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ABSTRACT

Suitable habitat for greater sage-grouse (Centrocercus urophasianus) has been 

greatly reduced over a relatively short ecological scale (1800s -  Present). This reduction 

of habitat has had a negative impact on the current distribution and connectivity of the 

species. There has been work to map sage-grouse distribution at small ecological extents 

with fine resolution, and at broad extents and coarse resolutions. There is a current need 

to identify sage-grouse habitat at a fine ecological scale across a broad extent. This 

information will help researchers and land managers to better understand spatial patterns 

and connectivity associated with sage-grouse habitat and the processes that drive them. I 

focused my dissertation on testing the feasibility of developing broad spatial extent and 

fine resolution predictive habitat models for sage-grouse nest and brooding habitats. By 

using fine resolution mapping, I was able to capture more subtle variation in potential 

habitat; by using a broad extent I was able to apply these findings at a landscape scale. I 

also proposed a method of using nested ecological models blended together to predict 

potential habitat. In order to best predict habitat potential, multiple modeling techniques 

were applied (nonparametric multiplicative regression, maximum entropy distribution, 

random forest and generalized additive model). These methods were used to create 

independent sagebrush presence and total vegetation cover models and these were 

combined to create sage-grouse habitat predictive models. The statistical strength of each 

model was tested (logP, R2 and AUC) as well as their predictive ability (overall



accuracy and RMSE ). The results of this work produced fine resolution (30m) models, 

predicted across a broad extent (Utah, 21.9 million ha). The overall accuracy for the final 

sagebrush model was 72%. The RMSE for the vegetation cover MODEL was between

6 . 6  and 7.6% cover. In addition to model creation, potential research and management 

applications for these models are discussed. These models will provide baseline habitat 

estimations that could be used for better understanding past distributions of sage-grouse 

and improving current and future management planning. Furthermore, these same 

techniques could be applied to other species across multiple spatial and temporal scales
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C H A PT E R  1

INTRODUCTION

Problem Statement

Suitable habitat for greater sage-grouse (Centrocercus urophasianus, sage-grouse) 

has been greatly reduced since the early 1800’s (Schroder et al., 2004). Reduction of this 

habitat, primarily woody Artemisia L (sagebrush), comes in multiple forms such as total 

loss, fragmentation and degradation. Due to this habitat reduction, sagebrush dominated 

ecosystems are considered by some as one of the most imperiled ecosystem in North 

America (Noss et al., 1995). Many factors, natural and anthropogenic, contribute to the 

range-wide loss and degradation of sage-grouse habitat. However, there is strong 

evidence that the greatest impact to sage-grouse and their habitat comes from 

anthropogenic-assisted disturbances (Braun, 1998; Connelly et al., 2011; Aldridge et al.,

2003). Regardless of the cause, vast amounts of sage-grouse habitat has been lost or 

degraded making the remaining habitat more ecologically important for conservation and 

long-term survival of the species.

Sage-grouse and their habitat needs are a multiscale issue. For example, Doherty 

et al. (2 0 1 0 ) found that combined local and landscape-scale features were important in 

sage-grouse nesting habitat selection, emphasizing the need to document and manage 

sage-grouse habitat at multiple ecological scales. The benefits of identifying, monitoring, 

and protecting sage-grouse habitat go beyond the individual species. Due to sage-



2

grouses’ habitat requirements and spatial distribution, some researchers have designated 

them as an umbrella species for other sagebrush associated organisms (Hanser and Knick, 

2011; Rowland et al., 2006).

Because sage-grouse and their habitat span an ecologically broad area, their 

decline is a landscape-scale issue (Doherty et al., 2010; Aldridge, 2007). Additionally, 

sage-grouse cross diverse political boundaries that oftentimes have differing management 

objectives that are prone to change with political cycles. Sage-grouse currently occupy 

habitat owned and managed by private, state, federal, military, tribal and other land use 

groups in the western United States and Canada (Aldridge et al., 2008). Despite sage- 

grouses’ geographic extent, the majority of past research has focused on site level 

attributes (Yost et al., 2008). Recently, there has been a great deal of effort to synthesize 

the current knowledge about sage-grouse and their habitat (Knick and Connelly, 2011 

and others). This work has given researchers and land managers a better understanding of 

sage-grouse habitat requirements thus improving our ability to create ecological niche 

models. The objective of this dissertation was to test the feasibility of creating a fine 

resolution predictive landscape-scale sage-grouse habitat model. This model will add a 

new perspective (scale) to the conservation tool box that will allow researchers and 

managers to assess sage-grouse habitat selection, distribution and connectivity at the sub

population (Utah) level. Additionally, the influence of spatial extent used in model 

creation was assessed. Furthermore, multiple modeling techniques were tested and 

combined. Finally, the question of management application beyond model creation was 

discussed.
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Sage-grouse Life History

The focus of this dissertation was on predicting nest and brooding habitat with 

some work in winter habitat, thus a brief description of the life history of sage-grouse is 

necessary. Sage-grouses’ habitat requirements vary depending on where they are in their 

life history. Although there is variation in habitat selection and movement patterns across 

the population as a whole, there are some commonalities that exist. In general, nest 

habitat is made up of large sagebrush patches with cover between 15 and 25% but can be 

as low as 5% (Connelly et al., 2000). Additionally, nests are found in close proximity to 

winter and summer habitats. In most studies it was observed that sage-grouse preferred to 

nest at the base of sagebrush plants over other available shrubs or grasses (Connelly et 

al., 2011). In general, brood rearing (brooding) refers to early care of the sage-grouse 

chicks. Brooding habitat is a combination of early and late brood rearing. Early brooding 

habitat is defined by Connelly et al. (2000, 2011) as sagebrush-dominated habitat near the 

nest. Early brooding habitat is typically occupied for several weeks after the chicks hatch 

(Berry and Eng, 1985; Connelly et al., 2011). These areas are usually rich in insects and 

forbs. Late brooding coincides with a diet transition from predominantly insects to forbs 

and sagebrush (Connelly et al., 2011). Sagebrush cover for late brooding (summer) 

habitat is usually >20% (Braun et al., 2005). Winter habitat is dominated by taller woody 

sagebrush that is available as a food source above the snow. During this time, sage- 

grouse almost exclusively feed on sagebrush (Crawford et al., 2004). Sagebrush cover in 

winter habitat can vary from 6 % to 43% but tends to be on the higher side (Connelly et 

al., 2011; Braun, 2005; Schroeder et al., 1999). In summary, an underlining theme of 

sage-grouse habitat selection is large intact heterogeneous sagebrush stands. Sage-grouse



dependence on large habitat patches is one of the reasons broad scale ecological models 

are an important tool for capturing and understanding sage-grouse habitat requirements 

across their life history.

Ecological Niche

The exact definition of an ecological niche is a controversial topic (Godsoe, 2010) 

and is beyond the scope of this dissertation. However, the predictive models presented 

here were created using niche theory. These model predictions are based primarily in 

Hutchinson’s (1957) fundamental niche concept. In short, the fundamental niche is made 

up of the abiotic conditions driving a species occupation and survival in an area. 

Fundamental niche was defined by Kearney and Porter (2004) as “the set of conditions 

and resources that allow a given organism to survive and reproduce in the absence of 

biotic interactions.”

It is not possible to ascertain all requirements (abiotic or biotic) that make up 

sage-grouses’ ecological niche with our current knowledge. Therefore, sage-grouses’ 

ecological niche is defined here as an incomplete combination of Hutchinson’s (1957) 

fundamental and realized niches. Overall, the model assumes more of a fundamental 

niche. However, the response (dependent) variable used to create the models (sage- 

grouse presence) is a subset of the population, driven by realized niche interactions. 

Furthermore, due to the lack of complete sampling and the availability of spatial layers 

for model creation, the model cannot encompass all the fundamental niche criteria. 

Therefore, the output model in geographic space may be more conservative than a 

fundamental niche, more liberal than the realized niche and more robust than the standard 

distribution map. Semantics aside, this lack of a niche definition does not reduce the

4



value of the models; however, it is important to state the limitations and understand that 

the models are predictions based on good, but incomplete data. Many authors refer to 

models such as these simply as species distribution models to reduce confusion (Elith and 

Leathwick, 2009).

Why Use Predictive Ecological Models for Sage-grouse Habitat?

Sage-grouse are an ideal candidate for predictive ecological modeling, for a 

variety of reasons. These reasons include sage-grouses’ obligate relationship with 

sagebrush, their broad distribution, the large body of available literature on habitat 

requirements, the existence of long-term locational data sets and a current need to assess 

large areas in a relatively short time period, due to immediate threats to the species and 

their habitat.

It has long been known that sage-grouse are a sagebrush obligate species. Sage- 

grouse prefer sagebrush for cover during nesting and early brooding and as their primary 

food source in the fall and winter (Braun et al., 1977; Crawford et al., 2004; Connelly et 

al., 2011 and others). This relationship with sagebrush strengthens the ability to model 

sage-grouse habitat. Areas that contain sagebrush can be used to narrow the sage-grouse 

predictive habitat model. Furthermore, sagebrush could be modeled as a proxy for 

potential habitat in areas that sage-grouse are known to occur, but where there is a lack of 

ground collected presence data for modeling.

Sage-grouse are a landscape-level species (Schroder et al., 2004; Yost, 2008; 

Aldridge et al., 2008; Doherty et al., 2010; Knick and Connelly, 2011; Connelly et al., 

2011 and others). Due to the vast area utilized by sage-grouse, ecological models become 

a valuable tool in understanding distribution and connectivity. Many areas may be

5
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difficult to obtain ground data due to cost or accessibility. In areas where ground data are 

feasible, cost and time are limiting factors in the amount of data that can be taken.

Models can assist in connecting the information spatially from these limited data sets.

Selecting appropriate predictor variables is a limiting factor to any ecological 

model’s performance. For example, if temperature was a critical component for survival 

of species X, than it (or a suitable proxy) should be included in the predictive model. 

Ecological model performance is restricted to the input variables used. Sage-grouse 

habitat requirements have been relatively well studied compared to most organisms. 

Connelly et al. (2011) argues that we know more about sage-grouse than any other North 

American game bird. This repository of knowledge has been used to create predictive 

sage-grouse habitat models at a variety of scales and life stages including nesting (Yost et 

al., 2008; Aldridge and Boyce, 2007), brooding (Aldridge and Boyce, 2007), winter 

(Dzialak et al., 2012), range wide (Schroder et al., 2004; Aldridge et al., 2008) and 

connectivity (Harju et al., 2013). Additionally, Schroder et al. (2004) produced a series of 

maps showing range-wide historic and current distribution of sage-grouse. This was 

accomplished using past studies, historic documents and museum records. The models in 

this dissertation will add to the existing models by providing additional scales and 

modeling techniques.

Predictive Modeling

Species distribution models are a tool using species locations or abundance 

combined with environmental variables to explain or predict presence (Elith and 

Leathwick, 2009). Since their origins in the 1970s, species distribution models have been 

a growing component of ecological and conservation sciences as well as land



management (Schwartz, 2012; Zimmerman et al., 2010). The ability to create meaningful 

species distribution models has dramatically improved over this relatively short period of 

time. This improvement is driven, in part, by increased data availability and 

advancements in computer processing (Zimmerman et al., 2010). Never before has there 

been so much data available, knowledge on the subjects of ecological models and sage- 

grouse habitat or computer processing power. There is a vast number of modeling 

methods and software now available to implement predictive models. After reviewing the 

literature, four methods were chosen for implementation and model creation. The four 

methods selected were generalized additive models (GAM; Hastie and Tibshirani, 1986), 

nonparametric multiplicative regression (NPMR; McCune and Mefford, 2004), maximum 

entropy distribution (Maxent; Phillips et al., 2004) and random forest (RF; Breiman, 

2 0 0 1 ).

GAMs have a relatively long history with ecological modeling dating back to the 

1980s (Guisan et al., 2002). GAMs are a semiparametric method that is an extension of 

generalized linear models, with functions that are combined additively and components 

that are smoothed (Yee and Mitchell, 1991). One of the strengths of GAMS is their 

ability to deal with nonlinear relationships between response and predictor variables (Yee 

and Mitchell, 1991; Guisan et al., 2002). This is important because many interactions in 

nature are nonlinear. GAMs were implemented using Marine Geospatial Ecology Tools 

(MGET; Roberts et al., 2010) and ArcMap (ESRI; Redlands, California). GAM models 

were used in Chapter 3 to predict total vegetation cover.

NPMR was also selected for its ability to model nonlinear interactions between 

species abundance and their habitat. However, NPMR identifies complex nonparametric

7



ecological interactions in part by combining the predictors effects multiplicatively, rather 

than additively (Grundel and Pavlovic, 2007). An additional strength of NPMR is that if a 

single, highly correlated, predictor variable is lacking at a particular location, then the 

model will not predict that location as potential habitat. NPMR was implemented with the 

software package Hyperniche (McCune and Mefford, 2004; Gleneden Beach, Oregon). 

NPMR was used to model sagebrush presence in Chapter 2, total vegetation cover in 

Chapter 3 and sage-grouse habitat in Chapter 4.

Maxent was selected specifically for its ability to model presence only data. 

Maxent is a form of machine learning that makes inferences or predictions based on 

incomplete information (Phillips et al., 2006). Maxent compensates for the lack of 

absence data by comparing presence data to the background of the predictor variables. In 

order to make predictions, multiple transformations are done to find if there is agreement 

between the response and predictor variables. Maxent has been extensively used in the 

scientific literature to model a variety of species habitat distributions based on presence 

only data, including other avian species (Warren and Seifert, 2011; Elith et al., 2011; 

Moreno et al., 2011; Papes, 2012 and others). Maxent was used in Chapter 2 to create 

current and future climate envelopes for sagebrush and in Chapter 4 to predict sage- 

grouse habitat.

Although RF, a form of machine learning, has been around for some time, its use 

in ecological studies is relatively new (Cutler et al., 2007; Prasad et al., 2006). RF uses 

bootstrap samples and a randomized subset of the predictor variables to create a series of 

classification trees (a forest) that predict species presence. These trees (typically over 

500) are then combined for the final model prediction. Unlike many of the modeling

8



methods available, RF has the ability to create accurate predictions without over fitting 

the data (Cutler et al., 2007; Prasad et al., 2006). The software used to implement RF was 

R 2.15.1 (R development core team, 2008) and ModelMap (Freeman and Frescino,

2009). RF was used to create the sage-grouse habitat models in Chapter 4.

Chapter Overviews

The main objective of this study was to test the feasibility and accuracy of using 

multiple fine scale ecological niche models, projected across a broad spatial extent, to 

better understand sage-grouse brooding and nest habitat selection (Chapter 4). Sagebrush 

presence and vegetation cover are important components in sage-grouse brooding and 

nest habitat selection (Braun et al., 1977; Connelly et al., 2000, 2011; Crawford et al., 

2004; Hagen et al., 2007 and others), and were a major component of this study (Chapters

2 and 3). Chapter 2 focused on creating an accurate sagebrush presence map. Chapter 3 

explored creating multispatial and multitemporal total vegetation cover models. Chapter 

4 utilized the models from Chapters 2 and 3 along with additional predictor variables to 

model potential sage-grouse habitat and connectivity.

There were three primary objectives for the sagebrush predictive model work, 

found in Chapter 2. The first was to test the feasibility of creating an accurate, cost- 

effective, and easily updatable sagebrush distribution model, relevant to sage-grouse, for 

the state of Utah. Projects such as the USGS Gap Analysis Program (GAP) have 

produced land cover maps at the desired 30m spatial resolution that contain sagebrush 

cover classes (Lowry et al., 2007). However, the percent sagebrush cover is unknown. In 

order to better tie sagebrush cover to sage-grouse distribution, a sagebrush presence 

model was created for woody sagebrush cover >5%. This threshold was chosen because

9



sage-grouse have been observed nesting and utilizing winter sagebrush cover at 5% and 

higher (Connelly et al., 2011). The second objective was to assess how the model 

changed with more area and more training locations added. This scaling was done in each 

chapter to answer the question: if a model is trained at a smaller extent (one Landsat TM 

scene, Figure 1.1), can it be applied to a broader area (the state of Utah)? The third 

objective was to create current and future climate envelopes for sagebrush. These climate 

envelopes allowed us to identify sagebrush habitat patches most likely to change with 

future climate. This information will be valuable for long-term management of current 

sagebrush patches utilized by sage-grouse.

Although sagebrush is a habitat requirement for sage-grouse persistence, other 

factors such as overall vegetation cover are also important. Vegetation cover and type 

play a role in food availability, refuge from predators and movement. Total vegetation 

cover model creation, found in Chapter 3, also had three objectives: first, to assess if 

multitemporal in situ data, taken by the Utah Division of Wildlife (UDWR), could be 

used in conjunction with Landsat Thematic Mapper (TM) imagery to model total 

vegetation cover across a relatively broad spatial extent and time. Second, to use past 

vegetation cover models, in combination with sage-grouse ground data, to identify if 

sage-grouse habitat utilization is more likely to occur in habitat with minimal vegetation 

cover change over time, or in dynamic habitat types. Finally, similar to the sagebrush 

model, the influence of scale on model creation was assessed.

The final chapter focuses on utilizing predictive niche models to understand 

sage-grouse habitat patch connectivity and potential movement. Chapter 4 explored 

creating a sage-grouse nest and brooding habitat model by identifying areas of agreement

10
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between Maxent, RF and NPMR. Two of the top variables in model creation were the 

sagebrush presence and total vegetation cover models from Chapters 2 and 3. Once an 

acceptable habitat model was created for the state of Utah, that model was combined with 

a human impact layer (Leu et al., 2008) to predict sage-grouse corridor potentials on a 

more coarse scale, between currently utilized habitat patches. Despite the fact that all 

models are imperfect, best stated by Box (Box and Draper, 1987) when he wrote 

"essentially, all models are wrong, but some are useful," the models presented here will 

improve our ability to predict current sage-grouse habitat. Furthermore, they will expand 

the current understanding of the habitat spatial dynamics such as the juxtaposition of 

habitat patches to other spatial variables at the landscape scale.
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Figure 1.1: The first extent outlined in red represents the training area, Landsat TM 
scene 3732, used in all models. The final extent in all models was the entire state of Utah.
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C H A PT E R  2

EVALUATION AND APPLICATION OF MULTISCALE FINE 

RESOLUTION ECOLOGICAL NICHE MODELING OF 

SAGEBRUSH PRESENCE IN UTAH

Abstract

There is a scientific consensus that sagebrush ecosystems extent and health as a 

whole have declined drastically, negatively impacting associated flora and fauna. 

Identification and documentation of existing sagebrush stands is an important component 

to protecting and managing the many species that rely on sagebrush for survival. The 

objective of this study was to create a management level woody sagebrush model with 

existing data sets. Additionally, it was our goal to identify sagebrush stands that, despite a 

changing climate, have a potential to persist. These objectives were realized by creating 

sagebrush niche models at multiple spatial scales and creating a climate envelope for 

woody sagebrush. It was found that a statewide sagebrush model with management level 

resolution (30m) is possible with acceptable model creation (LogP 5.02) and overall 

accuracy (72%).

Introduction

Estimates of presettlement area within western North America dominated by 

sagebrush (Artemisia L.) range from 36 to 109 million ha (Connelly et al., 2004; Evers et
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al., 2011; Knick et al., 2003; Beetle, 1960; McArdle et al., 1936). Results from past 

sagebrush cover estimates are difficult to compare due to varying methods of assessment, 

species inclusion/exclusion, spatial scale of output maps, and areas included (Tisdale et 

al., 1969, 1981; Schroeder et al., 2004). However, there is a scientific consensus that 

sagebrush ecosystems extent and health as a whole have declined drastically and are 

currently in decline, negatively impacting associated flora and fauna (Anderson and 

Inouye, 2001; Connelly et al., 2004; Evers et al., 2011; Knick et al., 2003; McArdle et al., 

1936; Miller and Eddleman, 2000). Previous studies in the sagebrush steppe have 

estimated that only 50-60% of this pre settlement sagebrush cover remains unaltered 

(Knick et al., 2003; Beck et al., 2012; Schroeder et al., 2004; West, 2000). Noss et al. 

(1995) concluded that sagebrush ecosystems are among the most imperiled ecosystems in 

North America.

Decline in sagebrush ecosystems has negative implications for obligate species, 

including greater sage-grouse (Centrocercus urophasianus). Beck et al. (2003) estimated 

that in the state of Utah alone, sagebrush habitat suitable for greater sage-grouse habitat 

has declined by at least 60% since pre-European settlement. There is a need to better 

identify and document sagebrush stands at the landscape level to better protect and 

manage sagebrush obligate species. Knowing where existing sagebrush occurs and 

studying it at a macro-ecological scale will provide additional insight into past, present 

and future sagebrush connectivity, patch dynamics and potential home ranges and 

corridors for sagebrush-associated species. The objective of this study is to test the 

feasibility of creating an accurate, cost-effective, and easily updatable sagebrush 

distribution model. This work focused on model development and evaluation for the state
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of Utah, USA, which possesses a wide range of sagebrush habitat types and spread across 

the landscape, possessing substantial elevation and precipitation gradients. Model results 

depict overall distribution patterns and identify areas of spatial connectivity of woody 

sagebrush throughout the state of Utah. Furthermore, I attempted to identify future 

sagebrush habitat in Utah, areas that will be less susceptible to future predicted climate 

changes.

Background 

Sagebrush Range and Loss

Sagebrush, as defined by McArthur (2000), are woody Artemisia of the subgenus 

Tridentatae, indigenous to North America. Using this definition and McArthur’s 

systematic taxonomic treatment of sagebrush, there are 11 species and 14 subspecies of 

sagebrush (McArthur 2000). Sagebrush is found primarily in western North America, 

with its pre-European distribution covering western portions of the Dakotas, southern 

Saskatchewan and Alberta, into Montana, Idaho, Washington, southern portions of 

British Columbia, Oregon, northern California, Nevada, Utah, Wyoming, Colorado, as 

well as northern Arizona and New Mexico (Baker et al., 1976; Beetle, 1960; Connelly et 

al., 2004; McArthur and Plummer, 1978). A more in-depth review and maps specific to 

Artemisia species can be found in McArthur (1978, 2000). Definitions of past sagebrush 

habitat coverage have varied drastically, making assessment of total loss and decline 

extremely difficult. Additionally, very few studies have actually created original 

sagebrush cover estimates. In 1936, McArdle et al. estimated sagebrush coverage in the 

United States to be 39 million ha. Twenty four years later, Beetle (1960) assessed 

sagebrush cover for the western United States to be as high as 109 million ha. One
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discrepancy, suggested by Beetle, was that McArdle et al. (1936) only assessed one 

Artemisia species, big sagebrush (Artemisia tridentata Nutt.). However, even if that were 

the case, Beetle’s big sagebrush estimates were over 20 million ha higher than the 

McArdle et al. estimates. Tisdale et al. (1969) stated that Beetle’s estimates included 

areas that sagebrush was not the dominant vegetation, making Beetle’s estimates higher. 

Tisdale et al. (1969) further suggested that the total sagebrush cover was a value between 

Beetle’s and the McArdle et al. estimates. Another source often used to determine past 

sagebrush cover is Kuchler’s potential natural vegetation maps (Kuchler 1964, 1970). 

West (1983), using Kuchler’s maps, assessed sagebrush cover to be approximately 62.7 

million ha (Great Basin Colorado- Plateau sagebrush 19.9X106 ha and Western 

Intermountain sagebrush steppe 44.8 X 106 ha).

According to Beetle (1960), the overall distribution (not health) of sagebrush has 

changed very little since presettlement times. However, more recent work has described 

changes in the quality, connectivity and total coverage of sagebrush (Anderson and 

Inouye, 2001; Connelly et al., 2004; Evers et al., 2011). Sagebrush loss and degradation 

ranges from easily identifiable factors such as anthropological conversion (e.g., crops, 

cities, infrastructure), to complex factors that vary over spatial and temporal scales (e.g., 

fire regime alterations, invasive species, grazing, disease, and climate change). Although 

sagebrush ecosystems, like any ecosystem, are constantly changing due to non- 

anthropogenic factors such as drought and natural disease, human activities have been, 

and continue to be the greatest threat to sagebrush dominated ecosystems (Connely et al., 

2004). Roads, irrigation, fertilization, fire regime alteration, urban and exurban sprawl, 

invasive species (nonnative and native) facilitation and introduction, soil erosion and
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other activities associated with human occupation within sagebrush ecosystems can have 

negative impacts on the sagebrush, as well as other associated species. Braun (1998), 

assessing the reasons for the decline of greater sage-grouse across the west, suggested 

that one contributing factor was irrigation projects, because they allowed “intensified 

land use” that opened up more sagebrush lands for conversion for crops and livestock, 

that may have otherwise not been accessible due to lack of available moisture. Gelbard 

and Belnap (2003) found that in southern Utah, improving and creating roads increased 

the spread of exotic species, degrading natural desert ecosystems at the landscape scale. 

The fastest growing form of land use in the US is exurban expanse (low-density home 

development; Hansen et al., 2005). Hansen et al. (2005) concluded that although the 

impacts of “exurban” development were understudied, this development can negatively 

impact native ecosystems. Leu et al. (2008) used a model to assess combined human 

impacts in the west (Arizona, California, Colorado, Idaho, Montana, Nevada, New 

Mexico, Oregon, Utah, Washington, and Wyoming) and found that in 2003, 13% of the 

land area was occupied by anthropogenic features (homes, roads, power lines etc.). 

Furthermore, the human assisted introduction of invasive species (such as cheatgrass 

[Bromus tectorum L.]) have altered the sagebrush ecosystem fire regimes with fires in 

lower elevations being larger, more frequent, and earlier in the growing season compared 

to historic levels (West et al., 2000). One of the consequences of the fire regime change is 

increased soil erosion that degrades many sites which can lose their potential to return to 

native ecological states (West et al., 2000).
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Sagebrush Habitat

Sagebrush provides habitat for a diverse array of animal species. Vertebrate 

species known to be sagebrush obligates include, but are not limited to, the following: 

greater sage-grouse (Centrocercus urophasianus; Braun et al., 1976; Connelly et al.,

2004), Gunnison sage-grouse (Centrocercus minimus), Brewers sparrow (Spizella 

breweri), sage sparrow (Amphispiza belli; Braun et al., 1976; Reynolds, 1981), sage 

thrasher (Oreoscoptes montanus; Braun et al., 1976), pygmy rabbit (Brachylagus 

idahoensis; Knick et al., 2003; Rich et al., 2005), sagebrush vole (Lemmiscus curtatus; 

Paige and Ritter 1999), pronghorn (Antilocapra americana), and sagebrush lizard 

(Sceloprus graciosus; Paige and Ritter, 1999). Additionally, there are over 350 species of 

concern that rely on sagebrush to some degree during their life cycles (Wisdom et al., 

2005; Davies et al., 2011). Suring et al. (2005) identified 207 species of concern 

associated with sagebrush habitats in the Great Basin alone. Baker et al. (1976) estimated 

that there are over 1 0 0  bird species that forage or nest in sagebrush communities.

Pressures on Sagebrush Ecosystems in Utah

Beetle estimated in 1996 that 10.7 million ha of sagebrush existed in the state of 

Utah at that time (Table 2.1). While Utah has a human history dating back to prehistoric 

times, it can be argued that anthropogenic removal and degradation of sagebrush on a 

landscape scale did not begin until the arrival of early pioneers in the mid-1800s. 

Sagebrush in and around settlements was seen by the early pioneers as a nuisance that 

needed to be removed to make way for houses, crops, and forage for livestock. Claims 

made about the goals of dry farming included the following statement: “To make the 

waving fields of grain replace the worthless sage brush [sic] is work of the efforts of
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those who truly love Utah...” (Deseret Evening News, 1906). According to census data, 

6.5% of the state had been converted to farmland by 1910 with Davis County leading the 

state at 72% (USDA Census of Agriculture, 2007). As of 2007, 21% of the state was 

farmland. Although much of the farmland was (is) necessary for human and livestock 

subsistence, the negative effects to sagebrush ecosystems go beyond the initial land 

conversion.

Utah’s population has grown rapidly and exponentially, from approximately

11,000 people in 1850 to over 2.7 million people today (US. Census Bureau, 2012). With 

increased population often comes increased use of natural resources for humans and their 

livestock. Since pioneer settlement, agricultural use of Utah’s lands has intensified.

Much of this intensification has taken place in areas formerly dominated by sagebrush. 

In1850, Utah possessed 12,350 ha of farmland, 12,607 cattle and oxen, and 3,262 sheep 

(USDA Census of Agriculture, 1850). Utah cattle by the 1880s had as many as 160,000 

head. Utah’s sheep reached an estimated 2.9 million head by 1901 (McArdle et al., 1939). 

According to the latest agricultural census (2007), Utah had 843,474 cattle and 277,635 

sheep. Farmland has changed slowly in more recent decades, increasing by less than 1% 

from 1950 (20.6%) to 2007 (21.1%).

Utah sagebrush ecosystems have also faced impacts from energy development, 

both from traditional fossil fuel (oil, gas, coal etc.) as well as renewable energy (wind, 

solar, geothermal etc.). Despite the fact that energy development has been a part of Utah 

history from the early 1900s, there are very few studies that quantify the impacts of 

energy development on sagebrush ecosystems (Walston et al., 2009). The infrastructure 

necessary for energy development (roads, pads, power lines, and other critical
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components) is known to alter sagebrush ecosystems (Walston et al., 2009; Knick et al.,

2003). This alteration comes in many forms including fragmentation, exotic species 

introduction, loss of vegetation cover, fire alteration, hydrological changes, soil 

degradation and others (Doherty et al., 2011; Gelbard and Belnap, 2002; Walston, 2009; 

Knick et al., 2011).

Methods

Study Area

The state of Utah was chosen as the study area due to its sagebrush species 

diversity, wide range of habitat types and data availability. Landsat 5 Thematic Mapper 

(TM) data were used to further subdivide the state into several spatial extents in order to 

assess the influence of scale on the model. Landsat TM data are broken down into a grid, 

defined by paths (a repeating orbit path that varies east to west) and rows (latitudinal 

center line of image). A path and row number are assigned to TM scenes, with each scene 

covering a 185 km by 172 km area (more than 3 million ha) (NASA, 

http://landsat.gsfc.nasa.gov/about/tm.html). The objective of the differing spatial scales 

was to assess if sagebrush models trained at the smallest spatial scale (a single TM scene) 

could be used to model sagebrush presence across multiple spatial scales. Path 37 Row 

32 (S1) was selected as the training scene (Figure 2.1). Total area covered within this 

scene is roughly 3 million ha and ranges from the forested Uinta Mountains (~ 3400-4123 

m) to the Uinta basins (~1400 -  3100m). Land ownership within the area of the scene 

includes federal (50%), private (31%), tribal (11%) and state (7%). The training area was 

chosen due to its geographic and vegetation diversity, sagebrush cover, imagery 

availability, and known sage-grouse habitats. Modeling was applied to three additional

http://landsat.gsfc.nasa.gov/about/tm.html
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regions to assess how the analysis could be extended to larger spatial scales: 1) TM Path 

37 Rows 32 and 33 (S2, 6.5 million ha), 2) TM Path 37 Rows 32, 33, and 34 (S3, 8 . 6  X 

106 ha), and 3) the state of Utah (ST, 21.9 million ha; Figure 2.2).

Predictive Modeling Methods

The modeling methods utilized in this study were nonparametric multiplicative 

regression (NPMR) and maximum entropy distribution (Maxent). The modeling 

techniques and software packages used to implement them were chosen based on 

previous use in the literature and availability.

Nonparametric multiplicative regression (NPMR; McCune and Mefford, 2004) 

was used due to its potential to identify complex ecological interactions by combining 

terms multiplicatively rather than additively, and its nonparametric abilities. NPMR uses 

a leave-one-out cross validation and a multiplicative smoothing function to predict the 

response variable. The software package Hypernich 2.0 (McCune and Mefford, 2004, 

Gleneden Beach, Oregon) was used in this study to implement NPMR. For a list of 

publications that have used NPMR see 

http://home.centurytel.net/~mjm/nichepublications.htm.

Maxent (Phillips et al. 2004) is one of the most commonly used methods for 

species distribution based on presence only data (Warren and Seifert, 2011). Maxent is a 

machine learning modeling tool that uses multiple transformations to fit the data. Maxent 

was used because of its wide use in landscape scale studies (Elith et al., 2011) as well as 

its straightforward interface with the ability to modify with simple code.

http://home.centurytel.net/~mjm/nichepublications.htm


Model Creation

Predictive models were created at multiple scales using the response variable 

sagebrush presence (quantitative and binomial). Model creation followed six basic steps 

(Figure 2.3). First, response and predictor variables were determined using known 

sagebrush variables as well as suspected variables described below. Second, the values of 

the predetermined variables were extracted from existing remote sensing/GIS data sets or, 

if not available, they were created using ESRI (Environmental Systems Research 

Institute, Redlands, CA) and ENVI (Exelis Visual Information Solutions, Boulder, 

Colorado) software packages. Third, model lists were created for both quantitative and 

categorical approaches. Fourth, best fit models based on xR2 and logP as well as number 

of variables included in the models were selected for visualization and further validation. 

Fifth, models were created using the prescreened lists in 2D space using NPMR. 

Predictive models were created for S1and then scaled up spatially to include S2, S3 and 

ST. Model outputs were then validated for overall accuracy.

In addition, separate sagebrush potential habitat models, using climate data alone 

(climate envelopes), were created for the state of Utah. Predictor variables used were the 

19 Bioclim variables (Table 2.2) obtained from the WORLDCLIM data set (Hijmans et 

al., 2005). Model creation and validations were done using the area under the receiver 

operating characteristic curve (ROC), known as the AUC. Similar to the Wilcoxon test of 

ranks, the AUC classifier is the probability that the classifier will rank a randomly chosen 

positive instance higher than a negative one (Fawcett, 2006). An AUC value of 0.5 

represents random guessing. Model output validation was done by withholding 25% of 

the data and producing an output AUC. The objective of the climate models was to

25
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identify areas that have the most potential to maintain sagebrush cover in future climate 

conditions.

Input Data

One of the aforementioned objectives of this study was to find appropriate data to 

create a sagebrush model that could be continually updated so that as additional 

information becomes available, the model could be improved. The data used in this study 

were broken down into three broad categories: in situ, remotely sensed, and climate. 

Remotely sensed data were further broken into two sub categories: digital elevation 

model (DEM) derived and Landsat-derived.

In situ. Most of the in situ data used in this study were provided by the Utah 

Division of Wildlife Resources (DWR) Range Trend Project (RTP). The RTP collects 

vegetative and soil data across the state of Utah. RTP data used in this study were 

sagebrush type and percent cover. RTP data were chosen to create the landscape level 

models due to their temporal and spatial extent. Ground sites are generally re-visited 

every five years and many have been sampled over multiple decades. Furthermore, the 

coverage of the RTP sites is state-wide with hundreds of site locations distributed 

throughout the state. RTP data collection biases are reduced by averaging 100 quarter m 

square quadrates along a 152m transect, collected by multiple field technicians on each 

site (Figure 2.4).

The objectives of the RTP are to monitor and conduct a statewide evaluation of 

Utah’s rangelands. RTP sites are established on state, federal, and private lands in 

correlation with big game habitat, as defined by biologists from the DWR, BLM and 

USFS. (For more information on RTP data and collection go to
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http://wildlife.utah.gov/range/methods.html)

Remotely sensed data. Due to the relatively large spatial extent, multiple 

landownerships, and diversity of terrain occupied by sagebrush in Utah, remotely sensed 

data were used. In general, topographic params such as slope, aspect, and relative 

elevation are important drivers of a plant’s spatial distribution (Strahler et al., 1978; 

Franklin, 1995). More specifically, sagebrush spatial patterns and type are known to be 

associated with topographic gradients (Burke, 1989; Wang et al., 1977). DEMs for this 

study were available for the entire state. These models provided a continuous relative 

elevation layer that allowed not only for the elevation data to be represented, but multiple 

elevation associated layers to be created.

DEM derived data. DEM derived data were created using 30 m DEMs obtained 

from the United States Geological Survey (USGS, Gesch, 2007). Layers created included 

slope, aspect, curvature, curvature direction of slope IMI, TPI and ruggedness index 

(Table 2.3). Slope is defined here as a calculation of maximum rate of change in 

elevation between the cell and its eight neighbors. Aspect is the direction of the slope. 

Curvature defines the slope characteristics of drainage basins and is often used to 

understand erosion and runoff processes. Curvature direction of slope is the direction of 

the maximum slope. A modified version of the Iverson et al. (1997) Integrated Moisture 

Index (IMI) model was created using ArcMap (ESRI, Redlands, California) to assess 

topographically influenced moisture availability using the DEM derived layers: hillshade, 

flow accumulation and curvature. The curvature layer values were inverted and all the 

layers were normalized and reclassified on a scale of 0-100. The reclassified layers were 

then combined in a weighted fashion to create an IMI with a 0-100 scale, 0 indicating no

http://wildlife.utah.gov/range/methods.html


moisture retention and 100 representing the maximum moisture retention (Davis, 2009; 

Yost et al., 2008).

IMI= (hillshade x 0.5) + (curvature x 0.15) + (flow accumulation x 0.35)

Landsat derived data. Landsat derived data were created using Landsat 5 

Thematic Mapper (TM) imagery, downloaded from the USGS (http://www.usgs.gov/). 

TM bands 1-5 and 7% reflectance were included in the models and have spatial 

resolutions of roughly 30m. Band 6 , the thermal infrared band, was not included due to 

spatial resolution (120m; Jensen, 2005; JPL, 2009; Mladinich, 2006). All TM scenes 

obtained from the USGS had undergone basic (level 1) preprocessing such as 

georeferencing. Further preprocessing to account for atmospheric interference was done 

on a pixel by pixel basis using Fast Line-of-site Atmospheric Analysis of Spectral 

Hypercubes (FLAASH, Air Force Phillips Laboratory, Hanscom AFB and Spectral 

Sciences, Inc (Adler-Golden et al., 1999)) and ENVI software. TM bands were first 

converted from digital values to radiance using the ENVI calibration utility. The bands 

were converted to reflectance using the FLAASH atmospheric correction model. The 

FLAASH model incorporates moderate resolution atmospheric transmission 

(MODTRAN4) radiative transfer code to assist in generation of the final reflectance 

layers.

Vegetation indices were created to better detect vegetation signatures associated 

with sagebrush in the TM data. These were applied using ENVI software and are 

described below. Normalized Difference Vegetation Index (NDVI) was proposed early 

on in remote sensing with its first written credit given to Rouse et al. (1973; Bannari et 

al., 1995). NDVI continues to be used for an array of applications in range ecology,
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including change detection and time series analysis (Fuller, 1998; Evans and Geerken,

2004), biomass production (Reeves et al., 2001; Moleele, 2001), land cover classification 

(Evans and Geerken, 2006; Geerken, 2005) and carbon flux and sequestration (Wylie et 

al., 2003). NDVI values range from -1 to 1 with higher values associated with greater 

difference between red and near infrared (NIR) reflectance. NDVI is calculated as:

NDVI = (PNIR P red )
(PNIR +  P red )

where p  indicates reflectance.

Two vegetation indices using longer wavelength infrared bands are referred to as 

Normalized Difference Infrared Index (NDII5 and NDII7, where the subscript refers to the 

TM band number). NDII has a similar form to NDVI, using a band from the shortwave 

infrared (SWIR) and a NIR reference band (Hardiskey et al., 1983; Hunt and Rock,

1989). Formulas for the two indices are:

NDII5 = ( p b 4 - P b 5 )
(Pb4 + P b 5  )

NDII7 = ( p b 4 - P b 7  )
(Pb4 + Pb7 )

where b indicates the band number.

Landsat 5 TM wavelengths for bands 4, 5, and 7 are 0.76- 0.90^m, 1.55-1.75^m 

and 2.08 -  2.35^m, respectively. NDII has been used in remote sensing to detect forest 

stress (Lasaponara, 2006; Souza et al., 2005), fuel types (Riano, 2002) and insect 

infestation (White et al., 2007) among other applications.

Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) is a vegetation index 

designed to improve vegetation cover estimates within areas with high amounts of
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exposed soil surfaces. Qi et al. (1994) developed the MSAVI2 from a modification of 

their earlier MSAVI. Since its creation, MSAVI2 has been used for vegetation cover 

(Senseman, 1996) and biomass estimations (Phillips et al., 2009) among other 

applications. Due to the large amounts of bare ground found in the selected training 

scene, the MSAVI2 was hypothesized to be useful in identifying sagebrush. MSAVI2 is 

calculated as:

The tasseled cap transformation appeared first in the remote sensing literature in 

Kauth and Thomas (1976), and is thus sometimes referred to as a “K-T transform.” 

Similar to a principal components analysis, tasseled cap transformations use linear 

combinations of the input bands in conjunction with a constant to produce new output 

bands (Crist and Kauth, 1986). The three outputs bands are referred to as “brightness,” 

“greenness” (indicative of photosynthetic vegetation), and “wetness” (indicative of water 

content).

Climate. The purpose of including climate data in this study was two-fold: first, to 

identify if any of the climate variables were helpful in combination with other variables 

to predict sagebrush presence and second, the climate data were used as a stand-alone 

data set to identify areas that potentially support sagebrush based on current and future 

climate conditions.

Precipitation and temperature. Precipitation data were obtained from the Oregon 

State University PRISM group (http://www.prism.oregonstate.edu/). The spatial 

resolution of the PRISM data is approximately 800m. Precipitation data were created

MSAVI2
2

http://www.prism.oregonstate.edu/


using the Param-elevation Regressions on Independent Slopes Model (PRISM). The 

PRISM method uses a regression model with weighted weather station points combined 

with weighted elevation, coastal proximity, and other variables as well as atmosphere to 

create seamless climate models (Daly et al., 2002). Data used represented the monthly 

averages from 1971-2000 for both precipitation and average max temperature. 

Preprocessing of the PRISM data included converting text files to raster format as well as 

resampling to 30m and projecting the files. Resampling to 30m was done with ESRI 

software using the nearest neighbor method.

Bioclim. In the 1980s Nix, McMahon, Hutchinson and others created bioclimatic 

variables to be used in species distribution modeling (Lindenmayer et al., 1991; Nix,

1986; Busby, 1986; Booth et al., 1987). The objective of these 19 variables was to predict 

a species spatial distribution based in homoclime matching, identifying areas with similar 

climate conditions (Lindenmayer et al., 1991). Bioclim data (roughly 1 km resolution) 

were obtained from the WorldClime data set (Hijmans et al., 2005, 

http://www.worldclim.org). The WorldClime data used were created with thousands of 

weather stations that have been checked for quality and developed into continuous 

climate surfaces, applying a thin spline algorithm (delta) method (Jarvis et al., 2012; 

Hutchinson, 1995). Gross assumptions made by the delta method are 1) changes in 

climate vary only over large distances and 2 ) relationships between variables in the 

baseline are likely to be maintained towards the future (Ramirez-Villegas and Jarvis,

2010). Specific data obtained included the 19 bioclim variables for “current” conditions 

(1950-2000) and future conditions: 2020 (2010-2039), 2050 (2040-2069), and 2080 

(2070-2099). The future conditions were created applying the current conditions to three
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different emission scenarios described below.

Other climate variables. The Global Climate Model (GCM) Canadian Center for 

Climate Modeling and Analysis third generation atmospheric climate model 

CCMA_CGCMA3.1 (Scinocca et al., 2008) was used to create all future predictive 

climate models. The objective of the sagebrush climate models was to provide visual 

representation of sagebrush areas which will be more likely to persist despite changing 

climate. Models for the current conditions were run in both Hyperniche (McCune, 2004) 

and Maxent (Phillips et al., 2004). However, future models were only run in Maxent due 

to the similarities in the models and the ease to incorporate future predictions offered by 

Maxent. The GCM for each future prediction data was run with three different emission 

scenarios. The scenarios used SRES A1B, A2A and B2. Each SRES scenario is 

complicated and assumes a “storyline.” Additional information can be found at the 

Intergovernmental Panel on Climate Change website (http://www.grida.no/ specifically 

Nakicenovic, 2000). In general, SRES A1B assumes rapid global population growth 

(reaching 9 billion in 2050) followed by a slow decline. SRES A1B applies a maximum 

energy requirement, global technological cooperation, with balanced emissions between 

fossil fuel and nonfossil fuel sources. SRES A2A assumes a more regional rather than 

global cooperation with technologies. SRES A2A follows a continuously growing 

population, high energy requirements and emissions less than a globally cooperative 

economy that is fossil fuel intensive. SRES B2 focuses on local environmental stability 

with a continually growing population with lower energy requirements and greater 

emissions.

The Bioclim data were clipped and projected, but not resampled. All models
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created using the Bioclim data were done at the 1 km resolution.

Model Creation

Sagebrush presence models. RTP ground data were divided into presence and 

absence for sagebrush. Presence data were defined as sites that contained a minimum of 

5% sagebrush cover of woody Artemisia species. The newly classified ground data were 

used as the binomial response variable. A total of 33 GIS/remote sensing variables were 

screened as potential predictor variables. The model type was Gaussian and the over 

fitting controls were set to medium. Sagebrush presence models were created for S1 

(S1_SAGE), S2 (S2_SAGE), S3 (S3_SAGE), ST (ST_SAGE). Model strength was 

assessed using the log P value. The scale for log P interpretation that was incorporated in 

this study was suggested by Jefferys (1961) and outlined by Kass and Raftery (1995) and 

used by Yost (2008; Table 2.4). After model creation, a Monte Carlo test was run using 

1 0 0  iterations to compare the newly created model against random combinations of the 

input variables. The models were then validated using RTP data that had been randomly 

withheld from the model creation. To assess the influence of the withheld random points, 

10 iterations were done withholding different selections of random points. Validation was 

an overall accuracy based on a threshold for presence. In the training data scene S1, an 

additional independent data set of 517 random points collected in the Strawberry Valley 

in 2009 was used for further validation (described in Westover 2012).

Sagebrush climate envelopes. Using the same presence data as the sagebrush 

models, response variables were created for the climate models. Climate models were 

created using Maxent software and the Bioclim data. To reduce the number of predictor 

variables (19) used in model creation, predictive models were created using the baseline



data (1950-1999) and input variables were screened. This was done by withholding 

different combinations of 25% of the data (20 iterations). The top 5 predictor variables of 

the averaged models were determined, and climate models were created using these 

variables for the baseline data (1950-1999) and future dates 2020 (2010-2039), 2050 

(2040-2069), and 2080 (2070-2099).

Results and Validation 

Sagebrush Presence

S1 SAGE. The S1_SAGE model included 91 samples for model creation and 30 

random samples withheld for validation. The best fit binomial model for S1_SAGE had a 

log P value of 5.04 (Figure 2.5A) and was considered a decisive model according to Kass 

and Raftery’s (1995) model (Table 2.5). The results from the Monte Carlo test (100 runs) 

produced no randomly created models that were equal to or better than the best fit with a 

p-value of < 0 . 0 1  (p in this case is the proportion of randomized runs with a fit greater 

than or equal to the observed fit). The mean log P after 10 iterations was 6.34 with a 

standard deviation of 2.05. Three of the 33 predictor variables were considered 

statistically relevant in the best fit model. A sensitivity test was used to create the final 

predictor variable order of importance based on relative influence after more than 300 

nudges. The predictor variable order is as follows (sensitivity values and tolerances listed 

in parentheses): curvature direction of slope (3.72, 0.05), TM band 4 (0.62, 231.2) and 

elevation (0.05, 731.63). The model’s accuracy was an improvement of 71.4% over the 

naive model. On the ground, validation (n=30) was done as an overall accuracy using a 

threshold of 0.6. The overall accuracy was 6 6 .6 6 %. The independent Strawberry Valley 

data set (n=517) validation had an overall accuracy of 67.31% using the same threshold
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as above.

52 SAGE. The S2_SAGE model included 145 samples for model creation and 40 

random samples withheld for validation. The best fit binomial model for S2_SAGE had 

a log P value of 4.68 (Figure 2.5B). The results from the Monte Carlo test (100 runs) 

produced no randomly created models that were equal to or better than the best fit with a 

p-value of < 0.01. The top three predictor variables were the same as the S1_SAGE 

model. The model’s accuracy was an improvement of 74.2% over the naive model. On 

the ground, validation (n=40) was done with an overall accuracy of 65% using the 

threshold of 0 .6 .

53 SAGE. The S3_SAGE model included 189 samples for model creation and 40 

random samples withheld for validation. The best fit binomial model using the same 

predictor variables as above had a log P value of 4.81(Figure 2.5C) with no randomly 

created models that were equal to or better than the best fit with a p-value of < 0.01. The 

model’s accuracy was an improvement of 61.90% over the naive model. On the ground 

validation (n=40) was done with an overall accuracy of 67% using the threshold of 0.6.

ST SAGE. The ST_SAGE model included 402 samples for model creation and 

36 random samples withheld for validation. The best fit binomial model for ST_SAGE 

had a log P value of 5.02 (Figure 2.5D) The results from the Monte Carlo test (100 runs) 

produced one randomly created model that was equal or better than the best fit with a p- 

value of < 0.02. The three predictor variables from the ST_SAGE model were used in the 

creation of this model. The predictor variable order differed from the other models with 

elevation as the strongest predictor variable: elevation (1.01, 224.3), TM band 4 (0.5, 

490), and curvature direction of slope (0.06, 1.06). The model’s accuracy was an
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improvement of 67.6% over the naive model. On the ground validation (n=40) was done 

with an overall accuracy of 72.22% using a threshold of 0.6.

Climate Envelopes

The initial sagebrush climate models included all 19 bioclim predictor variables. 

After 20 iterations, the top 5 predictor variables were chosen based on percent 

contribution to the model. The final model included the top 5 predictors: max temperature 

of warmest month (42.3%), annual precipitation (18.5%), precipitation driest quarter 

(7.5%), mean temperature of wettest quarter (6 .6 %) and precipitation of warmest quarter 

(5.6%). Using the top 5 predictor variables the AUC was 0.90. The AUC of the withheld 

test data average after 20 iterations was 0.84 with a standard deviation of .018. Suitable 

climate for sagebrush habitat is shown for current conditions (Figure 2.6) and future time 

points: 2020, 2050 and 2080, under the aforementioned climate scenarios (Figure 2.7). 

Due to the temporal nature of the climate models, no on the ground validation was done. 

The main objective of these models was to visually represent potential future trends in 

sagebrush habitat patches.

Discussion

We may never fully know what historic sagebrush cover and distribution was, due 

to a lack of validation data. However, with improved ecological modeling tools and 

information availability, we are able to create and validate current sagebrush cover in the 

west. The Utah sagebrush presence model (ST_SAGE) predicted just over 2.0 million ha 

of land in the state of Utah to contain sagebrush. The current climate envelope model 

predicted 6 .6  million ha of potential habitat suitable for sagebrush (sagebrush cover over
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5%). The general distribution for sagebrush within the climate envelope and the 

predictive model was similar. Both models predicted the bulk of sagebrush cover to be 

found in the mountain foothills and plateaus. The climate model predicted suitable 

climate in higher and lower elevations than the ST_SAGE predictive model. The actual 

amount of land containing sagebrush in the state of Utah is most likely closer to that 

predicted by the Utah sagebrush presence model. With sagebrush’s wide distribution 

across the state, it is expected that the potential coverage based on climate variables alone 

would be much higher.

Overall, the models presented here assigned the highest probability of sagebrush 

for midelevation valleys, foothills and plateaus. The strongest predictors for sagebrush 

cover in the models, generated by this study, were curvature direction of slope (profile 

curvature), TM band 4 and elevation. It is important to note that the output of these 

models was based on the interaction of the top predictors. However, there is value in 

assessing the individual predictor influences. Curvature direction of slope had the most 

influence on sagebrush cover with the exception of the statewide model. The curvature 

direction of slope is most likely an indication of water movement. The response curve 

showed a peak at 0.2 indicating that the surfaces most associated with sagebrush in this 

study are upwardly concave (foot slopes and toe slopes) and linear (lower back slope).

TM band 4 reflectance had a linear relationship with sagebrush probability. Near infrared 

reflectance increases with vegetation cover and leaf area index, so it was expected that 

sagebrush dominated areas would have lower band 4 reflectance values than forest and 

wetland areas but higher than other many desert shrub communities. However, exposed 

dry soils with no vegetation, depending on type, can also have higher reflectance values
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than sagebrush areas. Elevations between 2200 and 2600m had the strongest influence in 

predicting sagebrush. This is consistent with elevations where many woody Artemisia 

spp. are generally found (Welsh et al. 2003). This elevation range may be tied to both 

precipitation and temperatures that are more optimal for sagebrush growth and 

germination. However, if the binomial ST_SAGE model where to be applied to other 

geographic regions, elevation thresholds may need to be adjusted. The combination of 

curvature direction of slope and elevation indicate that large amounts of Utah sagebrush 

are currently found in the foothills. Within the models, the reduced probability for 

sagebrush in lower elevation valleys (where precipitation would permit) may be due to 

anthropogenic factors. For example, in developed areas such as Salt Lake and Utah 

Valleys, small remnant sagebrush patches are found in contrast to the extensive 

sagebrush range of the same area in presettlement times (Brotherson and Brotherson, 

1981; Beck et al., 2003). By using the temporal component of Landsat band 4, the models 

are restricted to current sagebrush cover.

The climate models help to identify areas which, under changing climate 

conditions, have the highest probability to maintain sagebrush populations, anthropogenic 

factors aside. Identifying areas that are most likely to support sagebrush habitat in the 

future also provides information about where sagebrush obligates are most likely to 

persist or migrate in the face of climate change. These models, then, may be used as 

management tools in assisting long-term protection and management plans of species 

dependent on sagebrush. All three climate model series showed extreme reduction of 

potential climate for sagebrush by the year 2080 with a slight shift to higher elevations.

Of the climate models, series A2 showed the greatest loss (using the 10 percentile
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training threshold) with current potential decreasing by approximately 72% by 2080. 

Series B2 showed the least amount of loss with a reduction of approximately 50% by 

2080. The models do not account for plant resilience to change and therefore the 

reduction may be less. However, while sagebrush cover change may vary according to 

various applied future scenarios, it is evident that loss to sagebrush ecosystems due to 

climate change will occur across its range.

The models presented here can be used as rapid assessments for sagebrush cover. 

Combined with ground validations and expert knowledge, these maps, if  updated 

regularly, could provide a valuable tool in landscape management of sagebrush 

ecosystems. As range trend data continue to be collected on an annual basis, the 

sagebrush models could be updated to reflect changes to sagebrush cover frequently. 

Additionally, other data sets (areas burned etc.) could be incorporated into model 

updates, as long as spatial and temporal components were compatible. The models 

presented here were not intended to be used over long periods of time. Rather, they were 

designed to be a starting sagebrush cover map for future revisions and enhancement with 

other data sources.

Conclusions

It was found that a statewide sagebrush model with management level resolution 

(30m) is possible. Furthermore, with the ease of replication, availability of the data, and 

the low costs of software, sagebrush models could be produced at regular intervals and 

could be continually improved upon. DWR’s big game range trend data may prove to be 

a valuable asset in future habitat modeling on the statewide scale. Although the sagebrush 

models did not fully cover all areas within the state, the overall coverage provides



valuable information that could be utilized for sagebrush patch dynamics and landscape 

level corridor studies. In conjunction with climate envelope models and field biologists, 

at risk and more stable sagebrush areas could be identified and tracked at the landscape 

scale. Sagebrush and its obligate species go beyond the borders of Utah. The models 

presented here were trained in one Landsat TM scene and spatially scaled up to cover the 

entire state without a decrease in accuracy, suggesting the possibility to extend the model 

to cover the extent of sagebrush range in western North America.

Acknowledgements

The Utah Division of Wildlife Resources, The Bureau of Land Management, Utah 

Big Game Range Trend (Federal Aid Grant W-82-R), The Nature Conservancy, Utah 

State University and the many others who have contributed time, money, data and 

support.

40



41

Figure 2.1: Landsat TM training scene 3732 (S1). Data points represent Utah Big Game 
Range Trend study sites found in S1.
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Figure 2.2: Spatial extents that the sagebrush predictive models were applied to. A) TM 
Path 37 Row 32 (S1). B) TM Path 37 Row 32 and 33 (S2). C) TM Path 37 Rows 32, 33, 
and 34 (S3). D) The entire state of Utah (ST)
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Figure 2.3: General model workflow.



44

■■■■■■ ■■■■■■■

| 5 0 0  f o o t  b a s e l in e  

—  100 f o o t  b e lt s

Q u a d r a t  7m 2

Figure 2.4: Range trend project sites are set up along a 152m transect, each with 5 30m 
perpendicular transects (belts) placed randomly on the baseline centering on the 15m 
mark of the perpendicular belt. A quarter m squared quadrat is placed every 1.5m along 
the belt for a total of 2 0  quadrates for each belt, totaling 1 0 0  quadrates for the site.
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Figure 2.5: Sagebrush presence models: A) S1_SAGE, B) S2_SAGE, C) S3_SAGE and 
D) ST_SAGE.
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Figure 2.6: Predicted climate envelope for woody sagebrush (1950-2000).
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Figure 2.7: Future projections for suitable sagebrush climate for 2020, 2050 and 2080 
across three climate scenarios: A1, A2 and B2.
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Table 2.1: Estimated cover of sagebrush species and subspecies within the state of Utah, 
USA, from Beetle (1960). Scientific names are taken from http://plants.usda.gov/java/. * 
Wyoming big sagebrush was not listed separately in the original estimation, but was a 
substantial part of the Basin big sagebrush estimates.

UTAH SAGEBRUSH (1960)

Scientific Name Common
Name

Estim ated cover 
(hectare)

Artemisia tridentata Nutt. ssp. tridentata 
* Artemisia tridentata Nutt. ssp. wyomingensis

Basin big sage 
*Wyoming big 
sagebrush

3,366,984

Artemisia nova A. Nelson black
sagebrush

2,589,988

Artemisia bigelovii A. Gray Bigelow sage 2,071,990
Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) 
Beetle

mountain big 
sagebrush

1,812,992

Artemisia cana Pursh ssp. viscidula (Osterh.) 
Beetle

silver sage 776,996

Artemisia arbuscula Nutt. ssp. longiloba 
(Osterh.) L.M. Shultz

little sage 25,899

Artemisia tridentata Nutt. ssp. spiciformis 
(Osterh.) Kartesz & Gandhi

big sage 2,590

Artemisia pygmaea A. Gray pygmy
sagebrush

2,590

Artemisia arbuscula Nutt. ssp. Arbuscula little sagebrush 2,590
Artemisia tripartita Rydb. ssp. tripartita three tip 

sagebrush
259

Artemisia arbuscula Nutt. ssp. thermopola Beetle little sagebrush 259
Total 10,653,137

http://plants.usda.gov/java/
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Table 2.2: Bioclim climate variables used in creating the sagebrush climate envelopes.

Bioclim Variables Used in Climate Envelopes

Name Description
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO 8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
Table data from Bioclime website (http://www.worldclim.org/bioclim)

http://www.worldclim.org/bioclim
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Table 2.3: DEM derived data used in the habitat models.

DEM  Derived Data

Name Description
Relative Elevation Digital elevation model (DEM)

Slope

Slope assessed at 30 m intervals created from the 
DEM. Slope is a calculation of maximum rate of 
change in elevation between the cell and its eight 
neighbors.

Aspect Aspect assessed at 30 m intervals created from 
the DEM. Aspect is the direction of the slope.

Curvature

Curvature derived from a DEM was used to 
identify the physical characteristics defining 
drainage basins often used to understand erosion 
and runoff processes.

Curvature Direction of Slope The direction of the maximum slope derived from 
a DEM

Iverson Moisture Index (IMI)

Used to asses topographically influenced 
moisture availability using the DEM derived 
layers hillshade, flow accumulation and 
curvature.

Table 2.4: The scale for log P interpretations from Kass and Raftery (1999).

Value Interpretation
0 - 0.5 no worth
0.5-1.0 Substantial
1 -2 . 0 Strong
> 2 Decisive



Table 2.5: Sagebrush presence models by spatial extent. * The 517 validation points are from the independent data set that 
came from Westover (2012).

Sagebrush Presence Models

Model
Name

Training
Locations LogP Predictor Variable Order (sensitivity, tolerances)

Improvement 
Over Naive 
Model Overall Accuracy

SI SAGE n = 91 5.04
curvature direction o f slope (3.72, 0.05), TM band 4 
(0 .6 2 ,2 3 1.2) and elevation (0.05, 731.63) 71.40%

(n = 30) 66.66%
(n = 517)* 67.31%

S2_SACE n = 145 4.68
curvature direction o f slope (2.62, 105.1), TM band 4 
(1.18,281) and elevation (1.06,277.7) 74.20% (n= 40) 65%

S3 SAGE n = 189 4.81
curvature direction o f slope (0.86, 272.3), TM band 4 
(0 .64 ,449 .1) and elevation (0.46, 458.3) 61.90% (n = 40) 67%

ST S A G E n = 402 5.02
elevation (1.01, 224.3), TM band 4 (0.5, 490), and 
curvature direction o f slope (0.06, 1.06). 67.60% (n=40) 72.22%
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C H A PT E R  3

A M ETHOD FO R CLASSIFYING AND M ONITORING TOTAL VEGETATION 

COVER ACROSS SPATIAL AND TEM PORAL SCALES W ITH  AN 

APPLICATION TO SAGE-GROUSE HABITAT 

A bstract

The objective of this paper was to create and validate a total vegetation cover 

model that could be applied across a diverse landscape with a spatial resolution of 30m.

In addition, the model was created across multiple temporal periods in the same area to 

identify locations of total vegetation cover change over time. Model creation was 

accomplished with a generalized additive model (GAM). When compared to ground data, 

the best model for the entire state of Utah had a root mean square error (RMSE) between 

6 . 6  and 7.6% cover. Furthermore, an application was tested using total vegetation cover 

models to identify areas of vegetation cover change within sage-grouse habitat. It was 

found that, across all sage-grouse life stages, the majority of areas in which sage-grouse 

were located had increased in vegetation cover between 1988 and 2009.

Introduction

Understanding the distribution of vegetation cover is an important component in 

many scientific studies and management applications These range from creation of global 

climate models to identification and management of individual species’ habitats



60

(Pettorelli et al., 2005; Zeng et al., 2000; Gregg et al., 1994). Furthermore, accurately 

mapping the change in vegetation cover over multiple temporal periods can be used to 

identify seasonal and annual vegetation variability within a range of a species habitat. 

Traditionally, before the advent of aerial photography and other remote sensing 

platforms, vegetation type and cover estimates had been limited to in situ studies at 

relatively small spatial scales. Often data collection and scaling up of ground estimates 

are further restricted by limited budgets, land ownership permissions and safe 

accessibility of rugged terrain. These obstacles further constrain the connectivity and 

completeness of these data at the landscape level. With the introduction of remote sensing 

data, many ecological assessments done on the ground, such as biophysical 

characteristics of species habitat, can be augmented, minimizing the influence of these 

limitations at a variety of spatial scales (Kerr and Ostrovsky, 2003).

Remote sensing data allows for continuous information to be taken across vast 

areas at a variety of spatial scales. Remote sensing, in conjunction with well placed in 

situ data and effective use of Geographic Information Systems (GIS) makes for a set of 

powerful ecological tools (McVicar and Jupp, 1998). The use of remote sensing to 

document and determine vegetation cover, biomass and ecosystem health at a variety of 

spatial scales is rapidly growing (Ramsey et al., 2004). The objective of this study was to 

assess if multitemporal in situ data, measured by the Utah Division of Wildlife (UDWR), 

could be used in conjunction with Landsat Thematic Mapper (TM) imagery to model 

total vegetation cover across a relatively broad spatial scale (the state of Utah). The target 

accuracy was set at a root mean square error (RMSE) of < 10% compared to the ground 

collected vegetation cover estimates. Additionally, for a case study, change in cover was
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estimated across two decades of TM images. Multiple greater sage-grouse (Centrocercus 

urophasianus, hereafter referred to as sage-grouse) habitat patches were assessed. The 

focus of the change analysis application was to identify if  sage-grouse habitat utilization 

occurred in habitat with minimal to no change, or in dynamic habitat types.

Sage-grouse habitat type in this study is broken down into three broad categories 

based on the life stages: nest, brood rearing and winter. Nests are typically found under 

sagebrush plants in areas dominated by woody sagebrush within or close to winter and 

early brood habitat (Connelly et al., 2011). Management suggested sagebrush cover for 

nest habitat is between 15 and 25% (Connelly et al., 2000). In general, brood rearing 

(brooding) refers to early care of the sage-grouse chicks. Brooding habitat is a 

combination of early and late brood rearing. Early brooding is defined by Connelly et al. 

(2000, 2011) as sagebrush-dominated habitat near the nest. Early brooding is typically 

occupied for several weeks after hatching (Berry and Eng, 1985; Connelly et al., 2011). 

These areas are usually rich in insects and forbs. Late brooding coincides with a diet 

transition from predominantly insects to forbs and sagebrush (Connelly et al., 2011). 

Sagebrush cover for late brooding (summer) habitat is usually >20% (Braun et al., 2005). 

Winter habitat is dominated by taller woody sagebrush. During this time, sage-grouse 

almost exclusively feed on sagebrush (Crawford et al., 2004). Sagebrush cover in winter 

habitat can vary from 6 % to 43% but tends to be on the higher side (Connelly et al., 2011; 

Braun, 2005; Schroeder et al., 1999). I predicted that nest location selection would be 

more sensitive to vegetation cover changes than brooding or winter habitat due to its 

tighter sagebrush cover window.



M ethods

Study A rea (Total Vegetation Cover)

The state of Utah was selected as the study area for the production of a vegetation 

cover model because of the vegetation diversity, wide range of habitat types, data 

availability and presence of sage-grouse habitat in the region. Landsat 5 Thematic 

Mapper (TM) data were used to subdivide the state into four spatial extents (Figure 3.1). 

The objective of identifying different spatial scales was to assess if vegetation cover 

models trained at a smaller spatial scale with a smaller data set, such as a single TM 

scene, could be used to model vegetation cover across larger areas.

The model training site was defined by Landsat TM Path 37 Row 32 clipped to 

Utah (TV1; Figure 3.1). TV1 was chosen due to its geographic and vegetative diversity, 

sagebrush cover, imagery availability, and identified sage-grouse habitat patches. 

Modeling was applied to three additional spatial extents: 1) TM Path 37 Rows 32 and 33 

(TV2, 6.5 million ha), 2) TM Path 37 Rows 32, 33 and 34 (TV3, 8 . 6  X 106  ha), and 3) the 

entire state of Utah (TVST, 21.9 million ha; Figure 3.1).

Study A rea (Vegetation Cover Change)

The change in vegetation cover analysis study area was defined as the Fruitland 

sage-grouse brooding nest and winter habitat found northeast of Strawberry reservoir, 

Utah, characterized by the 2013 Utah greater sage-grouse land use plan 

(UDWR/BLM/USFS draft; Figures 3.2 and 3.3). This area was chosen to determine if 

there were any patterns associated with sage-grouse location and past vegetation cover 

change. Change in vegetation cover models created across multiple time periods were 

utilized to identify and quantify areas of predicted changing vegetation cover. The final
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model assessed change between 1988 and 2009

To assist in the interpretation of the modeled vegetation cover change, the 

following graphs were created: annual precipitation, spring precipitation, winter 

precipitation and the Palmer Drought Severity Index (PDSI; Figures 3.4-3.6). The PDSI 

was first introduced by Palmer (1965) and is now a widely used metric to identify periods 

of drought in the United States (Heim, 2002). The PDSI is an approximate measure of the 

departure from the expected cumulative effects of the atmospheric moisture supply and 

the soil water demand (Dai et al., 2004).

Model Creation

Model creation followed three general steps, broken into multiple processes 

(Figure 3.7). To begin, response and predictor variables were obtained or created.

Second, a statistic model was generated and validated. If the model was statistically 

accepted (R2  > 0.5), then a predictive model was projected in 2D space across the study 

area and validated. Vegetation cover modeling was done utilizing a semiparametric 

generalized additive model (GAM, Hastie & Tibshirani, 1986) and Nonparametric 

Multiplicative Regression (NPMR; McCune and Mefford, 2004). The GAM models were 

created with Marine Geospatial Ecology Tools (MGET; Roberts et al., 2010) and the 

NPMR models were created with the software package Hyperniche 2.0 (MJM Software, 

Glendale Beach, Oregon). The response (dependent) variable, vegetation cover, was 

obtained from the UDWR big game range trend data (range trend). These data were used 

as the ground data for all model creation and validation.

Twenty-five remote sensing GIS derived predictor (independent) variables were 

generated for this study. To reduce the total number of predictor variables in model



creation, NPMR was used to screen the top variables. Using the prescreened predictor

variables, GAM and NPMR models were created. Model creation was based on R

2 2(GAM) and the more conservative cross R (xR , NPMR). Variable importance was 

based on p-values (GAM) and sensitivity (NPMR). To find the strongest predictive 

models within the available data, multiple approaches were tested. First, TV1 was used to 

train the models, after which the model rules were applied to the larger areas. Once 

acceptable, models were identified, the results were compared and smoothing splines 

added. Alternatively, the same areas were modeled, but instead of using scene TV1 as a 

training site, each new area was modeled independently.

Once predictive models were made, validation was done by using random points 

that had been withheld from the original model creation. It was expected that the modeled 

vegetation cover would vary slightly from the ground collected data. This variation is due 

in part to the fact that the ground data used an average of several different human 

observers’ interpretations of the multidimensional vegetation cover. The remote sensing 

derived data is created with one sensor and in many cases, assesses only the top, or a 

cumulative reflectance pattern. This view may not penetrate all the layers of the 

vegetation canopy. Additionally, the sensor is limited to an average value found within a 

30m cell, not always centered on the ground data. The actual vegetation cover at the 

proposed 30m resolution cells may, in fact, be a value between the ground collected data 

and the modeled data. The overall accuracy was evaluated using RMSE. Influence of the 

random points withheld was minimized by performing 1 0  iterations of differing random 

points for each model. In addition, smoothing splines were also assessed for three of the 

four areas modeled: TV1, TV3, and TVST. Overall performance for the final model
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selection was judged on a combination of model creation (R ), validation (RMSE), and 

coverage (ha modeled).

Change Analysis

Due to data and time constraints, change in vegetation cover was assessed on one 

sage-grouse habitat patch located in TV1 (Figures 3.2 and 3.3). Prior to any change 

analysis, images were co-registered to the 2009 image (RMSE < 1 pixel) and 

atmospherically corrected. The change method used was a form of post classification 

comparison (Singh, 1989) using GAM vegetation cover models. Past vegetation cover 

models were created using the training data from the 2009 model in conjunction with TM 

data from fall 2005, 1998, 1993 and 1988. Original dates were chosen based on a five 

year interval, with some adjustment made due to availability of suitable TM imagery. 

Ground validation data for vegetation cover and change were available for 1998 and 

2005. However, due to a lack of sufficient range trend data for the other years within the 

study area, validation was not possible for all years. Model outputs were validated using 

RMSE between the vegetation cover models and the ground data.

It is important to note that vegetation cover change does not equate vegetation 

type change. Furthermore, increased cover is not the same as improved cover. For 

example, a sagebrush stand that increased in invasive species may also have increased in 

overall cover (Ramsey et al., 2004).

Inpu t D ata

Response variable. Vegetation cover at each ground location was estimated by the 

UDWR Big Game Range Study. This study is a long-term monitoring program that
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collects vegetation and soil data across the state of Utah. Range trend data are used by 

researchers and land managers to make informed decisions on long-term range 

management. Vegetation cover is defined as the total contribution of all vegetation types. 

At each site, ocular cover estimates were made on 100 quarter m 2  quadrats across a 152 

two m transect. The average vegetation cover obtained across the site was defined as total 

vegetation cover (UTDWR, retrieved 11/2012). For a more in depth description of the 

ground data methods see http://wildlife.utah.gov/range/pdf/2011%20Methods.pdf

Predictor variables. Despite the relatively large number of predictor variables 

prescreened, the top variables were Landsat 5 TM band 7, normalized difference infrared 

index (NDII5; Hardiskey et al., 1983; Hunt and Rock, 1989), the second modified soil- 

adjusted vegetation index (MSAVI2; Qi et al., 1994) and digital elevation (DEM) derived 

aspect.

TM imagery was downloaded for 9/11/2009, 8/31/2005, 8/28/1998, 9/15/1993, 

and 9/01/1988 from the USGS server in 2012 (http://www.usgs.gov/). All TM scenes 

were preprocessed by converting digital numbers to radiance values and then 

atmospherically correcting to percent reflectance. Percent reflectance conversion for TM 

bands 1-5 and 7 was done in ENVI using the atmospheric correction algorithm FLAASH, 

developed by the US Air Force Philips Laboratory (Hanscom AFB, Bedford, MA) and 

Spectral Sciences, Inc. (Burlington, MA). For additional FLAASH information, see 

Adler-Golden et al. (1999). Following atmospheric correction, TM images were used to 

create the vegetation indices. NDII5, was one of several vegetation indices proposed by 

Hunt and Rock in 1989 as a means to identify water content in vegetation. NDII5 here, 

used TM bands 4 (0.76- 0.90^m) and 5 (1.55-1.75^m).
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n d i i 5 = ( p b 4  Pb5)
p b4 + Pb5 )

MSAVI2 is a modification of Huete’s Soil-Adjusted Vegetation Index (Huete, 

1988; Seseman, et al., 1996; Qi et al., 1994). MSAVI2 was designed to reduce the 

influence of exposed soil when estimating vegetation cover with remote sensing. 

Senseman et al. (1996), assessing vegetation cover, found that MSAVI, when compared 

to other vegetation indices, had a higher correlation with ground collected data than other 

similar indices. MSAVI2 here used TM bands 4 and 3 (0.63 -  0.69).

and a standard deviation of 0.07. The results from a Monte Carlo test (100 runs) produced 

no randomly created models that were equal to or better than the best fit with a p-value of 

< 0.01. Four of the 33 screened predictor variables were relevant to the model creation. A 

sensitivity test was used to create the final predictor variable order of importance based 

on relative influence after more than 300 nudges. The predictor variable order was as 

follows (sensitivity values and tolerances listed in parenthesis, respectively): MSAVI 

(1.89, 0.07), B7 (1.40, 410.1), aspect (0.20, 138.7), and NDII5 (0.17, 0.13). Thirty 

validation points were withheld; however, five of the withheld points fell in areas not 

modeled leaving 25 validation points. On the ground, validation (n=25) provided an 

RMSE of 7.7% cover (Table 3.1).

MSAVI2
2

Results and Validations

The NPMR model for TV1 study area used 67 samples for creation and 30 

samples for validation. The model had an xR 2  value of 0.706 (Figure 3.8, Table 3.1). The 

average xR value after 10 iterations was 0.705 with a high of 0.850 and a low of 0.614



The GAM model for the TV1 area used the same samples for creation and 

validation as the NPMR model (Figure 3.8, Table 3.1). Models were created both with 

and without splines. The R value for model creation was 0.58 without splines. After 10 

iterations of random samples withheld, the average R was 0.60 with a high of 0.64 and a 

low of 0.55 and a standard deviation of 0.03. After splines had been added, the model 

improved to a R of 0.70. The 4 variables identified by the NPMR model were used with 

the order of importance based on p values. The order without splines was as follows, with 

the p-values in parenthesis: MSAVI2 (1.19E-07), NDII5 (6.09E-06), B7 (0.02), and 

aspect (0.72). With the addition of splines, the order and p-values were MSAVI2 (5.90E- 

06), NDII5 (1.52E-4), B7 (0.291) and aspect (0.81). Of the 30 validation points withheld, 

all fell within the area modeled. The RMSE for the GAM TV1 was 7.3% cover. The 

RMSE with splines was 7.2% cover.

Only GAM models were scaled up due to overall area covered and similarity in 

results. The NPMR TV1 area modeled with vegetation cover was roughly 1,100,852 ha 

compared to the TV1 (without splines), 2,561,753 ha (Table 3.1). The NPMR had a 

RMSE of 7.7% cover and the GAM (without splines) was 7.3% cover. Furthermore, 200 

random points were generated within the training area of TV1 to compare how similar the 

two model outputs were. Of the 200 points, 119 (60%) fell in areas not modeled by the 

NPMR model. Only 45 fell outside the GAM model (22%). A total of 6 8  points fell 

within both. Using a matched pairs t-test, the random points were compared. It was found 

that the mean difference in vegetation cover estimates across data points found in both 

models was only 0.7% with a standard error of 0.53 and correlation coefficient of 0.92. 

The null hypothesis that there is a difference between the two models’ means is rejected
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with a p value of 0.19. It is important to note that this does not demonstrate which model 

is more similar to the actual (ground) data, merely that the GAM and the NPMR models 

are similar to each other.

The GAM model TV2 extent was created using the training data from scene 3732 

(Figure 3.9, Table 3.1). Randomly withheld validation points (n=82) were used for 

accuracy assessment. Because the same model creation data were used from TV1, the R 

and predictor variables are the same. The RMSE was 5.7% cover. Splines were not 

created for this model.

GAM models for the TV3 extent were created using the training data from scene 

TV1 (Figure 3.9, Table 3.1). Additionally, TV3 models were created using additional 

data points located within the TV3 area. Randomly withheld validation points (n=130) 

were used for accuracy assessment. Model creation using data from TV1 had the same R 

and predictor variables. After splines had been added, the model improved to a R of 

0.70. Not trained in 3732, the model had an R 2  of 0.49. The RMSE for TV3 trained with 

TV1 was 7.3% cover. With splines, the RMS was slightly worse at 8 .6 % cover. Not 

trained in 3732, the RMSE improved slightly to 7.0% cover.

GAM models TVST were created using the training data from scene 3732 as well 

as training the model using the entire state (Figure 3.9, Table 3.1). Randomly withheld

validation points (n=399) were used for accuracy assessment. After splines had been

2 2  added, the model improved to a R of 0.70. Not trained in TV1, the model had an R of

0.39. The RMSE was 7.6% cover. With the addition of splines, the RMSE improved

to7.1%. TVST not trained in 3732 had RMSE of 6.7% cover.
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Change Analysis

Coverage and RMSE for the validated past GAM vegetation cover models were 

similar to the original 2009 model (Figure 3.10, Table 3.2). The RMSE for 2005 and 

1998 was 5.6% cover.

Total vegetation cover changes (at each pixel) were used to compare to sage- 

grouse locations (Figure 3.11, Table 3.3). Sage-grouse brood and nest locations were 

more associated with areas that have increased in vegetation cover from 1988 to 2009 

with mean vegetation cover increases of 3.9% and 3.7%, respectively. The mean percent 

vegetation change for sage-grouse winter locations was an increase of 1 .2 % and the 

change in vegetation cover for 100 random points was an increase by 0.1%. Nest, brood 

and winter means were significantly different than the random points with p values <

.005. However, these changes are all less than the RMSE of the models and should be 

interpreted with caution.

Discussion

The main objective of this study was to assess if multitemporal in situ data, taken 

by the Utah Division of Wildlife (UDWR), could be used in conjunction with TM 

imagery to model total vegetation cover across a relatively broad spatial scale. This was 

accomplished by statewide total vegetation cover models with a RMSE between 6 . 6  and 

7.6% (Table 3.1). It was found that vegetation cover can be accurately modeled at the 

statewide extent. Although Utah has a diverse landscape when assessing total vegetation, 

it is reasonable to use one Landsat TM scene (TV1) to train a model that could be applied 

across the state of Utah, as well as other similar areas, potentially. There did not seem to 

be a clear trend in model improvement (as defined as decrease in RMSE) with the
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addition of more training data points beyond the initial 67 for model creation in TV1.

This lack of trend is demonstrated by scaling up the models without training in 3732 and 

using additional data points in model creation. It was also found that it is possible to train 

a vegetation cover model in one temporal period and apply it across multiple years 

without sacrificing accuracy.

In regards to using vegetation cover models for change in vegetation cover, GAM 

models could be useful tools in assessing changes in cover within sage-grouse habitat.

Vegetation cover models such as the one presented here, can be used as 

meaningful change analysis tools. These models can provide information on amount and 

type of change (increase, decrease, other). Vegetation cover models used as a metric for 

change analysis allows for relevant intuitive thresholds to be applied. For example, if  a 

particular species is sensitive to a decrease in vegetation cover of 1 0 %, the models could 

be adjusted to identify only areas that fit those criteria directly.

The change in cover between time periods, aside from the agricultural areas, 

seemed to be predominately increasing or decreasing in vegetation cover throughout the 

study area. One reasonable explanation for this would be that climate variables such as 

temperature and precipitation are the major drivers of the vegetation cover change seen in 

the models. This would be manifested by years with more water availability having 

higher vegetation cover values overall (increased forbs, more leaf production etc.). 

However, vegetation cover from one year is also influenced by the preceding years’ 

moisture amount and timing (Figures 3.9-3.11). For example, the vegetation cover of a 

wet year that was preceded by several consecutive dry years (1993) may still appear less, 

than a wet year proceeded by several wet years (1998). Additionally, one slightly wet
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year found in the middle of a dry period (2005) may have similar total vegetation cover 

as one of the following dry years (2009). Bates et al. (2005) manipulated precipitation 

patterns in a sagebrush steppe community and found that many vegetation cover and 

biomass shifts did not begin until after four years of treatment. They also demonstrated 

that when the precipitation was received (spring or winter) influenced the overall 

vegetation cover of the site. After reviewing the precipitation and PDSI charts, it is 

plausible that the modeled change in vegetation cover is tied to water availability. 

Therefore, areas that showed little to no change may be dominated by more drought 

resistant shrubs (masking the influence of the present forb and grass components), 

contain very little forb/grass understory or have access to other moisture sources such as 

a springs. Additionally, some of the modeled change may be an artifact influenced by 

differences in the anniversary dates of the images used or errors in the model due to the 

changes being less than the RMSE.

Change analysis provided some insight to sage-grouse habitat selection patterns 

based on areas of total vegetation cover changes. The processes that form these patterns 

may be important to future long-term management of sage-grouse. In the example given, 

the spatial resolution of 30m was sufficient for mapping and monitoring. This resolution 

agreement is due to the large spatial range occupied by sage-grouse. However, it is 

difficult to know the optimal temporal interval to detect meaningful change for this 

species and additional studies are needed. Furthermore, it was difficult to find cloud free 

imagery for any interval for the habitat patch selected. Areas of decreased total vegetation 

cover were not heavily utilized by sage-grouse, as demonstrated by their distribution. By 

identifying areas of change in relation to habitat we can now work to better understand
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these patterns and the processes, natural or otherwise, that drive them. In some cases the 

changes that occurred were obvious, as well as the causes (i.e., human altered croplands). 

In other instances, areas within the sagebrush stands showed change that may have been a 

result of drought stress or other natural influences.

With the growing availability of GIS and remote sensing data, vegetation cover 

models could be applied in multiple ecosystems across a variety of temporal periods. 

Vegetation cover models could be used as a tool for a variety of research and 

management questions beyond what was presented here. For example, aspen leaf drop or 

stand death could be tracked from year to year. Additionally, vegetation monitoring could 

be supplemented with monthly or even daily (depending on the sensor used) modeled 

vegetation cover estimates. Multitemporal vegetation cover models could potentially be 

used to identify influences of annual species on overall vegetation cover over time.

Future work will focus on applying similar modeling techniques to finer and broader 

areas as well as application to other sensors.

Conclusions

GAMs can be used to create landscape level vegetation cover models at multiple 

temporal scales with a reasonable error. Landsat TM was an important sensor for this 

study providing long-term remote sensing layers at a 30m resolution. Although ground 

data specifically taken for the purpose of remote sensing analysis are preferred, long-term 

vegetation monitoring data sets such as the Utah range trend data can be valuable for 

ecological modeling. Total vegetation cover models that span multiple years can be used 

as an additional tool in understanding past and current wildlife habitat selection. Future 

work will focus on creating finer resolution models that predict cover across the same
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broad scale. Change in cover models created at the seasonal level (spring, summer, 

winter) rather than annually will also be explored, to improve the interpretability and use 

of these models.
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Figure 3.1: Four spatial extents used to create total vegetation cover models. Spatial 
extents are defined by areas within the red boxes. A) is TV1, B) TV2, C) TV3 and D), the 
state of Utah.
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Figure 3.2: Sage-grouse brooding and nest habitat patches as defined by the 2013 Utah 
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Figure 3.4: Total annual precipitation in mm for case study area. Spring is defined as 
April -  July and winter is defined as October-March. Data obtained from the Western 
Regional Climate Center.
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Figure 3.5: Palmer Drought Severity Index for case study area 1895-2010. Values below 
-2 are considered moderate drought or worse. Values above 2 are modernly wet or wetter. 
The dark line is a five year smoothing curve. Data obtained from the Western Regional 
Climate Center.
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-2 are considered moderate drought or worse. Values above 2 are modernly wet or wetter. 
The dark line is a five year smoothing curve. Data obtained from the Western Regional 
Climate Center.
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Figure 3.8: NPMR (left) and GAM (right) model outputs for TV1. Areas left black are 
not modeled.
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Figure 3.9: Vegetation cover models for A) TV1, B) TV2, C) TV3 and D) TVST.
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Figure 3.10: GAM total vegetation cover models for years used in this study.
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Figure 3.11: Fruitland habitat patch, total vegetation cover change between 1988 and 
2009. Sage-grouse locations are represented as black dots.
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Table 3.1: Results for total vegetation cover model creation and validation.

Total Vegetation Cover Validation
Model Test

Points
Validation R 2

RMSE
Area modeled 
(ha)Points

TV1 (NPMR) n = 67 n = 30 xR 2  = 0.70 7.73% 1,100,852

TV1 (GAM) n = 67 n = 30 0.58 7.34% 2,561,753
TV2 n = 67 n = 82 0.58 5.68% 4,243,425
TV3 n = 67 n = 130 0.58 7.31% 5,435,047
TVST n = 67 n = 399 0.58 7.60% 13,223,921

TV1 n = 67 n = 30 0.58 7.30% 2,561,753
TV2 n = 67 n = 30 0.58 6.40% 4,243,425
TV3 n = 67 n = 30 0.58 6.34% 5,435,047
TVST n = 67 n = 30 0.58 6.60% 13,223,921

W ith Splines
Test
Points

validation

TV1 n = 67 n = 30 0.7 8.43% 2,518,892
TV3 n = 67 n = 130 0.7 8.62% 5,421,237
TVST n = 67 n = 399 0.7 7.19% 13,188,084

Not Trained in 3732
Test
Points

Validation

TV1 n = 67 n = 30 0.58 7.34% 2,561,753
TV3 n = 190 n = 39 0.49 7.06% 4,952,227
TVST n = 400 n = 40 0.39 6.70% 19,468,309
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Table 3.2: GAM past vegetation cover models creations and validations.

GAM Total Vegetation Cover Validation (TV1)
Month/Day/Y ear Validation Points RMSE

9/11/2009 30 7.34%

8/31/2005 45 5.59%

8/28/1998 30 5.64%
9/15/1993 no data no data
9/1/1988 no data no data

Table 3.3: Sage-grouse location and change in vegetation cover statistics between the 
years 1988 and 2009. Nest, brood, and winter change in vegetation cover means were all 
significantly different than the random points with a p value < .005

Sage-Grouse Life 
Stage

Mean 
Vegetation 

Cover Change
Standard

Error

Nest (n=30) +3.78% 0.47
Brood (n=109) +3.94% 0.35
Winter (n=187) +1.25% 0.24
Random (n=100) +0.07% 0.45
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C H A PT E R  4

USING BLENDED NESTED ECOLOGICAL NICHE M ODELS TO 

IDENTIFY GREATER SAGE-GROUSE HABITAT AND 

CONNECTIVITY POTENTIAL ACROSS A 

DIVERSE LANDSCAPE

A bstract

Recently, a great deal of attention has been given to greater sage-grouse 

(Centrocercus urophasianus) and their habitat. This attention is due, in part, to a US. Fish 

and Wildlife Service (USFWS) 2010 finding that sage-grouse warranted a range-wide 

listing under the 1973 Endangered Species Act (ESA). Although sage-grouse were not 

listed at that time, land managers are working to reevaluate current sage-grouse 

protection and management plans. Sage-grouse are a landscape species, making habitat 

assessment and documentation difficult and costly. Sage-grouse brooding and nest habitat 

predictive models were created for the state of Utah. This was done to assist with 

understanding past, present and future sage-grouse habitat distribution. Three modeling 

techniques (nonparametric multiplicative regression, maximum entropy distribution and 

random forest classification) were combined and validated to identify potential sage- 

grouse habitat. The combined model had an overall accuracy greater than 90% for 

brooding and nest models across the state. Additionally, the combined model was used to
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identify potential sage-grouse corridor habitat (for movement and expansion). These 

corridors can be used to highlight potential management priority areas

Introduction

Concern over the loss of greater sage-grouse (Centrocercus urophasianus; 

hereafter referred to as sage-grouse) and their habitat dates back to the early 1900s 

(Visher, 1913; Hornaday, 1916; McArdle et al., 1936; Griner, 1939). Despite early 

concern, sage-grouse and their habitat continued to decline. Sage-grouse have received 

increased attention over the past decade (both in the scientific and political realms). This 

is in part due to the US. Fish and Wildlife Service (USFWS) 2010 finding that sage- 

grouse warranted a range-wide listing under the 1973 Endangered Species Act (ESA). 

However, due to other species facing more immediate threats, sage-grouse were 

precluded from listing in 2 0 1 0 , and continue to be considered a candidate species for 

future listing. Following a lawsuit in 2011, the USFWS was given until 2015 to 

determine if sage-grouse will be listed under the ESA. Despite the limited timeframe, 

there has been a great effort by biologists and land managers (nongovernmental 

organizations as well as state and federal agencies) to better understand sage-grouse and 

their habitat. A major component to sage-grouse conservation is identifying where sage- 

grouse habitat is located (past, current and future). Additionally, connectivity of 

populations (oftentimes by means of suitable habitat) is important for genetic diversity, 

adaptability and overall long-term survival of the species.

In order to add to the growing sage-grouse research and assist researchers and 

land managers, I wanted to test the feasibility of using relatively fine scale (30m) 

remotely sensed data to predict potential sage-grouse habitat across an ecologically broad
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and diverse landscape. This was accomplished using four objectives. First, fine scale 

predictive sage-grouse brooding and nest ecological niche models, applied at a landscape 

level were created. Second, multiple modeling techniques were compared and combined 

to assess if a combination of models predicted sage-grouse habitat better than any one 

individual model. Third, the predictive strength of the habitat models was tested. Finally, 

applications of the predictive models beyond model creation were explored, by utilizing 

them to identify potential corridors and additional habitat.

Background

Sage-grouse is a woody sagebrush (Artemesia L.) obligate found primarily in 

western North America, with their pre-European distribution covering western portions 

of the Dakotas, southern Saskatchewan and Alberta, into Montana, Idaho, Washington, 

southern portions of British Columbia, Oregon, northern California, Nevada, Utah, 

Wyoming, Colorado, as well as northern Arizona and New Mexico (Baker et al., 1976; 

Beetle, 1960; Schroeder, 2004; Connelly et al., 2004). It has been estimated that sage- 

grouse populations as a whole are only found in just over half of their historic range 

(Schroeder et al., 2004). However, at the northern peripheries of their range, in southern 

Canada, sage-grouse have declined by as much as 80%, prompting its listing as 

endangered in 1998 by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC; Aldridge and Brigham, 2003). Similarly in the south central portion of their 

habitat, sage-grouse have declined at a greater rate than the range-wide estimates. For 

example, Beck et al. (2003) determined that sage-grouse in Utah were only occupying 

40.9% of their historic range with an overall population decline of 50% compared to pre- 

European estimates.



Sage-grouse are an ideal species for landscape scale habitat modeling, due to the 

large expanse of their range and their dependence on sagebrush. Because of sage- 

grouses’ habitat requirements and spatial distribution, some have designated them as an 

umbrella species for other shrubland avian species (Hanser and Knick, 2011; Rowland et 

al., 2006). There have been multiple range-wide sage-grouse distribution maps and 

habitat predictive models created in the recent past (Schroeder et al., 2004; Knick et al., 

2013). In addition to the range-wide estimations, site specific finer scale models have 

been created (Aldridge and Boyce, 2007; Onyeahialam et al., 2005; Atamian et al., 2009; 

Doherty et al., 2009; Yost et al., 2008, to name a few). In most cases, if the area assessed 

was large, then the resulting model resolution was coarse, usually with individual map 

units >1km . What is currently lacking is sufficient sage-grouse potential and distribution 

models at the finer (map unit) scale, predicted across geographically large areas.

Sage-grouse ecological niche models for brooding and nest habitat using 30 m 

resolution data across the state of Utah (21.9 million ha) were created. In general, nest 

habitat is made up of large habitat patches with sagebrush cover between 15 and 25% 

(Connelly et al., 2000). Additionally, it is found in close proximity to winter and summer 

habitats. In most studies, sage-grouse preferred to nest at the base of sagebrush plants 

(Connelly et al., 2011). Brooding habitat is broken into late and early brooding in many 

studies. Early brooding is frequently near nest habitat, but with slightly lower sagebrush 

cover. After several weeks the birds’ diets shift from insects to forbs. This shift usually 

coincides with the landscape getting dryer, prompting the brooding birds to shift to late 

brooding habitat. Late brooding habitat is often associated with wet meadows and in 

some cases cropland (Connelly et al., 2011).
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Sage-grouses’ ecological niche is defined here as a blending of Hutchinson’s 

(1957) fundamental and realized niches. Overall, the model creation follows more of a 

fundamental niche. However, the response variable (sage-grouse presence) driving the 

model is a subset of the population, influenced by realized niche interactions. 

Furthermore, due to the lack of complete sampling of the population and the limited 

availability of spatial layers for model creation, the model creation does not encompass 

all the fundamental niche criteria. Therefore, the output model in geographic space may 

be more conservative than a fundamental niche, more liberal than the realized niche and 

more robust than a standard distribution map. It is important to state the limitations and 

understand that these models are predictions based on good, but incomplete data.

The state of Utah was chosen, in part, due to its diversity of landscapes along 

with its dispersed and patchy sage-grouse habitat distribution. Sage-grouse in Utah are 

found at the southernmost extent of the current species habitat and make up roughly 

10.6% of the overall range-wide population (Beck, 2003; Braun, 1998). Understanding 

the Utah sage-grouse population distribution and connectivity can provide insight into 

similarly dissected populations across their range.

Methods

Study Area

The study area was broken into two spatial extents. The first extent (training area) 

was a smaller area that was used to develop the models (Figure 4.1). The second extent 

was the state of Utah and was utilized to test the ability to spatially scale up the predictive 

models. The training area was chosen due to its geographic and vegetative diversity as 

well as its previously defined sage-grouse habitat patches. Landsat 5 Thematic Mapper
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(TM) data were used to subdivide the state into the two spatial extents. Path 37 Row 32 

clipped to Utah (TM3732) was selected as the training extent (Figure 4.1). Total area 

within this scene is roughly 3.2 million ha. TM3732 covers a diverse landscape including 

mountains, valleys and plateaus.

Modeling Methods

Three separate modeling methods were compared and combined in this study. 

They were chosen primarily due to their abilities to deal with the complex 

multidimensional, nonlinear nature of ecological modeling and include the following: 

nonparametric multiplicative regression (NPMR; McCune and Mefford, 2004), maximum 

entropy distribution (Maxent; Phillips et al., 2004) and random forest (RF; Breiman,

2001; Cutler et al., 2007; McCune, 2006; Elith et al., 2011 and others). Additionally, they 

were chosen due in part to their current use in landscape scaled ecological studies 

(Nelson et al., 2013; Elith et al., 2011; Bradter et al., 2011 and others).

NPMR identifies complex nonparametric ecological interactions in part by linking 

terms multiplicatively rather than additively. Model creation based on a response variable 

is accomplished with a leave-one-out cross validation and a multiplicative smoothing 

function. NPMR was implemented with the software package Hyperniche (McCune and 

Mefford, 2004; Gleneden Beach, Oregon). For additional information, visit 

http://home.centurytel.net/~mjm/nichepublications.htm.

Maxent was selected specifically for its ability to model presence only data. 

Maxent has been extensively used in the scientific literature to model species distribution 

based on presence only data including avian habitat studies (Warren and Seifert, 2011; 

Elith et al., 2011; Moreno et al., 2011; Papes, 2012 and others). Maxent uses machine
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learning modeling through multiple transformations to find if there is agreement between 

the response and predictor variables.

RF use in ecology is still relatively new (Cutler et al., 2007; Prasad et al., 2006). 

RF uses bootstrap samples and a randomized subset of the predictor variables to create a 

series of classification trees (forest) that predict species presence. The trees (typically 500 

to 2,000) are then combined for the final prediction. One of the strengths of RF is the 

ability to create accurate predictions without over fitting the data (Cutler et al., 2007; 

Prasad et al., 2006). The software used to implement RF was R 2.15.1 (R development 

core team, 2008) and ModelMap (Freeman and Frescino, 2009).

Model Creation

Nested predictive habitat models were created in ecological space using the 

response (dependent) variable defined as sage-grouse brood or nest presence. Presence 

was compared against an equal or greater number of random locations (pseudo absence), 

rather than true absence due to the inability to define true absence for sage-grouse. Model 

creation followed ten basic steps (Figure 4.2). Predictor (independent) variables (Tables 

4.1, 4.2 and 4.3) were determined. Values of the predetermined variables were than 

extracted from existing remote sensing/GIS data sets or, if not available, they were 

created using ESRI (Environmental Systems Research Institute , Redlands, CA) and 

ENVI (Exelis Visual Information Solutions, Boulder, Colorado) software packages. 

Model lists were created using Maxent, RF and NPMR. Best fit models were determined 

based on the area under the receiver operating characteristic curve (AUC) as well as 

number of variables included in the models. These models were selected for further 

evaluation and validation. The top models created in ecological space where transferred
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to geographic space. The newly created predictive models were validated for overall 

accuracy. The top models from each method were combined to highlight areas of 

agreement. The combined models where classified into three groups: habitat determined 

by a minimum of one of the three models, in other words the agreements added together 

(ADD), agreement between two or more (M2+) and all three model methods agree (M3). 

The combined models were re-evaluated for overall accuracy. Finally, a low pass 

smoothing function was run on the combined models to reduce noise and fill holes for 

display (sADD, sM2+ and sM3).

To assess the various models’ ability to predict habitat in the absence of any close 

training data, one full population’s data points for brooding and nest locations were 

withheld from model creation and used as a validation. Supplementary to the Diamond 

Mountain points, two alternative data sets were used for validation. The additional data 

sets were made up by randomly withholding data points for brood and nest sites across 

the state.

In order to define area as suitable habitat versus not, thresholds were used in the 

final models. It is difficult to define optimal threshold as there is not a consensus on what 

is suitable for a habitat presence threshold (Tinoco et al., 2009; Lui et al., 2005; Loiselle 

et al., 2003; Jimenez-Valverde, 2007). The 10 percentile threshold was applied (90% of 

the training points were located within the predicted area) despite the potential for 

increased omission (sites predicted as negative for habitat that are positive). By using this 

threshold, the models were more conservative (Tinoco et al., 2009).
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Corridor Creation

To more fully utilize the presented habitat models, the best performing model was 

incorporated into a resistance layer used to assess potential sage-grouse movements and 

population expansion corridors. A map of greater sage-grouse brooding habitat patches 

produced by the Utah Division of Wildlife Resources (UDWR, 2009) was used to 

delineate brooding habitat. The UDWR brooding habitat patches are similar to a 

conservation buffer and include more area than what may be suitable habitat. In some 

cases, the areas encompass farm land and housing developments. Despite the increased 

habitat, they were used to define sage-grouse brooding and nesting habitat patches to 

address connectivity and potential expansion.

Two types of theoretical corridors were created. The first is defined here as an 

expansion potential corridor (EPC). This is potential habitat (able to support brooding 

and/or nest) between populations. This may represent habitats that are occupied, remnant 

(historic), undocumented current or degraded habitats. The second is a movement 

potential corridor (MPC). The main difference between the two in this study is that EPC 

requires the corridor to be located within the highest potential (sADD) habitat with 

minimal human impacts (described below). However, the MPC model assumes only 

movement through and not occupation of habitat.

For both the EPC and the MPC, the sADD potential habitat was converted into a 

movement resistance layer with the highest resistance (no agreement by any model as 

potential habitat) given the lowest probability of use. This was further supplemented with 

a human footprint layer developed by Leu et al. (2008). This human footprint layer was 

used because anthropogenic disturbance and human occupation have been shown to have
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a negative impact on sage-grouse survival (Connelley et al., 2011). The MPC corridors 

were mapped using Linkage Mapper (McRae and Kavanagh, 2011). The corridor models 

created were to demonstrate the potential for using ecological niche models for sage- 

grouse movement assessment. The corridor models were to demonstrate potential and 

were not fully developed or validated due to the limited data on sage-grouse movement.

Input Data

Response variables. Sage-grouse brooding and nest GPS locations were provided 

by the Utah Division of Wildlife, Utah State University and Brigham Young University. 

These data were obtained from past and current studies in the state of Utah. In most 

cases, brooding birds and nests were located with radio collars and their GPS locations 

recorded. Potential GPS inaccuracies where minimized in this study by using 30 m 

resolution data layers to define the locations within the models.

Predictor variables. Predictor variables were broken into three general categories: 

Digital elevation model (DEM) derived (Table 4.1), Landsat-derived (Table 4.2) and 

Vegetative Cover models (Table 4.3). DEM-derived data were created using 30 m DEMs 

obtained from the United States Geological Survey (USGS; Gesch, 2007). Simple layers 

derived from the DEM were slope, aspect, curvature and curvature direction of slope 

(profile). More complex layers created were the Integrated Moisture Index, Topographic 

Position Index and the Terrain ruggedness index. Environmental Systems Research 

Institute (ESRI, Redlands, California) software was used to create the additional DEM 

layers. Slope and aspect where created based on the Horns method. Slope is a calculation 

of the maximum rate of change in elevation between a cell and its eight neighbors and 

aspect is the direction of the slope (Horn 1981; Jones 1998; Burrough and McDonell
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1998). Curvature of the slope was used to define potential drainage basins. Curvature 

direction of slope (profile curvature) is the direction of the maximum slope. A modified 

version of the Iverson Moisture Index (IMI; Iverson et al., 1997) model was created using 

ESRI ArcMap to include topographically influenced moisture availability into the 

modeling. The IMI was created following Davis (2009) using the DEM derived layers: 

hillshade, flow accumulation and curvature (Davis, 2009; Iverson et al., 1997; Yost et al., 

2008). Topographic position layers were created using tools designed by Jenness (2006). 

This index compares the elevation of each cell to the average surrounding cells and can 

be used to define topographic positions such as canyons valleys or plateaus (Jenness, 

2006). Terrain ruggedness is a measure of terrain heterogeneity and was created 

following Riley et al. (1999). The ruggedness index compares each cells elevation to the 

surrounding eight cells to determine a rugosity score.

Landsat 5 Thematic Mapper (TM) 30m resolution imagery was downloaded from 

the USGS (http://www.usgs.gov/). Individual TM bands 1-5 and 7% reflectance were 

used as individual predictor variables. In addition, the bands were combined to create 

vegetative indices. Atmospheric absorption and scattering was corrected using Fast Line- 

of-site Atmospheric Analysis of Spectral Hypercubes (FLAASH; Air Force Phillips 

Laboratory, Hanscom AFB and Spectral Sciences, Inc (Adler-Golden et al., 1999)) and 

ENVI software. Several vegetation indices were also applied using ENVI software (Table

4.2).

Two vegetation cover models were created, sagebrush presence (Chapter 2) and 

total vegetation cover (Chapter 3) , to help capture potential sage-grouse habitat (Table

4.3). Due to sage-grouse dependence on sagebrush, a sagebrush presence model was
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created using NPMR. Presence was defined as 5% or more woody sagebrush. The overall 

accuracy for the model across the state of Utah was 72%. In addition to the sagebrush 

presence model, a total vegetation cover model was created using a generalized additive 

model (GAM), implemented with Marine Geospatial Ecology Tools (MGET; Roberts et 

al., 2010). The overall accuracy of the total vegetation model ± 10% of the ground data 

was 70%.

Results 

3732 Model Creation

NPMR, Maxent and RF all created models that performed better than a randomly 

generated model. NPMR, Maxent and RF AUC values for model creation were 0.80, 0.87 

and 0.96, respectively (Table 4.4). The top predictive variables for sage-grouse nest and 

brooding habitat were elevation, slope, total vegetation cover, and sagebrush presence 

(sagebrush). It is important to note that the model outputs are based on combining the 

individual predictive variables and that looking at each predictor independently can be 

misleading in the absence of the other variables. However, knowing the individual 

relative influence/importance can assist in better understanding the processes driving 

suitable habitat.

NPMR order of variable influence was based on two sensitivity tests, one using 

mean absolute values (S1), the other root mean squared difference (S2). This was done by 

adjusting the observed values for each predictor variable and assessing the change to the

model response at that location. Higher sensitivity indicates greater influence (McCune,

1 22006). NPMR variable order of influence with both S and S was elevation, sagebrush 

presence, slope and total vegetation cover (Table 4.4).



Maxent influence was based on two estimates: percent contribution and 

permutation importance. Percent contribution is the increase in regularized gain added to 

or subtracted from the corresponding variable in each of the training algorithm iterations. 

Permutation importance takes the final model created and evaluates the importance of 

each variable by randomly permutating the values of the variable with the training and 

background points. The resulting change in AUC values for the model is used to 

determine variable importance. A large drop in AUC values when a variable is 

randomized indicates the model is strongly influenced by that variable. The amount of 

change is normalized and reported as a percent (Phillips, 2011). Maxent predictor order 

was similar to NPMR with the exception of sagebrush having less influence than slope 

(Table 4.4).

RF variable influence was based on mean decrease accuracy (MDA) and mean 

decrease Gini (statistical measure of equality among values used to identify incorrectly 

labeled elements; MDG). MDA is a measure of the normalized difference of the 

classification accuracy for the out-of-bag (not cross validated) data included as observed 

and as randomly permutated (Cutler et al., 2007). MDG is a measure of node (a junction 

that random variables are chosen to build each decision tree) impurity and is a sum of the 

Gini decrease per each variable, per node in the classification trees; the higher the mean 

decrease, the greater the influence of the variable (for more information, see RF manual 

http://stat-www.berkeley.edu/users/breiman/RandomForests). The order of influence for 

MDG followed the same order as the NPMR. However, the MDA differed with the order 

of elevation, slope, total vegetation and sagebrush. MDA was the only measure to list 

sagebrush as the least important of the four. The most probable order of variable
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influence has elevation as the top predictor and total vegetation as the bottom with slope 

and sagebrush interchangeable in the middle (Table 4.4).

3732 Models Output Validation

Multiple models were projected into geographic space and validated. In addition 

to each method’s top model, a series of combination models were evaluated. Percent 

overall accuracy (OA) for NPMR was 84%. Maxent and RF had OA’s of 89%. The ADD 

model had a value of 98%. The M2+ models OA was 90% and M3 was 79%. After a 

smoothing function was run on the combined models, all three had improved OA values 

(Figure 4.3, Table 4.5).

Statewide Model Creation

As the models were spatially scaled up, there was very little change in the AUC 

values for model creation. Both RF (0.95) and Maxent (0.82) decreased, and NPMR 

(0.92) improved slightly. However, the order of variable importance changed with total 

vegetation cover becoming the second most influential variable compared to the fourth in 

the 3732 models (Table 4.6).

Statewide Validation

Similar to the TM3732 models, the top statewide models as well as the combined 

models were projected into geographic space and validated (Figures 4.4-4.7, Table 4.7). 

Of the individual models, RF (Figure 4.4) had the highest OA for statewide brood (93%) 

and nest (100%) data sets. However, the NPMR model (Figure 4.5) had a higher OA for 

the DM data set for both brood (83%) and nest (90%). The sADD model (Figure 4.6) was 

an improvement over the individual models for OA with the exception of the state nest
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data set, where both sADD and RF (Figures 4.7 and 4.4) models performed equally. 

However, despite the improved overall accuracies of the sADD model compared to the 

individual models, the sM2+ model (Figure 4.7) may be a more conservative model with 

acceptable accuracies (state brood: 77%, state nest: 87%, DM brood: 87%, DM nest: 

92%). The sM2+ model predicted half as much area as habitat, compared to the sADD 

model.

Corridors

The EPC shows the amount of resistance for potential population expansions or 

movement, based on potential habitat and human impact (Figure 4.8). Many areas 

modeled as low resistance are not currently utilized habitat patches. However, they may 

be suitable for temporary occupation or small population subsistence based in part on 

juxtaposition to currently utilized patches. The EPC output map shows that much of the 

current area in the east of the state predicted to have low resistance (outside of defined 

brooding habitat) is found in historic sage-grouse habitat (Schroeder, 2004; Figure 4.8).

In the west many areas of least resistance are found in current Gunnison sage-grouse 

(Centrocercus minimus) habitats (Figure 4.8). Additionally, there are some habitat 

complexes, such as the Uintah patches, that show a reduction in size and overall 

connectivity in relation to historic habitat estimations (Figures 4.9-4.13). Reduced patch 

size and expansion potential in these areas is complex and are a combination of low 

habitat potential (natural barriers) and high human impacts (cities, agriculture, energy 

development etc.). With a reduced expansion potential, many of these Uintah patches are 

more susceptible to current habitat loss or disturbance (i.e., catastrophic fire). These 

limitations stem in part from a large natural barrier to the north. For example, much of the
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area north of the existing Uintah habitat patches is low human impact, but also has low 

habitat potential. These sage-grouse habitat patches have had very little change to their 

northern extents compared to their historic habitat. (Uintah Mountains, Figure 4.10). 

Another contribution to habitat limitations to the Uintah patches is anthropogenic 

impacts. Areas found outside the existing sage-grouse habitat patches to the east have 

high human impact and low habitat potential (Figure 4.11). To the west there is a 

moderate habitat potential and moderate human impact (Figure 4.12). In the south it is a 

mix of natural (extremely xeric landscapes) and anthropogenic factors (Figure 4.13).

The MPC shows some potential routes for genetic flow (Figure 4.14). The routes 

with the lowest cost of movement (high potential habitat and low human impact) help to 

highlight areas that may be currently isolated, from historically connected habitat 

patches, for example, the now isolated Sheep Rock habitat patches (Figure 4.15). In 

addition, the MPC identifies each habitat patch’s number of potential (least cost) 

corridors. For instance, the Strawberry habitat complex has multiple interconnecting 

corridors in addition to 7 MPC corridors connecting it directly to four additional habitat 

patches (Figure 4.16).

Discussion

Predictive models can be an important tool in future sage-grouse habitat 

management, both in the short and long-term. Conservation and management of any 

species is complex, involving ecosystems that are dynamic and unpredictable in their 

own right. This combination of variables, coupled with our inadequate understanding of 

ecological principals, limited budgets and human interests, is why Francis and Goodman 

(2 0 1 0 ) appropriately labeled the science of conservation as a “post-normal science.”
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Sage-grouse fit directly into this description with a great deal of the work being done, 

after much of the habitat has been lost over a geologically short period of time ( ~ 1 0 0  

years). As we gain more insight into sage-grouse habitat patches across multiple spatial 

and temporal scales, we can make better informed management decisions in regards to 

natural and anthropogenic impacts to the species survival. The initial creation of a 

predictive model is only one of the steps in better understanding species habitat patches 

and their connectivity. In many studies, the initial models are the end point rather than the 

beginning of management and application. Continual refinement is necessary and should 

be done on a regular basis for the model to remain relevant. Here, several potential uses 

beyond the academic exercise of model creation are presented.

Corridor Application

One of the difficulties with any corridor assessment is the assumption that if the 

area meets the predefined criteria for potential habitat, than the species will use it (Hobbs, 

1992). There is an increased likelihood that sage-grouse will be more prone to use 

predicted corridors with suitable sagebrush stands, due to their reliance on sagebrush. 

Currently, there is very little data on acceptable migratory and seasonal corridor sizes 

required for sage-grouse sustainability (Connelly Rinkes and Braun, 2011).

There is a temporal component to any habitat patch connectivity that is worth 

noting. Some potential barriers are temporary on an ecological scale while others are 

more lasting. Some populations may have experienced past barriers and bottlenecking 

events prior to large scale anthropogenic impacts. For example, the previously mentioned 

Sheep Rock habitat patch complex connectivity would have been influenced by the 

presence of Lake Bonneville (32,000-14,500 years ago, Figure 4.17), if sage-grouse were



found there at the same time as the lake.

Distance restrictions, specific to sage-grouse, were not assessed here due to the 

high degree of variability of movement in sage-grouse (Connelly Hagen and Schroeder, 

2 0 1 1 ), but could be implemented as each population’s movements are better understood. 

The corridors presented here were general in their assumptions of restrictions, but could 

be easily adapted by local wildlife managers and conservation biologists. For example, 

the human disturbance weight in the model could be adjusted based on perceived on the 

ground impacts. In areas where human disturbance is isolated and minimal (few isolated 

structures) the weight of the human impact habitat resistance component in the model 

could be reduced in contrast to areas with high use and continual expansion (roads, 

houses, etc.). Additionally, with the limited resources allocated to species protection and 

management, potential corridors could be used to prioritize habitat for future restoration 

projects (McRae et al., 2012).

Finding Historical Habitat

Historical habitat is often defined as pre-European settlement. However, historic 

can also represent areas where the species more recently was extirpated. Historical 

habitat is difficult to estimate and even more difficult to validate. Using a species, current 

predicted ecological niche can assist in locating undocumented or poorly documented 

historic habitat. For example, Cedar Mountain (Emery county Utah) in the models 

showed potential for sage-grouse habitat. This small mountain is a habitat island 

surrounded by salt desert shrubs with minimal suitable habitat connecting it to current 

known sage-grouse habitat patches. Due to the lack of current connectivity and modeled 

potential, a ground survey was conducted in 2012 to visually assess habitat potential. The
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top of the mountain contained heterogeneous sagebrush stands with available wet springs 

and a beneficial forb understory. However, it had been heavily managed for livestock 

production with much of the sagebrush converted to grasses. Interviews were conducted 

in the nearest town (Cleveland, Utah). It was found that at least one population of sage- 

grouse occupied that area in the past and had been hunted out in the 1950s. It is unlikely 

the area supported a large population in recent times due to its geographic isolation. 

However, it may provide insight into past distributions under cooler climate conditions.

Identifying Potential Habitat for Relocation or Expansion

Although much of the current work in sage-grouse habitat is in documentation, 

maintenance and protection of currently occupied habitat, it is important to address 

potential unoccupied areas for natural or forced expansion. This need to expand or move 

from current habitat patches in the future may be due to climate change, natural disasters 

or human assisted habitat degradation. These models help to identify potential expansion 

areas and their juxtaposition to current habitat. In conjunction with EPC corridors, 

relocation sites could be identified and assessed not only at the site level, but at the 

landscape scale. It is difficult to assign habitat value if the species is absent. However, 

using historic distributions, current niche models and on the ground assessments, 

potential sage-grouse habitat could be better identified, protected and managed.

Conclusions

It was found that a 30m resolution sage-grouse brood and nest habitat model 

predicted across a geographically large area performed well with acceptable accuracies. 

Visually, all three modeling methods were very similar. However, there were differences
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in the overall accuracies. For example, RF performed better in the statewide brood and 

nest categories. Conversely, NPMR performed better in the extrapolation (DM) 

categories. It was assumed that the agreement (all three models agree, sM3) would 

represent areas that have the highest probability for suitable habitat. However, using 

overall accuracy as a performance measure, the sM3 under predicted the new population 

of DM. This implies that the model may be too conservative. It is suggested here that the 

sM2+ model may be a good balance between accuracy and coverage with over 75% 

agreement in all overall accuracy categories. In order to add strength to ecological 

models, application beyond model creation is necessary. One area that this can be 

accomplished is in habitat patch connectivity. With the current state of sage-grouse 

conservation, many land managers have created priority areas. Potential corridors and 

patch expansion models such as the ones presented here can help to identify, within the 

priority areas, habitat patches that may be at risk of losing natural genetic flow due to 

patch isolation. Additionally, these models can be used to identify habitat patches that 

have little potential for future expansion and are therefore more prone to disturbances and 

habitat loss.
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Figure 4.1: Study area. The first extent outlined in red represents the training area 
(TM3732). The second extent is the entire state of Utah.



112

Predictor 
variables 

determined 
(Step 1)

Predictor
variables Response variable
extracted (Nest and Brooding)
(Step 2)

Create predictive models

(Step 3)

V
- Reject < -

Validate model strength 
AUC 

(Step 4)

V
Project Model 2D space

(Step 5)

V

- Reject

Evaluate output 
(Overall Accuracy) 

(Step 6)

Combine top models 
ADD, M2+, M3 

(Step 7)

Evaluate output 
ADD, M2+, M3 

(Step 8)

Smooth output 
sADD, sM2+, sM3 

(Step 9)

V
Evaluate output 

SADD, SM2+, SM3 
(Step 10)

Withhold subsets 
of presence data 

for validation

Figure 4.2: General workflow for model creation and validation.
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Figure 4.4: Random forest predictive model. M odel creation had an AUC o f  0.95.
Statewide overall acuracy was 93% for brooding and 100% for nesting.
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Figure 4.5: Top NPM R predictive model. M odel creation had an AUC o f  0.92. Statewide
overall acuracy was 72% for brooding and 83% for nesting.
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Figure 4.6: Maxent predictive model. M odel creation had an AUC o f  0.82. Statewide
overall acuracy was 72% for brooding and 86% for nesting.
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Figure 4.7: Combined predictive model. Statewide brooding overall acuracy was 92%, 
77% and 6 6 % for sADD, sM2+ and sM3, respectively. Nest was 100%, 87% and 77% 
for sADD, sM2+ and sM3, respectively.
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Figure 4.8: Statewide EPC and sage-grouse past and current distribution maps. Past 
distribution represents pre-1800 distribution (Schroeder et al. 2004).
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Figure 4.9: Example sage-grouse habitat barriers. A) Sage-grouse distribution in the 
Uintah basin. B) EPC map of the Uintah basin. UN identifies habitat patches considered 
here as the Uintah complex. Number one is an example of a natural expansion barrier 
(see Figure 4.10). Two, three, and four are examples of anthropogenic barriers (Figures 
4.11 -4.13).
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Figure 4.10: Example of a natural barrier for expansion. This area has low habitat 
probability and low human impact. In comparison to the historic distribution, there is 
very little change to the northern extent of these patches.
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Example 2
Anthropogenic Barriers
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Figure 4.11: Example 2 demonstrates a complex series of anthropogenic barriers on 
potential habitat expansion. In this relatively small area, potential barriers include cities, 
farms, energy development and infrastructure such as roads and power lines. Example 2 
has low habitat probability and high human impact. Additionally, the entire area was 
potential habitat at one time.
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Example 3
Anthropogenic Barriers
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Figure 4.12: Example 3, similar to example 2, demonstrates how complex the human 
barriers can be. However, unlike example 2, there is still a fair amount of potential 
expansion habitat. Additionally, the human occupied footprint is smaller. Example 3 has 
moderate habitat potential and moderate human impact.
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Example 4 
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Figure 4.13: Example 4 is unique with the majority of the anthropogenic impact seen as 
energy development. It is important to note that the dots that represent the well locations 
are not to scale of actual impact. This example also has some natural barrier components 
in the more xeric areas that may have never been suitable habitat (see historic habitat, 
Figure 4.9). Example 4 is an example of low to moderate habitat potential and medium to 
high human impact.
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Figure 4.14: State wide movement potential corridors (MPC).
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Figure 4.15: SR (Sheep Rock) brooding habitat complex is made up of two 
interconnected habitat patches otherwise isolated from other patches. The habitat island 
isolation is due to a combination of natural and anthropogenic barriers. Some examples 
are shown above as letters. A is a drier basin and is a representation of a natural 
movement barrier with low human impact and low habitat probability. B represents large 
water bodies (Utah Lake and the Great Salt Lake) that can be natural movement barriers. 
C is an extreme example of human impact and settlement with low current probability for 
habitat and a high human impact.
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Figure 4.16: Strawberry habitat patch complex. The MPCs help to identify areas of 
highest probability for movement based on suitable habitat and minimal anthropogenic 
impacts.
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Figure 4.17: Example of potential past temporal natural habitat movement barriers. The 
area shown is the Sheep Rock habitat patch complex. Compare to current barriers in 
Figure 4.15.
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Table 4.1: DEM derived predictor variables tested in model creation. * Variable found in 
final model.

Digital Elevation Model Derived (DEM)

Name Description
Elevation * Modeled elevation above mean sea level in ms
Slope * Calculation of the maximum rate of change in 

elevation between each cell and its eight neighbors
Aspect The direction of the above listed slope
Curvature Slope of the slope
Curvature Direction of Slope Curvature the direction of the maximum slope
Integrated Moisture Index (IMI) IMI, is a proxy proposed to classify topographically 

influenced moisture availability (Iverson et al.
1997)

Topographic Position Index (TPI) TPI is the relative topographic position to 
surrounding cells (Jenness 2006)

Terrain Ruggedness Index (TRI) TRI, uses the difference between each cells 
elevation and the surrounding 8  cells to determine a 
ruggedness score (Riley 1999)



129

Table 4.2: This table shows Landsat derived predictor variables. Individual TM bands 
were tested as well as vegetation indices for model creation. Band numbers designated by 
the lowercase b in the vegetation indices indicate the TM band used. None of the 
individual predictors from this table were found in the final sage-grouse habitat model. 
However, band 4, band 7, MSAVI2 and NDII5 were significant in the sagebrush cover 
and total vegetation models used in the final model.

Landsat5 Thematic Mapper (TM ) Derived

Name and Reference Wavelength or Equation

Band 1 0.45 - 0.52^m

Band 2 0.52 - 0.60^m

Band 3 0.63 - 0.69^m

Band 4 0.76 - 0.90^m

Band 5 1.55 - 1.75^m

Band 7 2.08 - 2.35^m

Normalized Difference 
Vegetation Index 
(NDVI)

Rouse et al. (1973)

NDVI =

Normalized Difference 
Infrared Index (NDII5)

Hardiskey et al. (1983) 
Hunt and Rock (1989)

ND II, =

Normalized Difference 
Infrared Index (NDII7)

Hardiskey et al. (1983) 
Hunt and Rock (1989)

NDII7 =

Modified Soil-Adjusted 
Vegetation Index 2 
(MSAVI2)

Qi et al. (1994)
MSAVI2 =
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Table 4.3: Vegetation cover models created for use in the final model. *Both were found 
to be important predictors for sage-grouse habitat.

Vegetation Cover Models

Name Description
Sagebrush presence (>5%) * Created with nonparametric multiplicative 

regression. The significant variables for model 
creation were, in order of importance: elevation, TM 
band 4, and curvature direction of slope. The overall 
accuracy of the model was 72%

Total Vegetation Cover * Created with a generalized additive model. The 
significant variables for model creation were, in 
order of importance: MSAVI2 NDII5 TM band 7 
and aspect. The RMSE was 6 .6 %

Table 4.4: TM3732 model creation validation (AUC values) and predictor order. 
Comparison of the top predictor variables with their order of importance is shown. The 
rank agreement is percent agreement for each variables importance across all measures.

Model Creation Relative Importance 3732

Variable NPMR Maxent RF Rank
Agreement

S1/Rank S2/Rank PC/Rank PI/Rank
MDA/
Rank

MDG/
Rank

Elevation
(EL) 0.63/1 0.88/1 59.5/1 65.7/1 230/1 880/1 100%
Sagebrush
(SB) 0.43/2 0.6/2 10.3/3 8.3/3 105/4 650/2 50%
Slope (SL) 0.32/3 0.43/3 20/2 18.9/2 170/2 410/3 50%
Total
Vegetation
(TV) 0.27/4 0.36/4 10.2/4 7.1/4 130/3 390/4 83%
AUC Values 0.80 0.87 0.96
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Table 4.5: TM3732 Accuracy assessment. Percent overall accuracy compared to ground 
data and predicted area is shown.

3732 Validation

Model Area of predicted habitat (ha) Percent Overall Accuracy (n 
=45)

Random Forest (RF) 41,752 89%
Maxent 41,298 89%
NPMR 50,611 84%
ADD 57,390 98%
M2+ 40,039 90%
M3 25,874 79%

sADD 65,658 100%
sM2+ 38,871 93%
sM3 24,407 83%

Table 4.6: Statewide model validation and predictor order. This table is a comparison of 
the top predictor variables with their order of importance and model AUC values for the 
state of Utah. The rank agreement shows how often a variable’s order of importance 
agrees across all importance measures.

Relative Importance State

Variable NPMR Maxent RF Rank
Agreement

S1/Rank S2/Rank PC/Rank PI/Rank
MDA/
Rank

MDG/
Rank

Elevation (EL) 1.05/1 1.45/1 65.9/1 59/1 129/1 415/1 100%
Total
Vegetation
(TV) .50/2 .76/2 11.0/3 15.2/3 85/3 210/2 50%

Sagebrush (SB) 0.24/3 .36/3 4.3/4 8.6/4 95/2 160/3 50%

Slope (SL) .03/4 .03/4 18.8/2 17.3/2 64/4 148/4 67%

AUC Values 0.92 0.82 0.95
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Table 4.7: Statewide accuracy assessment. Percent overall accuracy (OA) and total ha 
modeled by each method is separated out by sage-grouse life stages. Columns labeled 
“State” represent random samples withheld from the entire state. Columns labeled 
“DMD” represent the entire Diamond Mountain population withheld from model 
creation. The numbers after the percent in brackets represent ground validation locations 
that fell in unmolded areas.

Validation

Model Ha
OA% 

Brood State 
(n =50 )

OA% Nest 
State (n=50 

)

OA% Brood 
DMD (n=100 

)

OA% 
Nest DMD 

(n=49)
Random Forest 276,959 93% (4) 100% (7) 73% (6 ) 77% (1)
Maxent 224,218 72% (4) 8 6 % (7) 87% (6 ) 85% (1)
NPMR 224,290 72% (4) 83% (8 ) 8 8 % (6 ) 94% (1)
ADD 315,134 96% (4) 100% (9) 1 0 0 % (6 ) 98% (1)
M2+ 2 2 0 , 1 2 0 74% (4) 95% (9) 85% (6 ) 90% (1)
M3 95,014 67% (4) 78% (9) 44% (6 ) 38% (1)
sADD 323,397 92% (2) 100% (3) 1 0 0 % ( 1 ) 98% (0)
sM2+ 161,638 77% (2) 87% (3) 87% (1) 92% (0)
sM3 47,077 6 6 % (2 ) 77% (3) 41% (1) 37% (0)
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C H A PT E R  5

SUMMARY AND CONCLUSIONS 

Discussion

The use of nested predictive ecological niche models was found to be a powerful 

tool to better understand and visualize greater sage-grouse and their habitat distribution 

across a broad spatial extent (Utah). Furthermore, models presented in this work show 

great promise in improving our understanding concerning spatial and temporal aspects of 

sagebrush habitat changes and influence on sage-grouse utilization. Additionally, the 

modeling methods used here could be applied to other species across a variety of spatial 

extents and topographic gradients. Although all models by nature are flawed, there were a 

series of results that were reached that supported the above stated conclusions. These 

findings were separated into three categories consistent with the chapters found in this 

dissertation: sagebrush distribution models (Chapter 2), total vegetation cover models 

(Chapter 3) and sage-grouse distribution and connectivity models (Chapter 4).

Based on sage-grouses’ dependence on sagebrush, the logical starting point was to 

first create a sagebrush distribution map. In order to capture all habitats relevant to 

potential sage-grouse use, sagebrush cover of >5% was the cutoff for sagebrush presence. 

The target extent was broad (Utah) but the target resolution was fine (30m). In order to be 

applicable to future land managers, the modeling methods needed to meet the criteria of 

accurate predictions, low cost and easily updatable. It was found that:



1) A fine scale sagebrush distribution model, projected across a geographically 

diverse and spatially broad extent, is possible using currently available data 

and software. This was demonstrated with a statewide predictive map with an 

overall accuracy of 72%.

2) Using climate envelopes and future climate predictions, sagebrush stands that 

are more vulnerable to climate change can be identified.

Extensive studies have shown that sage-grouse utilize habitat with differing 

amounts of vegetation cover, depending on their life phase (nest, brood, winter or others; 

Connelley et al. 2011). For example, sagebrush cover suggested for optimal nest habitat 

is between 15-25%, compared to winter habitat that can be as high as 43% (Connelly et 

al. 2000, 2011, Braun 2005, Schroeder et al. 1999). In efforts to map total vegetation 

cover, it was found that:

1) Accurate fine scale broad extent percent total vegetation cover models are 

possible. I was able to produce a model that for the state of Utah with a RMSE 

of 6.6% cover.

2) The spatial extent of one Landsat 5 TM scene (3732 clipped to Utah) and 

ground data, obtained from Utah’s Big Game Range Trend Studies, could be 

used (with additional predictor variables) to train a total vegetation cover 

model applicable to the political boundaries of Utah.

3) The temporal limitation (seasonal and annual) of predicting total vegetation 

cover can be minimized using multitemporal ground (range trend) and sensors 

(Landsat TM) data. This was demonstrated by predicting total vegetation 

cover across multiple years with no loss in overall accuracy.
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4) Total vegetation models predicted across multiple time periods can be used to 

identify if an area’s vegetation cover has changed. By identifying areas of 

change, additional comparisons between vegetation cover change and sage- 

grouse habitat selection were possible. It was found that most sage-grouse 

locations were in habitat that had experienced an increase in total vegetation 

cover over the last two decades.

With acceptable sagebrush and total vegetation cover models in place, nested 

predictive sage-grouse distribution and connectivity maps were created for sage-grouse. 

The sage-grouse life stages of interest were nest and brooding. These life stages were 

targeted due to their similarity and close proximity to each other as well as the 

availability of the data. A challenge to any ecological model is what method and or 

software package to use. After exploring many ecological modeling techniques (assessing 

them for their ability, cost and availability) three methods stood out in the literature.

These models were nonparametric multiplicative regression (NPMR), maximum entropy 

distribution (Maxent) and random forest (RF). All three methods were used to model 

sage-grouse habitat independently. Additionally, a combined method agreement model 

was created and validated. The sage-grouse ecological niche agreement model was 

further combined with a human impact model (Leu et al. 2008) to predict potential 

habitat corridors. It was found that:

1) Statistically, overall performance of all three model methods used was similar. 

However, there was variation in areas covered be the predictive models. By 

creating an agreement model with all three methods, I was able to focus on 

areas with the highest probability for sage-grouse habitat.
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2) Using sage-grouse habitat as a component of habitat patch connectivity, I 

propose two types of potential species corridors. The first represents the 

potential for a delineated habitat patch to expansion. The expansion potential 

corridor (EPC) is based on predicted habitat and its juxtaposition to currently 

delineated habitat. It is important to consider natural as well as anthropogenic 

driven habitat expansions, contractions or shifts near currently delineated 

habitat for long-term species survival. This expansion potential could be used 

when delineating or re-evaluating areas for sage-grouse conservation. The 

second corridor is a movement potential corridor (MPC). The movement 

potential corridor identifies potential links, or lack thereof, between delineated 

habitat patches and populations. The MPC can help to better understand 

potential connectivity and genetic flow within and between populations. The 

methods used to create both these corridors could be applied to other species 

and habitats with minor adaptations.

Management and Conservation Implications

The Utah sagebrush model predicted just over 2 million ha of potential sagebrush 

(Chapter 2). However, with the well documented loss of sage-grouse habitat and with 

their current distribution, it can be assumed that much of the existing areas that support 

5% or more sagebrush are not suitable or reachable for sage-grouse. This may be due to 

the sagebrush’s overall cover, health, connectivity or other factors unrelated to the 

sagebrush. Using the juxtaposition of current sage-grouse habitat patches and the 

modeled sagebrush, land managers could assess the surrounding sagebrush for potential 

sage-grouse occupation deterrents, such as anthropogenic features, arthropod diversity,
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undesirable sagebrush understory or others. In some cases, these deterrents could be 

mitigated in order to expand the surrounding potential sage-grouse habitat. For example, 

habitat could be improved by seeding desirable understory plants or removal of 

anthropogenic features where possible. These improvements would be focused on large 

intact sagebrush stands identified by the models in close proximity to habitat patches 

currently in use by sage-grouse. Initial climate models show that some sagebrush stands 

that are currently utilized by sage-grouse are going to be impacted more negatively by 

future climate change than others. One sage-grouse habitat patch that will be more 

influenced by changing climate is the Sheep Rock patch (Chapter 4, Chapter 2). The 

Sheep Rock patch, in every scenario modeled, showed a drastic reduction in the 

sagebrush climate envelope. Even the most conservative climate scenarios predict that in 

that patch there will be almost no suitable climate for sagebrush (and therefore sage- 

grouse) by 2080 (see Chapter 2, Figure 2.7). It is difficult to know what the best practices 

are to reduce the potential impact of climate change. However, in areas with predicted 

higher probability to be outside the current climate envelope for sagebrush, more 

preventative management could be implemented. For example, anthropogenic impacts 

could be reduced, fire prevention could be prioritized and other factors that would further 

put pressure on the sagebrush communities in these areas could be minimized. The total 

vegetation cover model (Chapter 3) could be used in conjunction with the potential 

sagebrush model to better understand the heterogeneity of the vegetation cover within 

predicted sagebrush stands. By tracking the total vegetation cover in sage-grouse habitat 

(or other sagebrush obligates) land managers may be able to detect changes in the health 

and vegetation type over a large area with minimal cost. These changes may be used for



early detection of sagebrush degradation. For example, in more xeric sagebrush stands, 

where cheat grass (Bromus tectorum L.) and other invasive species are known to invade 

the interspaces, modeled rapid increases in total vegetation cover may be used as an early 

warning sign for reduced sage-grouse habitat potential of those sites. Within the nearly 2 

million ha of potential sagebrush, the sage-grouse model (SM2, Chapter 4) only predicted 

roughly 162 thousand ha (less than 1%) as potential sage-grouse habitat in Utah. By 

narrowing the areas of potential habitat land managers can focus the limited funds and 

personnel on areas with the highest potential for habitat. When assessing where to invest 

money for habitat improvement and maintenance, it is important to be able to see the 

connectivity of the site to be improved, even if the treatment is small. For example, if 

there were only sufficient funds to improve or protect one habitat patch in a fiscal year, 

and there were multiple patches proposed for treatment, the models could be used to 

identify, at the landscape scale, patches that have more influence on the overall 

connectivity to the population. The modeled corridors could also be used or altered to 

identify areas within sage-grouse habitat that may be converting to future barriers for 

genetic flow. For example, habitat areas that have woodland encroachment on the 

upslope and private agriculture encroachment on the downslope could be identified with 

the predictive models. Early prevention plans could be implemented. These plans could 

include tree removal on the upslope and or agreements with the private land owners to 

maintain suitable habitat (easement) on the downslope. If no proactive measures were 

possible at the time, higher priority could be given to the existing habitat based on 

potential connectivity loss.

The work presented here focused on sage-grouse and their habitats at a landscape
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scale. However, the methods used and the theories applied are universal in their 

application to a variety of species at multiple scales. As improvements are made in 

modeling techniques, remote sensing platforms and data sharing continues, so will our 

ability to improve these models and apply them across more areas. Additionally, ground 

data for sagebrush will be explored for more spatial and temporal coverage. Furthermore, 

a management focused tool with a simple interface could be developed, that would create 

the desired habitat and corridor models presented here.

Future Research

After reviewing the current literature and discussions with land managers and 

conservation groups, I feel the most pressing future work for sage-grouse conservation 

(outside of habitat conservation itself) is to better understand the impacts of future 

climate changes. In the face of hotter and drier climate conditions, many of the known 

sage-grouse habitat stressors will be exacerbated. My future work will focus on 

improving climate change predictions for sagebrush by averaging more global climate 

models and exploring ways to reduce potential error of future predictions. I will seek to 

better understand and communicate the drivers of uncertainty and variability in future 

climate predictions for variables such as temperatures and precipitation. I will look to 

advancing our ability to incorporate more biological interactions and species vitality 

metrics (e.g., nest success) to more fully capture a species niche. If ecological niche 

models can be advanced to more reliably predict potential climate change impacts to 

current habitat patches, they will greatly improve how we manage and study species at 

the landscape scale.



145

References

Braun, C.E., Connelly, J.W., & Schroeder, M.A. (2005). Seasonal habitat requirements 
for sage-grouse: spring, summer, fall, and winter. USDA Forest Service 
Proceedings RMRS-P-38, 38-42.

Connelly, J.W., Schroeder, M.A., Sands, A.R., & Braun, C.E. (2000). Guidelines to
manage sage grouse populations and their habitats. Wildlife Society Bulletin, 28, 
967-985.

Connelly, J.W., E.T. Rinkes, & C.E. Braun. (2011). Characteristics of greater sage-grouse 
habitats: a landscape species at micro- and macro scales. Pp. 69-83 in S.T. Knick 
and J.W. Connelly. Greater sage-grouse: ecology and conservation of a landscape 
species and its habitat. Studies in Avian Biology 38. University of California 
Press, Berkeley, CA.

Leu, M., Hanser, S.E., & Knick, S.T. (2008). The human footprint in the west: a large- 
scale analysis of anthropogenic impacts. Ecological Applications, 18, 1119-1139.

Schroeder, M.A., Cameron, L.A., Apa, A.D., Bohne, J.R., Braun, C.E., Bunnell, S.D., 
Connelly, J.W., Deibert, P.A., Gardner, S.C., Hilliard, M.A., Kobriger, G.D., 
McAdam, S.M., Clinton, W.M., McCarthy, J.J., Mitchell, L., Rickerson, E.V., & 
Stiver, S.J. (2004). Distribution of sage-grouse in North America. The Condor, 
106, 363-376.


