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ABSTRACT 

 

Marketers invest significantly in generating consumer action, with curiosity one 

of many ways to pique interest. This is the topic of our first essay, in which we discuss 

how discounted price displays arouse curiosity, thus affecting information search 

behavior. This essay moves beyond the assumption that any prediscounted price will 

elicit the same consumer response and considers four moderating factors, including i) 

absolute price, ii) dispositional curiosity, iii) expected price and iv) drive states such as 

hunger. In a series of examinations, we propose that higher (lower) prices generate 

greater (less) curiosity. Findings inform psychology-based accounts of curiosity and 

provide implications for marketers in understanding pricing‘s effect on information 

seeking.  

Essays 2 and 3 explore the long-term impact of a referral on sender and receiver 

behavior. Marketers have long sought to harness the influence of existing customers, with 

much literature focusing on a referral‘s worth. While prior research has extensively 

examined referral value, less is known about how the specific information within the 

referral itself differentially influences behavior. Thus, Essay 2 focuses on the degree of 

customization within the referral, examining for both senders and receivers the influence 

of custom (sender-generated) versus standard (company-generated on behalf of sender) 

referrals. To test our predictions, we utilize email referrals from retail customers and 
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compare purchase behavior between these referral types, testing the underlying theories 

of spotlight effect and reciprocity. 

In our third essay, we ask whether the act of referring changes long term purchase 

behavior of referrers. Extensive literature has proved the value of customers acquired 

through referral efforts of existing customers. However, while much is known about the 

incremental value of referrals, less is known about the intervening role of the referral 

itself. Therefore, in our research we seek to understand how a referral influences future 

sender behavior and ask whether the act of referring results in an increase, decrease, or 

consistency in purchases for senders. We explore opposing predictions based on i) 

dissonance and ii) market mavens and explore these predictions through an empirical 

examination of transaction data, offering implications for marketers and theorists alike. 
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ESSAY 1: HOW DISCOUNTED PRICE DISPLAYS AFFECT        

INFORMATION SEARCH BEHAVIOR 

 

Introduction 

Marketers invest significantly in implementing tactics aimed at generating 

consumer interest in their offerings. One popular method involves price displays that seek 

to arouse intrigue in the ―bargain‖ or ―deal‖ for a particular product. For example, the 

electronics retailer Best Buy offers online daily deals that feature the regular, 

prediscounted price for a given product. In order for consumers to see the special price—

that is, to learn of the magnitude of the deal being offered—the consumer is encouraged 

to first place the item into their virtual shopping cart. Similarly, various products offered 

on the online auction site eBay show the prediscounted price with a strikethrough (e.g., 

$38.99), with the special price being displayed only at checkout. Despite marketers‘ 

common usage of this tactic to generate what we refer to as price curiosity—that is, the 

ability to pique consumer interest from price displays—no known research explores the 

different factors that might influence this interest and, hence, consumer action. 

In this research, we examine the effect of price curiosity on consumer action. 

Specifically, we explore two alternate accounts. The first, which we coin as the 

―marketer‘s intuition‖ account, relies on a heuristic commonly used in marketing 

whereby the lowest prediscounted price will generate the greatest action. That is, this 
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account posits that consumers will be most interested in seeing ―how low can it go‖ in 

terms of price. The second account—a psychology-based account on curiosity—suggests 

that the less predictable outcome may generate greater interest. That is, it implies that a 

higher prediscounted price would be more likely to arouse greater curiosity than lower 

prices. Just as a story with multiple endings may increase a reader‘s intrigue, this account 

suggests that a higher price—which includes a greater number of possible prices—will be 

viewed with greater interest. 

Importantly, this essay moves beyond the assumption that any prediscounted price 

will elicit the same response from consumers and asks four key questions that explore 

various moderating factors of curiosity. First, what is the effect of absolute price; that is, 

would a high price or low price result in greater curiosity? Second, given the 

heterogeneous nature of curiosity, what might be the role of one‘s dispositional curiosity? 

Third, how might one‘s price expectation—that is, their expected price and acceptable 

price range for a given product—influence curiosity? Finally, with curiosity theorized to 

be a homeostatic drive similar to such drives as hunger or thirst, could one‘s price 

curiosity be affected by manipulating such factors? To answer these questions, we begin 

with a marketplace test that measures consumer response to actual emails that include—

among other factors—the strikethrough price. Then, to test for theoretical underpinnings 

in a more controlled setting, we use eye tracking for process evidence, which also 

examines the moderating role of one‘s dispositional curiosity. A subsequent lab study 

examines the moderating role of expected price and price range across various products. 

Finally, we seek to validate the drive-based accounts of curiosity through a controlled lab 

study examining the role of hunger in one‘s propensity to engage in curiosity-seeking 
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behaviors. 

This research has many theoretical and practical implications for consumers and 

managers alike. From a theoretical perspective, our research further informs the role of 

the gap in one‘s knowledge in generating curiosity. Second, we are able to support our 

hypothesis with process evidence of curiosity through the use of eye tracking. Third, our 

research informs extant literature‘s discussion on the drive-based role of curiosity and its 

similarity to other innate drive states such as hunger. From a practical perspective, we are 

able to provide marketers with valuable insights regarding the role of price in piquing 

consumer interest. This has significant implications for marketers in understanding the 

effect of high and low price points on the consumer‘s desire to seek additional 

information, and in enabling sharper predictions of consumer response to an offer based 

on the factor of price. 

In the section that follows, we begin with a review of existing literature on 

curiosity and information search behavior in marketing. Based on these extant theories, 

we then build our theoretical framework. Subsequently, we present real world data and 

controlled lab studies to test our research propositions and then conclude with a general 

discussion including implications for marketers and theorists alike. 

 

Theoretical Review 

Past research suggests that curiosity arises when one‘s desire to know surpasses 

their current knowledge for a given topic (Loewenstein 1994). Hence, it can be 

understood as a knowledge or information gap between one‘s existing and desired 

information states. Whenever there is a perceived gap between these two states, curiosity 
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is aroused that motivates one to search for information that can close the gap. While there 

are many viewpoints on what fuels curiosity, early theorists viewed it as being influenced 

by both internal drives and external states. That is, it is conceived as a homeostatic 

drive—similar to one‘s hunger (Dashiell 1925; Nissen 1930) in that it that will intensify 

in magnitude if left unsatisfied—and is also viewed as stimulus-induced drive state that 

can be induced by external (environmental) stimuli. Panksepp (1998), for example, 

discusses the role of curiosity as part of an animal‘s Seeking system, which—along with 

the Rage, Fear, and Panic systems—is responsible for survival. Specifically, the Seeking 

system is what makes animals eagerly explore the environment around them. In humans, 

it is believed to be the system that is responsible for one‘s curiosity, including intellectual 

pursuits (Panksepp 1988). Given that it is treated as more of a drive state, it has also been 

suggested that if curiosity is left unexplored, it will intensify and only diminish after the 

appropriate level of information is found that can assuage (or appear to assuage) the 

drive. Such an increase in one‘s curiosity intensity is directly related to one‘s ability to 

close the information gap. Curiosity is theorized to follow an inverted U-shape when 

considered across one‘s knowledge gap. Generally, when the knowledge gap is narrower, 

low curiosity ensues. As the knowledge gap increases, curiosity begins to increase. 

However, after a certain point, a further increase in the knowledge gap results in 

decreased levels of curiosity. For example, as noted by Piaget (1969), a very low 

discrepancy between what one knows and what one desires to know would result in an 

effortless, automatic retrieval of information. Hence, low curiosity would be aroused as 

the narrow information gap can be eliminated with little-to-no effort. On the other end of 

the knowledge gap, when the knowledge gap is perceived as extremely wide, it will quite 
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possibly prohibit one from pursuing additional information. Thus, in the case of a wide 

information gap, one may exhibit low curiosity and neglect to seek new information. This 

is attributed to the depletion of cognitive resources associated with the increased 

perceived effort that is required in one‘s attempt to close a wide knowledge gap. As 

discussed by Loewenstein (1994), consider an individual that knows the capitals of 47 of 

the 50 state capitals versus an individual that knows only three of the 50. It is theorized 

that the individual knowing 47 of the capitals is more likely to frame their situation as not 

knowing three capitals. Applying the knowledge gap principle to this example, the 

individual‘s narrow knowledge gap may trigger the feeling that his or her knowledge of 

the state capitals is already sufficient. Thus, curiosity for knowing the final three state 

capitals may not be worth his or her effort. As for the latter person, given the extremity of 

their knowledge gap in only knowing three of the 50 state capitals, it is suggested that 

this individual would be more likely to view the knowledge gap as too wide to traverse. 

Thus, the very wide gap could serve as a deterrent to curiosity-fulfilling behaviors. These 

examples illustrate how the magnitude of the knowledge gap influences one‘s decision to 

engage in (or defer on) additional information seeking. 

Pertinent to marketing, extant research has considered the importance of curiosity 

in capturing consumers‘ attention or in keeping them engaged. Curiosity has been 

considered an essential component of information search in that it enables consumers to 

learn more about the environment around them (Steenkamp and Baumgartner 1992). 

Because curiosity can motivate individuals to seek more information to confirm or refute 

their hypotheses (Klayman and Ha 1987), it is no surprise that curiosity is a commonly 

employed tactic in engaging consumers. We find marketers implementing various tactics 



6 

 

 

 

that are aimed at piquing consumer interest by presenting only part of the story or 

message. These tactics have proven to positively influence the consumer‘s desire to seek 

additional information. For example, ―mystery ads‖—that is, those ads in which the 

brand is not identified until the latter part of an ad—were found to be more effective in 

producing memory associations than less mysterious ads, attributed in part to one‘s 

curiosity (Fazio, Herr, and Powell 1992). Furthermore, prior research and its usage of 

curiosity as an impulsivity manipulation suggests a strong linkage between one‘s 

curiosity and subsequent behavior. For example, Hartig and Kanfer (1973) examined the 

effect of temptation on impulsive behaviors by informing children to resist peeking at a 

―surprise‖ toy offering for an extended period in an experimental setting. The latency of a 

child‘s transgression—that is, the time it took for the child to give way to their 

curiosity—was subsequently measured across various conditions.  

Summarizing early research on curiosity (Hebb 1955; Hunt 1963; Piaget 1969), 

three common propositions resonate, showing that curiosity i) reflects an individual‘s 

natural tendency to seek and to make sense of the world, ii) is triggered by violated 

expectations between what one knows and what one seeks to know, and iii) follows an 

inverted U-shaped relationship in accordance to the magnitude of the information gap. 

Subsequent research has validated these propositions, showing that vague (versus 

detailed) information can increase one‘s interest and learning via curiosity, but only when 

the knowledge gap is at a moderate level. For example, in one study, Menon and Soman 

(2002) varied the level of information presented in an advertisement for a digital camera 

and directly solicited responses on participants‘ curiosity, interest, involvement, and 

intent for the product. Results confirmed that a higher degree of curiosity comes from a 
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moderate (versus a wide or a narrow) knowledge gap. Finally, Dijk and Zeelenberg 

(2007) provide additional insights through what was coined as the ―sealed-package 

paradigm,‖ whereby the presence of ―hints‖ (information) was shown to increase one‘s 

willingness to pursue options with uncertain outcomes. In this research, participants were 

more likely to opt for a mystery package (versus known monetary remuneration) for their 

participation in a lab study when they were given just a small amount of additional, but 

still incomplete, information about the product. 

Thus far, we have mainly discussed extant literature‘s view on the various 

stimulus-based determinants of curiosity. Literature has also provided valuable insights 

relative to the underlying physiological factors affecting one‘s curiosity. Within the 

human Seeking system—which is the emotional system responsible for human‘s interest 

and eagerness to explore—a very important driver of curiosity is the neurotransmitter 

dopamine. Research has explored how curiosity is affected by one‘s dopamingergic 

activity, which has been shown to help control the brain‘s reward and pleasure systems. 

Specifically, increased dopamine activity has been shown to be strongly associated with 

one‘s curiosity. It is believed that these dopamine circuits promote curiosity—that is, 

states of eagerness and directed purpose—in humans and animals alike (Panksepp 1998; 

Silvia, and Kashdan 2009). For example, when the human Seeking system becomes 

underactive—commonly associated with aging—a form of depression results that is 

believed to result in less eagerness to explore (i.e., less curiosity). This is corroborated by 

medical research among Alzheimer‘s patients, which has linked reduced levels of 

dopamine to a general lack of curiosity and unwillingness to explore the environment 

around them (Cross et al. 1981).  With the drive for food being one of the most prevailing 
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behaviors within the Seeking system, it should come as no surprise that dopamine is 

believed to regulate food intake. In Volkow et al. (2002), it is discussed how the 

expectation of food increases dopamine activity. Specifically, their research showed that 

food stimulation—i.e., the thought or possibility of food—in combination with a drug 

known to increase the amount of dopamine in the synapse resulted in higher self-reported 

measures of ―hunger‖ and ―desire for food.‖ Similarly, Piech et al. (2009) discuss food 

stimuli‘s role in increasing dopamine and subsequent motivational arousal, with results 

suggesting the ability of food-related cues to induce hunger. 

In addition to identifying determinants of curiosity, research has also identified 

ways to measure one‘s curiosity. An individual‘s eye movements and fixations have been 

shown to correlate strongly with general interest and attention to stimulus that is found to 

be more curious or novel (Berlyne 1958). For example, Loftus and Mackworth (1978) 

show that ―informative stimuli‖—e.g., stimuli with a low a priori probability of making 

an appearance—results in greater focus. Specifically, they show that novel (which they 

refer to as highly informative) stimulus (e.g., the unexpected appearance of an octopus 

within a picture of a rural farm landscape) is found faster, looked at more often and 

viewed with longer duration than expected (i.e., uninformative) stimulus. Similarly, 

medical research on the effects of aging and dementia among Alzheimer‘s patients 

demonstrated less visual attention (i.e., less eye fixation)  to novel stimulus and a greater 

deterioration of visual exploratory activity (versus a matched control). From this, 

researchers concluded that diminished curiosity could be measured via eye tracking 

methods (Daffner et al. 1992), with less focus on novel stimulus representing less 

curiosity. 
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Theoretical Conceptualization 

Let us consider the example of a consumer receiving information in the form of 

an email including various products offered at discounted prices. Within this email, each 

product is presented at the nonpromoted retail price. That is, the price is displayed at its 

original (full) price with a strikethrough line running through it, indicating to the 

consumer that the new price is at some point below its original (e.g., $70). In such an 

instance, two possible outcomes could occur, with each driven by a different theoretical 

mechanism. The first, referred to in our introduction as the ―marketer‘s intuition‖ 

account, relies on a heuristic commonly used in marketing whereby the lowest 

(prediscounted) price will generate the greatest action. That is, this account suggests that 

consumers will be more likely to seek additional information in hopes of learning (and 

being delighted by) just how much the already low price could be reduced. The second 

account—which stems from psychology-based accounts on curiosity—suggests that the 

less predictable outcome is likely to generate greater interest. That is, it posits that a 

higher prediscounted price would be more likely to arouse greater curiosity than lower 

prices. We next discuss each of these accounts (i.e., marketer‘s intuition and psychology-

based) in greater detail. 

Extending the example from the prior paragraph, if the marketer‘s intuition 

account holds, we would expect to find greater curiosity for a lower strikethrough price, 

all else equal. As previously alluded to, this is attributed to the consumer‘s interest in 

seeking the best deal. If the strikethrough price is already low, this account would suggest 

an increased interest for the consumer in seeing how low the price could go. Consider a 
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product with an acceptable consumer price range $70–$90.
1
 When featured with the 

message ―is regularly $70‖—that is, when featured at the lower end of the $70–$90 price 

range—the marketer‘s intuition account would suggest greater excitement versus a price 

at the higher end of the range. This excitement—driven by the low absolute starting 

price—would be expected to result in greater information search. Conversely, if the 

psychology-based account holds true, we would expect to find greater curiosity at the 

higher end of this price range (e.g., ―is regularly $90‖). We attribute this effect to the 

differential in the knowledge gap that we expect when a product is featured at a high or 

low price, with higher prices creating a wider knowledge gap in light of the greater 

number of absolute unknowns in terms of alternate price points. Returning to our price 

example, a product that is featured with the message ―is regularly $90‖ includes more 

alternate price points in the absolute versus a product featured as ―is regularly $70.‖ From 

this, the sheer number of alternate price points for the $90 offering is likely to result in an 

increased knowledge gap that could result in greater curiosity. 

After testing which of the competing accounts shows greater curiosity (that is, the 

marketer‘s intuition account or the psychology-based account), we then seek to explore 

three additional moderating factors. First, for the prevailing account, we expect to find 

process evidence that is consistent with increased curiosity. For this, we turn to eye 

tracking methodology. Relying on extant literature‘s findings that increased fixation 

occurs with more novel stimulus (Berlyne 1958), we expect to find greater eye fixation 

on stimulus theorized to generate greater curiosity. For example, if the psychology-based 

account were to hold, we would expect to find that higher (lower) strikethrough prices 

                                                 
1 Importantly, this assumes that the price falls within some acceptable range and conveys comparable 

quality to consumers. That is, it is expected that marketers, in establishing the strikethrough price, take into 

account the acceptable price range for a given product. 
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result in higher (lower) eye fixations on the price stimulus, all else equal. Second, in 

order to test for the presence of the knowledge gap, we seek to examine the moderating 

roles of expected price and price range for a given product. This allows us to see if an 

individual‘s price expectation and their acceptable price range results in the knowledge 

gap reaching a point whereby information is no longer sought. Third, with extant 

literature‘s view of curiosity as a homeostatic drive (similar to hunger), we would expect 

to find increased curiosity-seeking behaviors in conjunction with an intensified seeking 

system—specifically, via increase in one‘s desire to satiate their hunger. That is, we 

would expect to find that food stimulation results in behaviors consistent with greater 

information seeking. To test this proposition, we implement a food-stimulation 

manipulation prior to measuring the effect of price curiosity. 

We next describe the different methods aimed at testing our propositions. First, 

we utilize data from an online retailer to examine whether high versus low strikethrough 

prices result in greater curiosity and subsequent information search. We then present a 

series of lab studies to i) corroborate our findings and ii) help test the underlying process 

in a more controlled setting.  

 

Marketplace Test for Price Curiosity 

In our first examination, we seek to measure the effect of a high versus low 

strikethrough price on curiosity in a real-world marketplace setting. Our data were from 

an online retailer, including over 3 months of daily emails sent to existing members. Each 

email featured one main product and 2–3 supplemental product offers. Each of these 

offers included the product image along with a brief description. Moreover, each product 
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was promoted using strikethrough price. All products included a button reading as 

―Check it Out,‖ enabling the consumer to click through to learn more about a given 

product. Importantly, this provided us with the opportunity to measure one‘s propensity 

to seek additional information about a given product, which we utilize as our main 

dependent measure. Revisiting the alternate accounts from our theoretical predictions, if 

the marketer‘s intuition account holds, we should find greater click-through from lower 

strikethrough prices. If it is the curiosity account that holds, we should see the opposite—

that is, greater click-through from higher strikethrough prices. 

 

Method 

Eighty-one emails over a span of 91 days were analyzed, which comprised a total 

of 322 product offers sent to 905 existing customers that previously opted-in to receive 

daily deals from the online retailer. As previously noted, upon opening the email, 

consumers could click on one of approximately three to four offers (each featuring price 

with the strikethrough and an accompanying text description) to learn about the actual 

discounted price. Key variables include consumer clicks on the offer, the strikethrough 

price as well as controls such as feature order and accompanying text. In order to account 

for customer-specific heterogeneity, a longitudinal panel data model—i.e., a random 

effects logistic regression—was run. Panel data present an advantage in enabling the 

researcher to observe the repeated outcomes from the same economic units (i.e., 

customers) over time (Arellano and Bonhomme 2012).  A random effects model assumes 

that the individual (in our case, customer-specific) effects are uncorrelated with the 

model‘s predictors (Allison 2009). In our case, the availability of customer-specific 



13 

 

 

 

longitudinal data allows us to control for unobservable characteristics that could be 

correlated with the initial variables in our model. Thus, our aim in this analysis is to 

account for the unobserved differences that likely exist among customers and the fact that 

those differences may change over time. 

In this examination, we predict a customer‘s click-through probability as a 

function of the strikethrough price (log-transformed to induce linearity), whether or not it 

was the lead feature (dichotomized as 1 = lead feature, 0 = secondary feature) and the 

accompanying text. For this latter measure, the accompanying text, we measure its 

descriptiveness. Past research on linguistics, which measures a message‘s overall 

―emotiveness‖ (Piskorski, Sydow, and Weiss 2008) can be used to understand the effect 

of product description as a moderator. In short, the emotiveness measure is the ratio of 

modifiers (i.e., adverbs and adjectives) to content words (i.e., nouns and verbs), with 

higher emotiveness equating to more descriptive text. The model is noted in Equation 1. 

 

                                Pr                                                     (1) 

   
                                            

                                                

 

Results 

Before running our main analysis, we first ensured that the random effects model 

(versus a fixed effects model) is appropriate by running a Hausman test. Based on the 

results (χ2 = .12, p = .98), we fail to reject the null hypothesis that the random effects 

(versus fixed effects) model is the preferred approach and thus proceed with our planned 
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analysis. The results show a significant effect from price, indicating a greater probability 

of clicks for higher-priced offers (βLogPrice = .09, z(905) = 2.62, p < .04). Furthermore, as 

one might expect, lead features (versus secondary features) are more likely generate 

clicks (βLeadFeature = 1.25, z(905) = 23.17, p < .01). For text emotiveness, we find no main 

effect from increased or decreased text descriptiveness (βText = -.05, z(905) = -1.29, p < 

.20). In interpreting the results from the model, a 10% increase in strikethrough price 

predicts a .38% increase in the probability of a click. Figure 1 illustrates for the main 

product offer the effect of low price (at the 10
th

 percentile of prices) versus high price (at 

the 90
th

 percentile of prices) on the probability of a click-through.
2
 

 

Discussion 

Thus far, we find evidence for increased price curiosity from high (versus low) 

prices. While we control for such factors of customer heterogeneity and text emotiveness, 

we acknowledge the multitude of exogenous influences from such factors as one‘s 

dispositional curiosity, the product category, one‘s price threshold, etc. We therefore pose 

two key questions in seeking to further validate our findings. First, what might suggest 

that curiosity is at play; that is, what process evidence might exist in support of the 

curiosity account? Second, with this analysis limited to a specific product category, might 

the same effect occur via random assignment of high and low prices across multiple 

product categories? Given these questions, we planned further studies to test for the 

generalizability of the effect and its underlying mechanism. In the sections that follow, 

we discuss our approach. 

                                                 
2
 Results are illustrated for lead feature products. A similar main effect emerges for secondary products. 
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Figure 1: Marketplace Test Results Show 

Greater Click-Through for High Price 

 

Test for Process Evidence in a Controlled Setting 

Thus far, we find evidence that a higher strikethrough price results in greater 

information-seeking behaviors, which we attribute to increased curiosity. The results of 

the email data reveal that the outcome predicted by the psychological mechanism seems 

to be at work. To test the mechanism further and to generalize the results, we conducted 

this current study to gather process evidence in a more controlled setting. For this we use 

eye tracking. This allows us to i) control for one‘s dispositional curiosity by measuring 

their response (eye fixation) to extant stimulus and then to ii) examine eye fixation on 

product and strikethrough price stimuli. Importantly, in this test we also extend the 

assessment to include multiple product categories varying both in price and in price 
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range. 

As discussed in our theoretical background, prior research has shown that people 

tend to focus on what they find to be novel or curious (Berylne 1958; Starker and Bolt 

1990). For example, Daffner et al. (1994) attributed one‘s lack of exploratory eye 

movements to decreased novelty seeking and curiosity among participants (Alzheimer‘s 

patients). Therefore, in the context of our prior examination, we posit that higher price 

points—which we theorize to result in greater curiosity—should receive more visual 

attention relative to lower price points, all else equal.    

 

Method 

In this study, we employ the use of a portable eye tracking device in order to 

capture participants‘ eye movement data for on-screen stimuli. The device‘s ability to 

track pupil movement provided access to data that revealed exactly when, where, and for 

how long a given participant looked at the on-screen stimuli. From this, we measured 

participants‘ ocular fixation for on-screen stimuli, which we next describe. 

Sixty-one undergraduate students were recruited in return for partial course credit 

to take part in the study. After the initial explanation about the experimental procedure 

involving eye tracking, participants were equipped with the eye track device and seated at 

a computer. Participants were first presented with stimulus from past research known to 

result in greater attention linked to one‘s curiosity. Borrowed from research in 

experimental psychology (Berlyne 1958, 1960), the intention of this preliminary exercise 

was to establish one‘s dispositional or chronic level of curiosity based on the premise that 

―novel‖ stimulus results in greater eye fixation, similar to the effect from increased 
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curiosity. To establish this dispositional measure of curiosity, a total of 16 screens were 

presented to participants. These consisted of eight screens including novel stimuli in the 

form of varying shapes. Each of these eight screens was separated by an interstitial or 

calibration screen that included two intersecting lines for which participants were 

instructed to focus on the center. The first screen that was displayed for the participant 

included the calibration—that is, the intersecting lines. After a countdown of 

approximately 7 seconds, the first set of shapes appeared. Each set included two images. 

This sequence—that is, the intersecting lines screen followed by the shapes screen—

continued for approximately 2.5 minutes. For this part of the exercise, participants were 

instructed only to focus on the center of the intersecting lines within those screens and 

that they were free to look wherever they chose when the subsequent shapes screen 

appeared. 

From this exercise, we segue into the main part of our study; that is, the method 

used to test our dependent measure of eye fixations on product and price stimuli. 

Participants, during the above referenced initial briefing, were instructed that products 

may or may not appear on the screen after the shapes exercise. All participants—at the 

conclusion of 16 screens for the novel stimuli presentation—were randomly assigned to a 

high or low price condition. In the high (low) condition, participants were first presented 

with the intersecting lines and then presented with a screen that included a product 

image/logo followed by a high (low) strikethrough price. This process continued for each 

of six products featured with a strikethrough price that was at a value above (below) the 

marketplace‘s expected price.
3
  The six selected products were aimed at providing a mix 

                                                 
3 High and low prices were based on an online assessment for the high and low prices being featured for a 

given product, providing us with a reasonable range of prices for the purposes of this study. 
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of high and low price ranges. For example, a high price range example included a 32‖ 

LED HDTV, which, on average, costs approximately $299. In this example, participants 

were either presented with a strikethrough price of $429 or $159 for the high or low price 

conditions, respectively. As an example of the low range product, a streaming video 

service was featured as $5.99 (low price) or $9.99 (high price). The list of products and 

prices are noted in Appendix A. Our key dependent measure for this part of the study is 

ocular fixation. From this, and based on results from our marketplace examination, we 

expect to find greater fixation for high (versus low) price condition, which we attribute to 

increased curiosity. 

 

Results  

In our model, we predict total (log) fixations as a function of the price condition 

(dichotomous), dispositional curiosity (continuous), and their interaction. All else equal, 

higher prices resulted in greater fixations (βHighPrice = 8.10, z(61) = 2.17, p < .04). Also, as 

expected, as dispositional curiosity increased, so did price stimulus fixation 

(βDispositionalCuriosity = 2.07, z(61) = 5.61, p < .001). That is, more curious individuals were 

likely to focus on any stimulus, all else equal. Finally, we find a significantly negative 

price x dispositional curiosity interaction (βHighPrice x DispositionalCuriosity = -1.89, z(61) = -2.2, 

p < .04), telling us that as one‘s dispositional curiosity increases, fixations decrease for 

high (versus low) prices. Figure 2 illustrates these effects by showing total predicted eye 

fixations between the high and low price conditions at low and high levels of 

dispositional curiosity (i.e., the 10
th

 and 90
th

 percentiles, respectively).  
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Figure 2: Test for Process Evidence 

 

Discussion  

Results suggest that individuals with lower dispositional curiosity tend to focus 

more on higher prices. This is the expected finding from our initial marketplace 

examination, which we also attribute to curiosity. However, among those individuals with 

high dispositional curiosity, we find signs of a ceiling effect, whereby highly curious 

individuals tend to fixate more on the product stimulus irrespective of price. That is, these 

findings suggest that highly curious individuals are less affected by high versus low price, 

and these individuals are likely to seek additional information, irrespective of price. 

However, our measure of price—based on an examination of the range of prices 

found in the marketplace—may not necessarily reflect ―high‖ or ―low‖ prices for each 

individual consumer. That is, it is quite possible that a price that we had classified as high 
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could be viewed as a low by one consumer and high by another. Moreover, while we find 

process evidence for increased curiosity, the eye track method—which provided limited 

interaction for participants with the mouse and keyboard—was not conducive to 

measuring the behavioral-based measure of clicks. Therefore, in the next study, we seek 

to address these limitations. 

 

Measuring the Moderating Role of Expected Price 

and Price Range 

While we find process evidence for increased curiosity for high price, it could be 

argued that our measure of ―high‖ and ―low‖ price is a subjective value; that is, while it is 

based upon marketplace prices, it is not necessarily reflective of a ―high‖ or ―low‖ price 

relative to a given consumer‘s expected price range. Moreover, our test for process 

evidence is based on eye tracking, a protocol that precluded us from measuring a 

behavioral-based measure such as click-through (e.g., total clicks, as measured in our 

marketplace test). Therefore, in this study, we begin with the price stimuli from the eye 

tracking study and then rely on a behavioral-based measure of clicks as our dependent 

measure. This is important because it enables the key predictor of price—previously 

labeled as ―high‖ versus ―low‖—to be measured at the individual level on a continuous 

(versus dichotomous) basis. 

 

Method 

Participants (n = 257) were undergraduate students recruited in return for partial 

course credit to take part in an online-administered study. After participating in unrelated 

survey tasks, participants were asked to take part in a short exercise involving product 
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choice. Participants were randomly assigned to one of the two price conditions noted in 

the eye track study (high versus low absolute price). Five of the six selected products 

from the previous eye tracking study (noted in Appendix A) were presented to 

consumers,
4
 albeit in a different fashion that we discuss in the following paragraph.  

For the main procedure of the study, participants were presented in succession 

five different products chosen from our eye tracking study (TV, tablet computer, laptop, 

cloud storage and streaming video). Participants were first instructed that they would 

ultimately be asked to provide their estimates of the actual prices for each of these 

products and that by exploring the product information made available to them on 

subsequent screens, they could obtain details that might help them in making these 

estimates. Participants were then instructed that they could simply click on any product 

that they wished to learn more about. For each of the five products, participants could 

click one of two buttons to either i) obtain additional product information (e.g., 

description, features, information on comparable products) or ii) proceed to the next page 

without receiving this information. Appendix B provides an example of this interface for 

one of the product offerings (the 32‖ LED HDTV). For any of the presented products, by 

clicking for product information, participants were then presented with various features 

and benefits as well as the opportunity to learn about related products. In the survey, 

participants were also asked to state for each product the following details: i) the lowest 

price at which they expect to find this (or a similar) product, ii) the highest price that they 

expect to find for this (or a similar) product, and iii) their best estimate of the average 

price at which each product is offered. 

                                                 
4 The headphone product (see Appendix A) from the eye track study was excluded, as this product resided 

well above the price range for other products in the category. Specifically, the lack of comparable products 

at this price range—which was part of our study protocol—warranted exclusion of this product.  
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 In our analysis, we aim to examine the effects of expected price and price range 

on a consumer‘s propensity to seek additional information. Thus, for our dependent 

measure we predict the probability of click-through, with key predictors including the 

individual-specific factors of relative price, price range, and the interaction of these two 

measures. The measure of relative price is simply the ratio of the strikethrough price to 

the individual‘s expected retail price. For example, a strikethrough price of $20 in the 

context of an individual‘s expected price of $10 would yield a relative price measure of 

(20/10 =) 2. The variable of price range was a measure of the participant‘s maximum 

expected price minus their minimum expected price. For comparability across the various 

products that were tested, this measure was standardized with a mean of zero and a 

standard deviation of one. 

 

Results 

The dependent variable of click-through probability was predicted as a function of 

relative price, price range, and their interaction. For the predictor of relative price, we 

find that increases in relative price (i.e., the actual-to-expected price ratio) result in a 

lower probability of click-through (βRelativePrice = -.11, z(1017) = -2.05, p < .05), all else 

equal. For the price range of a given product (i.e., the maximum minus the minimum 

expected price) there is no significant main effect. Our main interest was in the influence 

of the interaction of relative price and price range—that is, to examine whether the effect 

of relative price one‘s curiosity varies in accordance to price range. Importantly, we find 

a significantly negative relative price x price range interaction (βRelativePrice x PriceRange = -

.14, z(1017) = -2.29, p < .03). In interpreting this interaction, a positive effect on click-
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through probability occurs for high-priced products that have a narrow price range. 

However, when the price range is wider, this effect is reversed. In Figure 3, we illustrate 

the effect of these findings by showing click-through probability at the 10
th

 and 90
th

 

percentiles of both relative price and price range. Specifically, for products with narrower 

price ranges, we find the expected pattern (i.e., consistent with our prior examinations) of 

increased click-through for higher prices. However, for products with wide price ranges, 

higher prices result in less interest in the form of click-through. 

 

Discussion 

Thus far, the marketplace examination and our test for process evidence (eye 

tracking) both revealed findings suggesting greater curiosity amid higher prices. In this 

current study, we find this to be the case for products with a narrow price range. 

However, we find a reversal of this effect when the price is range is wider. These findings 

lend credence to the inverted U-shaped knowledge gap curve as discussed in the 

theoretical background. In briefly revisiting the knowledge gap, it is viewed as the gap 

between what the consumer knows and what the consumer seeks to know. Moreover, it is 

theorized that a knowledge gap that is too narrow or too wide may prohibit one from 

seeking additional information, as it is not deemed as being worthy of the consumer‘s 

effort. Specifically, we find evidence that wider price ranges amid higher-priced products 

run the risk of creating a knowledge gap that is too wide for the consumer to seek action 

to close the gap. 

In light of these results—specifically in the case of the high-priced product with a 

wide price range—we next ask whether increasing one‘s curiosity could increase one‘s 
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Figure 3: The Moderating Role of Expected Price and Price Range 

 

propensity to seek additional information. If we are able to induce curiosity among 

participants, might they show a greater propensity to seek additional information amid a 

wide knowledge gap? In our next study, we seek to measure effect of increased curiosity, 

which we aim to achieve by way of hunger inducement. 

 

Hunger Manipulation Lab Study 

To build upon our prior findings, our next study is aimed at measuring the effect 

of increased curiosity among participants. We aim to do this by controlling for one‘s 

level of hunger, a factor believed to affect curiosity. In brief, hunger has been linked to 

dopamingergic activity—that is, the release of dopamine. As discussed in our theoretical 

background, the desire for food (as tested through food stimulation) would be expected to 
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produce greater hunger. This desire is believed to increase dopamine activity, which we 

theorize would equate to greater action aimed at ―feeding‖ one‘s curiosity. From this, we 

expect to find a more pronounced effect on curiosity behavior (in the form of click-

through) in the presence of hunger inducement. 

Given our above hypothesis, we find it important to note a potential alternate 

account stemming from extant research briefly introduced in our theoretical review. Just 

as an increase in the knowledge gap may ultimately inhibit one‘s desire to seek additional 

information, findings from Piech et al. (2009) suggest that an increase in hunger could 

negatively affect one‘s cognitions and subsequent ability to seek additional information. 

Specifically, their research theorizes that an increase in hunger ultimately impedes one‘s 

cognitive flexibility via ―gross increase in distractibility.‖ In their research, hunger 

inducement via food-related cues—in addition to increasing participants‘ self-reported 

hunger—resulted in a significantly greater number of participant errors in a target 

stimulus identification task.  Thus, counter to the theory that increased hunger amplifies 

one‘s seeking system and subsequent information search behavior, it is possible that 

hunger inducement will negatively affect cognitive ability and thus reduce one‘s 

information seeking. In the presence of this account, we would expect that the 

abovementioned ―increase in distractibility‖ would preclude one from seeking additional 

information based on strikethrough price. That is, if this account were to hold, we would 

find no effect from the factors of price and price range (presented in our prior study) due 

to the increased cognitive competition resulting from hunger inducement. In the next 

section we explore the method used to test our hypothesis. 
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Method 

In this study design, we seek to induce food stimulation—via extant method 

adapted from brain imaging research (Volkow et al. 2002)
5
—prior to our implementation 

of the main protocol of the prior study. Participants (n = 183), asked to take part in a short 

exercise involving product choice, were undergraduate students recruited to our lab study 

in return for partial course credit. The study was offered on one of two consecutive days, 

with participants in the control condition (n = 95) taking part on day one, and participants 

in the food manipulation condition (n = 88) taking part on day two.
6
 In both conditions, 

participants were briefed in a room that was separated from the one in which they 

completed the survey. During this briefing, they were instructed that they would first take 

part in a 5–10 minute exercise at a table at the front of the room, and then they would be 

seated at a computer for the main part of the study. Before entering the room, participants 

were instructed that there may or may not be other items on the table when they are 

initially seated. The study administrator indicated that this was due to the fact that other 

groups were using the lab that day and therefore instructed participants to try their best to 

just complete the task at hand, irrespective of what else was on the table. Upon being 

escorted into the lab, participants were first seated at a set of connected tables in front of 

the room and followed written instructions to complete a word completion task. This task 

was approximately 8 minutes in length, subsequent to which participants were—as a 

group—instructed that they could take a seat a computer to complete the main part of the 

survey. 

                                                 
5 Specifically, the proposed approach is adapted from what is previewed on page 176 of Volkow et al. 

(2002). 
6 This study design ensured that there was no spillover effect from the food manipulation condition. This 

minimized the risk of hints or aromas from the food manipulation condition entering into the control 

condition test. 
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We next describe the differences between the two test conditions. In the test 

condition (with no food manipulation), the center of the table included various writing 

utensils and stacks of papers. In the food manipulation condition, the very same word 

completion task and table setup was encountered, although the center of the table was 

adorned with indulgent baked goods and treats.  Moreover, the aroma in the room was 

enhanced by warming of the various treats and also included the (hidden) effects from 

candles of various tempting scents (e.g., vanilla, sugar cookie, caramel). Finally, 

participants in this condition were told that they would be allowed to taste a small sample 

before exiting the survey. Key to this method—as adapted from Volkow et al. (2002)—is 

the lure of the food more so than the sampling; that is, the aroma and possibility of a 

small taste was intended to trigger a yearning or hunger for food and not to satiate. 

Examples of the lab setup for the food manipulation condition are noted in Appendix C. 

In sum, the two study constructs were identical with the exception of the presence or 

absence of the assorted desserts. 

As for the main part of the study—that is, the computer administered portion—the 

product choice exercise was the same protocol implemented in the previous study, with 

the exception being that this study was implemented in the lab (versus being administered 

online). Thus, subsequent to the table exercise, the study continued by measuring clicks 

on the various product stimuli and gathering responses on expected price and price range. 

Finally, as an additional control, participants were asked to provide their responses to 

hunger rating questions borrowed from extant literature (Friedman, Ulrich, and Mattes 

1999). This includes four 9-point bipolar scales that measure for the current time a 

participant‘s claimed i) level of hunger, ii) desire for food, iii) amount they could eat, and 
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iv) fullness. These items are summed (with item (iv) reverse-scaled) to provide a hunger 

score for each participant. In sum, the food stimulation manipulation and the claimed 

hunger questions provide us with the ability to not only induce, but also to validate, one‘s 

hunger level preceding the price curiosity exercise. 

In our analysis, subsequent to a simple manipulation check, we first seek to 

examine the control condition in order to validate our prior (online-administered) study. 

We then examine the results of the food manipulation. For each condition, we predict 

click-through probability as a function of relative price, price range, and their interaction.  

In the section that follows, we discuss findings from the above study design. 

 

Results 

First, in order to confirm that the food manipulation resulted in our expected 

increase in claimed hunger, we begin with a manipulation check via one-sided t-test. 

Results confirmed our hypothesis, with significantly greater hunger in the food 

manipulation (M = 21.7, SD = 7.9) versus control (M = 19.5, SD = 8.5) condition (t(183) 

= 1.76, p < .04). Similar to the previous study, the dependent variable of click-through 

probability was predicted as a function of relative price, price range, and their interaction. 

In the control condition, results exhibit a similar pattern to the prior study. That is, we 

find moderate significance for the predictor of relative price, whereby an increase in price 

results in a lower probability of click-through (βRelativePrice = -.14, z(377) = -1.80, p < .08). 

Also, there is no significant main effect for price range, consistent with the prior study. 

Finally, we find a moderately significant (negative) relative price x price range 

interaction (βRelativePrice x PriceRange = -.33, z(377) = -1.87, p < .07). Within the food 
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manipulation condition, however, we see different results—that is, we find no evidence 

of the effects of relative price nor price range. Subsequent to the food manipulation, the 

model reveals only a moderately significant intercept value (βIntercept = -.24, z(349) =        

-1.70, p < .10). 

In Figure 4, we illustrate the effect of the above findings by showing click-

through probability at the 10
th

 and 90
th

 percentiles of both relative price and price range 

for each condition. It should be noted that the control condition mirrors the results of our 

prior study (see Panel A of Figure 4 versus Figure 3)—that is, for products with narrow 

price ranges, we find increased click-through for higher prices. However, for products 

with wide price ranges, higher prices result in a lower probability of click-through. In 

panel B of Figure 4 (the food manipulation condition), we see no differences between 

products based on price and price range.  

 

Discussion 

We first find that in our control condition we are able to replicate the results of 

our prior study. That is, we find that higher prices result in increased curiosity for 

products with a narrow price range and that this effect is reversed when the price is range 

is wider. Within the food inducement condition, however, we expected to find a 

pronounced effect on curiosity behavior in the form of increased click-through 

probability. While we find evidence of a successful hunger manipulation, results from the 

food condition show that the main effects vanish relative to the other examination. While 

deviating from our hypothesis, these findings do lend credence to the alternate account 

described in our study introduction. That is, amidst greater hunger, it is plausible that the 
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A) 

 
B) 

 

Figure 4: Hunger Manipulation Lab Study. A) Control Condition: Amid Narrow Price 

Range, High Price Equates to Greater Click-Through; Effect Reverses Amid Wide 

Price Range. B) Food Manipulation Condition: No Effect, Suggesting Presence of the 

“Impairment of Cognitive Flexibility” Account 
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impairment of cognitive flexibility results in less of an ability or desire to engage in 

additional information seeking. As discussed in this study‘s introduction, in the presence 

of this effect we would expect to find no effect from the factors of price and price range 

(presented in our prior study), which is precisely what we witnessed. Thus, we feel this 

study provides evidence supporting the drive-based accounts of curiosity. Just as 

increased levels of hunger may reach a point that inhibits one‘s ability to forage for food, 

it is possible that this could also ultimately inhibit the degree to which one seeks 

information in the environment. 

 

General Discussion 

In this essay, we present evidence that higher prices increase consumers‘ 

curiosity. We see this in the form of a behavioral-based measure of click-through, which 

indicates greater consumer desire to seek more information amid higher strikethrough 

prices. With the numerous exogenous factors influencing one‘s ultimate response to a 

marketing message, we supplemented these real-world findings with three lab studies 

aimed at measuring the effect of curiosity in more controlled settings. Our first approach 

sought to measure the underlying process of curiosity while extending beyond a single 

product category. From this, we found that higher prices resulted in greater curiosity- 

related processing mechanisms (via increased eye fixation), all else equal. In this same 

study, we measured one‘s dispositional curiosity, finding an attenuation of the main 

effect amid highly curious participants.  Our second lab study showed an effect on 

curiosity stemming from differences in relative price and price range, and provided 

evidence that products with high relative price and a wide price range run the risk of  
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attenuating one‘s curiosity. This attenuation is attributed to the knowledge gap becoming 

too wide for a consumer to attempt to close it, consistent with psychology-based accounts 

of curiosity. Finally, in our third lab study, after successful hunger inducement, we find 

an effect on one‘s information-seeking behaviors, which helps to inform drive-based 

accounts from extant literature that relates curiosity to such states as hunger or thirst. 

This research holds several theoretical and practical implications. Theoretically, it 

is among the few explorations that consider the role of prices on arousing curiosity in the 

marketplace. Although past research has discussed the similarity of curiosity to a drive 

state, there is, to the best of our knowledge, no empirical evidence to support this 

proposition. In this research, we show that curiosity does behave like a drive state and 

shows similar downstream influences. Moreover, we demonstrate that price variance has 

an interesting influence on curiosity, with greater variance in price expectation resulting a 

differential effect relative to low variance in price expectation. In sum, we are able to 

inform extant psychology-based theory on curiosity while contributing to marketing 

literature on the role of the relationship between price and product information. This 

provides unique insight into the way in which price and product information—and its 

position along the knowledge gap continuum—affects one‘s curiosity.  

This research also holds many implications in the marketplace, both to managers 

and to consumers. For instance, these findings provide valuable insights for marketers on 

the downstream effects of how price is displayed. Specifically, based on the product‘s 

relative price and price variance, these findings can inform marketers on the optimal way 

in which price information is communicated to the consumer. That is, depending on the 

expected retail price and the range of prices for the product, we are able to provide 
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guidance for marketers in determining the appropriate price display enabling optimal 

consumer response (via increased curiosity). Thus, our research provides a framework for 

marketers in their structuring of price displays aimed at increasing consumer information 

search. 
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THE LONG-TERM IMPACT OF A REFERRAL ON SENDER 

AND RECEIVER BEHAVIOR 

 

Introduction: Referral Behavior and Its Marketing Impact 

Companies have long sought to use the influential power of existing customers by 

way of their recommendations to friends and family, known as referral marketing. In the 

two essays that follow, we examine the long-term impact of referral marketing from both 

the sender and receiver perspective. Referral marketing plays a critical role in a brand‘s 

marketing mix, and is used across a variety of categories.  Brands offering such programs 

apply to news publications (The Economist), satellite television (DirecTV), banking 

(Bank of America), mobile communications (T-Mobile, Virgin, AT&T), retail (Costco), 

and consumer goods (diapers.com). Given its prevalence in the market and importance in 

driving firm value, it is of no surprise to find that marketers and theorists alike seek to 

understand more about the long-term effect that a referral has on the referrer (i.e., the 

sender) as well as the newly-acquired friend or family member (i.e., the receiver). 

Existing literature has provided findings that help in measuring the effect of 

referral marketing. The ability to measure customer response in the form of net present 

value provides valuable insights for marketers in understanding the true value of a 

referral (Kumar et al. 2010). Moreover, the ability to model a customer‘s probability of 

survival based on their prior purchase patterns (Fader, Hardie, and Lee 2005) provides 
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the opportunity to examine the long-term performance of referral marketing from both 

the sender and receiver perspective. 

In addition to presenting our findings on sender and receiver behavior, we also 

test the possible theoretical mechanisms underlying such behavior. In Essay 2, we first 

discuss reciprocity and the spotlight effect to explain the impact of a referral on sender 

and receivers. In Essay 3, we examine the intervening effect of a referral on the purchase 

behavior of senders. We utilize dissonance theory as well as the concept of market 

mavens and opinion leadership to determine which of these theoretical mechanisms 

underlie our observed effects. 

In the sections that follow, we review theories pertinent to referral marketing and 

its measurement, which apply to the two essays that follow it. We first present the extant 

theory on referrals, as well as the modeling of individual-level factors such as customer 

lifetime value (which we refer to henceforth as CLV) and the computation of a 

customer‘s probability of being active. We then proceed to our second essay, where we 

highlight the theoretical domains of reciprocity and the spotlight effect, followed by our 

testing of these theories. Finally, in our third essay, we begin with a review of literature 

related to dissonance as well as market mavens and opinion leadership and conclude with 

research aimed at confirming the theories likely at play in explaining our results. 

 

Theorectical Review on Referral Behavior 

Literature on Customer Referrals 

In the areas of referral marketing, extant research is plentiful. Common to this is 

the intuitive but no less valuable finding that increased value comes from customers that 
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are referred. Referrals come in a number of varieties; that is, they can come from 

customers or noncustomers alike and can be customer-initiated or company-initiated 

(Buttle 1998). Customers that refer others have been likened to noncompany sales 

personnel in that their efforts in garnering new business for the firm can provide them 

with earnings in the form of rewards or discounts (Kumar et al. 2010). Invaluable 

methodologies have been developed to quantify the value of these consumers, which we 

review in detail at a later point within this theoretical review. 

Existing research also shows how a referral can be affected by such factors as 

reward magnitude and the strength of the relationship between the sender and receiver. 

For example, in an experiment manipulating various factors of reward programs for 

electronic devices, referral likelihood was shown to increase in the presence of a reward 

program. In this same study, strength of the brand as well as the strength of the tie 

between sender and receiver was shown to have an effect on total referrals (Ryu and 

Feick 2007). Specifically, Ryu and Feick (2007) introduced the counterintuitive finding 

that weaker (versus stronger) brands with weaker (versus stronger) sender and receiver 

ties are more likely to garner a greater number of referrals. Additional research 

contributing to this learning focused on the reward offered for a referral from members of 

an online mall site (senders) to prospective customers (receivers). In this large-scale field 

experiment, the magnitude of the financial incentive was shown to be positively related to 

the total number of referrals sent as well as the total new customers and purchases from 

the referral (Ahrens and Coyle 2013). 

Moreover, research has investigated the optimal mix of the referral reward and the 

product price based on the customer‘s willingness to recommend, providing guidance for 
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marketers in structuring referral and/or reward programs (Biyalogorsky, Gerstner, and 

Libai 2001). The method of acquisition in customer referral has also been explored, 

proving to be a key factor in determining the value of a referral. For example, research 

has compared customers acquired via word-of-mouth (WOM) to those acquired through 

more traditional firm-induced marketing messages. In this research—among customers in 

the internet domain— Villanueva, Yoo, and Hanssens (2008) showed that WOM-

acquired customers are nearly twice as valuable over the long term. Furthermore, prior 

research has distinguished between ―endogenous‖ (customer-generated) and ―exogenous‖ 

(firm-induced) WOM among both customers and noncustomers alike to better understand 

its effects. Results of a field experiment for a national restaurant chain showed that 

exogenous (firm-induced) WOM drives higher sales and that the customer‘s level of 

involvement—e.g., brand loyalists versus switchers—influences the effectiveness of 

WOM on the receiver (Godes and Mayzlin 2009). Specifically, it was shown that WOM-

driven sales were higher for less loyal (versus highly loyal) customers, providing unique 

insights relative to perceived credibility of the sender. In the sections that follow, we 

continue with a more detailed examination of the modeling methods used in referral 

marketing. 

 

Modeling Customer Purchases and Survival Probability 

 In this section, we review some methods that enable researchers to predict the 

survival likelihood of a particular customer, a key component of the research that we 

present in the balance of our essays. The importance of this methodology is amplified in 

the presence of a noncontractual customer setting, whereby the time at which a customer 
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becomes ―inactive‖ is an unobservable event (Reinartz and Kumar 2000). Prior research 

in this area has mainly focused on predicting i) the probability of survival for a given 

customer at time T and ii) the number of future purchases in light of their prior purchase 

history. Additionally, predictions for future purchases are used in such calculations as 

CLV, an area that we will later explore. 

Schmittlein, Morrison, and Colombo‘s  (1987) influential work on counting and 

identifying active customers discusses at length two dimensions, which include the 

customer‘s transaction opportunity (as continuous or discrete) and the type of relationship 

that the customer has with the firm (contractual versus noncontractual). Historically, 

continuous opportunities for transactions in a noncontractual setting—e.g., consumer 

purchases in a retail shopping environment—have received significant attention from 

those modeling customer-specific survival probabilities (Fader and Hardie 2009). Central 

to this work is the above referenced seminal work from Schmittlein, Morrison, and 

Colombo (1987) on the Pareto/NBD Model, which enables the calculation and 

identification of those individual customers that are active, as well as the prediction of 

future individual-level transactions. Given our intended use of this model—which we 

discuss at greater length in the section that follows—key extensions to the basic 

Pareto/NBD are worth noting here. Importantly, research has extended to include time-

invariant covariate effects (Abe 2008; Fader and Hardie 2007) as well as an examination 

based on average spend per transaction. (Fader, Hardie, and Lee 2005; Schmittlein and 

Peterson 1994). 
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The Pareto/NBD Model 

The Pareto/NBD is based on five key assumptions: i) customer purchases are 

made according to a Poisson process with purchase rate , ii) customer lifetime is 

exponentially distributed with death rate of , iii) the purchase rate  follows a gamma 

distribution across all customers, iv) customer death rates  are distributed to different 

gamma distributions across customers, and v) the distributions of purchase rates  and 

death rates  are assumed to be independent of each other. The Pareto/NBD model has 

four parameters in r, α, s, and β that characterize the purchase/death process for 

customers.  

In addition to the parameter values (r, α, s, and β), the model is reliant on basic 

pieces of information including the recency of a given customer‘s last purchase and the 

frequency of their total purchases. The primary notation for recency and frequency is (x, 

tx, T), which is summarized as follows: x indicates the number of transactions occurring 

from time zero through time T, and tx is the time of the last transaction (which is greater 

than zero and less than or equal to T). The best fitting parameters are estimated via 

maximum likelihood, which maximizes the sum of the log-likelihood for each individual 

customer based on frequency (x), recency (tx) and total time (T). From this, as noted in 

Schmittlein, Morrison, and Colombo (1987), the probability that an individual customer 

is still active at T based on their recency and frequency (x, tx, T) is P(alive |x, tx, T). Also 

of interest is the expected number of transactions in the future time horizon of t periods, 

which is noted as E[X(T, T+t)|x, tx, T]. In summarizing the key elements of the 

Pareto/NBD model, we begin with the likelihood function for a randomly-chosen 

consumer with purchase history (X = x, tx, T), which is expressed as 
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The probability that a given customer is alive is stated as 
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with the expected number of transactions for a consumer in (T, T + t] expressed as 
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Customer Lifetime Value and Customer Referral Value 

Existing research has provided valuable modeling tools for marketers that enable 

individual-specific measurement of CLV, allowing marketers to more wisely invest in 

specific customers. Venkatesan and Kumar (2004), for example, have shown that 

customers selected on the basis of current CLV provide marketers with greater profit 

relative to customers chosen on other customer-based measures. In brief, while CLV is 

certainly not a ―one size fits all‖ approach,
7
 it can be generalized as the present value of 

expected cash flows from a customer (Fader and Hardie 2014). In Equation 4 below, we 

examine more closely the calculation of CLV that is applicable to ongoing, 

noncontractual purchase settings such as retail shopping. Specifically, this begins by 

measuring for customer i the expected net cash flow based on number of purchases and 

transaction value, conditional on customer i being alive. That is, past purchases for a 

specified period are analyzed, with predictions made for a specified future time period 

based on the time horizon of interest. This value is then multiplied by survival 

probability, and discounted to reflect a net present value, formally expressed as 

 

                  CLVi =                                                                           (5)   

                              .       

                                                 
7 Regarding the varying definitions of CLV, see Fader and Hardie (2014) for a healthy discussion on this 

topic. 
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Notably, existing research has examined as part of a customer‘s lifetime value 

(CLV) what is classified as customer referral value (CRV), which is one component of a 

total customer‘s total equity (see Kumar, Peterson, and Leone 2007; Kumar et al. 2010). 

In brief, CRV takes into account for a given sender a discounted cash flow value of the 

total lifetime value of the customers that were acquired through that particular sender‘s 

actions. For example, if an individual customer‘s lifetime value is $100, and he or she 

refers a customer that ends up with a lifetime values of $200, this latter value would be 

used to calculate CRV (based on a specified discount rate). Prior research has shown that 

the value of sender‘s referrals—that is, their CRV—is higher than the sender‘s CLV. For 

example, Kumar, Peterson, and Leone (2007) examined both CLV and CRV within the 

financial services and telecom industries, with analysis yielding CRVs that were 1.78 and 

4.28 times higher than CLVs for referring customers (i.e., senders). 

In the next section, we introduce our second essay. This extends our previous 

preview of extant literature‘s contributions in referral marketing and explores the possible 

theoretical mechanisms underlying referrals from both the sender and receiver 

perspective.  
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ESSAY 2: THE INFLUENCE OF A CUSTOM (VERSUS STANDARD)             

MESSAGE ON SENDERS AND RECEIVERS                                                           

OF MARKETING REFERRALS  

 

Introduction 

Marketers have long sought to harness the influential power of customers in 

garnering new business, with countless tactics implemented in both the online and offline 

space. One such example implores consumers to ―Tell your friends about The Economist, 

get a free month!,‖ and goes on to proclaim to customers that ―When a friend signs up, 

you get a free month! It‘s that easy, so start spreading the news.‖ These types of word-of-

mouth communications, a key aspect of referral marketing, are estimated to be the 

primary factor in 20 to 50%  of all purchasing decisions (Bughin, Doogan, and Vetvik 

2010). Moreover, as noted in the theoretical review preceding this essay, referral tactics 

are an important source of new business with tremendous sales implications. While prior 

research has examined at great length the source of the referral, it tends to treat the 

structure of the referral as equal; that is, less is known about how the specific information 

within the referral itself could influence ongoing purchases. In our research, we focus on 

the degree of customization of the referral, and we explore whether all referrals are 

equally likely to lead to an increase in purchases. Specifically, we focus on whether the 

referral is accompanied by a custom (sender-generated) or a standard (boilerplate) 
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message from the sender, and we ask: Are all referrals—e.g., customized and 

standardized messages alike—perceived in the same fashion by the receiver? Or, does it 

happen that a receiver is more likely to alter their behavior—i.e., make a purchase—when 

the sender delivers a customized (versus standardized) referral message? And, what effect 

might we see from the sender when the message is customized (versus standardized)? 

 In the case of customized referrals and messages directly from companies, it is 

possible that consumers feel that they are special and hence, purchases and loyalty may 

be more likely to follow. But in the case of receiving customized referrals from friends, 

we do not expect the mere presence of ―feeling special‖ to be a factor, and we posit that 

other factors could influence purchases stemming from a customer‘s referral to their 

friend. To preview applicable theory, the existing domains of reciprocity and spotlight 

effect would suggest greater purchase likelihood after receiving a customized message. 

The former theory deals with a sense of obligation on behalf of consumer to return or pay 

forward to others the goods or services provided to them. The latter theory pertains to the 

overestimated belief that the self‘s actions are being observed by others. We believe that 

both of these effects are factors in one‘s response to the receiving and sending of a 

custom referral, both of which have immense implications for companies. Specifically, 

instead of assuming equal impact for all referrals, marketers can better understand the 

importance—and quantify the value—of customized referrals from a consumer to their 

friend.  To test our research predictions, we utilize email referrals sent by existing 

customers (senders) of an online retailer and we categorize these referrals based on 

whether they are structured in a customized versus standardized fashion (with the specific 

method being discussed in a later section). We then compare the purchase behavior of 
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senders and receivers of these two message types in testing the underlying theories. 

In the sections that follow, we present our theoretical conceptualization, including 

a review of extant theories and our predictions. This is followed by a discussion of our 

research approach and findings that test our hypothesis. We then conclude with a 

discussion of implications for marketers and theorists alike. 

 

Theoretical Review 

In order to understand how receivers and senders are likely to respond to referrals, 

we consider extant work on reciprocity and the spotlight effect. These theories discuss 

how both the receiver and sender of a message may be likely to respond to a referral 

gesture. Specifically, they review how the receiver may feel obligated to signal to the 

sender his or her thanks, and how the sender‘s actions may be influenced by the 

(erroneous) belief that his or her referral actions are under scrutiny. Each of these is 

discussed in the sections that follow. 

 

Reciprocity 

In the most general sense, reciprocity is a societal norm whereby individuals feel 

an obligation or sense of duty in repaying goods or services provided for them (Gouldner 

1960). An important aspect of reciprocity is the dual benefit for the ―sender‖ and 

―receiver‖ of the good or service; that is, it results in a mutually gratifying outcome for 

both parties (Malinowski 1932). The most common form of reciprocity is captured by the 

simple principle ―you scratch my back, and I‘ll scratch yours.‖ That is, in the standard 

form of reciprocity, one party (e.g., Party A) provides a benefit to another party (Party B) 
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with the expectation of the favor being returned.  This form of reciprocal altruism is 

defined as an exchange between the same two individuals that result in a net benefit for 

both (Trivers 1971). 

Reciprocity need not be directly concentrated on exchanges between Parties A 

and B; that is, it can be indirectly experienced between multiple parties. In comparison to 

direct reciprocity, indirect reciprocity follows a much less intuitive general principle that 

―you scratch my back and I‘ll scratch someone else‘s‖ (Nowak and Sigmund 2005). 

Indirect reciprocity is generalized as being upstream or downstream. For example, within 

the concept of indirect upstream reciprocity, Party A first helps Party B, who in turn may 

be motivated to help Party C, which can extend indefinitely (Boyd and Richardson 1989; 

Nowak and Sigmund 2005; Pfeiffer and Killingback 2005). As for indirect downstream 

reciprocity, Party A, in their providing of aid to Party B, is aided by their reputation in 

helping others. Thus, Party C chooses to help Party A as a result of becoming aware of 

their prior acts of altruism toward Party B (see Nowak and Sigmund 2005). 

 

Spotlight Effect 

In this section, we discuss the theory behind one‘s belief that their future actions 

are under greater scrutiny by friends or acquaintances. In the context of referral 

marketing, consider a sender delivering a referral to a friend or family member. It is 

plausible that the act of referring triggers the feeling that their recent purchase behavior—

that is, whether or not they have engaged in purchases since referring someone—are 

under scrutiny by the receiver. This phenomenon, whereby people overestimate the 

degree to which their actions are being noticed by others, is commonly referred to as the 
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spotlight effect (Gilovich, Medvec, and Savitsky 2000). 

Central to this research on the spotlight effect is the finding that people tend to 

overvalue the level of attention that others are paying to them. Research has shown, for 

example, that people consistently overestimate the salience of their contributions in group 

exchanges and settings. Specifically, participants—in taking part in a group discussion on 

a current social/policy issue—overestimated such factors as remarkable commentary and 

time spent talking, and they underestimated such negative factors as speech errors and 

offensive comments. Effect of the spotlight is further exemplified by related research 

from Gilovich, Kruger, and Medvec (2002), which consistently showed participants‘ 

tendencies to overestimate how their actions and performance would be noticed by 

others. Specifically, one‘s own measures of their physical appearance and competitive 

performance confirmed their tendencies to overestimate the degree to which others take 

note. Taking into account this theory on spotlight effect and the preceding overview of 

reciprocity, we now turn to our theoretical predictions. 

 

Theoretical Predictions 

In the context of a referral, the spotlight effect suggests that individuals may 

overestimate how the act of their referral reflects on them as a person, resulting actions 

that may otherwise not be taken. Furthermore, reciprocity suggests that individuals may 

feel a sense of duty or obligation to repay a benefit (i.e., favor) extended to them. Thus, in 

the example of a sender, irrespective of their perception of themselves,
8
 it is plausible that 

the act of referring another customer could amplify the degree to which they perceive 

                                                 
8 Some consumers may see themselves as having greater influence and marketing expertise. These 

consumers, referred to in literature as ―market mavens,‖ possess greater knowledge of products and a 

greater likelihood to share this information with others (see Feick and Price 1987) for more information. 
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their actions to be under scrutiny. This feeling of ―being in the spotlight‖ could ultimately 

lead to differences in sender‘s future purchasing behavior. As for the case of the receiver, 

we propose an effect attributed to reciprocity. That is, it is possible that the receipt of a 

message from a friend plays a role in motivating receivers to act on the invitation to 

extent their appreciation for the invite. Here we propose an effect attributed to upstream 

reciprocity; that is, an effect whereby the receiver behaves in a way that signals to the 

sender his or her gratitude for the referral. 

As it pertains to the proposed effect of message type on both sender and receiver 

behavior, we propose that a custom (versus standard) message will result in greater value 

from the sender and receiver‘s perspective, all else equal. We continue to attribute these 

expected results to the presence of the spotlight effect for the sender, as well as the sense 

of reciprocity that we theorize stems from the receipt of a custom (versus standard) 

message. More specifically, we expect that one‘s feeling of being ―in the spotlight‖ will 

be amplified in the presence of a custom versus standard message. That is, we posit that 

senders and receivers of customized (one-to-one) messages will behave differently than 

senders and receivers of one-to-many messages. Thus, we expect to find that customized, 

one-to-one messages result in greater overall value from both the sender and receiver‘s 

perspective in the form of transactions, predicted survival and purchase frequency as well 

as projected customer value. 

In the sections that follow, we present findings from a real-world data set that 

examines the impact of a standard versus custom message on sender and receiver 

transaction value. We then further validating these findings by modeling predicted 

survival, purchase frequency, and total customer value. 
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Data Description 

In testing the abovementioned theoretical accounts, we turn to data from an online 

retailer, spanning 200 weeks of customer-level transaction activity between March 2010 

and January 2014. In addition to sales measures on per-customer basis, these data 

importantly afforded us the opportunity to identify senders and receivers of marketing 

referrals sent by existing customers (via email) to prospective customers. Moreover, 

among those senders and receivers of referrals, we were able to identify a given referral 

as being custom or standard. In the context of this data set, existing customers—in their 

act of referring other customers—typed in recipients‘ email addresses from a company 

landing page and then could either (a) proceed to send their invite with a standard, 

boilerplate message provided by the company or (b) type a personal message to their 

chosen recipient(s). Having an ability to discern whether the email mirrored or deviated 

from the boilerplate, company-generated copy, we then coded for each customer whether 

or not they were a sender or receiver, and whether or not the invitation (sent or received) 

was custom or standard. Specifically, a custom message was one that differed from the 

text structure of the standardized boilerplate text that was prepopulated for the sender.  

Next, we summarize the composition of our data. As noted in Panel A of Table 1, 

a total of 38,467 people received invitations from 6,754 existing customers (senders), 

with the lion‘s share being standard (versus custom) invitations. In total, sender referrals 

resulted in 1,690 receivers taking action (i.e., becoming a member). In Panel B of Table 

1, we see that—among these 1,690 receivers that became a member—a total of 827 made 

purchase(s) during the data collection period (based on referral efforts of one of the 6,754 

senders). Moreover, Panel B breaks down the activity of all 21,046 customers that made 
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Table 1: Key Measures for Senders and Receivers 

 

A) Receiver action from all Invitations Sent 

 

Not Joined Joined Total 

Standard Invitation 31,361 1,338 32,699 

Custom Invitation 5,416 352 5,768 

Total 36,777 1,690 38,467* 
* A total of 6,754 senders, each sending ~5.7 invitations 

 

B) Breakdown of All Customers 

 Total Senders Receivers All Other 

n  21,046  6,754              827         13,905  

Number of Trans 4.97  7.35             5.88             3.84  

Trans Value  $98.81   $98.85   $109.26   $98.16  

Number of Invites  n/a  5.69 n/a n/a 
 

C) Among Purchasers  

  Custom Standard Total 

Senders 3,340 3,414 6,754 

Receivers 179 648 827 

 

purchases over the 200 weeks of data and shows the activity of senders and receivers on 

these same measures. In Panel C of Table 1, we see that among the 6,754 customers that 

sent a referral, we find a nearly equal split between custom and standard invites (at 49% 

and 51%, respectively). As for the 827 receivers making purchases, 179 are attributed to 

custom invitations and 648 to standard invitations. Given this summary data, we next 

seek to empirically examine the effect of message type on key sales measures for senders 

and receivers. 

 

Measuring Transaction-level Data 

As noted in the previous section, from our data we are able to isolate custom 

versus standard senders and receivers through access to all referrals sent from existing 

customers of an online retailer to their chosen recipients. To preliminarily test our 
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proposed effects attributed to spotlight effect and reciprocity, we begin with an 

examination of key purchase measures, which we next discuss.  

 

Method 

We begin with an examination of receiver response to a referral. For this, our 

dependent measure is the probability that a receiver ultimately joined as a function of 

receiving a custom versus standard invite. We then continue with an examination of key 

transaction-level measures for both senders and receivers, whereby we examine the 

difference between custom and standard referrals on key measures of transactions per 

consumer and average transaction value as well as the average number of invitations sent. 

In the presence of our proposed effect attributed to a sender‘s sense of being in the 

spotlight, we should find initial evidence for greater value from custom (versus standard) 

referrals. Moreover, in the presence of the proposed effect from reciprocity on receiver 

behavior, we should find greater response to custom (versus standard) invites. 

 

Results 

Before examining any differences in sales, we first sought to understand whether 

custom versus standard invitations had an effect on whether or not a receiver ultimately 

joined or made a purchase. Thus, in two separate logistic regressions, we predicted one‘s 

propensity to join and then to make a purchase as a function of whether the invitation was 

standard or custom. In subjecting the dependent measure of joined (1 = joined, 0 = not 

joined) to logistic regression, we find that the receiver of a custom message is 52% more 

likely than the receiver of a standard message to join (βUnique_Invite = .42, z(38466) = 
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6.824, p < .001). Similarly, we find that those receiving a custom invitation are 83% 

more likely than those receiving a standard invitation to ultimately make a purchase 

(βUnique_Invite = .61, z(38466) = 4.194, p < .001). However, among those receivers 

ultimately joining, this effect is attenuated. That is, we see no statistical increase in a 

receiver‘s propensity to purchase once they have joined. 

To further examine the above findings, we next examine the effects of custom 

versus standard invitations on sender and receiver purchase behavior. To address this, we 

predicted average transaction value (ATV) as a function of message type; that is, we 

examined separately for senders and receivers the effect of a custom versus standard 

invitation message. Among senders, as noted in Figure 5, we find that those sending 

unique invitations have an ATV of $102.53, whereas those sending standard invitations 

spend an average of $95.71. This difference is significant (β = 6.82, t(1, 6669) = 4.238, p  

< .001). Among receivers, the difference in ATV is insignificant; that is, we find no 

difference in average purchase dollars based on whether the customer was acquired via 

custom or standard invitation. 

To continue our examination of key transaction measures, we next compare 

custom to standard messages on total transactions for both senders and receivers. Among 

senders, we see a pattern similar to Figure 5, with a significantly greater number of 

transactions for custom versus standard invites (β = 2.93, t(1, 6752) = 9.21, p < .001). 

Among receivers, we continue to see a nonsignificant effect. A summary of these results 

is noted in Table 2, which also includes a comparison of the total number of invitations 

sent by custom and standard senders. It should be noted that no statistical difference 

exists between the total number of invitations sent by custom versus standard senders. 
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Figure 5: Average Transaction Value—Greater ATV for 

Custom (vs. Standard) Senders 

 

Table 2: Summary of Key Measures between Custom and Standard Invites 

 

 

Senders 
 

Receivers 

  Custom 
 

Standard 
 

Custom 
 

Standard 

n 3,340 
 

3,414 
 

179 
 

648 

Avg # of Transactions 8.86 *** 5.93 
 

6.34 n/s 5.76 

Avg Transaction Value $102.53 *** $95.71 
 

$106.23 n/s $110.10 

Avg Total Invites Sent 5.48 n/s 5.90 
 

n/a  n/a 

*** Denotes significant difference (p < .001) between Custom & Standard Invites; n/s = 

not significant 

$95.71 

$102.53 

$92 

$94 

$96 

$98 

$100 

$102 

$104 

Standard Message Custom Message

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 V

al
u

e



54 

 

 

 

Discussion 

Results provide initial evidence that the value of a custom (versus standard) 

invitation is greater from both the sender and receiver‘s perspective. For senders, we see 

this in the form of greater transactions and average transaction value for custom (versus 

standard) invitations, which we attribute to the spotlight effect.
9
 For receivers, we find  

greater probability to join and to make a purchase upon receipt of a custom (versus 

standard) invitation. However, among receivers that ultimately join, we find no statistical 

differences in their probability of making a purchase nor any differences in their 

transaction measures. Thus, we see initial evidence that our hypothesized effect for 

receiver behavior attributed to reciprocity only applies to the receiver‘s initial actions of 

joining and making a first purchase. 

 With this initial evidence in hand, we next examine in greater detail the long-term 

effects of a custom (versus standard) message. Borrowing from the extant methods 

reviewed in our theoretical background, we implement a more rigorous analysis of our 

existing data. Specifically, we extend this analyses to include the key measures of a 

customer‘s probability of being active as well as their predicted number purchases, 

culminating with total customer value. 

 

Modeling Customer Value via Pareto/NBD 

 In this section, we further examine the effects of a custom (versus standard) 

message by implementing a more rigorous analysis pertaining to customer value. Mainly, 

                                                 
9 With no statistical difference in the number of invitations sent by custom versus standard senders, we 

continue to attribute our effect to the spotlight effect. If the differential had been significant, one could posit 

that the increased response was simply due to the increased prominence of custom (vs. standard) 

messaging. 
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our intent is to more specifically calculate sender and receiver worth by modeling i) each 

customer‘s probability of remaining as a customer based on their recency and frequency 

of all purchases (see Fader, Hardie, and Lee 2005) and ii) their predicted number of 

purchases as part of overall customer value. Building upon our previous findings, in 

addition to validating the worth of senders and receivers, we decompose sender and 

receiver purchase behavior based on the presence of custom or standard messages. We 

predict greater value for senders (versus nonsenders), which we attribute to senders‘ 

feelings of being ―in the spotlight.‖ Moreover, within senders, we expect to find greater 

value in the presence of a custom (versus standard) referral. Among receivers, our aim is 

to examine the worth of a custom versus standard referral, whereby we expect greater 

overall value based on and receivers‘ sense of reciprocity. An overview of the method is 

presented below, followed by results and a discussion of our findings.  

 

Method 

Using the Pareto/NBD method outlined in our theoretical background, we model 

for each customer the probability of remaining active, their predicted number of 

purchases, and their resulting customer value. From this, we compare these key measures 

between customers as a function of the factors previously examined; i.e., we compare 

between custom and standard invitations from both the sender and receiver perspective. 

In this analysis, we use the same customer-specific data from our prior examination. The 

data provided us with 200 weeks of data for over 21,000 customers, including data on 

each customer in the form of when they joined and purchased as well as the frequency 

and total dollar value of these purchases. From this method, our aim is to project 
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customer activity over 1 year. Thus, we chose to calibrate our model with 148 weeks of 

data with a 52 week holdout to assess model fit. 

Revisiting the Pareto/NBD model, based on frequency (x), recency (tx), and total 

time (T), the best fitting parameters are estimated via maximum likelihood, which 

maximizes the sum of the log-likelihood for each individual customer. From this, we 

obtain the probability that an individual customer is still active at T (i.e., P(alive |x, tx, T)) 

based on their recency and frequency. Also of interest is the expected number of 

transactions in the future time horizon of t periods, which is noted as E[X(T, T+t)|x, tx, T]. 

After projecting purchase activity for each customer over the 1 year period, we then 

multiply average transaction value based on calibration period purchases by the above 

values of survival (e.g., P(alive |x, tx, T)) and expected transactions (E[X(T, T+t)|x, tx, T]), 

yielding our customer value measure. In the section that follows, we highlight the results 

of our model.  

 

Results 

 For our analysis, we begin with an overview of model fit.
10

 First, as noted in panel 

A of Figure 6, actual purchases from the calibration period transactions were shown to 

result in an adequate fit with the modeled transactions. Moreover, panel B of Figure 6 

provides further evidence of acceptable model fit; that is, while the actual purchases in 

the 52 week holdout include a few jumps (e.g., the spike near week 160), we see 

adequacy in the direction and magnitude of the modeled versus actual sales in the holdout 

period. Thus, we proceed to our main analysis of the key components of customer value. 

                                                 
10 We include all 21,000+ customers in this model, as our goal is to compare differences between projected 

values based on such groupings as senders versus nonsenders, custom versus standard senders, etc. 
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Figure 6: Pareto/NBD Model Fit. A) Calibration: Actual versus Modeled Transactions. 

B) Calibration & Holdout: Weekly Incremental Transactions (Actual vs. Modeled) 
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We begin with a macro assessment of sender and receiver behavior. For senders (versus 

nonsenders), we find significantly greater survival rate, purchases, and customer value, 

with details noted in Panel A of Table 3. Among receivers, however, modeled buyer 

behavior is significantly lower than nonreceivers. That is, we find significantly lower 

survival probability, predicted purchases and customer value; see Panel B of Table 3. We 

next examine the effect within groups based on whether the mode of referral was custom 

versus standard. For custom (versus standard) senders, we find significantly greater 

performance on our key measures (see Panel C of Table 3). As for modeled behavior of 

receivers (Panel D of Table 3), we find no significant differences based on whether the 

received referral was custom or standard. 

 

Discussion 

 Results of this examination corroborate our initial findings from the average 

transaction value by showing significantly greater performance for custom (versus 

standard) messages among senders. This effect holds on all three key measures of 

survival, predicted purchases and customer value, which we attribute to the spotlight 

effect. As a caveat to these findings, we find it important to acknowledge that the 

message delivery type is self-selected by the consumer, and it is plausible that custom 

senders could simply be ―better‖ customers than standard senders. However, given our 

finding of no statistical differences in the number of invitations sent between custom and 

standard senders, we continue to attribute our effect to the presence of spotlight effect, 

and we revisit this point in our concluding discussion. 

 As for results among receivers, we find that overall value is lower than  
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Table 3: Average Transaction Value 

 
Between Groups: Significantly Greater Performance Among Those Sending & Receiving 

       A) Senders vs. Nonsenders 

 
 

Senders  Nonsenders  DF p 

 P(Alive) .544 .519 .025 16228 <.001 *** 

Predicted Purchases 2.37 1.34 1.03 16228 <.001 *** 

Customer Value $256.20 $139.82 $116.39 16228 <.001 *** 

       B) Receivers vs. Nonreceivers
1
 

 
 

Receivers Nonreceivers  DF p 

 P(Alive) .424 .534 -.11 16228 <.001 *** 

Predicted Purchases 1.20 1.73 -.53 16228 <.001 *** 

Customer Value $130.24 $184.44 -$54.19 16228 <.001 *** 

 

Within Groups: Greater Performance for Custom Messages; No Effect Among Receivers 

       C) Senders 

 
 

Custom Standard  DF p 

 P(Alive) .563 .525 .04 5849 <.001 *** 

Predicted Purchases 2.75 1.96 .78 5849 <.001 *** 

Customer Value $301.36 $208.15 $93.21 5849 <.001 *** 

       D) Receivers 

 
 

Custom Standard  DF p 

 P(Alive) .453 .416 .04 797 < .20 

 Predicted Purchases 1.39 1.15 .24 797 < .36 

 Customer Value $140.18 $127.41 $12.77 797 < .69 

 
*** Denotes significant difference (p < .001) between groups of interest 

 

nonreceivers on all key measures. Moreover, we find no effect from the receipt of a 

custom versus standard invite. Thus, we lack evidence for our hypothesized effect of 

increased response from custom receivers. In sum, our findings suggest that receivers 

tend to respond to sender messages with lower than average performance than 

nonreceivers, irrespective of whether the received message is custom or standard. In 

examining this effect among receivers, it is quite possible that we are witnessing these 

results due to the fact that receivers are joining merely as an appeasement or a signal of 

thanks to the sender, which would still be a form of reciprocity, albeit with a different 

outcome. To further explore this possibility, we revisit the findings presented as part of 



60 

 

 

 

our first examination in this essay, where it was found that custom receivers were 52% 

more likely to join and 83% more likely to make a purchase than standard receivers. 

These results, in conjunction with the findings of the current study, still point to 

reciprocity, but importantly highlight that this reciprocity is short-lived. That is, a custom 

receiver‘s greater propensity to respond to the initial invite does not appear to sustain. 

 

General Discussion 

In this research, we ask whether referral type has an impact on the purchase 

behavior of the sender and receiver. Based on theory pertaining to the spotlight effect and 

reciprocity, we posit that custom (versus standard) referrals will have a greater effect on 

both sender and receiver behavior. To test our theory, we preliminarily examined 

transaction measures of custom versus standard senders and receivers and extended this 

analysis with a model-based examination of key components of customer value (from 

predictive modeling based on Pareto/NBD) across these very same customers. For 

senders, we find significantly greater performance across the board, with a more 

pronounced effect when a custom (versus standard) message is sent. In light of the 

similar invitation activity between custom and standard senders (in the form of number of 

invitations sent), we do not feel that custom senders are simply better or more active 

customers; however, with message type (custom versus standard) being self-selected by 

consumers, a randomized field study design would allow us to further examine this 

effect. 

As for receivers, we find that one‘s propensity to join and make a purchase is 

higher when the received message is custom (versus standard), although we do not see 
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this translate to greater performance on our transaction or model-based measures. Taken 

together, these findings support our hypothesis that the act of sending a custom (versus 

standard) referral has an impact on both senders and receivers, albeit with a less 

sustainable effect for the latter group. That is, we continue to posit that reciprocity is at 

play in a receiver‘s response, although results suggest that this applies only to a receiver‘s 

initial activity with the company (e.g., the act of joining and making an initial purchase). 

From a theoretical perspective, our findings inform existing research pertaining to 

referral marketing and predictive modeling of customer value, whereby we uniquely 

show how the specific information within the referral itself can influence purchase 

behavior and customer value. Moreover, we feel these findings uniquely incorporate 

consumer behavior theories stemming from spotlight effect and reciprocity. Results also 

provide practical implications for marketers in seeking to understand the optimal drivers 

of referral programs. In our research, by focusing on the degree of customization of the 

referral and its effect on purchases, our findings give cue to marketers in optimizing 

referral programs. Specifically, a marketer‘s incorporation of customized messaging 

elements in referral programs can help to increase the overall response to a given referral. 
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ESSAY 3: CAN THE ACT OF REFERRING CHANGE THE LONG-TERM 

PURCHASE BEHAVIOR OF REFERRERS? 

 

Introduction 

Much marketing literature has proved the value of customers that are acquired 

through the referral efforts of existing customers. Referrals are considered important 

because it is hoped that a referral will increase sales by persuading receivers to act on the 

sender‘s message via ongoing purchases. Further illuminating the importance of referrals, 

past research has suggested that a sender‘s customer lifetime value (CLV) should not 

simply include the value of an individual customer‘s purchases, but should also include 

the value of the people that this customer referred over his or her lifetime. For example, 

Kumar et al. (2010) measured customer referral value (CRV) in addition to CLV in 

calculating a customer‘s worth to the firm. In calculating a given customer‘s total value, 

CRV takes into account the value of all newly-acquired customers stemming from that 

customer‘s successful referrals over the lifetime of the customer. This research has 

provided valuable insights for marketers in understanding the true value of a referral on a 

per-customer basis. 

However, while we know much about how much value referrals add, in our 

research we seek to learn more about the intervening role of a referral and how it might 

influence future purchase behavior of the sender. That is, we ask in our research whether 
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the act of referring a product to another individual would result in an increase, decrease, 

or consistency in purchase behavior on behalf of the sender. In examining extant theories, 

we find two opposing predictions based on i) dissonance reduction and ii) market mavens 

and opinion leadership.  

 

Theoretical Review 

Cognitive Dissonance 

The theoretical domain of dissonance can inform how a referral may affect sender 

behavior. As discussed in Festinger‘s (1957) seminal work, dissonance is introduced 

when an individual holds psychologically inconsistent cognitions. It is viewed as a 

physiologically uncomfortable arousal state—that is, a conflict of cognitions—whereby 

one is driven to undergo cognitive change to reduce the conflict. Similar to our innate 

desires to reduce such factors as hunger or thirst, individuals will attempt to reduce 

dissonance, resulting in  preservation of a consistent, stable self (Aronson 1992). 

Mainly, there are two necessary conditions for an individual to experience 

dissonance. This includes i) the possibility of aversive consequences and ii) a personal 

sense of responsibility for those consequences on behalf of the individual (Cooper and 

Fazio 1984). Regarding the first necessary condition of aversive consequences, the 

behavior in question must minimally introduce the possibility of an adverse event. That 

is, the individual‘s action runs the risk of triggering an event that would not be preferred 

by that person. In the context of our example of a sender of a referral, this aversive event 

could entail being questioned by a receiver as to why a referral would be sent by someone 

that does not even purchase the product for him or herself. As for the second necessary 
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condition of personal responsibility, this simply means that an individual must be in 

control of triggering the behavior or action and thus able to accept responsibility. For 

example, a customer extending a referral invitation to a friend or family member, through 

their initiation of the message—is responsible for the message in that he or she personally 

extended it. 

 

Opinion Leaders and Brand Mavens 

The important role that some consumers can play in influencing the behaviors of 

other consumers is informed by existing research on opinion leaders and brand mavens. 

While these two groups are distinct from each other, opinion leaders and mavens are 

rather similar as it relates to their overall high level of brand awareness as well as their 

increased propensity to try more brands (Elliot and Warfield 1993). 

Opinion leaders are generally defined as individuals that exert a disproportionate 

amount of influence on the decisions of others within a specific product or category 

(Flynn, Goldsmith, and Eastman 1996). One‘s status as an opinion leader has been shown 

to positively relate to one‘s overall awareness, shopping, and purchase behavior. For 

example, in the wine category, opinion leaders were shown to be heavier consumers, 

providing evidence of one‘s status as an opinion leader resulting in an overall greater 

level of consumption. 

Market mavens, while similar to opinion leaders in their ability to influence, are 

more expansive in their knowledge of different kinds of products, with their influence 

extending beyond product features to such factors as where to shop and where to find a 

deal (Feick and Price 1987). In addition to providing evidence for maven‘s increased 
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propensity to gather marketplace information, research has shown evidence of greater 

experimental buying behavior via higher unaided and aided recall of brands as well as 

larger consideration and trial sets (Elliot and Warfield 1993). Additionally, mavens have 

been shown to be ―smart shoppers‖ when it comes to seeking and disseminating 

knowledge about deals. For example, participants of a grocery shopping survey showed 

that those high on the market maven scale gave away four times as many coupons as 

those scoring low on the market maven scale (Price, Feick, and Guksy-Federourch 1998).  

 

Theoretical Predictions 

Much research on dissonance reduction has shown that individuals seek to 

maintain internal consistency between their beliefs and actions. Whenever there is an 

imbalance, psychological distress is triggered, resulting in actions aimed at reducing this 

dissonance. For example, it is possible that the sender‘s act of referring a friend or family 

member might trigger a cognition similar to ―I think that my friend would like this 

product, so I’m going to recommend that they try it.‖ This cognition raises the possibility 

of creating conflict for the sender, as it may be incongruent with cognitions regarding her 

recent purchase activity. That is, dissonance could be aroused in the presence of a 

concurrent, conflicting cognition that recognizes the possibility of one feeling the 

spotlight effect of their recommendation. For example, the sender could state to herself, 

―I’m recommending that my friend(s) try this product, but I haven’t tried it myself as of 

late. I don’t want to be accused of recommending something that I’m not familiar with.‖ 

Applying the above example to the context of a sender, if the referral is personally 



66 

 

 

 

crafted and delivered to the recipient, then the responsibility clearly falls on the sender.
11

 

Moreover, an inconsistency may surface in the mind of the sender if their recent purchase 

behavior is inconsistent with their recent act(s) of referring. That is, if a customer that has 

recently sent a referral to a friend has not made a purchase in quite some time, he or she 

may experience dissonance between the recent act of referring and the recent trend of 

making no purchases. To reduce this dissonance, the sender may feel implored to make 

purchases, thus minimizing the discrepancy between the conflicting behaviors of 

purchasing and referring. Hence, dissonance theory would predict greater purchases by 

the sender after the point at which a referral occurred.  

On the other hand, research on market mavens and opinion leadership suggests 

that certain individuals refer products because they like spreading information about 

products and categories of interest; that is, their status as the subject-matter expert, or 

information guru, is an innate need for them. Purchasing, however, is not a necessary 

condition for mavens to refer products. It is thus plausible that senders may simply be 

more likely to hold status as a market maven or opinion leader. In the sole presence of 

this effect, we would expect to find no change between the upstream and downstream 

actions of the sender based on a referral. That is, if our effect is due solely to one‘s status 

as a market maven or opinion leader, we would expect to find equally strong sales both 

before and after the point at which a referral occurs.  

In the sections that follow, we first present preliminary findings from an empirical 

examination of sales data for an online retailer. These data allow us to examine the 

precise point of a referral and whether this results in any significant changes in 

                                                 
11 If, for example, a message was sent on behalf of the sender from the company or brand, this may not be 

the case. 
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downstream (i.e., postreferral) sales from the sender. We then extend this model to more 

specifically monetize the pre- and postreferral value of a sender in terms of his or her 

CLV.  

 

Analysis of the Referral as an Intervention 

To initially test our competing accounts—that is, the dissonance and maven 

accounts—we begin with an examination of customer transactions over time. 

Specifically, we identify the precise point of referral for a sender—treating this event as 

an intervention—which allows us to compare prereferral to postreferral transaction 

behavior for customers. In the presence of the dissonance account, we should find that 

postreferral behavior exceeds that of prereferral. That is, we should find greater value 

from senders after the intervening effect of the referral. Alternatively, if our effect were 

to be attributed solely to the maven account, we would expect to find no difference 

between prereferral and postreferral purchase behavior. 

 

Data and Variables 

To measure the sender‘s behaviors before and after the point of the referral, we 

examined sales patterns for senders with the point of referral identified for each 

individual. To do this, we began with the data set described in Essay 2, which consisted 

of 200 weeks of purchase data spanning from March 2010 to January 2014. Importantly, 

these data allowed us to examine the day at which a given customer referred someone, 

allowing us to examine prereferral to postreferral behavior. In structuring our data for 

analysis, we focus on the 6,754 customers that sent a referral (the average number of 
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purchases for this group, as noted in Table 1 of Essay 2, was 7.35). We first centered the 

variable of purchase occasion, Purch_Ctr, with the point of the referral rescaled as 

purchase number 0 for a given sender. For example, a Purch_Ctr measure of 3 would 

equate to the third purchase after a referral was sent. On the other hand, a Purch_Ctr 

measure of -3 would represent the third purchase before a customer‘s referral was sent. 

We then added a dichotomized intervention variable, where for the centered purchase 

occasion variable Purch_Ctr for customer i 

 

                
                  

                      
   

 

From this, we compare average transaction value between prereferral and postreferral 

periods—specifically, as a function of purchase occasion, the referral intervention and 

their interaction. In the next section we present results. 

 

Results 

Based on the above described referral data, a repeated measures ANOVA 

predicted average transaction value (ATV) as a function of purchase occasion number, 

the dichotomous referral intervention variable and their interaction. We begin with the 

significant intercept of $104.56 (β0 = 104.56, t(1, 49759) = 105.18, p < .001), which 

would indicate sender ATV immediately preceding their point of referral (i.e., Purch_Ctr 

= 0 and Intervention = 0). We next explore the effect of Purch_Ctr, whereby results 

indicate a significant main effect for purchase occasion, with each additional purchase 

resulting in a lower average transaction value, in dollars (βPurch_Ctr = -.13, t(1, 49759) =     



69 

 

 

 

-3.53, p < .001). Interpreting this, a consumer‘s third purchase would be 13 cents less 

than their second and 26 cents less than their first purchase. As for the effect of the 

referral itself (i.e., Intervention), we see a significantly positive main effect, with the 

point of the referral resulting in an approximate $2 increase in ATV (βIntervention = 1.97, 

t(1, 49759) = 2.04, p < .001). Finally, for the interaction between Purch_Ctr and 

Intervention, we find that each purchase subsequent to the point of a referral results in a 

significantly greater ATV. Specifically, we find that each postreferral purchase results in 

an increase in ATV of $0.46 (βPurch_Ctr x Intervention = .46, t(1, 4. 49759) = 8.39, p < .001). A 

visual representation of this effect is noted in Figure 7, which displays ATV for a 

hypothetical customer making seven purchases over their lifetime (chosen due to its 

proximity to the mean number of purchases made by senders—that is, MSenders = 7.35). 

 

 

Figure 7: Analysis of the Referral as an Intervention—Sender  
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Discussion 

In this analysis, we provide preliminary evidence that the point of a referral 

results in an increase in postreferral behavior. Results suggest that the act of referring 

serves as an intervention for senders, whereby we see a disproportionate increase in their 

purchase patterns after the point of sending a referral. Specifically, we see this in the 

form of increased ATV, which is also shown to increase over each purchase occasion 

following a referral. These results are consistent with the theoretical account of 

dissonance reduction, whereby we posit that senders engage in increased purchases 

postreferral in order to justify their personal promotion of the company/brand to friends 

or family. 

However, ATV is merely one variable and does not adequately capture the total 

value of a given customer. That is, these findings are based on a singular measure of 

average dollars and fail to take into account such factors as frequency and/or recency of 

purchases. Thus, in the next section, we seek to extend this analysis through a more 

rigorous decomposition of CLV that compares prereferral and postreferral customer 

value. In the section that follows, we discuss in greater detail the method employed. 

 

CLV Decomposition: Pre- versus Postreferral 

While the prior analysis provides evidence for greater postreferral value from 

senders in the form of average transaction value, it does not fully capture customer 

activity over the duration of our data. Thus, our objective in this examination is to 

calculate total customer value on a prereferral and postreferral basis and compare these 

two measures. To do this, we compute for senders a time-adjusted prereferral and 
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postreferral dollar value derived from the CLV method reviewed in our theoretical 

background. Based on this method, we decompose this CLV measure into a prereferral 

and postreferral component, which is importantly adjusted to reflect a comparable net 

present value for each customer. In the presence of the dissonance account, which is what 

our prior (intervention) analysis suggested, we would expect to find that postreferral CLV 

exceeds that of prereferral. Alternatively, if the maven account were to prevail, we would 

find no difference between the aforementioned pre- and post-CLV measures. 

 

Methodology 

In this examination, we utilize the same data set from Essay 2, spanning 200 

weeks of customer transaction detail between March 2010 and January 2014. As a brief 

recap, these data allowed two important measures in i) identification of senders of 

referrals and ii) isolation of the day at which a referral occurred. For the purposes of our 

analysis, we subsequently focused on those senders that made at least one purchase after 

the point of a referral, which identified 2,268 customers (34% of all senders) making 

36,324 purchases (73% of all sender purchases).
12

  In order to monetize pre-to-post value 

of a sender, we revisit the CLV calculation presented in Equation 4, which for a given 

customer takes the net present cash flow from purchases multiplied by the customer‘s 

probability of being active. With our current examination focusing retrospectively (versus 

prospectively) on actual (versus predicted) purchases, we treat survival as a certainty, 

with pre and postreferral CLV from Equation 4 revised to reflect a pre- and postvalue for 

each consumer (in Equations 5 and 6, respectively) as follows: 

                                                 
12 There were 6,754 senders in total, making 49,857 purchases. For the purpose of our analysis, we focus on 

those making at least one postreferral purchase, which comprised 2,268 customers making 36,324 

purchases. 
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    Pre CLVi =                                                            and         (6) 

 

    Post CLVi =                                                           .             (7) 

 

To illustrate the above equations, consider the following actions of a hypothetical 

customer within a given year:  he/she became a customer on January 1 with a $100 

purchase, then made a $90 purchase on March 1, and a $50 purchase on March 15 before 

referring a customer on March 30.  Postreferral, let us assume this customer made a total 

of three $150 purchases on the first days of the next 3 months of April, May, and June. In 

this instance, pre-CLV is the cash flow generated from all purchases occurring before 

their point of referral ($100, 90, $50), with each purchase discounted back to January 1. 

As for post-CLV, each of the 3 purchases of $150 are also discounted back to January 1. 

With our data consisting of actual (versus predicted) purchases, we treat survival as a 

certainty and thus P(alivet) = 1. As for (discount factort) in Equations 5 and 6, this is 

comprised of discount rate d based on j days since joining for a given customer and 

calculated as 

 

                                                 (discount factort) = 
 

        
  .                                             (8) 

 

The discount rate d in Equation 7 was established by benchmarking the weighted average 

costs of capital in comparable industries, which was 8% annually.
13

 This method was 

employed for each of the 2,268 customers, with each customer‘s output consisting of two 

                                                 
13 The discount rate was adjusted to a daily rate for Equations 5 and 6 (as all other time variables were 

daily). 
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key values from Equations 5 and 6 in the form of pre-CLV and post-CLV. Subsequent to 

calculating these two values, we examine pre-CLV versus post-CLV via two-sided t-test 

and present our findings in the section that follows. 

 

Results 

A two-sample t-test was performed that compared pre-CLV (from Equation 5) to 

post-CLV (from Equation 6). Results highlight a significant difference between the pre- 

and postvalues, with post-CLV being over $200 greater than pre-CLV  (MPre = $803.99, 

MPost = $1,008.30,  = $204.31, t(2268) = -3.092, p < .001). These findings—which are 

illustrated in Figure 8—are consistent with the pattern that emerged in our prior 

(intervention) examination whereby we see a positive postreferral effect on sender 

purchase behavior.  

 

 

Figure 8: CLV Composition—For Senders, 
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Discussion 

In this examination, we provide further evidence for the positive effect of a 

referral on future sender behavior. Similar to our intervention analysis, we see a 

disproportionate increase in consumers‘ purchase patterns after the point of sending a 

referral. Importantly, we see this in the form of a decomposed CLV that compares actual 

prereferral versus actual postreferral value. This evidence of significantly higher 

postreferral CLV is consistent with our theory of dissonance reduction, whereby we 

continue to posit that senders engage in increased purchase behavior in order to justify 

their referral actions. 

 

General Discussion 

In this research, we ask whether the act of referring a product increases, 

decreases, or leaves unchanged the purchase behavior of the sender.  From extant theory, 

we find alternate predictions stemming from dissonance reduction and market mavens. In 

the account of dissonance reduction, it is expected that the sender would engage in 

additional purchases in order to reduce conflict between the act of referring and making 

purchases for him or herself. Alternatively, if the sender‘s referral behavior is attributed 

to his or her status as a market maven, then this individual‘s purchase behavior should 

remain at comparable levels both before and after the point of referral. In our research, 

we find evidence that the referral itself serves as a point of intervention that results in an 

increase in average transaction value for the sender. We then validate these findings with 

a more rigorous analysis based on a decomposition of CLV into pre- and postreferral 

measures. We feel that these findings offer unique implications for theorists and 
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marketers alike, which we discuss in the paragraph that follows. 

From a theoretical perspective, this research informs existing theories and models 

pertaining to the value of a customer referrals. We feel that our findings uniquely inform 

this literature by providing insights relating to how the act of the referral itself serves as a 

point of intervention that results in a significant change in postreferral sender behavior. 

From a marketing practitioner‘s perspective, our research provides valuable insights that 

aid marketing managers in understanding the lasting impact of a referral on the 

subsequent purchase behavior of the sender. This has immense implications for marketers 

in optimizing long-term sales. 
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APPENDIX A 

 

STIMULUS FOR EYE TRACKING STUDY  
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Low Price Condition
14

 

 

 

 

  

                                                 
14 For the High Price condition, prices were as follows: $309.99 for the tablet, $24.99 for streaming video, 

$799.99 for the laptop, $11.99 for cloud storage, $299.99 for headphones, and $429.99 for the TV. 
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APPENDIX B 

 

STIMULUS EXAMPLE FOR CONTROLLED  

LAB STUDY 
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A) Main Product Stimulus 

 

 

 

B) Depth of Interaction Page 1 

 

 

 

C) Depth of Interaction Pages2–4 
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APPENDIX C 

 

STIMULUS EXAMPLE FOR FOOD                      

 MANIPULATION CONDITION 
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