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ABSTRACT 

 

Treatment of cancer is a significant challenge due to the heterogeneity of both 

tumors and patients. This realization has led to the field of personalized medicine in 

which patients can be selected for a therapy based on the specific needs. One potential 

area for personalized medicine is utilizing medical imaging to predict and monitor the 

therapeutic efficacy and safety of a particular targeted therapy. Development of image- 

guided therapeutics based on macromolecular carriers such as N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymers is advantageous because they are 

water-soluble and can contain a wide range of comonomers to confer multifunctionality.  

HPMA copolymers are water-soluble nano-sized constructs which can improve the 

delivery of therapeutics to tumors by passive targeting via the enhanced permeability and 

retention effect. They can also increase tumor uptake using targeting ligands that are 

conjugated to the backbone of the copolymer. This dissertation focuses on the 

development of targeted HPMA copolymers for delivery of both therapeutics and 

imaging agents to solid tumors. Barriers to delivery of these constructs were addressed in 

various tumor models. In pancreatic tumors, the desmoplastic response, or dense 

extracellular matrix prevents delivery of drugs and macromolecules alike. Treating 

hyaluronic acid, a component of desmoplasia, with hyaluronidase allowed for increased 

delivery of HPMA copolymers based on HER2 and αvβ3 integrin targeting strategies for 

HPMA copolymers. Based on the selection of HER2 as a viable tumor targeting strategy, 



iv 
 

an image-guided drug delivery (IGDD) system was synthesized, characterized and 

evaluated in vitro in pancreatic tumor cell lines. In vitro results suggest that the designed 

construct was potentially capable of targeting, binding, treating and imaging pancreatic 

tumors for an IGDD approach. Lastly, a study was conducted in a prostate tumor model 

for localized tumor delivery of a 90Y radiolabeled HPMA copolymers for radiotherapy. 

Imaging tumor localization and biodistribution was accomplished using an equivalent 

111In radiolabeled HPMA copolymer. Targeting and efficacy were accomplished via gold 

nanorod (GNR)-mediated hyperthermia and demonstrated antitumor efficacy in the 

prostate tumor mouse model. The combined studies demonstrate the current progress for 

development of an HPMA copolymer conjugate for image-guided therapy of solid 

tumors. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Introduction 

 Cancer is the second leading cause of death in the United States1.  Recent 

statistics estimate that nearly 12 million Americans with a history of cancer were alive in 

January of 20082.  1 in 2 men and 1 in 3 women risk developing or dying from cancer 

during their lifetime2,3.  The prevalence of cancer is expansive. However, some progress 

has been made during the past few decades in treating this difficult disease.  The 5-year 

survival rate for all cancers diagnosed in the United States was 49% in the years 1975-

1977 and has increased to 67% during 2001-20072.  This rate increase represents 

improvements in both aspects of the disease from diagnosis to treatment.  There remains 

a substantial need to improve the standard of care for patients with cancer. 

 Cancer is a very complicated disease to treat.  This may be due to the fact that 

each type of cancer is actually its own specific disease.  The website for Cancer Research 

(UK) reported that more than 200 cancer malignancies can develop in over 60 organs of 

the human body4.  Each type comes with its own set of causes, symptoms, characteristics 

and limitations to treatment.  This creates quite an array of problems for clinicians in 

knowing exactly how to treat each malignancy.  Not only is the vast library of individual 

cancer diseases a problem, but each individual patient with cancer may have different 
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responses to the disease as well.  Still, this is not all. Each tumor developed in a patient is 

heterogeneous which will affect the patient’s ability to be successfully cured.  Clearly, 

options must be developed with which we can assess this disease on a case-by-case basis 

in regards to individual needs.    

 Historically, a patient diagnosed with cancer is given a scripted treatment plan 

based on their cancer staging and what has worked in the past for other patients with the 

same cancer, a ‘one-size-fits-all’ approach5.  Recently, due to medical advances in 

diagnosis of cancer, a person’s treatment is more and more tailored to their specific 

cancer characteristics.  One area that clinicians are finding to be very helpful in 

diagnosing cancer is imaging.  Imaging in cancer patients is growing at an ever-

increasing rate because it gives more accurate assessment of tumor staging and treatment 

response6.  High-resolution techniques such as x-ray computerized tomography (CT) and 

magnetic resonance imaging (MRI) can enable anatomical placement of tumors along 

with size and shape that can be progressively measured during treatment to monitor 

response.  Through the advanced molecular imaging techniques used in nuclear medicine 

modalities such as single photon emission computerized tomography (SPECT) and 

positron emission tomography (PET) imaging, clinicians can also understand the 

underlying processes effecting tumor treatment response, including metabolic state, 

hypoxia or proliferation that are occurring in each tumor within an individual7,8.  Each of 

these modalities can be combined to give a more accurate and precise treatment plan for 

patients, leading to better overall treatment.   

 Theranostics is defined as medical treatment which combines both diagnostics 

and therapeutics for personalized therapy of an individual’s disease status. This includes 
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the use of any diagnostic test including genetic testing, histology and/or imaging which 

can estimate potential response, predict safety and monitor progress of a specific therapy.  

One simple example is the use of an excised biopsy tissue being evaluated for HER2 

expression using the HercepTest®9 and other HER2 assays from the tumor of a breast 

cancer patient which gives prognostic information when treating with Herceptin®.  The 

patient can then be qualified or disqualified for the therapy, thus assuring that the patient 

is receiving a treatment that has a much greater chance of efficacy.  However, diagnostics 

such as HER2 assays for breast cancer have their limitations.  They rely on invasive 

tissue biopsies, sometimes leading to false negative results simply because of the limited 

sampling of tissue10.  The use of modern imaging technologies can more accurately 

assess the tumors for prognostic factors because the entire tumor is visualized.   

For example, 18F-Fluorodeoxyglucose (FDG) imaging using PET has been widely 

used to influence treatment planning in cancer patients11.  FDG localization in a tumor is 

a result of high metabolic activity or viability of a tumor.  Imaging before and after use of 

an anticancer therapy can measure the therapeutic response and lead to maintenance of 

the particular therapy or change in treatment plan if there is no response.  Even though 

the measure of glucose metabolism in tumors is not directly related to a particular 

therapeutic, it represents how a very simple imaging diagnostic can be utilized in 

conjunction with therapeutic treatments.  Another simple case of a theranostic use has 

been in practice for decades.  131I therapy, a beta emitter for thyroid cancer, has been used 

in conjunction with 123I imaging using gamma scintigraphic techniques since the mid- 

1940s12.  Imaging the patient with 123I gamma scintigraphy predicts whether the thyroid is 

iodine sensitive.  This prevents the use of the therapeutic in patients who will not see any 
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effect from the therapeutic 131I which can be more harmful for the patient.  Image-guided 

therapy is becoming a more widely used concept based on the benefit to the patient. 

Imaging-based theranostics can be developed on an array of different materials.  

One area of increasing promise is the use of multifunctional nanomaterials as image-

guided platforms.  Nanoconstructs can be used for treatment and/or diagnosis with a size 

generally in the 1-100 nm range13.  Their size, shape and density can be matched to the 

biological properties of the body, including cell surfaces, pores and channels.  The main 

common property of these materials is their large surface area-to-volume ratio which 

allows for their surface to be coated with various molecules, including drugs, targeting 

ligands and imaging agents.  Designing a nanomaterial with multiple functionalities is 

important to the development of an image-guided therapeutic system.  The properties of a 

nanomaterial influence the pharmacokinetics, drug release, stability and payload for 

delivery to diseased tissue.  Therefore, selecting the proper material for theranostic 

applications needs to be tailored for the needs of the disease. 

Water-soluble polymers such as N-(2-hydroxypropyl)methacrylamide (HPMA) 

copolymers are promising platforms for image-guided therapies14,15.  HPMA copolymers 

are biocompatible, nonimmunogenic and can be synthesized with a variety of 

comonomers to attach imaging agents, drugs and targeting ligands in a nano-sized range.  

The various functionalities can be conjugated to the side chains of the HPMA copolymer 

backbone, as shown schematically in Figure 1.  HPMA copolymers can be tailored to the 

proper size in order to control biodistribution and pharmacokinetic profiles needed to 

successfully target tumors.  Due to their macromolecular nature, these copolymers 

passively target tumors based on the enhanced permeability and retention (EPR) effect16.   
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Figure 1.1.  Schematic representation of HPMA copolymer for image-guided therapy 
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Many studies have shown that HPMA copolymer-drug conjugates successfully increase 

delivery to tumors via passive targeting17-19.  However, accumulation in the tumor can be 

further enhanced by incorporating targeting ligands to the HPMA copolymer construct. 

 Active targeting of tumors can be accomplished by adding various tumor 

targeting ligands to HPMA copolymer side chains such as sugars, small peptide 

sequences and antibody fragments that are recognized by the surface of tumor cells20-24.  

Increased uptake leads to increased localization of drug or imaging agents, thereby 

increasing the efficacy of cancer treatment.  For example, the use of RGD peptide, which 

targets the αvβ3 integrin receptors overexpressed on tumor vasculature, has been shown to 

increase the accumulation and antitumor efficacy in prostate cancer models 25,26.  The 

combination of both active targeting and passive targeting via the EPR effect with 

targeted HPMA copolymers creates a promising platform for their development as an 

image-guided therapeutic or theranostic platform.   

The ultimate goal of this dissertation is to design an HPMA copolymer system 

for image-guided delivery to solid tumors.  Ideally, the HPMA copolymer will have an 

effective targeting ligand for the recognition of overexpressed tumor cells.  Therapeutics 

will be selected based on the ability of HPMA copolymers to improve their efficacy, 

stability and release within the targeted tumor mass.  Many drugs are rapidly  

metabolized in the bloodstream and conjugation to the backbone can prevent enzymatic 

access to the metabolism of the drug.  Site-specific drug release will be incorporated into 

the polymer via biodegradable spacers that retain drug activity after tumor localization.  

Barriers to solid tumor delivery will also be considered in the development of targeted     

approaches. Tumor delivery will be assessed using nuclear medicine imaging techniques 
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in order to provide quantitative relationships between areas of conjugate localization.  

SPECT will be used because of its high sensitivity to commercially available 

radionuclides with radioactive half-lives that match biological half-lives of HPMA 

copolymers in the body such as 111In (2.8 day ½-life)27.   Incorporation of both imaging 

and therapeutics will allow the correlation of biodistribution of the HPMA copolymer 

with potential efficacy and safety of a combined image-guided theranostic system.   

 

1.2. Aims and Scope of This Dissertation 

 The overall rationale for developing image-guided therapeutics based on HPMA 

copolymers begins with the knowledge that many barriers exist to delivery of 

therapeutics to solid tumors.  Lack of efficacy in tumor treatment with therapeutics can 

be attributed to several factors; these include therapeutic instability in the bloodstream, 

lack of tumor penetration, dose-limiting toxicity due to off-target accumulation in various 

organs, low solubility or low bioavailability of the therapeutic dose.  All of these factors 

essentially lead to insufficient therapeutic concentration in the tumor to overcome the 

rapid tumor growth.  HPMA copolymers can be designed to overcome these barriers.   

 The hypothesis of this research is that image-guided therapeutics using HPMA 

copolymers can overcome the barriers to tumor treatment.  Many studies involving 

imaging demonstrated the ability to visualize localization of HPMA copolymers in 

tumors15.  Successful delivery of therapeutics to the tumor has also been demonstrated 

using HPMA copolymers28.  What remains is further development in matching these 

constructs with the combined imaging and therapeutic that can correlate efficacy and 

safety in a patient.  By using HPMA copolymer conjugates in this manner, patients can 
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be evaluated in real-time whether a therapeutic agent is working or will work based on 

the imaging results.  Development of these systems has great potential for improving the 

quality of cancer treatment.  In this dissertation, two model tumors of pancreatic and 

prostate were utilized to evaluate targeting, imaging and therapy. Three aims were 

investigated. 

 

1.2.1. Specific Aim 1: Compare and evaluate HPMA-based 

targeting strategies and overcome the barriers to  

pancreatic tumor delivery 

 In Aim 1, two targeting strategies were used to investigate the ability of HPMA 

copolymers to target pancreatic cancer.  HPMA copolymers with side-chain terminated in 

KCCYSL or cyclic RGDfK peptides which bind to HER2 or αvβ3 integrin receptors, 

respectively, were used as tumor targeting strategies.  Synthesis and characterization of 

the HPMA copolymers for pancreatic tumor targeting were established.  Pancreatic 

cancer is a difficult disease to treat and evidence suggested this may be due to the 

desmosplastic response that creates a dense interstitial tissue with high intratumoral 

fluidic pressure (IFP) preventing small molecular weight drug and macromolecular 

delivery to the tumor.  Targeted HPMA copolymer tumor localization was investigated, 

after reducing tumor stromal effects with hyaluronidase, a stromal treating enzyme for 

hyaluronic acid prevalent in pancreatic tumor stroma.  Biodistribution and imaging of the 

targeting strategies using 111In radiolabeled targeted HPMA copolymers were compared 

in pancreatic CAPAN-1 tumor bearing mice before and after stromal treatment.  Results 

of these studies are discussed in Chapter 329. 
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1.2.2. Specific Aim 2: Evaluate a HER2 targeted image-guided drug 

delivery system based on HPMA copolymers for  

pancreatic cancer treatment 

 In Aim 2, the synthesis of HPMA comonomers and subsequent HPMA copolymer 

construct with targeting ligand, drug and imaging agent by reversible-addition 

fragmentation transfer (RAFT) polymerization were established.  A method for solid 

phase synthesis of peptide-containing comonomers was described.  Gemcitabine, the first 

line therapeutic drug for pancreatic cancer, was conjugated via a lysosomally degradable 

linker and incorporated into the HPMA copolymer along with a chelator for 111In isotopes 

for quantitative SPECT imaging.  HPMA copolymers were evaluated for binding affinity 

using a receptor blocking experiment.  Radiostability of the 111In complexed with HPMA 

copolymers were tested in mouse serum at physiologically relevant parameters.  Drug 

release was investigated in pH 5.0, 7.0 and cell culture media.  Cytotoxicity of 

gemcitabine was also evaluated against CAPAN-1 (HER2 positive) and PANC-1 (HER2 

negative) pancreatic tumor cell lines.  The results are reported in Chapter 430. 

 

1.2.3. Specific Aim 3: Correlate the in-vivo imaging and 

efficacy of gold nanorod-mediated hyperthermia 

with a HPMA copolymer-90Y conjugates 

 In Aim 3, HPMA copolymers containing 1, 4, 7, 10-tetraazacyclododecane-

1,4,7,10-tetraacetic acid (DOTA) were synthesized by reversible addition-fragmentation 

transfer (RAFT) copolymerization.  Subsequently, labeling was performed with either 

111In for imaging or 90Y for efficacy studies.  Radiolabeled complexes were assayed for 
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stability in vitro in the presence of mouse serum.  Imaging using SPECT of the 111In 

conjugates was performed in order to determine the pharmacokinetics and biodistribution 

of the HPMA copolymer conjugates when tumors were treated with gold nanorod 

mediated hyperthermia.   Localized mild tumor hyperthermia was achieved by plasmonic 

photothermal therapy using gold nanorods.  Efficacy studies evaluating the combination 

of hyperthermia and radiotherapy with 90Y radiolabeled HPMA copolymers were 

conducted in DU145 prostate tumor-bearing mice.  The results of this study are found in 

Chapter 531. The overall conclusion and future directions are discussed in Chapter 6. 
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CHAPTER 2 

 
 
 

LITERATURE BACKGROUND 
 

 
 

2.1. Introduction 

 This chapter provides the underlying background for the hypothesis and aims of 

the dissertation. Focus will be derived on how cancer treatment can be improved through 

the use of image-guided therapeutics (IGT) which can assess an individual’s disease 

status and relate the most effective treatment for optimal success. A breakdown of the 

key characteristics for design of an IGT will be explained with details about choosing the 

proper material, target, imaging modality and therapeutic for cancer treatment. Examples 

of systems being currently used in clinic will be presented, as well as those that are under 

preclinical evaluation.  

 

2.2. Challenges to Traditional Cancer Therapy 

Cancer is the second leading cause of death in the United States3.  The prevalence 

of cancer is well documented. In fact, about 1 in 2 men and 1 in 3 women risk developing 

or dying of cancer in their lifetime.4 Death from cancer related to obesity accounted for 

approximately 1/3 of all cancer deaths in 2012 and due to increasing rates of obesity is 

expected to increase4. Chance for development of cancer also increases with age4. With 

an ever-increasing average lifetime and growing proportion of aged individuals, we can 
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expect cancer treatment to continue to be a major part of treatment for the foreseeable 

future. 

The challenge to find a cure for cancer was accelerated in the early 70s with 

passing of the National Cancer Act. Since then, billions of dollars have been spent on 

cancer research. A recent study reported that from the years 1995-2005, a total amount of 

$65.3 billion was spent on cancer research5. The NCI is primarily responsible for about 

52% of the total research support for academic oncology centers in the U.S.5. This is an 

enormous amount of money and effort in order to cure the disease. However, this effort 

has only led to a modest improvement of the overall 5-year survival rates for all tumor 

sites by about 37% (49% to 67%) over the past 25-30 years4. 

A large amount of progress has been made in prevention of the disease, as in the 

case of lowered lung cancer death rates due to the emphasis on public campaigning of the 

dangers of smoking tobacco6. Advances in earlier detection have also improved the 

outcomes of several tumor treatments. Breast cancer death rates have slowly decreased 

over time due to earlier detection using methods such as mammography7. Decreased 

cancer deaths related to both colorectal and prostate cancer have also decreased based on 

early diagnosis through screening4. Treatment options have also expanded for cancer, and 

have been responsible for a modest reduction in overall cancer deaths. In certain cancer 

types, novel treatments have made exceptional impacts on survival of patients. For 

example, Imatinib, a tyrosine kinase inhibitor has made a significant impact in treating 

chronic myeloid leukemia (CML), even on survival rates beyond 5 years8. One of the 

main reasons for success in therapeutic treatments of cancer is the increased 

understanding that it is heterogeneous9, leading to a growing understanding among 

clinicians that the traditional one-size-fits-all approach to treatment does not work.  
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2.3. History of Personalized Medicine 

 Clinicians have found that each individual can respond differently to any 

particular therapeutic agent based on genetic differences in the individual, in the 

individual tumor site response to therapy or in the magnitude of the side effects related to 

a given therapeutic. Therefore, treatments which can be tailored to an individual in order 

to minimize toxicity and increase therapeutic efficacy are desirable, especially in cancer 

treatment. 

 Traditionally, a patient enters a clinician’s care and is diagnosed for a given 

disease based on prevalent symptoms, risk factors and diagnostic tests. Once diagnosed, 

the patient is given the most effective medicine known by the clinician that has worked 

for the entire population. Like any population, there are outliers who will not respond like 

the majority of patients. An outlier patient, who will not respond well to the normal 

treatment, is susceptible to enhanced risks (i.e., side effects) associated with the treatment 

without having any beneficial effect.  On another note, the patient suffers the disease 

risks for an extended period of time because the treatment effects are usually latent and 

time is wasted for both the patient and clinician. 

 Personalized medicine is beneficial to a patient because it provides the best 

chance of success for disease treatment in the most efficient manner. One of the first 

examples of a personalized medicine approach was  discovered in 190210 in the treatment 

with primaquine, an antimalarial drug. A genetic deficiency of the enzyme glucose-6-

phosphate dehydrogenase led to primaquine-induced hemolytic anemia. Testing for this 

deficiency led to increased safety of primaquine administration. Since then, many 

advances have been made in the area of diagnostics, allowing for more rapid, accurate 

and reliable tests which can be utilized to personalize medicine. Information about the 



 

 
 

16 

patient’s disease status cannot only be utilized to select or qualify a patient for a 

particular therapy, but can be used to influence dosing or co-administration of drugs to 

limit known side effects. 

 

2.4. Definition of Theranostics and Image-Guided Therapy  

 The term “theranostic” was first described by Funkhouser and his company in 

200211. It is defined as a material that combines diagnostic testing with a specific 

therapeutic in order to increase its safety or efficacy12. Diagnostic testing provides 

genomic, proteomic and anatomical information related to a disease state. These tests 

come from a wide range of sources, including tissue biopsies and blood tests for in vitro 

diagnostics or even more sophisticated methods such as imaging. Diagnostic testing 

utilizes these results to assay the disease status in order to take advantage of weak points 

in the disease that can be treated by a particular drug or therapeutic intervention. 

Pharmacogenetics is a field of study that utilizes genetic testing to provide information of 

patient’s susceptibility to a disease or treatment13. Despite the ethical concerns of 

predicting human disease from genetic testing, the information from a genetic test can be 

used to give patients preventative care that may help avoid the disease occurrence. 

 The information obtained from theranostic testing is especially suited for the 

study of cancer. As mentioned before, heterogeneity in cancer reduces the ability to find 

appropriate treatments9,14. Targeted therapies under development to treat cancer are only 

effective when certain biomarkers are overexpressed in the tumor. However, expression 

of these biomarkers is variable in a patient population and also within the individual 

tumors of a particular patient. The ability to assay for the specific biomarker before the 

patient is given a matching therapeutic can prevent unnecessary wasteful treatments that 
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are not effective or unnecessarily dangerous to the patient. Thus, in the case of targeted 

therapeutics for tumor treatment, theranostics can provide a better strategy than 

traditional methods. 

 Successful implementation of theranostics not only has the potential of improving 

the treatment of cancer, but also potentially lowers healthcare costs and streamlines 

regulatory approval of targeted therapies15. This concept of combining treatment with a 

diagnostic is gaining the attention of pharmaceutical companies. Many therapeutic 

companies are able to partner with diagnostic companies to accelerate the drug 

development process by improving clinical trial outcomes. This is done by selecting 

patients based on potential therapeutic success on a “companion diagnostic.” Early 

examples of this were Herceptin® and the HercepTest®16. The FDA simultaneously 

approved both Genentech’s Herceptin® and Dako’s HercepTest® for treatment and 

diagnosis of Stage IV breast cancer.  Other examples of FDA approved theranostics are 

contained in Table 2.1 

 In vitro diagnostics for receptor expression have been found to be useful in 

qualifying patients for various targeted therapies. However, these assays are invasive and 

suspect to false positive or false negative results due to sampling error. Typically, tumor 

samples are collected by biopsy and subsequently tested in assays similar to those 

contained in Table 2.1. A sample may or may not be reflective of the entire tumors’ 

expression profile. Also some tumors may be too small and not detected within the 

patient and therefore, tissue sampling for a diagnostic test cannot be performed in this 

case. Therefore, other diagnostic methods are needed that accurately assess the whole 

tumor for target expression. 
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Table 2.1. Examples of FDA approved theranostics19-21. 

Trade Name Manufacturer Diagnostic Description Companion 
Therapeutic 

HercepTest Dako Denmark A/S 

Semiquantitative immunocytochemical 
assay to determine HER2 protein 
overexpression in breast cancer tissues for 
histological evaluation and formalin-fixed, 
paraffin-embedded cancer tissue from 
patients with metastatic gastric or 
gastroesophageal junction adenocarcinoma. 

Hercepta 
Perjeta 

DAKO C-KIT 
PharmDx 

Dako North 
America, Inc. 

Qualitative immunohistochemical (IHC) kit 
system for the identification of c-kit 
protein/CD 117 antigen (c-kit protein) 
expression in normal and neoplastic 
formalin-fixed paraffin-embedded tissues for 
histological evaluation. 

Gleevec 

VYSIS ALK 
Break Apart 
FISH Probe Kit 

Abbott Molecular 
Inc. 

Qualitative test to detect rearrangements 
involving the ALK gene via fluorescence in 
situ hybridization (FISH) in formalin-fixed, 
paraffin-embedded (FFPE) non-small cell 
lung cancer (NSCLC) tissue specimens 

Xalkori 

COBAS 4800 
BRAF V600 
Mutation Test 

Roche Molecular 
Systems, Inc. 

In vitro diagnostic device intended for the 
qualitative detection of the BRAF V600E 
mutation in DNA by PCR extracted from 
formalin-fixed, paraffin-embedded human 
melanoma tissue and is intended to be used 
as an aid in melanoma 

Vemurafenib 

therascreen 
KRAS RGQ PCR 
Kit 

Qiagen Manchester, 
Ltd. 

Real-time qualitative PCR assay used for the 
detection of seven somatic mutations in the 
human KRAS oncogene, using DNA 
extracted from formalin fixed paraffin-
embedded (FFPE) colorectal cancer  

Erbitux 

Bexxar GlaxoSmithKline 

Bexxar Dosimetric: a low dose 131I-
Tositumomab monoclonal antibody for 
imaging biodistribution for selection of B-
cell Lymphoma patients for 
radioimmunotherapy 

Bexxar Therapeutic: 
High dose  

131I-Tositumomab 

Zevalin 
Spectrum 
Pharmaceuticals, 
Inc. 

111In-Ibritumomab Tiuxetan monoclonal 
antibody for imaging biodistribution for 
selection of B-cell Lymphoma patients for 
radioimmunotherapy 

90Y-Ibritumomab 
Tiuxetan 
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 Modern advances in medical imaging have brought theranostics to a whole new 

level of potential possibilities. Molecular imaging methods such as magnetic resonance 

imaging (MRI), x-ray computed tomography (CT), ultrasound, single photon emission 

computerized tomography (SPECT) and positron emission tomography are prevalent in 

many medical centers today and can accurately monitor tumor progression, stage cancer 

and detect small lesions1,17,18. Image-guided therapies are being accelerated in 

development with these imaging modalities. Imaging provides noninvasive and real-time 

information for diagnosis of a patient. MRI and CT are used for anatomical information 

and can be combined with other nuclear medicine modalities (SPECT and PET) to 

provide quantification of radiolabeled targeted probes and determine their localization 

within the patient. Another advantage to image guided therapies is the potential to use 

platforms which include both diagnostic and therapeutic on one material. Real-time 

assessment of both target and therapeutic can be measured simultaneously. One example 

of an image-guided therapy is the use of Bexxar® and Zevalin®22. This 

radioimmunotherapy is based on two targeting monoclonal antibodies (tositumomab and 

ibritumomab tiuxetan, respectively) which recognize CD20 receptors highly expressed on 

B-cells. Both agents have an imaging version and a therapeutic version. For Bexxar®, the 

patients are administered a low dose of 131I-tositumomab to confirm normal 

biodistribution observed by gamma camera imaging. 131I has both gamma and beta 

emission that can be used for imaging and radiotherapy. If no abnormal biodistribution is 

observed, the patient is administered a high dose of 131I-tositumomab. For Zevalin®, a 

similar approach is used but the imaging version uses 111In and 90Y for radiotherapy. 111In 

is a pure gamma emitter for imaging and 90Y is a pure beta emitter effective for 

radiotherapy. Both agents are clinical examples of how image-guided therapy can 



 

 
 

20 

improve the treatment of cancer. It improves the safety of radioimmunotherapy because 

the imaging reduces the risk of more radiation exposure to patients who would not see 

any benefit from the therapeutic version due to abnormal biodistribution. This strategy 

was also helpful for regulatory approval because it qualifies a patient for therapy and 

increases the overall chance for efficacious treatment of lymphoma. 

 Image-guided therapy can be used in a multitude of methods which help to 

increase the safety and efficacy of therapeutics. Image-guided drug delivery uses the 

advantages of imaging to monitor drug delivery within the targeted tumor. It has been 

suggested that image-guided drug delivery can be incorporated in a multitude of ways 

including: visualizing of biodistribution in real-time, analyzing drug distribution at the 

target site, predicting drug response, evaluating longitudinal drug efficacy, combining 

disease diagnosis with therapy, facilitating triggered drug release, monitoring and 

quantifying drug release and noninvasively assessing target site accumulation23. Drug 

delivery systems improve the delivery of anticancer drugs that suffer from poor water-

solubility and poor pharmacokinetic profiles through the use of passive targeting or active 

targeting24-28. Passive targeting occurs with macromolecular drug delivery systems that 

selectively accumulate in tumors due to the enhanced permeability and retention (EPR) 

effect. Active targeting of these systems involves the use of conjugated targeting ligands 

such as small peptides, sugars or monoclonal antibody fragments which increases 

recognition and uptake by the targeted cell type. However, targeted drug delivery systems 

have had many challenges in getting approval for use in the clinic29. This can be 

attributed to the differences in patient responses to both active and passive targeting. 

However, drug delivery systems are increasingly being developed with imaging agents in 

order to improve their likelihood of success for treating cancer.  
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 Image-guided therapies have great potential for improving the treatment of 

cancer. Many strategies can be utilized with these systems. However, there are several 

challenges for the development and successful use of these conjugates when treating 

cancer. A wide range of carriers, imaging modalities, targeting strategies and therapeutics 

have been studied and currently only a select few have overcome the hurdles required for 

clinical use. Therefore, the next sections will focus on the design criteria and components 

of image-guided therapeutics for the treatment of cancer. Each section will present 

several examples of image-guided therapeutics that embody the characteristics of each 

design criteria. The presentation of each design characteristic will be summarized in the 

last section and will attempt to provide a picture of the ideal image-guided therapeutic 

system for cancer treatment. 

 

    2.5. Design Criteria for Image-Guided Therapeutics 

 This section will focus on the different aspects of therapeutic delivery in 

combination with imaging starting with a discussion of materials and carriers. One of the 

most challenging aspects of drug delivery is choice of vehicle for delivering the 

therapeutic, targeting agent and imaging agent. 

 

2.5.1. Type of material and carrier 

 A large investment in research has been focused on the design and development 

of materials for targeted delivery to tumors. Each has their advantages and disadvantages 

for delivery of imaging and therapeutics. Some have had extensive clinical experience or 

testing. Recently, constructs based on nanomaterials have become a promising area of 

research30-32. The of nano-scale constructs of 1-100 nm in size as therapeutic delivery 
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systems has generated a promising venue for image-guided theranostics33-35. This 

property allows for multiple components to be incorporated on the surface or within these 

materials for targeted delivery of both imaging agents and therapeutics. They are also 

able to be tailored in ways as to interact with the body’s pores, channels and surfaces in 

unique ways because of their small size31. Many types of carriers are synthesized in the 

nano-size range. Figure 2.1 displays some of the most investigated systems that have 

been utilized for image-guided delivery. The following are examples of nanomaterials 

that can be used as image-guided therapeutics for the treatment of cancer. 

 

 2.5.1.1. Linear polymers   

 Some examples of linear polymers that have been extensively studied are 

poly(ethylene glycol) (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA) and poly-L-

glutamic acid (PGA)36-38. A wide body of research has been conducted using these 

particular linear polymers. PEG and HPMA copolymers are nonbiodegradable where 

PGA is biodegradable in the body. The main advantage of linear polymer carriers is the 

ease to control their size38. Linear polymers such as those described above are 

biocompatible and have limited recognition by the immune system39,40. This provides an 

advantage because they can circulate in the body for an extensive amount of time, thus 

increasing the likelihood of their ability to interact with the targeted tumor sites. PEG and 

HPMA copolymers also have properties which impart steric hindrance to degradation of 

their attached payload of drug and targeting moieties41. One advantage that HPMA 

copolymers have is the ability to incorporate multiple therapeutics and targeting agents 

into the side chains. Linear PEG has limitations in the amount of payload because it is 

limited to end group functionalization37. Some of the main disadvantages to traditional
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Figure 2.1. Examples of carriers for image-guided therapeutic delivery. 
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HPMA copolymers are nonbiodegradability and potential long-term exposure in the body 

leading to possible toxicity effects42,43. PGA is biodegradable; however, this may not be 

ideal for a combined image-guided therapeutic because breakdown of the PGA backbone 

will eventually lead to imaging agent being separated from the carrier. HPMA copolymer 

doxorubicin drug conjugates were evaluated in clinical trials44. A matching HPMA 

copolymer was available with attached radioisotopes for imaging the biodistribution of 

the copolymers in patients45. The drug conjugate failed based on lack of efficacy in some 

patients46. However, the trial may have had more success if they had used the imaging 

version of the HPMA copolymer for preselection of patients that would have been more 

susceptible to the HPMA copolymer-drug conjugate23. 

 

2.5.1.2. Polymeric micelles 

 Polymeric micelles are constructed from a combination of hydrophobic and 

hydrophilic components or segments47-49. The structure is formed in aqueous solutions by 

self-assembly of a hydrophobic core and hydrophilic shell. Many chemotherapeutics are 

hydrophobic leading to solubility issues47. Hydrophobic drugs can be associated with the 

hydrophobic core and improve their solubility and protect them from metabolic enzymes 

in the blood stream while associated with the nanoparticle50. Imaging agents and 

targeting groups can be associated with the hydrophilic components and allow for 

imaging of micelle biodistribution within the body50,51. Another unique advantage that 

micelles have is their ability to have triggered therapeutic release based on pH 

change50,52. Micelles however, have limited stability in the body and progressively 

breakdown to their initial components especially when encountering biological milieu31. 

Therefore, imaging of the nanoparticle has limitations due to the eventual breakdown of 
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the micelle. One example of a block copolymer micelle image-guided drug delivery 

system incorporated folate targeting, pH sensitive drug release of doxorubicin and Cy5.5 

for optical imaging53. The polymeric conjugate was able to successfully image targeted 

conjugate localization and treatment in HeLa tumor cell bearing nude mice53.  

  

2.5.1.3. Dendrimers 

 Dendrimers are multibranched polymeric systems with a central initiator core54,55. 

Dendrimer size can be precisely controlled by successive additions of layers of branched 

units. Dendrimers have exceptionally low polydispersity and in some cases can be 

unimolecular56. Because of their unimolecular structure, regulatory hurdles to clinical 

approval can be significantly less challenging compared to other polydisperse polymers57. 

The branched structure allows for specific control of the amount and density of functional 

groups on the surface of the dendrimer. This can be utilized for surface decoration with 

various imaging agents, targeting moieties and drugs. With larger generations of 

dendrimers, a hollow core can be formed which can also be loaded with hydrophobic 

drugs. Several limitations are prevalent with dendrimers. Large dendrimers become 

difficult to synthesize, because the larger the dendrimers become the more steric 

hindrance prevents chemical ligation of the branching units and surface modifications58. 

The dendrimer that has had a substantial amount of investigation for clinical development 

is poly(amino amine) or PAMAM55,59. PAMAM dendrimers have had challenges with 

toxicity based on the charge density of the surface when reacting with cells60,61. One of 

the key aspects of PAMAM dendrimers are the alternating generations terminating with 

either primary amines or carboxyl groups. One limitation with dendrimers is that their 

typical branched layered structure contains only one type of surface group for 
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conjugation of targeting moieties, imaging agents and drugs. This limits the degree of 

control over how much of each component is incorporated. However, several groups have 

begun strategically synthesizing “Janus” dendrimers which are able to have several 

different types of surface functional groups, thereby providing better surface conjugation 

control62. One particular example shows great promise as a platform for a theranostic63. 

Although the study only demonstrated the dendrimer with a near-infrared agent for 

optical imaging, the conjugate did not show any toxicity in presence of T98G human 

cells and the unique trifunctional surface groups showed potential for development in 

image-guided therapy for cancer treatment.  

 

2.5.1.4. Liposomes 

 Liposomes are spherical lipid bilayer constructs with an aqueous core which can 

contain drugs or other therapeutic agents64,65. Their lipid bilayer structure mimics the 

biological environment of a cell but can be made of many different materials with the 

majority using phospholipids.  Liposomes are among the most studied drug delivery 

systems with many clinically approved formulations66,67. They are primarily formulated 

to entrap hydrophilic drugs within their aqueous core or associate hydrophobic drugs into 

their lipid bilayer64. Due to their macromolecular nature, they can passively target tumors 

via the EPR effect68. Of particular mention is Doxil®, a liposome-based formulation of 

doxorubicin for treatment of advanced ovarian cancer66. Liposomes protect their 

encapsulated drugs from metabolism in the blood stream and fuse with their biologically 

similar membranes of targeted cells. Once fused with cells, they release their payload into 

the cell for increased therapeutic efficacy. Phospholipids can be modified with different 

imaging agents and targeting moieties and be inserted into the lipid bilayer in order to 
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make theranostic nanoparticle systems65. One particular challenge recognized by the 

FDA with liposomes is reproducibly controlling the size and polydispersity69. They are 

also subject to rapid degradation or reticuloendothelial system (RES) clearance from the 

body70. Methods are being developed to overcome some of the issues such as 

incorporation of PEG for “stealth” liposomes71. However, the biodegradability of these 

systems in-vivo remains a particular challenge when considered for image guided 

therapy. Regardless, complex systems have been attempted to overcome these issues. For 

example, magnetic resonance high-intensity focused ultrasound (MR-HIFU) has been 

used with temperature sensitive liposomes loaded with doxorubicin72. MR imaging was 

used to guide the placement of localized hyperthermia within the tumor for triggered 

release of the liposomes in Vx2 rabbit models. This study showed the potential 

translation of a liposomal formulation for image guided therapy. 

 

2.5.1.5. Microbubbles 

 Microbubbles for therapeutic delivery are a special case of liposome structure 

which encompasses gas and can be designed for image-guided therapeutic delivery73. 

Small gas bubbles, typically perfluorocarbons, are imaged via ultrasound based on their 

difference in echogenicity than liquid media74. In most cases, microbubbles are stabilized 

by a lipid bilayer which surrounds the gas bubble. The surrounding liposome can be 

loaded with drugs and targeting agents for tumor delivery. With increased sonic waves 

these liposomal bubbles can burst, thus releasing their contents. This can be focused in 

the areas where the microbubbles are accumulating, including tumors. Imaging and drug 

release is therefore controlled by ultrasound, and thus is a promising method of image- 

guided delivery. One such example is the stabilization of perfluorocarbon nanodroplets 
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using block copolymers with paclitaxel75. Because of their high 19F-fluorine content, they 

were able to utilize 19F-MR spectroscopy in conjunction with ultrasound to determine 

precise anatomical location of the nanoconstructs. Complete tumor regression was 

observed on a pilot study with tumor focusing ultrasound in breast tumor bearing mice. 

The promise of ultrasound-mediated delivery using microbubbles is being investigated in 

several clinical trials76. However, challenges remain in reproducibly manufacturing these 

constructs, especially when complicated by associating targeting agents and drugs into 

their structure. Their size distribution also remains a challenge. Microbubbles span a 

large range in sizes affecting their distribution in the body. Strategies are needed to refine 

microbubble manufacturing process for more reproducible formulations, smaller size and 

less polydispersity.  

 

2.5.1.6. Antibodies and proteins 

 Antibodies are of particular interest in therapeutic delivery because of their 

biocompatibility and intrinsic ability to target antigens within the body, including those 

highly expressed in tumors. Many monoclonal antibodies (MoAbs) can be therapeutically 

active and have been approved or are in clinical trials for the treatment of cancer77. 

Therapeutics such as drugs and radionuclides conjugated to MoAbs have been shown to 

be effective for targeted delivery and image guided therapy78. One of the major concerns 

in using antibodies as image-guided therapies is their method of manufacture. MoAbs are 

produced from nonhuman sources (typically mice) and this can cause immune 

recognition within a patient by human anti-mouse antibodies (HAMA) that can either 

reduce the effectiveness of the therapeutic conjugate or cause severe life-threatening 

immune reactions79. Image guidance helps to select patients which may suffer from this 



 

 
 

29 

effect as demonstrated in radioimmunotherapy22. Antibodies are not the only proteins that 

are used in therapeutic delivery. Albumin, a native protein in the blood stream, serves as 

a macromolecular delivery system that is biocompatible and capable of being imaged. 

For example, a photosensitizer, chlorin e6, covalently linked to albumin formed 

nanoparticles that were used for image guided drug delivery80. Tumor localization was 

observed by optical imaging of the photosensitizer and then subsequently irradiated with 

light in the tumor for anticancer treatment in a mouse model. 

 

2.5.1.7. Inorganic nanoparticles 

 The last platform to discuss as carriers for image-guided therapeutics 

encompasses an array of inorganic materials such as quantum dots, gold and iron oxide 

nanoparticles. Metal elements exhibit interesting properties when synthesized in the 

nano-size ranges. For example, gold nanoparticles can absorb light in the near infrared 

spectrum and produce heat for localized hyperthermia81. Quantum dots are 

semiconductor nanocrystals made of transition metals that have tunable emission spectra 

that are much stronger than organic dyes82. Iron-oxide nanoparticles can be detected 

using MRI. All of these materials can be decorated with targeting agents, imaging agents 

and therapeutics for image-guided therapeutic delivery in cancer83. One of the main 

concerns with these constructs is their toxicity. Typically, these constructs do not 

breakdown in the body and therefore are deposited in tissues for an extended period of 

time83. The nature of their toxicity is still being investigated, but the long-term effects of 

some of these materials raise many questions to whether they can be used safely in the 

clinic. 
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2.5.2. Imaging modalities 

 Imaging modalities are becoming more sensitive, accurate and precise at detecting 

tracers in the body. Availability of sophisticated imaging devices is increasing; therefore, 

there is a growing need to rapidly develop probes for use in these different imaging 

modalities, especially in the area of image-guided therapy. Personalized medicine is the 

ultimate goal of imaging in the clinic and its full potential is yet to be realized. This 

section will present the different strengths and weaknesses associated with different 

imaging modalities. Many of the modalities can be combined in such a way as to 

compensate for lack of sensitivity or accuracy in detection of different probes. In fact, 

many groups have focused on the development of nanoparticles which have multiple 

methods of detection for multimodality imaging that can provide a variety of information 

that is not possible with the use of one alone. Table 2.2 shows a brief summary 

comparison of the different modalities. A more in-depth discussion is provided for each 

modality in the following subsections. 

 

2.5.2.1. Magnetic resonance imaging 

 Magnetic resonance imaging (MRI) is primarily used in the clinic for anatomical 

imaging. MRI signals are produced from changes in magnetic orientation from  

 radiofrequency pulses of aligned protons in a strong magnetic field84.  Signals from MRI 

are measured based on two typical responses, T1 and T2 relaxation demonstrated in 

Figure 2.2. Typical use of MRI measures proton T1 or T2 relaxation signals in the body 

for high resolution images containing soft-tissue anatomical information. Differences in 

each proton’s environment influence the T1 or T2 relaxation rate which in turn causes the 

variations that can be converted into an image. Different materials used as MRI contrast 
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Figure 2.2. Diagram of T1 and T2 relaxation in MRI. T1 relaxation is the rate at which 
the magnetic vector realigns or net alignment (red arrow) increases on z-axis which 
aligns with the external magnetic field after a 90º radiofrequency pulse. T2 relaxation is 
the rate at which the magnetic vector disappears or net x-y vector (blue) decreases in the 
x-y plane after a 90º radiofrequency pulse87.  
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agents also have various effects on protons in the body with these two relaxation 

signals1,84. Gadolinium has been used as a contrast agent for T1 relaxation in image 

guided therapeutics85. An additional method for MRI imaging is the detection of other 

paramagnetic elements such as 19F called magnetic resonance spectroscopy86. 19F has 

been incorporated into many nanomaterial constructs88-91. One example is the system

developed by Porsch et al. containing 19F conjugated to amphiphilic polymers92. These

polymers forming a micelle structure were subsequently loaded with doxorubicin for an 

image-guided drug delivery approach that exhibited MRI suitable signal-to-noise ratio 

(SNR) in phantoms92. These systems have potential for future study in vivo. However, 

one of the main challenges for MRI contrast agents is the lack of sensitivity of the MRI 

scanner. Large amounts of contrast are needed in order to produce a signal 

distinguishable from background. This makes MRI very difficult to use quantitatively. 

Although some techniques are in development to improve quantitative capacity of MRI, 

the physical nature of sensitivity is a large hurdle to overcome. Nonetheless, MRI is a 

valuable tool for anatomical imaging that can be used in conjunction with other imaging 

modalities which are more quantitative. 

 

2.5.2.2. X-ray computed tomography 

 X-ray computed tomography or CT is another method in which anatomical 

information is provided. CT uses x-ray projections that interact with high electron dense 

materials through a subject in multiple planes1. These planar images can then be 

reconstructed based on computer algorithms which produce a high-resolution image of 

the body. Resolution depends on the electron density of the material and therefore 

primarily returns high-resolution images of hard-tissues. Contrast agents are based on 
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heavier atoms such as iodine or barium. Iodine contrast agents are commonly used for 

angiography studies but require large frequent doses for a sustained signal output. The 

need for highly dense materials for contrast is the main limitation for use of CT with 

image-guided delivery. Therefore, CT is utilized in a multimodality approach which 

provides 3D anatomical information in tandem with other imaging information 

modalities. Risk due to ionizing radiation from prolonged CT exposure is of some 

concern. However, CT has made a substantial impact in detection and measurement of 

tumor sizes93. 

 

2.5.2.3. Optical imaging 

 Optical imaging is based on light emitting probes which can be detected by 

camera94,95. Optical imaging has been successfully used for many years for the detection 

of molecular processes in in vitro assays. However, in vivo the challenge becomes 

increasingly difficult when trying to penetrate tissues which rapidly attenuate light 

signals. The attenuation of light prevents absolute quantification and limits resolution96. 

A modern technique called fluorescence molecular tomography (FMT) can measure 

signals from the visible to near-infrared spectrum (500-900 nm) of fluorescent probes in 

multiple orientations and use mathematical models which predict attenuation in the 

subject to produce three-dimensional images of probe localization17,97. FMT is currently 

available for small animal imaging research, but clinical translation is yet to be viable. 

The tissue penetration in a human subject is more difficult. Therefore, FMT and other 

optical imaging techniques remain at the preclinical level. However, one of the 

advantages to using fluorescent probes in the development of image-guided therapeutics 

is the potential to visualize drug release from a nano-construct. Recent developments in 
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dyes which are conjugated to nanoparticles can be activated once released by targeted 

mechanisms from the nanoparticle surface98. Fluorescent dyes when in proximity (i.e., 

conjugated to the surface of a nanoparticle) lead to a strong fluorescence quenching due 

to fluorescence resonance energy transfer (FRET). Once the dyes are released and 

quenching is stopped, the signal will be visible and the resulting signal can be related to a 

mechanistic process98. Other imaging modalities are not capable of having activatable 

signals in relation to cellular responses in vivo such as SPECT or PET imaging. 

Radionuclide signals are constitutively active and cannot be suppressed unlike 

fluorophores. One example of such a system provides information of cathepsin B 

protease activity99. This is performed by a FRET designed peptide sequence conjugated 

with two terminal fluorophores. When the peptide sequence is cleaved, FRET 

interactions cease and the signal representing protease activity can be visualized via FMT 

imaging. A similar type of system could potentially be used to visualize drug release by 

containing enzymatically degradable linkers conjugated with drug and FRET capable 

fluorophores. The released fluorophore would produce the optical signal that could be 

related to the release of drug from the linker. This objective is yet to be realized but could 

be a powerful tool for the development of novel drug delivery approaches for treatment 

of cancer. 

 

2.5.2.4. Ultrasound 

 Ultrasound is probably the most cost effective and safe imaging modality 

available in the clinic today1,2. Ultrasound utilizes high-intensity ultrasonic waves 

mechanically produced from a transducer. The sound waves then reflect or scatter from 

different tissues which can be detected by the transducer and converted into images. One 
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advantage that ultrasound has is actual real-time imaging. Images are returned within 

seconds and therefore provide the highest temporal resolution available among the 

different modalities. Temporal resolution is a term describing the ability to distinguish 

between individual events1. Contrast agents for ultrasound are limited to gas bubbles 

which have specific properties that resonate in the 1 – 20 MHz frequency range, 

producing highly specific signals that can be recognized by the ultrasound device17. 

Ultrasound is limited to only microbubbles for visualizing probes and is therefore 

relatively limited in application to image-guided drug delivery. It also suffers from a lack 

of penetration (Table 2.2) and requires contact of the device to the subject. Ultrasound 

resolution is highly dependent on the type of tissue and its depth and is therefore difficult 

to directly compare against other modalities.  In the best case scenario, resolution is on 

the order of 10-100 µm1. Microbubbles are used as carriers for image-guided delivery. 

Further refinement in manufacturing is needed for clinical translation of this approach for 

image-guided therapeutics.  

 

2.5.2.5.  Single photon emission computerized tomography 

 Nuclear medicine techniques such as single photon emission computerized 

tomography (SPECT) detect gamma emission from radioisotopes which are administered 

to a patient for purposes of diagnosis and treatment100. SPECT is a descendent of older 

gamma scintigraphic methods which were only capable of producing planar images that 

were not quantifiable and had very poor resolution. SPECT imaging takes modern 

advances in scanner and computer technology to obtain single γ-ray emissions using two 

to three gamma cameras that rotate around a patient who has been administered a 

gamma-emitting isotope tracer. Gamma emission is detected through thick collimators, 
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plates of lead or tungsten, with small holes between the subject and gamma detector, that 

only allow photons emitted in the 90º direction of the gamma camera to interact with the 

detector. SPECT relies on reconstructing these multiple projections into a 3D image that 

gives precise localization of radioisotope biodistribution. Because only a select few 

gamma emissions are detected by the camera, the sensitivity is compromised to some 

degree due to a lack of sufficient detector events100. Images are also dependent on the 

energy of the γ-rays emitted from the radioisotope. Lower energy radioisotopes have 

more attenuation than higher energy radioisotopes. Attenuation increases the scatter and 

noise detected from the camera, thus compromising the resolution of the image. The 

quality and usefulness of images for image-guided approaches with SPECT are highly 

dependent on the type of radioisotope being utilized.  

 Radioisotopes for SPECT imaging must be selected based on the length of time 

needed to acquire information; otherwise, the half-life of the radioisotope must match the 

biological process that is being monitored. A list of clinically utilized radioisotopes for 

SPECT imaging with their emission properties are described in Table 2.3.  Many isotopes 

can be utilized in SPECT for detection and the majority of them can be attached to 

nanoparticles via metal chelation, ionic interaction or covalent linkage. Transition metal 

based radioisotopes are easily conjugated to nanoparticles using stable bifunctional 

chelators of metals101. Some radioisotopes can be associated with a nanoparticle by ionic 

charge interactions102. Others, including halides, form stable covalent bonds in order to 

radiolabel a nanoparticle103. Many strategies exist to radiolabel a nanoparticle. 

Consideration for the method of labeling must not interfere with other functions (i.e., 

drug and targeting) for image-guided therapies for cancer. One interesting strategy for 

SPECT imaging is the ability to image two different radionuclides with different energies 
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Table 2.3. Radioisotopes for SPECT imaging.17,104,105 
 
Radionuclides T1/2 γ-ray energy 

99mTc 6.01 h 140 keV 
111In 2.83 d 173, 247 keV 
67Ga 3.26 d 93, 184, 300, 393 keV 
123I 13.3 h 159 keV 
131I 8 d 365 keV 

67Cu 2.58 d 184.6 keV 
201Tl 3 d 69-81, 167 keV 
133Xe 5.2 d 81 keV 
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at the same time. This may allow for imaging of distinct processes within a given 

construct. For example, a study was conducted using an 111In labeled targeted peptide and 

177Lu labeled control nontargeting peptide injected into the same mouse in order to 

visualize differences in accumulation without interanimal variations106. The dual isotope 

approach could be applied in mixed micelles where the hydrophobic and hydrophilic 

components are labeled with different isotopes and could potentially give information as 

to the breakdown and ultimate fate of the two components.   

 SPECT is a promising modality for image-guided delivery in cancer because it 

can provide accurate information on the relative location of nanoparticle carriers. 

However, there is the risk of ionizing radiation exposure that limits the amount of 

radioactive exposure a patient can receive. It also does not provide anatomical reference. 

This has been overcome by multimodal approaches such as combining images with both 

CT and MRI. The combined modalities can more accurately pin-point where the 

nanoparticles are accumulating and give accurate information predicting both potential 

efficacy and safety of image guided nanoconstructs. The major challenge for SPECT 

imaging is obtaining accurate quantitative results. Detection events required for accurate 

quantitation are limited due to the use of collimators and a large range of gamma 

emission energies that are scattered and attenuated differently in tissue. Longer imaging 

times are also required for SPECT which can exaggerate motion effects leading to 

increased signal noise. There are methods for both attenuation and scatter correction 

which are being developed to make SPECT more quantitative. However, these methods 

and capacities vary greatly among scanners and groups. Ideally, further development and 

common adoption of correction techniques may some day lead to more routine 

quantitative capability of SPECT. 
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2.5.2.6.  Positron emission tomography 

 Positron emission tomography (PET) is another nuclear medicine technique 

which has made a major impact in the field of cancer treatment107,108. PET detection is 

based on radionuclides emitting positrons which interact with nearby electrons and 

annihilate into two antiparallel gamma photons each with signature 511 keV energy. This 

allows for coincidence detection by a circular array of detectors that can trace back along 

the line of response to the origin of emission and produce high-resolution images of 

radioisotope probes. A basic diagram of PET is shown in Figure 2.3. PET can detect 

radioisotopes down to the pico-molar (10-12) range and has limitless depth penetration 

due to the high energy of its 511 keV gamma-rays1. In comparison with SPECT, PET has 

a much higher count rate and better resolution, thus providing the ability for accurate 

quantitation of imaging agents. PET scanners are also combined with CT and other 

techniques in order to provide attenuation and scatter correction, thus increasing its 

quantitative ability in comparison to SPECT. Due to the fact that only one gamma energy 

window is needed for detection around 511 keV, these correction techniques can be 

simplified when compared to SPECT. Radioisotopes used in the clinic for PET are 

generally short-lived and for the most part must be produced locally using a cyclotron. 

This increases the costs and availability of PET radionuclides. Like SPECT, ionizing 

radiation also limits the ability of patients to be continually administered radioisotopes 

for research studies. Table 2.4 lists some of the isotopes used in PET imaging with details 

of the characteristics and properties. PET also does not provide anatomical reference; 

thus, almost all PET imaging devices are coupled with CT detectors for precise 

localization of signals with the patient.  The CT images can also be used to correct for 

attenuation in the imaged subject for improved resolution and quantification.    
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Figure 2.3.  Positron emission tomography108. 
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Table 2.4.  Physical characteristics of common positron emitting radioisotopes17,108,109.  

 

Radionuclides T1/2 
Max β+ energy 

(MeV) Availability* 

18F 110 min 0.69 +++ 
11C 20.4 min 0.96 +++ 
15O 122.2 sec 1.7 +++ 
13N 9.97 min 1.20 +++ 
124I 4.2 d 2.14 + 

64Cu 12.7 h 0.65 + 
89Zr 3.3 d 0.897 + 
68Ga 67.7 min 1.90 ++ 

* Availability based on estimated cost and production facilities 
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 Selection of radionuclides for PET imaging is important in that it can affect the 

resolution and relevance of the research study.  The initial positron energy determines the 

path-length from the parent nuclide to the annihilation event. The higher the energy, the 

longer the path-length, thus increasing image noise and reducing resolution17. Like 

SPECT, isotope half-lives must match the relevant biological process intended to be 

measured. This represents a significant challenge in nanoparticle imaging with PET, 

since most of the clinically available radionuclides have ½-lives on the order of minutes 

(15O ~ 2 min ½-life) to a couple of hours (18F ~ 110 min ½-life) which does not match the 

biological half-life of many nanoparticle systems. However, the majority of these short-

lived isotopes are basic elements found in biology and therefore can be incorporated into 

drugs, sugars and other biological entities without influencing their structure.  

 A recent study using a positron emitting 64Cu radionuclides conjugated to HPMA 

copolymers containing angiogenesis targeting peptides demonstrated measurable 

increased tumor localization by PET imaging in prostate tumor bearing mice110. Because 

64Cu also has some beta-emission, the radionuclide can serve a dual purpose for imaging 

and therapy. This is a perfect example of how radioisotopes can be utilized in image 

guided therapeutic delivery. Clearly, more research and effort in this area needs to be 

conducted to improve the availability of radionuclides. PET represents the future of 

nuclear medicine imaging and has already influenced the treatment of cancer 

profoundly111. However, costs and lack of radionuclide availability are detrimental for 

rapid development of image-guided therapeutics for cancer based on PET imaging. 
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2.5.3. How to target cancer 

 One of the main limitations to success with therapeutics for cancer treatment is 

their lack of specificity. The lack of specificity leads to side effects due to organ toxicity 

related to uptake of therapeutics. Targeted therapies seek to overcome this problem by 

changing the pharmacokinetic behavior. Many approaches have been presented to 

selectively localize a therapeutic to tumors112. Image-guided delivery allows researchers 

to assess whether targeting strategies are working in the given patient. The heterogeneity 

of tumors and their targets makes it difficult to achieve successful approval of many 

therapeutics. This can be overcome with image-guided approaches which select and 

qualify patients. This section will focus on the available methods for targeting 

nanomaterial platforms for cancer treatment. 

 

2.5.3.1.  Passive targeting 

 Perhaps one of the most important aspects of nanoparticle behavior for 

oncological targeting is their ability to passively target via the enhanced permeability and 

retention (EPR) effect27,28,113. This was first described by Maeda who found that rapidly 

growing tumors have large gaps or fenestrations in the vasculature when compared to 

normal tissues due to uncontrolled tortuous growth related to unregulated tumor 

angiogenesis113,114. Macromolecules accumulate in the tumor because they can easily 

extravasate through gaps that lack normal lymphatic drainage. Several constructs based 

on this targeting strategy have been tested in clinical trials with variable success36,115. One 

of the first agents to be tested was SMANCS, polystyrene-co-maleic acid-half-butylate 

copolymer conjugate with neocarzinostatin for the successful treatment of 

hepatocarcinoma115. Interestingly, a CT contrast Lipiodol® was also administered in 
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these studies giving an example theranostic approach. However, other trials with 

macromolecular polymers as drug conjugates were unsuccessful in the clinic. The first 

HPMA copolymer conjugates containing various drugs were halted during clinical trials 

due to a variable patient tumor response46. The lack of response may be attributed to the 

variability of the EPR effect in different patients and tumors. It has been suggested that 

perhaps the use of an imaging version of these conjugates could be used to select patients 

who may have a better chance of success with the passive targeting strategy23,46. 

 

2.5.3.2.  Small molecules 

 Many small molecules are recognized by tumor cells. They can be conjugated to 

the surface of nanoparticles for increased uptake or increased accumulation in the tumor. 

As with any targeting ligand for therapeutic delivery, one must consider the function of 

the receptor-ligand interaction. Some receptors bind their ligands and facilitate 

endocytosis of the ligand cargo. Others may not increase endocytosis but may cause a 

signaling pathway which may affect cellular functions. These interactions need to be 

carefully considered when designing a system. If carrying a drug that needs to be 

internalized for its action, then small molecule ligands must be selected that cause 

endocytosis. In the case of radionuclides for therapy, uptake may not be necessary in 

order to facilitate the targeted nanoparticles’ anticancer activity. Several small molecules 

have been utilized for active targeting of cancer. Folate receptors (GP38) are highly 

expressed on malignant cells and can facilitate tumor targeting116,117. For example, a 5th- 

generation PAMAM dendrimer was conjugated with folic acid and methotrexate and 

demonstrated enhanced tumor uptake in folic acid receptors118. In vivo studies 

demonstrated an enhanced efficacy compared to controls and minimized the toxic side 
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effects of methotrexate. Galactosamine has also been used for targeting to tumor cells. It 

has been used to target HPMA copolymer-doxorubicin conjugates for treatment of 

hepatocellular carcinoma45. Targeting with these molecules and others is possible. 

However, consideration on the chemical linkage site on the molecule must be evaluated 

to assure that recognition by the receptor is not compromised. 

 

2.5.3.3. Peptides 

 Peptides are recognized by a variety of tumor cell receptors. A vast majority of 

researchers utilize phage display techniques for selection in order to find novel peptides 

which bind receptors overexpressed in cancer119,120. Many candidates used with these 

techniques have been utilized for imaging and drug targeting in cancer. Because of their 

small size, more peptides can be incorporated on nanoparticles and possibly facilitate 

multivalent interactions which potentially can increase their recognition on the targeted 

cell surface. Peptides do suffer from rapid degradation by proteases in the body, but use 

of unnatural amino acids, cyclization and conjugation to nanoparticles may restrict 

protease activity due to steric hindrance. Peptides are constantly being developed as new 

targeting approaches for active targeting of nanoparticles. RGD-containing peptides 

mimic the extracellular domains of many proteins that are involved in angiogenesis. It 

specifically recognizes the αvβ3 integrin receptors overexpressed on neovasculature of 

growing tumors and on the cells of some tumor types121,122. HPMA copolymers with 

RGD containing ligands and radioisotopes for both imaging and radiotherapy 

demonstrated tumor-specific targeting and antitumor efficacy123. GRP78, a heat-shock 

related protein is overexpressed on tumor cells when the tumor is under stress. 

Hyperthermia treated tumors were successfully targeted using a GRP78-binding peptide 
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WIFPWIQL on HPMA copolymers containing anticancer drugs124. Cell penetrating 

peptides (CPPs) have also been used for increasing nanoparticle uptake in cancer cells125. 

However, CPPs are nonspecific and therefore need other methods of targeting in order to 

increase tumor localization. Peptides also suffer from retention effects in the kidney126. 

This may lead to therapeutic payloads of nanoparticles with peptides causing renal 

toxicity.  

 

2.5.3.4.  Antibody and fragments 

 Antibodies are immunoglobulins used by the immune system for recognition of 

foreign materials127. However, antibodies have been developed that recognize certain 

antigens expressed on the surface of cells. They have binding affinities in the nanomolar 

range. They consist of both heavy and light chains with a single effector region which 

causes immunological triggers for cell-killing and two binding regions. Antibodies that 

target antigens expressed on the surface of tumor cells have been utilized in many 

nanoparticles for targeted delivery. For example, trastuzumab, an antibody that binds 

HER2 receptors overexpressed in cancer, has been shown to increase the uptake of 

nanoparticle systems for imaging and drug delivery128-130. However, antibodies are large 

(MW ~150 kDa) and therefore add a considerable amount of size to nanoparticles when 

conjugated to the surface. The effector region of the antibody can also cause recognition 

by immune factors, resulting in undesirable immunoreactivity131. Therefore, various 

forms of fragments have been developed from the binding regions of the antibodies132. 

Antibody fragments have smaller size (MW ~27 kDa) and lack the effector region and 

therefore have less immunoreactivity131. In regards to conjugation of both antibodies and 

fragments, conjugation sites must be selected in a manner that conserves binding affinity. 



 

 
 

48 

One challenge for incorporation of antibodies into nanoparticles is that there is lack of a 

single functional group for conjugation to nanoparticles. Bioconjugation techniques must 

be carefully performed to prevent cross-linking between nanoparticles.    

 

2.5.3.5.  External trigger targeting 

 One of the main challenges for ligand-directed targeting is that their targeted 

receptors are rarely expressed only on the targeted tumor. This leads to increased uptake 

in other organs of the body that leads to toxic effects. Researchers have developed 

methods to target tumors exogenously. One such method is hyperthermia. Hyperthermia 

can be utilized to increase blood flow and perfusion to a tumor to potentially augment 

nanoparticle penetration and accumulation133. It can also be used in conjunction with 

thermal sensitive liposomes which release their therapeutic payload with increased 

temperature134,135. Hyperthermia must be administered locally in order to selectively 

target tumors with nanoparticles and can be done with a variety of methods. One such 

method involves gold nanorod (GNR)-mediated plasmonic photothermal therapy (PPTT). 

PPTT utilizes the surface plasmon resonance of gold nanorods to produce heat when 

activated at the appropriate laser light wavelength136,137. Another method that may be 

closer to translation is high-intensity focused ultrasound (HIFU). HIFU utilizes ultrasonic 

waves to generate heat within biological tissues138. It can also be combined with MRI 

imaging with gadolinium thermal sensitive liposome conjugates for precise imaging of 

the nanoparticle localization within the tumor and subsequent drug release139-141. 

Hyperthermic delivery based on HIFU represents a promising future for targeted delivery 

of nanoparticles for therapeutics and imaging. 
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 Hyperthermia is not the only method for guided delivery. Magnetic nanoparticles 

can be guided to tumors using an external magnetic field with the tumor. Magnetic 

nanomaterials such as superparamagnetic iron oxide nanoparticles (SPIONs) can deliver 

both imaging and therapeutics to the tumor site142. SPIONs form a dual purpose in that 

they can be visualized by MRI and guided to tumor site using magnetic fields. This 

represents a promising area for targeted delivery. However, paramagnetic materials like 

SPIONs are large and remain in the body for long periods of time, leading to concerns in 

toxicity. Iron is carefully balanced in the body and addition of large amounts can also be 

detrimental142. Thus, the promise for SPIONs in clinical use requires further development 

to address these concerns.  

 Passive and active targeting and externally triggered methods are continually 

being developed to more precisely target tumors. Selecting any of these strategies has 

their advantages and disadvantages. Selection of the best targeting strategy will rely on 

considerations of the nanoparticle system and the targeted cancer type. Further 

investigation into targeting must be conducted with nanoparticle systems to find the 

optimal strategy for image-guided therapeutic delivery. 

 

2.5.4. Choice of therapeutic  

 A wide range of therapeutics has been utilized in nanomaterials for cancer 

treatment. Nanomaterials have been designed to improve the short-falls of 

chemotherapeutics, radiotherapeutics, oligonucleotides and photosensitizers. These four 

areas of therapeutics require delivery methods that improve solubility, increase 

localization, improve efficacy and reduce toxicity. The choice of therapeutic for a 

particular nanoparticle design is highly dependent on the type of cancer being treated, 
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clinically available and approved therapeutics and potential for improvement with 

delivery systems. Examples of each of these therapeutic areas will be discussed and how 

image-guided delivery can improve their success in cancer treatment.  

 

2.5.4.1.  Chemotherapeutics 

 Chemotherapeutics are the main-stay of treatments for advanced stages of cancer. 

Of course surgical methods to remove known tumor sites are preferred. However, small 

invasive tumors are difficult to detect and remove. Therefore, they require small molecule 

agents to penetrate and destroy tumor sites which are not accessible. However, small 

molecules are nonspecific in their cytotoxic action. Therefore, they cause a variety of side 

effects that reduce quality of life and endanger the patient. Most chemotherapeutics can 

be broken down into a few classes: alkaloids, antibiotics, platinates, antimetabolites, 

topoisomerase inhibitors, mitosis inhibitors and others143. In discussing 

chemotherapeutics for image-guided drug delivery it becomes necessary to discuss what 

has been performed in the past. Chemotherapeutic selection for drug delivery systems has 

been based primarily on clinically approved drugs which have limitations due to 

solubility, dose limiting toxicity, instability in the bloodstream or poor efficacy. For FDA 

approval, selecting drugs that are already approved for use is one less hurdle to cross and 

is therefore beneficial in image-guided therapeutics. 

 One of the many challenges for chemotherapeutic delivery using nanoparticles are 

methods of conjugation and subsequent release. Some carriers entrap the 

chemotherapeutic cargo like liposomes, microbubbles and potentially micelles. The 

important part of image-guided drug delivery is that the formulated nanoparticle drug 

complex must stay intact until it arrives at the targeted tumor site. Otherwise, the imaging 
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of the carrier does not represent the actual drug localization. This is a challenge for 

nanoparticle formulations which have limited stability over time and “leak” drug. 

Covalent linkages to nanoparticles can overcome this but methods must be developed in 

order to realize site-specific drug release. Linear carriers such as HPMA copolymers have 

utilized lysosomally degradable GFLG peptide sequences for drug release once the 

nanoparticle has been endocytosed into the cell144. Success of site-specific drug release 

has been variable using this approach. In the case of HPMA copolymers conjugated with 

docetaxel, rapid release was observed in cell culture media and therefore expected to 

observe similar behavior in vivo145. In another study, release kinetics were variable when 

HPMA copolymer was conjugated with both gemcitabine and doxorubicin via GFLG 

linkers146. Gemcitabine was rapidly released in the presence of cathepsin-B, a lysosomal 

enzyme, but docetaxel showed a very slow release even with the enzyme. These 

examples demonstrate the balance that is needed with site-specific drug release.  Drugs 

must be stable enough before getting to the targeted site but have the ability to empty its 

payload rapidly for a maximally effective image-guided delivery. 

 

2.5.4.2.  Radiotherapeutics 

 Radioisotopes have been utilized for cancer treatment for a considerable amount 

of time. Some of the first clinically used radioisotopes were produced in the 1930s such 

as 131I iodine147. Radiotherapy is primarily performed using isotopes which emit alpha 

and beta radiation. Both forms of radiation are efficient at forming radicals (usually with 

water) which exert damage to the DNA of cells and cause irreversible damage leading to 

cell death. However, the range of tissue in which these effects occur is different 

depending on the type and energy of particle105. Many of the radioisotopes in the clinic 
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for radiotherapy have beta emission with a range of 50-5000 µm. More rare isotopes with 

alpha emission have a much shorter range of 40-90 µm. Radioisotopes with auger 

electrons have the shortest range of 0.01-1.0 µm. The greater the range the more risk to 

nontargeted tissues near tumors. However, for larger tumors, a larger range may be more 

advantageous. Selecting the proper isotope is a matter of ½-life and the range of emission 

that is ideal for the targeted tumor. Table 2.5 is a list of radioisotopes for potential use in 

radiotherapy. The key aspect required for successful radioisotopes is site-specific 

localization and ample radiation dose to cause sufficient irreversible DNA damage 

leading to tumor cell death. This is a challenge that requires tumor-targeted approaches 

which do not cause off-site accumulation. One of the first clinically available theranostic 

delivery systems is based on a radiotherapeutic approach. Iodine uptake is especially high  

in the thyroid and for more than 50 years, radiation oncologists have exploited this 

feature to treat thyroid cancer with 131I-iodine149. Imaging can be performed using 

SPECT or simple gamma scintigraphy of 123I, a gamma emitter, which gives information 

on the areas of accumulating iodine in the patient.  Safety and efficacy concerns can be 

utilized to select the patient for the subsequent 131I therapy. Another example was 

discussed early on in this chapter about Bexxar® and Zevalin® which are 

radioimmunotherapies used in image-guided therapy for lymphoma patients. Image-

guided approaches have been extremely useful in the approval of these therapeutics in the 

clinic. Selecting the proper isotope is highly dependent on the ability to stably link the 

radionuclide to the nanoparticle platform. For efficacious and safe radiotherapy, loss of 

the radioisotope must not occur. Using nanoparticles to carry isotopes prevents them 

from accumulating in radiation sensitive areas such as bone marrow as long as the 

chelated radioisotope is stable in the blood stream. The main advantage of using 
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Table 2.5.  Isotopes for image-guided radiotherapy105,148  
 

Radionuclides T1/2 
Type of 
emission 

Average energy 
(keV) 

131I 8.0 d β- 181 
90Y 2.7 d β- 935 

153Sm 1.94 d β- 280 
64Cu 12.7 h β- 1670 (max) 
67Cu 2.58 d β- 141 
211At 7.2 h α 5867 
213Bi 46 min α 6000 (max) 
67Ga 3.26 d Auger 0.04-9.5 
125I 60.5 d Auger 27 (max) 
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radioisotopes in nanoparticles is that their effect on cancer is independent of release, 

unlike chemotherapeutics. Nanoparticles in this case do not need to penetrate deep within 

the tumor to exert their anticancer effects. This advantage is profound because typically 

nanomedicines cannot penetrate deep within tumor tissues.   

 Several successful image guided radiotherapeutics have been developed and have 

shown promising results in treating cancer148. Wang et al. synthesized a multifunctional 

lipid-polymer hybrid nanoparticle that contained docetaxel and chelator for both 111In and 

90Y radioisotopes150. The prostate tumor-targeting nanoparticle was able to demonstrate 

superior antitumor efficacy of the combination chemotherapy and radiotherapy particle. 

Although the approach has promise, control over all components especially between 

loaded drug and 90Y may prevent reproducible synthesis required for eventual translation.   

 

2.5.4.3.  Antisense oligonucleotides 

 A promising area still in development for therapeutics is antisense 

oligonucleotides. This can include short strands of either DNA or RNA which are 

complementary to a chosen sequence. When introduced into the cell, they can knock-

down expression of a cancer-related gene and thus treat tumors. One such technology 

involves small interference RNA or siRNA which has the higher therapeutic index when 

compared to other gene modifying therapies151. Due to the siRNA charge, it cannot cross 

biological membranes and therefore, nanomaterials have been utilized to shield the 

charge, protect the oligonucleotides in the bloodstream from nucleases and transport them 

into the cytosol of tumor cells. Optical imaging offers an interesting opportunity with 

FRET-like systems based on siRNA delivery. Cationic quantum dots were conjugated 

with polyethylenimine (PEI) in order to complex with siRNA that had been labeled with 
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a fluorochrome152. Once complexed the fluorescence signal was quenched and upon 

siRNA release, an increase in fluorescence was observed. This system could potentially 

be utilized to observe release and essentially be correlated with efficacy within tumor 

cells. However, systems such as these are in early-development. No siRNA therapies 

have been approved to date and therefore, these studies offer only a proof-of-concept for 

now. 

 

2.5.4.4.  Photosensitizers 

 Photosensitizers are a class of molecules which are able to absorb light and 

transfer it to local electrons to singlet oxygen species153. Singlet oxygen species are 

highly reactive with biological molecules and can cause damage to the cell resulting in 

cell death. Use of photosensitizers is promising in cancer therapy because their anti-

cancer action can be restricted to tumors that have been radiated with appropriate 

wavelength for photodynamic therapy (PDT)154. One challenge is sensitization based on 

photosensitizers nonspecifically localizing to the skin and being activated by normal 

sunlight. This can cause severe reactions in the skin. Conjugation of photosensitizers to 

nanoparticles can help prevent skin accumulation and reduce this toxicity. Nanoparticles 

can also improve tumor localization through means of passive and active targeting, 

thereby increasing the therapeutic index of the photosensitizer. Many photosensitizers are 

hydrophobic as well; therefore, incorporation into water-soluble nanoparticles can 

improve their solubility. Another benefit of some photosensitizers is that their 

fluorescence emission can be observed by optical imaging; therefore, they can both 

provide an imaging and therapeutics on a single nanoparticle. The potential for PDT is 

attractive; however, limitations in tissue penetration of light limit this therapy to 



 

 
 

56 

superficial tumors or through endoscopically accessible organs such as the lung155. There 

is potential to use small light emitting optical fiber probes through guided needles into 

deeper tissues such as the pancreas, but this remains challenging and invasive156. 

Multimodality imaging using PET is also a possibility using nanoparticles conjugated 

with photosensitizers, thus describing accurately the location and depth of required light 

penetration for PDT157. PDT is a promising area of research with one photosensitizer 

already approved for use.  However, PDT is generally limited to superficial and local 

treatment and is thus limited against metastatic cancer158.  Despite this, PDT can be used 

for cancers which are not restricted by the limitations of this approach. 

 

2.6. Ideal Image-Guided Therapeutic System for Treating Cancer 

 The previous few sections have presented the different aspects, advantages and 

disadvantages of the different requirements for image-guided therapeutics in cancer. 

Unfortunately, there is no system that satisfies the demands of all types and stages of 

cancer disease. One must also consider for clinical translation the regulatory hurdles that 

need to be overcome for manufacturing of nanoparticles with imaging agent, therapeutic 

and targeting.  

 Generally, the simpler the design is, the better is the approach. Good 

manufacturing practices (GMP) required for FDA approval require that each component 

of the formulation have complete characterization at the full range of possibilities within 

the nanoparticle formulation. With multiple components having multiple cross-

interactions possible, the regulatory hurdle for just one image-guided approach is 

significant. Thus, a simpler approach is more likely going to be logistically and 

economically feasible. Selecting components especially drugs with more individual 
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clinical experience will also lessen the burden because previous experience can yield 

much information in regards to potential problems. 

 The ideal system is therefore dependent on needs of the particular tumor type. 

Development of delivery systems for pancreatic cancer treatment is the focus in Chapters 

3 and 4 of this dissertation. Current progress in treatment of this disease is very slow. 

Variable results have been observed for targeted strategies. The anticancer drug 

gemcitabine is the first line drug for advanced pancreatic cancer but it lacks in efficacy 

due to its metabolism in the blood and could be potentially improved by water-soluble 

polymer delivery. Chapter 4 examines the utilization of HPMA copolymers as carriers to 

improve delivery to pancreatic tumors. A study regarding pancreatic targeting strategies 

with small ligands for both αvβ3 integrin and HER2 receptors is discussed in Chapter 3. 

This chapter also seeks to observe how the treatment of the dense stroma associated with 

pancreatic cancer can be overcome using hyaluronic acid. Both studies include a chelator 

for 111In for multimodal SPECT and CT imaging.  

 Chapter 5 seeks to provide a different approach via gold nanorod-mediated 

hyperthermia for HPMA radiotherapeutic polymers containing 90Y. This particular type 

of approach may not be ideal for pancreatic cancer. Therefore, prostate cancer was 

selected based on patients with advanced local disease. Hyperthermia in this method 

requires irradiation of light on gold nanorods and the source of light has limits on its 

penetration. The prostate is potentially accessible for this type of approach and therefore 

makes logical sense as a viable treatment.   

 Image-guided therapeutics are in their earliest stages of development. With more 

advances on the horizon in imaging modalities, nanomaterials and targeting methods, it 
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can be expected that these types of approaches are going to contribute to cancer treatment 

in future.   
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CHAPTER 3 
 
 
 

OVERCOMING THE STROMAL BARRIER FOR TARGETED  
 

DELIVERY OF HPMA COPOLYMERS  
 

TO PANCREATIC TUMORS* 
 
 
 

3.1. Introduction 

Pancreatic cancer is the 4th leading cause of cancer-related deaths in the United 

States1. Recently, the incidence rate has begun to increase, possibly related to the increase 

in rates of obesity1. Patients that receive this diagnosis have little hope of a cure with only 

a 6% statistical chance for more than a 5-year survival. Typically, this cancer is not 

discovered early on in its development and has already rapidly spread by the time it is 

discovered2,3. Advanced stages of pancreatic cancer have little to no response to 

treatment because of the challenge to deliver drugs in sufficient amounts to the pancreatic 

tumors4. Novel methods of delivery to the pancreatic tumor need to be developed.  

Water-soluble polymers such as N-(2-hydroxypropyl)methacrylamide copolymers 

have the potential to increase the delivery of drugs, imaging agents and targeting ligands 

to pancreatic tumors. HPMA copolymers are water-soluble polymers which can be 

synthesized in a wide range of sizes and with a large selection of comonomers that can 
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afford multifunctionality for enhanced delivery and monitoring5,6. Several studies have 

shown that these polymers can increase tumor localization based on both passive 

targeting, via the enhanced permeability and retention (EPR) effect7, and active targeting 

by side chain conjugation to small peptides and monoclonal antibody fragments8.  

Active targeting is accomplished by attaching various targeting ligands to the side 

chains of the HPMA copolymer backbone which recognize receptors overexpressed in 

tumors9-12. HPMA copolymer systems conjugated with short peptide ligands containing 

the arg-gly-asp (RGD) sequence, which bind to αvβ3 integrins overexpressed on the 

neovasculature and surface of many tumor types, have shown to actively target tumors, 

thus increasing the concentration of polymer carriers conjugated with imaging agents and 

drugs13-18. Pancreatic tumors undergoing angiogenesis express this receptor on the 

vasculature and on the surface of some cells19-21. Therefore, HPMA copolymer-RGD 

conjugates could be potentially used as a targeted platform for delivery of both imaging 

agents and drugs for pancreatic cancer treatment. However, pancreatic cancers are known 

to have low vascularity which may be insufficient for vascular targeting22. 

Another receptor that has been shown to overexpress in pancreatic tumors is the 

human epidermal growth factor receptor 2 (HER2)23. HER2 also known as Neu, ErbB-2 

is a protein of the family of epidermal growth factor receptor (EGFR/ErbB). 16-61% of 

pancreatic tumors in patients have high HER2 expression23-26. The peptide sequence 

KCCYSL was found by phage display technology to specifically recognize and bind to 

HER2 receptors27. KCCYSL can be conjugated to the backbone of HPMA copolymers 

and potentially allow for HER2 recognition, providing another targeting strategy to 

improve delivery. 
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Macromolecular carriers, however, have a significant challenge to penetrate 

pancreatic tumors. Pancreatic tumors are known to have a highly dense extracellular 

matrix which prevents the diffusion of large and even small molecules such as 

gemcitabine28,29. This effect is more pronounced with large macromolecules severely 

limited by diffusion in a dense tissue30-32. Recently, the effects of treating the stromal 

tissue in conjunction with drug to increase its concentration within the tumor has been 

investigated using drugs and enzymes which breakdown the dense stroma28. By breaking 

this barrier or causing “stromal collapse,” it has been found that the barriers to diffusion 

caused by the dense stroma in pancreatic cancers can be overcome and improve 

therapy33. 

One of the stromal treating agents that has been investigated is hyaluronidase4. 

Hyaluronic acid is one of the main components of the dense interstitial tissues of the 

stroma and causes high intratumoral fluidic pressure (IFP). High IFP prevents the 

diffusion of both small and macromolecular constructs into the tumor. Several studies 

have been conducted along with clinical trials using hyaluronidase enzymes to 

breakdown hyaluronic acid which results in a lowering of IFP4,34. After treatment with 

hyaluronidase, it has been found that they can increase the localization of gemcitabine 

and other drugs into the tumor4. For example, 40 kDa and 2,000 kDa dextrans 

demonstrated increased tumor accumulation after administration of a PEGylated 

hyaluronidase treatment to the tumor35. The barriers to macromolecular delivery based on 

HPMA copolymers if combined with hyaluronidase treatment to the tumor can therefore 

potentially increase localization within the tumor. The goal of the study described in this 

Chapter is to compare the increased tumor localization of HPMA copolymer systems for 

either αvβ3 integrin or HER2 targeting in pancreatic cancer in conjunction with 
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hyaluronidase administration to the stromal tissue. The comparison between targeting 

strategies combined with stromal collapse were investigated in a pancreatic tumor mouse 

model. 

 

3.2. Materials and Methods 

3.2.1. Chemicals 

Amino acids for peptide synthesis were obtained from AAPPTec (Louisville, 

KY). N-[(R)-2-Amino-3-(p-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-

diamine-N,N-N’,N’,N”N”-pentaacetic acid (p-SCN-CHX-A”-DTPA) was obtained from 

Macrocyclics (Dallas, TX). N-(3-Aminopropyl)methacrylamide hydrochloride (APMA) 

was acquired from Polysciences (Warrington, PA). 2,2’-Azobis[2-(2-imidazolin-2-

yl)propane] dihydrochloride (VA-044) was obtained from Wako Chemicals (Richmond, 

VA). 111InCl3 was obtained from the Intermountain Radiopharmacy (Salt Lake City, UT). 

All other reagents were of reagent grade and were obtained from Sigma-Aldrich (St. 

Louis, MO). 

 

3.2.2. Cell lines 

CAPAN-1 pancreatic adenocarcinoma cells (ATCC, Manassas, VA) were 

cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) (ATCC, Manassas, VA) 

supplemented with 20% (v/v) fetal bovine serum (FBS) and 1:100 penicillin/streptomycin 

at 37ºC in a humidified atmosphere of 5% CO2 (v/v). PANC-1 pancreatic duct carcinoma 

cells (ATCC, Manassas, VA) were cultured in Dulbecco’s Modified Medium (DMM) 

(ATCC, Manassas, VA) supplemented with 10% FBS at 37ºC in a humidified 

atmosphere of 5% CO2 (v/v). For all experimental procedures, the confluent cultures 
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were harvested by treatment with TrypLE™ Express (Invitrogen, Grand Island, NY) and 

subsequent dilution in their respective medium or phosphate buffered saline (PBS). 

 

3.2.3. Synthesis and characterization of comonomers and peptides 
 

N-(2-hydroxypropyl)methacrylamide comonomer (HPMA), N-methacryloyl-

glycyl-glycyl thiazolidine-2-thione (MA-GG-TT) and N-methacryloylaminopropyl-2-

amino-3-(isothiourea-phenyl)propyl-cyclohexane-1,2-diamine-N,N-N’,N’,N’’,N’’-

pentaacetic acid (APMA-CHX-A”-DTPA) were synthesized according to published 

methods36-38 (structures shown in Figure 3.1). A brief synthesis and characterization is 

described for HPMA, MA-GG-TT and APMA-CHX-A”-DTPA in Appendix A. The 

peptide sequences for cyclic Arg-Gly-Asp-D-Phe-Lys (cRGDfK), cyclic Arg-Gly-Glu-D-

Phe-Lys (cRGEfK), Lys-Cys-Cys-Tyr-Ser-Leu (KCCYSL) and Lys-Tyr-Leu-Cys-Ser-

Cys (KYLCSC) were synthesized via solid phase synthesis on a PS3 Peptide Synthesizer 

(Protein Technologies, Inc., Tucson, AZ). Products were confirmed by electrospray 

ionization mass spectroscopy. cRGDfK electrospray ionization mass spectroscopy (ESI-

MS) m/z calculated for C27H41N9O7 603.6705, found 604 [M+H]+. cRGEfK ESI-MS m/z 

calculated for C28H43N9O7 617.6971, found 617 [M]+. KCCYSL ESI-MS m/z calculated 

for C30H49N7O9S2 715.8816, found 716 [M]+. KYLCSC ESI-MS m/z calculated for 

C30H49N7O9S2 715.8816, found 716 [M]+. 

 

3.2.4. Synthesis of HPMA copolymers 
 

Copolymerization was performed using the reversible addition-fragmentation 

chain transfer (RAFT) method in order to control the size and polydispersity. Briefly, 

HPMA, MA-GG-TT and APMA-CHX-A”-DTPA comonomers were combined with the 
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Figure 3.1. HPMA comonomers for imaging and targeting of pancreatic cancer. HPMA 
monomer affords the backbone and water-solubility of the polymer. MA-GG-TT is an 
active ester linker for postpolymerization addition of peptides by aminolysis. MA-GG-
RGDfK and MA-GG-KCCYSL are the monomers responsible for αvβ3 integrin and 
HER2 targeting, respectively. APMA-CHX-A”-DTPA chelates 111In+3 were used for 
imaging and biodistribution studies. 
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initiator VA-044 and the chain transfer agent 2-cyano-2-propyl dodecyl trithiocarbonate 

(CPDT) in methanol in a nitrogen purged sealed glass ampule (Scheme 3.1). The feed 

ratio of comonomers was kept constant at 88:10:2 (mol%), respectively. In order to 

control the polymerization, a ratio of 175:1:0.67 monomers:CPDT:VA-044 was used 

with total monomer concentration at 1 M. The ampule was placed in a 50ºC oil bath for 

24 hs, after which the resulting polymer was collected by precipitation and washed with 

diethyl ether. The precursor HPMA-GGTT-DTPA copolymer apparent weight average 

molecular weight (Mw) and polydispersity (Mw/Mn) were estimated by size exclusion 

chromatography (SEC) using a Fast Protein Liquid Chromatography (FPLC) system (GE 

Healthcare) equipped with a Superose 12 column calibrated with fractions of known 

molecular weight HPMA homopolymers. MA-GG-TT content was quantified by UV 

spectrophotometry at 305 nm (ε305 = 10,800 mol-1cm-1). APMA-CHX-A”-DTPA content 

was estimated based on the 2 mol% feed ratio. 

 

3.2.5. Peptide conjugation by aminolysis 

Peptide sequences were added to the polymer via aminolysis. Briefly, a molar 

ratio of 1.5:1 peptides to MA-GG-TT content was dissolved in anhydrous methanol under 

nitrogen atmosphere overnight at room temperature. The resulting copolymer was 

precipitated from ether and purified by dialysis against deionized water using dialysis 

tubes with a molecular weight cutoff (MWCO, 3500, SpectraPor) to remove small 

molecular weight impurities. Amino acid analysis was performed in the Health Sciences 

Core Lab and the University of Utah School of Medicine in order to determine the 

amount of each peptide per HPMA copolymer. 
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Scheme 3.1. RAFT polymerization of HPMA-GGTT-DTPA copolymer. Polymerization 
using RAFT synthesis with CPDT as the chain transfer agent and VA-044 as the azo-
initiator. Synthesis provides the precursor polymer for addition of peptides by aminolysis 
of the TT group on the side chains. Precursor polymerization allows for an accurate 
comparison of targeting strategies based on the exact same HPMA copolymer backbone. 
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3.2.6. Flow cytometry analysis 

Anti-HER2 (Neu), anti-αvβ3 Integrin and normal mouse IgG1 (negative control) 

monoclonal antibodies labeled with phycoerythrin (PE) were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA). Samples of CAPAN-1 and PANC-1 cells were 

removed, washed with fresh media followed by PBS and then incubated with antibodies 

for 30 min at 4oC. Cells were washed with PBS and then fixed in 1% formaldehyde in 

PBS. Samples were analyzed by flow cytometry using a FACScan System (BD 

Biosciences, San Jose, CA). 

 

3.2.7. Binding affinity  

Competitive binding of the αvβ3 integrin receptor with free cRGDfK and cRGDfK 

containing copolymers was assessed as described previously except PANC-1 cell lines 

were used for the assay13. KCCYSL-containing copolymers were assayed by performing 

a blocking experiment. CAPAN-1 cells were harvested and resuspended in serum-free 

IMDM media. Each sample was combined with 111In labeled KCCYSL polymers and 

increasing concentrations of free KCCYSL peptide or saline as control. The samples 

were incubated at 4ºC for 24 hs and then cells were centrifuged and the supernatant 

removed. The cells were then washed five times with saline. The resulting cell pellet was 

then counted using the CAPTUS 3000 gamma counter. 

 

3.2.8. Radiolabeling with 111In 

Each copolymer was dissolved in 400 µl of 1.0 M sodium acetate buffer pH 5.0 

and added to 5.0 µ (185 MBq) of 111InCl3 stock solution which was also previously 

treated with 200 µl of 1.0 M sodium acetate buffer pH 5.0. The reaction was heated at 
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50ºC for 45 min after which 50 µl of 0.05 M ethylenediaminetetraacetic acid (EDTA) 

solution was added to scavenge any free 111In ions. The radiolabeled copolymer was then 

purified using Sephadex G-25 PD-10 columns (GE Lifesciences, Piscataway, NJ). 

Radiostability was evaluated by incubating radiolabeled copolymer at 37ºC in the 

presence of mouse serum. Comparison between 111In labeled copolymers and free 111In+3 

was performed by size exclusion chromatography and subsequent measurement of each 

fraction using a Cobra II Auto-gamma-counter (Canberra Industries, Inc., Meriden, CT).  

 

3.2.9. Biodistribution  

Female Nu/Nu athymic mice (Charles River Laboratories, Wilmington, MA) were 

subcutaneously inoculated with 5 x 106 CAPAN-1 cells in PBS in the lower left and right 

flank of the animal. After tumors had reached 5-8 mm in diameter, the mice were injected 

via lateral tail vein with 100-250 µCi (3.7-9.25 MBq) of 111In labeled targeted 

copolymers or controls. Animals were euthanized at 2, 24, 72 h postinjection and blood, 

heart, lung, liver, spleen, kidney and tumor were collected, weighed and counted by a 

CAPTUS 3000 multichannel analyzer (Canberra Industries, Inc. Meriden, CT). All 

biodistribution studies were performed with 3-4 mice per group. All procedures were 

conducted under an approved protocol by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Utah. 

 

3.2.10. Imaging 

Single Photon Emission Computerized Tomography and X-ray Computerized 

Tomography Imaging (SPECT/CT) was conducted on another group of CAPAN-1 tumor 

bearing mice prepared as described above. Animals were administered anesthesia via 
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nose cone using 2.5% Isoflurane and placed in an Inveon microPET/SPECT/CT scanner 

(Siemens Medical Solutions USA, Inc., Malvern, PA) and imaged at 2, 24, 48 and 72 h 

postinjection. Images were reconstructed and visualized using the Inveon Research 

Workplace software from Siemens Medical Solutions.  Qualitative comparisons between 

conjugates were determined from the obtained images. 

 

3.2.11. Immunohistochemistry 
 

In order to assay the desmoplasia, neovasculature and the expression of HER2 in 

the in vivo mouse model, samples of CAPAN-1 xenograft tumor tissue were collected 

and fixed in normalized formalin buffer and embedded in paraffin. Slides were prepared 

and stained for HER2, CD31, smooth muscle actin (SMA), hyaluronic acid (HA) and 

Masson’s Trichrome performed by ARUP Laboratories, Salt Lake City, UT. 

 

3.2.12. Hyaluronidase treatment 

 In order to examine the stromal tissue breakdown effects to pancreatic tumors, 

Nu/Nu mice with CAPAN-1 xenograft tumors were administered 1600 U of Type 1 

hyaluronidase (Sigma-Aldrich, St. Louis, MO) per tumor daily for three consecutive days 

before each biodistribution study. Biodistribution studies were then conducted in a 

similar manner as above and compared to nonhyaluronidase treated groups.  

 

3.3. Results 

3.3.1. Characteristics of HPMA copolymer conjugates 

Characteristics of the synthesized HPMA copolymer conjugates are shown in 

Table 3.1. The precursor HPMA copolymer-GGTT-DTPA was synthesized with
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Table 3.1. Polymer Characteristics 
 

Polymer Mw Mn PDI 
CHX-

A”- 
DTPA 

(mol%) 

MA-
GG-TT 
content 
(wt%)c 

Peptide 
content 
(wt%)b 

Peptides 
Per 

Polymer 
Backbone 

111In 
Radioactivity 

(µCi/mg)d 

HPMA-GGTT-111In DTPA 33 
kDa 

30 
kDa 1.1 2.0a 

7.3c 
(MA-

GG-TT) 
--- --- --- 

HPMA-RGDfK-111In DTPA - - - - - 21.5 11.7 169.4 

HPMA-RGEfK-111In DTPA - - - - - 19.8 10.6 162.6 

HPMA-KCCYSL-111In DTPA - - - - - 18.9 8.7 214.3 

HPMA-KYLCSC-111In DTPA - - - - - 21.5 9.9 239.7 
a) Based on feed ratio during polymerization  
b) Based on amino acid analysis 
c) Based on UV spectroscopy at ε305 = 10,800 mol-1cm-1 
d) Measured by γ-counter 
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approximately 7.3 wt% of the activated ester. The copolymers contained 8-12 peptides 

per polymer backbone. This is similar in content to studies performed previously which 

demonstrated effective targeting in prostate tumor xenografts15,39. The measurement of 

APMA-CHX-A”-DTPA was estimated to be 8.6 wt% based on the feed ratio during 

polymerization and reproducibly chelated 111In with average of 196.5 ± 36.8 µCi/mg of 

polymer.  

 

3.3.2. Relative receptor expression by flow cytometry  

There are limited reports on the amounts of HER2 and αvβ3 integrin expression on 

the surface of pancreatic cell lines. Therefore, several cell lines were selected for this 

study based on literature reports that had high and low expression of HER2 receptors40. 

To our knowledge, levels of αvβ3 integrin expression on the various pancreatic tumor cell 

lines have not been widely investigated. Therefore, we performed flow cytometry 

experiments using PE labeled antibodies and found CAPAN1 had relatively high 

expression as compared to controls with respect to HER2 (p < 0.0001), but little to no 

significant difference with respect to controls versus αvβ3 integrin expression (Figure 

3.2). PANC-1 cell lines were opposite to that of CAPAN-1 with higher expression of αvβ3 

integrin (p < 0.001), but little to no expression of HER2 (Figure 3.2). The HER2 levels 

found between these two cell lines correlated well with previously reported values40. 

 

3.3.3. Binding affinity of targeted conjugates 

Binding affinity of the different targeted HPMA copolymer conjugates was 

examined against their respective cell lines CAPAN1 for HER2 and PANC1 for 

αvβ3 integrin binding for each KCCYSL and RGDfK peptide species of polymer,
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Figure 3.2. Flow cytometry for HER2 and αvβ3 integrin expression on pancreatic tumor 
cell lines. Differences in expression were compared to control (normal mouse IgG). 
PANC-1 had a significant difference in αvβ3 Integrin expression (** = p < 0.001) and 
CAPAN-1 had a significant difference in HER2 expression (*** = p < 0.0001) . Data 
expressed as mean ±  standard error of the mean (SEM) (n=5). 
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respectively, and found to retain their affinities as shown in Figure 3.3 and Figure 3.4. 

The affinities of the RGDfK containing HPMA copolymers were about an order of 

magnitude less when compared to free peptide controls (Figure 3.3). However, the 

possible multivalency effect of multiple peptides per polymer backbone is not accounted 

for in this in vitro assay. According to literature, there is no natural ligand that exists for 

HER2 receptors41. Therefore, a blocking experiment was conducted competing free 

KCCYSL with radiolabeled HPMA copolymer-KCCYSL-DTPA conjugates. Increasing 

concentrations in excess of 100x prevented the binding of HPMA copolymer-KCCYSL-

DTPA, suggesting that the binding affinity is retained for HER2 receptors in vitro even 

when covalently bound to the copolymer backbone. 

 

3.3.4. Radiolabeling and radiostability 

HPMA copolymer complexation with 111In was found to be reproducible and 

stable. Radiolabeling yields were on average 52.5±0.41% for all conjugates regardless of 

peptide ligand used. 111In and DTPA coordination is well-known to be a stable 

complex42. Figure 3.5 shows an example of the elution profile from a PD-10 column after 

incubation in mouse serum for 72 h. All other conjugates examined demonstrated similar 

stability profiles (data not shown).  

 

3.3.5. Immunohistochemistry of pancreatic cells 

Pancreatic tumors are well-known to exhibit a dense stromal matrix that is 

difficult to penetrate with anticancer drugs28. The nu/nu mouse subcutaneous xenograft 

tumor model used in this study was examined for a similar type of behavior by 

immunohistochemistry shown in Figure 3.6. Some of the typical signs of desmoplasia 
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Figure 3.3. Competitive binding of HPMA-RGDfK-DTPA copolymers. Competitive 
binding performed against 125I-Eichistatin with increasing concentrations of free peptide, 
targeting HPMA copolymer and nontargeted control (RGEfK). Assay performed in 
PANC-1 cell lines, and data expressed as the mean ± SEM performed in triplicate (n=3).  
The KD value for cRGDfK and HPMA copolymer-RGDfK-DTPA was found to be 1.418 
± 0.550 µM and 67.83 ± 0.48 µM, respectively. Statistical significance was found 
between the estimated KD values using a student t-test between cRGDfK and HPMA 
copolymer-RGDfK-DTPA (p < 0.0001). 
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Figure 3.4. Blocking experiment with HPMA copolymer-KCCYSL-DTPA conjugates. 
Cells were incubated with either 100 or 1000 times excess free KCCYSL peptide (or 
KYLCSC for control) in order to prevent binding to the surface of CAPAN1 HER2 
expressing cells in serum free media. Data are represented as the mean ± SEM (n=4).  
*** = p < 0.0001 
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Figure 3.5. Radiostability of the 111In labeled HPMA copolymers in vitro. Graph 
represents the typical elution profile from the PD-10 SEC separation for all HPMA 
copolymer-peptide-(111In-DTPA) conjugates. No free label (111In+3) was detected for any 
of the conjugates tested. Data represented as a mean ± standard deviation (n=3). 
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Figure 3.6. Immunohistochemistry of CAPAN1 tumors. A) HER2 staining. B) HER2 
expression scale 2+ and 3+ considered high expression. C) Smooth muscle actin (SMA) 
reddish brown color. Expressed in desmoplasia of pancreatic tumors. D) Masson’s Tri-
chrome stain. Blue color is collagen fiber. E) CD31 staining of endothelial cells before 
hyaluronidase treatment. F) CD31 staining after hyaluronidase treatment showing 
evidence of vascularization of the tumor beginning to penetrate the tumor. G) Stain for 
hyaluronic acid (brown) before hyaluronidase treatment. H) Stain for hyaluronic acid 
(brown) after treatment. Also shows a breakdown of the normal organized structure or 
stromal collapse.  
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or dense extracellular matrix are exhibited by expression of collagen, smooth muscle 

actin, hyaluronic acid (HA) and an overall dense interstitial tissue between pancreatic 

ductal adenocarcinoma cell (PDAC) formations4. The excised xenograft CAPAN1 tumors 

from this study demonstrate a similar response when examined by immunohistochemistry 

(Figure 3.6A). High levels of HA have been associated with increased IFP which 

prevents diffusion of drugs into the tumor for anticancer therapy4,31,43. Figure 3.6B 

demonstrates evidence of the stromal barrier breakdown after intratumoral injections of 

hyaluronidase. The organized ductal formations were absent and decreased HA levels 

were observed by immunohistochemistry after treatment with hyaluronidase (Figure 

3.6B). The dense interstitial tissue was also reduced in severity (Figure 3.6B). Increased 

levels of CD31 expression in the outer layers of the tumor shown in Figure 3.6C may 

also be evidence of initial tumor remodeling and neovascular penetration of the 

hyaluronidase treated tumors. 

 

3.3.6. Biodistribution of targeted HPMA copolymer-conjugates 

Biodistribution studies were conducted which compared the overall effects of 

both targeting and tumor stromal barrier breakdown. Figure 3.7 shows the comparison of 

targeted conjugates against controls with and without hyaluronidase treatment. Overall 

differences in nontargeted organ uptake were similar except in the case of KYLCSC 

containing conjugates which showed increased uptake in the kidney, and increased 

uptake in the spleen and liver was observed with RGDfK-containing HPMA copolymer 

conjugates (Figure 3.7A-B). The increase in tumor concentrations of targeted conjugates 

and nontargeted conjugates of hyaluronidase treatments can also be observed in Figure 

3.7C-D. 
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Figure 3.7.  A) Biodistribution of HPMA copolymer conjugates. Comparison of HER2 
targeted conjugates before and after hyaluronidase (HA) treatment. Data are represented 
as the mean ± SEM of n=3 for organs and n=6 for tumors. B)Comparison of integrin 
targeted conjugates before and after HA treatment. Data are represented as the mean ± 
SEM of n=3 for organs and n=6 for tumors. C) Bar graph showing statistical significance 
at 72 h postinjection between HER2 targeted conjugate and controls before and after HA 
treatment. Data are represented as the mean ± SEM of n=6. Stastical significance 
determined using one-way ANOVA. D) Bar graph showing the statistical significance at 
72 h postinjection between integrin targeted conjugate and controls before and after HA 
treatment. Data are represented as the mean ± SEM of n=6. Stastical significance 
determined using one-way ANOVA. 
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Figure 3.7. Continued  
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Figure 3.7.  Continued  
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3.3.7. SPECT imaging of targeted HPMA copolymer conjugates 

SPECT images revealed the overall fate of all conjugates studied overtime and 

support the necropsy biodistribution data (Figure 3.8-3.9). Clear evidence is shown in 

Figure 3.9 of the overall increase of targeted polymer accumulation after the 

hyaluronidase treatment. The images also demonstrate the measureable increased 

accumulation due to targeting ligand on the HPMA copolymer backbone within the 

tumor and the overall accumulation of conjugates in other organs and tissues with respect 

to time. 

 

3.4. Discussion 
 

The goal of this study was to compare two strategies using macromolecular water- 

soluble HPMA copolymers for pancreatic tumor targeting. This study, as well as others, 

demonstrates that penetration is markedly decreased in pancreatic tumors because of the 

dense extracellular matrix surrounding the tumor cells29,33. Hyaluronic acid was selected 

as the target for stromal barrier breakdown, since previous work showed that increased  

IFP exhibited by dense hyaluronic acid within pancreatic tumors limits the penetration 

and diffusion of small molecule drugs43. Passive targeting exhibited by the EPR effect is 

suppressed by increased IFP44,45. By breaking down the hyaluronic acid, the IFP is 

decreased, thereby allowing for higher diffusion rates and penetration within the tumor 

and augmenting the EPR effect. The hyaluronidase treatment used by Provenzano utilized 

a PEGylated version of hyaluronidase for intravenous administration which increases 

stability of the enzyme in the blood stream and sufficient active enzyme activity within 

the tumor4. However, in these studies, hyaluronidase, was injected directly into the tumor 

in order to assure sufficient active enzyme reached the hyaluronic acid containing tumors. 
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Figure 3.8. SPECT/CT imaging of conjugates treated with hyaluronidase. A) HPMA-
KCCYSL-111InDTPA. B) HPMA-KYLCSC-111InDTPA. C) HPMA-RGDfK-111InDTPA. 
D) HPMA-RGEfK-111InDTPA. SPECT demonstrates the overall biodistribtion of the 
HPMA-conjugates over time. Targeted conjugates had an increasing concentration in 
tumors over time where nontargeted conjugates decreased or reduced in concentration 
with respect to time.  
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Figure 3.9. SPECT/CT images comparing hyaluronidase effects. SPECT images 
demonstrating the increase in tumor accumulation after treating with hyaluronidase. A) 
Comparison of tumor localization based on KCCYSL or HER2 targeting conjugate at 72 
h postinjection. B) Comparison of tumor localization based on RGDfK or αvβ3 integrin 
targeting conjugates at 72 h postinjection. 
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Immunohistochemistry results provide evidence of both the presence of 

desmoplasia and stromal barrier breakdown. In this study, treatment with hyaluronic acid 

before administration of HPMA copolymer-targeted conjugates increased their overall 

accumulation in the tumor regardless of targeting ligand. This suggests that the xenograft 

tumor model used in the study still exhibits some of the desmoplastic properties of 

pancreatic cancer found in the clinical setting. Once the conjugates have entered the 

tumor region after stromal barrier breakdown, the active targeting ligands can interact 

with their receptors and effectively “stick” to their targeted sites within the tumor. 

Nontargeted conjugates were also found to increase in concentration in the tumor. This 

may be entirely because of the augmented EPR effect due to the lower IFP within the 

tumor. However, increases in diffusion rates in the tumor may cause the nontargeted 

HPMA copolymer conjugates to be flushed out of the tumor because they lack the ability 

to bind receptors within the tumor region. This idea is supported by the fact that no 

differences between targeted and nontargeted conjugates were found between targeted 

HPMA conjugates and their controls unless the barriers to diffusion were removed.  

Previous experience with HPMA copolymer-RGDfK conjugates have shown 

active targeting potential or increased localization in many tumor types due to the 

increased expression of αvβ3 integrin related to angiogenesis13,14,18. However, it is known 

that pancreatic tumors have low vascularity when compared to other tumor types. 

Therefore, a second strategy utilizing HER2 targeting was selected based on its potential 

for a targeting strategy independent of the angiogenesis process. HER2 targeting is 

promising not only because of its overexpression in pancreatic tumors but other tumor 

types as well46.  
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It appears that the HER2 strategy is superior to that of the integrin targeting 

strategy based on several observations. First, after hyaluronidase treatment, the HPMA 

copolymer-KCCYSL-DTPA conjugate was significantly different than its control at 72 h 

postinjection (Figure 3.7C). There was also no significant uptake in other nontargeted 

organs, suggesting that HER2 is a good strategy for targeting pancreatic tumors once the 

stromal barrier to macromolecular delivery is removed. The αvβ3 integrin targeted HPMA 

copolymer-RGDfK-DTPA shows a similar trend in increased accumulation in the tumor 

after hyaluronidase treatment but was not significantly different than controls (Figure 

3.7D). This may be due to the fact that much of the HPMA copolymer-RGDfK-DTPA is 

rapidly cleared from the blood stream by the liver and the spleen between 2-24 h, 

therefore limiting the amount of polymer that can accumulate in the tumor when 

compared to the other conjugates (Figure 3.7B). The HPMA copolymer-RGDfK-DTPA 

is clearly being removed from the blood stream by the reticuloendothelial system. 

The imaging modality used in the study is convenient because clinically used 

radionuclides with relatively long half-lives that match the biological half-life of HPMA 

copolymers are readily available. However, positron emission tomography (PET) 

imaging can provide much more quantitative and accurate imaging results than that of 

SPECT47. Several groups have recently started to investigate HPMA copolymers 

radiolabeled with PET isotopes48-50. However, the wide use of PET for HPMA copolymer 

imaging is limited due to the majority of clinically available positron emitting 

radionuclides having shorter half-lives which do not provide imaging information long 

enough to match the biological half-life of HPMA copolymer conjugates. A few isotope- 

producing facilities have the capabilities to produce longer lived isotopes but this lack of 

wide availability increases the costs, again making wide use logistically difficult. SPECT 
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imaging is widely used in the clinic for multiple procedures in cardiology, neurology and 

oncology and suitable in the short-term for development of image-guided delivery 

approaches.  

 Breaking stromal barriers for the delivery of macromolecular therapeutics 

provides a promising direction for targeted cancer therapy. Hyaluronidase is currently not 

the only stroma treating agent being investigated33. Recently, Abraxane® has been in 

clinical trials in conjunction with gemcitabine for pancreatic cancer treatment and has 

shown to cause stromal collapse and therefore increased drug accumulation in the 

tumor51. Hedgehog signal inhibitors can also influence the pancreatic stroma and have 

demonstrated increased drug accumulation52. These stromal treating agents have promise 

with increasing the concentration of macromolecular conjugates including targeted 

HPMA copolymers to pancreatic cancers and can be investigated in the near future. 

However, stromal disruption in tumors could also be detrimental. Breaking down the 

stroma potentially may lead to increased metastasis based on the fact that tumor cells rely 

on the stroma for their support structure. However, in the case of a hedgehog pathway 

inhibitor related to stromal treatment, metastasis was reduced in an orthotopic xenograft 

metastatic mouse model53. More in-depth studies related to increased metastasis must be 

conducted to understand the risks of treating the stroma with various antistromal agents.   

 

3.5. Conclusion 

This study demonstrates that pancreatic cancer targeting can be improved by 

macromolecular carriers such as HPMA copolymers when the dense stromal barrier is 

removed. It is further demonstrated that active targeting using the KCCYSL ligand 

increased tumor localization over time when hyaluronidase was used. Targeted HPMA 
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copolymers take advantage of passive accumulation to the tumor via the EPR effect 

which is augmented when stromal barriers are removed such as high intratumoral fluidic 

pressure. Further, HPMA copolymers complexed with radionuclides can be imaged for 

biodistribution. The imaging information can be utilized for predicting therapeutic 

delivery of a companion HPMA copolymer-drug conjugate. Antistromal agents have the 

potential to enhance efficacy of pancreatic cancer treatment. This strategy may open the 

door for enhanced delivery of polymer therapeutics.   
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CHAPTER 4 
 
 
 

IN VITRO EVALUATION OF HER2 TARGETED HPMA- 
 

COPOLYMERS FOR IMAGE-GUIDED DRUG  
 

DELIVERY IN PANCREATIC CANCER* 
 
 
 

4.1. Introduction 
 

 Successful treatment of pancreatic cancer is in dire need of improvement. Patients 

have the abysmal prospect when diagnosed based on the current 5-year survival rate of 

only 6%1. Not only is there a low probability of survival but incidence rates have been 

increasing by 1.5% since 20041. Many of the current therapies for the treatment of 

pancreatic cancer are designed as a one-size-fits-all approach. However, heterogeneity of 

the cancer patient population, tumor type, origin and microenvironment contribute to 

differences in response to any particular therapy. There remains a need to predict and 

assess therapies administered to patients in real-time and provide information of the 

potential efficacy and safety of drug conjugates. Advanced knowledge of a potentially 

successful treatment will provide better efficiency, efficacy and safety for anticancer drug 

therapies, thus individualizing treatment for each patient. 
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 One approach for accomplishing individualized medicine is to use image-guided 

drug delivery (IGDD). Imaging is being incorporated into cancer treatment at an ever 

growing rate2.  It has the capability of providing clinicians information for diagnosis and 

potentially selecting a particular therapy based on the imaging results. This approach has 

been used in the clinic to improve cancer therapy. One example is the use of 

radioimmunotherapy for B-cell lymphomas such as Bexxar® and Zevalin®3. This 

radioimmunotherapy includes a two-part system. First, a patient is given an imaging 

version of the labeled CD-20 targeted antibody and imaged by gamma camera. 

Depending on the biodistribution data acquired, the patient is then qualified for the 

therapeutic radiolabeled antibody based on safety parameters defined in the imaging 

version. A similar approach can be used for drug conjugates. A multifunctional carrier 

that can carry both an imaging agent and a drug can be combined to provide both 

diagnostics and therapeutics in one carrier. This allows for real-time assessment of drug 

safety and potential efficacy.4-7 Systems based on this technology can be of particular use 

for clinicians in selecting patients for anticancer therapies.  

 Macromolecular water soluble polymers such as N-(2-hydroxypropyl)- 

methacrylamide (HPMA) copolymers are known to increase the solubility of many 

hydrophobic drugs and exhibit passive targeting to tumor tissues due to the enhanced 

permeability and retention (EPR) effect8,9. HPMA copolymers are suitable for IGDD due 

to their biocompatibility, ability to control molecular weight and molecular weight 

distribution, and incorporation of multifunctional components such as drugs, imaging 

agents and active targeting ligands. The use of cancer-specific targeting ligands 

conjugated to the backbone of HPMA copolymers has been shown to increase its 

localization in the tumor tissue10.   
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 One potential target for pancreatic cancer that has recently been explored is 

HER211-13. HER2 is a member of the human epidermal growth factor receptor family of 

tyrosine kinases. HER2 receptors are overexpressed in many cancer types, including 

pancreatic cancer. However, there exists a reported range (16-61%) of pancreatic tumors 

having high expression of HER214-18. Recently, a small peptide ligand KCCYSL was 

reported to have selective specificity to HER2 receptors overexpressed in breast cancer 

tissues confirmed by in vivo imaging techniques19. KCCYSL can easily be conjugated to 

HPMA copolymers in a similar manner as described for other peptide ligands.  

 In vitro and in vivo imaging of HPMA copolymers has been performed for many 

studies20. Imaging agents such as fluorophores, MRI contrast agents and radionuclides 

have proven valuable in evaluating the uptake of HPMA copolymer conjugates in tumor 

cells and localization in animal models20-23. Nuclear medicine techniques such as single 

photon emission computerized tomography (SPECT) and positron emission tomography 

(PET) are advantageous based on their ability to provide high-resolution and quantifiable 

images of radionuclide labeled HPMA copolymer distribution in vivo5. For example, we 

have used gamma scintigraphy to monitor the tumor localization of targeted HPMA 

copolymers in various tumor animal models5,24,25. However, these studies were limited to 

planar gamma scintigraphy techniques which only give information on the localization 

but cannot be used quantitatively. 111In is an optimal radionuclide to attach to the HPMA 

copolymers due to its clinical utility and accessibility, and its 2.8 day half-life which is 

sufficient for monitoring the biodistribution for a few days in vivo by SPECT/CT which 

can give more accurate and quantitative results.  

 Gemcitabine is the first line therapy for pancreatic cancer but suffers from poor 

stability in the blood stream26. It is a cytidine analogue and during cell division can 
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inhibit DNA chain elongation, thus triggering apoptosis27. This requires the drug to 

traverse the blood stream to the tumor site and migrate into the tumor cell for it to be 

effective. However, it is known that gemcitabine is rapidly metabolized in the blood 

stream to an inactive product. Another factor limiting gemcitabine efficacy is its dose-

limiting toxicity associated with myelosuppression26. Gemcitabine delivery to the tumor 

cell may be improved when incorporated into the side chains of HPMA copolymers via a 

lysosomal degradable linker. Including this drug in the side chains of the copolymer can 

serve three purposes: First, it can prevent rapid metabolism in the blood stream because 

the HPMA copolymer can reduce the interactions of the drug with the enzymes 

responsible for its inactivation. Second, covalently bound gemcitabine can potentially 

prevent free drug from diffusing into the normal vasculature. This can limit the dose-

limiting toxicity and allow for a higher amount of drug to be administered to the patient, 

thus improving efficacy. Third, site specific release can be achieved by attachment of 

targeting moieties and degradable spacers. This will ultimately improve the safety and 

efficacy profile of gemcitabine therapy in the treatment of pancreatic cancer. The goal of 

this study was to synthesize and characterize HPMA copolymers containing gemcitabine, 

chelator of 111In3+, and KCCYSL in the side chains. To our knowledge, this is the first 

example of an HPMA copolymer simultaneously containing anticancer drug, tumor 

targeting peptide and imaging agent. A series of experiments were conducted to evaluate 

the radionuclide stability, drug release and targetability of these systems in vitro. 
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4.2. Materials and Methods 

4.2.1. Chemicals 

Gemcitabine HCl was obtained from LC Laboratories (Woburn, MA). Amino 

acids for peptide synthesis were obtained from AAPPTec (Louisville, KY). N-[(R)-2-

Amino-3-(p-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N-

N’,N’,N”N”-pentaacetic acid (p-SCN-CHX-A”-DTPA) was obtained from Macrocyclics 

(Dallas, TX). N-(3-Aminopropyl)methacrylamide hydrochloride (APMA) was acquired 

from Polysciences (Warrington, PA). 2,2’-Azobis[2-(2-imidazolin-2-yl)propane] 

dihydrochloride (VA-044) was obtained from Wako Chemicals (Richmond, VA). 

111InCl3 was obtained from the Intermountain Radiopharmacy (Salt Lake City, UT). All 

other reagents were of reagent grade and obtained from Sigma-Aldrich (St. Louis, MO). 

 

4.2.2. Synthesis of comonomers 

N-(2-hydroxypropyl)methacrylamide comonomer (HPMA) and N-

methacryloylaminopropyl-2-amino-3-(isothiourea-phenyl)propyl-cyclohexane-1,2-

diamine-N,N-N’,N’,N’’,N’’-pentaacetic acid (APMA-CHX-A”-DTPA) were synthesized 

according to published methods28,29 (Figure 4.1) with results in Appendix A. The 

intermediate N-methacryloylglycylphenylalanylleucylglycine (MA-GFLG-OH) was 

synthesized via solid phase synthesis. Briefly, amino acids were sequentially added from 

N-terminus to C-terminus using a typical solid phase synthesis strategy30. The final 

addition involves the coupling of methacrylic acid to the peptide resin employing O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate (HBTU) as a 

coupling reagent. The MA-GFLG-OH was removed from the resin by treatment with 

trifluoroacetic acid in the presence of a polymerization inhibitor, t-octyl pyrocatechine.
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Figure 4.1. Comonomers used for the synthesis of the polymers and RAFT synthesis 
scheme. A) HPMA comonomer which affords water solubility constituting the main part 
of the backbone. B) MA-GG-KCCYSL comonomer used for active targeting of HER2 
receptors. C) MA-GFLG-Gem comonomer capable of lysosomal release of gemcitabine 
within the tumor cell. D) APMA-CHX-A”-DTPA comonomer for chelation of 111In3+ for 
imaging by SPECT/CT. For RAFT polymerization monomers were kept constant at 1M 
concentration with a ratio of [300:1:1] monomer:CPDT:VA-044.    
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MA-GFLG-OH was converted to N-methacryloylglycylphenylalanylleucylglycyl-p-

nitrophenyl ester (MA-GFLG-ONp) according to published methods31. The final steps for 

synthesis of the drug-comonomer N-methacryloylglycylphenylalanylleucylglycyl-

gemcitabine (MA-GFLG-Gem) were performed by aminolysis of the MA-GFLG-ONp 

with excess gemcitabine (1:1.5 ratio, respectively).  The product was purified by column 

chromatography (silica gel, eluent: ethylacetate/methanol).  The final product was 

confirmed by electrospray ionization mass spectrometry (ESI-MS) m/z calculated for 

C32H41F2N7O9 705.7062, found 705 [M]+, 727 [M+Na]+. Peptide comonomers N-

methacryloylglycylglycyllysylcystylcystyltyrylserylleucine (MA-GG-KCCYSL) and N-

methacryloylglycylgycyllysyltyrylleucylcystylserylcysteine (MA-GG-KYLCSC) were 

also synthesized via solid phase synthesis on a PS3 Peptide Synthesizer (Protein 

Technologies, Inc., Tucson, AZ) with addition of methacrylic acid as the final peptide 

residue as described above in the MA-GFLG-OH synthesis. Both products were 

confirmed by ESI-MS m/z calculated for C38H59N9O12S2, 898.0582, found 898.3 [M]+. 

 

4.2.3. Polymerization of HPMA conjugates 

Copolymerization was performed using the reversible addition-fragmentation 

chain transfer (RAFT) method in order to control the size and polydispersity32. Briefly, 

HPMA comonomer, MA-GFLG-Gem, MA-GG-KCCYSL (or MA-GG-KYLCSC for 

control) and APMA-CHX-A”-DTPA comonomers were combined with the initiator VA-

044 and the chain transfer agent 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) in 

40/60 DMF/methanol in a nitrogen-purged sealed glass ampule (Figure 4.1). The feed 

ratio of comonomers were kept constant at 83:10:5:2 (mol%), respectively. Pilot batches 

were synthesized in order to determine the optimal polymerization ratios of monomer, 



111 

 
 

CPDT and VA-044. Ultimately, a ratio of [300:1:1] monomers:CPDT:VA-044 with 

monomer concentration held constant at 1 M provided the desired results. The ampule 

was placed in a 40oC oil bath for 24 h, after which the resulting polymer was collected by 

precipitation and washed with diethyl ether. The resulting copolymers’ average molecular 

weight (Mw) and polydispersity (Mw/Mn) were estimated by size exclusion 

chromatography (SEC) using a Fast Protein Liquid Chromatography (FPLC) system (GE 

Healthcare, Piscataway, NJ) equipped with a Superose 12 column calibrated with 

fractions of known molecular weight HPMA homopolymers. Control conjugates with 

either the scrambled peptide sequence (KYLCSC), no targeting peptide or no drug were 

also synthesized in a similar manner. 

 

4.2.4. Characterization of gemcitabine and peptide contents 

of HPMA copolymer conjugates  

Gemcitabine content of the conjugates was determined by enzymatic release of 

free drug from the HPMA copolymer backbone as described previously33. Treated 

samples were subjected to HPLC analysis using a mobile phase consisting of deionized 

water with 1% trifluoroacetic acid (TFA) and acetonitrile (ACN) with 1% TFA according 

to the following gradient: 0 min, 2% ACN to 90% ACN over 20 min. HPLC analyses 

were performed with an Agilent Series 1100 HPLC (Agilent Technologies, Wilmington, 

DE, USA) equipped with an Alltima C18 5 µm 150 x 4.6 mm column and a photo diode 

array detector. A flow rate of 1.0 ml/min was utilized with an injection volume of 20 µl. 

UV absorbance of 267 nm was used for quantification of gemcitabine. Peptide content 

was determined by amino acid analysis performed in the University of Utah Core 

Research Facilities (Salt Lake City, UT). 
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4.2.5. Radiolabeling and stability of the conjugates 

Each copolymer was dissolved in 400 µl of 1.0 M sodium acetate buffer pH 5.0 

and added to 5.0 mCi of 111InCl3 stock solution which was also previously treated with 

200 µl of 1.0 M sodium acetate buffer pH 5.0. The reaction mixture was heated at 50ºC 

for 45 min after which 50 µl of 0.05 M EDTA solution was added to scavenge any free 

111In ions. The radiolabeled copolymer was then purified using Sephadex G-25 PD-10 

columns (GE Life sciences, Piscataway, NJ). Radiostability was evaluated by incubating 

radiolabeled copolymer at 37ºC in the presence of mouse serum. Samples were collected 

at 24, 48 and 72 h and a comparison between 111In labeled copolymers and free 111In3+ 

was performed by size exclusion chromatography using PD-10 columns. Each fraction 

was subsequently measured using a Cobra II Auto-gamma-counter (Canberra Industries, 

Inc., Meriden, CT).  

 

4.2.6. Cell lines 

CAPAN-1 pancreatic adenocarcinoma cells (ATCC, Manassas, VA) were 

cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) (ATCC, Manassas, VA) 

supplemented with 20% (v/v) fetal bovine serum (FBS) and 1:100 penicillin/streptomycin 

at 37ºC in a humidified atmosphere of 5% CO2 (v/v). PANC-1 pancreatic duct carcinoma 

cells (ATCC, Manassas, VA) were cultured in Dulbecco’s Modified Medium (DMM) 

(ATCC, Manassas, VA) supplemented with 10% FBS at 37ºC in a humidified 

atmosphere of 5% CO2 (v/v). For all experimental procedures, the confluent cultures 

were harvested by treatment with TrypLE™ Express (Invitrogen, Grand Island, NY) and 

subsequent dilution in their respective medium or phosphate buffered saline (PBS). 
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4.2.7. Relative expression of HER2 by flow cytometry 

Anti-HER2 (Neu) and normal mouse IgG1 (negative control) monoclonal 

antibodies labeled with phycoerythrin were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA). Samples of CAPAN-1 and PANC-1 cells were removed, washed with 

fresh media followed by PBS and then incubated with antibodies for 30 min at 4oC. Cells 

were washed with PBS and then fixed in 1% formaldehyde in PBS. Samples were 

analyzed by flow cytometry using a FACScan System (BD Biosciences, San Jose, CA). 

 

4.2.8. Affinity of KCCYSL-containing copolymers 

 Copolymers containing KCCYSL in the side chains were assayed by performing 

an in vitro blocking experiment. CAPAN-1 cells were harvested and resuspended in 

serum-free IMDM media. Each sample was combined with 111In labeled KCCYSL 

copolymers and 100 and 1000 fold excess concentrations of free KCCYSL peptide or 

KYLCSC as control. The samples were incubated at 4ºC for 18 h and then cells were 

centrifuged and the supernatant removed. The cells were subsequently washed three 

times with saline until no further activity could be removed from the resulting cell pellet. 

The resulting cell pellet was then counted using a CAPTUS® 3000 Well Counting 

System (Capintec, Ramsey, NJ). The percent of HPMA copolymer conjugate bound to 

the cells relative to control was reported. The assay was conducted in triplicate. 

  

4.2.9. Gemcitabine release in various media 

 The rate of gemcitabine release in vitro from copolymers was examined in buffer 

solutions or cell culture media. The release of the drug from copolymers was carried out 

by dissolving the polymers (3 mg/ml) each in acetate buffer solution (pH 5.0), phosphate 
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buffered saline (PBS) solution (pH 7.4), Dulbecco's Modified Eagle's Medium (DMEM) 

with 10% of fetal bovine serum (FBS) and Iscove's Modified Dulbecco's Medium 

(IMDM) with 20% of fetal bovine serum, respectively. The samples were kept at 37 C. 

At scheduled time intervals, 20-60 l solutions were withdrawn from the samples. 

Gemcitabine contents were analyzed by HPLC under the same conditions as described 

above. 

 

4.2.10. Cytotoxicity of conjugates with gemcitabine in the side chains 

 The in vitro cell growth inhibition of gemcitabine and copolymers was evaluated 

using a Cell Counting Kit-8 (CCK-8) assay (Donjindo Molecular Technologies, Inc., 

Rockville, MD). Briefly, PANC-1 and CAPAN-1 cells were seeded into 96-well plates at 

an initial density of 2000 cells/well and allowed to adhere for 24 h. Stock solutions of 

free gemcitabine, conjugates and controls were prepared in dimethylsulfoxide (DMSO) 

and subsequent dilutions were done to a final concentration of 0.5% (v/v) in media. 

Seeded cells were incubated for 72 h with increasing concentrations of gemcitabine or 

copolymers in fresh media containing 0.5% (v/v) DMSO. The drug-containing media 

were removed and incubated in fresh media for another 48 h. The media were removed 

and 100 l of medium solution containing 10% CCK-8 reagent was added. The cells 

were incubated at 37 °C for a further 1-4 h. Cell viability was obtained by scanning with 

a SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, CA) at 450 minus 

630 nm. Each experiment was performed three times in triplicate.  
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4.3. Results and Discussion 

HPMA copolymer conjugates containing gemcitabine, chelator of 111In3+, and a 

HER2 targeting peptide were successfully synthesized by RAFT copolymerization 

techniques. The design criteria for a potentially translatable and successful IGDD system 

based on HPMA copolymers are as follows: First, the copolymer must be synthesized in 

a size-controlled and reproducible manner. Second, the polymer-drug constructs must 

have a biological half-life that allows enough circulation time in the blood stream in order 

to allow sufficient time to encounter and accumulate within the diseased tissue. The 

constructs on the other hand must be eliminated from the kidney in a timely manner in 

order to reduce background signal in the blood during imaging and reduce the longtime 

exposure of HPMA copolymer conjugates to nontargeted tissues in the body. Previous 

studies have shown that HPMA copolymers generally can be filtered through the kidney 

and excreted in the urine when the Mw is less than 45 kDa9. Therefore, the copolymer 

conjugates were synthesized around a size range of 20-30 kDa (Table 4.1). The final 

criteria needed in a successful IGDD HPMA copolymer system is stability of the drug 

and imaging components in conditions simulated to the blood stream and site-specific 

drug release within the targeted tissue. Each of these issues was examined as discussed 

below. Radiolabeling of the HPMA copolymers with 111In was found to be quite efficient 

with a decay corrected radiochemical yield of 83.1 + 0.2%. Stability was assessed in 

mouse serum as displayed in Figure 4.2. DTPA is known to be a stable chelator of 111In 

and other radionuclides.34 No free 111In3+ was detected from the size exclusion column 

purifications over the 72 h. The results confirm that chelation with DTPA is stable. The 

HPMA copolymer-KCCYSL-DTPA conjugates contain the HER2 targeting peptide  

sequence discovered by Karasseva, et al.19. This peptide was included because of its
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Table 4.1. Summary of the HPMA copolymer characteristics  
 
Polymer Monomer  

Feed 

Ratioa 

(mol%) 

Mw b 

(kDa) 

Mn
b 

(kDa) 

PDI 

(Mw/Mn) 

Expected 

Peptide 

Content 

(wt%) 

Measured 

Peptide 

Contentc 

(wt%) 

Expected 

Gemcitabine 

Content 

(wt%) 

Measured 

Gemcitabine 

Contentd  

(wt%) 

HPMA-
KCCYSL-
Gem-DTPA 

83:5:10:2 26.8 18.7 1.4 14.3 13.6 6.2 4.7 

HPMA-
KYLCSCe-
Gem-DTPA 

83:5:10:2 29.9 21.4 1.4 14.3 14.8 6.7 5.4 

HPMA-
Gem-DTPA 

88:10:2 23.6 21.0 1.1 - - 6.5 5.0 

HPMA-
KCCYSL-
DTPA 

93:5:2 20.4 16.8 1.2 18.4 19.9 - - 

 
a)Total monomer concentration 1M for RAFT polymerization at 40ºC for 24 h Solvent = 
40:60 Dimethylformamide:Methanol 
b)Estimated by size exclusion chromatography 
c)Determined by amino acid analysis  
d)Determined by enzymatic release followed by HPLC analysis 
e)KYLCSC is nontargeted scramble peptide sequence 
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Figure 4.2. Stability of the [111-In] radiolabeled HPMA copolymer conjugate. HPMA 
copolymers were incubated in the presence of mouse serum for up to 72 h. After SEC 
purification, each fraction was measured. Each time point was performed in triplicate.   
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potential in targeting HER2 overexpressed in some tumor types such as pancreatic cancer. 

Several tumor cell lines have been reported to express different levels of HER2 as 

investigated by flow cytometry35. The results are shown in Figure 4.3. PANC-1 and 

CAPAN-1 were selected for our study based on their tumorogenicity and expression 

levels of HER2. CAPAN-1 was shown to have a significantly higher expression of HER2 

than PANC-1 (p < 0.001) and control (p < 0.0001), which was consistent with previous 

reports35. No significant difference in HER2 expression was observed between PANC-1 

and control antibodies, therefore PANC-1 cell line was used as a negative control for 

HER2 expression for in vitro assays. 

 The ability of the KCCYSL-containing HPMA copolymers to bind HER2 

expressing cell lines was investigated, because the HPMA copolymer may change or 

prevent the affinity of the KCCYSL peptide contained on its side chains. No natural 

ligand is known for HER2 receptors that can be used in a competitive binding assay36. 

Therefore, a blocking experiment was performed where excess free peptide was 

incubated in the presence of 111In labeled HPMA copolymer-KCCYSL-DTPA conjugates 

with CAPAN-1 cells in serum free media. Figure 4.4 shows the results of the blocking 

study. In summary, binding of the CAPAN-1 cell lines known to express HER2 was 

effectively blocked when excess peptide was incubated in the presence of HPMA 

copolymer-KCCYSL-DPTA conjugates. Scramble peptide KYLCSC was used as a 

control and therefore suggests that the KCCYSL-containing copolymer retains a 

measurable binding affinity to the HER2 receptor. 

Drug release was investigated in complete cell culture media and also in buffered 

solutions of pH 5.0 and 7.4. Results are shown in Figure 4.5. The conjugates were most 

stable in the low pH 5.0 media which is consistent with an amide bond formed between
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Figure 4.3. Relative expression of HER2 on pancreatic cancer cell lines. Only HER2 
expression on CAPAN-1 cell lines showed a significant difference (*** = p < 0.0001) 
than that of control.   
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Figure 4.4. Binding affinity of HPMA copolymer-KCCYSL-DTPA conjugate. Control 
(blue bar) includes 1000 fold excess KYLCSC scramble peptide. Increasing amounts of 
100 and 1000 fold excess of free KCCYSL peptide increasingly blocked the binding of 
HPMA-KCCYSL-DTPA. Data represented as the mean and SEM (n=3). Statistical 
significance performed using one-way ANOVA with Tukey’s posttest (* = p < 0.01 and 
*** = p < 0.001).   
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Figure 4.5 Gemcitabine release from the conjugates. Data expressed as the mean and 
SEM (n=3). Statistical significance performed using 1 way ANOVA with Tukey’s post-
test.  * = p < 0.01. 
 

 

 

 

 



122 

 
 

the amide of the pyrimidine ring of gemcitabine and the C terminus of the GFLG linker. 

However, some drug instability was found in cell culture media. The amide bond may be 

unexpectedly less stable due to electron delocalization related to the pyrimidine ring of 

the drug. Another possible explanation for instability of the gemcitabine conjugation is 

the potential for the ester formation with the 5’ OH of the gemcitabine structure. Esters 

are inherently less stable than amide bonds. It is possible that actually, both bond 

formations are occurring.  Unfortunately, no techniques were currently available to 

accurately determine the type of bonds being formed.  This includes NMR which would 

not be able to differentiate the differences of the protons on either structure.  On another 

note, the drug released faster in cell culture media than PBS. This is consistent with 

previously reported results with an HPMA copolymer-docetaxel conjugate containing the 

same linker33 and may be because there are various enzymes and proteins in the media. 

However, the HPMA copolymer-docetaxel conjugates with RGDfK ligands for targeting 

neovascular tissue demonstrated an enhanced anticancer effect, indicating that future in 

vivo experiments with targeted HPMA copolymers with gemcitabine may demonstrate a 

similar result. The stability of the gemcitabine conjugate is sufficient for drug delivery 

using HPMA copolymers, but perhaps could be improved by development of more stable 

linker chemistries. 

 Cytotoxicity of HPMA copolymer constructs was evaluated in both cell lines, 

including PANC-1 (negative HER2) and CAPAN-1 (positive HER2). Results are shown 

in Figure 4.6 and calculated IC50 values are displayed in Table 4.2. IC50 values were 

consistently in the nM range, similar to results reported previously35. However, minor 

differences were observed between HER2 positive and HER2 negative cell lines, for
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Figure 4.6. Cytotoxicity of HPMA copolymer conjugates containing gemcitabine. A) 
PANC-1 and B) CAPAN-1 graphs demonstrating the cytotoxicity of each HPMA 
copolymer species. Red circle is free Gemcitabine. Yellow square is HPMA copolymer-
KCCYSL-Gem-DTPA. Green diamond is HPMA copolymer-KYLCSC-Gem-DTPA 
(scramble). Blue triangle is HPMA copolymer-Gem-DTPA. Data are represented as the 
mean and SEM (n=9). 
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Table 4.2. IC50 values of HPMA copolymer conjugates in HER2 negative and HER2 
positive cell lines. Statistical analysis was performed within each cell line using one way 
ANOVA with Tukey’s posttest. Free drug was statistically different than all three 
conjugates in both cell lines (*** = p < 0.001). HPMA conjugates were not statistically 
significant from each other. 
 
Polymer PANC-1 

IC50 (nM) 

CAPAN-1 

IC50 (nM) 

Gemcitabine (Free drug) 28.8*** 5.3*** 

HPMA-KCCYSL-Gem-DTPA 142.0 18.2 

HPMA-KYLCSCa-Gem-DTPA 108.0 12.4 

HPMA-Gem-DTPA 104.0 14.6 
 
a)KYLCSC is nontargeted scramble peptide sequence;  
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reasons that are not entirely clear. Data suggest that HER2 positive cell lines are more 

sensitive to gemcitabine therapy. Some studies have suggested that overexpression of 

HER2 in pancreatic cancer patients correlates with poor prognosis37,38. Regardless, more 

in-depth analysis is needed to validate this hypothesis. The results also show a difference 

between the free drug and the HPMA copolymer species. This is typical of HPMA 

copolymer-drug conjugates since the free drug enters the cell by passive diffusion 

compared to endocytosis of the conjugates by the macromolecular system. No significant 

difference was observed between the KCCYSL and KYLCSC (scrambled) peptides due 

to the fact that the drug is gradually released in the cell culture media over the 72 h. The 

available drug activity over this time frame is prolonged and therefore, local 

concentration of gemcitabine to a tumor cell may be lower, thus explaining the difference 

between the free drug and the polymer-drug conjugate. 

The in vitro results demonstrate that gemcitabine activity is still retained when 

bound to the HPMA copolymer. However, the drug is gradually released in physiological 

media. Gemcitabine is rapidly metabolized in the bloodstream, thus losing its anticancer 

activity. Therefore, high doses must be administered to patients in order to achieve 

efficacy, but that in turn also increases toxicity such as myelosupression26. However, 

because the drug is released slowly from the conjugates, it should be protected from 

metabolic enzymes until encountering the tumor in the in vivo situation. Subsequent 

release once in the tumor environment may increase the local active concentration of 

gemcitabine, thus providing a potentially more efficacious and safe drug therapy. Active 

targeting of the drug to tumor cells under study did not show an increased efficacy. 

Reports in the literature regarding active and passive targeting of drugs are mixed39. In 

the current study, a possible explanation of lack of difference between actively or 
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passively targeted copolymers in terms of cytotoxicity is the premature release of the 

drug. Future in vivo studies will need to be conducted to evaluate the value of this 

targeting strategy in relevant preclinical animal models and perhaps to consider 

alternative targeting strategies for targeting pancreatic tumors.  

 

4.4. Conclusion 

 HPMA copolymer–gemcitabine conjugates containing chelator of 111In3+ and 

HER2 targeting peptides in the side chain were synthesized in a size and content-

controlled manner. The conjugates showed efficacy against pancreatic tumor cell lines. 

However attachment of the targeting peptides did not improve cytotoxicity. Premature 

release of the free drug was observed that can in part contribute to cytotoxicity. In vitro 

radiostability of the 111In complex was sufficient for imaging over a relevant time. These 

studies have set the stage for further optimization and evaluation of the constructs for 

image-guided delivery in pancreatic tumor models.  
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CHAPTER 5 
 
 
 

GOLD NANOROD-MEDIATED HYPERTHERMIA ENHANCES  

THE EFFICACY OF HPMA COPOLYMER-90Y CONJUGATES 

IN TREATMENT OF PROSTATE TUMORS* 

 

5.1. Introduction 

Prostate cancer is the most frequently diagnosed cancer in the U.S.1. Typically, 

this disease affects men in their later years of life. With early screening, the majority of 

patients can be appropriately treated with much success. However, it remains difficult to 

treat when the cancer is found in late or advanced stages. Treatment options typically 

start with surgical resection followed by hormone therapy, chemotherapy, biologic 

therapy or radiation therapy. Each of these treatments can cause distal or local adverse 

effects that can lead to lesser quality of life. Therefore, there remains a need to develop 

novel methods to treat prostate cancer that minimize the potential for side effects.  

Macromolecular systems for delivery of therapeutics have been shown to 

intrinsically target the tumor tissue via the enhanced permeability and retention (EPR) 

effect2. Leaky vasculature from angiogenesis due to the rapid tumor growth generates 

increased extravasation rates of macromolecules within the tumor region. 
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Macromolecules do not easily diffuse from the normal vessels because the gaps in 

vascular walls are largely tight and intact. Evidence suggests that increased 

concentrations of these delivery systems containing therapeutics improve the treatment of 

cancer3, 4. 

The use of radionuclides for imaging and as radiotherapeutics has been shown to 

be effective in the diagnosis and treatment of many cancer types5. Yet, radiotherapeutics 

for cancer treatment have had limited application. This is in part due to insufficient 

localization and the nonspecific uptake of radionuclides in the patient causing undesirable 

nontargeted tissue damage from radiation exposure. Several clinically approved 

radionuclides for therapy are conjugated to macromolecular tumor targeting monoclonal 

antibodies (MoAbs) in order to target only the specific diseased tissue6. However, tumor 

targets are heterogeneous in various patients and within individual tumors due to a 

variety of expression levels of the targeted antigen. One other shortfall of targeted 

delivery using MoAbs is that the target receptor is rarely only expressed on the targeted 

disease tissue which may lead to increased uptake in nonspecific tissues, thereby 

increasing the chance of treatment related toxicity. There remains a need to target tumors 

using other macromolecular systems. 

 Use of water-soluble polymers based on N-(2-hydroxypropyl)methacrylamide 

(HPMA) is one potential method to increase radiotherapeutic accumulation in the tumor7-

9. HPMA copolymers are ideal macromolecular carriers for radionuclide delivery because 

of their ability to be synthesized in a size-controlled manner and presence of a variety of 

comonomers available to incorporate drugs, imaging agents or tumor targeting 

ligands9-12. Because of their macromolecular nature, they are also able to passively target 

tumors via the enhanced permeability and retention (EPR) effect2. However, the delivery 
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of HPMA copolymers and other macromolecules via the EPR effect has been variable 

from patient to patient13. Therefore, other methods must be considered to increase 

localization within the tumor. 

 Previous studies have shown the advantage of localized hyperthermia to increase 

HPMA copolymer conjugate localization and efficacy in treating prostate tumors14-16. 

Hyperthermia can be easily controlled and localized using plasmonic photothermal 

therapy (PPTT)17. PPTT uses the surface plasmon resonance of gold nanorods (GNR) 

when activated by the appropriate wavelength of light for controlled activation of heat17. 

Delivery of GNRs to the tumor is also based on passive accumulation and once localized 

to tumors can be irradiated by laser to augment the localization of subsequently injected 

polymer therapeutics15.  

The central hypothesis of this work is that by using localized hyperthermia with 

GNR-mediated plasmonic photothermal therapy, it is possible to enhance the delivery of 

HPMA copolymer-yttrium 90 conjugates to prostate tumors and improve radiotherapeutic 

efficacy. The overall design of the copolymer system described in this work includes side 

chain conjugated 1, 4, 7, 10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for 

chelation of either 111In for imaging of the biodistribution of the HPMA copolymers after 

hyperthermia treatment, or 90Y for radiotherapeutic treatment of the tumor. 90Y is a pure 

beta emitting isotope which is not an ideal imaging agent for γ-ray detection. Nuclear 

medicine techniques such as single photon emission computerized tomography (SPECT) 

offer relatively high-resolution and quantitative images18,19. Therefore, imaging of 

HPMA copolymer-111In conjugate using SPECT should provide more detailed 

information as to the quantity and kinetics of tumor localization and enable correlation of 
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such localization with therapy. Correlation performed in this study between these two 

conjugates can give us a potential personalized therapy for use in treating prostate cancer.  

 

5.2. Materials and Methods 

5.2.1. Chemicals 

N-(3-Aminopropyl)methacrylamide hydrochloride (APMA) was acquired from 

Polysciences (Warrington, PA). 1, 4, 7, 10-tetraazacyclododecane-1,4,7,10-tetraacetic 

acid mono (N-hydroxysuccinimide ester) (DOTA-NHS-ester) was obtained from 

Macrocyclics (Dallas, TX). 2,2’-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride 

(VA-044) was obtained from Wako Chemicals (Richmond, VA). [90Y]YCl3 and 

[111In]InCl3 was obtained from the Intermountain Radiopharmacy (Salt Lake City, UT). 

All other reagents were of reagent grade and were obtained from Sigma-Aldrich (St. 

Louis, MO). 

 

5.2.2. Comonomer synthesis and characterization 

 N-(2-hydroxypropyl)methacrylamide comonomer (HPMA) was synthesized 

according to published methods20. A brief description of the synthesis and 

characterization can be found in Appendix A.  1, 4, 7, 10-tetraazacyclododecane-

1,4,7,10-tetraacetic acid mono (N-(3-aminopropyl)methacrylamide (APMA-DOTA) was 

synthesized by combining a molar ratio of 1.5:1 DOTA-NHS-ester to APMA in 

anhydrous dimethylformamide (DMF) with 10% diisopropylethylamine (DIPEA) and 

stirred overnight at room temperature. The crude product was precipitated and 

excessively washed in diethyl ether to form a white powder. The final comonomer 



134 
 

molecular weight was analyzed by electrospray ionization mass spectrometry m/z 

calculated for C23H40N6O8, 528.5991, found 527 [M-H]+, 549 [M+Na]+
. 

 

5.2.3. Synthesis of the HPMA copolymer conjugate 

 HPMA and APMA-DOTA were copolymerized by reversible addition-

fragmentation chain transfer (RAFT) polymerization according to Scheme 5.1. The 

radical initiator used was 2,2’-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride 

(VA-044) and the chain transfer agent 2-cyano-2-propyl dodecyl trithiocarbonate 

(CPDT). At a molar ratio of 300:1:0.67 monomers/CPDT/VA-044 in methanol with total 

concentration of 1M, monomers were polymerized at 50oC for 24 h in a nitrogen-purged 

sealed ampule to control the size and polydispersity of the HPMA copolymers. The final 

product was obtained by precipitating in diethyl ether and the resulting white solid was 

dissolved in deionized water and subsequently dialyzed using a 3.5 kDa molecular weight 

cut off (MWCO) dialysis bag (Spectrum Laboratories, Inc., Rancho Dominguez, CA). 

The purified copolymer was obtained by lyophilization and analyzed by Fast Protein 

Liquid Chromatography (FPLC) system (GE Healthcare, Piscataway, NJ) equipped with 

a multi-angle light scattering (MALS) detector (Wyatt Technologies, Santa Barbara, CA).  

DOTA content was determined by analyzing gadolinium content (assuming a 1:1 ratio) 

after chelation according to previously described methods21. 

 

5.2.4. Radiolabeling with 111In and 90Y 

 HPMA copolymer-DOTA conjugate was labeled with radioisotopes according to 

previously published methods22,23. 10 mg of HPMA copolymer-DOTA conjugate was 

dissolved in 250 µl of 1.0 M sodium acetate buffer pH 5.0. 10 mCi of [111In]InCl3 or
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Scheme 5.1. RAFT polymerization of HPMA copolymer-DOTA 
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 [90Y]YCl3 was also treated with 0.25 ml of 1.0 M sodium acetate buffer pH 5.0. 

Radioactive compounds were added to the HPMA copolymer-DOTA solution and 

incubated at 50oC for 1.0 h with mixing under nitrogen. The solution was allowed to cool 

to room temperature, and then treated with 100 µl of 0.05 M ethylenediaminetetraacetic 

acid (EDTA) for about 10 min in order to remove free or loosely bound 111In+3 or 90Y+3 

ions. Radioactive polymers were purified by Sephadex G25 PD-10 columns (GE Life 

Sciences, Piscataway, NJ). Radioactivity was measured using a CAPTUS 3000 

multichannel analyzer (Canberra Industries, Inc., Meriden, CT). Radiostability was 

determined by incubating radiolabeled copolymers at 37oC in the presence of mouse 

serum. Samples were collected at 24, 48 and 72 h and subjected to PD-10 column 

separation to determine the free radiolabel content.  

 

5.2.5. Synthesis of PEGylated gold nanorods 

Gold nanorods (GNRs) were synthesized using the seed-mediated growth method 

with an aspect ratio that correlates with a surface plasmon resonance (SPR) peak between 

800 and 810 nm24. The light absorption profile was measured by UV spectrometry. The 

GNRs were then centrifuged and washed three times with deionized water to remove 

excess hexadecyltrimethylammonium bromide (CTAB). After washing, poly(ethylene 

glycol) (PEG) (methoxy-PEG-thiol 5 kD, Creative PEGWorks, Winston Salem, NC) was 

added to the GNR suspension and stirred for 1 h to allow for sufficient coating. The PEG-

GNRs were then dialyzed (10k MWCO, Spectrum labs), centrifuged, washed and 

concentrated to remove any excess, unbound PEG. The final concentration of the PEG-

GNRs was 1.2 mg/ml (OD = 120) and were stored at 4°C. Finally, the PEG-GNR 

solution was sterile filtered prior to use in vivo.  
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5.2.6. Animal tumor model  

DU-145 prostate tumor cells (ATCC, Manassas, VA) were cultured in Eagle’s 

Minimum Essential Medium (EMEM) (ATCC, Manassas, VA) supplemented with 10% 

(v/v) fetal bovine serum (FBS) at 37ºC in a humidified atmosphere of 5% CO2 (v/v). Cell 

cultures were harvested at approximately 80% confluence by treatment with TrypLE™ 

Express (Invitrogen, Grand Island, NY) and subsequent dilution in phosphate buffered 

saline (PBS). Athymic Nu/Nu female mice were inoculated with 1 x 107 cells on both the 

left and right lower flanks of each mouse. Experiments were initiated after tumor 

diameters had reached 5–7 mm in diameter by external caliper measurement. All animal 

experiments were conducted under an approved protocol from the Institutional Animal 

Care and Use Committee at the University of Utah (Salt Lake City, UT). 

 

5.2.7. Biodistribution of 111In HPMA copolymer-DOTA conjugates 

 The general method of plasmonic photothermal therapy for moderate 

hyperthermia is demonstrated in Figure 5.1. Prostate tumor bearing mice were 

administered 9.6 mg/kg of PEGylated GNRs via lateral tail vein injection. After 48 h 

mice were injected with 300-350 µCi of 111In labeled HPMA copolymer-DOTA 

conjugates and immediately treated on the right tumor with moderate hyperthermia as 

described previously15. Briefly, the right tumor of the mouse was irradiated by laser at a 

wavelength of 808 nm for 10 min. Temperature was measured using a needle point 

temperature probe near the center of the tumor and laser power was adjusted in order to 

maintain tumor temperature at 43±1oC. The mouse was anesthetized by isofluorane via 

nose cone, immediately placed on the bed of an Inveon microPET/SPECT/CT 

multimodality scanner (Siemens Medical Solutions USA, Inc., Malvern, PA) and imaged 
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Figure 5.1. Methodology for combination radiotherapy and hyperthermia treatment in 
prostate tumor bearing mice.  
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by single photon emission computerized tomography (SPECT) for 4 h. SPECT scans 

were performed in 22-min frames with an X-Ray Computerized Tomography (CT) scan 

performed at the beginning and end of the 4-h SPECT series. A follow up static 

SPECT/CT scan was also conducted at 24 h the following day. After 24 h, the mouse was 

euthanized and organs collected (blood, heart, lung, liver, spleen, kidney and tumors). 

The organs were weighed and gamma counted using a CAPTUS 3000 well counter. 

SPECT images were analyzed using the Inveon Research Workplace software (Siemens 

Medical Solutions USA, Inc., Malvern, PA) with regions of interest (ROI) drawn 

respective to the tumors shown on the CT image with SPECT registration. The estimated 

average voxel intensity obtained from each ROI of each tumor was correlated to the 

gamma counted tissues excised at the 24-h time point of each mouse.  Left and right 

tumor activity concentrations estimated from the imaging data were compared to 

determine differences in pharmacokinetic and biodistribution profiles related to the 

hyperthermia treatment using GraphPad Prism Software (La Jolla, CA). The area under 

the curve (AUC) was determined using the trapezoid method via the same software. 

 

5.2.8. Combination radiotherapy and hyperthermia treatment   

 Prostate tumor animal models treated with PEGylated GNRs were prepared as 

described above and injected with 250 µCi of 90Y labeled HPMA copolymer-DOTA 

conjugates via the lateral tail vein injection. The right tumor of the mouse was subjected 

to moderate hyperthermia as described above. A saline (hyperthermia only) control group 

was also treated in a similar manner. Left and right tumor ellipsoid volumes were 

estimated by external caliper measurement of the length and width of each tumor twice 

weekly. Tumor volumes were normalized to measurement on day 0 of treatment. Animal 
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tumor weights were monitored. At the end of the 40-day study, the mice were euthanized 

and heart, lung, liver, spleen, kidney and both tumors were collected and incubated in 

10% neutral buffered formalin for 48 h. The tissues were subsequently sliced into 5 µm 

slices and hematoxylin and eosin (H&E) stained by the Histology Department at ARUP 

Laboratories (Salt Lake City, UT). Tissue slides were analyzed for toxicity related to 

radioactive exposure from the 90Y HPMA copolymer-DOTA conjugate treatment. Tumor 

tissues were also investigated for evidence of radiotherapeutic damage. 

 

5.2.9. Statistical analysis 

 Animal study results were analyzed for statistical significance using one-way 

ANOVA with Tukey’s posttest and biodistribution results between tumor treatments were 

analyzed by the student T-test using GraphPad Prism Software (La Jolla, CA). 

 

5.3. Results and Discussion 

The overall goal for this study was to evaluate a polymer containing both an 

imaging agent and a radiotherapeutic in conjunction with localized hyperthermia. The 

polymer was designed to reduce nonspecific uptake, allow urinary clearance and assure 

sufficient uptake within the tumor mass. Characteristics of the copolymers are shown in 

Table 5.1. A polymer of less than 45 kDa was desired in order for glomerular filtration of 

of the HPMA copolymer in the body2. The DOTA content was expected to be 10 wt% 

based on the feed content of the copolymer (2.0 mol%). DOTA content was sufficient for 

111In and 90Y radiolabelling demonstrated by the radioactive content shown in Table 5.1. 

 DOTA has been shown to be a stable chelator for both radioisotopes22,25. 111In is a 

common γ-emitting radionuclide used in the clinic for SPECT imaging26. 90Y as a beta  
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Table 5.1. HPMA copolymer-DOTA characteristics 

Polymer Characteristics Result 

Mw
a 27.7 kDa 

Mn
a 25.5 kDa 

PDIa 1.09 

APMA-DOTA feed ratio 2.0 mol% 
111In contentb 571 µCi/mg 
90Y contentb 356 µCi/mg 

a) Determined by MALS 
b) Determined by γ-counter at end of synthesis 
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emitting radionuclide has been clinically used for radiotherapeutic treatment of tumors27. 

111In and 90Y have similar half-lives (2.80 and 2.67 days, respectively) that correspond to 

the potential biological half-life of HPMA copolymer construct. This allowed sufficient 

monitoring by imaging and radioactivity exposure for treatment of the tumor. The 

imaging construct based on 111In allowed image-based biodistribution and 

pharmacokinetic profiles that can predict therapeutic safety and efficacy of the 90Y 

radiotherapeutic construct. Stability of the 90Y with HPMA copolymer-DOTA conjugate 

in the presence of serum is shown in Figure 5.2. The 90Y labeled conjugate was ~93% 

stable over 72 h in mouse serum after separation on the PD-10 column. This could be 

caused by radiolysis of some of the label due to the high beta energy of 90Y and lack of 

any scavenger in the formulation. 

The results from the animal imaging study of the 111In labeled HPMA copolymer-

DOTA conjugate demonstrate increased localization in the tumor with moderate 

hyperthermia. Figure 5.3 demonstrates that hyperthermia-treated tumors (right tumor) 

have a marked increased localization of the HPMA copolymer over time. It also 

demonstrates that the most off-target overall exposure in the animal is likely the kidneys. 

Based on the 111In imaging version of the HPMA copolymer, the right tumor received a 

higher average exposure of beta particle emission than that of the left tumor due to 

hyperthermia treatment. Time activity concentration curves determined from image 

analysis was performed for each tumor (hyperthermia treated and control). Average voxel 

intensity from SPECT/CT images were calibrated based on the necropsied tissue counts 

of both tumors of each mouse collected at the 24-h time point (n = 3) (Figure 5.3E). 

Radioactivity exposure to the tumor was measured by calculating the AUC for 0-4 h and 

4-24 h using the trapezoidal method. The hyperthermia-treated tumor AUC0-4 h = 1990 ±  
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Figure 5.2. Radiostability of the 90Y labeled HPMA copolymer-DOTA. Data are 
represented as the mean ± standard error of the mean (SEM) (n=3). An average amount 
of approximately 93% was observed as macromolecular in size corresponding to the 
radiolabeled HPMA copolymer. 
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Figure 5.3. Biodistribution and pharmacokinetic analysis of 111In labeled HPMA 
copolymer-DOTA. A) Serial 22-min axial scans showing a comparison of the right 
(hyperthermia-treated) and left tumors on the dorsal region of the animal injected 300 
µCi of 111In-HPMA copolymer while under isofluorane. The large bright spot central to 
the anterior side of the animal is a result of a large accumulation in the bladder 
demonstrating the eventual clearance of the HPMA copolymer conjugates. Arrows 
denote hyperthermia treated tumor. B) CT image of the mouse showing the lower dorsal 
placement of the tumors. C) Whole body planar image at approximately 4 h postinjection. 
D) Biodistribution and pharmacokinetic analysis of 111In labeled HPMA copolymer-
DOTA. Time activity graph showing the curve fits for the calculations of AUC for each 
tumor. Red line represents the right (hyperthermia) tumor and the blue line represents the 
left (control) tumor. Data represented as the mean ± SEM (n=3).  The hyperthermia 
treated tumor AUC0-4 h = 1990 %ID∙min/g and AUC4-24 h = 9107 %ID∙min/g.  The control 
tumors AUC0-4 h = 648.5 %ID∙min/g and AUC4-24 h = 2994 %ID∙min/g.  The dashed lines 
represent the elimination phases in which the accuracy is limited based on limited data 
points for analysis. E) The biodistribution data from the γ-counting of each individual 
organ at 24 h postinjection. Data represented as the mean ± SEM (n=3). 
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Figure 5.3.  Continued  
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310 %ID∙min/g and AUC4-24 h = 9107 ± 1512 %ID∙min/g. The control tumors AUC0-4 h 

=648.5 ± 62.4 %ID∙min/g and AUC4-24 h = 2994 ± 391  %ID∙min/g.  The amount of 

exposure is about 3 times higher for the hyperthermia-treated animals during both periods 

of 0-4 and 4-24 h. The accuracy during elimination phase (4-24 h) is limited based on the 

lack of data points between 4-24 h. However, the AUC ratios between both regions of the 

time activity curve are very similar (AUC0-4 h ratio = 3.07 and AUC4-24 h = 3.04), 

suggesting that the elimination phase fit is relatively accurate as we should expect the 

ratio of exposure to the tumors to be the same. SPECT imaging is known to have 

limitations in absolute quantitation and is normally considered semiquantitative due to a 

lack of ability to correct for scattering, attenuation and other related factors that can skew 

imaging results. The data from this imaging study compare the left and right tumors of 

the same animal and can therefore represent a fairly accurate comparison. Overall, the 

imaging data analysis clearly demonstrates an increased accumulation of the radiolabeled 

polymer. This overall increase in exposure to the hyperthermia treated tumor can be 

related to the beta emitting 90Y radiolabeled HPMA construct and effectively explain the 

efficacy results discussed below.  

  The efficacy study shows the clear advantage of using moderate hyperthermia to 

improve the delivery and efficacy of 90Y radiotherapy (Figure 5.4). Radiotherapy was 

only effective in the tumor treated with hyperthermia. This is expected due to the fact that 

we see more of the radiolabeled copolymers localizing in the tumor over time. 

Hyperthermia increases blood flow and perfusion to the tumor28,29, thus potentially 

augmenting the EPR effect and localization of HPMA copolymers. It is also possible that 

the increased perfusion to the tumor region may sensitize the tumor to the effects of 

radiation. This can be due to the increased oxygenation of the tumor delivered from the 
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Figure 5.4. Efficacy of 90Y HPMA copolymer-DOTA conjugates. Efficacy data for 40 
days treatment comparing radiotherapy and hyperthermia combinations. No Treatment 
(Green) and hyperthermia (Blue) data are represented as mean ± SEM (n=3). 
Radiotherapy (Red) and hyperthermia + radiotherapy (Yellow) are represented as mean ± 
SEM (n=5). Statistical significance was analyzed by repeated measure ANOVA using 
Tukey’s posttest with hyperthermia (Blue) group (*) statistically different (p < 0.01) than 
control and radiotherapy alone. The combination hyperthermia + radiotherapy (yellow) 
group (***) was also found to be statistically different (p < 0.0001) than all other groups. 
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increased blood flow. Hyperthermia alone to the tumors using PPTT also had a 

significant effect but to a lesser extent. This is similar to results conducted in a similar 

study performed previously16. Despite the mild temperature increase in the overall tumor 

measured by the needle thermal couple, the local temperature near the gold nanorods may 

be higher and cause some vascular damage and disruption. This may lead to temporary 

starvation of the tumor that demonstrates reduced tumor growth and could explain the 

efficacy related to hyperthermia alone. Interestingly, the radiotherapy alone had no 

efficacy in this study. This can be explained based on the fact that the biodistribution 

studies in Figure 5.3 show much less accumulation of the radioactivity in the tumors. The 

fact that hyperthermia has the potential to sensitize tumors to radiotherapy also is 

supported based on these results.   

The normalized animal weights shown in Figure 5.5 demonstrate that the 

treatment was well tolerated. Histological analysis displayed in Figure 5.6 also 

demonstrates the lack of damage to the primary organs of the mice. From the 

biodistribution studies, the normal tissue/organ most exposed to radiation was the kidneys 

(Figure 5.3). However, kidney samples showed a normal structure of both glomerulus 

and proximal tubule regions. Possible evidence of radiation damage to the tumor is 

demonstrated in Figure 5.6F-H due to increased fibrosis, vacuolization and increased 

number of apoptotic bodies. These effects are similar to results found in previous studies 

using 90Y radiotherapy30,31. Further analysis was performed by comparing the differences 

in the amounts of necrotic tissue in the treated tumors versus nontreated tumors shown in 

Figure 5.7. Some of the necrotic tissue is a result of rapid tumor growth in this animal 

model. Therefore, areas of necrosis from treatment were measured using image analysis 

software and compared to control mice. Necrosis in the combination radiotherapy and  
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Figure 5.5. Normalized animal weight change. No treatment effect related to weight-loss 
was observed on either group of animals. No treatment group includes both no treatment 
and hyperthermia alone groups and the [Y-90]-HPMA-DOTA group includes both 
radiotherapy alone and combination groups from Figure 5.4. 
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Figure 5.6. Representative Histology samples removed at the end of the 40-day study 
and stained using H&E staining. Organs showed no difference compared to controls. 
Arrows represent potential types of evidence for radiation related effects from 90Y-
HPMA copolymer-DOTA and hyperthermia treatment. 

A) Heart (magnification 40x) 
B) Lung (40x) 
C) Liver (40x) 
D) Spleen (40x) 
E) Kidney (40x)  
F) Radiotherapy-treated tumor (40x) 
G) Radiotherapy-treated tumor (100x)  
H) Radiotherapy-treated tumor (100x) 
Solid black arrow = thanatosome infiltration  
White arrow = Fibrosis 
Grey arrow = Vacuole formation 
Striped arrow = Apoptotic bodies 
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Figure 5.7. Histological comparison of necrosis. H&E stained tumor slices 
representative of: A) normal mouse tumor and B) radiotherapy + hyperthermia-
treated tumor. Arrows represent areas of necrosis.  
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hyperthermia treated group was found to be approximately 5 times greater than that of 

control. This increase in levels of tissue damage is a result of the treatment and explains 

effects observed in the efficacy results (Figure 5.4.)  

This study demonstrates the enhanced efficacy to prostate cancer treatment with 

90Y HPMA copolymers in combination with gold nanorod mediated hyperthermia. One 

of the advantages of this system compared to other macromolecular radiotherapeutics that 

have been developed is the increased localization by external trigger and without 

increasing nontargeted tissue uptake. The size of HPMA copolymers used in this study 

were designed to eventually eliminate from the body but have sufficient circulation time 

to distribute into the hyperthermia treated tumors. However, the EPR effect of HPMA 

copolymers and other macromolecules has been shown to be enhanced by using larger 

molecular weight carriers based on longer circulation times due to their inability to be 

filtered through the pores in the glomerulus of the kidney. This may be detrimental 

because the longer the conjugates remain in the body, the more likely the radiolabel can 

be released and distributed to undesirable organs and cause toxicity. However, recent 

large degradable HPMA copolymers have shown eventual clearance due to enzymatically 

cleavable spacers in the backbone of the polymer construct32. These conjugates showed a 

marked increase in tumor localization compared to small molecular weight systems and 

suggest that radiotherapeutic delivery could also be enhanced using this method. 

The radionuclides used in this study for HPMA copolymer delivery of 

radiotherapeutics are similar to those used in the clinic for image-guided therapy. 

Bexxar® and Zevalin® are monoclonal antibodies used in the delivery of both 

radioisotopes for imaging and therapy6. Imaging of these therapies using SPECT is 

utilized to predict safety of the subsequently administered radiotherapeutic version. The 
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HPMA copolymer system developed in this study could be used in a similar way for 

prostate cancer. The imaging version could be used to visualize any nonspecific uptake 

that may exist in a particular patient and could also be used to measure the amount 

localized in the tumor. The 111In labeled HPMA copolymer imaging version provides 

information about the quantity localized in the prostate tumor. This quantitation is useful 

in determining the dose required for efficacy of the 90Y labeled HPMA copolymers used 

for radiotherapy. This strategy can potentially provide the prostate cancer patient with a 

personalized therapy that increases the efficiency, safety and efficacy of anticancer 

treatment.   

 

5.4. Conclusion 

 The HPMA copolymers radiolabeled with 90Y for combination radiotherapy and 

hyperthermia were found to be effective in treatment of prostate tumors in a mouse 

model. HPMA copolymers were successfully monitored by SPECT imaging for 

biodistribution effects related to hyperthermia. The radioactive treatment was found to be 

primarily accumulated in the tumor. Histological examination of the various organs did 

not show evidence of any radioactive related toxicity. Overall, the conjugates were 

proven to be potentially safe and efficacious for treatment of prostate cancer. 
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CHAPTER 6 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

6.1. Conclusions 
 

 Image-guided therapy can substantially impact treatment of cancer. Already more 

and more patients are being imaged using state-of-the-art techniques and modalities to 

accurately diagnose, stage and monitor treatment of cancer1,2. Novel targeted treatments 

are also on the horizon. There are more than 40 targeted therapeutic agents for oncology 

that are being evaluated in the clinic today3. There is an increasing focus on approaches 

which combine both therapeutic efficacy and safety with imaging. A few novel 

treatments have incorporated a theranostic approach which should not only accelerate 

their eventual approval but potentially take larger steps to increase the survival and 

quality of life of cancer patients4.  

The realization of these technologies can be further enhanced with development 

of nanomaterials which serve as a platform for the combined delivery of cancer targeting 

moieties, therapeutics and imaging agents. Several challenges still remain for wide-

spread approval of nanomedicines in the clinic. Their ability to target the specific disease 

in humans has been variable5. Variations in tumor heterogeneity have resulted in lack of 

targeting in clinical trials6. Also the reproducible and cost-effective manufacture under 



 159 

regulatory requirements of these nano-sized constructs is still a remaining challenge7.  

Therefore, much more research into addressing these needs is warranted. 

The work presented in this dissertation is an attempt to solve some of the issues 

related to tumor treatment with image-guided nanomaterials. The focus of Chapters 3 and 

4 was on the challenging issues of image-guided drug delivery to pancreatic tumors. In 

Chapter 3, two targeting approaches were examined which have shown promise in other 

cancers8-12. Validation of the targets was performed in vitro in order to assure that a 

viable targeting strategy was selected. Nano-sized HPMA copolymers were developed 

containing the two targeting agents along with 111In for real-time imaging of tumor 

localization and biodistribution of the conjugates. Careful consideration for their design 

was taken in order to optimize the desired pharmacokinetic profile that may have success 

as imaging agents for pancreatic cancer. However, the main barrier to the delivery of 

small drugs and macromolecules alike in pancreatic cancer is the dense stromal tissue13. 

This study attempted to address this issue by removing a stromal component, hyaluronic 

acid (HA). HA has been reported to increase the intratumoral fluidic pressure (IFP) of 

tumors which prevents the diffusion and penetration of macromolecules into solid 

tumors14. In this study, after successful treatment of HA with hyaluronidase, increased 

tumor localization and active targeting was observed, thereby confirming recent research 

which has shown that breakdown of the stromal barrier can improve the treatment of 

pancreatic cancer13-16. 

Chapter 4 focused on the development of an image-guided drug delivery based on 

HPMA copolymers for pancreatic cancer targeting. A HER2 targeting strategy was 

selected in the development of this conjugate based on the targeting potential observed 
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from the studies in Chapter 3. Conjugates were successfully synthesized and 

characterized with targeting ligand (KCCYSL), drug (gemcitabine) and imaging agent 

(111In) along with the relevant control systems. The conjugate’s design was tailored for an 

optimal pharmacokinetic profile allowing sufficient time for localization to the tumor but 

eventual clearance through the kidney. Each component was carefully evaluated to assure 

their assigned functionality was not compromised by conjugation to the HPMA 

copolymer backbone. Binding affinity of the targeted ligand was conserved as well as 

drug activity. Radioactive labeling and stability was also found to be sufficient for 

potential SPECT imaging studies. However, premature release of the drug in cell-culture 

media was observed, even though drug activity against positive and negative HER2 cell 

lines was maintained. This led to concerns on whether the selected drug linker chemical 

attachment was ideal for this particular image-guided drug delivery system. However, 

similar types of targeted HPMA copolymer conjugates with premature drug release 

demonstrated successful increased anticancer efficacy in vivo12. Therefore, potential 

future studies in vivo may be possible but product yields were unfortunately poor. Thus, 

these studies were limited to in vitro evaluation because the polymerization of the 

complex conjugates with four different components (HPMA, targeting ligand, drug and 

imaging agent) posed a significant challenge in polymerization yields. 

 For Chapter 5, the image-guided therapeutic approach was taken to a slightly 

different direction. A promising image-guided radiotherapeutic HPMA platform in 

combination with gold nanorod (GNR)-mediated hyperthermia was developed in a 

different tumor model. The prostate tumor model was selected in this study. External 

laser irradiation of GNRs produces hypethermia via surface plasmon resonance. A 
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prostate tumor mouse model was treated with simple 90Y radiolabeled HPMA 

copolymers for externally triggered targeted delivery via localized GNR mediated 

hyperthermia. The combination of both hyperthermia and radiotherapy was found to be 

efficacious in treating the tumor. Histological analysis revealed increased necrosis in 

treated tumors with respect to controls. SPECT imaging of an 111In radiolabeled HPMA 

copolymer backbone demonstrated increased localization in the treated tumors. Organs 

with significant but minor exposure to the radioactivity did not show any recognizable 

toxicity from histological analysis. The utilization of both an imaging and therapeutic 

version of the same HPMA copolymer could potentially be used in an image-guided 

approach for selection and qualification. This study proved the potential for image-guided 

approach using radiotherapeutic HPMA copolymers in conjunction with externally 

controlled tumor targeting. 

  

6.2. Future Directions 

 These three studies in Chapters 3-5 represent the current progress in the 

realization of an HPMA copolymer for image-guided therapeutics. The progress made 

has been significant, especially in regards to utilization of imaging techniques for 

biodistribution in relation to these studies. The goal of translation of HPMA copolymers 

for image-guided therapeutics is still distant. The following paragraphs suggest a few 

ideas that can potentially take this promising area to the next level. 

 The most obvious direction for the studies related to pancreatic cancer is the need 

for more translatable animal models. Although, in Chapter 3, the stromal barrier was 

validated to some degree even in the subcutaneous xenograft animal tumor model, the 



 162 

tumor vascularity and desmoplastic reaction in actual pancreatic tumors is still different13.  

Several animal tumor models for pancreatic cancer are more clinically relevant and 

would provide a better assessment of the targeted approach and delivery of both imaging 

and drug to tumors13. One such model is the genetically engineered mice which 

spontaneously form pancreatic tumors17. These tumor models have vascular density and 

desmoplastic reactions near levels observed in the clinic for humans. 

 More viable targeting approaches must be developed for pancreatic cancer. In 

Chapter 3, two targeting strategies were selected based on expression levels in pancreatic 

cancer, the availability of targeting ligands and previously validated results. However, 

due to the heterogeneity of pancreatic tumors, more targets must be discovered for 

ligand-directed targeting of macromolecules. One such receptor that may be promising is 

epidermal growth factor receptor 1 (EGFR). This receptor has been found to be even 

more highly expressed on pancreatic tumors than HER218. However, a selection of 

ligands that are able to be conjugated to the HPMA copolymer backbone without 

significantly changing its hydrophilic properties were not available. Many antibodies and 

fragments are available that bind EGFR, but these structures may not be capable of 

loading on the copolymer in high numbers. Many groups are using phage display 

techniques to find novel ligands for cancer targets19-22. Research could be focused on 

finding validated targets for pancreatic cancer. Once more ligands are discovered for 

these targets, they can be evaluated for active targeting of HPMA copolymers for image-

guided therapeutic delivery. 

 Further development of better methods for site-specific release of drugs like 

gemcitabine within the tumor is needed. The strategy used in studies in Chapter 4 was 
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based on GFLG peptide linkers that are cleaved once the HPMA copolymers enter the 

lysosome of the targeted cell. The amide linkage between the base amine of gemcitabine 

C-terminus of GLFG was found to be slightly unstable. However, more options are 

needed based on the unexpected premature release in vitro of the gemcitabine amide 

linkage to the GFLG spacer. Other strategies for delivery based on pH or other protease 

specific targets warrant investigation. For an ideal image-guided drug delivery system, 

the drug conjugate should be completely stable until released in the targeted cell. The 

specificity of this need is yet to be discovered and further development of site-specific 

release mechanisms would be very advantageous for the delivery of anticancer drugs 

such as gemcitabine. 

 A future direction for these studies is the clinical translation of the hyperthermia 

in combination with radiotherapeutic HPMA copolymers. The current delivery method 

for hyperthermia utilizes GNRs with laser irradiation for localized heat production. This 

particular method may have many challenges to overcome in order to be used in the 

clinic. First is that the penetration of laser near-infrared light for activation is limited to 

about centimeter of tissue. Another challenge is that the long-term toxic effects of gold 

nanorods in the body have yet to be investigated. However, there are other methods 

already available clinically to deliver localized hyperthermia. High-intensity focused 

ultrasound (HIFU) can precisely deliver mild controlled hyperthermia to tumors which is 

not limited by depth or material deposition such as GNR-mediated hyperthermia23. HIFU 

for the delivery of macromolecules such as radiotherapeutic HPMA copolymers has 

enormous research potential. This image-guided delivery is potentially the easiest to 

translate based on the simplicity of the chemistry of HPMA copolymers for 
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radiotherapeutics synthesized in Chapter 5 and all components have been in the  

clinic24-26. Clearly more in-depth studies are still needed preclinically for translation. 

 The field of theranostics is growing and image guidance is becoming a realizable 

area of focus. Future work in this area can have a substantial impact on a disease that 

requires pre-assessment for therapy. Although that future has yet to be realized with 

clinically approved nanoparticle platforms, it is likely that theranostic approaches will 

transform personalized medicine.   
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APPENDIX 
 
 
 

COMONOMER SYNTHESES AND CHARACTERIZATION 
 
 
 

A.1. N-(2-hydroxypropyl)methacrylamide (HPMA) 

A.1.1. HPMA synthesis 

 Synthesis was performed according to literature methods1. Briefly, 1-amino-2-

propanol dissolved in 560 ml of acetonitrile was placed in an acetone-ice bath at less than 

-5ºC. 1 mg of inhibitor was added to the reaction. 100 g of methacryloyl chloride (MA-

Cl) was added dropwise to the mixture. The reaction was allowed to stir for 30 min after 

the last amount of MA-Cl was added. The solid formed during the reaction was removed 

and the excess acetonitrile was evaporated by rotor evaporation. The final product was 

obtained by recrystallization in acetone overnight at -20ºC.   

 

A.1.2. HPMA characterization 

 The resulting white solid was characterized by electrospray ionization mass 

spectroscopy (ESI-MS) m/z calculated for C7H13NO2, 143.1836, found 178 [M - Cl]- and 

1H nuclear magnetic resonance (NMR) spectroscopy (400 MHz, CD3OD) shown in 

Figure A.1.  
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Figure A.1. NMR of HPMA monomer 
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A.2. N-methacryloylglycylglycyl thiazolidine-2-thione (MA-GG-TT) 

A.2.1. MA-GG-TT synthesis 

 Synthesis was performed as described previously2. Briefly, a solution of 2 g of N-

methacryloylglyclglycine (MA-GG-OH) and 1.33 g of 1,3-thiazolidine-2-thione (TT) 

were dissolved in 10 ml of cooled anhydrous dimethylformamide (DMF). The solution 

was cooled to -20ºC and then 2.48 g of N,N’-dicyclohexylcarbodiimide (DCC) in 10 ml 

of DMF (also cooled to -20 ºC) was added slowly, followed by 55 mg of 4-

dimethylaminopyridine (DMAP). The solution was stirred overnight at 5ºC. 60 µl of 

acetic acid was added and stirred at room temperature for 1 h. The solution was filtered 

and the filtrate collected and excess solvent removed by rotor evaporation. The resulting 

yellow oil was recrystallized in a 1:1 acetone/ether solution. 

 

A.2.2. MA-GG-TT characterization 

 The resulting yellow solid was collected and analyzed by ESI-MS m/z, calculated 

for C11H15N3O3S2, 301.3851, found 322 [M + Na]+ and 1H NMR (400 MHz, d6-DMSO) 

shown in Figure A.2. 
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Figure A.2. NMR of MA-GG-TT. 
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A.3. N-methacryloylaminopropyl-2-amino-3-(isothiourea-phenyl)propyl-

cyclohexane-1,2-diamine-N,N-N’,N’,N’’,N’’-pentaacetic acid  

(APMA-CHX-A”DTPA) 

A.3.1. APMA-CHX-A”DTPA synthesis 

 Synthesis was performed according to literature methods3. Briefly, N-(3-

aminopropyl)methacrylamide (APMA) was combined with N-[(R)-2-amino-3-(p-

isothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N”,N”-

pentaacetic acid (p-SCN-CHX-A”-DTPA) and diisopropylethylamine in a 1:1:5 molar 

ratio in DMF. The solution was purged with nitrogen, sealed and stirred for 24 h at room 

temperature. The final product was collected by precipitation, excessively washed with 

diethyl ether and recrystallized in acetone. 

 

A.3.2. APMA-CHX-A”DTPA characterization 

The resulting slightly yellow solid was collected and analyzed by ESI-MS m/z, 

calculated for C33H48N6O11S, 736.8328, found 735 [M – H]+.   
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