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ABSTRACT 
 
 
 

 Creatine is necessary to transfer energy between cellular 

compartments. Creatine is converted to phosphocreatine by the creatine 

kinase reaction within mitochondria and phosphocreatine generates 

adenosine triphosphate (ATP) in the cytoplasm. ATP powers most of the 

energy consuming reactions in cells. Defects in creatine synthesis or 

transport disrupt this process and result in brain creatine deficiency 

syndromes. Affected patients have developmental delay, hypotonia, 

autism, seizures, and impaired motor skill development. Defects of 

creatine synthesis are caused by impaired activity of the enzymes 

guanidinoacetate methyltransferase (GAMT) and arginine:glycine 

amidinotransferase (AGAT), both transmitted as autosomal recessive 

traits, whereas defect in creatine transport (SLC6A8 Gene) are transmitted 

in an X-linked recessive manner. Patients with defects in creatine 

synthesis respond to creatine supplementation and dietary manipulations. 

This therapy is more effective if initiated before mental retardation is 

evident. For this reason, diagnosis should be accomplished as soon as 

possible with newborn screening. Here we report a reliable three-tier 

testing method for screening for GAMT and AGAT deficiency in newborns’ 



 

v 

 

blood spots. Creatine and guanidinoacetate are detected in newborn 

screening blood spots by tandem mass spectrometry (MS/MS). Second-

tier testing using LC-MS/MS confirms more quantitatively low creatine and 

increased or decreased guanidinoacetate levels, while third-tier testing 

consists of DNA sequencing to identify mutations in the GAMT and AGAT 

Genes. This test can potentially identify newborns with GAMT and AGAT 

deficiencies with low false positive rate and could be applied to newborn 

screening nationwide. 
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CHAPTER I 
 
 
 

INTRODUCTION 
 

 
 
 Newborn screening began in the 1960s when a test for a metabolic  
 
disorder, phenylketonuria (PKU), was developed by Robert Guthrie (Newborn  
 
Screening 2011). Guthrie knew that treatment for PKU is more effective if  
 
initiated at the earliest date possible and could prevent mental retardation. This  
 
general concept applies to many other disorders, including the defects of creatine  
 
synthesis GAMT and AGAT deficiencies (O’Rourke, et al., 2008, Battini, et al.,  
 
2006). Newborn screening could potentially detect these conditions and prevent  
 
irreversible damages that occur without treatment.  
 
 Creatine, or α-N-methylguanidino acetic acid, is an amino acid necessary  
 
for energy metabolism.  Creatine was initially recognized as deriving from meat  
 
(kreas in Greek meaning flesh) in 1832 (Longo et al., 2011). Creatine is  
 
phosphorylated to phosphocreatine that can release phosphate to yield energy 
 
 and convert ADP to ATP (Verhoeven et al., 2005). In tissues requiring high  
 
levels of energy, such as muscle, brain, and heart, creatine is especially  
 
important for normal functioning. Creatine is synthesized by the body in the liver,  
 
pancreas, and kidneys (Battini, et al., 2006) and is then distributed to all tissues  
 
in the body by the action of specific creatine transporters. Creatine and its  
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phosphorylated form, phosphocreatine, spontaneously break down to creatinine  
 
that is excreted in the urine (Skyut-Cegielska et al., 2004). The creatinine lost in  
 
urine excretion is directly proportional to creatine intake (Battini, et al., 2006).  
 
Creatinine loss must be restored by new synthesis and dietary intake.  In  
 
humans, approximately half of the daily creatine required is taken in through diet  
 
from meat, fish and dairy products. The remaining creatine needed must be  
 
synthesized by the AGAT/GAMT pathway in the body (Braissant, et al., 2010).  
 
 
 

GAMT and AGAT Deficiency 
 

 Two enzymes are necessary for the synthesis of creatine:  
 
guanidinoacetate methyltransferase (GAMT, OMIM 601240) and arginine:  
 
glycine amidinotransferase (AGAT or GATM, OMIM 602360) (Almedia, et al.  
 
2004; Longo et al., 2011). Creatine is metabolized in a two-step process (Fig. 1).  
 
The first step is the transfer of an amido group from arginine to glycine. This  
 
step produces guanidinoacetic acid and ornithine (Skyut-Cegieslska, et al.,  
 
2004). The second step in creatine synthesis involves the transfer of a methyl  
 
group from S-adenosylmethionine to guanidinoacetate (GAA) to produce  
 
creatine and S-adenoslyhomocysteine (Dhar et al., 2008). Once creatine is  
 
synthesized, it is transported to the brain and muscle via the blood circulation.  
 
Creatine can enter cells and tissues through specific membrane transporters,  
 
the most important of which is the sodium and chloride dependent creatine  
 
transporter 1 (CT1, CRTR, CRT, OMIM 300036) encoded by the SLC6A8 Gene  
 
(Ardon, et al., 2010).  
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Figure 1. Creatine synthesis and transport. Creatine is synthesized from the 
amino acids arginine and glycine through the action of the enzymes AGAT and 
GAMT. AGAT synthesizes guanidinoacetate to which a methyl group is added 
from S-adenosylmethionine by GAMT to generate creatine. Creatine enters cells 
and the brain through the CT1 creatine transporter encoded by the SLC6A8 
Gene. Metabolism of creatine leads to formation of creatinine that is excreted in 
urine.                   (Longo et al., 2011) 
  
 
 
 Brain creatine deficiency syndromes are a group of rare disorders that  
 
include two recessive conditions that impair the synthesis of creatine (GAMT  
 
deficiency, OMIM 612736; and AGAT deficiency, OMIM 612718) or its transfer to  
 
the brain (X-linked recessive SLC6A8 creatine transporter deficiency, OMIM  
 
300036)) (Longo et al., 2011) (Fig. 1). These disorders are characterized by brain  
 
creatine deficiency, detectable by magnetic resonance spectroscopy (MRS)  
 
(Longo et al., 2011; Skyut-Cegieslska, et al., 2004). Affected patients have  
 
mental retardation, hypotonia, autism, behavioral problems and seizures (Dhar et  
 
al., 2009; Edvardson, et al., 2010; Schulze, et al., 2001).  
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 Their real incidence is unknown, but some studies indicate that up to 2.7%  
 
of X-linked mental retardation cases could be due to creatine deficiency  
 
syndromes. These conditions were only recently discovered: GAMT deficiency  
 
was initially reported in 1994 (Nasrallah, et al., 2010) and AGAT deficiency in  
 
2001 (Verhoeven et al., 2005). Many physicians are unfamiliar with these  
 
disorders and confuse their symptoms with other more common conditions. It is  
 
also difficult to obtain testing for these disorders because few laboratories offer  
 
diagnostic testing (Nasrallah, et al., 2010). 
  
 Therapy for the two defects in the biosynthesis of creatine, GAMT and  
 
AGAT deficiencies, consists in the administration of creatine supplements. In  
 
GAMT deficiency, the synthesis of guanidinoacetate is also prevented by  
 
administration of ornithine (the product of the reaction), restriction of arginine  
 
(one substrate of the reaction), and administration of benzoate that binds to  
 
glycine reducing its levels (glycine is the other substrate of the reaction). With  
 
treatment, seizures improve and development progresses. Treatment before  
 
symptoms appear has been shown to prevent mental retardation. If an accurate  
 
and reliable screening test for these conditions was available, the criteria for  
 
inclusion in newborn screening programs would be met. The purpose of the  
 
study was to evaluate the feasibility of including additional markers of creatine  
 
deficiency syndromes, specifically creatine and guanidinoacetate in the newborn  
 
screening test by MS/MS 
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CHAPTER II 
 
 
 

NEWBORN SCREENING AND TANDEM MASS SPECTROMETRY 
 
 
 

 Newborn screening is a public health activity that started in the early 

1960s thanks to Dr. Robert Guthrie, who developed a screening assay for 

phenylketonuria (PKU) from newborns’ blood spotted and dried on filter paper 

(Newborn Screening 2011). Since then millions of infants in the United States 

and in the world have been screened for a variety of genetic disorders. In the last 

ten years tandem mass spectrometry (MS/MS) has been introduced in newborn 

screening laboratories, allowing multiplex analysis of several analytes from only 

one sample.  The use of MS/MS has allowed the expansion of newborn 

screening, which now includes 30+ disorders.  

 The aim of newborn screening is the early identification and treatment of 

conditions that would not be detected before severe complications, such as 

irreversible organ damage or death, occur. New conditions are included in a 

newborn screening program only if certain criteria are met. These criteria 

evaluate the characteristics of the disease, the test used to screen for it, and the 

newborn screening program. The disease to be screened must be serious and 

fairly common. The natural history of the disease must be understood and 



6 

 

 

 

treatment must be available. The screening test must be reliable, valid, and 

affordable.  

 Most metabolic disorders fit all of these criteria and can be detected in the 

newborn period by tandem mass spectrometry. Two main classes of metabolites 

are detected by this technique: amino acids and acylcarnitines. Amino acids 

become elevated in certain aminoacidopathies (e.g., PKU, tyrosinemia, and 

maple syrup urine disease), while the study of the acylcarnitine profile can 

identify defects of fatty acid oxidation (e.g., medium-chain acyl-CoA 

dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA 

dehydrogenase deficiency(VLCAD)) and organic acidemias (e.g., propionic 

acidemia, methylmalonic acidemia, and glutaric acidemia type 1).  

 
 

Tandem Mass Spectrometry Methodology 
 

 Tandem mass spectrometry measures the ratio of the mass (m) of a 

chemical to its charge (z). A small punch (4.7 mm diameter) of whole blood 

collected on filter paper provides the sample needed for MS/MS analysis. The 

sample is extracted with methanol containing deuterated internal standards. After 

drying the extract, amino acids and acylcarnitines are derivatized to butylesters. 

The derivatized mixture is dried, reconstituted with a solvent that is compatible 

with the mobile phase, then injected in the mass spectrometer.  

 All molecules are first ionized, typically by electrospray. The ions formed 

are then separated according to their mass to charge (m/z) ratios. Since most of 

the ions have a single positive charge, their mass to charge ratios corresponds to 
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the masses of the molecules ionized in this process. Two mass spectrometers 

are used in tandem to separate and analyze mixtures of compounds, such as 

amino acids and acylcarnitines.  After the ions are separated by the first mass 

spectrometer, they enter the “collision cell” where they are broken down into 

fragments by collision with a neutral gas. The fragments pass through a second 

mass spectrometer that separates them according to their mass to charge (m/z) 

ratio (Kushnir 2010).  

 The acquisition of data by MS/MS can be accomplished in two different 

ways. First by class specific analysis where each molecule has a characteristic 

fragmentation pattern and classes of compounds will fragment in a similar way. 

For example, all acylcarnitines will produce a similar fragmentation pattern. With 

the second type of acquisition, target compound analysis, one can derive 

information about a specific class of compounds. The focus is on one component 

of the sample.  Labeled internal standards (amino acids and acylcarnitines with 

the same chemical and physical properties of the natural analogues but with 

higher mass/charge ratio due to the presence of stable isotopes such as 

deuterium or carbon-13) are added to the extraction mixtures to quantify the 

different species. The analysis is very fast (<2 minutes) and suitable for high 

throughput application. With the MS/MS platform, it is also easy to increase the 

number of analytes detected with minimal additional cost and without requiring 

additional sample. 
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Materials 
 

 De-identified blood spots, remaining from newborn screening, were used 

in this study. This study was approved by the IRB of the University of Utah and of 

the Utah Department of Health. After extraction and derivatization, the samples 

were injected onto a Waters BEH C18 1.7µm 2.1x100 mm and analyzed in a 

Waters Xevo TQ MS. The deuterated internal standard d-2-guanidinoacetate was 

purchased from DCN Isotopes. Hydrochloric acid (3N) in butanol, used for the 

derivatization step, was purchased from Regis Technologies.  Methanol (MeOH) 

and acetonitrile (ACN) were HPLC grade and purchased from Burdick and 

Jackson. 

 
 

Dried Blood Spot Preparation 
 

 Packed red blood cells were obtained from Blood Services at ARUP. The 

blood cells were washed 3 times with a 0.9% saline solution. After the final 

washing, the hematocrit was measured and it was adjusted to a final value of 

55% by diluting the blood cells with serum. This was used to prepare standards 

and controls. The hematocrit was chosen to mimic the hematocrit observed in 

newborns. 

 
 

Standards 
 

 Diluted packed red blood cells were used to prepare standards with the 

same matrix as the samples. For this study we focused on the identification of 

guanidinoacetate. We prepared guanidinoacetate standards in blood at the 
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following concentrations: 0, 1µM, 4µM, 20µM, and 40µM. Once the calibrators in 

blood were prepared, they were spotted on filter paper and allowed to dry. 

Following the extraction protocol described below, a time course was performed 

to evaluate the best extraction time for guanidinoacetate. 

 
 

Extraction and Analysis 
 

 The extraction procedure for the first tier test is the same procedure used  
 
(at ARUP) for newborn screening to detect amino acids and acylcarnitines  
 
(routine screening), with the addition of internal standards for guanidinoacetate  
 
and creatine. With the second tier test, samples determined to have an elevated  
 
guanidinoacetate by first tier testing, are analyzed using LC-MS/MS. With this  
 
system, the chromatographic separation allows detection of possible isobaric  
 
interferences (fragments that have the same mass to charge ratio of  
 
guanidinoacetate and would not be resolved by MS/MS alone. 
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CHAPTER III 
 
 
 

PROCEDURE  
 
 
 

First Tier 
 

 This procedure follows the main extraction protocol used for the newborns’ 

spots. Punches (4.7 mm) of dried blood spots (standards, controls, and “normal” 

newborns’ blood spots) were placed in 96-well flat bottom plates; 200 µL of 

methanol containing internal standards (amino acids, acylcarnitines, 

succinylacetone, and guanidinoacetate) were added to each well. After a 5 

minute incubation at ambient temperature, 100 µL of 3mM hydrazine hydrate in 

water were added to each well.  The plate was placed in an incubator at 37°C 

and rotated at 110 revolutions per minute (rpm) for 25 minutes (after evaluating 

time course results). The supernatant was transferred to 96-well round bottom 

plates and dried under nitrogen.  Butanolic hydrochloric acid (50 µL) was added 

to the wells to convert analytes into butyl-derivatives. After 15 minutes incubation 

at 65⁰C, the samples were dried under nitrogen, reconstituted with 200 µL of a 

50/50 mixture of acetonitrile and water containing 0.02% formic acid, and injected 

(5µL) in the MS/MS (flow injection). 
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Second Tier 
 

 Punches (4.7 mm) of dried blood spots (standards, controls, and  

newborns’ blood spots) were placed in 96-well flat bottom plates; 200 µL of 

methanol containing internal standards were added to each well. Then the 96 

well plates were covered and put on a shaker, at a medium-high setting, for 15 

minutes. The solvent was then transferred from all 96 wells into another 1mL 96 

well plate. The plate was dried for 10 minutes under a SPE-Dry 96 Nitrogen 

evaporator and then allowed to cool for 2 minutes. The samples were derivatized 

with 100µL of 3N hydrochloric acid in butanol. The plate was shaken at a high 

setting for 2 minutes. Then it was put into an incubator at 65⁰C with a heated 

metal block on top for 20 minutes.  The plate was dried under nitrogen again 

using the previous conditions. Then the samples were reconstituted with 50µL of 

70:30 water/acetonitrile and shaken. Aliquots of the samples were injected (5µL) 

into the LC-MS/MS. 
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CHAPTER IV 
 
 
 

RESULTS 
 
 
 

Time Course 
 

 Guanidinoacetate standards prepared in methanol, water, and in blood at 

several concentrations were spotted on filter paper, dried, and extracted 

according to the above protocol, using three different extraction times: 15 

minutes, 30 minutes, and 45 minutes. The results were compared (Figures 2 and 

3). The recovery of guanidinoacetate was independent of the extraction time. The 

extraction time for our subsequent experiments was set at 25 minutes. 

 

 

 

Figure 2. Guanidinoacetate  standards prepared in water and spotted on filter 
paper.                    
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Figure 3. Guanidinoacetate standards prepared in blood. 
 
 
 
This is the time routinely used for the extraction of acylcarnitines and amino 

acids. The solvent used for the extraction of guanidinoacetate is the same 

solvent routinely used for the newborn screening application. 

 
 

Stability of Guanidinoacetate in Dried Blood Spots 
 

 For our study we used leftover blood spots, which had been stored for at 

least three months. We first assessed the stability of guanidinoacetate in dried 

blood spots stored at different temperatures (ambient, 2-8°C, and – 20°C and 

lower). We used standards prepared in blood at several concentrations and 

spotted on filter paper. The dried blood spots, after drying for 24 hours at ambient 

temperature, were stored in a sealed bag with a desiccant, in the three 

temperature environments. The dried blood spots were tested in triplicate the day 

they were prepared, then daily for 3 days, weekly for 2 weeks, and monthly for 2 

months. The results are shown in Figures 4-6. 
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Figure 4. Dried blood spots spiked with guanidinoacetate and kept at room 
temperature.                                                                    
 
 
 
 
 

Figure 5. Dried blood spots spiked with guanidinoacetate and kept at 2-8⁰C.   
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Figure 6. Guanidinoacetate recovery from dried blood spots kept at -20⁰C.    
 
 
                                                    
The results obtained at different concentrations and temperatures do not show 

significant changes with time. Therefore guanidinoacetate is stable in the dried 

blood spots, for at least 2 months. 

 
 

Analysis of Guanidinoacetate in Newborns’ Blood Spots 
 

 To confirm that patients with GAMT deficiency and elevated 

guanidinoacetate could be identified by newborn screening using this method, we 

analyzed 163 previously-tested negative newborns’ blood spots, deidentified by 

the Utah Department of Health according to their internal protocol, and one blood 

spot from a patient with GAMT deficiency (blood spots were obtained after 

parental informed consent, according to a protocol approved by the IRB of the 

University of Utah). A summary of the results obtained is shown in Table 1.  
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Table 1. Newborn Dried Blood Spot Summary 

 
 
 
 
Healthy Population  n=163                           Deficient Population  n=1  
 
Normal         Guanidinoacetate   Creatine 
Newborns’              ( µM)                  (µM)            
 
Average ±SD  1.42 (± 0.54)     506.95 (±142.4) 
 
%CV                38.35                28.10 
 
Median            1.33                  465.63 

 
GAMT           Guanidinoacetate Creatine 
Patient #1                ( µM)                (µM)           
 
1st Screen   33.16                  451.34 
 
2nd Screen        10.45                  167.06 
 
 

SD is the standard deviation and %CV is the coefficient of variation.  

 
 

 The guanidinoacetate concentration determined in negative blood spots is 

significantly different (lower) than the concentration of the patient with GAMT 

deficiency, indicating that this method can be used to identify patients with GAMT 

deficiency at the time of their newborn screening. Table 1 includes GAMT patient 

results. 
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CHAPTER V 
 
 
 

POLYMERASE CHAIN REACTION MATERIALS AND METHODS 
 

 
 

Materials 
 

 Platinum Taq DNA Polymerase and 10 mM dNTP Mix were purchased 

from Invitrogen. ExoSAP-IT was purchased from Affymetrix. Lamda DNA/HindIII 

Marker 2 ladder was purchased from Fermentas. Dimethyl sulfoxide, ethylene 

glycol, and betaine (PCR grade) were purchased from Sigma Aldrich. The 

Failsafe™ PCR PreMix Selection Kit buffers were purchased from Epicentre 

Biotechnologies.  All other reagents were prepared or used from an in house 

stock at ARUP Laboratories or the University of Utah. 

 
 

GAMT 
 

 The GAMT Gene is composed of 6 exons on chromosome 19 (Nasrallah, 

et al., 2010) (Fig. 7) from base pair 1,348,087 to base pair 1,352,551. 

Chromosome 19 is gene rich with almost 1500 genes and has more than twice 

the gene density of the genome-wide average. Chromosome 19 was completely 

sequenced in 2004 and contains genes that code for diseases such as insulin-

dependent diabetes, breast cancer, migraine headaches, and Alzheimer’s 

(Gilbert, 2004).   
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Figure 7. Guanidinoacetate methyltransferase:  Schematic of the gene and the 
protein.                          (Longo et al., 2011) 

 
 
 

GAMT provides the information for production of the enzyme guanidinoacetate 

methyltransferase. This enzyme is active in the liver, pancreas,and in the 

kidneys.  The GAMT enzyme is a necessary component for the second step of 

the creatine biosynthetic pathway in which creatine is produced from 

guanidinoacetate (Verhoeven, et al., 2005).  

 Primers for the GAMT Gene’s 6 exons were designed using the UCSC 

Genome browser and then checked with other online programs to avoid sites of 

single nucleotide polymorphisms and regions of homology with other genes. 

Exons 2 and 3 are very close and could be amplified in the same reaction. To 

these primers, M13 tails were attached to allow the sequencing of all PCR 
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products using the same M13 sequence as it is standard at ARUP Laboratories.  

Table 2 lists the primers with M13 tails.  

 
 

PCR 
 

 The polymerase chain reaction (PCR) is an enzymatic process in which a 

specified region of deoxyribonucleic acid (DNA) is replicated numerous times to 

enable further studies (Sambrook, 2001). In the polymerase chain reaction, DNA 

is heated to separate the two strands of DNA, specific primers complementary to 

the DNA sequence are annealed at a lower temperature, and DNA is copied 

using the Taq polymerase capable of working at high temperatures (72⁰C) and 

being resistant to the elevated temperatures needed to denature the DNA 

between cycles (>90⁰C).  This process is repeated for 30-40 cycles to generate 

copies of the desired sequence. The primers are the most important aspect for 

developing a PCR protocol. The two primers, forward and reverse, are short DNA 

sequences that flank the area that will be copied.  

 The polymerase chain reaction can be used to sequence the DNA of 

patients with genetic conditions. PCR can confirm or exclude their diagnosis 

(Item et al., 2004). For this project, PCR was used to amplify and sequence 

genes that can cause brain creatine deficiency. 

 For the GAMT Gene, DNA was used at 50 nanograms per microliter (final 

content was 2.5 nanograms per tube) in a standard reaction containing 10 mM 

dNTPs (final concentration 0.2mM each), 10x buffer (final concentration 1x), 50 

mM magnesium chloride (final concentration 1.5mM), platinum Taq (final content  
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Table 2. GAMT Primers 

 
 
 

Primer 
Pair 

Amplicon Length 
with M13 Tail / 
base pairs 

Forward Primer with 
M13 Tail (5’-3’) 

Reverse Primer with 
M13 Tail (5’-3’) 

GC 
% 

Est. 
Tm 

1 554 
tgtaaaacgacggccagtcac
tcccgccacctctc 

caggaaacagctatgaccgtg
aacgcctccgtgtg 71 58 

2-3 579 
tgtaaaacgacggccagtcag
gcagcctcctaagcc 

caggaaacagctatgacccca
caagcaaaggagggg 67 60 

4 211 
tgtaaaacgacggccagtctg
ggtgaggcgctgag 

caggaaacagctatgaccaga
ggggcttccccgag 71 61 

5 586 
tgtaaaacgacggccagtctct
ctgacttgctgggatg 

caggaaacagctatgaccagt
acaggcacacgccac 55 57 

6 329 
tgtaaaacgacggccagtact
cttcaatgaggggtggg 

caggaaacagctatgaccgtg
cgagaccctggactc 55 59 

Primers were designed on July 2, 2010. M13 tails are in black. The GC column 
shows percent guanine-cytosine in the primers. The last column, Est. Tm, is for 
the estimated melting temperature. 
 
  

1 unit per tube), nanopure™ water, and the forward and reverse primers at 

concentrations of 10 mM (final concentration of 0.2µM each). The protocol used 

was a denaturation step of 30 seconds at 94⁰C, an annealing step for 30 

seconds at 55⁰C, and an extension time of 1 minute at 72⁰C with a total of 30 

cycles run using an Eppendorf Mastercycler Gradient (a PCR machine). Once 

the cycles were complete the PCR products were mixed with blue loading dye 

and put into a 1% agarose gel with ethidium bromide added. The gel was 

electrophoresed at 72 volts for 1 hour and the results were photographed with 

ultraviolet light.  

 The initial experiments generated nonspecific bands and occasional failed 

amplification. This required redesign of primer 6, the use of a different thermal 

cycler (Applied Biosystems GeneAmp PCR system 9700), the use of hot start, 



21 

 

 

 

touchdown, fail-safe buffers, and enhancing agents. These techniques and 

enhancers were used because the GAMT Gene and related primers are very 

guanine-cytosine rich, rendering the denaturation process more difficult (GC 

bonds require higher temperature for denaturation).   

 Hot start consisted of adding the polymerase after the DNA had been fully 

denatured. In a conventional polymerase chain reaction, the Taq DNA 

polymerase is active at room temperature and to a lesser degree, even on ice. In 

some instances, when all the reaction components are put together, nonspecific 

primer annealing can occur due to these low temperatures. This nonspecific 

annealed primer can then be extended by the Taq DNA polymerase, generating 

nonspecific products and lowering product yields. Adding the polymerase at time 

of the first annealing can increase yield and specificity of PCR (Sambrook, 2001). 

 Touchdown PCR is used to optimize PCR, increasing specificity, 

sensitivity and yield (Sambrook, 2001). With this method, the initial annealing 

temperature is higher than the projected melting temperature (Tm) of the primers 

being used, then progressively transitions to a lower, more permissive annealing 

temperature over the course of successive cycles. As the temperature 

approaches the one of the specific primer, this will be able to anneal to the 

correct sequence and initiate amplification, but not the amplification of other 

sequences, thus increasing the specificity. In the case of the GAMT Gene, all 

primer sets could be performed at the same time.  

 Failsafe™ buffers (Epicentre Biotechnologies) are pre-mixed buffers 

named A-L. Each of these buffers has a different mix of reagents. These buffers 
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function better at defined conditions including high guanine-cytosine content. 

With our GAMT primers, buffer G gave the best results.  

 A variety of PCR additives and enhancing agents have been used to 

increase the yield, specificity and consistency of PCR reactions. Whilst these 

additives may have beneficial effects on some amplifications it is impossible to 

predict which agents will be useful in a particular context and therefore they must 

be empirically tested for each combination of template and primers. Enhancing 

agents can stabilize the structure of DNA or the polymerase and increase 

amplification. Dimethyl sulfoxide (DMSO), betaine, ethylene glycol, and 

propanediol were investigated as enhancing agents. These agents have been 

used to increase product yield of primers that are guanine-cytosine rich (Zhang, 

et al., 2009). Problems arise with guanine-cytosine rich primers such as 

decreased separation of the strands from the numerous guanine-cytosine bonds, 

and possible guanine-cytosine intermolecular structure formations.  

 
 

Results 
 
 Table 3 summarizes the PCR conditions and protocol that were developed 

to amplify all GAMT exons. The protocol was designed to allow all GAMT primers 

to work using the same conditions. Given the small size of the bands generated, 

a 2% agarose gel rather than the standard 1% was used to allow better 

movement of the small amplicons. 

 Figure 8 shows successful amplification of all amplicons (exons 2 and 3 

were amplified in a single reaction) of the GAMT Gene. The expected amplicon  
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Table 3. PCR conditions and protocol for the amplification of the GAMT Gene. 
 
 
 
GAMT PCR  1X Mix Final 

Concentration  
 Protocol  

FailSafe™ PCR 
2X PreMix G 

12.25 µL 1X  touchdown 

Primer F 10mM 0.5 µL 0.2 µL Hot Start 5 minutes at 95⁰ 
Primer R 10mM 0.5 µL 0.2 µL Denaturation 30 seconds at 94⁰ 
template DNA 50 
ng/µL 

1 µL 2 ng Annealing 45 seconds at 62⁰ 

Platinum Taq  
5 U/µl 

0.5 µL 1 unit 62-57⁰ Decrease in temp. 
each cycle until 57⁰ 

water 10.25 µL  Elongation 1 min at 72⁰ 
total 25 µL  total  32 cycles 

 
 
 
length in base pairs is also shown. Samples were subsequently cleaned with 

Exosap, a single-step enzymatic cleanup of PCR products that eliminates 

unincorporated primers and dNTPs, and submitted to ARUP Laboratories 

sequencing facility for analysis. Figure 9 shows an example of the sequence 

obtained (Exon 1, with the ATG start site indicated).  

        
                              

                                                                    
 
                                             
 
 
 
 
 
 
 
 

 
 

Figure 8. PCR amplification of exons 1-6 of the GAMT Gene. Primer pairs 
expected amplification location shown on right. 

   600- 
500- 

300- 

   Size 
     bp  

Markers  

Exon  
    1 

Exons  
   2-3 

Exon  
    4 

Exon  
    5 

Exon  
    6 

Primer Pair   Amplicon  
                       Length                          
                   (base pairs) 

1          554 

2-3          579 

4          211 

5          586 

6          329 
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GATM (AGAT) 
 

  Primers were developed for the GATM Gene (encoding the AGAT 

enzyme) in the same way as described for the GAMT Gene. The AGAT Gene is 

located on chromosome 15 (Edvardson, et al., 2010) and is 16,858 base pairs 

long (Item et al., 2001) (Fig. 10). It is located between base pairs 45,653,324 and 

45,670,980. Exons 4 and 5 along with exons 6 and 7 were close and amplified 

together. Table 4 lists the AGAT primers with the M13 tails. Figure 11 shows 

PCR amplification of all exons of the GATM (AGAT) Gene with Failsafe buffer D 

that proved the most effective. 

 

 

Figure 10. Arginine: glycine amidinotransferase: Schematic of the gene and the 
protein. (Longo et al., 2011) Crystal structure reconstructed with coordinates from 
(Humm, et al., 1997). 
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200- 

700- 

Table 4. GATM (AGAT) Primers  
 
 
                                                                                            
Primer 
Pair 

Amplicon 
Length 
with M13 
Tail/base 
pairs 

Forward Primer with M13 
Tail (5’-3’) 

Reverse Primer with M13 
Tail (5’-3’) 

GC % Est. 
Tm 

1 226 tgtaaaacgacggccagtggaagg
cttggaccgac 
 

caggaaacagctatgacccgcag
gatcgagtgagtc  
 

65 57 

2 394 tgtaaaacgacggccagtccatctc
cacttcctcctc 
 

caggaaacagctatgaccagagg
gtagcagcagcag  
 

58 55 

3 415 tgtaaaacgacggccagtgctgttta
ctgcctatgaacc 
 

caggaaacagctatgaccaaagc
aaaggactctccaag 
 

48 55 

4-5 682 tgtaaaacgacggccagtttttcttag
tactgtatgccttatg  
 

caggaaacagctatgacctcattta
gaaccattsggaacc 
 

32 54 
 

6-7 
 

292 tgtaaaacgacggccagtcagcttct
caaagagaattattactg  
 

Caggaaacagctatgaccctaac
atttgggctgctctc 
 

35 56 
 
 

8 
 

336 tgtaaaacgacggccagtactgaa
agaactgagctgtcac 
 

caggaaacagctatgacctcaaa
cctagcatgtcatttc 
 

45 55 

9 313 tgtaaaacgacggccagtacagga
ctcctccaagtctg 
 

caggaaacagctatgaccaagca
ggagaatgaaccttg  
 

55 55 

Primers designed July 22, 2010 using UCSC Genome browser.  M13 tails are in 
black. 
   
 
 
 

 

                         
 

 

 

 
Figure 11. PCR amplification of all exons of the GATM (AGAT) Gene. Primer 
pairs expected amplification location shown on the right. 

Exon  
    3 Exon  

   2 

Exon  
    1 

Exons  
 4-5 

Exons  
 6-7 

Exon  
    8 

Exon  
   9 

Markers  Size 

bp 

Primer Pair     Amplicon 
           Length (bp) 
 
1             226 

2  394 

3  415 

4-5  682 

6-7  292 

8  336 

9  313 
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CHAPTER VI 
 
 
 

DISCUSSION 
 
 
 

 GAMT and AGAT deficiencies are serious brain creatine deficiency 

disorders that result in mental retardation and seizures. The disorders may be 

under diagnosed due to nonspecific symptoms. These syndromes must be 

diagnosed as early as possible to prevent irreversible brain damage. Here we 

present a new three-tier testing method that is effective for testing dried blood 

spots for guanidinoacetate levels and could identify one of these syndromes 

(GAMT deficiency). 

 
 

Significance of Findings 
 

 The primary screen by tandem mass spectroscopy was able to detect 

guanidinoacetate and creatine in dried blood spots at various concentrations. 

The second tier test confirmed quantitatively the abnormal guanidinoacetate in 

these samples. The third tier test, DNA testing, will further differentiate other 

causes of elevated guanidinoacetate from GAMT deficiency. This system can be 

easily included in the current screen, without the need to collect additional 

samples and with minimal additional cost. Only the cost of the internal standards 

for the additional analytes would be added to the existing cost of the screening in 
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addition to the cost of DNA testing. With this study, we have shown that there is 

no interference in the recovery of guanidinoacetate when extracting amino acids 

and acylcarnitines and, vice versa. The implementation of this screening would 

allow early treatment and improved outcome. The GAMT and GATM Gene 

primers developed here could also be used for sequencing these two genes for 

clinical purposes. 

 
 

Limitations and Future Work 
 
 The next step is to optimize DNA extraction from leftover newborn dried 

blood spots. Each punch from a dried blood spot, depending on the size, 

contains 3-8 µL of blood. Methods are available for efficient extraction of DNA 

from these small samples, and only a small amount of DNA is required for the 

polymerase chain reaction; however, the process must be validated. 
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