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ABSTRACT

Strontium isotope ratio (87Sr/86Sr) has a strong potential to complement 

atmospherically-derived traditional stable isotopes in geochemical provenance studies 

because strontium (Sr) in Earth surface reservoirs is sourced from local bedrock. As such, 

87Sr/86Sr variations are discrete and differ drastically from the large scale smoothed 

variations of atmospherically-derived stable isotopes. Among the most successful recent 

applications, 87Sr/86Sr has been used to interpret provenance of individuals in archeology, 

to identify the origin of dust aerosols, to reconstruct cation source and mobility in rivers, 

and to reconstruct animal or material movement pathways. However, extending the 

applications of 87Sr/86Sr for provenance to larger spatial scales is currently hampered by 

the absence of methods to predict the 87Sr/86Sr of Sr sources at the regional scale. In this 

dissertation, a flexible geostatistical framework is established to predict 87Sr/86Sr 

distributions in bedrock, river water and soil water at regional scale. This approach 

leverages publically-available geospatial data on rock geochemistry, surficial and 

bedrock geology, climate, hydrology, and aerosols to model the input and propagation of 

Sr from multiple geological sources through hydrosystems and ecosystems. In a first step, 

we develop predictive models for 87Sr/86Sr in bedrock as a function of variations in rock 

age and rock type. In a second step, we model the Sr release from different rock units, its 

transport as dissolved Sr or in aerosols, and its accumulation and mixing in ecosystems. 

The model was tested for the contiguous USA and circum-Caribbean region and the



model showed promising results but the predictive power remained too low for routine 

provenance interpretations. In a final step, we develop a flexible geochemical framework 

that explicitly accounts for prediction uncertainty and local variability of 87Sr/ 86Sr and 

includes a Sr-specific process-based chemical weathering model. This improved model 

version is applied to predict 87Sr/86Sr in bedrock and rivers over Alaska and explain 82% 

of 87Sr/ 86Sr variance in Alaska Rivers. Integrated into a multi-isotopes framework, 87Sr/ 

86Sr could dramatically improve the spatial resolution of provenance assignments. 

Predictive 87Sr/86Sr models are also a powerful standalone tool to visualize, identify and 

model mechanistic processes influencing local to global 87Sr/86Sr in Earth surface 

reservoirs.
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CHAPTER I

INTRODUCTION



Isotope geochemistry in provenance studies 

In a globalized world, where movements of materials and individuals are 

accelerating and where consumers are increasingly concerned about product quality and 

provenance, tracing the origin of natural materials and human products is of great 

relevance. A growing number of international and/or local legislative initiatives in a 

variety of domains have helped to improve the traceability of human and natural products 

(e.g., food, endangered species) by introducing programs and labels to track provenance 

(e.g., United States “Country of Origin Labeling for Food Products”). The proliferation of 

those labels in recent years has increased the demand for new techniques able to resolve 

provenance at different spatial scales. Stable isotopes have gained considerable interest as 

a tool for provenance studies and have been successfully applied in a variety of fields to 

determine product authenticity for regulating trade practices (Kelly et al., 2005), to track 

the travel histories of individuals in criminal and/or archeological cases (Bentley, 2006), 

and to follow migration pathways of endangered and exploited animal populations 

(Hobson et al., 2010). The application of stable isotope geochemistry for resolving 

provenance relies on comparing the isotopic signature of a sample of unknown origin to 

that of baseline maps characterizing the isotopic signature of the potential isotope 

source(s) of the sample. Consequently, the application of stable isotopes as a tool of 

provenance requires mature and cost-effective analytical capabilities to analyze stable 

isotope ratio in the sample of interest, as well as mechanistic models able to predict the 

isotopic signatures of elemental sources at varied spatiotemporal scales.

Oxygen (O) and hydrogen (H) isotope ratios are the most commonly applied 

isotope systems to resolve provenance in terrestrial environments (Bowen, 2010b). The
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main advantages of applying O and H isotope ratios for provenance studies is that H and 

O stable isotope ratio analyses are precise, rapid and cost-effective and that the processes 

controlling the spatial isotopic variations of H and O on the Earth’s surface are well- 

understood and can be used to develop accurate predictive models (Bowen, 2010b). The 

spatial variability of O and H isotope ratios in reservoirs of the Earth surface originates 

primarily from isotopic fractionation in biogeochemical processes as water cycles 

through different reservoirs (Bowen, 2010b). Isotopic fractionation imparts a unique 

spatiotemporal “isotopic label” or fingerprint to a given reservoir and/or material, and 

this unique fingerprint coupled with predictive models of isotope variations can be used 

to model the probability of geographic origin (Wunder, 2010). Decades of work have led 

to the development of models to predict the O and H isotope ratio variations in ocean 

water (LeGrande and Schmidt, 2006), rainfall (Bowen, 2010a), surface water (Bowen et 

al., 2011), tap water (Bowen et al., 2007) or animal tissues (West et al., 2007). Maps 

derived from those predictive models are widely distributed (Bowen et al., 2014) and 

routinely integrated to interpret provenance in fields as varied as forensics, archeology, 

atmospheric sciences, ecology, and paleoclimate. However, one fundamental limitation in 

applying O and H isotope in provenance studies is the generally broad scale of O and H 

isotope ratio variations. H and O isotope variations are primarily controlled by large scale 

(10 to 100 km) atmospheric processes that produce a continuous gradient in isotope 

variations and make geographic assignment nonunique (Bowen, 2010a; Farmer et al., 

2008).

3



Strontium isotope geochemistry for provenance studies 

Strontium isotope ratio (87Sr/86Sr) constitutes an alternative and complementary 

tool to enhance the spatial resolution for provenance studies because strontium (Sr) in 

soils, waters, plants, and animals is sourced primarily from local bedrock. As such, 

87Sr/86Sr patterns follow discrete variations of geological regimes with relatively constant 

87Sr/86Sr within geological units of known age and lithology (Capo et al., 1998). This 

discrete patterning is superimposed by 87Sr/86Sr variability associated with local and 

regional geological processes. Local 87Sr/86Sr heterogeneity originates from variations in 

petrology, sedimentary provenance, bulk composition, or postburial alteration processes, 

whereas larger-scale 87Sr/86Sr heterogeneity are a function of regional tectonic or 

sedimentary basin processes. This multiscale and discrete patterning of 87Sr/86Sr 

variability is drastically different from the continuous patterns of O and H isotopes, 

providing complementary information to those isotopes for resolving provenance at 

multiple scales. Another critical advantage of the Sr isotope systems in comparison with 

traditional stable isotopes used in geoprofiling studies is that interpretation of 87Sr/86Sr 

variations are not complicated by isotopic fractionation (Capo et al., 1998). Small mass- 

dependent isotopic fractionation of Sr isotopes can occur in geologic and biological 

processes, but this isotopic fractionation is corrected for during mass spectrometric 

measurement by normalization of the nonradiogenic isotopes to known values (Capo et 

al., 1998). As a result, the measured 87Sr/86Sr reflects only variations in the amount of 

radiogenic 87Sr present in the sample, which ultimately is a function of its Sr source. Sr 

has also a long residence time in most reservoirs, which, combined with the absence of 

isotopic fractionation, leads to relatively constant 87Sr/86Sr signatures in bedrock and soils

4



at human timescales. These properties make 87Sr/86Sr a conservative tracer in Earth 

surface reservoirs, thus greatly simplifying interpretation of 87Sr/86Sr data.

5

Sr isotope systematic s 

Sr (atomic number 38) is a divalent alkaline Earth trace element which can 

substitute for Ca in Ca-bearing minerals such as plagioclase feldspar, apatite, sulfates 

(gypsum and anhydrite), and carbonates. Sr is one of the most abundant trace elements 

and is ubiquitous on the Earth’s surface, making isotopic analysis relatively easy in 

comparison with other radiogenic isotopes. Sr has four naturally occurring stable isotopes 

84Sr (0.56%), 86Sr (9.87%), 87Sr (7.04%) and 88Sr (82.53%) with 87Sr originating from the 

P-decay of rubidium 87 (87Rb) (decay constant ^=1.42*10-11 year-1) (Faure, 1977). 87Sr 

(daughter of 87Rb) is not concentrated in the same rock types as the other stable Sr 

isotopes because rubidium (Rb; atomic number 37) is an alkali metal and substitutes for 

K in K-bearing minerals such as muscovite, biotite, alkali feldspars (orthoclase and 

microcline), clays (illite) and evaporites (sylvite, carnallite). As a result, the present day 

quantity of 87Sr normalized to the naturally occurring and invariant 86Sr (87Sr/86Sr) in a 

given rock can be expressed using the radiogenic production equation as:

^ 7S r ^

86 Sr
V  J  r o c k

87Sr

V 86sr  j ,

+
^ 87 Rb^

86 Sr
V  J  r o c k

(eM - 1) (11)

where 87Sr/86Sr variations in rocks ( f 7S r / 6Sr)rock) are a function of: 1) the initial 87Sr/86Sr 

( f 7Sr/i6Sr)l)  which depends on the geological history of the parent rock, 2) bedrock age 

(t) which controls the fraction of 87Rb that decayed into 87Sr, and 3) the 87Rb/86Sr of the



rock ((87R b /6Sr)rock) which varies with lithology because of the specific affinity of Rb 

and Sr with different minerals. This radiogenic equation is the basis for the rubidium- 

strontium dating method, used to determine the time of crystallization of igneous rocks 

such as granites (Faure, 1977).

87Rb/86Sr is directly proportional to the Rb/Sr and can be expressed as:

87Rb Rb(w87Rb)(mSr) ^  Rb , ( 1.2)
86Sr Sr(w*6Sr)(mRb) ~ ' Sr

where m to refers to the atomic mass of an element and w to the abundance (%) of an 

isotope.

Strontium cycle

Sr is a relatively lithophilic element and has become increasingly concentrated on 

the more surficial layers of the Earth (Mantle and Crust) as geochemical differentiation 

processes (e.g., fractional crystallization) occurred during Earth’s history. Sr is 

particularly concentrated in Ca-rich rock types such as carbonates, evaporites or 

intermediate igneous rock and is relatively less concentrated in felsic igneous rocks and 

siliciclastic sediments. Bedrock is the principal source of Sr to the Earth surface and Sr is 

exported from rocks to other reservoirs through erosion, weathering, and biological 

uptake (Capo et al., 1998). Erosion and weathering of bedrock and soils transfer Sr to the 

hydrosphere and the atmosphere in dissolved form or bounded to other particules (Capo 

et al., 1998). During the cycling of Sr on the Earth surface, part of this Sr is uptaken by 

the biosphere and is concentrated in certain Ca-rich biological tissues (e.g., bones).

6



7

Ultimately, Sr is transported to the ocean where it is deposited in carbonates on the ocean 

floor and recycled back into the Earth’s interior through subduction (Capo et al., 1998).

87Sr/86Sr variations in the Earth throughout geological time 

All rock reservoirs inherited an identical initial 87Sr/86Sr signature (0.699) from 

the well-mixed primordial Earth (Wetherill et al., 1973). 87Sr/86Sr evolution of distinct 

geological reservoirs was induced by geochemical differentiation associated with 

fractional crystallization and the formation of different Earth layers and rock reservoirs 

(Faure, 1977). As geochemical differentiation progressed, Sr and even more so, Rb, 

concentrated into melts, resulting in high Rb/Sr ratios in the continental crust and its 

progressive diminution in the residual mantle (Faure, 1977). The 87Sr/86Sr of the bulk 

Earth increased as 87Rb decayed into 87Sr and this increase was enhanced in the crust as 

87Rb became concentrated by recycling. As new rock reservoirs were formed from crustal 

or mantle precursors, they inherited the 87Sr/86Sr of their parent, but in most cases 

fractional crystallization led to dissimilar Rb/Sr, causing their 87Sr/86Sr to evolve along a 

different Rb/Sr slope than the parent material. Rocks with higher (lower) Rb/Sr than their 

parent evolved along a steeper (flatter) slope. The 87Sr/86Sr signatures of the parent and 

new rock reservoirs further diverged as time progressed because of the different 87Rb

87 86content of each reservoir. At equal Rb/Sr ratio, older rocks have higher Sr/ Sr than 

younger rocks because 87Rb had more time to decay in the older reservoir. At equal age,

87 86 87rock with higher Rb/Sr have higher Sr/ Sr than rock with low Rb/Sr because more Rb

87is available to decay into Sr. Combined effects of age and lithology explain the current

87 86 87 86first-order patterns of Sr/ Sr on the Earth surface, with high Sr/ Sr in regions



dominated with old felsic rocks (e.g., cratonic shields) and low 87Sr/86Sr in newly formed 

mafic terranes (e.g., Alaska volcanic terranes).

Application of 87Sr/86Sr in low temperature geochemistry 

For decades, scientists have taken advantage of the well-documented 87Sr/86Sr 

variations in seawater to constrain the age of marine sediments (McArthur et al., 2001). 

The method relies on the assumption that 87Sr/86Sr of seawater depends primarily on the 

87Sr/86Sr of the crust being altered at a given time period. 87Sr/86Sr analyses of marine 

carbonates from different time periods have helped to reconstruct a fairly complete, high 

resolution record of 87Sr/86Sr variation in seawater throughout Earth’s history (Halverson 

et al., 2007; Shields and Veizer, 2002; Veizer, 1989). The 87Sr/86Sr signature in seawater 

displays a progressive increase with time associated with the increased felsic nature of 

the recycled crust. This background increase is overprinted by multimillion year time 

scale variations coinciding with different tectonic events, climate modes and 

supercontinent cycle stages (Veizer et al., 1999). The result is that the 87Sr/86Sr value and

87 86the pattern of Sr/ Sr variations of a given time period are relatively diagnostic (little 

redundancy in 87Sr/86Sr values through time). Moreover, all carbonates deposited at a 

given time period have a similar 87Sr/86Sr signature (Veizer, 1989) because of the long 

residence time of Sr in seawater (Vollstaedt et al., 2014). Combined, those characteristics 

can be used for chronostratigraphy by correlating the 87Sr/86Sr of marine sediments of 

unknown age with the well-documented and time-constrained 87Sr/86Sr marine curve 

(McArthur et al., 2001).

87 86 87 86Another common application of Sr/ Sr is based on interpreting Sr/ Sr

8



variations in seawater as a tool to reconstruct the tectonic history of the Earth’s surface 

(Veizer et al., 1999). Volumes of literature have been published to estimate the current Sr 

isotope budget and interpret 87Sr/86Sr shifts and trends in seawater throughout Earth 

history. The modern Sr isotope budget in the ocean depends primarily on changes in the 

magnitude and 87Sr/86Sr signature of a continental radiogenic flux of Sr from runoff and 

groundwater and a nonradiogenic ocean Sr fluxes from crust-seawater interactions 

(Veizer et al., 1999). The most recent estimates of those fluxes indicate that the 

radiogenic continental flux represents 59% of the total Sr flux -  43% of which originates 

from siliciclastic sediments (0.721) and 57% from carbonates (0.708) -  whereas the 

nonradiogenic mafic flux represents 41% of the Sr flux -  27% of which are from oceanic 

crust seawater interactions (0.703) and 73% from volcanic arcs (0.7035) (Allegre et al.,

2010). Based on those estimates, periods when 87Sr/86Sr in seawater are high are thought 

to represent time when continental weathering rates or 87Sr/86Sr signatures of the 

continental rocks were high. High continental weathering rates coincide with periods of 

orogenesis (Peters and Gaines, 2012; Raymo et al., 1988), periods of equatorial 

positioning of plate tectonics (Godderis et al., 2014) or periods of climate shifts from 

greenhouse to icehouse (Zachos et al., 1999). High 87Sr/86Sr signatures of the continental 

surface occur during periods of intense crustal recycling during collisional orogenesis

87 86(Condie and Aster, 2013). Periods when Sr/ Sr in seawater is low are thought to reflect 

periods of formation of nonradiogenic continental crust (Condie and Aster, 2013), 

increase in seafloor spreading rates (Graham et al., 1982) or occurrence of massive 

continental floodbasalt and continental arcs (Allegre et al., 2010; Das and Krishnaswami, 

2007).

9



In the last decades, applications of 87Sr/86Sr for provenance of organic and 

nonorganic materials have been rapidly extending, at least in part due to the development 

of high performance laser ablation multicollector inductively coupled plasma mass 

spectrometry, which allows rapid and high precision analysis and requires very small 

amounts of sample. Those technological advances have opened the door to new 

applications for Sr isotope geochemistry, including: 1) reconstructing the migration 

pathways of mammals (Koch et al., 1995), birds (Sellick et al., 2009), fresh water, 

anadromous fishes (Barnett-Johnson et al., 2008; Kennedy et al., 2005; Walther et al.,

2011) and paleofauna (Britton et al., 2011; Hoppe et al., 1999; Price et al., 2002), 2) 

determining feeding habits of ancient humans (Copeland et al., 2011) and animals 

(Feranec et al., 2007; Radloff et al., 2010), 3) distinguishing region of origin of 

agricultural or natural products such as rice (Kawasaki et al., 2002), wine (Marchionni et 

al., 2013), water (Voerkelius et al., 2010), milk (Crittenden et al., 2007) or illegal drugs 

(West et al., 2009), 4) identifying nonlocal individuals in archeology and forensic cases 

(Bentley, 2006; Price et al., 2002; Schroeder et al., 2009), 5) determining the geographic 

source of dust aerosols (Grousset and Biscaye, 2005; Kurtz et al., 2001), 6) 

reconstructing silicate and carbonate weathering patterns in watersheds (Blum et al.,

1998; Gaillardet et al., 1997; Horton et al., 1999; Huh and Edmond, 1999; Huh et al., 

1998a; Huh et al., 1998b; Millot et al., 2002; Millot et al., 2003; Pretti and Stewart, 2002; 

Probst et al., 2000; Rad et al., 2007), 7) identifying seasonal variations in sources of 

elements to river (Douglas et al., 2013; Nakano and Tanaka, 1997; Voss et al., 2014) and, 

8) distinguishing element sources to soils and ecosystems (Bern et al., 2005; Chadwick et 

al., 2009; Pett-Ridge et al., 2009). In most of the current applications of Sr isotope

10



geochemistry for determining provenance, the spatial 87Sr/86Sr variations of the Sr 

sources are poorly constrained, particularly when the potential Sr sources cover large 

spatial scales (e.g., water or food sources for animals with large foraging areas). The 

application and interpretation of Sr isotope geochemistry in provenance studies at 

regional spatial scales requires the development of models predicting the 87Sr/86Sr 

signature of Sr sources.

Modeling 87Sr/86Sr variations 

Several approaches have been tested in recent years to develop regional scale 

predictive 87Sr/86Sr maps of potential Sr sources including bedrock (Beard and Johnson, 

2000), river water (Hegg et al., 2013) or bioavailable Sr (Frei and Frei, 2011; Price et al., 

2002). The most common approach used in ecology and archeology is to use 

interpolation to generate a map of 87Sr/86Sr based on analyses of a reference substrate that 

record or approximate the 87Sr/86Sr of the Sr sources. For instance, in archeology, 

interpolated maps representing the 87Sr/86Sr variations of the “bioavailable Sr reservoir” 

have been derived from 87Sr/86Sr analyses of local surface water (Frei and Frei, 2011), 

local flora (Price et al., 2002) or local fauna (Bentley and Knipper, 2005; Hodell et al., 

2004; Laffoon et al., 2012). While this method can give precise 87Sr/86Sr prediction at 

local scale, it is hampered by the challenge of selecting appropriate reference substrates, 

which is nontrivial as different sample materials may integrate different spatial and 

temporal scales of 87Sr/86Sr variation. Ultimately, applying this method at large spatial 

scale is also data intensive and costly, and in most cases traditional interpolation 

algorithms are unable to explicitly consider the discrete patterning of 87Sr/86Sr variations.
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Another approach applied to derive predictive 87Sr/86Sr models consists of 

training a multiple linear regression model (MLRM) using lithology and age as predictor. 

This method has the advantage of partly accounting for processes governing the spatial 

structure of 87Sr/86Sr variations (Hegg et al., 2013). However, the dependence of 87Sr/86Sr 

on a large number of nonindependent predictors (age and multiple lithological classes) 

limits the performance of MLRM and requires a large number of 87Sr/86Sr analyses to 

make the model statistically robust. The MLRM approach appears to function relatively 

well in areas where lithological and geological complexity is low, limiting the number of 

potential predictors. However, the method becomes increasingly uncertain for areas with 

more complex geology where both age and lithology control 87Sr/86Sr variations.

A more promising and complementary approach to developing a unified 

framework to predict 87Sr/86Sr at large spatial scales is to develop process-based spatial 

models. This approach was initiated by Beard and Johnson (2000) who developed a 

model predicting 87Sr/86Sr in bedrock over the conterminous USA. Their method is based 

on the assumption that bedrock age is the primary control of 87Sr/86Sr variations, because 

rock age determines the fraction of 87Rb that has decayed into 87Sr. The predictive power 

of this model was relatively low, explaining roughly 30% of the total variance for both 

bedrock and water (Chesson et al., 2012; Hobson et al., 2010). Despite the poor 

predictive power of this initial model, Beard and Johnson’s (2000) idea of using 

geological maps to predict 87Sr/86Sr was the inspiration for our work and laid the 

foundation for the development of new, more accurate process-based 87Sr/86Sr models.
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Objectives and outline 

In this dissertation, we present a series of modeling activities aimed at 

establishing a basis for process-based predictive GIS modeling of Sr isotopes distribution 

at continental to global scale. The approach leverages publically available geospatial data 

on rock geochemistry, surficial and bedrock geology, climate, hydrology, and aerosols to 

model the input and propagation of Sr from multiple geological sources through 

hydrosystems and ecosystems. In the second chapter, we formulate and calibrate a 

bedrock model which predicts 87Sr/86Sr in bedrock as a function of rock age and 

lithology. This initial bedrock model is coupled to a basic chemical weathering model to 

predict 87Sr/86Sr in soil and river waters. This initial chemical weathering model 

calculates the export of Sr from rock to river water as a function of the difference in 

weathering rates and Sr content of different rock types. The performance of the model is 

tested against rock, water and biological data over the conterminous USA and 

demonstrates encouraging performance. In the third chapter, we build upon our initial 

modeling effort to formulate a bioavailable Sr model which explicitly predicts the 

87Sr/86Sr in biological material and accounts for the mixing of Sr from multiple sources in 

ecosystems. This model is used to predict the 87Sr/86Sr of bioavailable Sr for the circum- 

Caribbean region, and significantly improves the predictive power of our models when 

tested against biological datasets.

In the final chapter, we revisit the bedrock and water models by developing a 

unified flexible geostatistical framework to predict 87Sr/86Sr in Alaska rivers. In this final 

step, we improve the calibration of the bedrock model to predict local scale 87Sr/86Sr 

variability and represent prediction uncertainty. This new bedrock model is coupled to a

13



14

fully independent, Sr-specific chemical weathering model predicting the spatial variations 

in the rate of Sr release from rocks. The model is used to predict Sr and 87Sr/86Sr in rivers

87 86of Alaska and is tested against an independent dataset of Sr/ Sr analyses from streams 

and rivers of Alaska.
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CHAPTER II

MAPPING 87Sr/86Sr VARIATIONS IN BEDROCK AND WATER FOR LARGE

SCALE PROVENANCE STUDIES
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87Sr/86Sr variations in bedrock and water for large scale provenance studies, pp. 39-52. 
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A B  S T R A C T

Although variation in Sr/ Sr has been widely pursued as a tracer of provenance in environmental studies, 
forensics, archeology and food traceability, accurate methods for mapping variations in environmental 87Sr/ 
86Sr at regional scale are not available. In this paper, we build upon earlier efforts to model 87Sr/86Sr in bed­
rock by developing GIS-based models for Sr isotopes in rock and water that include the combined effects of 
lithology and time. Using published data, we fit lithology-specific model parameters for generalized equa­
tions describing the concentration of radiogenic Sr in silicate and carbonate rocks. The new model explained 
more than 50% of the observed variance in measured Sr isotope values from independent global databases of 
igneous, metaigneous, and carbonate rocks, but performed more poorly (explaining 33% of the variance) for 
sedimentary and metasedimentary rocks. In comparison, a previously applied model formulation that did not 
include lithology-specific parameters explained only 20% and 8% of the observed variance for igneous and 
sedimentary rocks, respectively, and exhibited an inverse relationship with measured carbonate rock values. 
Building upon the bedrock model, we also developed and applied equations to predict the contribution of dif­
ferent rock types to 87Sr/8SSr variations in water as a function of their weathering rates and strontium con­
tent. The resulting water model was compared to data from 68 catchments and shown to give more 
accurate predictions of stream water 87Sr/86Sr (R2 =  0.70) than models that did not include lithological 
weathering parameters. We applied these models to produce maps (“isoscapes”) predicting 87Sr/86Sr in bed­
rock and water across the contiguous USA, and compared the mapped Sr isotope distributions to data on Sr 
isotope ratios of US marij'uana crops. Although the maps produced here are demonstrably imperfect and 
leave significant scope for further refinement, they provide an enhanced framework for lithology-based Sr 
isotope modeling and offer a baseline for provenance studies by constraining the 87Sr/86Sr in strontium 
sources at regional scales.

© 2012 Elsevier B.V. All rights reserved.

1. In tro d u c tio n

Strontium isotope ratio measurements (87Sr/86Sr) have been ap­
plied in a wide variety of geoscience studies including chronostatigra- 
phy of marine sediments (Veizer et aL, 1999), petrology of igneous 
rocks (DePaolo, 1981), cation provenance and mobility (Chaudhuri 
and Clauer, 1993; Miller et al., 1993; Grousset and Biscaye, 2005; 
Chadwick et al., 2009), and quantitative models of chemical weather­
ing (Clow et aL, 1997; Horton et al, 1999), More recently the use of 
87Sr/86Sr has been extended to a wide range of new applications in 
hydrology (Hogan et al., 2000), forensics (Beard and Johnson, 2000; 
West et aL, 2009), archeology (Hodell et al., 2004; Bentley et al., 
2008), ecology (Koch et al.t 1995; Chamberlain et al., 1997; Hoppe 
et al., 1999; Barnett-Johnson et al., 2008) and food traceability 
(Kelly et al., 2005; Crittenden et al., 2007; Voerkelius et al, 2010). 
These applications are based on the principle that 87Sr/86Sr of natural 
materials reflects the sources of strontium (Sr) available during their
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formation (Dasch, 1969). For instance, in studies of animal prove­
nance, the 87Sr/86Sr of the Sr assimilated in animal tissues reflects 
the different sources of ingested Sr obtained from water and/or food 
(Graustein, 1989). As a consequence, variations in 87Sr/86Sr of these 
tissues can be used to trace migration or changes in diet habits of a 
given organism (Capo et aL, 1998). Interpreting the 87Sr/86Sr signa­
ture for provenance studies requires constraining the 87Sr/86Sr varia­
tions of potential environmental sources of Sr. In this work, we 
attempt to model the spatial variations of 87Sr/86Sr in bedrock and 
water, two important sources of Sr to biological systems.

The use of 87Sr/86Sr as a tracer is of particular interest because un­
like for isotopes of the light elements, biological and instrumental 
mass-dependent fractionations are automatically corrected during 
measurements and thus, the 87Sr/86Sr directly reflects the Sr of the 
source. In addition their wide amplitude of variation on both large 
and small scales, low temporal variability, and relative high abun­
dance for a trace element make Sr isotopes a strong candidate for 
tracing inorganic and organic materials, either independently or in 
conjunction with isotopic data from lighter elements (Graustein and 
Armstrong, 1983; Kawasaki et al., 2002; Bowen et al., 2005; Bowen, 
2010).
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Several different approaches have been taken to map Sr iso topic 
variations at large scale. The fundamental theory underlying Sr iso­
tope variation in geological material was summarized by Faure 
(1977), who proposed two equations describing the evolution of 87 
Sr/&6Sr in mantle and crustal rocks that remain the basis for 
modeling 87Sr/86Sr in bedrock. Although several efforts were made 
to map 87Sr/86Sr available to ecosystems over local to regional scales 
based on field measurements in water, soils and organisms (Price et 
al, 1994; Ezzo et al., 1997; Hodell et al., 2004; Bentley and Knipper, 
2005), Beard and Johnson (2000) made the first attempt to 
model 87Sr/86Sr variations in bedrock over large spatial scales. In 
their work, Beard and Johnson simplified Faure’s theory by consider­
ing rock age to be the only determinant of 87Sr/86Sr variations and 
mapped the 87Sr/86Sr in the USA based on rock unit ages reported in a dig­
ital geological map. Their study suggested strongly patterned 87Sr/86Sr 
variations at continental scales but did not include systematic verification 
from field measurements. Nor did the authors advocate the use of their 
‘fist-pass1 model for quantitative prediction of Sr isotope ratios. Because 
bedrock weathering is the ultimate source of Sr to biological systems, 
however, these authors proposed that with improved understanding 
the modeled patterns could be used to interpret the geographic origin 
of biological materials.

Although bedrock Sr is the ultimate source of Sr to Earth surface 
systems, its isotopic composition can differ substantially from that 
of soils, surface water and organisms due to factors such as variation 
in weathering rates for different minerals or inputs from other 
sources such as atmospheric aerosols (Capo et al., 1998; Stewart 
et al., 1998; Bentley, 2006; Chadwick et al., 2009). For constraining 
the isotopic variations in source of Sr for provenance studies it is 
most appropriate to model the “biologically available Sr" as an ap­
proximation of the Sr actually assimilated by organisms (Sillen 
et aL, 1998; Price et alM 2002; Hodell et al., 2004; Frei and Frei, 
2011). In this regard, a theoretical steady state and time dependent 
model predicting 87Sr/86Sr evolution in “biologically available Sr” 
has been developed (Stewart et al., 1998). This model details the po­
tential factors and sources causing transfers of Sr from soil to water 
and from water to ecosystems, but its applicability remains limited 
at regional scale because of the large number of variables to be con­
strained. Furthermore, this model relies on empirical measurements 
to obtain the &7Sr/86Sr variations in bedrock (Stewart et al., 1998).

An alternative approach to mapping spatial Sr isotope variation 
has been proposed by the TRACE project, which developed an empir­
ical model for predicting 87Sr/86Sr in groundwater based on the mea­
surement of 650 different European natural mineral waters 
(Voerkelius et al., 2010). Using this dataset and a geological map of 
Europe, a mean 87Sr/86Sr was calculated for each geological unit un­
derlying sampled waters, and these values were extrapolated to sim­
ilar rock units to develop a comprehensive prediction map for the 
continent. Although this model was shown to reproduce the large 
scale patterns of 87Sr/86Sr variations in biological materials, it re­
quires iterative subjective analysis of regional geological and Sr iso­
tope data and as a result is not immediately generalizable to other 
regions. Furthermore, the prediction accuracy of this approach is 
highly dependent on the density of sampling, and improving the res­
olution or extending the spatial coverage will require expensive field 
campaigns.

These previous efforts illustrate the difficulties of mapping 87Sr/ 
86Sr variation at different scales in different sources. In this paper, 
we focus on developing scalable spatial 87Sr/86Sr predictions for bed­
rock and water. We build upon the effort of Beard and Johnson to map 
87Sr/86Sr in bedrock and we developed a simplified model of Sr cy­
cling (Stewart et al., 1998) to extend 87Sr/86Sr prediction to water 
and ecosystems. We validate the models by using existing 87Sr/86Sr 
measurements. The resulting models provide baseline predictions 
for rock and water 87Sr/86Sr across the contiguous USA, and can be 
used over a range of spatial resolutions depending on the application

of interest. Although these models are demonstrably imperfect and 
incomplete and their predictive power limited with respect to that 
desired in many potential applications, this work represents an im­
portant step towards developing systematic spatial predictions for 
Sr isotopes with wide geochemical applications.

2. B ed ro ck  m o d e ls

Model derivation, calibration, and validation are described in the 
following sections. Additional details and documentation are avail­
able in the accompanying Supplementary material.

2.1. Silicate model theory

87Sr production in rocks results from the radioactive decay of 87Rb, 
which decays to 87Sr with a half-life of 49 billion years. In a closed 
system, the ratio of radiogenic 87Sr to the stable isotope 86Sr in 
rocks slowly increases with time (t) as a function of the rock’s Rb/Sr 
ratio:

Sr mST = (i)

where X is the decay constant of the parent isotope 
(1.42* 10“ 11 yr_1) and (87Sr/86Sr)j is the initial 87Sr/86Sr (Faure, 
1977). Rb/Sr varies between different layers and different rocks be­
cause geochemical processes fractionate Rb and Sr due to the specific 
affinity of each element for different minerals (Carlson, 2003). Rb 
substitutes better for potassium (K) and Sr for calcium (Ca) in min­
erals, and Rb/Sr tends to be high in felsic and K-bearing sedimentary 
rocks and low in mafic and carbonate rocks (Rudnick, 2003). The dis­
similar affinities of Rb and Sr cause Rb/Sr to vary at large scales be­
tween the mantle and the crust and at small scales between 
different rocks and minerals (Rudnick, 2003).

Our model attempts to trace the evolution of 87Sr/86Sr values in 
silicate rocks from the time of Earth's formation to present (Fig. 1). 
We consider that the geological history of each rock started 4.5 billion 
years ago in a chemically homogeneous Earth. At that time, the Rb 
and Sr present in the earth were well-mixed and the 87Sr/86Sr is esti­
mated to have been 0.699 based on measurements of chondrites 
(Wasserbu et al., 1969). Prior to crustal differentiation, the 87Sr/86Sr 
evolved slowly but homogeneously in the bulk earth. Following dif­
ferentiation, different crustal layers inherited a higher Rb/Sr than 
the mantle due to the higher affinity of Rb for crustal minerals. Conse­
quently, as the crust evolved, its 87Sr/86Sr deviated from the residual 
mantle value (Faure, 1977). As new rocks were formed from crustal
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Fig. 1. Three-stage model for the evolution of S7Sr/86Sr in Earth materials through 
geological time. S7Sr accumulates in all pools due to 37Rb decay, with the rate 
depending of the Rb/Sr of each lithology. Gran it e l and Granite 2 are examples of 
rock formation occurring at different time during earth history. Modified from Ency­
clopedia of Geochemistry (2000) and Capo et al. (199S).
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or mantle precursors, they inherited the (87Sr/86Sr)j of their parent, 
but in most cases had different Rb/Sr, causing their 87Sr/86Sr to evolve 
along a different Rb/Sr slope than the parent material. Rocks with 
higher (lower) Rb/Sr than their parent evolved along a steeper (flatter) 
slope.

Because Rb and Sr are fractionated differently in geological pro­
cesses, the Rb/Sr of a rock can be modified during tectonic, metamor- 
phic or sedimentary transformations, thus modifying the (87Sr/86Sr)i 
or the slope of evolution of 87Sr/86Sr. For example, (87Sr/86Sr) and 
Rb/Sr values for the Idaho batholiths have been shown to vary largely 
along a 700 m transect depending on what host rock the batholith in­
truded (King et al., 2007). Since most geological materials in the crust 
have been recycled multiple times throughout earth history, and this 
history of transformations is usually incompletely documented in 
geological map data, the comprehensive history of 87Sr/86Sr evolution 
is difficult to reconstruct.

In our model, we make the simplifying assumption that the mod­
ern 87Sr/86Sr of silicate rocks can be approximated based on a three 
stage history, where all rocks of a given lithology are assumed to 
have been derived from a common parent material. In each new 
stage, it is assumed that the new rock produced inherits its parent 
material’s mean 87Sr/86Sr, but is differentiated chemically (Rb/Sr) 
from the parent material. First, 87Sr was produced in the chemically 
undifferentiated Earth until an 87Sr/86Sr of 0.701 was reached at 
3 Ga. At 3 Ga (an approximation of the age of crustal differentiation, 
ti) chemical differentiation occurred, and from that time 87Sr/86Sr 
evolved independently in the mantle and multiple crustal rock reser­
voirs. Extant rock units were formed from one of these rock reservoirs 
at times corresponding to their ages (t2) as documented in geological 
map data.

This theoretical framework gives:

...
(2 )

where (Rb/Sr)parent is the Rb/Sr of the parent material, and (Rb/Sr )raci< 
is the Rb/Sr of the modern rock.

2,2. Silicate model calibration

Calculating the 87Sr/86Sr of a rock unit using Eq. (2) requires esti­
mates of the parameters (Rb/Sr)parent and (Rb/Sr)raci< as well as the 
approximate age the rock. Information on rock age is a common fea­
ture of digital geological maps, but estimating the parameters (Rb/ 
Sr)parent and (Rb/Sr)rock for each lithology is not as straight forward. 
We proceeded in two steps by calibrating the silicate model indepen­
dently for each parameter.

In the first calibration step, we assigned values for (Rb/Sr)parent, 
which determines the slope of 87Sr/86Sr evolution during stage 2. 
This parameter depends on the type of parent material (Fig. 1} 
which includes: 1) weathered bedrock for sedimentary material, 2) 
magma for igneous rock, 3) the parent lithology for metamorphic 
rocks. In the absence of information concerning the parent rock, we 
approximated the (Rb/Sr)parerit of sedimentary and metasedimentary 
rocks by assuming that they originate from a uniform source with a 
constant value of 0.24 corresponding to the average Rb/Sr of the 
upper crust (Goldstein and Jacobsen, 1988). To approximate the 
(Rb/Sr)parerit of igneous and metaigneous rocks, we separated these 
lithologies in 5 categories (ultramafic, mafic, intermediate, felsic in­
termediate and felsic) using the International Union of Geological Sci­
ences (IUGS) classification (Le Bas and Streckeisen, 1991). This 
effectively separates igneous rocks between Rb-poor mantle rocks 
and Rb-rich crustal rocks. We used data from the Western North 
American Volcanic and Intrusive Rock Database (www.navdat.org), 
including measurements for ( &7S r / 86S r ) rtx±, a ge  ( t2)  and (R b /S r)rock),

to back-calculate the (Rb/Sr)parent for each of 5765 samples using 
Eq. (2). Finally, we classified these samples according to our 5 categories 
and calculated the average (Rb/Sr)parent for samples in each category 
(see Supplementary Table 1).

In the second calibration step, we assigned values to the parame­
ter (Rb/Sr)rock by estimating the average Rb/Sr for 180 silicate rock 
unit types appearing in the United States Geological Survey state- 
level geological map geodatabases (Geological Survey (U.S). State 
Geologic Map Compilation, 2005). For each of these rock unit types, 
we calculated the average (Rb/Sr) from identical or analogous lithol­
ogies in the USGS geochemical database (Geological Survey (U.S.) The 
National Geochemical Survey, 2004). We used this database because 
it included a large number of Rb and Sr measurements (252,661 mea­
surements) covering 167 of the 180 lithologies selected. The 13 
remaining lithologies were assigned (Rb/Sr)TOCk by comparison with 
other analogous rocks (see Supplementary Table 1).

2,3. Carbonate model calibration

We modeled carbonate rocks separately because their ( 87Sr/86Sr)j 
is not dependent on decay, but is a function of the variations of 87Sr/ 
86Sr in seawater:

^ S r \ (^Sr  
86Sr , \ 86Sr. /  rock \

I )  (
3 r /  rock '

(3 )

We apply the carbonate model to 10 lithologies from the USGS 
state-level geological map geodatabase (Supplementary material 
Table 1). Values of (87Sr/86Sr)seawater were estimated for each rock 
age (Supplementary Table 2) using 87Sr/86S rseawater curves from the 
Precambrian Marine Carbonate Isotope Database (PMCI) (Shields 
and Veizer, 2002; see Supplementary Table 3). The estimation of 
(Rb/Sr),-ock values for each carbonate lithology was conducted as de­
scribed for silicates in Section 2.2 (see Supplementary Table 1).

2.4 Model validation

We conducted separate validation exercises for igneous and sedi­
mentary rocks because of the difference in calibration methods for 
(Rb/Sr)parent described in Section 2.2. We expect a lower accuracy of 
the silicate model for sedimentary rock due to the absence of infor­
mation concerning the parent rock for this type of rock. We used 
9130 igneous rock and 207 sedimentary rock data from the global 
GEOROC database (Lehnert et al., 2000). The parameterized silicate 
model was applied to independently predict the 87Sr/86Sr of samples 
represented in these databases using the parameter values from Sup­
plementary Table 1 associated with the database-specified lithology, 
and the predicted and observed values were compared. Data from 
121 samples (1.3% of the samples) were removed from the igneous 
rock validation dataset Among these samples, 78 (0.85% of all sam­
ples) were old felsic rocks (granites or rhyolites) displaying excep­
tionally high 87Sr/86Sr ranging from 0.850 to 4. These samples are 
also characterized by unusually high Rb/Sr ranging from 744 to 30. 
We recognize as a limitation of the current version of our model 
that it cannot accurately account for such highly radiogenic samples. 
The remaining 43 samples (0.47% of all samples) corresponded to 
rocks displaying 87Sr/86Sr values that are highly atypical for their lith­
ological classification: e.g., 6 basalts were removed because their 87Sr/ 
86Sr was higher than 0.730. In these cases we suspect that the data­
base classifications provided an inaccurate or incomplete description 
of the sample lithology.

We validated the carbonate model by comparing model predic­
tions with 246 published data from the PMCI (Shields and Veizer, 
2002) and the GEOROC database (Lehnert et al., 2000). Although 
this comparison does not represent a completely independent valida­
tion of the model since some of the validation data were used in

http://www.navdat.org
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reconstructing the paleo-seawater Sr isotope curves, it allows us to 
provide a first order assessment of model performance.

Although the validation data used here provide a broad repre­
sentation of lithologies and ages they are not comprehensive, and 
thus limit our ability to validate the model, in that: 1} analyses 
gathered in these databases are biased toward rocks from active 
tectonic and volcanic areas, 2) 87Sr/86Sr values for continental sed­
imentary samples are under-represented in comparison with igne­
ous rocks, and 3} Mesozoic and Cenozoic rocks represent more 
than 80% of the samples in the database. Additional inaccuracies 
in our parameterization and validation could result from a lack of 
control on the degree of alteration of database samples, which 
could lead to: 1) overestimation of Rb/Sr values because Sr is pref­
erentially removed during weathering (Dasch, 1969), or 2) under­
estimation of S7Sr/86Sr values because rock preferentially lose Sr 
from their low 87Sr/86Sr mineral phases during weathering (e.g. 
Bullen et al., 1996).

2.5. Mapping bedrock 87Sr/86Sr

Using the above equations, we calculated Sr isotope ratios 
for 319,824 mapped geological units represented in the United States 
Geological Survey state-level geological map geodatabases (Geological 
Survey (U.S). State Geologic Map Compilation, 2005). Although these 
maps present some challenges (see Supplementary methods and 
http ://pubs.usgs.gov/of/2005/l 325/documents/CONUSdocumentation. 
pdf), they are unique in providing internally consistent, high resolution 
age and lithological information for the contiguous USA

The 48 state lithological maps of the conterminous USA were 
downloaded in shape file format. Using ArcGIS, we merged the indi­
vidual maps into a single shape file to obtain a geodatabase with 
three attributes relevant to our work:

• Unit_age: the text descriptor of the maximum age of the unit, and
• Rocktypel, and Rocktype2: the major and minor lithology descriptors.

We used these fields to join the map unit table with a set of tables 
containing the parameter values used in Eqs. (2) and (3):

• The table “Age" (Supplementary Table 2) listed each unique geolog­
ic time descriptor found in the map units table and related the attri­
bute MAXAGE with a numeric age estimated from the USGS 
geological time scale (Geological Survey (U.S.). Geologic Names 
Committee, 2007).

• The tables “Lithology! ” and “Lithology2” listed each lithologic 
descriptor present in the geodatabase and assigned values for 
the parameters (Rb/Sr)parent and (Rb/Sr)iithoiogy (Supplementary 
Table 1).

• The table “Carbonates" (Supplementary Table 3) associated carbon­
ate rock age with the 87Sr/86Sr of seawater.

Using the values from these associated tables, we calculated 
87Sr/86Sr for each map polygon (geological map unit). In cases 
where both major and minor lithologies were documented for a 
map unit, we calculated separate Sr isotope ratio estimates for 
each lithology.

3. W a te r  m o d e ls

3. L Theory

The 87Sr/86Sr of soluble Sr in stream water is largely determined 
by the delivery of Sr to runoff by chemical weathering of the underly­
ing bedrock (Stewart et al., 1998), though in some cases the soluble Sr 
in water can originate from other inputs such as groundwater (Negrel 
and Petelet-Giraud, 2005) atmospheric deposition of sea salt and 
mineral dust (Chadwick et al., 2009), hydrothermal processes 
(Pretti and Stewart, 2002), or soils and surficial deposits (Stueber

et al., 1975). Chemical weathering of bedrock is regulated by a com­
plex combination of factors including lithological and mineralogical 
composition (Meybeck, 1987; Horton et al., 1999; Brantley et al., 
2007), climate (particularly temperature and runoff; White and 
Blum, 1995), biology (Eckhardt, 1979; Brady and Carroll, 1994; 
Moulton et al., 2000) and erosion rates (Raymo et al., 1988; West 
et al., 2005). While these factors may be important for local studies, 
lithology and runoff have been identified as the two main controls 
of chemical weathering rates at regional scale (Beusen et al., 2009; 
Hartmann et al., 2009a; Jansen et al., 2010; Hartmann and 
Moosdorf, 2011). In order to simplify our large scale model, we limit­
ed our analysis to a pair of first order lithologically-based factors 
influencing the flux of Sr to water: 1) differential weathering rates 
of rocks and minerals, which we represent as a dimensionless weath­
ering rate factor W  (Supplementary Table 4), and 2) differences in Sr 
content (Q between lithologies. The chemical weathering of carbon­
ates versus silicates illustrates the importance of these factors: car­
bonates have a higher Sr content and weather faster than silicates, 
therefore even trace quantities of calcite can be a dominant source 
of soluble Sr and control the 87Sr/86Sr of environmental waters 
(Clow et al., 1997; Anderson et al., 2000).

32. Weathering model calibration

In our model, the transfer of Sr from a rock to water is given by:

F =  W„ormC, (4)

where Fis the flux of Sr from rock to water, C is the average Sr content 
(Supplementary Table 4) of each rock type calculated as described for 
Rb/Srrock in Section 2.2 and Wnorm is the weathering rate normalized 
to granite (Supplementary Table 4). We adopted two different ap­
proaches to estimating Wnorm, depending on rock type. To estimate 
Wnorm for igneous and sedimentary rocks, we calculated bulk rock 
dissolution rates for each rock type as:

Krr (5)

where i is a given mineral, U[ is abundance of f in the given rock type 
and K the weathering rate value for that mineral based on laboratory 
measurements. We estimated a[ from the IUGS classification (Le Bas 
and Streckeisen, 1991; Supplementary Table 4). Mineral-specific 
values of K were taken from averaged values of mineral weathering 
rates found in laboratory experiments at pH =  5.5 and T=20°C  
(Supplementary Table 5; Franke, 2009). However, because field stud­
ies suggest that at equal mineralogical composition, relative weather­
ing rates of igneous and volcanic rocks differs (Drever and Clow, 
1995), we scaled our W estimate as:

W (6)

where is a correction factor related to differential reactive surface 
between rock type. Values of R were assigned by grouping rock 
types into three broad categories chosen to account for differences 
in permeability, and thus reactivity with aqueous solutions (Lewis, 
1989), and comparing our calculated values of Wnorm for each catego­
ry with dissolution rate measurements in small monolithic catch­
ments in France (Meybeck, 1987; Meybeck, 1987). The assigned 
values (R =3 for volcanic rocks, R = 2  for metavolcanic and R =  1 
for crystalline igneous rocks) offer a rough approximation of relative 
field weathering rates useful for our initial large scale effort, and can 
be refined in future work.

Because the mineralogy of metamorphic and sedimentary rocks is 
difficult to estimate, we estimated Wnorm of silicate sedimentary, py- 
roclastic and metamorphic rocks using a different approach. Based



26

CP. Bataille, G.J. Bowen /  Chemical Geology 304-305 (2012) 39-52

on denudation rate measurements from small monolithic catchments 
(Meybeck, 1987; Meybeck, 1987), we distinguished between meta- 
morphic and silicate sedimentary rocks, with low weathering rates 
similar to those of granite (assigned Wnorm — 1) and faster- 
weathering argillaceous sedimentary rocks (Wnonn — 2). Because no 
monolithic catchment dissolution rates measurements were available 
for pyroclastic rocks, we estimated Wnorm from long term dissolution 
measurements of tuff tablets relative to those of granodiorite tablets 
exposed to the same conditions (Matsukura et al., 2007). Compared 
to regional scale estimates of chemical weathering based on dissolved 
silicate content (Bluth and Kump, 1994; Beusen et al., 2009; 
Hartmann et al., 2009; Jansen et al., 2010), our values show similar 
relative weathering rates across five major lithological groups: 1) car­
bonates and evaporites (50>W nOrm>25)f 2) tuff, pyroclastic flow 
and mafic volcanic rocks (25>W nt)rm>5), 3) other volcanic rocks 
and basic and intermediate igneous rocks (5>W n0rm>3), 4) argilac- 
eous sediments (Wnorm —2) and 5) other metamorphic, sedimentary 
and felsic intrusive rock (Wnorm— 1). Although in good agreement 
with existing literature, our weathering formulation is limited in 
that it 1) does not account for runoff, climate, land cover or slope var­
iations, and 2) is based on bulk dissolution rates and while accounting 
for differences in Sr content between rock type it does consider Sr- 
specific dissolution kinetics.

3.3. Mapping local and catchment water 87Srj86Sr

We combined the weathering and bedrock models to map 87Sr/ 
86Sr variations in local and catchment-integrated waters. The local 
water model estimates the &7Sr/&6Sr value of Sr leached from bedrock 
to water at each point on the map, whereas the catchment water 
model estimates the 87Sr/86Sr of surface waters flowing through 
each map location, including all contributions from up-catchment 
locations.

In the local water model, for each map unit polygon where major 
and minor lithologies were given we calculated the relative Sr weath­
ering flux from major and minor lithologies:

(WC)„ =  0.75 *(WC)m - 0.25 *(WC)n O)
and the average Sr isotope ratio of local water, weighted by the fluxes 
from major and minor lithologies:

0.75*(WC)lnQjc,r\ 
(WC)„t )

/0.25*(WC)min[ir\
I (WC)„ J l ssSr) (8)

In these equations, the relative weights assigned to major and 
minor lithologies (0.75 and 0.25, respectively) represent a coarse 
generalization consistent with the only available constraint, that 
rocktypel and rocktype2 are the most and second most abundant of 
the rock types present in each mapped unit (e.g. http://pubs.usgs. 
gov/of/2005/1325/documents/CONUSdocumentation.pdf}.

Sr flux and local 87Sr/&6Sr values were exported to raster data 
layers at 1 km spatial resolution for further analysis and mapping 
of catchment water 87Sr/86Sr. The catchment water map was creat­
ed using the Flow Accumulation tool (Spatial Analyst toolbox) in 
ArcGIS and 1 km gridded flow direction values from the Hydro 
1 K digital elevation model (DEM; http://edc.usgs.gov/products/ 
elevation/gtopo30/hydro/namerica.html). Modeled local water Sr 
isotope flux [(87Sr/&6Sr)jocaix (WC)tot] and Sr flux [(WC)tot] values 
were accumulated downstream through the DEM river networks 
and divided to obtain estimated water 87Sr/86Sr values that repre­
sented an average of the up-stream Sr sources to each map pixel, 
weighted by the contribution of weathered Sr from each rock 
type in the catchment. We note that, although this model accounts

for lithology-driven variation in weathered Sr fluxes, it does not ex­
plicitly calculate the water balance of the catchment and so does 
not account for differences in Sr flux driven by differences in runoff 
from individual grid cells.

3.4. Model validation

To validate the catchment water model, we compared 87Sr/86Sr 
predictions with water 87Sr/86Sr measured at 68 watersheds in 4 re­
gions of the contiguous USA (Fig. 2). Before calculating 87Sr/86Sr in 
water, we obtained maps of the sub-watersheds for the Susquehanna 
River (http://www.srbc.net/atlas/index.asp) and the Owen Lake Basin 
(http://map24.epa.gov/EMR/). No pre-processed maps of the sub­
watersheds existed for the Scioto River and Clark Fork of the Yellow­
stone River basins. Consequently, we delineated each catchment 
(Fig. 2) by processing the national elevation dataset (Gesch, 2002) 
with the Hydrology toolbox in ArcGIS (Spatial Analyst toolbox). We 
successively clipped the digital elevation model (DEM) for the area 
considered (Geoprocessing tool/Clip Raster), reconditioned the DEM 
(Fill Sinks tool), calculated the flow direction (Flow Direction tool) 
and flow accumulation (Flow Accumulation tool) rasters, defined 
streams by reclassifying the flow accumulation raster (Stream Defini­
tion tool; thresholds typically between 0.1 and 1% of the maximum 
flow accumulation), segmented the streams (Stream Segmentation 
tool) and finally delineated the watersheds and sub-watersheds (Wa­
tershed tool). We further validated this delineation process by com­
paring the shape of the catchments with the different maps 
furnished in published studies (Stueber et al., 1975; Fisher and 
Stueber, 1976; Horton et al., 1999; Pretti and Stewart, 2002).

In order to test the sensitivity of the catchment water model to 
different modeling assumptions, we used the Spatial Statistics tool 
(ArcGIS Spatial Analyst toolbox) to calculate three different estimates 
of the average 87Sr/86Sr for each catchment:

• Two estimates without weighting for differences in Sr flux among 
grid cells within the watershed. The first, which we call the "age- 
only catchment water model", is an unweighted average of 87Sr/ 
a6Sr values, calculated using the Beard and Johnson model (Beard 
and Johnson, 2000), across all grid cells in the catchment. The sec­
ond, the "unweighted catchment water model” is an unweighted 
average of modeled ‘local water” a7Sr/86Sr values (Eq. 8) across 
all catchment grid cells.

• A third estimate accounted for differential Sr contributions from dif­
ferent map units within the catchment. This formulation, the "flux- 
weighted catchment water model”, was equivalent to that used to 
map catchment water Sr isotope values as described above: the 
sum of the Sr isotope flux for all watershed grid cells was divided 
by the sum of the total Sr flux.

To further test the relevance of our models for provenance appli­
cations, we compared the 87Sr/86Sr predictions using these three for­
mulations with the 87Sr/86Sr measured in marijuana from 79 USA 
counties (West et al., 2009). In this case, the samples were identified 
by their county of origin, and we averaged grid cell values within the 
county boundaries, as represented in the National Atlas of the United 
States (www.nationalatlas.gov/), rather than within catchments 
(Fig. 2).

4. R esu lts  a n d  d iscu ss io n

4.1. Bedrock model

The silicate model explained 59% of the observed variance in an 
independent global dataset for 9009 igneous and metamorphic 
rocks and 33% of the variance for 207 sedimentary rocks (Fig. 3A 
and B). This new silicate model significantly improved the correlation 
with measurements in comparison with estimates from the age-only

http://pubs.usgs
http://edc.usgs.gov/products/
http://www.srbc.net/atlas/index.asp
http://map24.epa.gov/EMR/
http://www.nationalatlas.gov/
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Table 1
Geology and measured and modeled 87Sf/ssSr values for bedrock in the catchment water model validation catchments. W: watershed; CF: Clark Fork of the Yellowstone; OL: Owen 
Lake; Sc: Scioto; Su: Susquehanna; N =  North; S =  South; E =  East; W =  West.
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w Geology Sampled lithology Measured 87Sr/86Sr Bedrock model 87Sr/86Sr Reference

CF N: granitic gneiss Beartooth Mountains Granitic gneiss None 0.748 (Horton et al., 1999)
S: Paleozoic marine sedimentary Andesite 0.707
Eocene Andesite Carbonates 0.7087

OL W: Sierra Nevada batholiths metavolcanic and Sierra Nevada batholiths 0.706-0.725 0.706-0.722 (Goff etal., 1991)
igneous rocks
E: White-Inyo mountains complex mixture of Volcanic rocks 0.706-0.708 0.707 (Goff etal., 1991)
sedimentary, igneous and metamorphic rocks Tuff 0.709-0.713 0.711 (Davies and Halliday, 1998)
(Marchand, 1974) Mesozoic granite 0.706-0.708 0.707 (Kistler and Peterman, 1973)

Sc Mixture of Paleozoic shales and carbonates Devonian 0.7086 0.708-0.710 (Steele et al„ 1972)
covered by glacial till Carbonates 0.732-0.745 0.719

Paleozoic shales 0.710
Shale leachate 0.7 OS
Celestite

Su N: Mixture of silicates and carbonates from Shales 0.741-0.755 0.719 (Whitney and Hurley, 1964)
the Paleozoic Devonian 0.7075 0.708-0.710

limestone
S: Precambrian to Mesozoic igneous, volcanic and Igneous rocks 0.707-0.799 0.707-0.752 (Wetheril et al., 1968)
metamorphic rocks

volcanic rocks in the West. On a regional scale (100 km), we observe 
large 87Sr/86Sr variations in sedimentary basins due to the difference 
between silicates and carbonates. High resolution 87Sr/86Sr variation 
is most apparent in mountainous areas due to the complex juxtaposi­
tion of lithologies in these regions. Even at the scale of a county 
(10 km), the bedrock models (major and minor) suggest the potential 
for high resolution S7Sr/86Sr variations depending on the lithological 
complexity.

42. Catchment water models

4.2A. Water model validation
The four watersheds selected for model validation represent a 

wide range of geological, climatic and physiographic conditions 
(Fig. 2, Table 1). We compiled 87Sr/86Sr measurements from 68 
streams in these watersheds: 1) 13 samples from the watershed of 
the Clarks Fork of the Yellowstone River (WY): a mountainous catch­
ment with a predominant geology of granite, andesite and carbonates 
(Horton et al., 1999), 2) 19 samples from the Owens Lake watershed 
(CA): a mountainous watershed dominated by a complex mixture of 
igneous and metamorphic rocks associated with dolomite (Pretti 
and Stewart, 2002), 3) 19 samples from the Scioto River basin (OH): 
a sedimentary basin dominated by shales, sandstones and marine car­
bonates (Stueber et al., 1975), and 4) 18 measurements from the Sus­
quehanna River basin (PA): a catchment containing varied 
sedimentary, metamorphic and igneous rocks (Fisher and Stueber, 
1976). For each watershed the measured values reported in the liter­
ature were compared with three model estimates of the catchment- 
integrated average water Sr isotope ratio, as described in Section 3.4.

For each of these watersheds, because the bedrock models are the 
base maps of the catchment water model, we first tested the accuracy 
of the bedrock models by comparing the predictions with 87Sr/86Sr 
measurements of rock units within the selected watershed. Table 1 
shows that for each of these watersheds, the bedrock model accurate­
ly predicts the 87Sr/86Sr of most lithologies, with the exception of the 
lower-than-predicted 87Sr/86Sr measured for shales from OH and PA 
and some igneous rocks from the Wissahickon formation (Owens 
Lake).

For the Clarks Fork of the Yellowstone Basin (Fig. 7A) each of the 
model formulations reproduces the basic pattern of 87Sr/86Sr differ­
ences across the sub-watersheds. However, the correlation (Fig. 7B) 
is closer to the 1:1 relationship for the flux-weighted catchment 
water model than for the unweighted and age-only catchment 
water models. In this basin, where Cenozoic sedimentary and volca­
nic rock coexists with Precambrian felsic rocks (Table 1), most of 
the 87Sr/86Sr variations in water are driven by the large differences 
in age of the different geological formations. In this geological setting, 
even if the age-only bedrock model does not account for differences 
in lithology it can be used to predict the first order patterns of varia­
tion in stream water 87Sr/86Sr values with reasonable accuracy. Pre­
diction accuracy was further enhanced by incorporating lithological 
factors (Fig. 7B).

For the Owens Lake River Basin, in spite of the geological complexity 
of this watershed (Table 1), the 87Sr/86Sr of most streams was relatively 
constant at -0.710 (Fig. 7C). In most of the streams, the flux-weighted 
catchment water model gives a more accurate prediction and stronger 
correlation (Fig. 7D) than the age-only and unweighted catchment 
water models. Silver Creek, located in the White-Inyo Mountains, is 
not correctly predicted by any of the water models. This stream runs 
through Cambrian marine sediments, gneisses and schists (Pretti and 
Stewart, 2002). In the catchment water models, the 87Sr/86Sr value is 
buffered to low values by the presence of dolomite with a predicted 
87Sr/86Sr value of 0.709 (using our bedrock carbonate calculation). 
However, Pretti and Stewart (2002) argued that these dolomites prob­
ably exchanged Rb with shales during metamorphism and have sig­
nificantly higher 87Sr/86Sr than otherwise expected, explaining the 
high 87Sr/86Sr in stream water of these catchments and the diver­
gence with the modeled values.

McGee and Convict creeks, located in the Northern part of the 
Basin, lack metamorphosed dolomites in outcrop, but are also poorly 
predicted by the flux-weighted and unweighted catchment water 
models. These sub-watersheds present a complex hydro-geological 
setting, including Paleozoic or Precambrian metasedimentary rocks 
which are are poorly represented by the lithological maps (Stevens 
and Greene, 1999). 87Sr/86Sr signature is also slightly overestimated 
by our models in streams within the Long Valley caldera such as

Fig. 7. Catchment water model validation results. Modeled and measured 87Sr/86Sr in (A and B) 12 streams of the Clarks Fork of the Yellowstone River Basin in Wyoming (Horton 
et al., 1999); (C and D) 19 streams of the Owen Lake in California (Pretti and Stewart, 2002); (E and F) 19 samples from the Scioto River Basin in Ohio (Stueber et al., 1975); (G and 
H) IS streams of the Susquehanna River Basin in Pennsylvannia (Fisher and Stueber, 1976). Black circle: observations; Open circle: age-only water model; Open triangle: 
unweighted catchment water model; Reversed black triangle: flux weighed catchment water model; Black square: celestite-corrected flux-weighted catchment water model for 
the Scioto River Basin. Dashed lines in the right hand panels show the 1:1 relationship.
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Independence and Hot creeks. This area is characterized by Low 
&7Sr/&6Sr rocks and hydrothermal springs which contribute greatly 
to the water chemistry (Pretti and Stewart, 2002). Measured 87Sr/ 
86Sr values for hot springs of the area ranged from 0.7078 to 
0.7081 (Goff et al., 1991) which may explain the discrepancy with 
our modeled 87Sr/86Sr. Pretti and Stewart (2002) also showed that 
these hot springs exert a strong influence at large scale, on the 
downstream 87Sr/86Sr value of the Owens River because of their 
high dissolved Sr load, an influence that would not be accounted 
for in our model. Other potential factors explaining the inaccuracy 
of the models include inputs of Sr from mineral dust (Clow et al., 
1997), the poor representation of the geological complexity of 
these watersheds by 2D maps, or the inaccuracy of our weathering 
equations when several lithological weathering rates have to be ap­
proximated concomitantly.

For the Scioto River Basin, the unweighted catchment water 
model drastically overestimates the 87Sr/86Sr value in stream water 
in several catchments, whereas the age-only model underestimates 
the observed values (Fig. 7E). The flux-weighted catchment water 
model reduces the magnitude of overestimates relative to the 
unweighted catchment water model for almost all the watersheds, a 
difference that can be attributed to the higher Sr flux from carbonate 
units in the watersheds in comparison with silicates (Table 1). Several 
sub-watersheds in the Southern part of the Basin that are dominated 
by shales, such as Bear, Salt, Crooked and Scioto Brush Creeks, display 
low &7Sr/86Sr measurements relative to the high 87Sr/86Sr of their 
bedrock. This anomaly is due to the presence of minor amount of cal- 
cite in these shales (Table 1), which weathers preferentially and 
buffers the 87Sr/86Sr of the weathering flux. The Sr isotope ratio in 
two other sub-watersheds (Big Walnut and Scioto 3) with bedrock 
geology exclusively composed of silicates (Table 1) is overestimated 
by the flux-weighted catchment water model. However, these sub­
watersheds are proximal to outcropping carbonate formations, and 
drillings from these catchments show that thick layers of carbonates 
are present at depth (Stueber et al., 1975). Groundwater discharged 
from these beds probably buffers the 87Sr/86Sr and explains the dis­
crepancy between model and measurements (Fig. 7E).

Apart from these specific examples, the catchment water model 
shows a general tendency to overestimate the 87Sr/86Sr of watersheds 
of this Basin. Stueber et al. (1975) showed that glacial overburden 
within the Scioto River Basin, which contains a large amount of solu­
ble celestite (SrS04) and pulverized Paleozoic carbonates with 87Sr/ 
86Sr equal to 0.708 (Table 1), buffers the 87Sr/86Sr in these streams 
(Stueber et al., 1975). To attempt to account for this factor, we devel­
oped a correction for the contribution of till and carbonates to water. 
We based this correction on the work of Steele et al. (1972) who used 
the Sr concentration in water to estimate the contribution of each 
source of Sr. We used a surficial geology map (Clawges et al., 1999) 
to identify the distribution of glacial till the Basin. In each subwa­
tershed covered by thick and thin glacial deposits, respectively, we 
considered that celestite contributed 75% (average contribution for 
watersheds covered by thick glacial till in Steele et al., 1972) and 
50% (average contribution for watersheds covered by thin glacial till 
in Steele et al., 1972) of the Sr in water. The celestite-corrected 
water model substantially improved the accuracy of predictions with­
in this Basin, explaining 81% of the variance with a model/data slope 
close to 1 (Fig. 7E and F). This result suggests that future work should 
include improved model formulations representing surficial deposits, 
particularly in area where thick glacial and eolian deposits are pre­
sent. One impediment to this work is the relatively limited availabil­
ity of systematic information on the age, origin and composition of 
these surficial deposits.

For the Susquehanna River Basin, the flux-weighted catchment 
water model dramatically improves the model predictions relative 
to the age-only and unweighted catchment water models (Fig. 7G 
and H). In most of the watersheds, the unweighted catchment

water model overestimates the 87Sr/86Sr whereas the flux-weighted 
catchment water model matches the observations closely because of 
the importance given to preferential dissolution of carbonates. The 
improved performance of the flux-weighted catchment water model 
is seen here despite the divergence between bedrock model predic­
tions and measurements for shales (Table 1). Similar to the Scioto 
Basin, shale leachates here have a significantly lower 87Sr/86Sr than 
the whole rock due to the selected dissolution of minor amount of 
calcite (Table 1). The discrepancy between the flux-weighted catch­
ment water model and observed 87Sr/86Sr values for Deer and Octor- 
aro creeks can be explained by the inability of the bedrock model to 
accurately predict the 87Sr/86Sr of rocks from the Wissahickon Forma­
tion (Table 1).

422 . A global view of the catchment water model
The flux-weighted catchment water model explains 70% of the 

variance of the Sr isotopes in water for the 68 watersheds tested 
with a linear correlation close to the 1 : 'l relationship (Fig. 8). Predic­
tion accuracy for this model, estimated based on the validation data, 
is significantly improved relative to the other models, with 
MAE =  0.00051 and RMSE =  0.0034. In comparison, the age-only 
catchment water model explains 38% of the observed variance with 
MAE= —0.0039 and RMSE =  0.0056. In our approach, we added a 
number of lithological effects that increased the accuracy of water 
87Sr/86Sr predictions in most of the geological settings. The resulting 
local water (Fig. 9A) and flux-weighted catchment water (Fig. 9B) 
maps for the contiguous USA show patterned 87Sr/86Sr variations 
similar to the bedrock models (Fig. 6A and B). Average 87Sr/86Sr 
values are highest in the new bedrock model and lowest in the flux- 
weighted catchment water model, where the preferential dissolution 
of low 87Sr/86Sr units (e.g. carbonates and mafic rocks) buffers the 
87Sr/86Sr of the water catchment model in comparison with bedrock 
(Fig. 6D).

The maps predict large variations at a range of spatial resolutions, 
which are promising for provenance studies. Nevertheless, the 87Sr/ 
86Sr prediction in water could be improved by considering the poten­
tial contribution of non-bedrock sources of Sr to water (Sillen et al., 
1998; Stewart et al., 1998). In our validation process, we demonstrat­
ed the importance of accounting for the contribution of Sr-rich min­
erals (calcite, dolomite and celestite) because they often buffer the 
87Sr/86Sr of whole rivers. Similarly, the effect of dust deposition in 
the Rockies (Clow et al., 1997), contributions from soil and surficial 
materials (Stewart et al., 1998) and the effect of local phenomenon 
such as hydrothermal contributions (Pretti and Stewart, 2002) and 
atmospheric deposition (Stewart et al., 1998) should be considered 
in future work.
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formulation represents major lithology-specific effects and yet re­
mains generalized to the extent that it could be applied in any region 
where basic digital geological map data (including lithology and age} 
are available. In spite of the limitations discussed throughout this 
paper, this new mapping method represents a significant advance in 
modeling major environmental Sr sources to ecosystems, and the 
strength of the correlations between the different models and the ob­
servations are encouraging. Moreover, although the predictive power 
of the model remains limited in many cases, our documentation of 
model performance through quantitative comparisons with observa­
tional data allows informed use of the model-derived data products.

A number of regions of the contiguous USA display promising 
87Sr/86Sr variations at different scales which could be used to deter­
mine rock, water or biological material provenance. The Sr isoscapes 
could complement other existing isoscapes (Bowen et al., 2005} 
used for provenance studies because 87Sr/86Sr varies widely at re­
gional and continental scales. The development of more detailed 
and harmonized seamless geological maps for the conterminous 
USA (Jansen et aL, 2010} and other regions, as well as refined high 
resolution lithological studies and geochemical sampling, could rap­
idly improve the resolution and accuracy of these isoscapes.

In this respect, we suggest the following as critical next steps to 
improving the predictability of environmental Sr isotope ratios at 
large scales:

1} Develop more flexible parameterizations and parameter distribu­
tions that increase the ability of the model to represent highly ra­
diogenic rock units.

2) Improve weathering rate calculations by including functions de­
scribing rate dependence on factors such as runoff, climate, pedol­
ogy, vegetation and topography. Recent work from Jansen et al. 
(2010} offers a good starting point.

3) Develop submodels representing the contribution of atmospheric 
sources of Sr, particularly dust and sea salt, to soil and bioavailable 
Sr.

4} Identify systematic approaches to representing the contribution of 
Sr weathered from surficial deposits to water.

5) Ultimately, model and scale the contribution of these sources of Sr, 
including bedrock weathering, atmospheric sources and surficial 
Sr sources, to bioavailable and biological pools of interest, includ­
ing soil, soil water, surface and groundwater and organismal Sr. 
The work of Stewart et al. (1998) provides a platform on which 
such an effort could be developed.

6) In all cases, these efforts will be advanced through the continued 
accumulation and compilation of Sr isotope measurements and el­
emental concentration data from a range of materials. Our results 
suggest that the most critical data gaps vary depending on

location, but include measurements of surficial deposits that are 
not adequately characterized on most geological maps and contin­
ued analysis of Sr isotope ratios of stream systems, which inte­
grate the geochemistry of their watersheds and can reveal 
important inaccuracies in the model.
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Supplementary methods and tables

1. Geological map data:

1.1. We downloaded 48 state lithologic maps from the United States Geological 
Survey state-level geological map geodatabases (U. S. Geological Survey, 2005, 
State Geologic Map Compilation, USGS Open-File Report (various), online at 
http://tin. er.usgs. gov/ge ology/state/)

1.2. Using ArcGIS, we merged (Data Management toolbox) the individual maps into 
a single shape file to obtain a geodatabase with three attributes relevant to our 
work:

1.2.1. Unit_age: Text or text and numeric field stating age of the unit (e.g., 
“Permian to Cretaceous”, “Tertiary 14-16Ma”))

1.2.2. Rocktype1 and Rocktype2: Text fields stating the most abundant and 
second most abundant lithology of the mapped unit, coded using the Data 
Dictionary for Geologic Map Unit Classification, version 6.1 
(http://ngmdb.usgs.gov/www-nadm/dmdt/pdf/lithclass61.pdf). The entries in 
these fields do not provide information on the quantitative abundance of the 
major and minor lithologies beyond the relative estimates provided by the 
field definitions (most abundant and second most abundant rock types 
present in the unit).

1.3. We exported the merged geodatabase attribute table into Excel.

Rationale: These maps were chosen as a basis for our work because they are unique in 
providing internally consistent, high-resolution age and lithological information for the 
contiguous USA. However, the digital maps are neither uniform nor seamless (see 
http://pubs.usgs.gov/of/2005/1325/documents/CONUSdocumentation.pdf), which 
presents challenges for our work. Most notably 1) a large number of unique lithological 
and age descriptors are used and must be interpreted prior to modeling, and 2) significant 
discontinuities in map units occur at some state boundaries, leading to artificial 
discontinuities in the Sr isotope map values. The discontinuities result from differences in 
resolution, combination and mapping philosophy among state maps. Both challenges will 
likely be rectified when an integrated, data-rich digital geological map is made available 
for the USA (Jansen et al., 2010).

2. Calibrating values of t2 (equation 2):

2.1. In Excel, we sorted the attribute table of the geodatabase by unit_age

2.2. We extracted each unique geologic time descriptor in an Excel sheet (Table

http://tin
http://ngmdb.usgs.gov/www-nadm/dmdt/pdf/lithclass61.pdf
http://pubs.usgs.gov/of/2005/1325/documents/CONUSdocumentation.pdf
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“Age”). For different state maps the age descriptor is given in different format, 
either as a string stating a time period of the USGS geological time scale (e.g., 
“Cambrian to Ordovician”) or as numeric values (Table 2S.2).

2.3. In “Age”, we assigned a numeric age to each geologic time descriptor using the 
USGS division of geologic time (U.S. Geological Survey Geologic Names 
Committee, 2007).

2.4. We joined the “Age” table to the merged geodatabase in ArcGIS using the age 
descriptor as joining field

Rationale: In order to accommodate the wide range of formats and specificities of the age 
data, we chose to systematically approximate the age of rock units as the maximum age 
of the specified eon, era, period or epoch. To be consistent in our methodology and 
because the mean was not always calculable, we opted for using the maximum. This 
choice may cause our model to overestimate the 87Sr/86Sr values for units with age 
descriptors representing a large age range (e.g., Archean). However, because the

87 86 87 86sensitivity of Sr/ Sr to age is relatively weak (on average Sr/ Sr changes by 0.001 
for 10Ma for felsic rocks and for 100Ma for mafic rocks) this did not affect significantly
the modeled 87Sr/86Sr.

3. Calibrating the silicate model:

3.1. Calibrating (Rb/Sr)parent (equation 2) for each rock unit:

3.1.1. In Excel, we sorted the attribute table of the geodatabase by rocktype1

3.1.2. We extracted each unique rocktype1 lithologic descriptor in an excel sheet 
(Table “lithology1”)

3.1.3. We repeated steps 3.1.1-2. for rocktype2 and added the different unique 
lithologic descriptors to “lithology2”

3.1.4. For each lithologic descriptor, we classified the parent material type:

3.1.4.1. For sedimentary and metasedimentary rocks, we approximated the 
(Rb/Sr)parent by assuming a uniform parent rock with a constant Rb/Sr 
value of 0.24 corresponding to the average Rb/Sr of the upper crust 
(Goldstein and Jacobsen, 1988)

3.1.4.2. For igneous, volcanic and metaigneous rocks, we approximated the 
(Rb/Sr)parent by separating these lithologies in 5 categories representing 
different parent rocks (ultramafic, mafic, mafic intermediate, felsic 
intermediate and felsic). We based our categorization on the IUGS 
classification (Le Bas and Streckeisen, 1991). The classification of each
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rock type can be inferred from the (Rb/Sr)parent values shown in Table
2S.1.

Rationale: We used this categorization method to separate the modeling of 
(87Rb/86Sr)parent of igneous and volcanic rocks along a gradient from Rb-poor mantle 
rocks to Rb-rich crustal parent rocks, providing a first-order representation of chemical 
variation in silicate magma related to: 1) source composition (crust or mantle) and 2) 
depth of melting.

3.1.5. We obtained 5765 data from the Western North American Volcanic and 
Intrusive Rock Database (www.navdat.org) using the query:

3.1.5.1. Chemical constraint: Rb and Sr content and 87Sr/86Sr 
measurements,

3.1.5.2. Age constraint: Age ranges from 0 to 5000Ma (“loose search” 
mode, see www.navdat.org), and

3.1.5.3. Rock type constraint: all types.

3.1.6. For each sample:

3.1.6.1. We back-calculated (Rb/Sr)parent using equation 2 and the given 
age, Rb and Sr content, and 87Sr/86Sr,

3.1.6.2. We assigned the sample to one of the parent rock categories 
defined in 3.1.4. based on their rock type, and

3.1.6.3. We sorted the table and calculated the numeric mean Rb/Sr for 
each parent rock category.

3.1.7. In “lithology1” and “lithology2”, we assigned an estimated parent rock 
Rb/Sr value to each lithologic descriptor based on the results of 3.1.6. (Table 
2S.1).

This step (3.1.) creates the most uncertainty in this model because we separated the rock 
units in only seven parent rock categories. The (87Rb/86Sr)parent can vary largely from one 
formation to the next depending on the geological history of the region. As the number of 
f 7S r f 6Sr)i data increase, in the future it will be preferable to use direct f 7S r / 6Sr)i 
measurements or a more detailed lithological classification scheme to characterize 
(87Rb/86Sr)parent.

3.2. Calibrating (Rb/Sr)iithoiogy(equation 2):

3.2.1. We obtained 252,661 data, representing 167 of the 180 lithological

http://www.navdat.org/
http://www.navdat.org
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descriptors in “lithology1” and “lithology2” , from the Earthchem portal 
(http://www.earthchemportal.org/) using the query:

3.2.1.1. Database constraint: U SGS results,

3.2.1.2. Chemical constraint: Rb and Sr content measurements, and

3.2.1.3. Sample type constraint: all sample type (mode “rock name given 
by collector or author”).

3.2.2. We calculated the mean Rb/Sr for each sample in this dataset.

3.2.3. We sorted the data by sample type and calculated the numeric mean Rb/Sr 
for each sample type.

3.2.4. In “lithology1” and “lithology2”, we assigned Rb/Sr values to each of the 
167 lithologic descriptor based on the calculated averages (Table 2S.1).

3.2.5. For the 13 remaining lithologic descriptors with no associated samples, we 
assigned (Rb/Sr)rock by comparison with other analogous rocks (Table 2S.1).

Rationale: We considered both the numeric and geometric means as measures of the 
central tendency for model parameters. Because most of the rock types showed right- 
skewed distributions of their Rb/Sr values, the numeric means gave slightly higher 
estimates of Rb/Sr than the geometric means, and thus slightly improve the tendency of 
the model to underestimate the Sr isotope ratios of very radiogenic rocks. However, more 
work is needed to understand the potential impact of sample alteration and sampling bias 
on the calculated mean values (see “Bedrock models” section of Chapter II).

4. Calibrating equations for the carbonate model:

4.1. In Excel, we sorted the attribute table of the geodatabase by rocktype1 and 
rocktype2.

4.2. In an excel sheet (Table “carbonates”), we extracted the 10 unique lithologic 
descriptors related to carbonates: “carbonates”, “limestone”, “marble” , “calc- 
silicate rock”, ”calc-silicate schist”, “dolostone”, “intrusive carbonatite” , 
“phosphorite” , “evaporite”, and “lake or marine deposit (nonglacial)” .

4.3. In “carbonates”, we used the numerical age of the geological unit to estimate the 
corresponding (87S r / 6Sr)seawater value from the curve of Shields and Veizer 
(2002) (Table 2S.3).

5. Mapping 87Sr/86Sr:

http://www.earthchemportal.org/
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5.1. We joined Tables 2S.1 and 2S.2 to the geodatabase by using lithologic descriptor 
rocktype1 as a joining field.

5.2. For each geological unit in the geodatabase, we calculated (87Sr/86Sr)rock using 
equation 2 and our estimates of t2, (Rb/Sr)parent and (Rb/Sr)lithoiogy.

5.3. We repeated steps 5.1-2 for lithologic descriptor rocktype2.

5.4. We joined Table 2S.3 to the geodatabase using unit_age as a joining field.

5.5. In Excel, we sorted the geodatabase to identify all carbonate lithologic 
descriptors and used equation 3 to calculate the 87Sr/86Sr using our estimated 
values of (Rb/Sr) seawater and (Rb/Sr)lithology-

5.6. Steps 5.1-5 gave two new fields in the geodatabase, “Sr_ratio1” and “Sr_ratio2”, 
that contained the modeled 87Sr/86Sr values for the major and minor lithologies 
present in each map unit.

6. Validating the silicate model:

6.1. We downloaded 9130 data through the Earthchem portal using the query:

6.1.1. Database constraint: Geroc-Start results,

6.1.2. Chemical constraint: 87Sr/86Sr,

6.1.3. Age constraint: Age ranges from 0 to 5000Ma, and

6.1.4. Sample type constraint: all sample type (mode “rock name given by 
collector or author”).

6.2. We used sample type to assign value to the parameters (Rb/Sr)parent and 
(Rb/Sr)lithoiogy using the values in Table 2S.1.

6.3. We calculated (87Sr/86Sr)model for each sample with equation 2 using the given 
age (t2) and the assigned (Rb/Sr)parent and (Rb/Sr)Uthoiogy-

6.4. We compared (87Sr/86Sr)model with (87Sr/86Sr)observations.

7. Validating the carbonate model:

7.1. We downloaded 246 carbonate rock data through the Precambrian Marine 
Carbonate Isotopes database (Shields and Veizer, 2002).

7.2. We used the age and rock type to assign values to the parameters (Rb/Sr)seawater
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and (Rb/Sr)uthoiogy using values from Tables 2S.1 and 2S.3.

7.3. We calculated (87Sr/86Sr)model for each sample with equation 3 using the given 
age (t2) and the assigned (Rb/Sr)seawater and (Rb/Sr)m oiogy

7.4. We compared (87Sr/86Sr)model with (87Sr/86Sr)observation

Rationale: Discussion concerning database biases and method of verification are already 
given in the “Bedrock models” section of Chapter II

8. Calibrating the weathering model:

8.1. Calibrating Sr content:

8.1.1. In Excel, we sorted the attribute table of the geodatabase by rocktype 1.

8.1.2. We extracted each unique lithologic descriptor in an Excel sheet (table “Sr 
content”).

8.1.3. Using the data obtained in 3.2., we calculated the average Sr content for 
each sample and then the average for each lithologic descriptor.

8.1.4. In “Sr content”, we used the calculated averages to assign Sr content to 
each lithologic descriptor present in the geodatabase.

8.1.5. We repeated steps 8.1.1-4. for rocktype2.

8.1.6. Results of these steps are gathered in Table 2S.4.

8.1.7. We joined “Sr content” to the geodatabase using lithologic descriptor as a 
joining field.

8.2. Calibrating weathering rates:

8.2.1. In Excel, we sorted the attribute table of the geodatabase by rocktype1.

8.2.2. We extracted each unique lithologic descriptor in an Excel sheet 
(“weathering”).

8.2.3. For igneous rocks:

8.2.3.1. We estimated the abundance of common minerals, including 
quartz, biotite, alkali feldspars, plagioclastes, feldpathoids, hornblende, 
olivine, pyroxenes, dolomite and calcite, from the IUGS classification 
(Le Bas and Streckeisen, 1991; Table 2S.4).

8.2.3.2. For each of these minerals, we obtained the specific mineral
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weathering rates measured in laboratory by Franke (2009) at pH=5.5 
and T=20oC (Table 2S.5).

8.2.3.3. We calculated the laboratory-based bulk rock dissolution rates 
using equation 5 and results from step 8.2.3-4.

8.2.3.4. We assigned a corrective factor R  grouping igneous rocks into 
three broad categories chosen to account for differences in 
permeability, and thus reactivity with aqueous solutions, and 
comparing our calculated values of Wnorm for each category with 
dissolution rate measurements in small monolithic catchments in 
France (Meybeck, 1986, Meybeck, 1987, Amiotte Suchet and Probst, 
1993). The assigned values (R = 3 for volcanic rocks, R = 2 for 
metavolcanic and R = 1 for crystalline igneous rocks) offer a rough 
approximation of relative field weathering rates useful for our initial 
large-scale effort, and can be refined in future work.

8.2.4. For sedimentary and metamorphic rocks because mineralogy is difficult to 
estimate, we distinguished between metamorphic and nonargillaceous 
silicate sedimentary rocks, with low weathering rates similar to those of 
granite (assigned Wnorm = 1) and faster-weathering argillaceous sedimentary 
rocks (Wnorm = 2) based on denudation rate measurements from small 
monolithic catchments (Meybeck, 1986, Meybeck, 1987, Amiotte Suchet 
and Probst, 1993).

8.2.5. For pyroclastic rocks because no monolithic catchment dissolution rates 
measurements were available, we estimated Wnorm from long term 
dissolution measurements of tuff tablets relative to those of granodiorite 
tablets exposed to the same conditions (Matsukura et al., 2007).

8.2.6. Resulting relative weathering rates are given in Table 2S.4.

8.2.7. We joined Table 2S.4 to the geodatabase using lithologic descriptor as a 
joining field.

Rationale: discussion concerning weathering model limitations and assumptions are 
available in Material and Methods of Chapter II

9. Mapping 87Sr/86Sr for the local water model (using ArcGIS):

9.1. For each geological unit, we applied equation 5 to calculate the Sr isotope ratio 
of Sr weathering to water from that unit, f 7S r / 6Sr)local, using previously 
calculated values of Sr_ratio1 and Sr_ratio2 , Sr content and W.



43

9.2. We imported the attribute table with the newly calculated field into ArcGIS.

10. Mapping 87Sr/86Sr for the catchment water model (using ArcGIS):

10.1. In new fields of the attribute table of the geodatabase:

10.1.1. We calculated W*Sr content, and

10.1.2. We calculated W*Sr content*(87Sr/86Sr)local.

10.2. In ArcGIs, we converted (Conversion toolbox) the field “W*Sr con ten t’ 
and “W*Sr content* (87S r / 6Sr)local” into raster layers.

10.3. We processed the digital elevation model (DEM; 
http://edc.usgs.gov/products/elevation/gtopo30/hydro/namerica.html) by:

10.3.1. Filling the DEM (Spatial Analyst toolbox)

10.3.2. Calculating the Flow direction raster (Spatial Analyst toolbox)

10.4. We used the flow accumulation tool (Spatial Analyst toolbox) with the 
flow direction raster as input and W*Sr content as “Input weight raster” to obtain 
the Sr flux raster.

10.5. We used the flow accumulation tool (Spatial Analyst toolbox) with flow 
direction raster as input and W*Sr co n ten t* f7S r^ 6Sr)iocai as “Input weight raster” 
to obtain the modeled local water Sr isotope flux raster.

10.6. We calculated the catchment water (87S r / 6Sr)catchment at each grid cell by 
dividing the modeled water Sr isotope flux raster by the Sr flux raster using the 
raster calculator (Spatial Analyst toolbox).

http://edc.usgs.gov/products/elevation/gtopo30/hydro/namerica.html
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Table 2S.1 Values of (Rb/Sr)parent and (Rb/Sr)lithology used in equations 2 and 3 for each 
unique lithologic descriptor (rocktype1 and rocktype2) present in the USGS geodatabases 
(U.S. Geological Survey, 2005, State Geologic Map Compilation, online at 
http://tin.er.usgs.gov/geology/state/). Entries represent a comprehensive list of all 
lithological descriptors: entries that appear redundant appear in slightly different forms 
within the database.

ROCKTYPE ( R  b / S r )parert ( R  b / S r )  lithology

alkali rhyolite 0.18 1.07

alkali syenite 0.13 1.04
alkalic intrusive rock 0.13 0.8
alkalic volcanic rock 0.13 0.8

alkali-granite (alaskite) 0.18 3.2
alkaline basalt 0.07 0.06
alluvial fan 0.24 0.5

alluvial terrace 0.24 0.5
Alluvium 0.24 0.5

amphibole schist 0.13 0.15
Amphibolites 0.13 0.18
Andesite 0.07 0.16

Anorthosite 0.05 0.04
Aplite 0.18 1.81
Arenite 0.24 0.93

Argillite 0.24 0.88
Arkose 0.24 0.68

ash-flow tuff 0.18 2.51
augen gneiss 0.18 0.75
Basalt 0.07 0.07

beach sand 0.24 0.5
Bentonite 0.24 0.75
bimodal suite 0.07 0.5

biogenic sediment 0.24 0.5
biotite gneiss 0.18 1.1

black shale 0.24 2.23
Blueschist 0.07 0.2
Breccias 0.18 0.7

Calcarenite 0.03
calc-silicate rock 0.2
calc-silicate schist 0.2

Carbonate 0.03
Cataclasite 0.09 0.37

Charnockite 0.07 0.08

http://tin.er.usgs.gov/geology/state/
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Table 2S.1 continued
Chemical 0.24 0.7

Chert 0.24 0.46
Clastic 0.18 0.5

clay or mud 24 0.74
Claystone 0.24 0.89
Coal 0.24 0.5

coarse-grained mixed clastic 0.18 0.5
Colluviums 0.24 0.5
Conglomerate 0.24 0.76

Dacite 0.13 0.41
Delta 0.24 0.5

Diabase 0.05 0.11
Diorite 0.09 0.32
dolostone (dolomite) 0.37

dune sand 0.24 0.4
Dunite 0.05 0.13
Eolian 0.24 0.4

Evaporate 0.03
felsic gneiss 0.18 0.86

felsic metavolcanic rock 0.18 1
felsic volcanic rock 0.18 1
fine-grained mixed clastic 0.18 0.5

flaser gneiss 0.18 0.75
flood plain 0.24 0.5
Gabbro 0.07 0.08

Gabbroid 0.07 0.08
glacial drift 0.24 0.5

Glaciolacustrine 0.24 0.5
Gneiss 0.18 0.79
Granite 0.18 1.5

granitic gneiss 0.18 1.2
Granitoid 0.18 1.5
Granodiorite 0.13 0.48

Granofels 0.09 0.32
Granulite 0.05 0.08

Gravel 0.24 0.49
Greywacke 0.24 0.45
Greenschist 0.07 0.18

Greenstone 0.07 0.14
Hornblendite 0.07 0.1
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Table 2S.1 continued
Hornfels 0.13 0.54

Ice
Ignimbrite 0.24 3.1

Indeterminate 0.09 0.5
intermediate metavolcanic rock 0.09 0.35
intermediate volcanic rock 0.09 0.35

intrusive carbonatite 0.03
iron formation 0.24 0.5
Lahar 0.13 0.5

lake or marine deposit (non-glacial) 0.2
Lamprophyre 0.07 0.46

Landslide 0.24 0.5
Latite 0.13 0.47
lava flow 0.07 0.1

Limestone 0.2
Loess 0.37
mafic gneiss 0.07 0.35

mafic metavolcanic rock 0.07 0.35
mafic volcanic rock 0.07 0.35

Marble 0.12
mass wasting 0.24 0.5
medium-grained mixed clastic 0.18 0.5

Melange 0.24 0.7
meta-argillite 0.24 0.81
meta-basalt 0.07 0.13

meta-conglomerate 0.24 0.62
metamorphic rock 0.09 0.44

meta-rhyolite 0.18 2.3
metasedimentary rock 0.24 0.91
metavolcanic rock 0.09 0.4

mica schist 0.18 1.1
Migmatite 0.07 0.49
mixed clastic/carbonate 0.2

mixed clastic/volcanic 0.13 0.5
Monzodiorite 0.09 0.3

Monzogranite 0.18 1.71
Monzonite 0.09 0.28
Moraine 0.24 0.5

mud flat 0.24 0.72
Mudstone 0.24 0.8
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Table 2S.1 continued
Mylonite 0.09 0.35

nepheline syenite 0.13 0.67
Norite 0.05 0.04

Novaculite 0.24 0.46

oil shale 0.24 0.34
Orthogneiss 0.13 1.34

Orthoquartzite 0.13 0.59
Outwash 0.24 0.5
Paragneiss 0.24 1.1

Peat 0.24 0.5
Pegmatite 0.24 1.42
pelitic schist 0.24 1.18

peraluminous granite 0.18 1.23
Peridotite 0.05 0.11

Phonolite 0.13 0.7
Phosphorite 0.2
Phyllite 0.24 2.1

Phyllonite 0.24 2.1
Playa 0.24 0.5
plutonic rock (phaneritic) 0.18 0.7

Porphyry 0.09 0.4
Pumice 0.13 0.7

Pyroclastic 0.18 1.11
Pyroxenite 0.09 0.28
quartz diorite 0.09 0.32

quartz latite 0.09 0.47
quartz monzodiorite 0.09 0.35
quartz monzonite 0.09 0.29

quartz syenite 0.13 1.2
quartz-feldspar schist 0.18 0.94

Quartzite 0.13 0.81
Residuum 0.24 0.5
Rhyodacite 0.13 0.74

Rhyolite 0.18 2.3
Sand 0.24 0.59
Sandstone 0.24 0.69

Schist 0.18 0.96
sedimentary breccias 0.24 0.81

sedimentary rock 0.24 0.5
Serpentinite 0.05 0.18
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Table 2S.1 continued
Shale 0.24 2.1

Silt 0.24 0.83
Siltstone 0.24 0.91

skarn (tactite) 0.09 0.36
Slate 0.18 1.2
stratified glacial sediment 0.24 0.5

Syenite 0.13 0.77
Talus 0.24 0.5
tectonic breccias 0.18 0.81

Tectonite 0.18 0.81
tephrite (basanite) 0.09 0.25

Terrace 0.24 0.5
Tholeiite 0.07 0.07
Till 0.24 0.5

Tonalite 0.09 0.25
Trachyandesite 0.09 0.29
Trachybasalt 0.09 0.13

Trachyte 0.13 1.04
Troctolite 0.05 0.06

Trondhjemite 0.09 0.19
Tuff 0.18 2.01
ultramafic intrusive rock 0.05 0.08

ultramafic rock 0.05 0.08
unconsolidated deposit 0.24 0.5
volcanic ash 0.18 0.91

volcanic breccia (agglomerate) 0.09 0.38
volcanic rock 0.09 0.45

volcanic rock (aphanitic) 0.09 0.45
Wacke 0.18 0.43
W ater

welded tuff 0.18 2.01
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Table 2S.2 Assigned numerical age for each unique age descriptor present in the 
composite geodatabase. Entries represent a comprehensive list of all lithological 
descriptors

UNIT_AGE TIME (Ma)
Holocene 0.1

Quaternary; Holocene 0.1
Quaternary-Holocene Series 0.1

Late Pleistoce to Holocene 1
Late Pleistocene 1
Late Pleistocene to Holocene 1

Quaternary (0-1 Ma) 1
Middle (?) Pleistocene 1.8
Middle (?) Pleistocene to Recent 1.8

Middle Pleistocene 1.8
Middle Pleistocene; Irvingtonian 1.8

Middle Pleistocene; Irvingtorian 1.8
Middle to Late Pleistocene 1.8
Quaternary; Late Pleistocene 1.8

Quaternary; Middle Pleistocene 1.8
Calabrian 2.1
Quaternary (1.5-2.5 Ma) 2.5

Early (?) Pleistocene 2.6
Early Pleistocene 2.6

Holocene to Pleistocene 2.6
Late Pleistocene to Early Pleistocene 2.6
Mostly Pleistocene 2.6

Pleistocene 2.6
Pleistocene and Holocene 2.6
Pleistocene to Holocene 2.6

Pleistocene/Holocene 2.6
Pleistocene; Early Wisconsinan 2.6

Pleistocene; Wisconsinan 2.6
Pleistocene-Holocene 2.6
Pleistocene-Illinoian ? 2.6

Pleistocene-Illinoian ? And Pre-Illinoian 2.6
Pleistocene-Illinoian ? and Pre-Illinoian 2.6
Pleistocene -Pre -Illino ian 2.6

Pleistocene-Upper Wisconsin 2.6
Quaternary 2.6

Quaternary; Pleistocene and Holocene? 2.6
Early Pleistocene and Late Pliocene 3
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Table 2S.2 continued
Early Pleistocene and Late Pliocene 3

Late Pliocene to Early Pleistocene 3
Late-Pliocene 3

Tertiary (2.5-3.5 Ma) 3.5
Middle Pliocene to Holocene 3.6
Quaternary (0-4 Ma) 4

Tertiary (3-4 Ma) 4
Holocene to Pliocene 5.3
Pleistocene and Pliocene 5.3

Pleistocene to Pliocene 5.3
Pliocene to Early Pleistocene 5.3

Pliocene to Holocene 5.3
Pliocene to Pleistocene 5.3
Pliocene to Quaternary 5.3

Pliocene/Pleistocene 5.3
Pliocene-Pleistocene 5.3
Quaternary to Pliocene 5.3

upper Pliocene 5.3
Early-Pliocene 5.332

Pleistocene-Pliocene 5.332
Pliocene 5.332
Tertiary (3-7 Ma) 7

Tertiary (7.5-9.5 Ma) 9.5
Tortonian 10.2
Late Miocene 11.6

Late Miocene to Early Pliocene 11.6
Late Miocene to Pleistocene 11.6

Late Miocene to Pliocene 11.6
Late-Miocene 11.6
Upper Miocene 11.6

Tertiary (8-12 Ma) 12
Tertiary (9.5-13 Ma) 13
Serravallian 13.65

Tertiary (12-15 Ma) 15
Langhian 16

Late Miocene to Middle Miocene 16
Middle Miocene 16
Middle Miocene to Late Miocene 16

Middle Miocene to Late Miocene 16
Middle Miocene to Late Pliocene 16
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Table 2S.2 continued
Middle Miocene to Pliocene 16

Middle Miocene, Serravallian 16
middle Miocene, Serravallian 16

Middle Miocene,Serravallian 16
Middle to Late Miocene 16
middle to late Miocene 16

Middle-Miocene 16
Tertiary (14-16 Ma) 16
Tertiary (14-18 Ma) 18

Tertiary (16-18 Ma) 18
Tertiary (12-19 Ma) 19
Burdigalian 20.43
Tertiary (4-22 Ma) 22
Early Miocene 23

early Miocene 23
Early Miocene to Early Pliocene 23
Early Miocene to Middle Miocene 23

Early Pleistocene to Miocene 23
Early to Middle Miocene 23

Early-Miocene 23
Lower Miocene 23
lower Miocene, Aquitanian 23

lower Miocene, Burdigalian 23
middle and lower Miocene, Langhian and Burdigalian 23
Miocene 23

Miocene 23
Miocene to Early Pliocene 23

Miocene to Holocene 23
Miocene to Pleistocene 23
Miocene to Pliocene 23

Miocene to Quaternary 23
Miocene(?) or Pliocene(?) 23
Miocene/Pliocene 23

Miocene-Pleistocene 23
Miocene-Pliocene 23

Neogene 23
Pliocene to Miocene 23
Pliocene-Miocene 23

Tertiary (19-23 Ma) 23
Tertiary-Neogene 23
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Table 2S.2 continued
Aquitanian 23.03

Tertiary (22-24 Ma) 24
Tertiary (2-24 Ma) 24

Tertiary (2-24Ma) 24
Tertiary (22-25 Ma) 25
Tertiary (8-25 Ma) 25

Tertiary (8-25 Ma; most near 15) 25
Tertiary (8-28 Ma) 28
Chattian 28.4

Late Oligocene to Early Miocene 28.4
Late Oligocene to Middle Miocene 28.4

Late-Oligocene 28.4

Upper Oligocene -Upper Miocene 28.4
Early Oligocene 33.9

Early Oligocene to Early Miocene 33.9
Early-Oligocene 33.9
Middle to Late Tertiary 33.9

Miocene to Oligocene 33.9
Oligocene 33.9

Oligocene 33.9
Oligocene and Cambrian to Late Proterozoic, mixed 33.9
Oligocene and Early Miocene 33.9

Oligocene to Early Miocene 33.9
Oligocene to Middle Miocene 33.9
Oligocene to Miocene 33.9

Oligocene to Pleistocene 33.9
Oligocene to Pliocene 33.9

Oligocene(?) to Pleistocene(?) 33.9
Oligocene(?) to Pliocene 33.9
Oligocene(?) to Pliocene(?) 33.9

Oligocene/Miocene 33.9
Oligocene-Miocene 33.9
Rupelian 33.9

Late-Eocene 37.2
Priabonian 37.2

Late Eocene 40.4
Late Eocene to Early Miocene 40.4
Late Eocene to Early Oligocene 40.4

Late Eocene to Late Miocene 40.4
Late Eocene to Late Oligocene 40.4
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Table 2S.2 continued
Late Eocene to Middle Eocene 40.4

Late Eocene to Middle Miocene 40.4
Late Eocene to Miocene 40.4

Late Eocene to Oligocene 40.4
Late-Middle Eocene 48.6
Middle Eocene 48.6

middle Eocene to Early Miocene 48.6
middle Eocene to early Miocene 48.6
Middle Eocene to Early Oligocene 48.6

Middle Eocene to Early Pliocene 48.6
Middle Eocene to Late Eocene 48.6

middle to late Eocene 48.6
Middle-Eocene 48.6
upper and middle Eocene, Priabonian through Lutetian 48.6

Lutetian 52
Early Eocene 55.8
Early to Middle Eocene 55.8

Early-Eocene 55.8
Eocene 55.8

Eocene (Olympic Pen) and Cretaceous(?) (Yakima Co) 55.8
Eocene to Early Oligocene 55.8
Eocene to Miocene 55.8

Eocene to Oligocene 55.8
Eocene to Pliocene 55.8
Eocene-Oligocene 55.8

Likely Eocene 55.8
lower Eocene, Ypresian 55.8

lower Eocene,Ypresian 55.8
Lower Eocene-Middle Eocene 55.8
Miocene to Eocene 55.8

Mostly Eocene but ranges from Miocene to Paleocene 55.8
Mostly Oligocene-Eocene 55.8
Oligocene and Eocene 55.8

Oligocene to Eocene 55.8
Probably Eocene 55.8

Tertiary but mostly Eocene 55.8
Ypresian 55.8
Late Paleocene to Early Eocene 58.7

Late Paleocene to Early Oligocene 58.7
Late-Paleocene 58.7
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Table 2S.2 continued
Selandian 61.7

upper Paleocene, Selandian 61.7
Danian 65.5

Early-Paleocene 65.5
Eocene to Paleocene 65.5
lower Paleocene, Danian 65.5

Paleocene 65.5
Paleocene and Eocene 65.5
Paleocene to Early Eocene 65.5

Paleocene to Early Oligocene 65.5
Paleocene to Eocene 65.5

Paleocene to late Eocene 65.5
Paleocene to Late Miocene 65.5
Paleocene to Middle Eocene 65.5

Paleocene to middle Eocene 65.5
Paleocene to Oligocene 65.5
Paleocene to Pliocene 65.5

Paleocene(?) to Oligocene 65.5
Paleocene-Eocene 65.5

Paleogene, possibly Oligocene 65.5
Quaternary and Tertiary 65.5
Quaternary-T ertiary 65.5

Tertiary 65.5
Tertiary to Quaternary 65.5
Tertiary-Late-Pliocene to Paleocene 65.5

Tertiary -Paleogene 65.5
Tertiary -Quaternary 65.5

Maastrichtian 70.6
Upper Cretaceous, Maastrichtian 70.6
Upper Cretaceous, upper and middle Maastrichtian 70.6

Upper Cretaceous, upper Maastrichtian 70.6
Campanian 83.5
Upper Cretaceous, lower Campanian 83.5

Upper Cretaceous, upper Campanian 83.5
Santonian 85.8

Upper Cretaceous, lower Campanian and upper Santonian 85.8
Upper Cretaceous, middle and lower Santonian 85.8
Coniacian 89.3

Turonian 93.5
Cenomanian 99.6
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Table 2S.2 continued
Early Tertiary-Late Cretaceous 99.6

Eocene to Late Cretaceous 99.6
Late Cretaceous 99.6

Late Cretaceous and Paleocene 99.6
Late Cretaceous and possibly Eocene 99.6
Late Cretaceous Paleocene 99.6

Late Cretaceous to Early Eocene 99.6
Late Cretaceous to Early Miocene 99.6
Late Cretaceous to Early Tertiary 99.6

Late Cretaceous to Eocene 99.6
Late Cretaceous to Oligocene 99.6

Late Cretaceous to Paleocene 99.6
Late Cretaceous to Pliocene 99.6
Late Cretaceous(?) to Eocene(?) 99.6

Late Cretaceous(?) to Miocene(?) 99.6
Late Cretaceous; Gufian Series 99.6
Late Cretaceous-Gufian 99.6

late Early to early Late Cretaceous 99.6
Late-Cretaceous 99.6

Paleocene to Upper Cretaceous 99.6
Paleocene-Late Cretaceous 99.6
Tertiary-Late Cretaceous 99.6

Upper Cretaceous 99.6
Upper Cretaceous, lower Cenomanian 99.6
Upper Cretaceous, upper and middle Campanian 99.6

Upper Cretaceous, upper Cenomanian 99.6
Upper Cretaceous-Paleocene 99.6

Albian 112
Early Cretaceous; Aptian; Albian Series 112
Early Cretaceous; Comanchean; Albian Series 112

Aptian 125
Berriasian 145.5
Cretaceous 145.5

Cretaceous (?) 145.5
Cretaceous or Eocene 145.5

Cretaceous to Eocene 145.5
Cretaceous(?) 145.5
Cretaceous(?) to Miocene 145.5

Cretaceous(?) to Oligocene(?) 145.5
Cretaceous? 145.5
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Table 2S.2 continued
Cretaceous-Tertiary 145.5

Early and Late Cretaceous 145.5
Early and Late Cretaceous; Comanchean Series 145.5

Early Cretaceous 145.5
Early Cretaceous - Late Cretaceous 145.5
Early Cretaceous metamorphism (Jurassic protolith) 145.5

Early Cretaceous; Comanchean Series 145.5
Early Cretaceous; Comenchean Series 145.5
Early Cretaceous; Washita Series 145.5

Early Cretaceous-Late Cretaceous 145.5
Early Cretaceous-Late Jurassic 145.5

Early Late Cretaceous and Late Early Cretaceous 145.5
Early to Late Cretaceous 145.5
Early-Cretaceous 145.5

Eocene to Cretaceous 145.5
Late Cretaceous to Early Cretaceous 145.5
Late Early to Late Cretaceous 145.5

late Early to Late Cretaceous 145.5
Lower Cretaceous 145.5

Lower Cretaceous-Upper Cretaceous 145.5
Lower Tertiary-Cretaceous 145.5
Middle-Lower Cretaceous 145.5

Mostly Cretaceous 145.5
Tertiary and Cretaceous 145.5
T ertiary -Cretaceous 145.5

Tithonian 150.8
Kimmeridgian 155.7

Early Cretaceous to Late Jurassic 161
Late Jurassic 161
Late Jurassic and Early Cretaceous 161

Late Jurassic to Cretaceous 161
Late Jurassic to Early Cretaceous 161
Late Jurassic to Late Cretaceous 161

Late Jurassic to Middle Jurassic 161
Late Jurassic-Early Cretaceous 161

Late-Jurassic 161
Upper Juras sic-Lower Cretaceous 161
Upper Juras sic-Lower Cretaceous 161

Oxfordian 161.2
Callovian 164.7
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Table 2S.2 continued
Bathonian 167.7

Early Cret to Middle Jur and minor Eocene 176
Early Cret to Middle Jur and minor Eocene 176

Late Jurassic to Middle Jusassic 176
Middle - Late? Jurassic 176
Middle Jurassic 176

Middle Jurassic to Early Cretaceous 176
Middle Jurassic to Late Cretaceous 176
Middle Jurassic to late Early Cretaceous 176

Middle Jurassic(?) to Late Cretaceous 176
Middle Jurassic? 176

Middle Juras sic -Lower Cretaceous 176
Middle Juras sic -Upper Jurassic 176
Middle to Late Jurassic 176

Middle? Jurassic 176
Middle-Jurassic 176
Pliensbachian 189.6

Sinemurian 196.5
Early-Jurassic 199.6

Hettangian 199.6
Jurassic 199.6
Jurassic - Lower Cretaceous 199.6

Jurassic (?) 199.6
Juras s ic -Cretaceous 199.6
Jurassic in center but Oligocene to Eocene in north 199.6

Jurassic to Cretaceous 199.6
Jurassic to early Cretaceous 199.6

Jurassic to Miocene 199.6
Jurassic(?) 199.6
Jurassic(?) 199.6

Jurassic(?) and Triassic(?) to Lower Cretaceous 199.6
Jurassic(?) to Cretaceous(?) 199.6
Jurassic? 199.6

Juras s ic -Cretaceous 199.6
Jurassic-Tertiary 199.6

Jur-Cret in San Juan Islands but Eocene in King Country? 199.6
Jur-Cret in San Juan Islands but Eocene in King County? 199.6
Cretaceous-Jurassic 201.6

Early - Middle Jurassic 201.6
Early Cretaceous; Jurassic 201.6
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Early Jurassic 201.6

Early Juras sic -  Triassic 201.6
Early Jurassic to Middle Jurassic 201.6

Early Jurassic-Triassic 201.6
Early to Middle Jurassic 201.6
Jurassic to early Cretaceous 201.6

Late Cretaceous-Jurassic 201.6
Lower Jurassic 201.6
Mostly Cretaceous-Jurassic 201.6

probably mainly Jurassic 201.6
Probably mostly Jurassic 201.6

Norian 216.5
Carnian 228
Late Triassic 235

Late Triassic to Early Cretaceous 235
Late Triassic to Early Jurassic 235
Late Triassic? To Jurassic 235

Late Triassic? to Jurassic 235
Late-Triassic 235

Lower Juras sic and Upper Trias sic 235
Upper Triassic 235
Upper Triassic; possibly Lower Jurassic at top 235

Upper Triassic; possibly Lower Jurassic at top plus Middle? 235
Middle to Late Triassic 245
Middle Triassic to Early Jurassic 245

Middle-Triassic 245
Cretaceous-Triassic 251

Early Middle (?) Triassic 251
Early to Middle Triassic 251
Early Triassic 251

Early Triassic to Middle Triassic 251
Early-Triassic 251
Jurassic to Triassic 251

Jurassic(?) and Triassic(?) 251
Jurassic(?) and Triassic(?) to Upper Jurassic 251

Jurassic-Triassic 251
Jurassic-Triassic 251
Late Cretaceous to Early Triassic 251

Lower Cretaceous-Triassic 251
Lower Triassic to Jurassic(?) and Triassic(?) 251
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Lower Triassic-Upper Jurassic 251

Lower Triassic-Upper Triassic 251
Mesozoic 251

Middle and Early Triassic 251
Triassic 251
Triassic and (or) Jurassic 251

Triassic and Jurassic 251
Triassic to Cretaceous 251
Triassic to Jurassic 251

Triassic to Late Jurassic 251
Triassic(?) 251

Triassic(?) and/or Jurassic(?) 251
Triassic? 251
Late Permian 260

Late Permian -  Cimarronian 260
Late Permian- Custerian to Cimarronian 260
Late Permian- Custerian to Cimarronian 260

Late Permian- custerian to Cimarronian 260
Late Permian to Early Permian 260

Late Permian (?) to Early Jurassic 260
Late Permian (?) to Jurassic 260
Lopingian 260.4

Cisuralian 299
Cretaceous to Permian 299
Early Permian 299

Early Permian -  Geary an 299
early Permian Gearyan 299

Early Permian Gearyan 299
Early Permian to Early Triassic 299
Early to Late Permian 299

Lower Permian 299
Permian 299
Permian to Early Triassic 299

Permian to Jurassic 299
Permian to Jurassic (?) 299

Permian to Tertiary; most Mesozoic 299
Permian to Triassic 299
Permian(?) to Jurassic(?) 299

Permian; Guadalupe Series 299
Permian; Leonard and Guadalupe Series 299



60

Table 2S.2 continued
Permian; Leonard Series 299

Permian; Ochoa Series 299
Permian; Wolfcamp and Leonard Series 299

Permian; Wolfcamp Series 299
Permian; Wolfcamp to Leonard Series 299
Permian-Lower Triassic 299

Permian-Triassic 299
Permian-Upper Trias s ic 299
Probably Permian 299

Triassic to Permian 299
Triassic with some Permian 299

Triassic-Permian 299
Late Pennsylvanian 306
Late Pennsylvanian- Des Moinesian 306

Late Pennsylvanian- Mis souri Series 306
Late Pennsylvanian- Mis souria 306
Late Pennsylvanian- Mis sourian 306

Late Pennsylvanian- Mis sourian 306
Late Pennsylvanian- Mis sourian 306

Late Pennsylvanian- Virgilian 306
Late Pennsylvanian; Missouri Series 306
Late Pennsylvanian; Virgil Series 306

Late Pennsylvanian-Missouri Series 306
Late Pennsylvanian-Upper Series -Missourian Stage 306
Late Pennsylvanian-Upper Series -Virgilian Stage 306

Late Pennsylvanian-Virgil Series 306
Upper Pennsylvanian 306

Moscovian 311.7
Middle Pennsylvanian 312
Middle Pennsylvanian 312

Middle Pennsylvanian- Atokan 312
Middle Pennsylvanian- Des Moinesian 312
Middle Pennsylvanian- Desmoinesian 312

Middle Pennsylvanian- Mis sourian 312
Middle Pennsylvanian- Morrowan 312

Middle Pennsylvanian to Early Pennsylvanian 312
Middle Pennsylvanian; Atoka and Des Moines Series 312
Middle Pennsylvanian; Atoka Series 312

Middle Pennsylvanian-Atokan Stage 312
Middle Pennsylvanian-Des moines Series 312
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Middle Pennsylvanian-Des Moines Series 312

Middle Pennsylvanian-Middle Series-Desmonian Stage 312
Middle to Upper Pennsylvanian 312

Pennsylvanian; Middle and Late 312
Upper and Middle Pennsylvanian 312
Upper and Middle Pennsylvanian-Permian 312

Early Pennsylvanian 318
Early Pennsylvanian -  Desmoinesian 318
Early Pennsylvanian -  Morrowan 318

Early Pennsylvanian and Late Mississippian 318
Early Pennsylvanian- Desmoinesian 318

Early Pennsylvanian- Desmonesian 318
Early Pennsylvanian- Morrowan 318
Early Permian to Early Pennsylvanian 318

Early; Middle; and Late Pennsylvanian 318
Lower Pennsylvanian 318
Lower Pennsylvanian-Permian 318

Lower to Middle Pennsylvanian 318
Mesozoic -Pennsylvanian 318

Middle and Lower Pennsylvanian 318
Pennsylvanian- Desmoinesian 318
Pennsylvanian to Early Permian 318

Pennsylvanian to Late Permian 318
Pennsylvanian to Permian 318
Pennsylvanian to Permian? 318

Pennsylvanian to Triassic 318
Pennsylvanian; Des Moines Series 318

Pennsylvanian; Missouri Series 318
Pennsylvanian; Morrow Series 318
Pennsylvanian; Virgil Series 318

Permain and Pennsylvanian 318
Permian and Pennsylvanian 318
Permian and/or Pennsylvanian 318

Permian to Pennsylvanian 318
Permian/Pennsylvanian 318

Permian-Pennsylvanian 318
Triassic -Pennsylvanian 318
Bashkirian 318.1

Pennsylvanian 318.1
Late Missis sippian 326
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Late Missis sippian- Chesteran Series 326

Late Mississippian- Chesterian 326
Late Mississippian- Chesterian Series 326

Late Missis sippian- Meramecian 326
Late Mississippian; Chesteran; and Devonian 326
Late Mississippian-Chesteran Series 326

Late Missis sippian-Chesterian 326
Late Mississippian-Chesterian Series 326
Late Mississippian-Meramecian Series 326

Late-Mis s issippian 326
Upper Mississippian 326

Upper Miss issippian-Lower Cretaceous 326
Upper Mississippian-Permian 326
Serpukhovian 326.4

Visean 345.3
Carboniferous 359
Carboniferous to Permian 359

Carboniferous-Pennsylvanian 359
Early Mississippian 359

Early Missis sippian - Kinderhookian Series 359
Early Missis sippian - Meramecian to Os agean 359
Early Mississippian - Osagean Series 359

Early Mississippian Kinderhookian Series 359
Early Mississippian- Meramecian to Osagean 359
Early Mississippian-Kinderhookian Series 359

Early Mississippian-Osagean Series 359
Early Mississippian-Oseagean Series 359

Jurassic to Mississippian 359
Late Cretaceous to Mississippian 359
Late Paleozoic 359

Late Paleozoic dep? With Cretaceous metamorphism? 359
Late Paleozoic dep? with Cretaceous metamorphism? 359
Lower Mississippian 359

Lower Miss issippian-Upper Missis sippian 359
Mississipian 359

Missis sippian -  Pennsylvanian 359
Missis sippian- Os agian 359
Missis sippian to Early Permian 359

Mississippian to Pennsylvanian 359
Missis sippian to Permian 359
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Table 2S.2 continued
Missis sippian to Triassic 359

Pennsylvanian -  Mississippian 359
Pennsylvanian and Mis sissippian 359

Pennsylvanian-Missis sipian 359
Pennsylvanian-Missis sippian 359
Triassic to Mississippian 359

Mississippian 359.2
Tournaisian 359.2
Famennian 374.5

Early Mississippian to Late Devonian 385
Early Mississippian to Late Dovonian 385

Late Devonian 385
Late Devonian to Early Permian 385
Late Devonian to Early Triassic 385

Late Devonian to Mississippian 385
Late Dovonian 385
Upper Devonian 385

Upper Devonian 385
Upper Devonian-Lower Mississippian 385

Upper Devonian-Upper Mis sissippian 385
Late-Devonian 385.3
Frasnian 385.6

Gvetian 391.8
Eifelian 397.5
Middle - Upper Devonian 398

Middle Devonian 398
Middle Dovonian 398

Middle to Late Devonian 398
Middle-Devonian 398
Emsian 407

Pragian 411.2
Carboniferous and/or Devonian 416
Devonian 416

Devonian -  Missis sippian 416
Devonian and Permian 416

Devonian and/or Mis sissippian 416
Devonian to Jurassic 416
Devonian to Jurassic 416

Devonian to Late Jurassic 416
Devonian to Mississippian 416
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Devonian to Pennsylvanian 416

Devonian to Permian 416
Devonian to Permian but Triassic in Asotin Co 416

Devonian to Permian but Triassic in Asutin Co 416
Devonian to Permian with minor Mesozoic 416
Devonian to Permian with some Jurassic 416

Devonian(?) 416
Devonian(?) and Permian 416
Devonian? 416

Devonian? Or Miss issippian? 416
Devonian-Cambrian 416

Devonian-Mississippian 416
Devonian-Permian 416
Early - Late Devonian 416

Early Devonian 416
Early Devonian - Late Devonian 416
Early Dovonian 416

Early Mississippian to Early Devonian 416
Early-Devonian 416

Late Mississipian; Chesteran; and Devonian 416
Late Mississippian ; Chesteran; and Devonian 416
Late to Early Devonian 416

Late; Middle; and early Mississippian and Devonian 416
Late; Middle; and Early Mississippian and Devonian 416
Lockovian 416

Lower (?) and Middle Devonian 416
Lower Devonian 416

Lower Devonian; Siegenian 416
Lower to Middle Devonian 416
Missis sippian and Devonian 416

Missis sippian to Devonian 416
Missis sippian-Devonian 416
Uncertain, possibly Permian or Devonian 416

Upper or Middle Paleozoic 416
Pridoli 418.7

Ludlow 421.3
Late Silurian 423
Upper Silurian 423

Upper Silurian - (Pridolian and Ludlovian) 423
Upper Silurian? 423
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Lower Devonian and Upper Silurian 426

Late and Middle Silurian 428
Lower Devonian and Middle Silurian 428

Middle (?) and Upper Silurian 428
Middle Silurian 428
Middle Silurian-Upper Silurian 428

Upper to Middle Silurian (Ludlovian and Wenlockian) 428
W enlock 428.2
Telychian 436

Aeronian 438
Llandovery 443.7

Devonian -  Silurian 444
Devonian and Silurian 444
Devonian or Silurian or both 444

Devonian to Silurian 444
Devonian/Silurian 444
Devonian? - Silurian? 444

Early - Late Silurian 444
Early and Middle Silurian 444

Early and Middle(?) Triassic 444
early Late Silurian 444
Early Mississippian to Early Silurian 444

Early Silurian 444
Late Silurian to Early Silurian 444
Late Silurian- to Early Silurian 444

Lower (?) and Middle Silurian 444
Lower Devonian -  Silurian 444

Lower Devonian and Silurian 444
Lower Silurian 444
Lower Silurian (Llandoverian) 444

Lower Silurian (upper Llandoverian) 444
Lower Silurian? 444
Lower? - Middle? Silurian 444

Lower?- Middle? Silurian 444
Middle and Lower Silurian 444

Silurian 444
Silurian 444
Silurian to Early Devonian 444

Silurian? 444
Silurian? -Devonian 444
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Silurian-Devonian 444

Early Devonian to Early Silurian 446
Katian 455.8

Sandbian 460.9
Early Silurian to Late Ordovician 461
Early Silurian? And Late Ordovician 461

Early Silurian? and Late Ordovician 461
Late Ordovician 461
Late Ordovician ? 461

Late Ordovician to Late Silurian 461
Late Ordovician to Middle Ordovician 461

Late Ordovician to Silurian 461
Late Ordovician; Mississippian; and Devonian 461
Late Ordovician-Cincinnatian series 461

Late-Ordovician 461
Lower Silurian and Upper Ordovician 461
Lower Silurian and Upper Ordovician? 461

Lower Silurian or Upper Ordovician 461
Upper Ordovician 461

Upper Ordovician - Lower Silurian 461
Upper Ordovician? 461
Late and Middle Ordovician 470

Middle - Upper Ordovician 472
Middle and Late Ordovician 472
Middle Ordovician 472

Middle Ordovician? 472
Middle Ordovician-Mohawkian Series 472

Middle Ordovician-Upper Devonian 472
Middle Ordovician-Upper Missis sippian 472
Middle Ordovician-Upper Ordovician 472

Middle to Lower? Ordovician 472
Middle? Ordovician 472
Middle? Ordovician 472

Middle-Ordovician 472
Silurian to Middle Ordovician 472

Upper and Middle Ordovician 472
Upper? and Middle Ordovician 472
Tremadocian 487

Devonian -  Ordovician 488
Devonian in part, probably Ordovician in part 488
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Table 2S.2 continued
Devonian to Ordovician 488

Devonian/Ordovician 488
Devonian-Ordivician 488

Devonian-Ordovician 488
Early Ordovician 488
Early Ordovician - Ibexian Series 488

Early Ordovician-Beekmantown Series 488
Early Ordovician-Chazyan Series 488
Early Ordovician-Ibexian Series 488

Late Mississippian to Early Ordovician 488
Lower and Middle Devonian 488

Lower Ordovician 488
Lower? Ordovician 488
Middle or Lower Ordovician 488

Middle or Lower Ordovician? 488
Middle Ordovician or older 488
Middle Ordovician to Early Ordovician 488

Middle Ordovician to Upper Cambrian? 488
Mississipi; Devonian; and Ordovician 488

Mississippi; Devonian; and Ordovician 488
Missis sippian to Ordovician 488
Missis sippian-Ordovician 488

Ordovician (?) 488
Ordovician to Devonian 488
Ordovician to Early Devonian 488

Ordovician to Jurassic 488
Ordovician to Silurian 488

Ordovician to Trias sic 488
Ordovician(?) to Devonian(?) 488
Ordovician(?) to Permian(?) 488

Ordovician(?) to Triassic(?) 488
Ordovician? 488
Ordovician? - Silurian? 488

Ordovician-Devonian 488
Ordovician-Silurian 488

Paleozoic (Ordovician?) 488
Silurian -  Ordovician 488
Silurian and Ordovician 488

Silurian or Ordovician 488
Silurian or Ordovician or both 488
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Silurian to Ordovician 488

Silurian/Ordovician 488
Early -Ordovician 488.3

Ordovician 488.3
Tremadocian 488.3
Early Ordovician to Late Cambrian 501

Early Paleozoic - Late Precambrian (?) 501
Furongian 501
Late Cambrian 501

Late Cambrian(?) to Early Permian 501
Late Cambrian(?) to Early Permian (?) 501

Late Cambrian? To Early Ordovician 501
Late Cambrian? to Early Ordovician 501
Late Cambrian-Croixian Series 501

lower Middle Ordovician to Upper Cambrian 501
Lower Ordovician and Upper Cambrian 501
Ordovician to Late Cambrian 501

Upper Cambrian 501
Upper Cambrian to Lower Ordovician 501

Upper Cambrian? 501
Upper Cambrian? - Lower Ordovician? 501
Late Cambrian to Middle Cambrian 521

Middle Cambrian to Early Ordovician 521
Middle Cambrian to Late Cambrian 521
Middle Cambrian to Ordovician 521

Middle Cambrian-Upper Cambrian 521
Middle Cambrian-Upper Ordovician 521

Middle-Cambrian 521
Ordovician to Middle Cambrian 521
Upper and Middle? Cambrian 521

Cambrian 542
Cambrian - Lower Ordovician 542
Cambrian - Middle Ordovician 542

Cambrian -  Ordovician 542
Cambrian ? 542

Cambrian and Ordovician 542
Cambrian Ordovician 542
Cambrian to Devonian 542

Cambrian to Jurassic 542
Cambrian, Devonian, and Mississipi 542
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Cambrian, Devonian, and Mississippi 542

Cambrian? 542
Cambrian? - Orovician? 542

Cambrian?-Ordovician? 542
Cambrian-Ordovician 542
Cambrian -Permian 542

Cambrian-Precambrian boundary 542
Cambro -Ordovician 542
Cambro-Ordovician? to Carboniferous 542

Cambro-Ordovician? to Carboniferous? 542
Devonian -  Cambrian 542

Early Cambrian 542
Early Cambrian - Lower Ordovician 542
Early Cambrian - Middle Ordovician 542

Early Cambrian to Middle Cambrian 542
Early Cambrian-Middle Ordovician 542
Early Paleozoic 542

Early Paleozoic (?) 542
Early Paleozoic and Late Mississippian 542

Early Paleozoic(?) 542
Early to Middle Cambrian 542
Early-Cambrian 542

Lower Cambrian 542
Lower Cambrian and pearhaps partly older 542
Lower Cambrian and perhaps partly older 542

Lower Devonian or younger 542
Lower Ordovician and Cambrian 542

Lower Ordovician or Cambrian or both 542
Middle and Lower Cambrian 542
Middle Cambrian 542

Middle Cambrian to Devonian 542
Missis sipian-Cambrian 542
Missis sippian to Cambrian 542

Missis sippian-Cambrian 542
Ordovician -  Cambrian 542

Ordovician and Cambrian 542
Ordovician to Cambrian 542
Ordovician/Cambrian 542

Ordovician-Cambrian 542
Paleozoic 542
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Paleozoic 542

Paleozoic (?) 542
Paleozoic or Mesozoic 542

Paleozoic sedimentary rocks with Mesozoic intrusive rocks 542
Paleozoic to Jurassic(?) 542
Paleozoic to Mesozoic 542

Paleozoic to Triassic 542
Paleozoic(?) to Jurassic 542
Paleozoic(?) to Jurassic(?) 542

Paleozoic(?) to Late Jurassic 542
Paleozoic(?) to Mesozoic(?) 542

Paleozoic(?), Triassic(?), and Jurassic 542
Phanerozoic 542
Probably lower Paleozoic 542

Silurian to Cambrian 542
Ediacarian 629
Cryogenian 821

Cambrian and Late Proterozoic 1000
Cambrian and/or Neoproterozoic 1000

Cambrian or Neoproterozoic 1000
Cambrian to Late Proterozoic 1000
Cambrian to Neoproterozoic 1000

Cambrian/Late Proterozoic 1000
Cambrian/Precambrian 1000
Devonian - Precambrian Z 1000

Early Paleozoic -  Neoproterozoic 1000
Early Paleozoic-Neoproterozoic 1000

Late Precambrian 1000
Late Precambrian -  Cambrian 1000
Late Precambrian (?) 1000

Late Precambrian (?) - Early Paleozoic 1000
Late Proterozoic 1000
Late Proterozoic to Early Cambrian 1000

Late Proterozoic to Jurassic 1000
Late Proterozoic to Middle Devonian 1000

Late Proterozoic to Pennsylvanian 1000
Late Proterozoic(?) or older? 1000
Late Proterozoic(?) to Early Jurassic 1000

Late Proterozoic(?) to Mesozoic(?) 1000
Late Proterozoic(?) to Paleozoic(?) 1000
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Late Proterozoic? or older? 1000

Late Proterozoic? To Devonian? 1000
Late Proterozoic? to Devonian? 1000

Late-Proterozoic 1000
Lower Cambrian and (or) Late Proterozoic 1000
Lower Cambrian and Late Proterozoic 1000

Lower Cambrian and Proterozoic Z 1000
Lower Devonian, Silurian, or Proterozoic Z 1000
Lower Ordovician and Proterozoic Z 1000

Middle Paleozoic to Neoproterozoic 1000
Neoproterozoic 1000

Neoproterozoic 1000
Ordovician - Precambrian Z 1000
Ordovician and Proterozoic Z 1000

Ordovician or older 1000
Ordovician or Proterozoic Z 1000
Ordovician to Neoproterozoic 1000

Ordovician to Proterozoic Z 1000
Ordovician, Cambrian, or Proterozoic Z 1000

Ordovician? - Late Proterozoic? 1000
Paleozoic or Neoproterozoic 1000
Paleozoic to Neoproterozoic 1000

Paleozoic/Late Proterozoic 1000
Pennsylvanian? Or Late Proterozoic? 1000
Pennsylvanian? or Late Proterozoic? 1000

Precambrian Z 1000
Proterozoic Z 1000

Proterozoic Z or Cambrian or both 1000
Proterozoic Z or younger 1000
Proterozoic Z to earliest Paleozoic 1000

Proterozoic Z? 1000
Proterozoic Z? and Permian 1000
Proterozoic Z-Cambrian 1000

Proterozoic Z-Ordovician 1000
Proterozoic Z-Ordovician 1000

Proterozoic Z-Pennsylvanian 1000
Silurian - Precambrian Z 1000
Silurian?, Ordovician, or Proterozoic Z 1000

Tertiary to Late Proterozoic 1000
Tonian 1000
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Stenian 1200

preCambrian (Proterozoic); Grenville Series 1300
Ectasian 1400

preCambrian (Proterozoic); Llano Series 1400
Middle-Proterozoic 1443
Calymmian 1600

Cretaceous to Middle Proterozoic 1600
Early-Middle Proterozoic 1600
Early -Middle -Proterozoic 1600

Eocene and Middle Proterozoic, mixed 1600
Eocene to Middle Proterozoic 1600

Late and Middle Proterozoic, undivided 1600
Late Middle Proterozoic 1600
Late to middle Proterozoic 1600

late to middle Proterozoic 1600
Late to Middle Proterozoic 1600
Mesoproterozoic 1600

Middle Middle Proterozoic 1600
Middle Proterozoic 1600

Middle Proterozoic(?) 1600
Middle to Late Proterozoic 1600
Middle/Late Proterozoic 1600

Middle-Proterozoic 1600
Ordovician to Middle Proterozoic 1600
Precambrian - Middle Proterozoic 1600

Precambrian Y 1600
Proterozoic Y 1600

Proterozoic Y to Proterozoic Z 1600
Proterozoic Y-Pennsylvanian 1600
Statherian 1760.1

Orosirian 2050
Middle-Early -Proterozoic 2100
Rhyacian 2300

Cretaceous to Early Proterozoic 2500
Early Middle Proterozoic 2500

Early Middle Proterozoic to Early Proterozoic 2500
Early Proterozoic 2500
Early Proterozoic 2500

Early Proterozoic to Cretaceous 2500
Early Proterozoic to Late Cretaceous 2500
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Early Proterozoic to Mesozoic 2500

Early Proterozoic to Miocene 2500
Early Proterozoic to Tertiary 2500

Early Proterzoic 2500
Late to Early Proterozoic 2500
Late-Archean 2500

Lower Proterozoic 2500
Middle and Lower Proterozoic 2500
Middle Proterozoic to Early Proterozoic 2500

Middle Proterozoic to Early Proterozoic 2500
Paleoproterozoic 2500

preCambrian (Proterozoic) 2500
preCambrian-Proterozoic 2500
Proterozoic 2500

Proterozoic -  Cambrian 2500
Proterozoic - Paleozoic ? 2500
Proterozoic W 2500

Proterozoic X 2500
Proterozoic Y; may contain some older rocks 2500

Proterozoic; Late Cretaceous; Tertiary 2500
Siderian 2500
Early Proterozoic to Late Archean 2800

Early Proterozoic to Late Archean ? 2800
Late Archean 2800
Late Archean -  Tertiary 2800

Neoarchean 2800
Mesoarchean 2850

Archean to Early Proterozoic 3000
Precambrian 3000
preCambrian 3000

Precambrian to Paleozoic 3000
precambrian to Paleozoic 3000
Precambrian to Phanerozoic 3000

Precambrian to Silurian 3000
precambrian? 3000

Precambrian?-Cambrian? 3000
precambrian?-Cambrian? 3000
Prec ambrian -Paleozoic 3000

Tertiary -  Archean 3000
Middle Archean-Late Archaen 3200
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Middle Archean-Late Archean 3200

Paleoarchean 3600
Archean 3850

Early Archean 3850
Middle to Early Archean 3850
?

Age not given
age uncertain
Undetermined

Unknown
Unknown

Silurian and perhaps Ordovician 488
Early Permian Gearyan 299
Lower Devonian and Middle Ordovician 472

Miocene-Oligocene 23
Missis sippian Pennsylvanian 359
Proterozoic-Paleozoic 2500

Devonian? or Mis sissippian? 416
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Table 2S.3 Estimated values of (87Sr/86Sr)seawater throughout Earth history as used in 
equation 3.

TIME (Ma) (8/ Sr/86Sr) ̂ Ol/ ^Vseawater

0.1 0.709

1 0.709

1.8 0.7089

2.1 0.7089

2.5 0.7089

2.6 0.7089

3 0.7089

3.5 0.7088

3.6 0.7088

4 0.7088

5.3 0.7088

5.332 0.7088

7 0.7087

9.5 0.7086

10.2 0.7086

11.6 0.7085

12 0.7085

13 0.7084

13.65 0.7084

15 0.7083

16 0.7083

18 0.7082

19 0.7082

20.43 0.7081

22 0.708

23 0.708

23.03 0.708

24 0.7079

25 0.7079

28 0.7078

28.4 0.7077

33.9 0.7077

37.2 0.7077

40.4 0.7077

48.6 0.7077
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52 0.7077

55.8 0.7077

58.7 0.7077

61.7 0.7077

65.5 0.7077

70.6 0.7077

83.5 0.7075

85.8 0.7075

89.3 0.7075

93.5 0.7075

99.6 0.7074

112 0.7073

125 0.7072

145.5 0.707

150.8 0.707

155.7 0.7069

161 0.7069

161.2 0.7069

164.7 0.7068

167.7 0.7068

176 0.707

189.6 0.7071

196.5 0.7072

199.6 0.7072

201.6 0.7072

216.5 0.7074

228 0.7075

235 0.7076

245 0.7076

251 0.7077

260 0.7071

260.4 0.707

299 0.7082

306 0.7082

311.7 0.7082

312 0.7082

318 0.7082

318.1 0.7082
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326 0.708

326.4 0.708

345.3 0.7079

359 0.7079

359.2 0.7079

374.5 0.7079

385 0.7079

385.3 0.7079

385.6 0.7079

391.8 0.7082

397.5 0.7085

398 0.7085

407 0.7087

411.2 0.7085

416 0.7085

418.7 0.7084

421.3 0.7083

423 0.7082

426 0.7081

428 0.7081

428.2 0.7081

436 0.7081

438 0.7081

443.7 0.7081

444 0.7081

446 0.7081

455.8 0.708

460.9 0.708

461 0.708

470 0.7081

472 0.7082

487 0.7085

488 0.7085

488.3 0.7085

501 0.709

521 0.709

542 0.709

629 0.708
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821 0.7064

1000 0.705

1200 0.705

1300 0.705

1400 0.705

1443 0.705

1600 0.705

1760.1 0.705

2050 0.705

2100 0.705

2300 0.7047

2500 0.7045

2800 0.7042

2850 0.7042

3000 0.704

3200 0.7038

3600 0.7034

3850 0.7032
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Table 2S.4 Values of Sr content and W used in equations 5 and 6 for each unique 
lithologic descriptor (rocktype1 and rocktype2) present in the composite geodatabase. 
Q=quartz, B=biotite, A=alkali feldspars, Pl=plagioclaste, F=feldspatoids, H=hornblende, 
O=olivine, Px=pyroxene, D=dolomite, C=calcite.

Rocktype Q B A Pl F H O Px D C Krock R W' '  norm Sr
ppm

alkali rhyolite 25 10 45 5 5 10 10.6 3 3 48
alkali syenite 10 50 20 10 10 15.1 3 4 248
alkalic intrusive 
rock

15 10 50 10 5 10 11.7 1 1 200

alkalic volcanic 
rock

15 10 50 10 5 10 11.7 3 3 200

alkali-granite
(alaskite)

25 10 45 5 5 10 10.6 1 1 81

alkaline basalt 15 40 5 40 18.7 3 5 629
alluvial fan 1 200
alluvial terrace 1 200

Alluvium 1 200
amphibole
schist

5 35 20 40 27.8 1 3 298

amphibolite 10 10 10 10 10 40 10 34.6 1 3 266

Andesite 10 5 15 60 10 19.5 3 5 387
anorthosite 80 10 10 39.7 1 4 291

Aplite 40 10 20 20 10 11.8 1 1 359
Arenite 1 148
Argillite 1 182

Arkose 1 140
ash-flow tuff 10 188
augen gneiss 35 10 30 15 10 11.1 1 1 169

Basalt 10 5 5 50 10 10 10 36.4 3 10 488
beach sand 1 200

Bentonite 2 250
bimodal suite 5 10 20 40 15 10 20.9 3 6 200
biogenic
sediment

1 200

biotite gneiss 1 401
biotite schist 1 401
black shale 2 203

Blueschist 10 5 5 50 10 10 10 36.4 1 3 162
Breccias 1 286

Calcarenite 50 50 450 1 41 500
calc-silicate
rock

50 50 300.2 1 27 612

calc-silicate
schist

50 50 300.2 1 27 565
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Carbonate 10

0
600 1 55 712

Cataclasite 1 350
charnockite 50 50 18.5 1 2 315
Chemical 1 300

Chert 1 168
Clastic 1 200

clay or mud 2 205
Claystone 2 211
Coal 1 200

coarse-grained 
mixed clastic

1 200

Colluviums 1 200
conglomerate 1 201

Dacite 20 10 10 40 10 10 17.2 3 5 381
Delta 1 200

Diabase 10 5 5 60 10 10 16.4 3 4 290
Diorite 10 5 5 50 10 10 10 36.4 1 3 415
dolostone
(dolomite)

10
0

300 1 27 530

dune sand 1 200
Dunite 90 10 199.7 1 18 111
Eolian 1 200

Evaporite 10
0

300 1 9 800

felsic gneiss 35 10 30 15 10 11.1 1 1 333

felsic
metavolcanic
rock

35 10 30 15 10 11.1 2 2 200

felsic volcanic 
rock

35 10 30 15 10 11.1 3 3 200

fine-grained 
mixed clastic

1 200

flaser gneiss 35 10 30 15 10 11.1 1 1 199
flood plain 1 200

Gabbro 10 5 5 50 10 10 10 36.4 1 3 437
Gabbroid 10 5 5 50 10 10 10 36.4 1 3 437

glacial drift 1 200
glaciolacustrine 1 200
Gneiss 1 312

Granite 35 10 30 15 10 11.1 1 1 199
granitic gneiss 35 10 30 15 10 11.1 1 1 280

granitoid 35 10 30 15 10 11.1 1 1 199

granodiorite 20 5 15 30 5 5 5 5 23.1 1 2 325
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granofels 35 10 30 15 10 11.1 1 1 296

granulite 1 498
gravel 1 272

greywacke 1 1 308
greenschist 10 5 5 50 10 10 10 36.4 1 3 331
greenstone 10 5 5 50 10 10 10 36.4 1 3 319

hornblendite 10
0

70 1 6 468

hornfels 1 435
ice

ignimbrite 10 71
indeterminate 1 200
intermediate
metavolcanic
rock

2 300

intermediate 
volcanic rock

3 300

intrusive
carbonatite

10
0

600 1 55 500

iron formation 1 58
kimberlite 10 5 5 50 10 10 10 36.4 3 10 796

lahar 3 200
lake or marine 
deposit (non­
glacial)

50 50 300.2 1 27 500

lamprophyre 40 10 10 10 20 10 21.1 3 6 855
landslide 1 200

latite 10 10 35 35 10 15.1 1 1 637
lava flow 3 350
limestone 10

0
600 1 55 666

loess 50 50 300.2 1 27 300
mafic gneiss 10 5 5 50 10 10 10 36.4 1 3 350
mafic
metavolcanic
rock

10 5 5 50 10 10 10 36.4 2 7 350

mafic rock 10 5 5 50 10 10 10 36.4 1 3 350

mafic volcanic 
rock

10 5 5 50 10 10 10 36.4 3 10 350

mafic volcanic 
rocks

10 5 5 50 10 10 10 36.4 3 10 350

marble 10
0

600 1 55 540

mass wasting 1 200
medium- 
grained mixed 
clastic

1 200
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melange 1 200

meta-argillite 2 164
meta-basalt 10 5 5 50 10 10 10 36.4 2 7 261

meta­
conglomerate

1 201

metamorphic
rock

1 322

meta-rhyolite 35 10 30 15 10 11.1 2 2 123

metasedimentar 
y rock

1 200

metavolcanic
rock

2 300

mica schist 1 149

migmatite 1 334
mixed
clastic/carbonat
e

50 50 300.2 1 27 600

mixed
clastic/volcanic

1 250

monzodiorite 20 10 10 40 10 5 5 22.8 1 2 619

monzogranite 40 10 20 20 10 11.8 1 1 185
monzonite 10 10 30 30 10 5 5 13.8 1 1 680
moraine 1 200

mud flat 2 306
mudstone 2 321
mylonite 1 368

nepheline
syenite

10 10 40 20 10 10 14.9 3 4 713

norite 10 5 5 50 10 10 10 36.4 1 3 411

novaculite 1 94
oil shale 1 470
olistostrome 2 321

orthogneiss 1 317
orthoquartzite 1 122
outwash 1 200

paragneiss 1 252
peat 1 200

pegmatite 35 10 30 15 10 11.1 1 1 281
pelitic schist 1 152
peraluminous
granite

35 10 30 15 10 11.1 1 1 181

peridotite 50 50 118.5 1 11 228
phonolite 10 40 10 10 10 10 10 36.4 3 10 772
phosphorite 50 50 300.2 1 27 730
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phyllite 1 161

phyllonite 1 161
playa 1 200

plutonic rock 
(phaneritic)

1 200

porphyry 3 300
pumice 3 200

pyroclastic 5 10 55 20 10 10 260
pyroxenite 20 20 60 68.2 1 6 170
quartz diorite 20 5 5 50 10 5 5 24.6 1 2 403

quartz latite 20 10 25 25 10 10 10.0 1 1 637
quartz
monzodiorite

20 10 10 40 10 10 12.7 1 1 574

quartz
monzonite

20 10 25 25 10 10 10.0 1 1 507

quartz syenite 10 10 30 20 10 10 14.6 1 1 165
quartz-feldspar
schist

1 245

quartzite 1 122
residuum 1 200
rhyodacite 30 10 15 30 10 5 14.5 3 227

rhyolite 35 10 30 15 10 11.1 3 123
sand 1 199
sandstone 1 241

schist 1 271
sedimentary
breccia

1 231

sedimentary
rock

1 200

serpentinite 1 28
shale 1 152

silt 1 256
siltstone 1 281
skarn (tactite) 368

slate 1 208
stratified glacial 
sediment

1 200

syenite 5 10 35 20 10 10 14.8 3 4 424
talus 1 200
tectonic breccia 3 231

tectonite 3 231
tephrite
(basanite)

10 20 40 10 10 10 19.9 3 5 955

terrace 1 200



84

Table 2S.4 continued
tholeiite 40 20 40 58.8 3 16 265

till 1 200
tonalite 5 10 20 40 10 5 10 28.4 3 8 387

trachyandesite 10 10 30 30 20 20.9 3 6 833
trachybasalt 10 5 15 50 5 10 5 10 31.4 3 9 939
trachyte 10 5 45 15 10 10 5 34.1 3 9 408

troctolite 10 5 5 60 10 10 16.4 1 1 246
trondhjemite 10 5 20 40 10 5 10 28.3 1 3 406
tuff 10 188

ultramafic 
intrusive rock

50 50 118.5 1 11 200

ultramafic rock 50 50 118.5 1 11 200
ultramafitite
(komatiite)

50 50 118.5 1 11 44

unconsolidated
deposit

1 200

volcanic ash 10 160

volcanic breccia 
(agglomerate)

3 217

volcanic rock 3 315
volcanic rock 
(aphanitic)

3 315

wacke 1 336
W ater
welded tuff 10 188

Table 2S.5 Bulk dissolution rates of common minerals in laboratory as found by Franke 
(2009).

Mineral K
(mg.m-2.d-1) 
20oC, pH=5.5

Quartz 0.3

Biotite 1.6

Alkali fedpar 2.5

Plagioclaste 20

Hornblende 25

Feldpathoid 70

Olivine 220

Pyroxene 17

Dolomite 300

Calcite 600



CHAPTER III

MAPPING MULTIPLE SOURCE EFFECTS ON THE STRONTIUM 

ISOTOPIC SIGNATURES OF ECOSYSTEMS FROM THE 

CIRCUM-CARRIBBEAN REGION
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A bstract. A method for mapping strontium isotope ratio (S7Sr/S6Sr) variations in bedrock and water has 
been recently developed for use in the interpretation of S7Sr/86Sr datasets for provenance studies. Hie 
mapping process adopted the simplifying assumption that strontium (Sr) comes exclusively from 
weathering of the underlying bedrock. The scope of this bedrock-only mapping method is thus limited to 
systems where the contributions of other sources of Sr are minimal. In this paper, we build on this S7Sr/S6Sr 
mapping method by developing a mixing model of Sr fluxes from multiple sources to the bioavailable Sr 
pool. Hie new multiple source model includes: (1) quantitative calculations of Sr fluxes from bedrock 
weathering using an empirical rock weathering model; and (2) addition of sub-models calculating the 
contribution of Sr fluxes from atmospheric aerosols based on outputs from global climate model 
simulations. We compared the performance of the new multiple source model and the bedrock-only 
mapping method in predicting observed values from two datasets of bioavailable 87Sr/86Sr from the 
circum-Caribbean region (Antilles and Mesoamerica). Although the bedrock-only method performs 
relatively well in Mesoamerica (n =  99, MAE =  0.00011, KMSE =  0.00073), its prediction accuracy is lower 
for die Antillean dataset (n =  287, MAE =  0.0021, KMSE =  0.0027). In comparison, the new multiple source 
model, which accounts for the deposition of sea salt and mineral dust aerosols, performs comparably well 
in predicting the observed 87Sr/S6Sr values in both datasets (MAE =  0.00040, RMSE =  0.00087 and MAE =  
0.00014, KMSE =  0.0010). This study underscores the potential of using process-oriented spatial modeling 
to improve the predictive power of Sr isoscapes over large spatial scales and to refine sampling strategies 
and bioavailable Sr dataset interpretations for provenance studies.

Key words: bioavailable strontium; isoscape; Isoscapes Special Feature; provenance; strontium budget; strontium 
isotope ratio.
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Introduction

Strontium isotope ratios (SySr/86Sr) have been 
increasingly and successfully em ployed as prov­
enance tracers of a w ide variety of environmental 
processes (Graustein and A rm strong 1983, Capo

et al. 1998, Kelly et al. 2005, Bentley 2006). The 
m ethod relies on comparing the s'S r/66Sr signa­
ture of a sample(s) of unknow n origin to that of 
reference samples: generally local sample m ate­
rials such as rock, soil, water, plant or animal. At 
larger spatial scales and/or for large datasets,
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where developm ent of comprehensive reference 
collections can be prohibitive, the identification 
of provenance using 87Sr/86Sr data  requires 
comparative analyses w ith  reference 87Sr/S6Sr 
m aps (Price et al. 2002, Hodell et al. 2004, Bentley 
2006, Evans et al. 2009).

Previous efforts have been m ade to m ap 
8jSr/86Sr variations at large scales (Beard and 
Johnson 2000, Bataille and Bowen 2012) for use in 
the interpretation of 87Sr/®bSr for provenance 
studies. Bataille and Bowen (2012) developed a 
model for environmental Sr isotope variation 
based on the assum ption that bedrock w eather­
ing represents the prim ary source of environ­
mentally available Sr. Their GIS-based model 
uses lithology-specific model param eters and 
generalized ' Rb decay equations to account for 
the combined effects of lithology and time on 
SjSr/®6Sr variations in bedrock. A lthough the 
predictive power of this m ethod is still less than 
optimal, com parison w ith validation datasets 
show s prom ise for predicting geographic 
S/Sr/S6Sr variation in different sample materials. 
Bataille and Bowen’s model form ulation only 
considers S7Sr/SbSr variations in bedrock and 
water and does not explicitly address other Sr 
sources that m ay contribute to S7Sr/86Sr varia­
tions in biologically available (bioavailable) Sr. 
M apping bioavailable 8ySr/SbSr variations is 
fundam entally im portant for constraining local 
87Sr/86Sr signatures for ecological (Capo et al. 
1998) and archeological (Bentley 2006) studies of 
provenance.

In m any locations, the bioavailable Sr pool can 
reflect the com plex integration of m ultiple 
sources (bedrock and atmospheric sources) and 
sinks of Sr that interact w ith  the ecosphere over 
different time scales. A t the base of the ecosys­
tem, plants uptake and incorporate Sr from the 
exchangeable Sr pool in soil, defined as the pool 
of Sr bound  to organic m atter and/or soil 
minerals and exchanging w ith  plants and/or soil 
water (Capo et al. 1998, Stewart et al. 1998). This 
exchangeable Sr pool is operationally defined as 
the Sr leached from dry  soil w ith  reagents such as 
buffered am m onium  chloride in m ethanol (Capo 
et al. 1998).

Stewart et al. (1998) proposed mathematical 
formulations to model bioavailable 87Sr/86Sr for 
local ecosystems, bu t this model is currently not 
applicable a t regional scales because it requires a
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large num ber of site-specific param eters as input. 
Consequently, m ost attem pts to m ap regional 
87Sr/86Sr variation in ecosystems have involved 
interpolating average s'S r/seSr m easurem ents 
from local biomass (Price et al. 2002). However, 
this m ethod can be data-intensive and costly and 
in m ost cases does not explicitly consider the 
underlying spatial structure of factors w hich 
likely govern Sr isotope variation (e.g., bedrock 
distribution, climate, atm ospheric deposition). 
This m ethod is also ham pered by the challenge 
of selecting appropriate samples, w hich is non­
trivial as different sample m aterials m ay inte­
grate different spatial and tem poral scales of 
S7Sr/S6Sr variation.

Empirical m apping studies could greatly ben­
efit from the parallel developm ent of process- 
oriented spatial models. These m odels can help 
refine the interpretation of bioavailable Sr data­
sets and produce cost-effective reference iso­
scapes for provenance studies. These m aps can 
be tested on compiled datasets of Sr isotope 
m easurem ents from a range of materials. In this 
paper, we further develop the m odel of Bataille 
and Bowen (2012) by adding components that 
account for contributions from bedrock and non­
bedrock sources to a mixed bioavailable Sr pool. 
We couple Bataille and Bowen’s model to an 
empirical, process-oriented chemical weathering 
model to calculate estimates of soluble Sr fluxes 
from bedrock weathering to the bioavailable 
zone in soils. This m odel accounts for chemical 
w eathering rate dependence on runoff and  
lithology (Jansen et al. 2010). We also include 
sub-m odels representing the contribution of 
atmospheric sources (dust and sea salt aerosol) 
to the soluble Sr in soils. We use a simple box 
model to describe the mixing of these different 
sources w ithin the soil, and  test the new model 
against two datasets of bioavailable Sr isotopes 
from the circum-Caribbean region.

The circum-Caribbean region is an ideal area to 
validate m odels describing the interaction of 
m ultiple Sr sources to soil w ater because it 
receives: (1) spatially variable inputs of Sr from 
bedrock weathering due to its diverse geology; 
(2) large annual inputs of Sr from atmospheric 
aerosols through dry  and w et deposition of 
Saharan m ineral dust and sea salt from the 
surrounding ocean; and  (3) m ore episodic inputs 
of Sr-rich tephra from volcanic eruptions. In
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addition, large am ounts of data have been 
gathered in this region, including studies assess­
ing the comprehensive Sr budget of ecosystems 
by m easuring S7Sr/ Sr in rainfall, soil, the 
exchangeable Sr pool, bedrock and plants (Bern 
et al. 2005, Pett-Ridge et al. 200%, Pozwa et al. 
2002) and w ork producing several hundred 
87Sr/86Sr m easurem ents of local p lants and 
anim als for archeological provenance studies 
(Pricc ct al. 2000, Hodcll ct al. 2004, Wright 
2005, Price et al. 2006, Price et al. 2007, White et 
al. 2007, Price 2008, Price et al. 2010, W right et al. 
201.0, Thornton 2011., Laffoon et al. 2012). The 
combination of these bioavailable Sr isotope 
datasets w ith the natural gradient of atmospheric 
deposition and varied lithologies of the circum- 
Caribbean region offers an excellent opportunity7 
to develop and validate our multi-source m ap­
ping approach.

M a t e r ia l  a n d  M e t h o d s

M odel derivation, calibration, and validation 
are described in the following sections. A ddi­
tional details and docum entation are available in 
the accompanying Appendix.

Model formulation
Previous research has contributed to our 

understand ing  of the factors controlling the 
m ixing of m ultiple Sr sources in soils and 
ecosystems (Kennedy et al. 1998, Chadwick et 
al. 1999, Nakano et al. 2001, Pozwa et al. 2002, 
Bern et al. 2005, Chadwick et al. 2009, Pett-Ridge 
et al. 2009ff, Pett-Ridge et al. 2009f>). The 
contribution of atmospherically derived Sr to 
the soluble Sr in soil depends mostly on the 
m agnitude of the bedrock weathering flux. W hen 
the flux of soluble Sr from bedrock weathering is 
low, the atmospheric contribution can become 
the dom inant source of soluble Sr to soils and 
ecosystems. Com prehensive m odeling of the 
soluble Sr mass balance in soil requires detailed 
soil models accounting for (1) inputs of Sr 
varying with relative weathering rates and/or 
deposition rates of each source, (2) outputs of Sr 
varying w ith  leaching rates and/or erosion 
associated w ith each source. A lthough the 
theoretical form ulation of such m odels exist 
(Hilley and Porder 2008, Hilley et al. 2010, Porder 
and Hilley 2011), not enough data are available

to apply them at large scales.
Here, we develop a simple model that esti­

mates the 87Sr/86Sr of bioavailable Sr in  the 
circum-Caribbean region as a function of Sr 
inputs from a limited num ber of sources (Fig. 
1). We assume that the bioavailable Sr pool is 
well represented by the mixing of soluble Sr from 
weathering of prim ary minerals (Fw_,t,io), w eath­
ering of deposited Saharan mineral dust (Fd ,bll>), 
and deposition of dissolved sea salt in rainfall 
(fss-bio). We neglect: (1) bedrock sources other 
than the major surficial bedrock; (2) local and 
regional atm ospheric sources of Sr, such as 
recycling of local minerals by erosion and/or 
deposition of burned or dead biomass (Nakano 
and Tanaka 1997) and volcanic ash (M uhs and 
Budahn 2009); and (3) other continental atm o­
spheric sources, e.g., N orth American mineral 
dust (M uhs ct al. 2007). This assum ption is 
supported by the low deposition rates of these 
other atmospheric sources of Sr in comparison 
w ith sea salt and Saharan dust in the circum- 
Caribbean region (M uhs et al. 1990, Bern et al. 
2005, M uhs et al. 2007) despite their importance

Rainfall and dryfall 

Mineral dust Sea salt

Fig. 1. Representation of the box model with fluxes 
of dissolved Sr mixing in the soluble bioavailable Sr 
pool. Lbio represents the losses of Sr from the 
bioavailable pool to other pools.
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in other geographic settings (C raustein and 
Arm strong 1983, N aim an et al. 2000).

We model the bioavailable Sr pool as a well- 
mixed reservoir a t steady state. Both assum p­
tions are likely to be invalid for some systems, 
especially those affected by disturbance in which 
changes in Sr cycling and vertical or small-scale 
spatial gradients exist, bu t are necessary simpli­
fications for this investigatory large-scale region­
al modeling. We test the sensitivity of our models 
to several different Sr sources using three model 
versions.

The first is a “bedrock m odel” (as used in 
Bataille and Bowen 2012), in w hich the isotopic 
composition of bioavailable Sr is equal to the 
isotopic composition of Sr released from local 
bedrock weathering. Eq. 1 from Bataille and 
Bowen (2012) encapsulates the theory for both 
silicate and carbonate rocks:

87 Sr \  (  87Rb
=  0.701 + S6Sr

parent

87Rb
86 Sr

-  1)

derived Sr:

87Sr\
87Sr
S6Sr

87Sr\
A

(3)
/ 's s  'b io  bio

where 2s indicates the tw o source mixing model, 
i and  Fw^bio and  (87Sr/SbSr)ss and
(s'S r/8bSr)b are the m agnitudes and Sr isotope 
ratios of the sea salt and  bedrock weathering 
fluxes, respectively.

The third is a “three source mixing m odel” 
describing the mixing of sea salt, mineral dust, 
and bedrock weathering Sr:

87Sr\
85S r/

p  3£ W  , p  + F
sŝ bl° \ 86Sr)  ss+  d̂ bl° \ 86S r /d bi° \ ^ ) h

F  ss—fbio +  Fd bio I sbio

(4)

— 1) w here 3s indicates the three source mixing 
model, Fd^bic. and (87Sr/S6Sr)d, are the m agnitude 
and Sr isotope ratio, respectively, of the dust 
deposition flux.

( 1)

w here (S7Rb/S6Sr)parent and (87Rb/S6Sr)tock refer to 
the S7Rb/8bSr of the parent material and the 
m odem  rock unit, respectively, is an approx­
imate age of crustal differentiation (3000 Ma), 
and t2 the age of the m odern rock unit. 8yRb/86Sr 
can be expressed as:

/ 87R b\ Rb (Ab87Rb) (WSr) _ ,„ on Rb 
'v ^ S r j  Sr (Ab86Sr)(TVRb) Sr M

w here W refers to the atomic weight of an 
element and Ab to the abundance (%) of an 
isotope.

In Eq. 1, the parent rock term  is treated 
differently in the silicate and carbonate models. 
Silicates paren t rock term  is calibrated by 
assum ing that the silicon content of the rock 
type is an indicator of m agm a source composi­
tion whereas carbonates parent rock term  was 
calibrated using seaw ater 87Sr/86Sr variations 
th roughou t geological tim e (for details see 
Bataille and Bowen 2012).

The second is a “tw o source mixing m odel” 
describing the mixing of sea salt and bedrock

Model parameterization
Bedrock weathering flux. —To calculate Fw^.bio, 

we applied the continental-scale, process-orient­
ed, empirical w eathering m odel developed by 
Jansen et al. (2010) on the Caribbean USGS 
geodatabase. The model calculates the rate of Si 
dissolution from different rock types as:

^DSi — boq1bn
(5)

where Fdsi is the flux of dissolved SiOo to river 
w ater (t-km-2-a-1) from the bedrock lithology at a 
given m ap  location having m ean annual runoff q 
(L a_1-m-2), lithology-specific param eters bn and 
bo- The latter tw o param eters have been calibrat­
ed by Jansen et al. 2010 using m easurem ents of 
dissolved silica loads in rivers from H artm ann et 
al. 2010. We were not able to compile enough 
m easured ^DSi data to recalibrate this m odel for 
the circum-Caribbean region and instead opted 
to use an existing calibration. Two calibrations 
exist, one for the conterminous USA (Jansen et al. 
2010) and one for Japan (Hartm ann et al. 2010, 
Jansen et al. 2010). We use the Japan calibration 
because it reflects a range of environm ental 
conditions (coastal and  insular region), climate
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(high tem perature and precipitation), and geo­
logical settings (subduction area) that are rea­
sonably good analogs for the circum-Caribbean 
region. We obtained bo and  bn values by 
m atching each rock type in the Caribbean 
bedrock geology geodatabase w ith an equivalent 
lithological category given in Jansen et al. (2010) 
(see Appendix: Table A l). The Japan calibration 
does not offer values for mafic plutonic rocks and 
carbonates, and for both we used the calibrated 
values from the conterminous USA (Jansen et al. 
2010).

In order to obtain a high-resolution gridded 
runoff dataset for our study area we calculated cj 
as:

q =  MAP -  MAAET (6)

where MAP is the m ean annual precipitation 
(mm-a-1) obtained from the W orldClim website 
(Hijmans et al. 2005) and MAAET the m ean 
annual actual evapotranspiration in m m -a-1 
obtained from the Global High-Resolution Soil- 
Water balance from  the CGIAR-CSI website 
(Trabucco and  Zomer 2010). Previous applica­
tions of the w eathering m odel have used  
modeled runoff grids from the Global Runoff 
Data Center (GRDC) (Fekete et al. 2002), but 
these data provide insufficient spatial resolution 
for the island regions w e examine here. Our 
runoff estimates compare well w ith  the GRDC 
grids for catchments w here they overlap: by 
resam pling our estimates to the O.S'3 GRDC 
resolution we found that a t 55% of the GRDC 
gridcells our runoff estimates are w ithin 20% of 
the GRDC values and at only 10% do the tw o 
estimates differ by m ore than  40%.

M odeled f DSi values were used to obtain Sr 
weathering fluxes for each lithology using a Sr/ 
S i02-normalization technique similar to H art­
m ann and Moosdorf (2011a):

F ( S r ) w ^ b i o  “  F D S i  =  -p D S i ( j s 5 5 ^ )  • ( 7 )

Here f DSr is the flux of soluble Sr from the 
bedrock lithology at a given m ap location to the 
river and (Sr/Si02) is the m olar ratio of Sr to S i02. 
Sr/SiOi ratios are approxim ated as the m edian 
value for each rock type based on 121,253 
analyses available through the Earthchem Portal 
(www.earthchem .org; query by “chemistry”: all 
Sr AND Si02, “database”: Georoc results).
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Calculated m edians and  associated standard  
deviations for each rock category descriptor used 
in Bataille and Bowen (2012) are available in 
Appendix: Table A l.

O ur application of this model to estimate 
contributions of Sr from bedrock to the bioavail- 
able pool involves tw o fundam ental assum p­
tions. First, by adopting a m odel calibrated using 
data from rivers, we are effectively assuming that 
river S i02 loads depend solely on the flux of 
silicon (Si) from bedrock (fosi) and that Si from 
other sources is negligible. This assum ption is 
justified for sea salt aerosol because sea salt 
contains only small am ounts of Si. This assum p­
tion is not always justified for mineral dust can 
participate in the Si flux to river w ater (Chadwick 
et al.1999). Second, Eq. 7 assum es th a t the 
bedrock w eathering flux of Sr is approximately 
equal to the flux into the bioavailable pool. This 
m ay not be the case in m any systems because 
plants cycle cations prim arily from the upper soil 
and some Sr m ay be routed directly to stream 
systems via groundw ater w ithout interacting 
w ith the bioavailable zone (Nakano et al. 2001, 
Pozwa et al. 2002). To the degree that they are 
incorrect, bo th  assum ptions w ould  lead to 
overestimation of Fw^bio, and this possibility is 
considered in the interpretation of our results.

Bedrock Sr isotope flux.—W e applied the bed­
rock Sr isotope m apping m ethod developed by 
Bataille and Bowen (2012) to calculate (S/Sr/SbSr)b 
as a function of rock age and lithology (Fig. 2). 
The bedrock-only m odel from  Bataille and 
Bowen (2012) represents an averaged s'S r/SbSr 
prediction of the dom inant bedrock limited by 
the resolution of geological maps. Consequently, 
the bedrock-only m odel does not account for 
(S/Sr/SbSr)b variations due to contribution of non 
dom inant lithologies and/or (87Sr/S6Sr)b varia­
tions related to compositional variation w ithin 
rock units (e.g., van Soest et al. 2002) or to 
difference in the length of bedrock exposure to 
w eathering (Lasaga 1984, Lasaga and Blum 
1985). This lack of resolution in the geological 
m ap is particularly significant for carbonates 
because their high Sr/Si02 ratio and  their high 
weatherability (see Appendix: Table A l) causes 
them  to be the dom inant source of Sr in m any 
catchments even w hen they are only present in 
traces (Anderson et al. 2000). The optim ized 
model param eters are subject to uncertainties
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types and reclassified each of these as granite, 
granodiorite, quartz diorite, or gabbro based on 
local geological m aps of Puerto Rico (Reed et al.
2005), Hispanolia (Draper et al. 1995), Trinidad 
and Tobago (Saunders and Snoke 1998), and 
Cuba (Pushcharovski 1989). New lithological 
m aps for this area w ill soon be available 
(Moosdorf et al. 2010) and will help resolve these 
issues (Moodsdorf, personal communication).

Atmospheric sources.—To calculate Fd^bio, we 
assum ed tha t the Sr content of mineral dust, and 
its 87Sr/S6Sr, were constant over the study area. 
Mineral dust m ineralogy and geochemistry is 
highly variable seasonally but long term  average 
deposition is relatively hom ogeneous in the 
Caribbean (Prospero et al. 1970, Trapp et al. 
2010). We assigned a concentration and 7Sr/86Sr 
of mineral dust equal to the average Sr content 
and S7Sr/86Sr of mineral dust collected over the 
Caribbean region: 195 ppm  (Grousset et al. 1992, 
Rognon et al. 1996, Grousset and Biscaye 2005) 
and 0.71788, respectively (Grousset and Biscaye 
2005, Formenti et al. 2011).

We obtained long-term average mineral dust 
deposition rates at 1° X  1° spatial resolution from 
a synthesis (M ahowald et al. 2005) of results from 
three reanalysis models, each run  for 10+ years 
(Luo et al. 2003, Ginoux et al. 2004, Tegen et al.
2004). The results have been show n to compare 
well w ith  available satellite observations (Maho­
w ald et al. 2005). However, aerosol m odeling is a 
relatively recent field and large uncertainties 
rem ain in the models because the physics of 
aerosol deposition are not fully understood  
(Huneeus et al. 2011).

The low -resolution dust p roduct does not 
represent variation in deposition rates driven by 
fine-scale variation in dust scavenging by pre­
cipitation, which m ay be an im portant control on 
dust deposition across our study region (Rea 
1994). We downscaled the low resolution (1° X  1°) 
dataset as:

n s t)d (Sr)d(0.75DdPPF +  0.25Dd) (8)

dust, and  PPF is a “precipitation corrective 
factor” used to account for the enhancem ent of 
atmospheric deposition over land areas (relative 
to the open ocean) due to higher precipitation 
rates (Rea 1994). The PPF is defined as:

PPF
MAPhr
MAPjj (9)

where (Sr)d is the abundance of Sr in mineral 
dust (in percent), Dd is the deposition rate of 
m ineral dust from  the reanalysis dataset in 
t-km-2-a-1, 0.75 is the proportion of w et deposi­
tion of mineral dust in the circum-Caribbean 
region (Jickells et al. 1998, Prospero et al. 2010), 
0.25 the proportion of d ry  deposition of mineral

where MAPhr is the high resolution (30 arc- 
second) m ean annual precipitation on  land 
obtained from the W orldClim dataset (Hijmans 
et al. 2005) and MAPi, is the estim ated m ean 
annual precipitation am ount for the same loca­
tion calculated by bilinear interpolation of the 
low resolution (2.5° X  2.5°) Global Precipitation 
Climatology Project Version 2.2 (GPCP).

This downscaling calculation acts prim arily to 
enhance the fine-scale structure of the dust 
deposition field over island regions, where the 
coarse-resolution GPCP and dust m odel output 
do not represent high-frequency variation in 
precipitation rates and  dust scavenging by 
precipitation. Local deposition rates are affected 
by a m axim um  of a factor of three due to this 
calculation. The calculation is not mass-conser­
vative, bu t should provide a first-order approx­
imation of the relative rates of dust deposition as 
a combination of large-scale circulation features 
represented in the reanalysis dataset and fine- 
scale scavenging processes related to regional 
variation in rainfall rates.

Our calculations estimate the rate of delivery 
of Sr from dust to the surface of soils, bu t this will 
only be equal to the flux of Sr to the bioavailable 
pool if Sr present in m ineral dust is soluble 
enough to be released before mineral dust is 
removed by erosion (Kennedy et al. 1998). In the 
circum-Caribbean region, chemical weathering 
and release of Sr form Saharan mineral dust is 
likely rapid relative to rates of removal of dust by 
surface erosion because: (1) mineral dust deposits 
on acidic soils; (2) dust reaching the Caribbean is 
finely-grained (~2 |im) and has a high exchange 
surface (Prospero et al. 1970); and (3) dust Sr is 
mostly contained in easily weatherable minerals 
such as calcite, dolomite, and plagioclase (Glac- 
cum and Prospero 1980, Schutz and Sebert 1987, 
Kandler et al. 2007, Formenti et al. 2011). To the 
degree that dust is lost to erosion prior to 
dissolution of Sr, this will cause our model to 
overestimate the relative contribution of dust Sr
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to the bioavailable pool. To estimate Fss^ bio and 
(SySr/SbSr)ss, we obtained the long term  annual 
deposition of w et and dry sea salt aerosols from a 
Com m unity Climate System M odel 3 (CCSM3) 
sim ulation (1.4° X  1.4°) in  current climate 
conditions (M ahowald et al. 2006). This dataset 
shows good agreem ent w ith  available satellite 
observations, and associated details and limita­
tions are discussed in M ahowald et al. (2006). We 
assigned fixed values for Sr concentration and 
isotopic composition (0.04% and 0.7092) corre­
sponding to the average abundance of Sr and 
s'S r/8bSr in bulk sea salt. We downscaled the 
coarse resolution grid (1.4° X  1.4°) to a 30 arc- 
second grid using a form ulation equivalent to 
that used  for dust deposition:

P  (S r) ,^ Mo =  %(Sr)ss(wetDssPPF +  d ry D J (10)

where (Sr)ss is the abundance of Sr in sea salt (in 
percent) and w etD ss and dryD ss are the w et and 
dry deposition rates of sea salt in t-km-2-a-1 as 
given by  CCSM3. Our calculation m ay overesti­
m ate the contribution of sea salt Sr to the 
bioavailable pool if a significant fraction of 
deposited Sr is rapidly leached to surface or 
groundwater, bypassing the bioavailable pool. 
A lthough controls on sea salt Sr retention in the 
bioavailable pool are uncertain, several authors 
have dem onstrated that across a w ide range of 
conditions a significant fraction of the soluble Sr 
from sea salt is incorporated in the soil exchange­
able cation pool and retained in the bioavailable 
zone (Stewart et al. 1998, Nakano et al. 2001, 
Stewart et al. 2001, Pozwa et al. 2002), rather than 
being leached rapidly from soils.

Model evaluation
Bedrock-only model evaluation.—W e evaluate the 

accuracy of the bedrock Sr isotope m odel using a 
dataset of 87Sr/86Sr ratios of igneous rocks from 
the Caribbean region (n =  920) from the Earth- 
chem Portal (w w w .earthchem .org; Q uery by 
“chem istry”: s'S r/86Sr, “Location”: circum-Carib- 
bean region, “A ge” =  Age exists:). The param e­
terized silicate model was applied to predict the 
87Sr/8bSr of samples represented in this database, 
and the predicted and observed values were 
compared. Data from 11 samples (1.1% of the 
samples) were rem oved from the igneous rock 
validation dataset. These samples were very old 
felsic rocks (granites, rhyolites, gneisses) display­
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ing exceptionally high 87Sr/ssSr, for which w e 
have previously show n the model to perform 
poorly (Bataille and Bowen 2012). The bedrock 
model reproduces the pattern of ^S r/^S r varia­
tions in bedrock (mod =  0.45obs +  0.39; R 2 =  0.46) 
and predicts the absolute SySr/SbSr values of the 
validation samples w ith MAE =  0.000249 and 
RMSE =  0.00113 (where MAE =  m ean absolute 
error and RMSE =  root m ean square error).

We also qualitatively evaluated the spatial 
patterns of bedrock-model predicted 87Sr/8e’Sr 
variation against patterns docum ented by obser­
vational studies in the region. A t a regional scale, 
predicted bedrock s'S r/seSr variation is controlled 
by the signatures of three dom inant lithologies, 
and corresponds well w ith  observations from: (1) 
tertiary mafic to interm ediate volcanic rocks 
which border the eastern (Antilles) and w estern 
(Central America volcanic front) limits of the 
Caribbean plate, displaying m odeled 87Sr/86Sr 
from  0.7041 to  0.705 and  m easured values 
between 0.703 and 0.708 (van Soest et al. 2002, 
Vogel et al. 2006); (2) Cretaceous to m odem  
carbonates present either as carbonate blocks 
such as the Chorotega block, an over-thickened 
oceanic crust block (e.g., Yucatan Peninsula) or as 
marine terraces, w ith m odeled values ranging 
from 0.707 to 0.7092, similar to reported values 
(Hodell et al. 2004); and (3) felsic plutonic 
(modeled values from 0.730 to 0.767) or old 
m etam orphic rocks (modeled values from 0.704 
to 0.767) of the Guiana shield, for w hich the 
model estimates are also in the range of the 
observations (w w w .earthchem .org; Q uery by 
“chem istry”: 87Sr/ssSr, “database”: Georoc re­
sults, “loca Lion”—nor Lhern South America).

A t local scales, m odeled 8'S r/S6Sr variations are 
more difficult to validate because of the scarcity 
of observations. M odeled 87Sr/86Sr values do 
correlate well w ith existing regional geological 
features driven by: (1) differences in carbonate 
age, w hich drive slight 87Sr/86Sr variations in 
both M esoamerica and the Antilles; and (2) small 
scale geological processes such as m etam orphism  
around the M otagua shear or local plutonism  in 
both the Antilles and M esoamerica (French et al.
2004). However, as discussed in Bataille and 
Bowen (2012), the bedrock-only m odel gives 
‘sm oothed’ 87Sr/ssSr predictions and does not 
account for local geological processes causing 
S7Sr/SbSr to vary w ithin lithological units having
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Table 1. Chemical weathering model validation. Modeled and observed (Obs) and FDSr in the circum- 
Caribbean region in t-km 2-a b

rDSi MDSr

Watershed area Area (k iir ) Lithology Obs mean Model mean Ohs mean Model mean

Icacos basinA 3.26 Granodiorite 48.4 42.3 0.59 0.14
Dominique IslandE 751 Pyroclastic and mafic volcanic 24.9 39.1 nd nd
Martinique1 1080 Pyroclastic and mafic volcanic -1 0 0 62.4 0.075 0.046
Basse Terre Guadeloupe0 
Central PanamaE

848 Pyroclastic and mafic volcanic - 8 0 59.2 0.082 0.044

Rio Charges 580 Mafic volcanic and granodiorite - 6 0 33.4 0.042 0.028
Rio Pequini 281 Recent volcanic - 8 5 48.1 0.107 0.089

Magdalena river13 257000 Complex 12.7 13.4 nd nd

Notes: Sources are: A, White et al. (1998); B, Goldsmith et al. (2010); C, Rad et al. (2007); D, Harmon et al. (2009); E, Meybeck 
and Ragu (1997). Both FDSi and FDSr are corrected for sea salt contribution but not for mineral dust contribution The 
abbreviation nd" indicates no data available.

internal heterogeneity in age or composition. In 
the circum -Caribbean region, this lim itation 
affects the accuracy of the prediction for mafic 
volcanic rocks, w hich display highly variable 
87Sr/86Sr (0.703-0.708) depending on the time of 
interaction between the m agm a and more radio­
genic wall rock (van Soest et al. 2002, Vogel et al.
2006).

Weathering model evaluation.—W e evaluated the 
performance of the bedrock w eathering model, 
applied using the calibration developed for 
Japan, by com paring its predictions w ith  FDSi 
m easurem ents for our study region. The valida­
tion dataset (Table 1) for this area is likely biased 
tow ards high FDS1 areas because m ost of the 
observed FDSi values reported in this region are 
associated w ith  research on extrem ely high 
chemical w eathering rates in volcanic highlands 
(Rad et al. 2007, A llegre et al. 2010). For 
comparison, in 516 catchments of the Japanese 
Archipelago, the calibrated w eathering model 
explains m ore than 70% of the FDSi variance 
(Hartm ann 2009).

Several significant factors related to w eather­
ing rate are not accounted for in the model, such 
as topography, land cover, and  tem perature 
(H artm ann 2009). We expected the chemical 
weathering model to underestim ate weathering 
rates and solute fluxes because of both high 
topographic relief and high m ean annual tem ­
peratures in the circum-Caribbean region (White 
and Blum 1995). However, the presence of thick 
tropical soils m ay counteract this effect (Stallard 
and Edm ond 1983). Other im portant sources of 
error for Fdsi estimates come from inaccuracies in 
the correspondence betw een lithological descrip­

tors of the Caribbean geodatabase and the classes 
of Jansen et al. (2010; see Appendix: Table A l).

Despite these theoretical limitations, the error 
in our FDS1 predictions across a range of 
catchment types spanning an order-of-magni- 
tude range in observed F D Si values does not 
exceed a factor of two at any site (Table 1). As 
expected, Fosi for the young volcanic-dominated 
catchm ent (e.g., G uadeloupe, M artinique) is 
underestim ated. Observed F DS1 values are more 
closely approxim ated by the model in catchments 
dom inated by other lithologies. Few data are 
available to  validate the w eathering model, 
calibrated using values from  Japan, on the 
circum-Caribbean region, bu t future work by 
M oodsdorf et al. ( personnal communication) to 
calibrate the model to tropical regions should 
improve the performance of our model. In the 
absence of other existing data available to re­
calibrate the weathering model, the Fdsi predic­
tions cannot be assum ed to be accurate to w ithin 
better than  a factor of tw o in the circum- 
Caribbean region.

Further uncertainties arise from using the Sr/ 
S i02 norm alization technique and a Si-specific 
weathering model because we do not take into 
account Sr-specific dissolution kinetics. However, 
H artm ann and M oosdorf (2011 hj dem onstrated 
good performance using a similar m ethod to 
estimate the flux of phosphorus to rivers in Japan 
by re-scaling results from a silicate weathering 
model. W hen com pared to the few observed Fdsr 
m easured in this region (Table 2), our predicted 
F D S r underestim ates the observed F D Sr in all the 
catchm ents likely due to presence of trace 
quantities of non-siliciclastic m inerals w ithin
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Table 2. Mixing model validation. Modeled and observed (Obs) contributions of the different sources of Sr to the 
bioavailable Sr.

Location

Atmospheric (%) Bedrock (%) s7Sr/s6Sr bedrock s7Sr/s6Sr bioavailable

Model Obs Model Obs Model Obs Model Obs

Analog catchment, GuyanaA Tot: 65; Ss:50; Dust:15 Tot:—75 35 25 0.731 0.72-76 0.718 0.716
Luquillos mountains, Tot:25; Ss:20; Tot:-5 0 ;  Ss:25; 75 50 0.705 0.7041 0.7065 0.7095

Puerto RicoB Dust: 5 Dust:25
Osa Penninsula, Costa Ricac

SPU site Tot:9; Ss:8; Dust:l <10 91 >90 0.708 nd 0.7082 0.7062
RMU site Tot: 6; Ss: 5; Dust:l <10 94 >90 0.7056 0.7039 0.7059 0.7041

Notes: The modeled contributions are calculated with the three source mixing model. The observed contributions are from: A, 
Pozwa et al. (2002; this catchment [5°20' N. 52°10' W] is not encompassed by the map and we used an analog catchment located 
in Guyana \7 3 N, 60c16/ W] with similar geology [felsic metamorphic rocks], similar s7Sr/s6Sr [modeled bedrock in the analog 
catchment is 0.731 and observed in the French Guyana ranges from 0.72 to 0.76], and climate [MAP around 2500 mm in the 
analog catchment and 3000 mm a 1 in the French Guyana catchment]); B, Pett-Ridge et al. (2009a); C, Bern et al. (2005). SPU and 
EMU are two sites with different lithologies. The abbreviation “nd” indicates no data available.

siliciclastic units as suggested by H artm ann and 
M oosdorf (2011b). The underestim ation of FDSr 
propagates in our mixing m odel (Eqs. 3 and 4).

Mixing model evaluation. —To semi-quantitative- 
ly evaluate the performance of the three source 
mixing model in representing the relative contri­
butions of Sr from different sources to the 
bioavailable Sr pool, we com pared our model 
ou tpu t w ith  data from three studies w hich 
quantified the contribution of each source to soil 
water. For each of these studies, we reported the 
contribution from bedrock weathering, sea salt, 
and dust deposition and com pared them  to the 
results of our model.

A lthough num erous assumptions were m ade to 
develop the three source mixing model, this 
simple formulation reproduces the pattern of 
variation in the relative contribution of different 
sources of Sr to the bioavailable Sr pool (Table 2). 
In both catchments of the Osa Peninsula the 
model matches the observations well, w ith  bed­
rock weathering being the dom inant source of Sr 
to ecosystems. In the Guyana (analog) catchment, 
bedrock weathering is slow and atmospheric 
deposition becomes dominant. In the Luquillos 
Mountains, our model underestimates the contri­
bution of mineral dust weathering to the bioavail­
able Sr pool. This underestimation is transm itted 
from the mineral dust deposition dataset which 
has been shown to underestimate dust deposition 
in this watershed (Pett-Ridge et al. 2009a). Overall, 
however, the analysis suggests that our Sr fluxes 
estimates for different sources can be confidently 
used to give an order of m agnitude estimate of 
each Sr source’s contribution to bioavailable Sr. 
Moreover, in m ost circum-Caribbean ecosystems,

one source of Sr (either atmospheric or weather­
ing), is largely dominant. In areas where Sr fluxes 
from the different sources are very different, such 
as the Guyana and Osa Peninsula sites (Table 1), 
the mixing model prediction uncertainty decreas­
es whereas the uncertainty increases w hen the 
relative contribution of Sr from the different 
sources are at the same order of magnitude, such 
as in the Luquillos M ountains (Table 1).

Evaluation o f bioavailable Sr isotope models.—W e 
evaluated the performance of the different model 
formulations against published datasets report­
ing bioavailable Sr isotope measurements. Be­
cause different sample m aterials reflect different 
spatial scales of integration, we lim ited our 
comparison to S7Sr/8bSr m easurem ents m ade on 
sample m aterials likely to reflect average Sr 
inputs from local (~1 km 2 or less) areas. We 
thus excluded from the analysis animals w ith 
large hom e ranges and river water, focusing our 
analysis m ainly on data from plants and animals 
w ith small home ranges (Fig. 3).

Bedrock is a significant source of Sr to 
ecosystems in the circum-Caribbean region, as 
evidenced by the significant correlation between 
the bedrock-only modeled 87Sr/S6Sr and observed 
values in both validation datasets. All three 
model versions perform  similarly well in pre­
dicting the observed variation in 7Sr/86Sr values 
w ith in  the M esoamerican dataset, explaining 
more than 80% of the observed variation. Models 
that include atm ospheric deposition (the two and 
three source m ixing m odels) show  sim ilar 
87Sr/S6Sr predictability (Fig. 4B, MAE =  0.00031, 
RMSE =  0.00079 and Fig. 4C, MAE =  0.00040, 
RMSE =  0.00087, respectively) in comparison
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Fig. 5. (A) Contribution of bedrock weathering to the bioavailable Sr pool calculated as F(Sr)lv [,i,,/(/:(5r)vv :lm, +  
F ( S r ) Ss > b io+  P ( S r ) d  .b io)- ( B )  Modeled Sr isotope ratios for the circum-Caribbean region from the three source 
mixing model.

Sr from east to west, which can be attributed to 
decreasing deposition rates of Saharan dust (Fig. 
5A). On a m ore regional or local scale (i.e., 100 
km -1 km), variation in the bedrock contribution 
is controlled by variation in weathering rates due 
to differences in both  lithology and runoff. Even 
when atmospheric deposition rates are large, 
87Sr/86Sr of ecosystems developing on highly 
weatherable Sr-rich carbonate substrates (e.g., the 
M aya block or marine deposits in the Antilles 
and Bahamas) resemble their carbonate parent 
(Fig. 5B). 87Sr/K,sSr of ecosystems developing on 
highly weatherable bu t Sr-poor volcanic rocks 
(e.g., A ntillean island arc and the Central 
American volcanic front) are predicted to be 
more variable at small spatial scales, w ith Sr 
isotope ratios and relative contributions of Sr to 
the bioavailable pool depending on the local 
interaction of lithology and climate (Fig. 5B). 
Only ecosystems developing on slowly weather­
ing parent m aterial (e.g., felsic Precambrian rocks 
of the Guyana shield and Chortis block) show a 
strong influence of atm ospheric deposition (e.g., 
f(Sr)w bio <  0.5).

Both types of aerosols, sea salt and dust 
deposition, contribute significantly to the pre­
dicted bioavailable 87Sr/86Sr in parts of the study

region (Fig. 6A, B). Sea salt deposition is 
relatively ubiquitous and constant throughout 
the circum-Caribbean and contributes to the 
m odeled 87Sr/86Sr by increasing 87Sr/86Sr in  
ecosystems developing on slowly weathering 
mafic (felsic) rocks in  all regions (Fig. 6A). The 
contribution of mineral dust is more variable 
spatially, both over large scales (e.g., declining 
from the east to w est across the region) and 
regionally (e.g., due to variation in precipitation 
scavenging rates). Because dust Sr in this region 
is relatively radiogenic, its relative influence on 
the m odeled Sr isotope ratios is greatest in areas 
of high deposition rate that are also characterized 
by mafic bedrock, where the differences between 
bedrock and dust 8'S r/86Sr are largest (Fig. 6B).

To better illustrate the processes considered in 
the two and three source mixing models, we 
analyzed the m odeled pattern  of 8 Sr/86Sr varia­
tion at finer scales on the Guadeloupe Islands 
(inset panels in Fig. 2; Fig. 5A, B, Fig. 6A, B). 
The islands of Guadeloupe are an interesting 
location to study bioavailable Sr because they 
present varied geological and climatic conditions. 
Guadeloupe consists of several different islands 
w ith  bedrock geology dom inated  by either 
Tertiary marine carbonates w ith 87Sr/86Sr around
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Fig. 6. (A) Difference between predicted 87Sr/86Sr from the bedrock-only model and S7Sr/ 8SSr from the two 
source mixing model including both sea salt and bedrock weathering. (B) Difference between predicted 8/Sr/86Sr 
from the bedrock-only model and 87Sr/ 86Sr from the three source mixing model including sea salt, mineral dust, 
and bedrock weathering fluxes.

0.7085 or Tertiary interm ediate and mafic volca­
nic rocks with 7Sr/86Sr ranging from 0.703 to 
0.705 (w w w .earthchem .org). G eom orphology 
and erosion rates also differ betw een the islands, 
w ith  the relatively flat Grande-Terre Island 
characterized by  quasi constant M AP (2000 
mm/yr) and the m ountainous Basse-Terre Island 
characterized by highly variable tem perature and 
precipitation.

For Grande-Terre, our three source m odel 
suggests that despite high aerosol deposition 
rates the bioavailable ;7Sr/S6Sr is equal to the 
87Sr/ssSr of the carbonate bedrock. The modeled 
87Sr/S6Sr values are quite similar to those of sea 
salt aerosols due to the young age and similar Sr 
isotopic com position of the local carbonate 
bedrock, but analysis of the model results shows 
that bedrock weathering contributes at least 90% 
of the bioavailable Sr and thus dominates the 
absolute isotopic value of the bioavailable Sr pool 
and gives highly invariant values across the 
island. Ihis result is consistent w ith observations 
from older carbonate terrains in the region, 
where bioavailable Sr isotope values tend to 
follow bedrock values rather than the sea salt

value (Hodell et al. 2004, Laffoon et al. 2012). 
Despite the relatively hom ogenous 87Sr/86Sr of 
the interm ediate volcanic rocks on Basse-Terre, 
the m odeled bioavailable 87Sr/86Sr is highly 
variable and  can diverge significantly from  
bedrock. Bedrock w eathering contributes be­
tw een 50% and 90% of the bioavailable Sr 
depending mostly on bedrock weathering rates. 
At the top of La Soufriere (the m ain volcano on 
Basse-Terre, Guadeloupe), m odeled weathering 
rates are high because of high runoff. Despite 
large deposition rates of atmospheric Sr, bedrock 
weathering contributes up  to 90% of the bio­
available Sr in this area. In contrast, in  the lower 
lands around the volcano, runoff and weathering 
rates are lower and atm ospheric deposition is 
predicted to contribute significantly to the 
bioavailable pool. This is also visible on the 
island of Saba where, despite the presence of a 
highly weatherable volcanic substrate, the rela­
tively low rainfall am ount (<2000 mrrvyr-1) does 
not favor high chemical weathering rates and 
induces a dominance of atmospheric derived Sr 
to the bioavailable pool (Laffoon et al. 2012).

M ost of the sam pling sites (Fig. 2) are
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characterized by roughly similar tropical hum id 
climates, although some areas, for example the 
Leeward Antilles (Aruba, Bonaire, Curacao and 
the Venezuelan archipelago), are characterized 
by more semi-arid conditions. In the Leeward 
Antilles, our three source mixing m odel predicts 
a relatively invariant s'S r/86Sr value around 
0.708-0.709 due to a dominance of sea salt 
derived Sr in com parison w ith  the other sources. 
Bedrock contribution to the m odeled 87Sr/86Sr is 
low because low runoff limits chemical w eather­
ing of bedrock. In the Leeward Antilles, in spite 
of a variable lithology w ith  bedrock s'S r/8bSr 
ranging from 0.703-0.709 (w ww.earthchem .org), 
the m odeled 87Sr/86Sr compare well to observa­
tions of bioavailable s'S r/8bSr w hich rem ain 
relatively invariant and range from 0.7075-0.709 
(Laffoon et al. 2012). The good correlation 
between model and observations for this region 
was surprising because in semi-arid conditions 
soils are usually thin (~1 m) due to w ater and 
w ind erosion and  average rooting dep th  is 
usually deep (McCulley et al. 2004) both  of 
which should favor strong contribution from 
bedrock derived Sr. However, Capo and Chad­
wick (1999) dem onstrated that in semi-arid to 
arid conditions m ost of the exchangeable Sr 
originates from atmospheric deposition (either 
sea salt or dust) because bedrock weathering 
rates are slow. Geochemical analysis of soils from 
the Leeward Antilles (Vries 2000) showed an 
accumulation of sea salt and carbonate mineral 
dust w hich tend to confirm the results of our 
model simulation.

D is c u s s io n

O ur m odel show s that across m ost of the 
circum-Caribbean ecosystems, bedrock w eather­
ing is the dom inant source of Sr to ecosystems.

The contribution of atmospheric deposition is 
significant in m any areas bu t is rarely dominant. 
This pattern is som ew hat surprising because 
previous research on Sr cycling in a similar 
tropical climate in Hawaii showed dom inant to 
exclusive atmospheric contribution to ecosystems 
w hen soils are older than 20 ka (Chadwick et al.
2009). While this pattern could be an  artifact of 
the model, it has been observed in other studies 
in the circum-Caribbean region (e.g., Bern et al.
2005). Several m echanisms can be advanced to

explain the m aintenance of bedrock as the main 
source of Sr to  ecosystems in the  circum 
Caribbean region such as: (1) immobilization 
and preferential recycling of nutrients in upper 
soils and  biomass, which can concentrate bed­
rock derived Sr in the bioavailable zone (Jobbagy 
and Jackson 2001, Porder and Chadwick 2009); 
(2) deposition of locally eroded fresh prim ary 
minerals by rivers and landslides (Bern et al.
2005) and/or atmospheric deposition of bedrock­
like Sr such as local dust, biomass, and volcanic 
ash (Muhs and Budahn 2009); (3) preferential loss 
of atmospheric Sr relative to bedrock Sr due to 
processes such as rapid leaching of soluble sea 
salt Sr and surficial erosion of mineral dust Sr 
(Porder and Hilley 2011); (4) ecological charac­
teristics of plants that favor uptake of bedrock 
derived nutrients, such as deep rooting (Jobbagy 
and Jackson 2001, Pozwa et al. 2002, Pozwa et al. 
2004); and (5) geomorphological and hydrolog­
ical processes coupling stream and soil water 
(Nakano et al. 2001).

Our results suggest that bedrock dom inance is 
a w ide-spread pattern in the circum-Caribbean 
region. Am ong the m echanisms proposed, im­
mobilization and preferential recycling of nutri­
ents and  deposition of locally eroded fresh 
prim ary m inerals are m ore likely to  affect 
circum-Caribbean ecosystems at large scales than 
are the other factors related to local soil type, 
plant species, and/or geomorphology. Recycling 
of bedrock-derived Sr by ecosystem s could 
maintain bedrock dominance for long periods 
of time by renewing the stock of fresh prim ary 
mineral. However, Porder and Chadwick (2009) 
showed tha t at MAP greater than 1,400 m m a  1 
plant recycling of bedrock-derived Sr was limit­
ed. Type and rate of erosion favors the contribu­
tion of bedrock-derived Sr by low ering the 
bedrock depth to plants, decreasing the residence 
time of prim ary minerals, and favoring redepo­
sition of freshly eroded prim ary minerals. Both 
mechanisms should be further investigated to 
understand Sr cycling in the circum-Caribbean 
region.

Our two- and three source mixing models 
show relatively good power to predict bioavail­
able Sr isotope patterns at large spatial scales 
throughout the circum-Caribbean region. H ow ­
ever, these models are highly simplified repre­
sentations of Sr cycling w ithin these systems and
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do not consider a num ber of processes that can 
contribute to bioavailable 87Sr/8bSr. Our models 
estimate the mixing ratios of soluble Sr in soil as 
a sim ple function of climate and  lithology 
specific chemical weathering rates and atm o­
spheric deposition rates. Other variables such as 
erosion, pedology, geomorphology, hydrological 
flowpaths, or plant ecology, w hich have been 
show n in local studies of Sr systematics, are not 
explicitly considered in these models. Some of 
these variables are correlated w ith  others incor­
porated  in our m odels (e.g., runoff and/or 
lithology), helping to explain the relatively good 
performance of the models. Higher precipitation 
rates, for instance, increase runoff and bedrock 
weathering rates in our models, and often lead to 
a dom inance of bedrock Sr. In reality, although 
increasing precipitation increases runoff it can 
also increase erosion. Both processes (runoff and 
erosion) increase the bedrock-derived Sr flux to 
the bioavailable zone. Significant potential re­
m ains for refining our models th rough explicit 
incorporation of some of these additional vari­
ables, w hich m ay help to predict the 30-50% of 
bioavailable Sr isotope variation remaining un ­
explained in our analysis. The results of this first 
analysis, however, suggest tha t relatively simple 
multi-source m odels can explain a large fraction 
of regional Sr isotope variation and provide 
relatively accurate predictions of bioavailable 
s'S r/SbSr in the circum-Caribbean region.

Implications for Sr isotope provenance applications
Despite significant progress in the m apping of 

bioavailable 87Sr/86Sr in m any regions, applica­
tions that rely exclusively on empirical data are 
still relatively few in num ber and generally 
lim ited in scale because of the substantial 
investm ents of time, energy, and  resources 
required. Integrated approaches tha t combine 
empirical and theoretical m odeling will be of 
great benefit to  the further developm ent of 
biosphere ^S r/^S r m apping and to provenance 
studies m ore generally, especially if they can 
provide reliable predictions of bioavailable 
7Sr/86Sr under a broad array of geographic 

settings and  environm ental conditions. One 
potential contribution of these efforts is that 
models w hich explicitly consider m ultiple factors 
that influence the spatial variation of bioavailable 
s'S r/8bSr can help to guide sample selection
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strategies. The choice of both appropriate sample 
materials and m ethods for provenance studies 
cannot be independent of a clear understanding 
of the Sr cycle at the scale studied.

In areas w here bedrock is easily weatherable 
and the dom inant source of Sr, 8 Sr/86Sr should 
rem ain fairly constant in the different pools of the 
Sr cycle (e.g., groundwater, soil water, plants and 
animals). In such cases, the developm ent of 
bioavailable 8'S r/St,Sr m aps th rough focused 
sam pling of any of these sam ple m aterials 
combined w ith the bedrock-only model (Bataille 
and Bowen 2012) should be sufficient to predict 
accurately the bioavailable 87Sr/86Sr. In environ­
m ents w here m ultiple sources of Sr interact, 
different sample m aterials m ay cycle Sr differ­
ently and display highly variable 8 Sr/86Sr ratios. 
In these areas, defining the different processes 
interacting in the Sr cycle of local soils is 
im portant to correctly interpret the magnitude, 
pattern and scale of variability of 87Sr/S6Sr and 
how these relate to the spatial scale of integration 
represented by different sample materials. This is 
well illustrated by the contrasting spatial pat­
terns of 8'S r/S6Sr variation from Grande-Terre 
and Basse-Terre, Guadeloupe. Despite the fact 
that both islands are characterized by relatively 
uniform  geologies, biosphere s'S r/86Sr on 
Grande-Terre is similar over large spatial scales 
(essentially the entire island) while biosphere 
8ySr/8bSr on Basse-Terre is heterogeneous and 
highly variable at small localized spatial scales. 
For Grande-Terre the marine limestone substrate 
is rich in easily weatherable, Sr-rich minerals and 
8jSr/86Sr of the local biosphere is dom inated by a 
single isotopically hom ogenous source of Sr. In 
contrast, the interm ediate volcanic lithology of 
Basse-Terre is less weatherable and less rich in Sr 
and thu s local variations in the conditions 
influencing the proportional contribution of 
bedrock/soil Sr to local bioavailable Sr budgets 
also strongly influence the spatial variation of 
87Sr/86Sr. Therefore, a higher sam pling density is 
required to empirically m ap, or calibrate and 
validate m odels for, the relatively localized 
spatial variation of 87Sr/86Sr on Basse-Terre, 
w hereas a reduced sam pling density should 
suffice for Grande-Terre.

Com parison betw een bedrock, flux-weighted 
catchment w ater and bioavailable Sr isoscape 
predictions and observed ^ S r/^ S r in plants,
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rocks and river w aters (Bataille and Bowen 2012, 
Chesson et al. 2012) highlights the necessity of 
developing specific isoscapes for each substrate 
(e.g., rock, river water, biomass) because each 
substrate can cycle Sr from different sources. For 
instance, Chesson et al. (2012) show ed large 
divergence betw een the local bedrock Sr and tap 
w ater 87Sr/86Sr. This is not surprising because US 
tap  w aters generally originate from large rivers 
or subsurface aquifers w hich reflect s'S r/8bSr 
from the weathering of large drainage basins 
and/or subsurface rock units. W hen substrates 
sample Sr from local sources or ecosystems, then 
m apping the bioavailable s'S r/86Sr requires ex­
plicit considerations of local variables such as 
presented in this study or in Capo et al. (1998). In 
contrast, w hen the dom inant source of Sr of the 
substrate is river water, m odeling efforts will be 
better focused on regional variables such as 
w eathering and  catchm ent hydrology. W hen 
both  local (bioavailable) and regional (river 
waters) Sr sources participate in governing the 
87Sr/86Sr values of Sr assimilated by a sample 
substrate (e.g., humans), a quantification of the 
contribution from each source m ay be required.

Conclusions
We present new m odels and isoscapes for 

large-scale patterns of bioavailable 87Sr/86Sr in 
the circum-Caribbean region that include consid­
eration of both bedrock and atm ospheric Sr 
sources. In spite of the relative simplicity of the 
models and the limitations discussed throughout 
this paper, this new  m apping m ethod dem on­
strates good predictive pow er and can contribute 
to future provenance studies and inform further 
data collection. Our results suggest that through­
out this region bioavailable s'S r/8bSr is generally 
dom inated by bedrock Sr, bu t tha t in some areas 
atmospheric deposition is significant and m ust 
be considered w hen interpreting S7Sr/86Sr data­
sets for provenance studies.

The following steps are the m ost critical to 
continue the developm ent of Sr isoscapes for 
different substrates: (1) focus on im proving, 
simplifying and validating m odeling strategies 
for three relevant pools of Sr for provenance 
studies: bedrock, bioavailable Sr, and river water; 
(2) account for local processes influencing the Sr 
cycling, such as local Sr recycling th rough  
erosion and dust, pedology and surficial depos­

its; (3) expand m odeling in each representative 
pool to broader geographic coverage using the 
new lithological w orld m ap (Moosdorf et al.
2010). Ultimately a Sr isoscape of the w orld could 
be applied to a variety of fields including large 
scale provenancing studies in ecology and 
archeology (e.g., Bentley 2006), dust m odeling 
(e.g., Nakai et al. 1993) or refining Sr budget in 
seawater (e.g., Vance et al. 2009).
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A p p e n d ix  A

Table A l. Param eterization of Eqs. 5 and 7 for each lithological descriptor present in  the Caribbean geodatabase 
(French et al. 2004). Sr_ratio is calculated using the analogous descriptor from Bataille and Bowen (2012) and 
Eq. 1; b and ba are obtained from analogous descriptor and calibrations recalculated in  Jansen et al. (2010); Sr/ 
S i0 2 ratios is param eterized using m edian and standard  deviation values from 121,253 analyses available 
through the Earthchem Portal for each descriptor from Bataille and Bowen (2012; w w w .earthchem .org; Query 
by “chemistry” : all Sr AND Si02, “ database”: Georoc results).

A nalogous descriptor

Lithological descriptor Sr_ratio bo b
Sr/SiC>2 

median (SD)

From Bataille 
and Bowen 

(2012)
From Jansen 
et al. (2010)

cretaceous amphibolite 0.7067 0.018 0.834 0.0007 (±0.0004) Amphib olites Metamorphics
Cretaceous andesitic to silicic volcanic 

rocks
0.7042 0.018 1.166 0.0007 (±0.0004) Andesites Acid and Intermediate 

Volcanics
Cretaceous granite 0.7114 0.018 0.956 0.0003 (±0.0004) Granites Acid Plutonics
Cretaceous marine strata 0.7077 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Cretaceous metasedimentary and 

metaigneous rocks, low to
0.7056 0.018 0.834 0.0005 (±0.0009) Met amorphic 

rocks
Metamorphics

intermediate metamo
Cretaceous plutons, mostly 0.7098 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics

intermediate to silicic
Cretaceous quart diorite 0.7053 0.028 1.010 0.0007 (±0.0004) Quartz diorites Basic and Intermediate 

Plutonics
Cretaceous sedimentary and volcanic 

rocks
0.7056 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 

Volcanics
Cretaceous volcanic rocks 0.7056 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 

Volcanics
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Analogous descriptor

From Bataille
Sr/Si02 and Bowen From Jansen

Lithological descriptor Sr_ratio bo b median (SD) (2012) et al. (2010)

Eclogite 0.7040 0.018 1.031 0.0003 (±0.0004) Volcanic rocks Acid and Intermediate
Volcanics

Eocene and Paleocene volcanic flows 0.7052 0.018 1.166 0.0007 (±0.0004) Volcanic rocks Basic volcanic and
and associated pyroclastic and pyroclastics
volcanoge

Eocene and(or) Paleocene marine 0.7077 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary
strata Rocks

Eocene strata 0.7080 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary
Rocks

Gabbro 0.7041 0.028 1.010 0.0003 (±0.0003) Gabbros Basic and Intermediate
Plutonics

Gabbro and related rocks 0.7040 0.028 1.010 0.0003 (±0.0003) Gabbros Basic and Intermediate
Plutonics

Granite 0.7114 0.018 0.956 0.0003 (±0.0004) Granites Acid Plutonics
Intrusive rocks, undivided, mostly 0.7069 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics

intermediate to silicic
Jurassic and Triassic marine and 0.7077 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary

continental strata Rocks
Jurassic and Triassic sedimentary and 0.7061 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate

volcanic rocks Volcanics
Jurassic complex of sedimentary, 0.7058 0.018 0.834 0.0005 (±0.0009) Metamorphic Metamorphics

igneous, and metamorphic rocks rocks
Jurassic marine and continental strata 0.7075 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Jurassic volcanic rocks, mostly 0.7042 0.018 1.031 0.0007 (±0.0004) Andesites Acid and Intermediate

andisitic to silicic Volcanics
Lower Cretaceous flows, breccia, and 0.7073 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary

tuff, partly of marine deposition Rocks
Mesozoic amphibolites and associated 0.7067 0.018 0.834 0,0007 (±0.0004) Amphibolites Metamorphics

metasedimentary rocks
Mesozoic and Paleozoic marine and 0.7082 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary

continental strata Rocks
Mesozoic and Paleozoic 0.7061 0.018 0.834 0,0003 (±0.0004) Metamorphic Metamorphics

metasedimentary and metaigneous rocks
rocks

Mesozoic flows and small plutons, 0.7105 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics
mostly intermediate to silicic

Mesozoic metamorphic rock 0.7061 0.018 0.834 0.0005 (±0.0009) Metamorphic
rocks

Metamorphics

Mesozoic metasedimentary and 0.7061 0.018 0.834 0.0005 (±0.0009) Metamorphic Metamorphics
metaigneous rocks, low to rocks
intermediate metamorphic

Mesozoic metavolcanic and associated 0.7059 0.018 0.834 0.0005 (±0.0009) Metavolcanic Metamorphics
metasedimentary rodcs rocks

Mesozoic plutons, mostly intermediate 0.7105 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics
to silicic

Mesozoic sedimentary and volcanic 0.7061 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate
rocks Volcanics

Mesozoic volcanic and sedimentary 0.7061 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate
rocks Volcanics

Miocene and Oligocene volcanic rocks 0.7050 0.018 1.031 0,0007 (±0.0004) Volcanic rocks Acid and Intermediate
Volcanics

Mylonite or cataclastic zone along 0.7198 0.018 0.834 0.0005 (±0.0009) Mylonites Metamorphics
major fault (Guyana Shield)

Oligocene strata 0.7085 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary
Rocks

Paleozoic and Precambrian igneous 0.7143 0.018 0.834 0.0005 (±0.0009) Metamorphic Metamorphics
and metamorphic rocks, undivided rocks

Paleozoic and Precambrian 0.7143 0.018 0.834 0.0005 (±0.0009) Metamorphic Metamorphics
metamorphic rocks, undivided rocks

Paleozoic granite 0-7196 0.018 0.956 0-0003 (±0.0004) Granites Acid Plutonics
Paleozoic plutons, mostly intermediate 0.7196 0.018 0.956 0,0003 (±0.0004) Plutonic rocks Acid Plutonics

to silicic
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Table A l . Continued,

Lithological descriptor Sr_ratio fro b
Sr/Si02 

median (SD)

Analogous descriptor 

From Bataille
and Bowen From Jansen 

(2012) et al. (2010)

Paleozoic strata 0.7082 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 
Rocks

Paleozoic volcanic rocks 0.7076 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 
Volcanics

Permian granite 0.7124 0.018 0.956 0.0003 Granites Acid Plutonics
Pliocene and Miocene andesitic flows 

and associated volcanic rocks
0.7040 0.018 1.031 0.0007 (±0,0004) Andesites Acid and Intermediate 

Volcanics
Pliocene and Miocene strata 0.7088 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Pliocene calc-alkaline volcanic rocks 0.7050 0.018 1.031 0.0007 (±0,0004) Volcanic rocks Acid and Intermediate 

Volcanics
Post-Eocene continental strata 0.7085 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Post-Eocene marine strata 0.7085 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Precambrian amphibolite and 

associated metasedimentary and
0.7076 0.028 1.010 0.0003 (±0-0004) Amphibolites Basic and Intermediate 

Plutonics
metaigneous rocks

Precambrian diabase sills and dikes: 
Ages 1/500-1/750 my

0.7031 0.028 1.010 0.0003 (±0,0004) Diabases Basic and Intermediate 
Plutonics

Precambrian gneiss 0.7348 0.018 0.956 0.0005 (±0.0009) Gneisses Acid Plutonics
Precambrian granitic rocks: Ages 0.7375 0.018 0.956 0.0003 (±0,0004) Granites Acid Plutonics

1/000-1/550 my
Precambrian granitic rocks. Ages 0.7679 0.018 0.956 0.0003 (±0,0004) Granites Acid Plutonics

1/800-3/140 my
Precambrian igneous and 

metamorphic rocks, undivided
0.7310 0.018 0.834 0.0005 (±0.0009) Metamorphic

rocks
Metamorphics

Precambrian metamorphic rocks of 
low grade

0.7310 0.018 0.834 0.0005 (±0.0009) Metamoprhic
rocks

Metamorphics

Precambrian metasedimentary and 
metaigneous rocks, undivided

0.7310 0.018 0.834 0.0005 (±0.0009) Metamorphic
rocks

Metamorphics

Precambrian metasedimentary and 
metavolcanic rocks

0.7310 0.018 0.834 0.0005 (±0.0009) Metamorphic
rocks

Metamorphics

Precambrian quartzofeldspathic 0.7348 0.018 0.834 0.0005 (±0.0009) Gneisses Metamorphics
gneiss, ferruginous quartzite, and 
banded bio

Precambrian silicic flows, tuffs, and 
ignimb rites

0.7348 0.018 1.166 0.0003 (±0.0004) Felsic volcanic Acid and Intermediate 
Volcanics

Precambrian ultramafic rocks 0.7040 0.028 1.010 0.000002 (±0.0004) Ultramafic rocks Basic and Intermediate 
Plutonics

Quartz diorite 0.7053 0.028 1.010 0.0007 (±0,0004) Quartz diorites Basic and Intermediate 
Plutonics

Quaternary alluvium 0.7080 0.018 1.056 0.0003 (±0.0004) Alluvium Unconsolidated Sediments
Quaternary and Tertiary continental 

deposits
0.7092 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Quaternary and Tertiary marine 

limestone/ sandstone, and shale
0.7090 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Quaternary and Tertiary volcanic 

edifices, flows, tuff, silicic
0.7041 0.018 1.166 0.0007 (±0.0004) Andesites Basic volcanic and 

pyroclastics
pyroclastric

Quaternary pumice fills and 
pyroclastic mantles

0.7041 0.018 1.166 0.0007 (±0-0004) Andesites Basic volcanic and 
pyroclastics

Quaternary volcanic edifices, flows, 
and pyroclastic deposits

0.7041 0.018 1.166 0.0007 (±0-0004) Andesites Basic volcanic and 
pyroclastics

Recent volcanic 0.7051 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 
Volcanics

Tertiary and Cretaceous complex of 0.7106 0.018 0.834 0.0003 (±0.0004) Metasedimentary rocks
deformed sedimentary rocks 

Metamorphics
Tertiary and Cretaceous continental 

strata
0.7078 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Tertiary and Cretaceous marine strata 0.7077 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
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Table A l. Continued.

Lithological descriptor Sr_ratio 0̂ b
Sr/Si02 

median (SD)

Analogi

From Bataille 
and Bowen 

(2012)

dus descriptor

From Jansen 
et al. (2010)

Tertiary and Cretaceous plutons, 0,7098 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics
mostly intermediate to silicic

Tertiary and Cretaceous volcanic rocks 0,7056 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 
Volcanics

Tertiary continental strata 0,7085 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 
Rocks

Tertiary granite 0,7099 0.018 0.956 0.0003 (±0.0004) Granites Acid Plutonics
Tertiary marine strata 0.7085 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Tertiary plutons, mostly intermediate 0.7092 0.018 0.956 0.0003 (±0.0004) Plutonic rocks Acid Plutonics

to silicic
Tertiary volcanic rocks 0.7052 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 

Volcanics
Ultramafic rocks 0.7032 0.028 1.010 0.0009 Ultramafic rocks Basic and Intermediate 

Plutonics
Upper Cretaceous marine strata 0.7076 0.028 0.776 0.0150 (±0.015) Carbonates Carbonate Sedimentary 

Rocks
Volcanic rocks 0.7050 0.018 1.031 0.0007 (±0.0004) Volcanic rocks Acid and Intermediate 

Volcanics
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Abstract

Bataille and Bowen (2012) developed models to predict 87Sr/86Sr in rocks 

(bedrock model) and rivers (catchment water model) for regional provenance study.

Here, we revisit those models formulation and calibration and we apply them to predict 

Sr concentrations and 87Sr/86Sr of Alaska Rivers. In a first step, we add several new 

components and/or improvements to resolve limitations of the bedrock model, including:

1) an independent siliciclastic sediment submodel, 2) an explicit consideration of 

87Sr/86Sr variability at local scale, and 3) a fully-coupled assessment of prediction 

uncertainty. Tested against a compilation of 88 5 87Sr/86Sr rock analyses across Alaska, 

the bedrock model significantly improves 87Sr/86Sr prediction accuracy in both igneous 

and sedimentary settings. In a second step, we develop a fully independent Sr chemical 

weathering model calibrated using a database of 339 Sr concentrations analyses from 

rivers of North hemisphere high-latitudes and predicting the spatial variations in the rate 

of Sr release from rocks as a function of lithology, permafrost cover and slope. We 

combine the bedrock and Sr chemical weathering models to predict Sr concentration and

87 86Sr/ Sr in Alaska Rivers. Tested on a dataset of 61 water samples from Alaska Rivers,

87 86the resulting catchment water model explains 82% of Sr/ Sr variations. We use the 

catchment water model to estimate the average Sr concentration and 87Sr/86Sr of Alaska 

runoff and compare those predicted values to Sr concentration and 87Sr/86Sr of the Yukon 

River. The predicted average Sr concentration and 87Sr/86Sr of the entire Alaska surface 

runoff -  104.3 pg.L"1 and 0.7098, respectively -  differs significantly from those of the 

Yukon River -  139.3 pg.L"1 and 0.7137, respectively. This result questions the 

assumption that Sr concentration and 87Sr/86Sr are representative of the entire Earth
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surface. The data products from this work can also provide robust baseline 87Sr/86Sr maps 

in rocks and rivers for regional provenance studies over Alaska.

Introduction

Variations in the ratio of 87-strontium on 86-strontium (87Sr/86Sr) in seawater 

have been used for decades as a proxy to reconstruct the interplay of mantle processes 

and continental weathering on the Earth’s surface at million years’ time scale (Brevart 

and Allegre, 1977; Burke et al., 1982; Chaudhuri and Clauer, 1986; Peterman et al., 1970; 

Shields, 2007; Veizer, 1989; Veizer and Compston, 1974). However, interpreting the 

87Sr/86Sr variations in seawater remain challenging and a multitude of hypotheses have 

been advanced to explain diagnostic features of the seawater 87Sr/86Sr curve. For instance, 

it has been argued that the rapid increase in 87Sr/86Sr in seawater over the last 40Ma could 

be associated to climatic factors such as a shift from greenhouse to icehouse periods 

enhancing high latitude denudation rates (Armstrong, 1971; Zachos et al., 1999) as well 

as tectonic factors such as orogenesis rate or change in subduction and seafloor spreading 

rate (Edmond, 1992; Raymo et al., 1988).

The interpretation of 87Sr/86Sr variations in seawater relies heavily on our 

understanding of the modern strontium (Sr) budget in seawater. The modern Sr budget in 

seawater is thought to be primarily controlled by the input of Sr from two isotopically 

distinct Sr fluxes: a radiogenic Sr flux from continental runoff and a poorly constrained 

nonradiogenic Sr flux from the mantle including island arcs weathering (Allegre et al., 

2010), ophiolites weathering (Davis et al., 2003), and on and off-axis hydrothermal 

alteration at oceanic ridges (Coogan and Gillis, 2013; Spooner, 1976). The magnitude
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and isotopic signature of each of these fluxes in the modern Sr budget in seawater has 

been estimated by compiling worldwide dataset of Sr concentrations and 87Sr/86Sr from 

rivers and fluid samples recovered from on and off-axis oceanic ridges (Brass, 1976; 

Palmer and Edmond, 1992; Peucker-Ehrenbrink et al., 2010). However, the observation 

that the current estimates of the nonradiogenic and radiogenic Sr fluxes do balance each 

other feeds a vivid debate about the accuracy of the empirically-based estimates of those 

Sr fluxes. Some scientists argue that the current Sr budget is inaccurate and/or missing 

some fluxes (Allegre et al., 2010; Beck et al., 2013; Coogan and Gillis, 2013; Jones et al., 

2014; Jones et al., 2012); whereas others argue that the modern Sr budget is not at steady- 

state in postglacial periods (Davis et al., 2003; Vance et al., 2009). Developing models 

able to predict Sr concentrations and 87Sr/86Sr in rivers at regional scale could give a 

more robust framework to improve the estimate of the Sr flux and 87Sr/86Sr from 

continental runoff and island arcs and help to resolve this debate.

A prerequisite before developing models predicting 87Sr/86Sr in rivers is to 

develop a model to predict 87Sr/86Sr in rocks because bedrock is the dominant source of 

Sr in the Earth’s surface. In previous work, Bataille and Bowen (2012) developed a 

bedrock model which predicts 87Sr/86Sr variations in rocks as a function of rock type and 

rock age. This model showed promising results when applied to the conterminous US and 

circum-Caribbean regions (Bataille and Bowen, 2012; Bataille et al., 2012), but suffered 

from a poor representation of 87Sr/86Sr heterogeneity within and between rock units 

across a range of spatial scales as well as a poor formulation of 87Sr/86Sr variations in 

siliciclastic sediments.

Another critical step to predict 87Sr/86Sr in river water is to develop models
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predicting the release of Sr by chemical weathering to account for the variable 

contribution of different rock units to the dissolved Sr in rivers. Bataille and Bowen 

(2012) developed an initial chemical weathering model accounting for the differential 

weathering rates and Sr content of different rock types. Bataille et al. (2012) took another 

approach by applying an adapted version of a multilinear regression model (Hartmann,

2009) predicting solute concentration in rivers as a function of lithological proportion and 

mean runoff of the catchment. However, this last chemical weathering model is not 

applicable at high-latitudes and does not account for Sr specific weathering processes.

Here, we add new components and improvements to resolve the limitations of 

previous versions of the bedrock and chemical weathering models to enhance the 

predictive power of 87Sr/86Sr in bedrock and water. We apply those models to predict Sr 

concentrations and 87Sr/86Sr in Alaska Rivers (R). Alaska is an ideal area to extend our 

modeling work because of i) limited human impact on Alaska R, ii) a wealth of 

geochemical and geological data existing for this region, and iii) a new spatially 

extensive dataset reporting solute concentrations and 87Sr/86Sr in 61 Alaska R (Brennan 

et al., in press). Alaska is also an interesting location to test the sensitivity of the high- 

latitudes Sr budget to geologic and physiographic factors because Alaska displays a 

varied geology, large topographic variations and a broad range of climatic conditions. We 

focus on testing the influence of geology (age and lithology), topography (slope), climate 

(temperature, runoff), and glacial processes (permafrost and alpine glacier cover) on the 

Sr concentrations and 87Sr/86Sr of Alaska R.
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Material and methods 

Bedrock model

The formulation and calibration of this new bedrock model are standardized to 

make use of the new global lithological map (GLiM) (Hartmann and Moosdorf, 2012). 

The GLiM divides rock of the Earth surface into 16 major lithological classes including 

plutonic and volcanic acid (pa and va), basic (pb and vb), intermediate rocks (pi, py and 

vi); metamorphic rocks (mt); and siliciclastic (ss), unconsolidated (su), mixed (sm), 

carbonate (sc) and evaporite sedimentary rocks (ev).The geology of Alaska is represented 

by 57,714 polygons with an average area of 48 km and a median age of 57 Myrs.

Igneous submodel 

Igneous submodel formulation

For igneous rocks, we keep the model formulation described in Bataille and 

Bowen (2012) but we develop new calibration steps to assess the uncertainty and 

overcome the poor representation of high resolution 87Sr/86Sr variability. Based on the 

tectonic history of the Earth, Bataille and Bowen (2012) made the simplifying 

assumption that the modern 87Sr/86Sr of silicate rocks can be approximated based on a 

three stage history. Before the onset of plate tectonics and the beginning of recycling and

87chemical differentiation of crustal material (Dhuime et al., 2012), Sr was produced in 

the chemically quasi-undifferentiated Earth until 87Sr/86Sr reached 0.701 at 3 Ga (an 

approximation of the age of the onset of plate tectonics, t}). After 3 Ga, geochemical 

differentiation between crust and mantle accelerated and 87Sr/86Sr evolved independently 

in the mantle and multiple crustal rock reservoirs having different Rb/Sr ratios. In the
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third stage, extant rock units were formed from one of these rock reservoirs at times 

corresponding to the rock unit ages (t2), as documented in geological map data. From this 

theoretical framework, Bataille and Bowen (2012) derived the following equation:
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where X is the decay constant of the parent isotope (1.42*10-11 yr-1), f 7R b /6Sr)parent is the 

87Rb/86Sr of the parent material, and f 7R b /6Sr)rock is the 87Rb/86Sr of the modern rock. 

87R b/i6Sr can be expressed as:

87Rb _ Rb(w87Rb)(mSr)=h  2 8936 Rb
6Sr Sr(w Sr)(mRb)

(4.2)

where m refers to the atomic mass of an element and w to the abundance (%) of an

isotope and k  to the conversion factor. w86Sr and mSr depend on the abundance of 87Sr

87 86 87and hence on the Sr/ Sr of each sample. When using the modern abundance of Rb of 

27.8346 % and a 87Sr/86Sr=0.70916 (seawater), k  equals 2.8936 (Faure, 1977). k  only 

increases by a negligible amount when 87Sr/86Sr increases from 0.7 to 1. To simplify our 

calculations, we neglected changes in w86Sr and mSr and assumed a constant k  value of 

2.8936.

Igneous submodel calibration

In t2 calibration step (Fig. 4.1), we estimated the numeric minimum and 

maximum age of each rock unit of Alaska from the age descriptor given in the GLiM



database using the USGS geological time scale (U.S. Geologic Names Committee and 

Geological Survey, 2007).

In f 7R b/86Sr)parent calibration step (Fig. 4.1), we proceeded as in Bataille and 

Bowen (2012), using a n=31,421 worldwide dataset downloaded from the Earthchem 

portal (www.earthchem.org; Query by “chemistry” : 87Sr/86Sr and Sr and Rb, “Age”=Age 

exists) containing 87Sr/86Sr, age and Rb/Sr. We grouped samples into 7 subdatasets 

following their major plutonic, volcanic and metamorphic GLiM lithological classes (mt, 

pa, pb, pi, va, vb, vi). We then back-calculated (87Rb/86Sr)parent for each igneous rock 

sample by solving equation 4.1. For each GLiM lithological class, the resulting 

distribution of f 7R b f6Sr)parent dataset is strongly positively skewed. To resolve this issue, 

we power-transformed (87R b /6Sr)parent for each subdataset (R, car package, 

powerTransform function) to achieve a normal distribution and calculated the mean and 

standard deviation for each lithological class (Supplementary material and Tables 4S.1 

and 4S.2).

In f 7R b /6Sr)rock calibration step (Fig. 4.1), we overcome the limitations of 

Bataille and Bowen (2012) by using ordinary kriging to estimate f 7R b /6Sr)rock. Bataille 

and Bowen (2012) parameterized f 7R b /6Sr)rock using a median approach for each 

lithological class which did not allow considering Rb/Sr variability within rock units. 

Ordinary kriging provides a spatially explicit interpolation and variance estimate for a 

given coordinate location. We obtained a dataset of 18,706 samples of Rb/Sr analyses 

from igneous rocks across the study area using the Alaska geochemical database 

(Granitto et al., 2013). We used Rb/Sr data to calculate f 7R b f6Sr)rockusing equation 4.2. 

We classified the data following their major igneous GLiM lithological class (pa, pb, pi,
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va, vb, vi and mt) and examined the statistical characteristics of each dataset. For each 

class, the distribution of 87Rb/86Sr analysis is nonnormal, strongly skewed and contains 

some outliers. We removed outliers because they can bias statistical results, and because 

ordinary kriging is optimal when the data has a normal distribution (Saito and Goovaerts, 

2000). We power transformed the 87Rb/86Sr dataset towards normality (R, car package, 

powerTransform function) (Supplementary material and Tables 4S.3 and 4S.4). For each 

GLiM lithological class, we fitted the most appropriate semivariogram model on the 

power transformed datasets and applied ordinary kriging on the resulting datasets to 

predict mean and standard deviation of f 7R b/86Sr)rock at each pixel (1km by 1km 

resolution) across the study area (Supplementary material and Tables 4S.5, 4S.6 and

4S.7).
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Carbonate submodel

Bataille and Bowen (2012) also developed an independent model for carbonates 

and evaporites (sc and ev classes from the GLIM) because (87Sr/86Sr)rock of carbonates is 

mostly a function of 87Sr/86Sr in seawater at the time of deposition:

^ 87S r ^

86Sr
r 87Sr^

y  rock
86Sr

+
r 87 Rb'''

86Sr
(eAt2 - 1) (4.3)

S7  8 6  87 86where ( Sr/8 Sr)seawater is the Sr/ Sr of seawater at t2 the time of deposition.

The formulation of the carbonate submodel here remains identical to that of 

Bataille and Bowen (2012), and we only modify our approach to parameterization 

estimation. In t2 calibration step, we determined the minimum and maximum age of each



rock unit as for the igneous submodel t2 calibration step. In 87S r / 6Srseawater calibration 

step, we used the minimum and maximum age of each carbonate rock unit of the GLiM 

over Alaska to estimate the minimum and maximum 87Sr/86Srseawater from the 

Precambrian Marine Carbonate Isotope Database (Shields and Veizer, 2002). In 

(87R b/86Sr)rock calibration step , we proceeded similarly as with the igneous submodel 

f 7R b /6Sr)rock calibration step, by applying ordinary kriging on a screened and power- 

transformed dataset of 358 Rb/Sr analyses from carbonates (used to calculate 87Rb/86Sr 

from equation 4.2) gathered from the Alaska geochemical database (Granitto et al.,

2013). We developed a spatially explicit parameterization for f 7R b /6Sr)rock because 

Rb/Sr in carbonates display some spatial variability originating primarily from the higher 

average Rb/Sr of dolomites in comparison with limestones (Simo et al., 2009). Details 

and results on each of the statistical steps of this work are given in Supplementary 

material and Tables 4S.3, 4S.4, 4S.5, 4S.6 and 4S.7.

Siliciclastic sedimentary rock submodel 

Siliciclastic sedimentary rock submodel formulation

Accurate modeling of siliciclastic sedimentary rocks is crucial because they cover 

close to 50% of the Earth’s surface (Hartmann and Moosdorf, 2012). In Bataille and 

Bowen (2012), the siliciclastic sedimentary rock submodel formulation and calibration 

steps are identical to the igneous submodel (equation 4.1). t2 is estimated using the age of 

sediment deposition, (87R b /6Sr)rĉck is estimated using the median modern Rb/Sr value of 

a given siliciclastic sedimentary rock type, and (87R b /6Sr)parent is back-calculated from 

equation 4.1. A fundamental inaccuracy in this modeling approach is that up to 95% of
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clastic sediments on the Earth’s surface are derived from recycling of preexisting 

sediments and are composed of detrital grains from geologically-distinct parent rocks 

deposited at different periods (Veizer and Jansen, 1979). Consequently, the actual 

geological age of siliciclastic sedimentary rocks differs from the age of the sediment 

deposition (t2) given by geological maps (Garrels and Mackenzie, 1971; Goldstein, 1988; 

Veizer and Mackenzie, 2003) The detrital origin of siliciclastic sedimentary rocks lead to 

a progressive increase of their Rb/Sr during their recycling history because of both the 

increasing Rb/Sr of their parent rocks associated with magmatic processes and the 

preferential weathering of nonradiogenic Sr (Bickle, 1994; Garrels and Mackenzie, 1971; 

Goldstein, 1988; McDermott and Hawkesworth, 1990; Veizer, 1973; Veizer and 

Mackenzie, 2003). Moreover, in the past 3Ga, the rate of crustal recycling largely 

exceeded the rate of new crust formation leading to an acceleration of 86Rb/87Sr increase 

through time (Cawood et al., 2012).

One solution to overcome these issues is to take terrane (genetically related 

fragment of continental crust) into account because terranes play an important role in 

determining the geochemistry of siliciclastic sediments (Veizer and Jansen, 1979). Alaska 

is composed of a series of autochtonous and allochtonous terranes which accreted to the 

North American craton (Fig. 4.2) (Nelson et al., 2013). Siliciclastic sedimentary rocks 

deposited on young outboard and insular terranes display a unimodal age distribution of 

detrital zircons, centered on the age of the terrane on which they were deposited 

suggesting that igneous rocks from this terrane were their primary parent rock (Amato 

and Pavlis, 2010; Gehrels et al., 1996). Siliciclastic sedimentary rocks from older terranes 

or cratons display much more complex multimodal age distribution reflecting the
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different parent rocks and multiple recycling events leading to the formation of those 

siliciclastic sedimentary units (Bradley et al., 2007; Miller et al., 2006; Nelson and 

Gehrels, 2007). A a result, the Rb/Sr of siliciclastic sedimentary units lying on older 

terranes is generally much higher than the Rb/Sr of siliciclastic sedimentary units from 

younger Phanerozoic terranes, reflecting the higher degree of recycling of older 

sediments (Goldstein, 1988; McDermott and Hawkesworth, 1990).

We build upon these ideas to develop a new siliciclastic sedimentary rocks 

submodel formulation. The modern 87Sr/86Sr of siliciclastic sedimentary rocks can be 

approximated based on a four-stage history with the first, second and fourth steps 

identical to the first, second and third calibration steps of the igneous submodel. We add 

an intermediate third step which accounts for recycling occurring between tT (age of 

formation of a given terrane) and t2 (age of deposition of the modern siliciclastic 

sedimentary unit). During that time, the Rb/Sr of siliciclastic sediments deposited and 

recycled on a given terrane increases exponentially with time from the Rb/Sr value of the 

dominant igneous rocks of the terrane to the modern Rb/Sr value of the siliciclastic 

sedimentary unit. The 87Sr/86Sr of siliciclastic sedimentary rocks ( f 7S r / 6Sr)ss) is 

predicted following the equation:
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where f 7R b /6Sr)parent is the 87Rb/86Sr of the parent igneous rock of the terrane,

87 86(( Rb/8 Sr)T) t is age-dependent Rb/ Sr of siliciclastic sedimentary rocks from the

87 86terrane between tT and t2 and (° Rb/ Sr)rock is the Rb/ Sr of the modern siliciclastic
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sedimentary units.

( f 7R b /6Sr)T) t can be expressed as:

( ( 87Rb^ y\

86 Srvv Sr Jt Jt
= b exp(at), (4.5)

where a and b are parameters calculated from boundary conditions at tT with 

(87Rb/86Sr)T=(87Rb/86Sr)parent and at tT with f 7R b f6Sr)T= f7R b ^ 6Sr)rock. The exponential 

function represents the progressive increase of 87Rb/86Sr of siliciclastic sedimentary rocks 

from (87Rb/86Sr)T to f 7R b /6Sr)rock as the terrane gets older and increasingly recycled 

material from multiple parent rocks mixes with siliciclastic sedimentary rocks at the 

surface of the terrane.

Siliciclastic sedimentary rock submodel calibration

In t2 calibration step , we determined the minimum and maximum age of each 

rock unit as for the igneous submodel t2 calibration step.

In (87R b /6Sr)parent calibration step, we determined the primary igneous lithology 

and corresponding major igneous GLiM lithological class (pa,pb,pi,va,vb,vi,mt) of each 

Alaska terrane based on their geological history (Supplementary material and Table

4S.8). We then used the f 7R b /6Sr)parent calculated in the igneous submodel (87R b /6Sr)rock 

calibration step to assign a f 7R b f6Sr)parent to each terrane corresponding to its major 

GLiM lithological class (see “Igneous submodel” section).

In tT calibration step, we estimated the numeric maximum and minium age of 

each Alaska terrane unit present in the digital atlas of terranes for the Northern Cordillera



(Colpron and Nelson, 2011) from the detailed geological history of each individual 

terrane of Alaska (Nelson et al., 2013) (Supplementary material and Table 4S.8).

In f 7R b /6Sr)rock calibration step , we proceeded similarly as with the igneous 

submodel (87Rb/86Sr)rock calibration step. We applied ordinary kriging on a screened and 

power-transformed dataset of 17,727 Rb/Sr analyses for siliciclastic sedimentary rock 

analyses from the Alaska geochemical database (Granitto et al., 2013). Details and results 

on each of the statistical steps of this work are given in Supplementary material and 

Tables 4S.3, 4S.4, 4S.5, 4S.6 and 4S.7.

Uncertainty assessment for each submodel calibration step

We calculated the distribution of predicted 87Sr/86Sr values at each pixel given the 

distribution and uncertainty of each submodel input parameter using Monte Carlo 

simulation procedures (Fig. 4.1). Input parameters include t2, f 7R b f6Sr)parent and 

f 7R b /6Sr)rock for the igneous submodel, t2, f 7R b /6Sr)rock and (87S r / 6Sr)seawater for the 

carbonate submodel and t2, tT, (87R b /6Sr)parent and (87R b /6Sr)rôck for the siliciclastic 

sediment rock submodel. For each submodel, we used the mc2d package in R (Pouillot 

and Delignette-Muller, 2010) to repeat 10,000 random draws from the distribution of 

each input parameter with:

• t2 described using a uniform distribution between the estimated minimum and 

maximum age at each rock unit derived from the t2 calibration step of the igneous, 

carbonate and siliciclastic sedimentary rock submodels

• (87R b f6Sr)parent described using a normal distribution derived from the power- 

transformed mean and standard deviation calculated in the (87Rb/86Sr)parent
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calibration step of the igneous and siliciclastic sedimentary rock submodels

• (Rb/Sr)rock described using a normal distribution derived from the power- 

transformed mean and standard deviation calculated in the (87Rb/86Sr)rock 

calibration step of the igneous, carbonate and siliciclastic sedimentary rock 

submodels

• (87Sr/86Sr)seawater described using a uniform distribution between the minimum and 

maximum f 7S r f 6Sr)seawater derived from f 7S r / 6Sr)seawater calibration step of the 

carbonate submodel

• tT described using a uniform distribution between the minimum and maximum 

age of each Alaska terranes of the tT.

The R scripts used for the different submodels are available in Supplementary 

material (Scripts 4S.1, 4S.2 and 4S.3).

Geographic information system processing

The output 87Sr/86Sr rasters obtained for each submodel from the Monte Carlo 

simulations were clipped using the GLiM rock unit polygons of Alaska corresponding to 

each submodel including igneous rock units (pa, pb, pi, va, vb, vi, mt), carbonate units 

(sc, ev) and sedimentary rock units (sm, ss, su). Those clipped submodel output 87Sr/86Sr 

rasters were then mosaicked (ArcGIS/Data Management Toolbox) to calculate the 

minimum, maximum, decile 1, decile 10, quartile 1 and quartile 3, median 87Sr/86Sr 

values across the entire Alaska surface (Fig. 4.3A, 4.3B and 4.3C).
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Bedrock model validation dataset

We compiled and georeferenced validation data from the literature, including 97

87 86 87 86Sr/ Sr analyses in sedimentary rocks and 788 Sr/ Sr analyses in igneous rocks 

sampled in Alaska (Fig. 4.4A, Fig. 4.4B and Table 4S.9). Georeferencing was 

accomplished either by using reported latitude/longitude values given in the publication 

or by estimating latitude and longitude using other geographical data from the publication 

(e.g., map) and Google Earth.

Chemical weathering model 

We developed a Sr specific chemical weathering model using multiple linear 

regression model techniques and following the statistical framework described in 

Hartmann (2009). Detailed steps and limitations associated with the dataset used to 

develop the Sr chemical weathering model are described in Supplementary material.

Chemical weathering model calibration dataset

An initial step before testing the significance of different predictors on predicting 

Sr concentrations in rivers using multiple linear regression models consisted in compiling 

and georeferencing a calibration dataset of Sr concentrations in rivers. Starting from an 

existing dataset (Peucker-Ehrenbrink et al., 2010), we compiled and georeferenced 405 

published Sr concentration and isotope data from major rivers and tributaries from North 

hemisphere high-latitudes (Fig. 4.5A and Table 4S.10). From this dataset, we selected a 

chemical weathering model calibration dataset of 339 Sr concentration data (Table 4S. 10) 

excluding 66 samples which shared part of their drainage catchment in common with
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another sample in the calibration set. We selected only high-latitude rivers (catchments 

above 60°N) to limit the range of temperature and its potential effect on chemical 

weathering. Georeferencing was accomplished either using reported latitude/longitude 

values given in the publication or by estimating latitude and longitude using other 

geographical data from the publication (e.g., map) and Google Earth. Each sample point 

of the calibration dataset was manually snapped on the river network derived from the 

Hydro1K dataset (Data available from the U.S. Geological Survey) and used to define 

their catchment feature (Spatial Analyst/Hydrology Toobox).

Chemical weathering model predictors across the calibration catchments

In a second step, we gathered spatial datasets describing the variations of potential 

predictors of Sr concentrations in rivers across the North hemisphere high-latitudes.

Solute concentration in rivers is primarily determined by major geological proprieties of 

the catchment (Goldstein and Jacobsen, 1988; Jeandel et al., 2007; Linvingstone, 1963; 

Mackenzie and Garrels, 1966; Meybeck, 1987; Stallard and Edmond, 1983). We used the 

global lithological map (GLiM) reprojected and resampled onto an equal area projection 

(WGS84-EckertIV) and uniform 1 km2 grid (ArcGIS/Data Management Tools)

(Hartmann and Moosdorf, 2012) to calculate the proportion of each lithology on 

calibration catchments. It is also well-known that some sparse Sr-rich lithologies such as 

evaporites or trace calcite can significantly contribute to the Sr flux (Blum et al., 1998; 

Huh et al., 1998b; White et al., 1999b). To account for the potential influence of those Sr- 

rich lithologies, we calculated the propotion of evaporite in each calibration catchment 

from the global distribution of salt basins (Hudec and Jackson, 2007).
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While lithology is the primary source of Sr to rivers, other environmental factors 

can modulate the contribution of different lithologies to the Sr flux to rivers, including 

runoff amount and rate (Gaillardet et al., 1999; Meybeck, 1987), temperature (Brady,

1991; Huh and Edmond, 1999; White et al., 1999a), and topography (Raymo et al.,

1988). For each calibration catchment, we calculated mean annual runoff from the Global 

Runoff Data Center runoff dataset (Fekete et al., 2002), mean annual temperature from 

the 30 arc-seconds WorldClim mean annual temperature dataset (Hijmans et al., 2005), 

and mean slope from the 30 arc-seconds resolution G T0P030 dataset (USGS, 1996). 

High-latitudes permafrost and thawing mechanisms (Huh et al., 1998a; Keller et al.,

2010) as well as alpine glacier processes (Anderson, 2007; Armstrong, 1971) could be an 

important control of the Sr budget. We calculated the mean permafrost cover from the 

global permafrost extent and zonation index (Gruber, 2012). Using the Global Land Ice, 

we found that only three samples from the chemical weathering model calibration dataset 

had some alpine glacier cover in their catchments (Kargel et al., 2013), which is not 

sufficient to test the influence of this parameter on Sr concentrations in rivers. In absence 

of sufficient data for high-latitudes, we did not consider the potential effect of soil 

processes (Stewart et al., 2001; White et al., 1996; White and Brantley, 2003) and land 

cover (Boucot and Gray, 2001) on the rate of Sr release from different rock units.

Multiple linear regression model calibration

We used the summary statistics of each predictor across the catchment of the 

chemical weathering model calibration dataset to evaluate the statistical significance of 

different multivariate linear regression models following the method described in
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Hartmann (2009). We iteratively tested the potential of different variables as predictors of 

Sr concentrations in river waters starting with proportion of major lithology and 

successively testing the addition of other variables to multiple linear regression models, 

including evaporite proportion, mean permafrost index, mean slope, mean runoff and 

mean temperature. Scatterplot analyses of trends of each multiple linear regression model 

residuals with variables not included in the model were used to identify additional 

predictors of Sr concentrations in river. To include those factors, model equations were 

adapted (incorporating new parameters) and analyzed again in an iterative process 

(Hartmann, 2009). Different model forms (linear and nonlinear) were tested and only 

model forms for which each individual parameter was significant (p-value<0.05) were 

considered (Hartmann, 2009). The significance of each individual parameter addition to a 

given model form was tested by looking at the change in variance of the residuals from 

the model. If the variance of the residuals was significantly decreased (F-test between 

models) by the parameter addition, we tested the significance (p-value<0.05) of each 

individual parameter of the new model. At equivalent goodness of fit the simplest model 

form (equal) was preferred over the more complex (nonlinear) model forms. For more 

details on the model form selection, see details in Hartmann (2009) method.

Equation 4.6 represents the Sr chemical weathering model that best combines 

prediction quality and parameter significance for the river Sr calibration dataset:

ln(Sr) (Lsse*bssed + Lscbsc + Lsmbsm + L,gb,g + Lmtbmt + LsaAalt) + PPpfi + sloPebs ) ,(4.6)
i

where ln(Sr) is the logarithm of Sr concentrations; Lssed, Lsc, Lsm, Lig, Lmt and Lsait are,
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respectively, the proportion of each lithological class calculated from the GLiM, 

including silicilastic sedimentary (ss), carbonates (sc), mixed sediments (sm), plutonic 

and volcanic acid, basic and intermediate rocks (pa, va, pb, vb, pi, vi), metamorphic rocks 

(mt), and evaporites (ev). The proportion of each lithological class is normalized so that

the sum of the i lithologies (ZLt)  within the catchment totals 1; p fi  and slope are the

average permafrost zonation index (Gruber, 2012) and slope (in degrees) across each 

catchment; bssed, bsc, bsm, big, bmt and bsalt, b f  and bs are the associated chemical 

weathering model parameters for each variable calculated from the Levenberg-Marquart 

estimation techniques implemented in Statistica (STATSOFT©) (Table 4.1)
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Local water model

We combined the chemical weathering and bedrock models to develop a local 

water model, which estimates the 87Sr/86Sr of strontium weathered from local bedrock at 

each map grid cell ( f 7Sr/86Sr)locai). The (87S r / 6Sr)local is equal to 87Sr/86Sr of the bedrock 

except when the primary lithology is a mixture of lithologies, such as mixed sediments 

(sm class in the GLiM), or when Sr-rich secondary lithologies are reported in the GLiM, 

such as evaporites and carbonates (xxev and xxpu classes in the GLiM). In those special 

cases, f 7Sr/86Sr)locai is calculated using the following equations:

r 87 Sr \

86 S r
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"0.75* Srm ,ir 87Sr"'

Srlocal J v 86 S r  J

f  
+ ■

major V

0.25* Sr^„
Srlocal J v 86Sr J  .\  / r

(4.7)

Srooca, = 0.75* Srmajor + 0.25* Srmnor . (4.8)



where 0.75 and 0.25 are the “best guess” estimates of relative major and minor lithology 

proportions, respectively, used in the absence of reported quantitative proportions in the 

GLiM ; (Sr)major and (Sr)minor are the predicted Sr concentrations of the major and minor 

lithologies from the Sr chemical weathering model; (87Sr/86Sr)major and (87Sr/86Sr)minor are 

the isotopic signature from each lithology calculated from the bedrock model.

In a final step, we calculated the distribution of predicted (87Sr/86Sr)local values at 

each pixel (Script 4S.4) using Monte Carlo simulation procedures. Input parameters for 

the local water model includes (87Sr/86Sr) major, (87Sr/86Sr)minor, (Sr)major and (Sr)minor. We

used the mc2d package in R (Pouillot and Delignette-Muller, 2010) to repeat 10,000 

random draws from the distribution of each input parameter with:

• (87Sr/86Sr)major and (87Sr/86Sr)mi„or are described using a lognormal distribution (R, 

mc2d package) derived from the mean and standard deviation predicted by the 

bedrock model.

• (Sr)major and (Sr)minor are calculated using equation 4.6 and the multiple linear 

regression model parameters from Table 4.1.

Catchment water model 

We combined the chemical weathering and local water models to develop a 

catchment water model, which estimates the 87Sr/86Sr of surface waters flowing through 

each map location, including all contributions from up-catchment locations. The 

catchment water map of Alaska was created using the Flow Accumulation tool (Spatial 

Analyst toolbox) in ArcGIS and 1 km gridded flow direction values (Hydro 1K dataset). 

We applied equation 4.10 to calculate the annual Sr isotope ratio flux (FSriso) and
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equation 11 to calculate the annual Sr flux (FSr) by accumulating each flux down-stream 

through the Hydro 1K river network. We divided FSriso by FSr (equation 4.11) to obtain 

estimated water 87Sr/86Sr values that represented an average of the up-stream Sr sources 

to each map pixel, weighted by the contribution of Sr flux from each pixel in the 

catchment:

131

FSr„o — £  Q(Sr )w
l' 8’S r '

86 Sr
V J  local

(4.9)

FSr — £  Q(Sr),local (4.10)

^ 7S r ^

86
S r

J  catchement

F S r lso

F S r
(4.11)

where (Sr),ocal is the Sr concentration calculated from equation 4.8, (87S r / 6Sr)local is the 

87Sr/86Sr from the local water model calculated from equation 4.7, and Q is the mean

annual runoff from the GRDC dataset (Fekete et al., 2002).

Chemical weathering model and catchment water model 

validation dataset

To validate the chemical weathering model and catchment water model, we 

compared the predictions of Sr concentrations and 87Sr/86Sr in Alaska Rivers from the 

chemical weathering and catchment water models with the observed Sr concentrations 

and 87Sr/86Sr in 61 Alaska R (Fig. 4.6). The sampling strategy, analytical methods, and 

interpretations related to the generation of this dataset gathering various solute analyzes
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in 61 Alaska R are described extensively in a companion paper (Brennan et al. in press).

Results and discussion 

Bedrock model 

Patterns of 87Sr/86Sr variations from the bedrock model

On a scale of thousands to hundreds of kilometers, the variations in 87Sr/86Sr 

range and median values across Alaska from the bedrock model (Fig. 4.3A, 4.3B and 

4.3C) reflect the geological history and successive production and/or accretion of terranes 

to the Laurentian cratonic core of Ancestral North American (Fig. 4.2). We observe a 

general trend of decreasing median and range of 87Sr/86Sr values from Northeast to 

Southwest. This trend is largely driven by the difference in rock age with older rocks 

from the Laurentian North American craton in the East and younger rocks associated 

with newly produced or accreted terranes in the Southwest of Alaska (Fig. 4.2). The 

dominance of age on the continental scale 87Sr/86Sr variations is related to the unique 

geological setting of Alaska, where Precambrian cratonic rocks are juxtaposed with 

newly-produced mafic terranes (Nelson et al., 2013).

On a scale of tens of kilometers, 87Sr/86Sr variations display much higher 

variability than Bataille and Bowen’s (2012) bedrock model (Fig. 4.3D) that are driven 

by changes in rock unit age and/or lithology as well as intra-unit variability. The new 

bedrock model also represents spatial variation in 87Sr/86Sr prediction uncertainty (Fig. 

4.3A, 4.3B and 4.3C), with the ranges of 87Sr/86Sr at each pixel reflecting the limits of 

available constraints on age and lithology resolution from the dataset used to develop the 

bedrock models. This consideration of 87Sr/86Sr prediction uncertainty as a function of
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model parameters at a particular location is a substantial improvement over Bataille and 

Bowen’s (2012) approach.

Bedrock model validation

We extracted the bedrock model value (ArcGIS/Spatial Analyst Toolbox) for each 

sample point of the bedrock model validation dataset (Table 4S.9). The igneous and 

siliciclastic sedimentary rock submodels explain 72% and 51% of the observed 87Sr/86Sr 

variations of igneous and siliciclastic sedimentary rocks, respectively (Fig. 4.4A and 

4.4B). These new models significantly improved the coefficient of determination (R ) in 

comparison with Bataille and Bowen’s (2012) bedrock model. Predictions are clustering 

much closer to the 1:1 relationship (Fig. 4.4A and 4.4B). Other goodness of fit indices 

less sensitive than R2 to outliers also suggest large improvements in the predictive power 

of the new bedrock model (Table 4.2). For the igneous and siliciclastic sedimentary rock 

data, respectively, the mean absolute errors for model predictions are 0.00176 and 

0.00356 for the new bedrock model and 0.00244 and 0.00650 for the Bataille and 

Bowen’s (2012) model applied to Alaska (Table 4.2). For both the igneous and 

siliciclastic sedimentary rock submodels, the remaining error (Table 4.2) and negative 

bias (Fig. 4.4A and 4.4B) are likely related to the (87R b /6Sr)parent calibration step, which 

remains based on a median approach and does not account for spatial variations in rock 

chemistry and initial 87Sr/86Sr related to tectonic settings. Further improving the bedrock 

model will require more detailed geological maps and information on parent rock history 

for each unit, including constraints on the evolution of magmatic fluids, metamorphic 

processes, and sediment provenance.



Chemical weathering model 

Chemical weathering model calibration results

Significant predictors of Sr concentrations were found to include major 

lithological proportions -  carbonates, siliciclastic and mixed sedimentary rocks, 

metamorphic rocks, and igneous rocks -  proportion of evaporites, mean permafrost 

zonation index, and mean slope (equation 4.6 and Table 4.1). A multiple linear regression 

model considering only major lithological proportion as predictors of Sr concentration 

explains 45% of the variance in Sr concentrations. Substantial improvements were 

obtained by combining major lithologies with other predictors including proportion of 

evaporite (R2=0.58), proportion of evaporite and mean permafrost zonation index 

(R =0.62), and proportion of evaporite, mean permafrost zonation index and mean slope 

(R2=0.65; Fig 4.5B). Mean runoff and mean temperatures were not significant predictors 

of ln(Sr) on the chemical weathering calibration dataset. For all the tested models, 

residuals were normally distributed and have a mean close to 0 (e.g., Fig. 4.5C).

Chemical weathering model validation in Alaska Rivers

Indices of goodness of fit demonstrate that the chemical weathering model 

predicts reasonably well the Sr concentrations of the 61 Alaska Rivers (R) from the 

chemical weathering model validation dataset (Table 4.3). When removing the five major 

outliers -  South Fork of the Kuskokwim, the Dietrich, the Middle Fork of the Koyukuk, 

the Nenana and the Canning R (Fig. 4.6 and Fig. 4.7A) -  the predicted Sr fluxes explain 

40% of the variations of observed Sr concentrations (Fig. 4.7A). However, this prediction 

accuracy is significantly lower for Alaska R than for the chemical weathering model
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calibration dataset (Fig. 4.5B), and we attempt to identify the factors influencing the 

chemical weathering model residuals.

Spatial patterning and interpretation of chemical weathering model 

residuals

A geographic pattern is apparent in the chemical weathering model residuals. The 

chemical weathering model tends to overpredict Sr concentrations in rivers from 

Southwest Alaska including the Ahklun Mountains Province and the Alaskan-Aleutian 

Range and to underpredict Sr concentrations in rivers from South-central Alaska 

including the Chugach Mountains, the Wrangelia Composite Terrane (Fig. 4.6). Most 

rivers from Southwest Alaska have observed Sr concentrations ranging from 30 pg.L"1 to 

60 p-g.L"1, whereas rivers from the South-central Alaska have Sr concentrations ranging 

between 100 ^g.L"1 and 250 pg.L"1. Southwest and South-central rivers both drain 

similarly steep mountainous terrains composed primarily of igneous rocks related to 

Cenozoic Arc and Paleozoic to Mesozoic volcaniclastic sediments. In South-central 

Alaska marine flysch from the accretionary complex of the Chugach terrane is also 

present.

We suspect that the overestimation of Sr concentrations in Southwest Alaska R is 

related to the lithological classification of the GLiM. The geology of this area is primarily 

constituted of volcaniclastic units but in the GLiM those units are classified within the 

broad siliciclastic sediments GLiM class (ss). The ss GLiM class encompasses a large 

variety of sedimentary rocks from marine shales to continental volcaniclastic units 

(Hartmann and Moosdorf, 2012). Fine-grained marine siliciclastic sediments usually



contain a significant proportion of carbonate and are likely to release more Sr than 

coarse-grained volcaniclastic sediments. In our Sr chemical weathering model, all ss 

rocks release Sr at the same rate and we suspect the model overestimates the Sr flux from 

volcaniclastic units. Separating the ss GLiM class into different subclasses might resolve 

this issue but will require more detail in the GLiM lithological classification.

By contrast, the underestimation of the Sr concentrations in South-central Alaska 

is surprising considering that most watersheds from this area also contain large amounts 

of vocaniclastic units. Rivers of South-central Alaska -  the Klutina, Nizina, Chitina, the 

Little Tonsina and Matanuska R -  display high Sr concentrations ranging between 150 

pg.L'1 to 250 ^g.L'1. Those rivers display high Ca and Na concentrations (Brennan et al., 

in press). Some Paleocene marine flysch units are present in those watersheds (Harris et 

al., 1996) but if marine Sr from those flysch units were the principal source of the high Sr 

concentrations of the South-central Alaska rivers, we would expect their 87Sr/86Sr values 

to converge towards the Paleocene seawater 87Sr/86Sr values around 0.7076-0.708 (Veizer 

et al., 1999). The 87Sr/86Sr of those rivers remain fairly low (~0.706) and suggests that 

marine Sr is not the only contributor to the large Sr concentrations in those rivers. The 

chemical weathering model also underpredicts the Sr concentrations of five rivers from 

the Alaska Range and Brook Range regions including the South Fork of the Kuskokwim, 

the Dietrich, the Middle Fork of the Koyukuk, the Nenana and the Canning R, which all 

display very high Sr concentrations (>300 pg.L'1) (red triangles on Fig. 4.7A). Those 

rivers also display high Ca and Na concentrations (Brennan et al., in press). Here again, 

the geology of the watersheds and the varied 87Sr/86Sr of those rivers indicate that the 

marine Sr does not appear to be the primary source of the high Sr concentrations in those
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watersheds.

We hypothesize that the high Sr of the South-central Alaska R and of the five 

rivers from the Alaska Range and Brook Range regions are related to the presence of 

alpine glaciers and periglacial loess in their headwaters (Kargel et al., 2013). Previous 

studies have shown that the solute flux from glacier-covered basins tends to be dominated 

by calcite dissolution (trace calcite and/or marine carbonates) regardless of bedrock 

geology (Anderson, 2007). Even when the watershed is composed of silicate rocks, 

dissolution of trace calcite from those lithologies leads to very high Sr and Ca 

concentrations in rivers (Anderson, 2007). Moreover, the enhanced dissolution of trace 

calcite might explain the nonmarine 87Sr/86Sr of most of the rivers underpredicted by the 

chemical weathering model because trace calcite from silicate lithologies has a 

nonmarine 87Sr/86Sr. This is reinforced by Anderson et al. (2000) who demonstrated that 

in tributaries draining the Bench glacier in South-central Alaska, the Sr flux and 87Sr/86Sr 

of rivers was dominated by a mixing between nonradiogenic trace calcite from silicate 

lithologies and marine carbonates dissolution with 87Sr/86Sr of seawater. Enhanced trace 

calcite and/or marine carbonate dissolution due to alpine glacial processes appears to be 

an important factor in explaining chemical weathering model residuals in Alaska and was 

not taken into account in our chemical weathering model calibration.
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Catchment model 

Patterns of 87Sr/86Sr variations in Alaska Rivers from the 

catchment model

87Sr/86Sr from the catchment water model applied to Alaska displays a similar 

pattern to that predicted by the bedrock model (Fig. 4.8A, 4.8B and 4.8C), with a strong 

influence of terrane age on the regional 87Sr/86Sr signatures of rivers. Rivers draining the 

Ancestral North American Craton or old terranes (Fig. 4.2) display high 87Sr/86Sr, 

whereas rivers draining young arc terranes (Fig. 4.2) display low 87Sr/86Sr. In comparison 

with the bedrock model, both the variability and median 87Sr/86Sr value from the 

catchment water model are strongly buffered by nonradiogenic carbonate units present in 

most watersheds.

Catchment water model validation

The catchment model predicts 87Sr/86Sr values of river waters well, with 89% of 

the observed 87Sr/86Sr values falling within the interquartile range of the simulated 

prediction (Fig. 4.7B). Removing the four major outliers -  Nenana, Chena, Salcha and 

Chatanika R. (red squares on Fig. 4.7B) -  the catchment model explains 82% of the 

variance with a mean absolute error equal to 0.0012 (Table 4.4). Other indices of 

goodness of fit metrics show very good performance of the catchment water model 

(Table 4.4) and significant improvement in comparison with the Bataille and Bowen’s 

(2012) catchment model.



Interpretations of catchment model outliers

Among the four major outliers, the Nenana River is the only river where the 

model exhibits a strong positive 87Sr/86Sr bias as well as underpredicted Sr concentration 

in the Sr chemical weathering model. The geology of the watershed is highly simplified 

in the GLiM as most of the watershed is represented as siliclastic sedimentary rocks 

without any carbonate lithologies reported. We hypothesized that the overestimation of 

the catchment water model and underestimation of Sr concentration in this catchment is 

related to the absence of representation of nonradiogenic Sr-rich metalimestones

87 86contribution to the river Sr budget in the catchment model. Assuming a Sr/ Sr of 0.708 

for the Paleozoic metalimestone units (Veizer, 1989), we calculated that carbonate would

87 86have to contribute 66% of the catchment Sr flux to match the observed Sr/ Sr and Sr 

concentrations. This large contribution from minor carbonate lithologies could be 

possible given the presence of active glaciers in the catchment which enhance calcite 

dissolution (Anderson, 2007).

Three rivers draining the Yukon Tanana uplands -  the Salcha, Chena and 

Chatanika R -  have observed 87Sr/86Sr much higher than those predicted by the 

catchment water model. These rivers are all tributaries of the Tanana River and flow 

westward draining similar Paleozoic and Precambrian metamorphic units composed of 

quartzite, amphibolites and rare marble locally intruded by Mesozoic granitoid plutons 

(Newberry et al., 1996). This geology is well-reproduced by the GLiM and the bedrock 

model predicts accurately the 87Sr/86Sr of siliciclastic units in this region with predicted 

87Sr/86Sr ranging from 0.714 to 0.740 (median at 0.724) for the metamorphic units and 

predicted 87Sr/86Sr ranges from 0.704 to 0.712 (median at 0.707) for the Mesozoic
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granitoid plutons. Those values compare well with the observed end-member 87Sr/86Sr 

values for water draining those metamorphic and plutonic rocks (Goldfarb et al., 1997).

87 86While the bedrock model appears to predict accurately the Sr/ Sr of siliciclastic units, 

the chemical weathering model predicts that between 40% and 60% of the Sr flux in 

those catchments originate from nonradiogenic marine carbonate lithologies.

Two hypotheses could explain the mismatch between predicted and observed 

87Sr/86Sr and Sr concentrations in those rivers: 1) the Sr released from the silicate 

(carbonate) fraction of the metamorphic units is much higher (lower) than predicted by 

the catchment model and/or, 2) metamorphosed limestones and marbles with 87Sr/86Sr 

higher than seawater contribute to the Sr flux. Consistent with the first hypothesis, the 

marine finely-grained metasedimentary rocks in these watersheds might be expected to 

release more Sr than predicted by the Sr chemical weathering model (equation 4.6) 

because the Sr chemical weathering model only gives an average of Sr flux from all types 

of metamorphic rocks at high-latitudes, which is biased by slowly weathering 

metaigneous rocks. However, the presence of marble and metalimestone could be taken 

in support the second hypothesis. Carbonates can exchange Sr with surrounding 

radiogenic lithologies during metamorphism, thereby inheriting the 87Sr/86Sr of the more 

radiogenic siliciclastic lithologies (Bickle et al., 1995; Veizer, 1992). The contribution of 

radiogenic metamorphic carbonates to the Sr budget of rivers has been identified in the 

Himalayas (Blum et al., 1998; Quade et al., 2003; Quade et al., 1997) and the Canadian 

Cordillera (Millot et al., 2003). Based on the evaluation of outlier values presented above, 

Alaska might represent another occurrence of such radiogenic metamorphosed 

carbonates.
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Sensitivity of the regional Sr budget to geologic and environmental

controls

In the hypothetical case that Alaska was a single catchment, we calculated the 

proportion of each GLiM lithology, the proportion of evaporite, the mean slope and mean 

permafrost index over Alaska (Table 4.5). We used those values to apply equation 4.6 to 

estimate the influence of each significant predictor of Sr concentrations in rivers over 

Alaska (Table 4.5).

Although carbonates are not very abundant over Alaska, they contribute to half 

the Sr flux in this region and buffer the overall 87Sr/86Sr toward seawater 87Sr/86Sr. 

Siliciclastic sedimentary rocks are very abundant and contribute in similar proportion as 

carbonate to the Sr flux, but because their 87Sr/86Sr is much more variable, they are the 

primary control of 87Sr/86Sr of Alaska R. Despite being fairly abundant and primarily 

located in regions with high slopes (Table 4.5), igneous rocks and metamorphic rocks 

contribute little to the Sr flux in Alaska.

We calculated the increase in Sr flux associated with Alaska topography and 

permafrost cover in comparison with a scenario of “flat” and “nonglaciated” Alaska. We 

applied equation 4.6 and inputs from Table 4.5 to calculate the Sr flux associated with 

slope over Alaska and found that current Alaska topography increases Sr flux by 39% in 

comparison with a “flat” Alaska scenario. We proceeded similarly to calculate the change 

in Sr flux associated with permafrost cover and found that current permafrost cover 

decreased the Sr flux by 14% over Alaska in comparison with a “nonglaciated” Alaska.

We also demonstrated that the presence of alpine glaciers has a significant impact 

on Sr concentrations of Alaska R. We compared the Sr concentrations of rivers with
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alpine glaciers and rivers without alpine glaciers in their catchment. For catchment 

underlain by similar lithology, we estimated that catchments with alpine glaciers have Sr 

concentrations ~3-5 times higher than catchments without alpine glaciers. The current 

alpine glacier cover represents only 1.3% of the total surface of Alaska (Kargel et al., 

2013), which limits the influence of this variable on the total Sr flux. However, the high 

sensitivity of Sr flux to alpine glaciers indicates that this factor can play a significant role 

in controlling the Sr budget from high-latitudes in periods of large alpine glacier cover 

(ice house climate).

Variations in Sr fluxes from the high-latitudes appear controlled by a coupling 

between climate and tectonics, with a positive feedback on Sr flux due to alpine glacier 

on steep terrain and a negative feedback on Sr release due to permafrost on flat terrains. 

This supports the idea that both glacial processes (Armstrong, 1971; Zachos et al., 1999) 

and orogenesis (Raymo et al., 1988) are primary but coupled controls of 87Sr/86Sr in 

seawater (Herman et al., 2013).

Regional Sr budget of Alaska Rivers runoff

87 86In global Sr budget, the Sr flux and Sr/ Sr from Alaska runoff is represented in 

databases by the Yukon R (Palmer and Edmond, 1992; Peucker-Ehrenbrink et al., 2010). 

The Yukon R basin covers more than 30% of Alaska and as such its Sr concentrations 

and 87Sr/86Sr is thought to be representative of Alaska. The Sr concentrations and 

87Sr/86Sr of the Yukon R are 139.2 p-g.L"1 and 0.7137, respectively, and those values are 

well-predicted by our catchment water model, 96.74 p-g.L"1 and 0.7127, respectively. 

However, those values differ significantly from the average Sr concentration of 104.3
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pg.L'1 and average 87Sr/86Sr of 0.7098 predicted by our catchment water model for the 

total runoff of Alaska. The large decrease in 87Sr/86Sr for the total runoff of Alaska in 

comparison with the Yukon R is associated with the large flux of nonradiogenic Sr from 

mafic terranes and island arcs from Southwest Alaska, which are not part of the Yukon R 

basin.

Conclusion

We developed new process-oriented models predicting 87Sr/86Sr in bedrock and 

water across Alaska. The developed catchment water model provides a method to 

estimate the Sr budget at regional scale and to identify the dominant climatic and tectonic 

controls of Sr concentrations and 87Sr/86Sr in rivers. Over Alaska, lithological 

proportions, topography, and glacial processes (permafrost and alpine glacier cover) are 

the primary controls on the Sr concentrations in rivers. The average 87Sr/86Sr of the 

cumulated Alaska runoff predicted by our model differs significantly from the values of 

the Yukon River which are traditionally used to constrain the 87Sr/86Sr of this region in 

global Sr budget. This difference questions the accuracy of the empirically-constrained Sr 

budget.

The data products developed from this work can also be used as baseline 87Sr/86Sr 

map of Alaska R to interpret provenance of aquatic animals at regional scale. Those 

baseline 87Sr/86Sr maps of Alaska R could strongly benefit the fishing industry to trace 

Pacific salmon natal origins as a tool to better conserve salmon biodiversity and the 

natural resources they represent.
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Table 4.1 Summary statistics of the chemical weathering model calibration steps. bsseci, 
bsc, bsm, big, bmt and bsait, bpfi and bs are the parameters for equation 4.6 for siliciclastic 
sediments (GLiM classes: ss, sm, su), carbonates (GLiM classes: sc, ev), igneous rocks 
(GLiM classes: pa, pb, pi, va, vb, vi), metamorphic rocks (GLiM class:mt), evaporites, 
permafrost zonation index and slope, respectively. The b parameters are calculated from 
the Levenberg-Marquart estimation techniques implemented in Statistica 
(STATSOFT©).

Mean estimate Standard deviation p-value Minimum
Estimate

Maximum
estimate

bssed 4.55 0.12 <10E-2 4.32 4.78
bsm 4.39 0.15 <10E-2 4.09 4.69
bsc 5.31 0.24 <10E-2 4.83 5.78
bmt 3.16 0.25 <10E-2 2.85 3.47
big 3.34 0.12 <10E-2 3.11 3.57
bsalt 9.27 0.34 <10E-2 8.61 9.93
bpfi -0.34 0.094 <10E-2 -0.53 -0.16
bs 0.074 0.014 <10E-2 0.046 0.10
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Table 4.2 Summary of goodness of fit measures for the bedrock model over Alaska. First 
column: igneous submodel; second column: siliciclastic sedimentary rock submodel. The 
bedrock validation dataset is compiled from the literature (Table 4S.9). MAE=Mean 
Absolute Error, RMSE=Root Mean Square Error, nrmse=Normalized Root Mean Square 
Error, KGE=Kling-Gupta Efficienty (Gupta et al., 2009), md=modified index of 
agreement (Legates and McCabe, 1999), R2=coefficient of determination, ssed 
submodel=siliciclastic sedimentary rock submodel, BB12=Bataille and Bowen, 2012.

Sedimentary dataset Igneous dataset

ssed

submodel

BB12 bedrock 

model

Igneous

submodel

BB12 bedrock 

model

MAE 0.0036 0.0065 0.0018 0.0024

RMSE 0.0081 0.010 0.0044 0.0055

NRMSE % 72.70 92.40 65.40 82.20

KGE 0.52 0.087 0.46 0.23

Md 0.69 0.20 0.68 0.47

R2 0.52 0.44 0.72 0.51
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Table 4.3 Summary of goodness of fit measures for the chemical weathering model for 
Alaska River. Sr concentrations data are from Brennan et al. (in press). First column: all 
data included (n=61); second column: Some outliers removed including South Fork of 
the Kuskokwim, Dietrich, Middle Fork of the Koyukuk, Nenana and Canning Rivers 
(n=56). MAE=Mean Absolute Error, RMSE=Root Mean Square Error, 
nrmse=Normalized Root Mean Square Error, KGE=Kling-Gupta Efficienty (Gupta et al., 
2009), md=modified index of agreement (Legates and McCabe, 1999), R2=coefficient of 
determination.

n=61 n=56

MAE (pg.L'1) 56 33

RMSE (pg.L"1) 103 40

NRMSE % 87.80 77.00

KGE 0.17 0.50

Md 0.51 0.54

R2 0.39 0.41
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Table 4.4 Summary of goodness of fit measures for the catchment water model. First 
column: all data included (n=61); second column: some outliers removed including 
Salcha, Chena, Chatanika and Nenana Rivers (n=57). (87Sr/86Sr) catchment=catchment water 
model 87Sr/86Sr prediction, MAE=Mean Absolute Error, RMSE=Root Mean Square 
Error, nrmse=Normalized Root Mean Square Error, KGE=Kling-Gupta Efficienty (Gupta 
et al., 2009), md=modified index of agreement (Legates and McCabe, 1999), 
R2=coefficient of determination.

n=61 n=57

MAE 0.0020 0.0012

RMSE 0.0045 0.0015

NRMSE % 74.3 42.1

KGE 0.50 0.86

Md 0.72 0.78

R2 0.46 0.82
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Table 4.5 Summary of lithological proportion across Alaska and their corresponding 
mean slope and mean permafrost zonation index (pfi). The contribution to the regional Sr 
flux from each lithology is calculated applying equation 4.6.

Lithology (GLiM xx) Area
(%)

mean slope 
(degrees)

mean pfi Sr flux 
(%)

Carbonates (sc+0.5sm) 22.3 5.20 0.60 45.7
Siliciclastic sediments 
(ss+su+0.5sm)

50.1 3.43 0.43 44.6

Metamorphic rocks (mt) 5.7 6.16 0.39 1.55
Igneous rocks 
(va+vb+vi+pa+pb+pi+py)

21.9 5.78 0.30 7.3

Evaporites (ev) 0.005 12.94 0.87 1.0
Average X 4.24 0.43 X
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Figure 4.1 Flowchart summarizing the input data, parameterization steps and parameter 
estimation methods for the igneous submodel.
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Figure 4.2 Terrane ages and boundaries across Alaska. GIS layer from the digital atlas of 
terranes for the Northern Cordillera (Colpron and Nelson, 2011). AA=Artic Alaska; 
RB=Ruby; AG=Angayucham; FW=Farwell; KY=Koyukuk; WR=Wrangellia; 
CG=Chugach; PW=Prince-William; YA=Yakutat; PE=Penninsula; YT=Yukon-Tanana; 
ST=Stikine; ANA=Ancestral North America.
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Figure 4.3 Predicted 87Sr/86Sr in bedrock across Alaska. A. Quartile 1 of 87Sr/86Sr 
prediction. B. Median of 87Sr/86Sr prediction. C. Quartile 3 of 87Sr/86Sr prediction. D.

87 86Mean of Sr/ Sr prediction from Bataille and Bowen’s (2012) bedrock model. Political 
and shoreline vectors corresponds to the Large Scale International Boundary Lines and 
World Vector Shorelines from the U.S. Department of State, Office of the Geographer.
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Figure 4.4 Bedrock model validation. A. Scatterplot of observed 87Sr/86Sr against 
predicted median 87Sr/86Sr from the igneous submodel; B. Scatterplot of observed
87 86 87 86Sr/ Sr against predicted median Sr/ Sr from the siliciclastic sedimentary rock

87 86submodel. Observed Sr/ Sr are compiled from the literature (Table 4S.9). Filled gray 
circles represent the bedrock model prediction from Bataille and Bowen’s (2012) model 
and filled black squares represent the new bedrock model prediction, with error bars 
representing the interquartile range. Solid lines are least squared regression linear models 
(grey: Bataille and Bowen’s (2012) model, red: new models) and dashed lines represent 
the 1:1 relationship.
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Figure 4.5 Calibration of the Sr chemical weathering model. A. Geographic location of 
the catchments containing samples used in the chemical weathering model calibration 
dataset (Table 4S.10). B. Scatterplot between predicted (equation 4.5) and observed 
logarithm of Sr concentrations on the calibration subset; C. Normal probability plot of 
logarithm of Sr concentrations residuals on the calibration subset. Error bars in B 
represent the 95% confidence interval. Solid red line represents linear regression and 
dashed line corresponds to the 1:1 relationship.
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Figure 4.6 Map of sampling sites (with ID numbers) and their associated observed 
87Sr/86Sr (color scale) for the catchment water model validation dataset modified from 
Brennan et al. (in press). Map also includes the location of major rivers and geographic 
provinces of Alaska. AAR= Aleutian Alaska Range; CM=Chugach Mountains; 
WCT=Wrangellia Composite Terrane; AMP= A; AR=Alaska Range; YTT=Tukon- 
Tanana Terrane; YTU=Yukon-Tanana Uplands; BR=Brook Range; NSAK=North Slope 
of Alaska.
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Figure 4.7 Catchment model validation for Alaska Rivers. A. Scatterplot between 
predicted and observed Sr concentrations in Alaska Rivers with error bars representing 
95% confidence intervals; B. Scatterplot between median predicted and observed 
87Sr/86Sr in Alaska Rivers with error bars representing the interquartile range. Red 
triangles and squares are outliers with their respective ID numbers (Fig. 4.6) and are not 
considered in the linear regression model. Solid red line represents a linear regression and 
dashed line corresponds to the 1:1 relationship.
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Figure 4.8 Predicted 87Sr/86Sr from the catchment water model applied across Alaska. A. 
Quartile 1 of 87Sr/86Sr prediction; B. Median of 87Sr/86Sr prediction; C. Quartile 3 of 
87Sr/86Sr predictions. Political and shoreline vectors corresponds to the Large Scale 
International Boundary Lines and World Vector Shorelines from the US Department of 
State, Office of the Geographer.
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Supplementary material: Statistical methods, tables and scripts for

the bedrock model

1. Igneous submodel parameterization

1.1. (87Rb/86Sr)parent parameterization step

1.1.1. We obtained n=31,421 data from the Earthchem portal 
(www. earthchem.org) using the query:

1.1.1.1. Query by chemistry: Rb content AND Sr content AND 87Sr/86Sr 
measurements

1.1.1.2. Query by age: Age “exists”

1.1.1.3. Query by sample type: igneous (all types)

1.1.2. For each sample of the dataset:

1.1.2.1. We back-calculated f 7Rb/86Sr)parent using equation 4.1 and 4.2 
from the manuscript and the given age, Rb and Sr content, and 87Sr/86Sr 
data collected from the database query

1.1.2.2. We assigned to each sample a GLiM igneous class (pa, pb, pi, va, 
vb, vi, mt) corresponding to the lithlogical description of the sample 
(Le Bas and Streckeisen, 1991)

1.1.2.3. We sorted and divided the data into 7 subsets following their 
associated GLiM major lithological class (pa, pb, pi, va, vb, vi, mt), and 
examined the statistical characteristics of each subset

1.1.3. For each subset:

1.1.3.1. We power transformed the data to approximate a normal 
distribution (R, Fitting distribution package) (Table 4S.1). The 
resulting histograms demonstrate that for all GLiM lithological classes, 
the power transformed 87Rb/86Sr dataset approximate well a normal 
distribution.

1.1.3.2. We calculated the mean and standard deviation of (87Rb/86Sr)parent 
(Table 4S.1)

1.1.3.3. We plotted the histograms and Q-Q plots to verify the approximate 
normal distribution of the data ( Table 4S.2)

http://www.earthchem.org/
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1.2. t2 parameterization step

1.2.1. We extracted the attribute table of the GLiM database over the study area 
and converted it into an excel table

1.2.2. For all the “text” age descriptors of the GLiM over the study area (e.g., 
Cretaceous), we assigned a minimum and maximum numeric age using the 
USGS geological time scale

1.2.3. We inserted back the modified attribute table and converted the GLiM 
feature layer into minimum and maximum age rasters 
(ArcGIS/Geoprocessing tool reference)

1.3. f 7Rb/86Sr)rock parameterization step

1.3.1. We gathered a database of 18,706 samples of Rb/Sr analyses from igneous 
rocks over the study area using the AK Geochemical Database 2 (AGDB2, 
Granitto et al., 2013) and the GEOROC database for Yukon and British 
Columbia

1.3.2. For each sample of the database:

1.3.2.1. We used the given lithological description associated with the 
sample to assign a GLiM major lithological class (Le Bas and 
Streckeisen, 1991)

1.3.2.2. We sorted and divided the data into 7 subsets (pa, pb, pi-py, va, vb, 
vi, mt), and examined the statistical characteristics of each dataset

1.3.3. For each subset:

1.3.3.1. Because the Rb/Sr are strongly positively skewed, we power 
transformed the 87Rb/86Sr (R, Fitting distribution package) to 
approximate a normal distribution and allow the application of 
nonbiased ordinary kriging algorithms. Ordinary kriging is more 
efficient on Gaussian distribution (Saito and Goovaerts, 2000) (Tables 
4S.1 and 4S.2). The resulting histograms demonstrate that for all GLiM 
lithological classes, the power transformed 87Rb/86Sr dataset 
approximate a normal distribution.

1.3.3.2. We identified and removed outliers by using normal Q-Q plots for 
the power-transformed data (Table 4S.3). Only those values far away 
from the majority of samples in the plots were regarded as outliers.
This method of outlier identification using graphs is to some extent 
subjective. Due to the power of the power transformation, this method
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of lenient outlier identification is considered adequate. The identified 
outliers were removed from statistical analyses and spatial structure 
modeling. They were inserted back for spatial interpolation.

1.3.3.3. We checked the univariate distribution and the approximate normal 
distribution using histograms and Q-Q plots (ArcGIS/geostatistical 
wizard) (Table 4S.4)

1.3.3.4. We checked the presence/absence of trend (ArcGIS/geostatistical 
wizard)

1.3.3.5. We modeled the spatial autocorrelation by building a semi- 
variogram that quantifies the square of differences between sample 
pairs as a function of lag distance that separates these sample pairs.

1.3.3.6. We fitted the most appropriate semi-variogram model (range, 
nugget and sill) for each of the power transformed subsets by using the 
iterative fitting tool (ArcGIS/geostatistical wizard) (Table 4S.5)

1.3.3.7. To properly model the theoretical variograms that are applied as 
the input parameters for spatial interpolation of kriging, we investigated 
directional features of spatial correlation by creating variogram surface 
(ArcGIS/geostatistical wizard)

1.3.3.8. Based on the created variogram surfaces, directional features were 
considered for variogram modeling (Table 4S.5).

1.3.3.9. For igneous rocks, spatial structures observed in the 
semivariogram were simple enough to be closely modeled using a 
single theoretical variogram model (Table 4S.5)

1.3.3.10. All igneous rock classes display significant directional features and 
high nugget effect. For some variables the nugget effect was so high 
that the OK efficiency highly reduced as shown by the cross-validation 
(Tables 4S.5 and 4S.6)

1.3.3.11. We assessed the efficiency of the variogram model parameters by 
using cross-validation and comparison tools (ArcGIS/geostatistical 
wizard) (Table 4S.6)

1.3.3.12. We set the semi-variogram parameters as the default neighborhood 
search with a minimum number of neighbors of 50 and a maximum of 
100 to limit the computational time and adjusted the size and shape of 
the neighborhood by using cross-validation and comparison tools
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1.3.3.13. We applied ordinary kriging using the variogram model and search 
neighborhood parameters to predict mean and standard deviation of 
(87Rb/86Sr)rock at each pixel over the study area at 1km by 1km 
resolution

1.4. Predicting 87Sr/86Sr in igneous rocks (Script 4S.1)

1.4.1. We applied a Monte-Carlo simulation procedure to calculate the 87Sr/86Sr 
and incorporated uncertainty around model input parameters at each pixel

1.4.2. 10,000 Monte Carlo iterations were performed for each parameter to 
assure model convergence. Uncertain input parameters for the igneous 
submodel include t2, f 7Rb/86Sr)parent and (87Rb/86Sr)rock with:

1.4.2.1. t2 described using a uniform distribution (R, mc2d package) 
derived from the minimum and maximum age from the GLiM rock 
unit. Using a uniform distribution assume an equal amount of rock 
formation (either igneous, carbonate or siliciclastic sediments) 
throughout a given time period. This assumption is likely valid when 
the range of age is low (<100 million years) but becomes increasingly 
uncertain when the range of age broaden. This is because geological 
processes (either sedimentary or magmatic) can be discrete and rate of 
igneous rocks, carbonates and siliciclastic sediments formation can 
vary greatly over 100 million years time scales.

1.4.2.2. (87Rb/86Sr)parent described using a normal distribution (R, mc2d 
package) derived from the power-transformed mean and standard 
deviation calculated in the calibration step 1. Using a normal 
distribution assume that our power-transformed step led to a normal
distribution of (87Rb/86Sr)parent which is a good approximation but is not
exactly true for all lithological types (Table 4S.2)

1.4.2.3. f 7Rb/86Sr)rockdescribed using the using a normal distribution (R, 
mc2d package) derived from the power-transformed mean and standard 
deviation calculated in the calibration step 2. Using a normal 
distribution assume that our power-transformed step led to a normal 
distribution of f 7Rb/86Sr)rock which is a good approximation but is not 
exactly true for all lithological types (Table 4S.4)

2. Carbonate submodel parameterization

2.1. (87Sr/86Sr)seawater parameterization step

2.1.1. We extracted the attribute table of the GLiM database over the study area
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2.1.2. We selected all carbonate units (ev, sc) present in the attribute table

2.1.3. We used the maximum and minimum age of each carbonate unit and the 
Precambrian Marine Carbonate Isotope Database (PMCI) curve (Shields 
and Veizer, 2002) to identify the minimum and maximum (87Sr/86Sr)seawater 
within the age range

2.1.4. We inserted back the modified attribute table and converted the GLiM 
feature layer into minimum and maximum f 7S r f 6Sr)seawater rasters 
(ArcGIS/Geoprocessing tool reference)

2.2. f 7Rb/86Sr)rock calibration step

2.2.1. We gathered a database of 352 samples of Rb/Sr analyses from carbonates 
over the study area using the AGDB2 (Granitto et al., 2013)

2.2.1.1. Query by chemistry: Rb and Sr content

2.2.1.2. Query by sample type: carbonates

2.2.2. We followed the same steps as described in section 1.2 above for each 
sample of the database (Tables 4S.3 and 4S.4)

2.3. Predicting 87Sr/86Sr in carbonates (Script 4S.2)

2.3.1. We applied a Monte-Carlo simulation procedure to calculate the 87Sr/86Sr 
and incorporated uncertainty around model input parameters at each pixel

2.3.2. 10,000 Monte Carlo iterations were performed for each parameter to 
assure model convergence. Uncertain input parameters for the carbonate 
submodel include t2, (87Sr/86Sr) seawaterand f 7Rb/86Sr)rock with:

2.3.2.1. t2 described using a uniform distribution (R, mc2d package) 
derived from the minimum and maximum age from the GLiM rock unit

2.3.2.2. f 7S r f 6Sr)seawaterdescribed using a uniform distribution (R, mc2d 
package) derived from the minimum and maximum f 7S r / 6Sr)seawater

2.3.2.3. f 7Rb/86Sr)rockdescribed using the using a normal distribution (R, 
mc2d package) derived from the power-transformed mean and standard 
deviation calculated in the calibration step 2

3. Siliciclastic sedimentary rock submodel parameterization

3.1. (87Rb/86Sr)parent parameterization step
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3.1.1. We downloaded the Digital Atlas of Terranes for the Northern Cordillera 
(DATNC) (Colpron and Nelson, 2013) and exported the attribute table in 
excel

3.1.2. We reported the dominant lithology (major GLiM class) of each terrane 
unit of the DATNC based on their geological history described in Nelson et 
al. (2013) (Table 4S.8)

3.1.3. Using the GLiM major class assigned to each terrane, we assigned a 
(87Rb/86Sr)parent from the igneous submodel to each terrane unit across Alaska 
(Table 4S.1)

3.2. tT parameterization step

3.2.1. We extracted the attribute table of the DATNC over the study area and 
converted it into an excel table

3.2.2. We reported the minimum and maximum numeric age of each terrane unit 
of the DATNC based on their geological history described in Nelson et al. 
(2013) (Table 4S.8)

3.2.3. We inserted back the modified attribute table and converted the terrane 
units into minimum and maximum terrane age rasters 
(ArcGIS/Geoprocessing tool reference)

3.3. (87Rb/86Sr) terraneparameterization step(Script 4S.3)

3.3.1. We assumed that the (87Rb/86Sr)terrane could be represented by an integral 
function with 87Rb/86Sr increasing exponentially from f 7Rb/86Sr)parent to 
(87Rb/86Sr)rock between tT and t2

3.3.2. This formulation assumes that the 87Rb/86Sr of siliciclastic sediments 
increases with the exponentially recycled upper continental crust. The 
exponential formulation accounts for the effect of both magmatic and 
sedimentary processes in increasing the 87Rb/86Sr of the upper crust. The 
exponential formulation is not correct strictly speaking but it may mimic the 
overall effect of multiple parameters that are affecting the 87Rb/86Sr 
reasonably well. This formulation also assumes that recycling rate of the 
upper crust have been constant in the last 3 billion years (Dhuime et al., 
2012)

3.4. f 7Rb/86Sr) rockparameterization step (Tables 4S.4 and 4S.5)

3.4.1. We obtained n=17,727 Rb/Sr data from the AGDB2 (Granitto et al., 2013)
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3.4.1.1. Query by chemistry: Rb and Sr content

3.4.1.2. Query by sample type: siliciclastic sediments (all types)

3.4.2. For each subset:

3.4.2.1. Because Rb/Sr data are strongly positively skewed, we power 
transformed the Rb Sr (R, Fitting distribution package) to approximate 
a normal distribution and allow the application of nonbiased ordinary 
kriging algorithms {Saito, 2000 #2220} (Table 4S.3)

3.4.2.2. We identified and removed outliers by using normal Q-Q plots for 
the power-transformed data (Table 4S.2). Only those values far away 
from the majority of samples in the plots were regarded as outliers.
This method of outlier identification using graphs is to some extent 
subjective. Due to the power of the Box-Cox transformation, this 
method of lenient outlier identification is considered adequate. The 
(87Rb/86Sr)parent identified extreme values were removed from statistical 
analyses and spatial structure modeling. They were inserted back for 
spatial interpolation.

3.4.2.3. We checked the univariate distribution and the approximate normal 
distribution using histograms and Q-Q plots (ArcGIS/geostatistical 
wizard) (Table 4S.4)

3.4.2.4. We checked the presence/absence of trend (ArcGIS/geostatistical 
wizard)

3.4.2.5. We modeled the spatial autocorrelation by building a semi- 
variogram that quantifies the square of differences between sample 
pairs as a function of lag distance that separates these sample pairs.

3.4.2.6. We fitted the most appropriate variogram model (range, nugget 
and sill) for each of the power transformed subsets by using the 
iterative fitting tool (ArcGIS/geostatistical wizard) (Table 4S.5)

3.4.2.7. To properly model the theoretical variograms that are applied as 
the input parameters for spatial interpolation of kriging, we investigated 
directional features of spatial correlation by creating variogram surface 
(ArcGIS/geostatistical wizard)

3.4.2.8. Based on the created variogram surfaces, directional features were 
considered for variogram modeling (Table 4S.5)

3.4.2.9. For siliciclastic sedimentary rocks, complicated spatial structures
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were observed and it was difficult to fit them using a single theoretical 
variogram model. We used nested models to model the spatial structure 
(Table 4S.5)

3.4.2.10. We assessed the efficiency of the variogram model parameters by 
using cross-validation and comparison tools (ArcGIS/geostatistical 
wizard) (Table 4S.6)

3.4.2.11. We set the semi-variogram parameters as the default neighborhood 
search with a minimum number of neighbors of 50 and a maximum of 
100 to limit the computational time and adjusted the size and shape of 
the neighborhood by using cross-validation and comparison tools

3.4.2.12. We applied ordinary kriging using the variogram model and search 
neighborhood parameters to predict mean and standard deviation of 
f 7Rb/86Sr)rock at each pixel over the study area at 1km by 1km 
resolution

3.5. Predicting 87Sr/86Sr in siliciclastic sediments (Script 4S.3)

3.5.1. 10,000 Monte Carlo iterations were performed for each parameter to 
assure model convergence. Uncertain input parameters for the siliciclastic

on /S 6  /81 /86sedimentary rock submodel t2, tT, , ( Rb Sr)terrane and (° Rb Sr)rock with:

3.5.1.1. t2 described using a uniform distribution (R, mc2d package) 
derived from the minimum and maximum age from the GLiM rock 
unit. Using a uniform distribution assume an equal amount of rock 
formation (either igneous, carbonate or siliciclastic sediments) 
throughout a given time period. This assumption is likely valid when 
the range of age is low (<100 million years) but becomes increasingly 
uncertain when the range of age broaden. This is because geological 
processes (either sedimentary or magmatic) can be discrete and rate of 
igneous rocks, carbonates and siliciclastic sediments formation can 
vary greatly over 100 million years time scales.

3.5.1.2. tT described using a uniform distribution (R, mc2d package) 
derived from the minimum and maximum age from the DATNC 
terrane units.

3.5.1.3. (87Rb/86Sr)parent described using a normal distribution (R, mc2d 
package) derived from the power-transformed mean and standard 
deviation calculated in the calibration step 1. Using a normal 
distribution assume that our power-transformed step led to a normal
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distribution of (87Rb/86Sr)parent which is a good approximation but is not 
exactly true for all lithological types (Table 4S.2)

3.5.1.4. (87Rb/86Sr)terranedescribed using an integral function (equation 4.5) 
which parameters are calculated using the calibrated (87Rb/86Sr)parent 
and (87Rb/86Sr)rock at tT and t2 respectively

3.5.1.5. f 7Rb/86Sr)rockdescribed using the using a normal distribution (R, 
mc2d package) derived from the power-transformed mean and standard 
deviation calculated in the calibration step 2. Using a normal 
distribution assume that our power-transformed step led to a normal 
distribution of f 7Rb/86Sr)rock which is a good approximation but is not 
exactly true for all lithological types (Table 4S.4)

4. GIS processing

4.1. For each output raster from Monte Carlo simulation:

4.1.1. We sorted the GLiM attribute table by major lithology

4.1.2. We selected iteratively all the units corresponding to one major GLiM 
lithological class (e.g., va)

4.1.3. We used the selected polygons to clip the output raster from the Monte 
Carlo simulations (ArcGIS/Analysis toolbox)

4.1.4. We mosaiced the clipped raster from each major GLiM lithological class 
and obtained the min, max, decile 1, decile 10, quartile 1 and quartile 3, 
median, mean and standard deviation of 87Sr/86Sr at each pixel over AK 
(ArcGIS/Data management toolbox)
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Table 4S.1 Summary of power-transformation for (87R b /6Sr)parent dataset of each major 
GLiM lithological class. n=number of samples in the dataset, n outliers=number of 
outliers, Power1=the power-transformed coefficient, mean= the mean of the power- 
transformed f 7R b /6Sr)rock dataset and stdev= the standard deviation of the power- 
transformed f 7R b /6Sr)rock dataset.

GLiM class N n outliers Power1 Mean Stdev
Pa 3127 42 -0.043 1.14 0.021
Pi 3901 51 -0.074 1.19 0.043
Pb 1733 16 -0.23 2.16 0.22
Va 2772 12 -0.50 5.16 1.22
Vb 10731 91 -0.86 24.05 7.37
Vi 9050 74 -0.65 9.85 2.74
Mt 107 2 -0.49 5.00 1.05



Table 4S.2 Q-Q plots and histograms of (87Rb/86Sr)parent dataset of each major GLiM 
lithological class after power-transformation and outliers removal.
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Table 4S.2 continued
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Table 4S.3 Summary of power-transformation for f 7R b /6Sr)rock for each major GLiM 
lithological class. n=number of samples in the dataset, n outliers=number of outliers, 
a=the power-transformed coefficient, mean= the mean of the power-transformed 
(87R b/86Sr)rock dataset and stdev= the standard deviation of the power-transformed 
(87R b /6Sr)rock dataset.

N Outliers Power2 Mean Stdev
Pa 3124 76 -0.1427 1.235713 0.2842713
Pi 3252 48 -0.1372 1.398426 0.1959414
Pb 1254 28 -0.2312 0.9318234 0.02128509
Va 1306 46 -0.1429 1.234519 0.225184
Vb 4849 23 -0.05559 1.180985 0.05582446
Vi 2677 27 -0.1579 1.497199 0.186832
Mt 2244 31 -0.1193 1.290058 0.2360382
Ssed 17727 34 0.224 0.8154528 0.2212677
Ca 157 0 -0.4152 4.255055 1.454305
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Table 4S.4 Q-Q plots and histograms of f 7R b f6Sr)rock datasets for each major GLiM 
lithological class after power-transformation.
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Table 4S.4 continued
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Table 4S.4 continued
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Table 4S.5 Summary of variogram model proprieties used in ordinary krigging of power- 
transformed f 7R b /6Sr)rock of each GLiM class dataset. The specific parameters for the 
modeled variograms includes the model type (exp=exponential); the nugget effect (a 
parameter to measure the variation under the current sampling density and measurement 
errors); the partial sill (the difference between total sill and nugget effect); the major and 
minor ranges (define the distance at which the samples can be considered as independent 
in different direction). The direction of the anisotropy is used to model the directional 
features. The specific fitted variogram plots for selected variables are shown in Table 
4S.6.

GLiM
classes

Model1/
Model2

Lag size 
(degree)

Nugget Major
Range

Minor
range

Direction
(degree)

Neigboorhood
(neighbours/
ellipse)

Pa Exp 0.12 0.021 0.96 1.43 24.61 50
Pi Exp 0.038 0.010 0.30 0.46 22.85 50
Pb Exp 0.22 0.00028 1.78 2.67 11.43 50
Va Exp 0.091 0.014 0.73 0.57 111.45 50
Vb Exp 0.12 0.0020 0.97 0.47 104.94 50
Vi Exp 0.18 0.022 1.46 0.42 90.18 50
Mt Exp 0.050 0.024 0.40 0.60 17.93 50
ssed exp/

gaussian
0.40 0.0077 0.27/

6.03
2.02 63.50 50

Ca Exp 0.017 0.45 0.14 x x 50



182

Table 4S.6 Plot of empirical variograms and fitted variogram models for each GLiM 
major lithological class.

GLiM
class

Variograms

Pa

Pi

Pb

• *  ♦

* * +  . .  :  *•

* +  .

0 0.243 0.455 0.72E
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Model: 0.000275miugget+0.0001G028‘&ponentiaK1.7787.2.668.11.4)

2.425 2.66S
Distance (Degree). \
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Table 4S.6 continued
Va

Vb

Vi



184

Table 4S.6 continued
Mt

Ssed
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Table 4S.7 Scatterplot of predicted vs. observed power-transformed f 7R b /6Sr)rock for 
each lithological class and summary statistic of model prediction.
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Table 4S.7 continued
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Table 4S.7 continued
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Table 4S.7 continued
Mt

Ssed
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Table 4S.8 Attribute table of the digital Atlas of Terranes from the Northern Cordillera 
(Colpron and Nelson, 2010) with additional lithological description, min age and max age 
field based on Nelson et al., 2013.

ID T_Group Affinity GLIM
xx

Litholo glcal description Min
age
(Ma)

Max
age
(Ma)

4 Insular Baltica vi pericratonic and arc 350 425
60 Insular Baltica vi pericratonic and arc 350 425

62 Insular Baltica vi pericratonic and arc 350 425
20 Outboard Siberian-

Laurentian
vb oceanic crust 359 419

21 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

23 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

27 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

29 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

31 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

36 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

37 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

38 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

39 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

40 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

41 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

42 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

43 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

44 Outboard Siberian-
Laurentian

vb oceanic crust 359 419

1 N Alaska Siberian p 1 Pericratonic 542 1000
33 N Alaska Siberian p 1 Pericratonic 542 1000
34 N Alaska Siberian p 1 Pericratonic 542 1000

8 Outboard E Pacific vi Accretionary complex 66 146
13 Outboard E Pacific vi Accretionary complex 66 146
59 Outboard E Pacific vi Accretionary complex 66 146

61 Outboard E Pacific vi Accretionary complex 66 146
64 Outboard E Pacific vi Accretionary complex 66 146

65 Outboard E Pacific vi Accretionary complex 66 146
66 Outboard E Pacific vi Accretionary complex 66 146
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Table 4S.8 continued
67 Outboard E Pacific vi Accretionary complex 66 146

68 Outboard E Pacific vi Accretionary complex 66 146
69 Outboard E Pacific vi Accretionary complex 66 146

70 Outboard E Pacific vi Accretionary complex 66 146
71 Outboard E Pacific vi Accretionary complex 66 146
72 Outboard E Pacific vi Accretionary complex 66 146

73 Outboard E Pacific vi Accretionary complex 66 146
74 Outboard E Pacific vi Accretionary complex 66 146
75 Outboard E Pacific vi Accretionary complex 66 146

76 Outboard E Pacific vi Accretionary complex 66 146
77 Outboard E Pacific vi Accretionary complex 66 146

78 Outboard E Pacific vi Accretionary complex 66 146
79 Outboard E Pacific vi Accretionary complex 66 146
80 Outboard E Pacific vi Accretionary complex 66 146

81 Outboard E Pacific vi Accretionary complex 66 146
82 Outboard E Pacific vi Accretionary complex 66 146
83 Outboard E Pacific vi Accretionary complex 66 146

84 Outboard E Pacific vi Accretionary complex 66 146
85 Outboard E Pacific vi Accretionary complex 66 146

86 Outboard E Pacific vi Accretionary complex 66 146
87 Outboard E Pacific vi Accretionary complex 66 146
88 Outboard E Pacific vi Accretionary complex 66 146

89 Outboard E Pacific vi Accretionary complex 66 146
90 Outboard E Pacific vi Accretionary complex 66 146
91 Outboard E Pacific vi Accretionary complex 66 146

92 Outboard E Pacific vi Accretionary complex 66 146
93 Outboard E Pacific vi Accretionary complex 66 146

94 Outboard E Pacific vi Accretionary complex 66 146
95 Outboard E Pacific vi Accretionary complex 66 146
96 Outboard E Pacific vi Accretionary complex 66 146

97 Outboard E Pacific vi Accretionary complex 66 146
16 N Alaska Siberian p i Pericratonic and 

metamorphic
542 1000

30 N Alaska Siberian p i pericratonic to 
metamorphic

542 1000

17 Outboard E Pacific vi Arc terrane 251 299
25 Outboard E Pacific vi Arc terrane 251 299

2 Ancestral North 
America

W Laurentia p i Pericratonic 2000 3000

22 Ancestral North 
America

W Laurentia p i Pericratonic 2000 3000

63 Ancestral North 
America

W Laurentia p i Pericratonic 2000 3000
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Table 4S.8 continued
10
4

Ancestral North 
America

W Laurentian Pi Pericratonic 2000 3000

28 Ancestral North 
America

W Laurentia Pi Cratonic 2000 3000

9 Insular Panthalassa vi pericratonic and arc 350 425
10 Insular Panthalassa vi pericratonic and arc 350 425

11 Insular Panthalassa vi pericratonic and arc 350 425
12 Insular Panthalassa Vi pericratonic and arc 350 425

14 Insular Panthalassa vi pericratonic and arc 350 425
45 Outboard E Pacific vi Accretionary complex 66 146
46 Outboard E Pacific vi Accretionary complex 66 146

47 Outboard E Pacific vi Accretionary complex 66 146
48 Outboard E Pacific vi Accretionary complex 66 146
49 Outboard E Pacific vi Accretionary complex 66 146

50 Outboard E Pacific vi Accretionary complex 66 146
51 Outboard E Pacific vi Accretionary complex 66 146

52 Outboard E Pacific vi Accretionary complex 66 146
53 Outboard E Pacific vi Accretionary complex 66 146
54 Outboard E Pacific vi Accretionary complex 66 146

55 Outboard E Pacific vi Accretionary complex 66 146
57 Outboard E Pacific vi Accretionary complex 66 146
18 N Alaska Siberian Pi Pericratonic 542 1000

19 N Alaska Siberian Pi Pericratonic 542 1000
24 N Alaska Siberian Pi Pericratonic 542 1000

26 N Alaska Siberian Pi Pericratonic 542 1000
32 N Alaska Siberian Pi Pericratonic 542 1000
99 Intermontane W Laurentia vb Ophiolitic assemblage 359 416

10
0

Intermontane W Laurentia vb Ophiolitic assemblage 359 416

10
3

Intermontane W Laurentia vb Ophiolitic assemblage 359 416

98 Intermontane W Laurentian vb Oceanic assemblage 359 416

3 Insular E Pacific vi rift filled and volcanic 
strata

359 416

5 Insular NE
Panthalassa

Pi Pericratonic 350 425

15 Insular NE
Panthalassa

Pi Pericratonic 350 425

56 Outboard E Pacific vi Accretionary complex 66 146
58 Outboard E Pacific vi Accretionary complex 66 146

7 Intermontane W Laurentia vi Arc terrane 359 416
10
2

Intermontane W Laurentia vi Arc terrane 359 416

29 Insular Baltica vi pericratonic and arc 350 425
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Table 4S.8 continued
41 Intermontane W Panthalassa vi Arc terrane 146 201

42 Intermontane W Panthalassa vi Arc terrane 146 201
45 Intermontane W Panthalassa vi Arc terrane 146 201

2 Ancestral North 
America

W Laurentia p i periocratonic 542 1000

13 Ancestral North 
America

W Laurentia p i periocratonic 542 1000

10 Intermontane W Panthalassa vi Arc terrane 251 298

21 Intermontane W Panthalassa vi Arc terrane 251 298
43 Intermontane W Laurentia vi Arc terrane 201 251
48 Intermontane W Laurentia vi Arc terrane (piece o f the 

ST terrane)
359 416

59 Outboard E Pacific vi Acrreted seamounts 66 146
47 Intermontane W Laurentia vi pericratonic and arc 201 251
49 Intermontane W Laurentia vi pericratonic and arc 201 251

50 Intermontane W Laurentia vi pericratonic and arc 201 251
51 Intermontane W Laurentia vi pericratonic and arc 201 251

56 Intermontane- 
Insular arc 
overlap

W Laurentia p i plutonic 146 251

40 Intermontane W Laurentia vi Arc terrane 146 201

44 Intermontane W Laurentia vi Arc terrane 146 201
15 Ancestral North 

America
W Laurentia p i pericratonic 2500 3000

52 Ancestral North 
America

W Laurentia p i pericratonic 2000 3000

54 Ancestral North 
America

W Laurentia p i pericratonic 2000 3000

38 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

57 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

1 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

39 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

53 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

55 Ancestral North 
America

W Laurentia p i cratonic 2000 3000

20 Intermontane Caledonian? p i pericratonic 542 1500

58 Outboard E Pacific vi Accretionary complex 66 146
9 Intermontane W Laurentia vi Arc terrane 201 251

12 Intermontane W Laurentia vi Arc terrane 201 251
6 Intermontane W Laurentia vb Oceanic assemblage 542 1500

14 Intermontane W Laurentia vb Oceanic assemblage 359 416

16 Intermontane W Laurentia vb Oceanic assemblage 359 416
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Table 4S.8 continued
17 Intermontane W Laurentia vb Oceanic assemblage 359 416

18 Intermontane W Laurentia vb Oceanic assemblage 359 416
19 Intermontane W Laurentia vb Oceanic assemblage 359 416

11 Intermontane W Laurentia vl Arc terrane 359 416
24 Intermontane W Laurentia vl Arc terrane 359 416
28 Intermontane W Laurentia vi Arc terrane 359 416

46 Intermontane W Laurentia vl Arc terrane 359 416
22 Insular NE

Panthalassa
p 1 pericratonic 350 425

30 Insular NE
Panthalassa

p 1 pericratonic 350 425

31 Insular NE
Panthalassa

p 1 pericratonic 350 425

32 Insular NE
Panthalassa

p 1 pericratonic 350 425

33 Insular NE
Panthalassa

p 1 pericratonic 350 425

34 Insular NE
Panthalassa

p 1 pericratonic 350 425

35 Insular NE
Panthalassa

p 1 pericratonic 350 425

36 Insular NE
Panthalassa

p 1 pericratonic 350 425

37 Insular NE
Panthalassa

p 1 pericratonic 350 425

3 Intermontane W Laurentia vi Arc terrane 359 416

4 Intermontane W Laurentia vl Arc terrane 359 416
5 Intermontane W Laurentia vl Arc terrane 359 416
7 Intermontane W Laurentia vl Arc terrane 359 416

8 Intermontane W Laurentia vl Arc terrane 359 416
23 Intermontane W Laurentia vl Arc terrane 359 416

25 Intermontane W Laurentia vl Arc terrane 359 416
26 Intermontane W Laurentia vl Arc terrane 359 416
27 Intermontane W Laurentia vi Arc terrane 359 416

29 Baltica Artic Alaska vl pericratonic and arc 542 1000
26 Baltica Alexander vl pericratonic and arc 350 425

4 W Laurentia Casslar p 1 pericratonic 542 1000

21 W Laurentia Casslar p 1 pericratonic 542 1000
18 W Panthalassa Cache Creek vi Arc 359 416

2 E Pacific Chugach vl Accretionary complex 66 146
34 E Pacific Chugach vl Accretionary complex 66 146
24 E Pacific Kluane schist mt metamorphic 66 146

11 W Laurentia North America 
- basinal strata

p 1 pericratonic 2000 3000

23 W Laurentia North America 
- basinal strata

p 1 pericratonic 2000 3000
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Table 4S.8 continued
28 W Laurentia North America 

- basinal strata
p 1 pericratonic 2000 3000

31 W Laurentia North America 
- basinal strata

pi pericratonic 2000 3000

36 W Laurentia North America 
- basinal strata

pi pericratonic 2000 3000

38 W Laurentia North America 
- basinal strata

p 1 pericratonic 2000 3000

41 W Laurentia North America 
- basinal strata

pi pericratonic 2000 3000

35 W Laurentia North America 
- craton and 
cover

p 1 cratonic 2000 3000

37 N Laurentia North America 
- craton and 
cover

pi cratonic 2000 3000

1 W Laurentia North America 
- platformal 
strata

pi cratonic 2000 3000

13 W Laurentia North America 
- platformal 
strata

p 1 cratonic 2000 3000

14 W Laurentia North America 
- platformal 
strata

p 1 cratonic 2000 3000

16 W Laurentia Quesnellia vi Arc 359 416
17 W Laurentia Quesnellia vi Arc 359 416

5 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

6 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

7 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

8 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

9 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

19 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

20 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

30 W Laurentian Slide
Mountain

vb Oceanic assemblage 359 416

40 W Laurentia Slide
Mountain

vb Oceanic assemblage 359 416

15 W Laurentia ST vi Arc 359 416
3 NE Panthalassa Wrangellia vi pericratonic and arc 201 251

25 NE Panthalassa Wrangellia vi pericratonic and arc 359 416
33 E Pacific Yakutat vi Accretionary complex 66 146

10 W Laurentia Yukon-Tanana vi Arc 359 416
12 W Laurentia Yukon-Tanana vi Arc 359 416
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Table 4S.8 continued
22 W Laurentia Yukon-Tanana vi Arc 359 416
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Script 4S.1 Igneous submodel R script.

#load package 
library(raster) 
library(rgdal)
library(mc2d) #load package

# reads in the input grids for each parameter
# input power-transformed (87Rb/8 Sr)rock mean and standard deviation grid from ordinary kriging 
Rb_Srrock <- raster("drlve/input.asc", package-'raster")
sd_Rb_Srrock <- raster("drlve/input.asc", package="raster")
# input power-transformed (87Rb 6Sr)parent from table.1 
Rb_Srparent <- raster("drlve/input.asc", package-'raster") 
sd_Rb_Srparent <- raster("drlve/input.asc", package-'raster")
# input minimum and maximum rock age from GLiM database 
min_Age_d <- raster("drlve/input.asc", package-'raster") 
max_Age_d <- raster("drlve/input.asc", package="raster")

# combine the RasterLayer objects into a RasterStack
s <- stack(Rb_Srrock, sd_Rb_Srrock, Rb_Srparent, sd_Rb_Srparent, min_Age_d, max_Age_d)

# Get stack dimensions 
sdims = dim(s)
# Set Monte Carlo iterations 
ndunc(10001)
fun <- functlon(x) {

## Function to calculate SD ratio + uncertainty using Monte Carlo resampling 
if (length(x) != 6) {stop("Ratio function: vector x != 6")} 
d_Rb_Srrock <- mcdata(x[1], type="0") 
d_sd_Rb_Srrock <- mcdata(x[2], type-" 0") 
d_Rb_Srparent<-mcdata(x[3], type-" 0") 
d_sd_Rb_Srparent<-mcdata(x[4], type-" 0") 
d_min_Age_d <- mcdata(x[5], type-"0") 
d_max_Age_d <- mcdata(x[6], ty p e - '0")
## draw a random power-transformed (87Rb/86Sr)rock from a normal distribution 
stRb_Srrock <- mcstoc(rnorm, type-"U", d Rb_Srrock, d_sd_Rb_Srrock, rtrunc-TRUE, linf-0)
## back transform power-transformed (87Rb786Sr)rock using power transform parameter from table. 3 
s tRb_ Srrock <-exp(lo g (stRb_Srrock)/power2)
## draw a random power-transformed (87Rb/86Sr)parent from a normal distribution 
stRb_Srparent <- mcstoc(rnorm, type-"U", d_Rb_Srparent, d_sd_Rb_Srparent, rtrunc-TRUE, 

linf-0)
## back transform power-transformed (87Rb/86Sr)parent using power transform parameter from table. 1 
stRb_Srparent <-exp(log(stRb_Srparent)/power1)

## draw a random t 2 from a uniform distribution 
stAge_d <- mcstoc(runif, type-"U", min-d_min_Age_d, max-d_max_Age_d)

## input all the randomly drawn parameters into the equation 4.1 to calculate 87Sr/86Sr in igneous rock 
Sr_ratio <- 0.701+stRb_Srparent*2.8936*(exp(1.42* 10A-11*(3* 10A9-stAge_d* 10A6))- 
1)+stRb_Srrock*2.8936*(exp(1.42* 10A-11*stAge_d* 10A6)-1) 
quantile(Sr_ratlo[],c(0.025,0.1,0.25,0.5,0.75,0.9,0.975),na.rm-TRUE)

}

## Replace the loop below by the calc function much faster on R 
x<-calc(s,fun)
plot(x)_________________________________________________________________________________
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Script 4S. 1 continued_______________________
| x <- writeRaster(x, "drive/output.tif", overwrite=TRUE)
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Script 4S.2 Carbonates submodel R script.

#load package 
library(raster) 
library(rgdal)
library(mc2d) #load package

# reads in the input grids for each parameter
# input power-transformed (87Rb/86Sr)rock mean and standard deviation grid from ordinary kriging 
Rb_Srrock <- raster("drive/input.asc", package-'raster")
sd_Rb_Srrock <- raster("drive/input.asc", package="raster")
# input minimum and maximum (87Sr/86Sr)seawater 
min_ca_srparent <- raster("drive/input.asc", package="raster") 
max_ca_srparent <- raster("drive/input.asc", package="raster")
#input minimum and maximum rock age from GLiM database 
min_Age_d <- raster("drive/input.asc", package-'raster") 
max_Age_d <- raster("drive/input.asc", package="raster")

# combine the RasterLayer objects into a RasterStack
s <- stack(Rb_Srrock, sd_Rb_Srrock, min_ca_srparent, max_ca_srparent, min_Age_d, max_Age_d)

# Get stack dimensions 
sdims = dim(s)

# Set Monte Carlo iterations 
ndunc(10001)
fun <- function(x) {

## Function to calculate SD ratio + uncertainty using Monte Carlo resampling
if (length(x) != 6) {stop("Ratio function: vector x != 6")}
d_Rb_Srrock <- mcdata(x[1], type="0")
d_sd_Rb_Srrock <- mcdata(x[2], type-" 0")
d_min_ca_srparent <- mcdata(x[3], type="0")
d_max_ca_srparent <- mcdata(x[4], type="0")
d_min_Age_d <- mcdata(x[5], type="0")
d_max_Age_d <- mcdata(x[6], type="0")

## draw a random power-transformed (87Rb/86Sr)rock from a normal distribution 
stRb_Srrock <- mcstoc(rnorm, type="U", d_Rb_Srrock, d_sd_Rb_Srrock, rtrunc-TRUE, linf=0)

## back transform power-transformed (87Rb/86Sr)rock using power transform parameter from table. 3 
stRb_Srrock <-exp(log(stRb_Srrock)/power1)

## draw a random (87Sr/8 Sr)seawater from a uniform distribution 
stca_srparent <- mcstoc(runif, type="U", min=d_min_ca_srparent, max=d_max_ca_srparent, 

rtrunc-TRUE, linf=0)
## draw a random rock age t2 from a uniform distribution
stAge_d <- mcstoc(runif, type="U", min=d_min_ca_srparent, max=d_max_ca srparent)
## input all the randomly drawn parameters into the equation 4.3 to calculate 87Sr/86Sr in carbonates 
Sr_ratio <- stca_srparent+stRb_Srrock*2.8936*(exp(1.42* 10A-11*stAge_d*10A6)-1) 
quantile(Sr_ratio[],c(0.025,0.1,0.25,0.5,0.75,0.9,0.975),na.rm=TRUE)

}

x<-calc(s,fun)
plot(x)
x <- writeRaster(x, "drive/output.tif", overwrite-TRUE)______________________________________
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Script 4S.3 Siliciclastic sedimentary rock submodel R script.

#load package
library(raster)
library(rgdal)
library(mc2d)
library(stats)

# reads in the input grids for each parameter
# input power-transformed (87Rb/86Sr)rock mean and standard deviation grid from ordinary kriging 
Rb_Srrock <- raster("drive/input.asc", package-'raster")
sd_Rb_Srrock <- raster("drive/input.asc", package="raster")
# input power-transformed (87Rb/86Sr)parent from table. 1 
Rb_Srparent <- raster("drive/input.asc", package-'raster") 
sd_Rb_Srparent <- raster("drive/input.asc", package="raster")
#input minimum and maximum rock age from GLiM database 
min_Age_d <- raster("drive/input.asc", package-'raster") 
max_Age_d <- raster("drive/input.asc", package-'raster")
# input minimum and maximum terrane age 
min_Age_t <-raster("drive/input.asc", package-'raster") 
max_Age_t <-raster("drive/input.asc", package-'raster")

# combine the RasterLayer objects into a RasterStack

s <- stack(Rb_Srrock, sd_Rb_Srrock, Rb_Srparent, sd_Rb_Srparent, min_Age_d, max_Age_d, 
min_Age_t, max_Age_t)

# Get stack dimensions 
sdims -  dim(s)

## Functions to do integration over a dataframe o f Monte Carlo output 
newf <- function(mydf) { 

a-mydf[1] 
b-mydf[2] 
t1-mydf[3] 
t2-mydf[4]
Rb_Srt<-function(t) {b*exp(a*t)}
stRb_Srrock_int <-integrate(Rb_Srt, t1,t2,subdivisions-500, stop.on.error -  FALSE) 
return(stRb_Srrock_int$value/(t2-t1))

}

# Set Monte Carlo iterations 
ndunc(10001)
fun <- function(x) {

## Function to calculate SD ratio + uncertainty using Monte Carlo resampling
if (length(x) !- 8) {stop("Ratio function: vector x !- 8")}
d_Rb_Srrock <- mcdata(x[1], type-"0")
d_sd_Rb_Srrock <- mcdata(x[2], type-" 0")
d_Rb_Srparent <- mcdata(x[3], type-"0")
d_sd_Rb_Srparent <- mcdata(x[4], type-"0")
d_min_Age_d <- mcdata(x[5], type-"0")
d_max_Age_d <- mcdata(x[6], type-"0")
d_min_Age_t <- mcdata(x[7], type-"0")
d_max_Age_t <- mcdata(x[8], type-"0")

## draw a random power-transformed (87Rb/86Sr)parent from a normal distribution____________
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stRb_Srparent <- mcstoc(rnorm, type-'U ", d_Rb_Srparent, d_sd_Rb_Srparent, rtrunc-TRUE, 
linf-0)

## back transform power-transformed (87Rb/86Sr)parent using power transform parameter from table. 1 
stRb_Srparent <-exp(log(stRb_Srparent)/power1)
## draw a random rock age t2 from a uniform distribution
stAge_d <- mcstoc(runif, type-"U", min-d_min_Age_d, max=d_max_Age_d)
## draw a random terrane age t 1 from a uniform distribution
stAge_t <- mcstoc(runif, type-"U ", min-d_min_Age_t, max=d_max_Age_t)
## draw a random power-transformed (87Rb/86Sr)rock from a normal distribution 
stRb_Srrock <- mcstoc(rnorm, type-"U", d_Rb_Srrock, d_sd_Rb_Srrock, rtrunc-TRUE, linf-0)
## back transform power-transformed (87Rb/86Sr)rock using power transform parameter from table. 3 
s tRb_ Srrock <-exp(lo g (stRb_Srrock)/power2)
#a and b parameters ofthe fitted model b*exp(a*t) from equation 4.4 calculated using boundary 

conditions at t 1-3Ga and t2- t 2 
a -  log(stRb_Srrock/stRb_Srparent)/(stAge_d-stAge_t)
b -  stRb_Srparent/(exp(log(stRb_Srrock/stRb_Srparent)/(stAge_d-stAge_t)* stAge_t))
## Make up datafam e o f Monte Carlo output 
mydf -  data.frame (a-as .numeric (a),b-as .numeric (b),

11-as .numerlc(stAge_d),t2-as.numerlc(stAge_t))
## Apply integrate function over data frame 
stRb_Srrock_int -  apply (mydf,1,newf)
## input all the randomly drawn parameters into the equation 4.4 to calculate 87Sr/86Sr in siliciclastic 

sediments
Sr_ratio <- 0.701+stRb_Srrock_int*2.8936*(exp(1.42*10A-11*(stAge_t*10A6-stAge_d*10A6))-1) + 

stRb_Srrock*2.8936*(exp(1.42*10A-11*(stAge_d*10A6))-1)+stRb_Srparent*2.8936*(exp(1.42*10A- 
11*(3* 10A9-stAge_d*10A6))-1)
quantile(Sr_ratlo[],c(0.025,0.1,0.25,0.5,0.75,0.9,0.975),na.rm-TRUE)

}

x<-calc(s,fun)
plot(x)
x <- writeRaster(x, "drive/output.tif^'. overwrlte-TRUE)______________________________________

Script 4S.3 continued________________________________________________________
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Script 4S.4 R script for the Monte-Carlo simulation step to calculate back-transform
f 7S r / 6Sr)loca,

library(raster)
library(rgdal)
library(mc2d) #load package

# reads in the whole raster for each input variables
#input log-transformed bedrock strontium isotope ratio raster for major bedrock 
mn_lnSr_ratio_maj <- raster(" drive/input.asc", package-'raster") 
sd_lnSr_ratio_maj <- raster("drive/input.asc", package-'raster")
#input log-transformed bedrock strontium is otope ratio raster for minor bedrock 
mn_lnSr_ratio_min <- raster("drive/input.asc", package-'raster") 
sd_lnSr_ratio_min <- raster(" drive/input.asc", package-'raster")

#input lithology bi (Table 3) rasters based on the GLiM lithological map for major bedrock 
mn_bi_maj <- raster("drive/input.asc", package-'raster") 
sd_bi_maj <- raster("drive/input.asc", package-'raster")
#input lithology bi (Table 3) rasters based on the GLiM lithological map for minor bedrock 
mn_bi_min <- raster("drive/input.asc", package-'raster") 
sd_bi_min <- raster("drive/input.asc", package-'raster")

#input global permafrost extent and cover raster 
pfi <- raster("drive/input.asc", package—'raster")
#input global slope raster
slope <- raster("drive/input.asc", package-'raster")

# combine the RasterLayer objects into a RasterStack

s <- stack(mn_lnSr_ratio_maj, sd_lnSr_ratio_maj, mn_lnSr_ratio_min, sd_lnSr_ratio_min, 
mn_bi_maj, sd_bi_maj, mn_bi_min, sd_bi_min, pfi, slope)

# Set Monte Carlo iterations
ndunc(1001)
fun <- function(x) {

## Function to calculate SD ratio + uncertainty using Monte Carlo resampling
## Changed to expect a vector o f sixvalues, rather than a raster stack
if (length(x) !- 10) {stop("Ratio function: vector x !-  10")}
d_mn_Sr_ratio_maj <- mcdata(x[1], type-" 0")
d_sd_Sr_ratio_maj <- mcdata(x[2], ty p e - '0")
d_mn_Sr_ratio_min <- mcdata(x[3], ty p e - '0")
d_sd_Sr_ratio_min <- mcdata(x[4], type-"0")
d_mn_bi_maj <- mcdata(x[5], type-"0")
d_sd_bi_maj <- mcdata(x[6], type-"0")
d_mn_bi_min <- mcdata(x[7], type-"0")
d_sd_bi_min <- mcdata(x[8], ty p e - '0")
d_pfi<-mcdata(x[9],type-"0")
d_slope<-mcdata(x[10],type-"0")
## draw a random log-transformed 87Sr/86Sr major bedrock from a normal distribution 
stSr_ratio_maj <- mcstoc(rnorm, type-'U ", d_mn_lnSr_ratio_maj, d_sd_lnSr_ratio_maj, 

rtrunc-TRUE, linf-0)
## back-transform 87Sr/86Sr major bedrock 
stSr_ratio_maj <-exp(stSr_ratio_maj)
## draw a random log-transformed 7Sr/86Sr minor bedrock from a normal distribution
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Script 4S.4 continued____________________________________________________
stSr_ratio_min <- mcstoc(rnorm, type-"U", d_mn_lnSr_ratio_min, d_sd_lnSr_ratio_min, 

rtrunc-TRUE, linf-0)
## back-transform 87Sr/86Sr minor bedrock 
stSr_ratio_min <-exp(stSr_ratio_min)

## draw a random b i number from each pixel from a normal distribution for major lithology 
Stbi_maj <- mcstoc(rnorm, type-"U", d_mn_bi_maj, d_sd_bi_maj, rtrunc-TRUE, linf-0)

## draw a random b i number from each pixel from a normal distribution for minor lithology 
Stbi_maj <- mcstoc(rnorm, type-"U", d_mn_bi_min, d_sd_bi_min, rtrunc-TRUE, linf-0)

## draw a random bpfi (Table 3) number from each pixel from a normal distribution 
st_b_pfi <-mcstoc(rnorm, type-"U", -0.34, 0.094, rtrunc-TRUE, linf-0)
## draw a random b s (Table 3) number from each pixel from a normal distribution 
st_b_s<-mcstoc(rnorm, type-"U ", 0.074, 0.014, rtrunc-TRUE, linf-0)

## apply equation 4.6 with each random parameter drawn for major lithology 
ln Sr_major<-s tb i_maj+s t_b_pfi* d_pfi+st_b_s * d_slope 
back-transform Sr flux 
Sr_major<-exp(lnSr)
## apply equation 4.6 with each random parameter drawn for minor lithology

lnSr_minor<-stbi_min+st_b_pfi*d_pfi+st_b_s*d_slope
back-transform Sr flux
Sr_minor<-exp(lnSr)
## apply equation 4.7
Sr_ratio_local<-(0.75*Sr_major*stSr_ratio_maj+0.25*Sr_minor*stSr_ratio_min)/(

0.75* Sr_major+0.25* Sr_minor)
quantile(Sr_ratio_local[],c(0.025,0.1,0.25,0.5,0.75,0.9,0.975),na.rm-TRUE)

}

x<-calc(s,fun)
x <- writeRaster(x, "drive/output.tif", overwrite-TRUE)__________________________________



Supplementary dataset 1: Bedrock model validation dataset 

Dataset description

We compiled and georeferenced data from the literature including 97 87Sr/86Sr 

analyses in sedimentary rocks and 78 8 87Sr/86Sr analyses in igneous rocks sampled in AK 

(Table 4S.9). We georeferenced all the samples compiled by reporting latitude/longitude 

given in the publication or estimating geolocation using other available geographical data 

from the publication (e.g., map) and Google Earth. The dataset also indicates the major 

rock type and a lithological descritptor for each sample.We used this dataset to test the 

accuracy of the bedrock model over AK by extracting the bedrock model value at each 

sample point of the database (ArcGIS/Spatial Analyst Toolbox). Due to its large size 

Table 4S.9 is not included in this thesis and is available upon request at: 

clement.bataille@gmail.com.

Dataset uncertainty and biases 

This dataset present a broad variety of lithologies and ages but are not 

comprehensive and thus hamper proper validation of the bedrock model because: 1) 

analyses gathered in these databases are biased toward rocks from active tectonic and 

volcanic areas, 2) 87Sr/86Sr values for continental sedimentary samples are under­

represented in comparison with igneous rocks, and 3) Mesozoic and Cenozoic rocks are 

over-represented in the dataset.
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Supplementary dataset 2: Chemical weathering model calibration dataset

Dataset description

We compiled and georeferenced 405 published Sr concentration and isotope data 

from major rivers and tributaries from North hemisphere high-latitudes (Fig. 4.4A and 

Table 4S.10). From this dataset, we selected a chemical weathering model calibration 

dataset of 339 Sr concentration data (Table 4S.10) excluding 66 samples which shared 

part of their drainage catchment in common with another sample in the calibration set. 

We selected only high-latitude rivers (catchments above 60°N) to limit the range of 

temperature and its potential effect on chemical weathering. We georeferenced all the 

samples compiled by reporting latitude/longitude given in the publication or estimating 

geolocation using other available geographical data from the publication (e.g., map) and 

Google Earth. Each sample point of the calibration dataset was manually snapped on the 

river network derived from the Hydro1K dataset (data available from the U.S. Geological 

Survey) and used to define their catchment feature (Spatial Analyst/Hydrology Toobox). 

Due to its large size the Table 4S.10 is not included in this thesis and is available upon 

request at: clement.bataille@gmail.com.

Dataset biases

The main limitation of this database is that we could not calculate discharge- 

weighted annual average Sr concentrations and 87Sr/86Sr because most of the Sr 

concentration and 87Sr/86Sr data are derived from a single point sample. In high-latitude 

catchment, discharge and solute concentrations are highly seasonal and in the Northern 

high latitudes most of the water discharge and solute export occur during the late spring

http://eros.usgs.gov/%23/About_Us/Customer_Service/Data_Citation
http://eros.usgs.gov/%23/About_Us/Customer_Service/Data_Citation
mailto:clement.bataille@gmail.com


and summer. The great majority of the samples from the compiled database were 

collected during spring (n-93), summer (n-326) and early fall (n-64). We assume that 

those Sr concentrations are representative of the high flow period and as such they can be 

used to estimate the annual Sr concentration in the sampled rivers. Flux calculated on the 

basis of a single sample could differ from the annual mean by more than 50%. 87Sr/86Sr 

can also vary seasonally due to the relative contributions of Sr from the subbasins with 

different lithologies within the drainage. Uncertainty associated with seasonal variations 

in the high-latitudes can be estimated using published time series of Sr concentrations 

and 87Sr/86Sr data, and comparing the range of 87Sr/86Sr values with the flow and flow and 

concentration weighted 87Sr/86Sr values. Using two high-latitude studies reporting time

87 86series of Sr concentrations and Sr/ Sr values (Douglas et al., 2013;Voss et al., 2014), 

we calculated an average difference less than 10% between annual discharge-weighted Sr 

flux and annual Sr flux derived from single point measurements. Similarly, the average 

difference for 87Sr/86Sr values was less than 0.001 in both cases indicating than seasonal 

variations are only a minor factor in controlling Sr concentrations and 87Sr/86Sr in high- 

latitudes rivers. However, heterogeneous glacial and permafrost cover associated with 

rapid lithological changes are fairly ubiquitous conditions in Alaska and we cannot rule 

out the possibility of significant seasonal bias in our dataset.
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CHAPTER V

CONCLUSION



Summary

In this dissertation, we presented the results of different modeling efforts allowing 

the development of models predicting 87Sr/86Sr in bedrock, river water and soil water for 

regional scale provenance studies. In Chapter I, we emphasized the interest and necessity 

of developing predictive 87Sr/86Sr models to assist provenance interpretation at the 

regional scale and we reviewed existing approaches to developing such models. In 

Chapter II, we developed initial model formulations and associated calibration steps to 

predict 87Sr/86Sr in bedrock and river water. We applied those models to predict 87Sr/86Sr 

over the conterminous USA. Tested against compiled dataset of rock and water 87Sr/86Sr, 

the bedrock and the water model explained a large portion of 87Sr/86Sr variations. In 

Chapter III, we highlighted the limitations of the bedrock and water models in predicting

87 86 87 86Sr/ Sr of ecosystems in areas where multiple sources of Sr contribute to the Sr/ Sr 

signature. To address this issue, we developed a model accounting for the mixing of 

distinct Sr inputs (bedrock, aerosols) into soils and predicting the resulting 87Sr/86Sr in 

soil water. This model performed significantly better than the bedrock or water models in 

predicting 87Sr/86Sr of biological material, demonstrating the importance of developing 

substrate-specific 87Sr/86Sr isoscapes. In Chapter IV, we renewed the bedrock and water 

model formulation and calibration to enhance the model’s predictive power and to assess 

prediction uncertainty. These new models were applied to predict 87Sr/86Sr in Alaska 

Rivers and demonstrated robust predictive power to identify the geographic origin of 

waters and fish, explaining around 80% of the variance with an uncertainty around 

±0.001.
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Perspectives

Resolving provenance using multi-isotope framework 

Predictive 87Sr/86Sr models are powerful additions to other existing isoscapes (H 

and O) because of the fine scale and geology-controlled discrete pattern of 87Sr/86Sr 

variations they represent. The future integration of 87Sr/86Sr into a multi-isotope 

framework with H and O isotopes should considerably increase the probabilistic power 

and spatial resolution of provenance predictions at local to continental scales. An increase 

in resolution and accuracy of provenance assessments will likely open the door to new 

applications and renewed interpretation of existing datasets. Adding Sr isotopes to the 

routine geochemical provenance toolbox will also enhance the interdisciplinary 

characteristic of the “isoscape” field by building bridges between traditional and 

nontraditional isotope geochemistry techniques and applications. For instance, the 

paleoenvironmental research community could benefit strongly from the development of 

multi-isotope isoscapes from past geological periods (“paleoisoscapes”) because their 

combined information can help resolve problems at multiple time scales. 87Sr/86Sr has 

been applied in a variety of Quaternary paleoevniromental studies (Balasse et al., 2002; 

Hoppe et al., 1999; Koch et al., 1992), but ongoing work and advances in reconstituting 

Earth paleogeography and paleogeology of the Paleozoic could lead to the development 

of 87Sr/86Sr isoscape for older geological periods. Combined paleoisocapes of H, O and 

87Sr/86Sr could ultimately become powerful tools to study paleoclimate, to reconstruct 

ancient biogeochemical cycles or to track movements and provenance of animals (e.g., 

dinosaurs) and materials (e.g., dust) from the Earth’s deep past.
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Predictive 87Sr/86Sr models to identify mechanistic process of 

87Sr/86Sr variations

Throughout this dissertation, we demonstrated that map products derived from 

our model are powerful templates for data analysis and visualization for a variety of 

fields. Isoscapes-based research can play a fundamental role in identifying mechanistic 

processes influencing isotope variations. For instance, our predictive 87Sr/86Sr models 

applied to Alaska Rivers (Chapter IV) allowed direct visualization of spatial pattern of 

87Sr/86Sr variations and helped to quantify the effect of local (e.g., glacial processes) vs. 

global (e.g., temperature) factors in controlling 87Sr/86Sr variations in continental surface 

waters. Applied to global scale, our model could be used to test the sensitivity of the Sr 

and 87Sr/86Sr flux in rivers to varied geological (bedrock model and surface of exposed 

continents), climatic (precipitation and temperature) and/or environmental (topography 

and soil types) factors reflecting past Earth surface conditions.

Broader interest of this geostatistical framework 

The geostatistics and geospatial data analysis derived from this work could also 

provide powerful methods for the interpretation and integration of geochemical data and 

the production of base layers supporting the visualization and widespread scientific 

application of geochemical and isotopic data. This geostatistical framework contributes to 

an ongoing effort to integrate the growing amount of publically available geological and 

geochemical data within a spatial plateform. This framework, combined with recent 

advances in geostatistics, could further help to combine discrete (geological maps, soil 

maps, geochemical samples) and continuous (aerial and satellite data) data to predict the
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concentration of geologically-derived elements and isotopes in various Earth surface 

reservoirs at a global scale. High resolution global elemental and isotope maps have vast 

potential for better understanding Earth surface processes in various fields. For instance, 

those spatial models could offer a unique opportunity to better understand the spatial 

distribution of life-sustaining nutrients (e.g., phosphorus, iron) at a global scale for land- 

surface models.

Limitations and future improvements 

Improving the geostatistical framework 

The main challenge in developing accurate predictive 87Sr/86Sr models is 

associated with the type of 87Sr/86Sr spatial patterning. Isoscape modeling theory has been 

initially formulated around atmospherically derived H and O isotopes which display 

spatially continuous variations with smooth isotopic gradient along map transects. This 

continuous pattern of variation greatly simplifies the application of interpolation 

algorithms and the assessment of prediction uncertainty. Developing predictive models of 

87Sr/86Sr variations in bedrock requires a completely different mindset because at the 

regional scale, 87Sr/86Sr variations in rocks are dominated by discrete patterning 

associated with geological regime. This discrete patterning is further overprinted by 

continuous, multiscale 87Sr/86Sr variability associated with local and regional 

heterogeneity. In the final approach, presented in Chapter IV of this dissertation, both 

pattern types (discrete and continuous) are treated separately before being combined to 

predict 87Sr/86Sr. The discrete pattern is modeled using geological maps, whereas the 

multiscale continuous patterns are modeled by ordinary kriging. Improving prediction
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accuracy and uncertainty assessment will require the integration of those different levels 

and types of spatial variability into a unified geosatistical framework. Ongoing research 

aiming to develop kriging algorithms combining discrete and continuous data might 

strongly benefit the performance of our model in the future (Goovaerts, 2010; Kerry et 

al., 2012).

Improving spatial resolution of 87Sr/86Sr isoscape 

Increasing the resolution of 87Sr/86Sr predictive models is critical to improve 

provenance assessment because of the fine scale 87Sr/86Sr variations in natural systems. 

The resolution of our 87Sr/86Sr predictive models is limited by both the resolution of 

geological maps and the density and quality of point data (87Sr/86Sr, Rb and Sr) used in 

the parameterization steps of our model. While the accuracy and resolution of global 

geological maps will improve rapidly with ongoing efforts (Hartmann and Moosdorf, 

2012), there is little chance that the types of high resolution point sample datasets 

necessary for representing the fine scale 87Sr/86Sr variations will exist at global scale in 

the near future. A solution to reduce the dependence of our parameterization methods on 

the density and quality of point data, while representing the fine-scale 87Sr/86Sr variations 

will consist in identifying continuous spatial datasets derived from satellite/aerial 

observations that could be correlated with the observations of model variables (e.g., 

radiometric surveys correlate-well with K and Rb content in rocks). Using those 

continuous datasets in co-kriging procedures should allow representing the fine-scale 

87Sr/86Sr variations at global scale without losing accuracy.



Developing substrate specific 87Sr/86Sr isoscapes 

In this dissertation, we have presented models predicting 87Sr/86Sr in bedrock, 

surface water and soil water. However, as Sr is cycled and mixed on the Earth surface, 

physical and biological processes tend to lead to more and more variable 87Sr/86Sr in 

biological reservoirs (Capo et al., 1998). Consequently, depending on the study, 

substrate-specific isoscapes of accessible water, tap water, plants or food might be

87 86 87 86required to predict the Sr/ Sr of humans or animals. Estimating the Sr/ Sr of those Sr 

sources becomes more and more complicated as the source becomes more specific, due to 

the absence of data to test and validate the isoscapes. In those cases, finding a good 

compromise between specificity and generality will be required when developing 

predictive 87Sr/86Sr models. Such compromises could be permitted if a representative 

substrate that integrates 87Sr/86Sr from the Sr sources is found. There is still debate in the 

archeological/ecological community on which substrates best reflect the integrated 

87Sr/86Sr of animal or human diets (e.g., migratory bird, large mammals, humans) because 

the substrate might be specie-specific (Copeland et al., 2011; Evans et al., 2010; Frei and 

Frei, 2011; Hodell et al., 2004; Price et al., 2002; Sillen et al., 1998). Additional data 

compilations and experiments are required to identify which substrates are the most 

appropriate and to develop, test and validate substrate-specific 87Sr/86Sr isoscape.

Toward time-dependent 87Sr/86Sr isoscapes?

One main advantage in using 87Sr/86Sr in provenance studies is the limited 

temporal variations of 87Sr/86Sr in reservoirs of the Earth surface in comparison with 

other traditional stable isotopes. Even when large inputs of Sr from seasonal sources
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occur (e.g., atmospheric deposition), soil 87Sr/86Sr will only vary at a temporal scale of 

hundreds to thousands of years (Bern et al., 2005; Chadwick et al., 2009; Kennedy et al., 

1998; Pett-Ridge et al., 2009). As such, 87Sr/86Sr in bedrock and soils and their associated 

isoscape can be reasonably assumed constant at human timescale. However, Sr residence 

time decreases significantly in the hydrosphere and the biosphere leading to temporal 

87Sr/86Sr variability in those reservoirs. Those variations could be considered when 

modeling substrate specific 87Sr/86Sr such as river water, plants or food because they 

bring an additional dimension to constrain geographic provenance. Recent work has 

demonstrated that temporal 87Sr/86Sr variations in river water are more common than 

initially thought, and is encountered in many areas where river discharge is highly 

seasonal (Douglas et al., 2013; Voss et al., 2014). Rapid flushing of Sr that has 

accumulated from atmospheric deposition during peak flow (e.g., meltwater, flashflood, 

permafrost) can temporally dominate the river water Sr export and induce seasonal 

87Sr/86Sr variations in rivers.
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