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ABSTRACT 

 

Biocompatibility is a key aspect in determining the success of a biomedical device. In 

this work the development, manufacture, designs, and biocompatibility of two devices are 

discussed. As protein adsorption to a material surface is the first step in the host wound 

healing and inflammatory response this phenomenon was additionally examined. 

The capsule drug ring (CDR) is a reservoir and delivery agent which is designed to be 

placed within the capsular bag during cataract surgery. Prototypes were manufactured by 

hot melt extrusion of Bionate® II (DSM), a polycarbonate urethane. The devices have 

been optimized using Avastin® as the drug of interest. In vitro biocompatibility was 

assessed with human lens epithelial cell (B-3), mouse macrophage (J774A.1), and mouse 

fibroblast (L-929) cell lines. Cell migration and proliferation were assessed after in vitro 

culture. Proinflammatory cytokines (i.e., MIP-1β, MIP-1α, MCP-1, IL-1β, TNF, and 

TGF-β1) were quantified using cytometric bead array (CBA). Preliminary in vivo 

biocompatibility and pharmacokinetics testing has been performed in rabbits. 

Cataract extraction uses ultrasound energy and vacuum to liquefy, emulsify, and 

aspirate the cloudy lens. During phacoemulsification, thermal energy and fluidic currents 

within the eye can damage the postmitotic corneal endothelium. This results in corneal 

edema, compromised vision, and a potential need for corneal transplantation. 

Viscoelastics are used to stabilize the anterior chamber, to maintain the eye 

pressurization, and to help absorb and dissipate thermal energy. However, the fragile 



iv 

corneal endothelium is often damaged despite the use of viscoelastics. This work 

discusses the development of a foldable 100 micron transparent shield for use during 

phacoemulsification. This endo-contact lens is designed to float in the anterior chamber 

to allow for surgical access, and to absorb and deflect thermal energy to protect the 

fragile corneal endothelium. 
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CHAPTER 1 

 

INTRODUCTION 

 

Background 

Age-Related Macular Degeneration 

Of noncataract blindness, age-related macular degeneration (AMD), glaucoma, and 

corneal disease each account for 20-25% of world blindness. AMD, the leading cause of 

blindness in the US, has 2 principal forms: “wet” or exudative (characterized by 

angiogenesis or growth of new blood vessels), and “dry” or nonexudative (characterized 

by geographic atrophy and drusen, and a steady rate of progression to “wet” disease).  In 

the US, there are over 2 million people with advanced AMD (expected to double by 

2020), and worldwide, there are ~30 million people with this condition. Further, 7.5 

million Americans are affected by intermediate AMD and are thus at risk for developing 

advanced AMD.  This disease is a major public health epidemic with vast socioeconomic 

impact.  Present antiangiogenic modalities offer significant benefit to many patients with 

neovascular AMD, indefinite monthly intravitreal injections. However, treatment of 

AMD requires monthly intravitreal (IVT) injections, which can have serious risks (e.g., 

retinal detachment, endophthalmitis, hemorrhage, and cataractogenesis), are not well 

accepted by patients, and costly.  The AMD population is in need of safer and easier to 

use drug delivery technologies that can deliver the anti-VEGF compounds into the target 
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tissues at a minimum as effectively as the IVT injection. Such technology will 

revolutionize the treatment of AMD and reduce health care costs locally and globally for 

AMD with the introduction of anterior-segment based alternatives to IVT injections and 

the ability to decrease monthly office visits. 

Current FDA-approved therapies include the anti-VEGF aptamer (pegaptanib 

(Macugen; OSI)) and the anti-VEGF Fab fragment (ranibizumab (Lucentis; Genentech)), 

and photodynamic therapy. Use of Macugen and photodynamic therapy has been eclipsed 

by intravitreal injections of Lucentis, as it is the first drug to demonstrate significant 

visual acuity improvement in patients with neovascular AMD.  Lucentis costs 

approximately $2,500 per injection (prospective annual cost approximating $30,000), 

thus demonstrating the potential of a large market (Lucentis sales are expected to 

approach $1 billion annually).  This has triggered a pipeline of 24 INDs (Investigational 

New Drugs) with at least 20 drug projects in preclinical stages.   While the future space in 

pharmaceutical management of AMD may become crowded, drug delivery platforms are 

needed to improve ease of administration, convenience, and patient quality of life, for 

patients now accept monthly intravitreal injections only because there is no choice.  In 

addition, off-label use of bevacizumab (Avastin; Genentech), an anti-VEGF antibody has 

become common as it much less expensive, but nonetheless this requires regular 

intravitreal injections. 

Current intraocular drug delivery devices include Retisert, Vitrasert, Posurdex, 

Medidur, and Neurotech’s NT-501.  All of these devices require intravitreal procedures 

and often suturing.  These are single drug agents targeting chronic eye inflammation 

(fluocinolide – Retisert & dexamethasone - Posurdex), CMV retinitis (ganciclovir - 
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Vitrasert), diabetic macular edema (Medidur), and the dry form of macular degeneration 

(CNTF- NT-501).  Surmodics has also recently developed the Eureka device delivering 

steroids for uveitis. None of these devices are refillable, nor do they target glaucoma or 

the wet (exudative) form of macular degeneration, which are the leading causes of severe 

visual loss. 

 

Glaucoma: The Silent Thief of Sight 

Glaucoma is a slowly progressive pathology that can result in the loss of peripheral 

vision, decreased contrast sensitivity, and loss of visual acuity. Due to the asymptomatic 

nature of the early phases of the disease most patients experience undiagnosed loss of 

vision until the advanced stages of the disease have occurred. Thus the disease is known 

as the “silent thief of sight.” This indolent optic neuropathy is characterized structurally 

by a loss of retinal ganglion cells and optic nerve axons. Glaucoma is the second leading 

cause of the world’s blindness with nearly 70 million cases worldwide and accounting for 

12% of all cases of preventable blindness [1-3]. It is estimated that by 2020, close to 4 

million Americans will have glaucoma with 50% undiagnosed and approximately 

120,000 individuals developing blindness. [4, 5]. 

Glaucoma’s strong correlation with raised intraocular pressure (IOP) has been 

demonstrated by large prospective randomized trials [6-11]. Increased IOP and IOP 

variability are now recognized as significant risk factors both for the development and the 

progression of glaucoma, with open-angle glaucoma (OAG) in particular [6, 9-11]. At 

present, the majority of OAG treatment modalities focus on the management and 

reduction of IOP. The standard goal of treatment is to reduce IOP by 20–50% from which 
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damage was sustained. Current pharmacotherapies such as pharmaceutical treatment with 

eye drops and gels, laser treatment, or incisional surgery achieve a lower IOP by either 

decreasing aqueous production or improving aqueous outflow [12, 13]. 

In developing countries, where the access to adequate care and therapies is limited, 

people are going blind from a disease that can be successfully treated. Patients in these 

countries may not have the ability to get to their clinics routinely for refills and exams 

[14]. However, even in the US with ready access to medical care and pharmaceuticals, 

glaucoma continues to progress in many patients [15]. Often poor IOP control is due to 

poor compliance and adherence to daily topical treatment regimes or inadequate, complex 

dosing regimens [16]. Despite effective monotherapy agents, data have shown that 

upwards of 40% of OAG patients require combination therapy for IOP reduction with 

close to 75% of glaucoma patients requiring adjunctive therapy after five years [7]. The 

complexity, cost, and administration issues with multiple medications further reduce 

patient compliance and adherence. Prescribing pharmacy claims data show the vast 

majority of patients do not take their topical medications or renew their prescriptions, 

resulting in patients regularly missing doses. Pharmacy records indicate that close to two 

months can go by between refills even for simple to use once a day prostaglandins 

analogs (PGAs) [17]. Of patients discontinuing their initially prescribed medication, more 

than half failed to restart any topical therapy (827/1624 [51%]) in the span of one year 

[18]. Retrospective population based data suggests a minority of patients consistently 

adhere to their topical medication [19]. A sustained mode of delivery where the patient’s 

dependence on daily self instillation is eliminated could dramatically improve these 

statistics. 
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Data confirm that many patients are unable to self-administer drops effectively, 

including the arthritic aging population and uncooperative pediatric glaucoma patients 

[20]. Patient videos and questionnaires have demonstrated the inability for patients to 

effectively self dose and administer the drops accurately and as prescribed [21]. Recent 

data revealed that only 71% of 204 glaucoma patients were able to get a drop into the 

eye, and only 39% did so without touching the bottle to the surface of the eye [22]. Such 

studies confirm eye drop wastage, potential contamination of the eye drop bottles, and 

poor understanding of the situation among participants.  

Side effects of glaucoma medications are also undermining patient compliance [23]. 

They can range from local minor effects such as redness, dry eye, burning, and foreign 

body sensation, to more serious systemic effects such as shortness of breath, fatigue, and 

low blood pressure or heart rate. An alternative delivery mode could substantially 

improve the local ocular and systemic safety and tolerability profile by decreasing the 

amount of drug delivered locally thus limiting systemic exposure. 

There are currently several novel and innovative sustained release (SR) delivery 

methods in various stages of development. This paper will review some broad drug 

delivery platforms, the current landscape for treating glaucoma with these alternative 

delivery modes, and will discuss what data are needed in development to allow such a 

novel technology to be a clinically viable marketed product. 

 

Ocular Drug Delivery 

Current innovation in glaucoma treatment is focused on the improvement of drug 

delivery methods. The aim is to deliver drugs locally in a controlled manner while 
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mitigating the challenge of poor patient adherence, compliance, and persistence. 

Currently, the patient who is receiving maximal medical therapy may use up to four 

different classes of topical medications. A medication’s cost, the complexity of a medical 

regimen, and the side effects of medications are all factors that may contribute to 

noncompliance. Innovative technologies may address these issues by ultimately leading 

to better patient outcomes, a better quality of life, and cost savings to society. To develop 

a viable, reproducible, SR technology one must consider: (1) formulation work; 

standardizing the release kinetics, and duration of action; (2) clinical study design 

(determining the timing of replacement or refill, and identifying the acceptable safety risk 

profile compared to the topical comparator); (3) encouraging physician and patient 

acceptance of perhaps a more invasive procedure; and (4) navigation of reimbursement 

issues to establish the rationale of a perhaps more costly product over the  

generic comparator. 

From a technology perspective, the development of IOP lowering SR therapies is one 

of the fastest growing segments of the glaucoma market. This is due to the abundance of 

generic IOP lowering agents, first line branded drugs coming off patent, and the need to 

improve the compliance rates for these conventional therapies [24]. When considering 

total glaucoma-related pharmaceutical revenues, the market is actually declining due to 

drugs losing patent protection with subsequent generic competition. Significant revenue 

opportunities exist for first to market products that are able to show safety and efficacy in 

lowering IOP with generic SR reformulations. Furthermore, from a clinical and 

regulatory perspective, these drugs are being repurposed for the same indication (IOP 

lowering based on local delivery to the target ocular tissue) albeit with novel release 
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delivery profiles and bioequivalency data. Well established safety risk benefit profiles 

exist for daily topical pharmacotherapies with extensive clinical data thus eliminating 

much of the concern and evaluation that is associated with a novel chemical entity. First 

steps in improving adherence and local tolerability could be as simple as changing the 

formulation thus improving ocular residence time. 

When a topical medication is chosen as a first-line therapy for a patient with OAG a 

stepladder approach is used [25]. Typically monotherapy is attempted before additional 

agents are added. Medications are selected based on their potential contribution to IOP 

reduction and the tolerability of their side effects. 

There are currently five main classes of topical medications for the treatment of 

glaucoma. Most pharmacotherapies either decrease aqueous production (beta blockers 

(BB), alpha agonists (AA), and carbonic anhydrase inhibitors (CAIs)) or improve 

aqueous outflow (cholinergics, PGAs). There are also combined medications such as BB 

with AA or CAIs. Topical BB and CAIs are associated with fewer systemic side-effects 

than their oral forms and are better tolerated by many patients. PGAs have the advantage 

of effectiveness in lowering IOP with once daily dosing. However, some patients 

experience an irreversible change in iris color and periorbital dermal darkening with 

PGAs [26]. Recent research in topical delivery for glaucoma is focused on new drug 

carriers and formulations that will improve cornea penetration in a SR manner. Many of 

these approaches include the use of nanospheres, liposomes, and permeability enhancers 

to work in tandem with the drug formulation. 

Conventional eye drops face rapid tear turnover. Only 1–3% of the topical dosage 

penetrates to target tissues [27]. A wide variety of novel ocular drugs, including nucleic 
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acids such as antisense oligonucleotides and siRNAs, are being investigated in tandem 

with nanosphere and microsphere ocular drug delivery methods to enhance cellular 

penetration, protect against degradation, and improve the solubility of normally poorly 

soluble drugs in order to allow for long-term delivery [28]. Liposomes are vesicular lipid 

systems of a diameter ranging between 50 nm and a few micrometers. They provide a 

convenient way of obtaining slow drug release from a relatively inert depot. Research has 

shown that drugs within neutrally charged liposomes result in similar IOP reduction and 

lasted twice as long as the conventional eye drop, suggesting that the liposomes increased 

the residence time of the drug [29]. This could reduce dosing frequency. Surfactants, bile 

acids, chelating agents, and preservatives have all been used as permeability enhancers. 

Cyclodextrins, cylindrical oligonucleotides with a hydrophilic outer surface and a 

lipophilic inner surface that form complexes with lipophilic drugs, are among the more 

popular permeability enhancers. They increase chemical stability and bioavailability and 

decrease local irritation [30]. 

 

Delivery Devices in Preclinical Development 

Several innovative technologies are currently in preclinical development. The 

Replenish, Inc. (Pasadena, CA, U.S.) device consists of a reservoir for IOP lowering 

medication, a hydrolysis-based pump system and a cannula that delivers the drug into the 

anterior chamber. The device is designed to be a nonabsorbed, semipermanent, refillable 

device. It is implanted much like a tube shunt under the conjunctiva. It can be refilled in 

the office and can be noninvasively tuned to modulate the drug release rate. Clinically, 

IOP regulating pharmaceuticals have never been administered intracamerally, hence 
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safety studies will need to be conducted prior to clinical use.  

In general, manually and electrically controlled mini drug pumps, like the Replenish 

device, are designed, fabricated, and tested using principles of microelectromechanical 

systems (MEMS) engineering [31]. A reservoir can be implanted subconjunctivally and a 

cannula is then inserted through an incision into either the anterior or posterior segment. 

Once the drug reservoir is depleted it can be refilled through a check valve (a one way 

valve), perhaps refilled over months to years. Electrically controlled pumps incorporate 

implanted batteries into the design. These devices can also drive electrolysis by wireless 

inductive power transfer. Electrolysis results in the electrochemically induced phase 

change of water to hydrogen, and oxygen gas generates pressure in the reservoir, forcing 

the drug through the cannula. Drug delivery is achieved simply by adjusting the applied 

current. Prototypes of MEMS (i.e., Replenish) with ocular hypotensive agents, 0.5% 

timolol or 0.004% travoprost, were implanted in two dogs under the temporal conjunctiva 

with the cannula inserted into the anterior chamber [32]. The reduction of IOP was 

achieved for 8 hours with no complications observed out to 3 months. Device concerns 

include the potential of traumatic damage to intraocular structures during implantation, as 

well as for the risk of endophthalmitis from continued external contact to the anterior 

chamber from the reservoir. 

Replenish, Inc. soon plans to enter trials for FDA approval of a refillable 

programmable pump that is implanted onto the surface of the globe to deliver IOP 

lowering agents directly to the trabecular meshwork. The Replenish device is expected to 

be implanted for extended periods of time, extending to more than 5 years before needing  

replacement [32]. 
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Contact lenses are currently in preclinical stages as replaceable drug delivery devices. 

As a drug delivery vehicle, they are desirable because they are a patient accepted, 

noninvasive, and a relatively safe product. Contact lenses that are commonly used today 

for vision correction are often composed of poly-2-hydroxyethylmethacrylate (p-HEMA) 

hydrogels. In vitro testing has shown that drug can diffuse from the hydrogel at 

therapeutic levels for up to 4 days [33]. Furthermore, researchers have shown that p-

HEMA can be synthesized in the presence of drug nanoparticles for the purpose of 

reducing water solubility of drugs and lengthening elution profiles [33]. This is one 

method of increasing the residence time of drug particles inside the contact lens, thus 

increasing the duration of continued SR. 

In an effort to further increase the duration of therapeutic drug delivery and improve 

the drug delivery kinetics, other contact lens designs have been attempted such as 

creating a drug depot in a degradable poly(lactic-co-glycolic) acid (PLGA) and coating 

the depot in p-HEMA, which is nondegradable [33]. In vitro studies of these lenses 

showed drug release with zero-order kinetics for up to 4 weeks [34, 35]. A limitation to 

the usage of contact lenses as drug delivery devices is that it requires patients to have 

steady hands and wear the contact lenses at all times possibly limiting the utility of other 

drugs being administered concurrently and raising safety concerns (e.g., corneal abrasion, 

neovascularization, and infection). 

Conjunctival or subconjunctival administration of IOP lowering agents with SR for 

3–4 months is another attractive alternative to daily eye drops. A time frame of 3–4 

months of delivery is consistent with the frequency of routine glaucoma visits. Delivery 

over this extended time period is theoretically possible considering the volume available 
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in and under the conjunctival space, as well as degradation rates of biocompatible 

polymers. Injections in this region are minimally invasive and well tolerated by most 

patients. In spite of the potential advantages of bypassing patient compliance issues and 

the simplicity of in office administration, to date there are no subconjunctival delivery 

systems in clinical trials. 

The ideal subconjunctival delivery of an IOP lowering drug would allow the drug to 

maintain suitable stability, be permeable across the sclera, provide SR out to 3–4 months, 

and minimize systemic and lymphatic absorption. Possibly the most significant challenge 

is a lack of clinical evidence to date supporting 3–4 months of IOP reduction. Although 

target in vitro SR rates are achievable and continuous IOP reduction has been shown in 

animal models, it is yet to be seen if this translates to clinical studies [36]. 

There are currently several technologies in development to achieve targeted release 

profiles with approved IOP lowering drugs. Timolol maleate has been incorporated into 

PLGA microparticles with a double water-in-oil emulsion technique [37]. One such 

formulation of PLGA exhibited SR for over 100 days in vitro with 100% of drug release 

at this point. Disadvantages to this method are a burst effect of 30% of the total drug after 

one day and only a 20% loading efficiency. Timolol eye drops have known cardio-

pulmonary adverse side effects from excessive systemic absorption and these bursts 

could potentially lead to systemic adverse events. 

Another SR formulation in preclinical development is liposomal latanoprost [36]. The 

formulation, which involves encapsulation of lipophilic latanoprost within a lipid bilayer, 

was tested in vivo in normotensive New Zealand white rabbits. IOP was lowered by 2–3 

mmHg when compared to the nontreated rabbits and showed greater IOP reduction than 
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topical latanoprost drops. The IOP reduction from a single injection continued for 50 

days at which point another injection was administered and a similar IOP lowering effect 

was shown out to 80 days. No adverse side effects were recorded even considering that a 

significant burst effect was suggested. However, the authors did not report any 

pharmacokinetic data. An advantage of this liposomal formulation is that the excipient 

benzalkonium (BAK) is not needed considering that the injection is a single use product. 

BAK is used in many topical multidose eye drop formulations as a preservative and has 

been implicated in ocular surface disease [38]. Products devoid of BAK offer an 

improved safety profile eliminating this unwanted side effect [39]. A drawback of a 

liposomal formulation is that its ocular safety and biocompatibility is less established 

than PLGA and other polymers. 

Scleral permeability mechanisms are poorly understood making it difficult to predict 

a drug’s interaction in the subconjunctival space and subsequent intraocular penetration. 

Physicochemical properties such as hydrophilicity/lipophilicity, acid/base characteristics, 

and molecular weight alter a drugs ability to permeate the sclera. Hydrophilic drugs better 

penetrate the sclera and have more pronounced burst effects where lipophilic drugs 

generally have smaller burst effects but poor scleral permeability [40, 41]. This creates a 

design paradigm when considering the ideal formulation because both good scleral 

permeability and a low burst effect are crucial to achieve safety and efficacy clinically. 

Strategies to minimize burst effects could be through excipient selection and multiple 

elements of controlled release (i.e., degradation of microspheres and diffusion through a  

membrane) [42-44]. 
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Delivery Devices in Clinical Development 

Several prospective products are already in clinical development attempting to be the 

first to market as a sustained delivery of a generic IOP lowering agent (Table 1.1). The 

precise developmental status of many of these candidates is uncertain as they work 

through technical and clinical hurdles. Some of these products have encountered 

challenges with the mode of delivery. These have included such issues as long term 

device retention, which brings into suspect the ability of the drug to actually get to the 

ocular tissue continuously. Other challenges such as the insertion process have limited 

the ability of clinicians to affectively and safely place the device or depot.  

Other opportunities to hasten clinical development incorporate generic drugs with 

nonproprietary polymers such as PLGA, Polycaprolactone (PCL), and chitosan. These 

polymers are attractive because their established ocular biocompatibility profiles and well 

recognized release kinetics can hasten the development path. 

In terms of clinical progress, QLT is the furthest along. Punctal plugs have long been 

used for the treatment of dry eye syndrome and are a device that could be easily accepted 

by both patients and physicians. Punctal plugs are tiny, biocompatible devices inserted  

 

Table 1.1. Glaucoma intraocular pressure (IOP) lowering sustained release (SR) 

platforms that have reached clinical development. 

 

Company Drug Delivery Method Clinical Development 

pSivida Corp. Latanoprost Subconjunctival/Perilimbal Phase I/II 

Alcon Anecortave Subconjunctival/Subtenons Phase II/III 

Allergan Brimonidine Intravitreal Phase II 

QLT Latanoprost Punctal plug Phase II 

Aerie Latanoprost 
Subconjunctival suture 

fixation 

Projected to start Phase I/II 

in 2012 
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into the lid puncta to block tear drainage. The use of punctal plugs for the delivery of 

ophthalmic medications offers a novel approach for chronic treatment of various eye 

diseases including glaucoma, postoperative therapy, and dry eye syndrome. Punctal plugs 

have several potential advantages over eye drops, including dose reduction, enhanced 

efficacy, and better patient compliance. Those made from silicone, hydroxyethyl 

methacrylate, polycaprolactone are intended for 180 day use [45], while punctal plugs 

made from animal collagen last for 7–10 days and disintegrate [46]. Recently, punctal 

plugs made from thermosensitive, hydrophobic acrylic polymer were used to avoid 

extrusion problems (Cylindrical Smartplug®) and improve retention. This polymer 

changes from a rigid solid to a soft, cohesive gel when its temperature changes from 

room temperature to body temperature. Excessive tearing (epiphora) and displacement or 

loss of plugs are common and can occur for many reasons. Canaliculitis, bacterial build 

up from punctual occlusion, can also be a concern. Punctal plug drug delivery systems 

are usually coated with a material that is impermeable to the drug and tear fluid on all 

sides except the head portion through which the drug is released into the tear film. The 

release of the drug from a punctal plug is controlled by drug diffusion to the tear fluid. 

The drug can be in the form of solutions, suspensions, microemulsions, nanoparticles, or 

liposomes. Some plugs can be soaked in drug solution before insertion; however, these 

drug-loading approaches, when performed in the outer coat alone, result in limited drug 

loading. Most punctal plugs have shown near zero-order drug release rates for drug 

molecules [47, 48]. QLT has had some issues with punctal plug retention. Punctal plug-

mediated ocular delivery of latanoprost is in Phase II clinical study (QLT, Inc., BC, 

Canada) with a revised and custom fit plug delivering latanoprost. Recent reports show 
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60% of subjects at 4 weeks showed an IOP reduction of 5 mmHg or greater with a higher 

plug retention rate. The IOP lowering efficacy however is still inferior to topically daily 

administered Xalatan®.  

Ophthalmic inserts are sterile preparations, with thin, multilayered, drug-impregnated 

devices placed into cul-de-sac or conjuctival sac in order to contact the bulbar 

conjunctiva. Ophthalmic inserts can be divided into three primary categories: soluble, 

insoluble, and bioerodible. For insoluble inserts, usually the core is a drug reservoir and 

sandwiched between rate limiting membranes. Ocular inserts allow for controlled 

sustained release, reduced dosing frequency, and increased contact time with ocular 

tissue (i.e., better bioavailability). Expulsion and discomfort are the two greatest 

problems associated with their use. 

Ocusert® (ALZA Corporation) is an insoluble insert and was the first ocular 

sustained release therapy. Ocusert devices are constructed of plastic membranes about 

one-third the size of a contact lens and inserted into the eye and worn under the upper or 

lower lid, where they cannot be seen. Ocusert never overcame topical drops as the 

delivery method of choice because of patient discomfort, the requirement of manual 

dexterity, patient education requirements regarding device placement and premature 

device displacement [49]. 

LACRISERT® (ATON Pharma) is a sterile, translucent, rod-shaped, water soluble, 

ophthalmic insert made of hydroxypropyl cellulose, for administration into the inferior 

cul-de-sac of the eye once daily and marketed for dry eye. It reduces the signs and 

symptoms resulting from moderate to severe dry eye syndromes, such as conjunctival 

hyperemia, corneal and conjunctival staining. It also has received minimal to moderate 
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market up take. Conceptually, other compounds, such as IOP lowering agents, could be 

formulated in such a device to help address the issues raised in this paper. 

Subconjunctival inserts could allow for the use of implants in place of viscoelastic 

depot delivery injections. The qualities of an ideal subconjunctival injection could be 

obtained, but with the added risks of performing a minimally invasive surgery as opposed 

to an in office procedure. pSivida announced a collaboration with Pfizer in mid 2011 to 

deliver latanoprost via a unique patented drug delivery subconjunctival insert. According 

to public disclosures they initiated an ongoing Phase I/II study for safety, tolerability and 

initial efficacy at the University of Kentucky [50]. Aerie Pharmaceuticals has developed 

a latanoprost ocular insert said to be in preclinical development with plans to be in the 

clinic in 2012 [51]. An analysis of the company’s publicly available information reveals 

an ocular insert made by compressing pellets of latanoprost then coating them with a 

membrane such as ethylene vinyl acetate [52]. This type of insert could provide a 

solution to the burst effect-hydrophilicity/lipophilicty paradigm with improved ability to 

control the burst effect through porosity and membrane thickness of hydrophilic drugs 

that readily permeate the sclera. 

Topically administered daily ophthalmic brimonidine (Alphagan, Allergan) is 

indicated for IOP reduction in patients with ocular hypertension and or OAG. 

Brimonidine works by decreasing the amount of aqueous fluid in the eyes. Generally 

brimonidine is administered as a topical eye drops 2–3 times per day. Ophthalmic 

brimonidine has recently been shown to have potential neuroprotective mechanisms in 

glaucoma patients in addition to IOP lowering. In the Low Tension Glaucoma study, 

subjects randomized to Alphagan had equal IOP lowering as timolol yet less visual field 
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progression [53]. Neuroprotective treatments are designed to increase cell survival by 

protecting or enhancing cell injury resistance mechanisms or by helping to inhibit cell 

death.  

Ozurdex, a degradable dexamethasone intravitreal implant, is used to treat macular 

edema and noninfectious uveitis. This device is one of two that have been approved by 

the US Food and Drug Administration (FDA) for intraocular implantation. Ozurdex 

slowly degrades in the vitreous releasing dexamethasone. Allergan is currently 

undergoing clinical trials of brimonidine tartrate in the Ozurdex PLGA platform for the 

treatment of geographic atrophy due to AMD [54]. This device could also translate into 

glaucoma management as a neuroprotective modality delivering brimondine. 

Anecortave acetate (AnA), delivered as an anterior subtenons depot for the treatment 

of elevated IOP (Alcon Laboratories, Inc), showed promise in several initial pilot IOP-

lowering studies. This insoluble compound had the benefit of acting as a sustained release 

suspension when given as a depot for upwards of 6 weeks. Its angiostatic properties 

originally were being investigated for wet age-related macular degeneration (AMD), but 

observations of IOP lowering effect led to glaucoma clinical investigations. Chemical 

modifications to eliminate the glucocorticoid activity and its mechanism of action were 

thought to enhance outflow at the trabecular meshwork [55, 56]. The hydrophobic 

molecule resisted diffusion and could therefore create a sustained release depot when 

injected in the juxtascleral or subtenons space. 

An uncontrolled prospective case series wherein seven eyes of six subjects were 

treated with AnA via a juxtascleral delivery method was studied in 2009. Multiple 

perilimbal injections providing 24 cumulative mg were administered with a 30-gauge 
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needle under topical anesthesia [56]. IOP dropped an average of 9.5 ± 4.5 mmHg within 

the first week with effective IOP control maintained for a minimum of 3 but up to 19 

months. Another study showed that a similar treatment resulted in 34% IOP reduction for 

one month in 7/8 eyes suffering uncontrolled steroid-induced ocular hypertension  

(OHT) [56]. 

Results of Phase II clinical trials were not as encouraging as prospective studies. The 

safety and efficacy study involved 200 patients who each received one anterior 

juxtascleral injection. It confirmed sustained IOP lowering at the highest dosage of 60 

mg. However the mean reduction was only 3.8 mmHg [57]. In July 2009 Alcon 

announced that the benefit was insufficient to justify further development [58]. 

 

Conclusions 

Glaucoma is a chronic pathology with few symptoms until late in the disease. 

Treatment is designed to prevent worsening rather than to improve visual function. Due 

to the fact that an immediate benefit is not felt by the patient, glaucoma is by nature a 

disease where compliance is a problem. SR of glaucoma therapies may be an answer to 

the issues of poor compliance, poor adherence, and even glaucoma progression through 

better and sustained IOP control. Despite glaucoma medications lowering IOP 

effectively, they are often unable to flatten the diurnal curve of IOP and if doses are 

missed due to noncompliance longer term IOP control is even worse [59]. With IOP 

variability and fluctuation both over 24 hours and over the course of weeks to months, 

glaucoma will most likely progress thus impacting the patient’s visual outcomes. 

Outcomes data from large multicenter prospective studies support the notion that 
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consistent IOP lowering controlling for variability and fluctuation, may improve visual 

outcomes [6, 60, 61]. These SR technologies could show effectiveness in better IOP 

control both over 24 hours as well as longitudinally thus improving outcomes. 

However, efficacy will not be enough to get these products on the market, as there are 

economic and health care issues that need to be considered. A novel delivery would need 

to be economically favorable to society and improve upon the standard of care. The U.S. 

health care system is currently relying on comparative effectiveness data to demonstrate 

improved quality of life, better outcomes for patients, and more cost effective means of 

providing care when considering reimbursements [62]. Thus outcomes research and data 

will need to be gathered during clinical development. 

Currently, in the US, eye drops are generally the first choice for treating patients with 

OAG and generics are reasonably inexpensive. Despite effective therapies, patents 

progress and it is the cost of potential and future visual impairment resources that has the 

greatest cost to society. Studies have confirmed that the cost of care for people with 

glaucoma, over their expected lifetime, is higher than that of people without OAG [63]. 

Furthermore, with glaucoma progression and more aggressive interventions, the costs 

increase [64]. Hence therapies that affect outcomes and have the greatest likelihood of 

slowing progression through better IOP control will have the greatest cost savings  

to society.  

With the possibility of improved patient outcomes, the argument can then be made 

that a more expensive drug device would have better long term efficacy, IOP control and 

less glaucoma progression, thus encouraging payers to reimburse more over the generic 

standard of care. These results could support a viable reimbursement proposition for a SR 
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commercial product given the significant number of patients with glaucoma on topical 

IOP lowering therapies that could benefit. The unmet medical need and the potential cost 

saving to society would cancel out the higher initial upfront cost of the device.  

In summary, the ideal marketed SR drug delivery for glaucoma would have to show 

comparative efficacy to the topical daily comparator and have an acceptable safety risk 

profile that would allow it to be accepted by patients and physicians. It would need to 

demonstrate an advantage over the daily topical generic comparators such as an 

advantage for long term benefits, i.e., better IOP control, less IOP fluctuation and hence 

better patient outcomes. It would need to be easy to administer, minimally invasive, and 

preferably given as an in office procedure every few months. It would have an acceptable 

safety and efficacy profile and perhaps even decrease the associated local tolerability and 

systemic safety concerns of the active compound when delivered as a daily topical.  

The incidence of glaucoma is expected to rise dramatically in the next two decades. 

Thus, there is an urgent need to develop novel ocular delivery systems that meet the poly-

pharmacy needs of the population with better patient compliance and better sustained 

long term IOP control initially. This paper has only focused on treating glaucoma with 

the current mainstay of therapy, IOP lowering agents. However, it must be recognized 

that glaucoma is a neurologic condition with retinal ganglion cell loss. Studies have 

indicated that glaucoma is a complex neurologic disease that affects optic nerves, optic 

radiations, and the lateral geniculate nucleus as well. Central nervous system (CNS) 

damage associated with glaucoma has been detected by alterations in optic nerves using 

magnetic resonance imaging [65]. Since retinal ganglion cell degeneration and vision loss 

can continue despite IOP normalization some propose that nervous system-based factors 
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can also mediate glaucomatous degeneration. This CNS damage may in itself contribute 

to the progression of glaucoma raising the opportunity for non IOP focused compounds 

being delivered in a SR manner and aimed at the neuronal preservation and or protection 

in glaucoma in the future [66].  

Regardless of the compound and or mechanism of action, the ideal ocular delivery 

system is one that achieves and maintains effective drug concentrations at the target site 

for desired time intervals, minimizes systemic exposure and affords good patient 

tolerance, acceptance and compliance while maintaining a reasonable quality of life. The 

challenge as pharmaceutical scientists is to circumvent the protective transport barriers of 

the eye without inducing undesirable and unattractive side effects and still achieve a safe 

and effective therapy. 

In conclusion, considering what the next steps for glaucoma treatment could be, 

ophthalmologists, health care providers, and researchers must remember the main 

therapeutic goal: to prevent or slow vision loss in a patient. Given the recognized high 

unmet need for improved glaucoma drug delivery, there is much activity, research and 

excitement in this area. As researchers, we need to look at new delivery technologies in 

terms of safety and risk, IOP and non-IOP efficacy, and development timelines as well as 

cost. Although various factors and hurdles will continue to play a role in furthering SR 

development, excitement remains for these novel delivery technologies in the future. 

 

Motivation 

Lately, there has been significant progress in the development of ocular biomedical 

devices. A number of these devices have been reported that show a great potential for a 
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wide range of applications. However, there is still a considerable scope for the 

development of improved ocular biomedical devices for the purpose of improving patient 

treatment options. The current state of clinical treatment of glaucoma, AMD, and 

cataracts could be much improved with advances in the development of ocular 

biomedical devices. This dissertation will answer some of these issues by discussing the 

development of new ocular biomedical devices with particular emphasis on 

biocompatibility. 

 

Scope of Work and Significance 

In this dissertation, I discuss two new biomedical devices (i) a capsule drug ring 

(CDR) placed within the capsular bag during cataract surgery for the purpose of sustained 

drug release for treatment of ocular disease and (ii) the endo-contact lens, a lens placed 

under the corneal endothelium prior to cataract surgery for the protection of the delicate 

cell layer.  Design, fabrication and characterization of both of these devices are detailed. 

The motivation and significance of the development of both systems is also described. 

Hot-melt extrusion of polycarbonate urethane and soft lithography-based rapid 

prototyping techniques are used to fabricate the proposed medical devices. Polyethylene 

glycol (PEG) is also evaluated as a protein inert surface coating. These surfaces are used 

as a simplified model for complex biological protein adsorption phenomena involved in 

early biocompatibility host responses. PEG density gradients are evaluated in their ability 

to reduce protein adsorption. 

Both theoretical and experimental results are used in the development of these 

biomedical devices to evaluate efficacy in their intended roles. A model is developed in 
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SolidWorks and COMSOL to predict the thermal effects of the use of the endo-contact 

lens. The state of the field of ocular disease treatment is reviewed in detail. 

This work opens up the potential of new avenues for the treatment of ocular disease.  

Age-related macular degeneration, glaucoma, and cataracts are some of the ocular 

diseases that can benefit from the methods and devices developed as part of this work. 

 

Chapter Outlines 

This dissertation is organized such that each chapter, except the last chapter which 

states the conclusions and recommendations for future work, is either a published work or 

in preparation for publication.  Chapter 1 is a portion of a comprehensive review on the 

state of the field of ocular disease management that was published as a peer reviewed 

scientific review article [67]. Chapter 2 describes the development of the Capsular Drug 

Ring (CDR) [68]. This device is under development as a sustained release device for the 

treatment of age-related macular degeneration, glaucoma, or cystoid macular edema. This 

chapter is under review for publication. Chapter 3 discusses the development of the endo-

contact lens, a temporary lens for use during cataract surgery for the purpose of 

protecting the corneal endothelium from thermal damage during phacoemulsification. 

Future work for this device includes an evaluation of biocompatibility and efficacy under 

in vivo conditions. This chapter will be considered for publishing upon completion of this 

work. Chapter 4 examines the effect of polyethylene glycol (PEG) as a protein inert 

surface coating. This chapter focuses on the effect of PEG surface density as a function of 

its protein inert qualities. Chapter 4 is also being prepared as a journal paper in addition 

to inclusion in this dissertation. Chapter 5 is a summary of the important findings of this 
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dissertation work and suggests future efforts related to this work. 
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CHAPTER 2 

 

DEVELOPMENT OF THE CAPSULE DRUG RING (CDR) BASED ON 

KNOWN OCULAR-BIOCOMPATIBLE MATERIALS 

 

Abstract 

The capsule drug ring (CDR) is a reservoir and delivery agent which is designed to be 

placed within the capsular bag during cataract surgery. Prototypes were manufactured by 

hot melt extrusion of Bionate® II (DSM), a polycarbonate urethane. The devices have 

been optimized using Avastin® as the drug of interest. In vitro biocompatibility was 

assessed with human lens epithelial cell (B-3), mouse macrophage (J774A.1), and mouse 

fibroblast (L-929) cell lines. Cell migration and proliferation were assessed after in vitro 

culture. Proinflammatory cytokines (i.e., MIP-1β, MIP-1α, MCP-1, IL-1β, TNF, and 

TGF-β1) were quantified using cytometric bead array (CBA). Preliminary in vivo 

biocompatibility and pharmacokinetics testing has been performed in rabbits. 

 

Introduction 

Of the diseases that result in vision loss, those which affect the retina and retinal 

function are of particular research interest due to the resultant permanent loss of visual 

function for which there is no definitive treatment. Current therapies restrict the 

progression of the disease, but due to limitations inherent in current pharmaceutical 
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delivery modalities, cannot cure it [1–5]. Continuous or repeated treatment is an 

implication of this form of therapy. Age-related macular degeneration (AMD) is the 

leading cause of blindness and significant visual impairment in developed nations. There 

are 30 million worldwide cases of AMD; in the United States, there are over 2 million 

current cases of advanced AMD with 200,000 new cases every year [3]. AMD is 

expressed in two principle forms. The “wet” or exudative form of the disease is 

characterized by the formation of new blood vessels, also known as angiogenesis. The 

“dry” or nonexudative form of the disease is characterized by the formation of drusen and 

often progresses into wet AMD. Rates of blindness due to retinal degeneration are 

expected to rise as the population ages over the next few decades [1]. 

The primary location of pharmaceutical action for the treatment of AMD is the 

posterior segment and the retina, with particular focus on the retinal pigment epithelium 

(RPE). The primary goal of treatment is to preserve the macula. While there are multiple 

methods of treatment under investigation, the current clinical treatment for this disease is 

indefinite frequent intravitreal injections (Figure 2.1). 

Current treatments of AMD focus on pharmacological approaches. Due to the impact 

of angiogenesis in wet AMD, a significant amount of successful research has been 

focused on the use of antivascular endothelial growth factor (anti-VEGF) therapies as 

viable treatments for patients [2,5–8]. However, the current method of pharmaceutical 

delivery is indefinite intravitreal injections which are performed as often as monthly 

which can result in resistance [3,9]. These injections must be performed by retinal 

specialists due to the serious risks associated with these injections (e.g., retinal 

detachment, endophthalmitis, and vitreal hemorrhaging). Modern antiangiogenic 
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Figure 2.1. AMD and glaucoma locations of treatment are shown. 

 

 

therapies offer significant benefit to many patients with neovascular AMD but would be 

much improved with a drug delivery modality which supported sustained and extended 

release profiles. Improvement in the treatment of AMD and other ocular diseases can 

have an immediate positive impact on the quality of life of patients.  

Currently, there are implantable intraocular drug delivery devices on the market but 

none of these commercialized ocular drug delivery devices deliver anti-VEGF, nor are 

they refillable, versatile, and implantable by general ophthalmologists. In addition, these 

devices target AMD, which is the leading cause of blindness in the United States [10–18]. 

The Capsule Drug Ring (CDR) is a novel drug delivery device which is focused on the 

treatment of wet AMD by the sustained delivery of anti-VEGF. The device is designed to 

reside within the unused periphery of the capsular bag after cataract surgery. This can be 

implanted during standard intraocular lens (IOL) implantation which eliminates the need 

of an additional surgery. The CDR resides in the anterior chamber’s capsular bag which 

reduces implantation and refilling costs as retinal specialists are not needed. This device 
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is intended to be a permanent, refillable implantation. This approach takes advantage of 

the frequency of cataract surgeries (3,000,000 annually in the United States) eliminating 

the need for additional surgeries or sutures. The incorporation of long term release 

kinetics will be a driving factor in the success of this device. Lucentis costs 

approximately $2,500 per injection (prospective annual cost approximating $30,000 per 

patient); Avastin costs approximately $150 per injection (prospective annual cost 

approximating $1,800 per patient). The CDR has been designed with the goal of reducing 

the frequency of injections thereby reducing the cost of treatment. With the goal of 

reducing the number of injections from monthly to once every 6 months, the annual cost 

of AMD treatment could be reduced by as much as 50%. 

To test our idea of an implantable permanent intraocular drug delivery device we 

chose materials which have shown in vivo biocompatibility in other bodily tissues and 

screened their in vitro ocular biocompatibility via cell culture. We also tested the ability 

of Avastin, a ~150 kDa antibody, to permeate from the anterior chamber to the posterior 

chamber of the eye. Finally, we studied preliminary in vitro and in vivo drug release 

kinetics from the CDR. 

 

Experimental 

Materials and Design  

CDR Mark I devices were constructed of Carbothane, a polyurethane carbonate; 

polyethersulfone (PES) membrane; and Loctite UV curable glue. This first generation 

device had a drug reservoir of 50-100 uL with ports for refilling the device. However, the 

device suffered from inconsistent leaking and filter fouling due to inconsistencies 
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inherent to the manufacturing process. The device also needs to be less than 50 mg in 

weight such that, in combination with the drug in the reservoir, the device does not 

exceed a weight of 200 mg within the capsular bag. The typical weight of a cataractous 

lens is 200 mg and can exceed 250 mg. 

Despite not being currently prescribed for ocular use, Avastin (bevacizumab) was 

used as the pharmacological agent in this study. Lucentis (ranibizumab), the Fab 

fragment of Avastin, is an FDA-approved treatment for AMD. While Lucentis is a 

prescription medicine for the treatment of AMD, Avastin is being investigated as a lower-

cost potential alternative therapy and is often used off-label for the clinical treatment of 

AMD [3]. Recent studies show similar outcomes in the ocular antiangiogenic efficacies 

and safety of the two drugs [3]. 

The CDR Mark I devices were manufactured using 4 μm sheets of Carbothane. Ten 

layers of these Carbothane sheets were pressed together onto a 2.3 mm glass plate 

without excessive tension or the inclusion of air bubbles. The plate and Carbothane was 

then placed into a CO2 VLS 3.60 (Versa Laser) and stabilized using tape. The laser 

followed specific preprogrammed parameters to manufacture the core of the CDR 

devices as shown in Figure 2.2 and Table 2.1. The heat from the laser was also used to 

seal and laminate the layers of Carbothane together. 

After the shell of the CDR was generated, the PES membranes were attached. To 

complete the device manufacture, the final layer of Carbothane was then attached to the 

top sealing the shell to form a reservoir (Figure 2.3). Islets were incorporated into the 

device design for the purpose of manipulation by the surgeon as the other regions of the 

device would be vulnerable to puncture by ophthalmic instruments. 
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 Figure 2.2. CO2 laser parameters for the generation of the prototype CDRs. 

  

Table 2.1. CO2 laser parameters for manufacture of prototype CDRs. 

 Power (%) Speed (%) Pulses per Inch Z-axis (mm) 

Filter Location 2 11 700 3 

Reservoir 3.5 and 3 13 and 15 700 3.1 and 2.6 

Reservoir 

below filter 
2 10 700 3.1 

Lamination: 

Outer 
3 23 700 3.1 

Lamination: 

Inner 
3 26 700 3.1 

Cut Out 13 10 700 3.1 and 2.6 

Islet Area 3 15 700 3 

X in Circle 2 10 700 2.3 
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Figure 2.3. Completed CDR prototype design showing the sealed device and valves. 

 

 

CDR Mark I devices persisted in suffering from fouling of the filter and fluid leaking 

from the reservoir despite design optimizations. In order to rectify these issues, the 

method of manufacture was changed. The Mark II CDRs were manufactured of three 

materials: Bionate® II, polyethersulfone, and Loctite® 4307™. Bionate II (DSM - 

Biomedical) 80A, a polycarbonate urethane (PCU) was synthesized by DSM Biomedical 

into pellets using DSM’s proprietary technology and subsequently extruded into tubes 

using hot melt extrusion (Haake Minilab II Micro Compounder, Thermo Scientific). 

Tubing was extruded using a long land die (Guill Tool and Engineering) with a 0.750 

outer diameter (420 SS) and a bullet nose tip. As the Bionate II tubing was extruded from 
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the dye it was wrapped around an 8 mm pipe to incorporate the correct inner and outer 

diameters into the polymer before fully setting. This extrusion/die setup formed tubing 

with an outer diameter of 1.4 mm, a wall thickness of 0.2 mm, and an inner diameter of 

1.0 mm (Figure 2.4). Additional Bionate II films were extruded to a thickness of 

approximately 250 μm for use in biocompatibility assays. All the materials were 

synthesized and extruded without extrusion additives. Bionate II tubing was coated with 

Vitrostealth (DSM), a polyethylene glycol coating, after extrusion using DSM’s 

proprietary technology. 

Polyethersulfone (PES) (Sterlitech, PES0032005) was purchased from Sterlitech 

Corporation. The membrane has passed USP Class VI tests and is commonly used for 

hemodialysis membrane filters. The PES filter had 30nm pore-sized holes at a density of 

~70%. Loctite 4307 (Henkel Corporation), a UV sensitive medical grade adhesive, has a 

history of being used in medical devices and is ISO 10993 compliant. This material 

served as the medium of adhesion between the Bionate II tubing and the PES membrane. 

The CDRs were assembled by cutting the Bionate II tubing into 360° segments yielding 

 

 

Figure 2.4. Bionate II the tubing after hot melt extrusion showing curvature and a linear 

section showing the attached membrane and the seal end. 
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a circular area of 0.79mm
2
. PES membranes were cut to fit around one of the two open 

ends of the tubing segment and adhered into place using Loctite 4307. The other end of 

tubing was sealed closed using a heat press. CDRs were then cleansed by rinsing the 

devices three times in 200 proof ethanol. The devices were dried between each rinse. The 

devices were then sterilized using standard ethylene oxide treatment methods as part of a 

larger batch for the University of Utah Hospital. 

 

Endotoxin Assessment  

After manufacture, the devices were tested for presence of endotoxin. CDR device 

components and fully manufactured devices were placed in LAL water in separate 

endotoxin free containers and placed on a shaker plate at room temperature for 3 days. 

The samples were then placed in sonication for 2 hours and 30 minutes at 37 degrees 

Celsius. Meanwhile, a standard curve was formed from known endotoxin concentrations 

of 0, 0.005, 0.1, 0.25, 0.5, 1, 5, and 50 EU/mL. Afterwards the rinsate from the samples 

was extracted. The filter began to degrade after sonication and was centrifuged at 13,000 

RCF to remove debris and the supernatant was used for the experiment. Each sample 

rinsate was read using a microplate reader at 405nm. The reaction onset time of each 

sample was recorded at n=3. The onset time is the time taken to reach the OD value 

(usually 0.03 OD units). Using the standard curve the endotoxin levels of the samples 

were determined. 
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In Vitro Cytotoxicity 

In vitro cytotoxicity of the device components was assessed by the incubation 

(37.0°C; air, 95%; carbon dioxide (CO2), 5%) of J774A.1 mouse macrophage and L-929 

mouse fibroblast cell lines onto the major components of the CDR’s. J774A.1 

macrophages and L-929 fibroblasts and appropriate growth media were purchased from 

ATCC. J774A.1 macrophages were incubated in 10% fetal bovine serum in Dulbecco's 

Modified Eagle's Medium. L-929 fibroblasts were incubated in 10% horse serum in 

Eagle's Minimum Essential Medium. CDR components were sterilized using standard 

ethylene oxide treatment methods as previously discussed prior to cell plating. Cell media 

were harvested each day for 5 days at which time negative controls had reached full 

confluency. Inflammatory cytokines (i.e., MIP-1β, MIP-1α, MCP-1, IL-1β, TNF, and 

TGF-β1) secreted by cells into media were quantified using cytometric bead array (CBA) 

as a measure of the in vitro biocompatibility of these materials. Each in vitro cytotoxicity 

assessment was performed in the absence of Avastin. While it is possible that the 

presence of this anti-VEGF pharmaceutical agent could impact the biocompatibility of 

the CDR device, eliminating the use of Avastin in this study allows for a clearer picture 

of the impact of each device material. In vitro cytotoxicity was evaluated in the context of 

surface roughness and surface energy. Surface roughness was determined using a Tencor 

P-10 Surface Profilometer. Surface energy was inferred through the measurement of 

interfacial contact angles of deionized water on each surface using an AmScope MD900. 
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Drug Release Kinetics – In Vitro 

To predict the in vivo release kinetics of Avastin from the CDR, several in vitro 

release studies were conducted ranging from 1 – 4 months with novel Avastin 

formulations. Avastin was frozen at -80 
o
C and lyophilized overnight. High molecular 

weight polyvinyl alcohol (140 – 158 kDa, Sigma) was added to balanced salt solution 

(BSS), a commonly used irrigating solution isotonic to the eye, at a final concentration of 

50 mg/mL. The BSS was heated to 85 
o
C and stirred vigorously as the PVA was slowly 

added until completely solubilized.  The PVA solution was cooled to room temperature 

and the Avastin lyophilate was added to a final concentration of 100 mg/mL. 

Approximately 35 uL of the formulations were filled in Bionate extruded tubes with 

polyethersulfone (PES) membranes attached to one end by UV curing adhesive and the 

other end sealed by heat press after filling (Figure 2.4). Each tube was immersed in 4 mL 

of BSS in closed vials and stored at room temperature on an oscillatory shaker at low 

speed. Samples from each vial were taken at predetermined time points and vial volume 

was maintained by addition of fresh BSS, thus maintaining sink conditions. A sample 

size of 3 was used per formulation tested. 

 

Drug Release Kinetics – In Vivo 

A preliminary in vivo drug distribution study was conducted following the in vitro 

studies to verify if therapeutically relevant quantities of Avastin can be achieved in the 

retina/choroid. CDRs were sterilized using ethylene oxide and filled with drug the night 

before surgery. Standard cataract surgery with phacoemulsification was performed on all 

rabbits. CDRs were filled with ~35 µL of the aforementioned reformulated Avastin. Of 
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the 8 rabbits used, 2 were sacrificed at the time points of 1, 4, 8 and 12 weeks. Upon 

sacrifice, tissues were segmented into the iris, cornea, sclera, retina, choroid, aqueous 

(anterior), and vitreous (posterior) humor and stored separately at -80° C. 

Ocular drug distribution was gathered upon sacrifice of the rabbits at the 

predetermined time points. Histopathology was collected and showed some signs of long 

term inflammation and retinal hemorrhaging (data not shown). As a small preliminary 

study, it is unclear if the tissue aberrations are a result of the phacoemulsification/cataract 

surgery, CDR material/surgery, or some other factor. 

Both in vitro and in vivo Avastin sample concentrations were measured using an 

enzyme-linked immunoabsorbant assay (ELISA). Avastin concentration was detected 

with a goat antihuman IgG/Fc antiobody labeled with horseradish peroxidase (Pierce 

Biotechnology Inc.) and chemiluminescent signal was detected on the EL800 Absorbance 

Microplate Reader (Biotek). 

 

Results and Discussion 

Despite not being currently FDA approved for ocular applications, Avastin 

(bevacizumab; Genentech) was used as the pharmacological agent in this study. 

Lucentis® (ranibizumab; Genentech), the Fab fragment of Avastin, is an FDA-approved 

treatment for AMD. While Lucentis is a prescription medicine for the treatment of AMD, 

Avastin is being investigated as a lower-cost potential alternative therapy and is often 

used off-label for the clinical treatment of AMD [3]. Recent studies show similar 

outcomes in the ocular antiangiogenic efficacies and safety of the two drugs [3]. 
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Design and Manufacture 

The CDR devices were designed and manufactured to be placed within the capsular 

bags of cataract patients prior to IOL insertion. In order to be successful the devices have 

very specific size requirements. To that end, polymer tubes were extruded with an outer 

diameter of 1.4 mm, a wall thickness of 0.2 mm, and an inner diameter of 1.0 mm. This 

allowed for the devices to fit around the periphery of the capsular bag, maximizing 

reservoir size without obstructing vision. Standard electron microscopy (SEM) was 

performed on the devices to show appropriate adhesion of Bionate II to PES filters to 

confirm that the reservoir contents were not leaking from the device, but were indeed 

being released only through the membrane which was carefully selected to generate our 

desired drug release kinetics. SEM also confirmed that adhesive did not foul our PES 

filter restricting drug flow from the device (Figure 2.5). 

 

Endotoxin Assessment 

Manufactured CDRs should be free of adventitious microbial agents for the 

protection of ocular tissues and for the reduction of the host inflammatory and immune 

responses. Adventitious microbes could be introduced by the raw CDR materials or the 

manufacture process. In an attempt to reduce microbial presence the CDRs were treated 

with ethanol washes and ethylene oxide after manufacture. In order to determine the 

efficacy of this method of cleansing, the manufacture method of the device and the raw 

CDR materials were tested for contamination with endotoxin. Endotoxins are the lipo-

polysaccharides (LPS) from gram-negative bacteria. Endotoxin assays test for the 

presence of viable gram-negative bacteria and additionally detect the LPS from dead  
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Figure 2.5. SEM images show appropriate adhesion of Bionate II tubing using the device 

membrane. Bionate II is shown in red, UV adhesive is shown in blue, the PES membrane 

is highlighted in green, and the SEM mount is shown in dark grey. 

 

 

gram-negative bacteria. LPS is one of the most common causes of toxic reactions due to 

the presence of pyrogens. Therefore, the absence of detected LPS indicates an absence of 

pyrogens. For this study samples of each material and fully manufactured CDRs were 

quantified for endotoxin presence using a Limulus Amebocyte Lysate (LAL) assay. The 

result of the assay is shown in Figure 2.6. Each sample contained very low levels 

ofendotoxin. The highest concentration of detected endotoxin in our samples was 0.0344 

EU/mL which is a full order of magnitude lower than what is considered to be endotoxin 

free, 0.5 EU/mL. The assay also detected less than half of the endotoxin contamination in 

each device component when compared to the fully manufactured devices. This would 

indicate that the method of device manufacture is introducing some small degree of 

bacterial contamination, but contamination levels are still well below what is considered 

endotoxin free. 
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Figure 2.6. Endotoxin contamination levels of each component of the CDR. Each 

component is at levels which are considered to be endotoxin free (<0.5 EU/mL). 

 

 

In Vitro Cytotoxicity 

The interface between an implanted material and the surrounding biological tissue is 

the site of action wherein the host’s response to an implant is most markedly manifested. 

Materials implanted into both hard and soft tissues generate some degree of cellular 

response. The severity of the host’s response to an implant can be attributed to a number 

of factors including the surgical technique, the size, shape, and surface properties of the 

implant, and the nature of the tissues at the implant location. The interfacial interactions 

are a major factor in determining the success or failure of an implant. Therefore, the 

determination of an implant’s impact on the host tissues is important to evaluate. This 

impact can only fully be anticipated through statistically powered in vivo usage of the 

implant; however, first step biocompatibility testing of biomedical devices can be shown 

through the use of in vitro cytotoxicity testing as discussed in ISO 10993.Implantation 
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into a host tissue generates a host cellular response. Activated cells produce cytokines 

including MCP-1, TGF-β1, IL-1β, TNF, MIP-1α, and MIP-1β. These cytokines are 

influential in regulating the host’s wound healing response. Wound healing involves a 

number of cells including fibroblasts, monocytes, macrophages, and endothelial cells. For 

this study we performed cell culture with L-929 fibroblasts and J774A.1 macrophages. 

Both cell lines were individually cultured on the primary component of the CDR, Bionate 

II (DSM). Cell culture media were harvested after each day of the experiment and assay 

cytokines were quantified through the use of CBA on media harvested from days 1, 3, 

and 5. Fibroblast cell culture media were quantified for the presence of MCP-1 and TGF-

β1; macrophage cell culture media were quantified for the presence of MCP-1, TNF, 

MIP-1α, and MIP-1β cytokines. These cytokine concentrations were compared to 

concentrations produced by cells cultured on incubation gold standard tissue culture 

polystyrene (TCPS). 

L-929 fibroblasts were incubated on each surface and growth media were quantified 

1, 3, and 5 days postincubation for inflammatory cytokines (Figure 2.7). The production 

of MCP-1 and TGF-β1 proinflammatory cytokines had a general increasing trend over 

incubation time which was to be expected as the cell populations increased over time. It 

was expected that a PEG coating (Vitrostealth®) of the biomaterial would decrease the 

production of proinflammatory cytokines but this correlation was not seen with our data. 

The production of TGF-β1 appeared to increase most dramatically for the fibroblasts 

cultured with the Vitrostealth coating. For both fibroblast produced quantified cytokines 

the cellular populations appear to show little difference from the negative control. 

J774A.1 macrophages were cultured experimentally similar to the L-929 fibroblasts and  
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Figure 2.7. MCP-1 and TGF-β1 proinflammatory cytokines produced by L-929 

fibroblasts as quantified by CBA. 

 

 

media were harvested and quantified for days 1, 3, and 5. MCP-1, TNF, MIP-1α, and 

MIP-1β proinflammatory cytokines were measured using CBA (Figure 2.8). Cells 

cultured on the Bionate II material tended to show similar cytokine concentrations to the 

negative control throughout the duration of the experiment. In addition the macrophage 

cells cultured on each surface did not show signs of proliferative or morphological 

toxicity. This would indicate that the polycarbonate urethane (Bionate II) was not  
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Figure 2.8. MCP-1, TNF, MIP-1α, and MIP-1β proinflammatory cytokines produced by J774A.1 macrophages as quantified 

by CBA. 
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aggravating the cells. However, cells that were cultured on Vitrostealth generally tended 

to express higher concentrations of TNF and MCP-1. However, this increase in TNF 

(~100 pg/mL) and MCP-1 (~60 pg/mL) is not significant on these volume scales. While 

no material is perfectly biocompatible, these in vitro data indicate that each of the tested 

biomaterials has a very similar impact on cultured fibroblasts and macrophages as the 

gold standard in cell culture, TCPS. This is seen in the similar levels of cytokine 

production in each of the samples. 

It should be noted that cellular adhesion is also an important indicator of material 

biocompatibility. During this study this property was not implicitly measured for 

quantitative analysis but a qualitative analysis shows cellular adhesion on each material 

surface to be comparable. Macrophage cell adhesion was unaffected by the material type 

showing similar growth and adhesion on each of the materials. Fibroblast cellular 

adhesion appears to be impacted by each of the materials resulting in a slight 

morphological change despite remaining viable (Figure 2.9). 

Surface roughness was measured for samples of TCPS, Bionate II, and Vitrostealth-

coated Bionate II. Contact angle measurements were also taken for TCPS and Bionate II 

samples. These data are shown in Table 2.2. The data indicate that Bionate II was 

relatively rough in comparison to the other two surfaces. This may have induced some 

degree of increased cellular toxicity in comparison to the other samples; however, surface 

contact angles for both Bionate II and TCPS were very similar and the cellular release of 

proinflammatory cytokines also indicates that the increased roughness of the Bionate II 

samples had little effect on the cytotoxicity of the samples. 
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Figure 2.9. Photographs of L-929 fibroblast (a) and J774A.1 macrophage (b) showing 

representative cellular adhesion on Bionate II (1), Vitrostealth (2), Vitrostealth-coated 

Bionate II (3), and TCPS (4). 

 

 

Table 2.2. Surface measurements of roughness and hydrophilicity. 

 Surface Roughness 

(Ra, Å) 

RMS Roughness 

(Rq, Å) 

Contact Angle 

(degrees) 

TCPS 177.7 ± 46.6 227.1 ± 62.6 76.5 ± 2.3 

Bionate II 754.3 ± 372.2 953.5 ± 452.3 77.0 ± 2.5 

Vitrostealth 98.8 ± 36.4 123.1 ± 47.0 N/A 

 

 

Drug Release Kinetics – In Vitro/In Vivo 

The current standard of care for the treatment of AMD is monthly intravitreal 

injections of Lucentis (ranibizumab; Genentech). However, Avastin (bevacizumab; 

Genentech) is a drug that is increasingly being used off label as a replacement for 

Lucentis for AMD treatment. For our drug release kinetics assessments we have used 

Avastin. For clinical treatment, each monthly bolus injection contains 1.25 mg and thus 
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the daily rate delivered is 41.7 ug/day. We used this as an initial target rate to be further 

refined with future in vivo experimentation.  It is unclear if more or less drug than this is 

needed as the implant location is intended for the capsular bag as compared to 

intravitreally placed. Furthermore, sustained release drug delivery generally requires less 

drug and therefore a clinically relevant delivery rate will likely differ.  Delineating 

macromolecular drug delivery from CDRs placed in the capsular bag at the time of 

cataract surgery is ongoing. 

CDR drug release kinetics were assessed in vitro and in vivo. These experiments were 

performed as a first assessment of CDR device efficacy. In vitro media were harvested 

over time as previously described and assessed for Avastin concentrations at 

predetermined time points. The cumulative in vitro drug release accounts for ~30% of the 

total loaded drug where release plateaued at day 42 (Figure 2.10).  Explanations for the 

unaccounted drug include nonspecific binding with the CDR, protein degradation from 

elevated temperatures and aggregation from the elevated concentration of 100 mg/mL. 

The presence of these phenomena was confirmed but not quantified explicitly. This study 

showed a two phase drug release profile. The first 10 days show a drug release of about 

80 μg/day. After the first 10 days the rate of drug release slows down to about 16.5 

μg/day. Future work with the CDR will include the tuning of the rate of drug release to 

incorporate near-zero order release kinetics and stability optimization as measured by 

charge variance analysis to maintain a therapeutic effect as determined in an appropriate 

disease model. 

In vivo drug concentrations were quantified after implantation into 4 rabbits, 

concurrent to our in vitro assessment. The rabbits were sacrificed at 1, 4, 8, and 12  
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Figure 2.10. CDR sustained drug release was quantified by measuring Avastin release 

over time. 
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weeks. Tissues were harvested and ELISA was performed. Ocular drug distribution was 

assessed upon sacrifice of implanted rabbits at predetermined time points as shown in 

Figure 2.10. To the best of our knowledge there is no published work showing the 

penetration of a large molecule from the anterior chamber to the posterior chamber. This 

experiment clearly shows the ability of a large molecule such as Avastin (149 kDa) to 

penetrate into retinal tissues. During week 1 the drug concentration is found to be about 

100 μg/mL and over the course of 12 weeks decreased to a concentration of about 1 

μg/mL. However, for this experiment, only a single rabbit (n=2 eyes) was assessed for 

each timepoint and a statistically powered experiment will need to be performed in order 

to determine a correlation between the in vitro and in vivo release profiles. 

 

Conclusions 

Today AMD continues to be the leading cause of blindness and significant visual 

impairment in developed nations. While current treatments are able to slow the 

progression of the disease and improve the quality of life of many patients, the treatment 

process is far from perfect. Significant improvement can be made in patient health 

outcomes through the development of an extended release device. The development of 

the Capsule Drug Ring continues to be a work in progress but preliminary results of key 

in vitro device biocompatibility and efficacy assessments demonstrate the potential of the 

device. Future work with the device includes the incorporation of Avastin into in vitro 

biocompatibility assays, development of improved drug release kinetics to improve the 

long-term efficacy of the device, and the complete statistically powered in vivo 

biocompatibility and efficacy assessment of the device. 
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The results of this study show the successful manufacture of the CDR, a potentially 

refillable drug delivery device. The device is able to deliver Avastin out to 90+ days 

while showing acceptable biocompatibility. With a strategy of refilling the device only 

once over this 90-day period the burden of the cost of healthcare resulting from AMD 

treatments could be reduced by 25%. In vitro results show the devices and their 

individual components to be highly biocompatible with cells showing little difference in 

migration, proliferation, and proinflammatory cytokine generating behaviors when 

compared to gold standard culture methods. Future work will include the incorporation of 

Avastin into in vitro biocompatibility assays to determine the effect of the drug presence. 

In addition, improved drug release kinetics to improve the long-term efficacy of the 

device will need to be developed. The CDR shows great potential as an implantable 

ocular device for drug delivery. 
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CHAPTER 3 

 

DEVELOPMENT OF THE ENDO-CONTACT LENS BASED ON 

KNOWN OCULAR-BIOCOMPATIBLE MATERIALS 

 

Abstract 

Cataract surgery can damage corneal endothelium, which can limit corneal clarity and 

vision and potentially cause need for corneal transplantation. A contact lens designed to 

shield the cornea from thermal and fluidic injury would be a great benefit to patients. 

Cataract extraction, also known as phacoemulsification, uses ultrasound energy and 

vacuum to liquefy, emulsify, and aspirate the cloudy lens. During phacoemulsification, 

thermal energy and fluidic currents within the eye can damage the postmitotic corneal 

endothelium. This results in corneal edema, compromised vision, and a potential need for 

corneal transplantation. Viscoelastics are used to stabilize the anterior chamber, to 

maintain the eye pressurization, and to help absorb and dissipate thermal energy. 

However, the fragile corneal endothelium is often damaged despite the use of 

viscoelastics. 

A foldable 100 micron transparent shield (the endo-contact lens) has been developed 

for use during phacoemulsification. This device has been designed to float in the anterior 

chamber, for the purpose of allowing surgical access, while hydroplaning and not sticking 

to the corneal endothelium, thus protecting this fragile cell layer. The device has been 

designed to be 5 mm in diameter, have a 6.42 mm radius of curvature, and be 
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manufactured from medical grade polydimethylsiloxane (PDMS). The endo-contact lens 

is a disposable implant which is designed to protect the cornea and potentially eliminate 

the need for viscoelastic. 

 

Introduction 

Cataracts develop as a clouding within the natural lens within the eye. This is most 

often caused by protein aggregation within the lens [1]. Cataracts tend to develop slowly, 

so vision gets worse gradually. Over time, the amount of aggregation increases to a point 

where vision becomes sufficiently blurry or dull to warrant the extraction of the cataract 

and replacement with an artificial lens. 

Cataract extraction, also known as phacoemulsification, uses ultrasound energy and 

vacuum to liquefy, emulsify, and aspirate the cloudy lens. During phacoemulsification, 

thermal energy is generated by the conversion of electrical energy to mechanical energy 

and by frictional heat between the vibrating needle and the probe sleeve [2,3]. 

Temperatures can rise to over 100° C. This thermal energy and the fluidic currents 

induced by phacoemulsification within the eye can damage the postmitotic corneal 

endothelium [4,5]. 

The corneal endothelium consists of a delicate monolayer of cells on the posterior 

corneal surface. During phacoemulsification many of these cells are damaged; 

furthermore, the corneal endothelial cell layer is unable to regenerate after injury [6]. The 

body’s mechanism for repair involves the enlargement of residual cells, cellular 

migration, and an influx of fluid which results in a lower cell density and a disruption of 

the natural cell structural patterns. Sufficient damage to this delicate cell layer can cause 
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corneal edema, compromise vision, and prompt a need for corneal transplantation. The 

lens endothelium normally has a cell density of 2500 cells per mm
2
 and endothelial cell 

loss is typically 8-13% after cataract extraction; however in complex cases cell loss can 

be greater than 40% [7]. Corneal edema and decomposition begin to occur when the 

cellular density falls below 500 cells per mm
2
. 

Within the United States the elderly population continues to increase; that population 

increase results in an enlarged population of patients with cataracts. There are 3 million 

cataract surgeries annually within the United States and this number is expected to rise 

[8]. As cataract surgery can damage corneal endothelium, the increased numbers of 

operations will yield increasing patient populations with decreased corneal clarity and 

can potentially cause an increased need for corneal transplantations. The development of 

a contact lens designed to shield the cornea from thermal and fluidic injury would be a 

great benefit to patients and healthcare providers as the number of operations increase. 

 

Design Rationale 

Sodium hyaluronate and other viscoelastic materials have long been used during 

cataract surgeries and have become the standard of care during phacoemulsification. 

Several viscoelastics with different physical and chemical properties are available. 

Viscoelastics are used to stabilize the anterior chamber, to help maintain the eye 

pressurization, and to help absorb and dissipate thermal energy. There are two major 

classes of viscoelastic materials. The first type is a high viscosity, cohesive material such 

as sodium hyaluronate. The second is a low viscosity, dispersive material such as 

hydroxypropyl methylcellulose which is designed to adhere to the endothelium as a 
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protective coating during surgery. However, the fragile corneal endothelium is still 

damaged despite the use of viscoelastics [9]. 

Design requirements for the endo-contact lens to be successful include the need to be 

buoyant and transparent so as to float to the anterior-most portion of the aqueous humour 

as the patient lies on their back during cataract surgery and allow for the surgeon to work 

with full surgical access and visibility. The lens also needs to be foldable in order for the 

device to be able to be inserted into the aqueous humour through the cataract incisions. 

Finally, the lens needs to be hydrophilic so as to hydroplane across the corneal 

endothelium. It was determined that a polymer material would best fit the bulk of these 

strict requirements for the development of the endo-contact lens. However to the best of 

our knowledge a polymer which fits all of the device requirements, transparent, flexible, 

and buoyant, does not exist. 

The development of the endo-contact lens has made use of the properties of PDMS as 

a transparent and foldable viscoelastic polymer. The historical success of silicone based 

biomaterials in the ocular space also makes PDMS an ideal biomaterial for this 

application [10–15]. PDMS, however, is not naturally buoyant and several methods have 

been researched for the purpose of inducing buoyancy while maintaining transparency. 

To this end, the PDMS endo-contact lens has been uniquely engineered to have a 

peripheral ring of air (Figure 3.1). The traditional method of reducing polymer density 

would be to incorporate microbubbles into the polymer design. However, any form of 

bulk microbubble infusion results in a loss of material transparency. The peripheral 

bubble design maintains the optical transparency of the lens through the bulk of the 

device and also causes the lens to become buoyant. The peripheral ring has been designed 
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Figure 3.1. The PDMS lens is transparent and foldable with an air channel around the 

periphery. 

 

 

to be manufactured such that it is not a fully enclosed bubble. The high contact angle of 

aqueous on PDMS prevents the penetration of liquid into the air chamber thus 

maintaining the presence of air in the channel. 

The endo-contact lens is designed to be a more effective protection for the corneal 

endothelium than currently marketed products. Specifically, it has been designed to be a 

foldable 100 micron transparent shield which floats in the anterior chamber while 

hydroplaning and not sticking to the corneal endothelium. This allows for thermal 

protection of the corneal endothelium while at the same time providing surgical access. 

The device is designed to be a disposable implant that would protect the cornea and 

potentially eliminate the need for viscoelastic. This research indicates that with the use of 

this device, damage to the corneal endothelium will be reduced during 

phacoemulsification, improving surgical outcomes and could potentially wholly replace 

traditional viscoelastics. 
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Experimental 

Computer Modeling 

Major ocular structures including the cornea, lens, aqueous humor, and vitreous 

humor were modeled using COMSOL Multiphysics (4.3.0.151). A 2D-axisymmetric 

geometry was used for this study. Material properties for each tissue and liquid were 

obtained from previously published manuscripts and are tabulated in Table 3.1. 

This model was used to assess the potential efficacy of the endo-contact lens in 

protecting the corneal endothelium prior to in vivo experiments. The governing equation 

used by COMSOL is the generalized heat transfer equation assuming time dependency 

and a fixed geometry was  

    
  

  
                       , (3.1) 

where ρ is density, CP is specific heat, k is thermal conductivity, T is the temperature, Q 

is heat, and Qbio is biological heat supplied to the system. The model of the eye was 

designed using anatomical measurements and is shown in Figure 3.2. 

 

Table 3.1. Material properties of ocular domains for use in COMSOL. 

Domain 
Thermal Conductivity 

(W/m*K) 
Specific Heat (J/kg*K 

Cornea 0.58 3500 

Lens 0.4 4200 

Aqueous Humor 0.58 4200 

Vitreous Humor 0.603 4200 

Endo-Contact Lens 0.15 1460 
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Figure 3.2. The COMSOL model generated showing the major anatomical structures, 

and the 2D-axisymmetric model. 
 

 

Materials and Design  

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) was used as the primary 

component of the endo-contact lenses. During device manufacture, the polymer was 

mixed at a 10:1 ratio base to curing agent. The endo-contact lenses were manufactured 

through a molding process. The first generation mold was manufactured using Teflon®. 

The mold was designed in Solidworks®, machined using a computer numerical control 

(CNC) machine, and aligned using four nails as shown in Figure 3.3. This original mold 

design generated a fully enclosed peripheral bubble in the endo-contact lens. However, 

this design allowed for very little variation in molding conditions. As a result the 

manufacturing process was unreliable. Additionally, the softness of the Teflon material 

used in the mold yielded microscopic machining marks which transferred to the PDMS 
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Figure 3.3. Design for the manufacture and use of the mold. 

 

 

when used. This has resulted in some loss of transparency in the endo-contact lenses. 

In order to address the complications involved with the Teflon mold a second 

generation mold was manufactured. This mold was manufactured of steel and afterwards 

polished. The polish was intended to improve the optical quality of the manufactured 

lenses. Additionally, the molding process was modified to include the use of a paper 

insert. This insert would be placed between the two molding pieces with a hole in the 

paper center; this hole was slightly smaller than the size of the endo-contact lens (~4.8 

mm diameter). During the molding process the paper insert would induce the formation 
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of a peripheral channel in the manufactured endo-contact lenses rather than a peripheral 

enclosed bubble. This second mold and modified molding process was much more robust 

and allowed for a much higher success rate in the formation of PDMS endo-contact 

lenses. This molding process is shown in Figure 3.4. 

 

Biocompatibility 

In order to determine the degree of PDMS monomer leeching in vitro endo-contact 

lenses were immersed in vials of PBS and placed into sonication baths for 24 hours. The 

experimental negative control was a vial of sonicated PBS which was never introduced to 

any PDMS. The positive control was a vial of unmodified PDMS monomers. After 24 

hours of sonication the endo-contact lenses were removed from solution. Mass 

spectrometry was used to determine the presence of PDMS monomers in each solution. 

Preliminary In vivo biocompatibility experiments were also performed on n=2 rabbits. 

These data were obtained in partial fulfillment of a planned future study wherein two 

groups of n=7 rabbits will be assessed for the biocompatibility and efficacy of the endo-

contact lens. Endo-contact lens efficacy was assessed through in vivo use of the lenses in 

rabbits used during cataract surgery. Rabbits underwent phacoemulsification and IOL 

insertion with ultrasound energy of 100 CDE (cumulative dissipated energy). 100 CDE of 

ultrasound energy was used to simulate more than the average required energy used 

during complex cases of cataract surgery. Two rabbits were used. One rabbit used the 

endo-contact lenses during surgery and the second used standard viscoelastic. Standard 

postoperative regimen was prescribed for both rabbits. Postoperative day 1 and 5 

pachymetry was measured and corneas were photographed on those days. At 
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Figure 3.4. Metallic mold setup for manufacture of the PDMS lens . 

 

 

postoperative day 5, eyes were harvested. Rabbit corneas underwent endothelial cell 

counting. Additionally, corneas and irises underwent histological analysis to evaluate 

postoperative morphology. 

Results and Discussion 

Computer Modeling 

The phacoemulsive heat generation was modeled by assuming a time-averaged heat 

source applied to the whole of the lens. This approach of a single fixed heat source was 

taken due to the constraints of COMSOL modeling. It is expected that this assumption 



65 

 

will not negatively affect the model in a significant way as during the process of 

phacoemulsification a surgeon will, on average, spend time evenly throughout the whole 

of the lens. This model has also been simplified to not account for the physical 

disintegration and breakdown of the lens during phacoemulsification. The model was 

carried out for 60 seconds, during which time an in vivo lens will not yet have fully 

broken down. This model also takes advantage of effective phaco time (EPT). EPT is a 

method of accounting for the variability in ultrasound delivery during a surgery. EPT 

accounts for this variation by calculating the equivalent phaco time at 100% power. 

While an average cataract surgery may be 10-15 minutes long, due to the low duty cycle 

and low power used during the procedure, the EPT may be only 60 seconds. Using this 

method, an effective phaco time of 60 seconds and maximum probe power of 7 Watts 

was used. Thus the EPT method would produce an average of 4.35 MW/m
3
 as a heat 

source across the whole of the lens. The result of the COMSOL model is shown in Figure 

3.5. 

The temperature change in the corneal endothelium was represented by plotting the 

temperature change over time at a single point at the center of the modeled corneal 

endothelial layer. This is shown in Figure 3.6. Over the 60 seconds EPT the endo-contact 

lens showed a 44.5% reduction in temperature with this model when compared to the 

model with no endo-contact lens. 
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Figure 3.5. COMSOL modeling showed the effect of the endo-contact lens in the thermal 

protection of the cornea. 
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Figure 3.6. Temperature of the corneal endothelium graphed over time as a function of 

presence of the endo-contact lens. 

 

 

PDMS Design 

PDMS is a polymer with a silicone and oxygen backbone with methyl side chains. 

These side chains cause the polymer to be very hydrophobic. Contact angles of water on 

unmodified PDMS are ~90°. However, PDMS surface wettability can be improved by 

oxygen plasma treatment. This process replaces surface methyl groups with hydroxyl 

groups through hydrogen abstraction. After plasma treatment, contact angles decrease to 

<10°. This wettability change is not permanent and the PDMS will undergo hydrophobic 

recovery after a period of hours. Since the shelf life of this device is only as long as its 

ability to maintain high wettability a series of experiments were performed with the intent 

of increasing the time required for hydrophobic recovery. 

Work by Vickers et al. showed promise with maintaining wettability by dramatically 

swelling the PDMS thereby allowing for unreacted monomers to diffuse out of the 
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polymer [16]. PDMS is first caused to swell by immersion into a high swelling solvent. 

The polymer is allowed to stay swollen for 24 hours. The sample is then brought back to 

its original size by immersion into lower swelling solvents. To test this hypothesis with 

the endo-contact lens, PDMS was first swollen in chloroform (swelling ratio 1.39). It was 

then returned to its original size through immersion in chlorobenzene (swelling ratio 

1.22), 1-propanol (swelling ratio 1.09), and finally water (swelling ratio 1.00). These 

samples were then compared to unmodified PDMS. Both sample group surfaces were 

modified by oxygen plasma treatment and contact angles were monitored over time 

(Table 3.2). The results of the experiment showed that the swelling protocol did not 

improve the longevity of surface wettability. 

During the PDMS swelling experiments it was observed that when the polymer 

surfaces maintained contact with water through immersion over long periods of time 

wettability was maintained. Subsequently, PDMS surfaces that did not undergo the 

swelling protocol were immersed in water immediately after oxygen plasma treatment 

and stored in water for the duration of an additional experiment. The wettability of these  

 

Table 3.2. Wettability of PDMS over time. 

 
Unmodified 

PDMS 

PDMS After 

Swelling 
PDMS in Water 

Prior to Plasma Treatment 92.3° ± 1.4° 95.75° ± 2.3° - 

Plasma Treatment +0 hrs 7.3° ± 1.6° 9.0° ± 2.6° 7.0° ± 1.8° 

Plasma Treatment +24 hrs 47.4° ± 1.7° 41.7° ± 2.4° 7.7° ± 1.5° 

Plasma Treatment +1 week - - 7.4° ± 2.1° 

Plasma Treatment +2 weeks - - 8.3° ± 1.1° 
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polymer surfaces was measured and is also shown in Table 3.2. This experiment showed 

that PDMS would maintain a hydrophilic surface over long periods of time when 

immersed in water. 

 

Biocompatibility 

ISO 10993 is a set of international standards for use in evaluating the 

biocompatibility of medical devices and biomaterials. The FDA considers these standards 

to be generally comprehensive but also recognizes that each medical device’s 

biocompatibility needs should be evaluated individually. Due to the diversity of medical 

devices it may be that despite falling into a specific category, additional tests should be 

considered. It could also be that not all tests will be necessary for any given device. 

Medical device developers are expected to use ISO 10993 as a set of guidelines from 

which to determine the specific needs of each device. This set of standards contains both 

in vitro and in vivo tests for evaluating the biocompatibility of medical devices. 

ISO 10993 confines required testing for a short term implant (<24 hours) for use in 

nonblood contacting tissue to sensitization, irritation, and cytotoxicity evaluations. 

Sensitization tests for adverse reactions in animals by exposing the animal to the 

biomaterial in question. The animal is then observed for sensitization reactions by 

observing redness and swelling as signs that the biomaterial is causing a reaction from the 

host’s immune system. Irritation tests are similar to sensitization tests in many ways. To 

test for irritation, the reaction to a single, repeated, or continual exposure from device 

materials is assessed. The host is evaluated for signs of irritation not involving the 

immune system. Therefore, sensitization and irritation are both evaluated through in vivo 
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methods. The focus of in vitro biocompatibility assessments are cytotoxicity testing. 

Cytotoxicity evaluations are generally available as rapid, standardized tests such as the 

Agar Overlay, MEM Elution, and Direct Contact tests. Cytotoxicity tests seek to 

determine if a biomaterial contains significant quantities of harmful extractables or if the 

biomaterial has other significant cytotoxic effects. 

PDMS has long been used in biological systems with good biocompatibility. The 

Whitesides group at Harvard showed in 2004 that the growth of mammalian cells on 

PDMS was comparable to growth on tissue culture-treated polystyrene for most cell types 

[17]. Therefore our evaluation of in vitro biocompatibility of the PDMS endo-contact 

lens did not focus on sensitization, irritation, and traditional cytotoxicity. It was 

determined that a long term tissue exposure to PDMS was possible due to the leeching of 

PDMS monomers from the lens during cataract surgery. Experimental results showed that 

the presence of PDMS monomers yielded distinct peaks at 221.4 and 222.0 Da. These 

results are clearly seen in the positive control but are absent in each of the other samples 

(<5E4 cps) (Figure 3.7). 

Normal rabbit corneal thicknesses range from 250 to 330 μm. We found the following 

corneal thicknesses; both eyes of each rabbit underwent high-energy phacoemulsification, 

one with and one without the endo-contact lens (Table 3.3). The average corneal 

thickness increase without endo-contact lens was 29.5%, while increase with endo-

contact lens was 10.4%.  

Two rabbits had cataract surgeries performed on them. One eye for each rabbit used 

the endo-contact lens during phacoemulsification. The control eyes had cataract surgery 

performed on them using the current standard of care with viscoelastic. After sacrifice, 
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Figure 3.7. Mass spectrometry of PDMS monomers, PBS, and PDMS solutions showing 

no leaching of silicone monomers. 

 

 

Table 3.3. Corneal thicknesses measured prior to and after cataract surgery. 

 

Rabbit 1 Rabbit 2 

Pre-op Post-op Pre-op Post-op 

Endo-contact lens 297 µm 344 µm 314 µm 330 µm 

No Endo-contact lens 325 µm 389 µm 247 µm 344 µm 

 

 

pachymetry was performed and the corneas were imaged (Figure 3.8). The cellular 

morphology of the cell layers is visible and shows evidence to the increased efficacy of 

the endo-contact lens in the protection of the corneal endothelium. The endothelial cells 

also show a more natural morphology for the eyes that the endo-contact lenses were used 

on than the cells of the eyes where the lenses were not used as seen in Figure 3.8. The  
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Figure 3.8. Cellular morphology of the corneal endothelium after 100 CDE cataract 

surgeries for eyes with the endo-contact lens (left) and without (right). 

 

 

resultant endothelial cell counts showed an endothelial cell count of 64 and 66 for the 

eyes with endo-contact lenses and 31 and 38 for the eyes without the lenses over the same 

area. 

 

Conclusions 

Within the United States there are 3 million cataract surgeries annually. These 

surgeries can damage the patient’s corneal endothelium. This damage results in decreased 

corneal clarity and can potentially result in the need for corneal transplantations. The 

endo-contact lens has been developed for the purpose of shielding the cornea for the 

thermal and fluidic injury that can result from cataract surgery. 

The development of the endo-contact lens continues to be a work in progress but this 

research has shown the successful design and development of key aspects of the device 
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including device transparency, flexibility, polymer composition, and buoyancy. 

Experiments indicate that the device would be biocompatible in the ocular space for the 

short duration purpose of protecting the corneal endothelium. Computer modeling and 

experiments have also indicated that the device would be efficacious in the protection of 

the corneal endothelium during surgery by reducing thermal exposure by 45%. The 

results of this study also show a significant reduction in corneal swelling and an increase 

in endothelial cell counts after surgery. The next step for the development of this device 

would be for the statistically powered in vivo experiment verifying the results seen in this 

preliminary study. It is expected that the development of this device will be a great 

benefit to patients and healthcare providers as the number of operations increase.  
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CHAPTER 4 

 

POLYETHYLENE GLYCOL FOR A REDUCTION IN 

PROTEIN ADSORPTION 

 

Abstract 

Biocompatibility is a major concern for medical device development. One of the first 

steps involved in the host response is that of protein adsorption. Polyethylene glycol 

(PEG) surfaces have been developed for the purpose of reducing protein adsorption with 

the intent of improving a device’s biocompatibility. However, the protein inert qualities 

of PEG are not clearly understood. This study aims to elucidate the impact of PEG 

surface density in reducing protein adsorption. Two forms of PEG surface gradients were 

evaluated for the adsorption and desorption of albumin and fibrinogen, two common 

blood proteins. This study shows that as the concentration of protein increases, polymer 

surface density become increasingly important. 

Introduction 

The interactions between host and biomaterial have long been studied [1–21]. 

Although much progress has been made in the development of biomaterials, successful 

applications have been limited in scope due to a lack of consistency and understanding of 

biocompatibility [13,15–17,22,23]. Medical device biocompatibility is a complex issue, 
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but when these devices are blood-contacting the situation becomes significantly more 

complex. Typically a biomaterial, after being exposed to a protein solution (e.g., blood), 

will become coated with a protein layer within seconds [9,15,24–32]. The adsorption of 

certain blood proteins prompts the adherence and activation of blood cells and platelets 

[8,9,13,15,16,19,30,33–35]. These interactions can initiate two of the major biomaterial 

problems: the foreign body reaction and inflammation [15,16,18,19]. Platelet initiated 

fibrin formation and cross-linking can also cause fouling or disruption of a biomedical 

device and its function. These factors determine a biomaterial’s biocompatibility. 

A great deal of research has focused on the protein inert properties of polyethylene 

glycol (PEG) [34,36–43]; however, despite the investigation of many different underlying 

mechanisms, the protein inert qualities of PEG are still not fully understood. This 

research has prompted the understanding that the protein inert properties of PEG-

containing molecules are due to a combination of phenomena. The large extended 

volume which the hydrophilic polymer occupies in water based media forms an enthalpic 

and entropic favored state [24,30,36–38,41,44–49]. In order to adsorb to a biomaterial 

surface, a protein would need to disrupt the entropic and enthalpic favored state of the 

fully extended PEG polymers. This and the absence of strong attractive interactions 

between most proteins and PEG-containing coatings appear to be the most influential 

adsorption-reducing properties. The protein inert properties of PEG-containing coatings 

depend on a range of parameters including molecular weight, interfacial chain density, 

and polymer chain structure [25,44,50,51]. This study intends to elucidate the impact of 

PEG grafting density on the inhibition of protein adsorption. 
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Materials and Methods 

Sulfhydryl Surface Formation 

The initial substrates for the gradient surfaces were 3”x1”x1mm fused silica 

microscope slides (Ted Pella). After cleaning with Millipore® water and Alconox® 

solution the slides were soaked in Piranha solution (70% H2SO4, 30% H2O2) for 1 hour. 

The slides were then rinsed again with Millipore® water, dried, and oxygen plasma 

(Plasmod, Tegal Inc., 50 W @200 mTorr) treated. Oxygen plasma treatment resulted in 

uniform surface coverage with reactive silanol groups. These surfaces were then 

immersed in a 1% solution of 3-mercaptopropyltrimethoxysilane (MTS) (M8500, UCT) 

in toluene for 4 hours. The result was the formation of surface sulfhydryl chemistry. This 

process is diagramed in Figure 4.1. 

 

PEG Gradient Formation 

Two methods were compared for the formation of PEG density gradients. The first 

method of surface gradient formation was controlled exposure of uniform sulfhydryl 

surfaces, generated as described in the previous section, with maleimide-terminated PEG 

(5 kDa, 63187, Sigma-Aldrich). A 0.1 mg/mL (1.8E-5 M) solution of a maleimide- 

 

Figure 4.1. Diagram of the MTS reaction forming uniform sulfhydryl surfaces. “R” 

represents solid fused silica with silanol groups on its surface. 
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terminated PEG was progressively added to the sulfhydryl surfaces in a vertical flow cell 

over the course of 1 minute to generate a reaction gradient dependent on transportation 

rate kinetics. The maleimide-sulfhydryl reaction (Figure 4.2) gradient is stochastically 

controlled by the duration of time during which the surface is exposed to PEG. The PEG 

solution was introduced into the bottom of the flow cell. It was then flowed upwards 

along the length of the slide. The bottom third of the surface was immersed in PEG for 5 

minutes prior to the introduction of such flow to generate a uniformly coated PEG region 

to be used as a control. By this method, the PEG solution was in contact with the bottom 

third of the surface for a total of 7 minutes, a gradient of 2 minutes to transient contact in 

the central third, and no contact in the upper third of the surface. This method was used to 

successfully form a gradient of high PEG surface density near the bottom of the flow cell 

and progressively lower PEG surface density along the length of the slide. This method is 

shown in Figure 4.3. 

The second method generated the gradient through a gradual oxidation of reactive 

species (Figure 4.4). After the formation of uniform sulfhydryl surfaces, the surface  

 

 

Figure 4.2. Diagram of the method for the generation of PEG surface gradients. 

K2SO4 11% (w/w) was used as a salt to increase grafting density. “R” represents solid 

fused silica with sulfhydryl groups on its surface. 
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Figure 4.3. Diagram showing the flow method of gradient formation. Syringe 1 is 

used to fill the system with buffer solution. Syringe 2 is used to flow maleimide PEG 

solution into the reaction chamber creating a gradient based on PEG-sulfhydryl exposure 

time. 

 

 

 

Figure 4.4. Diagram showing the progressive oxidation of surface sulfydryl 

groups for the formation of PEG gradients [52].  
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chemistry was modified so as to generate a gradient of reactivity to maleimide-terminated 

poly (ethylene glycol) (PEG) (5 kDa, 63187, Sigma-Aldrich) through UV oxidation. This 

was performed by placing the uniform sulfhydryl surface into a slide holder and exposed 

to UV light (ELC-4000, Electrolite Corp.). UV light oxidation was performed such that 

the central 1 cm region of the 3” fused silica slide was gradually exposed by the linear 

translation of a mask at a constant rate of 0.25 cm/min for 4 minutes. Afterwards, the 

slides were uniformly immersed in maleimide-PEG solution (0.1 mg/mL [1.8E-5 M]) for 

5 minutes. 

 

Surface Characterization 

X-ray Photoelectron Spectroscopy (XPS) was performed at the University of Utah 

nanofabrication laboratory. The mono Al source was operated at 150 W (10 mA, 15 kV) 

for all samples and the charge neutralizer was optimized at 2.15-1.95 A on the filament 

and 3.05 V on the charge balance depending on the sample.  Survey scans were collected 

using 1 eV steps, 200 ms dwell time at a pass energy of 160 eV.  High resolution regional 

scans were collected using 0.1 eV steps, 300 ms dwell time at a pass energy of 40 eV. 

Equilibrium, advancing, and receding water contact angles were measured by the 

sessile drop method using a contact angle goniometer (CAM 100, KSV Instruments). 

Five μL Milipore filtered water droplets were dispensed along the length of the samples 

and imaged using the instrument camera. The KSV software was used to calculate the 

contact angle of the water droplet using the image of the drop. 
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Protein Adsorption Kinetics 

Albumin (HSA) (fraction V, fatty acid free) from human serum and fibrinogen (FGN) 

were purchased from Sigma-Aldrich and used as received. Protein solutions were 

prepared for fluorescent labeling by mixing purchased protein with Dulbecco's 

Phosphate-Buffered Saline (DPBS). Each protein solution was fluorescently labeled 

using Alexa Fluor 488 carboxylic acid, succinimidyl ester (A20000) which was 

purchased from Invitrogen. After conjugation of protein and Alexa Fluor 488, the 

solution was passed through a column (PD-10 desalting column, GE Healthcare, 17-

0851-01) to separate the free probe from the conjugated protein fraction. The 

concentration of fluorescently labeled protein was determined by a 3-step process. First, 

the protein solution’s absorbance at 280nm and 496nm was quantified using a 

spectrophotometer [53]. Next, the concentration of free fluorescent probes was calculated 

as shown in equation 4.1; and the concentration of fluorescently tagged protein was 

calculated as shown in equation 4.2. The degree of labeling was determined as shown in 

equation 4.3. DPBS was then added as needed to these solutions to generate protein 

solutions at 1% and 10% human plasma concentrations. 

                     
    

     
 (4.1) 

                       
                

     
 (4.2) 

                 
                   

                     
 (4.3) 

Total Internal Reflection Fluorescence Spectroscopy (TIRF) is a surface analysis 

technique which is based on the excitation of fluorophores by an exponentially decaying 

evanescent wave [54]. When the incident light wave strikes the interface between the two 

media at an angle larger than the critical angle the light wave forms an evanescent wave 
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before being completely reflected back into the first medium. The evanescent wave is 

formed only at the interface between two media with sufficiently different refractive 

indices; in this case between silica with the PEG gradient and the buffer solution. The 

evanescent wave allows for excitation of fluorophores 200 nm deep into the buffer 

solution. The excitation light source was a 0.5 mW Ar
+
-ion laser beam. This light was 

sent through attenuation filter before being expanded and collimated into a Gaussian 

profile beam of light (~2 cm diameter). The beam was then passed through a 1cm x 1mm 

rectangle mask before being used for total internal reflection. The quartz slide with the 

PEG gradient surface was optically coupled with a quartz prism using glycerol to 

maintain optical refraction properties. A silicon rubber gasket was used to separate the 

fused silica slide from a black-anodized aluminum support. This created an open space 

(thickness 0.5 mm) which was used to flow protein and buffer solutions across the PEG 

modified surface (Figure 4.5). Solutions were allowed to flow in and out of the space 

through two holes in the bottom and two holes in the top of the aluminum support. 

Solutions were injected into the flow cell at 0.7 mL/min using a syringe pump. 

The fluorescence emitted from the PEG surface was imaged through the quartz prism 

using a thermo-cooled charge-coupled device (CCD, C200, Photometrics) camera. The 

wavelength of the emitted fluorescence light was selected using a monochromator 

(1681C, SPEX Industries Inc., f /4, 2 mm slit, 300 grooves mm
−1

 grating). The CCD 

camera was cooled to -46 degrees C to minimize dark current. Both the light source and 

CCD camera were controlled using a computer (Mac II, Apple) for data acquisition. The 

CCD camera was connected to the computer using a DMA board (National Instrument, 

NB-DMA-8). The fluorescence signal was binned across a wavelength range by 
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Figure 4.5. The schematics of the TIRF flow cell, comprising the cell support, 

gasket, and silica plate with the PEG gradient, and the quartz prism [55]. 

 

 

combining adjacent pixels in the CCD camera during an exposure of 1 second in order to 

improve the S/N ratio and allow for a quicker readout of the camera signal. The shutter 

was then closed and data recorded for 1 second to provide a blank which was used to 

subtract background noise from the fluorescence data at each data acquisition time point. 

The resulting profiles of fluorescence vs. gradient length vs.time were then combined in a 

single data file. Twenty instances of binned data from such a file were then integrated and 

combined to form the protein adsorption and desorption kinetics or adsorbed protein 

gradient profiles depending on whether protein solution or buffer solution was being 

flowed past the PEG modified surface. Adsorption and desorption data were separately 

gathered in series for 10 minutes each. Prior to the gathering of experimental data a laser 

profile was obtained using a uniformly fluorescent liquid. This was necessary due to the 

laser light not being completely uniform in intensity. This laser profile was used to flat-

field the obtained adsorption and desorption data to remove the effects of uneven spatial 
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intensity of the expanded and collimated laser beam. 

 

Results and Discussion 

Surface Characterization 

PEG surface gradients were formed in two ways. Each method began with the formation 

of a uniform sulfhydryl terminated surface through an MTS reaction. The first method of 

gradient formation utilized the control of the reaction time between PEG and surface 

sulfhydryl groups through a flow method. However, as will be shown below, the flow 

method did not successfully form a smooth gradient effect of PEG surface density on 

protein adsorption and instead formed a step profile PEG gradient. In order to form a less 

steep PEG gradient surface, the second method was utilized. The second method limited 

PEG reaction sites by UV oxidation of the surface sulfhydryl groups to sulfonate groups. 

Only where sulfhydryl groups persisted could the maleimide-terminated PEG be grafted 

to the surface. The generation of sulfhydryl-sulfonate gradients resulted in changes in 

surface wettability. Water contact angle measurements (advancing, receding, and 

equilibrium) showed the existence of a wettability gradient which is indicative of a 

sulfhydryl-sulfonate gradient as shown in Table 4.1 and Figure 4.6. Figure 4.6 is 

representative of the generated gradients showing the expected contact angles for 

sulfonate, sulfhydryl, and PEG regions [52,56]. Prior to PEG grafting, the gradient region 

of the surface gradually increased from ~12° on the sulfonate side to ~66° on the 

sulfhydryl side which is consistent with previous reports [57–60]. 

Since contact angle measurements were only an indirect indicator of surface 

chemistry, high resolution XPS spectra of C1s and S2p peaks were performed to verify 



85 

 

Table 4.1. Water contact angle measurements comparing sulfhydryl and sulfonate 

regions on MTS gradient surfaces.  

 Sulfhydryl Region Sulfonate Region 

Advancing 69.1 ± 4.2° 32.3 ± 4.9° 

Receding 52.5 ± 3.5° 10.4 ± 2.8° 

Equilibrium 66.0 ± 2.8° 13.1 ± 3.0° 

 

 

 

 

Figure 4.6. Water contact angles showing the generated PEG gradients. 
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the formation of surface sulfhydryl-sulfonate gradients and subsequent PEG-sulfonate 

gradients (Figure 4.7). Surfaces were UV oxidized for 0, 1, or 2 minutes and 

subsequently immersed in maleimide-terminated PEG solution for 5 minutes. The 

relative changes between the ~284 eV C-C carbon peak and the ~286 eV C-O carbon 

peak show a progressive increase of C-O concentration, and thus PEG concentration, as 

oxidation time decreases (Figure 4.7, top). The magnitudes of the ~163 eV S2p sulfur (-

SH) peak and the ~168 eV oxidized sulfur (SO3
-
) peak (Figure 4.7, bottom) change as a 

function of the UV oxidation time indicating the change in reactive (-SH) surface 

chemistry over time thus matching the XPS spectra reported in the literature [57,59,60]. 

As oxidation time increases the relative concentration of SO3
-
 increases. These results 

corroborate the contact angle measurements indicating the formation of sulfhydryl-

sulfonate and subsequent PEG-sulfonate gradients. 

XPS was also performed on sulfhydryl surfaces which were immersed in 0, 0.1, and 1 

mg/mL PEG solutions (Figure 4.8). This was performed to determine which 

concentration of PEG would be most effective for the generation of our gradient and 

additionally to show the effect of increasing PEG concentration on the surface 

composition. Data from the graphs show that the maleimide-sulfhydryl reaction occurs 

quickly and that despite the 10-fold difference in concentration little change is seen in the 

resultant surface composition. For this reason it was determined to use a PEG solution of 

0.1 mg/mL for the generation of the gradients. 

Protein adsorption and desorption to PEG gradients were measured using 

fluorescently labeled albumin (HSA) and fibrinogen (FGN) and TIRF. These proteins 

were chosen because of their abundance and significance in the blood. Albumin was 
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Figure 4.7. XPS spectra of the C1s carbon peak and S2p sulfur peak showing the 

relative changes in concentration of C-C to C-O and S-H to S-O3
-
 

 



88 

 

 

 

Figure 4.8. XPS spectra of the C1s carbon peak and S2p sulfur peak showing the 

relative changes in concentration of C-C to C-O and S-H to S-O3
-
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Protein Adsorption Kinetics 

tested at concentrations of 0.4 and 4 mg/mL. Fibrinogen was tested at concentrations of 

0.03 and 0.3 mg/mL. These concentrations correspond to 1% and 10% of their blood 

concentrations. 

HSA and FGN were both independently tested on PEG gradient surfaces to show 

adsorption and desorption properties. Figure 4.9 shows the effect that PEG surface 

gradient has on 1% blood protein concentrations. At these low concentrations both HSA 

and FGN initial adsorption rate are expected to be largely limited by transport.  

One difficulty in a study of this nature is the quantified determination of the protein 

surface adsorption. This study takes the approach of determining protein surface coverage 

as a measure of protein adsorption quantification as a function of time. For each surface 

and protein the surface adsorption becomes a function of the protein’s transport to the 

surface and secondly, the actual adsorption to the surface. Therefore, for each protein and 

surface the surface coverage can be either transport limited or adsorption limited. For 

these experiments we consider protein in solution which is made to flow through a 

controlled channel with a rectangular cross-section. For a transport limited regime the 

flux of protein molecules to the surface (JP) is shown in equation 4.4 where DP is the 

diffusion coefficient of the protein,    is the concentration of protein in solution, [Γ(4/3)] 

is the gamma function of 4/3, l is the distance of the flow channel, b is the channel 

thickness, and w is the channel width, q is the volumetric flow rate of the protein 

solution. 

       
 

 
       

 

  
  

      
 
 

      (4.4) 
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Figure 4.9. Human serum albumin and fibrinogen adsorption kinetics from the 

solutions equivalent to 1% blood protein concentrations to sulfonate and PEG surface 

regions of the PEG gradient generated by the UV exposure method. Artifact data was 

removed between 600-700 seconds. 
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In a transport limited regime, JP from equation 4.4 equals the adsorption rate dΓ/dt. 

Data obtained from TIRF experiments were in the form of fluorescence and were 

converted into surface coverage through the use of this relationship with the 1% 

fibrinogen data. This relationship is shown in equation 4.5 where X is a constant with 

units of                . 

       
   

  
    (4.5) 

This constant is used to convert fluorescence intensity (Fi) to surface coverage at all 

time points. Data obtained from this method agree with literature which was verified with 

autoradiography [56]. Albumin was determined to not be fully transport limited for these 

experiments and was converted to surface coverage using the calibration from the same 

study. 

At low concentrations, very little change is seen when buffer is flowed through the 

system during the second half of the TIRF experiment. HSA shows some degree of 

desorption when buffer is flowed through the system, but that is not seen in the case of 

FGN adsorption. These data show that for both HSA and FGN, grafted surface PEG 

chains are effective at reducing protein adsorption. 

Gradients are very well pronounced at low concentrations. The data from Figure 4.10 

show the central region of the PEG-Sulfonate surfaces and the success of the gradient 

generation using the oxidation method. The protein surface coverage is shown for the 

periods of adsorption (protein solution is flowed) and desorption (buffer is flowed). 

Figure 4.11 shows the adsorption and desorption adsorbed kinetics from the protein 

solutions equivalent to their 10% blood concentration on step PEG gradient surfaces 

generated by the flow method. As with the 1% solutions, during flow of protein solutions, 
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Figure 4.10. Human serum albumin and fibrinogen adsorption profiles along the 

UV exposure generated PEG gradient at the end of the adsorption and  

desorption cycles from the solutions equivalent to 1% blood protein 

concentrations. 
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Figure 4.11. Human serum albumin and fibrinogen adsorption kinetics from the 

solutions equivalent to 10% blood protein concentrations to MTS and PEG surface 

regions of the step PEG gradient generated by the flow method . 
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protein surface adsorption is apparent. However, once protein solution is replaced with 

buffer solution much of the fluorescence intensity is removed on the PEG side of the 

gradient. This is due in large part to the removal of bulk solution fluorescence excited by 

the evanescent wave. However, this behavior is also similar to what is shown in recent 

protein adsorption models [25,30,42,50,51]. During buffer flow, proteins immediately 

desorb in large quantities and after a few minutes are desorbed from the grafted PEG 

region to such a degree as to render them undetectable by TIRF, near-zero surface 

adsorption. The adsorption proteins to the sufhydryl region of the step PEG gradient 

remained at the levels comparable to previously reported data [56]. 

The flow gradient used for 10% protein concentrations was not as successful as was 

seen for the oxidation gradient. Figure 4.12 shows the region of the surface which was 

intended to have the gradient from sulfhydryl to PEG. However, for these surfaces we see 

something more similar to a step function wherein the surface adsorption of protein drops 

off completely on the PEG side. 

It has been demonstrated that the primary parameter which governs protein 

adsorption to surfaces is polymer surface coverage [25,30,42,46,50,51,61,62]. While the 

formation of PEG surface density gradients was confirmed using contact angle and XPS 

methods these data suggest that the importance of PEG surface density becomes more 

pronounced with increasing protein concentration. To evaluate the effect of PEG surface 

density on protein adsorption two different gradient surfaces were utilized. Initially, a 

flow based gradient approach was attempted. This method appeared to develop the 

gradient went characterized using contact angle analysis. However, the surface adsorption 

data show a step function rather than a gradient (Figure 4.12). This could indicate that at 
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Figure 4.12. Human serum albumin and fibrinogen adsorption and desorption 

profiles along the flow generated  PEG gradient at the end of the adsorption and 

desorption cycles from the solutions equivalent to 10% blood protein concentrations. 
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higher concentrations PEG showed a more significant impact or it could indicate that the 

development of the gradient was unsuccessful. Additionally, the data show that neither 

fibrinogen or albumin irreversibly bound to the PEG surfaces (Figure 4.11). The 

oxidation approach prevented the maleimide-PEG from reacting with the surface by 

oxidizing sulfhydryl chemistry to unreactive sulfonate in a progressive manner. This 

method appears to have been more successful in the formation of the gradient and was 

confirmed with contact angle analysis and XPS. These surfaces showed a progressive 

increase in protein adsorption consistent with the gradient profile. 

Differences can be seen between the adsorption and desorption profiles of albumin 

and fibrinogen which are consistent with previous work [56]. The 1% fibrinogen profiles 

show that the protein is transport limited and show very little desorption during the flow 

of buffer. In contrast, 1% albumin data show the protein is not strictly transport limited. 

1% fibrinogen surface coverage settles at about 0.3 
  

    which agrees with 

autoradiography confirmed data [56]. 

Ten percent data for both proteins show that the shape of adsorption profiles are 

similar for both sulfhydryl and PEG surface regions. Initally albumin adsorbs to a surface 

coverage of ~0.9 
  

   , but desorbs to ~0.4 
  

    on sulfhydryl surface regions. The PEG 

regions show a similar rise up to ~0.5 
  

    and full desorption during buffer flow. Protein 

fully desorbs from the PEG surface during buffer flow for both proteins. Fibrinogen 

adsorbs to the sulfhydryl region up to 0.28 
  

    and then desorbs to 0.2 
  

   . In the PEG 

region the protein adsorbs to 0.8 
  

    and then fully desorbs. The same amount of 

desorption is seen in both regions. With this 10-fold increase in protein concentration the 
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adsorption is no longer strictly transport limited for either protein. 

As few, if any, natural biological protein solutions contain only a single protein 

additional work includes the determination of surface adsorption of more complex 

protein mixtures. Protein adsorption of binary mixtures has been examined in previous 

studies [56]. If similar data could be projected on these gradient surfaces it could be 

expected to see initial albumin adsorption in high quantities only to be replaced in some 

degree with fibrinogen due to the Vroman Effect. Ternary solutions were evaluated in 

previous work [56] wherein the effect of the ternary solution was first modeled and then 

confirmed using experimental data. 

 

Conclusions 

Polymer coatings, especially PEG, have long been studied for the purpose of 

improving medical device biocompatibility. While many techniques have been developed 

for the grafting of PEG to biomaterials, none have been able to produce a perfectly 

biocompatible surface. In order to further understand the mechanisms of PEG’s protein 

inertness, polymer density gradient surfaces were generated and characterized using 

contact angle measurements and XPS. TIRF was used in conjunction with fluorescently-

labeled HSA and FGN to measure protein adsorption onto two types of PEG surface 

density gradients. 

It has been shown that properties such as molecular weight and particularly surface 

density have an effect on the efficacy of PEG surface coatings [25,44,50,51]. In this study 

two major blood proteins, HSA and FGN, were used to determine the efficacy of PEG 

density gradients. TIRF data were consistent with that of previous work in surface 
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coverage and profile over time [56]. Surface gradients were successfully generated 

through oxidation and exposure based methods. Surfaces were characterized using 

contact angle and XPS techniques. Each protein was diluted to 1% and 10% of normal 

blood concentration. Protein adsorption to PEG surfaces at 1% concentrations was very 

low and the polymer surface density gradient was shown to have a nearly linear effect on 

protein adsorption. When the concentration of protein was increased to 10% blood 

concentration, the gradients showed the characteristics of a step function rather than a 

progressive gradient. This could be due to the incorrect formation of the gradient or to an 

increased effectiveness of PEG at higher protein concentrations.. It is not clear if this is 

due to the actual step profile of PEG grafting density (note that the contact angle data in 

Figure 4.6 do not show a steep gradient) of the efficacy of grafted PEG chains to resist 

protein adsorption from more concentrated solutions. If the latter is the case then this 

result may indicate that a critical polymer surface density may be required for prevent 

adsorption from solutions of higher protein concentrations in order to maintain a protein 

inert surface property. 
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CHAPTER 5 

 

CONCLUSION 

 

This work has demonstrated the design, fabrication, and characterization of two new 

biomedical devices: (i) the capsular drug ring (CDR); and (ii) the endo-contact lens. 

These two devices are designed to improve patient outcomes with ocular diseases, 

specifically age-related macular degeneration, glaucoma, and cataracts. This work also 

discusses the impact of polyethylene glycol (PEG) surface density on the adsorption of 

proteins to a surface, regarded as the first step in determining an implant’s 

biocompatibility. 

AMD is the leading cause of blindness and significant visual impairment in 

developed nations. Significant improvement in patient health outcomes can be made 

through the development of an extended release device, the CDR. This work has 

demonstrated the successful design and manufacture of the device. It was also shown that 

the device is able to deliver Avastin for clinically relevant durations (i.e., 90+ days) and it 

was able to do so while showing acceptable biocompatibility. In vitro direct contact 

assays show little difference in migration, proliferation, and proinflammatory cytokine 

generating behaviors when compared to gold standard culture methods. The CDR 

continues to be a work in progress, but key in vitro device biocompatibility and efficacy 

assessments demonstrate the potential of the device. 
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Three million cataract surgeries are performed annually within the United States. 

Within the eye, a delicate monolayer of cells known as the corneal endothelium is 

damaged to various degrees during surgery. This damage results in decreased corneal 

clarity and can potentially result in the need for corneal transplantations. The endo-

contact lens has been developed as a simple and easy to use device for the purpose of 

shielding the cornea during cataract surgery. It specifically shields the corneal 

endothelium from thermal and fluidic injury that is caused by phacoemulsification. 

This research has shown the successful design and development of key aspects of the 

endo-contact lens. In vitro and preliminary in vivo results indicate that the device would 

be biocompatible in the ocular space within its intended purpose. Computer modeling 

shows device efficacy in the protection of the corneal endothelium during surgery by 

reducing thermal exposure by 45%. Preliminary in vivo results show a significant 

reduction in corneal swelling and an increase in endothelial cell counts after surgery. 

The biocompatibility of biomedical implants is highly dependent on the interaction of 

the implant surface with the proteins and cells of the body. Polymer coatings, especially 

PEG, have long been studied for the purpose of improving medical device 

biocompatibility. This work attempted to further understand the mechanisms of PEG’s 

protein inert qualities. In order to do so, polymer density gradient surfaces were 

generated and characterized. Total internal reflection fluorescence (TIRF) was used in 

conjunction with fluorescently-labeled albumin and fibrinogen to quantify the adsorption 

of these proteins to the PEG gradient surfaces. One percent protein concentrations 

showed very low adsorption to surfaces. In addition, the polymer surface density gradient 

was shown to have a nearly linear effect on protein adsorption. At 10% protein 



106 

 

concentrations the effect of PEG was more pronounced and a step function of protein 

adsorption was observed. When buffer was flowed over the surface after 10 minutes of 

exposure no detectable protein remained adsorbed to the surface. 

The important contributions of this dissertation work are listed below. 

1. A comprehensive review of the management of ocular diseases including age-

related macular degeneration, glaucoma, and cataracts. 

2. A comprehensive review of the state of the field of implantable ocular drug 

delivery devices. 

3. The development and manufacture of the CDR showing Avastin drug release in 

vitro out to 90+ days. 

4. An assessment of the in vitro ocular biocompatibility of the CDR. 

5. The development and manufacture of the endo-contact lens. 

6. COMSOL modeling showing the efficacy of the endo-contact lens in reducing 

exposure of the corneal endothelium to thermal energy by 45%. 

7. Manufacture methods of the endo-contact lens showing no PDMS monomer 

leaching preventing long term exposure of ocular tissues to the biomaterial. 

8. Preliminary in vivo results showing efficacy of the endo-contact lens showing a 

39.1% reduction in postsurgical corneal thickening and 1.91 times the number of 

postsurgical viable corneal endothelial cells. 

9. Preliminary in vivo results showing healthy cellular morphologies postsurgery 

with the use of the endo-contact lens. 

10. The methods for the formation of two different types of PEG density gradients for 

use in the study of PEG and protein adsorption. 
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11. Results showing protein adsorption to PEG surfaces at 1% and 10% blood 

concentrations. 

 

Future Work 

While this dissertation has answered important questions and shown successful 

development of two ocular biomedical devices, it has opened up a number of new areas 

that need to be explored and developed in the future. 

 

Capsule Drug Ring 

The development of the CDR has progressed through the majority of its in vitro work. 

Up to this point, the CDR biocompatibility assays have all be performed in absence of 

Avastin, the expected drug of choice for this device. Future work will include the 

incorporation of Avastin into in vitro biocompatibility assays to determine the effect of 

the drug presence. In addition, improved drug release kinetics to improve the long term 

efficacy of the device will need to be developed. In order to complete this task an 

effective model for the determination of required daily dosage will need to be developed. 

With the end goal of advancing this device into clinical use, the complete statistically 

powered in vivo biocompatibility and efficacy assessment of the device will need to be 

completed. 

 

Endo-contact Lens 

The safety and efficacy of the endo-contact lens can best be elucidated through in 

vivo animal models. Through in vivo testing it is expected that the potential inflammatory 
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and immune response that may develop hours or days after the use of the device can be 

quantified. In vivo endo-contact lens assessments should make use of slit lamp 

examination, measurement of intraocular pressure, and indirect ophthalmoscopy to 

evaluate possible toxic effects of the use of the endo-contact lens postsurgery. 

Histopathological examination will further this determination and will also quantify the 

efficacy of the endo-contact lens in vivo. In order to simulate a complex case of cataract 

surgery, phacoemulsification should be performed until at least 100 cumulative dissipated 

energy (CDE) has been exerted. Harvested corneas and irises which undergo histological 

analysis (hematoxylin and eosin (H & E)) to evaluate morphology and anatomic toxicity 

will better elucidate the biocompatibility and efficacy of this device. 

 

Polyethylene Glycol Surfaces 

Gradient surfaces were studied using protein solutions of 1% and 10% blood 

concentrations. Additionally, each experiment was carried out for only a single protein at 

a time. Biological conditions include higher protein concentrations and complex protein 

and cellular conditions. In order to better understand the effect of PEG on protein 

adsorption under biological conditions, higher protein concentrations and more complex 

protein mixtures need to be studied. The next step in this study is to quantify protein 

adsorption to surfaces under mixtures of the albumin, fibrinogen, and IgG and to study 

these protein mixtures at 1%, 10%, and 100% that of blood concentrations. Further 

studies would include the evaluation of platelet-free plasma on gradient surfaces. 

In summary, for the development of biomedical devices including the CDR and endo-

contact lens to progress into clinical use, statistically powered in vivo biocompatibility 
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and efficacy assessments need to be completed. These assessments as well as the study of 

protein surface adsorption can contribute to development in theoretical understanding, 

and specific application based biocompatibility. 

 




