at 1.22Af / d  with d as the lens 

diameter. On the other hand, a point source of light at the focal point will be converted 

into a collimated beam by the lens. If the object is placed closer to the lens than the focal 

length, an upright virtual image is apparent on the same side; light rays diverge on the 

other side upon refraction such that the image location can only be found by extending 

the refracted rays backwards to form an intersection on the object’s side of the lens. If the 

object is placed farther from the lens than the focal length, as in Figure 2.3, an inverted 

real image may be projected onto a screen at the other side; the image is smaller or larger 

than the object when the object is positioned > 2f  or between f  and 2f  away from the lens, 

respectively. The lens magnification is simply the ratio of the image to object length (i.e., 

imaged beam diameter to initial beam diameter), which consequently leads to

M  =  tj/to . (2.13)
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F ig u re  2.3. Geometry for derivation of the thin lens equation.

For lossless coupling or imaging, the limit for the object-to-image size reduction is dictated 

by the Abbe sine condition yo sin(Yo) =  yi sin(Yi). When a circular light souce with area 

as =  ny2 and numerical aperture NAs =  sin(Yo) is used and mapped on an area ar =  y2 

with NAr =  sin(Yi), the smallest possible image area is

N A s2
ar,min — as n A 2  ̂ (2.14)

In addition, NAr < 1 because Yi < 90°, and thus ar,min > asN A ^. Note tha t this equation 

imposes lossless imaging tha t is limited at least by the product of the initial beam area and 

the square of its numerical aperture, which is a combination of Equations 2.5 and 2.6 for 

maximum coupling efficiency.

2.1.2 B eam  propagation  in tissu e

A beam traveling in tissue loses its power from absorption and scattering, as briefly 

discussed in Chapter 1. Again, the absorption and scattering properties, which constitute 

the overall attenuation, vary with wavelength and tissue composition. Figure 2.4 plots light 

attenuation in mouse brain, derived from adding scattering data to the absorption data of 

characteristic components (e.g., water, blood, lipid) [2, 10-15]. Rodent brain/nerve is the 

most widely-used tissue model for optical neural control. A simplified mathematical model 

of the transmission of light in a medium is the Beer-Lambert law

T =  e-a L , (2.15)
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where T  is the fractional power, a  is the attenuation coefficient in distance-1 units and 

L is the distance traveled by light. This leads to the low fraction of incident light at the 

point 100 deep along the optical axis in mouse brain, as shown in Figure 2.4 as well. 

Note that the fractional power is an exponential function of depth; it is evident tha t light 

can only be transm itted within micrometers below the tissue surface. Here, blue light at 

470 nm is seen to have roughly 100 ^m 1/e (i.e, 37%) penetration depth. A more classical 

yet relaxed measure of the extent of light transmission is the 1/e2 (i.e., 13.5%) penetration 

depth, beyond which an increase in incident intensity results in marginal increase of the 

local intensity.

Fractional power vs. depth is a one-dimensional measure that does not give information 

on the beam spread (i.e., lateral distribution) in 3D tissue. A 2D intensity profile of the 

beam propagation, which can be extended to 3D, provides more insight into the effective 

illumination volume by indicating contours of fractional power. The 2D profile is especially 

influenced by scattering, which in turn  is dictated by the inhomogeneity of tissue. Because 

tissue components (e.g., cells) are of comparable size to visible-IR wavelengths, scattering 

is mostly in the forward direction. The concept of transport scattering length (lt) indicates 

where scattering becomes truly random; it is computed from ls/(1  — g), where the scattering 

length ls is the average distance between scattering events and g is the anisotropy of tissue

u
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F ig u re  2.4. Estimated attenuation of visible light and fractional power at 100 ̂ m  deep in 
mouse brain (adapted from data in [13, 14]).
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Iaking on a value between 0 and 1. Highly anisotropic media (i.e., g « 1 ) , where particle 

sizes are large, cause the intensity distribution to extend in the forward direction with light 

straying from the optical axis at smaller angles. For example, brain tissue scattering length 

is 50-200 ̂ m  from the blue to NIR range and anisotropy is high at ~0.9, which leads to lt of 

0.5-2 mm [13, 16]. Models have been formulated to estimate the 2D profile, mostly applying 

Monte Carlo analysis [17-19]. Simulation results closely match actual measurements in 

tissue [19, 20]. Figure 2.5 illustrates examples of 2D profiles of beam propagation in tissue 

on the X-Y plane at Z — 0 and Y-Z plane at X — 0 (X-Y is the plane perpendicular to the 

propagation, Z is the propagation direction).

The limit of light transmission may be delineated at the 1 /e2 contour of the intensity 

profile to be congruent with the definition of the 1 /e2 penetration depth. For each in

finitesimal X-Y plane, the profile more or less follows the gaussian distribution illustrated 

in Figure 2.6(a), with a beam width 2w taken as the diameter where 1/e2 intensity occurs. 

In the Y-Z plane, the beam divergence (i.e., increase in beam width) conforms to a gaussian 

beam propagation as well; Figure 2.6(b) shows the gaussian beam spread and the parameters 

relevant to this work. True gaussian beams propagate as

wavelength. Note tha t for a multimode Gaussian-like beam, which is typically the case, 

Equation 2.17 does not strictly hold. The “Rayleigh distance” does not necessarily depend 

on the beam waist, but a divergence length can be defined as a multimode analogue to the

(2.16)

with

(2.17)

where w is the radius of the 1/e 2 contour along the propagation distance z, w0 is the beam 

waist (i.e, smallest beam radius at z — 0), zR is the Rayleigh distance, and A is the operating

Rayleigh length, which is the distance at which the starting beam width increases by a factor 

of \/2. Beyond the divergence length, the beam spreads with a full-angle divergence 0. An 

M2 factor is often defined to denote how the actual beam form compares to the ideal gaussian
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F ig u re  2.5. Example of 2D intensity profiles in tissue perpendicular (a) and parallel (b) 
to beam propagation.

(a)

F ig u re  2.6. Gaussian intensity profile (a) and beam spread (b). The beam width 2w is 
the diameter where normalized intensity falls to 1 /e2. The initial beam width w0 increases 
by V2  at the Rayleigh distance zR along the propagation, beyond which the beam diverges 
at a full angle 0 .
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beam; the ideal gaussian beam has an M2 factor of exactly one. Multimode gaussian-like 

beams contain a gaussian function in the mathematical models; the true beam width is M 

times smaller than tha t of the multimode beam diameter and the divergence is M times 

greater.

2.2 Tissue damage threshold due to light exposure
Excessive amounts of incident light onto tissue causes heating tha t raises the ambient 

temperature of the cells. Tissue damage progresses with increasing tem perature [21, 22]. 

At the body temperature of 37°C, cells are considered functional, but a change to 41°C 

inititates structural breakdown. When the tem perature is further increased to 45°C, the 

irreversible process of protein denaturation occurs, which disrupts cell activity. At 60°C, 

soft tissue is converted into a dry mass as a result of coagulation. When water starts to 

evaporate at 100°C, the tissue is vacuolated (sponge-like) due to the steam. Beyond this, 

tissue charring and vaporization can be observed.

A 1°C increase in rat sciatic nerve tem perature by exposure to 1.87 ̂ m infrared light can 

be driven by an additional 0.04 J /cm 2 [22]. Damage thresholds for infrared stimulation have 

been quantified as fluence levels where observable tissue ablation occurs [23]. For infrared 

wavelengths with an optical penetration depth between 1 ^m  and 0.5 cm, fluence values in 

the range 0.4 to 7 J /cm 2 result in tissue ablation [22, 24].

In optogenetics, damage thresholds were defined as intensity levels. W ith optogenetic 

light sources, up to ^75m W /m m 2 of incident beam intensity has been determined safe for 

in-vivo experiments when using short laser pulses of about 0.25 to 50 ms duration [25, 26]. 

For continuous illumination that allows 400 pA of opsin-mediated current, an intensity of 

less than 20m W /m m 2 at the target cell is recommended to avoid phototoxicity [27].

2.3 Mechanism of optical stimulation
Infrared neural stimulation (INS) is based on the photothermal effect of light absorption 

of water in neural tissue [22, 28]. Infrared light induce currents tha t track the resulting 

temperature rise from pulsed irradiation; transient local heating changes the membrane 

electrical capacitance tha t disturbs the balance of ions, thereby producing currents. The 

tissue temperature linearly increases rapidly during the laser pulse and slowly decays ex
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ponentially with a heat relaxation time consistent with tha t of water. It then follows that 

effective irradiation requires an optimum exposure time, when maximum heat is confined 

within the target [21]. The concept of thermal relaxation time Tr functions as the ceiling 

of exposure duration; it is loosely defined as the time to dissipate a fraction of the heat 

absorbed by tissue during a laser pulse. The value of Tr (ms) depends on the wavelength, 

desired penetration depth, heat diffusion, and the tissue thermal diffusitivity. Wavelengths 

for INS used today have ^300-500 ^m penetration depth— 1450, 1875, and 2120 nm.

On the other hand, optogenetics is completely dependent on the properties of light- 

sensitive ion channels expressed in the cell wall. Only transduced cells will respond to 

light stmuli and cause direct hyperpolarization (i.e., inhibition) or depolarization (i.e., 

excitation) via ion flow. The following are common opsin-based photosensitive ion channels 

with corresponding activation wavelengths [27]:

(a) channelrhodopsin-2 (ChR2; excitatory) - 470 nm,

(b) Volvox cateri channelrhodopsin-2 (VChR2; excitatory) - 545 nm,

(c) halorhodopsin (NpHR; inhibitory) - 570 nm,

(d) archaerhodopsin-3 (Arch; inhibitory) - 566 nm.

Other optogenetic tools are derived from these fundamental rhodopsin channels, possibly 

with activation spectra shifted (e.g., eNpHR3.0 is a modified NpHR with activation wave

length of 590 nm).

2.3.1 A ctivation  thresholds

Observed activation thresholds for infrared and optogenetic stimulation of neural ac- 

titivity are listed in Tables 2.2 and 2.3, respectively. The activation threshold must be 

lower than the damage threshold value as it defines the minimum light intensity/fluence 

delivered to tissue for evoking action potentials. The conventional unit for INS threshold 

is fluence (J /c m 2) on account of pulsed input typically being used. The threshold is found 

to be invariable with input pulse w idth/duration if the threshold is taken as the minimum 

radiant exposure needed to observe an action potential, regardless of the amplitude [22]. 

When an action potential amplitude is defined with the threshold fluence, the smallest 

value is taken because the threshold just increases with longer pulse durations, which is
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likely due to decreasing thermal confinement [21, 29]. Meanwhile, there is no consensus on 

optimal input pulse frequency. Note that INS has always been characterized extraneurally 

(i.e., from outside neural tissue) such that threshold fluence largely depends on the species 

and tissue even when operating at the same wavelength. Light would have to get past 

any deterrent structure to the target region inside the tissue (e.g., epineurium or axons in 

outer regions of peripheral nerve) and a temperature rise specific to the physiology would 

have to be reached [22, 30, 31]. For example, Table 2.2 lists wavelengths tha t exhibit 

precise tissue optical penetration depth, and it indicates a lower activation fluence for 

thinner gerbil cochlear nerve than thicker facial nerves. Similarly, wavelengths with shorter 

penetration depths recruit fewer neurons and generate minimum action potential peaks, 

while wavelengths with sufficiently longer penetration depth lead to increased responses 

due to access to a larger number of neurons deeper in tissue [24, 31, 32].

In optogenetics, the conventional unit for excitation/inhibition threshold is intensity 

(m W /m m 2); input light may be continuous or pulsed. Details on the stimulus duration or 

frequency are not always reported in literature, and the same is true for the illumination 

volume or at least the incident beam size. Moreover, there are a number of different 

definitions for the threshold irradiance as seen in Table 2.3; benchmarks include irradiance 

at single spike occurrence or irradiance producing 1Hz spike rate for ChR2, and irradiance 

for 100% suppression for NpHR [14, 19, 33]. In general, the activation threshold increases 

with lower rhodopsin expression levels and sparser distribution for the same target vol

ume [34]. Expression levels differ among animal models and gene-delivery methods, while 

the distribution depends on the cell type or neural network being investigated [34, 35]. The 

threshold is also influenced by the rhodopsin type and its kinetics.

2.3.2 Illum ination  volum e specifications

The required illumination volume is essentially dictated by the size of the target tissue 

component/structure. Neuroscience research commonly utilizes the mammalian neocortex, 

which has six layers of histologically and functionally distinct cells; the relative thickness 

of each layer varies with the animal model and the region of the cortex (e.g., sensory vs. 

motor). The cortex is also divided radially into columns tha t are 200-500ym in diameter



Ta ble 2.2. Threshold radiant exposure for evoking compound action potentials with extraneural infrared neural stimulation.
Species S ite W ave len g th T h re sh o ld  fluence S po t w id th P u lse  ra te R eference

(nm ) ( J /c m 2) (^ m) (H z)
Rat sciatic nerve 2120 0.32 ~800 <5 [23, 24]

1870 0.32 ~1200 <5 [22]
thalamocortex 4400 0.19 350 ±  50 30 [36]

3650 0.2 350 ±  50 30 [36]
somatosensory cortex 1870 0.14 2000 200 [37]

cavernous nerve 1873 ~ 1.0 1000 10 [38]
Gerbil cochlear nerve 2120 ~0.018 ~100 2 [32]

spiral ganglion 1855 ~0.005 310 2 [39]
facial nerve 2120 0.71 >600 2 [31]

Cat cochlear nerve 1860 ~0.015 200 10 [40]
Frog sciatic nerve 2120 ~0.9 ~1200 <5 [22]
Quail embryonic heart 1875 ~ 0.8 ~620 2 [29]
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T able 2.3. Threshold intensity I  with optogentic stimulation (illumination volume and duration not thoroughly documented).
Species S ite R h o d o p s in

t y p e
T h resh o ld  I 
(m W /m m 2)

T h resh o ld  defin ition Illu m in a tio n
m e th o d

R eference

Mouse cortex ChR2 1 occurrence of spike implanted 200 ^m fiber [19]
hippocampus NpHR 21.7 ^ 100% spike suppresion microscope [33]

cortex Arch 3 ^ 100% spike suppresion implanted 200 ^m fiber [41]
Rat hippocampal ChR2 42 80% success (1Hz stimuli) microscope [42]

slice (wild-type) 
ChR2 (H134R) 23 80% success (1Hz stimuli) microscope [42]
ChR2 (T159C) 6.7 80% success (1Hz stimuli) microscope [42]

ChR2
(ET/T159C)

6.7 80% success (1Hz stimuli) microscope [42]

Cat visual cortex ChR2 190 spike at 1 mm away 200 ̂ m fiber [34]
7 spike at 0.1 mm away 200 ̂ m fiber [34]

Monkey cortex ChR2 2.6 at 1 Hz spike rate implanted 200 ^m fiber [14, 43]
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consisting of several thousand neurons perpendicular to the cortical layers. Columns are 

interconnected functional units, where member neurons respond to or produce the same 

characteristic. Desired stimulation volumes may involve illuminating a single cell, a region 

within a one cortical column in a specific layer, one cortical column through all layers, or an 

entire cortical layer. For neuroprosthesis, the peripheral nervous system is also of significant 

interest. In vertebrates, the whole nerve is wrapped in the epineurium, which is a connective 

tissue sheath. W ithin the nerve, several fascicles (i.e., bundles) contain axons (i.e., fibers) 

encased in another connective tissue sheath called the perineurium. Each individual axon 

is further surrounded by a thin connective tissue sheath called the endoneurium. The 

illumination volume for selective graded optical neural control of the nerve ideally bypassed 

the connective sheaths and corresponds to individual neurons or small subpopulations. 

Figure 2.7 illustrates examples of neural tissue dimensions tha t may be selectively addressed 

for various applications [44-48].

Especially in optogenetics, it has become a common notion in literature tha t the stimu

lation volume is bounded by the activation threshold [19, 27, 34, 49, 50]. It is true tha t the 

volume illuminated with local energy/power levels more than the activation threshold will 

respond to stimulation, but coinciding the threshold contour with 1/e 2 fluence/intensity 

boundary (overview given previously in section 2.1.2) might be a more practical measure 

of the maximum effective illumination volume to prevent arbitrary amplification of input 

levels that only weakly extend the stimulation range at the cost of damaging near-surface 

regions. This volume is measured around the emission point or plane in tissue; if target 

structures are well beneath the surface, invasive light delivery should be considered to create 

localized stimulation.

2.4 Light delivery in tissue
The methods by which light at the activation threshold values are delivered into the 

required illuminations volumes are discussed in this section.

2.4.1 Light delivery for infrared neural stim u lation

In-vitro and acute in-vivo experiments on INS have been performed to investigate the 

stimulation parameter space, study the activation mechanism, or demonstrate the suitability
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Cortical column 
200 - 500 |im

Layer thickness (^m)

Human Gorilla Chimp Macaque Dog Ferret Cat Rat G. Pig Mouse 

700 600 500 500 300 100 300 100 100 50

1300 1300 1100 1000 700 700 600 500 450 400

200 200 150 150 100 200 150 100 150 50

500 450 400 400 400 300 250 500 500 300

450 450 400 500 400 300 300 300 450 200

(a)

F ig u re  2.7. Schematic of neural structures tha t are of interest in optical neural control (not 
to scale): sensory cortical layers with data for 10 species (a) and sciatic nerve with data for 
3 species (b). Dimensions must match the volume of illumination from light delivery, which 
is practically limited by the 1/e2 fluence or intensity contour. Invasive light delivery should 
be considered for structures well beneath the tissue surface to create localized stimulation. 
Adapted from [44, 45, 48].
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of this new modality for various applications (e.g., prosthesis, diagnostics). To date, only 

noncontact (i.e., noninvasive) light delivery has been pursued, typically accomplished using 

an optical fiber to illuminate a single spot on the tissue surface.

The initial proof-of-concept and characterization experiments coupled light from a free 

electron laser into a 500 ̂ m  wide hollow waveguide, which was affixed 0.75 mm above 

exposed rat sciatic nerve [23, 24]. W ith this stimulation system, the resulting spot size 

on the nerve exterior was determined as 0.6 mm2 (i.e., ~870^m  in diameter). Subsequent 

tests by the same pioneering group utilized a similar spot size from a 600-^m fiber connected 

to sources such as fiber-coupled Holmium:yttrium aluminum garnet (Ho:YAG) and Capella 

diode lasers (Lockheed Martin Aculight, Inc.; 1865-1879nm output wavelength from a 

400 ^m aperture at tunable pulse energies, widths and rates) [22, 30]. Irradiation of infrared 

light onto tissue using portable fiber-coupled lasers also proved succesful in the stimulation of 

brain slices [37], auditory neurons and system [32, 39, 40, 51], facial nerves [31], vestibular 

system [52], cavernous nerves [38], and heart pacing [29]. All these applications aim to 

exhibit high spatial selectivity; an investigation of the optimum incident beam size and its 

spread in tissue for various stimulus parameters and tissue properties (e.g., optical, compo

sition, geometry) is then imperative. To this end, light absorption and temperature profiles 

in the cochlea introduced by beams from different optical fibers (e.g., varying diameter, 

NA) have been modeled [53, 54], and the effect of the beam path orientation on stimulation 

efficacy and location has been experimentally evaluated [55]. Optical beam profiles from 

an optical fiber were measured in different media relevant to facial nerve stimulation [31]. 

These set the stage for further understanding of the INS mechanism, stimulation threshold 

energy, and illumination volume. A more comprehensive experimentation on beam delivery 

is expected to open up employment of novel optical sources and waveguide systems that 

will especially benefit INS prosthesis.

2.4.2 Light delivery for op togen etics

Devices and mechanisms for delivering light vary widely with optogenetics as there are 

many experimental paradigms encompassing different animal models, neural circuits, target 

cells, time frames, aims, etc. Prominent techniques for visible light transmission onto/into
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tissue for optogenetic experiments are listed on Table 2.4. Microscopy tools, optical fibers, 

light-emitting diodes, modulators, and custom-microfabricated light sources and waveguides 

are among the reported methods in literature tha t are discussed in this section.

2.4 .2 .1  N oninvasive w idefield  illum ination

Transmitting light to an exapanse of tissue (e.g., whole soma, cortical layers, brain 

section) is especially useful when transduced targets are sparse and/or high-level area-specfic 

functions are observed [27, 56]. In the simplest protocol, entire cell cultures and tissue slices 

in a petri dish undergo flood-illumination, typically through widefield microscopes [56-59]. 

Aside from the technical simplicity, there is capability of utilizing fluorescence imaging for 

simultaneous optical recording. In-vivo noninvasive illumination through a cranial window 

has also been achieved with microscopy [60], as well as with an optical fiber [61, 62]. 

Although tissue is not physically disturbed with noninvasive stimulation in live animals, 

observation is limited to near-surface structures and responses; upper layer structures 

must be set aside to expose the underlying tissue of interest, which defeats the purpose 

of noninvasive light delivery. Increasing the incident intensity may cause enough intensity 

levels at the desired depth, but upper layers will also be stimulated and will likely be 

damaged. Two-photon excitation is then used if the target is located along a plane below the 

tissue surface [63-66]; this allows the stimulation intensity to be transm itted and confined 

within tha t subsurface plane. However, even with two-photon excitation using 900-920 nm 

wavelengths (i.e., low absorption window) for ChR2 excitation, optical access was limited 

to as deep as 240 ^m into tissue [63].

2.4 .2 .2  P en etra tin g  probes

The need to access targeted cells deep into tissue without damaging precedent tissue 

led to the ultilization of penetrating probes for most in-vivo optogenetic experiments. The 

advantages offered by such structures are are already recognized [19, 67, 69]. Like INS, 

light has most commonly been delivered via an optical fiber using a fiber-coupled light 

source [35]. In fact, the first optogenetic neural interface is a 200-^m multimode fiber 

inserted through a cannula guide [19]. This type of interface was successfully employed in 

chronic tests with freely moving mice to photostimulate deep brain structures in microsized



T able 2.4. More prominent examples of light delivery methods for optogentic neural control. In theory, these can be one or two-photon 
stimuli at various/multiple wavelengths with further coupling and emission profile control using additional lenses.

O p tica l
s o u rc e /in te rfa c e

I llu m in a tio n  
v o lu m e /a re a  co n tro l

P a tte rn in g R em ark s R eference

N on-
invasive,
s ing le -spo t

microscope

optical fiber 
two-photon

objective NA & 
magnification; 

aperture 
NA, size & tip shape 

dependent on delivery 
method 

(fiber/microscope)

-

typical for sparse targets, 
with fluorescence imaging 
capability

higher lateral/axial 
resolution, deeper 
transmission

[56]

[61] 
[63, 64]

P e n e tra tin g
w aveguide

optical fiber

fiber-electrode
assembly

microfabricated
probe

NA, size & tip shape

fiber NA, size & tip 
shape; electrode 

recording site distance

geometry upon 
fabrication

limited with use of 
linear electrode 

arrays

limited in linear 
dimension if more 

than one waveguide 
is fabricated

deep-tissue transmission, 
typically through cannula 
with electrical recording 
capability, stimulus artifact 
possible, deep-tissue 
transmission 
deep-tissue transmission, 
with electrical recording 
capability if adjacent 
electrode is fabricated

[19, 67, 68] 

[50, 69, 70]

[71-73]

O n-su rface
p a t te rn s

scanning
microscope

spatial light 
modulator 

yLED 
yECoG

objective NA & 
magnification; 

aperture 
geometry

geometry; intensity 
geometry

pseudorandom,
sequential

arbitrary

arbitrary
arbitrary

with fluorescence imaging 
capability

optical source needed

optical source needed, with 
electrical recording capability

[60, 74]

[75-77]

[78]
[79]

D eep -tissu e
p a t te rn s

microfabricated 
waveguide array

geometry upon 
fabrication

arbitrary light source may be external 
or mounted

[80, 81]
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volumes [19, 82, 83]. A tungsten  electrode can also be glued to  the fiber to  electrically record 

proxim ate activity [84, 85]. Fiber-m ultielectrode probes were later formed by surrounding 

microwires around the optical fiber w ithin the cannula [68, 86].

Optical fibers were tapered in subsequent im plem entations to  minimize neuronal dam 

age, thus allowing sm ooth im plantation w ithout the cannula. One of the optical neural 

interfaces in use today consists of a sharpened 50-^m fiber inserted a t a central position 

w ithin a commercial U tah  electrode array [67], which has had a dem onstrated chronic 

im plant lifetime of eight m onths [87] in the neocortex of a transgenic rat; optogenetic 

excitation in one cortical locality was possible along with the electrical m onitoring of the 

response spread across the surrounding sites.

Spatially-multiplexed photoactivation over multiple sites may be achieved by integrating 

optical fibers to  microelectrode devices th a t facilitate both  im plantation and recording. 

Linear microwire arrays [70] and planar silicon probes [69, 88] of the Michigan architecture 

(i.e., m ultiple recording sites along the perim eter of the tip  of a single probe) [89] have 

been used for this purpose, bu t offer limited selective m anipulation and comprehensive 

m onitoring of the activity of individual neurons. In addition, true  patterned  stimulus 

transm ission requires independent light sources, which becomes im practical w ith external 

lasers connected to  bulky fiber bundles. A linear array of six 50-^m tapered fibers individ

ually coupled to  lightweight diodes was presented as a partial solution and dem onstrated 

spatiotem poral stim ulation in a behaving ra t [50]. Nevertheless, it has been observed th a t 

some fiber-electrode assemblies cause light-induced electrical artifacts th a t can obscure local 

field potential and spike recordings; artifacts may be due to  a photovoltaic effect from direct 

interaction between light and m etal when immersed in tissue, but have not been investigated 

in detail [25, 43, 90].

Characterizing the spatial extent of illum ination in tissue may help avoid generation 

of artifacts and more im portantly  evaluate the aptness of optical fiber ou tpu t beams for 

the different optogenetic experiments. If the em anation point of light is placed a distance 

away from the recording site such th a t it experiences an intensity level below threshold, 

stimulus artifacts are then less likely to  occur [25, 68, 69]. A thorough cataloging of 

quantitative estim ates of illumination profiles produced by different optical fibers also
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gives information on which waveguide properties are appropriate for confined control of 

specific neuronal/cellular organizations or processes (e.g., a neocortex layer, cholinergenic 

signaling). The initial beam  size, power, and pulse duration may also affect the range 

of recruitm ent [34, 49]. Illum ination volumes translate  into stim ulation volumes once the 

optogentic tools and tissue optical properties are considered. F iber size, numerical aperture 

and tip  taper, source intensity and wavelength, and tissue type define the volume of tissue 

recruited during optogenetic experiments [19, 27, 50, 67, 70].

M icrofabricated waveguides have also been introduced as customized alternatives to  opti

cal fiber neural interfaces. In most devices, an optically transparent m aterial was essentially 

deposited on a planar silicon neural probe to  form straight waveguides running along the 

electrode. Silicon nitride [71], poylmer (e.g., SU-8) [72, 91], and silicon carbide [92] were used 

as waveguide core. An optical neural probe w ithout electrical recording capabilities has been 

surface-micromachined as well [73]. It consists of twelve parallel independent single-mode 

rectangular waveguides of silicon oxynitride core and oxide cladding th a t converge into a 

single probe. Each waveguide ends a t a particular target depth  with a corner aluminum 

m irror to  perform side-firing; waveguide bending and >5 cm length leads to  a low 23 to  33% 

transm ission efficiency w ith emission profiles undeterm ined.

2 .4 .2 .3  T w o-d im en sion al p attern ed  illum ination

As has been consistently pointed out, precise control of the tem poral and spatial dis

tribu tion  of stimulus light allows orderly selective m anipulation of neuronal activity in 

a comprehensive area of tissue. Thus, complex high resolution photoactivation m ethods 

have been established w ith optogenetics, albeit typically lim ited to  volumes near the tissue 

sample surface. One technique th a t has been easily adapted to  optogenetic experim entation 

is scanning microscopy (one or two-photon), where light beams are delivered through the 

objectives. Several works on functional m apping of the cortex took advantage of the rasters 

or pseudorandom  sequences th a t can be performed by scanning microscopes [59, 60, 74, 93]. 

Sequential illum ination at various spots on the sample was also accomplished by using a 

point-scanning stage placed under a single collimated beam  [90]. These scanning techniques 

are only capable of sequential stim ulation from one spot to  the next at a relatively slow
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tpeed (~100m s) [59, 74].

Several studies have implemented spatial light m odulators for simultaneous illumination 

at different areas to  create patterns beyond slow sequential microscope scans. Digital 

m icromirror devices (DMD) offer a fast < 1m s tem poral resolution but waste laser power 

because pattern ing  is accomplished by positioning select pixels to  redirect light out of the 

excitation area. Nonetheless, a projector-based DMD system was able to  dem onstrate large- 

scale robust photostim ulation of ra t retinal tissue underneath the damaged photoreceptor 

layer of the eye [75]. More recently, light from an Argon laser was projected through a DMD 

for repeated patterned  illum ination [76]. A liquid-crystal spatial light m odulator (LC-SLM) 

is more power-efficient, although it has a slower refresh rate  th a t limits the generation 

of successive intensity patterns. LC-SLM has been integrated in a microscope setup to 

produce shapes composed of spots of variable size and num ber to  m atch user-defined areas 

as a means to  control the excitation scope and location [77]. A highly efficient, ultra-fast 

patterned  optical stim ulation has been dem onstrated using acousto-optic deflectors (AOD), 

which steer a laser beam  for high resolution scanning w ith the ability to  modify exposure 

tim e and laser intensity for each neuron [94, 95].

Still, use of spatial light m odulators has required external light sources. In theory, a light 

source may be mounted with these spatial m odulators to  overcome the lim itation of testing 

only w ith immobile subjects. Potential high resolution optical neural interfaces for freely 

moving animal tests may include wirelessly controlled micron-sized optical sources. Arrays 

of high power gallium nitride micro light-em itting diodes (^LED) were already succesfully 

used in patterned  stim ulation of ChR2-expressing neuronal slices [78, 96, 97] and adapted 

for retinal prosthesis [98]. The em itted beam width from these ^LED  arrays were also 

scalable from 3-30 ^m  using lenses, where the ou tpu t intensity profiles were represented as 

lam bertian sources [78].

W ith  patterned  on-surface stim ulation, inclusion of an electrical recording capability has 

been achieved with a hybrid optical-electrical micro-electrocorticography (^ECoG; surface 

electrodes) [99]; the optically transparent conductor indium tin  oxide (ITO) was used. Light 

transm ission in the visible spectrum  was m easured at >90%, but emission profiles from the 

ITO pads were not characterized. A hybrid ^ECoG  array has also been embedded with a
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ItLED array as a step towards fully-integrated optical neural interface systems [79].

2 .4 .2 .4  T h ree-d im ensional arch itectures for d eep -tissu e  
spatio tem p ora l stim ulus p attern in g

In able to  provide both  depth  access and spatiotem poral stimulus patterns over an 

area, the optical neural interface m ust contain a grid of penetrating waveguides— a 3D 

optrode array. During the tim e this work was in progress, o ther 3D optrode arrays were 

published. F irst, tens of the long silicon oxynitride neural probe [73] discussed above were 

m anufactured and individually aligned w ithin a comb m atrix  to  create a 3D light delivery 

system [80]. A laser beam  was successively passed through a DMD, a microlens array, a 

fiber bundle, and the 3D device for arb itrary  pattern ing  with hundreds of emission points 

along the width, length, and depth  in tissue. Second, a simpler 4x4  array having tapered 

polymer waveguides (800 ^m  height, 50 ^m  tip  diam eter, 200 ^m  base diam eter, ~500 ^  

pitch) was developed to  target layer IV in ra t prim ary visual cortex (V1) [81]. The polymer 

waveguides were made w ith a mold and stam p process. A separately assembled ^LED array 

(220x270^ m 2 aperture each) was butt-coupled to  the polymer array to  provide a 460-nm 

excitation wavelength. The stim ulation volume was defined as the scattering boundary of 

em itted light (measured as ~600 ^m  deep and ~100 m u m  wide in a gelatin-based tissue 

phantom  layer); the waveguide effectively confined optical stim ulation w ithin the targeted 

plane.
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Abstract: This paper characterizes the Utah Slant Optrode Array (USOA) 
as a means to deliver infrared light deep into tissue. An undoped crystalline 
silicon (100) substrate was used to fabricate 10 x 10 arrays of optrodes with 
rows of varying lengths from 0.5 mm to 1.5 mm on a 400-^m pitch. Light 
delivery from optical fibers and loss mechanisms through these Si optrodes 
were characterized, with the primary loss mechanisms being Fresnel reflec
tion, coupling, radiation losses from the tapered shank and total internal 
reflection in the tips. Transmission at the optrode tips with different optical 
fiber core diameters and light in-coupling interfaces was investigated. 
At X = 1.55^m, the highest optrode transmittance of 34.7%, relative to 
the optical fiber output power, was obtained with a 50-^m multi-mode 
fiber butt-coupled to the optrode through an intervening medium of index 
n = 1.66. Maximum power is directed into the optrodes when using fibers 
with core diameters of 200 ̂ m  or less. In addition, the output power varied 
with the optrode length/taper such that longer and less tapered optrodes 
exhibited higher light transmission efficiency. Output beam profiles and 
potential impacts on physiological tests were also examined. Future work is 
expected to improve USOA efficiency to greater than 64%.

© 2013 Optical Society of America

OCIS codes: (170.3890) Medical optics instrumentation; (220.4610) Optical fabrication;
(230.7380) Waveguides, channeled; (260.3060) Infrared.
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1. Introduction

Electrical stimulation of nerves has been demonstrated as a viable means of neuroprosthe
sis. Peripheral neuroprostheses typically use interfaces with peripheral nerves or muscles to 
restore motor and sensory functions [1]. Of these interfaces, the Utah Slant Electode Array 
(USEA) has been shown to provide comprehensive access to multiple independent motoneuron 
subpopulations and to effect local stimulation with low current levels, even in a long-term im
plant [2, 3,4, 5]. These multielectrode arrays are designed to penetrate deeply into neural tissue, 
for example, to access the different fascicles within the peripheral nerve, as shown in Fig. 1. 
A typical USEA can reach up to 1.5-mm deep into tissue, but electrodes as long as 9 mm have 
been machined using alternative fabrication methods [6]. The variable length intrafascicular 
electrodes facilitate low stimulation threshold and selectivity with a few electrodes targeting a 
specific muscle [2]. The electrodes are placed in proximity to the target axons and thus bypass 
the epineurium and perineurium, which act as insulators that make stimulation from around 
the nerve (e.g., via cuff electrodes) weaker and less selective. In addition, the high-channel 
count (i.e., 100 electrodes) allows successive recruitment of neurons to evoke maximal fatigue- 
resistant forces in various muscles [7]; graded activation of several muscles with the USEA 
for normal multi-joint motions was demonstrated by producing a graceful feline stance with 
paralyzed hind limbs of the cat [4].

Fig. 1. Utah Slant Electrode/Optrode Array for peripheral nerve stimulation and/or record
ing. (a) Transverse cross-section of cat sciatic nerve with single row of slant array shown.
The microneedles penetrate through epineurium, perineurium and endoneurium to access 
axons within the fascicle. (b) Longitudinal cross-section showing slant array reaching ax
ons at various depths within the nerve. Adapted from [8].

Electrical signals, on the other hand, cause stimulus artifacts that prevent simultaneous 
recording and stimulation of adjacent neurons. An alternative modality using infrared light
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as input energy avoids the artifact problem due to the absence of direct charge injection [9]. 
In the initial study [9], a pulsed IR laser was coupled to a 600-ym diameter optical fiber and 
the light was incident on a single spot on a rat sciatic nerve surface. Action potentials were 
selectively evoked without causing histological tissue damage. Stimulation and ablation flu- 
ence thresholds were determined for several wavelengths between 2.1 and 6.1 ym. Optimal 
wavelengths with a safety margin between stimulation and damage threshold for extraneural 
stimulation of mammalian peripheral nerves was observed to depend on the absorption spec
trum of water, the dominant tissue absorber in the IR; damage threshold was strongly affected 
by the absorption, but stimulation commencement levels varied less. Stimulation at 3 and 6- 
ym wavelengths, which have very high absorption (i.e., approximately zero penetration depth) 
as shown in Fig. 2, readily created nerve damage with threshold stimulation fluence; 2.1 and 
4-ym wavelengths, which have smaller absorption coefficients, were found to be particularly 
well suited for infrared neural stimulation (INS). This finding, along with recordings of sur
face nerve temperatures, suggest that INS acts in nerve via the induction of a spatio-temporal 
heat gradient in the tissue (4° C at the axonal level) with about 3-mJ/mm2 extraneural thresh
old dose [10]. Although the underlying physiological mechanism is still under investigation, 
the threshold optical dose closely follows the water absorption spectrum. A recent study how
ever, determined that IR is absorbed by water during INS and causes local tissue heating that 
depolarizes the target cell by changing the membrane electrical capacitance [11].

Wavelength (um)

Fig. 2. Water absorption curve for IR wavelengths, which is representative of tissue absorp
tion in the IR. 1.87 ym  is recommended for peripheral nerve INS, but 2.1 ym  has also been 
extensively used.

With a 2.12-ym (Ho:YAG laser) input, INS has been demonstrated to achieve a selective 
excitation volume with respect to extraneural electrical stimulation [12]. A wavelength of 
2.12 ym  has been extensively used because it causes minimal nerve damage and can be gen
erated from a commercially available Ho:YAG laser that is currently utilized in many clinical 
applications [9, 13]. This wavelength corresponds to a tissue penetration depth between 300 
and 500ym  as supported by Fourier transform infrared spectroscopy results in [12], which is 
deemed suitable for stimulation based on rat peripheral nerve geometry [13, 12]; a wavelength 
in the vicinity of 1.87 ym, having similar absorption characteristics as 2.12 ym, has also been 
shown to stimulate effectively in various applications [14, 15, 16, 17]. However, neural tissue 
of different types and morphologies may require different wavelengths for optimal stimulation 
such that the optical penetration depth is matched to the targeted excitable tissue.

As with electrical stimulation, an intrafascicular multiple access approach for INS will likely 
provide coverage of a large number of independent neuron subpopulations, lower activation en
ergy, and better spatial selectivity than extraneural INS. These advantages may be demonstrated 
by using optrode arrays made from intrinsic silicon (Si), with IR light coupled from a pulsed
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or continuous wave (CW) laser source operating at wavelengths from 1.1 to 5 . 5 as indi
cated in Fig. 2. Ultimately, INS with an optrode array is expected to yield a greater separation 
between stimulation and damage thresholds and permit a wider range of wavelengths to effect 
a neural response - light does not need to travel through the connective tissues within the nerve 
in order to reach the axons, potentially allowing wavelengths with high absorption to be used.

Other penetrating probes for optical stimulation have been used in the field of optogenetics, 
where visible light is delivered to excite genetically targeted neurons expressing light-sensitive 
channels (e.g., ChR2). Tapered optical fibers serving as tissue-penetrating optical probes have 
been utilized [18, 19, 20, 21, 22]. A single optrode made of a 50-^m multi-mode fiber was in
serted in mouse brain slices to trigger localized epileptiform events in a single cortical site [18]. 
Simultaneous delivery of visible light to multiple neuronal sites have been achieved by arrang
ing tapered single-mode optical fibers in a 2D array of optrodes [20]; etched fibers were glued 
to commercially available planar silicon probes, which are an alternative to tungsten electrodes 
utilized in previous studies [23]. Experiments with ChR2-transfected rat hippocampus demon
strated multiple local stimulation via these 2D arrays. A more sophisticated microfabricated 2D 
multiwaveguide probe was introduced as an alternative to crude arrays of tapered fibers [24]. 
The probe targets points along its axis (i.e., stimulation of sites along the depth rather than 
the lateral direction) using parallel independent single-mode rectangular waveguides of silicon 
oxynitride core and oxide cladding that converge into a probe structure. Each waveguide ends 
at a particular target depth with a corner aluminum mirror to perform side-firing; transmission 
efficiency ranged from 23 to 33% as determined from bench testing.

We have recently developed a micromachined 3D optrode array for infrared neural stimula
tion. This array covers a wide area of neuronal stimulation sites and reaches targets at varying 
depths, thereby facilitating high-channel-count optical stimulation. Preliminary optical [25] and 
intrafascicular physiological [26] testing results have been reported. In this paper, we perform 
detailed characterization of this early-generation Utah Slant Optrode Array (USOA) neural in
terface. The USOA is designed after the USEA architecture, which has been adapted for numer
ous physiological requirements, such as nerve dimensions and axon depth, through variation in 
electrode length and spacing. Note that the same design can be adapted to other transparent 
substrates for both INS and optogenetic applications.

2. The Utah Slant Optrode Array

The USOA in this paper consists of a 10 x 10 array of microneedles with lengths varying in 
one direction from 0.5 mm to 1.5 mm on a 400-^m pitch. Each optrode tapers to a point from a 
base width of about 180^m. Fig. 3 is an SEM image of the USOA. Light input to the USOA is 
provided via optical fibers butt-coupled to the array backside where optrode bases are located. 
The optrodes act as waveguides and light emitted from the optrode tips stimulates axons in 
close proximity via local tissue heating.

2.1. Fabrication

Fabrication of the USOA takes advantage of the extensive development of the Utah Slant Elec
trode Array (USEA) [27]. The arrays are bulk-micromachined from an undoped (p > 20 cm) 
c-Si (100) wafer with 2-mm thickness and 76.2 ±  0.3-mm diameter. This substrate is able to 
transmit IR at wavelength X > 1.1 ^m  with negligible absorption losses. One wafer yields 49 
5 x 5-mm2 arrays.

2.1.1. Backside processing

The optical fibers for light input are butt-coupled to a polished side of the Si wafer to minimize 
any scattering losses. In order to facilitate fiber alignment with the optrode bases, a uniform
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(a) (b) (C)

Fig. 3. SEM images of a Utah Slant Optrode Array. The array is bulk-micromachined from 
intrinsic (100) silicon. (a) Optrode lengths vary from 0.5 to 1.5 mm. (b) Taper profile of 
the shortest optrode. (c) Definition of optrode sections along the path of light propagation: 
500-um backplane, base extending 120 fxm into linearly tapered shank, and ^50-um  tip.

layer of 100-nm Al was deposited with ebeam evaporation on this side and was photoligho- 
graphically patterned with 10 x 10 matrices of square windows. These windows were etched 
into the Al film using aluminum etchant (type A, Transene Co., Inc.). Arrays within the same 
wafer had different window sizes to accomodate testing with fibers of various core diameters. 
Part of the backside is shown in Fig. 4, where the windows are 140 x 140jUm2. This fabrica
tion method is amenable to the integration of an anti-reflection (AR) coating because the AR 
layer(s) may be deposited before the aluminum.

Fig. 4. Optrode backside showing windows in the aluminum layer for fiber alignment

2.1.2. Dicing

A Disco DAD 640 dicing saw was used to form vertical rectangular shanks on the frontside. 
Fig.5 shows the array transformation during dicing. First, seven sets of twelve cuts of depth 
gradient from 0.5 mm to 1.5 mm with 0.4-mm spacing are made with a resin blade across the 
wafer to form a slant in one direction (a). Material in-between the arrays was also removed 
by dicing before forming the shanks. With a nickel blade, deep kerfs were then diced into the 
silicon wafer to isolate the varying heights (b), and the same cuts were made in the 90° direction 
to create pillars (c). Each array had 10 rows of optrodes plus two extra rows on the longest side 
and three extra rows on the shortest side; in the orthogonal direction, there were two extra 
rows on each side. The extra rows were sacrifical features designed to enhance uniformity in 
optrode geometry across the array during wet etching. The average column width after dicing 
was 240±15 um.
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Fig. 5. Array dicing steps. Darker shanks constitute sacrificial regions.

2.1.3. Etching

Wafer-scale etching is a two-step process consisting of dynamic and static etching [28]. Fig. 6 
illustrates the principle and Fig. 7 shows the progression of the optrodes during etching. For 
both steps, the wafer is mounted on a Teflon wafer holder comprised of a top plate and a base 
plate. The wafer fits into the recess in the base plate, and an O-ring along the edges protects the 
backside of the wafer from the wet etchant. The top plate is a donut-shaped piece that screws 
on the base plate and acts as a frame to secure the wafer in place.

Fig. 6. Etching steps. (a) Initial shape of shanks. (b) Dynamic etching is performed for 
isotropic thinning. (c) Static etching preferentially sharpens the tips. (d) A missile-shaped 
optrode is formed. The arrows indicate locations of pronounced etching.

Fig. 7. SEM images showing optrode shape at different stages of the etching process. Dy
namic etching narrows the shank (a), while static etching sharpens it (b-d). As etch time 
progresses, the tips progress from being blunt (b) to missile-shaped (c) to over-etched (d).

During dynamic etching, the wafer is immersed with columns facing down into 1500 ml of 
1:19 acid mixture of HF (49%) and HNO3 (69%). The wafer is rotated clockwise (22rpm),
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while a magnetic stirrer in the solution rotates counter-clockwise (500 rpm) to cause an aggres
sive and continuous flow of etchant into the high aspect ratio columns. This leads to uniform 
etching across the side-walls of the square columns. Apart from the rotation speed, other im
portant dynamic etching parameters are the separation between the magnetic stir-bar and wafer 
(2 in), temperature of the etching solution (room temperature, but slightly increased because of 
exothermic etching reaction) and the etch time (5 min).

In static etching, the holder is placed in 750 ml of fresh acid mixture with the columns facing 
upwards. The diffusion-limited reaction and the relative inactivity at the base of the shanks 
preferentially etches the top of the columns until a sharp tip is formed. To ensure uniform static 
etching, a pipette is used to continuously remove byproducts near the top surface and circulate 
the solution. Static etch time is approximately 5 mins, which is when the optrodes are missile
shaped. Beyond this time, the optrodes become thinner.

2.1.4. Singulation

The last step is to separate the individual arrays from the wafer. A nickel blade was used in the 
dicing saw to trim the arrays into 10 x 10 structures by cutting off the sacrificial rows. Then, a 
resin blade was used to pierce the backside for singulation. The array in Fig. 3 is finally formed.

3. Theoretical loss mechanisms

The geometry of the optrodes and its input and output interfaces dominate the losses in the 
system. The primary loss mechanisms are expected to be Fresnel reflections (R), mode cou
pling, radiation, and loss due to reflection towards the source. Fig. 8 shows where these losses 
occur. The power from the fiber Pin is reduced by the transmittance Ti =  (1 — Ri) to P'in, which 
is the power introduced to the Si backplane. Pback, Pbase and Pshank are radiation losses, while 
Pref  is the lumped reflection loss from all sections within the device; absorption loss is as
sumed negligible. The output from the optrode tip is Pout. Power coupled into the shank and the 
power entering the tip is represented by Pcoupied and Ptip, respectively. The variables are related 
through

Pin x  (1 — Ri) =  Pin = Pback + Pbase + Pshank + Pout +  Pref •

Fig. 8. Loss mechanisms within the optrode include Fresnel reflectance (Rt/o), coupling, 
radiation and backreflection losses.

3.1. Fresnel reflections

Fresnel reflection loss will occur at both the optrode backside and tip, which are the fiber-to-Si 
and Si-to-tissue interfaces, respectively. Table 1 lists the refractive indices (n) under considera
tion, while Table 2 shows relevant reflectance values as computed from

R = (  , (1)
\ n1 +  n2
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for a single interface, where n1 and n2 are the refractive indices of the materials on either side 
of the interface. For double interfaces, as in the gap between the fiber and Si backside, this 
equation is applied twice, using the relation

Reff =  1 — (1 — R1)(1 — Ri) = R 1 +  R2 — R1R2- 

Note that interference effects were not considered.

Table 1. Refractive indices at 1.55 
Material n Reference
Air 100
Silicon 3.48 [29]
Fused Silica (Fiber) 1.44 [29] 
Tissue 1.36 [30]

____________ Table 2. Reflectance at interfaces____________
Interface Reflectance (R) Transmittance (1-R)
Fiber-Air-Si 0.329 0.671
Fiber-1.44-Si 0.172 0.828
Fiber-1.66-Si 0.130 0.870
Si-Tissue 0.192 0.808
Si-Air 0.306 0.694

A fiber in contact with bare silicon leaves an air gap junction, which has an overall Fresnel 
reflectance loss of 32.9%. This gap can effectively be eliminated by using index matching fluid 
(n =  1.44), with index that matches that of the fiber; nevertheless, the remaining single-interface 
drops reflectance to 17.2%, leaving a theoretical maximum of 82.8% that can be transmitted to 
tissue. Using a higher refractive index fluid in the gap, such as n = 1.66, further reduces the 
reflectance loss to ~13%. In principle, an anti-reflection (AR) coating could be designed to 
minimize reflection loss at the input interface, but fiber index matching fluid would still be used 
to fill-in the air gap.

3.2. Mode coupling

Due to its high refractive index, the Si optrode is highly multi-moded. Losses in the coupling 
between two multi-mode waveguides are described in most textbooks on fiber optics [31], and 
are geometrical in nature. Extrinsic losses are due to alignment, including lateral displacement 
and end separation.

The intrinsic losses are due to mismatches in the core cross-sectional area (A) and numerical 
aperture (NA) between the fiber and optrode. The coupling efficiency (n) resulting from these 
losses may be quantified as

A O

and

n  =  7 °  (2)
A f

nNA = (  N A f)  , (3)
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where the subscripts O and F signify the optrode and fiber waveguides, respectively. The effec
tive numerical aperture of a tapered waveguide (for meridional rays) is given by

where dmax and dmin are the diameters of the larger and smaller ends of the taper, n1 and n2 
are the core and cladding indices, and 9 is the angle of the taper slope with respect to the 
propagation direction [32].

Although the use of lensed fibers or external lenses may increase coupling efficiency, our 
studies were performed by direct fiber to optrode coupling for simplicity. Given the large re
fractive index contrast of the optrodes and the relatively small coupling fiber NA, we don’t 
expect NA mismatch to be a significant source of loss.

3.3. Radiation and scattering loss

Radiation loss for the optrode is expected to result from its taper; higher-order guided modes 
are transformed into radiation modes as the diameter of the optrode decreases along its length. 
A simplified mathematical relationship that provides insight on how taper affects waveguide 
efficiency has been derived for a multi-mode to single-mode tapered slab using coupled-mode 
theory [33, 34]

where Prad is the power loss normalized by the input power, n is the waveguide effective re
fractive index, X is the wavelength, z is the propagation distance, and dmax and dmin are the 
maximum and minimum taper diameters, respectively. It is clear that more tapered waveguides 
(i.e., higher taper slope or angle) suffer from higher radiation loss. This is consistent with ray 
optics, from which it has been shown that higher taper slopes result in fewer total internal re
flection (TIR) points along the waveguide wall and thus leak more power out as radiation [35]. 
It has been further shown that it is the higher order modes that significantly contribute to the 
loss [34], which correspond to the larger ray angles.

Likewise, 2D conical waveguides are expected to lose more power with increasing taper 
slope. Analysis on ray trajectories in multi-mode cylindrical linearly tapered optical fibers re
veals that the total light transmitted from both meridional and skew rays is quadratically pro
portional to the effective numerical aperture of the taper (Eq. 4) [32]. Large diameter and high 
refractive index contrast silicon waveguides, such as the optrodes, are highly multi-moded and 
require extensive ray tracing analysis for accurate prediction of taper loss, but we will make use 
of Eq. 5 to provide qualitative insight.

Light may also be scattered inside the optrode when the guided modes interact with the 
etched waveguide surface. Scattering due to surface roughness is exacerbated by high refractive 
index contrast. For instance, the scattering loss for a symmetric slab waveguide with core index 
n1 and cladding index n2 has been modeled as [36]

where a  is the roughness, k0 is the free space wavenumber, h is transverse propagation constant 
in the cladding, is the mode propagation constant and ES is the normalized electric field 
amplitude at the core-cladding interface. Furthermore, light scattering may be more significant 
from an optrode in tissue due to the inherent inhomogeneity of tissue.

(4)

(5)

(6)
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4. Characterization results and discussion

In all experiments, the optrode arrays were tested in air with a bare fiber mechanically aligned to 
one aluminum window on the backside at a time; the fiber was in contact with, but not attached 
to, the optrode base. Multiple measurement conditions were used to assist in separating the 
losses from the different regions of the optrode, as indicated in Fig 9. To isolate the output 
power, the optrode tips were punched through a thin aluminum foil (producing a 10 x 10 matrix 
of holes) in order to expose only the last 50 ̂ m  of each optrode to block light radiation from 
anywhere else along the propagation path (a); an IR detector was used to compare the light 
transmitted through the tip with the light transmitted through the coupling fiber. The optrodes 
were also inserted all the way through until the foil rests against the backplane in order to collect 
taper loss (b). Light leaking through the base region, which extends 120 ̂ m  from the backplane, 
was measured by covering only the backplane area between the optrodes using a 50-^m thick 
aluminum plate with pre-drilled holes that are 300 ̂ m  in diameter (c). Backplane radiation 
was included in the measurements by exposing all sections of the optrode (d). All radiation 
data were determined with an IR integrating sphere that captures light transmitted through the 
device at large angles, with the results normalized to the fiber output also measured with the 
integrating sphere. A 1550-nm continuous wave input is used for all measurements, except 
as noted with the Capella laser. A wavelength within the telecommunications band was used 
because of the availability of instrumentation that operates in this band. Telecommunications 
wavelengths have been demonstrated effective for INS [14].

Fig. 9. Experimental setup. (a) Measuring output power from optrode tips. (b) Measuring 
taper loss from the shank. (c) Measuring base radiation. (d) Measuring backplane radiation.

4.1. Accounting for the backplane Fresnel loss

To verify the contribution of Fresnel reflection (R) at the input to the overall loss, the refrac
tive index of the fiber to Si gap was varied (n =  1.66, 1.44, 1.0) with the use of index matching 
fluids. A 50-^m fiber with 0.22 NA delivered light to the optrode in these three sets of measure
ments. Light out of each optrode tip was collected by an IR photodetector. The fraction of power 
transmitted from fiber tip to optrode tip is shown in Fig 10(a). The three lines correspond to 
the different refractive indices used. The data points are plotted against the rows in the slant
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array, which are aligned to the actual optrode length scale above the graph; Row 10 contains 
the longest optrodes as labeled in Fig. 9. The variation of the transmittance with optrode length 
is discussed in the next section.

Optrode Length (um)

^  ^  ^  ^

1  I I I I I I I I I
1 2 3 4 5 6 7 8 9  10

♦

n =1 .44 

n =1 .0

“ I T
8 9

Row Number Row Number

(a) (b)

Fig. 10. Normalized output power from optrode tips with varying refractive index at the 
input interface using a 50-^m fiber with 0.22 NA.

0 0

The theoretical reflectance losses at the input with n = 1.66, n = 1.44 and air (n = 1.0) 
interfaces are 0.130, 0.172 and 0.329, respectively, resulting in an input transmittance value of 
Ti = 0.87 for the n = 1.66 interface. Without the input reflectance, the transmitted power for 
all cases should be equal because the remaining losses depend only on the fiber and optrode 
geometries. The output values, removing the input reflectance loss, are plotted in Figure 10(b). 
The line plots overlap within error, thus confirming the contribution of backside reflection loss 
as an independent factor. Note that if an AR coating were applied on the backside, the maximum 
efficiency attained would be about 39%, suggesting that it is more beneficial to reduce the 
remaining loss mechanisms.

4.2. Identifying other loss mechanisms

In order to assess the remaining loss mechanisms, transmission measurements from multi-mode 
fibers of different core sizes were performed. Fibers with 0.22 NA with diameters 50, 105, 200 
and 400 ̂ m  were used to couple light to the optrodes through an n=1.66 medium. To separate 
the backplane reflection from all other sources of loss, Ti is factored out from all subsequent 
data; the resulting values are equivalent to the normalized output power with respect to the 
amount of power entering the device P'in. Fig. 11(a) and (b) show normalized measurements for 
the different optrode lengths by coupling with 50 and 105-^m fibers, respectively. The lowest 
curve is the transmittance through the optrode tips, measured as before using the aluminum 
foil to block all other radiated light. The upper curve represents all of the light that passes 
through the USOA device (i.e., all of the light that does not reflect back towards the source 
or that is waveguided within the backplane). The same line plot is also the light measured 
by the sphere when the backplane is blocked with the aluminum plate. The middle curve is 
measured after further covering the base region. The set of curves reveal that the difference in 
the output power across different optrode lengths results from the varying taper slope; this is 
not surprising since the backplane and base geometry is the same for all optrodes. Note that 
these results will vary slightly when the optrode is applied in vivo, as the receiveing medium 
will go from n = 1 to n = 1.34 (i.e., tissue); the associated critical angle will increase and the
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reflectance will decrease, both of which may allow higher transmission through the tips. Ray 
tracing simulations verify that the output power increases in a higher index medium.
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Fig. 11. Measurements to isolate coupling and taper losses with Ti factored out. Normal
ized tip output and radiation measurements from integrating sphere are shown. Fibers of 
0.22 NA with 50-^m (a), 105-um (b), 200-^m (c) and 400-^m (d) core diameters are 
coupled to the input.

The same measurements coupling from 200 and 400-^m optical fibers are shown in 
Fig. 11(c) and (d). Note that because the optrode pitch is 400^m, alignment windows for the 
400-^m fiber were placed only on even rows. In the case of the 400-^m fiber, there are two 
distinct upper curves, which signify that light is transmitted through the backplane.

The amount of power leaking through the backplane is largely due to the mismatch between 
the beam spot size and the base area; the NA mismatch between the fiber and optrode is not 
expected to represent a significant source of loss because NA^ < NAO. The beam diameter at 
the optrode base is widened within the USOA backplane because of the NA of the fiber. Beam 
profiles of the coupling fibers were determined (section 4.3) and with the 0.5-mm backplane 
thickness, the effective beam sizes (i.e., width at 1/e2 of peak power) at the optrode base are 
estimated to be 89, 132, 253, and 433 ̂ m  for the 50, 105, 200, and 400-^m diameter fibers. 
Because the optrode base width is about 300 ̂ m, we expect only light from the 400-^m fiber to

#168581 - $15.00 USD Received 15 May 2012; revised 8 Aug 2012; accepted 10 Aug 2012; published 24 Aug 2012
( C) 2012 OSA 1 September 2012 / Vol. 3, No. 9 / BIOMEDICAL OPTICS EXPRESS 2212



69

transmit through the backplane. The backplane radiation, which is derived from the difference 
between the Tip+Shank+Base+Backplane and Tip+Shank+Base curves of Fig. 11, supports 
this hypothesis as negligible backplane radiation is observed for fibers smaller than 400 ̂ m. 
From the area mismatch (Eq. 2), 52% of the beam power from the 400-^m fiber will not be 
coupled into the base. Only 17% of the power falling outside the base region is measured as 
radiation, where 35% is expected otherwise. With the concaved backplane surface between the 
optrodes and the beam size larger than the pitch, rays outside of the base are likely to strike a 
curvature, undergo TIR and further backreflect towards the source.

Next, the loss due to base radiation is taken from the the difference of the Tip+Shank+Base 
and Tip+Shank, which is about 5% except for a 400-^m fiber. For the 400-^m fiber however, 
upon considering that only 48% of the power is coupled into the base according to previous 
theoretical analysis, the fractional base radiation loss with respect to the power entering the 
base is close to 5% as well. The base, like the shank and tip regions, is tapered. Fig. 3 shows the 
change in the optrode taper from a highly concave shape at the base to convex near the tip; from 
the effective aperture area above the base up to just below the tip, the optrode tapers linearly. 
These tapered regions reduce the overall transmission due to radiation and reflection losses. 
Radiation losses result from rays that don't satisfy TIR conditions, while rays that propagate 
at steep angles with respect to the optical axis can reflect back towards the source. The base is 
expected to act as a bottleneck for transmission since highly concave tapered waveguides have 
been found to exhibit higher propagation loss based on numerical studies [37]; in the case of 
the optrodes, the small input beams and the short base section prevents the huge loss. In theory, 
the 50 and 100-^m fibers should not incur base radiation as the optrode width into the shank 
is still larger than the beam size. However, even a few microns input misalignment will cause 
the small measured radiation. For bigger fibers with rays striking the base, the number of TIR 
reflections is decreased as propagation continues in the shank. A collimated input beam may be 
directed into the optrode shank in order to reduce the losses.

Shank loss depends on optrode length. Shanks inherently have different taper shapes and 
angle because optrodes of different lengths essentially have the same base shape and taper to 
about the same diameter at the tip. Shorter optrodes then result in a larger taper angle with 
respect to the propagation direction. This consequence is discernible in Fig. 3. Transmission 
through the shank, which is reduced primarily due to radiation loss, can be quantified and 
compared with theory. The steeper taper of the shorter optrodes causes more power loss, as 
briefly discussed in section 3.3. This is supported by the difference between the Tip+Shank 
and Tip curves of Fig. 11, which estimates the fraction of P'in is radiated out of the optrode 
shanks. Results with larger input fibers exhibit greater loss and less variation with optrode 
length because most of the rays that have been directed into the shank have smaller angles with 
respect to the optical axis.

In order to compare the results with the simple coupled mode theory (CMT) approximation 
in Eq. 5, which is normalized to the power entering the taper (i.e., Pcoupled), the CMT equation 
is fitted to the measured data with a single normalization factor. In this way, the loss trend is 
readily apparent. The matched data are plotted in Fig. 12. CMT predicts the change in radia
tion loss with varying taper slope for the smaller coupling fibers. Note that the CMT estimate 
is derived for a multi-mode to single-mode slab and accurate for low index contrast waveg
uide, whereas optrodes are highly multi-moded high index contrast 3D waveguides. Thus, with 
the data-fitting, the results presented in Fig. 12 reflect the slope to which the radiation is af
fected by the taper rather than the comparison between actual and theoretical radiation loss; 
although 3D waveguides are typically approximated as slabs, CMT underestimates the loss in 
multimode-to-multimode waveguides [34] and has its limitations when applied to high index 
contrast interfaces.
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Fig. 12. Radiation loss through the tapered shank after factoring out T and fitting the CMT 
estimate. Fibers of 0.22 NA with varying core diameters are coupled to the input.

Scattering of light inside the shank due to sidewall roughness was considered. The surface 
roughness of the etched optrode walls was measured using atomic force microscopy (AFM) 
with an angled tip; the RMS roughness is determined to be 4.4 nm, which is considered opti
cally smooth when compared with previously published results on silicon waveguides. Never
theless, surface roughness may further be reduced by sidewall smoothing techniques. Lasers 
(e.g., KrF and XeCl excimer) have been used to decrease roughness via surface reflow in ridge 
waveguides; the laser selectively melts the sidewall edge, which flows under surface tension 
and solidifies into a smooth rounded layer [38, 39]. Creating a blanket layer of oxide (e.g., by 
wet oxidation) over the waveguide and subsequently etching it has also been proven to lower 
surface roughness [40]. For the high-contrast optrode, repeated wet oxidation and etching is 
perhaps the most practical approach [41].

The loss unaccounted for by the measurement results (i.e., ~  54%) is taken as the lump sum 
of reflection losses Pre f from all sections of the optrode. From the results and previous dis
cussion, it is estimated that reflection losses at the tip dominate the system loss; this includes 
both the Fresnel reflectance on transmitted rays and rays that undergo two TIR's and are com
pletely backreflected. Pre f for the smaller fibers is mainly due to reflection at the tips, whereas 
reflection from the base and backplane is included with values for the larger fibers.

4.3. Beam profiling

Beam profiling was performed to measure the effective spot size and divergence of the light 
exiting the optrode tips. Table 3 shows values of the beam width (2W0) calculated at 13.5% 
(1/e2) of the peak power at the optrode tip for different lengths, while Table 4 lists the far-field 
full divergence angle (0). The measurements were made with 0.22 NA fibers of different core 
sizes at the input side without any index matching fluid.

The optrode output beam exhibits an approximate gaussian profile (1.56 M2 fit on average) 
similar to that in Fig. 13; M2 fit values of the profiles are also listed, in parentheses, in Table 3. 
Precise values of the beam width across different rows for the same input fiber were measured. 
For increasing fiber diameter, it appears that the beam width increases as well. However, values 
for the 200-ym  fiber seem anomalous, which might be an effect of the higher divergence of this 
particular fiber as measured from the beam profiler.

The beam divergence depends on the divergence of the input fiber as well. More importantly, 
it varies with the optrode length/taper; the beam diverges more from the more tapered shorter
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Table 3. Beam width (2Wq) in at 13.5 % of peak power and M 2 fit.
Fiber Core Fiber 2w  Optrode 2Wq (M2)

Diameter (^um) 0 Row 4 Row 6 Row 8
50 414 46.3 (1.33) 44.0 (1.11) 45.2 (1.28)
105 71.9 51.7(1.52) 54.7(1.92) 50.2 (1.54)
200 188.0 71.4(2.60) 63.2(1.56) 66.2(1.25)
400 378.0 66.8 (1.34) 65.4(1.80) 61.7(1.51)

Table 4. Beam far-field full divergence angle (0) in ° and Rayleigh distance (zr) in jim.

Fiber Core Fiber . __________ Optrode 0 (z r )____________
Diameter (^m) 0 Row 4 Row 6 Row 8

50 189 16.3 (163) 14.5 (174) 14.0 (185)
105 23.9 17.9(165) 16.8 (187) 14.2(202)
200 26.1 20.1 (204) 19.7 (184) 15.7 (241)
400 22.1 17.8 (215) 14.7(255) 13.6(260)

GFit 88.3%
x-plane A ve ra ge  o f 5

center splice i 

/\
i/
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l

\  —
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Fig. 13. Beam profile of a Row 6 optrode with a 105-^m input fiber of 0.22 NA. Power is 
relative to peak; widths vary according to row number and input fiber size.

optrodes. This observation may be explained using simple ray tracing analysis, as illustrated in 
Fig. 14, which is also supported by wave optics [35]. As light travels down the taper, its prop
agation angle 9z increases after each wall reflection. This creates a smaller angle of incidence 
9i at the core-cladding interface that eventually loses total internal reflection. Because the taper 
angle m is larger for shorter optrodes, 9z increases more rapidly and rays exit away farther from 
the tips, which leads to a wider beam divergence.

Fig. 14. Ray trajectory in a tapered waveguide. Because there is a faster increase in the 
propagation angle of a ray travelling through shorter optrodes, the rays exit away farther 
from the tip, which leads to a wider beam divergence.

The spatial divergence profile of the beam from an optrode in Row 6 with a 105-^m input
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fiber is shown in Fig. 15; the beam width is plotted against the propagation distance along 
the z-plane. The plot is generated by using an M-squared fit for the beam width curve from 
measurement points of the beam profiler. The beam waist at the tip (i.e., 0 mm position) is 
54.7 ̂ m  and broadens to 297.6 ̂ m  at a distance 1 mm away. Another important parameter 
in the z-profile is the Rayleigh distance (zR), which defines the volume of effective energy 
deposition within the receiving medium. The Rayleigh distance defines how far the beam can 
travel before expanding considerably, beyond which the full angle divergence is measured; it is 
distance along the propagation direction where the minimum beam width increases by a factor 
o f^ 2 . The beam does not immediately diverge out from the optrode tip and is rather focused, 
but its energy quickly spreads beyond zR. In Fig. 15, the beam energy extends 187 ^m  from the 
tip into the medium without significant divergence. Table 4 lists zR for all beams; less divergent 
beams have a greater focus depth.

ot  :...........................................
0.00 0.20 0.40 0.60 0.80 1.00

Position in z-plane (mm)

Fig. 15. Changes in beam width with propagation distance from an optrode in Row 6 of the 
array with a 105-^m input fiber of 0.22 NA.

The output beam divergence and width is predicted to decrease in vivo because of the higher 
refractive index of tissue; this is confirmed by ray tracing simulation results.

4.4. Coupling with the Capella laser

For physiological testing, a Capella laser (Aculight Corporation Infrared Neural Stimulator), 
with a pulsed output in the wavelength range of 1865 -  1879nm, is used [26]. Thus, it is im
portant to compile transmission characteristics from the Capella as well. Output power for all 
measurements were collected using a thermopile sensor. The wavelength chosen for the tests is 
1875nm, pulsed at 10Hz with a duration of 17 jxsto allow the use of the Coherent LabMax-TOP 
power meter.

4.4.1. Coupling efficiency from laser to fiber

The Capella laser has a ^400-^m emission aperture. A 400-^m fiber is then expected to collect 
a large fraction of light emitted by the laser. Halving the fiber core diameter is expected to 
reduce the output power from the fiber to one-fourth as the effective collecting area decreases 
by the same amount. Table 5 lists the power coupled from the Capella to multi-mode fibers of 
different diameters. Notice that the output power is about 25% of the value in the next row (i.e., 
when the core diameter is doubled), which is in accord with expectation.

4.4.2. Coupling efficiency from fiber to optrode

The 200 and 400-^m fibers were used to couple the laser to an optrode with an n = 1.66 gap 
interface. The percentage transmission is shown in Fig. 16 for both fibers across all rows. Note 
that the trend is consistent with the results in section 4.2, but with slightly lower values. The
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Table 5. Transmitted power from the Capella laser to multi-mode fibers of different diam
eters

Core Diameter (^m) Input Power (W) Output Power (W) Transmittance (%)
100 5 0.30 6.0
200 5 1.28 25.6
400 5 4.70 94.0

< 2% decrease between the 1550 to 1875 nm results may possibly be due to a difference in 
the distribution of modes in the multi-mode fibers. The laser source at 1550 nm is single mode, 
while the Capella is multi-moded, so launching conditions at the input are different. Moreover, 
we used short (~1 m) lengths of optical fiber, which are likely shorter than the equilibrium 
length, which is the length at which the power distribution across the modes stops changing. 
The slight discrepancy in the results might also simply be due to variations in the measurement 
setup; a pyroelectric sensor with a 10-mm wide aperture was used; the optrode shanks were 
positioned normal to the active area by resting the array on a frame atop the detector. The 
distance between an optrode tip and the detector depends on the optrode length, but reference 
measurements reveal that there is only about 0.25% decrease in the power detected for a 1-mm 
increase in the distance.

Optrode Length (um)

Row Number

Fig. 16. Transmission through the optrode tips with 200 and 400-^m fibers using the 
Capella laser (1875 nm). The input coupling interface has «=1.66.

4.4.3. Overall system efficiency

The efficiency of the entire stimulation system for physiological experiments is computed by 
multiplying the results in sections 4.4.1 and 4.4.2. Table 6 shows a breakdown of the system 
efficiency and the output power expected to be delivered by the longest optrodes when the 
Capella emits 5 W. The maximum transmission is obtained using a 400-^m fiber. However, the 
overall efficiency is only 9.6%, producing 0.48 W of power from the optrode tips.

5. Improving the USOA efficiency

The efficiency of the USOA may be increased with techniques as outlined in Table 7. The 
table also summarizes the relevant losses determined from bench testing in air, as discussed 
throughout the paper, and the predicted loss after it is minimized. Fresnel reflection is taken as 
the theoretical value, while taper, base and backplane losses are computed from measurement
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Table 6. Total efficiency (%) of coupling light from the Capella to the longest optrodes 
with varying fiber core sizes. Output power from the optrode tips is listed for a Capella 
emitting 5 W. For the 105-ym fiber, the overall efficiency and output power are estimated 
at X =  1550 nm.

Core Diameter 
(ym)

Laser-Fiber
Efficiency

Optrode Efficiency 
at 1875 (1550) nm

Overall
Efficiency

Output Power 
(mW)

100 6 ---- (33.0) (1.98) (99)
200 25.6 18.2 (20.0) 4.66 233
400 94 10.2 (11.8) 9.59 480

results from the integrating sphere with respect to the power entering the silicon. Antireflective 
coatings will eliminate the input and output Fresnel losses, while better in-coupling via lenses 
to collimate or focus the light into the effective aperture of the shank will reduce the backplane 
and base losses; note that the use of single-mode coupling fibers would in principle allow better 
control over the input beam properties. Taper losses and TIR within the tips may be reduced 
with more efficient shank and tip design, although there may be tradeoffs between optical per
formance and probe insertion properties. Ray tracing simulations will aid in studying alternative 
tip shapes. With tip losses minimized only by means of an AR layer and assuming the worst 
case improvement by taking a 31% Fresnel reflectance at the tip interface (i.e., Si-Air), the total 
laser to optrode transmission efficiency may be improved to a maximum of 64% given a laser 
source with aperture of <100 ym .

Table 7. Expected normalized power loss of the longest optrode when using a 50-ym input
fiber with loss-minimization techniques. Optimizing tip shape is not yet considered.

Current Solution Expected
Loss Loss

Input interface 0.13 AR coating ^0
Backplane radiation ^0 focus/collimate ~  0
Base radiation 0.05 focus/collimate ^0
Taper radiation 0.03 remove taper ^0
Tip losses 0.54 AR coating 0.36
Total 0.62 0.36

6. Conclusion

A neural interface for deep-tissue IR stimulation has been designed and tested. The Utah Slant 
Optrode Array, consisting of 10 x 10 varying length microneedle waveguides, was fabricated 
based on electrode array processing with key features altered to facilitate light transmission in
stead. Output power was measured from the optrode tips under various settings to characterize 
transmission efficiency; the optrodes exhibited losses from Fresnel reflection, mode coupling, 
radiation due to the tapered geometry and total internal reflection in the tips. Fresnel loss at 
the in-coupling interface contributed an independent reduction in transmittance, which is small 
compared to other loss mechanisms. Only coupling loss from a 400-ym fiber is significant, but 
light interactions with the base sidewall from using larger fibers cause more taper losses. Taper 
losses increased with shorter optrodes in accordance to the CMT model. Scattering loss is in
cluded in taper loss, but is deemed insignificant. In addition to the output power measurements, 
the effect of the optrode taper on the loss was established with beam profiling, where it was 
evident that power loss and divergence is greater for shorter, more tapered optrodes. With a
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100-^m fiber delivering 1550-nm light to the optrode, the beam width at the tip is about 55 ^m 
and diverges in the far-field at a full angle of 17°. The majority of the system loss for smaller 
input fibers is attributed to tip losses, which includes both Fresnel and total internal reflection.

Similar tests were performed with more direct relevance to physiological studies using the 
Capella laser. The coupling losses from the laser to fibers of smaller than 400-^m diameter 
dominate the overall system loss, overcoming the gain in fiber to optrode coupling efficiency 
offered by the smaller diameter fibers. A maximum system efficiency of only about 10% is 
obtained with the 400-^m fiber. Greater system efficiencies can be obtained using light sources 
with effective emission apertures smaller than 400 ̂ m.

Improvements such as AR coating, focusing/collimating the input beams and removing the 
taper will increase the efficiency of the optrode array to a maximum of 64%. Taking into account 
the actual (i.e., higher) reflectance loss inside the tips and redesigning the tip shape will yield 
even higher efficiency values.
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Abstract: This paper presents optical characterization of a first-generation 
SiO2 optrode array as a set of penetrating waveguides for both optogenetic 
and infrared (IR) neural stimulation. Fused silica and quartz discs of 3-mm 
thickness and 50-mm diameter were micromachined to yield 10 x 10 arrays 
of up to 2-mm long optrodes at a 400-^m pitch; array size, length and 
spacing may be varied along with the width and tip angle. Light delivery 
and loss mechanisms through these glass optrodes were characterized. 
Light in-coupling techniques include using optical fibers and collimated 
beams. Losses involve Fresnel reflection, coupling, scattering and total 
internal reflection in the tips. Transmission efficiency was constant in the 
visible and near-IR range, with the highest value measured as 71% using a 
50-^m multi-mode in-coupling fiber butt-coupled to the backplane of the 
device. Transmittance and output beam profiles of optrodes with different 
geometries was investigated. Length and tip angle do not affect the amount 
of output power, but optrode width and tip angle influence the beam size and 
divergence independently. Finally, array insertion in tissue was performed 
to demonstrate its robustness for optical access in deep tissue.
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1. Introduction

Optical methods are well established in the fields of neuroscience, medical imaging and diag
nostics, etc. Optogentics, for example, despite being a nascent field of study, was named the 
’’Method of the Year 2010” by Nature Methods. Optogenetics is an approach to trigger gain 
or loss of function of explicit events in specific cells in tissue with temporal precision in the 
millisecond-scale, which is achieved through the use of light-sensitive control tools that may be 
targeted by gene delivery [1]. The control tools are mainly light-gated ion channels in the mi
crobial opsin family; microbial opsins characterized for optogenetics include channelrodopsin- 
2 (ChR2; responsive to blue light for neuronal excitation), halorhodopsin (NpHR; responsive to 
yellow light for inhibition), channelrhodopsin from Volvox carteri (VChR; activated by green 
light), and ChR2 chimeras [2-5]. Optogenetics was first demonstrated using ChR2 in scattered 
hippocampal neurons in mammalian brain; non-invasive delivery of brief pulses of blue light 
prompted neuronal depolarization at the resolution of single spikes [6]. Similar experiments 
validating optogenetic induction of action potentials and control of synaptic transmission fol
lowed [7- 9].
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A method of optical excitation without requiring genetic manipulation is infrared neural 
stimulation (INS), where IR is applied as input energy. Like all other optical stimulation tech
niques, INS does not produce signal artifacts in electrical recordings due to the absence of 
direct charge injection [10]. Nerve stimulation with infrared light at 1064 nm was demon
strated in Aplysia in 1971 [11], but INS was first systematically analyzed in 2005 using rat 
sciatic nerve [10, 12]. In these experiments, a laser-coupled 600-^m optical fiber emitted a 
pulsed laser beam on a single spot on the sciatic nerve surface. Stimulation and ablation fluence 
thresholds were determined for several wavelengths between 2.1 and 6.1 ^m; wavelengths with 
lower absorption coefficients had larger safety margins, while those having high absorption 
only stimulated at energies above the damage threshold. Other applications (e.g., stimulation 
of the cochlea, embryonic heart pacing) emerged using non-contact delivery of pulsed light via 
fibers as well [13-16]. Wavelengths of ^1.87 and 2.12^m, which exhibit similar absorption 
characteristics, have been extensively used across different applications, but other types of tis
sue may require different wavelengths for optimal stimulation such that the optical penetration 
depth is matched to the targeted excitable tissue. INS is believed to act via the induction of 
a spatio-temporal heat gradient in tissue [17], although the underlying physiological mecha
nism is still under investigation [18]. Infared-triggered temperature changes have been demon
strated to activate thermal transient receptor potential (TRP) ion channels [19], which can be 
genetically targeted to perform thermogenetic stimulation (similar to rhodopsins for optoge- 
netic stimulation); these TRP channels are ~  1000x more sensitive than optogenetic tools (i.e., 
lower expression levels required) and have mainly been useful in the study of the relationship 
between specific neuronal activation to behavioral outputs in fruit flies, which does not require 
high temporal resolution [20- 22].

For highly effective optical stimulation, development of light delivery techniques is nec
essary to further effect deep tissue targets, utilize lower input energy and provide different 
spatio-temporal activation patterns; likely solutions include tissue penetration and use of more 
than one light guide or source during stimulation. In separate studies, light from an Argon 
laser projected through a digital micro-mirror device (DMD) and an array of high power micro 
light-emitting diodes (micro-LED) generated patterned excitation of neuronal slices expressing 
ChR2 [23,24]. Still, these patterns were incident on the sample surface. The intrinsic tissue 
absorption and scattering limit light penetration to ~  1 mm and require higher energies at the 
surface to maintain threshold stimulation levels within the target volume underneath. Research 
with the mammalian brain with illumination at X = 473 on the brain surface from a 100-^m 
fiber of 0.22 NA estimates that the irradiance decreases rapidly to 10% of the value on the sur
face within only 300 ̂ m  depth [25]. Fig. 1 plots a typical tissue attenuation spectrum, which 
is the combined scattering and absorption. Scattering is typically described by a combination 
of Rayleigh and Mie scattering; Rayleigh scattering scales as 1/X4, while the scaling of Mie 
scattering is generally inverse with wavelength, with the power determined by the effective par
ticle size. Tissue absorption is dominated by amino acids, nucleic acids, and fats below 450-nm 
wavelength, while absorption is dominated by (oxy)hemoglobin and melanin between 450 and 
700 nm; beyond about 1400 nm, the dominant chromophore is water [26]. Overall, scattering 
dictates the light transport for wavelengths in the visible range, while water absorption prevails 
in the infrared. Although wavelengths in the near-IR window of 650-950 nm have been used in 
imaging to reach centimeters below the tissue surface due to very low absorption, the dominant 
scattering effect makes the detected signal at those depths very weak; spatial and temporal in
formation about tissue activity and composition can still be determined as the techinique relies 
on variations in absorption and scattering within the volume [27]. This method, which is statis
tically modeled as a diffusion process, cannot be applied in optical stimulation mainly due to 
two reasons: (1) the wavelength range is not suitable for either optogenetics and INS, and (2)
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most results are gathered from scattering data whereas the intensity of light concentrated in a 
defined area is of interest in optical stimulation. Indeed, higher light intensity incident on cells 
expressing channelrhodopsin variants result in higher levels of action potential recordings [5]. 
Results of extraneural INS also reveal that effective stimulation in tissue requires wavelengths at 
relative valleys of the absorption spectrum; wavelengths having approximately zero penetration 
depths easily created nerve damage with threshold stimulation fluence, and wavelengths with 
very low absorption (i.e., absolute valleys in the spectrum) will likely fail to deliver sufficient 
amounts of energy to evoke a response [12].

Total Attenuation 

Scattering 

W aterAbsorption 

Melanin Absorption 

Hemoglobin Absorption

Wavelength (nm)

Fig. 1. Tissue attenuation spectrum. Light transport of wavelengths in the visible range is 
more strongly affected by scattering, while absorption is dominant in the infrared. Pene
tration depth (i.e., depth where intensity falls to 1 /e of surface value) is limited to about 
1 mm.

To circumvent tissue attenuation, penetrating optical probes have been designed. In the field 
of optogenetics, visible light has most commonly been delivered in vivo via a single laser- 
coupled optical fiber [28]. A 200-^m multimode fiber inserted through a cannula guide has 
been used for photostimulation of deep brain structures in freely moving mice [29-31]. For 
simultaneous awake stimulation and recording, an optical fiber through a zirconia ferrule was 
attached to a microwire array [32]. Similar commercially available optical probe packages, such 
as those from NeuroNexus (50 or 105-^m core fiber attached to a linear silicon probe with 16 
electrical recording sites) [33], and an optetrode consisting of four microwires surrounding 
a multimode optical fiber [34] were also utilized successfully. Use of tapered optical fibers 
has been reported as well. A sharpened 50-^m fiber coated with gold was inserted in mouse 
brain slices to trigger localized epileptiform events; the same optrode was later integrated into 
a recording silicon multi-electrode array, replacing the center electrode for optical excitation 
of cells in a single cortical site [35,36]. To provide 2D spatio-temporal control over multiple 
sites, tapered fibers were glued to a linear array of 4 or 8 commercially available planar silicon 
probes [37], which are an alternative to tungsten electrodes utilized in similar studies [38]. Ex
periments with ChR2-transfected rat hippocampus using these 2D arrays demonstrated multiple 
local stimulation with extensive recording of neurons. Optical and spatiotemporal stimulation 
characteristics of a 2D array of diode-coupled 50-^m tapered fibers in freely moving rat was 
presented as well [39]. Multi-site stimulation using a microfabricated multiwaveguide probe 
has also been proposed [40]. The device consists of parallel independent single-mode rect
angular waveguides of silicon oxynitride core and oxide cladding that converge into a single 
probe; the paths end at different target depths along the probe axis and side-fires using a corner 
aluminum mirror. Transmission efficiencies are in the range of 23 to 33% as determined from 
bench testing.

For INS, a microfabricated 3D silicon waveguide array has been characterized [41,42]. The 
10 x 10 array has tapered microneedles with lengths varying in one direction from 0.5 mm to
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1.5 mm in a 400-im pitch. Its architecture provides intrafascicular access across the width and 
depth of the peripheral nerve. Light input from an optical fiber was coupled to the backside 
and output was recorded from the tips. Normalized output power ranged from 0.23 to 0.35 with 
longer optrodes performing at higher efficiencies; output beams had a nominal beam width and 
far-field full-angle divergence of 55 im  and 17°, respectively [41]. Despite the low efficiency, 
optrodes were able to stimulate responses in cat sciatic nerve [43]. Different optrodes activated 
different muscles and exhibited selectivity between different muscles innervated by different 
nerve branches (e.g. tibialis anterior and gastrocnemius (MG/LG)), between different muscles 
innervated by the same nerve branch (e.g. MG/LG and soleus (SOL) from the tibial nerve) 
and between presumed same nerve fascicle (e.g. MG and SOL). Comparable within-branch 
selectivity has not been reported for extraneural INS.

In this paper, we present a first-generation 3D glass penetrating waveguide array, which can 
be used for both optogenetics and INS for high-channel count patterned stimulation of indepen
dent neuron subpopulations. Two-level stimulation and flood illumination of multiple optrodes 
with overlapping output beams to effect a wider plane in tissue is possible as well. With these 
SiO2 optrode arrays, nearly all modes of optical excitation (e.g., visible, infrared, multi-photon 
excitation) can be achieved with the penetration depth determined by the optrode length and 
not by wavelength. The device has application in basic and applied neuroscience research (e.g., 
studying information processing, neural control prosthetics), as well as in highly selective pho
todynamic therapy and deep tissue imaging for diagnostics and therapy. Detailed characteri
zation of the optrode array is reported in this work. Note that optrode design features such as 
length, width, tip angle and spacing can be modified to suit a specific application.

2. Glass optrode array

The SiO2 optrode array described in this paper consists of waveguide probes of constant length 
in a 10 x 10 grid with a 400-im pitch. The optrodes, which have been fabricated in lengths 
ranging from 0.5 to 2-mm, are rectangular columns with pyramidal tips. The array is set upon 
a 1-mm thick backplane. Fig. 2 shows scanning electron micrographs of the glass array. Each 
optrode receives light from an aligned light source (e.g., edge-coupled optical fiber, collimated 
beam) to the backside; optrode tips emit light that is locally delivered to tissue. The backplane 
in between optrodes may also allow light to pass through for shallower targets.

(a) (b) (c)

Fig. 2. SEM image of a 3D optrode array made from glass. (a) 10x10 rows of 1.5-mm 
long and 150-im  wide optrodes. (b) Profile of optrode geometry. (c) Definition of optrode 
sections along path of light propagation: 1-mm backplane, base extending 100 i m  into 
straight-edge shank and 120-im  long linearly tapered tip.
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2.1. Fabrication

Fabrication of these 3D glass arrays rely heavily on bulk-micromachining. Glass (fused silica or 
quartz) wafers with 3-mm thickness and 50-mm diameter are used as substrates; such material 
allows transmission of wavelengths both within the visible spectrum and the near-IR range. 
One wafer yields 23 arrays.

2.1.1. Tip formation

The tips were formed using a Disco DAD 640 dicing saw with a bevel blade. The blade is 
essentially a v-shaped blade with its vertex clipped into a flat that separates the bevels. The 
angle of the bevel defines the tip taper angle (i.e., angle of taper with respect to the optical 
axis). Shallow cuts spaced 400 fAm apart (i.e. optrode spacing) were made on the wafer surface 
in orthogonal directions; each cut creates a face of the pyramidal tip on two adjacent optrodes. 
Fig. 3 shows the initial array structure after bevel dicing. Here, each face of the pyramidal tip 
tapers off at 45°.

(a) (b)
Fig. 3. Array after bevel dicing (a) to form pyramidal tips (b).

Note that the tips of these glass optrodes were shaped with dicing rather than the etching 
technique in silicon optrodes fabrication [41,44]. Etching silicon can be a diffusion-limited 
process; as the etching reaction proceeds, the byproducts impede the etchant interaction with 
the shank surface within the array such that the more exposed column tips are preferentially 
etched. In glass however, the much slower etch rate (one-tenth of the Si etch rate) creates a 
reaction-limited process that uniformly etches the optrode along its length and thus does not 
sharpen the tips.

2.1.2. Shank dicing

The shanks were then defined by column dicing; deep kerfs were made in between the pyramids 
to create rectangular pillars. An extra row on all sides of each array is placed to maintain 
uniformity in optrode geometry within the 10x10 grid during subsequent wet etching. The 
average column width after dicing was 240±15^m. The resulting optrode architecture consists 
of a pyramid atop a rectangular shank, as pictured in Fig. 4.

2.1.3. Etching

Etching the arrays thins the shanks. The dynamic etching technique of the Utah Electrode Ar
ray was adapted [44]. The glass wafer was secured with wax onto a Teflon sheet, which was 
screwed on a Teflon base plate. The wafer was then immersed with columns facing down into 
1500 ml of 49% HF; the wafer was rotated clockwise at (22 rpm) at the same time a magnetic
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(a) (b) (c)

Fig. 4. Shank formation. Array after column dicing (a) has optrodes with pyramidal tips 
atop rectangular shanks (b). Array after etching (c) has thinner optrodes with the same 
shape as before.

stirrer in the solution was propelled counter-clockwise (500 rpm). The stirring action allow the 
continuous, aggresive etching of the high aspect ratio optrodes that minimizes surface scallop
ing by preventing the accumulation of the byproducts that tend to precipitate on the sidewalls. 
The etch rate is about 2.5 jum/min at room temperature. Fig. 4(a) shows the thinned optrodes 
having the same shape as before etching.

2.1.4. Annealing

The wafer was annealed at 1150°C for 6 hours to further reduce surface roughness of the shanks 
that resulted from both dicing and etching [45]. Surface roughness must be minimized to avoid 
significant scattering loss for light transmission. Annealing also relieves internal stresses in 
the glass. Fig. 5 shows a sample glass surface before and after annealing; etching produces 
the scalloping, which is greatly reduced by subjecting the arrays to the anneal temperature 
at extended hold times. The resulting RMS surface roughness was measured by atomic force 
microscopy (AFM) as 22 nm.

Fig. 5. Side-by-side comparison of same glass surface after dicing and HF wet etching (a), 
and subsequently after annealing (b) to reduce surface roughness. RMS surface roughness 
after annealing is measured as 22 nm by AFM.

2.1.5. Singulation

The extra rows acting as sacrificial features were diced out using a resin blade to yield 10 x 10 
arrays. Individual arrays were finally separated from the wafer by dicing through the backside. 
Fig. 2(a) shows a singulated array.
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3. Theoretical loss mechanisms

System losses in the optrode are expected to include Fresnel reflectance (R), coupling, back- 
reflection and scattering. Reflection inside the optrode tips is suspected to be the dominant 
loss mechanism, especially since the tapered tip of silicon optrodes has been determined as the 
major contributor of loss in silicon arrays [41]. Fig. 6 shows where each type of loss occurs. 
The source power Pin reduces to P'in by the transmittance Ti =  (1 — R) upon entering the glass 
backplane. The power exiting the optrode tips is Pout. Pback and Pbase are radiation losses that 
constitute part of the coupling loss; the power coupled into the shanks is Pcoupied. Pref  is the 
lump sum of reflected power towards the source from all sections within the device, while Pscat 
is the scattering loss due to the sidewall roughness. Absorption loss is assumed negligible. The 
variables are related through

Pin X (1 — Ri) =  Pin = Pback +  Pbase +  Pout +  Pref +  Pscat •

The glass optrodes do not suffer from radiation loss through the shanks unlike tapered silicon 
optrodes [41]. Consequently, glass optrodes of different lengths are expected to exhibit the same 
transmission efficiency because there is no taper slope difference to consider.

out

Fig. 6. Loss mechanisms within the glass optrode include Fresnel reflectance (Ri/o), cou
pling, backreflection and scattering.

3.1. Fresnel reflections

Refractive index contrast between the array and the surrounding medium (e.g., air, tissue) re
sults in Fresnel reflection at the optrode backside and tip (i.e., input and output interfaces). 
Table 1 lists relevant refractive indices (n) at visible and near-IR wavelengths. Although an 
in-coupling optical fiber closely matches the index of the glass array, it leaves an air gap junc
tion with the array backside during edge-coupling; the gap forms a double interface that suffers 
from a larger Fresnel reflection loss. Table 2 shows approximate reflectance values as computed 
from

R = (  (1)yn1 +  n2 J

and
Reff =  1 — (1 — R1) (1 — R2) =  R1 +  R2 — R1R2

for single and double interfaces, respectively. Variables n1 and n2 are the refractive indices on 
either side of the interfaces, while R 1 and R2 are determined from Eq. 1. As computed, the loss 
due to Fresnel reflection is relatively small and may further be reduced with the use of index 
matching fluid at the input side to fill the air gap.
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Table 1. Refractive Indices at Visible and Near-IR Wavelengths.
Material nvisible nnear-IR Reference
Air 1.00 1.00
Fused silica (optrode/fiber) 1.46 1.44 [46]
Quartz (optrode) 1.54 1.52 [46]
Index matching fluid 1.45 1.44 [47]
Tissue 1.36 1.36 [48]

Table 2. Nominal Reflectance at Interfaces
Interface Reflectance (R) Transmittance (1-R)
Fiber - Air - Optrode 0.065 0.935
Fiber - Index fluid - Optrode 0.001 0.999
Optrode - Tissue 0.004 0.996
Optrode - Air 0.034 0.966

3.2. Coupling loss

Mismatch and misalignment between the optical source and the optrode waveguide result in 
coupling losses. Mismatch is considered an intrinsic loss caused by differences in core cross
sectional area (A) and numerical aperture (NA); the coupling efficiency (n) accounting for these 
losses are presented in most textbooks in fiber optics [49]. For a fiber coupled to an optrode for 
instance,

A o

and

where the subscripts O and F  indicate the optrode and fiber, respectively. Misalignment arises as 
an extrinsic loss from lateral and angular displacement as well as end separation. Using lenses 
may couple more light into the optrode, but bench testing results in this paper were extracted 
by direct-coupling the source to the optrode for simplicity.

3.3. Scattering

Surface scattering may also contribute to transmission losses within the optrode. The amplitude 
and the spatial periodicity of the sidewall roughness after dicing and etching cannot be com
pletely eliminated by annealing and thus may attenuate guided mode propagation due to light 
scattering. The concept of total integrated scatter (TIS) mathematically models the total amount 
of light scattered by a surface from a single reflection as [50]

TIS = R  1 -  exp
f  4 n a  ■ cos(Oi)' 2l (4)

where R is the theoretical surface reflectance (100% under total internal reflection conditions), 
a  is the RMS surface roughness, 9i is the incidence angle of the ray with respect to the normal of 
the surface, and X is the wavelength. This equation suggests that: reflective surfaces inherently 
scatter more light, shorter wavelengths scatter more than longer wavelengths, and maximum 
scattering occurs when light strikes the surface at normal incidence.
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TIS will accumulate based on the total number of reflections experienced during propagation, 
which may be estimated for a meridional ray in a straight waveguide as

Nr
L

t ■ COt(dm)’’
(5)

where L is the length of the waveguide, t is its thickness, and dm = 90° -  di is the ray propa
gation angle with respect to the optical axis. For a ~  100 micron-sized waveguide, the number 
of reflections is limited; smooth sidewalls then contribute to little surface scattering. However, 
when inserted into tissue, inhomogeneity at the optrode-tissue interface will contribute to addi
tional scattering loss.

3.4. Total internal reflection in the tips

With the use of smaller fibers from which a large fraction of the light will be coupled into the 
shank, backreflected power is expected to come from the tips (additional backreflection will 
result from the backplane and the base when using larger diameter beams). Due to the tapered 
geometry of the tips, not all rays will be able to exit and instead reflect back towards the source. 
The angle of total internal reflection (TIR) for the glass-air interface is about 40°.

4. Optical characterization results and discussion

Output from the optrode tips was measured and profiled in air. In most measurements, a single 
bare fiber was mechanically aligned to the array backside through an intervening medium of 
n «  1.45; the matching index medium eliminates the air gap (i.e., reflection losses) resulting 
from the fiber being only in contact with (i.e., not attached to) the array. The fiber is moved 
from one optrode to the next across the array, with the optrode tips inserted through aluminum 
foil, as shown in Fig. 7(a); the foil blocks radiation and scattering from the shank, base and 
backplane. Fig. 7(b) is a similar setup, except the foil is brought up to the backplane to ex
pose the shanks during the measurements; this allows collection of any scattered light from the 
shank. Power from collimated beams was also coupled into the optrode shanks, but transmission 
through the backplane in between optrodes was assessed by removing the foil, as illustrated in 
Fig. 7(c). Three fiber-coupled lasers at wavelengths 640 nm, 1550 nm and 1875 nm, and a white 
light source provided the optical input. Planar photodetectors, an integrating sphere or a beam 
profiler collected the output in various experimental setups. Output power is normalized with 
respect to the power of the beam incident on the optrode backside.

colli mated beam

(c)
Fig. 7. Experimental Setup. (a) Determining output power and beam profile from optrode 
tips using in-coupling fibers. (b) Determining output power from optrode shanks and tips 
using in-coupling fibers to estimate shank losses. (c) Measuring transmission through op
trode tips and array backplane using a collimated beam.
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Fused silica fibers with 0.22 NA and core diameters 50, 105, 200 and 400^m  coupled the opti
cal source to optrodes having 150-^m wide, 1.5-mm long shanks and 45° tip taper. The setup in 
Fig. 7(a) was first utilized. Transmission about the visible spectrum (e.g., 375 - 750 nm) through 
the optrodes was quantified by using a broadband light source as input and an integrating sphere 
attached to a spectrometer as readout interface. Discrete wavelengths were also transmitted and 
the power emitted by the optrode tip was measured with corresponding photodetectors posi
tioned normal to the optrode shank. Fig. 8 plots the resulting normalized output power from the 
tips with using different in-coupling fibers. The highest transmission attained is about 71% for 
fiber sizes less than the shank cross-sectional area. The scaling down of the output power with 
larger fibers follows the fraction of Eq. 2, which puts a limit on the amount of power coupled 
into the shanks from the incident beam. The optrode arrays transmit the spectrum from visible 
to near-IR approximately with the same efficiency. Note that optrodes implanted in tissue are 
likely to exhibit a slightly higher efficiency as the lower refractive index mismatch causes a 
decrease in output Fresnel reflectance and an increase in the critical angle to allow more power 
to exit out the tips.

4.1. Coupling from different fiber sizes

Wavelength (nm)

Wavelength (nm)
(b)

Fig. 8. Transmission of a broadband light source and several discrete wavelengths through 
the optrodes (150-^m wide, 1.5-mm long shanks and 45° tip taper). In-coupling fibers of 
different core sizes with 0.22 NA were used. Optrode output from only the tips (a) and 
from both shanks and tips (b) was measured relative to power from fiber.

#174062 - $15.00 USD Received 9 Aug 2012; revised 18 Oct 2012; accepted 23 Oct 2012; published 1 Nov 2012
(C) 2012 OSA 1 December 2012 / Vol. 3, No. 12 / BIOMEDICAL OPTICS EXPRESS 3098



8 9

Normalized output power from both optrode shanks and tips are plotted in Fig. 7(b) to de
termine shank losses from either radiation or scattering; any additional power measured in this 
configuration with respect to the results in Fig. 8(a) constitutes the shank loss. Comparison re
veals that the difference between the data points of Fig. 8(a) and (b) is 0.002 (on the 0 to 1 scale) 
on average, suggesting negligible radiation and scattering from the optrode shanks. Radiation 
from the shanks is not expected since the shanks are not tapered; scattering is established as 
an insignificant loss, especially upon consideration of the optrode lengths in use (i.e., less than 
1 cm propagation).

4.2. Illumination with a collimated beam

Instead of delivering light in smaller beams via fibers, a 4-mm wide collimated beam was used 
to shine light on the entire array backside in the setup of Fig. 7(a) to evaluate potential use 
of flood illumination with matrix switching (e.g, DMD, LCD) [51, 52]. To simplify testing, 
apertures were used to allow light through a localized area. Fig. 9(a) shows the power of the 
visible spectrum from the optrode tips normalized to the power of the beam out of the aperture 
as measured with an integrating sphere; the 2-mm aperture coupled light into 25 optrodes, 
while only 4 optrodes were illuminated with the use of a 1-mm aperture. Regardless of how 
many optrodes were illuminated, the efficiency remains the same. Note that if there were only 
one flood light as source, and optrodes were selected for transmission using a spatial light 
modulator, the efficiency would be the same except that the total output power would be less 
due to parts of the input beam being blocked.

S- 0.15-
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4  m m  
2 m m  
1 m m

T I I
525 600

Wavelength (nm) 
(a)

T 1

0) 0.9

O 0.8
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0 .6  -  

0.5 -  

0.4 -  

0.3 
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e r t  re 
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1 m m

nTi r
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(b)

Fig. 9. Transmission of a broadband light source through optrodes (150-um wide, 1.5
mm long shanks and 45° tip taper). A 4-mm wide collimated beam was used as input and 
restricted with apertures of different diameters. Light from optrode tips (a) and through 
backplane (b) were measured relative to the beam power through the aperture.

Due to interest in multilevel excitation, the transmission through the backplane was meas
ured as it may deposit light in a shallow region of tissue near the surface. Fig. 9(b) plots the 
normalized transmitted power from the backplane alone, which was calculated by measuring 
the output power using the setup of Fig. 7(c) (i.e., array without blocker foil) and substracting 
the results of Fig. 9(a). Since light scattering from the shanks is negligible, as verified by the 
results in section 4.1, the additional power detected when the foil is removed is due almost en
tirely to transmission through the backplane. More power passes through the backplane than the 
tips as the interstitial space of the backplane occupies a greater area in the array. Futhermore, 
TIR does not occur at the backplane-air interface.
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Geometrical features of a single optrode are its width, length and tip taper angle. To test the 
effect of the optrode geometry on its transmission, the setup in Fig. 7(a) was utilized with a 
50-^m fiber coupling the white light source or single wavelength lasers to the optrodes. From 
the results discussed in section 4.1, it is evident that a change in the shank width, much like a 
change in fiber size, will scale the normalized output power from the tips according to Eq. 2. 
Thus, less power can be coupled into a narrower optrode shank and less output power will 
be measured consequently. For shanks having larger cross-sectional areas than the fiber core, 
output power is the same; for instance, a 95-^m wide optrode outputs the same amount of 
power as a 150-^m wide shank when using a 50-^m in-coupling fiber, as shown in Fig. 10 
On the other hand, shank length does not affect transmission efficiency, as corroborated by the 
results in Fig. 10; this also supports the absence of scattering within and radiation out of the 
optrode shanks. Optrodes with a 45° tip taper of lengths (L) 0.5, 1.0, 1.5 and 2.0 mm were 
used. The normalized output power remains constant with varying optrode length because the 
shanks are straight and retain total internal reflection with negligible losses; this characteristic 
is contrary to that of tapered silicon optrode shanks, where the length defines the taper and 
ultimately determines the efficiency [41]. Lastly, the influence of the tip taper angle (0) on the 
output power was observed. Fig. 11 shows tips with a taper angle of 45° and 30°. There was 
no conclusive difference between the results from 30° and the 45° tips. Although more rays 
theoretically undergo TIR in the sharper 30° tips, not all of these rays contribute to losses; 
some rays instead refract out through side firing as discussed in section 4.5.

4.3. Transmission vs. optrode geometry

o
CL
4—13
£-
o
TD<U.N
"fl3

O

Wavelength (nm)
Fig. 10. Transmission of a broadband light source and several discrete wavelengths through 
the optrodes of varying length L, tip taper angle 0 and width W . 50-^m core in-coupling 
fiber with 0.22 NA was used. Output from optrode tips were measured relative to power 
from fiber.

The results, along with those presented in section 4.5, suggests that the optrode width, length 
and tip taper angle are independent variables that may be customized during the fabrication 
process in order to manipulate optical characteristics of the optrode.
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20 um 20 um

(a) (b)
Fig. 11. Optrode tips with 45° (a) and 30° (b) taper angle with respect to the the progation 
direction (i.e., vertical axis). Shank width is 150 um.

4.4. Identifying system losses

From the results of the previous sections, loss at the input side is almost entirely due to coupling. 
Still, 30% of the input power is not transmitted out of the tips when coupling from fibers smaller 
than the shank cross-sectional area; this is true whether the array used for measurement is poked 
through foil or not. This loss is then due to scattering from the shank and/or TIR in the tip.

The experimental results indicate that scattering in the shank is an insignificant source of loss 
for the glass optrode. This is supported by considering Eq. 4. Based upon the NA of the fibers 
used, the largest ray angle with respect to the optical axis is 0m ~  9°. Given the dimensions 
of the optrodes (i.e, width and length), the distance between reflections is about 1 mm for the 
150 um wide shank and 600 um for the 95 um shank; therefore, at most three reflections 
may occur inside the optrode shank. The surface roughness of the optrode measured by the 
AFM is 22 nm, which is relatively smooth for optogenetics and INS wavelengths according 
to the Rayleigh scattering criterion a  < X/(8cosQi). With this a  value, the total integrated 
scatter (TIS) associated with a ray striking the shank sidewall is 0.8% (assuming a wavelength 
X =  475 nm and 0i =  81°). The estimated maximum scattering loss from the shank is then about 
2-3%, which is greater than the experimental estimates. The conclusion is that the dominant loss 
mechanism is the loss of rays transmitting through the tips due to TIR.

4.5. Beam profiling

Output beam profiles were obtained to determine the effective spot size, divergence and excita
tion volume of the light from the optrode tips. Profiles were taken from three sets of optrodes, 
which differ in width (i.e., 95 or 150 um) and/or tip taper angle (i.e., 45 or 30°). Tables 3 and 4 
shows values of parameters characterizing the profiles, which includes the beam width (2W0) at
13.5 % of peak power, far-field full divergence angle (0) and Rayleigh distance (zR). Fibers of 
different core sizes with 0.22 NA were used to couple IR (1550 nm) and red (640 nm) light into 
the optrode backside.

Output beams take a near-Gaussian form much like the power profile shown in Fig. 12 meas
ured from a 150-um wide optrode with 45° tip taper angle using a 105-um in-coupling fiber. 
The optrode width appreciably affects the output beamwidth, which does not change signifi
cantly with tip angle and input wavelength. On the other hand, the output divergence is consis
tent regardless of optrode width, but significantly changes with the tip taper angle. The spatial 
divergence of the same optrode used in Fig. 12 is plotted against the propagation distance along 
the z-plane in Fig. 13; an optrode of the same width but having a 30° tip angle diverges 40° 
more. An advantage of having the 0 = 56° full angle divergence instead of 16° is that light 
can be delivered to a continuous plane at about 150 um depth from the tip when a block of 
optrodes in the array is excited. A lower tip taper angle causes more rays to undergo TIR, and
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Table 3. Output beam width (2W0) in Mm at 13.5% of peak power for different optrode 
geometries (tip taper angle of 45° or 30° and shank width of 95 Mm or 150 Mm) at two 
wavelengths (IR and visible). In-coupling fibers of various core diameters (df) were used.

df
(Mm)

Optrode 2W0
X = 1550nm X = 640nm

45°
95 Mm

45° 
150 Mm

30°
150 M m

45°
95 Mm

45° 
150 Mm

30°
150 M m

50 60 123 118 62 127 119
105 68 122 124 62 125 113
200 73 136 123 63 137 127
400 81 145 123 88 144 121

Table 4. Output beam far-field full angle divergence (0) in ° and Rayleigh range (z r ) in Mm 
for different optrode geometries (tip taper angle of 45° or 30° and shank width of 95 Mm or 
150 ,um) at two wavelengths (IR and visible). In-coupling fibers of various core diameters 
(df) were used.

Optrode 0 ( z r )

X = 1550nm X = 640nm
df 45° 45° 30° 45° 45° 30°

(Mm) 95 M m 150 Mm 150Mm 95 Mm 150 Mm 150 Mm
50 13.7 (245) 16.1 (438) 56.6(119) 16.5 (220) 17.5 (413) 61.3 (111)
105 15.8 (255) 15.5 (462) 55.9 (128) 18.9 (194) 18.7 (388) 57.0(113)
200 16.2 (257) 20.0 (390) 69.1 (102) 19.2(188) 21.0 (372) 76.5 (95)
400 19.9 (233) 20.7 (404) 83.0 (85) 22.7 (224) 22.9 (361) 102.7 (68)

these reflections most likely strike opposite faces of the tip that lead to a greater occurrence of 
side-firing and hence the higher divergence observed. It then follows that the Rayleigh distance 
for the 30° tip is much shorter. The Rayleigh distance represents the distance over which the 
beam width increases by a factor %/2, and, along with the beam width, roughly defines the vol
ume of maximum energy deposition into the tissue (provided that zR is smaller than the tissue 
attenuation length). Because the optrode width only influences the beam width and the tip taper 
angle only modifies the divergence of the beam exiting the tips, these two geometric parame
ters can be set independently of each other to get the desired output beam profile. Note that this 
characteristic is not applicable to the Si optrode as its width and taper are concurrently set by 
the etching process [41].

When comparing the divergence of the IR and red beams, the divergence is slightly increased 
for red. The slightly higher refractive index of glass at shorter wavelengths may explain this ob
servation; the higher refractive index at the input side accompanies a higher angle of refraction 
at the output. In tissue, the beam divergence is expected to be smaller according to Snell’s law 
for both visible and near-IR wavelengths because the refractive index on the output side in
creases to n = 1.34. In addition, the critical angle increases and the output of an optrode with 
30° tip taper may due to light refracted through the first interface, instead of side-firing through 
the second interface due to TIR at the first. Consequently, the beam width may be smaller.

#174062 - $15.00 USD Received 9 Aug 2012; revised 18 Oct 2012; accepted 23 Oct 2012; published 1 Nov 2012
(C) 2012 OSA 1 December 2012 / Vol. 3, No. 12 / BIOMEDICAL OPTICS EXPRESS 3102



93

Fig. 12. Beam profile from 150-um wide optrode with 45° tip taper angle using a 105-um 
in-coupling fiber. Power is relative to peak.

Fig. 13. Changes in beam width with propagation distance from 150-um wide optrodes 
with 45° tapered tips; A=1550 nm was coupled to a 105-um in-coupling fiber of 0.22 NA.

5. Optrode insertion in tissue

The feasibility of using glass optrode arrays for tissue penetration was tested, but only the ease 
of implantation and durability of the arrays were examined (i.e., tissue trauma has not been 
studied with histological data). Three arrays, consisting of 150-um wide and 1.5-mm long 
optrodes with 45° tips, were tested in 2% agarose; the same arrays were later inserted post 
mortem in cat brain (dura removed) and sciatic nerve. Each insertion was repeated at least three 
times. To begin, the array was rested on the surface of the tissue with the tips facing down. Next, 
a pneumatic wand inserter was positioned against the optrode backside, where an impulse of 
force was exerted depending on the desired insertion depth (e.g, 1.5 mm in this case). Fig. 14 
illustrates the wand, insertion setup and the implanted arrays. The arrays penetrated the brain 
and sciative nerve smoothly. However, the curvature of the brain caused difficulty in setting 
the array in position immediately. In addition, a mechanical support (e.g., ruler) underneath 
the sciatic nerve was needed to keep the nerve in place during insertion. The arrays were then 
removed and inspected; the backplane did not fracture and all 100 optrodes were intact after all 
tests. Overall, all arrays were able to withstand the impact of insertion into tissue.

6. Conclusion

First-generation penetrating glass waveguide arrays for optical stimulation (e.g., optogenetics, 
INS) have been designed and tested. SiO2 wafers were used to fabricate a set of arbitrarily- 
sized (e.g., 10 x 10) arrays by dicing, etching and annealing. Optrode spacing, length, width 
and tip angle may be independently altered to obtain varying spatial resolution, depth access, 
output beam width and output divergence, respectively. Output power was measured from the 
optrode tips; fibers of different core sizes were coupled one at a time to an optrode. Input
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(a) (b) (c)
Fig. 14. A pneumatic wand inserter was used to fully implant the optrode arrays into 2%
agarose (a), cat brain (b) and cat sciatic nerve (c). Arrays were intially rested on top of the 
tissue with the tips facing down; optrodes smoothly penetrated tissue. Optrodes are 150-^m 
wide and 1.5-mm long with 45° tips

Fresnel loss with a butt-coupled fiber is computed as 6.5%, but may be eliminated with an 
index-matching medium. The maximum transmission efficiency obtained was approximately 
constant at 70% with a 50-^m or 100-^m fiber for wavelengths in the visible spectrum, at 
1550 nm, and at 1875 nm. About the same level of output power was measured for varying 
optrode length and tip taper angle. The decrease in output power with larger fibers follows the 
limit imposed by coupling efficiency due to area mismatch. As an alternative to in-coupling 
fibers, a 4-mm collimated beam of white light was used as input to determine the feasibility 
of implementing flood illumination with optrode selective switching. Applying the same 4-mm 
beam, transmission through the base was also tested, where majority of the light incident on the 
array backside passes through.

Shank losses were trivial compared to coupling. Taper losses are not present in the optrode 
shank, while scattering is considered insignificant because light travels at a grazing incidence 
along a relatively smooth shank. With an input fiber smaller than the optrode shank, the majority 
of system loss is determined to come from the tips, where total internal reflection towards the 
source dominates over Fresnel loss and scattering. However, total internal reflection may also 
lead to side-firing in less tapered tips such that a wider output beam divergence is observed. The 
beam divergence is much greater for 30° tips, while the beam width is proportional to the shank 
width regardless of tip angle. Using a 105-^m fiber, a 150-^m wide optrode with a 45° tip taper 
emits a X = 1550 nm beam with 122 ̂ m  diameter and 16° far-field full angle divergence.

Repeated optrode insertion in brain and nerve tissue demonstrated the suitability of the arrays 
as a neural interface in terms of depth access and durability. The current efficiency of these glass 
arrays does not leave much room for improvement, except to possibly modify the tip shape and 
apply an anti-reflection layer to the tip surfaces to reduce Fresnel losses.
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CHAPTER 5

DEEP-TISSUE LIGHT DELIVERY VIA 
OPTRODE ARRAYS

We establish performance characteristics of needle-type waveguides in 3D array archi

tectures as light delivery interfaces into deep tissue for applications such as optogenetic and 

infrared neural stim ulation. A single optrode waveguide achieves as high as 90% tran s

mission efficiency, even at tissue depths >1 mm. Throughout the visible and near-infrared 

spectrum , the effective light a ttenuation  through the waveguide is ~3  orders of m agnitude 

smaller than  a ttenuation  in tissue/w ater, as confirmed by both  sim ulation and experimental 

results. Light emission profiles from the optrode tips into tissue were also m easured. Beam 

w idths of 70-150 ^m  and full-angle divergence ranging from 13-40° in tissue can be achieved. 

These beam characteristics satisfy a wide range of requirem ents for targeted illumination 

in neural stim ulation.

5.1 Introduction
Intrinsic absorption and scattering limit the penetration of light w ithin tissue and 

thus places barriers on applications such as optical imaging, diagnostics, and therapy. 

Recently, tools and techniques have been developed for optical neural stim ulation based 

upon visible [1] and infrared (IR) light [2, 3]. Neural stim ulation based on optogenetic 

techniques utilizes light-activated ion channels th a t respond to  visible or two-photon IR 

wavelengths [4]; infrared neural stim ulation (INS) is another m ethod th a t is believed to 

evoke neural signals by heat induced changes in m em brane capacitance [5, 6]. W hen light 

is delivered externally in these applications, tissue a ttenuation  hinders access to  neural 

structures in deeper layers of cortex or subcortical structures of the brain, or the innermost 

regions of large nerves.
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Optical neural stim ulation has gained a lot of interest in the study of neuronal infor

m ation processing, neuroprosthesis, etc. Cell-type specificity (for optogenetics), long-term 

viability and the lack of stimulus artifact are several reasons th a t make optical m ethods 

more appealing th an  electrical-based strategies [2, 7]. Targeted spatiotem poral triggering 

is desired for comprehensive system atic neural activation, as has been dem onstrated with 

the U tah  electrode array for electrical stim ulation [8]. For optical stim ulation, prominent 

neural interfaces either involve single/few probes for deep localized light delivery or micro

LED arrays for spatially-adressed high-resolution patterned  surface illum ination [7, 9, 10]. 

Recently, 3D multiwaveguide arrays combining deep-tissue and increased m ultisite light 

delivery have been reported [11-13]; these devices have yet to  be characterized and tested 

in tissue. Here, we dem onstrate th a t the U tah optrode array devices effectively m itigate the 

optical a ttenuation  by media into which the arrays may be im planted and produce emission 

profiles suitable for neural stim ulation.

5.2 Optrode array architectures
Silicon and fused silica (glass) optrode arrays shown in Figure 5.1 were previously 

m anufactured and bench-tested [11, 12]. Geometrical aspects of the arrays can be tailored 

for specific applications, bu t typical array sizes are 10x10 on a 400 ^m  pitch, with optrode 

widths of about 100 ^m  and lengths ranging from 0.5 mm to  several m m ’s. Based upon 

current fabrication m ethods, glass arrays have constant optrode length w ithin the array, but 

optrodes in silicon arrays can be of constant length or can vary in length along one direction 

(e.g., forming a “slant” array). W hen fabricated with m ethods adopted from electrical 

arrays [14], silicon optrodes are missile-shaped with little design flexibilty. However, modi

fications on this fabrication m ethod were needed for glass optrodes [12], which have square 

shanks with pyram idal tips and can take on any combination of width, length, and tip  angle. 

This modified process can be adapated to  silicon optrodes as well. The light transm ission 

efficiency and profiles projected into air were previously characterized, but these properties 

may change when arrays are im planted in tissue. O ptrode arrays are intended to  circumvent 

a ttenuation  in tissue while delivering spatially-addressable light patterns. Each optrode acts 

as an indepdenent optical waveguide, bu t as currently implemented, these waveguides lack
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(a) (b)

F ig u re  5.1. Micromachined silicon (a) and glass (b) optrode arrays to  facilitate spatial- 
ly-addressable patterned  deep-tissue light delivery.

cladding layers which serve to  reduce interface scattering losses and isolate the guided mode 

from external media. Nevertheless, we show th a t even w ithout a cladding layer, optrodes 

transm it light through tissue with high efficiency. In principle, various optical sources such 

as fiber-coupled lasers, micro-LED arrays, light through spatial light m odulators and lensed 

arrays, and scanning microscopes can be used with these optrode devices.

5.3 Optrodes transmit light through tissue with high 
efficiency

Glass arrays with optrodes of 120 ^m  w idth were im planted in slices of fixed mouse 

brain, fresh mouse brain, frog sciatic nerve, and agarose. The thickness of each slice was 

slightly less than  the length of the optrodes (1.5 mm), such th a t the optrode tips were 

exposed to  air. The tips were then  inserted through alum inum  foil in order to  isolate the 

power em itted from just the tips. W hite light was coupled through the 170 ^m  thick array 

backplane into individual optrodes via a 50 ^m  core, 0.22 NA m ultim ode optical fiber. The 

output power from the tips was captured by an integrating sphere and normalized to  the 

power em itted from the in-coupling fiber alone. Figure 5.2 plots the resulting normalized 

output power from optrodes surrounded by various media. These results dem onstrate th a t 

transm ission is relatively independent of the surrounding tissue optical properties, which 

means th a t light penetration depth is prim arily dictated  by the optrode length. From a 

physiological perspective, the small reduction in the transm ission can be com pensated by 

increasing the source power with minimal risk of tissue damage or spurious stim ulation.
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F ig u re  5.2. Transmission efficiency through optrodes im planted into different tissues and 
phantom s. A 1.5-mm long glass optrode emits ~90%  of the input light through the tip  
nearly independent of the surrounding medium or input wavelength. Each trace is the 
average of transm ission through 10 independent optrodes.

In the absence of penetrating waveguides, light propagation through tissue was previously 

shown to  drastically a ttenuate  w ith depth  and vary w ith wavelength; blue and red light 

through 1 mm-thick mouse brain were shown to  decrease to  8% and 27% of the input 

power, respectively [15].

Although there appear to  be only minor differences among the transm ission m easure

ments, closer analysis reveals th a t the transm ission through the optrodes actually mirrors 

the a ttenuation  spectrum  of the im plantation medium, but w ith 2 to  4 orders of m agnitude 

reduced effect. This is verified by the experim ental measurem ents and sim ulation results 

shown in Figure 5.3. M easurements were taken in the same m anner as in Figure 5.2, but 

normalized to  the transm ission through optrodes in air to  factor out extrinsic losses; a white 

light source and a tunable telecom laser were used for these measurements. Loss predictions 

were performed by considering the fraction of the optical mode power th a t lies outside the 

optrode (i.e., evanescent), and thus can interact w ith tissue; Section 5.3.1 discusses the 

model in detail.

Tissue absorption and scattering leads to  loss; tissue chromophores absorb light and 

scattering occurs due to  mismatches in refractive indices of different tissue components and 

structures. Scattering from the optrode sidewalls due to  surface roughness also adds to 

the attenuation. Nevertheless, the effect of tissue a ttenuation  on light propagation through
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a ttenuation  in tissue/w ater w ithout optrodes is also plotted (right axis). Optrodes reduce 
the effective a ttenuation  of light by tissue by 2-4 orders of m agnitude.
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an optrode is reduced by 2-4 orders m agnitude, as evident in Section 5.3.2. The effect of 

the surrounding medium on light transm ission is much smaller for silicon optrodes because 

the high refractive index of silicon confines more power w ithin the optrode. Even though 

there is some discrepency between the calculated and measured results, there is qualitative 

agreement between the two in th a t features due to  hemoglobin absorption (around 410 nm; 

see Section 5.3.2) are clearly evident, and the scaling of a ttenuation  w ith wavelength due to 

tissue scattering is consistent. Therefore, the model is useful in predicting the a ttenuation  

of light through optrodes in various media, and in predicting the performance of optrodes 

in potential applications of tissue spectroscopy.

5.3.1 M od elin g  op trod e transm ission

In  the analysis, the 2D  waveguide geometry was reduced to  th a t of a symm etric 1D 

slab waveguide in order to  simplify the eigenvalue problem of solving for guided modes. 

For different wavelengths, the confinement factor r  of each guided mode was calculated. 

Reduced attenuation  constants were com puted by m ultiplying the tissue a ttenuation  (i.e., 

combined absoprtion and scattering) by (1 — r ) ;  the maximum expected optrode sidewall 

scattering coefficients [16] were then  added to  derive effective a ttenuation  coefficients (a). 

Optical properties of the optrode m aterials and surrounding media (e.g, refractive index, 

absorption) were m aintained in a look-up table according to  wavelength [17-23]. The frac

tional power em itted w ith each mode was determ ined using Beer-Lam bert’s Law with the 

corresponding a . For tapered silicon optrodes, ray angles along the waveguide continually 

increase after each reflection, creating radiation loss along the taper due to  leaky rays; the 

radiation loss fraction [24] per mode was also deducted from the transm ission. The overall 

transm ission through an optrode is then the weighted average of the modes, calculated 

according to  the source power angular d istribution which determ ines the mode excitation 

distribution.

The angular source distribution is determ ined by m easurem ent results from the actual 

in-coupling optical fiber. The fiber has a 50-^m core diam eter with a m easured numerical 

aperture (NA) of 0.17. The angular d istribution of the input power is modeled as a Gaussian 

in the form
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l o t  e-fc2/ff2 (5.1)

where

and

k =

a

2nnsin9
A

2nNA 
A '

(5.2)

(5.3)

Here, n is the optrode refractive index, 9 is the angle with respect to the optical axis, A is 

the input wavelength and NA is the numerical aperture of the source (i.e., the in-coupling 

fiber in this case). When the appropriate parameters are used, this model approximates 

the measured angular distribution of the actual input. Figure 5.4 shows the model closely 

fitting the measurements in air with input wavelengths of 640 and 1550nm taken at discrete 

angles.

To obtain the normalized output power with respect to the power delivered by the fiber 

(i.e., not to the power entering the optrode), the fraction of power from the source that 

directly couples to leaky rays was subtracted from the overall transmission. All simulation 

results were further normalized to the corresponding calculations in air.
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F ig u re  5.4. Angular distribution of input power from 50-^m in-coupling fiber with a 
measured 0.17 NA. D ata points are measurements with 640 and 1550 nm input wavelengths 
(A) in air; line is Gaussian model used for simulations.
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The predicted optrode sidewall surface scattering coefficient from simulations is plotted 

in Figure 5.5. Scattering is higher for rougher surfaces and greater refractive index contrast; 

glass and silicon optrode sidewalls have 22 nm and 4.4 nm root-mean-square (RMS) surface 

roughness, respectively, as measured by atomic force microscopy. Although the silicon-tissue 

interface has a significantly higher index contrast, the higher surface roughness of glass 

optrode shanks contributes considerably more to scattering. The scattering coefficient also 

decreases with the wavelength, which means tha t more scattering occurs when using shorter 

wavelenghts. Regardless, surface scattering is still negligible compared to the multiple 

scattering and absorption of representative tissue components. The attenuation spectrum 

for mouse brain is also plotted in Figure 5.5 from data in [20-23]. Mouse brain is modeled 

as consisting of water, lipids and hemoglobin, but its attenuation of light is dominated by 

water absorption in the near-infrared. The effective attenuation of light when transm itted 

through optrodes becomes 2-4 orders of magnitude lower, also shown in Figure 5.5; this 

supports both simulation and experimental results, where a larger percentage of light can 

penetrate much deeper in tissue via optrodes.

5.4 Optrode emission profiles fulfill illumination 
requirements for neural stimulation

Emission profiles from the optrodes were reconstructed from output beam images cap

tured by a CCD camera or a beam profiler at varying distances from the tips. Optrode 

arrays implanted into tissue, with tips exposed, were again used, but for these measurements 

the optrode tips were inserted in an additional 100-500 ̂ m  slices of fixed mouse brain, 

from which the 2D spatial power distributions of light at the air interface were imaged. 

For the purposes of optical neural stimulation, we define the illumination volume by the 

volume where the intensity is greater than 1 /e2 of its maximum value at the tip exit. This 

volume necessarily depends on the beam width at the tip, the beam divergence, and tissue 

attenuation.

The beams projected from the optrode tips were assumed to propagate as Gaussian 

beams, where the 2D power profiles measured at different distances from the tip were

5.3.2 A tten u ation  o f light through optrod es in tissu e
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used in fitting the parameters of Gaussian beam propagation. Section 5.4.1 details the 

Gaussian beam properties and output beam reconstruction. Measured data points and 

Gaussian-fit approximations for different wavelengths are shown in Figure 5.6 for three 

sets of optrodes, including silicon and 150-^m wide glass with 45° and 30° (sharper; tip 

half-angle with respect to optical axis) tips. The estimated beam propagation in a lossless 

homogeneous n «  1.36 medium is also plotted in Figure 5.6 (with divergence length zo) for 

reference extrapolated from beam profile measurements in air (beamwidth smaller than the 

measurements in tissue due to tissue scattering). Note that, while the fits are based on data 

only up to depths where measurements were made (400^m maximum depth), extrapolation 

is presumed accurate up to the transport scattering length (1t), where scattering becomes 

truly random. Because tissue components (e.g., cells) are of comparable size to visible-IR 

wavelengths, scattering is mostly in the forward direction; brain tissue scattering length 

(1s; average distance between scattering events) is 50-200 ̂ m  from the blue to NIR range 

and anisotropy (g; amount of forward direction retained) is high at ~0.9, which leads to 

1t =  Is/(1 — g) of 0.5-2 mm [21, 25]. At depths beyond 1t , light intensity is expected to 

diminish drastically, and we truncate the Gaussian fit at that distance (e.g., ~0.5 mm for 

blue and ~0.9 mm for yellow [15]). However, Monte Carlo simulations in tissue, especially in 

mouse brain illuminated by a divergent light source, suggest that light propagation follows 

a Gaussian model (i.e., beam width broadens according to Gaussian propagation) even 

beyond 1t and at depths where normalized intensity falls to <1% [26, 27].

The wider beam and its faster broadening for shorter wavelengths are indications of 

the higher scattering in tissue (also previously observed in Monte Carlo simulations and 

experimental data [15, 26]). The results show tha t 45°-tip glass optrodes provide a more 

uniform illumination volume through the tissue depth with a divergence length about twice 

tha t of the sharper glass optrodes; 30°-tip glass optrodes are suitable for wider and shallower 

illumination. Note that the fabrication method used for glass optrodes enables a high degree 

of customization because the output beam width can be varied independently from the 

divergence by changing the optrode width and tip angle, respectively [12].

We define an effective stimulation volume based upon the exponential intensity decay 

along the lateral and axial directions from the optrode tips. While ultimately determined
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from bench tests in air is also shown in dotted lines (zd labeled as zo).
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by the local intensity compared to the threshold intensity for activation, the maximum 

practical depth of stimulation is approximately the 1/e 2 intensity distance or the transport 

scattering length, whichever is shorter. Beyond this distance, achieving above-threshold 

intensity would require large increases in incident power tha t could cause damage near 

the tip and only lead to marginal increase in stimulation depth. Normalized intensity 

with respect to the tip (i.e., 0 mm distance) at various depths changes with the optrode 

and wavelength used, as shown in Figure 5.6. Notice that a smaller (Si compared with 

45° glass) or more divergent (30° glass compared with 45° glass) incident beam results in a 

greater intensity decay rate, which is consistent with theory. The plots in Figure 5.6 provide 

the beam spread and intensity decay characteristics and the effective stimulation volumes 

summarized in Table 5.1. Beam profile requirements vary by application, but optrodes are 

able to offer various stimulation area and depth combinations; some examples are presented 

in Section 5.4.2.

5.4.1 G aussian beam  reconstruction  o f op trod e o u tp u t beam s

Single mode Gaussian beam propagation follows

with

w(z) =  w o\l 1 +  ( (5.4)

nw0
zo =  ( ), (5.5)

where w  is the radius of the 1/ e 2 contour along the propagation distance z , wo is the beam 

waist (i.e, smallest beam radius at z =  0), z0 is the Rayleigh distance, and A is the operating 

wavelength. Note tha t for a multimode Gaussian-like beam, Equation 5.5 does not strictly 

hold; the “Rayleigh distance” does not necessarily depend on the beam waist, but we refer 

to a divergence length as a multimode analogue to the Rayleigh length, which is the distance 

at which the starting beam width increases by a factor of \ / 2.

From experimental measurements using tissue slices of different thicknessses, the beam 

width at 1 /e2 peak power is extracted from the 2D beam profiles and plotted against the 

propagation distance; data points are then fitted into a Gaussian beam model using wo 

and z0 to project the full-angle divergence. Example 2D profiles imaged in tissue are



T able 5.1. Summary of tip output beam width (2w0) at 13.5 % of peak power, divergence length (zD), divergence angle (0), 1 /e2 intensity 
depth (z]_/e2), and beam width at 1 /e2 intensity depth (w i/e2 ) for transmission of wavelengths of 470, 640 and 1450 nm. Different optrodes 
(tip taper angle of 45° or 30° with 150 ym shank width glass optrode and 1-mm long silicon optrodes) and an in-coupling fiber of 50 ym 
was used. _________________________________________________________________________________________________

A =  470 n m A =  640 nm A = 1450 nm
2wo ZD 0 z1/e2 w1/e2 2wo zD 0 z1/e2 w1/e2 2wo zD 0 z1/e2 w1/e2
ym y m ° y m y m y m y m ° ym ym ym ym ° ym ym

45°
glass 160 548 17 500 210 150 551 16 670 230 140 548 15 720 225

30°
glass 155 230 39 380 290 150 227 38 430 320 140 231 35 660 440

Si 70 300 14 510 140
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shown in Figure 5.7. Further, Figure 5.8 shows the Gaussian-fitted propagation with 

an intensity gradient of 45°-tip glass optrode emission profile for the wavelength 640 nm 

in scattering tissue plotted against both radius and depth of propagation; propagation 

from the same optrode in lossless n ~  1.36 medium is also shown for comparison. The 

intensity maps are derived from the Gaussian-fit beam spreading and the power vs. depth 

measurements plotted in Figure 5.9. The Gaussian approximation of propagation is accurate 

for both lossless and scattering media, but scattering noticeably affects the spatial extent 

of illumination.
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F ig u re  5.8. 2D intensity gradient of 45°-tip glass optrode output along radius and depth 
of propagation in both lossless n «  1.36 medium (a) and scattering tissue (b) at wavelength 
of 640nm. Gaussian-fit propagation is outlined.
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F ig u re  5.9. Power vs. tissue depth for both lossless and scattering media for different 
wavelengths.

5.4.2 P o ten tia l ap p lications o f op trod e arrays across 
exp erim en ta l paradigm s requiring different 

illum ination  volum es and protocols

In-vitro optogenetic experiments have demonstrated action potential firing by illumi

nation of a cell body; a spot as small as 5 ^m  wide can evoke action potential trains, 

but larger spots up to 15 ^m  wide increased the spiking rate, photocurrent, and response 

time [28]. Further widening of the spot can cause additional axonal/dendritic excitation 

by illuminating the soma (i.e., cell body) and surrounding axons/dendrites of the neuron. 

30-^m diameter blue spots were generated from a ^LED array to perform multisite dendritic 

excitation that can sustain spiking for the investigation of physiological information flow in 

hippocampal slices [10]. The capability to control multiple points in the neural network is 

the basis of artificial replication of functional processes. This experiment can be translated 

into an in-vivo paradigm by accessing the hippocampus in intact brain using arrays consist

ing of less divergent thinner optrodes for ~100 micron-sized illumination volumes. Arrays 

may also benefit other studies in in-vivo hippocampus such as the inhibition of epileptiform 

activity by delivering light to the CA1 and CA3 regions, which are 500-1000 ̂ m wide in 

mice [29]. Here however, the larger localized area may need a >1 mm wide spot; arrays with 

micron-wide optrodes are still useful because simultaneous illumination of 30°-tip glass 

optrodes allow an approximately uniform illumination layer inside tissue with adjoining
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profiles from adjacent optrodes. Note that wide-field irradiance is also common in attaining 

conduction threshold levels for optogenetic stimulation of sparse targets.

Many other optogenetic experiments involve the neocortex, which is a highly nonuniform 

3D structure. The neocortex in mammals consists of up to six layers of different neuronal 

subtypes with a total thickness of 0.5 to 1mm in rodents to about 2 mm in primates. The 

neurons in the outermost layers I to III project within the neocortex, while the innermost 

layers V and VI mostly project to the thalamus, brainstem, and spinal cord; however, 

neurons in layer VI receive all sensory information to the neocortex. It is commonly accepted 

tha t these layers are organized in columns, which comprise the basic functional units; 

primates have column diameters of roughly 0.5 mm, to which the optrode array pitch can be 

matched. Cholinergic signaling in the neocortex was studied using optogenetic two-photon 

microscopy in the IR, which only penetrated layers 1-3 [30]. Direct blue irradiation with 

glass optrodes could extend the stimulation depth. In contrast to multilayer coverage, 

stimulation within a single layer is desired such as in exciting and/or inhibiting pyramidal 

cells in layers II/III and V/VI of the visual cortex for outputs to cortical and subcortical 

areas, respectively. These layers are 150-500 ^m thick and lie 200-500 ^m inside the rodent 

neocortex, and ~0.5m m  thick and ~1.5m m  deep into the primate necortex [31]. Optrode 

length can be adjusted to access specific layers for these types of studies, and tip angle can 

be chosen to control stimulation depth.

There are also prominent studies based on highly-selective local firing of peripheral 

nerves for the restoration of sensory/motor control, which is suited for infrared stimulation. 

For example, optical neuroprostheses via the sciatic nerve ideally require simultaneous 

independent access to individual axons. The sciatic nerve ranges in diameter from about 

0.5-2 mm in rodents and 3 mm in cats to 2.5 cm in humans. W ithin the nerve are fas

cicles, which are bundles of axons tha t are 200 to 400 ^m in diameter; each axon has 

~10 ̂ m  diameter. There are multiple fascicles lying hundreds of ^m ’s to mm’s inside the 

nerve. W ithin the nerve, activation of muscle groups can be performed through selective 

stimulation of axons within different fascicles, and activation of specific motor units can 

be obtained through selective stimulation of different axons within the same fascicle. This 

can be achieved with tightly confined beams from thin silicon optrodes of varying lengths
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illuminating different axon groups well inside the nerve [32].

5.5 Conclusions
We established the characteristics of light projection into tissue from microfabricated 

3D neural interface devices designed to enable patterned deep-tissue light delivery. Experi

mental and simulation results support the effectiveness of both glass and silicon optrodes in 

significantly minimizing light attenuation in tissue and providing different spatial profiles of 

emission for diverse optogenetic and infrared stimulation requirements. Optrodes provide 

high-efficiency (up to ~90%) delivery of light to >1m m  tissue depths. The variety of 

possible input sources and optrode geometries provide a custom fit of the output beam to 

the stimulation target volume dictated by the application. These characteristics may be 

estimated using simulation models or even calculations from measurements in air to avoid 

cumbersome tissue tests.
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CHAPTER 6

LIGHT IN-COUPLING THROUGH  
OPTRODE ARRAY NEURAL 

INTERFACES

This paper analyzes the coupling of light into multimode optrodes from a variety of light 

sources and/or in-coupling mechanisms for different expermental paradigms—micron-size 

site-specific light delivery, deep-tissue wide-area illumination, multiwavelength transmis

sion, etc. Optrode arrays were specifically designed for optogenetic and infrared neural 

stimulation, but may find use in other applications such as imaging. Direct fiber, lensed 

and collimated beam in-coupling are examined. Analysis of the dependence of optrode 

transmission efficiency and emission profile on the source or coupling characteristics is 

presented. Optrodes exhibit as high as ~90% transmission efficiency and produce symmetric 

output profiles when in-coupling loss is minimized. Both source and optrode attributes 

influence light transmission. High-efficiency edge-coupling is possible using sources with 

small apertures and optrode arrays with thin backplanes. Coupling through objective lenses 

also achieved ~90% efficiency using arrays with >0.5 mm thick backplanes.

6.1 Introduction
Optrode arrays have been designed, manufactured, and extensively characterized with 

respect to optogenetic and infrared neural stimulation requirements [1-3]. Figure 6.1 shows 

scanning electron micrographs of glass and slanted silicon arrays. These arrays have optrode 

shank width on the ~100 ^m scale and length on the ~1 mm scale. Optrodes are essentially 

penetrating waveguides serving the purpose of efficient localized light delivery into deep 

tissue; multiple optrodes within a 3D array structure facilitate simultaneous independent 

access to deep targets for spatiotemporal pattern transmission. These arrays are amenable
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to integration with a wide variety of light sources and/or coupling mechanisms. Figure 6.2 

illustrates a number of optical sources that may be utilized with optrode arrays.

Optical fibers are currently the most commonly used method for light delivery inside 

the brain [4]. Ease of handling and wide-spread familiarity with fibers in the optical neural 

stimulation community facilitate straightforward attachment to arrays for experiments not 

needing free-range motion of test subjects, but requiring stimulus patterns. Still, one-to-one 

fiber-to-optrode correspondence will only be practical for arrays with few optrodes such that 

mechanical limitations of the fiber bundle do not render subjects motionless.

A common test setup in optogenetics that immobilizes animals in acute preparations 

employs microscopy platforms—scanning, widefield, two-photon, etc. [5]. Like optical fibers, 

microscopes may be operated easily with implanted optrodes to transm it light power deep 

inside tissue. Lensing in general can improve coupling from any light source, and spatial light 

modulators (e.g., digital micromirror device, DMD; liquid crystal display, LCD; acousto- 

optic deflector, AOD) provide opportunities for spatiotemporal patterning when only a 

single source is available.

Most interestingly, wireless devices for chronic in-vivo tests of free-moving animals may 

potentially be accomplished using vertical cavity surface-emitting lasers (VCSELs) or light- 

emitting diodes (LEDs); micro-LEDs (^LED) arrays have already been demonstrated for 

in-vitro patterned optogenetic stimulation via surface illumination [6] and discrete LEDs 

have been integrated with polymer waveguide arrays [7]. Note that the input coupling 

methods mentioned are not mutually exclusive. For instance, a microscope has been used 

with an AOD [8], ^LED array emission has been scaled with lenses [6], and a setup with a 

laser beam directed onto a DMD chip then fed through a microlens array and fiber bundle 

has been implemented [9].

In this work, light in-coupling to optrodes from distinct sources through various mech

anisms are studied to determine conditions for high-efficiency coupling. This includes 

collimated and divergent sources tha t are butt-coupled or lensed into the arrays with 

different geometries. Simulations and experimental results tha t support theoretical analyses 

are also presented.
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(a) (b)

F ig u re  6.1. Scanning electron micrograph of constant-length glass (a) and slanted silicon 
optrode arrays (b). Glass arrays shown are 1.5 mm long and 100 ^m  wide. Silicon arrays 
have optrodes with 0.5 mm to 1.5 mm lengths and ~300 ^m  base diameter; shorter silicon 
optrodes have higher taper slopes.

(a)

(c)
wide-field source

(b)

(d)
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6.2 Theory
Waveguides typically have an inner core section tha t transm its light and a surrounding 

cladding material (Figure 6.3). Depending on the core size and its refractive index contrast 

against the cladding, the waveguide may be single mode or multimode. Modes are the 

unique spatial distributions of optical field allowed in the waveguide. A “V-number” that 

indicates how the waveguide parameters influence the number of modes is defined as V —

(2nh/A0) y  n2ore — n^lad. Here, Ao is the transm itted wavelength, h is the core radius, and 

ncore and nc1ad are the refractive indices of the core and cladding, respectively. A cylindrical 

waveguide with a V-number less than 2.405 is considered single mode; otherwise, more than 

one mode can be transm itted. Optrodes are highly multimoded with V > 50 given the 

relatively large cross-sectional area with respect to the transm itted wavelength and the 

absence of a cladding tha t creates high refractive index contrast against the surrounding 

medium (i.e., tissue). For V > 8, ray optics give accurate results and may be used for 

analyses instead of the more complicated wave theory [10]. The rest of the section gives a 

brief overview of several illumination and coupling techniques discussed mainly from a ray 

optics perspective.

Optrodes are considered step-index waveguides with the “cladding” as the surrounding 

tissue upon implantation. If the optrode backside is directly placed over the source emitting 

region, the coupling mechanism is butt-coupling. Figure 6.3 is a simple illustration of 

imperfect coupling between two step-index waveguides. Coupling loss may arise from a 

mismatch between the core cross-sectional areas of the waveguides. The area of the source 

must be less than or equal to tha t of the receiving waveguide (as < ar ) to avoid loss. 

Otherwise, the maximum coupling efficiency from area as > ar mismatch alone is [11]

6.2.1 B u tt-cou p lin g  to  step -in d ex  m u ltim od e w aveguides

(6.1)

Waveguides can also only accept or emit light tha t is incident over a limited range of angles 

characterized by the numerical aperture

NA — n,core sin Qna — n core2 (6.2)
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source receiving waveguide

F ig u re  6.3. Possible losses between butt-coupled step-index multimode waveguides: area 
and NA mismatch, refractive index mismatch, misalignment, and end separation.

where 6NA is the half-angle of the acceptance/emission cone, and n core and n ciad are the 

core and cladding refractive indices. Similarly, coupling loss is not incurred if the NA of the 

source is equal or smaller than tha t of the receiving waveguide (N A s < N A r ; emitted cone 

is narrower than acceptance cone). The coupling efficiency when there is only NA mismatch 

is

Fresnel reflection loss also decreases the efficiency in cases where the source and receiving

If a gap is present, this coupling efficiency equation is applied twice to include both source 

and receiving interfaces.

Extrinsic losses from misalignment may be present but may easily be minimized by 

precise mechanical adjustments. In addition to the reflection loss, end separation reduces 

power transfer from diverging light sources due to broadening of the beam from core area 

as to area aS at the receiving interface a distance Ax away. The coupling efficiency in 

Equation 6.1 is then modified to

nNA < (NAr /N A S)2, N A S > N A r . (6.3)

waveguides have different core refractive indices (n) or are not in physical contact. The

efficiency accounting for Fresnel loss when there is physical contact is

(6.4)

(6.5)

Equation 6.1 is corrected for the case of a lateral misalignment A y  to account for only the 

overlapping area between the source and receiving waveguide cores

nlat ars /a s , (6.6)
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where ars is the area of overlap. Lastly, anglular misalignment yields a maximum efficiency 

of

Vang = 1 -  n N A  (6-7)

found by computing the overlap of the transm itting and receiving cones with n 0 as the 

interface medium refractive index and A 0 as the angle between the optical axes.

Note tha t the overall coupling efficiency is the product of all efficiency factors in consid

eration.

6.2 .2  C oupling th rou gh lenses

Coupling through converging lenses, such as a microscope objective, is a common scheme 

to achieve high efficiency light delivery. The thin lens equation from ray optics governs 

imaging through lenses:

f  =  S - 7 ’ (6.8)

where f  is the lens focal length (i.e., distance between lens and focal point) with t i and 

to as the image and object distances from the lens. The magnification is simply the ratio 

of the image to object size (e.g., imaged beam diameter to initial beam diameter), which 

consequently leads to M  =  t i/ t o. For lossless coupling or imaging, the limit for the object-to- 

image size reduction is dictated by the Abbe sine condition ys sin(Ys) =  y s/ sin(Ys/). When 

a circular light source with area as =  n y 2 and numerical aperture NAs =  sin(Yo) is used 

and mapped on an area as  =  y 2s, with NAs/ =  sin(Ys/), the smallest possible image area is

n a 2s . .
as',min — as n A 2 . (6.9)

In addition, NAs  < 1 because Ys < 90°, and thus as/,min > asN A ^ . Note tha t this equation 

imposes lossless imaging tha t is limited at least by the product of the initial beam area and 

the square of its numerical aperture, which is essentially Equations 6.1 and 6.3 for maximum 

coupling efficiency.

6 .2 .2 .1  G aussian beam s

Lasers produce Gaussian beam output profiles. Gaussian beams propagate with increas

ing width according to the mathematical model
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(6.10)

with

where w is the radius of the 1/e 2 contour along the propagation distance z, w0 is the 

beam waist (i.e, smallest beam radius at z — 0), zR is the Rayleigh distance at which

w(zR) — V 2w 0, A is the operating wavelength, and d is the far-field divergence half-angle

higher order Gaussian modes compares to the basic Gaussian beam. M2 > 1 and the ideal 

Gaussian beam has an M2 factor of exactly one. The M2 factor has also been used to describe 

multimode quasi-Gaussian beams, which contain a Gaussian function in the mathematical 

models. Note tha t for a multimode Gaussian-like beam, the “Rayleigh distance” does not 

necessarily depend on the beam waist, but a divergence length can be defined as a multimode 

analogue to the Rayleigh length. Beyond the Rayleigh/divergence length, the beam spreads 

with a full-angle divergence 0 .

Equation 6.8 for the thin lens equation is modified for Gaussian beams as

Equation 6.12 leads to a maximum t i,max and minimum t i,min focusing distance for the 

beam. If the input beam has zR/ ( M 2f ) »  1, the beam is focused with t i,max — t i,min — f . 

If z r / ( M 2f ) ^  1, collimation occurs with t i ,max ^  to, and t i,min ^  —to. Collimated 

Gaussian beams have long zR and low NA. Figure 6.4 illustrates lens imaging of a Guassian 

beam. Note tha t if the the object is at the focal point, the image will be at the focal point 

on the other side regardless of the zR/ ( M 2f ) value. The magnification is defined as the 

ratio of the image to object beam waist, but also relates the transformation in divergence 

half-angle and Rayleigh distance by

(i.e., NA angle). An M2 factor is often defined to denote how an actual beam form having

2 (6.12)

(6 .1 3 )
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F ig u re  6.4. Lens imaging of a Gaussian beam. Collimation or focusing may be aproximated 
using the zr / ( M 2f ) value of the beam.

6 .2 .2 .2  L am bertian sources

A Lambertian source is characterized as having a power distribution P  =  P0cos0, where

0 is the angle of observation with respect to the optical axis and Po is the power at 0 =  0°. 

Half of the power of such model is emitted within a 120° full-angle cone. The coupling 

efficiency from a Lambertian source is approximately n =  (ar / a s) N A 2 into a waveguide with 

characteristic NA and smaller core area ar than the source aperture area as. Again, this 

is essentially Equations 6.1 and 6.3 considering tha t a Lambertian source has a numerical 

aperture approaching 1. Lambertian sources can be coupled to waveguides via collimating 

lenses for increased efficiency. However, there are limitations to coupling highly divergent 

beams, such as low coherence light, as briefly addressed in the next section.

LEDs are generally considered lambertian sources [6, 11]. An edge-emitting LED emits 

half of its power within 0 =  15° and 0 =  60° in orthogonal directions, while real surface- 

emitting LED radiant patterns are more directed with half the power concentrated within

0 =  20°.

6 .2 .2 .3  W idefield  sources

Widefield illumination has been accomplished by collimation for coupling into fiber 

bundles [12, 13]. Collimated beams are shaped from divergent beams via lenses to exhibit 

very low NA for increased coupling efficiency. The transformation using Gaussian beams was 

already briefly discussed in Section 6.2.2.1. Aside from the coupling loss sources presented 

in Section 6.2.1, the packing or fill fraction of the fiber core areas to the bundle area also 

limit the efficiency. This situation is similar to an entire optrode array backside undergoing
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m m  — Eaoptrode, (6.14)
abeam

where aoptrode is the area of an individual optrode and ab is the area of the collimated beam.

6.2 .3  S p atia lly  coherent vs. incoherent sources

The difference between coherent and incoherent sources is noted as it affects in-coupling 

efficiency as well. Coherent light from lasers is composed of individual fields with the same 

frequency and phase, leading to a unidirectional strong irradiance. When the conditions 

in Sections 6.2.1 and 6.2.2 are satisfied, coherent light can be realistically coupled into a 

waveguide with nearly 100% efficiency.

On the other hand, incoherent sources like LEDs and tungsten lamps emit light with 

a large angular spread leading to high coupling loss. A lens provides a simple coupling 

mechanism for broadly distributed radiation. However, when the emitter surface is larger 

than the receiving waveguide core area, use of a lens is equivalent to butt-coupling [12, 14]. 

This is explained by the constant radiance theorem, which for a lens means tha t though 

imaging has changed the size of the image compared to the object (i.e., image has higher 

irradiance), the solid angle has changed in exactly the opposite way such that the radiance 

does not change and thus the coupled power stays the same [12]. Still, divergent light 

from incoherent sources with smaller aperture areas may be passed through a collimator 

or concentrator to fill the waveguide core end face and increase the waveguide effective 

acceptance NA for highly-improved coupling efficiency [12, 13].

6.3 Results and discussion
A variety of waveguide geometries were used to examine the efficiency of different 

coupling mechanisms. Table 6.1 lists the characteristics of these optrodes. It has already 

been shown tha t scattering in glass optrodes is negligible such that transmission efficiency 

with a particular in-coupling mechanism is approximately equal for optrodes with the same 

width but varying lengths [2]. In addition, the glass optrode tip angle was shown to have 

no effect on the transmission efficiency. On the other hand, the different taper profiles of 

varying-length silicon shanks lead to different transmission efficiency values [1]; the longest

w id e f ie ld  i l l u m in a t io n .  T h e  e f f ic ie n c y  f a c t o r  is
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T a b l e  6 . 1 .  O p t r o d e  g e o m e t r i e s  u s e d  in  t e s t i n g .
FS-01 FS-01 FS-03 Si-01

Material Fused silica Fused silica Fused silica Silicon
Shank square square square circular
cross-section
W idth (^m) 120 120 70 300 at base
Tip shape 30° pyramid 30° pyramid 30° pyramid tapered to 5 ^m
Backplane 100 170 170 500
thickness (^m)

(1.5-mm long) optrodes yielded the highest efficiency and are thus used in this work. White 

light or monochromatic beams were coupled through fibers and/or lenses and into the 

optrode waveguides. All tests were performed in air; the optrodes are inserted through an 

aluminuim foil sheet in order to block power from the backplane during measurements.

6.3.1 In-coupling d ivergent light

Divergent light sources include both Lambertian and Gaussian sources. In this set 

of experiments, a ~ 1 m  long 50-^m core fiber with 0.22 NA was butt-coupled to the array 

backside through an n — 1.45 intervening fluid to minimize interface refractive index contrast 

and end separation. W ith a short in-coupling fiber, the beam transm itted into the optrode 

is dependent on the optical source. For example, a single-mode laser will initially couple 

into the lower modes of the optical fiber and eventually couple into higher guided modes; 

as a result, the output of a short fiber may be similar in form to that of the source. Light 

emitted by the fiber from a laser was characterized and found to be representative of a 

multimode Gaussian-like beam. The propagation through glass and silicon backplanes is 

estimated from the input measured in air by a beam profiler. The beam diameter and 

full-angle divergence upon entering the optrode shank (i.e., at the optrode base after beam 

spread through the backplane) are listed in Table 6.2 along with the theoretical coupling 

efficiency with insignificant extrinsic losses from fiber to backside surface. Light emitted 

by the fiber from a white light source is modeled according to the emission cone of the 

fiber; the estimated beam characteristics at the optrode base and the coupling efficiency for 

this setup are also summarized in Table 6.2. Both laser and white light diverges inside the
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T able 6.2. Theoretical in-coupling charateristics via ~ 1 m  long 50-ym optical fiber: 
approximate full-angle divergence in backplane (0 ), beam width at optrode base (2w0), 
and coupling efficiency (n) calculated for a 1550-nm output fiber-coupled laser and for a 
white light source.________________________________________________________

FS-01 FS-02 FS-03 Si-01
Laser 0 (°) 13 13 13 5.5

2w0 (ym) 243 64 64 70
n 30 100 100 100

W hite light 0 (°) 13 13 13 -
2w0 (ym) 277 92 92 -
n 24 100 74 -

backplane and the beam size at the optrode base determines the coupling efficiency Note 

tha t Fresnel reflection is not negligible for silicon but has been factored out for the analysis 

since it has been demonstrated as an independent loss factor [1]. The numerical aperture of 

the optrodes are high (~1 and ~3 for glass and silicon, respectively) such that the efficiency 

values are approximated solely from Equation 6.1. Experimental results are summarized in 

Table 6.3. The normalized output power is measured with respect to the power emitted by 

the fiber; this includes loss from the coupling effiency and other sources such as the tips.

T ab le 6.3. Normalized output power (Pout) from optrodes, which includes loss from 
coupling efficiency and other loss mechanisms (e.g., tip backreflection, taper radiation) 
measured at different wavelengths A from various light sources._____________

Pout FS-01 FS-02 FS-03 Si-01
A=470 nm 
incoherent (LED)

22 93 66 -

A=570 nm 
incoherent (plasma)

22 92±2 66±4 -

A=640 nm 
incoherent (plasma)

22 92±2 65±1 -

A=640 nm 
coherent (laser)

25 95 94 -

A=1450 nm 
coherent (laser)

23 93 93 36

A=1550 nm 
coherent (laser)

23 93 93 39

A=1875 nm 
coherent (laser)

24 94 93 37
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The silicon optrodes have low overall efficiency because of the taper (Si-01) [1]. However, 

observe tha t most of the theoretical computations closely appproximate the measured values 

with room to account for other optrode losses. Incoherent sources are expected to incur 

more loss as the divergence of light from the fiber immediately starts compared to Gaussian- 

like beams with far-field divergence. For example, the blue light (470 nm) LED source 

(Thorlanbs, Inc.) produces a Lambertian emission with a 120° half-power cone. The in

coupling fiber simply limits the output emission angle by its NA. The beam width after 

propagating through a 170-^m thick backplane is still smaller than 120 ̂ m  but larger than 

70 ̂ m  and hence the large decrease in Pout from in-coupling a Gaussian to a Lambertian 

beam into the thinner optrode (FS-03). In the case of a 120-^m shank, coherent light slightly 

improves ( ~ 1%) the optrode efficiency possibly due to a larger tolerance in the coupling 

alignment allowed by its narrower input beam (FS-02). At longer propagation distances 

(i.e., for thicker backplanes), the Lambertian and Gaussian beam sizes have become similar 

such that there is no significant efficiency drop observed (FS-01).

Typical fibers have NA from 0.1 to 0.4 such that the area mismatch is the main 

consideration for this coupling mechanism. Using larger in-coupling fiber diameters will 

understandanbly result in lower coupling efficiency.

Note tha t the coupling efficiency from a Lambertian incoherent source to the 0.22 NA 

fiber is about 5% from the NA mismatch alone. This low efficiency is not truly problematic 

in the case of fiber-coupling because the fibers distance the optrode-implanted tissue from 

the power source such that risk of thermal tissue damage (e.g., denaturation) is avoided. 

The source may still be used as long as sufficient power can be delivered out of the optrodes. 

In tissue, the transmission will be further reduced according to the optical absorption 

properties as previously reported [3]; there is at most ~4% drop in the transmission.

6.3 .2  C oupling th rou gh converging lenses

In this set of measurements, input beams having low divergence (e.g., collimated beams) 

were passed through objective lenses for coupling into the optrode arrays. White (broad 

spectrum) and coherent 633 nm (red) and 1550 nm (near-infrared) sources were used. The 

setup is shown in Figure 6.5. Table 6.4 lists the objective properties with the corresponding



128

objective lens optrode array

co llim a ted  ligh t power m eter

w ork ing  distance

F ig u re  6.5. Test setup for measuring transmission efficiency when light is coupled through 
a microscope objective.

estimated theoretical limit for coupling efficiency. These are determined from the imaging 

and coupling equations presented in Section 6.2, with further details discussed below. 

The resulting maximum optrode transmission efficiencies are recorded in Table 6.5. The 

normalized output power of the optrode is with respect to the focused beam; coupling 

efficiency is only one of the factors that constitute the overall normalized output. Fresnel 

reflection from the input interface adds a loss of 3.4% for glass arrays and 30% for silicon 

arrays, which are factored out in the analysis; antireflection coatings make this type of loss 

negligible. In addition, the shank taper in silicon contributes to the loss [1].

The red collimated light is generated from a HeNe (633 nm) laser with a spot size of 

1mm and divergence 1.3mrad. This denotes a very long z r  of about 770 mm, which is 

expected of a coherent Gaussian laser beam. In this case, z r / (M 2 f ) »  1 causes the image 

beam waist produced by the objective to be situated at the focal point, which is located at 

the end of the objective working distance. The spot diameter at the focal point is likely in 

the range of 1 to 25 ^m  (from shorter to longer focal length) for the different lenses; this 

is approximated by Equation 6.13 with M 2 ~  1 and the distance of the laser aperture to 

the objective aperture as ^150 mm in the setup. The small spot sizes indicate tha t 100% 

coupling efficiency may be attained, even for the 40x objective with a very short working 

distance. The image beam waist in air from the 40 x lens is 0.6 mm from the objective but 

will be farther in a medium of higher refractive index (i.e., focal length increases). The 

beam waist within the glass blackplane is estimated to be n optrode x  0.6 mm — 0.87 mm 

from the backside when the objective is in contact with the array. In this case, the beam 

is computed as ^48 ^m  wide with full-angle divergence of 18° when entering the optrode



T able 6.4. Estimated theoretical maximum coupling efficiency for the setup in Figure 6.5 for three light sources, four microscope 
objectives, and four optrode arrays._________________________________________________________________________________________

Objectives Theoretical maximum in-coupling efficiency (%)

M NA WD FS-01 FS-02 FS-03 Si-01
White 633 nm 1550 nm White 633 nm 1550 nm White 633 nm 1550 nm 1550 nm

50x 0.45 17 100 100 - 100 100 - 100 100 - -
40x 0.65 0.6 58 100 100 100 100 100 100 100 100 100
20x 0.40 1.6 100 100 - 100 100 - 62 100 - -
10x 0.25 6.8 45 100 100 45 100 100 16 100 93 100

T able 6.5. Microscope objective lenses used for testing with characteristics listed: magnification (M), numerical aperture (NA) and 
working distance (WD) in mm. M =  50x objective is a long working distance objective. Corresponding mean optrode transmission 
efficiencies for different optrode geometries at various wavelengths of light are listed as well. Input Fresnel reflection is factored out.

Objectives Optrode transmission efficiency (%)

M NA WD FS-01 FS-02 FS-03 Si-01
White 633 nm 1550 nm White 633 nm 1550 nm White 633 nm 1550 nm 1550 nm

50x 0.45 17 90 96 - 90 96 - 90 96 - -
40x 0.65 0.6 63 92 90 80 96 92 80 94 93 34
20x 0.40 1.6 90 96 - 90 96 - 51 96 - -
10x 0.25 6.8 35 96 94 35 96 93 12 96 89 64
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at its base. Still, using the 40 x objective did not couple light as efficiently as objectives 

with longer working distances; practically, the lens does not have absolute contact with the 

optrode, which may be the source of discrepancy for the calculations.

The infrared light comes from a tunable telecom laser coupled to a short 0.22 NA fiber 

with a 50-ym mode core diameter tha t is connected to a collimating lens. The collimated 

beam is modeled as a multimode Gaussian having a diameter of 1.8 mm with full-angle 

divergence of 0.5° and divergence length of 315 mm according to Equation 6.13. The distance 

from the collimating lens to the microscope objective aperture is ~150mm. This follows a 

similar analysis as coupling for the HeNe laser beam and thus results in similar values.

The result for silicon optrodes is more interesting. The optrode efficiency when the 

40x objective is used is the same as the value achieved for a butt-coupled fiber. On the 

other hand, the 10x objective notably increased the transmission efficiency. This may be 

accounted for by the much lower estimated divergence of ~ 2° of the propagation within the 

silicon optrode, which sends the rays straight thru  the shank (i.e., negligible taper loss) and 

out of the tips with minimal tip backreflection.

Laser inputs are representative of using point-scanning confocal or two-photon micro

scopes, where beams of small spot size, low divergence, and high radiant flux are required.

Lastly, the value for white light is the average achievable efficiency across all wavelengths. 

Not explicitly shown here is the effect of chromatic abberation, where the transmission varies 

from blue to red depending on the position of the objective relative to the array backplane. 

When the objective lens is slightly closer to the array, blue is transm itted with about 92% 

efficiency and red with 88%; when the objective is moved back, the reverse occurs. White 

light from a fiber-coupled incoherent source was collimated through another lens and placed 

~150m m  before the objective aperture. The collimated beam fills the objective aperture, 

which is about 2 mm in diameter. Due to the collimation, the expected image is located 

at the focal point with diameter equal to (2m m )/M , where M is the magnification of the 

microscope objective. For thinner backplanes (FS-02 and FS-03), light may be focused on 

the optrode base with beam width less than the shank cross-sectional area; The results 

follow Equation 6.1 for the area mismatch between the focused beam and the optrode area, 

except for the 40 x objective. W ith the 40 x objective, the transmission efficiency achieved
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was not as high and a possible explanation involves how the rays exit the optrode tips. At 

the edge between the shank and the pyramidal tip, total internal reflection (TIR) depends 

on the angle the ray makes with the tip face instead of the sidewall. Rays propagating 

at higher angles (i.e., higher-order modes) hit the optrode sidewall with incident angles 

approaching the critical angle (i.e., decreasing towards the critical angle). W ith the sharper 

30° tip, only rays with incident angles greater than 74° on the sidewall (i.e., less than 16° 

propagation angle in glass or 0.4 NA emission) will reflect off the tip face for TIR at 44°, 

which is equivalent to the glass-air interface critical angle. Otherwise, such as in beams 

from 0.65 NA emission, the ray will refract out of the edge and will not be collected by the 

power meter. Hence, the measured transmission efficiency is lower. Again, for FS-01, the 

beam would start to diverge again after ~0.87 mm into the backplane. The beam width at 

the base is theoretically ~180 which yields a 58% coupling efficiency. Note tha t the 

measured data is the only value greater than the predicted theoretical limit.

6.3 .3  W idefield  illum ination

Widefield illumination was accomplished using a 4-mm collimated beam formed through 

a collimating lens. This closely models use of the microscope for optogenetics and its 

application with DMDs and LCDs. The typical illumination system in widefield microscopes 

includes a low angular spread incoherent short-arc lamp for fluorescence excitation. In this 

test setup, fiber-coupled white light plasma and red (640 nm) laser sources provided the 

input. W ith a large collimated beam, the fill-fraction efficiency in Equation 6.14 prevails. 

The theoretical nfiii and measured optrode normalized output power with respect to the 

collimated beam power are listed in Table 6.6. Fresnel reflection loss is calculated to be 

3.4% from air to glass (i.e., nref  =  96.6%), which is low in comparison to the loss due 

to fill-fraction. In addition, the optrode efficiency without coupling loss is about 90%, as 

shown in Section 6.3.1. The overall efficiency is expected to be nfiii x  nref  x  90%, which 

approximates the measured values. Notice tha t the backplane thickness does not affect the 

transmission since the beam is wide and collimated; the square ratio of the shank widths 

is also proportional to the Pout ratio. Illumination with the coherent source is negligibly 

higher due to the more directed light into the power meter.
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T able 6 .6 . Widefield illumination through glass optrode arrays: normalized output power 
Pout and theoretical coupling efficiency due to fill fraction (nfiii) with collimated white light 
and red (640 nm) laser beam.

FS-01 FS-02 FS-03
Theoretical nfiii 
Measured Pout

11.0 11.0 3.7

White light 9.6 9.6 3.2
Red 9.7 9.7 3.2

6.4 Future directions and technical considerations 
for coupling light into optrode arrays

The fibers in use by neuroscientists today may be attached (e.g., by epoxy, anodic 

bonding, notches [15-17]) to arrays for stability during in-vivo experiments, but the motion 

of animal subjects may be limited and swivel joints may have to be designed to allow more 

mobility. Thin backplanes desired for in-coupling with fibers may be made more robust, 

and air gaps may be elimininated if epoxy is used for attachment.

Another drawback of optical fibers for in-coupling is the the need for either dedicated 

light sources tha t are typically lasers or complex switching circuitry to allow spatiotemporal 

pattern delivery. A solution is to use addressable miniature light sources. Discrete LEDs 

have been glued to fibers [18] and have been bonded to a 3D waveguide array by polymeric 

bonding using SU-8 photoresist [7]. Alignment is an important step when dealing with 

arrays. Also, the relatively large divergence of LEDs will likely require lenses to achieve 

high optrode transmission efficiency. Because a ^LED array is in close proximty to tissue 

as it is mounted on the implanted optrode array, heating must be under control; coupling 

efficiency must be high to maintain lower input power levels. Microlens arrays may be 

bonded, reflowed or etched onto the optrode arrays [19-21]. Fresnel lenses may also be 

designed into the optrode array backside. Alternatively, VCSELS may be able to provide 

coherent light tha t may forgo use of lenses at a higher cost.

An untethered device understandably improves range of motion. In this case, ^LED or 

VCSEL arrays will have to be wirelessly controlled.

Lastly, the challenge for multiwavelength in-coupling deals with achieving equivalent 

emission volumes for highly-localized single-optrode illumination. Different sources will



133

need to share the space on the optrode backside (e.g., multiple yLEDs per optrode), 

which possibly leads to varying asymmetrical optrode beam profiles as the spatial launching 

conditions are different. In addition, tissue optical properties alter the profile. Solutions 

have yet to be investigated.

6.5 Conclusion
Different experimental paradigms on optical neural stimulation may be achieved by 

using various light in-coupling techniques with optrode arrays. Optrodes can transm it 

light into tissue with an efficiency of up to ~90% when in-coupling loss is eliminated. 

Light coupled into the optrodes via butt-coupled optical fibers may incur minimal loss 

when the fiber has a small core and the array has a ~100 ym thin backplane. External 

lenses can achieve maximal efficiency using arrays with >0.5 mm thick backplanes. More 

importantly, proper lensing by forming weakly divergent beams may significantly improve 

transmission through silicon optrodes. Widefield beams on the array backside is always 

limited by the fill-fraction of total optrode cross-sectional area in the illuminated spot. 

Despite the possibility of high transmission efficiency, technical considerations have yet to 

be overcome towards implementation of integrated optical light delivery microsystems for 

neural stimulation, especially of free-moving animals for chronic studies.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter gives a synopsis of the results and highlights the important contributions 

of this work. Recommendations for further development and supporting endeavors are also 

itemized.

7.1 Conclusions
The purpose of the research described in this dissertation is to develop first-generation 

microwaveguide arrays for three-dimensional highly-localized light delivery in tissue for 

optogenetic and infrared neural stimulation (INS). Key characteristics of these interfaces in

clude deep tissue access, implantability, robust fabrication, high light transmission efficiency, 

modifiable emission volumes, and capacity to accommodate multiwavelength spatiotemporal 

modulation from a variety of sources. To date, demonstrated methods for extending 

stimulation depth and techniques for simultaneous activation over multiple sites have almost 

been mutually exclusive. Thus, the specific aims of this work may be summarized as the 

creation of an implantable light delivery neural interface and the characterization of its 

performance to enable concurrent selective independent deep-tisue neural activation in a 

comprehensive area of living tissue (e.g., in-vivo, in-vitro). The micromachining process 

yield uniform and enduring structures with modifiable geometry. Because this work does 

not include neural stimulation tests, long-term biocompatibility was not yet considered and 

thus, relevant fabrication steps were not implemented. The resulting optrodes transm it 

light into tissue efficiently and emit beam profiles tha t match a number of physiological 

features that may be of interest in various experimental paradigms. Optrode arrays may be 

used in several ways: single or simultaneous point stimulation, multidepth stimulation, layer 

stimulation by illumination of all optrodes, multiwavelength stimulation through single or
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multiple optrodes, etc. It is envisioned tha t these optrode arrays, currently in bare form, 

will initiate a new line of devices tha t would allow more complex stimulus-response studies 

and advance understanding of neurological and physiological function.

7.1.1 A d ap tin g  th e  U tah  e lectrod e array arch itectures  
for infrared neural stim u lation

Utah electrode arrays have been proven effective neural interfaces for imitating natural 

neuronal/muscular responses via high-channel count electrical stimulation and recording [1

4]. Aside from the stimulation protocols, the key is in the scope and spatial resolution of the 

arrays being mapped well to the architecture of large peripheral nerves and cortical layers 

across a wide range of mammalian species. W ith the emergence of neural activation with 

light, it is only reasonable to hypothesize that a similar device architecture will be able to 

achieve optical stimulation at the same level of success, although the stimulation mechanism 

is different. Understandably, light waveguiding is different than current conduction, but the 

needles of the UEA have been established as minimally damaging to tissue.

The Utah slant electrode array (USEA) introduced in Chapter 1 was then transformed 

into the Utah slant optrode array (USOA) by using intrinsic silicon tha t is transparent 

to near-infrared wavelengths. The procedures for manufacturing elecrode arrays [5] were 

simplified to include only frontside dicing and etching for USOAs. Prior backside processing 

is different and consists of patterning alignment marks for in-coupling light into optrodes. 

As expected, the wafer-scale process is repeatable. In addition, the process provides a 

margin of controllablity of the optrode geometry and array pitch that later on leads to 

controllablity in output beam shape.

The amount of light each silicon optrode can transm it and its spatial extent are impor

tant measures of the feasibility of the waveguide array devices. High efficiency is desired 

for minimum input power to prevent tissue heating on the surface, and highly-confined 

emission volumes are needed for highly-selective INS. Loss was analyzed for arrays with 

a standard size of 10x10 with 400-^m pitch and optrode lengths of 0.5-1.5mm. Input of 

1550 nm is used as it is apt for laboratory equipment and has the same characteristics as INS 

wavelengths from the silicon perspective. As it is without special coatings (e.g., cladding, 

antireflection), the optrodes exhibited losses from Fresnel reflection, radiation due to the
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taper, total internal reflection in the tips, and in-coupling; a maximum 40% transmission 

efficiency was observed and tha t is from the longest least tapered optrodes. Note that the 

waveguide taper is formed during etching, and its slope is dependent on the combination 

of optrode pitch (i.e., base) and length; shorter optrodes taper quicker and lose more 

power than longer ones for the same base width. Fresnel loss at the in-coupling interface 

contributed an independent reduction in transmittance, which is small compared to other 

loss mechanisms. Only coupling loss from source aperture >200 m um  is significant, but 

light interactions with the base sidewall cause more taper losses for larger source apertures. 

Tip backreflections within the silicon optrode is deemed to be the major source of loss. 

Improvements such as antireflection coating, focusing/collimating the input beams, and 

removing the taper may increase the efficiency of the optrode array to a maximum of 64%. 

Taking into account the actual higher reflectance loss inside the tips and redesigning the 

tip shape will yield even higher efficiency values. This suggests tha t progress is possible for 

silicon optrodes.

The output beam profile is modifiable within a tight range. The beam size and divergence 

seem to increase with both optical source aperture area and divergence. Optrode geometry, 

specifically the taper profile, changes the full-angle divergence within 2-4° deviation in air. 

Nominal beam size is about 50ym and divergence varies from 14-20°. This demonstrates a 

relatively highly-localized stimulation space, which is expected to further decrease in tissue.

Use of the optrode arrays with the commercial Capella infrared neural stimulator (Lock

heed M artin Aculight, Inc.), which is the prominent laser employed for various INS appli

cations, was evaluated as well. The maximum system efficiency from laser to fiber to 

optrode is determined to be only about 10% with a 400-ym fiber tha t exactly matches the 

laser emission aperture. The coupling efficiency from laser to fiber dominates the system 

efficiency. Greater system efficiencies can be obtained using light sources with effective 

emission apertures smaller than 400 ym.

7.1.2 G lass arrays for b o th  op togen etic  and  
infrared neural stim u lation

The USOAs needed to be improved, but the field of optogenetics is growing more rapidly 

than INS tha t development of optrode arrays capable of transm itting both visible and
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infrared wavelengths is more justified. To this end, fused silica glass (SiO2) is chosen as 

substrate material to bulk-micromachine the same architecture as USOAs. However, the 

differences in wet chemistry between silicon and glass lead to straight-edged glass optrodes 

with constant length in one wafer (i.e., flat architecture). The absence of the taper is an 

advantage to transmission efficiency but poses a challenge for implantation. Glass optrode 

tips were shaped like pyramids, and these led the complete insertion of arrays tissue, albeit 

with more difficulty. The fabrication process for glass allowed much more degrees of freedom 

in the design and control of the output beam profile; pitch, length, width, and tip angle can 

be altered independently to obtain varying spatial resolution, depth access, output beam 

width and output divergence, respectively. The beam divergence is much greater for sharper 

tips, more than a three times increase for a 0.5x increase in the tip angle (i.e., slope) with 

respect to the optical axis. Beam width is proportional to the shank width regardless of 

tip angle. Using a 105m fiber, a 150-m wide optrode with a 45° tip taper emits a 1550 nm 

beam with 122-^m diameter and 16° full-angle divergence; 56° for a 30° tip. This strongly 

indicates the versatility of glass optrodes for multifarious research implementations and 

aims.

The maximum transmission efficiency obtained was approximately constant at 70% for 

wavelengths in the visible spectrum, at 1550 nm, and at 1875 nm when a 50- or 100-^m 

in-coupling fiber is used. Note that the array backplanes were thick and prevented 100% 

light coupling from source to optrode. The decrease in output power with larger fibers 

follows the limit imposed by coupling efficiency due to area mismatch. About the same level 

of output power was measured for varying optrode length and tip angle. As an alternative 

to dedicated optrode illumination, a 4-mm collimated beam of white light was used as 

input to determine the feasibility of implementing flood illumination with optrode selective 

switching. In this case, the transmission efficiency follows the fill-fraction (i.e., sum of 

optrode areas to illumination area) limit. The majority of the system loss is determined to 

come from the tips via backreflection towards the source.

W ith much higher transmission and better output beam control, glass optrodes may 

well be preferred over silicon optrodes once implantation has been thoroughly studied.
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Both silicon and glass arrays were characterized in tissue. In this set of experiments, 

glass arrays with thinner backplanes were used to eliminate coupling loss; input beam 

divergence through glass is considerable while it is negligible within the silicon backplane. 

The transmission efficiency achieved for glass optrodes increased to more than 90%. Ex

perimental and simulation results prove that both glass and silicon optrodes significantly 

minimizes light attenuation in tissue. The transmission through optrodes surrounding tissue 

inversely follows the optical attenuation spectrum. Compared to results in air, efficiency 

measurements in tissue for glass optrodes only decreased with up to 8% deviation in the 

visible (decreasing from blue to red) and less than 3% in the near-infrared, again depending 

on the absorption and scattering characteristics of the wavelength. The values are even 

closer for silicon optrodes, where the difference between the results in air and tissue are 

within 0.4%. This simply points out that for a 1m W /m m 2 optrode power calibrated in 

air, up to an additional 0.08m W /m m 2 may be needed at the output in order to deliver the 

1 m W /m m 2 into tissue.

The spatial profiles of the optrode tip illumination in tissue were also simulated and 

measured with wavelengths of 470m (blue), 640nm (red), and 1450nm (INS wavelength). A 

wider beam and faster broadening for shorter wavelengths is observed, which are indications 

of the higher scattering in tissue. Results agree with simulation and hand calculations from 

measurements in air after taking into account the change of the refractive index from 1.0 

to ~1.36. From air to tissue, the beam width stays relatively consistent and the divergence 

narrows in accordance with theory. If highly divergent beams are needed, sharper optrodes 

than what bench test results suggest are required. The variety of possible input sources 

and optrode geometries will be able to provide a custom fit of the output beam to the 

stimulation target volume dictated by a specific application.

The good agreement among simulation, calculated, and experimental values indicate 

tha t optrode characteristics may be estimated via models or estimates from air measure

ments to avoid cumbersome tissue tests.

7.1.3 D eep -tissu e  light delivery  v ia  optrode arrays
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Different mechanisms of coupling were tested: butt-coupling to single optrodes, lensing, 

and flood-illuminating arrays. Fibers, microscope objectives, and collimated beams repre

sented these mechanisms, all of which are currently typical light sources or techniques used 

for optogenetics and INS. Coherent single-mode Gaussian beams and incoherent Lambertian 

sources were coupled into the optrodes. The methods were analyzed using a collection of 

well-known theory. Although some of the measured efficiencies appeared to be inconsistent 

with results from similar cases, all values were explained by considering theoretical limits on 

coupling and imaging. Light coupled into the optrodes via butt-coupled optical fibers may 

incur negligible loss when the fiber has a small core and the backplane is as thin as ~100 ^m 

for glass; external lenses can achieve maximal effiency for glass arrays with >0.5 mm thick 

backplanes. However, the efficiency depends on the type of source and the coupling setup 

(i.e., position of input relative to lens) for Gaussian beams. Widefield beams on the array 

backside are always limited by the fill-fraction of the total optrode cross-sectional area in 

the illuminated spot. Despite the possibilty of high transmission efficiency with any source, 

there are still technical considerations towards implementation of integrated optical light 

delivery microsystems (i.e., optrode with source, coupling media, and control circuitry) for 

neural stimulation, especially of free-moving animals for chronic studies. Ultimately, the 

results demonstrate how the optrode arrays may be used with commonly-applied systems 

in optical neural stimulation to enhance light delivery protocols.

7.2 Future work
The focus of this work is on device engineering. An iterative process consisting of design, 

fabrication, and bench testing was performed to evaluate and characterize the utility of the 

optrode array device. To further optrode array development, the following activities are 

highly recommended:

(a) Optimization o f optrode array fabrication and insertion. Fabrication and implan

tation of silicon arrays is already well-established via the Utah electrode array 

standard processing procedures. However, the dicing program for glass arrays may 

be optimized to improve yield and utilization of wafer real estate. In addition,

7.1.4 Light in-coupling to  optrod e arrays
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an alternative dicing technique may be devised in order to produce varying-length 

glass optrodes within an array and optrodes with less sharp edges (e.g., polygon 

cross-section). Glass arrays may also benefit from backside processing for alignment 

marks when optical source circuits are integrated in the future. Insertion protocols 

may also need revision for glass arrays as early results reveal more difficulty in 

implantation of such devices.

(b) In-vitro and /or in-vivo neural stim ulation with optrode arrays. For any device, 

a collection of proof-of-concept tests is needed. The arrays have already been 

characterized in tissue and results have been matched to theoretical requirements for 

neural stimulation with light. Implantation of glass arrays in living tissue has also 

been performed preliminarily and histological data were encouraging; silicon array 

insertion was already proven successful (i.e., with insignificant damage) by numerous 

Utah electrode array studies. However, initial acute in-vivo INS with silicon optrode 

arrays implanted in cat sciatic nerve produced few repeatable clear action potential 

responses (see Appendix A). Additional controlled INS experiments and funda

mental optogenetic trials using the optrode array devices, involving imaging and 

electrical recording during activation, will yield insight on the relationship among 

optrode illumination profiles, location of triggered neurons/cells, incident power 

levels, and neural response strength. Consequently, properly designed experiments 

will also provide data on tissue stimulation and damage thresholds with using 

optrode array devices, and efficacy data for different wavelengths delivered through 

optrodes during INS. All these may be used to evaluate limitations of the optrodes for 

optical stimulation inside tissue not readily analyzed during bench testing to advance 

the device engineering aspect of the development process. After the biocompatibility 

of optrode arrays has been ascertained, chronic tests will assess long-term effects of 

implantation and long-term performance of the devices.

(c) Development o f hybrid optrode-electrode arrays and optrode arrays fo r  both stim 

ulation and imaging. In-vivo/in-vitro  verification of INS is currently performed 

using separate electrodes placed at a distance from the targeted area. Optogenetic
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activation is commonly observed via fluorescence microscopy or discrete fiber/diode- 

electrode assemblies to record activity in proximity to the stimulation site. As it is, 

optrode arrays require external recording means. It seems that a simple solution to 

integrating electrical recording capabilities is to embed an optrode array within a 

Utah electode array or vice versa, as shown in Figure 7.1. Although the recording site 

is not immediately adjacent to the stimulation site as allowed in optical methods, the 

electrode is only ^m to mm’s away from where light is delivered. W ithout electrodes, 

optrode arrays may be optimized for deep-tissue imaging instead. Fluorescence 

imaging is limited in depth and optrodes can be used for two-way transmission of 

light (e.g., also for light collection from tissue) such that optical recording in deep 

regions in intact thick tissue like in-vivo brain may be possible. Imaging through 

optrode arrays will of course have lower resolution than conventional fluorescence 

imaging.

(d) Development o f fully-integrated optical neural interfaces. Neuroprosthesis and chronic 

neuroscience research require neural interfaces with complete systems for light gener

ation, spatiotemporal modulation, recording, etc. This necessisates further investi

gation in appropriate light in-coupling mechanisms, circuit power constraints for the 

prevention of tissue heating, and fabrication and packaging methods. Eventually, 

wirelessly controlled optical sources mounted on the optrode arrays must be achieved 

to allow hermetic packaging and full implantation without subcutaneous wiring.

(e) Move towards flexible devices. There has been an increasing shift towards flexible 

neural interfaces that conform to tissue movement and minimize scarring, especially

■  Backside glass
□  Silicon
□  Optrode

^A ^ a i  0,5 mnri

F ig u re  7.1. Example of a hybrid array consisting of optrodes within a silicon Utah electrode 
array in flat (a) and slant (b) configurations.
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for chronic applications [6- 8]. Techniques involving polymer-silicon composites 

being developed at the University of Utah for Utah electrode arrays can most likely 

be applied to the optrode arrays [9]. Still, acute investigations could still be executed 

reliably using the rigid optrode array architecture.

(f) Encapsulation fo r  long-term biocompatibility. Biocompatibility of neural interfaces 

has been enforced by encapsulation techniques involving use of Si carbide, polymide, 

Si nitride, Si dioxode, silicone, PDMS, or parylene-C [10, 11]. These methods may 

also be applied to the optrode arrays (note that encapsulation layer adhesion to 

silicon are practically through its naturally occuring oxide surface), although glass 

on its own is highly biocompatible and chemically stable [12].

(g) Cladding and/or antireflection coating deposition. A built-in cladding will make the 

optrode performance robust and independent of tissue characteristics. Antireflection 

coating will improve, even if only slightly, the transmission efficiency of optrodes.
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APPENDIX A

INFRARED NEURAL STIMULATION VIA  
THE UTAH SLANT OPTRODE ARRAY

Infrared neural stimulation (INS) was performed with Dr. Greg Clark and Dr. Dave 

Warren of the Center for Neural Interfaces. Intrafascicular INS was achieved using the 

Utah slant optrode array (USOA) implanted in the cat sciatic nerve; the optrode tips 

are in contact with axons within fascicles of the nerve, as illustrated by the schematic of 

Figure A.1. Figure A.2 shows the experimental setup. The USOA is inserted in foil to 

block light transm itted through the backplane. An Utah slant electrode array (USEA) is 

implanted distal to the USOA to record compound nerve action potentials (CNAPs) while 

EMG wires were placed within different hind limb mucles to record compound muscle action 

potentials (CMAPs). A 400-^m fiber connected to the Capella laser was placed in contact 

with the array backside to deliver light to individual optrodes penetrating the tissue. The 

backside did not have the aluminum windows described in Chapter 3, but had holes as fiber 

alignment marks created by deep reactive ion-etching (DRIE), as shown in Figure A.3. Note 

tha t holes appear only every other row in this experiment because the optrode pitch is as 

big as the in-coupling fiber used. A 5 ms pulse at A =  1873 nm provided 1-2 mJ of energy 

out of the optrode tips.

Figure A.4 shows recorded CMAPS after stimulation from two different optrodes in two 

different cats. EMG signals were observed from the following muscles activated by the 

sciatic nerve: tibialis anterior (TA), peroneus (Per), medial gastrocnemius (MG), lateral 

gastrocnemius (LG), and soleus (Sol). There were only few responses recorded from a 

number of trials, but important observations were noted. First, the activated muscles 

exhibited strong EMG signals (e.g., TA in Cat 1, Sol in Cat 2). Second, responses were
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nerve trunk

F ig u re  A .1. USOA accesses axons within fascicles during intrafascicular INS.

F ig u re  A.2. Experimental setup showing the exposed cat sciatic nerve with the USEA 
and USOA implanted. The USOA is seen inserted in aluminum foil, the purpose of which 
is to block light that may be transm itted through the backplane. USEA was implanted to 
record compound nerve action potentials distal to the stimulation site, and EMG wires not 
shown here were attached to various muscles to record compound muscle action potentials. 
The 400-$mum optical fiber that delivers the 1875 nm light from the Capella laser was held 
steady above the nerve.
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(a) (b)

F ig u re  A .3. Silicon optrode arrays used in the experiment had holes etched by DRIE for 
optical fiber alignment. (a) Scanning electron micrograph showing tha t holes are placed 
every other row because the optrode pitch is the same as the fiber core size of 400 ̂ m. (b) 
Cross-section of arrays showing DRIE holes that are ~300 ̂ m  deep.

repeatable; Cat 1’s response shows mean data for 9 laser stimuli. Lastly, stimulation 

produced selective responses. Cat 1 had strong TA response with weak or no response 

in other muscles, and Cat 2 had strong Sol response without evoked response from other 

muscles. It was recognized tha t different optrodes activated different muscles and exhibited 

selectivity between different muscles innervated by different branches of the sciatic nerve 

(e.g. TA and MG/LG), between different muscles innervated by the same nerve branch 

(e.g. LG and Sol from the tibial nerve), and between presumed same nerve fascicle (e.g. 

MG and SOL). Comparable within-branch selectivity has not been previously reported for 

extraneural INS of rat sciatic nerve. Moreover, stimulus artifacts were not observed.
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Cat 1 Cat 2

F ig u re  A .4. Compound muscle action potentials were recorded from the cat tibialis 
anterior (TA), peroneus (Per), medial gastrocnemius (MG), lateral gastrocnemius (LG), 
and soleus (Sol). These muscles are activated by the sciatic nerve. The arrow indicates 
time of stimulation onset. Results demonstrate strong, repeatable, selective responses from 
intrafascicular infrared neural stimulation via U tah slant optrode arrays.



APPENDIX B

TRANSMISSION MODEL FOR 

OPTRODES IMPLANTED  
IN TISSUE

The Matlab code for simulation of optrode transmission in tissue mentioned in Chapter 5 

is discussed here. The model is limited to a slab (infinitely planar) waveguide, which is 

justified by the optrode symmetry and its highly multimoded nature. It consists of a main 

block that ultimately computes for the normalized output power and effective attenuation 

coefficient with using optrodes and three functions tha t solve for the loss coefficients, modes, 

and mode power confinement.

B.1 Optrode attenuation and output power
The optrode output power is computed across wavelengths 370 nm to 2100 nm for every 

10 nm. For silicon, the spectrum of analysis was limited in the range 1400 nm to 2100 nm. 

Relevant refractive indices and attenuation coefficients vary with the wavelength and thus 

are stored in a matrix file that is loaded into a data array for the code to read (e.g., sL n .tx t 

loaded into index-core for the silicon optrode). The program goes through a loop until 

computations for all wavelengths have been performed. W ithin the loop, the normalized 

output power of the optrode with respect to the incident power is calculated for a specific 

wavelength by a function discussed in detail in Section B.2. Once a value is returned by 

the called function, the value is stored in an array. Next, the wavelength is increased by 

10 nm to start the next iteration and a counter for the data array index is incremented. 

The current transmission result is further normalized to values in air previously determined 

using the same code. This is to eliminate the effect of in-coupling misalignment and tip 

losses. Finally, the normalized transmission data is written onto an output file. The code
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was written as follows. Note that all radiation terms (e.g. prad) in the code only appears 

for silicon analysis.

global h; 
global k; 
global nf; 
global nc; 
global L;

h=120*10~(-4);
L=0.15;
lambda=1.4*10~(-4);

wavelength = 0.37*10~(-4):0.01*10~(-4):2.1*10~(-4); 
index_core = load(’si_n.txt’); 
index_clad = load(’tissue_n.txt’); 
alpha = load(’brain_attenuation.txt’);

%for eigenvalue solver 
%wavetype: 1 means TE, 0 means TM 
wavetype=1; 
mmm=1*10"(-3);

i=1;
while lambda < 2.1*10"(-4)

nf=index_core(i);
nc=index_clad(i);
k=2*pi/lambda;

[ave_trans]=conf(wavetype, lambda, mmm, alpha(i)); 
trans(i)=ave_trans;

lambda=lambda+0.01*10"(-4);
i=i+1;

end

air=load(’air_trans.txt’); 
trans1=(trans./air).'; 
dlmwrite(’trans_norm’, trans1);

The variables are defined as:

h optrode width; optrode base width for silicon 

wavenumberk

n f optrode refractive index

refractive index of cladding (i.e., tissue or water surrounding optrodes)nc
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la m b d a  wavelength

a lp h a  attenuation coefficient of cladding

1 counter for array index to store results for different wavelengths

ave_ trans normalized output power with respect to incident power of a specific wavelength

tr a n s  array storing “ave_trans” for all wavelengths

t r a n s l  normalized output power further normalized with respect to results in air

L optrode length

B.2 Power confinement and loss 
coefficients for the optrode

This function takes information from the main block regarding the wave type (transverse 

electric [TE] or transverse magnetic [TM]) and wavelength of light launched, a number 

defining the precision of the mode solver (mmm), and the attenuation coefficient of tissue 

for the current wavelength considered. The value returned is the normalized output power 

of the optrode with respect to the incident power.

For each wavelength examined, multiple modes are present in the waveguide such that 

this function also operates in a loop until all modes have been computed for. The loop 

starts by calling the eigenvalue mode solver, which is another function discussed in detail 

in Section B.4. The solver returns parameters describing the mode, of which the effective 

index (nef f ) and the tranverse wavevector ( k ) are specifically used in the rest of the code. 

The value of k  is passed on to a function tha t actually computes for the power confinement 

of each mode; this function is discussed in Section B.3. The scattering coefficient and the 

fractional silicon taper radiation is also computed using nef f  according to [1-3]

“ sea* =  k?h/2w —  (b .i)k ( h / 2 ) 4n ef f

and 2
( 3n d2 — d2 \ 2/ 3ne/f dmax dmin |

Prad =  --------- AL------ J  (B2)

respectively. The factor a ‘‘2ms is the root-mean-square optrode sidewall surface roughness. 

For the fractional radiation loss, dmax and dmin are the maximum and minimum taper
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diameters, respectively. The other parameters are the same as previously defined in Sec

tion B.1. The power confinement, scattering and radiation data for all modes are stored in 

an array with each iteration of the loop.

W ithin the same loop, the corresponding ray angle of the mode is computed and 

the power of the source for that angle is determined according to the angular Gaussian 

distribution

I  «  e-k2/a2, (B.3)

where

k = 2f 9 (B.4)
A

and

2nNA (B 5) a  =  . ( b .5)

Here, n f  is the optrode refractive index, 9 is the angle with respect to the optical axis, and 

NA is the numerical aperture of the source (i.e., in-coupling fiber). The source is used later 

to compute the apportioned power of the leaky modes from angles emitted by the source 

outside the optrode acceptance cone. The normalized transmission over all modes is also 

averaged by the Gaussian-weighted source.

To compute for the normalized transmission, the attenuation is first determined. For 

each mode, the effective attenuation seen by light when travelling through optrodes is

a ef f  =  a(1 Pef f ) +  a  scat j (B.6)

where peff  is the effective power confinement within the optrode, a  is the wavelength- 

specific tissue attenuation coefficient and a scat is the scattering coefficient due to surface 

roughness of the optrode sidewalls. In other words, loss is only experienced by the power 

extending into the tissue (i.e., cladding) and the power scattered by the optrode sidewalls; 

the scattering coefficient is negligible compared to the cladding attenuation. The normalized 

power transm itted by each mode follows the Beer-Lambert law

T =  (Peff )e- (“effL)(1 -  Prad), (B.7)

where L  is the optrode length. The term prad is only relevant for the silicon optrode to 

account for the power loss due to its taper profile. The T  for all modes is then averaged over
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the source power distribution, and the fractional power from leaky modes is subtracted from 

this weighted average to compute for the overall normalized power transm itted through the 

optrode by the wavelength with respect to the power supplied by the optical source (e.g., 

fiber-coupled laser).

The code was written as follows:

function [ave_trans]=conf(wavetype, lambda, mmm, att)

global h; 
global k; 
global nf; 
global nc; 
global L;

dmax=h;
dmin=2*10"(-4);
maxmode=round(h*k*sqrt(nf"2-ns"2)/pi);
NA=0.22;
sigma=2*pi*NA/lambda;

nu=0;
while nu < maxmode

[neff,beta,kappa,gammas,gammac]=solver(wavetype,lambda,nu,mmm);
[p]=profile(kappa);
scat1(nu+1)=((0.44*10"(-6))"2)/(k*((h/2)"4)*neff);
prad1(nu+1)=(3*neff/8/pi*(dmax"2-dmin"2)/lambda/L)"2;
p_eff1(nu+1)=p;
ang=acos(neff/nf);
%gaussian source
source(nu+1)=exp(-(k*nf*sin(ang))"2/sigma"2);

nu=nu+1;

end

angle=asin(sqrt(nf"2-ns"2)/nf):pi/200:pi/2;
angle2=0:pi/200:pi/2;
leak=exp(-(k*nf*sin(angle))."2/sigma"2); 
leak2=exp(-(k*nf*sin(angle2))."2/sigma"2); 
leak_frac = trapz(angle, leak)/trapz(angle2, leak2);

alpha_eff=(1-p_eff1)*att + scat1; 
transmit1=p_eff1.*exp(-alpha_eff*L).*(1-p_rad1);

transmit=transmit1.*source;
ave_trans = sum(transmit)/sum(source)-leak_frac;

Im portant additional variables in this code are defined as:
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d m ax optrode base width for silicon optrodes only

dm in optrode tip width for silicon optrodes only

m ax m o d e estimated number of modes of optrodes

N A numerical aperture of the source

nu mode number

s c a t l array for scattering cofficients for every mode

p r a d l array for fractional radiation loss for silicon optrodes only

p_eff1 power confinement of every mode

ang ray angle of every mode

source array of source power for each mode

car1aCD fractional power of leaky modes

ave_ trans weighted average of power confinement

B.3 Mode power confinement
This function simply computes for a single mode the fraction of power p contained within 

the optrode to the overall power in both the guided mode within the core and evanescent 

fields in the cladding; it requires the transverse wavevector (k) of the specific mode for 

derivation of other mode parameters such as the longitudinal propagation coefficient (5 ) 

within the core and the attenuation coefficient (yc) of the power decay in the cladding. The 

power is calculated by integrating the mode profile; x-y region 1 and 3 is designated for the 

cladding and region 2 for the core. The code was written as follows:

function [p]=profile(kappa)

global h; 
global k; 
global nf; 
global nc;

beta=sqrt((k*nf)"2-kappa."2);
gammac=sqrt(beta."2-(k*nc)"2);

x1=0:h/100:h;
x2=-h:h/100:0;
x3=(-2*h):h/100:-h;
y1=exp(-gammac*x1);
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y2=cos(kappa*x2)-(gammac/kappa)*sin(kappa*x2);
y3=(cos(kappa*h)+(gammac/kappa)*sin(kappa*h))*exp(gammac*(x3+h));

x=horzcat(x3, x2, x1);
y=horzcat(y3, y2, y1);
yabs=abs(y);
ysq=yabs.~2;
y2sq=(abs(y2))."2;
inttot=trapz(x,ysq);
int1=trapz(x2,y2sq);
p=int1/inttot;

B.4 Eigenvalue solver
This eigenvalue solver calculates the mode properties using normalized parameters. To 

begin, the normalized frequency (V) and asymmetry parameter (a) is calculated; a for the 

optrode is zero because of its symmetry. The normalized effective index (b) is first assumed 

to be 0.5, which is the midpoint for the possible range of 0 to 1, in order to facilitate the 

iterative process of determining its accurate value. W ith this b, a tentative normalized 

frequency (vb) is solved for using the normalized dispersion relation. For a TE mode for 

example, the relation is [4]

V  yj 1 — b =  vn  +  ta n - l \ /  b / (1 — b) +  ta n - l \ /  (b +  1)/(1 — b), (B.8)

where v  is the mode number from the function conf in Section B.2. The tentative vb is 

compared to the calculated waveguide V  and assigns a new value for b depending on which 

is greater in value. The new b essentially moves closer to the actual b being figured out 

by half of the current error. The iteration stops once the latest vb is within mmm units 

of V ; mmm is the precision control number defined previously. The last b determined the 

effective index of the mode. The function returns a value of —1 when there is no solution. 

The code was written as follows:

function [neff,beta,kappa,gammas,gammac]=solver(wavetype,lambda,nu,mmm)

global h; 
global k; 
global nf; 
global nc;

ns=nc;
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%Normalized Parameters 
V=k*h*sqrt((nf"2 - ns"2)); 
a=(ns"2 - nc"2)/(nf"2 - ns"2) ;

b=0.5; 
bmin=0; 
bmax=1; 
if (wavetype)

vb=(nu*pi + atan(sqrt(b/(1-b))) + atan(sqrt((b+a)/(1-b)))) / sqrt(l-b); 
elseif (~wavetype)

vb=(nu*pi + atan(nf"2/ns"2*sqrt(b/(1-b)))
+ atan(nf"2/nc"2*sqrt((b+a)/(1-b)))) / sqrt(1-b);

end

while (abs(vb-V)>mmm) 
if (vb>V) 

bmax=b;
b=(b + bmin)/2; 

elseif (vb<V) 
bmin = b; 
b = (b+bmax)/2;

end
if ((1-b)<mmm"2)||(b<mmm"2) 

neff = -1; 
beta = -1; 
kappa = -1; 
gammas = -1; 
gammac = -1; 
return;

end
if (wavetype)

vb=(nu*pi + atan(sqrt(b/(1-b))) + atan(sqrt((b+a)/(1-b)))) / sqrt(1-b); 
elseif (~wavetype)

vb=(nu*pi + atan(nf"2/ns"2*sqrt(b/(1-b))) +
atan(nf"2/nc"2*sqrt((b+a)/(1-b)))) / sqrt(1-b);

end
end

beta=k*sqrt((nf"2 - ns"2)*b + ns"2); 
neff=beta./k;
kappa=sqrt(k"2*nf"2-beta"2);
gammas=sqrt(beta"2-k"2*ns"2);
gammac=sqrt(beta"2-k"2*nc"2);
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