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ABSTRACT

Selectivity in chemical reactions is a matter of distinguishing between pathways 

of little energetic difference. From reactions affording no selectivity in product formation 

to those achieving selectivity levels of >99:1, the energy differences responsible for these 

disparate isomer ratios range from 0 to ~3 kcal mol-1, respectively. It is astounding that 

such a seemingly trivial amount of energy, on the order of the energetic barrier to 

carbon-carbon bond rotation in ethane (~2.9 kcal mol-1), can precipitate products in 

exquisitely high isomeric purity. Identifying the origin of the small energy differences 

that afford selectivity has, historically, been a daunting endeavor and predominantly 

characterized by empiricism.

In recent years, the Sigman group has been developing a more efficient alternative 

to the typical guess-and-check approach to optimizing catalyst-substrate interactions for 

high site- and enantioselective outcomes. This methodology relies on the quantification 

and systematic modulation of various reaction features that putatively induce selectivity, 

ultimately enabling the identification of mathematical equations to describe these effects. 

Detailed herein is the process for developing reliably predictive mathematical constructs 

of reaction selectivity. In the context of three distinct reactions—iridium-catalyzed 

asymmetric hydrogenation (Chapter 2), rhodium-catalyzed site-selective C-H  amination 

(Chapter 3), and rhodium-catalyzed asymmetric transfer hydrogenation (Chapter 4)— 

means for effective model development are put forth. Namely, this work describes the



examination of the unconventional application of design of experiments principles, the 

identification of parameters capable of describing selectivity, and the process by which 

linear regression models are developed and validated.

Through this approach, mathematical equations are developed that relate the 

differential free energy of selectivity to numerical depictions of steric, electronic, and 

hydrophobic effects. By identifying underlying predictive trends, developed models serve 

as a unique avenue by which mechanistic insight may be gained about selectivity 

engendering interactions. Consequently, these models enable the energetic optimization 

of substrate-catalyst interactions and the quantitative prediction of how such changes will 

influence reaction selectivity. Through the work of myself and my colleagues in the 

Sigman group, we are learning how reactions may be investigated and understood so as 

to make the ~3 kcal mol"1 energy range that is responsible for selectivity a vast window 

of opportunity for shaping reaction partners to achieve desired reaction outcomes.
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CHAPTER 1

QUANTITATIVE PREDICTIONS IN PHYSICAL 

ORGANIC CHEMISTRY

Introduction

Organic chemistry is founded in the identification of patterns in chemical behavior. 

The field has been propelled by a desire to precisely understand these observations, identify 

the foundational principles governing chemical behavior, and combine this knowledge in 

order to control the synthesis of organic molecules. Thus, discerning the mechanism of 

organic transformations informs and furthers reaction development.

As early as 1868, Crum-Brown and Fraser postulated that a chemical’s (C) 

influence on a biological system’s measured physiological response (6) could be described 

as a mathematical function (f) (Eq. 1.1).1 That is, changes to chemical structure manifest 

as changes in physiological responses. From the perspective of catalysis, it is conceivable 

that a similar relationship may be developed to describe the connection between molecular 

features, such as steric, electronic, and hydrophobic effects, and the outcomes of catalytic 

reactions, e.g., site-selectivity, enantioselectivity, turnover number, rate (Eq. 1.2). Ideally, 

describing chemical reactions in this quantitative manner would significantly augment 

mechanistic understanding and enable the precise formulation of substrates and catalysts 

to achieve desired reaction outcomes.



o = f(C)

reaction outcomes = f(molecular features)

Eq. 1.1 

Eq. 1.2

2

Hammett and the Development of LFER 

This idealized mathematical construct began to become a reality in the 1930s when 

Hammett pioneered the development of linear free-energy relationships (LFER) in the 

context of benzoic acid ionization.2,3 He postulated that the electronic effects exerted by 

substituentst on arenes could be quantitatively described. Furthermore, a constant could be 

determined for each arene substituent that defines the substituent’s electronic properties 

and that is not dependent on the specific reaction from which the constant was derived. 

Hammett had deduced that the log of equilibrium constants, log(Keq), for two distinct 

reactions of variously substituted arenes could be equated to each other with the addition 

of a correction factor (o), which would describe the electronic impact of the substituent 

differences between the arene substrates. Mathematical representation of this idea, and the 

pattern after which LFERs are now constructed, is given in Eq. 1.3.

log(Kx) = log(Kref) + o Eq. 1.3

To bring this theory to fruition, it was first necessary to derive values for the 

correction factor and substituent constant, o, in Eq. 1.3. This was achieved by comparing 

equilibrium constants of ionization for substituted benzoic acids, Kx, to the ionization 

equilibrium constant of unsubstituted benzoic acid (Kef), which was designated the 

reference reaction (Figure 1.1). Simply solving Eq. 1.3 for o afforded a value representative
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HO
.R ,  '  H’ °

Keq __ e c A
O vU

R1 OMe H Cl COU.O

CT -0.27 0.00 0.23 0.54

+ H3o'

electron-rich- ■ electron-poor

Figure 1.1. Derivation of Hammett a values. Substituted benzoic 
acid ionization reaction, which was used to establish values 
representative of the electronic effects that substituents impart on 
arenes.



of the electronic effect exerted by the arene substituent on the ionization reaction.

From Eq. 1.3, a relationship is identified that allows for equating the o value to the 

differential logs of the equilibrium constants (Eq. 1.4). Addition of the coefficient p  to this 

relationship allows the equation to be applied to different reactions of arenes, accounting 

for the variation in the magnitude of substituents’ electronic effects, where the relative 

influence of these effects is maintained.

log(Kx/Kref) = po  Eq. 1.4

The linear nature of the relationship in Eq. 1.4 enables its facile graphing and visual 

interpretation (Figure 1.2). From this mathematical model of a reaction, significant 

mechanistic information is gleaned. The equation’s slope, p, defines 1) the sensitivity of 

the evaluated reaction to Hammett o-like changes and 2) the nature of the charge build-up 

in the transition state. For instance, p  values greater than 1 indicate that the reaction is more 

sensitive to the electronic influences of substituents than the reaction from which the o 

constants were derived, i.e., benzoic acid ionization. With a p  > 1, reaction rates increase 

with increasingly electron-withdrawing arene substituents. This signifies that negative 

charge builds up in the transition state and, when stabilized by electron-withdrawing 

groups, enables rate enhancement through a reduction in transition state energy.

Conversely, p  < 0 indicates that positive charge develops in the transition state, 

which is stabilized by electron-donating groups. Regarding the interpretation of the 

reaction’s sensitivity to electronic influences, the absolute value o fp  is considered. p  with 

an absolute value between 0 < p  < 1 indicates that the reaction evaluated is less sensitive

4
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p = 1

0 <p<  1

p > 1  p - 1  0 < p < 1  p < 0  p =0
reaction s sensitivity to substituent- 
induced electron i t  effects relative 
to benzoic acid ionization

more equal tess see text not
sensitive

transition state charge build-up neg. neg. neg. pos. no
build-up

Figure 1.2. Interpreting the plot of the log of reaction rates versus a values.



to electronic perturbation than benzoic acid ionization. As above, |p > 1| denotes that the 

reaction is more sensitive to the effects of electronic change.

Extending LFER to Asymmetric Catalysis 
via the Curtin-Hammett Principle

While numerous applications of Hammett o values have been demonstrated to yield 

valuable mechanistic insight for studying relative reaction rates via LFER, a subtle 

variation on this treatment is the analysis of product selectivity in catalytic reactions. This 

extension is made by first considering that catalytic processes are often considered to be a 

Curtin-Hammett, kinetically controlled process (Figure 1.3).4 A Curtin-Hammett scenario 

in asymmetric catalysis is defined by rapid equilibration between two diastereomeric 

complexes (A and B, Figure 1.3), one of which has a lower free-energy of activation barrier 

(A*), leading to a predominance of the corresponding enantiomer (Apdt). Thus, for systems 

where there is a greater energy difference between the two diastereomeric transition states 

(AAG-f)— a high energetic barrier reducing the probability of one of the enantiomer- 

forming reaction pathways—greater enantioselectivity is observed.

As LFER analysis is the correlation between o values and the logarithm of relative 

rate data, selectivity ratios, i.e., relative rates of isomer formation, can also be correlated to 

o values. The application of LFER analysis to selectivity ratios is understood through 

consideration of Curtin-Hammett conditions (Figure 1.3). Enantioselective catalytic 

reactions governed by the Curtin-Hammett kinetic scenario are characterized by rapid 

equilibration between two catalyst-substrate diastereomeric complexes (A and B, Figure 

1.3) and relatively slower reaction rates (Ua and Ub) that lead to enantiomeric products. 

Thus, the enantiomeric excess of one enantiomer relative to the other is a function only of

6
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M inor isomer

Apdt

A*
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slow
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k2 slow
fast

Major isomer

3Pdt

Figure 1.3. Representation of the energy profile and kinetic necessities for 
Curtin-Hammett reaction dynamics.



the differential Gibbs free energy of activation of the rate-limiting step. Eq. 1.5, relating 

differential Gibbs free energy to concentrations of enantiomers, is derived by first forming 

the rate laws for production of Apdt and Bpdt, as given in Eq. 1.6 and Eq. 1.7, respectively.

The quotient of Eq. 1.6 and Eq. 1.7 and expansion of the changes in product 

concentration (d[Apdt], d(Bpdt]) yields Eq. 1.8. The left side of this equation reduces to that 

seen in Eq. 1.9, as there is no product observed at t = 0. As A and B are in rapid equilibrium, 

their relative concentration is a constant (Keq) and equates to the Gibbs free energy of their 

interconversion. In the example given (Figure 1.3), there is no energetic difference between 

A and B (AGab), and so their relative concentration is reduced to one according to Eq. 1.10. 

Substituting Eq. 1.10 into Eq. 1.8 results in Eq. 1.9. Inserting the relationship in Eq. 1.11 

into Eq. 1.9 yields Eq. 1.12, which can be converted to Eq. 1.5 by performing the natural 

logarithm (ln) of Eq. 1.12 and rearranging the relationship. With the demonstrated link 

between the concentration of enantiomeric products and their relative rates of formation, 

the derived AAG equation (Eq. 1.5) can be appropriately related to LFER parameters.

8

AAG = -RTln([A]/[B]) Eq. 1.5

d[Apdt]/dt = &a[A] Eq. 1.6

d[Bpdt]/dt = ks[B] Eq. 1.7

([Apdt]t -  [Apdt]t=0)/([Bpdt]t -  [Bpdt]t=0) = (k;/k2)([A]/[B]) Eq. 1.8

[Apdt]/[Bpdt] = (kA/ks) Eq. 1.9

AGab = 0 a e-AGAB/RT = Keq = 1 Eq. 1.10

e-AGt/RT = k  Eq. 1.11

[Apdt]/[Bpdt] = (e-AGt a/rt)/ (e-AGte/RT) Eq. 1.12
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Hammett a LFER and Mn(salen)-Catalyzed 
Asymmetric Epoxidation

An effective illustration of the mechanistic insight that LFER can lend to 

enantioselective reactions comes from Jacobsen and coworkers’ (salen)Mn(III)-catalyzed 

asymmetric epoxidation (Figure 1.4a).5,6 In this system, the salen’s arene moiety provides 

an apt conduit through which electronic effects may be relayed from the ligand to the 

manganese, altering the complex’s reactivity and selectivity profiles. The effects of the 

complex’s X 1 substituents were evaluated by synthesizing a series of electron-rich (X1 = 

OMe) to electron-poor (X1 = NO2) arenes. The logarithm of enantiomeric ratios (er) 

resulting from the corresponding reactions of these complexes were plotted in relation to 

the substituents’ Hammett o values. The line best fitting these data points is given in Figure

1.4b, where the absolute value ofp  (1.37, wherep  is -1.37) indicates that the transformation 

is more responsive to the electronic changes in the arene than is the ionization of benzoic 

acid, providing a reference point for sensitivity.

The negative sign of p  must be considered in mechanistic context in order to infer 

its meaning. Enantioselectivity is determined when the Mn(V) oxidant accepts a single 

electron from the substrate’s alkenyl functionality and is reduced to Mn(IV). At the metal 

center in the transition state, positive charge is decreasing; alternatively, negative charge is 

increasing. If the negative p  were interpreted as prescribed in the context of benzoic acid 

ionization (Figure 1.2), then it would be expected that electron-withdrawing groups would 

stabilize the transition state and increase the reaction rate. However, for LFER’s of 

enantioselectivity, analysis is not simply a comparison of reaction rates relative to a 

standard, but each AAG represents a relative rate itself, making the interpretation o fp  less 

apparent.
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(a) (b)
(salen)Mn(lll)

NaOCI, rt

Ph Ph

/ = nC ~ } n= .  X ' = OCH3
x ' - Q - o ' i l ' o - Q - x -

lBu fBu 
(salen)Mn(lll)

= CH3 
= H 
= CI 
= N02

00

X1=N02 y X1=OMe y

Figure 1.4. Linear free-energy relationship analysis of (salen)Mn(III)-catalyzed 
asymmetric epoxidation. (a) Reaction scheme. (b) Hammett o LFER plot. (c) Reaction’s 
enantio-determining step and postulated transition state structures. Support for these 
structures and the origin of enantioselection comes from LFER analysis and the Hammond 
postulate.



As electron-donating X 1 groups have the effect of enhancing enantioselectivity, 

despite the increase of manganese negative charge upon reduction in the enantio- 

determining step, it was considered that the opposition that electron-donation imposes on 

metal reduction engenders the requirement of a shorter distance between metal and alkene 

upon alkene oxidation. Presumably, in a more tightly packed transition state, the chiral 

catalyst complex can more precisely distinguish between enantiotopic alkene faces, 

enabling higher levels of asymmetric induction.

Conversely, electron-deficient manganese complexes become more reactive as the 

positive charge on manganese becomes further destabilized. In accordance with the 

Hammond postulate, increased reactivity would cause the transition state to be more 

reactant-like than product-like.7 With electron-transfer from the alkene to manganese 

occurring with a greater distance between these species, the chiral catalyst engages in a 

less ordered transition state, resulting in decreased precision of differentiation between 

enantiotopic faces.

Quantitating Steric Effects Using LFER

The ability of Hammett values to effectively describe the electronic effects of arene 

substitution prompts inquiry about other reaction features that may be similarly 

quantitatively described and analyzed via LFER. One of many such descriptor sets 

developed is the Taft/Charton parameter for steric bulk depiction.8-10 Taft initiated this 

description of steric bulk by measuring the rates of nucleophilic attack (kNuc) in the acid- 

catalyzed hydrolysis of variously R2-substituted methyl esters (Figure 1.5).11,12 Analogous 

to the derivation of Hammett values, this measure of steric bulk, termed Es, is a calculation

11
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© o 'H
X  +R2 OMe

j^OMe
R2^O H 2

R2 H Me /Pr fBu
ES 1.24 0.00 -0.47 -1.54

small large

Figure 1.5. Depiction of the acid-catalyzed hydrolysis of 
methyl esters employed to measure the steric bulk of R2. The 
resultant steric descriptor, Es, is a measure of hydrolysis 
rates relative to the hydrolysis of methyl acetate (R2 = Me).
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of the rate of hydrolysis relative to the rate when R2 is methyl (Eq. 1.13).

log(kx/kMe) = E s Eq. 1.13

In developing a measurement of steric bulk that can be generalized to describe steric 

influences in a variety of reactions, it is important that the measure describes only the 

desired steric feature and is not muddled by other contributions, such as electronic effects. 

The electronic influences of R2 groups on the rate of hydrolysis was minimized to 

negligibility by measuring rates under acid-catalyzed conditions. In this scenario, the 

species immediately preceding and following hydrolysis are positively charged, and there 

is no net change in charge through the transition state. Indeed, the Hammett p  value for the 

acid-catalyzed hydrolysis of meta- andpara-substituted ethyl benzoates is essentially zero, 

indicating that no charge stabilization/destabilization is observed with varying arene 

substitution.11

To further validate the claim that E s values solely measure steric bulk, Charton used 

linear regression modelling to determine the contributions of ai, inductive effect; aR, 

resonance effect; and rv, minimum van der Waals radius, on Es (Eq. 1.14).13 Regression 

was performed on three symmetry-defined substituent sets: methylene (CH2X), methine 

(CHX2), and quaternary (CX3) carbon substituents. Charton found that only one of the three 

terms—van der Waals radius, rv— correlated to Es values (Figure 1.6). Taft’s values were, 

indeed, measuring an isolated steric effect. Charton furthered his examination of the 

relationship between relative rates of acid-catalyzed methyl ester hydrolysis and van der 

Waals radius by developing a new parameter, v, calculated according to Eq. 1.15.14 This



14

c h 2x Es c h x2 Es c x 3 Es
CH2 CH3 -0.07 CHMe2 -0.47 CMe3 -1.54
CH2OMe -0.19 c h f 2 -0.67 c f 3 -1.16
CH2F -0.24 c h c i 2 -1.54 CCI3 -2.06
c h 2ci -0.24 CHBr2 -1.86 CBr3 -2.43
CH2Br -0.27 H 1.24 Me 0.00
CH2SMe -0.34 H 1.24
CH2I -0.37

Figure 1.6. Charton’s correlation of symmetry-grouped substituents’ Taft 
E s values to van der Waals radii, rv. Minimum van der Waals radii were used 
for substituents of the form CX3 .



equation, which originated in the rates of acid-catalyzed methyl ester hydrolysis, allows 

the steric bulk of any substituent to be calculated.

Es = aai + Pgr + yrv + h

Vx rvx — rvH

Applying Charton v and Hammett a to 
NHK Asymmetric Propargylation

Charton values have since been used in LFER analyses to investigate and identify 

the origin of selectivity in asymmetric catalytic reactions.15-19 An example of Charton 

analysis and a key extension of one-dimensional LFER comes from the work of Dr. Kaid 

Harper, a former graduate student in the Sigman group. Dr. Harper demonstrated the 

simultaneous modelling of electronic and steric effects in a Nozaki-Hiyama-Kishi (NHK) 

asymmetric propargylation of acetophenone using Hammett a values and Charton v values 

(Figure 1.7).20 In a quinoline-pyrrolidine-based ligand, two sites affecting changes in 

enantioselective propargylation were observed: E, modulating the electronic nature and, 

thus, coordination capacity of quinolone, and S, a site where steric changes impact 

enantioselection.

Once these sensitive features were identified, they were perturbed in a systematic 

manner. E, to be described by Hammett a values, was assessed at three levels that span a 

range electronically compatible with the reaction’s conditions: methoxy, hydrogen, and 

trifluoromethyl. Variation in the S dimension was accomplished by spanning a broad range 

of steric bulk, as quantitated by Charton v values: methyl, tert-butyl, and 3-ethyl pentyl 

(Figure 1.7a). Combinatorial analysis of both dimensions at three levels per descriptor

15

Eq. 1.14 

Eq. 1.15
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(a)

Me ,
Ligand,

CrCI3, NEt3, MnO
TMSCI, THF

Hammett (a)
E = OMe (-0.27) 

= H (0.00)
= CF3 (0.54)

HO Me

Charton (v)
'* = Me (0.52)
= /-Bu (1.24) 
= CEt3 (2.38)

Figure 1.7. Multidimensional LFER analysis of NHK asymmetric propargylation of 
acetophenone. (a) NHK propargylation reaction scheme and perturbations to ligand steric 
(S) and electronic (E) features. (b) LFER model describing enantioselectivity of 
propargylation. (c) Graphical representation of LFER model and the model-dictated 
optimal ligand.
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corresponds to a nine-membered library of catalysts. This library was assessed under the 

NHK propargylation conditions to afford enantioselectivities for each catalyst’s reaction 

with acetophenone.

From this data set, regression modelling was performed to afford the model in 

Figure 1.7b, which depicts the synergistic impact that steric and electronic effects have on 

enantioselectivity (AAG^). This equation was subsequently optimized to identify the 

synthetically accessible combination of ligand substituents at E (methoxy) and S (tert- 

butyl) that yield the highest enantioselectivity (Figure 1.7c).

Broadening the Scope of Free-Energy Relationships

While additional applications of LFER in the context of asymmetric catalysis have 

been demonstrated,15,16 in the course of numerous investigations of differential transition 

state free-energy as related to selectivity, the Sigman group has identified limitations to the 

application of the classical Hammett and Charton LFER parameters. In Chapter 2, the 

descriptive capabilities of Charton values are discussed and alternative steric parameters 

are introduced. In this example, a peptide-catalyzed desymmetrization of bisphenols is 

examined, and shortcomings of Charton values are highlighted in the demonstration of 

their inability to globally describe the observed trends in enantioselective bisphenol 

acylation.17,21 This failure proved to be an important turning point in the types of 

parameters that Sigman and colleagues used to develop free-energy relationships. Namely, 

the use of nonclassical (not relative rate-derived) LFER parameters began to be explored. 

Chapters 2-4 exemplify the selection and application of a diverse set of novel parameters 

for free-energy relationship mathematical modelling.



Infrared (IR) vibrations are one such parameter that has significantly expanded the 

number of reactions where steric and electronic effects can be mathematically described. 

While Hammett and Charton values were derived to measure isolated electronic and steric 

effects, respectively, the reactions characterizing modern synthetic organic chemistry often 

involve multiple synergistic effects, which cannot be independently assessed. Of note, 

Hammett values are only used for meta- and ^ara-substituted arenes because ortho

substituted benzoic acids influence ionization rates through not only electronic effects but 

also steric effects.2 Alternatively, within IR vibrational frequency and intensity are 

integrated steric and electronic features, enabling this parameter type to be widely applied 

to investigate reaction systems with entwined steric and electronic influences. In Chapters 

2-4, the use of IR vibrations to describe a variety of reactions is extensively discussed and 

demonstrated.

Quantitative Structure-Activity Relationships 

Relating multiple nonclassical LFER parameters to experimentally measured 

reaction outcomes is reminiscent of quantitative structure-activity relationship (QSAR) 

studies.22 The development of QSAR models involves relating a measured, often 

physiological, response to various chemical descriptors that are relevant to the investigated 

process. QSAR models have been useful tools for probing the nature of enzyme active 

sites, barriers to molecule absorption, toxicity effects of chemical species, metabolism, and 

other processes and interactions that are difficult to directly evaluate.23 Hansch pioneered 

this now widely applied method when he related Hammett a values and partition 

coefficients of molecules to the molecules’ ability to induce plant growth.24 From this

18



model, inferences could be made about the properties of the chemical species that allow its 

permeation to the site of its biological activity, while simultaneously considering the 

influence of Hammett electronic effects.

To develop descriptive models able to represent the complex interactions present in 

biological systems, many experimental data points are first gathered where structural 

changes to a molecule affect differences in measureable system outcomes. Second, a large 

set of potentially relevant parameters is collected, often using QSAR software packages, 

which contain many tabulated parameters or the capacity to compute parameters that are 

specific to a particular molecule.25 With data and descriptor sets in hand, various modelling 

algorithms can be performed, e.g., linear regression, partial least squares regression, 

multivariate regression, and neural networks. These algorithms afford models that are 

validated via cross validation methods such as leave-k-out (where developed models are fit 

with new coefficients in the absence of k  data points) and external validation (where the 

result of subjecting a new molecule to the system is predicted and compared to 

experimental data to measure the agreement between the two values).26

While there are a few published examples of multivariate, QSAR-type modelling 

of asymmetric catalytic reactions27-33 (and a review of these examples was recently 

published22), the Sigman group developed an alternative approach where models are 

developed using much smaller parameter sets and fewer data points. This simplification 

offers several advantages, not inconsequential of which is the mechanistic insight that can 

be drawn from models with few descriptive terms.

19
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Development of Multidimensional Free-Energy Relationship Models

To permit robust multidimensional models to be developed from the fewest number 

of data points, two specifications must be met. First, information sufficient to intelligently 

form a mechanistic hypothesis of the origin of enantioselection is required. Second, Design 

of Experiments (DoE) logic is used to determine the most efficient manner of evenly 

perturbing the reaction’s features that are hypothesized to modulate enantioselectivity. 

Various applications and failures of these precepts, as applied to enantio- and site-selective 

reactions, are explored in Chapters 2-4.

The selectivities resulting from the DoE-outlined experiments and the 

corresponding parameters that presumably describe aspects that engender selectivity are 

termed the training set. This training set is subjected to MATLAB’s stepwise linear 

regression algorithms.34 Stepwise regression is a method for identifying which parameters 

amongst those in the training set are statistically significant predictors of the observed 

trends in reaction outcomes. The selection process is performed by assessing the p-value 

for each parameter, i.e, the percent error that a parameter is determined to be a significant 

predictor of reaction outcomes when it is actually not significant. Through stepwise 

regression, various combinations of the originally hypothesized descriptors are assessed. 

The models resulting from this analysis are assessed for their validity in the same manner 

as described for QSAR models: leave-k-out (where k  is one) cross validation and external 

validation.

Models determined to be robust are considered for their mechanistic value. 

Analogous to the mechanistic interpretations that can be gleaned from Hammett LFER, 

model terms that are capable of identifying trends in selectivity are presumed to be



describing aspects of the reaction’s selectivity-determining steps. In the following chapters 

investigating model development, various means are explored to interpret the physical 

interactions that a parameter mathematically represents. From such analyses, systems are 

optimized to afford desired selectivity levels.

When developed models fail the tests of robustness, the process described (and 

outlined in Figure 1.8) must be iterated, reassessing the hypothesized origin of selectivity, 

the set of putatively descriptive parameters, and, if necessary, performing additional 

experiments to appropriately sample the refined experimental space. This process 

continues, refining mechanistic hypotheses until a robust, predictive model is afforded.

This model development process resulted through the successes and failures of the 

models described herein. What follows is a narrative presented in the context of three case 

studies describing how and why each step of this model development is necessary. Chapter

2 focuses on the implications of incorrect hypotheses guiding training set development and 

how this is remedied through iterative hypothesis refinement. Beginning in Chapter 2 and 

extended in Chapter 3, considerations for exploring novel reaction parameters are set forth. 

Through the use of nonclassical LFER parameters, models describing selectivity trends are 

developed, which would have been unattainable in the absence of a broadened perspective 

regarding suitable parameters for model development. Application of Design of 

Experiments precepts is initiated in Chapter 2 and is progressively refined through Chapter

4, where a rigorous application of DoE concepts is put forth for the construction of scope 

libraries. In Chapter 5, the outlook and further applications of these modelling concepts are 

examined.

Through each case-study presented, various aspects of successful modelling are

21
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I

Figure 1.8. Flow chart describing the model development process.
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explored and developed. What results is a structure for model development, with guidelines 

defining the construction of efficient, effective mathematical equations. These constructs 

provide a vantage point for gleaning mechanistic information about selectivity 

determination and guide the further development and applications of both the reactions 

studied and the process of mathematical model development.
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CHAPTER 2

IDENTIFYING MECHANISTICALLY RELEVANT CHEMICAL 

DESCRIPTORS FOR LINEAR REGRESSION MODELLING*

Introduction

Behind every reaction lies fundamental chemical principles that govern the process 

and its outcomes. While the combination of such principles and the magnitude of their 

importance is unique for each reaction, Chapter 1 reviewed how the identification and 

quantification of some of these effects has been achieved through linear free-energy 

relationship (LFER) analysis. Despite the successes and advancements in LFER, there are 

still many instances in which the parameters required to adequately describe a chemical 

transformation are lacking. In the Sigman group, we have used these apparent outliers as 

opportunities to further understand the capabilities and limitations of available chemical 

descriptors. Shortcomings in classical LFER-type parameters have also led us to explore 

the application of descriptors novel to LFER analysis, significantly expanding the types of 

processes that can be quantitatively modelled and investigated via linear regression 

analysis.

* This chapter is based on the author’s work that has been reported in three publications,1’749 some content of 
which is herein reproduced with permission from Bess, E. N.; Sigman, M. S. Distinctive Meta-Directing 
Group Effect for Iridium-Catalyzed 1,1-Diarylalkene Enantioselective Hydrogenation. Org. Lett. 2013, 15, 
646-649. Copyright 2013 American Chemical Society.



In this chapter, two case studies are presented where limitations in a descriptor set, 

manifested as data outliers, led to new parameters for free-energy relationship model 

development. The results discussed in this chapter demonstrate the iterative process of 

effective model development and present a template for further expanding the parameters 

that can be used for mechanistic investigations.

Selecting Suitable Chemical Descriptors

Uncovering underlying relationships in data relies on the selection of parameters 

that accurately describe changes imposed on a system. This critical concept was 

highlighted while exploring a peptide-catalyzed asymmetric acylation of bisphenols 

(Figure 2.1a).1 Gustafson, Sigman, and Miller had identified a linear free-energy 

relationship2 between Charton descriptors (derived from substituents’ minimum van der 

Waals’ radii) of R and the differential free-energy of enantioselection, AAG (Figure 2.1b), 

for a set of sterically varied substituents.3 However, upon expanding the set of R groups 

examined, the identified model failed to provide a correlation between predicted and 

measured enantioselectivities (red data points, Figure 2.1b). Two possible conclusions that 

may be drawn from this failed correlation were 1) not all R-substituted bisphenols undergo 

the peptide-catalyzed reaction via the same mechanistic pathway, causing the break in the 

LFER plot, or 2) Charton values do not adequately describe the diversity in the R groups 

investigated.

Intrigued by the latter of these scenarios, comparisons were drawn between the two 

substituent types, i.e., the R groups modelled according to Charton values and the outliers 

that could not be modelled. It is noted that the R groups well-described by Charton values
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(b) Proximally bulky substituents 
Distally bulky substituents

Figure 2.1. Peptide-catalyzed bisphenol desymmetrization. (a) Reaction 
scheme. (b) Charton LFER presented as ■. Distally bulky outliers are 
presented as ■.



bear their steric bulk proximal to the bisphenol methine, while the outliers bear their steric 

bulk more distal from this position. To account for this discrepancy, it was necessary to 

apply a descriptor capable of capturing the differences in spatial distribution of steric bulk.

Exploring alternative steric descriptors led to a relatively obscure steric parameter: 

Sterimol values. The Sterimol system (Figure 2.2a) describes a chemical group’s steric size 

in a multidimensional manner: B 1 (minimum radius), B 5 (maximum radius), L (length).4-6 

Detailing sterics in this way permitted a relationship to be identified (Figure 2.2b) that 

effectively relates B 1 and L to enantioselectivity for the entire set of R groups evaluated. 

This correlation demonstrates the effectiveness of the Sterimol parameter system for 

differentiating between steric bulk that resides proximal or distal to the prostereogenic 

methine. Additionally, this Sterimol-derived model points to an important lesson: the 

failure of the initial Charton correlation was due to Charton values’ inadequacy for 

describing R-group variation. The reaction is likely invoking the same intermolecular 

interactions and following the same mechanistic path for all R-group-varied bisphenols 

that were evaluated.

Encouraged by this successful analysis, which was enabled by the unique 

application of descriptive parameters, an analogous investigation of the challenging 

iridium-catalyzed asymmetric hydrogenation of 1,1-diarylalkenes was envisioned.7 For 

several years, we and others have taken a keen interest in accessing the biologically 

relevant 1,1-diarylmethine scaffold.8-14 Although several methods exist for effectively 

accessing these molecules,15-19 approaches to their enantioselective synthesis have been 

limited.16,20-27 Notably, Jarvo and coworkers have developed a nickel-catalyzed 

stereospecific cross-coupling reaction, whereby enantiomerically enriched 1,1-diarylethers
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Rotate 90° 
on y-axis minimum 

radius 
B5: maximum 

radius 
L: length

(b) AAG* = -0.42 + 0.93B1 -  0.11L

Figure 2.2. Sterimol analysis of peptide-catalyzed bisphenol 
desymmetrization reaction. (a) Sterimol values, depicted for an z'sopropyl 
substituent. (b) Free-energy analysis using Sterimol parameters.



undergo inversion of configuration to afford similarly enriched 1,1-diarylmethines.20,21

Another attractive approach was reported by Carreira and coworkers where 

enantiomerically enriched P,P-diarylpropionaldehydes are converted to 1,1-diarylmethines 

using a stereoretentive rhodium-catalyzed decarbonylation protocol.23 A complementary 

method for accessing this important pharmacophore was envisioned wherein the 

stereocenter is set in the key bond forming event. Specifically, an enantioselective 

hydrogenation of 1,1-diarylalkenes was desired, as this approach would be operationally 

simple and the substrates are easily accessed. Embarking upon enantioselective 

hydrogenation of this substrate class also represents an important challenge in the 

hydrogenation literature. Few examples of high enantioselectivity have been reported for 

the hydrogenation of 1,1-diarylalkenes.

In general, rhodium-, ruthenium-, and iridium-catalyzed asymmetric hydrogenation 

reactions can be divided into two broad classes: those that require coordination of a Lewis 

basic functional group in order to achieve high enantioselectivity and those that require no 

such coordination that is auxiliary to the alkene. O f these two classes, ruthenium- and 

rhodium-catalyzed hydrogenations typically fall into the former category, and iridium- 

catalyzed hydrogenation is associated with the latter.28-30 When considering the 

asymmetric hydrogenation of 1,1-diarylalkenes, the auxiliary coordination requirement of 

rhodium- and ruthenium-catalyzed systems constrains the potential substrate scope to those 

with Lewis basic groups at the ortho position on the aryl ring, which has been accomplished 

using oxygen directing groups.22 While this coordination constraint does not exist for 

iridium-catalyzed systems, a steric bias at an ortho-position has been required to achieve 

excellent enantioselectivity in the hydrogenation of 1,1-diarylalkenes. In the absence of
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such bulk proximal to the prochiral site, enantioselectivity dramatically erodes, with the 

best reported enantiomeric ratio (er) of 82.5:17.5.31,32

With Rh- and Ru-based catalytic hydrogenations requiring a coordinating group 

near the alkene in order to achieve high enantiomeric excess (ee), this reaction class 

suffered for 30 years from the inability to asymmetrically hydrogenate unfunctionalized 

alkenes. In the late 1990s, Pfaltz made significant progress towards alleviating this 

deficiency when he demonstrated iridium (Ir)-phosphorous/nitrogen (P/N) ligand 

complexes capable of high degrees of facial discrimination in the reaction of 

unfunctionalized olefins (Figure 2.3a).33 P/N ligands have since emerged as a privileged 

ligand class, enabling these Ir-catalyzed hydrogenations to proceed with high levels of 

enantioselectivity.29,31,34,35

Within the realm of unfunctionalized-alkene hydrogenation, terminal alkenes 

represent a particularly challenging substrate class due to the potential ease with which 

alkene substituents may exchange positions in the chiral environment (Figure 2.3b).31 This 

is in stark contrast to more obviously confined coordination environments of tri- and tetra- 

substituted alkenes (Figure 2.3c).36 Despite this complication, important advances have 

been made for the hydrogenation of this substrate class. Specifically, terminal alkenes with 

substitution patterns of 1,1-aryl-alkyl and 1,1-diaryl (with proximal aryl ring substitution) 

have been hydrogenated highly enantioselectively (Figures 2.4a, b).32 Conversely, a related 

substrate scaffold that has seen only moderate ee’s is the 1,1-diaryl alkene with distal aryl- 

ring substitution. To date, Andersson and coworkers have reported the highest ee for this 

substrate class: 65% ee as given in Figure 2.4c.32

Although this ee is modest, it is quite remarkable when considered in context. The
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Figure 2.3. Ir-P/N-catalyzed asymmetric hydrogenation. (a) Work of Pfaltz 
and coworkers demonstrating high degrees of facial discrimination for 
unfunctionalized olefins. (b) Coordination modes of 1,1-disubstitued 
terminal alkenes and (c) tri-substituted alkenes to Ir-P/N complexes. (d) 
Proposed catalytic cycle of iridium-catalyzed hydrogenation.
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L2 R1 = Ph ■ * i ?-BuL3 R1 = 2,6-di-CH3-C6H3
R2 = CH3 „  _
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f-Bu

f-Bu

f-Bu

Figure 2.4. Results representative of highest substrate-class enantiomeric 
excesses (ee’s) for 1,1-disubstituted terminal alkene classes: (a) 1,1-aryl- 
alkyl alkene; (b) 1,1-diaryl alkene with proximal arene substitution; (c) 1,1- 
diaryl alkene with distal arene substitution.
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substrate scaffold is arguably one of the most difficult for this reaction type, with the 

substrate’s high degree of structural symmetry breaking down only at positions distal from 

the prochiral site of hydrogenation. The similarities in steric bulk between the 

trifluoromethyl and methoxy substituents would suggest that the electronic dichotomy of 

these groups is, at least in part, responsible for enantioselection. While this 65% ee is 

relatively impressive, there is still much to be improved upon within the class of 1,1- 

terminal alkene asymmetric hydrogenation.

With an interest in developing a hydrogenation system capable of yielding highly 

enantioenriched 1,1-diarylmethine products from substrates lacking ortho-directing 

groups, we investigated the use of a new class of modular phosphoramidite ligands. The 

origin of this new ligand’s design is the use of an aminooxazoline core structure with a 

proline-derived pyrrolidine as a key element for imparting rigidity. Synthesis of this ligand 

proceeds through standard amino alcohol/amino acid coupling, followed by cyclization to 

form the oxazoline, and ^-pyrrolidine deprotection, all of which proceed in good yields 

and were perfomed according to previously published procedures (Figure 2.5).37-40 The 

phosphite moiety, a standard element in many iridium-based hydrogenation catalysts, is 

incorporated to afford the phosphoramidite ligand PhosPrOx.41 Stirring PhosPrOx with 

[IrCODCl]2 yields the precatalyst [IrCODPhosPrOx]BArF, although in poor yield.42

We evaluated this new catalyst’s performance in the hydrogenation of 1 (Figure 

2.6). (Details regarding the optimization of reaction conditions is provided in the 

“Experimental Information” section.) Excitingly, hydrogenation using this unique catalyst 

complex affords the product in 92:8 er. To the best of our knowledge, this result represents 

the highest reported er for an iridium-catalyzed hydrogenation of this substrate type (i.e.,
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ho^ Y ni
. c . , 0

a. Cbz-(S)-proline, NMM, IBCF,
CH2CI2, 0 °C -> rt (71%)
b. TsCI, DMAP, NEt3, DCE, rt -> reflux (92%)
c. 10% Pd/C, MeOH, H2 balloon, rt (88%) 

[lrCODPhosPrOx]BArF d. P(OC6H4)2CI, NEt3, THF, 0 °C -> rt (27%)
e. (lrCODCI)2, reflux; NaBArF, HzO (35%)

Figure 2.5. Synthetic route to novel iridium-phosphoramidite complex.

OMe 4.6 mol % 
(lrCODPhosPrOx)BArF

H2 (15 psi), CH2CI2, 
rt, 15 h

OMe

Yield: 89% OMe 
er: 92:8

Figure 2.6. Initial evaluation of the novel catalyst, PhosPrOx.



non-ort^o-substituted 1,1-diarylalkenes). As this substrate has two rings displaying unique 

functional groups, we desired to systematically evaluate the effects of each in order to 

determine the potential structural origin for face selection.

Due to the Lewis basic nature of 1’s carbamate (and its potential catalyst- 

coordinating ability), it was hypothesized that steric bulk at this position may play a role 

in the reaction’s mode of asymmetric induction. Modulating the electronic nature of the 

substrate by varying the geminal arene’s 3,5-dimethoxy substitution pattern was also 

hypothesized to influence the substrates’ reactivity, conceivably via its conjugative impact 

on the alkene functional group. Altering the relative electron density residing in the alkene 

n-system was postulated to play a role in facial selection similar to that observed for 

Andersson’s catalyst system, where only electronic features differentiate the two arenes 

(Figure 2.4c). Because the dimethoxy substituents in 1 reside at the meta-positions and are 

less Lewis basic than the carbamate, their associated steric bulk (distal to the prochiral site) 

was predicted to play a negligible role in enantioselection.

Application of Design of Experiments Principles 

To systematically probe these steric and electronic features, with the goal of 

developing a mathematical equation relating electronic and steric parameters to AAG^, we 

turned to Design of Experiments (DoE) principles.43,44 DoE principles dictate that an 

experimental system can be best understood when the system is systematically evaluated 

over a defined range of experimental interest. Furthermore, in order to develop a 

mathematical model that best relates these systematic perturbations to a measured outcome, 

the perturbations must be described by independent variables, i.e., variables where
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variation in one does not cause variation in another.43

Using substrate 1 as a template, electronic perturbation at R2 (Figure 2.7), according 

to DoE principles, was a straightforward substituent-selection process when considered in 

terms of Hammett values (o). Hammett values—derived from the equilibrium constants 

(Keq) for ionization of substituted benzoic acids relative to unsubstituted benzoic acid— 

describe each substituent with one value.45,46 This single-value descriptor allows for facile 

selection of electronically disparate substituents that evenly span a relevant electronic 

space (with the caveat that the substituents are also synthetically feasible and compatible 

with the reaction conditions). These considerations led to the selection of three 

electronically varied 4-position substituents: methoxy, hydrogen, and trifluoromethyl 

(Figure 2.7).

Applying DoE principles to select substituents that represent systematic steric 

variation proved to be a more complex task. Given the demonstrated effectiveness of 

Sterimol values for depicting the steric effects in bisphenol desymmetrization,1,4,6,47 this 

descriptor system was considered for its ability to describe the steric effects in the iridium- 

catalyzed hydrogenation under investigation. However, with the increased descriptive 

specificity that this three-faceted parameter system affords also comes two additional 

challenges to experimental design and model development. One hurdle is the lack of 

independence amongst the three descriptor values, B 1, B5, and L. In general, increases in 

substituent lengths (L) are necessary to accommodate increases in maximum radial bulk 

(B5). This lack of parameter independence can confound effective linear regression (vide 

supra). Secondly, three descriptor values per substituent increases the difficulty of 

systematically sampling the multivariate steric space. In the case of parameterization using
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Figure 2.7. DoE-founded analysis of 1,1-diarylalkene 
steric and electronic effects.



single-value parameters, such as the Hammett values, sequential ordering of the 

synthetically accessible substituents allows for ready identification of those that evenly 

span a relevant variable range. With three values describing each substituent, this selection 

scenario becomes complicated.

Principal Component Analysis (PCA) to 
Streamline DoE Application

We hypothesized that both of these obstacles could be simultaneously addressed 

through Principal Component Analysis (PCA)-guided application of DoE (Figure 2.8).43 

PCA is a mathematical technique that, from n dependent variables, yields n principal 

components (PCs), which represent new, independent (orthogonal) variables, composed of 

linear combinations of the n dependent variables (Figure 2.8a). Each PC is also rank- 

ordered according to its eigenvalue, which indicates the portion of variation in the data that 

the respective PC represents. Specifically, the PC that accounts for the greatest variation in 

the data is PC1; the PC representing the second greatest data variation is PC2 , and so on.

Because the PCs generated from PCA are orthogonal variables, modeling 

diastereomeric transition states with these PCs meets the linear regression requirement of 

independent variables. Thus, PCA was applied to the Sterimol parameters by first 

identifying the steric space of interest at the carbamate’s R2 position, which space can be 

visualized with the substituent tree in Figure 2.8b. A matrix of the Sterimol values for each 

substituent in the tree was submitted to the MATLAB PCA algorithm, which yielded three 

PCs: Eq. 2.1 (eigenvalue: 0.98; variance represented: 68%), Eq. 2.2 (eigenvalue: 0.24; 

variance represented: 17%), Eq. 2.3 (eigenvalue: 0.22; variance represented: 15%).48
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PC1 = 0.17Bi + 0.48B5 + 0.86L Eq. 2.1

PC2 = 0.96Bi -  0.29B5 -  0.02L Eq. 2.2

PC3 = -0.24Bi -  0.82B5 + 0.51L Eq. 2.3

Comparison of the PC coefficients’ relative magnitudes indicates that PC1 is 

predominantly a representation of substituents’ maximum radii (B5) and lengths (L). This 

weighting of B5 and L within PC1 is in line with the aforementioned observation that 

increases in substituent lengths are necessary in order to accommodate increases in 

maximum radial bulk. PC1’s eigenvalue of 0.98 corresponds to PC1 capturing 68% (relative 

to the sum of all three eigenvalues) of the variation within the described steric space of 

interest. Additional consideration of PC2 , which is most descriptive of minimum radius 

(B1), cumulatively represents 85% of the potential steric variability at the carbamate. With 

PC3 corresponding to the least amount of variation in the data, it is hypothesized that PC1 

and PC2 adequately represented the three Sterimol subparameters and their variation in the 

steric space. If this hypothesis proves accurate, the challenge of selecting sterically varied 

substituents that evenly span the steric space would be greatly simplified by allowing for 

consideration of only two, rather than three, descriptors. Additionally, describing steric 

bulk variation in two independent, rather than three dependent, descriptors facilitates model 

development using linear regression techniques.

The graph of PC1 versus PC2 (Figure 2.8c) evidences the simplification of 

substituent selection. This plot shows that methyl, wbutyl, and 1-adamantyl define a triangle 

that almost entirely encompasses the PCA-interpreted steric space. To complete the 

selection of evenly distributed substituents, the substituent at the point nearest the triangle’s



center, CH(Et)2, was also selected.

With four substituents to probe steric modulation at the carbamate and three 

substituents to assess electronic variation on the adjacent arene, synthesis of every 

combination of these perturbations yielded a 12-membered substrate library (Figure 2.7). 

After measuring the resultant er and calculating the AAG for each substrate in its 

[IrCODPhosPrOx]BAr F-mediated hydrogenation, the ultimate goal of this library was 

mathematically interpreting the influence of steric and electronic effects on 

enantioselection, in a model of the form given in Eq. 2.4.

AAG = z0 + a(PCi) + b(PC2) + c(ff) + d(PCi *PC2) + f(PCi *o) + g(PC2 *d) Eq. 2.4

Unfortunately, when this library of substrates was subjected to hydrogenation 

conditions, none of the reactions reached full conversion of alkene starting material to 

reduced alkane product. Conversions ranged from 0% to 65%, despite 1 proceeding in 

>95% conversion. Increasing the reaction time for related substrates did not increase the 

percentage of conversion.

The dominance of asymmetric hydrogenation catalysis as a means for synthesizing 

chiral compounds can be attributed, at least in part, to the reaction’s 100% atom economy 

and a corresponding absence of side products.29 With the substrates of the 12-membered 

library not achieving full conversion to reduced product, this reaction class’s atom 

economy-advantage becomes irrelevant, particularly since starting material and product 

are not easily separable via common column chromatography techniques. In an effort to 

understand these unexpected results, which were surprising given the apparent similarities

44



between substrate 1 and the 12 library substrates, attempts were made at relating changes 

in steric bulk and electronics to the substrates’ varied yields. No model could be generated 

with any degree of confidence, which may be an indication of the many modes by which 

yield can be influenced.

Although no quantitative conclusions could be drawn about the nature of the 

catalyst/substrate interaction from the results of this library study, the experiment’s 

foundational DoE approach allowed for an important conclusion to be drawn: the results 

of the 12-membered library are not the outliers in this reaction system; they are the norm. 

Instead, these point to the uniqueness of 1. It appears that we serendipitously identified an 

intriguing relationship between 1 and the Ir-PhosPrOx catalyst. Without applying DoE 

principles to systematically explore the steric and electronic aspects of derivatives of 1, 

this same conclusion may have been realized. However, it likely would have required more 

time and experiments to be confident in the singular high enantioselectivity afforded with 

1, given the unanticipated nature of the library’s results. The systematic DoE-guided 

approach streamlined this process.

A Qualitative DoE Approach 

To understand the unique interaction between Ir-PhosPrOx and 1 that leads to high 

levels of enantioselection, the importance of each ring was systematically evaluated, using 

a qualitative DoE approach, to determine its mechanistic relevance. As a first experiment, 

removal of one methoxy substituent, as in substrate 2 (Table 2.1), led to a significant 

reduction in enantioselectivity upon hydrogenation (Table 2.1, entry 2, er = 74:26). 

Changing this group further to 3-nbutoxy (3) had a negligible effect (Table 2.1, entry 3, er

45



46

Table 2.1. Exploration of substrate meta-directing group effects.

4.6 mol % (lrCODPhosPrOx)BArF 
II _________ H2 (15 psi)_________ ^  I

Ai-1' 7 \ r 2 n H „ n u  rt i s  h A ri"^CH2CI2, rt, 15 h Ar1 Ar2
entry alkene conversion (%)a er13

BocHN

BocHN

BocHN

BocHN

BocHN

OMe

OMe

OMe

OnBu

Me

OMe

OMe

Et

89%

59%

66%

70%

54%

>95%

>95%

>95%

92:8

74:26

75:25

63:37

48.5:51.5

74:26

53:47

49:51

Conversions, measured by 1H NMR, are an average of two reactions. 
bEr, determined by SFC or HPLC instruments fitted with chiral 
stationary phases, represents average of two reactions.



These preliminary results suggest that 3,5-substition on the aryl ring is required for 

enhanced enantioselection. To probe whether this is a purely steric effect or if the Lewis 

basic substituents are required, 3,5-dimethoxy aryl was replaced by the 3,5-dimethyl 

variant. This change led to a considerable lowering of er (Table 2.1, entry 4, er = 63:37), 

suggesting the importance of the Lewis basic group. Interestingly, elimination of one of 

the methyl groups results in a system wherein the catalyst had no alkene facial preference 

(Table 2.1, entry 5). This combination of results is consistent with high enantioselectivity 

resulting from a strongly inflential Lewis base susbstituent effect, which is augmented by 

the steric effect of substituents at both the 3- and 5-positions.

As support for this hypothesis, the other aryl ring should not have a major influence 

on the outcome of the reaction. Evaluation of a substrate in which the N-Boc is truncated 

leads to an excellent result, wherein very similar enantioselectivity is observed (Table 2.2, 

entry 1, er = 92.5:7.5). Again, removal of one of the weta-substituted methoxy groups (6) 

leads to a significant reduction in enantioselectivity, and evaluation of the corresponding 

^ara-methoxy-substituted substrate 7 leads to a nearly racemic hydrogenation.

While we had gathered considerable evidence indicating the importance of etheric 

aryl substituents, there remained a possibility that the steric bulk of the 3,5-dimethoxy 

substituents was the crucial feature for enantioselection. To assess this possibility, 8 was 

synthesized, incorporating 3,5-diethyl substitution as a steric bulk surrogate to 3,5- 

dimethoxy. In poignant support of our hypothesis, 8 (Table 2.1) was hydrogenated to yield 

a racemic product mixture.

Returning to the requisite 3,5-dimethoxy substitution pattern on one aryl ring, we
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Table 2.2. Substrate scope for iridium(PhosPrOx)-catalyzed hydrogenation.

4.6 mol % (lrCODPhosPrOx)BArF 
II _________H2 (15 psi)_________ ^  |

Ar1 Ar2 r.H„r;U rt 1fi hCH2CI2, rt, 15 h Ar1 Ar2
entry product conversion (%)a erb

MeO.

OMe
OMe

OMe

OMe

>95% 92.5:7.5

>95% 91.5:8.5

>95% 88.5:11.5

>95%

>95%

>95%d

>95%

89:11

96:4

96.5:3.5

>95% 85.5:14.4

71:29

"Absolute configurations of products were assigned by analogy (see 
“Experimental Information” section). ^Conversion, measured by 1H NMR, is 
an average of two reactions. cEr, determined by an SFC instrument fitted with 
a chiral stationary phase, represents an average of two reactions. ^Reactions 
performed using 10 mol % catalyst to achieve >95% conversion. eThe same 
sense of stereoinduction is assumed, although not confirmed.



evaluated the reaction’s enantioselective robustness to variation in the geminal aryl ring. 

Installing an electron-donating methoxy substituent at the 4-position (10) afforded the 

reduced product with very little change in er (Table 2.2, entry 2, er = 91.5: 8.5). 

Incorporating a 4-methyl substituent into the substrate (Table 2.2, entry 3) resulted in a 

slightly diminished er (88.5:11.5). However, a negligible effect on er is observed upon 

modification of 4-position steric bulk from methyl (11) to phenyl (12, Table 2.2, entry 4, 

er = 89:11).

The influence of electron-poor substituents on enantioselection was evaluated via 

4-chloro (13) and 4-trifluoromethyl (14) substrates, which were hydrogenated in 96:4 er 

(Table 2.2, entry 5) and 96.5:3.5 er (Table 2.2, entry 6), respectively. These er’s represent 

a significant improvement in enantioselectivity over the best previously reported er 

(82.5:17.5) obtained via an iridium-catalyzed hydrogenation of a 1,1-diarylalkene that 

contains aryl substitution only at positions distal (meta and para) from the prochiral site.6b

Convinced of the system’s enantioselective robustness to 4-position steric bulk and 

electronic variation, we next investigated the effect of 3-position variation. Hydrogenation 

of substrate 15 (Table 2.2), bearing the bulky and electron-rich 3-z'so-propyl substitution, 

yielded the corresponding diarylmethine in 85.5:14.5 er, representing only a slight decrease 

in enantioselection from 4-substituted substrates.

Finally, to challenge the 3,5-dimethoxy substitution pattern’s capacity for directing 

facial selection in the presence of other potential directing groups, we evaluated the 

hydrogenation of 16 (Table 2.2), wherein the 3,5-dimethoxys remain intact on one ring, 

and 3-methoxy substitution is instituted on the geminal ring. In this scenario, the 

substitution patterns in both rings are each, in the absence of the other, capable of inducing
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facial descrimination, although to a lesser extent for 3-methoxy than for 3,5-dimethoxy 

substitution. Interestingly, 16 was reduced in a 71:29 er, nearly identical to that seen for 

substrates 2 and 6 (Table 2.1, er = 74:26 and 74:26, respectively), which bear 3-methoxy 

substitution. We hypothesize that 3,5-dimethoxy substitution still acts as the dominate 

force in this transformation’s enantiodetermining step, while the observed er erosion is a 

result of introducing another group (3-methoxy) with competing directing group 

capabilities.

A Quantitative Model from a Qualitatively 
Developed DoE Library

This systematic probing of the distally substituted 1,1-diaryl alkene scaffold 

supports the curious hypothesis that not only is a 3,5-dimethoxy motif on one aryl ring 

necessary for high levels of asymmetric induction, but the oxygen’s Lewis basicity appears 

to be the enantiodetermining feature. To better detail this unprecedented selectivity, 

enantioselectivities for the library of substrates in Figure 2.9 were measured, with the 

objective of using the training set to develop a mathematical model that quantitatively 

illuminates the features of mechanistic significance to the modes of asymmetric induction. 

As it was unclear what parameters might be relevant for describing this reaction’s 

outcomes, a quantitative DoE library design was not feasible. Instead, the library was 

constructed based on systematic sampling of observed enantioselectivities from a 

collection of analyzed substrates, as well as based on variation according to fundamental 

chemistry principles of steric and electronic effects.

Successful modeling analysis of this study’s data required looking beyond the 

scope of typically employed molecular parameters, as classic parameters were inadequate
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OnBu

OMe

OMe

OMe

92.5:7.5 OMe 96.5:3.5 OMe 71:29 OMe
External Validation Library

Figure 2.9. Substrate libraries used for the development (training set) and assessment 
(external validation library) of a mathematical model describing Ir-PhosPrOx-catalyzed 
hydrogenation.



for describing the substrates’ variation. In collaboration with postdoctoral fellow Dr. Anat 

Milo, energy-minimization and frequency computational calculations were performed by 

Dr. Milo for the training set of substrates in Figure 2.9. In silico assessment of these 

molecules led to a set of molecular vibrations and a torsion measurement (descriptive 

parameters) that were hypothesized to numerically describe the steric and electronic effects 

of the alkene substrates that were important for imparting high enantiomeric excess in their 

iridium-catalyzed reduction.49 This parameter set is defined by the frequencies and 

intensities of three alkene vibrations, as the alkene functional group is the site of reaction, 

and six arene C=C bond vibrations (three for each ring), which values change with changes 

to ring substitution. Given the possible role played by conjugation between each arene and 

the alkene, two additional vibrations displaying simultaneous, synchronized movement 

between both arenes were included. Tabulation of these vibrational frequencies and 

intensities and torsion measurements is given in the “Experimental Information” section.

From the precise delineation of the alkenes’ properties that density functional 

theory (DFT) calculations afforded, Dr. Milo identified a robust mathematic relationship 

(Figure 2.10). Model development was carried out based on MATLAB stepwise linear 

regression algorithms. This is a procedure whereby p-values are calculated for each 

parameter of putative mechanistic significance, which value quantifies a parameter’s 

likelihood of effectively describing the patterns in reaction outcomes. As defined by the 

stepwise algorithm, parameters with calculated p-values less than 0.05 are included in the 

regression model; those with p-values greater than 0.10 are removed from the model. 

Through such an iterative process, a descriptive model was developed (Figure 2.10a).

Prior to interpreting the model’s mechanistic clues, this quantitative construct of

52



53

4.6 mol% [lrCODL1]BArF ^
CH2CI2, 1 Bar H2 
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(b) 'C -H Functional/Basis Set:

/c_H: intensity of alkene C-H /sym: intensity of aryl ring dtor: torsion between 
asymmetric IR vibration symmetric IR vibration aryl rings
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Figure 2.10. Mathematical analysis of Ir-PhosPrOx-catalyzed asymmetric 
hydrogenation. (a) Free-energy model for the reaction scheme given. (b) 
Depiction of parameters that are relevant descriptors of the chemical 
system’s modes of asymmetric induction. (c) Graphical representation of 
the model, with predictive and descriptive robustness illustrated through 
effective external validation.



the reaction’s enantiodetermining step was assessed for its accuracy and precision. Model 

validation was performed by subjecting a set of substrates that was not used for model 

development (the external validation set, Figure 2.9) to hydrogenation conditions. The 

agreement between model-predicted AAG values and experimentally measured AAG* 

values was assessed via the plot in Figure 2.10c. This predicted versus measured AAG 

plot’s slope and R2 values near unity demonstrate the generality and robustness of the 

model for describing steric and electronic substrate features that influence 

enantioselectivity.

With a mathematical demonstration of the model’s correctness, the model was 

assessed from a perspective of fundamental chemical principles and logic. All descriptors 

in the identified model emphasize the differences between the two rings: vibrational 

intensities, %m and zc- h, which differentially describe bond vibrations at the fusion of the 

two aryl rings, and the torsion measure, dtor, that likely depicts the degree to which one aryl 

ring is better oriented than the other for engagement with the catalyst (Figure 2.10b). This 

emphasis of each arene’s distinctiveness is in line with the model’s ultimate objective of 

quantitating the catalyst’s capacity for alkene facial discrimination. As a direct result of the 

compositional differences between each ring, the mathematical model describes the 

substrate features that are singularly interpreted by the catalyst for enantiodetermination.

It was supposed that the wealth of mechanistic information contained within the 

multifaceted vibration terms could be better understood by grouping substrates according 

to simple chemical patterns: substrates with para  position variation and those with varied 

meta substituents. For each library, a micromodel was developed from the set of terms 

identified in the initial model. Interestingly, Hammett o values were inadequate as a sole
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description of para  position variation (Figure 2.11). Instead, description of the para- 

substituted series was accomplished with two terms: the asymmetric stretching intensity of 

the alkene’s C-H bonds (ie-H) and the torsion measurement, dtor (Figure 2.11b). The torsion 

term suggests that gross substrate conformation impacts the enantioselectivity of reduction. 

Yet, the more impactful predictor of selectivity (larger coefficient in the normalized model, 

Figure 2.11b) is iC-H. The implications of this term are intriguing. By definition, as a 

vibrational intensity, this term represents the difference in dipole moment (dependent on 

bond length and atomic charges across the bond) between the compressed and elongated 

bond. Bonded atoms exhibiting greater vibrational intensity correspondingly are displaced 

a greater distance and occupy a greater net area over the course of a vibration. It follows 

that, in the context of iC-H, alkenyl C-H bonds with larger intensity values effectively 

occupy a greater volume of space than do C-H bonds with less vibrational intensity.

Interpreting the relevance of iC-H as a steric effect, where larger values erode 

enantioselectivity (equation in Figure 2.11b), this term may be describing the closeness 

with which substrates may coordinate to the iridium catalyst. With substrates that exhibit 

smaller iC-H values and a smaller net displacement of the hydrogen atom upon vibration, 

coordination may be more facile, leading to higher levels of asymmetric induction— 

consistent with the developed micromodel for para-substituted substrate series.

Despite the disparate nature of meta substitution patterns in the meta micromodel 

set, they are unified by the single term, isym (Figure 2.12). As given in the developed model, 

increases in isym correspond to increases in enantioselection. This vibrational intensity, 

which importantly manifests as a simultaneous movement of the geminal arenes towards 

the alkene, is rationalized to quantitatively represent the electronic differences between the
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Figure 2.11. Micro analysis ofpara modulated substrates. (a) 
Library of para position variation and (b) its normalized 
descriptive model.
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Figure 2.12. Micro analysis of meta modulated substrates. 
(a) Library of meta position variation and (b) its normalized 
descriptive model.



two rings and, thereby, their capacity for precoordination. This interpretation is supported 

by qualitative observations (vide supra) that led to the previously described hypothesis that 

Lewis basic groups at the meta position allow for advantageous substrate precoordination.

The inadequacy of the exclusive use of o values combined with the importance of 

the torsion term suggest that asymmetric induction does not rely exclusively on electron- 

donating or -withdrawing features of the substrate. Instead, the degree of torsion, also 

ultimately of an electron-density origin, is a key factor that influences the substrate-catalyst 

interaction. Gross substrate structure playing prominently in enantioselection informs 

interpretation of the model developed from the meta-substituted series of substrates (Figure 

2.12b). Described by the intensity of two arenes’ vibrating toward and away from each 

other in tandem, isym seems to be representative of how each arene responds relative to the 

other, reminiscent of the role that torsion plays in the para  model.

The terms of the full model, as well as the meta and para  micromodels, and the 

qualitative conclusions drawn from the systematic changes made to aryl substitution, 

support the hypothesis that the 3,5-dimethoxy motif provokes an ideal degree of ring 

torsion that orients a methoxy oxygen to precoordinate to the catalyst. Precoordination may 

orchestrate the enantioselectivity-determining transition state to deliver the key hydride 

with high levels of facial precision.

Conclusions

Demonstrating the process of evolving descriptors to a set that can represent the 

reaction outcomes under investigation is a central facet of successful model development. 

The work presented in this chapter exemplifies this process and the results that led to
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expanding the parameter scope from the useful, yet limited, Sterimol parameters to 

information-rich vibrations. The demonstration of vibration-derived descriptors’ powerful 

ability to quantitate the nuances of IrPhosPrOx-catalyzed hydrogenation of diarylalkenes 

has provided a platform from which a variety of other reactions, not amenable to 

description by classic linear free-energy relationship analyses, may be investigated. The 

following two chapters demonstrate further unique applications of this unconventional, 

powerful free-energy modelling tool.

The novel application of the Design of Experiments (DoE) concept that was 

explored in this chapter inspired additional investigation of this principle. In Chapters 3 

and 4, approaches are developed for the quantitative implementation of DoE for effective 

reaction analysis, augmenting the robustness of developed mathematical models for rich 

mechanistic gain.

Experimental Information 

General Information

All glassware was dried in a 120 °C oven or flame-dried and cooled under nitrogen 

or vacuum, unless otherwise noted. All reactions were performed under nitrogen, with 

stirring, unless otherwise noted. Tetrahydrofuran (THF), dichloromethane, and toluene 

were passed through an activated alumina column, under a nitrogen atmosphere, prior to 

use. Methanol was distilled from magnesium methoxide. Triethylamine was distilled from 

CaH2 . PCl3 was purified via simple distillation. All other reagents were from commercial 

sources and were used as received, unless otherwise noted.

Thin-layer chromatography was performed using silica gel 60 F254 and the eluents



indicated, then visualized via a 254 nm UV lamp and/or stained with phosphomolybdic 

acid, potassium permanganate, ninhydrin, or vanillin. SiliaFlash® F60 40-63 |im silica gel 

or basic, activated alumina, Brockmann I (GFS Chemicals) was used for flash column 

chromatography, as designated. 1H, 13C, 19F, and 31P NMR spectra were acquired on a 

Varian Unity spectrometer at the MHz specified. Spectral referencing was performed 

relative to the CHCb 7.26 ppm singlet (1H NMR), the center of the CH2Q 2 5.32 ppm 

resonance (1H NMR), the center of the CH3OH 3.31 ppm resonance (1H NMR), the center 

peak of the CHCb 77.16 ppm triplet (13C NMR), the center peak of the CH2Q 2 53.84 ppm 

pentet (13C NMR), the center of the 49.0 CH3OH ppm septet (13C NMR), the H3PO4 0 ppm 

singlet (31P NMR, external standard), or the CF3COOD -78.5 ppm singlet (19F NMR, 

external standard). All multiplicities reported are apparent. Abbreviations s, d, t, q, p, sex, 

sep, dd, ddd, td, bs, and m represent the resonance multiplicities singlet, doublet, triplet, 

quartet, pentet, sextet, septet, doublet of doublets, doublet of doublets of doublets, triplet 

of doublets, broad singlet, and multiplet, respectively. Infrared (IR) spectroscopy data were 

obtained using a Nicolet 380 FT-IR instrument. High-resolution mass spectrometry 

(HRMS) data were obtained using an Agilent LCTOF. Melting points were measured using 

a Thomas Hoover Unimelt capillary melting point apparatus. All melting points are 

uncorrected. Super critical fluid chromatography (SFC) analysis was performed using a 

Thar instrument under the conditions indicated. High Performance Liquid Chromatography 

(HPLC) analysis was performed using a Hewlett-Packard S1100 instrument under the 

conditions indicated. Specific rotations were determined using a PerkinElmer 343 

Polarimeter, the 589 nm wavelength (sodium D line), and a 1 dm cell path length, with 

concentrations given in g/100 mL.
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Synthetic Methods: Catalyst 

The catalyst was synthesized according to previously published procedures (Figure 

2.13).37-42,50

(S)-2-((S)-1-(dibenzo[d,fj[1,3,2]dioxaphosphepin-6-yl)pyrrolidin-2-yl)-4- 

isopropyl-4,5-dihydrooxazole (PhosPrOx). Oxazoline A (Figure 2.13) (2.244 mmol, 1.1 

equiv.) was dissolved in THF (4.4 mL). After addition of NEt3 (4.487 mmol, 2.2 equiv.), 

the solution was cooled to 0 °C, and the chlorophosphite (2.04 mL of a 1.0 M solution in 

THF, 1.0 equiv.) was added dropwise. The reaction was then allowed to warm to room 

temperature and stirred overnight. The phosphoramidite product was purified by flash 

silica-gel column chromatography (25% ethyl acetate in hexanes with 1% triethylamine) 

to afford 27% yield, 0.176 g (0.443 mmol), of the clear, pale yellow, viscous oil PhosPrOx. 

TLC (30% ethyl acetate in hexanes) Rf = 0.33. 1H NMR (300 MHz, CDCb) 5: 0.86-1.01 

(m, 6H), 1.64-1.94 (m, 3H), 1.96-2.18 (m, 2H), 2.92-3.05 (m, 1H), 3.16-3.30 (m, 1H), 

3.91-4.11 (m, 2H), 4.25-4.35 (m, 1H), 4.47-4.55 (m, 1H), 7.14-7.25 (m, 4H), 7.28-7.38 

(m, 2H), 7.42-7.44 (m, 1H), 7.44-7.47 (m, 1H). 13C NMR (75 MHz, CDCb) 5: 18.0 (s),

18.1 (s), 18.7 (s), 18.8 (s), 25.2 (s), 31.0 (d, J  = 5.0 Hz), 32.6 (s), 45.1 (s), 55.3 (s), 55.7 (s),

70.4 (s), 71.9 (s), 122.0 (s), 122.2 (s), 124.5 (s), 124.6 (s), 129.2 (s), 129.7 (s), 129.8 (s), 

131.3 (d, J  = 2.6 Hz), 131.5 (d, J  = 3.5 Hz), 151.7 (d, J  = 4.1 Hz), 152.1 (d, J  = 5.5 Hz),

168.6 (d, J  = 1.5 Hz). 31P NMR (121 MHz, CDCb, H3PO4 external standard) 5: [150.8 (s) 

and 150.6 (s)] ratio 4.5:1. IR: 2957, 2872, 2361, 1665, 1600, 1567, 1497, 1474, 1434, 1384, 

1365, 1270, 1247, 1207, 1190, 1128, 1077, 1010, 979, 883, 868, 847, 764, 745, 731, 681, 

645, 597, 547 cm'1. HRMS C22H26N2O3P [M+H]+ calculated 397.1681, observed 

397.1687. [a]2D0 = -49.9 (c 2.50, CHCb).
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Figure 2.13. Schematic of synthetic route to [IrCODPhosPrOx]BArF.



[IrCODPhosPrOx]BArF. To an oven-dried Schlenk tube under nitrogen 

atmosphere was added PhosPrOx (0.399 mmol, 1 equiv.) and CH2Q 2 (8.3 mL). To this 

stirring solution, (IrCODCl)2  (0.200 mmol, 0.5 equiv.) was added. The Schlenk tube was 

sealed, and the vessel was heated to 48 °C and stirred for 2 hrs. Next, the reaction mixture 

was cooled to room temperature, and NaBArF (0.519 mmol, 1.3 equiv.) was added. After 

stirring approximately 10 minutes, 8 mL of water was added, and the mixture was stirred 

vigorously for about 30 mins. Then, the organic layer was extracted, washed twice with 

brine, and dried with Na2SO4. [IrCODPhosPrOx]BArF was purified by flash silica-gel 

column chromatography (using 66% ethyl acetate in dichloromethane with 1% 

triethylamine) to give 35% yield, 0.111 g (0.071 mmol). TLC (66% ethyl acetate in 

dichloromethane) Rf = 0.25. M.P.: 67-70 °C. 1H NMR (300 MHz, CDCb) 5: 0.90-1.06 (m, 

6H), 1.55-1.76 (m, 2H), 1.76-1.91 (m, 2H), 1.91-2.20 (m, 5H), 2.23-2.47 (m, 4H), 2.71

2.92 (m, 1H), 3.06-3.15 (m, 1H), 3.15-3.27 (m, 1H), 3.69-3.82 (m, 1H), 3.98-4.11 (m, 

1H), 4.39 (t, J  = 9.82 Hz, 1H), 4.50-4.63 (m, 1H), 4.83-4.95 (m, 1H), 5.08-5.23 (m, 1H), 

5.26-5.39 (m, 1H), 7.17-7.24 (m, 2H), 7.30-7.53 (m, 6H), 7.55 (s, 4H), 7.73 (s, 8H). 13C 

NMR (75 MHz, CDCb) 5: 14.7 (s), 17.9 (s), 26.1 (s), 26.1 (s), 26.5 (d, J  = 3.0 Hz), 27.2 

(s), 27.3 (s), 29.5 (s), 31.3 (d, J  = 2.0 Hz), 32.9 (s), 35.4 (s), 35.5 (s), 46.8 (d, J  = 5.0 Hz),

56.5 (s), 56.8 (s), 63.3 (d, J  = 2.0 Hz), 65.8 (s), 69.8 (s), 71.8 (s), 101.8 (s), 102.0 (s), 104.7 

(s), 104.9 (s), 117.6 (m), 119.3 (s), 120.9 (d, J  = 3.0 Hz), 121.7 (d, J  = 3.5 Hz), 122.9 (s),

126.5 (s), 126.6 (s), 127.0 (s), 128.8 (m), 129.2 (m), 109.7 (d, J  = 2.0 Hz), 130.1 (s), 130.1 

(s), 130.4 (s), 130.5 (s), 134.9 (s), 148.7 (s), 148.8 (s), 150.2 (s), 150.4 (s), 160.9 (s), 161.5 

(s), 162.2 (s), 162.8 (s), 174.9 (s), 175.0 (s). 19F NMR (282 MHz, CDCb) 5: -63 (s). 31P 

NMR (121 MHz, CDCb) 5: 104.6 (s). IR (thin film): 2964, 2361, 2338, 1611, 1501, 1478,
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1436, 1390, 1353, 1274, 1119, 1096, 1045, 943, 914, 886, 839, 776, 735, 713, 682, 669, 

614, 556 cm-1. HRMS C30H37N2O3PIr [M]+ calculated 697.2171, observed 697.2176. 

[a]2D0 = -55.0 (c 0.20, CHCb).

Synthetic Methods: Substrates 

Tert-butyl (4-acetylphenyl)carbamate. This carbamate was synthesized 

according to a published literature procedure, the schematic for which is given in Figure 

2.14.51 Purity was assessed by comparison to published characterization data.52

General Method A: 1,1-terminal alkene synthesis. This synthetic route is 

depicted in Figure 2.15. A round-bottom flask was charged with the corresponding 

bromobenzene (10.6 mmol, 2.5 equiv.), all of which were commercially available and used 

as received, with the exception of 3-bromophenyl 4-methylbenzenesulfonate and (3- 

bromophenoxy)(fert-butyl)diphenylsilane (vide infra). Under a nitrogen atmosphere, dry 

THF (24 mL) was added, and the reaction mixture was cooled to -78 oC, followed by 

dropwise addition of nBuLi (10.6 mmol, 2.5 equiv.). After stirring at -78 oC for 

approximately 45 min., a solution of the corresponding acetophenone (4.250 mmol, 1 

equiv.) in dry THF (9 mL) was added dropwise to the reaction mixture, which continued 

stirring at -78 oC for approximately 4 hrs. The reaction mixture was then quenched with 

H2O. The organic phase was removed, and the aqueous phase was washed with EtOAc. 

The combined organic phases were dried with Na2SO4 and concentrated in vacuo. A 

solution of this product in 20 mL of CH2Cl2 (not dried) and 2 drops of concentrated HCl 

was stirred overnight. Next, H2O was added to this solution, and the organic phase was 

extracted and subsequently washed with brine. Then, the combined aqueous phases were

64



65

HoN

O • HCI

rV" ♦ -A V  *JUO NH

Figure 2.14. Carbamate synthesis reaction scheme.

o

Figure 2.15. 1,1-terminal alkene synthesis via General Method A.



washed with CH2O 2 . The organic phase was dried with Na2SO4, concentrated in vacuo, 

and purified via flash-column chromatography.

General Method B: 1,1-terminal alkene synthesis. This synthetic route is 

depicted in Figure 2.16. Mg turnings (13.2 mmol, 1.38 equiv) were ground with mortar and 

pestle until shiny and added to an oven-dried round-bottom flask. Under a nitrogen 

atmosphere, 3 mL of THF (distilled from sodium benzophenone) were added, and the 

heterogeneous mixture stirred for 5 min at room temperature. After 2 drops of 1,2- 

dibromoethane (passed through a plug of activated, basic alumina prior to use) were added 

to the flask, the reaction mixture stirred for 10 min. Then, the respective bromobenzene 

derivative (12.0 mmol, 1.25 equiv) in THF (2 mL) was added all at once. After stirring 10 

min at room temperature, 7 mL more of THF were added. The reaction mixture was stirred 

for approximately 2 h, at which time the respective acetophenone derivative (9.6 mmol, 1 

equiv) in 10 mL of THF was added at room temperature, resulting in an exothermic 

reaction. After stirring overnight, the reaction mixture was quenched with H2O, and EtOAc 

was added. The organic phase was removed and subsequently washed twice with saturated 

NH4Cl(aq) and once with brine. The resulting organic phase was dried with Na2SO4 and 

concentrated in vacuo. A solution of this product in 20 mL of CH2Q 2 (not dried prior to 

use) and 3 drops of concentrated HCl was stirred for 15-200 hours, as specified. Next, H2O 

was added to this solution, and the organic phase was extracted and subsequently washed 

with brine. Then, the combined aqueous phases were washed with CH2Cl2 . The organic 

phase was dried with Na2SO4, concentrated in vacuo. The crude product was purified via 

flash-column chromatography.

General Method C: 1,1-terminal alkene synthesis. This synthetic route is
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1. Mg turnings, 1,2-di- 
bromoethane, THF, rt; r 2 , THF, rt
2. HCI, CH2CI2

Figure 2.16. 1,1-terminal alkene synthesis via General Method B.



depicted in Figure 2.16. Mg turnings (13.2 mmol, 1.38 equiv) were ground with mortar and 

pestle until shiny and added to an oven-dried round-bottom flask. Under a nitrogen 

atmosphere, 3 mL of THF were added, and the heterogeneous mixture stirred for 5 min. at 

room temperature. After 2 drops of 1,2-dibromoethane (passed through a plug of activated, 

basic alumina prior to use) were added to the flask, the reaction mixture stirred for 10 

minutes. Then, the respective bromobenzene derivative (12.0 mmol, 1.25 equiv) in THF (2 

mL) was added all at once. After stirring 10 minutes at room temperature, 7 mL more of 

THF were added. The reaction mixture was stirred for approximately 2 hours, at which 

time the respective acetophenone derivative (9.6 mmol, 1 equiv) in 10 mL of THF was 

added at room temperature, resulting in an exothermic reaction. After stirring overnight, 

the reaction mixture was quenched with H2O, and EtOAc was added. The organic phase 

was removed and subsequently washed twice with saturated NH4Cl(aq) and once with brine. 

The resulting organic phase was dried with Na2SO4, concentrated in vacuo, and passed 

through a silica column (using the same eluent as used for the final purification, unless 

otherwise noted) to remove the bulk of impurities. A solution of the resultant crude product 

in 20 mL of CH2Cl2 (not dried prior to use) and 3 drops of concentrated HCl was stirred 

for 15-96 hours, as specified. Next, H2O was added to this solution, and the organic phase 

was extracted and subsequently washed with brine. Then, the combined aqueous phases 

were washed with CH2Q 2 . The organic phase was dried with Na2SO4, concentrated in 

vacuo. The crude product was purified via flash-column chromatography.

1-bromo-3-butoxybenzene. To a round-bottom flask was added 3-bromophenol 

(11.560 mmol, 1 equiv.), 1-bromobutane (17.340 mmol, 1.5 equiv.), 4.6 mL of ethanol 

(200 proof), 0.46 mL deionized H2O, and potassium carbonate (16.180 mmol, 1.4 equiv.).
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After heating the reaction mixture to reflux for 20 hours, the reaction mixture was cooled, 

and the solvent was removed in vacuo. Diethyl ether was added to the remaining residue, 

followed by sequential washings with 1 M HCl (10 mL), H2O (20 mL), 1 M NaOH (10 

mL), and H2O (20 mL). The organic phase was dried with Na2SO4. The solvent was 

removed and the product concentrated in vacuo to afford S2, a pale yellow liquid, in 45% 

isolated yield, 1.201 g (5.241 mmol). TLC (10% ethyl acetate in hexanes) Rf = 0.70. 1H 

NMR (300 MHz, CDCb) 5: 0.98 (t, J  = 7.41 Hz, 3H), 1.42-1.56 (m, 2H), 1.70-1.82 (m, 

2H), 3.94 (t, J  = 6.52 Hz, 2H), 6.80-6.86 (m, 1H), 7.03-7.09 (m, 2H), 7.09-7.17 (m, 1H). 

13C NMR (126 MHz, CDCb) 5: 14.0 (s), 19.3 (s), 31.3 (s), 68.0 (s), 113.7 (s), 117.8 (s),

122.9 (s), 123.6 (s), 130.6 (s), 160.1 (s). IR (thin film): 2958, 2933, 2872, 2360, 1589, 

1572, 1466, 1424, 1389, 1324, 1304, 1283, 1242, 1226, 1167, 1157, 1124, 1091, 1065, 

1027, 1010, 991, 974, 909, 890, 856, 841, 762, 737, 679, 601 cm'1. HRMS CuHwOBr 

[M+H]+: calculated 229.0228, observed 229.0225.

(3-bromophenoxy)(terf-butyl)diphenylsilane. This aryl bromide was synthesized 

according to a previously reported procedure,53 which is depicted in Figure 2.17, and 

purified by flash silica gel column chromatography (10% ethyl acetate in hexanes with 1% 

triethylamine) to afford a clear, colorless oil in 80% isolated yield, 5.916 g (14.380 mmol). 

TLC (100% hexanes) Rf = 0.30; 1H NMR (500 MHz, CD2O 2): 5 1.17 (s, 9H), 6.72 (ddd, J  

= 8.30 Hz, 2.44 Hz, 0.98 Hz, 1H), 6.97 (t, J  = 8.30 Hz, 1H), 7.04-7.08 (m, 1H), 7.08-7.12 

(m, 1H), 7.41-7.47 (m, 4H), 7.47-7.53 (m, 2H), 7.76-7.81 (m, 4H); 13C NMR (126 MHz, 

CD2Cl2): 5 19.7. 26.6, 118.9, 122.6, 123.6, 124.6, 128.3, 130.5, 130.6, 132.7, 135.9, 156.9; 

IR (thin film): 3071, 2958, 2931, 2893, 2858, 1586, 1568, 1472, 1427, 1391, 1362, 1269, 

1236, 1190, 1158, 1113, 1086, 1063, 996, 934, 861, 822, 771, 738, 699, 680, 665, 654, 613
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cm'1; HRMS C22H23BrOSiK [M+K]+ calculated 449.0339, observed 449.0344.

Tert-butyl (4-(1-(3,5-dimethoxyphenyl)vinyl)phenyl)carbamate (1). Alkene 1 

was synthesized according to General Method A from 4.250 mmol of the corresponding 

acetophenone and purified via flash silica-gel column chromatography (using 30% ethyl 

acetate in hexanes) to afford isolated product, a white solid, in 78% yield, 1.178 g (3.315 

mmol). TLC (20% ethyl acetate in hexanes) Rf = 0.36. M.P.: 76-79 oC 1H NMR (300 

MHz, CDCb) 5: 1.52 (s, 9H), 3.76 (s, 6H), 5.38 (d, J  = 1.24 Hz, 1H), 5.41 (d, J  = 1.24 Hz, 

1H), 6.42-6.45 (m, 1H), 6.48 (d, J  = 2.33 Hz, 2H), 6.50 (bs, 1H), 7.27-7.35 (m, 4H). 13C 

NMR (75 MHz, CDCb) 5: 28.4 (s), 55.4 (s), 80.7 (s), 100.0 (s), 106.7 (s), 113.6 (s), 118.2 

(s), 128.9 (s), 135.9 (s), 138.1 (s), 143.9 (s), 149.5 (s), 152.8 (s), 160.6 (s). IR (thin film): 

3333, 2976, 2837, 2360, 1728, 1701, 1589, 1521, 1456, 1422, 1406, 1392, 1366, 1348, 

1314, 1230, 1204, 1154, 1051, 1027, 1015, 901, 840, 771, 731, 688, 668, 610 cm’1. HRMS 

C21H25NO4N  [M+Na]+ calculated 378.1681, observed 378.1690.

Tert-butyl (4-(1-(3-methoxyphenyl)vinyl)phenyl)carbamate (2). Alkene 2 was 

synthesized according to General Method A from 3.190 mmol of the corresponding 

acetophenone and purified via flash silica-gel column chromatography (using 20% ethyl 

acetate in hexanes with 1% triethylamine) to afford isolated product, a clear, pale yellow 

liquid, in 14% yield, 0.149 g (0.459 mmol). TLC (30% ethyl acetate in hexanes) Rf = 0.56. 

1HNM R (300 MHz, CDCb) 5: 1.53 (s, 9H), 3.79 (s, 3H), 5.39 (d, J  = 1.24 Hz, 1H), 5.42 

(d, J  = 1.24 Hz, 1H), 6.52 (bs, 1H), 6.83-6.96 (m, 3H), 7.20-7.36 (m, 5H). 13C NMR (126 

MHz, CDCb) 5: 28.5 (s), 55.4 (s), 80.8 (s), 113.4 (s), 113.7 (s), 114.0 (s), 118.3 (s), 121.1 

(s), 129.0 (s), 129.2 (s), 136.2 (s), 138.1 (s), 143.2 (s), 149.5 (s), 152.8 (s), 159.6 (s). IR 

(thin film): 3331, 2976, 2360, 1727, 1700, 1608, 1584, 1519, 1454, 1429, 1404, 1392,
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1367, 1313, 1285, 1228, 1155, 1049, 1015, 897, 841, 784, 745, 715, 684, 589 cm’1. HRMS 

C20H23NO3N  [M+Na]+ calculated 348.1576, observed 348.1575.

Tert-butyl (4-(1-(3-butoxyphenyl)vinyl)phenyl)carbamate (3). Alkene 3 was 

synthesized according to the General Method A from 1.920 mmol of the corresponding 

acetophenone and purified via flash silica-gel column chromatography (using 10% ethyl 

acetate in hexanes) to afford isolated product, a clear, colorless liquid, in 33% yield, 0.236 

g (0.642 mmol). TLC (20% ethyl acetate in hexanes) Rf = 0.54. 1H NMR (500 MHz, 

CDCb) 5: 0.96 (t, J  = 7.33, 3H), 1.45-1.51 (m, 2H), 1.53 (s, 9H), 1.71-1.78 (m, 2H), 3.94 

(t, J  = 6.60 Hz, 2H), 5.38 (d, J  = 1.47, 1H), 5.40 (d, J  = 1.47, 1H), 6.51 (bs, 1H), 6.84-6.88 

(m, 2H), 6.88-6.92 (m, 1H), 7.22 (t, J  = 7.82, 1H), 7.26-7.30 (m, 2H), 7.32 (d, J  = 8.31, 

2H). 13C NMR (126 MHz, CDCb) 5: 14.0 (s), 19.4 (s), 28.5 (s), 31.5 (s), 67.8 (s), 80.8 (s),

113.6 (s), 113.9 (s), 114.7 (s), 118.3 (s), 120.9 (s), 129.0 (s), 129.2 (s), 136.3 (s), 138.1 (s),

143.1 (s), 149.5 (s), 152.8 (s), 159.1 (s). IR (thin film): 3333, 2959, 2932, 2871, 1729, 

1700, 1584, 1518, 1435, 1404, 1392, 1366, 1313, 1285, 1224, 1153, 1050, 1027, 1014, 

980, 933, 900, 840, 781, 733, 781, 733, 714, 683, 581 cm-1. HRMS C23H29NO3N  [M+Na]+ 

calculated 390.2045, observed 390.2048.

Tert-butyl (4-(1-(3,5-dimethylphenyl)vinyl)phenyl)carbamate (4). Alkene 4 

was synthesized according to General Method A from 3.190 mmol of the corresponding 

acetophenone and purified via flash silica-gel column chromatography (using 15% ethyl 

acetate in hexanes) to afford isolated product, a white solid, in 95% yield, 0.978 g (3.023 

mmol). TLC (20% ethyl acetate in hexanes) Rf = 0.52. M.P.: 98-101 °C. 1H NMR (500 

MHz, CDCb) 5: 1.54 (s, 9H), 2.31 (s, 6H), 5.36 (d, J  = 1.47 Hz, 1H), 5.38 (d, J  = 1.47 Hz, 

1H), 6.55 (bs, 1H), 6.93-6.99 (m, 3H), 7.26-7.31 (m, 2H), 7.33 (d, J  = 8.79 Hz, 2H). 13C
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NMR (500 MHz, CDCb) 5: 21.4 (s), 28.5 (s), 80.7 (s), 113.3 (s), 118.3 (s), 126.3 (s), 129.0 

(s), 129.5 (s), 136.6 (s), 137.7 (s), 138.0 (s), 141.7 (s), 149.8 (s), 152.9 (s). IR (thin film): 

3329, 2977, 2918, 2360, 1730, 1701, 1610, 1593, 1518, 1455, 1405, 1392, 1367, 1336, 

1313, 1292, 1230, 1156, 1091, 1052, 1027, 1015, 894, 842, 771, 731, 686, 610, 542 cm’1. 

HRMS C21H25NO2N  [M+Na]+ calculated 346.1783, observed 346.1779.

Tert-butyl (4-(1-(m-tolyl)vinyl)phenyl)carbamate (5). Alkene 5 was synthesized 

according to General Method A from 3.190 mmol of the corresponding acetophenone and 

purified via flash silica-gel column chromatography (using 15% ethyl acetate in hexanes) 

to afford isolated product, a yellow-white solid, in 80% yield, 0.788 g (2.546 mmol). TLC 

(20% ethyl acetate in hexanes) Rf = 0.52. M.P.: 93-94 °C. 1H NMR (500 MHz, CDCb) 5:

1.54 (s, 9H), 2.35 (s, 3H), 5.37 (d, J  = 1.47 Hz, 1H), 5.40 (d, J  = 1.47 Hz, 1H), 6.53 (bs, 

1H), 7.12-7.14 (m, 1H), 7.14-7.16 (m, 2H), 7.20-7.25 (m, 1H), 7.26-7.28 (m, 1H), 7.28

7.30 (m, 1H), 7.33 (d, J  = 8.79 Hz, 2H). 13C NMR (126 MHz, CDCb) 5: 21.6 (s), 28.5 (s),

80.8 (s), 113.4 (s), 118.3 (s), 125.6 (s), 128.2 (s), 128.6 (s), 129.0 (s), 129.1 (s), 136.5 (s),

137.8 (s), 138.0 (s), 141.7 (s), 149.7 (s), 152.9 (s). IR (thin film): 3329, 2977, 2929, 1729,

1699, 1610, 1585, 1518, 1454, 1403, 1392, 1367, 1313, 1290, 1231, 1155, 1052, 1027,

1015, 893, 841, 791. 744, 715, 683, 595 cm-1. HRMS C20H23NO2Na [M+Na]+ calculated 

332.1626, observed 332.1622.

1-methoxy-3-(1-phenylvinyl)benzene (6). Alkene 6 was synthesized according to 

General Method C from 9.6 mmol of 1-(3-methoxyphenyl)ethanone, stirring with HCl for 

96 hours, and purified via flash silica-gel column chromatography (using 15% ethyl acetate 

in hexanes), affording isolated product, a clear, colorless oil, in 42% yield, 0.853 g (4.058 

mmol). TLC (20% ethyl acetate in hexanes) Rf = 0.55. 1H NMR (300 MHz, CDCb) 5: 3.80
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(s, 3H), 5.47 (s, 2H), 6.85-6.91 (m, 2H), 6.91-6.96 (m, 1H), 7.23-7.29 (m, 1H), 7.30-7.38 

(m, 5H). 13C NMR (126 MHz, CDCb) 5: 55.4 (s), 113.3 (s), 114.1 (s), 114.6 (s), 121.0 (s),

127.9 (s), 128.3 (s), 128.4 (s), 129.3 (s), 141.5 (s), 143.1 (s), 150.1 (s), 159.6 (s). IR (thin 

film): 3055, 3027, 2937, 2833, 2359, 2340, 1597, 1575, 1487, 1463, 1447, 1431, 1329, 

1285, 1240, 1183, 1159, 1133, 1047, 898, 863, 777, 723, 699, 591, 549 cm’1. HRMS 

C15H 15O [M+H]+ calculated 211.1123, observed 211.1122.

1-methoxy-4-(1-phenylvinyl)benzene (7). Alkene 7 was synthesized according to 

General Method C from 9.6 mmol of 1-(4-methoxyphenyl)ethanone, stirring with HCl for 

65 hours, and purified via flash silica-gel column chromatography (using 15% ethyl acetate 

in hexanes), affording isolated product, a white solid, in 19% yield, 0.379 g (1.801 mmol). 

TLC (20% ethyl acetate in hexanes) Rf = 0.53. M.P.: 68-72 oC. 1H NMR (300 MHz, 

CDCb) 5: 3.84 (s, 3H), 5.37 (d, J  = 1.24 Hz, 1H), 5.41 (d, J  = 1.23 Hz, 1H), 6.85-6.88 (m, 

1H), 6.88-6.91 (m, 1H), 7.26-7.40 (m, 7H). 13C NMR (126 MHz, CDCb) 5: 55.4 (s), 113.1 

(s), 113.6 (s), 127.8 (s), 128.3 (s), 128.4 (s), 129.5 (s), 134.1 (s), 141.9 (s), 149.6 (s), 159.5 

(s). IR (thin film): 3093, 3031, 3005, 2951, 2904, 2835, 2536, 2359, 2341, 2029, 1967, 

1907, 1811, 1781, 1715, 1663, 1601, 1572, 1506, 1491, 1456, 1441, 1415, 1328, 1314, 

1288, 1245, 1178, 1161, 1151, 1116, 1082, 1069, 1027, 975, 963, 901, 841, 784, 747, 707, 

681, 650, 625, 612, 580, 551 cm-1. HRMS C15H 15O [M+H]+ calculated 211.1123, observed 

211.1124.

1,3-diethyl-5-(1-phenylvinyl)benzene (8). Alkene 8 was synthesized according to 

General Method C (except THF was distilled from sodium benzophenone) from 9.6 mmol 

of acetophenone (passed through a plug of activated, basic alumina prior to use), stirring 

with HCl for 40 hours, and purified via flash silica-gel column chromatography (using 15%
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ethyl acetate in hexanes for removal of bulk impurities prior to stirring in HCl and 100% 

hexanes for final purification), affording isolated product, a clear, colorless liquid, in 62% 

yield, 1.411 g (5.970 mmol). TLC (100% hexanes) Rf = 0.30. 1H NMR (300 MHz, CDCb) 

5: 1.25 (t, J  = 7.55 Hz, 6H), 2.64 (q, J  = 7.60 Hz, 4H), 5.45-5.49 (m, 2H), 7.03 (s, 3H),

7.32-7.43 (m, 5H). 13C NMR (126 MHz, CDCb) 5: 15.8 (s), 29.0 (s), 114.1 (s), 125.5 (s),

127.1 (s), 127.7 (s), 128.2 (s), 128.4 (s), 141.6 (s), 141.9 (s), 144.2 (s), 150.5 (s). IR (thin 

film): 3022, 2962, 2930, 2871, 2360, 2340, 1792, 1700, 1653, 1594, 1575, 1493, 1457, 

1443, 1374, 1347, 1318, 1237, 1144, 1095, 1072, 1027, 893, 872, 776, 726, 699, 668, 613 

cm-1. HRMS C18H21 [M+H]+ calculated 237.1643, observed 237.1639.

1.3-dimethoxy-5-(1-(4-methoxyphenyl)vinyl)benzene (17). This alkene was 

synthesized according to General Method C from 9.6 mmol of 1-(4- 

methoxyphenyl)ethanone, stirring with HCl for 96 hours, and purified via flash silica-gel 

column chromatography (using 15% ethyl acetate in hexanes), affording isolated product, 

a clear, colorless liquid, in 39% yield, 1.021 g (3.777 mmol). TLC (15% ethyl acetate in 

hexanes) Rf = 0.28. 1H NMR (300 MHz, CDCb) 5: 3.78 (s, 6H), 3.83 (s, 3H), 5.36-5.39 

(m, 1H), 5.40-5.42 (m, 1H), 6.44-6.48 (m, 1H), 6.49-6.54 (m, 2H), 6.84-6.91 (m, 2H), 

7.28-7.34 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 55.4 (s), 55.5 (s), 99.9 (s), 106.7 (s),

113.1 (s), 113.6 (s), 129.5 (s), 133.8 (s), 144.1 (s), 149.6 (s), 159.5 (s), 160.6 (s). IR (thin 

film): 2999, 2935, 2835, 2359, 1588, 1509, 1453, 1421, 1344, 1317, 1293, 1265, 1246, 

1203, 1177, 1153, 1132, 1113, 1087, 1063, 1049, 1033, 992, 935, 896, 835, 813, 721, 689, 

668, 595, 539 cm-1. HRMS C17H 19O3 [M+H]+ calculated 271.1334, observed 271.1331.

1.3-dimethoxy-5-(1-phenylvinyl)benzene (18). This alkene was synthesized 

according to General Method B from 9.6 mmol of acetophenone (passed through a plug of
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activated, basic alumina prior to use), stirring with HCl overnight, and purified via flash 

silica-gel column chromatography (using 2% acetone in hexanes), followed by bulb-to- 

bulb vacuum distillation with heating, distilling off a lower-boiling impurity and affording 

a clear, yellow liquid in 15% isolated yield, 0.350 g (1.455 mmol). TLC (20% ethyl acetate 

in hexanes) Rf = 0.51. 1H NMR (500 MHz, CDCb) 5: 3.79 (s, 6H), 5.49 (s, 2H), 6.48 (t, J  

= 2.44 Hz, 1H), 6.53 (d, J  = 1.95 Hz, 2H), 7.31-7.40 (m, 5H). 13C NMR (126 MHz, CDCb) 

5: 55.5 (s), 99.9 (s), 106.7 (s), 114.5 (s), 127.9 (s), 128.3 (s), 128.3 (s), 141.3 (s), 143.8 (s),

150.1 (s), 160.7 (s). IR (thin film): 2999, 2935, 2836, 1587, 1493, 1452, 1421, 1342, 1288, 

1266, 1203, 1151, 1091, 1062, 1047, 1027, 992, 934, 899, 835, 777, 726, 697, 643, 615, 

538 cm-1. HRMS C16H 17O2 [M+H]+ calculated 241.1229 observed 241.1225.

1,3-dimethoxy-5-(1-(4-(trifluoromethyl)phenyl)vinyl)benzene (19). This alkene 

was synthesized according to General Method C from 9.6 mmol of 1-(4- 

(trifluoromethyl)phenyl)ethanone, stirring in HCl approximately 10 days, and purified via 

flash silica-gel column chromatography (using 15% ethyl acetate in hexanes), affording 

isolated product, a clear, yellow liquid, in 4% yield, 0.117 g (0.379 mmol). TLC (15% ethyl 

acetate in hexanes) Rf = 0.37. 1H NMR (300 MHz, CDCb) 5: 3.79 (s, 6H), 5.53 (d, J  = 0.83 

Hz, 1H), 5.59 (d, J  = 0.82 Hz, 1H), 6.47-6.51 (m, 3H), 7.48 (d, J  = 8.65 Hz, 2H), 7.61 (dd, 

J  = 8.10 Hz, 0.55 Hz, 2H). 13C NMR (126 MHz, CDCb) 5: 55.5 (s), 100.1 (s), 106.7 (s),

116.2 (s), 124.4 (q, J  = 272.8 Hz), 125.3 (q, J  = 3.78 Hz), 128.7 (s), 129.9 (q, J  = 32.3 Hz),

142.9 (s), 144.9 (s), 149.0 (s), 160.9 (s). 19F NMR (282 MHz, CDCb) 5: -63. IR (thin film): 

2938, 2839, 2360, 2341, 1591, 1457, 1423, 1324, 1268, 1206, 1157, 1124, 1089, 1065,

1016, 908, 849, 744, 689, 668, 648 cm-1. HRMS C17H 16O2F3 [M+H]+ calculated 309.1102, 

observed 309.1100.
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1.3-dimethoxy-5-(1-(3-methoxyphenyl)vinyl)benzene (20). This alkene was 

synthesized according to General Method C from 9.6 mmol of 1 -(3,5- 

dimethoxyphenyl)ethanone, stirring with HCl for 44 hours, and purified via flash silica-gel 

column chromatography (using 15% ethyl acetate in hexanes), affording isolated product, 

a clear, colorless liquid, in 62% yield, 1.606 g (5.941 mmol). TLC (15% ethyl acetate in 

hexanes) Rf = 0.36. 1H NMR (300 MHz, CDCb) 5: 3.77 (s, 6H), 3.80 (s, 3H), 5.46 (s, 2H), 

6.42-6.45 (m, 1H), 6.49 (d, J  = 2.33 Hz, 2H), 6.84-6.96 (m, 3H), 7.21-7.28 (m, 1H). 13C 

NMR (75 MHz, CDCb) 5: 55.3 (s), 55.5 (s), 100.0 (s), 106.7 (s), 113.3 (s), 114.0 (s), 114.7 

(s), 120.9 (s), 129.2 (s), 142.7 (s), 143.6 (s), 150.0 (s), 159.5 (s), 160.6 (s). IR (thin film): 

2999, 2937, 2835, 1586, 1486, 1453, 1422, 1346, 1317, 1284, 1249, 1227, 1203, 1153,

1063, 1046, 993, 940, 926, 904, 882, 838, 786, 730, 706, 688, 630 cm-1. HRMS C17H 19O3 

[M+H]+ calculated 271.1334, observed 271.1328.

1.3-dimethoxy-5-(1-(p-tolyl)vinyl)benzene (21). This alkene was synthesized 

according to General Method C (with the exception that THF distilled from sodium 

benzophenone was used) from 9.6 mmol of 1-(p-tolyl)ethanone, stirring with HCl for 40 

hours, and purified via flash silica-gel column chromatography (using 15% ethyl acetate 

in hexanes), affording isolated product, a clear, faintly yellow liquid, in 21% yield, 0.514 

g (2.020 mmol). TLC (15% ethyl acetate in hexanes) Rf = 0.44. 1H NMR (500 MHz, 

CDCb) 5: 2.38 (s, 3H), 3.78 (s, 6H), 5.42 (d, J  = 1.02 Hz, 1H), 5.44 (d, J  = 0.98 Hz, 1H), 

6.44-6.46 (m, 1H), 6.51 (d, J  = 1.96 Hz, 2H), 7.15 (d, J  = 8.31 Hz, 2H), 7.24-7.28 (m, 2H). 

13C NMR (126 MHz, CDCb) 5: 21.3 (s), 55.5 (s), 99.9 (s), 106.8 (s), 113.9 (s), 128.2 (s),

129.0 (s), 137.7 (s), 138.4 (s), 144.0 (s), 150.0 (s), 160.6 (s). IR (thin film): 2998, 2935, 

2836, 2360, 1588, 1510, 1452, 1421, 1341, 1317, 1307, 1263, 1203, 1152, 1086, 1063,
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1048, 1019, 992, 934, 899, 824, 730, 687, 646, 593, 538 cm-1. HRMS C17H 19O2 [M+H]+ 

calculated 255.1385, observed 255.1389.

4-(1-(3,5-dimethoxyphenyl)vinyl)-1,1'-biphenyl (22). This alkene was 

synthesized according to General Method C from 9.6 mmol of 1 -(3,5- 

dimethoxyphenyl)ethanone, stirring with HCl for 100 hours, and purified via flash silica- 

gel column chromatography (using 15% ethyl acetate in hexanes), affording isolated 

product, a white solid, in 52% yield, 1.580 g (4.995 mmol). TLC (10% ethyl acetate in 

hexanes) Rf = 0.32. M.P.: 73-75 oC. 1H NMR (300 MHz, CDCb) 5: 3.79 (s, 6H), 5.49 (d, 

J  = 1.24 Hz, 1H), 5.54 (d, J  = 1.23 Hz, 1H), 6.46-6.49 (m, 1H), 6.54 (d, J  = 2.33 Hz, 2H),

7.32-7.40 (m, 1H), 7.42-7.49 (m, 4H), 7.55-7.65 (m, 4H). 13C NMR (126 MHz, CDCb) 

5: 55.5 (s), 100.0 (s), 106.8 (s), 114.6 (s), 127.0 (s), 127.2 (s), 127.5 (s), 128.7 (s), 128.9 

(s), 140.2 (s), 140.7 (s), 140.9 (s), 143.8 (s), 149.7 (s), 160.7 (s). IR (thin film): 3028, 2999, 

2935, 2836, 2361, 2338, 1589, 1486, 1453, 1422, 1350, 1307, 1272, 1259, 1204, 1154,

1064, 1049, 1007, 935, 902, 846, 794, 771, 742, 718, 697, 668, 617 cm-1. HRMS C22H21O2 

[M+H]+ calculated 317.1542, observed 317.1540.

1-(1-(4-chlorophenyl)vinyl)-3,5-dimethoxybenzene (23). This alkene was 

synthesized according to Method B from 9.6 mmol of 1-(4-chlorophenyl)ethanone, stirring 

with HCl for 100 hours, and purified via flash silica-gel column chromatography (using 

15% ethyl acetate in hexanes), affording isolated product, a clear, pale yellow liquid, in 

43% yield, 1.144 g (4.165 mmol). TLC (10% ethyl acetate in hexanes) Rf = 0.37. 1H NMR 

(300 MHz, CDCb) 5: 3.77 (s, 6H), 5.44 (d, J  = 1.10 Hz, 1H), 5.47 (d, J  = 1.10 Hz, 1H), 

6.46 (s, 3H), 7.27-7.33 (m, 4H). 13C NMR (126 MHz, CDCb) 5: 55.5 (s), 100.1 (s), 106.7 

(s), 114.9 (s), 128.5 (s), 129.7 (s), 133.8 (s), 139.8 (s), 143.3 (s), 149.0 (s), 160.7 (s). IR
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(thin film): 3000, 2936, 2837, 2362, 2338, 1589, 1489, 1454, 1422, 1350, 1275, 1204, 

1155, 1093, 1064, 1050, 1013, 935, 903, 835, 787, 717, 688, 668 cm-1. HRMS C16H 16O2Cl 

[M+H]+ calculated 275.0839, observed 275.0836.

1-(1-(3-isopropylphenyl)vinyl)-3,5-dimethoxybenzene (24). This alkene was 

synthesized according to General Method C from 9.6 mmol of 1 -(3,5- 

dimethoxyphenyl)ethanone, stirring with HCl for 44 hours, and purified via flash silica-gel 

column chromatography (using 15% ethyl acetate in hexanes), affording isolated product, 

a clear, yellow liquid, in 54% yield, 1.477 g (5.229 mmol). TLC (15% ethyl acetate in 

hexanes) Rf = 0.49. 1H NMR (300 MHz, CDCb) 5: 1.25 (d, J  = 6.87 Hz, 6H), 2.90 (sep, J  

= 6.86 Hz, 1H), 3.77 (s, 6H), 5.46 (s, 2H), 6.44-6.47 (m, 1H), 6.50-6.54 (m, 2H), 7.14

7.21 (m, 2H), 7.21-7.29 (m, 2H). 13C NMR (75 MHz, CDCb) 5: 24.2 (s), 34.2 (s), 55.5 (s),

100.0 (s), 106.7 (s), 114.4 (s), 125.9 (s), 126.0 (s), 126.6 (s), 128.2 (s), 141.1 (s), 143.9 (s),

148.8 (s), 150.3 (s), 160.6 (s). IR (thin film): 2959, 2837, 2175, 1980, 1591, 1455, 1422, 

1351, 1279, 1204, 1156, 1065, 1050, 897, 836, 802, 707, 636 cm"1. HRMS C19H23O2 

[M+H]+ calculated 283.1698, observed 283.1695.

1-(1-(3,5-diethylphenyl)vinyl)-3,5-dimethoxybenzene (25). This alkene was 

synthesized according to General Method B from 9.6 mmol of 1 -(3,5- 

dimethoxyphenyl)ethanone and stirred with HCl for 4.5 days. The product was purified via 

flash silica gel column chromatography (15% ethyl acetate in hexanes, to remove the 

majority of impurities prior to stirring in HCl, and 15% ethyl acetate in hexanes for 

purification of alkene) to afford isolated product, a clear, colorless oil, in 58% yield, 1.507 

g (5.575 mmol). TLC (10% ethyl acetate in hexanes) Rf = 0.39. 1H NMR (300 MHz, 

CDCb) 5: 1.24 (t, J  = 7.55 Hz, 6H), 2.63 (q, J  = 7.60 Hz, 4H), 3.78 (s, 6H). 5.45 (d, J  =
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1.24 Hz, 1H), 5.46 (d, J  = 1.23 Hz, 1H), 6.45-6.48 (m, 1H), 6.53 (d, J  = 2.33 Hz, 2H), 7.02 

(s, 3H); 13C NMR (126 MHz, CDCb) 5: 15.9, 29.0, 55.5, 100.0, 106.7, 114.2, 125.4, 127.2,

141.2, 144.1, 144.2, 150.4, 160.6; IR (thin film): 2962, 2933, 2872, 2837, 2361, 2338, 

1591, 1455, 1422, 1354, 1329, 1279, 1204, 1155, 1065, 940, 873, 837, 711, 687, 

668 cm'1. HRMS C20H25O2 [M+H]+ calculated 297.1855, observed 297.1852.

1,2,3-trimethoxy-5-(1-phenylvinyl)benzene (26). This alkene was synthesized 

according to General Method C (with the exception that the magnesium turnings, 1,2- 

dibromoethane, and THF were heated with a heat gun and then stirred for 5 hours) from

9.6 mmol of acetophenone (in 4.5 mL of THF) and stirred with HCl overnight. The product 

was purified via flash silica gel column chromatography (2% acetone in hexanes, to remove 

the majority of impurities prior to stirring in HCl, and 15% ethyl acetate in hexanes for 

purification of alkene), followed by bulb-to-bulb distillation to remove remaining low 

boiling impurities, to afford isolated product, a clear, pale yellow oil, in 17% yield, 0.439 

g (1.625 mmol). TLC (20% ethyl acetate in hexanes) Rf = 0.36. 1H NMR (300 MHz, 

CDCb) 5: 3.81 (s, 6H), 3.88 (s, 3H), 5.42 (d, J  = 1.24 Hz, 1H), 5.45 (d, J  = 1.23 Hz, 1H),

6.55 (s, 2H), 7.31-7.40 (m, 5H). 13C NMR (126 MHz, CDCb) 5: 56.3, 61.1, 105.8, 114.1,

128.0, 128.3, 128.4, 137.4, 138.0, 141.3, 150.2, 153.0. IR (thin film): 2936, 2834, 2360, 

2340, 1700, 1653, 1578, 1503, 1462, 1409, 1347, 1267, 1234, 1182, 1123, 1026, 1006, 

945, 898, 843, 779, 738, 700, 669, 622, 580 cm-1. HRMS C17H 19O3 [M+H]+ calculated 

271.1334, observed 271.1327.

Tert-butyl (4-(1-(4-ethylphenyl)vinyl)phenyl)carbamate (27). This alkene was 

synthesized according to General Method A from 3.19 mmol of tert-butyl (4- 

acetylphenyl)carbamate and purified by flash silica-gel column chromatography (10%
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ethyl acetate in hexanes) to afford isolated product in 49% yield, 0.509 g (1.574 mmol). 

M.P.: 105-107 oC. TLC (20% ethyl acetate in hexanes) Rf = 0.54. 1H NMR (300 MHz, 

CDCb) 5: 1.26 (t, J  = 7.62 Hz, 3H), 1.53 (s, 9H), 2.67 (q, J  = 7.60 Hz, 2H), 5.37 (s, 2H),

6.50 (bs, 1H), 7.16 (d, J  = 7.96 Hz, 2H), 7.23-7.36 (m, 6H). 13C NMR (126 MHz, CDCb) 

5: 15.64, 28.49, 28.70, 80.74, 112.97, 118.28, 127.76, 128.37, 129.08, 136.59, 137.99,

139.00, 143.99, 149.46, 152.85. IR (thin film): 3327, 2967, 2931, 1730, 1699, 1609, 1587, 

1520, 1455, 1406, 1392, 1367, 1313, 1231, 1158, 1121, 1076, 1052, 1016, 895, 839, 772,

740, 668, 617, 582 cm-1. HRMS C21H25NO2N  [M+Na]+ calculated 346.1783, observed 

346.1791.

Tert-butyl (4-(1-(3-((tert-butyldiphenylsilyl)oxy)phenyl)vinyl)phenyl)

carbamate. This alkene was synthesized according to General Method A from 4.894 mmol 

of tert-butyl (4-acetylphenyl)carbamate and purified via flash silica gel column 

chromatography (10% ethyl acetate in hexanes) to afford isolated product, a clear, pale 

yellow, viscous oil, in 26% yield, 0.694 g (1.263 mmol). TLC (20% ethyl acetate in 

hexanes) Rf = 0.49. 1H NMR (500 MHz, CDCb) 5: 1.10 (s, 9H), 1.54 (s, 9H), 5.15 (d, J  = 

0.98 Hz), 5.27 (d, J  = 0.98, 1H), 6.48 (bs, 1H), 6.67-6.73 (m, 1H), 6.77 (t, J  = 1.96 Hz, 

1H), 6.78-6.84 (m, 1H), 6.98-7.06 (m, 1H), 7.02 (t, J  = 7.82 Hz, 1H), 7.13-7.17 (m, 2H), 

7.23-7.29 (m, 1H), 7.33-7.39 (m, 4H), 7.39-7.45 (m, 2H), 7.68-7.72 (m, 4H); 13C NMR 

(126 MHz, CDCb) 5: 19.6, 26.7, 28.5, 80.7, 113.4, 118.2, 119.2, 120.0, 121.4, 127.9, 

128.9, 130.0, 133.1, 135.0, 135.7, 136.2, 137.9, 142.8, 149.2, 155.6. IR (thin film): 3330, 

2975, 2931, 2858, 1711, 1576, 1518, 1500, 1482, 1427, 1404, 1392, 1367, 1313, 1267, 

1232, 1155, 1112, 1051, 1015, 1027, 1001, 966, 906, 843, 822, 774, 791, 730, 699, 648, 

611 cm-1. HRMS C35H39NOsSiNa [M+Na]+ calculated 572.2597, observed 572.2610.
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3-(1-(4-((terf-butoxycarbonyl)amino)phenyl)vmyl)phenyl acetate (28). This 

alkene was afforded by subjecting tert-butyl (4-(1-(3-((tert- 

butyldiphenylsilyl)oxy)phenyl)vinyl)phenyl)carbamate (0.61 mmol) to a desilylation 

protocol,54 resulting in 0.180 g (0.579 mmol) phenolic alkene, which was added to a flame- 

dried 10 mL round bottom flask, followed by addition of CH2Q 2 (1.16 mL), triethylamine 

(1.2 equiv, 0.695 mmol), and distilled acetic anhydride (1.2 equiv, 0.695 mmol). After 

stirring the reaction mixture at room temperature overnight, the solvent was removed and 

the resulting material was dissolved in ethyl acetate, washed with 1 M NaOH and brine, 

dried with Na2SO4, and concentrated. Following purification via column chromatography 

(ethyl acetate in hexanes), the product, a white-peach solid, was afforded in 78% isolated 

yield, 0.160 g (0.454 mmol). M.P.: 118-121 oC. TLC (30% ethyl acetate in hexanes) Rf = 

0.47. 1H NMR (500 MHz, CDCb) 5: 1.52 (s, 9H), 2.28 (s, 3H), 5.41 (s, 1H), 5.43 (s, 1H),

6.51 (bs, 1H), 7.02-7.06 (m, 2H), 7.22 (dd, J  = 7.82 Hz, 0.98 Hz, 1H), 7.24-7.29 (m, 2H),

7.31-7.36 (m, 3H). 13C NMR (126 MHz, CDCb) 5: 21.3, 28.5, 80.8, 114.3, 118.4, 121.0,

121.6, 125.9, 129.1, 129.2, 135.8, 138.2, 143.2, 148.6, 150.7, 152.8, 169.6. IR (thin film): 

3345, 2977, 2928, 1766, 1726, 1610, 1586, 1520, 1455, 1433, 1405, 1392, 1367, 1314, 

1290, 1226, 1195, 1156, 1131, 1051, 1015, 945, 894, 843, 804, 787, 733, 709, 597 cm-1. 

HRMS C21H23NO4N  [M+Na]+ calculated 376.1525, observed 376.1531.

1,2-dimethoxy-4-(1-phenylvinyl)benzene (29). The alkene was synthesized 

according to General Method C (with the exception that the magnesium turnings, 1,2- 

dibromoethane, and THF were heated with a heat gun and then stirred for 5 hours) from

9.6 mmol of acetophenone (in 4.5 mL of THF) and stirred with HCl for overnight. The 

product was purified via flash silica gel column chromatography (2% acetone in hexanes,
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to remove the majority of impurities prior to stirring in HCl, and 15% ethyl acetate in 

hexanes for purification of alkene) to afford isolated product, a white solid, in 23% yield, 

0.521 g (2.169 mmol). M.P.: 78-85 oC. TLC (20% ethyl acetate in hexanes) Rf = 0.33. 1H 

NMR (300 MHz, CDCb) 5: 3.84 (s, 3H), 3.91 (s, 3H), 5.39 (d, J  = 1.24 Hz, 1H), 5.42 (d, 

J  = 1.24 Hz, 1H), 6.81-6.86 (m, 1H), 6.87-6.93 (m, 2H), 7.31-7.40 (m, 5H). 13C NMR 

(126 MHz, CDCb) 5: 55.9, 56.0, 110.9, 111.6, 113.3, 121.0, 127.8, 128.2, 128.4, 134.4,

141.7, 148.7, 148.9, 149.8. IR (thin film): 3091, 3062, 3027, 2995, 2955, 2836, 2574, 2361, 

2340, 1612, 1599, 1577, 1510, 1467, 1441, 1414, 1319, 1308, 1274, 1252, 1228, 1177, 

1143, 1133, 1084, 1027, 925, 896, 867, 825, 819, 777, 763, 709, 697, 662, 626, 581 cm-1. 

HRMS C16H 17O2 [M+H]+ calculated 241.1229, observed 241.1225.

Pentan-3-yl (4-(1-(4-(trifluoromethyl)phenyl)vinyl)phenyl)carbamate (30). 

The alkene was synthesized according to previously published procedure7 from 1.20 mmol 

of pentan-3-yl (4-acetylphenyl)carbamate and purified via flash silica-gel column 

chromatography (using 100% dichloromethane) to afford isolated product in 26% yield,

0.091 g (0.242 mmol). M.P.: 82-86 °C. TLC (30% acetone in hexanes) Rf = 0.62. 1H NMR 

(500 MHz, CDCb) 5: 0.95 (t, J  = 7.57 Hz, 6H), 1.56-1.70 (m, 4H), 4.76 (q, J  = 6.23 Hz, 

1H), 5.44 (d, J  = 0.98 Hz, 1H), 5.52 (s, 1H), 6.72 (bs, 1H), 7.24-7.28 (m, 2H), 7.40 (d, J  = 

8.31 Hz, 2H), 7.44 (d, J  = 8.30 Hz, 2H), 7.59 (d, J  = 7.82 Hz, 2H). 13C NMR (126 MHz, 

CDCb) 5: 9.7, 26.8, 78.2, 115.2, 118.4, 124.4 (q, J  = 272.8 Hz), 125.3 (q, J  = 4.1 Hz),

128.7, 129.0, 129.9 (q, J  = 32.4 Hz), 135.6, 138.3, 145.3 (app d, J  = 1.5 Hz), 148.5, 153.8. 

19F NMR (282 MHz, CDCb) 5: -63.2. IR (thin film): 3317, 2969, 2880, 2361, 1697, 1611, 

1590, 1522, 1463, 1408, 1320, 1220, 1165, 1122, 1076, 1062, 1016, 930, 903, 847, 770, 

739, 706, 652, 619 cm-1. HRMS C21H22NO2F3N  [M+Na]+ calculated 400.1500, observed
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Pentan-3-yl (4-acetylphenyl)carbamate. To a solution of 4-acetylphenyl 

isocyanate (31.025 mmol, 1 equiv) in CH2Q 2 (155 mL) and under nitrogen atmosphere 

was added DMAP (3.723 mmol, 0.12 equiv), NEt3 (62.050 mmol, 2 equiv), and pentan-3- 

ol (31.025 mmol, 1.2 equiv). After the reaction mixture was stirred for 5 hours at room 

temperature and then refluxed overnight, the solvent was removed by rotary evaporation 

and purified by flash-column chromatography (50% ethyl acetate in dichloromethane with 

1% triethylamine) to afford isolated product, a white solid, in 70% yield, 5.389 g (21.614 

mmol). M.P.: 123-124 oC. TLC (5% methanol in dichloromethane) Rf = 0.71. 1H NMR 

(300 MHz, CDCb) 5: 0.93 (t, J  = 12.47 Hz, 6H ), 1.56-1.69 (m, 4H), 2.57 (s, 3H), 4.75 (p, 

J  = 6.18 Hz, 1H), 6.89 (bs, 1H), 7.49 (d, J  = 14.42 Hz, 2H), 7.89-7.96 (m, 2H). 13C NMR 

(126 MHz, CDCb) 5: 9.7, 26.6, 26.7, 78.6, 117.6, 130.0, 132.1, 142.8, 153.3, 197.0. IR 

(thin film): 3302, 2968, 2938, 2879, 2362, 1730, 1708, 1665, 1589, 1529, 1462, 1410, 

1359, 1312, 1272, 1216, 1179, 1119, 1078, 1051, 959, 929, 840, 770, 706, 592 cm-1. HRMS 

C14H19NO3Na [M+Na]+ calculated 272.1263, observed 272.1260.

Butyl (4-(1-(4-(trifluoromethyl)phenyl)vinyl)phenyl)carbamate (31). This 

alkene was synthesized according to the schematic in Figure 2.18. A dry round-bottom 

flask was charged with the corresponding benzenaminium chloride (2.4 mmol, 1 equiv). 

Under a nitrogen atmosphere, 12 mL CH2O 2 was added, followed by pyridine (5.536 

mmol, 2.3 equiv), which was passed through a plug of activated, basic alumina prior to 

use. After stirring 5 min. at room temperature, the solution was cooled to 0 oC, and 

corresponding chloroformate (2.888 mmol, 1.2 equiv) was added. The reaction mixture 

continued stirring at 0 oC for 2 hr. Then, the mixture was warmed to room temperature and
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Figure 2.18. Schematic for the synthesis of butyl (4-(1-(4-(trifluoromethyl)phenyl)vinyl) 
phenyl)carbamate.



purified via silica-gel column chromatography (using 100% dichloromethane) to afford 

isolated product in 54% yield, 0.461 g (1.268 mmol). M.P.: 86-88 °C. TLC (100% 

dichloromethane) Rf = 0.52. 1H NMR (500 MHz, CDCb) 5: 0.96 (t, J  = 7.33 Hz, 3H), 1.42 

(sex, 2H, J  = 7.42 Hz), 1.67 (m, 2H), 4.18 (t, J  = 6.60 Hz, 2H), 5.44 (s, 1H), 5.52 (s, 1H), 

6.70 (bs, 1H), 7.25 (d, J  = 8.79 Hz, 2H), 7.37 (d, J  = 7.82 Hz, 2H), 7.44 (d, J  = 7.82 Hz, 

2H), 7.58 (d, J  = 8.31 Hz, 2H). 13C NMR (126 MHz, CDCb): 5 13.8, 19.2, 31.1, 65.40,

115.3, 118.5, 124.34 (q, J  = 272.5 Hz), 125.3 (q, J  = 3.8 Hz), 128.7, 129.0, 129.9 (q, J  =

32.6 Hz), 135.7, 138.1, 145.3, 148.4, 153.8. 19F NMR (282 MHz, CDCb): 5 -63.2; IR (thin 

film): 3319, 2960, 2875, 2361, 1702, 1610, 1589, 1523, 1467, 1408, 1320, 1218, 1163, 

1110, 1076, 1062, 1015, 960, 903, 841, 769, 734, 708, 651, 618, 600 cm’1. HRMS 

C20H20NO2F3Na [M+Na]+ calculated 386.1344, observed 386.1343.

Tert-butyl (4-(1-(4-(trifluoromethyl)phenyl)vmyl)phenyl)carbamate. The 

alkene was synthesized according to General Method A from 8.5 mmol of tert-butyl (4- 

acetylphenyl)carbamate and purified via flash silica-gel column chromatography (using 

100% dichloromethane) to afford isolated product in 54% yield, 1.663 g (4.578 mmol). 

M.P.: 119-122 °C. TLC (5% acetone in hexanes) Rf = 0.17. 1H NMR (300 MHz, CDCb): 

5 1.54 (s, 9H), 5.44 (s, 1H), 5.52 (d, J  = 0.83 Hz, 1H), 6.55 (bs, 1H), 7.25 (m, 2H), 7.36 (d, 

J  = 7.96 Hz, 2H), 7.45 (d, J  = 7.96 Hz, 2H), 7.59 (d, J  = 8.1 Hz, 2H). 13C NMR (75 MHz, 

CDCb) 5: 28.5, 80.9, 115.2, 118.4, 124.4 (q, J  = 272.8 Hz), 125.28 (q, J  = 3.8 Hz), 128.7,

129.0, 129.87 (q, J  = 32.4 Hz), 135.5, 138.4, 145.3, 148.5, 152.8. 19F NMR (282 MHz, 

CDCb) 5: -63.20. IR (thin film): 3328, 2979, 2361, 1699, 1612, 1587, 1521, 1456, 1406,

1368, 1322, 1231, 1157, 1123, 1076, 1062, 1015, 902, 842, 771, 740, 701, 651, 620, 563 

cm-1. HRMS C20H20NO2F3N  [M+Na]+ calculated 386.1344, observed 386.1354.
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4-(1-(4-(trifluoromethyl)phenyl)vinyl)benzenaminium chloride. To a dry

round-bottom flask, under nitrogen atmosphere, was added methanol (5.2 mL), which 

solution was cooled to 0 oC. Acetyl chloride (41.487 mmol, 15 equiv) was added dropwise, 

and the solution stirred 10 min. before a solution of tert-butyl (4-(1-(4- 

(trifluoromethyl)phenyl)vinyl)phenyl)carbamate (2.690 mmol, 1 equiv) in methanol (10 

mL) was slowly added. The resulting reaction mixture was warmed to room temperature 

and stirred for 3 hrs. After the solvent was removed in vacuo, CH2Q 2 was added, followed 

by addition of hexanes until the solution became cloudy. The solvent was again removed 

in vacuo to afford a solid. The solid was washed with diethyl ether, and residual solvent 

was removed in vacuo to give the crude product in 53% yield, 0.426 g (1.422 mmol). The 

crude product was directly carried on to react with the appropriate chloroformate.

Synthetic Methods: Alkene Reduction

Asymmetric hydrogenation was carried out according to Method C or D, as noted 

for each product. For characterization purposes, pure product samples were obtained and 

characterized according to one of the below procedures: Method C, Method D, or the 

General Racemic Hydrogenation Procedure.

General Method D: Asymmetric hydrogenation procedure. To a 5 mL oven- 

dried, screw-top vial, equipped with a stirbar and cooled under nitrogen, was added 

(IrCODL)BArF (0.003 mmol, 0.046 equiv). The vial was fitted with a screw-cap septum 

and placed under a nitrogen atmosphere. A solution of the corresponding alkene (0.056 

mmol, 1 equiv) in CH2Cl2 (2 mL) was added. The nitrogen inlet was removed and replaced 

with a needle open to the atmosphere. After placing the vial in a high-pressure reactor
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vessel, the vessel was evacuated and refilled with hydrogen gas to 15 psi three to five times. 

Then, the reaction was allowed to stir for 15 hours at room temperature, at which time the 

pressure in the vessel was slowly released. The solvent was evaporated, and then 1:1 

diethyl ether:pentane was added. This solution was passed through a short silica column, 

to remove the catalyst, and concentrated in vacuo. Conversion of starting material to 

product was then measured by 1H NMR, and enantiomeric excess was measured by SFC 

or HPLC, as indicated.

General Method E: Asymmetric hydrogenation procedure. To a 5 mL oven- 

dried, screw-top vial, equipped with a stirbar and cooled under nitrogen, was added the 

corresponding alkene substrate (0.056 mmol, 1 equiv). The vial was fitted with a screw- 

cap septum and placed under a nitrogen atmosphere. 2 mL of a standard solution of 

(IrCODL)BArF in CH2Q 2 (0.001 M) was added. The nitrogen inlet was removed and 

replaced with a needle, open to the atmosphere. After placing the vial in a high-pressure 

reactor vessel, the vessel was evacuated and refilled with hydrogen gas to 15 psi three to 

five times. Then, the reaction was allowed to stir for 15 hours at room temperature, at which 

time the pressure in the vessel was slowly released. The solvent was evaporated, and then 

1:1 diethyl ether:pentane was added. This solution was passed through a short silica 

column, to remove the catalyst, and concentrated in vacuo. Conversion of starting material 

to product was then measured by 1H NMR, and enantiomeric excess was measured by SFC 

or HPLC, as indicated.

General Method F: Racemic hydrogenation procedure. To an oven-dried round 

bottom flask, equipped with a stirbar and cooled nitrogen, was added 10% Pd/C (0.011 

mmol, 0.2 equiv). After bringing the flask under nitrogen atmosphere, the corresponding
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alkene (0.056 mmol, 1 equiv) in 0.3 mL of ethyl acetate was added to the flask. Using a 

hydrogen-filled balloon, the flask was subsequently evacuated and refilled with hydrogen 

three times, and the reaction was stirred, under balloon-pressure of hydrogen, overnight. 

Finally, the solvent was evaporated, and the remaining residue was taken up in 1:1 diethyl 

ether:pentane, passed through a short silica column, and concentrated in vacuo.

Assignment of absolute configuration. Absolute configurations were assigned by 

analogy to the known absolute configuration of (R)-(+)-4-(1-(3,5-dimethoxyphenyl)ethyl)- 

1,1'-biphenyl.20

(K)-(+)-tert-butyl (4-(1-(3,5-dimethoxyphenyl)ethyl)phenyl)carbamate.

Reduction was carried out according to General Method D to afford 1H NMR conversions 

of 88% (run 1) and 89% (run 2), and er’s of 92:8 and 92:8, respectively. Absolute 

configuration was assigned by analogy (vide supra). [a]^0 =  +2.8 (c 0.84, CHCb). The 

product’s purity was assessed by comparison to published characterization data.19 

Enantiomers were separated by SFC on a Chiralpak AD-H column (4.6 mm x 250 mm, 5 

|im particle size) under the following conditions: 38 oC, 20% isopropyl alcohol, 2 mL min-

1, 160 Bar. R t = 12.05 min, 13.77 min.

Tert-butyl (4-(1-(3-methoxyphenyl)ethyl)phenyl)carbamate. The diarylmethine 

was synthesized according to General Method D to afford 1H NMR conversions of 64% 

(run 1) and 54% (run 2), and er’s of 74:26 and 74:26, respectively. TLC (20% ethyl acetate 

in hexanes) Rf = 0.44. M.P.: 76-79 °C. 1H NMR (500 MHz, CDCb) 5: 1.51 (s, 9H), 1.59 

(d, J  = 7.33 Hz, 3H), 3.77 (s, 3H), 4.07 (q, J  = 7.33 Hz, 1H), 6.41 (bs, 1H), 6.72 (ddd, J  =

8.30 Hz, 2.44 Hz, 0.97 Hz, 1H), 6.75 (t, J  = 2.20 Hz, 1H), 6.79 (dt, J  = 8.31 Hz, 0.98 Hz, 

1H), 7.14 (d, J  = 8.79 Hz, 2H), 7.19 (t, J  = 7.82 Hz, 1H), 7.24-7.28 (m, 2H). 13C NMR
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(126 MHz, CDCb) 5: 22.0, 28.5, 44.3, 55.3, 80.5, 111.1, 113.8, 118.8, 120.2, 128.2, 129.4,

136.4, 141.1, 148.3, 153.0, 159.7. IR (thin film): 3334, 2969, 2931, 2359, 1699, 1594, 

1520, 1486, 1454, 1435, 1410, 1392, 1366, 1313, 1231, 1155, 1051, 1016, 900, 836, 777,

741, 696 cm-1. HRMS C20H25NO3N  [M+Na]+ calculated 350.1732, observed 350.1732. 

Enantiomers were separated by HPLC on a Chiralpak AD-H column (4.6 mm x 250 mm, 

5 |im particle size) under the following conditions: ambient temperature, 10% isopropyl 

alcohol in hexanes, 0.9 mL min-1. R t = 9.76 min, 10.69 min.

Tert-butyl (4-(1-(3-butoxyphenyl)ethyl)phenyl)carbamate. The diarylmethine 

was synthesized according to General Method D to afford 1H NMR conversions of 66% 

(run 1) and 66% (run 2) and er’s of 75:25 and 75:25, respectively. TLC (20% ethyl acetate 

in hexanes) Rf = 0.48. 1H NMR (500 MHz, CDCb) 5: 0.96 (t, J  = 7.33 Hz, 3H), 1.45-1.53 

(m, 11H), 1.59 (d, J  = 7.33 Hz, 3H), 1.69-1.79 (m, 2H), 3.91 (t, J  = 6.35 Hz, 2H), 4.06 (q, 

J  = 7.33 Hz, 1H), 6.41 (bs, 1H), 6.70 (dd, J  = 8.31 Hz, 2.45 Hz, 1H), 6.73-6.79 (m, 2H),

7.11-7.19 (m, 3H), 7.22-7.29 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 14.0 (s), 19.4 (s),

22.0 (s), 28.5 (s), 31.5 (s), 44.3 (s), 67.7 (s), 80.5 (s), 111.6 (s), 114.4 (s), 118.8 (s), 120.0 

(s), 128.2 (s), 129.3 (s), 136.4 (s), 141.2 (s), 148.2 (s), 153.0 (s), 159.3 (s). IR (thin film): 

3335, 2962, 2931, 2872, 2359, 1727, 1699, 1594, 1520, 1486, 1453, 1410, 1391, 1367, 

1313, 1228, 1155, 1052, 1028, 1016, 974, 904, 835, 775, 740, 696 cm-1. HRMS 

C23H31NO3Na [M+Na]+ calculated 392.2202, observed 392.2210. Enantiomers were 

separated by HPLC on a Chiralpak AD-H column (4.6 mm x 250 mm, 5 |im particle size) 

under the following conditions: ambient temperature, 5% isopropyl alcohol in hexanes, 0.9 

mL min-1. R t = 9.74 min, 10.51 min.

Tert-butyl (4-(1-(3,5-dimethylphenyl)ethyl)phenyl)carbamate. The
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diarylmethine was synthesized according to General Method D to afford 1H NMR 

conversions of 71% (run 1) and 68% (run 2) and er’s of 64:36 and 62:38, respectively. TLC 

(20% ethyl acetate in hexanes) Rf = 0.53. 1H NMR (500 MHz, CDCb) 5: 1.51 (s, 9H), 1.58 

(d, J  = 7.33 Hz, 3H), 2.27 (s, 6H), 4.02 (q, J  = 7.33 Hz, 1H), 6.40 (bs, 1H), 6.81 (s, 3H),

7.12-7.18 (m, 2H), 7.26 (d, J  = 8.31 Hz, 2H). 13C NMR (126 MHz, CDCb) 5: 21.5 (s),

22.1 (s), 28.5 (s), 44.2 (s), 80.5 (s), 118.8 (s), 125.5 (s), 127.8 (s), 128.2 (s), 136.3 (s), 137.9 

(s), 141.5 (s), 146.6 (s), 153.0 (s). IR (thin film): 3334, 2969, 2929, 2360, 2167, 1728,

1700, 1596, 1521, 1455, 1410, 1392, 1367, 1313, 1232, 1159, 1051, 1028, 1017, 901, 835, 

771, 702, 543 cm-1. HRMS C21H27NO2Na [M+Na]+ calculated 348.1939, observed 

348.1946. Enantiomers were separated by SFC on a Chiralcel OD column (4.6 mm x 250 

mm) under the following conditions: 28 oC, 10% isopropyl alcohol, 3 mL min"1. R t = 4.36 

min, 14.58 min.

Tert-butyl (4-(1-(m-tolyl)ethyl)phenyl)carbamate. The diarylmethine was 

synthesized according to General Method D to afford 1H NMR conversions of 57% (run 

1) and 50% (run 2) and er’s of 49:51 and 52:48, respectively. TLC (20% ethyl acetate in 

hexanes) Rf = 0.54. 1H NMR (500 MHz, CDCb) 5: 1.51 (s, 9H), 1.60 (d, J  = 7.33 Hz, 3H),

2.31 (s, 3H), 4.07 (q, J  = 7.33 Hz, 1H), 6.41 (bs, 1H), 6.97-7.03 (m, 3H), 7.12-7.19 (m, 

3H), 7.23-7.29 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 21.6 (s), 22.1 (s), 28.5 (s), 44.2 

(s), 80.5 (s), 118.8 (s), 124.7 (s), 126.9 (s), 128.2 (s), 128.4 (s), 128.5 (s), 136.4 (s), 138.0 

(s), 141.4 (s), 146.6 (s), 153.0 (s). IR (thin film): 3334, 2972, 2929, 2362, 1728, 1699, 

1594, 1521, 1455, 1410, 1392, 1367, 1314, 1233, 1158, 1054, 1017, 902, 837, 779, 741, 

703, 552 cm-1. HRMS C20H25NO2Na [M+Na]+ calculated 334.1783, observed 334.1784. 

Enantiomers for run 1 were separated by HPLC on a Chiralpak AD-H column (4.6 mm x
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250 mm, 5 |im particle size) under the following conditions: ambient temperature, 3% 

isopropyl alcohol in hexanes, 0.9 mL min-1. R t = 10.39 min, 11.40 min. Enantiomers for 

run 2 were separated by SFC on a Chiralcel OZ-H column (4.6 mm x 250 mm, 5 |im particle 

size) under the following conditions: 40 oC, 5% isopropyl alcohol, 2 mL min-1. R t = 9.66 

min, 11.01 min.

1-methoxy-3-(1-phenylethyl)benzene. The diarylmethine, a previously reported 

molecule,55 was synthesized according to General Method E to afford 1H NMR conversions 

of >95% (run 1) and >95% (run 2) and er’s of 73:27 and 75:25, respectively. Enantiomers 

were separated by SFC on a Chiralcel OJ-H column (4.6 mm x 250 mm) under the 

following conditions: 40 oC, 1% methanol, 4 mL min-1. R t = 10.71 min, 11.66 min.

1-methoxy-4-(1-phenylethyl)benzene. The diarylmethine, a previously reported 

molecule,20 was synthesized according to General Method E to afford 1H NMR conversions 

of >95% (run 1) and >95% (run 2) and er’s of 52:48 and 54:46, respectively. Enantiomers 

were separated by SFC on a Chiralcel OJ-H column (4.6 mm x 250 mm) under the 

following conditions: 40 oC, 1% methanol, 4 mL min-1. R t = 10.71 min, 11.66 min.

1,3-diethyl-5-(1-phenylvinyl)benzene. The diarylmethine was synthesized 

according to General Method E to afford 1H NMR conversions of >95% (run 1) and >95% 

(run 2) and er’s of 49:51 and 48:52, respectively. TLC (10% ethyl acetate in hexanes) Rf = 

0.63. 1H NMR (300 MHz, CDCb) 5: 1.21 (t, J  = 7.62 Hz, 6H), 1.63 (d, J  = 7.28 Hz, 3H), 

2.59 (q, J  = 7.60 Hz, 4H), 4.11 (q, J  = 7.19 Hz, 1H), 6.88 (s, 3H), 7.14-7.32 (m, 5H). 13C 

NMR (126 MHz, CDCb) 5: 15.8 (s), 22.2 (s), 29.0 (s), 45.0 (s), 124.7 (s), 125.3 (s), 126.0 

(s), 127.8 (s), 128.4 (s), 144.3 (s), 146.4 (s), 146.8 (s). IR (thin film): 3024, 2964, 2931, 

2872, 2359, 2341, 1599, 1495, 1458, 1373, 1319, 1067, 1030, 868, 762, 711, 699,
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668 cm-1. HRMS C18H22Ag [M+Ag]+ calculated 345.0772, observed 345.0797. 

Enantiomers were separated by SFC on a Chiralcel OJ-H column (4.6 mm x 250 mm) under 

the following conditions: 40 oC, 0% cosolvent, 2 mL min"1. R t = 5.75 min, 6.21 min.

(K)-(-)-1,3-diethyl-5-(1-phenylethyl)benzene (9). The diarylmethine was 

synthesized according to General Method E to afford 1H NMR conversions of >95% (run 

1) and >95% (run 2) and er’s of 92:8 and 93:7, respectively. Absolute configuration was 

assigned by analogy (vide supra). TLC (10% ethyl acetate in hexanes) Rf = 0.33. 1H NMR 

(500 MHz, CDCb) 5: 1.63 (d, J  = 7.33 Hz, 3H), 3.76 (s, 6H), 4.09 (q, J  = 7.33 Hz, 1H),

6.31 (t, J  = 2.44 Hz, 1H), 6.40 (d, J  = 2.45 Hz, 2H), 7.19 (t, J  = 7.33 Hz, 1H), 7.24 (d, J  = 

7.33 Hz, 2H), 7.27-7.31 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 21.9 (s), 45.1 (s), 55.4 

(s), 97.8 (s), 106.2 (s), 126.2 (s), 127.7 (s), 128.5 (s), 146.2 (s), 149.0 (s), 160.9 (s). IR (thin 

film): 2964, 2934, 2836, 2359, 1594, 1495, 1457, 1427, 1345, 1322, 1289, 1204, 1153, 

1070, 1042, 1029, 990, 927, 834, 764, 703, 668, 540 cm-1. HRMS C16H 19O2 [M+H]+ 

calculated 243.1385, observed 243.1388. [a]^0 =  -2.5 (c 0.40, CHCb). Enantiomers were 

separated by SFC on a Chiralpak AD-H column (4.6 mm x 250 mm, 5 |im particle size) 

under the following conditions: 32 oC, gradient 5%-50% methanol over 10 min., 3 mL 

min-1. R t = 2.92 min, 3.36 min.

(K)-(+)-1,3-dimethoxy-5-(1-(4-methoxyphenyl)ethyl)benzene (10). The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of >95% (run 1) and >95% (run 2) and er’s of 91:9 and 92:8, respectively. 

Absolute configuration was assigned by analogy (vide supra). TLC (10% ethyl acetate in 

hexanes) Rf = 0.24. 1H NMR (300 MHz, CDCb) 5: 1.59 (d, J  = 7.14 Hz, 3H), 3.75 (s, 6H), 

3.78 (s, 3H), 4.03 (q, J  = 7.23 Hz, 1H), 6.27-6.31 (m, 1H), 6.34-6.39 (m, 2H), 6.79-6.85
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(m, 2H), 7.11-7.18 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 22.1 (s). 44.3 (s), 55.4 (s),

97.7 (s), 106.0 (s), 113.9 (s), 128.6 (s), 138.3 (s), 149.4 (s), 158.0 (s), 160.8 (s). IR (thin 

film): 2962, 2934, 2835, 2360, 2341, 1653, 1606, 1595, 1540, 1559, 1540, 1511, 1458, 

1428, 1373, 1302, 1247, 1204, 1179, 1154, 1117, 1074, 1035, 927, 831, 810, 695, 

668 cm-1. HRMS C17H21O3 [M+H]+ calculated 273.1491, observed 273.1483. [a]2D0 =  +5.0 

(c 0.48, CHCb). Enantiomers were separated by SFC on a Chiralcel OJ-H column (4.6 mm 

x 250 mm) under the following conditions: 40 oC, 3% methanol, 4 mL min"1. R t = 5.66 

min, 6.37 min.

(K)-(+)-1,3-dimethoxy-5-(1-(p-tolyl)ethyl)benzene (11). The diarylmethine was 

synthesized according to General Method E to afford 1H NMR conversions of >95% (run 

1) and >95% (run 2) and er’s of 88:12 and 89:11, respectively. Absolute configuration was 

assigned by analogy (vide supra). TLC (10% ethyl acetate in hexanes) Rf = 0.35. 1H NMR 

(300 MHz, CDCb) 5: 1.60 (d, J  = 7.28 Hz, 3H), 2.31 (s, 3H), 3.76 (s, 6H), 4.05 (q, J  = 7.19 

Hz, 1H), 6.29-6.32 (m, 1H), 6.38-6.42 (m, 2H), 7.07-7.16 (m, 4H). 13C NMR (126 MHz, 

CDCb) 5: 21.1 (s), 22.0 (s), 44.8 (s), 55.4 (s), 97.7 (s), 106.1 (s), 127.5 (s), 129.2 (s), 135.7 

(s), 143.2 (s), 149.2 (s), 160.8 (s). IR (thin film): 2964, 2933, 2836, 2360, 1595, 1513, 

1458, 1427, 1344, 1289, 1204, 1155, 1076, 1043, 1021, 991, 927, 818, 740, 695, 668, 544 

cm-1. HRMS C17H21O2 [M+H]+ calculated 257.1542, observed 257.1536. [a]2D0 =  +0.9 (c 

0.55, CHCb). Enantiomers were separated by SFC on a Chiralcel OJ-H column (4.6 mm 

x 250 mm) under the following conditions: 40 oC, 3% methanol, 4 mL min-1. R t = 4.45 

min, 4.99 min.

(K)-(+)-4-(1-(3,5-dimethoxyphenyl)ethyl)-1,1'-biphenyl (12). The diarylmethine 

was synthesized according to General Method E to afford 1H NMR conversions of >95%

94



(run 1) and >95% (run 2) and er’s of 89:11 and 89:11, respectively. Absolute configuration 

previously reported (vide supra). TLC (10% ethyl acetate in hexanes) Rf = 0.33. 1H NMR 

(300 MHz, CDCb) 5: 1.66 (d, J  = 7.14 Hz, 3H), 3.77 (s, 6H), 4.13 (q, J  = 7.23 Hz, 1H),

6.31-6.34 (m, 1H), 6.44 (d, J  = 2.33 Hz, 2H), 7.28-7.37 (m, 3H), 7.38-7.47 (m, 2H), 7.48

7.61 (m, 4H). 13C NMR (126 MHz, CDCb) 5: 21.9 (s), 44.9 (s), 55.4 (s), 97.8 (s), 106.2 

(s), 127.2 (s), 127.2 (s), 127.3 (s), 128.1 (s), 128.8 (s), 139.1 (s), 141.1 (s), 145.3 (s), 148.9 

(s), 160.9 (s). IR (thin film): 3027, 2964, 2933, 2835, 2361, 2338, 2210, 2176, 2159, 1595, 

1486, 1458, 1427, 1345, 1288, 1204, 1154, 1076, 1045, 1008, 927, 835, 767, 738, 697, 

668, 549 cm-1. HRMS C22H23O2 [M+H]+ calculated 319.1698, observed 319.1706. [a]2D0 =  

+11.4 (c 0.57, CHCb). Enantiomers were separated by SFC on a Chiralcel AY-H column 

(4.6 mm x 250 mm, 5 |im particle size) under the following conditions: 40 oC, gradient 

5%-50% methanol over 10 min., 3 mL min-1. R t = 5.40 min, 6.12 min.

(K)-(+)-1-(1-(4-chlorophenyl)ethyl)-3,5-dimethoxybenzene (13). The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of >95% (run 1) and >95% (run 2) and er’s of 96:4 and 96:4, respectively. 

Absolute configuration was assigned by analogy (vide supra). TLC (10% ethyl acetate in 

hexanes) Rf = 0.39. 1H NMR (300 MHz, CDCb) 5: 1.59 (d, J  = 7.28 Hz, 3H), 3.76 (s, 6H),

4.05 (q, J  = 7.23 Hz, 1H), 6.31-6.34 (m, 1H), 6.33-3.37 (m, 2H), 7.12-7.18 (m, 2H), 7.21

7.27 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 21.8 (s), 44.5 (s), 55.4 (s), 97.9 (s), 106.1 

(s), 128.6 (s), 129.0 (s), 131.9 (s), 144.7 (s), 148.4 (s), 160.9 (s). IR (thin film): 2965, 2934, 

2836, 2361, 2337, 1595, 1491, 1458, 1427, 1407, 1344, 1288, 1204, 1155, 1092, 1075, 

1042, 1014, 928, 829, 782, 730, 697, 668 cm-1. HRMS C16&7ClO2 [M+H]+ calculated 

277.0995, observed 277.0995. [a ] |0 = +4.5 (c 0.71, CHCb). Enantiomers were separated
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by SFC on a Chiralpak AD-H column (4.6 mm x 250 mm, 5 |im particle size) under the 

following conditions: 40 oC, 3% methanol, 4 mL min-1. R t = 3.16 min, 5.89 min.

(K)-(-)-1,3-dimethoxy-5-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene (14). The

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of >95% (run 1) and >95% (run 2) and er’s of 96:4 and 97:3, respectively. 

Absolute configuration was assigned by analogy (vide supra). TLC (15% ethyl acetate in 

hexanes) Rf = 0.43. 1H NMR (300 MHz, CDCb) 5: 1.63 (d, J  = 7.28 Hz, 3H), 3.76 (s, 6H), 

4.13 (q, J  = 7.28 Hz, 1H), 6.31-6.34 (m, 1H), 6.34-6.37 (m, 2H), 7.33 (dd, J  = 8.10 Hz,

0.69 Hz, 2H), 7.53 (d, J  = 8.10 Hz, 2H). 13C NMR (126 MHz, CDCb) 5: 21.6 (s), 45.0 (s), 

55.4 (s), 98.0 (s), 106.2 (s), 124.4 (q, J  = 272.5 Hz), 125.5 (q, J  = 3.8 Hz), 128.0 (s), 128.5 

(q, J  = 32.4 Hz), 147.8 (s), 150.3 (m), 161.0 (s). 19F NMR (282 MHz, CDCb) 5: -63. IR 

(thin film): 2967, 2839, 2360, 1596, 1459, 1429, 1325, 1205, 1159, 1118, 1068, 1043, 

1017, 928, 841, 742, 698, 668, 611 cm-1. HRMS C17H 18O2F3 [M+H]+ calculated 311.1259, 

observed 311.1253. [a]^0 =  -2.6 (c 0.69, CHCb). Enantiomers were separated by SFC on 

a Chiralpak AD-H column (4.6 mm x 250 mm) under the following conditions: 40 oC, 2% 

methanol, 2 mL min-1, 160 Bar. R t = 3.65 min, 4.62 min.

(K)-(-)-1-(1-(3-isopropylphenyl)ethyl)-3,5-dimethoxybenzene (15). The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of >95% (run 1) and >95% (run 2) and er’s of 85:15 and 86:14, respectively. 

Absolute configuration was assigned by analogy (vide supra). TLC (15% ethyl acetate in 

hexanes) Rf = 0.50. 1H NMR (300 MHz, CDCb) 5: 1.24 (d, J  = 6.87 Hz, 6H), 1.62 (d, J  =

7.28 Hz, 3H), 2.88 (sep, J  = 6.91 Hz, 1H), 3.76 (s, 6H), 4.07 (q, J  = 7.23 Hz, 1H), 6.30 (t, 

J  = 2.20 Hz, 1H), 6.41 (dd, J  = 2.33 Hz, 0.55 Hz, 2H), 7.02-7.09 (m, 2H), 7.09-7.12 (m,
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1H), 7.18-7.25 (m, 1H). 13C NMR (75 MHz, CDCb) 5: 22.0 (s), 24.2 (s), 24.2 (s), 34.3 (s), 

45.2 (s), 55.4 (s), 97.7 (s), 106.1 (s), 124.1 (s), 125.1 (s), 126.1 (s), 128.4 (s), 146.0 (s), 

149.0 (s), 149.2 (s), 160.8 (s). IR (thin film): 2960, 2836, 2364, 1596, 1459, 1427, 1345, 

1289, 1204, 1154, 1071, 1043, 928, 832, 796, 707, 668 cm-1. HRMS C19H25O2 [M+H]+ 

calculated 285.1855, observed 285.1862. [a]^0 =  -3.1 (c 0.70, CHCb). Enantiomers were 

separated by SFC on a Chiralcel OJ-H column (4.6 mm x 250 mm) under the following 

conditions: 27 oC, 0% cosolvent, 4 mL min-1. R t = 3.21 min, 3.76 min.

(K)-(-)-1,3-dimethoxy-5-(1-(3-methoxyphenyl)ethyl)benzene (16). The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of >95% (run 1) and >95% (run 2) and er’s of 71:29 and 71:29, respectively. 

Absolute configuration was assigned by analogy (vide supra). TLC (15% ethyl acetate in 

hexanes) Rf = 0.38. 1H NMR (300 MHz, CDCb) 5: 1.60 (d, J  = 7.14 Hz, 3H), 3.75 (s, 6H), 

3.78 (s, 3H), 4.05 (q, J  = 7.14 Hz, 1H), 6.29-6.31 (m, 1H), 6.39 (d, J  = 2.33 Hz, 2H), 6.73 

(ddd, J  = 8.17 Hz, 2.54 Hz, 0.96 Hz, 1H), 6.76-6.80 (m, 1H), 6.83 (dt, J  = 7.69 Hz, 0.82 

Hz, 1H), 7.17-7.23 (m, 1H). 13C NMR (75 MHz, CDCb) 5: 21.8 (s), 45.1 (s), 55.3 (s), 55.4 

(s), 97.8 (s), 106.1 (s), 111.1 (s), 113.8 (s), 120.1 (s), 129.4 (s), 147.8 (s), 148.8 (s), 159.7 

(s), 160.8 (s). IR (thin film): 2964, 2835, 2362, 1595, 1486, 1458, 1428, 1318, 1287, 1263, 

1204, 1154, 1040, 928, 834, 782, 735, 708 cm-1. HRMS C17H21O3 [M+H]+ calculated 

273.1491, observed 273.1503. [a]^0 =  -1.3 (c 0.61, CHCb). Enantiomers were separated 

by SFC on a Chiralcel OJ-H column (4.6 mm x 250 mm) under the following conditions: 

24 oC, 0% cosolvent, 2 mL min"1. R t = 15.55 min, 17.48 min.

1-(1-(3,5-diethylphenyl)ethyl)-3,5-dimethoxybenzene. The diarylmethine was 

synthesized according to General Method E to afford 1H NMR conversions of >95% (run
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1) and >95% (run 2) and er’s of 78.5:21.5 and 76.2:23.8, respectively. TLC (10% ethyl 

acetate in hexanes) Rf = 0.41. 1H NMR (300 MHz, CDCb) 5: 1.22 (t, J  = 7.62 Hz, 6H),

1.61 (d, J  = 7.28 Hz, 3H), 2.60 (q, J  = 7.60 Hz, 4H), 3.77 (s, 6H), 4.03 (q, J  = 7.28 Hz, 

1H), 6.30 (t, J  = 2.33 Hz, 1H), 6.41 (d, J  = 2.33 Hz, 2H), 6.86-6.92 (m, 3H). 13C NMR 

(126 MHz, CDCb) 5: 15.8, 22.1, 29.0, 45.2, 55.4, 97.7, 106.2, 124.6, 125.4, 144.3, 146.0,

149.3, 160.8; IR (thin film): 2963, 2932, 2872, 2836, 2361, 2339, 2024, 1595, 1458, 1427, 

1373, 1325, 1204, 1155, 1045, 928, 869, 832, 724, 699, 668 cm-1. HRMS C20H27O2 [M+H]+ 

calculated 299.2011, observed 299.2005. Enantiomers were separated by SFC on a 

Chiralcel OZ-H column (4.6 mm x 250 mm, 5 |im particle size) under the following 

conditions: 27 oC, 1% isopropyl alcohol, 2 mL min-1, 160 Bar. R t = 12.35 min, 13.57 min.

1,2,3-trimethoxy-5-(1-phenylethyl)benzene. The diarylmethine was synthesized 

according to General Method E to afford 1H NMR conversions of 59% (run 1) and 66% 

(run 2) and er’s of 92.0:8.0 and 91.0:9.0, respectively. TLC (15% ethyl acetate in hexanes) 

Rf = 0.22. 1HNM R (300 MHz, CDCb) 5: 1.63 (d, J  = 7.14 Hz, 3H), 3.82 (s, 6H), 3.82 (s, 

3H), 4.09 (q, J  = 7.32 Hz, 1H), 6.44 (s, 2H), 7.16-7.34 (m, 5H). 13C NMR (126 MHz, 

CDCb) 5: 22.1, 45.1, 56.2, 60.9, 104.8, 126.2, 127.6, 128.5, 136.3, 142.1, 146.3, 153.2. IR 

(thin film): 2964, 2934, 2835, 2360, 1588, 1507, 1458, 1418, 1328, 1234, 1183, 1125, 

1009, 920, 835, 780, 702, 661, 614 cm-1. HRMS C17H20O3N  [M+Na]+ calculated 

295.1310, observed 295.1313. Enantiomers were separated by HPLC on a Chiralpak AD- 

H column (4.6 mm x 250 mm, 5 ^m particle size) under the following conditions: ambient 

temperature, 1% isopropyl alcohol in hexanes, 1 mL min-1. R t = 11.29 min, 12.75 min.

Tert-butyl (4-(1-(4-ethylphenyl)ethyl)phenyl)carbamate. The diarylmethine was 

synthesized according to General Method D to afford a 1H NMR conversion of 49% and
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er of 55.9:44.1 and General Method E to afford a 1H NMR conversion of 54% and er of 

55.3:44.7. M.P.: 87-91 °C. TLC (15% ethyl acetate in hexanes) Rf = 0.42. 1H NMR (500 

MHz, CDCb) 5: 1.22 (t, J  = 7.57 Hz, 3H), 1.51 (s, 9H), 1.60 (d, J  = 7.33 Hz, 3H), 2.61 (q, 

J  = 7.49 Hz, 2H), 4.08 (q, J  = 7.33 Hz, 1H), 6.40 (bs, 1H), 7.11 (s, 4H), 7.12-7.16 (m, 2H), 

7.24-7.29 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 15.7, 22.1, 28.5, 28.5, 43.9, 80.5, 118.8,

127.6, 127.9, 128.2, 136.3, 141.5, 141.9, 143.9, 153.0. IR (thin film): 3336, 2966, 2930, 

2873, 2361, 1728, 1700, 1614, 1594, 1521, 1454, 1410, 1392, 1367, 1313, 1233, 1159, 

1055, 1016, 902, 831, 773, 604, 550 cm-1. HRMS C21H27NO2Na [M+Na]+ calculated 

348.1939, observed 348.1938. Enantiomers were separated by HPLC on a Chiralpak AD- 

H column (4.6 mm x 250 mm, 5 ^m particle size) under the following conditions: ambient 

temperature, 3% isopropyl alcohol in hexanes, 0.9 mL min-1. R t = 10.93 min, 12.90 min.

3-(1-(4-((terf-butoxycarbonyl)amino)phenyl)ethyl)phenyl acetate. The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of 13% (run 1) and 28% (run 2) and er’s of 67.8:32.2 and 68.6:31.4, 

respectively. M.P.: 66-71 oC. TLC (20% ethyl acetate in hexanes) Rf = 0.25. 1H NMR (300 

MHz, CDCb) 5: 1.51 (s, 9H), 1.59 (d, J  = 7.28 Hz, 3H), 2.27 (s, 3H), 4.10 (q, J  = 7.23 Hz, 

1H), 6.43 (bs, 1H), 6.87-6.94 (m, 2H), 7.03-7.09 (m, 1H), 7.09-7.16 (m, 2H), 7.21-7.32 

(m, 3H). 13C NMR (126 MHz, CDCb) 5: 21.3, 22.0, 28.5, 44.0, 80.6, 118.9, 119.3, 120.8,

125.3, 128.3, 129.3, 136.6, 140.6, 148.4, 150.8, 153.0, 169.6. IR (thin film): 3348, 2972, 

2930, 2359, 1765, 1724, 1594, 1522, 1486, 1455, 1411, 1392, 1367, 1314, 1205, 1158, 

1052, 1016, 938, 903, 886, 837, 796, 775, 697 cm-1. HRMS C21H25NO4N  [M+Na]+ 

calculated 378.1681, observed 378.1686. Enantiomers were separated by SFC on a 

Chiralpak AD-H column (4.6 mm x 250 mm, 5 |im particle size) under the following
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conditions: 41 oC, 20% isopropyl alcohol, 2 mL min-1, 160 Bar. R t = 8.13 min, 9.86 min.

1,2-dimethoxy-4-(1-phenylethyl)benzene. The diarylmethine was synthesized 

according to General Method E to afford er’s of 77.0:23.0 (run 1) and 78.0:22.0 (run 2), 

respectively. This molecule was previously reported.56 Enantiomers were separated by 

HPLC on a Chiralcel OJ-H column (4.6 mm x 250 mm, 5 |im particle size) under the 

following conditions: ambient temperature, 0.5% isopropyl alcohol in hexanes, 2 mL 

min-1. R t = 40.48 min, 54.13 min.

Pentan-3-yl (4-(1-(4-(trifluoromethyl)phenyl)ethyl)phenyl)carbamate. The 

diarylmethine was synthesized according to General Method E to afford 1H NMR 

conversions of 24% (run 1) and 24% (run 2) and er’s of 61.8:38.2 and 62.2:37.8, 

respectively. TLC (100% dichloromehane) Rf = 0.50. 1H NMR (500 MHz, CDCb) 5: 0.93 

(t, J  = 7.57 Hz, 6H), 1.55-1.66 (m, 7H), 4.16 (q, J  = 7.16 Hz, 1H), 4.73 (p, J  = 6.23 Hz, 

1H), 6.54 (bs, 1H), 7.11-7.16 (m, 2H), 7.28-7.36 (m, 4H), 7.52 (d, J  = 7.82 Hz, 2H). 13C 

NMR (126 MHz, CD2O 2): 5 9.8, 21.8, 27.0, 44.4, 78.0, 119.0, 124.9 (q, J  = 272.3 Hz),

125.6 (q, J  = 3.8 Hz), 128.3, 128.4 (q, J  = 32.1 Hz), 128.4, 137.2, 140.5, 151.4, 154.0. 19F 

NMR (282 MHz, CDCb) 5: -63.0. IR (thin film): 3323, 2970, 2937, 2880, 2361, 2339, 

2164, 2049, 1699, 1617, 1597, 1526, 1459, 1414, 1325, 1226, 1164, 1123, 1070, 1016, 

931, 837, 769, 668 cm-1. HRMS C21H24NO2F3N  [M+Na]+ calculated 402.1657, observed 

402.1661. Enantiomers were separated by SFC on a Chiralpak AD-H column (4.6 mm x 

250 mm, 5 |im particle size) under the following conditions: 42 oC, 7% isopropyl alcohol, 

4 mL min-1, 160 Bar. R t = 10.35 min, 12.01 min.

Butyl (4-(1-(4-(trifluoromethyl)phenyl)ethyl)phenyl)carbamate. The 

diarylmethine was synthesized according to General Method E to afford 1H NMR
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conversions of 18% (run 1) and 18% (run 2) and er’s of 58.8:41.2 and 60.1:39.9, 

respectively. M.P.: 70-72 °C. TLC (100% dichloromethane) Rf = 0.45. 1H NMR (500 

MHz, CDCb) 5: 0.95 (t, J  = 7.33 Hz, 3H), 1.37-1.45 (m, 2H), 1.61-1.69 (m, 5H), 4.13— 

4.19 (m, 3H), 6.55 (bs, 1H), 7.13 (d, J  = 8.80 Hz, 2H), 7.30 (d, J  = 7.82 Hz, 4H), 7.52 (d, 

J  = 8.80 Hz, 2H). 13C NMR (126 MHz, CD2Ch) 5: 13.9, 19.5, 21.8, 31.4, 44.5, 65.4, 119.2, 

124.9 (q, J  = 272.3 Hz), 125.7 (q, J  = 3.8 Hz), 128.3, 128.4 (q, J  = 32.4 Hz), 128.5, 137.0, 

140.7, 151.3, 154.1. 19F NMR (282 MHz, CDCb) 5: -63.0. IR (thin film): 3321, 2964, 

2875, 2361, 2338, 2176, 2160, 2136, 2040, 2012, 1977, 1703, 1617, 1598, 1531, 1457, 

1415, 1326, 1223, 1164, 1122, 1070, 1016, 837, 770, 668, 545 cm-1. HRMS 

C20H22NO2F3Na [M+Na]+ calculated 388.1500, observed 388.1512. Enantiomers were 

separated by SFC on a Chiralpak AD-H column (4.6 mm x 250 mm, 5 |im particle size) 

under the following conditions: 27 oC, 15% isopropyl alcohol, 2 mL min-1, 160 Bar. R t =

11.66 min, 13.42 min.

1,3-dichloro-5-(1-phenylethyl)benzene. The diarylmethine was synthesized 

according to General Method E to afford 1H NMR conversions of 18% (run 1) and 22% 

(run 2) and er’s of 50.4:49.6 and 53.6:46.4, respectively. The racemic sample was 

synthesized according to a previously published hydroarylation procedure using boronic 

ester 2-(3,5-dichlorophenyl)-1,3,2-dioxaborolane.18 TLC (hexanes) Rf = 0.58. 1H NMR 

(500 MHz, CD2Cl2) 5: 1.62 (d, J  = 7.22 Hz, 3H), 4.13 (q, J  = 7.17 Hz, 1H), 7.04—7.55 (m, 

8H). 13C NMR (126 MHz, CD2Ch) 5: 21.75, 44.98, 124.1, 125.6, 126.8, 127.9, 128.1, 

133.98, 144.12, 149.43. IR (thin film): 2967, 2925, 2850, 1586, 1565, 1495, 1451, 1377, 

1118, 1104, 1029, 1009, 856, 800, 777, 759, 700, 687, 668 cm-1. MS CnHuCh 

[M]+calculated 250.0, observed 250.0. Enantiomers were separated by SFC on a Chiralpak
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OJ-H column (4.6 mm x 250 mm) under the following conditions: 40 °C, 0% cosolvent, 2 

mL min-1, 100 Bar. R t = 19.56 min, 21.23 min.

2-(3,5-dichlorophenyl)-1,3,2-dioxaborolane. To an oven-dried round bottom 

flask fitted with a condenser was added (3,5-dichlorophenyl)boronic acid (7.86 mmol, 1.0 

equiv). After bringing the flask under a nitrogen atmosphere, 60 mL of benzene was added. 

The reaction mixture was heated to 55 °C and stirred for 1 hour, then heated to reflux and 

stirred for an additional 45 minutes. To the suspension of boronic acid in benzene was 

added ethylene glycol (11.4 mmol, 1.45 equiv), and the reaction mixture continued stirring 

at refluxing temperature for another 15 minutes, affording a homogeneous reaction 

mixture. After cooling to room temperature, MgSO4 was added until there was no clumping 

of the drying agent upon addition, and the slurry was stirred for 10 minutes, followed by 

filtration and concentration, in vacuo, to afford product as a white solid in quantitative 

yield. TLC (30% ethyl acetate in hexanes) Rf = 0.48; M.P.: 57-58 °C; 1H-NMR (500 MHz, 

CDCb): 5 4.38 (s, 4H), 7.44 (t, J  = 0.49 Hz, 1H), 7.64 (d, J  = 0.49 Hz, 2H); 13C-NMR (126 

MHz, CDCb): 5 66.4, 131.5, 132.9, 134.9; IR (thin film): 3074, 2981, 2914, 1820, 1556, 

1482, 1454, 1443, 1421, 1404, 1369, 1357, 1326, 1255, 1244, 1226, 1134, 1113, 1100, 

1003, 992, 941, 894, 874, 832, 792, 715, 702, 694, 642 cm-1; HRMS C17H20O3-C2H3O2 

[M+AcO]- calculated 275.0049, observed 275.0059.

Optimization of Hydrogenation Conditions 

Design of Experiments (DoE) principles were employed to identify the optimal 

conditions under which the (IrCODPhosPrOx)BArF-catalyzed hydrogenations were 

performed. DoE principles indicate that by systematically varying experimental conditions 

across a range of interest and evaluating these changes’ influence on some measureable
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outcome, the relationship between conditions’ variations and outcome can be 

mathematically related.57 From such a mathematical relationship, the optimal combination 

of assessed variables could be predicted.

With this foundation, quantifiable, modifiable conditions—catalyst loading, 

concentration, and pressure—to optimize enantiomeric excess (ee) were identified. Next, 

the range of experimental interest was identified for each variable based upon conditions 

typical of iridium-catalyzed hydrogenations reported in the literature: 1.1 mol% to 4.6 

mol% catalyst loading, 0.03 M to 0.5 M in CH2Q 2, 1 to 50 bar H2 pressure.32 To understand 

the effect of variation across each of these ranges, a third point was incorporated into the 

experimental design at the center of each variable’s range, resulting in a 3x3x3 matrix.

While simultaneous optimization of each variable would be facilitated by 

evaluating each variable combination, this results in 27 experiments (Figure 2.19a), some 

of which provide redundant information. Instead, by selecting an appropriate experimental 

design matrix, the number of experiments performed was reduced while still gathering 

sufficient information to model the relationship between the modified variables and ee. 

Applying a face-centered cubic (FCC) design matrix to the 3x3x3 matrix reduced the 

number of experiments performed, from 27 to 15 experiments (Figure 2.19b). The results 

of these 15 experiments, performed on substrate 1, are reported in Table 2.3.

Performing standard stepwise regression analysis (using MATLAB) to relate ee to 

catalyst loading, concentration, and pressure yielded Eq. 2.5.48 According to p-value test, 

catalyst loading was a statistically insignificant variable to the model. Through assessment 

of Eq. 2.5 and its graphical representation in Figure 2.20, it is readily apparent that ee 

values increase as concentration and pressure decrease. The lowest pressure and
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(a) (b)

Figure 2.19. Design of Experiments (DoE) matrices. (a) Full experimental matrix. (b) 
Face-centered-cubic (FCC) reduction matric.
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Table 2.3. Design of Experiments matrix for optimization of reaction conditions.

Entry Catalyst Loading Concentration (M) H2 (Bar) Conv.“ eeb

1 1.1 0.028 1.4 57% 80%

2 4.6 0.028 1.4 >95% 81%
3 2.9 0.270 1.4 76% 77%
4 1.1 0.500 1.4 31% 65%
5 4.6 0.500 1.4 67% 69%
6 2.9 0.028 27 91% 74%
7 1.1 0.270 27 77% 37%
8 2.9 0.270 27 >95% 38%
9 4.6 0.270 27 >95% 41%
10 2.9 0.500 27 >95% 28%
11 1.1 0.028 50 59% 37%
12 4.6 0.028 50 >95% 59%
13 2.9 0.270 50 >95% 28%
14 1.1 0.500 50 >95% 20%
15 4.6 0.500 50 >95% 31%

Conversions are representative of one experiment and measured by 1H NMR. bee’s were measured by SFC
fitted with a chiral stationary phase.
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concentration evaluated were 1.4 bar (20 psi) and 0.03 M in CH2Q 2, respectively. While 

catalyst loading had no statistically significant impact on ee, it did influence conversion of 

starting material to product. This influence is highlighted in the comparison of Table 2.3, 

entries 1 and 2, wherein concentration is 0.03 M, pressure is 1.4 bar, and catalyst loading 

is 1.1 mol% and 4.6 mol%, respectively. Of these two condition sets, only the latter 

afforded >95% conversion of starting material. Based on the results of this experiment, we 

performed further hydrogenation experiments under the conditions of 1 bar H2, 0.03 M in 

CH2Cl2, and 4.6 mol% catalyst loading.

ee% = 86 -  50Concentration -  0.82Pressure R2=0.81 Eq. 2.5

Computational Methods 

For computationally derived molecular distances and IR vibration values, all 

studied substrates were geometrically optimized and their frequencies were calculated 

using Gaussian 09 software.58 The functional used for DFT calculation is M06-2x, which 

was previously benchmarked for thermodynamic and kinetic accuracy.59,60 A triple zeta 

potential basis-set (TZVP61,62) was chosen based on the evaluation of the M06-2x 

functional for organic molecules, as triple zeta quality basis sets generally lead to 

quantitative correlations.59 As it was our intention to seek correlations, we opted not to 

incorporate scaling factors for vibrational terms.63 This simplification was justified by the 

assumption that a constant scaling factor would neither change the descriptive parameters 

identified, nor the relationship between them. The parameters used for modelling reaction 

enantioselectivities are given in Table 2.4.
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Table 2.4. Parameter set used for descriptive modelling.

Substrate VASYM lASYM VSYM lSYM

sp2 C=C 
ring stretch 

(1 of 6)

sp2 C=C 
ring stretch 

(2 of 6)
1 1112.51 108.83 1170.95 34.12 1526.87 1574.32
2 1111.3 105.06 1176.48 17.42 1535.57 1573.29
3 1105.06 65.6577 1176.24 34.5517 1540.45 1573.85
4 1100.54 78.0479 1181.66 8.5951 1526.91 1577.00
5 1103.68 72.185 1177.85 6.6118 1540.04 1576.43
6 1104.44 21.26 1174.67 26.33 1534.45 1543.70
7 1100.06 17.09 1188.76 4.99 1542.57 1565.82
8 1128.95 1.1394 1180.28 3.1238 1507.90 1542.92
17 1106.09 84.24 1170.24 53.11 1526.88 1566.10
18 1105.06 30.13 1168.7 42.65 1526.75 1543.81
19 1104.78 18.78 1169.06 30.42 1527.42 1568.14
20 1112.18 92.28 1161.49 17.42 1526.63 1535.71
21 1109.1 41.14 1169.27 41.54 1526.55 1564.10
22 1109.63 47.86 1170.21 39.98 1527.00 1570.46
23 1106.65 37.5 1168.3 37.18 1526.96 1541.65
24 1115.22 40.05 1166.28 44.24 1526.77 1535.42
25 1123.17 22.22 1171.87 31.03 1507.62 1527.33
26 1106.14 7.42 1159.12 18.23 1542.85 1550.21
27 1106.17 11.228 1190.66 1.3051 1560.70 1569.89
28 1111.84 37 1171.52 2.59 1533.43 1573.68
29 1110.95 18.3333 1168.27 42.36 1542.19 1565.42
30 1102.35 46.76 1190.62 7.65 1565.92 1571.19
31 1103.58 42.5697 1190.85 4.1342 1567.79 1577.22
32 1108.65 1.606 1152.75 5.074 1486.56 1544.35
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Table 2.4. Continued.

sp2 C=C 
ring stretch 

(3 of 6)

sp2 C=C 
ring stretch 

(4 of 6)

sp2 C=C 
ring stretch 

(5 of 6)

sp2 C=C 
ring stretch 

(5 of 6)
vc=c iC=C VC-H(sym)

1649.33 1655.84 1681.75 1686.93 1708.09 12.07 3179.75
1648.73 1649.95 1683.19 1686.51 1707.21 20.54 3180.03

1647.73 1649.95 1681.73 1687.44 1708.65 11.947 3180.52
1648.73 1668.60 1671.73 1687.16 1707.59 16.4215 3179.13

1648.72 1654.33 1677.33 1686.07 1707.70 15.49 3178.88
1647.98 1649.22 1676.18 1682.42 1709.76 14.1 3180.24

1642.65 1647.91 1675.98 1686.17 1707.31 19.67 3180.24
1648.86 1667.79 1670.20 1675.83 1707.63 14.0959 3177.50

1643.01 1655.57 1681.71 1686.67 1710.07 11.4 3178.23
1647.80 1654.69 1676.62 1682.11 1709.57 7.48 3180.29

1646.81 1656.25 1681.86 1690.76 1712.15 5.9 3180.13
1649.52 1654.90 1680.88 1684.86 1710.87 4.15 3179.97

1637.64 1655.32 1682.23 1687.20 1711.06 9.38 3177.20
1623.06 1655.40 1681.41 1685.21 1708.84 9.26 3179.57

1637.62 1656.12 1668.98 1681.26 1710.57 8.78 3179.94
1652.90 1655.52 1674.64 1683.01 1711.78 6.07 3179.14

1656.39 1667.58 1670.75 1682.57 1710.42 4.29 3179.77
1641.96 1647.95 1675.84 1677.57 1709.08 13.081 3180.63

1635.08 1644.12 1685.04 1687.25 1706.03 23.788 3180.01
1648.81 1653.36 1677.73 1686.33 1709.09 16.29 3179.61

1643.20 1648.01 1675.92 1681.00 1706.58 17.88 3179.13
1643.93 1646.25 1686.17 1691.01 1708.74 16.97 3180.80

1645.46 1647.99 1687.29 1691.39 1707.67 14.2139 3180.28
1631.41 1649.10 1659.66 1677.00 1709.73 8.7745 3180.82
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Table 2.4. Continued.

iC-H(sym) VC-H(asym) iC-H(asym) ^TOR E nantiom eric R atio AAG*

1.13 3267.81 7.54 3.19708 92 8 1.446177
1.04 3267.78 7.37 3.20511 74 26 0.619345

1.0752 3268.31 7.5377 3.19805 75 25 0.650517
0.796 3267.01 7.7972 3.20392 63 37 0.315139

0.8118 3266.79 7.136 3.20569 48.5 51.5 0.035538
0.81 3268.65 5.97 3.21196 74 26 0.619345

0.82 3268.37 7.11 3.20651 53 47 0.071141
0.88 3265.46 7.0901 3.21072 49 51 0.023688

1.11 3266.53 7.18 3.19756 91.5 8.5 1.407053
0.92 3268.75 6.27 3.20356 92.5 7.5 1.487601

0.56 3268.93 5.1 3.20073 96.5 3.5 1.963951
0.88 3268.8 6.17 3.20488 71 29 0.53018

1.16 3265.56 6.66 3.20094 88.5 11.5 1.208325
0.9 3267.93 6.9 3.20169 89 11 1.237982

0.74 3268.60 5.85 3.19816 96 4 1.881808
0.82 3267.46 7.1 3.20151 85.5 14.5 1.050649

0.9 3268.51 7.01 3.2032 77 23 0.715472
0.7799 3268.68 6.47 3.19694 91.5 8.5 1.407053

0.77 3267.69 7.6418 3.20196 44.5 55.5 0.130797
0.39 3267.46 5.97 3.20351 68.5 31.5 0.459991

0.81 3266.81 7.02 3.20167 77.5 22.5 0.732319
0.37 3268.82 5.57 3.20495 36 64 0.340688

0.3575 3268.72 5.8222 3.20583 40.5 59.5 0.227776
0.35 3269.43 4.7812 3.20669 52 48 0.047395
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CHAPTER 3

A DESIGN OF EXPERIMENTS-GUIDED APPROACH TO 

THE INVESTIGATION OF RHODIUM-CATALYZED 

C-H AMINATION SITE SELECTIVITY*

Introduction

Our approach to exploring and evaluating unique, appropriately descriptive 

parameters, which is discussed in Chapter 2, represents a common thread in the 

mathematical analyses of chemical systems described in this and the following chapter. 

From such a foundation of chemically relevant descriptors, model development proceeds 

most effectively when Design of Experiments (DoE) principles are applied to reaction 

investigation.1,2 Described in this chapter is an unconventional application of DoE 

precepts, by which a predictive mathematical model describing a Rh-catalyzed reaction’s 

site-selectivity was developed. Examination of this model allowed for the design of a new 

reagent that affords improved site-selective outcomes for the reaction investigated. The 

synthetic results reported in this chapter are primarily the work of Dr. Ryan DeLuca, with 

contributions made by Dr. Martins Oderinde and Daniel Tindall. The computational

* This chapter is based on the author’s reported work that is herein reproduced with permission from Bess, 
E. N.; DeLuca, R. J.; Tindall, D. J.; Oderinde, M. S.; Roizen, J. L.; Du Bois, J.; Sigman, M. S. Analyzing 
Site Selectivity in Rh2(esp)2-Catalyzed Intermolecular C-H Amination Reactions. J. Am. Chem. Soc. 2014, 
136, 5783-5789. Copyright 2014 American Chemical Society.



energy minimizations and frequency calculations, experimental design, and linear 

regression model development are the author’s work.

Discriminate control over product selectivity in carbon-hydrogen (C-H) bond 

functionalization reactions represents one of the great challenges in modern synthetic 

chemistry.3 The high energy barriers to C-H bond cleavage (on the order of 98 kcal 

mol-1) contrast the small energetic differences that bias enantio- and chemoselective C-H 

bond functionalization (AAG of ~2 kcal mol-1 for >20:1 selectivity). Given the small 

differences in transition state free energies that modulate isomeric product ratios, it is 

often difficult to distinguish the steric and electronic factors that influence reaction 

selectivity. Identification of the dominant influences on reaction outcome can prove 

invaluable for tailoring catalyst and reagent structures to afford greater control over 

reaction outcomes.

The Du Bois group recently reported an intermolecular Rh-catalyzed C-H 

amination protocol4 and demonstrated that oxidation of isoamylbenzene a results in 

benzylic-to-tertiary (B:T) product ratios that are dependent upon the choice of sulfamate 

ester b (Figure 3.1).5 The relationships between steric and electronic factors that 

contribute to these disparate outcomes are not obvious from the trends in selectivity. 

Specifically, sulfamate ester b1, R = CH2CQ 3, yielded the highest degree of B:T 

selectivity (8:1), while substitution to R = CH2t-Bu (b2), a steric homolog, resulted in 

reduced benzylic selectivity (4:1). An equally intriguing result was obtained from the 

evaluation of sulfamate ester b3, R = CH(CF3)2, which yields equimolar amounts of the 

two products. Similar losses in selectivity were observed for both electron-poor (b4, R = 

2,6-F2C6H3, 1.5:1) and electron-rich (b5, 4-t-BuC6H4, 1:1) aryl sulfamate esters.
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Figure 3.1. Rh2(esp)2-catalyzed C-H amination of isoamylbenzene. (a) Varying the 
sulfamate ester evokes changes in site selectivity, demonstrating the sensitivity of the 
reaction. (b) Proposed catalytic cycle of this amination reaction.



An archetypical physical organic technique for identifying features that influence 

product selectivity as a function of substituent changes is linear free-energy relationship 

(LFER) analysis.6,7 Pioneered by Hammett for electronic analysis of meta- or para- 

substituted benzene rings8,9 and adopted by Taft10,11 and, later, Charton12 for steric effect 

analyses, these techniques have been broadly applied to interrogate reaction outcomes.13-19 

While these classic LFER parameters have been instrumental in a variety of contexts, 

often illuminating mechanistic details by relating log(K) to empirically derived electronic 

or steric constants (where K  may represent relative rate and equilibrium constants, ratios 

of enantiomers and constitutional isomers, etc.), LFERs also bear significant 

limitations.20,21 Namely, a modest number of reactions can be successfully modeled using 

Hammett or Taft/Charton parameters alone.21,22-24

As discussed in Chapter 2, over the last several years, the Sigman laboratory has 

investigated the use of discretely measured molecular parameters (vide infra) as opposed 

to those derived from relative-rate experiments (e.g., Hammett and Taft values) for 

nonclassic free-energy relationship analysis, relating these parameters to AAG for 

differential transition state interrogation.21,25 As the data from the Rh-catalyzed C-H 

amination lack obvious explanation, commonly employed free-energy relationships are 

not likely capable of delineating the entangled effects of the sulfamate ester on site 

selectivity. Therefore, we turned to our recent discovery that specific infrared (IR) 

molecular vibrations represent a broadly applicable, yet uniquely descriptive, parameter 

set, which was discussed in Chapter 2 in the context of iridium-catalyzed 

hydrogenation.22 IR vibrations can be computationally calculated for any molecule, the 

result of which is a tailored parameter set that is capable of describing the distinct nature
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of each reactive species.

Herein, we exploit the intrinsic ability of IR vibrations to describe the inherent 

molecular properties of sulfamate ester nitrene precursors in selective Rh2(esp)2- 

catalyzed amination of benzylic versus tertiary C-H bonds. Using IR-derived descriptors 

to quantitate steric and electronic selectivity determinants, we apply linear regression 

modeling to identify the sulfamate ester features responsible for differential benzylic-to- 

tertiary functionalization. Insights garnered from this free-energy model have led us to 

design a new sulfamate ester, which yields the highest selectivity ratio (9.5:1, B:T) 

reported, to date, for this C-H amination process.

Investigating the Reaction 

Through the Du Bois group’s investigation of intermolecular oxidation reactions 

(a proposed mechanism of which is depicted in Figure 3.1b),4 an interesting relationship 

was noted between the steric and electronic structure of the sulfamate ester b and the B:T 

ratio in the oxidation of isoamylbenzene a (Figure 3.1a).5 The results of these 

investigations were ascribed principally to steric differences between sulfamate reagents, 

but the influence of electronic substituent effects could not be discounted.

Accordingly, a sulfamate ester library was designed to more thoroughly probe the 

interplay of steric and electronic perturbations on the selectivity dependence of this 

system (Figure 3.2). Library construction was based on two features inspired by the 

original results: 1) the exploration of chain-length and halogenation (2a-2l) and 2) the 

evaluation of branching and steric bulk distal to the a-carbon of the sulfamate (2m-2t). 

The sulfamate esters depicted in Figure 3.2 were synthesized and evaluated in the
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Figure 3.2. Twenty-membered sulfamate ester library used to probe the 
rhodium-catalyzed reaction's site-selection sensitivity. Ratios, determined 
by GC analysis, are averaged over three experimental runs. Bolded and 
asterisked sulfamate ester structures represent the DoE-defined subset of 
nitrene sources.



Rh2(esp)2-catalyzed amination of 1. Of particular interest, chlorine substitution (2e-2l) 

has a pronounced effect on product selectivity with trichloromethyl sulfamate esters 

(2k, 2l) yielding B:T ratios of ~9:1, regardless of the proximity of this group to the - 

SO2NH2 moiety. Relative to R = nBu (2d), this same trend is maintained for di- and 

monochloromethyl substrates, where B:T ratios average 5.3:1 (2i, 2j) and 4.5:1 (2e-2g), 

respectively.

The insensitivity of B:T selectivity to chain length is a general trend observed 

throughout the data set. The influence of steric effects on selectivity becomes apparent 

when the sulfamate ester bears a branched a-carbon (i.e., sulfamates prepared from 

secondary alcohols). Specifically, selectivity for the benzylic insertion product increases 

for z'PrOSO2NH2 (2m, 7.0:1) relative to EtOSO2NH2 (2b, 5.9:1). A marked change in 

the product ratio is noted when halogen substituents are introduced in these secondary 

alcohol-derived sulfamate esters (2h, 2n). For example, a reaction performed with 

(CF3)2CHOSO2NH2 yields nearly equal amounts of the benzylic and tertiary products. 

However, replacing one CF3 group with H (2o, 7.4:1), to eliminate the branching 

pattern, rescues selectivity.

Parameter Selection

Collectively, the data portrayed in Figure 3.2 reflect an ill-defined role for steric 

and electronic modulation of the sulfamate ester on product selectivity. Steric influences 

manifest principally in the narrow dimension of branched versus nonbranched sulfamate 

groups. Additionally, while inclusion of electronegative halogen atoms clearly alters 

product selectivity, the effect cannot be ascribed entirely to electronic differences in

123



nitrenoid reactivity. These general features of the amination reaction significantly 

complicate quantitative free-energy modeling of selectivity. Classic steric parameters, 

such as Taft10,11 and Charton12 values and Winstein-Holness (A) values26—derived from 

relative-rate and conformation equilibration experiments, respectively—treat substituent 

steric bulk as a spherical unit.21 Therefore, this treatment has the disadvantage of 

averaging the nuances of substituent asymmetry and width-to-length ratios into a single

value representation of steric effects.

In the development of free-energy relationships describing selectivity, it is 

precisely these subtleties that are responsible for the differential transition state energies 

leading to isomeric product ratios, as predicated by the Curtin-Hammett principle.27 

Verloop innovatively approached this deficiency in the description of steric effects 

through the development of Sterimol parameters (Figure 3.3).28-30 As demonstrated in 

the Sterimol analysis of bisphenol desymmetrization (Chapter 2), this parameter set 

lends dimensional specificity to the description of steric bulk through its three 

subparameters: B 1, substituent minimum radius; B5, substituent maximum radius; and 

L, substituent length.

While the effectiveness of Sterimol parameters in various contexts has been 

successfully demonstrated,21,22,25 this steric descriptor still lacks information about the 

position along L at which steric bulk resides. For example, as depicted in Figure 3.3, 

Sterimol measures of the -CH2t-Bu substituent are 1.52 (B1), 4.18 (B5), and 4.89 (L).31 

Comparatively, the Sterimol system describes nPr, a group with its own distinct 

apparent steric bulk, as nearly isosteric with CH2t-Bu, measuring 1.52 (B1), 3.49 (B5), 

and 4.92 (L).
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Figure 3.3. Schematics of the Sterimol parameter system, describing the 
subparameters B 1 (minimum radius), B5 (maximum radius), and L (length). 
Comparisons of nPr and CH2^-Bu substituents' Sterimol parameters 
demonstrate a deficiency in the Sterimol parameters’ description of bulk, 
where sterically distinct groups are similarly described.
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A similar parameter deficiency is observed for electronic description. The 

presence of R-group chlorine atoms, particularly trichloromethyl, generally enhances 

selectivity (in the absence of branching), independent of the chlorine atom distance 

from the -NH 2 group of the sulfamate moiety. This observation cannot be explained 

through the use of the ubiquitous electronic descriptor, pKa, or any descriptor of 

induction.32 These apparent limitations warrant a more sophisticated approach to 

characterize the underlying selectivity trends in C-H amination. Thus, we have turned 

to IR molecular vibrations, which were successfully demonstrated to model the 

differential free-energy of enantioselection in the iridium-catalyzed asymmetric 

hydrogenation assessed in Chapter 2.22 Derived from the unique vibrational fingerprint 

of every molecule and representative of the fundamental energies, bond strengths, and 

dipole moments contained therein, IR stretches were computationally calculated for 

each sulfamate ester using the computational method M06-2X/TZVP.33'37

While the reactive oxidant believed to be involved in the selectivity-defining 

step of the Rh-catalyzed amination is a Rh-nitrene (f, Figure 3.1b), the computed 

vibrational data are from the sulfamate ester and not the nitrenoid. As noted above, the 

differential energy between nitrenoid transition states (AAG^) is responsible for 

benzylic-to-tertiary amination ratios. The working hypothesis, for which supporting 

evidence is provided, is that modifications to the nitrene precursor (i.e., sulfamate ester) 

commensurately impact molecular properties of the selectivity-defining transition states 

(vide infra)21 This is an important qualification, which allows ground state IR 

frequencies and intensities to be computed for the simplest of these species, the 

sulfamate ester. This approach significantly reduces the computational effort, making



the methodology tractable.

In order to proceed with free-energy relationship model development, it is 

necessary to identify IR vibrations that are hypothesized to be potential selectivity 

descriptors. From such a set, stepwise linear regression analysis is performed, whereby 

the descriptors are statistically whittled down to a subset of parameters that best 

mathematically relates features of the sulfamate ester to AAG* (equating to -RT* 

ln(tertiary/benzylic), where R is the ideal gas constant and T is temperature). As each 

sulfamate ester is characterized with many disparate vibrational modes, the vibrations 

chosen are those that were consistently identified in the computed molecules (i.e., major 

vibrational modes) and presumed to significantly impact the putative Rh-nitrene 

selectivity profile.

Given these criteria, four vibrations were chosen as potential descriptors of 

selectivity: O -S-N  asymmetric stretch (vosn), C-O stretch (vco), SO2 symmetric stretch 

(vSO2sym), and SO2 asymmetric stretch (vSO2asym). Figure 3.4 depicts a simulated IR 

spectrum for sulfamate ester 2a (R = Me) and highlights both the calculated frequencies 

and intensities of these four vibrations, giving a total of eight vibration-derived 

descriptors that were used for regression analysis. While many other unique 

combinations of potential descriptors are possible, the set identified, based on chemical 

knowledge of foundational chemical principles, was carried forward to model 

development. Subsequently, the appropriateness of the identified descriptors for 

effectively describing and predicting reaction outcomes was assessed.
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Figure 3.4. Computationally derived IR spectrum for sulfamate ester 2a, 
MeOSO2NH2. Vibrations used as modeling parameters are color-coded, and 
graphical depictions approximating vibrational motions are presented. 
Vibrational frequency and intensity ranges for the 20-membered sulfamate 
ester library are presented.



Model Development 

In Chapter 2, the initial application of Design of Experiments (DoE) precepts 

did not enable the development of a model descriptive of diarylalkene hydrogenation 

enantioselectivity. This is attributed to the initial 12-membered library design being 

founded upon a flawed hypothesis of the origin of enantioselection in the iridium- 

catalyzed reaction. Thus, prior to developing a mathematical relationship between 

selectivity and the identified vibrational frequencies and intensities, DoE principles 

were first applied to the 20-membered sulfamate ester library (Figure 3.2).1,2 This 

library was built to span the synthetically accessible experimental space of sulfamte 

esters, as this approach affords the greatest likelihood of probing the origin of site- 

selectivity. Thus, it was presumed that from a DoE-selected sample of this library, the 

features influencing site-selectivity could be identified and quantitated via linear 

regression-derived mathematical models. Correspondingly, eight sulfamate esters were 

selected (termed the DoE set and noted with asterisks and bolded in Figure 3.2) that 

quantitatively sample the observed range of B:T ratios and qualitatively represent a 

distribution of steric and electronic perturbations.

In addition to examining sulfamate substituent effects on B:T selectivity, the 

electronic structure of the isoamylbenzene substrate was also varied. After preparing a 

traditional Hammett series (R’ = OMe (1a), t-Bu (1c), H (1), Br (1d), CF3 (1c)), this 

library was subjected to oxidation reactions with each of the eight DoE-set sulfamate 

esters. (See Figure 3.5 for a description of the two evaluations that did not yield 

measureable data.) The selectivity results of this analysis are presented in Figure 3.5 and 

are correlated to Hammett o+ values. As a measure of resonance stabilization,

129



130

Figure 3.5. Plot of measured AAG versus Hammett ct+ for the DoE set of 
sulfamate esters evaluated in the isoamylbenzene substrate series R' = OMe 
(1a), ^-Bu (1c), H (1), Br (1d), CF3 (1b). AAG = -RTln(tertiary/benzylic), 
where T is 23 °C. Omitted from this plot are data points corresponding to R 
= CH2CQ 3, R' = OMe (benzylic-to-tertiary ratio >100:1) and R = 
CH(CH2Cl)2, R' = Br (no measurable products observed).



Hammett o+ values serve as a better descriptor of the observed selectivity trends 

across varying R’ than do Hammett o values.38 The higher degree of correlation 

provided by o+ values is consistent with the electrophilic nature of the putative nitrenoid 

and developing o+ charge at the carbon center undergoing oxidation in the transition 

structure.39,40

With data from reactions of the eight sulfamate esters (DoE set) and three 

isoamylbenzene-derived substrates (R’=OMe (1a), H (1), CF3(1b)), the 23-membered 

training set (Table 3.1, see Figure 3.5 for an explanation of the data point omitted) was 

subjected to a standard stepwise linear regression algorithm, the details of which are 

described in the Experimental Information and Methods section.41 Using this algorithm, 

which facilitates statistical exploration of the relationship between vibrational 

parameters, o+, and AAG ,̂ a descriptive equation was formulated and is depicted in 

Figure 3.6a.

To evaluate the accuracy of this model, predicted and measured AAG* values are 

compared in Figure 3.6b, which demonstrates a high level of correlation between 

experimental values and model predictions. Leave-one-out (LOO) analysis was also 

performed to evaluate the robustness of the model (Figure 3.6c). LOO is a cross

validation method wherein one data point is removed from a training set and the model 

is refit to the remaining data. Then, the model-predicted value of the omitted data point 

is compared to the experimental value. This process is iteratively carried out for each 

data point in the training set. The resulting LOO-derived model predictions are 

compared to the experimentally measured values, as is seen in Figure 3.6c.42 The slope 

and R2 values, which are close to unity, are positive indicators of the model’s accuracy.
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Table 3.1. Training set (entries 1-23), external validations (entries 24-61), and predictions (entries 62-64).

K0S 02NH2 (2)
1 mol% RV>Sp)j

Phi(GAc)2, /PrOAc

ROSOjHN

product (B)

R’=4-OMe (1a), 4-H {1), 4-CF3 (1b), 4-f-Bu (1c), 4-Br <1d), 3-CI (te), 4-Ph (If). 3-f-Bu (1g)

0S 02HN

r 1 tertiary 
product. (T)

Prod. AAG* Maas. AAG* Meat. Pred. AiG* Miss®.
R R! (kcnUmo'i) (kcaMmoi) B/T Entry R R1 (Steal/mo!) (keal/mol) BIT

CHjCFj OMe 2.32 2.61 85.0 ±1.4 33 ChfeCy 4-H 0.83 0.84 4.2 ± 0.1
nPr OMe 2,02 2.03 31.6 ±0.1 34 r/Gu 4-H 1.05 0.77 3.7 ± 0.1
(CHzJzGI OMe 2.15 2.15 38.9 ± 0.9 35 CH(CF3)2 4-H 1.19 0.06 1.1 ±0.1
fCH2)p(-Bu OMe 1.77 1.72 18.8 ±0.3 36 CH2CG!3 4-f-Bu 1.98 2.27 47.6 ± 0.3
CHfCHjCI^ OMe 1.82 1.95 27.7 ±1.3 37 c h 2c f3 4-f-Bu 1.61 2.33 52.8 ± 0.1
CH2iPr OMe 1.70 1.81 21.5 ±0.5 38 nPr 4-f-Bu 1.38 1.29 9.0 ± 0.3
(CH2)4CI OMe 1.86 1.94 26.9 ± 0.5 39 (CHsisQ 4-f-Bu 1.44 1.47 12.2 ±0.1
€H2CCI3 H 1.58 1.29 8.9 ± 0.1 40 4-f-Bu 1.21 1.20 7.7 ± 0.2
CHjCF3 H 1.25 1.18 7.4 ± 0.2 41 GH(CHjCI)2 4-f-Bu 1.18 1.51 13.1 ±0.1
nPr H 106 0.98 5.3 ± 0.3 42 CH2iPr 4-f-Bu 1.21 1.28 8.8 ± 0.5
(CH ^C i H 1.09 0.86 4.3 ± 0.1 43 (CH2)4CI 4-f-Bu 1.25 1.51 13.0 ±0.5
(CHjfet-Bu H 0.92 0.72 3.4 ± 0.2 44 c h 2cgi3 4-Br 1.37 1.16 7.2 ± 0.1
CH(CH2Cife H 0.88 0.61 2.8 ± 0.1 45 CH2CFs 4-Br 1.04 1.15 7.1 ±0.1
CHa/Pr H 0.96 0.34 4.2 ± 0.3 46 nPr 4-Br 0.88 0.90 4.6 ± 0.3
(CH2}4CI H 0.95 0.89 4.5 ± 0.1 47 (CHjfeCI 4-Br 0.88 1.03 5.8 ± 0.2
c h 2c q 3 c f 3 0.70 0.83 4.1 ±0.3 48 4-Br 0.77 0.97 5.2 ± 0.2
CHjCFj c f 3 0.41 0.49 2.3 ± 0.1 49 CH2fPr 4-Br 0.82 0.98 5.3 ± 0.4
nPr GF, 0.31 Q.41 2.0 ± 0.2 50 (CHs)4CI 4-Br 0.77 1.15 7.1 ±0.3
(CHsfea CFS 0.26 0.41 2.0 ± 0.1 51 c h 2c h c i2 4-OMe 2.23 2.40 59.3 ± 0.4
(CHjfe^Bu OF, 0.27 0.31 1.7 ±0.1 52 (CHsfea 4-OMe 1.88 2.21 42.7 ± 0.5
CH(CH2Ci)2 CF, 0.11 0.06 1.1 ±0.1 53 nBu 4-OMe 2.01 1.74 19.3 ±0.5
CH^/Pr c-f3 0.39 0.46 2.2 ± 0.1 54 /iBU 3-CI 0.56 Q.63 2.9 ± 0.2
(CHs)4Ci c f 3 Q.24 0.46 2.2 ± 0.2 55 (CH^CI 3-CI 0.55 0.52 2.4 ± 0.1
(CH2>gCCi3 4-H 1.05 1.29 9.0 ± 0.3 56 CHjiPr 3-GI 0.59 0.49 2.3 ± 0.1
CH(Et)2 4-H 1.02 1.15 7.0 ± 0.3 57 (CH^CI 4-Ph 1.33 1.S8 17.3 ±0.2
/Pr 4-H 1.07 1.15 7.Q ± 0.1 58 nBu 4-Ph 1.27 1.39 10.7 ±0.2
Et 4-H 0.87 1.04 5.9 ± 0.1 59 c h 2c f3 3-f-Bu 1.33 1.41 10.9 ±0.4
(GH2)3CHC!2 4-H 1.02 1.03 5.8 ± 0.1 60 CCHgfeCI 3-f-Bu 1.17 0.92 4.8 ± 0.1
Me 4-H 1.01 1.01 5.6 ± 0.3 61 nBu 3-f-Bu 1.12 0,79 3.8 ± 0.2
CH2CHC!2 4-H 1.33 0.92 4.8 ± 0.1 62 CH2CF2CF3 4-H 1.38 1.32 9.5 ± 0.2
(CHjfeCI 4-H 0.98 0.90 4.6 ± 0.1 83 CH2{GF2)2CF3 4-H 1.43 1.26 8.5 ± 0.1
CH?f-Bu 4-H 1.15 0.86 4.3 ± 0.3 64 GH,GMsWCHnCI 4-H 1.17 1.06 6.1 ±0.1
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Figure 3.6. Descriptive model and its robustness measures. (a) Normalized 
mathematical relationship, derived from tabulated training set in Table 3.1, 
describing differential free energy of tertiary-to-benzylic (T/B) amination. R: 
ideal gas constant, T: 23 °C. (b) Predicted versus measured AAG plot of training 
set and external validations. Grayed data point, designated as an outlier, 
represents R = CH(CF3)2, R' = H. (c) Leave-one-out (LOO) analysis.



Development of this robust model relied on iterative analyses of a large set of 

potential descriptors, including point charges, Sterimol values, pKa, molecular weight, 

and IR vibrations. Terms that consistently failed to describe site-selectivity were 

whittled from the descriptor set. This paring has a subjective nature and, therefore, 

many possible outcomes. While the robustness of the developed model indicates its 

validity, it is only one of presumably many potential solutions.

Assessing Model Robustness via External Validation

A third measure of model strength was determined by externally validating the 

model with data points not part of the training set. Of the original 20-membered library, 

12 sulfamate esters, which were not members of the DoE set, were evaluated with 

isoamylbenzene (1). The robustness of the model for describing substrate variation was 

evaluated with five isoamylbenzene derivatives: 1-(i-butyl)-4-isopentylbenzene (1c), 1- 

bromo-4-isopentylbenzene (1d), 1-Cl-3-isoamylbenzene (1e), 1-Ph-4-isoamylbenzene 

(1f), and 1-i-Bu-3-isoamylbenzene (1g). The complete external validation set is 

tabulated in Table 3.1. Graphical representation of this data (■, Figure 3.6b) 

demonstrates the overall good agreement between predicted AAG values and 

experimental measurements.

An obvious outlier in the plot of predicted versus measured AAG values occurs 

with sulfamate ester 2n, (CF3)2CHOSO2NH2. It is hypothesized that this highly 

electron-deficient, sterically large sulfamate ester may be forced to adopt conformations 

not accessible to other nitrene sources in the defining C-N bond forming event. It is 

also possible that 2n facilitates C-H amination through a mechanistic pathway that
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differs from that of other sulfamate esters. Future investigations of reactions with 2n are 

warranted, and use of this reagent was discontinued for the remainder of this study.

Analyzing and Interpreting the Model 

Capitalizing on the robustness of the identified descriptive model for 

quantitating features of mechanistic relevance, steric and electronic features of the 

nitrene source were optimized, thereby informing the synthesis of new sulfamate 

structures that display a higher propensity towards benzylic C-H insertion. As the 

relationship in Figure 3.6a is a normalized equation, the magnitude of the coefficients 

yield information about the relative influence of each parameter on selectivity. Notably, 

the overriding selectivity determinant, o+, is associated with the strength of the benzylic 

C-H bond (vide supra). Perhaps unsurprisingly, the C-O frequency (vco) of the 

sulfamate ester also plays a prominent role in this model. Included as a single term and, 

again, within a cross-term, vco is the shortest conduit from the O-alkyl substituent to the 

sulfamate moiety. As such, the vibrational frequency of the C-O bond will reflect 

changes in the substituent groups on the alkyl chain, which alter the force constant 

and/or reduced mass (components of vibrational modes).

It is particularly intriguing to find that the C-O stretching vibration is coupled 

with the Hammett descriptor, o+, in the optimized selectivity model. This result suggests 

a synergistic relationship between the nitrenoid and the isoamylbenzene substrate, 

indicative of a defined intermolecular interaction between these two species. While the 

precise nature of this interaction is unclear, it was considered that the origin of v c o  

trends may be illuminated by assessing sulfamate esters according to increasing C-O
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frequency (Figure 3.7a). Qualitatively, it is observed that the more halogenated 

sulfamate esters showed greater v c o  values. In accordance with this trend, more 

polarized bonds vibrate with energetically higher frequencies. Greater differential 

electronegativity across a bond increases the bond force constant and, thus, its 

vibrational frequency.43

Patterning in a similar manner the analysis of the other vibration-related 

parameter, Iosn, revealed in the model, Figure 3.7b was constructed, which displays 

sulfamate ester R groups according to increasing O -S-N  asymmetric stretch intensities. 

Organizing the data in this manner, it is observed that variation in Iosn is primarily 

characterized by increases in distal steric bulk and by halogenation. These qualitative 

trends served to inform our use of the developed model as a tool for predicting new 

sulfamate esters that yield improved B:T ratios.

Predicting an Improved Sulfamate Ester 

We have computationally evaluated several sulfamate derivatives that included 

electronegative atoms and variation in chain-length; most of these, however, were not 

predicted to afford improved site selection. In contrast, sulfamate esters 2u (R = 

CH2CF2CF3) and 2v (R = CH2(CF2)2CF3) were identified using our model, as these two 

reagents were expected to give enhanced levels of the benzylic oxidation product. In 

practice, the predicted selectivities closely matched those measured, with sulfamate 

ester 2u effecting the highest degree of site-selection observed for amination of 

isoamylbenzene (1) (Figure 3.8a). The enhancement of selectivity achieved by 

changing the sulfamate from C Q 3CH2OSO2NH2 (2k) to CF3CF2CH2OSO2NH2 (2u),
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(a)

1140-

O
Sulfamate Ester, R

(b)

350-

u
Sulfamate Ester, R

Figure 3.7. Analysis of vibration-derived parameters. (a) Representation of 
increasing C-O stretch frequency ( vco) versus sulfamate ester R group. (b) 
Representation of increasing intensity of O -S-N  asymmetric stretch ( I o s n )  

versus sulfamate ester R group. Grayed columns highlight model-informed 
predictions 2u (R = CH2CF2CF3) and 2v (R = CH2(CF2>CF3).
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r o s o 2hn

1 mol% Rh2(esp)2 
+ R0S02NH2 ---------------------------►

1.2 equiv

+ R0S02NH2

Phl(OAc)2, MgO 
5 A MS, /PrOAc

1 mol% Rh2(esp)2

58% yield 
(9.4:1 B:T)

R0S02HN

1 2 equiv Phl(OAc)2, MgO 
5 A MS, /PrOAc

r o s o 2n h 2
1 mol% Rh2(esp)2

Phl(OAc)2, MgO 
5 A MS, /PrOAc

60% yield 
(17:1 B:T)

55 % yield 
(1:1 dr)

R = CF3CF2CH2

Figure 3.8. Prediction and assessment of new sulfamate esters. (a) Plot of predicted 
versus measured AAG* for amination of isoamylbenzene,1. A mathematical model 
correlating differential reaction free energy (AAG*) with IR vibrational data and 
Hammett o+ parameters informed the design of new sulfamate esters. Sulfamate ester 
2u affords the highest B:T selectivity reported, to date, for Rh-catalyzed amination of 
isoamylbenzene. (b) Preparative scale (0.5 mmol) reactions using sulfamate ester 2u.



albeit modest, is striking given the apparent electronic similarities and steric differences 

between these two reagents.

The identification of 2u and 2v by consideration of both vco and Iosn (grey 

columns, Figure 3.7) highlights the predictive utility of the developed model. Of note, 

the calculated IR frequencies and intensities of these nitrene sources do not represent 

the highest observed values in the sulfamate ester library. This is rationalized by 

considering the interdependency of the terms derived from vibrational modes since 

these are intrinsically linked. Thus, maximizing the value of vco alone does not 

guarantee proportionate increases in AAG* values. This underscores the balance that is 

achieved in the developed model (see equation in Figure 3.6a) between the selectivity- 

enhancing effects of the vco and Iosn parameters (positive coefficients) and the 

deleterious effect on site selection of the (vco) ( o+) cross term (negative coefficient).

As a final step, the performance of sulfamate ester 2u was evaluated on a 

preparative scale (0.5 mmol) with isoamylbenzene, 1 (Figure 3.8b). The benzylic 

product from this reaction was obtained in 58% yield with the same level of B:T site- 

selectivity (9.4:1) that was noted in the original evaluation process (0.3 mmol scale). 

The reaction of 2u with substrate 5 shows even higher levels of site selectivity in favor 

of the benzylic amine product (60% yield). Finally, oxidation of a more sophisticated 

polycyclic substrate, 6, is demonstrated to give exclusively the product of secondary, 

benzylic oxidation in 55% yield.
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Conclusions

In summary, the subtle interplay of steric and electronic effects in the Rh2(esp)2- 

catalyzed C-H amination of isoamylbenzenes has been evaluated with a wide-range of 

sulfamate esters. Product selectivity in these reactions can be effectively modeled using 

a combination of a classical Hammett parameter and computed IR vibrational data. Of 

particular interest is the ability to deconstruct the model and use this information to 

extrapolate to new sulfamate esters, one of which offers the highest performance, to 

date, for this intermolecular Rh-catalyzed C-H amination reaction.

Efforts are currently underway in the Du Bois group (Dr. Martins Oderinde) to 

computationally model the reaction’s putative Rh-nitrene species. There is particular 

interest in distinguishing the reactive nitrene as a singlet or triplet, and we envision 

mathematical models playing a key role in this determination. By tabulating two 

parameter sets, one per species, we hypothesize that one of these will afford more 

robust models, lending key mechanistic support for the associated nitrene being the 

active species engaging in selective C-H amination.

This work demonstrating the capability of mathematical models for informing 

approaches for catalyst/reagent optimization foreshadows the power of such an 

approach in the analysis of substrate scope. Chapter 4 explores the quantitative 

application of design of experiments principles and establishes a protocol for its 

implementation in substrate scope libraries for the mechanistic investigation of 

reactions.
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Experimental Information 

DFT Calculations

Using Gaussian 09 software, sulfamate esters were energy-minimized and IR 

vibrations were computed according to the M06-2X functional and TZVP basis set, a 

combination that has been benchmarked for IR calculations 33-37 As there are several 

conformations of local energetic minima available to each sulfamate ester, we built our 

vibrational parameter set upon those molecular conformations displaying the highest 

degrees of conformational similarity. Where multiple conformations exist for a 

molecule, beyond the realm of the conformationally conserved framework, we tabulated 

vibrations for the conformation in which the net molecular dipole was also minimized.

Model Development

Models were developed using the Statistics Toolbox of MATLAB® R2013a 

software.41 Four algorithms were used to identify models. Each algorithm begins the 

modeling process by starting from a prescribed set of starting terms. Linear (x1, x2, x3, 

etc.), interaction (x1:x2, x1:x3, etc.), and squared (x1A2, x2A2, x3A2, etc.) terms are 

added or removed from each model according to a p-value test. For a term to enter a 

model, its p-value is <0.05. For a term to exit a model, its p-value is >0.1. The four 

algorithms used to identify potential models are as follows, with the nature of the 

starting model described.

LinearModel.stepwise(X, y) performs stepwise linear regression from a starting 

model bearing no variable terms. LinearModel.stepwise(X, y, 'linear') performs 

stepwise linear regression from a starting model of linear terms.
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LinearModel.stepwise(X, y, 'interactions') performs stepwise linear regression from a 

starting model of linear and interaction terms. LinearModel.stepwise(X, y, 

'purequadratic') performs stepwise linear regression from a starting model of linear 

terms and squared terms. Resultant models were evaluated by leave-one-out (LOO) 

analysis and external validation.42 Training, external validation, and prediction raw data 

sets are given in Table 3.2. The combined three data sets were normalized prior to 

model development. After normalization was performed on the entire data set 

(combined training, external validation, and prediction sets), the training set was 

subjected to the four above-mentioned stepwise regression algorithms. The linear 

regression models, LOO analyses, and external validation analyses resulting from the 

models generated by each algorithm are presented below. For external validation 

analysis, the training set and external validation data are plotted. All R2 values 

presented are adjusted R2 values.

Using the MATLAB command “LinearModel.stepwise(X, y),” the model in Eq. 

3.1 was afforded.

y = -0.03 -  0.82(o+) + 0.31(VSO2asym) Eq. 3.1

The statistical robustness of this model was assessed via LOO and external validation 

analyses, which are presented in Figures 3.9a-b. The command 

“LinearModel.stepwise(X, y, 'linear')” afforded Eq. 3.2, and robustness measures are 

given in Figures 3.9c-d.
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Table 3.2. Training, external validation, and prediction data sets for model development.
R R 1

AAGt
(kcal/m ol) a + VoSN loSN V co Ic o Vs02sym Is02sym Vs02asym Is02asym

CH2CF3 4-OMe 2.61455 -0.78 908.67
Training Set 

270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
nPr 4-OMe 2.032222 -0.78 904.49 228.3224 1094.3 93.3049 1174.28 167.8645 1399.31 272.7238
(CH2)2C1 4-OMe 2.154536 -0.78 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
(CH2)2?-Bu 4-OMe 1.720313 -0.78 928.06 206.9872 1062.47 34.5064 1173.15 190.8933 1394.28 251.6505
CH(CH2C1)2 4-OMe 1.9547 -0.78 902.80 138.9470 1094.31 66.4699 1176.68 186.8029 1381.02 344.0420
CH2zPr 4-OMe 1.805584 -0.78 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
(CH2)4C1 4-OMe 1.937453 -0.78 901.08 193.7590 1081.69 156.7322 1175.43 208.1870 1401.16 267.4892
c h 2c c i3 4-H 1.286516 0.00 909.04 399.1987 1143.06 117.4317 1183.25 210.1953 1411.41 266.7582

c h 2c f 3 4-H 1.177893 0.00 908.67 270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
riPr 4-H 0.981464 0.00 904.49 228.3224 1094.3 93.3049 1174.28 167.8645 1399.31 272.7238
(CH2)2C1 4-H 0.858411 0.00 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
(CH2)2f-Bu 4-H 0.720206 0.00 928.06 206.9872 1062.47 34.5064 1173.15 190.8933 1394.28 251.6505
CH(CH2C1)2 4-H 0.605943 0.00 902.8 138.9470 1094.31 66.4699 1176.68 186.8029 1381.02 344.0420
CH2zPr 4-H 0.844563 0.00 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
(CH2)4C1 4-H 0.885166 0.00 901.08 193.7590 1081.69 156.7322 1175.43 208.1870 1401.16 267.4892
c h 2c c i3 4-CF3 0.830382 0.61 909.04 399.1987 1143.06 117.4317 1183.25 210.1953 1411.41 266.7582
c h 2c f 3 4-CF3 0.490176 0.61 908.67 270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
nPr 4-CF3 0.407925 0.61 904.49 228.3224 1094.3 93.3049 1174.28 167.8645 1399.31 272.7238
(CH2)2C1 4 -C F 3 0.407925 0.61 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
(CH2)2tBu 4-CF3 0.312281 0.61 928.06 206.9872 1062.47 34.5064 1173.15 190.8933 1394.28 251.6505
CH(CH2C1)2 4-CF3 0.056091 0.61 902.8 138.9470 1094.31 66.4699 1176.68 186.8029 1381.02 344.0420
CH2z'Pr 4 -C F 3 0.464016 0.61 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
(CH2)4C1 4-CF3 0.464016 0.61 901.08 193.7590 1081.69 156.7322 1175.43 208.1870 1401.16 267.4892



Table 3.2. Continued.
R R' AAGt

(kcal/mol) G+ V o S N Io SN Vco Ico Vs02sym Is02sym Vs02asym Is02asym

External Validation Set
Me 4-H 1.013867 0.00 893.98 214.7984 1084.51 202.6777 1176.51 201.3258 1402.71 300.0244
Et 4-H 1.044579 0.00 889.97 163.7985 1078.76 194.6939 1178.06 184.1726 1398.99 247.0540
(CH2)3C1 4-H 0.898101 0.00 895.82 216.1081 1076.24 147.6745 1175.5 206.0898 1401.27 122.5614

CH2CHCI2 4-H 0.923148 0.00 904.37 363.0072 1079.02 204.8069 1181.57 217.0065 1408.58 272.3191
CH(Et)2 4-H 1.14519 0.00 908.81 142.9984 1148.88 94.5522 1180.36 79.6382 1372.3 202.5934
mB u 4-H 0.769969 0.00 920.95 221.3675 1095.19 95.3903 1172.97 153.3218 1398.5 267.9414
CH2/-Bu 4-H 0.858411 0.00 912.12 324.1384 1045.96 193.4698 1176.15 220.7748 1399.14 265.8966
(CH2)3CHC12 4-H 1.034519 0.00 901.91 223.9915 1081.44 157.4553 1177.35 208.7615 1402.02 264.1869
CH2Cy 4-H 0.844563 0.00 901.35 207.3514 1049.21 220.1915 1175.84 193.9566 1399.83 261.6535
CH(CF3)2 4-H 0.056091 0.00 912.71 204.4970 1162.56 109.7599 1190.80 232.5111 1427.02 161.8919
(CH2)3CC13 4-H 1.293091 0.00 904.54 234.2345 1083.86 167.3353 1177.2 201.5702 1403.22 260.6449
z'Pr 4-H 1.14519 0.00 914.44 180.5888 1138.81 155.7580 1175.61 79.2804 1389.91 195.5056
CH2CC13 4-£-Bu 2.27332 -0.26 909.04 399.1987 1143.06 117.4317 1183.25 210.1953 1411.41 266.7582
c h 2c f 3 4-£-Bu 2.334336 -0.26 908.67 270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
nVr 4-£-Bu 1.293091 -0.26 904.49 228.3224 1094.3 93.3049 1174.28 167.8645 1399.31 272.7238
(cn2)2ci 4-£-Bu 1.472123 -0.26 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
(CH2)2/-Bu 4-£-Bu 1.201281 -0.26 928.06 206.9872 1062.47 34.5064 1173.15 190.8933 1394.28 251.6505
CH(CH2C1)2 4-£-Bu 1.514011 -0.26 902.8 138.9470 1094.31 66.4699 1176.68 186.8029 1381.02 344.0420
CH2?:Pr 4-£-Bu 1.279866 -0.26 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
(CH2)4C1 4-£-Bu 1.509501 -0.26 901.08 193.7590 1081.69 156.7322 1175.43 208.1870 1401.16 267.4892
c h 2c c i3 4-Br 1.161769 0.15 909.04 399.1987 1143.06 117.4317 1183.25 210.1953 1411.41 266.7582
c h 2c f 3 4-Br 1.153538 0.15 908.67 270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
nVr 4-Br 0.898101 0.15 904.49 228.3224 1094.3 93.3049 1174.28 167.8645 1399.31 272.7238
(CH2)2C1 4-Br 1.034519 0.15 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106



Table 3.2. Continued.
R R

AAGt
(kcal/mol) c+ VoSN I osn V co Ic o V so2sym Is02sym V so2asym Is o 2asym

External Validation Set (continued)
(CH2K B 11 4-Br 0.970254 0.15 928.06 206.9872 1062.47 34.5064 1173.15 190.8933 1394.28 251.6505
CH2zPr 4-Br 0.981464 0.15 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
(CH2)4C1 4-Br 1.153538 0.15 901.08 193.7590 1081.69 156.7322 1175.43 208.1870 1401.16 267.4892
(CH2)3C1 4-OMe 2.20938S -0.78 895.82 216.1081 1076.24 147.6745 1175.5 206.0898 1401.27 122.5614
nBu 4-OMe 1.742055 -0.78 920.95 221.3675 1095.19 95.3903 1172.97 153.3218 1398.5 267.9414

CH2CHCI2 4-OMe 2.402661 -0.78 904.37 363.0072 1079.02 204.8069 1181.57 217.0065 1408.58 272.3191
CH2zPr 3-Cl Ph 0.490176 0.4 906.68 260.5564 1030.49 234.7518 1176.96 210.3368 1400.21 254.2135
nBu 3-Cl Ph 0.626594 0.4 920.95 221.3675 1095.19 95.3903 1172.97 153.3218 1398.5 267.9414
(CH2)2C1 3-Cl Ph 0.515223 0.4 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
nBu 4-Ph Ph 1.394915 -0.18 920.95 221.3675 1095.19 95.3903 1172.97 153.3218 1398.5 267.9414
(CH2)2C1 4-Ph Ph 1.677673 -0.18 936.37 205.8182 1122.95 118.2498 1180.85 221.4151 1402.29 277.0106
c h 2c f 3 3-t-Bu Ph 1.405814 -0.06 908.67 270.3053 1127.39 261.4782 1183.37 174.7465 1417.39 279.8990
nBu 3-f-Bu Ph 0.785663 -0.06 920.95 221.3675 1095.19 95.3903 1172.97 153.3218 1398.5 267.9414
(CH2)2C1 3-i-Bu Ph 0.923148 -0.06 936.37 205.8182 1122.95 

Prediction Set
118.2498 1180.85 221.4151 1402.29 277.0106

c h 2c f 2c f 3 4-H 1.32491 0.00 901.04 337.5706 1119.53 178.7140 1184.8 217.6569 1418.82 264.0398
CH2(CF2)2CF3 4-H 1.259453 0.00 898.81 352.9919 1125.2 154.5898 1184.13 317.1686 1418.64 281.0195
CH2C(CH3)2-

CH2C1
4-H 1.064198 0.00 911.67 302.5492 1069.78 243.9570 1176.02 202.0502 1402.17 262.2446
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(b)

(d)

(e) (f)

Figure 3.9. Model development analyses. (a) Leave-one-out (LOO) and (b) external 
validation analyses of the model in Eq. 3.1. (c) LOO and (d) external validation 
analyses of the model in Eq. 3.2. (e) LOO and (f) external validation analyses of the 
mode in Eq. 3.3. The greyed outliers in (b) and (d) correspond to (CF3)2CHOSO2NH2.



With the command “LinearModel.stepwise(X, y, 'interactions'),” the model in Eq. 3.1 

was again afforded. “LinearModel.stepwise(X, y, 'purequadratic')” produced Eq. 3.3.

y = -0.12 -  0.76(o+) + 0 .2 5 (vco) -  0.25(VSO2sym) + 0.80(VSO2sym) Eq. 3.3 

-  1.05(VSO2asym) -  0.11(o+)(VSO2asym) -  0.19(o+)(VSO2asym)

+ 0.14(o+)2 -  0.46(VSO2asym)2 + 1.17(VSO2asym)2

Of the three unique models developed, Eq. 3.2 was determined to be the optimal 

model, with better LOO and external validation statistics than those for Eq. 3.1. In Eq.

3.3, the high number of model terms, the nearly perfect LOO model statistics, and the 

significant external validation outliers (shown in Figure 3.9e and 3.9f) suggest that Eq. 

3.3 represents an overfit of the data, making it an inaccurate model.

General Experimental Information 

MgO, 3 A molecular sieves, and powdered 5 A molecular sieves were activated 

by heating with a Bunsen burner while under vacuum. DMA, THF, ether, toluene, and 

acetonitrile were dried by passing through a column of activated alumina. Unless 

otherwise noted all chemicals were purchased from Aldrich, Acros, TcI, or Alfa Aesar 

and used without further purification. 1H NMR spectra were obtained in CDCb or 

(CD3)2CO at 300 MHz, 400 MHz, or 500 MHz. Chemical shifts are reported in ppm and 

referenced to the CHCb singlet at 7.26 ppm, or the center peak of the pentet from the 

residual 1H resonance present in D6-acetone at 2.05 ppm. 13C NMR spectra were 

obtained in CDCb or (CD3)2CO at 75 MHz, 100 MHz, or 125 MHz and referenced to
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the center peak of the CDCb triplet at 77.23 ppm or the center peak of the (CD3)2CO 

septet at 29.84 ppm. The abbreviations s, d, t, p, sex, sept, dd, dt, tq, qt, and m stand for 

the resonance multiplicities singlet, doublet, triplet, pentet, sextet, septet, doublet of 

doublets, doublet of triplets, triplet of quartets, quartet of triplets, and multiplet, 

respectively. Thin-layer chromatography was performed with EMD silica gel 60 F254 

plates eluting with solvents indicated, visualized by a 254 nm UV lamp and stained with 

phosphomolybdic acid (PMA). Flash chromatography was performed using EM reagent 

silica 60 (230-400 mesh). All melting points are uncorrected and recorded on Thomas 

Hoover Unimelt capillary melting point apparatus. GC separations were performed with 

an HP6890 GC with a flame ionization detector equipped with a DB-5 column using a 

50:1 split. IR spectra were recorded using a Thermo Nicolet FT-IR. HRMS data were 

obtained on a Waters LCP Premier XE instrument by ESI/TOF. LRGC-MS data were 

obtained on an Agilent Technologies 5975c VL MSD instrument.

Preparation of Substrates 

General procedure for Wittig olefination. The reaction scheme is presented in 

Figure 3.10. To a dry 100 mL round-bottom flask equipped with a stirbar under N2 were 

added 6.00 g of isobutyltriphenylphosphonium bromide (15.0 mmol, 1.30 equiv) and 50 

mL of toluene. To this solution, 1.68 g of KOi-Bu (15.0 mmol, 1.30 equiv) in 10 mL of 

THF was added dropwise via cannulation. The reaction mixture was stirred for 4 h. 

The mixture was cooled to -78 °C and the aldehyde (11.6 mmol, 1.00 equiv) in 5.0 mL 

toluene was added dropwise via syringe. The mixture was allowed to warm to room 

temperature and was stirred for 3 h. Upon completion by TLC analysis, the

148



149

BrPh3P/ ^ ^ Me 

RC ^ °  KO,-BuMe -  R€ Qr,L. .  __ ■ Me MePhMe, THF

Figure 3.10. Wittig olefination reaction.



reaction was quenched with 10 mL of saturated aqueous NH4CI. The mixture was 

diluted with 100 mL of diethyl ether and washed with H2O (2 x 10 mL) and brine (1 x 

20 mL). The organic layer was dried over Na2SO4, decanted, and concentrated in 

vacuo. The crude reaction mixture was purified by flash column chromatography.

(Z)-1-methoxy-4-(3-methylbut-1-en-1-yl)benzene. The general Wittig reaction 

procedure was followed using 1.58 g of 4-methoxybenzaldehyde (11.6 mmol). The 

crude mixture was purified by flash chromatography eluting with hexanes to afford the 

product as a colorless oil in 83% yield (1.70 g), Rf = 0.2 (hexanes). 1H NMR (300 

MHz, CDCb): 5 1.11 (d, J  = 6.6 Hz, 6H), 2.89-3.05 (m, 1H), 3.85 (s, 3H), 5.45 (dd, J  =

11.6, 10.2 Hz, 1H), 6.30 (d, J  = 11.6 Hz, 1H), 6.92 (d, J  = 8.6 Hz, 2H), 7.27 (d, J  = 8.6 

Hz, 2H). 13C NMR (75 MHz, CDCb): 5 23.4, 27.3, 55.3, 113.7, 126.0, 130.0, 130.7,

139.2, 158.3. IR (neat): 2999, 2956, 2865, 2834, 1606, 1574, 1461, 1403, 1360, 1297, 

1240, 1174, 1099, 1034, 929, 864, 830, 807, 760, 731, 707, 658, 625, 564 cm’1. HRMS 

(EI+-TOF) m/z calculated for C12H 16O [M+,j: 176.1201, found 176.1201.

(Z)-1-(3-methylbut-1-en-1-yl)-4-(trifluoromethyl)benzene. The general Wittig 

reaction procedure was followed using 2.00 g of (4-(trifluoromethyl)benzaldehyde (11.6 

mmol). The crude mixture was purified by flash chromatography eluting with hexanes 

to afford the product, an inseparable mixture of isomers [Z:E = 10:1], as a colorless oil 

in 85% yield (2.11 g), major isomer: Rf = 0.8 (hexanes). 1H NMR (500 MHz, CDCb): 5

1.05 (d, J  = 6.5 Hz, 6H), 2.80-2.88 (m, 1H), 5.58 (dd, J  = 11.5, 10.5 Hz, 1H), 6.32 (d, J  

= 12.0 Hz, 1H), 7.35 (d, J  = 8.0 Hz, 2H), 7.58 (d, J  = 8.0 Hz, 2H). 13C NMR (125 MHz, 

CDCb): 5 23.2, 27.5, 124.7 (q, J cf = 272.5 Hz), 125.3 (q, J cf = 3.9 Hz), 125.5, 126.3,

128.6 (q, J cf = 32.3 Hz), 129.0, 142.6. IR (neat): 2962, 2869, 1616, 1465, 1402, 1363,
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1321, 1161, 1120, 1105, 1064, 1016, 969, 927, 869, 839, 741, 633, 599, 565 cm’1. 

HRMS (EI+-TOF) m/z calculated for C12H 13F3 [M+’j: 214.0969, found 214.0969.

(Z)-1-(terf-butyl)-4-(3-methylbut-1-en-1-yl)benzene. The general Wittig 

reaction procedure was followed using 1.88 g of 4-(fert-butyl)benzaldehyde (11.6 

mmol). The crude mixture was purified by flash chromatography eluting with hexanes 

to afford the product as a colorless oil in 84% yield (1.97 g), R/ = 0.8 (hexanes). 1H 

NMR (400 MHz, CDCb): 5 1.05 (d, J  = 6.0 Hz, 6H), 1.33 (s, 9H), 2.85-3.00 (m, 1H), 

5.43 (t, J  = 11.0 Hz, 1H), 6.26 (d, J  = 11.6 Hz, 1H), 7.22 (d, J  = 8.4 Hz, 2H), 7.35 (d, J  

= 8.4 Hz, 2H). 13C NMR (100 MHz, CDCb): 5 23.5, 27.4, 31.6, 34.7, 125.3, 126.4,

128.6, 135.2, 140.1, 149.5. IR (neat): 2999, 2958, 2904, 2866, 1508, 1461, 1399, 1378, 

1361, 1299, 1269, 1201, 1160, 1106, 1017, 928, 867, 833, 781, 732, 691, 640, 617, 576 

cm-1. HRMS (EI+-TOF) m/z calculated for C15H22 [M+’j: 202.1722, found 202.1722.

(Z)-1-bromo-4-(3-methylbut-1-en-1-yl)benzene. The general Wittig reaction 

procedure was followed using 2.15 g of 4-bromobenzaldehyde (11.6 mmol). The crude 

mixture was purified by flash chromatography eluting with hexanes to afford the 

product, an inseparable mixture of isomers [Z:E = 10:1], as a colorless oil in 88% yield 

(2.30 g), major isomer: R/ = 0.8 (hexanes). 1H NMR (300 MHz, CDCb): 5 1.06 (d, J  =

6.6 Hz, 6H), 2.77-2.93 (m, 1H), 5.52 (dd, J  = 11.6, 10.3 Hz, 1H), 6.24 (d, J  = 11.7 Hz, 

1H), 7.14 (d, J  = 8.4 Hz, 2H), 7.46 (d, J  = 8.4 Hz, 2H). 13C NMR (75 MHz, CDCb): 5

23.3, 27.4, 120.5, 125.5, 130.4, 131.4, 136.9, 141.3. IR (neat): 3003, 2957, 2924, 2865, 

1899, 1642, 1586, 1484, 1463, 1413, 1391, 1361, 1324, 1162, 1124, 1071, 1009, 927, 

863, 826, 774, 750, 715, 558 cm-1. HRMS (EI+-TOF) m/z calculated for CnHoBr [M+’j: 

224.0201, found 224.0203.
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(Z)-1-chloro-3-(3-methylbut-1-en-1-yl)benzene. The general Wittig reaction 

procedure was followed using 1.63 g of 3-chlorobenzaldehyde (11.6 mmol). The crude 

mixture was purified by flash chromatography eluting with hexanes to afford the 

product as a colorless oil in 97% yield (2.03 g), Rf = 0.9 (hexanes). 1H NMR (300 

MHz, CDCb): 5 1.08 (d, J  = 6.6 Hz, 6H), 2.80-2.98 (m, 1H), 5.54 (dd, J  = 11.6, 10.3 

Hz, 1H), 6.27 (d, J  = 11.6 Hz, 1H), 7.13-7.30 (m, 4H). 13C NMR (75 MHz, CDCb): 5

23.3, 27.4, 125.4, 126.7, 127.0, 128.8, 129.6, 134.2, 139.9, 141.8. IR (neat): 3004, 2959, 

2926, 2866, 1642, 1594, 1563, 1465, 1423, 1361, 1324, 1192, 1163, 1118, 1090, 1076, 

989, 930, 886, 789, 746, 700, 684 cm-1. HRMS (EI+-TOF) m/z calculated for CnHoCl 

[M+’]: 180.0706, found 180.0706.

(Z)-4-(3-methylbut-1-en-1-yl)-1,1'-biphenyl. The general Wittig reaction 

procedure was followed using 2.11 g of biphenyl-4-carboxaldehyde (11.6 mmol). The 

crude mixture was purified by flash chromatography eluting with hexanes to afford the 

product as a colorless oil in 97% yield (2.03 g), Rf = 0.6 (hexanes). 1H NMR (300 

MHz, CDCb): 5 1.18 (d, J  = 6.6 Hz, 6H), 2.98-3.17 (m, 1H), 5.61 (dd, J  = 11.6, 10.5 

Hz, 1H), 6.43 (d, J  = 11.6 Hz, 1H), 7.39-7.56 (m, 5H), 7.63-7.72 (m, 4H). 13C NMR 

(75 MHz, CDCb): 5 23.4, 27.5, 126.2, 127.1, 127.2, 127.4, 129.0, 129.3, 137.1, 139.4,

140.9, 141.0. IR (neat): 3028, 2999, 2956, 2923, 2864, 1600, 1513, 1485, 1447, 1396, 

1360, 1298, 1158, 1098, 1074, 1006, 927, 866, 838, 772, 740, 728, 694, 634, 579 cm-1. 

HRMS (EI+-TOF) m/z calculated for C17H 18 [M+*]: 222.1409, found 222.1408.

(Z)-1-(terf-butyl)-3-(3-methylbut-1-en-1-yl)benzene. The general Wittig 

reaction procedure was followed using 1.88 g of 3-(fert-butyl)benzaldehyde (11.6 

mmol). The crude mixture was purified by flash chromatography eluting with hexanes
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to afford the product as a colorless oil in 90% yield (2.11 g), R/ = 0.8 (hexanes). 1H 

NMR (300 MHz, CDCb): 5 1.06 (d, J  = 6.6 Hz, 6H), 1.33 (s, 9H), 2.78-3.03 (m, 1H), 

5.46 (dd, J  = 11.6, 10.2 Hz, 1H), 6.31 (d, J  = 11.6 Hz, 1H), 7.07-7.13 (m, 1H), 7.24

7.31 (m, 3H). 13C NMR (75 MHz, CDCb): 5 23.5, 27.5, 31.6, 34.8, 123.7, 125.9, 126.0, 

127.3, 128.1, 137.7, 140.2, 151.0. IR (neat): 3000, 2958, 2865, 1599, 1578, 1483, 1461, 

1393, 1361, 1269, 1191, 1160, 1089, 933, 897, 799, 750, 720, 702 cm'1. HRMS (EI+- 

TOF) m/z calculated for C15H22 [M+’j: 202.1722, found 202.1722.

(Z)-(4-methylpent-1-en-1-yl)benzene. The general Wittig reaction procedure 

was followed using 1.23 g of benzaldehyde (11.6 mmol) and with the modification that 

6.20 g of isopentyltriphenylphosphonium bromide (15.0 mmol) was used instead of 

isobutyltriphenylphosphonium bromide. The crude mixture was purified by flash 

chromatography eluting with hexanes to afford the product as a colorless oil in 92% 

yield (1.71 g). Analytical data match the literature.44

General procedure for alkene hydrogenation. The reaction scheme is 

presented in Figure 3.11. To a dry 100 mL round-bottom flask equipped with a stirbar 

was added 50 mg of 10% palladium on carbon (10 mg / 1 mmol substrate). After 

bringing the flask under N2 atmosphere, 25 mL of EtOAc and the corresponding alkene 

(5.00 mmol, 1.00 equiv) were added to the flask. Using a hydrogen-filled balloon, the 

flask was evacuated and refilled with hydrogen three times. The reaction was stirred for 

3 h under balloon-pressure of hydrogen, after which time the reaction was passed 

through celite and concentrated in vacuo. The material was deemed pure and used 

without chromatographic purification.

1-isopentyl-4-methoxybenzene (1a). The general hydrogenation procedure was
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followed using 0.881 g of (Z)-1-methoxy-4-(3-methylbut-1-en-1-yl)benzene (5.00 

mmol). The crude mixture was passed through celite and concentrated in vacuo to 

afford the product as a colorless oil in quantitative yield (0.891 g), Rf  = 0.3 (hexanes). 

1H NMR (300 MHz, CDCb): 5 0.96 (d, J  = 6.3 Hz, 6H), 1.45-1.67 (m, 3H), 2.58 (t, J  = 

8.1 Hz, 2H) 3.81 (s, 3H), 6.85 (d, J  = 8.6 Hz, 2H), 7.13 (d, J  = 8.6 Hz, 2H). 13C NMR 

(75 MHz, CDCb): 5 22.8, 27.8, 33.0, 41.3, 55.4, 113.9, 129.4, 135.4, 157.7. IR (neat): 

2952, 2931, 2867, 2833, 1611, 1589, 1510, 1464, 1441, 1383, 1365, 1299, 1242, 1175, 

1117, 1038, 820, 742, 701, 555 cm-1. HRMS (EI+-TOF) m/z calculated for C12H 18O 

[M+’]: 178.1358, found 178.1355.

1-isopentyl-4-(trifluoromethyl)benzene (1b). The general hydrogenation 

procedure was followed using 1.07 g of (Z)-1-(3-methylbut-1-en-1-yl)-4- 

(trifluoromethyl)benzene (5.00 mmol). The crude mixture was passed through celite and 

concentrated in vacuo to afford the product as a colorless oil in quantitative yield (1.09 

g), Rf = 0.8 (hexanes). 1H NMR (300 MHz, CDCb): 5 0.96 (d, J  = 6.3 Hz, 6H), 1.48

1.68 (m, 3H), 2.68 (t, J  = 8.0 Hz, 2H), 7.30 (d, J  = 8.0 Hz, 2H), 7.54 (d, J  = 8.0 Hz, 2H). 

13C NMR (75 MHz, CDCb): 5 22.7, 27.9, 33.9, 40.7, 124.7 (q, J cf = 270.0 Hz), 125.4 

(q, J cf = 3.8 Hz), 128.2 (q, J cf = 32.0 Hz), 128.8, 147.4. IR (neat): 2957, 2870, 1618, 

1468, 1417, 1385, 1321, 1160, 1116, 1086, 1066, 1018, 950, 857, 822, 628, 595 cm"1. 

HRMS (EI+-TOF) m/z calculated for C12H 15F3 [M+’]: 216.1126, found 216.1122.

1-(ferf-butyl)-4-isopentylbenzene (1c). The general hydrogenation procedure 

was followed using 1.01 g of (Z)-1-(fert-butyl)-4-(3-methylbut-1-en-1-yl)benzene (5.00 

mmol). The crude mixture was passed through celite and concentrated in vacuo to 

afford the product as a colorless oil in quantitative yield (1.02 g), Rf = 0.8 (hexanes). 1H

155



NMR (500 MHz, CDCb): 5 0.94 (d, J  = 6.5 Hz, 6H), 1.31 (s, 9H), 1.46-1.64 (m, 3H), 

2.58 (t, J  = 8.0 Hz, 2H), 7.12 (d, J  = 8.5 Hz, 2H), 7.30 (d, J  = 8.5 Hz, 2H). 13C NMR 

(125 MHz, CDCb): 5 22.8, 28.0, 31.7, 33.4, 34.5, 41.0, 125.3, 128.2, 140.2, 148.5. IR 

(neat): 2954, 2867, 1744, 1515, 1466, 1392, 1383, 1364, 1268, 1237, 1202, 1124, 1109, 

1019, 929, 856, 840, 817, 566 cm-1. HRMS (EI+-TOF) m/z calculated for C15H24 [M+’j: 

204.1817, found 204.1874.

1-bromo-4-isopentylbenzene (1d). The general hydrogenation procedure was 

followed using 1.13 g of (Z)-1-bromo-4-(3-methylbut-1-en-1-yl)benzene (5.00 mmol). 

The crude mixture was passed through celite and concentrated in vacuo to afford the 

product as a colorless oil in quantitative yield (1.14 g), R/ = 0.8 (hexanes). 1H NMR 

(300 MHz, CDCb): 5 0.97 (d, J  = 6.3 Hz, 6H), 1.46-1.68 (m, 3H), 2.59 (t, J  = 8.0 Hz, 

2H), 7.08 (d, J  = 8.4 Hz, 2H), 7.41 (d, J  = 8.0 Hz, 2H). 13C NMR (75 MHz, CDCb): 5

22.7, 27.8, 33.4, 40.8, 119.4, 130.3, 131.5, 142.2. IR (neat): 2953, 2867, 1590, 1486, 

1466, 1403, 1383, 1366, 1168, 1071, 1010, 850, 805, 707, 630, 535 cm-1. HRMS (EI+- 

TOF) m/z calculated for CnH15Br [M+’j: 226.0357, found 226.0362.

1-chloro-3-isopentylbenzene (1e). The general hydrogenation procedure was 

followed using 0.905 g of (Z)-1-chloro-3-(3-methylbut-1-en-1-yl)benzene (5.00 mmol). 

The crude mixture was passed through celite and concentrated in vacuo to afford the 

product as a colorless oil in quantitative yield (0.915 g), R/ = 0.9 (hexanes). 1H NMR 

(300 MHz, CDCb): 5 1.05 (d, J  = 6.3 Hz, 6H), 1.53-1.75 (m, 3H), 2.67 (t, J  = 8.0 Hz, 

2H), 7.10-7.33 (m, 4H). 13C NMR (75 MHz, CDCb): 5 22.7, 27.9, 33.7, 40.8, 125.9,

126.7, 128.7, 129.6, 134.2, 145.2. IR (neat): 2954, 2868, 1598, 1572, 1467, 1427, 1384, 

1366, 1204, 1165, 1089, 999, 969, 883, 865, 816, 778, 757, 694, 683 cm"1. HRMS (EI+-
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TOF) m/z calculated for CnH15Cl [M+’j: 182.0862, found 182.0862.

4-isopentyl-1,1'-biphenyl (1f). The general hydrogenation procedure was 

followed using 1.11 g of (Z)-4-(3-methylbut-1-en-1-yl)-1,1'-biphenyl (5.00 mmol). The 

crude mixture was passed through celite and concentrated in vacuo to afford the product 

as a colorless oil in quantitative yield (1.12 g), R/ = 0.6 (hexanes). 1H NMR (300 MHz, 

CDCb): 5 1.17 (d, J  = 6.3 Hz, 6H), 1.71-1.91 (m, 3H), 2.86 (t, J  = 8.0 Hz, 2H), 7.45 (d, 

J  = 7.8 Hz, 2H), 7.51 (t, J  = 6.6 Hz, 1H), 7.61 (t, J  = 7.2 Hz, 2H), 7.71 (d, J  = 8.1 Hz, 

2H), 7.78 (d, J  = 8.1 Hz, 2H). 13C NMR (75 MHz, CDCb): 5 22.8, 27.9, 33.6, 41.0, 

127.1, 127.2 (2), 128.9, 129.0, 138.7, 141.4, 142.4. IR (neat): 3026, 2952, 2928, 2866, 

1601, 1519, 1485, 1466, 1407, 1383, 1365, 1168, 1121, 1074, 1007, 910, 854, 822, 758, 

728, 694, 599 cm’1. HRMS (EI+-TOF) m/z calculated for C17H20 [M+’j: 224.1565, found 

224.1565.

1-(ferf-butyl)-3-isopentylbenzene (1g). The general hydrogenation procedure 

was followed using 1.01 g of (Z)-1-(fert-butyl)-3-(3-methylbut-1-en-1-yl)benzene (5.00 

mmol). The crude mixture was passed through celite and concentrated in vacuo to 

afford the product as a colorless oil in quantitative yield (1.02 g), R/ = 0.8 (hexanes). 1H 

NMR (300 MHz, CDCb): 5 0.94 (d, J  = 6.3 Hz, 6H), 1.32 (s, 9H), 1.46-1.68 (m, 3H), 

2.61 (t, J  = 8.0 Hz, 2H), 6.98-7.03 (m, 1H), 7.19-7.23 (m, 3H). 13C NMR (75 MHz, 

CDCb): 5 22.8, 28.1, 31.7, 34.4, 34.8, 41.3, 122.7, 125.6 (2), 128.2, 142.9, 151.2. IR 

(neat): 3024, 2953, 2867, 1605, 1488, 1466, 1383, 1364, 1273, 1202, 1168, 1083, 1024, 

883, 788, 759, 704 cm"1. HRMS (EI+-TOF) m/z calculated for C15H24 [M+’j: 204.1878, 

found 204.1880.

(4-methylpentyl)benzene (5). The general hydrogenation procedure was
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followed using 0.80 g of (Z)-(4-methylpent-1-en-1-yl)benzene (5.00 mmol). The crude 

mixture was passed through celite and concentrated in vacuo to afford the product as a 

colorless oil in quantitative yield (0.81 g). Analytical data match the literature.45

General procedure for alcohol synthesis. This reaction scheme is presented in 

Figure 3.12. To a dry 250 mL round-bottom flask equipped with a stirbar under N2 were 

added 1.79 g of CHCb (15.0 mmol, 1.00 equiv) and 150 mL of THF, and the solution 

was cooled to -94 °C using a hexane/liquid N2 bath. Then, 6.0 mL of a 2.5 M solution 

of nBuLi (15.0 mmol, 1.00 equiv) was added dropwise via syringe and allowed to stir 

for 1 h. Then, 0.871 g of oxetane (15.0 mmol, 1.00 equiv) was added in one portion, 

followed by dropwise addition of 2.13 g of BF3*EtO2 (15.0 mmol, 1.00 equiv). The 

resulting mixture was allowed to gradually warm to -60 °C over 1 h, then it was 

quenched with 20 mL of 1.0 M HCl. The aqueous layer was extracted with EtOAc (3 x 

20 mL) and the combined organic layers were washed with brine (1 x 20 mL), dried 

over Na2SO4, decanted, and concentrated in vacuo. The product was purified by silica 

gel flash chromatography to give the desired alcohol product.

4.4.4-trichlorobutan-1-ol. This compound was prepared according to the 

general procedure for alcohol synthesis using 1.79 g of CHCb (15.0 mmol). The 

product was purified by silica gel flash chromatography eluting with 20% EtOAc in 

hexanes to give the product as a colorless oil in 64% yield (1.70 g). Analytical data 

match the literature.46

4.4-dichlorobutan-1-ol. This compound was prepared according to the general 

procedure for alcohol synthesis with the modification that 1.27 g of CH2Q 2 (15.0 mmol) 

was used instead of CHCb. The product was purified by silica gel flash
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chromatography eluting with 30% EtOAc in hexanes to give the product as a colorless 

oil in 55% yield (1.18 g). Analytical data match the literature.46

N-(((LK,4&S,10aK)-7-[sopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydro 

phen-anthren-1-yl)methyl)-3,7-dimethyloctanamide (6). To a stirred solution of 3,7- 

dimethyloctanoic acid (500 mg, 2.90 mmol) in 10 mL of CH2Q 2 was added solid N ,N ’- 

dicyclohexylcarbodiimide (659 mg, 3.19 mmol, 1.2 equiv) in a single portion. A 

solution of (+)-dehydroabietylamine (2.4 M in pyridine, 1.38 g, 2.90 mmol) in 5 mL of 

CH2Cl2 was then added dropwise via cannula. Transfer of this material was made 

quantitative with an additional 2 mL of CH2Cl2 . After stirring for 18 h, the reaction 

mixture was transferred to a separatory funnel with 20 mL of CH2Cl2, and the solution 

washed successively with 1.0 M HCl (2 x 1 0  mL), saturated aqueous NaHCO3 (1 x 1 0  

mL), and brine (1 x 10 mL). The organic fraction was collected, dried over anhydrous 

MgSO4, filtered, and concentrated under reduced pressure. Purification of this material 

by chromatography on silica gel eluting with 20% EtOAc in hexanes to afforded the 

desired amide as a viscous, colorless oil in 42% yield (536 mg), Rf = 0.20 (20% EtOAc 

in hexanes); 1H NMR (400 MHz, CDCb) 5 0.84 (d, J  = 6.4 Hz, 6H), 0.89 (d, J  = 6.4 Hz, 

3H), 0.93 (s, 3H), 1.08-1.14 (m, 2H), 1.21 (s, 3H), 1.22 (d, J  = 7.6 Hz, 6H), 1.25-1.39 

(m, 2H), 1.42 (d, J  = 7.6 Hz, 3H), 1.43-1.55 (m, 2H), 1.64-1.80 (m, 4H), 1.86-1.94 (m, 

4H), 2.10-2.19 (m, 1H), 2.29 (d, J  = 13.6 Hz, 1H), 2.77-2.94 (m, 3H), 3.17 (d, J  = 6.4 

Hz, 2H), 5.34 (s, 1H), 6.89 (s, 1H), 6.99 (d, J  = 8.4 Hz, 1H), 7.17 (d, J  = 8.4 Hz, 1H). 

13C NMR (100 MHz, CDCb) 5 18.6, 18.7, 18.9, 19.7, 22.6, 22.7, 23.9, 24.7, 25.3, 27.9,

30.2, 30.7, 33.4, 36.2, 36.9, 37.0, 37.3, 37.4, 38.3, 39.1, 44.8, 45.5, 49.8, 123.8, 124.1,

126.9, 134.7, 145.5, 147.1, 172.7. IR (thin film): 3303, 2955, 2926, 2867, 16421, 1551,
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1497, 1460, 1382, 1365, 1307, 1231, 1186, 820 cm'1. HRMS (ESI-TOF) m/z calculated 

for C30H50NO [M+H]+: 440.3892, found 440.3887.

General procedure for sulfamate ester synthesis. To a dry 25 mL round- 

bottom flask equipped with a stirbar under N2 were added 8.0 mL of CH3CN and 5.0 

mL of chlorosulfonyl isocyanate (57.0 mmol, 2.20 equiv), and the solution was cooled 

to 0 °C. Next, 2.2 mL of formic acid (58.0 mmol, 2.24 equiv) was added dropwise via 

syringe, and gas evolution was observed immediately. The resulting mixture was 

allowed to stir at 0 °C for 30 min, then was diluted with 16 mL of CH3CN and allowed 

to gradually warm to room temperature and stir for an additional 2 h. The mixture was 

then recooled to 0 °C and a solution of alcohol (25.9 mmol, 1.00 equiv) in 12.0 mL of 

DMA was added dropwise via cannula. Transfer of the alcohol was made quantitative 

with an additional 9.0 mL of DMA. After 10 min, the reaction was warmed to room 

temperature and stirred for 16 h. The reaction was quenched by the addition of 20 mL 

of H2O and transferred to a separatory funnel. The aqueous layer was extracted with 

EtOAc (2 x 50 mL). The combined organic layers were washed successively with H2O 

(3 x 20 mL) and brine (1 x 20 mL), dried over Na2SO4, decanted, and concentrated in 

vacuo. The product was purified by silica gel flash chromatography to give the desired 

sulfamate ester product.

Methyl sulfamate (2a). This compound was prepared according to the general 

procedure for sulfamate ester synthesis using 0.830 g of methanol (25.9 mmol). The 

product was purified by silica gel flash chromatography eluting with 40% EtOAc in 

hexanes to give the product as a white solid in 78% yield (2.24 g). Analytical data 

match the literature.47
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Ethyl sulfamate (2b). This compound was prepared according to the general 

procedure for sulfamate ester synthesis using 1.19 g of ethanol (25.9 mmol). The 

product was purified by silica gel flash chromatography eluting with 30% EtOAc in 

hexanes to give the product as a white solid in 93% yield (3.02 g). Analytical data 

match the literature.48

Propyl sulfamate (2c). This compound was prepared according to the general 

procedure for sulfamate ester synthesis using 1.56 g of propan-1-ol (25.9 mmol). The 

product was purified by silica gel flash chromatography eluting with 30% EtOAc in 

hexanes to give the product as a colorless oil in 83% yield (2.99 g). Analytical data 

match the literature.47

Butyl sulfamate (2d): This compound was prepared according to the general 

procedure for sulfamate ester synthesis using 1.92 g of butan-1-ol (25.9 mmol). The 

crude mixture was purified by silica gel flash chromatography eluting with 30% EtOAc 

in hexanes to give the product as a colorless oil in 66% yield (2.62 g), R/  = 0.3 (30% 

EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 0.95 (t, J  = 7.4 Hz, 3H), 1.44 (sex, J  

= 7.5 Hz, 2H), 1.73 (p, J  = 7.5 Hz, 2H), 4.22 (t, J  = 6.5 Hz, 2H), 4.87 (s, 2H). 13C NMR 

(125 MHz, CDCb): 5 13.7, 18.9, 30.9, 71.6. IR (neat): 3283, 2962, 2876, 1558, 1466, 

1350, 1171, 1055, 1014, 995, 919, 882, 817, 792, 729, 667, 590, 550 cm-1. HRMS (ESI- 

TOF) m/z calculated for C4HnNOsNaS [M+Na]+: 176.0357, found 176.0360.

2-chloroethyl sulfamate (2e). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.09 g of 2-chloroethan-1-ol (25.9 

mmol). The crude mixture was purified by silica gel flash chromatography eluting with 

50% EtOAc in hexanes to give the product as a white solid in 51% yield (2.11 g), M.P.
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= 43-45 °C, R/ = 0.3 (50% EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 3.78 (t, 

J  = 5.8 Hz, 2H), 4.43 (t, J  = 5.8 Hz, 2H), 4.91 (s, 2H). 13C NMR (125 MHz, CDCb): 5

41.2, 70.2. IR (thin film): 3388, 3285, 1557, 1456, 1430, 1359, 1305, 1174, 1071, 1006, 

925, 767, 668, 590, 551 cm-1. HRMS (ESI-TOF) m/z calculated for C2H5ClNOsS [M- 

H+]- : 157.9679, found 157.9687.

3-chloropropyl sulfamate (2f). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.45 g of 3-chloropropan-1-ol 

(25.9 mmol). The product was purified by silica gel flash chromatography eluting with 

40% EtOAc in hexanes to give the product as a yellow oil in 26% yield (1.17 g). 

Analytical data match the literature.48

4-chlorobutyl sulfamate (2g). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.81 g of 4-chlorobutan-1-ol (25.9 

mmol). The crude mixture was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a colorless oil in 46% yield (2.24 g), R/ = 

0.2 (30% EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 1.91-1.95 (m, 4H), 3.59 

(t, J  = 6.0 Hz, 2H), 4.50 (t, J  = 5.8 Hz, 2H), 4.93 (s, 2H). 13C NMR (125 MHz, CDCb): 

5 26.4, 28.7, 44.4, 70.7. IR (neat): 26.4, 28.7, 44.4, 70.7. IR (neat): 3382, 3281, 2963, 

1552, 1444, 1352, 1280, 1171, 1075, 915, 808, 738, 645, 591, 549cm-1. HRMS (ESI- 

TOF) m/z calculated for C4H10ClNNaOsS [M+Na]+: 209.9968, found 209.9969.

1,3-dichloropropan-2-yl sulfamate (2h). This compound was prepared 

according to the general procedure for sulfamate ester synthesis using 3.34 g of 1,3- 

dichloropropan-2-ol (25.9 mmol). The crude mixture was purified by silica gel flash 

chromatography eluting with 30% EtOAc in hexanes to give the product as a white
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solid in 63% yield (3.39 g), M.P. = 75-77 °C, Rf = 0.5 (30% EtOAc in hexanes). 1H 

NMR (500 MHz, CDCb): 5 3.87 (t, J  = 5.3 Hz, 4H), 4.87 (p, J  = 5.3 Hz, 1H), 4.96 (s, 

2H). 13C NMR (125 MHz, CDCb): 5 42.6, 79.7. IR (thin film): 3853, 3743, 3628, 3392, 

3287, 1733, 1716, 1699, 1683, 1652, 1616, 1558, 1506, 1429, 1363, 1296, 1177, 1009, 

920, 864, 789, 753, 699, 667, 598, 555 cm’1. HRMS (ESI-TOF) m/z calculated for 

C3H6Cl2NO3S [M-H+]- : 205.9445, found 205.9452.

2,2-dichloroethyl sulfamate (2i). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.98 g of 2,2-dichloroethan-1-ol 

(25.9 mmol). The crude mixture was purified by silica gel flash chromatography 

eluting with 30% EtOAc in hexanes to give the product as a white solid in 69% yield 

(3.47 g), M.P. = 39-40 °C, Rf = 0.3 (30% EtOAc in hexanes). 1H NMR (500 MHz, 

CDCb): 5 4.49 (d, J  = 6.0 Hz, 2H), 5.06 (s, 2H), 5.90 (t, J  = 6.0 Hz, 1H). 13C NMR (125 

MHz, CDCb): 5 67.6, 73.4. IR (thin film): 3738, 3628, 3394, 3293, 1761, 1699, 1652, 

1558, 1506, 1455, 1370, 1294, 1182, 1062, 1004, 932, 839, 797, 756, 707, 667, 553 

cm-1. HRMS (ESI-TOF) m/z calculated for C2H4O 2NO3S [M-H+]- : 191.9289, found 

191.9307.

4,4-dichlorobutyl sulfamate (2j). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 3.70 g of 4,4-dichlorobutan-1- 

ol (25.9 mmol). The crude mixture was purified by silica gel flash chromatography 

eluting with 30% EtOAc in hexanes to give the product as a white solid in 78% yield 

(4.49 g), M.P. = 44-46 °C, Rf = 0.3 (30% EtOAc in hexanes). 1H NMR (500 MHz, 

CDCb): 5 2.01-2.09 (m, 2H), 2.32-2.39 (m, 2H), 4.29 (t, J  = 6.0 Hz, 2H), 4.82 (s, 2H),

5.84 (t, J  = 5.8 Hz, 1H). 13C NMR (125 MHz, CDCb): 5 25.4, 39.7, 70.1, 72.7. IR (thin
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film): 3853, 3734, 3628, 3386, 3285, 2967, 1699, 1652, 1558, 1506, 1471, 1444, 1361, 

1178, 1078, 1017, 935, 890, 750, 667, 655, 594, 552 cm-1. HRMS (ESI-TOF) m/z 

calculated for C4H8Q 2NO3S [M-H+j- : 219.9602, found 219.9617.

2,2,2-trichloroethyl sulfamate (2k). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 3.87 g of 2,2,2-trichloroethan- 

1 -ol (25.9 mmol). The product was purified by silica gel flash chromatography eluting 

with 30% EtOAc in hexanes to give the product as a white solid in 81% yield (4.79 g). 

Analytical data match the literature.47

4,4,4-trichlorobutyl sulfamate (2l). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 4.60 g of 4,4,4-trichlorobutan- 

1 -ol (25.9 mmol). The crude mixture was purified by silica gel flash chromatography 

eluting with 30% EtOAc in hexanes to give the product as a white solid in 82% yield 

(5.45 g), M.P. = 67-69 °C, R/ = 0.3 (30% EtOAc in hexanes). 1H NMR (500 MHz, 

CDCb): 5 2.23-2.28 (m, 2H), 2.84-2.88 (m, 2H), 4.34 (t, J  = 6.0 Hz, 2H), 4.90 (s, 2H). 

13C NMR (125 MHz, CDCb): 5 26.4, 51.6, 69.7, 99.1. IR (thin film): 3853, 3628, 3288, 

2970, 1733, 1652, 1558, 1473, 1453, 1362, 1256, 1236, 1180, 1154, 1082, 1036, 936, 

818, 746, 667, 660, 591, 552 cm-1. HRMS (ESI-TOF) m/z calculated for C4H?CbNO3S 

[M-H+j- : 253.9212, found 253.9218.

Isopropyl sulfamate (2m). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 1.56 g of propan-2-ol (25.9 

mmol). The crude mixture was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a colorless oil in 62% yield (2.23 g), R/ = 

0.4 (30% EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 1.41 (d, J  = 6.0 Hz, 6H),
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4.84 (sept, J  = 6.3 Hz, 1H), 5.02 (s, 2H). 13C NMR (125 MHz, CDCb): 5 22.8, 78.3. IR 

(neat): 3853, 3733, 3628, 3371, 3281, 2988, 1699, 1652, 1558, 1506, 1470, 1456, 1351, 

1177, 1100, 919, 881, 767, 667, 590, 555 cm-1. HRMS (ESI-TOF) m/z calculated for 

C3H9NO3NaS [M+Na]+: 162.0201, found 162.0207.

1,1,1,3,3,3-hexafluoropropan-2-yl sulfamate (2n). This compound was 

prepared according to the general procedure for sulfamate ester synthesis using 4.35 g 

of 1,1,1,3,3,3-hexafluoropropan-2-ol (25.9 mmol). The product was purified by silica 

gel flash chromatography eluting with 30% EtOAc in hexanes to give the product as a 

white solid in 88% yield (5.63 g). Analytical data match the literature.5

2,2,2-trifluoroethyl sulfamate (2o). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 2.59 g of 2,2,2-trifluoroethan- 

1 -ol (25.9 mmol). The product was purified by silica gel flash chromatography eluting 

with 40% EtOAc in hexanes to give the product as a white solid in 83% yield (3.85 g). 

Analytical data match the literature.48

Pentan-3-yl sulfamate (2p). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.28 g of pentan-3-ol (25.9 

mmol). The crude mixture was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a colorless oil in 49% yield (2.12 g). Rf =

0.2 (20% EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 0.97 (t, J  = 7.5 Hz, 6H), 

1.71-1.79 (m, 4H), 4.50 (p, J  = 6.0 Hz, 1H), 4.87 (s, 2H). 13C NMR (125 MHz, CDCb): 

5 9.4, 26.5, 87.8. IR (neat): 3853, 3734, 3628, 3280, 2973, 2942, 2889, 1700, 1652, 

1558, 1506, 1458, 1341, 1174, 1102, 1034, 901, 843, 777, 741, 667, 586, 552 cm-1. 

HRMS (ESI-TOF) m/z calculated for C5HoNNaO3S [M+Na]+: 190.0514, found
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Isobutyl sulfamate (2q). This compound was prepared according to the general 

procedure for sulfamate ester synthesis using 1.92 g of 2-methylpropan-1-ol (25.9 

mmol). The crude mixture was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a colorless oil in 79% yield (3.13 g), R/ =

0.5 (30% EtOAc in hexanes). 1H NMR (500 MHz, CDCb): 5 0.97 (d, J  = 6.5 Hz, 6H), 

2.03 (nonet, J  = 6.8 Hz, 1H), 3.97 (d, J  = 6.5 Hz, 2H), 5.07 (s, 2H). 13C NMR (125 

MHz, CDCb): 5 18.8, 28.1, 77.4. IR (neat): 3374, 3280, 2965, 2877, 1557, 1470, 1353,

1171, 978, 919, 839, 814, 667, 583, 552 cm-1. HRMS (ESI-TOF) m/z calculated for 

C4HuNO3NaS [M+Na]+: 176.0357, found 176.0360.

Cyclohexylmethyl sulfamate (2r). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 2.96 g of cyclohexylmethanol 

(25.9 mmol). The product was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a white solid in 76% yield (3.80 g). 

Analytical data match the literature.47

Neopentyl sulfamate (2s). This compound was prepared according to the 

general procedure for sulfamate ester synthesis using 2.28 g of 2,2-dimethylpropan-1-ol 

(25.9 mmol). The product was purified by silica gel flash chromatography eluting with 

30% EtOAc in hexanes to give the product as a white solid in 80% yield (4.33 g), M.P. 

= 55-57 °C, R/ = 0.5 (30% EtOAc in hexanes). 1H NMR (500 MHz, d6-acetone/TMS): 

5 0.97 (s, 9H), 3.80 (s, 2H), 6.60 (s, 2H). 13C NMR (125 MHz, d6-acetone/TMS): 5

25.7, 31.3, 78.6. IR (thin film): 3365, 3274, 2957, 1557, 1476, 1404, 1355, 1297, 1269,

1172, 1035, 977, 919, 831, 758, 667, 583, 557 cm-1. HRMS (ESI-TOF) m/z calculated
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for C5H13NO3NaS [M+Na]+: 190.0514, found 190.0519.

3.3-dimethylbutyl sulfamate (2t). This compound was prepared according to 

the general procedure for sulfamate ester synthesis using 2.65 g of 3,3-dimethylbutan-1- 

ol (25.9 mmol). The crude mixture was purified by silica gel flash chromatography 

eluting with 30% EtOAc in hexanes to give the product as a white solid in 74% yield 

(3.50 g), M.P. = 47-48 °C, Rf = 0.5 (30% EtOAc in hexanes). 1H NMR (500 MHz, 

CDCb): 5 0.96 (s, 9H), 1.68 (t, J  = 7.5 Hz, 2H), 4.26 (t, J  = 7.5 Hz, 2H), 4.87 (s, 2H). 

13C NMR (125 MHz, CDCb): 5 29.7, 30.0, 42.0, 69.6. IR (thin film): 3853, 3628, 3374, 

3289, 2956, 2870, 1700, 1652, 1558, 1475, 1365, 1177, 1080, 1018, 962, 928, 829, 775, 

744, 667, 556 cm-1. HRMS (ESI-TOF) m /z  calculated for CeH^NOsNaS [M+Na]+: 

204.0670, found 204.0674.

2.2.3.3.3-pentafluoropropyl sulfamate (2u). This compound was prepared 

according to the general procedure for sulfamate ester synthesis using 3.89 g of

2,2,3,3,3-pentafluoropropan-1-ol (25.9 mmol). The crude mixture was purified by silica 

gel flash chromatography eluting with 30% EtOAc in hexanes to give the product as a 

colorless oil in 80% yield (4.74 g), Rf = 0.7 (30% EtOAc in hexanes). 1H NMR (500 

MHz, d6-acetone/TMS): 5 4.68 (t, J  = 12.8 Hz, 2H), 7.15 (s, 2H). 13C NMR (125 MHz, 

d6-acetone/TMS): 5 65.2 (t, J cf = 27.9 Hz), 113.7 (tq, J cf = 253.4, 38.0 Hz), 120.2 (qt, 

J cf = 283.6, 34.2 Hz). IR (neat): 3398, 3296, 1552, 1456, 1373, 1299, 1261, 1182, 

1157, 1106, 1041, 1008 930, 818, 776, 717, 667, 622, 549 cm-1. HRMS (ESI-TOF) m /z  

calculated for C3H3F5NO3S [M-H+]- : 227.9754, found 227.9759.

2,2,3,3,4,4,4-heptafluorobutyl sulfamate (2v). This compound was prepared 

according to the general procedure for sulfamate ester synthesis using 5.18 g of
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2,2,3,3,4,4,4-heptafluorobutan-1-ol (25.9 mmol). The crude mixture was purified by 

silica gel flash chromatography eluting with 30% EtOAc in hexanes to give the product 

as a low melting white solid in 90% yield (6.51 g), R/ = 0.6 (30% EtOAc in hexanes). 

1H NMR (500 MHz, d6-acetone/TMS): 5 4.75 (t, J  = 13.5 Hz, 2H), 7.21 (s, 2H). 13C 

NMR (125 MHz, d6-acetone/TMS): 5 63.4 (t, J cf = 27.0 Hz), 106.8-112.5 (m), 113.7 

(tt, J cf = 254.9, 30.5 Hz), 117.4 (qt, J cf = 285.1, 33.4 Hz). IR (neat): 3853, 3837, 3801, 

3733, 3675, 3628, 3396, 3297, 1772, 1733, 1716, 1699, 1683, 1652, 1635, 1616, 1558, 

1540, 1506, 1456, 1374, 1356, 1297, 1226, 1180, 1124, 1051, 1015, 958, 914, 819, 760, 

724, 668, 649 cm'1. HRMS (ESI-TOF) m /z  calculated for C4H3F7NO3S [M-H+]- : 

277.9722, found 277.9727.

3-chloro-2,2-dimethylpropyl sulfamate (2w). This compound was prepared 

according to the general procedure for sulfamate ester synthesis using 3.18 g of 3- 

chloro-2,2-dimethylpropan-1-ol (25.9 mmol). The crude mixture was purified by silica 

gel flash chromatography eluting with 30% EtOAc in hexanes to give the product as a 

white solid in 77% yield (4.012 g), M.P. = 43-45 °C, R/ = 0.5 (30% EtOAc in hexanes). 

1H NMR (300 MHz, CDCb): 5 1.07 (s, 6H), 3.45 (s, 2H), 4.02 (s, 2H), 5.07 (s, 2H). 13C 

NMR (75 MHz, CDCb): 5 22.5, 36.5, 51.4, 75.3. IR (thin film): 3859, 3792, 3628, 

3384, 3289, 2971, 1733, 1716, 1699, 1683, 1652, 1558, 1506, 1472, 1436, 1356, 1305, 

1267, 1175, 974, 920, 830, 775, 730, 702, 668, 585, 554 cm’1. HRMS (ESI-TOF) m /z  

calculated for C5H 11CINO3S [M-H+]- : 200.0148, found 200.0149.

General C -H  amination procedure A. This transformation is presented in 

Figure 3.13. Into a 1.5-dram vial equipped with a stirbar was added the sulfamate ester 

(0.30 mmol, 1.0 equiv). Then, 300 ^L of a 2 mL standard solution (freshly prepared,
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Figure 3.13. Rh2(esp)2-catalyzed C-H amination.



containing the isoamyl substrate (2.0 mmol), 50 ^L of tetradecane, 15 mg of Rh2(esp)2 

(0.02 mmol, 0.01 equiv), and /PrOAc) were added to the vial. The vial was then sealed 

with a teflon-lined cap and stirred for 5 min, at which time the vial was uncapped and 

193 mg of PhI(OAc)2  (0.60 mmol, 2.0 equiv) was added in a single portion. The vial 

was then re-capped and allowed to stir for 16 h. (Note: the reaction changes color from 

green to red within 5 min of adding PhI(OAc)2 .) The reaction was then passed through 

celite and analyzed by GC and GC-MS.

General C -H  amination procedure B. Into a 1.5-dram vial equipped with a 

stirbar were added the sulfamate ester (0.60 mmol, 1.2 equiv), 81 mg of freshly 

activated MgO (2.0 mmol, 4.0 equiv), and 100 mg of freshly activated 5 A molecular 

sieves. Then, 500 ^L of a 2 mL standard solution (freshly prepared, containing the 

isoamyl substrate (2.0 mmol), 15 mg of Rh2(esp)2 (0.02 mmol, 0.01 equiv), and /PrOAc) 

were added to the vial. The vial was then sealed with a teflon-lined cap and stirred for 5 

min, at which time the vial was uncapped and 322 mg of PhI(OAc)2 (1.0 mmol, 2.0 

equiv) was added in a single portion. The vial was then re-capped and allowed to stir 

for 16 h. The reaction was then passed through celite and concentrated in vacuo. The 

product was purified by silica gel flash chromatography to give the desired sulfamate 

ester product.

2,2,3,3,3-pentafluoropropyl (3-methyl-1-phenylbutyl)sulfamate (3u). The

general C-H amination procedure B was followed using 137 mg of 2,2,3,3,3- 

pentafluoropropyl sulfamate (2u) (0.60 mmol). The crude mixture was purified by 

silica gel flash chromatography eluting with 20% diethyl ether in hexanes to give the 

product as a white solid in 58% yield (109 mg), M.P. = 47-48 °C, Rf = 0.4 (20% ether
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in hexanes). 1H NMR (500 MHz, CDCb): 5 0.93 (d, J  = 6.5 Hz, 6H), 1.53 (sept, J  = 6.5 

Hz, 1H), 1.66(dt, J  = 13.9, 7.1 Hz, 1H), 1.77 (dt, J  = 14.0, 7.1 Hz, 1H), 3.99 (q, J  = 12.2 

Hz, 1H), 4.07 (q, J  = 12.2 Hz, 1H), 4.50 (t, J  = 7.7 Hz, 1H), 5.20 (s, 1H), 7.25-7.34 (m, 

3H), 7.35-7.40 (m, 2H). 13C NMR (125 MHz, CDCb): 5 22.3, 22.5, 24.9, 46.2, 58.1, 

63.9 (t, J cf = 27.9 Hz), 111.3 (tq, J cf = 255.2, 38.3 Hz), 118.3 (qt, J cf = 284.8, 34.3 

Hz), 126.7, 128.5, 129.2, 140.9. IR (thin film): 3853, 3732, 3628, 3298, 2960, 2873, 

1558, 1457, 1428, 1367, 1260, 1201, 1178, 1107, 1045, 1005, 970, 938, 839, 806, 774, 

758, 699, 667, 604, 565 cm-1. HRMS (ESI-TOF) m/z calculated for C14H 17F5NO3S [M- 

H+]- : 374.0849, found 374.0841.

2.2.3.3.3-pentafluoropropyl (4-methyl-1-phenylpentyl)sulfamate (5u). The 

general C-H amination procedure B was followed using 137 mg of 2,2,3,3,3- 

pentafluoropropyl sulfamate (2u) (0.60 mmol). The crude mixture was purified by 

silica gel flash chromatography eluting with 20% diethyl ether in hexanes to give the 

product as a colorless oil in 60% yield (118 mg), R/ = 0.5 (20% ether in hexanes). 1H 

NMR (300 MHz, CDCb): 5 0.86 (d, J  = 6.6 Hz, 6H), 1.00-1.34 (m, 2H), 1.55 (sept, J  = 

6.8 Hz, 1H), 1.72-1.99 (m, 2H), 4.08 (sex, J  = 12.8 Hz, 2H), 4.39 (q, J  = 7.5 Hz, 1H), 

5.23 (s, 1H), 7.23-7.41 (m, 5H). 13C NMR (125 MHz, CDCb): 5 22.5, 22.6, 27.9, 34.9,

35.2, 60.1, 64.0 (t, J cf = 28.0 Hz), 111.3 (tq, J cf = 255.1, 38.1 Hz), 118.3 (qt, J cf =

284.6, 34.3 Hz), 126.7, 128.5, 129.2, 140.7. IR (neat): 3301, 2958, 2872, 1496, 1456, 

1428, 1367, 1295, 1258, 1201, 1178, 1107, 1038, 1008, 956, 908, 809, 774, 736, 699, 

669, 622, 566 cm-1. HRMS (ESI-TOF) m/z calculated for C15H20F5NO3S [M+Na]+: 

412.0982, found 412.0992.

2.2.3.3.3-pentafluoropropyl((1.R,4a^,10a^)-1-((3,7-dimethyloctanamido)met
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hyl)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-9-yl)sulf 

amate (6u). The general procedure B was followed using 104 mg 2,2,3,3,3- 

pentafluoropropyl sulfamate (0.45 mmol, 1.2 equiv) and 165 mg of substrate (0.38 

mmol, 1.0 equiv). Purification by chromatography on silica gel eluting with 20% 

EtOAc in hexanes afforded the desired product as a colorless oil in 55% yield (139 mg, 

inseparable 1:1 diastereomeric mixture), Rf = 0.35 (20% EtOAc in hexanes); 1H NMR 

(400 MHz, CDCb) 5 0.76-0.84 (m, 18H), 0.93 (s, 6H), 1.10-1.14 (m, 4H), 1.15 (s, 6H),

1.22 (d, J  = 6.8 Hz, 12H), 1.25-1.47 (m, 8H), 1.68-1.78 (m, 4H), 1.82-1.98 (m, 4H), 

2.09-2.19 (m, 4H), 2.24-2.31 (m, 4H), 2.51-2.59 (m, 2H), 2.86 (sept, J  = 6.8 Hz, 2H), 

3.61-3.69 (m, 2H), 4.52-4.62 (m, 2H), 4.72-4.75 (m, 2H), 4.82-4.92 (m, 2H), 5.77 (t, J  

= 6.0 Hz, 2H), 6.74 (d, J  = 7.2 Hz, 1H), 6.78 (d, J  = 7.2 Hz, 1H), 7.09 (d, J  = 8.4 Hz, 

2H), 7.15 (d, J  = 8.4 Hz, 2H), 7.34 (s, 1H), 7.35 (s, 1H). 13C NMR (100 MHz, CDCb) 5

18.4, 19.5, 19.6, 19.7, 19.8, 22.5, 22.6, 22.7, 23.8, 24.0, 24.5, 24.7, 25.0, 25.1, 26.5, 

26.6, 27.8, 27.9, 30.7, 30.8, 33.5, 33.6, 35.4, 36.8, 36.9, 37.3, 37.4, 37.8, 37.9, 38.4,

38.9, 39.0, 39.1, 44.7, 44.8, 48.9, 52.4, 52.5, 63.6, 63.9, 64.2, 123.6, 126.3, 126.4,

126.7, 128.4, 128.5, 133.0, 133.1, 146.7, 146.8, 147.1, 147.2, 174.2. 19F NMR (376 

MHz, decoupled, CDCb) 5 -83.9, -123.8. IR (thin film): 3403, 3306, 2958, 2929, 2870, 

1646, 1535, 1498, 1460, 1366, 1205, 1183, 1046, 1004, 801 cm-1. HRMS (ESI-TOF) 

m/z calculated for C33H52F5N2O4S [M+H]+: 667.3568, found 667.3562.
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GC-MS Traces

All crude Rh-catalyzed C-H amination reactions were analyzed by GC to 

determine benzylic-to-tertiary ratios. Each product mixture was then analyzed by GC-
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MS to confirm the identity of the benzylic and tertiary product peaks by analyzing their 

corresponding fragmentation patterns. As a representative example, GC-MS traces of 

the proposed fragmentation of the benzylic and tertiary isoamylbenzene amination 

products, resulting from the Rh-catalyzed amination reaction, are shown in Figure 3.14.
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Figure 3.14. Representative proposed fragmentation of amination products with 
corresponding GC-MS traces. (a) Benzylic product. (b) Tertiary product.
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CHAPTER 4

A DESIGNER SUBSTRATE SCOPE LIBRARY AMENABLE 

TO QUANTITATIVE DESCRIPTION AND PREDICTIVE 

MODELLING OF REACTION PERFORMANCE*

Introduction

Assessment of reaction substrate scope is often a qualitative endeavor that 

provides general indications of substrate sensitivity to a measured reaction outcome. 

Unfortunately, this field standard typically falls short of enabling the quantitative 

prediction of reaction outcomes for substrates not evaluated in the scope library. The 

disconnection between a reaction’s development and the quantitative prediction of new 

substrates’ behavior limits the applicative usefulness of many methodologies.

Founded on the work presented in Chapters 2 and 3, we considered that the 

approach developed for mathematically exploring reaction mechanism and optimizing 

reaction outcomes, when applied to reaction scope, would advantageously impact the 

quality of data gathered from this key aspect of reaction development. This concept was 

evaluated in the context of rhodium-catalyzed asymmetric transfer hydrogenation. This 

chapter will explore the process of devising a Design of Experiments (DoE) founded

* This chapter is based on the author’s reported work that is herein reproduced with permission from Bess, 
E. N.; Bischoff, A. J.; Sigman, M. S. Designer Substrate Library for Quantitative, Predictive Modeling of 
Reaction Performance. Proc. Natl. Acad. Sci. U.S.A 2014, 111, 14698-14703.



substrate scope library, developing models to quantify the molecular features that 

influence enantioselection, and, in so doing, lend mechanistic insight to the modes of 

asymmetric induction.

Product distributions of chemical reactions are dictated by a myriad of 

interactions between molecular species. Identifying which of these features impacts 

reaction selectivity is a key facet for mechanistically understanding a transformation. 

Such insight often facilitates optimization, as well as indicates which types of substrates 

(substrate scope) are well-suited to the method. Unfortunately, the assessment of 

impactful features is frequently a qualitative endeavor that would significantly benefit 

from quantitation. Founded upon the modelling concepts investigated in Chapters 2 and 3 

and expanding the previously established applications of DoE, a robust method is 

demonstrated for developing a varied substrate scope library of ketones, identifying 

quantitative descriptors of mechanistic significance, and applying these descriptors to 

mathematically elucidate trends in enantioselective reaction outcomes of rhodium- 

catalyzed asymmetric transfer hydrogenation. The developed mathematical relationships 

are used to predict future outcomes of new ketone substrates.

Human brains are highly experienced at recognizing patterns in observed data. 

Organizing information and drawing connections between data enables general 

conclusions to be made: fast or slow; good or bad; high or low. While these qualitative 

assessments are routinely crafted, they are subject to biases, causing evaluations to differ 

from one individual to another.1 The examination of a reaction’s substrate scope often 

takes on a similarly qualitative air.2-5 A substrate scope for a developed synthetic method 

typically provides an indication of functional group tolerance and general trends in
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reaction outcomes for sterically and/or electronically varied substrates. This qualitative 

approach, which lacks quantitation of how substrate features will influence a reaction’s 

outcome, particularly product selectivity, often limits a reaction’s application to contexts 

with high degrees of similarity to the initial scope library. Additionally, it can be difficult 

to predict, beyond generalities such as poorly versus well behaved, how a new substrate 

will perform under the reaction conditions. Addressing this limitation through 

quantitative prediction of reaction outcomes would significantly affect how one both 

develops and applies a new synthetic method while simultaneously imparting 

fundamental mechanistic insight.6

To accomplish this goal, an entirely new approach to examining a reaction’s 

substrate scope is required. As the ultimate goal is to mathematically predict a broad 

range of reaction outcomes, an initial library of substrates would need to be carefully 

designed to represent many of the impactful features influencing the reaction, as was 

successfully demonstrated with the sulfamate ester library for rhodium-catalyzed C-H 

amination (Chapter 3). Specifically, one would need to include systematic variation of 

steric and electronic features of a given substrate class while also limiting the initial size 

of the substrate library to make this a practical venture. With this in mind, exploiting the 

tenets of Design of Experiments (DoE) and regression modeling is required, where 

broadly descriptive models are built from data that systematically samples the 

experimental space to be described.7,8 Following the pattern prescribed in the previous 

chapters, the results of this sampling are then correlated to chemical descriptors—which 

are predicted to define relevant interactions between a substrate and catalyst—using 

linear regression algorithms for the prediction of reaction outcomes.9-17



In the context of enantio- or site-selective reactions, it is anticipated that this type 

of strategy would have two far-reaching effects: 1) provide mechanistic information 

about the properties of a substrate that are essential for differentially engaging a catalyst, 

where one product is favored over others and 2) enable quantified predictions of how 

future substrates will behave under the reaction conditions, prior to performing the 

experiment. Numerical depiction of patterns in reaction outcomes expands the 

applicability of developed reaction methods, adding a quantitatively accurate and precise 

dimension to qualitative expectations of chemical behavior.18 Herein is described an 

approach for constructing a substrate library of ketones that is sterically and 

electronically varied according to DoE principles and, thus, is amenable to descriptive, 

predictive quantitative modelling, wherein mechanistic patterns in reaction outcomes are 

robustly delineated. Particularly, the objective is to develop a ketone library that is 

defined by molecular descriptors that broadly represent properties that are influential in a 

variety of mechanistically distinct reactions.

The following sections describe a four-step process to designing a substrate scope 

library, which is suited to eventual quantitative modelling of reaction outcomes (Figure 

4.1). These steps are 1) identify parameters to describe reaction sensitivities and define 

the virtual experimental space; 2) organize ketones that systematically sample the 

experimental space and evaluate these ketones’ performance in enantioselective 

reactions; 3) connect molecular descriptors of ketones to reaction outcomes via linear 

regression modelling; and 4) apply models to quantitatively predict the performance of 

new ketones.
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Figure 4.1. Approach to developing a sterically and electronically 
modulated substrate library amenable to quantitative modelling of 
reaction outcomes. First, parameters are selected based on hypotheses 
of their mechanistic relevance to define the experimental substrate 
scope space. Second, the experimental space is systemetically sampled 
in a reaction of interest. Third, linear regression modelling is used to 
identify quantitative relationships between reaction outcomes and 
molecular descriptors. Finally, the developed model is used to predict 
the reaction outcomes of new substrates, prior to experimental 
assessment.
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Identify Substrate Parameters and Define 
the Ketone Experimental Space

Quantitative modelling initiates with consideration of the experimental ketone 

space to be described. What substrate changes impact reaction outcomes and why? 

Hypothesizing a reaction’s sensitivity to substrate modifications and identifying a system 

by which these changes are numerically depicted sets the stage for a systematic substrate 

analysis focused on facets of mechanistic relevance. This process was recently 

demonstrated in our analysis of Nozaki-Hiyama-Kishi (NHK) propargylation of alkyl 

ketones.11 Measuring dimensional information according to Sterimol parameters, a 

library of sterically varied methyl ketones and ligands was prepared, according to DoE 

principles (Figures 4.2a-c).19-21 Subjected to NHK propargylation reaction conditions, 

enantiomeric ratios resulting from each ligand/ketone combination in this library were 

measured. Linear regression modelling was used to develop a mathematical relationship 

that related steric features of the substrates (Sterimol B 1, minimum substituent radius; 

Sterimol B5, maximum substituent radius) and ligands (B1) to AAG (AAG = -RT* 

/w(enantioselectivity), Figure 4.2d). This model enabled the robust prediction of 

enantioselectivity afforded for new methyl ketones, ligands, and combinations thereof. 

Additionally, this model quantifies specific aspects of steric differentiation that are key 

features of ketone facial discrimination.

A constraint of this study was its inability to predictively describe electronically 

perturbed and more complex ketone substrates, as the training set (data points used for 

model development) was limited to alkyl methyl ketones. Thus, we aimed to build an 

expanded, DoE-founded library of ketones, bearing steric and electronic variation at both 

ketone substituent sites, which adds significant complexity to the experimental design.
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Figure 4.2. Using design of experiments to evaluate steric effects. (a) 
NHK propargylation of alkyl ketones, with steric effects varied at the 
substrate R' and ligand R'' positions. (b) Design of Experiments (DoE) 
approach to substrate and ligand variation. The plot demonstrates the 
relatively even distribution of substituent changes, as measured by 
Sterimol B1 values. (c) Depiction of an isopropyl substituent's Sterimol 
measurements. (d) Mathematical model of NHK propargylation.



Two salient molecular features of ketones that we hypothesized to be important 

considerations for describing them are differential steric size between a ketone’s two 

substituents, which can enable discrimination between ketone faces, and carbonyl 

electrophilicity, which likely modulates the early or late nature of the corresponding 

transition states involved in determining selectivity.22 Due to the demonstrated effective 

use of Sterimol parameters for describing the relative size of methyl ketones (vide supra), 

this multidimensional steric measure—particularly B 1 and B5, which measure the 

minimum and maximum size near the reactive carbonyl—seemed an appropriate choice 

for describing differential steric bulk between R 1 and R2 (Figure 4.3).

An interest in describing ketone variation at both R-group sites, for alkyl and aryl 

substituents, limits the range of parameters that could be effective electronic descriptors. 

For instance, the commonly employed Hammett o value (the acidity of benzoic acid 

derivatives) could not be used to parameterize this library, as o values are limited to 

describing electronic changes on phenyl rings at meta and para  positions, also precluding 

description of heteroaromatic arenes and alkyl chains.23 While o values are too limited a 

descriptor for this library, these values are well-correlated to carbonyl infrared (IR) 

stretching frequencies.24,25 IR vibrational frequencies originate from differential charges 

and masses across a bond and, therefore, inherently describe, without limitation, carbonyl 

electronics and the groups bonded to the carbonyl carbon.9,18,26 The demonstrated success 

of IR vibrational data effectively describing reaction outcomes (Chapters 2 and 3) 

prompted the use of this powerful descriptor for quantitating ketone features.

Using Sterimol parameters and carbonyl IR stretching frequencies as general 

descriptors of the anticipated reaction of ketones, it was next necessary to assess the
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Objective: Develop library of ketones that displays 
broad steric and electronic variation at R1 and R2.

O
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Differential steric bulk (Sterimol values) Carbonyl electrophilicity (vc=Q)

Figure 4.3. Building the experimental space. (a) A 52-membered set of methyl 
ketones that sample the steric and electronic ketone space was constructed. 
Redundancy within the library was reduced by assessing each ketone according 
to (b) putative mechanistically relevant descriptors (Sterimol values and 
carbonyl IR stretching frequency, vc=o). This reduction resulted in the 32- 
membered library depicted in (a).
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sensitivity limits of these parameters. This determination was undertaken by first virtually 

populating three categories of ketone substituents: aliphatic, halogenated/oxygenated 

aliphatic, and arene (Figure 4.3a). The resulting 52 defined groups were each included as 

a substituent on a methyl ketone. Energy minimization and frequency calculations (M06- 

2X/TZVP) were carried out for this diverse set in order to evaluate each ketone’s 

carbonyl IR stretching frequency and Sterimol values (Figure 4.3b).27-31

From structurally related ketone subsets, carbonyl IR stretches’ sensitivity to R- 

group variation was determined. Performing this sensitivity analysis was designed to 

alleviate redundancy in the ketone library so as not to oversample any region of the 

experimental space. This analysis was performed by analyzing graphed comparisons of 

ketone carbonyl IR stretching frequency, representative examples of which are given in 

Figure 4.4. Considering the analysis of the iPr-derived subset as a template for all such 

analyses, comparison of iPr, CH(Et)2 and CH(Pr)2 demonstrate little change in carbonyl 

IR stretching frequency for the latter two methyl ketones. Thus, of this trio, only the iPr 

group was determined to be within the descriptive range of the carbonyl IR stretch 

parameter. For the CF3-derived substituents, the electron-withdrawing effect of 

trifluoromethyl does not impact the carbonyl IR stretching frequency when the group is 

more than one methylene unit removed from the carbonyl, so only the CH2CF3 group was 

maintained from this series. The results of similar analyses for other R-group subsets are 

presented in Figure 4.3a. Once complete, this sensitivity analysis reduced the initial 52- 

membered ketone set to 32 methyl ketones, each hypothesized to be distinct according to 

the Sterimol and carbonyl stretching parameters.

The next stage was to consider how the experimental space for multisite,
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Figure 4.4. Representative sensitivity analyses given for 
z'Pr- and CF3-derived substituents.



multieffect ketone variation could be identified. To accomplish this, eight methyl ketone 

R groups were selected in DoE fashion (Figure 4.5) to representatively sample the methyl 

ketone library. All unique combinations of these eight groups at R 1 and R2 yielded 28 

ketones for which differential Sterimol values (Sterimol valuesR1 -  Sterimol valuesR2) and 

carbonyl IR stretch frequency were measured from energy minimized structures. The 

identified ketone experimental space is given in Figure 4.6.
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Figure 4.5. Plots of Sterimol B 1 and Sterimol B5 versus carbonyl IR stretching 
frequencies of the 32-membered set of methyl ketones that was identified via sensitivity 
analyses. The red data points represent a reasonably even, DoE-type sampling of these 
sterically and electronically described spaces.
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Figure 4.6. Identify ketones that systematically sample the experimental ketone scope 
space. (a) Plot of the R1/R2 combinations of the eight R groups represented in Figure 4.5 
(■). Presumably, this space, defined by differential Sterimol B 1 and B5 values and 
carbonyl IR stretching frequencies, defines a relevant ketone scope. This space was 
evenly sampled, ■ and ■, according to DoE principles. Substrates that systematically 
populate the ketone scope, as delineated by the electronic and steric descriptors applied, 
are depicted.



Organize and Evaluate Ketones that Systematically 
Sample the Experimental Space

After the substrate scope space was defined, this bounded region was populated 

with ketones that broadly span its dimensions (Figure 4.6). All but one of these ketones,

16, are commercially available, enabling ready evaluation of this designer library 

(hereafter termed the DoE library). The conceptual framework upon which the DoE 

library was built is best evaluated by subjecting the ketones to a chemical transformation 

and measuring reaction outcomes. Then, linear regression models can be developed to 

describe the observed outcomes as related to ketone changes. Finally, the model’s 

validity is determined by assessing how well the model predicts the reaction outcomes of 

new ketones.

To limit factors that would confound assessment of the described approach’s 

effectiveness for DoE library development, it was desirable to subject the library to 

reaction conditions where measured reaction outcomes 1) are highly reproducible, 2) are 

sensitive to structural changes to ketones, and 3) have been rationalized according to 

previous mechanistic work. These requirements allow the method of DoE library 

development to be assessed in a manner that is not contingent upon the reaction itself. 

Additionally, corroborating the developed model with prior mechanistic work adds 

credence to the use of future DoE-founded modelling approaches for lending mechanistic 

insight in the absence of computational transition state models.

Rhodium-catalyzed asymmetric transfer hydrogenation (ATH) is a reaction that 

satisfies the requirements for DoE library assessment.32-34 Of particular note, 

computational models of the ruthenium ATH variant’s selectivity determining transition 

state have been investigated.35 These models suggest that the favored diastereomeric
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transition state benefits from a key stabilizing C-H/n interaction between a C-H bond of 

the pentamethylcyclopentadienyl (Cp*) ligand’s methyl group and the pi cloud of a 

ketone substrate’s arene (Figure 4.7). This proposed transition state model suggests that 

aryl/alkyl ketones, which can engage with the catalyst through a C-H/n interaction, and 

alkyl/alkyl ketones, which cannot participate in this intermolecular interaction, may 

behave as two distinct substrate classes in the ATH reaction.36

Supposing that these two types of ketones rely on different modes of asymmetric 

induction, we determined that each ketone class should be independently modelled. This 

two-pronged approach allows for an optimal description of the unique features relevant to 

each ketone class’s selectivity-determining interactions. Interestingly, assessment of the 

DoE library’s graphical depiction according to carbonyl IR stretching frequencies and 

Sterimol values demonstrates a natural divide between the two ketone classes (Figure 

4.6).

Quantitatively Connect Reaction Outcomes 
and Molecular Descriptors of Ketones

The aryl/alkyl and alkyl/alkyl ketone DoE libraries were each subjected to ATH 

conditions, and the resulting enantiomeric ratios, in the form of AAG  ̂ (AAG = -RT* 

/«([5]/[^])), were tabulated (see “Methods”).10,37 To quantitate and interpret the key 

selectivity determinants in each ketone class’s library, a set of ketone parameters that is 

capable of detailing the selective process was required. Measured from computationally 

energy-minimized ketone structures, parameters were included in this set based on 

hypotheses of their mechanistic significance. In the initial stages of model development, 

we often include only the parameters we propose to be most impactful and add
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Figure 4.7. Rhodium-catalyzed asymmetric transfer hydrogenation (ATH) reaction, to 
which conditions the DoE library was subjected to assess the robustness of the library for 
developing broadly descriptive, accurate, and precise mathematic models. The 
transformations’ proposed selectivity-determining transition state is presented. The 
training set of reduced ketone products and their corresponding enantiomeric ratios are 
presented, with AAG* values given in parentheses.



parameters to improve the models, as needed. The mechanistic hypotheses are 

continually informed and refined in a dynamic, iterative process according to the failures 

and successes of the explanatory parameters that are evaluated via regression. For 

instance, and as described in greater detail below, previously established steric 

parameters were ineffective descriptors of the enantioselective role of differential steric 

effects in the ATH system. This deficiency fueled development of a new steric measure 

more well-suited to the demands of the ATH system (and potentially other systems) and 

provided insight into the steric dimensions of mechanistic relevance. While there are 

many other unique parameter combinations with potential descriptive relevance, below is 

described the logic employed to arrive at the parameter set that was used for regression 

modelling.

To begin constructing the parameter set, the relevant electronic details of ketones 

were proposed to be described by three descriptors (Figure 4.8). First, the vibrational 

frequency of the carbonyl IR stretch (vc=o) used to define the library was included. The 

intensity of this stretch (IC=O) was also considered for its representation of electronic 

variation. An alternative measure of electronic nature was incorporated through point 

charges at the four atoms that are conserved throughout the ketone library (C-C(O)-C).

Turning to structural features of the library, it is plausible that the degree of 

asymmetric induction for aryl/alkyl ketone substrates is influenced by the degree of 

torsion (Tor) between the carbonyl and the arene (Figure 4.8). This parameter may 

describe the energy expenditure/stabilization balance between various torting of 

aryl/alkyl ketones from their energetic minima to conformations where transition state- 

stabilizing C-H/n interactions can occur. Indeed, in the absence of this term, robust
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Figure 4.8. Numeric molecular descriptors hypothesized to be 
relevant predictors of ATH enantioselectivity.



models were not developed (vide infra).

While this torsion angle cannot be used to describe alkyl/alkyl ketones, where 

facial discrimination cannot arise from C-H/n stabilizing interactions, a surrogate was 

envisioned in a scissoring IR vibrational mode. Termed Vscissor and Iscissor, the frequency 

and intensity of this vibration, which induces a compression of the two carbons alpha to 

the carbonyl (Figure 4.8), were added to the alkyl/alkyl ketone descriptor set. Although 

several other vibrations, and combinations thereof, might describe similar molecular 

dynamics, this scissoring term was selected due to the confidence with which it could be 

consistently identified in all computed alkyl/alkyl ketones.

Finally, the initial DoE library descriptors of sterics, Sterimol B 1 and B5 values, 

were revisited for inclusion in the parameter set. Sterimol values provided an ineffective 

representation of ATH enantioselection, which precluded identification of robust models 

and, consequently, instigated a reanalysis of how to treat steric effects. As size proximal 

to the reactive carbonyl moiety is likely to play a different role in enantioselection than 

distal steric effects, we assessed means of partitioning steric measures into these distinct 

units. Sterimol measurements of ethyl and nbutyl substituents highlight the necessity of 

this distinction (Figure 4.9). While the B 1 measures of ethyl and nbutyl are nearly 

identical, the B5 measures differ substantially. Ethyl’s B5 measurement is 3.15 A, while 

for nbutyl this parameter measures 4.45 A, the width to the distal end of the aliphatic 

chain. Practically, each substituent’s steric dimensions that are proximal to the carbonyl 

are more similar to one another than these measurements indicate.

The discrepancy between the Sterimol measure of size and practically relevant 

proximal sterics was addressed by slicing R groups into two portions. For aliphatic
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Figure 4.9. Comparison of Sterimol measurements for 
ethyl and wbutyl substituents, highlighting Sterimol 
values’ deficiency for distinguishing between proximal 
and distal bulk.



groups, the proximal effect is defined as the first two carbons and its associated 

hydrogens; any atoms beyond the proximal segment comprise the distal fragment (Figure 

4.8). B 1 and B5 were measured for the proximal unit. B5 and L were measured for the 

distal unit.

Arenes were segmented in a similar fashion. Proximal sterics is defined as 

positions spatially equivalent to the ortho position on a phenyl ring, beyond which is 

distal sterics. For each steric fragment, two measurements of arene width were obtained, 

as depicted in Figure 4.8. The Sterimol length parameter, L, was measured for the distal 

steric slice.

From this set of ketone parameters, the combinations thereof that describe the 

observed trends in the DoE library’s enantioselectivity were identified through an 

iterative process of constructing and assessing various combinations of parameters via 

MATLAB stepwise regression algorithms (see Methods and SI: Model Development for 

details).38 This automated mathematical process involves evaluating p-value statistical 

measures for each parameter to determine whether the term is an appropriate descriptor 

of the system. From starting models of both no parameters and all parameters of the 

descriptor set, terms are added to (p-value < 0.05) or removed from (p-value > 0.1) the 

models based on p-value thresholds (see Methods and SI: Model Development for 

details). Through this process, a model for each ketone class was developed. The majority 

of terms in the model that describes the aryl/alkyl ketones were anticipated to be effective 

descriptors, as the carbonyl IR stretching frequency (vc=o) and differential steric bulk 

were two design parameters (Figure 4.10). Yet, with the developed mathematical model, 

these terms’ mechanistic significance on the reaction’s enantioselectivity can now be
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AAG* = -RTIn([S]/[R]) = -0.10 -  0.38(vc=o) -  0.80(ProxB1Alkyl) 
+ 0.29(ProxB1Aryi) -  0.52(Tor) -  1,46( vc=0){ProxB1 Alkyl)

Figure 4.10. Quantitative description of ATH reaction 
enantioselectivities for the aryl/alkyl ketone library, 
with a graphical demonstration of the high degree of 
correlation between predicted and measured AAG* 
values.



more precisely, quantitatively understood.

The carbonyl/aryl torsion angle (Tor) was hypothesized to be relevant due to the 

proposed C-H/n interaction.35 The normalized regression model (Figure 4.11) conveys 

the relative importance of the torsion term via the magnitude of its coefficient. Bearing 

the third largest coefficient, the torsion term plays a significant role in the prediction of 

AAG .̂ In the raw regression model (see “Experimental Information”), Tor bears a 

negative coefficient, indicating that increases in torsion angle erode enantioselectivity. 

The correlation is graphically represented in Figure 4.11, where deviation from this 

pattern is described by the model’s other parameters. The relationship between torsion 

and enantioselectivity does directly support that a C-H/n interaction is operative in face 

selection, which is consistent with the computational structural models.35 Tor’s relevance 

in the mathematical model emphasizes the capability of this linear regression approach 

for delineating distinct mechanistic features amongst a multitude of potential effects.

Description of the various steric and electronic effects playing a role in 

enantioselection for the alkyl/alkyl library was afforded with vc=o and steric measures 

(Figure 4.12; for a detailed description of model development, see “Experimental 

Information”). However, the greatest predictor of enantioselectivity is the crossterm 

(largest parameter coefficient) describing the synergistic influence of the scissoring 

vibrational frequency and intensity. While these parameters are difficult to 

mechanistically deconvolute, the origin of vibrational frequency and intensity in 

differential mass and charge across a bond indicate the appropriateness of such a 

parameter.

Robustness of the models for describing the steric and electronic variation in the

202



203

Figure 4.11. Demonstrated correlation between measured 
enantioselectivities and torsion angle for aryl/alkyl ketone 
library.

Measured AAG1 (kcal/mol)

Figure 4.12. Normalized mathematical model describing how attributes of alkyl/alkyl 
ketones modulate enantioselective ATH reaction outcomes. Graphical depiction of model 
accuracy is given in the form of a predicted versus measured enantioselectivity plot. 
Representation of the model-relevant steric effect is presented.
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DoE libraries is determined by correlating experimentally measured enantioselectivity to 

the enantioselective reaction outcomes predicted by the developed models. Plotting these 

comparisons, shown in Figures 4.9 and 4.11, demonstrates that both models exhibit an 

ability to accurately (R2 value near one) and precisely (slope near one and y-intercept 

near zero) predict enantioselection for the ketones used in model development.

Predict the Performance of New Ketone Substrates 

An important application of the developed models lies with their potential to 

predict the enantioselective outcomes of new ketone substrates. Demonstrating the 

models’ predictive power provides a validation of model robustness and a measure of the 

models’ broad applicability. That is, optimal models represent generalized patterns in 

reaction outcomes. The reliability of the models was evaluated through external 

validation experiments (Figures 4.12a and 4.12b). Nine aryl/alkyl ketones (24-32) and 

three alkyl/alkyl ketones (33-35) were subjected to ATH conditions, and enantiomeric 

ratios were subsequently determined. Using the developed models for each ketone class, 

predictions of enantioselectivity were made. Figure 4.13a demonstrates the excellent 

agreement between predicted and measured enantioselectivities.

Conclusions

In the absence of quantitative models, expected levels of asymmetric induction,

i.e., the mechanistic influences of multieffect substrate variation, are difficult to forecast 

beyond the generalities of good, average, or poor. Certainly, qualitatively predicting 

reversal of face selection, such as observed for the enantiomeric products 36 and 37
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Figure 4.13. Predicting the enantioselective performance of new ketones. (a) Plots 
depicting robust external validation of the aryl/alkyl and alkyl/alkyl ketone models, 
respectively. (b) Products of aryl/alkyl and alkyl/alkyl external validation, with associated 
enantiomeric ratios. (c) Predicted and measured enantiomeric ratios (er) for two 
substrates, where the aryl/alkyl model predicted the observed, yet unexpected, reversal of 
enantioselection
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(Figure 4.13c), is even more challenging. Asymmetric catalysis, as a field, has numerous 

demonstrated apparent outliers, similar to the one described above, that may be predicted 

more accurately by utilizing the techniques described herein. It is also noteworthy to 

consider the advancements of the presented approach for comprehensively modelling 

electronically and structurally diverse substrates. Classic electronic (Hammett) and steric 

(Charton) linear free-energy relationship analyses are unable to describe the developed 

multivariate ketone scope libraries, as the substrates boast significant variability of ketone 

steric and electronic effects.23,39 From ortho- substituted phenyl rings to heteroaromatics 

to electronically perturbed alkyl substituents, each of these R groups represents a 

limitation of Hammett and Charton descriptors. An ability to design this broadly diverse 

ketone library that is also amenable to quantitative modelling demonstrates a new, 

information-rich approach to reaction scope assessment. Presenting a reaction’s substrate 

scope with a robust quantitative model renders the substrate assessment greater than the 

sum of its experimentally analyzed constituents. Robust quantitative models enable 

recognition of patterns by which the reaction outcomes of novel substrates can be 

predicted, effectively expanding a substrate scope.

While a significant amount of both intellectual and applied effort was required to 

develop the approach by which an appropriate DoE-founded library is constructed, 

following the outlined process will enable libraries of new substrate classes to be readily 

developed. We have demonstrated that with model training sets of only five to 10 

substrates, on par with or even less than scope breadths of modern synthetic reports, 

robust models were developed. Additionally, it is often simple and rapid to perform 

ground state computations (completed in a matter of hours) in order to tabulate data for
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substrate-specific parameters. Thus, applying the developed methodology requires only a 

modest effort beyond the standard timeline for reaction method development. Each 

unique investigation is enabled by the ability to develop parameter sets that are tailored to 

the features of hypothesized mechanistic importance in order to afford information-rich 

quantitative models. Simply through thoughtful designs of requisite substrate scope 

interrogations, the extent of meaningful data obtained from this necessary aspect of 

reaction development can be significantly enhanced.

Methods

All parameters used for linear regression modelling were measured from energy- 

minimized structures (M06-2X/TZVP) using Gaussian09.27 Torsion, IR, and natural bond 

orbital (NBO) point charge parameters were measured using GaussView 5.0.40 Sterimol- 

derived measurements were made using Mol2Mol.41 Invoking these parameters for 

descriptive model development is an iterative process of identifying mechanistically 

relevant parameter combinations. The explanatory aptness of the selected parameters was 

investigated by subjecting the aryl/alkyl DoE ketone library’s enantioselective outcomes 

and descriptor set (Figure 4.5a: torsion angle, carbonyl IR stretching frequency and 

intensity, point charges, and Sterimol values for distal and proximal units) to an initial 

round of stepwise linear regression modelling using MATLAB algorithms (see SI: Model 

Development for further details). From this analysis, it was found that ProxBlA/ky/, Tor, 

ProxB5A/ky/, and DlstLA/ky/, ordered according to predictive significance, provide a reasonable 

representation of the DoE library’s ATH enantioselective outcomes. External validation 

data were used to further distinguish this initial model as one bearing terms appropriately
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descriptive of ketones that were not used for model identification.

This analysis enabled refinement of the descriptor set; point charges, not part of 

this initial model, were precluded from further modelling attempts, while Tor was 

maintained. Given the initial design hypothesis that carbonyl IR vibrational frequency is 

an effective descriptor of ketone reaction behavior, the carbonyl IR frequency was 

retained. Descriptors of proximal steric bulk, some of which proved effective in the first 

modelling attempt, were incorporated in the second stage of model development due to 

their hypothesized relevance.

Through hypothesis-driven model development, this honed collection of 

parameters, and cross-terms thereof, was iteratively reduced until the precise, accurate 

model given in Figure 4.5b was identified. While this quantitative relationship 

demonstrates predictive robustness, it represents one of many potential models. This can 

be understood by considering the interrelatedness of many of the parameters employed in 

model development. For instance, steric bulk can impact torsion angles, which alters 

carbonyl/arene conjugation and, thus, the carbonyl IR stretching frequency. Although 

various combinations of these interdependent molecular descriptors may reveal other 

unique models of similar robustness, this does not diminish the information-rich nature of 

the externally validated model.

A similar process was undertaken for the alkyl/alkyl DoE ketone library, where 

enantioselective outcomes and the library’s descriptor set (Figure 4.5a: carbonyl and 

scissoring IR vibrational frequencies and intensities, NBO point charges, and Sterimol 

values for distal and proximal units) were subjected to stepwise linear regression 

MATLAB algorithms. Initial modelling attempts overwhelmingly suggested that the



point charges on the carbonyl oxygen and carbon atoms were relevant descriptors of the 

observed enantioselection trends (see SI: Model Development). However, through 

external validation this model was refuted. As point charges were not necessary for 

describing the aryl/alkyl ketone library, it was hypothesized that this measure could be 

excluded from the second stage of modelling.

With this simplified descriptor set (IR vibrational frequencies and intensities of 

carbonyl stretching and alkyl/alkyl scissoring; proximal and distal steric bulk 

measurements) modelling attempts were still ineffective. It was presumed that this 

limitation was associated with the broad steric and electronic variation represented in the 

relatively small ketone library. Thus, three additional ketones (33-35) were included in 

the library to facilitate the elucidation of a relevant descriptive subset of terms. Using 

standard MATLAB stepwise linear regression algorithms, followed by removal of 

redundant terms, a model with the terms DlstLAtkyi,Large, vscissor, Iscissor, and (vScmor)(IScissor) 

was afforded. Next, the five-membered DoE library of enantioselectivities was fitted to 

these terms, and the resultant model was subsequently evaluated for its robustness 

through external validation (using 33-35). While this model was not able to predict the 

enantioselectivies of these new ketones, this result yielded confidence that this process 

could still yield models where external validation remained an appropriate measure of 

robustness.

To initiate the third stage of model development, it was proposed that proximal 

steric effects would be more likely to influence asymmetric induction than distal steric 

bulk. Thus, DistLAlkyl,Large was eliminated from the descriptor set, and stepwise linear 

regression proceeded from the remaining terms—VScissor, IScissor, (vScissor)(IScissor)—and
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vc=o . The resultant model, afforded after removing superfluous terms, bore four 

parameters: vc=o, ProxB1Alkyl,Small, VScissor, and (vScissor)(IScissor). Wary of overfitting the data 

set, parameter reduction was successfully approached via combining ProxB1Alkyl,Small and 

VScissor into a single cross-term. Again, the five-membered alkyl/alkyl library was used to 

determine the coefficients (weighting) of each term (details provided in SI: Model 

Development). The model was determined to be robustly descriptive of a variety of 

alkyl/alkyl ketones via external validation, where the previous model had failed at the 

external validation stage.

Experimental Information 

General Information

Tetrahydrofuran (THF) and dichloromethane (DCM) were prepared by passing 

through an activated alumina column, under a nitrogen atmosphere, prior to use. 

Triethylamine was used after distillation from CaH2 . Dimethylsulfoxide (DMSO) was 

dried with 3 A molecular sieves prior to use. Unless otherwise noted, all other reagents 

were used as received from commercial sources.

Thin-layer chromatography was performed using silica gel 60 F254 and the eluents 

specified, then visualized via a 254 nm UV lamp and/or stained with phosphomolybdic 

acid, potassium permanganate, 2,4-dinitrophenylhydrazine, or vanillin stains. SiliaFlash® 

F60 40-63 |im silica gel was used for flash column chromatography, as designated. 1H 

and 13C NMR spectra were acquired on a Varian Unity spectrometer at the MHz 

specified. Spectral referencing was performed relative to the CHCb 7.26 ppm singlet (1H 

NMR) and the center peak of the CHCb 77.16 ppm triplet (13C NMR). All multiplicities
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reported are apparent. Abbreviations s, d, t, q, p, sex, sep, dd, ddd, td, bs, and m represent 

the resonance multiplicities singlet, doublet, triplet, quartet, pentet, sextet, septet, doublet 

of doublets, doublet of doublets of doublets, triplet of doublets, broad singlet, and 

multiplet, respectively. IR spectroscopy data were obtained using a Nicolet 380 FT-IR 

instrument. High-resolution mass spectrometry (HRMS) data were obtained using an 

Agilent LCTOF. Melting points were measured using a Thomas Hoover Unimelt 

capillary melting point apparatus. All melting points are uncorrected. Super critical fluid 

chromatography (SFC) analysis was performed using a Thar instrument under the 

conditions indicated. Gas chromatography analysis was performed using a Hewlett 

Packard HP6890 instrument under the conditions indicated. Specific rotations were 

determined using a PerkinElmer 343 Polarimeter, the 589 nm wavelength (sodium D 

line), and a 1 dm cell path length, with concentrations given in units of g/100 mL.

Synthetic Procedures 

Method A: Asymmetric transfer hydrogenation. This method (Figure 4.14) 

was used to afford enantioenriched alcohols. To a 20 mL test tube, equipped with a 

stirbar, was added 1.5 mg of [Cp*RhCh]2 (0.0025 mmol, 0.005 equiv), 1.6 mg of N- 

((1R,2R)-2-aminocyclohexyl)-4-methylbenzenesulfonamide, and 1 mL of deionized 

water. The resulting suspension was stirred in a 40 °C oil bath for 1 hour before adding 

0.1700 g of HCOONa (2.5 mmol, 5.0 equiv) and the respective ketone (0.5 mmol, 1.0 

equiv). The reaction mixture was stirred for 2 hours before cooling to room temperature, 

extracting with diethyl ether, and drying with Na2SO4. The resulting organic solution was 

passed through a silica plug prior to analytical separation of enantiomers via GC or SFC,
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[Cp*RhCI2]2. HCOONa
O H2Q, 40 °C OH

R 2 r ’ ^ r2 
H2N NHTs

Figure 4.14. Rhodium-catalyzed asymmetric transfer hydrogenation.



Method B: Racemic ketone reduction. This racemic reduction method (Figure 

4.15) was used to prepare racemic alcohols by dissolving the corresponding ketone (1 

equiv) in THF (5 mL/mmol). The reaction mixture was cooled to 0 °C, NaBH4 (2 equiv) 

was added, and then the suspension was stirred under a nitrogen atmosphere until 

formation of product was observed, often requiring heating to reflux. The reaction was 

quenched with saturated NH4Cl(aq) and extracted three times with ethyl acetate. The 

resulting organic solution was washed with brine and then dried with Na2SO4 .

(K)-2-methyl-1-phenylpropan-1-ol. This alcohol, for which literature 

characterization data are available,42 was synthesized according to Method A to afford 

enantiomeric ratios of 71.9:28.1 and 73.2:26.8 for two experimental runs. Experimental 

specific rotation: [a]j° =  +22.5 (c 0.16, CHCb, 71.9:28.1 er (R)). Literature specific 

rotation:43-45 [a ]^  = +12.3 (c 1.2, CHCb, 69.2:30.9 er (R)). SFC Enantiomeric 

Separation Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 |im particle 

size), 3% isopropanol, 3 mL min-1, 40 °C, 160 bar. R t = 4.62, 5.02 min.

(K)-1-(3-methylthiophen-2-yl)ethanol. This alcohol, for which literature 

characterization data are available,46 was synthesized according to Method A to afford 

enantiomeric ratios of 92.9:7.1 and 92.7:7.3 for two experimental runs. Experimental 

specific rotation: [a]^0 =  +46.2 (c 0.84, CHCb, 92.9:7.1 er (R)). Literature specific 

rotation:47 [a ]^5 = +13.0 (c 3.4, CHCb, 80.5:19.5 er (R)). SFC Enantiomeric Separation 

Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 |im particle size), 1% 

isopropanol, 4 mL min-1, 40 °C, 160 bar. R t = 5.03, 5.57 min.

(S)-(2-chlorophenyl)(cydopentyl)methanol. This alcohol, for which literature
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0 NaBH4  ̂ OH 

R1 R2 THF Ri^ R2

Figure 4.15. Racemic ketone reduction.



characterization data are available,48 was synthesized according to Method A to afford 

enantiomeric ratios of 81.8:18.2 and 82.5:17.5 for two experimental runs. Experimental 

specific rotation: [a]^0 =  -3 0 .0  (c 0.26, CHCb, 81.8:18.2 er (S)). Literature specific 

rotation:48 [a]j° =  -12 .2  (c 0.42, CHCb, 81:19 er (S)). SFC Enantiomeric Separation 

Conditions: Chiralpak® AY-H column (4.6 mm x 250 mm, 5 |im particle size), 4% 

isopropanol, 1 mL min-1, 28 °C, 160 bar. R t = 14.32, 15.26 min.

(K)-(4-bromophenyl)(cyclopropyl)methanol. This alcohol was synthesized 

according to Method A to afford enantiomeric ratios of 91.7:8.3 and 92.5:7.5 for two 

experimental runs. Method B was used to synthesize the racemic sample by dissolving 

1.576 g of (4-bromophenyl)(cyclopropyl)methanone (7.0 mmol, 1 equiv) in THF (35mL). 

The reaction mixture was cooled to 0 °C, 0.530 g NaBH4 (14.0 mmol, 2 equiv) was 

added, and then the suspension was stirred under a nitrogen atmosphere for 3 hours, 

gradually warming to room temperature, followed by heating to reflux for 40 hours. The 

reaction was quenched with saturated NH4Cl(aq) and extracted three times with ethyl 

acetate. The resulting organic solution was washed with brine and then dried with 

Na2SO4, affording a clear, pale yellow oil, which was purified via flash silica-gel column 

chromatography (20% ethyl acetate in hexanes) and was afforded in 85% yield (5.971 

mmol, 1.356 g). TLC (30% ethyl acetate in hexanes) Rf = 0.61. 1H NMR (500 MHz, 

CDCb) 5: 0.34-0.40 (m, 1H), 0.43-0.49 (m, 1H), 0.53-0.60 (m, 1H), 0.60-0.67 (m, 1H), 

1.12-1.21 (m, 1H), 1.93-2.06 (m, 1H), 3.97 (dd, J  = 8.31 Hz, 3.42 Hz, 1H), 7.28-7.32 

(m, 2H), 7.45-7.49 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 3.1 (s), 3.7 (s), 19.4 (s), 78.0 

(s), 121.4 (s), 127.9 (s), 131.6 (s), 142.9 (s). IR (thin film): 3339, 3080, 3004, 2872, 2360, 

1903, 1591, 1484, 1399, 1290, 1191, 1136, 1101, 1069, 1028, 1008, 947, 918, 866, 813,
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763, 712, 629, 545 cm'1. HRMS C^HnOBrNa [M+Na]+ calculated 248.9891, observed 

248.9894. Experimental specific rotation: [a]j° = -19.1 (c 2.02, CHCb, 92.5:7.5 er (R)). 

Literature specific rotation for analogous cyclopropyl(phenyl)methanol:32 [a ]^7 = -28.3 

(c 1.01, CHCb, 97.8:2.2 er (R)). SFC Enantiomeric Separation Conditions: Chiralpak® 

AD-H column (4.6 mm x 250 mm, 5 |im particle size), 5-50% isopropanol, 2 mL min-1, 

25 °C, 160 bar. R t = 5.54, 5.85 min.

(K)-1-(4-methoxyphenyl)propan-1-ol. This alcohol, for which literature 

characterization data are available,49 was synthesized according to Method A to afford 

enantiomeric ratios of 96.0:4.0 and 96.0:4.0 for two experimental runs. Experimental 

specific rotation: [a]j° =  +36.4 (c 2.84, CHCb, 96.0:4.0 er (R)). Literature specific 

rotation:50 [a]^4 = -2 3 .4  (c 0.30, CHCb, 82.6:17.4 er (S)). SFC Separation Conditions: 

Chiralpak® AS-H (4.6 mm x 250 mm, 5 |im particle size), 2% isopopanol, 3 mL min-1, 26 

°C, 160 bar. R t = 5.54, 6.36 min.

(K)-1-(4-bromophenyl)pentan-1-ol. This alcohol, for which literature 

characterization data are available,51 was synthesized according to Method A to afford 

enantiomeric ratios of 92.3:7.7 and 91.9:8.1 for two experimental runs. Experimental 

specific rotation: [a]j° =  +22.0 (c 3.22, CHCb, 92.3:7.7 er (R)). Literature specific 

rotation:43,51 [a]^0 =  -2 5 .8  (c 1.0, CHCb, 97:3 er (S)). SFC Enantiomeric Separation 

Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 |im particle size), 3% 

isopropanol, 5 mL min-1, 29 °C, 160 bar. R t = 8.11, 9.19 min.

(S)-2-chloro-1-(2,4-dichlorophenyl)ethanol. This alcohol, for which literature 

characterization data are available,52 was synthesized according to Method A to afford 

enantiomeric ratios of 88.7:11.3 and 88.7:11.3 for two experimental runs. Experimental
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specific rotation: [a]^0 =  +29.8 (c 3.9, CHCb, 88.7:11.3 er (S)). Literature specific 

rotation:52 [a]^0 =  - 5 7  (c 1.0, CHCb, >99.5:0.5 er (R)). SFC Enantiomeric Separation 

Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 |im particle size), 5% 

isopropanol, 2 mL min-1, 40 °C, 160 bar. R t = 14.40, 16.22 min.

(K)-1-(2-ethylphenyl)ethanol. This alcohol was synthesized according to Method 

A to afford enantiomeric ratios of 83.7:16.3 and 83.6:16.4 for two experimental runs. The 

racemic sample was synthesized through the following procedure. Magnesium turnings 

(470 mg, 19.3 mmol, 1.4 equiv), ground with a mortar and pestle, were added to an oven- 

dried round bottom flask equipped with a magnetic stir bar. Next, the flask was brought 

under a nitrogen atmosphere, 3 mL of THF were added, and the suspension was stirred 

for 5 minutes before adding 2 drops of 1,2-dibromoethane (passed through a plug of 

activated basic alumina prior to use). After stirring until the solution phase became grey 

in color, approximately 10 minutes, 1-bromo-2-ethylbenzene (2.4 mL, 17.3 mmol, 1.25 

equiv) in 3 mL of THF was added all at once. Following stirring for an additional 10 

minutes, 10.5 mL of THF were added. The reaction mixture was stirred at room 

temperature for 0.5 hours, followed by refluxing for 2 hours. Upon cooling to room 

temperature, acetaldehyde (0.78 mL, 0.608g, 13.8 mmol, 1 equiv) in 12.5 mL of THF 

was added. After the reaction mixture was stirred for 4 hours, H2O was added to quench 

the reaction, followed by addition of saturated aqueous NH4Cl. The organic phase was 

extracted and washed with NH4Cl and subsequently brine. The resulting organic phase 

was dried with Na2SO4, concentrated, and purified via flash silica-gel column 

chromatography (50% diethyl ether in pentane) to afford a clear, colorless oil in 31% 

yield (4.2 mmol, 0.635 g). TLC (10% ethyl acetate in hexanes) Rf = 0.22. 1H NMR (400
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MHz, CDCb) 5: 1.25 (t, J  = 7.57 Hz, 3H), 1.50 (d, J  = 6.35 Hz, 3H), 1.75 (bs, 1H), 2.70 

(qd, J  = 7.49 Hz, 3.42, 2H), 5.19 (q, J  = 6.35 Hz, 1H), 7.15-7.27 (m, 3H), 7.54 (dd, J  =

7.3, 2.0, 1H). 13C NMR (126 MHz, CDCb) 5: 15.9 (s), 24.9 (s), 25.3 (s), 66.3 (s), 125.0 

(s), 126.5 (s), 127.6 (s), 128.8 (s), 140.6 (s), 143.4 (s). IR (thin film): 3335, 2967, 2930, 

2874, 1604, 1487, 1449, 1370, 1276, 1209, 1180, 1127, 1080, 1003, 945, 894, 798, 754, 

613, 551 cm-1. HRMS CuHwOAg [M+Ag]+ calculated 257.0096, observed 257.0100. 

Experimental specific rotation: [a]^0 = +36.7 (c 1.38, CHCb, 83.6:16.4 er (R)). 

Literature specific rotation:53 [a]j° = +68.5 (c 0.54, CHCb, 91.5:8.5 er (R)). GC 

Enantiomeric Separation Conditions: Supelco Beta DEX 120 (30 m x 0.25 mm x 0.25 

|im); 50 °C for 2 min., then ramp 3.5 °C/min to 160 °C and hold for 5 min.; 13.5 psi, 6.8 

mL min-1, 25.0:1 split ratio, H2 carrier gas. R t = 28.4, 29.6 min.

1-(2-ethylphenyl)ethanone. This ketone, which was ultimately subjected to ATH 

conditions, was synthesized from 1-(2-ethylphenyl)ethanol according to a previously 

published oxidation procedure, and characterization data have been previously 

reported.54,55

(K)-1-(naphthalen-2-yl)ethanol. This alcohol, for which literature 

characterization data are available,56 was synthesized according to Method A from 1- 

(naphthalen-2-yl)ethan-1-one, which was recrystallized from EtOH/H2O prior to use, to 

afford enantiomeric ratios of 93.2:6.8 and 95.0:5.0 for two experimental runs. 

Experimental specific rotation: [a]j° =  +38.3 (c 2.6, CHCb, 95.0:5.0 er (R)). Literature 

specific rotation:57 [a]^8 = -39 (c 1.0, CHCb, 91.5:8.5 er (S)). SFC Enantiomeric 

Separation Conditions: Chiralcel® OJ-H column (4.6 mm x 250 mm), 10% isopropanol, 2 

mL min-1, 40 °C, 160 bar. R t = 11.36, 14.44 min.
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(K)-1-(benzofuran-2-yl)ethanol. This alcohol, for which literature 

characterization data are available,58 was synthesized according to Method A to afford 

enantiomeric ratios of 90.8:9.2 and 92.1:7.9 for two experimental runs. Experimental 

specific rotation: [a]j° =  +14.6 (c 3.24, CHCb, 92.1:7.9 er (R)). Literature specific 

rotation:59 [a]D =  +16.83 (c 0.53, CHCb, 92:8 er (R)). SFC Separation Conditions: 

Chiralcel® OZ-H column (4.6 mm x 250 mm, 5 |im particle size), 5-50% isopropanol 

(4.5% cosolvent increase per minute), 3 mL min-1, 26 °C, 160 bar. R t = 3.77, 4.14 min.

(S)-1,1-diphenylpropan-2-ol. This alcohol, for which literature characterization 

data are available,60 was synthesized according to Method A from 1,1-diphenylpropan-2- 

one, which was recrystallized from EtOH/H2O prior to use, to afford enantiomeric ratios 

of 86.8:13.2 and 88.4:11.6 for two experimental runs. Experimental specific rotation: 

= -46 (c 0.96, 88.4:11.6 er (S)). Literature specific rotation:61,62 [a]j° =  -5.92 (c

2.5, CHCb, 98.3:1.7 er (S)). SFC Enantiomeric Separation Conditions: Chiralpak® AY-H 

column (4.6 mm x 250 mm, 5 |im particle size), 2% methanol, 2 mL min-1, 40 °C, 160 

bar. R t = 9.92, 10.87 min.

(S)-1-cyclohexylpropan-1-ol. This alcohol, for which literature characterization 

data are available,63 was synthesized according to Method A to afford enantiomeric ratios 

of 53.6:46.4 and 54.5:45.5 for two experimental runs. The alcohol was benzoyl-protected, 

according to a previously reported procedure64, for enantiomeric separation. 

Experimental specific rotation: [a]j° =  -1.9 (c 1.55, CDCb, 53.6: 46.4 er (S)). Literature 

specific rotation:65,66 [a]^8 = +4.5 (c 1.00, CHCb, 97:3 er (R)). SFC Enantiomeric 

Separation Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 |im particle 

size), 1-5% isopropanol, 2 mL min-1, 40 °C, 160 bar. R t = 4.62, 5.02 min.
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(S)-1,1-dichloropropan-2-ol. This alcohol, for which literature characterization 

data are available,67 was synthesized according to Method A to afford enantiomeric ratios 

of 73.9:26.1 and 74.2:25.8 for two experimental runs. The alcohol was benzoyl-protected, 

according to a previously reported procedure,64 for enantiomeric separation. 

Experimental specific rotation: [a]j° =  -0.9 (c 0.55, CDCb, 74.2:25.8 er (S)). Literature 

specific rotation:67 [a]^1 =  -2.92 (c 3.2, CHCb, 81:19 er (S)). SFC Enantiomeric 

Separation Conditions: Chiralpak® AY-H column (4.6 mm x 250 mm, 5 |im particle 

size), 1-5% isopropanol, 2 mL min-1, 40 °C, 160 bar. R t = 1.86, 2.24 min.

(K)-4-methylpentan-2-ol. This alcohol, for which literature characterization data 

are available,68 was synthesized according to Method A to afford enantiomeric ratios of 

59.1:40.9 and 59.1:40.9 for two experimental runs. Experimental specific rotation: 

= -25 (c 0.41, CDCb, 59.1:40.9 er (R)). Literature specific rotation:69,70 [a]]f =  

+19.5 (c not reported, CHCb, 85.5:14.5 er (S)). GC Enantiomeric Separation Conditions: 

Supelco Beta DEX 120 (30 m x 0.25 mm x 0.25 |im), 40 °C, 13.5 psi, 7.2 mL min-1, 25:1 

split ratio, H2 carrier gas. R t = 17.4, 18.6 min.

(S)-4,4-dimethoxybutan-2-ol. This alcohol, for which literature characterization 

data are available71, was synthesized according to Method A to afford enantiomeric ratios 

of 59.8:40.2 and 58.0:42.0 for two experimental runs. Experimental specific rotation: 

= -22 (c 1.65, CDCb, 59.8:40.2 er (S)). Literature specific rotation:72 [a]j° =  

+12.0 (c 1.00, CHCb, >99.95:0.05 er (R)). GC Enantiomeric Separation Conditions: 

Supelco Beta DEX 120 (30 m x 0.25 mm x 0.25 |im), 60 °C, 15.8 psi, 3 mL min-1, 25:1 

split ratio, H2 carrier gas. R t = 37.3, 38.2 min.

(K)-1-(2-isopropylphenyl)ethanol. This alcohol was synthesized according to
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Method A to afford enantiomeric ratios of 75.5:24.5 (stirring reaction for 5 hours once 

ketone was added) and 76.9:23.1 (standard ketone reaction time of 2 hours) for 2 

experimental runs. The racemic sample was synthesized through the following procedure. 

Magnesium turnings (38.72 mmol, 1.4 equiv), ground with a mortar and pestle, were 

added to an oven-dried round bottom flask equipped with a magnetic stir bar. Next, the 

flask was brought under a nitrogen atmosphere, 6 mL of THF were added, and the 

suspension was stirred for 5 minutes before adding 2 drops of 1,2-dibromoethane (passed 

through an activated basic alumina plug prior to use). After stirring until the solution 

phase became grey, approximately 10 minutes, the corresponding bromide (35.2 mmol,

1.25 equiv) in 6 mL of THF was added all at once. After stirring for an additional 10 

minutes, 21 mL of THF were added. The reaction mixture was stirred at room 

temperature for 1 hour, followed by refluxing for 20 hours. Upon cooling to room 

temperature, the corresponding aldehyde (28.16 mmol, 1 equiv) in 28 mL of THF was 

added. After the reaction mixture was stirred for 6 hours, H2O was added to quench the 

reaction, followed by addition of saturated aqueous NH4CL The organic phase was 

extracted and washed with NH4Cl and subsequently brine. The resulting organic phase 

was dried with Na2SO4, concentrated, and purified via flash silica-gel column 

chromatography (15% ethyl acetate in hexanes) to afford isolated product, a clear, yellow

oil, in 22% yield (6.08 mmol, 0.999 g). TLC (15% ethyl acetate in hexanes) Rf = 0.20. 1H 

NMR (500 MHz, CDCb) 5: 1.23-1.28 (m, 6H), 1.50 (d, J  = 6.35Hz, 3H), 1.65 (bs, 1H),

3.26 (sep, J  = 6.84 Hz, 1H), 5.28 (q, J  = 6.35 Hz, 1H), 7.20-7.30 (m, 3H), 7.53 (dd, J  =

7.33 Hz, 1.47 Hz, 1H). 13C NMR (126 MHz, CDCb) 5: 24.1 (s), 24.5 (s), 25.2 (s), 28.2 

(s), 66.3 (s), 124.9 (s), 125.5 (s), 126.3 (s), 127.7 (s), 142.5 (s), 145.4 (s). IR (thin film):

221



3329, 3061, 3029, 2964, 2927, 2869, 2362, 1603, 1488, 1447, 1384, 1367, 1268, 1219, 

1183, 1110, 1068, 1035, 1003, 947, 897, 755, 614, cm’1. HRMS CnH 16ONa [M+Na]+ 

calculated 187.1099, observed 187.1092. Experimental specific rotation: [a]j° =  +23.9 

(c 0.28, CHCl3, 76.9:23.1 er (R)). Literature specific rotation for analogous 1-(2- 

ethylphenyl)ethanol53: [a]^0 =  +68.5 (c 0.54, CHCb, 91.5:8.5 er (R)). SFC Separation 

Conditions: : Chiralpak® AS-H (4.6 mm x 250 mm, 5 |im particle size), 2% isopropanol, 

3 mL min-1, 26 °C, 160 bar. R t = 5.54, 6.36 min.

1-(2-isopropylphenyl)ethan-1-one. This ketone was synthesized from 1-(2- 

isopropylphenyl)ethanol according to a previously published Swern oxidation 

procedure54,55 and purified via flash silica-gel column chromatography (10% ethyl acetate 

in hexanes) to afford isolated product, a clear, colorless oil, in 52% yield (3.08 mmol,

0.499 g). TLC (10% ethyl acetate in hexanes) Rf = 0.36. 1H NMR (500 MHz, CDC13) 5: 

1.24 (d, J  = 6.84 Hz, 6H), 2.57 (s, 3H), 3.46 (sep, J  = 6.84 Hz, 1H), 7.20-7.26 (m, 1H), 

7.41-7.43 (m, 2H), 7.46-7.49 (m, 1H). 13C NMR (126 MHz, CDC13) 5: 24.3 (s), 29.4 (s), 

30.8 (s), 125.5 (s), 126.6 (s), 127.7 (s), 131.2 (s), 139.0 (s), 147.8 (s), 203.9 (s). IR (thin 

film): 3064, 2964, 2869, 2361, 1685, 1599, 1572, 1485, 1463, 1444, 1383, 1356, 1279, 

1243, 1204, 1166, 1100, 1059, 1032, 1012, 956, 757, 602, 570, 542 cm-1. HRMS 

CnH14ONa [M+Na]+ calculated 185.0942, observed 185.0945.

(K)-1-(naphthalen-1-yl)ethanol. This alcohol, for which literature 

characterization data are available,63 was synthesized according to Method A to afford 

enantiomeric ratios of 88.3:11.7 and 88.5:11.4 for two experimental runs. Experimental 

specific rotation: [a]j° =  +42.1 (c 1.43, CHCb, 88.3:11.7 er (R)). Literature specific 

rotation:73 [a]^0 =  -57.4 (c 0.86, CHCb, 95.5:1.5 er (S)). SFC Enantiomeric Separation
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Conditions: Chiralcel® OD column (4.6 mm x 250 mm), 15% isopropanol, 4 mL min-1, 

40 °C, 160 bar. R t = 3.21, 4.10 min.

(K)-1-(o-tolyl)ethanol. This alcohol, for which literature characterization data are 

available,53 was synthesized according to Method A to afford enantiomeric ratios of 

88.7:11.3 and 89.7:10.3 for two experimental runs. Experimental specific rotation: 

[a]j° =  +57.1 (c 3.75, 89.7:10.3 er (R)) Literature specific rotation:53 [a]j° =  +68.5 (c

0.54, CHCl3, 91.5:8.5 er (R)). GC Enantiomeric Separation Conditions: Supelco Beta 

DEX 120 (30 m x 0.25 mm x 0.25 |im); 50 °C for 2 min., then ramp 2 °C/min to 150 °C; 

13.5 psi, 6.8 mL min-1, 0.1:1 split ratio, H2 carrier gas. R t = 38.5, 40.6 min.

(K)-1-(furan-2-yl)ethan-1-ol. This alcohol, for which literature characterization 

data are available,74 was synthesized according to Method A to afford enantiomeric ratios 

of 93.9:6.1 and 93.6:6.4 for two experimental runs. Experimental specific rotation: 

[a]j° =  +17.3 (c 1.54, 93.6:6.4 er (R)). Literature specific rotation:75 [a]]f =  +20.8 (c 

1.27, CHCl3, >97.5:2.5 er (R)). GC Enantiomeric Separation Conditions: Supelco Beta 

DEX 120 (30 m x 0.25 mm x 0.25 |im); 55 °C, 13.5 psi, 6.8 mL min-1, 25.0:1 split ratio, 

H2 carrier gas. R t = 39.8, 44.2 min.

(K)-1-(4-chlorophenyl)pentan-1-ol. This alcohol was synthesized according to 

Method A to afford enantiomeric ratios of 91.7:8.3 and 91.9:8.1 for two experimental 

runs. The racemic sample was synthesized through the following procedure. Magnesium 

turnings (41.3 mmol, 1.4 equiv), ground with a mortar and pestle, were added to an oven- 

dried round bottom flask equipped with a magnetic stir bar. Next, the flask was brought 

under a nitrogen atmosphere, 6 mL of THF were added, and the suspension was stirred 

for approximately 5 minutes before adding 2 drops of 1,2-dibromoethane (passed through
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a plug of activated basic alumina prior to use). After stirring until the solution phase 

became grey in color, approximately 10 minutes, 6 mL of THF was added followed by 1- 

bromobutane (37.5 mmol, 1.25 equiv), which was passed through activated basic alumina 

prior to use. After stirring for an additional 10 minutes, 21 mL of THF were added. The 

reaction mixture was stirred at room temperature for 50 minutes, followed by refluxing 

for 3 hours. Upon cooling to room temperature, 30 mL of THF and 4-chlorobenzaldehyde 

(30.0 mmol, 1 equiv) were added. After the reaction mixture was stirred for 4 hours, H2O 

was added to quench the reaction, followed by addition of saturated aqueous NH4CL The 

organic phase was extracted and washed with saturated NH4Cl(aq) and, subsequently, 

brine. The resulting organic phase was dried with Na2SO4, concentrated, and purified via 

flash silica-gel column chromatography (30% ethyl acetate in hexanes) to afford a clear, 

pale yellow oil in 45% yield (13.391 mmol, 2.661 g). TLC (20% ethyl acetate in hexanes) 

Rf = 0.37. 1H NMR (500 MHz, CDCb) 5: 0.88 (t, J  = 7.33 Hz, 3H), 1.20-1.28 (m, 1H),

1.29-1.42 (m, 3H), 1.63-1.71 (m, 1H), 1.73-1.80 (m, 1H), 1.82 (s, 1H), 4.62-4.67 (m, 

1H), 7.26-7.29 (m, 2H), 7.30-7.33 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 14.1 (s), 

22.7 (s), 28.0 (s), 39.0 (s), 74.1 (s), 127.4 (s), 128.7 (s), 133.2 (s), 143.5 (s). IR (thin 

film): 3344, 2956, 2931, 2860, 2361, 2339, 1597, 1578, 1491, 1466, 1409, 1379, 1342, 

1198, 1090, 1041, 1013, 972, 941, 897, 831, 773, 731, 668, 550 cm'1. HRMS CnHnClO 

[M-H]- calculated 197.0733, observed 197.0744. Experimental specific rotation: [a]j° =  

+24.0 (c 4.33, CHCb, 91.9:8.1er (R)). Literature specific rotation for analogous 1-(4- 

bromophenyl)pentan-1-ol:43,51 [a]^0 =  -25.8 (c 1.0, CHCb, 97:3 er (S)). SFC 

Enantiomeric Separation Conditions: Chiralpak® AD-H column (4.6 mm x 250 mm, 5 

|im particle size), 4% isopropanol, 5 mL min-1, 30 °C, 160 bar. R t = 4.88, 5.37 min.
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1-(4-chlorophenyl)pentan-1-one. This ketone was synthesized from 1-(4- 

chlorophenyl)pentan-1-ol (5.03 mmol, 1.0 equiv.) according to a previously published 

Swern oxidation procedure54 and purified via flash silica-gel column chromatography 

(10% ethyl acetate in hexanes) to afford a white solid in 68% yield (3.43 mmol, 0.674 g). 

TLC (10% ethyl acetate in hexanes) Rf = 0.41. M.P.: 30-31 °C. 1H NMR (500 MHz, 

CDCb) 5: 0.95 (t, J  = 7.33 Hz, 3H), 1.36-1.45 (m, 2H), 1.67-1.75 (m, 2H), 2.93 (t, J  =

7.33 Hz, 2H), 7.41-7.45 (m, 2H), 7.87-7.92 (m, 2H). 13C NMR (126 MHz, CDCb) 5: 

14.1 (s), 22.6 (s), 26.5 (s), 38.5 (s), 129.0 (s), 129.6 (s), 135.5 (s), 139.4 (s), 199.4 (s). IR 

(thin film): 3093, 2966, 2955, 2929, 2873, 2362, 2340, 1676, 1592, 1572, 1488, 1466, 

1455, 1406, 1376, 1342, 1270, 1207, 1177, 1095, 1013, 980, 839, 794, 733, 668, 567 

cm-1. HRMS C11H 14O O  [M+H]+ calculated 197.0733, observed 197.0733.

(K)-3-methyl-1-phenylbutan-1-ol. This alcohol, for which literature 

characterization data are available,76 was synthesized according to Method A from 3- 

methyl-1-phenylbutan-1-one, which was passed through activated basic alumina prior to 

use, to afford enantiomeric ratios of 94.4:5.6 and 94.0:6.0 for two experimental runs. 

Experimental specific rotation: [a]j° =  +35.6 (c 2.9, CHCb, 94.0:6.0 er (R)). Literature 

specific rotation:77 [a]D =  +23 (c 1.2, CHCb, 87:13 er (R)). SFC Enantiomeric 

Separation Conditions: Chiralcel® OZ-H column (4.6 mm x 250 mm, 5 |im particle size), 

1% isopropanol, 2 mL min-1, 40 °C, 160 bar. R t = 12.57, 13.69 min.

(K)-1-(benzo[d][1,3]dioxol-5-yl)ethanol. This alcohol, for which literature 

characterization data are available,78 was synthesized according to Method A to afford 

enantiomeric ratios of 95.0:5.0 and 95.8:4.2 for two experimental runs. Experimental 

specific rotation: [a]^0 =  +30.0 (c 0.34, CHCb, 95.0:5.0 er (R)). Literature specific
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rotation:79 [a]^3 =  +46.5 (c 1.01, CHCb, 98.5:1.5 er (R)). SFC Enantiomeric Separation 

Conditions: Chiralcel® OJ-H column (4.6 mm x 250 mm), 1-3% methanol (0.17% 

cosolvent increase per minute), 1 mL min-1, 25 °C, 160 bar. R t = 10.71, 11.52 min.

(K)-1-phenylethanol. This alcohol, for which literature characterization data are 

available,56 was synthesized according to Method A from acetophenone, which was 

passed through activated basic alumina prior to use, to afford enantiomeric ratios of 

96.7:3.3 and 95.6:4.4 for two experimental runs. Experimental specific rotation: [a]j° =  

+47.4 (c 3.0, CHCb, 96.7:3.3 er (R)). Literature specific rotation:56 [a ]^5 = -39.6 (c 2.46, 

CHCb, 91:9 er (S)). Enantiomeric Separation Conditions: Chiralcel® OD column (4.6 mm 

x 250 mm), 3% methanol, 5 mL min-1, 33 °C, 160 bar. R t = 2.32, 2.83 min.

(K)-1-(3-methoxyphenyl)ethanol. This alcohol, for which literature 

characterization data are available,58 was synthesized according to Method A to afford 

enantiomeric ratios of 97.1:2.9 and 96.8:3.2 for two experimental runs. Experimental 

specific rotation: [a]j° =  +35.9 (c 2.49, CHCb, 97.1:2.9 er (R)). Literature specific 

rotation:58 [a]^0 =  -38.9 (c 1.27, CHCb, 95.5:4.5 er (S)). SFC Separation Conditions: 

Chiralcel® OJ-H column (4.6 mm x 250 mm), 1-5% methanol (0.27% cosolvent increase 

per minute), 3 mL min-1, 40 °C, 160 bar. R t = 6.32, 7.16 min.

(»£)-3-methylbutan-2-ol. This alcohol, for which literature characterization data 

are available,80 was synthesized according to Method A to afford enantiomeric ratios of 

82.1:17.9 and 82.6:17.4 for two experimental runs. Experimental specific rotation: 

= +16 (c 0.67, CDCb, 82.1:17.9 er (S)). Literature specific rotation:80-82 [a]^4 =  

+7.91 (c 1.0, CH2Cl2, 87:13 er (S)). GC Enantiomeric Separation Conditions: Supelco 

Beta DEX 120 (30 m x 0.25 mm x 0.25 |im), 32 °C, 15.9 psi, 3.5 mL min-1, 100:1 split
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ratio, H2 carrier gas. R t = 17.6, 18.4 min.

3,3-dimethylbutan-2-ol. This alcohol, for which literature characterization data 

are available,83 was synthesized according to Method A to afford enantiomeric ratios of 

52.7:47.3 and 52.6:47.4 for two experimental runs. GC Enantiomeric Separation 

Conditions: Supelco Beta DEX 120 (30 m x 0.25 mm x 0.25 |im), 50 °C, 13.5 psi, 6.8 

mL min-1, 25:1 split ratio, H2 carrier gas. R t = 9.36, 9.96 min.

(K)-1-cyclopropylethanol. This alcohol, for which literature characterization data 

are available,84 was synthesized according to Method A to afford enantiomeric ratios of 

77.0:23.0 and 76.3:23.7 for two experimental runs. Experimental specific rotation: 

= -4 .4  (c 1.14, 76.3:23.7 er (R)). Literature specific rotation:84 [a ]^5 = -1 0 .5  (c

8.5, CHCl3, 92.5:7.5 er (R)). GC Enantiomeric Separation Conditions: Supelco Beta DEX 

120 (30 m x 0.25 mm x 0.25 |im), 40 °C, 13.5 psi, 7.2 mL min"1, 25:1 split ratio, H2 

carrier gas. R t = 11.7, 12.3 min.

Tabulated Enantioselectivities and Molecular Descriptors 

All parameters used for linear regression modelling were measured from energy- 

minimized structures (M06-2X/TZVP) using Gaussian09.27 Torsion, IR, and NBO point 

charge parameters were measured using GaussView 5.0.40 Sterimol-derived 

measurements were made using Mol2Mol.41 Occasionally, Mol2Mol software gave 

anomalous Sterimol values for substituents that are structurally identical. Thus, Sterimol- 

derived measurements have been standardized. For example, all phenyl rings that are 

structurally identical at the ortho or meta positions are tabulated such that their identical 

features are numerically represented in an appropriate manner.
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Model Development 

Stepwise linear regression algorithms from MATLAB’s Statistics Toolbox were 

used for model development. This process and the MATLAB commands employed are 

outlined below. All data are normalized prior to performing linear regression. All R2 

values represent adjusted R2.

Modelling Aryl/Alkyl Ketones 

The four commands described below were used for initial assessment of the full 

library set (descriptors x1-x16, as presented in Table 4.1). X is the descriptor matrix. Y is 

the matrix of AAG values. Each stepwise algorithm adds or removes terms according to 

p-value tolerance levels. For terms with p-values <0.05, the term is added to the model. 

Terms are removed for p-values >0.10. For each line of command, the initial terms in the 

model varies. “FitForward” begins with no terms in the model. “FitBackL” begins with 

all linear terms in the model. “FitBackI” begins with all interaction/cross-terms in the 

model. “FitQuad” begins with quadratic terms in the model.

The command “FitForward = LinearModel.stepwise(X, Y)” resulted in Eq. 4.1, 

which has an R2 value of 0.974. The command “FitBackL = LinearModel.stepwise(X, Y, 

'linear')” resulted in Eq. 4.2, which has an R2 value of 1.00.

y = -0.13 -  0.67x3 + 0.48x4 -  0.32x6 -  0.63x12 Eq. 4.1
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y = -0.45 + 1.09x9 -  0.55x10 + 0.32x11 -  0.49x12 

- 0.17x13 -  0.78x14 -  1.17x15 -  0.09x16

Eq. 4.2
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Table 4.1. Aryl/alkyl ketone DoE library and external validations.

Y x1 x2 x3 x4 x5 x6

R1 R2 Avg AAG*
VC-O
(cm-1)

IC-O
(a.u.)

Pr0XB1Alkyl Pr0XB5Alkyl DiStB5Alkyl DiStLAlkyl

DoELibrary
1 ;Pr Ph 0.60 1817.47 178.7993 1.90 3.19 0.00 0.00
2 CyPent 2-Cl Ph -0.95 1819.87 186.7459 1.86 3.19 3.82 5.54
3 CH2Cl 2,4-diCl Ph 1.28 1832.09 219.7283 1.51 3.46 0.00 0.00
4 CyPr 4-Br Ph 1.53 1798.11 163.0239 1.54 3.21 0.00 0.00
5 nBu 4- Br Ph 1.53 1824.33 186.668 1.56 3.13 4.45 6.72

6 Me
3-Me-2-

thiophenyl
1.59 1800.69 223.8738 1.51 2.03 0.00 0.00

7 Me 2-benzofuran 1.48 1830.13 264.0216 1.51 2.03 0.00 0.00
8 Me 2-naphthyl 1.73 1823.1 279.6375 1.51 2.03 0.00 0.00
9 Me 2-Et Ph 1.02 1817.65 217.7746 1.5 2.03 0.00 0.00
10 Et 4-OMe Ph 1.98 1815.56

External
196.9634

Validations
1.57 3.15 0.00 0.00

11 Me 2-furyl 1.69 1825.25 244.8105 1.51 2.03 0.00 0.00
12 Me 3-OMe Ph 2.15 1824.58 202.8848 1.51 2.03 0.00 0.00
13 nBu 4-Cl Ph 1.50 1823.82 183.8004 1.56 3.13 4.45 6.72
14 Me Ph 2.01 1827.3 216.1813 1.51 2.03 0.00 0.00
15 Me 2-Me Ph 1.31 1816.53 217.7209 1.51 2.03 0.00 0.00

16 Me
1-(benzo[d]

[1,3]dioxol-5-yl
1.89 1820.24 235.6685 1.51 2.03 0.00 0.00

17 Me 1-naphthyl 1.27 1816.64 192.4465 1.50 2.03 0.00 0.00
18 CH2iPr Ph 1.74 1819.86 174.7183 1.57 3.13 4.36 5.55
19 Me 2-;Pr Ph 0.72 1818.22 213.1045 1.50 2.03 0.00 0.00
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Table 4.1. Continued.

x7 x8 x9 x10 x11 x12 x13 x14 X15 x16

ProxB1Aryl ProxB5Aryl DlstB1Aryl DistB5Aryl DistLAryl
|Tor|

(deg)

Charge
R1

Carbon"

Charge
R2

Carbona

NBO
Charge

Carbonyl
Carbona

NBO
Charge

Carbonyl
Oxygena

1 3.14 3.14 3.14 3.14
DoE Library
6.77 5.45 -0.315 -0.167 0.573 -0.532

2 3.14 4.55 3.14 3.14 6.77 38.74 -0.340 -0.174 0.589 -0.521
3 3.14 4.54 3.14 3.14 8.2 37.92 -0.467 -0.187 0.548 -0.488
4 3.14 3.14 3.14 3.14 8.51 14.66 -0.353 -0.154 0.558 -0.552
5 3.14 3.14 3.14 3.14 8.51 0.00 -0.501 -0.166 0.567 -0.525
6 3.18 4.20 2.60 2.60 6.20 0.00 -0.708 -0.336 0.534 -0.532
7 2.56 3.07 2.99 3.52 8.43 0.00 -0.702 0.161 0.517 -0.508
8 3.14 3.14 3.14 4.34 8.92 0.00 -0.709 -0.162 0.555 -0.521
9 3.14 5.34 3.14 3.14 6.77 22.43 -0.709 -0.168 0.562 -0.533
10 3.14 3.14 3.14 3.14 8.8 0.00 -0.503 -0.201 0.564 -0.539

External Validation Set
11 2.55 3.07 2.52 2.78 6.02 0.00 -0.701 0.13 0.517 -0.515
12 3.14 3.14 3.14 5.36 6.77 0.00 -0.709 -0.143 0.558 -0.526
13 3.14 3.14 3.14 3.14 8.2 0.00 -0.501 -0.168 0.568 -0.526
14 3.14 3.14 3.14 3.14 6.77 0.03 -0.710 -0.168 0.557 -0.522
15 3.14 4.33 3.14 3.14 6.77 11.44 -0.708 -0.169 0.556 -0.529
16 3.14 3.14 3.14 3.62 7.81 0.52 -0.708 -0.169 0.556 -0.528
17 3.14 5.61 3.14 5.61 6.96 22.57 -0.708 -0.132 0.559 -0.529
18 3.14 3.14 3.14 3.14 6.77 3.13 -0.503 -0.165 0.572 -0.537
19 3.14 5.59 3.14 3.14 6.76 27.80 -0.709 -0.165 0.564 -0.532

aNatural bond orbital (NBO) point charges.



The command “FitBackI = LinearModel.stepwise(X, Y, 'interactions')” resulted in Eq.

4.3, which has an R2 value of 0.982.

y = -2.03 + 1.01x5 -  1.82x13 -  3.75x14 + 1.44x15 Eq. 4.3

+ 0.95x16 -  1.99x13:x16 -  3 .79x15:x16

The command “FitQuad = LinearModel.stepwise(X, Y, 'purequadratic')” resulted in Eq.

4.4, which has an R2 value of 0.999.

y = 1 + 0.94x13 -  0.34x14 -  2.54x15 + 0.37x16 Eq. 4.4

+ 2.03x14:x16 -  0.52(x13)2 -  1.68(x14)2 -  0.20(x16)2

It is often the case that models with fewer terms provide more general descriptions of a 

system and, thus, are more robust. As the model with the fewest terms (Eq. 4.1) was 

afforded via the FitForward algorithm, its validity was assessed via external validation 

(Figure 4.16), which indicated that the model provides a reasonable description of ATH 

asymmetric induction.

At this stage, the descriptor library was refined, eliminating the NBO point 

charges and measures of distal steric bulk. Invoking the initial hypothesis that carbonyl 

IR stretching frequency and differential steric bulk are effective descriptors of 

enantioselective outcomes, MATLAB stepwise linear regression was performed using the 

single-term descriptor set x1, x3, x4, x7, x8, x12 and began from the defined model 

initiation point of descriptors x1, x3, x7, and x12. The command “UserDefinedStep =
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Figure 4.16. Predicted versus measured aryl/alkyl library AAG1 values 
depicting the model in Eq. 4.1. ■ represents the aryl/alkyl DoE library, 
and ■ represents external validation data.



LinearModel.stepwise(X, Y, 'y ~ 1 + x1 + x3 + x 7  + x 12 ')” resulted in Eq. 4.5, which has 

an R2 value of 0.931, and is the final descriptive model for the aryl/alkyl ketone library.

y = -0.10 -  0.38x1 -  0.80x3 + 0.29x7 -  0.52x12 -  1.46x1 :x3 Eq. 4.5

The robustness of this model, as described above, is graphically represented in 

Figure 4.16. Further information regarding the descriptive capabilities of this model is 

gathered by assessing the regression model that is fit using raw (not normalized) data. 

Raw data models provide insight into whether a parameter augments or diminishes 

enantioselectivity. The aryl/alkyl raw linear regression model is given in Eq. 4.6.

AAG = -RTln([S]/[R]) = -2884 + 1 .5 9 (vc=o) + 1883(ProxB1Alkyl) Eq. 4.6 

+ 1.07(Pr°xB1Aryl) -  0.03(Tor) -  1.04(Vc=o ) ( PWxB1*kyl)

Modelling Alkyl/Alkyl Ketones 

The enantioselectivity data (Y) and descriptor set (X) represented in Table 4.2 

were used for linear regression modelling. The MATLAB command “FitForward = 

LineaModel.stepwise(X, Y)” afforded no model. “FitBackL = LinearModel.stepwise(X, Y, 

'linear'),” “FitBackI = LinearModel.stepwise(X, Y, 'interactions'),” and “FitQuad = 

LinearModel.stepwise(X, Y, 'purequadratic')” afforded identical models, represented in 

Eq. 4.7, with R2 values of 0.94.
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y = -10.54 -  1.27x13 -  30.02x14 Eq. 4.7
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Table 4.2. Alkyl/alkyl ketone DoE library and external validations.

R1a R2b
Y

Avg AAGJ
x1

vc=o (cm-1) .u.)&
* 

V C=

x3
P to x tBiAlkylSmaU

x4

Py0xB5Alkyl,Small

x5
Prox-n-tB1Alkyl,Large

1 Me CH(Ph)2 -1.22
DoE Library

1855.72 144.3298 1.50 2.03 1.80
2 Me CĤ Pr 0.23 1850.16 164.7989 1.50 2.03 1.58
3 Et CyHexyl -0.10 1839.02 156.1775 1.57 3.14 1.91
4 Me CHCl2 -0.65 1872.86 191.5912 1.50 2.04 1.87
5 Me CH2CH(OMe)2 -0.22 1857.52 178.1931 1.50 2.04 1.55
6 Me tBu -0.07 1840.16 186.3692 1.50 2.03 2.74
7 Me CyPr 0.74 1832.14 165.9745 1.50 2.03 1.55
8 Me ;Pr -0.96 1846.28 184.1163 1.50 2.03 1.91

aSmaller of the two alkyl groups. bLarger of the two alkyl groups.
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Table 4.2. Continued.

x6 x7 x8 x9 x10 x11 x12 x13 x14

Charge Charge Charge Charge
Vscissor Iscissor R1 R2 Carbonyl Carbonyl

Pr0xB5AmLarSe DiitB5Alkyl,Large DliSLAlkyl,Large (cm-1) (a.U.) Carbonc Carbonc Carbonc Oxygenc

DoE Library
1 2.94 6.07 5.96 337.67 2.0924 -0.714 -0.363 0.612 -0.526
2 3.12 4.37 5.55 438.08 0.8314 -0.710 -0.505 0.586 -0.535
3 3.17 3.45 6.66 454.11 0.6835 -0.509 -0.320 0.602 -0.537
4 3.49 0.00 0.00 432.94 1.7475 -0.726 -0.302 0.545 -0.483
5 3.15 5.33 6.72 351.95 2.9498 -0.709 -0.551 0.594 -0.528

External Validation Set
6 3.19 0.00 0.00 464.57 2.2826 -0.719 -0.158 0.599 -0.533
7 3.20 0.00 0.00 380.6 3.9854 -0.703 -0.360 0.574 0.552
8 3.18 0.00 0.00 439.36 3.2453 -0.717 -0.321 0.588 -0.530

c Natural bond orbital (NBO) point charges.



Although three of four stepwise regression commands applied to the alkyl/alkyl library of 

data yield the model given in Eq. 4.7, graphical representation of the model’s external 

validation statistics (Figure 4.17) indicates that this model lacks broad descriptive 

abilities.

To identify a mathematical equation with more robust predictive capabilities, the 

relevance of point charge parameters was assessed by excluding them from the descriptor 

set. From the remaining terms (x1- x10), additional rounds of linear regression modelling 

were pursued.

The commands “FitForward = LinearModel.stepwise(X, Y),” “FitBackI = 

LinearModel.stepwise(X, Y, 'interactions')” and “FitQuad = LinearModel.stepwise(X, Y, 

'purequadratic')” resulted in no models, while “FitBackL = LinearModel.stepwise(X, Y, 

'linear')” yielded Eq. 4.8, which has an R2 value of 0.993.

y = -2.75 + 2.43x1 + 3.27x8 + 1.78x9 Eq. 4.8

Although “FitBackL” afforded a model, this model did not perform well when assessed 

for external validation robustness (Figure 4.18).

To facilitate elucidation of the relevant combination of descriptors that robustly 

describes the observed enantioselectivity trends, data for three ketones (Table 4.2, entries 

6-8) were added to the matrix, and the same four-membered series of exploratory 

algorithms was executed. Xall and Yall represent the expanded library of eight ketones. 

Performing the MATLAB commands “FitForward = LinearModel.stepwise(Xall, Yall)” 

and “FitBackL = LinearModel.stepwise(Xall, Yall, 'linear')” afforded no models.
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Figure 4.17. Predicted versus measured alkyl/alkyl library AAG values 
depicting the model in Eq. 4.7. ■ represents the alkyl/alkyl DoE library, 
and ■ represents external validation data.

1 --------------- ---------------- 1--------------- ---------------- 1--------------- ---------------- 1--------------- >--------------- 1------------------------------- 1

1.5 -1.0 -0.5 0.0 0.5 1.0

Measured AAG* (kcal/mol)

Figure 4.18. Predicted versus measured alkyl/alkyl library AAG1 values 
depicting the model in Eq. 4.8. ■ represents the alkyl/alkyl DoE library, 
and ■ represents external validation data.



However, “FitBackI = LinearModel.stepwise(Xall, Yall, 'interactions')” yielded the 

relationship in Eq. 4.9, which has an R2 value of 0.977.

y = -0.98 + 3.69x7 + -3.28x8 + 1.49x9 + 0.77x10 -  2.59x9 x10 Eq. 4.9

“FitQuad = LinearModel.stepwise(Xall, Yall, 'purequadratic')” produced the model in Eq. 

4.10, which has an R2 value of 0.332.

y = -0.70 + 0.07x10 + 0.80x10A2 Eq. 4.10

From the model presented in Eq. 4.9, the proposed combination of terms yielded by 

“FitBackI” (x7, x8, x9, x10, x9:x10) was further investigated for its robustness. To fit the 

five-membered alkyl/alkyl DoE library set (Table 4.2, entries 1-5) to this five-term 

model, the relationship was first simplified by removing the term with the largest p-value 

and smallest coefficient, x10 , affording the necessary scenario of more data points than 

descriptors. Next, the five-membered DoE library was fit to the resulting model template 

(Eq. 4.11).

y ~ 1 + x7  + x8  + x9 + x9:x10 Eq. 4.11

External validation was then performed using the three ketones presented in Table 

4.2, entries 6-8 (Figure 4.19). Importantly, while the relationship described in Eq. 4.11 

poorly predicted the results of ketone external validations, this negative result provided a
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Figure 4.19. Predicted versus measured alkyl/alkyl library 
AAG values depicting the model in Eq. 4.11. ■ represents 
the alkyl/alkyl DoE library, and ■ represents external 
validation data.
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test of the described approach, i.e., expanding the library to enable the elucidation of 

relevant descriptor combinations, then reverting the library to its original DoE members 

for determining coefficient weights. This negative result yielded confidence that this 

process could still yield models where external validation remained an appropriate 

measure of robustness. Steps employing this method for arriving at the final alkyl/alkyl 

model are presented below. Although the model from the “FitBackI” algorithm was not 

robust, it suggested an interesting descriptor, x9*x10, i.e., Vscissor + Iscissor + 

(VScissor)(IScissor). Evaluating this term in combination with the presumably appropriate 

descriptor, x1 (v c =o ) ,  as the starting point for stepwise regression (“TailoredStep = 

LinearModel.stepwise(Xa/l, Yall, 'y ~ 1 + x1 + x9*x10'”, where Xall and Yall represent 

the expanded library of eight ketones) yielded Eq. 4.12, which has an R2 value of 0.973.

y = -0.64 -  0.40x1 -  0.69x3 + 0.40x9 -  0.02x10 -  1 69x19:x10 Eq. 4.12

Removing the term with largest p-value and smallest coefficient, x10, and fitting the data 

to the remaining terms produced Eq. 4.13, which has an R2 value of 0.982.

y = -0.64 -  0.39x1 -  0.68x3 + 0.41x9 -  1.69x9:x10 Eq. 4.13

The model was further simplified by combining x3 and x9 into a cross-term 

(x3:x9) and fitting the data to the resulting template (“ManualFit = 

LinearModel.fit(Xa//,Ya//, 'y ~ 1 + x1 + x3:x9 + x9:x10'), yielding the favorable model 

presented in Eq. 4.14, which has an R2 value of 0.961.



y = -0.39 -  0.42x1 -  0.81x3:x9 -  1.67x9 :x10 Eq. 4.14

y = -0.52 -  0.33x1 -  0.73x3:x9 -  1.75x9:x10 Eq. 4.15
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Next, this identified parameter combination served as a template model to which 

the original, five-membered ketone library data (Table 4.2, entries 1-5) was fit. Eq. 4.15 

(R2 is 0.89) was the ultimate result of this iterative linear regression analysis, providing a 

robust description of the alkyl/alkyl ketones evaluated, as demonstrated in Figure 4.5c 

and 4.6c.
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CHAPTER 5

ONGOING AND PROPOSED APPLICATIONS 

OF MODEL DEVELOPMENT

Introduction

In the last 5 years, the Sigman group has made significant advances in the 

mathematical description of site- and enantioselective reactions. From one-dimensional 

linear free-energy relationships to multidimensional mathematical models, the types of 

reactions to which quantitative modelling can be applied has been substantially expanded. 

Reactions are no longer limited to description with only classical, relative rate-derived 

parameters. Instead, a myriad of potential molecular descriptors—computationally derived 

and, thus, tailored to the specific species under evaluation—are used to numerically 

identify relationships between chemical structure and AAG*. The applicative usefulness of 

these models has been demonstrated through their support of mechanistic hypotheses and 

their facilitation of reagent optimization. While prediction of optimized reaction species 

from numerical trends is fairly facile, work continues on identifying effective methods for 

interpreting the mechanistic implications of multiparameter models.

The work presented in Chapter 4—the mathematical description of a rigorously 

designed ketone scope library—is a culmination of the Design of Experiments (DoE) and 

modelling techniques examined and refined in the preceding two chapters. Thus, the
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ongoing goals of this program, representing an extension of this work, are now focused on 

applying the developed ketone library, and libraries to be constructed for other substrate 

classes, to several mechanistically diverse reactions. Identifying and comparing 

appropriate predictive models for a variety of reactions of ketones is expected to ultimately 

reveal the interactions between substrates and catalysts that are conserved throughout each 

application and those that are uniquely important, broadly impacting mechanistic analyses 

on a substrate class-wide scale.

Extending Free-Energy Relationships to Enzyme Engineering 

The ability to accurately predict the enantioselective outcomes of unique sterically 

and electronically perturbed ketone substrates demonstrates the effectiveness of the DoE 

approach for constructing a training set from which a broadly descriptive mathematical 

model can be developed. Considering the demonstrated value of abiding by DoE precepts, 

we hypothesized that these principles could be analogously applied to the systematic 

investigation of enzyme-catalyzed transformations to afford models of the form in Eq. 5.1. 

In collaboration with Professor Vlada Urlacher of the University of Dusseldorf and Dr. 

Stephan Lutz of the Novartis-Basel Bioreactions group, we have begun to extend this 

methodology to enzyme engineering using the P450 BM-3 enzyme from Bacillus 

megaterium.

A A&  = zo + a(Steric Bulk) + ^(Hydrophobicity) + Eq. 5.1

c(Steric Bulk)(Hydrophobicity) +
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Natively, P450 BM-3 uses an iron(IV)-oxo species, embedded in a porphyrin, to 

selectively oxidize hydrocarbon bonds of medium chain length fatty acids. Directed 

evolution and site-directed mutagenesis have been extensively employed to this enzyme’s 

oxidizing active site, with the objective of empirically gaining qualitative insight into the 

enzyme’s structural features required for selective substrate oxidation.1 Even with the 

information that these approaches afford, the absence of quantifiable evidence about the 

origin of selectivity makes it difficult, at best, to mutate active sites in order to achieve 

predictable and desired oxidation selectivities for non-wild-type substrates. A deeper, 

quantitative understanding of enzymes’ impeccable selectivity may be afforded by using 

statistical methods expounded upon in previous chapters—Principal Component Analysis 

(PCA), Design of Experiments (DoE), and linear regression modeling—to interrogate the 

active site.2-4

From review of the P450 BM-3 engineering literature, it can be inferred that 

substrate binding pockets with restricted volume, and thus substrates with limited degrees 

of freedom, facilitate the proper orienting of substrates relative to the enzyme’s iron(IV)- 

oxo oxidant, thereby enabling oxidation.1,5-7 We identified three hydrophobic active site 

residues that are hypothesized to provide key, synergistic modulation of the enzyme’s 

capacity for selective oxidation: Phe87, Ala264, and Ala328 (Figure 5.1).1 To delineate 

and optimize each of these residues’ contributions to selectivity, these positions must be 

systematically mutated. Probing the relationship between these three residues is enabled 

through their simultaneous mutation (via DoE), parameterizing the mutant enzymes via 

molecular descriptors that quantify residue steric bulk and hydrophobicity (PCA).

The five natural amino acids with the most hydrophobic side chains (Ala, Val, Ile,
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Figure 5.1. P450 BM-3 oxidizing enzyme. (a) Enzyme’s iron-porphyrin active site, with 
the residues lining the substrate access channel highlighted in blue. Residues colored red 
are the three active site positions undergoing systematic mutation: Phe 87, Ala 264, Ala 
328. (b) Side and (c) top views of the porphyrin and the residues to be mutated.
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Leu, Phe) were considered for their ability to systematically perturb the relevant molecular 

features of the three active site residues under evaluation. However, as assessment of each 

of these combinations would require 53 (125) mutants, means of minimizing the size of this 

mutant library were considered in the context of DoE principles. Library reduction was 

accomplished by first hypothesizing relevant molecular descriptors of hydrocarbon bond 

oxidation selectivity. With the presumption that active site hydrophobicity and volume 

modulate selectivity profiles (vide supra), Sterimol (B1, B5, L), logP (hydrophobicity 

partition coefficient), and substituent volume (vol) were measured for Ala, Val, Ile, Leu, 

and Phe (Table 5.1).

The resulting data matrix of residue descriptors was subjected to PCA. Application 

of PCA allows identification of a subset of the five hydrophobic amino acids that represents 

the greatest systematic variation across the multi-descriptor-defined space. PCA enables 

this by identifying the orthogonal directions of greatest variation within a data set and 

defining each as a linear combination of the original variables.3 As applied to the data set 

of the five amino acids and their respective Sterimol, logP, and volume descriptors, this 

resulted in five new principal components (PCs), the first two of which—PC1 (Eq. 5.2) and 

PC2 (Eq. 5.3)—represent 97% of the variation within the dataset (Figure 5.2a). Thus, by 

plotting the five hydrophobic amino acids according to these vectors, it is visually simple 

to select the amino acids that evenly and broadly span this experimental space as Ala, Ile, 

and Phe (Figure 5.2b).

PC1 = 0.00Bi + 0.47B5 + 0.49L + 0.52 logP  + 0.52 vol 

PC2 = -0.91Bi + 0.33B5 -  0.25L -  0.02logP -  0.03 vol

Eq. 5.2 

Eq. 5.3
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Table 5.1. Parameter measurements on which Principal 
Component Analysis (PCA) was performed.___________

Bi B5 L !ogP vol
Ala 1.52 2.04 2.87 -2.96 25.9
Val 1.90 3.17 4.11 -2.26 59.8
Ile 1.90 3.49 4.92 -1.72 76.8
Leu 1.52 4.45 4.92 -1.52 76.9
Phe 1.52 6.04 4.62 -1.52 93.6

_____ pPhe
A la * ------------  r

Leua
i

■Val ille
- 4 - 2  0 2

Principal Component 1

Figure 5.2. Results of Principal Component Analysis, which was performed on the data in 
Table 5.1. (a) Plot of variance in each Principal Component. (b) Graphical representation 
of hydrophobic amino acids, which are plotted according to Principal Components 1 and 
2. Red data points, connected with a triangle, represent the DoE-based sampling of the 
Principal Component-described space.



In other words, according to DoE principles, evaluating all combinations of Ala, 

Ile, and Phe in residue positions 87, 264, and 328 is hypothesized to afford the same breadth 

and depth of information as testing all five of the amino acids would afford. This reduction 

from five to three amino acids is significant. Rather than synthesizing 53 (125) mutants to 

test every possible mutant combination, the reduction to three amino acids requires that 

only 33 (27) mutants be synthesized and evaluated—a 78% reduction in the number of 

required experiments.

It is proposed that through the simultaneous mutation and mechanistically relevant 

parameterization of mutated residues, a linear regression-derived mathematical model can 

be generated to quantitatively relate active site properties to selectivity in the enzyme- 

mediated oxidation (Eq. 5.1). By simultaneously mutating the designated active site 

residues, it is hypothesized that synergistic interactions amongst residues will be 

elucidated, yielding novel insight into the active site requirements for hydrocarbon 

oxidation. Synthesis of the enzyme library has begun and will be continued by the Urlacher 

lab. Following the synthesis and expression of all 27 mutated plasmids, the library will be 

applied to the oxidation of several substrates, ranging from the simple hydrocarbon, octane, 

to indole-derived substrates, each of which will be mathematically modelled to determine 

the substrates’ mechanistic origins of selectivity.8 Additionally, correlating changes in 

substrate to changes in the active site features that dictate site selectivity may inform 

enzyme tailoring in order accommodate previously incompatible substrate types.

255
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Conclusions

The foundations for mathematical modelling developed in this work, particularly 

the applications for DoE concepts, demonstrate the flexibility of these quantitative methods 

for describing a variety of mechanistically distinct scenarios. Great potential exists for 

advancing means of mechanistically interpreting these models. Efforts in the Sigman group 

are focused on this objective, and standardized parameter sets for distinct molecule classes 

are being developed. Through multiple applications of such standardized sets, trends in the 

broad mechanistic implications of these parameters may be identified. This information 

would allow newly developed parameters to be used and interpreted in a manner analogous 

to the venerable, information-rich Hammett parameter. With continued development and 

refinement of these parameters and modelling techniques, the trend towards increased 

sophistication and precision of identifying and describing subtlety in molecular interactions 

will continue to expand mathematical models’ usefulness for understanding the underlying 

order of chemistry.
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