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ABSTRACT

Traditional associative plasticity theories have previously been shown to be incom-

patible with experimental data. For this reason, a nonassociative plasticity theory is

commonly adopted. Nonassociative plasticity theories are prone to several forms

of instability that result in the governing equations becoming ill-posed. Two of

these instabilities are discussed: the localization instability and the Sandler-Rubin

instability, which is a nonphysical instability that may occur with any degree of

nonassociativity.

The primary purpose of this dissertation is to describe how traditional nonassocia-

tive plasticity theory can be reformulated to eliminate the Sandler-Rubin instability

while maintaining agreement with experimental data. Numerical and analytical

techniques are used to investigate the effects of three nontraditional plasticity models

on the existence of the Sandler-Rubin instability: viscoplasticity, incrementally non-

linear plasticity, and nonlocal plasticity. Of these, it is shown that only incremental

nonlinearity eliminates the instability while maintaining agreement with existing

experimental data. Standard laboratory tests cannot detect nonlinearity in a ma-

terial’s incremental response. For this reason a new experimental method and a new

data analysis technique are presented and used to validate incrementally nonlinear

plasticity theory. The new technique uses a cyclic load path and an interpolation

scheme to infer the material response to several loading directions at the same material

state. This new technique was used to study the incremental response of aluminum

6061-T0. The new technique suggests that there is significant nonlinearity in the

incremental response of this material.

Though it will be demonstrated that the Sandler-Rubin instability is not elimi-

nated with nonlocal theory, this theory is nevertheless well established at regularizing

otherwise ill-posed localization problems. Few efficient numerical schemes exist for



solving the equations of nonlocal plasticity. Schemes have previously been developed

for solving these equations as part of a finite-element or element-free Galerkin method,

but no general convergence criterion had been developed for these methods. A new

numerical scheme for solving these equations using the material point method (MPM)

is presented. The new scheme uses the MPM background grid for particle-to-particle

communication, and results in a simple, matrix-free algorithm. A convergence crite-

rion derived for the new method is furthermore shown to be applicable to some of the

methods developed by other researchers.
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CHAPTER 1

INTRODUCTION AND LITERATURE

REVIEW

1.1 Introduction

Numerical simulations can play an important role in the analysis and design of safe

and efficient mechanical systems and structures. A crucial part of any numerical sim-

ulation is the constitutive model, which describes the material’s mechanical response

to the loading. Together with the equations of motion, and appropriate boundary and

initial conditions, the constitutive model completes a solvable set of equations. To be

most useful in predicting the behavior of a system, the equations must be well-posed.

Here, well-posedness is to be understood as defined by Hadamard [1], who argued that

the set of equations used to model a physical system ought to have a unique solution

for which small changes in the problem data produce small changes in the solution.

Equations that do not have these properties are called ill-posed. Such equations are of

limited use in engineering analysis since any solution that is found cannot be reliably

used to predict the behavior of a system because the solution is either not unique,

or is chaotic because of sensitivity to small changes in the problem data. In some

cases chaotic behavior is observed in the laboratory, while other instances of ill-posed

governing equations are the result of an incomplete model or the use of inappropriate

assumptions. In cases where the ill-posedness is descriptive of an actual phenomenon,

nonunique or chaotic solutions may still provide useful information, but interpreting

the solutions often becomes much less straightforward than with a unique solution.

A classic example of a problem with extreme sensitivity to problem data is a buckling

problem. At the onset of buckling, the problem becomes ill-posed because minute

defects in the material can drastically affect the solution. Therefore, it is very difficult
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to predict the behavior of a structure after the onset of buckling. Therefore, a model

of a buckling structure is of limited usefulness to predict a structure’s response after

the onset of buckling with any degree of certainty, although the model may be used to

accurately predict the onset of buckling. This dissertation describes several classes of

engineering problems that are ill-posed when a classical plasticity constitutive model

is used in the analysis.

Plasticity models are commonly used to model a broad range of engineering

materials, including metals, ceramics, concrete, and rocks. Sections 1.2 and 1.3

provide an overview of classical plasticity theory, and Section 1.4 introduces sev-

eral ways that classical plasticity theory may result in an ill-posed set of governing

equations. The plastic instability of primary interest in this dissertation is the

Sandler-Rubin instability. As described in Chapter 2, this instability is not observed

in the laboratory. The primary purpose of this dissertation is to examine several ways

of reformulating classical plasticity theory, and to determine which, if any, of these

reformulations eliminate the Sandler-Rubin instability and restores the well-posedness

to problems where this instability is manifest.

A secondary purpose of this dissertation is to present a new numerical technique

for solving the equations of nonlocal plasticity. Nonlocal plasticity theory has become

well established as a means of restoring the well-posedness to otherwise ill-posed

localization problems. As will be discussed in Chapter 4, the instability resulting from

localization is observed in laboratory tests, but when a classical plasticity theory is

used, localization problems are mathematically ill-posed, and possess solutions that

are not descriptive of behavior observed in laboratory tests. Nonlocal theory restores

the well-posedness to these problems by including additional physics (microstructural

effects) that are not present in classical plasticity theory.

Restoring the well-posedness to these problems would allow the development of

predictive simulations for problems where it is currently not possible. The primary

types of problems that may benefit from the new contributions in this dissertation

are problems involving wave propagation or localization of frictional materials such

as geologic materials.
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1.2 Classical Plasticity Theory

Classical plasticity theory assumes that the strain rate tensor ε̇ may be decom-

posed additively into elastic ε̇e and plastic ε̇p parts

ε̇ = ε̇e + ε̇p (1.1)

For rate-independent theories, these rates may be regarded as increments with respect

to any monotonically increasing parameter.

Classical plasticity theory also relies on the assumption that there exists a set of

stress states for which the material behavior is purely elastic. An elastic deformation

is defined to be a deformation that is fully reversed when the applied load is released.

The set of stress states that may be attained through purely elastic deformation is

defined using a scalar yield function f whose arguments are the stress tensor σ as well

as a set of internal state variables, collectively denoted η, that account for previous

loading history. The yield function is defined such that

fλ̇ = 0, f ≤ 0, λ̇ ≥ 0 (1.2)

where λ̇ is the magnitude of the plastic strain rate tensor (i.e., λ̇ = ‖ε̇p‖, where ‖()‖
indicates the Euclidean norm), and is also sometimes called the plastic multiplier.

These conditions are known as the Kuhn-Tucker conditions. According to these

conditions, rate-independent plastic flow (λ̇ > 0) may only occur when f = 0. The

set of all stress states for which f = 0 for a given set of internal state variable

values, forms an isosurface in six-dimensional stress space, which is called the yield

surface. For isotropic models, the yield surface may be visualized as a surface in

three-dimensional principal stress space. The Kuhn-Tucker conditions require that

the stress state remain on the yield surface while the material is undergoing plastic

deformation, although the yield surface may expand, contract, or change shape while

undergoing plastic deformation. Finally, the Kuhn-Tucker conditions require that the

yield function have a negative value when the stress state lies within the yield surface.

In plasticity theory, the flow rule is an equation that defines the “direction” of the

plastic strain rate tensor. The direction of a tensor T is defined by the unit tensor T̂

given by
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T̂ =
T

‖T ‖ (1.3)

Classical plasticity theory assumes the existence of a “regular” flow rule, which means

that the direction of the plastic strain rate tensor is not a function of the total strain

rate tensor itself. Traditionally, the plastic strain rate direction is chosen to be in the

direction of the yield surface normal N = ∂f
∂σ

, so that the flow rule becomes

ε̇p = λ̇N̂ (1.4)

where here, and in what follows, a circumflex indicates normalization so that, in this

case, N̂ is defined to be N divided by its own magnitude. This type of flow rule is

called an associative flow rule, since the plastic flow direction is associated with the

yield surface normal.

The final governing equation of classical plasticity theory is the elasticity equation,

in which the stress rate σ̇ arises from the elastic part of the strain rate tensor according

to

σ̇ = C:ε̇e (1.5)

where C is the fourth-order elastic tangent stiffness tensor. Note that the elasticity

equation represents a linear relationship between the stress rate and the strain rate,

which exists even for nonlinear elasticity. Extensions to classical plasticity theory

occasionally include additional terms in Eq. (1.5) that accommodate additional

dependence of the stress rate on the internal state variables (allowing, for example,

elastic stiffening with pore collapse and allowing elastic softening with dissipative

heating). As discussed by Brannon [2], such terms lead to an apparent nonassocia-

tivity of the stress increment even if the flow rule is associative.

1.3 Nonassociative Flow Rules

The classical plasticity theory just described was originally developed to describe

the behavior of metals subjected to relatively small changes in pressure, where the von

Mises or Tresca yield criterion is often used. As interest grew in applying plasticity

theory to a broader class of materials and loading conditions, Drucker and Prager [3]

extended the von Mises yield criterion to allow a pressure dependent yield strength.
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An important consequence of using an associative flow rule in material models with a

pressure dependent yield strength is that plastic dilatation (volume increase) results

from shear loading. While plastic dilatation is often observed in many materials, the

plastic dilatation predicted by an associative flow rule has been shown to be 10-20%

greater than what is actually observed in laboratory tests of geologic materials [4, 5].

For metals at low pressure, the yield strength has been shown to be pressure dependent

while little or no plastic dilatation is observed [6, 7, 8, 9]. Since with an associative

flow rule, the degree of plastic dilatation is proportional to the pressure dependence

of the yield strength, nearly zero dilatation and a pressure-dependent yield strength

are incompatible with an associative flow rule.

Because associative flow rules generally overpredict the amount of plastic dilata-

tion, a nonassociative flow rule is often adopted. A nonassociative flow rule takes the

direction of the plastic strain rate to be normal to the isosurfaces of a function of

the stress tensor called the plastic flow potential function g. The unit normal to the

isosurfaces of g is M̂ . Therefore, the nonassociative flow rule is

ε̇p = λ̇M̂ (1.6)

Note that a nonassociative flow rule is still classified as a regular flow rule, since the

direction of plastic flow M̂ , is still independent of the direction of ε̇.

A nonassociative flow rule allows the yield function parameters to be chosen

independently of the plastic flow potential function parameters. Therefore, a nonasso-

ciative flow rule allows the yield function to be pressure dependent, while the plastic

flow potential function can be chosen to have a lesser degree of pressure dependence,

and thereby reduce the amount of plastic dilatation predicted by the model. Because

of this, nonassociative flow rules have been shown to fit experimental data better than

associative flow rules [6, 4, 10, 11]. However, the data supporting nonassociative flow

rules are invariably measured under conditions of constant loading trajectory in stress

space. Such testing provides no validation of the regular flow rule itself, which (as

discussed in Chapter 2) must be assessed by measuring material response to changes

in the loading direction.
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1.4 Consequences of Nonassociative
Plasticity: Ill-Posedness

and Instability

While a nonassociative flow rule has been shown to be capable of fitting exper-

imental data more accurately than an associative model, nonassociative flow rules

have also been shown to give rise to several forms of instability and ill-posedness.

Associative plasticity theories have been shown to result in stable, unique solutions

to the equations of motion or equilibrium so long as the hardening modulus h is

positive or zero [12]. As discussed in detail in [2], the consistency condition that

requires stress to remain on the yield surface leads to the requirement that σ̇:N̂ = hλ̇,

where h is the hardening modulus (determined from the combined effect of changes

of internal variables in response to plastic loading). Therefore, since plastic loading

always involves λ̇, this implies that the normal component of the stress rate (i.e.,

the yield surface motion) is outward (hardening) if h > 0 and inward (softening) if

h < 0. A subtle point regarding the stability of plastic boundary-value problems

with a positive hardening modulus is that a structural problem involving a “stable”

material model may nonetheless become unstable and ill-posed (such as the buckling

example mentioned in Section 1.1). Therefore, what is meant here is that with an

associative flow rule with a positive hardening modulus, the constitutive model is not

inherently unstable.

When softening occurs, the tangent modulus for some loading directions can

become negative, which results in a imaginary wave speed and a loss of hyperbolicity

for the equations of motion, or a loss of ellipticity for the equations of equilibrium

[12, 13, 14]. The plastic wave speeds in a given direction n (a unit vector), correspond

to the eigenvalues of the acoustic tensor A associated with the fourth-order plastic

tangent stiffness tensor T. The acoustic tensor is defined as

A = n · T · n (1.7)

For an associative plasticity model without elastic-plastic coupling [15], the acoustic

tensor is symmetric, and with h ≥ 0, it is also positive definite. For h < 0, the acoustic

tensor is no longer positive definite. When this occurs, the governing equations
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become ill-posed, which is generally manifest in numerical solutions by a lack of

convergence [14, 16].

Drucker [13] proposed a criterion for the loss of stability caused by a constitutive

model. This is called Drucker’s stability postulate, and requires that

σ̇:ε̇p ≥ 0 (1.8)

for stability. Drucker’s stability postulate is essentially equivalent to Hill’s [12] second-

order work-rate criterion1

σ̇:ε̇ ≥ 0 (1.9)

which Hill proved to be a sufficient condition for the existence and uniqueness of

elastic-plastic boundary value problems. This is not a necessary condition for unique-

ness, since Hill and Drucker’s criteria may be violated before a loss of hyperbolicity

occurs [14].

Il’iushin [17] proposed a stability postulate that is less restrictive than Drucker’s

postulate. Il’iushin’s stability postulate states that for a stable material, there cannot

exist closed strain paths from which positive net work can be extracted from the ma-

terial. As will be discussed in Section 1.4.2, such strain paths exist for nonassociative

plasticity models.

Replacing an associative flow rule with an nonassociative flow rule radically changes

the character of the governing equations. For example, with a nonassociative flow

rule, both T and A are not symmetric as they are with an associative flow rule

without elastic-plastic coupling [15]. With the loss of symmetry, the acoustic tensor

may no longer be positive definite, even with a positive value of the hardening

modulus. Neilsen and Schreyer [18] have shown that loss of hyperbolicity occurs

with a nonassociative model when the smallest eigenvalue of the symmetric part

of the acoustic tensor becomes negative or zero. As a result of this change in the

governing equations, several forms of instability and nonuniqueness have been shown

1Note that what is called the second-order work rate does not have the units of work/time, and
is therefore not actually a work rate. It is, however, the coefficient of the second-order term in the
Taylor series of the work rate.
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to be possible with nonassociative plasticity models. Each subsection below describes

one of these possible instabilities.

1.4.1 Localization Instability

As mentioned in Section 1.4, when h < 0 the equations of motion lose hy-

perbolicity. Hill [12] connected this change in the governing equations with the

onset of localization. Localization refers to increases in the strain field that occur

only within a discrete region of a structure as the loading continues. A familiar

example of localization is the necking of a steel bar in a uniaxial stress tension test.

Rudnicki and Rice [19] have shown that with a nonassociative flow rule, localization,

and the resulting instability and ill-posedness, may occur even while the material

remains in the hardening regime. This means that for certain loading directions, a

nonassociative model will predict a softening-like behavior, even with a positive value

of the hardening modulus [20]. It has been shown that there exists a critical value

for the hardening modulus, above which localization is precluded [20, 21]. A related

instability exhibited by nonassociated models occurs when two of the eigenvalues of

the acoustic tensor become a complex-conjugate pair [22, 23]. This may occur prior

to the onset of localization. Experimental data suggest the onset of localization

within the hardening regime is a real phenomenon [24, 25, 26, 27], and that a

realistic constitutive model for materials that exhibit shear banding (such as geologic

materials) should admit this instability.

In a real material, the microstructural “texture” of the material plays an important

role in determining the size and nature of the localization region [28]. Localization

problems are ill-posed because traditional local constitutive models possess no intrin-

sic length scale, and hence no microstructural effects. Consequently, the localization

zone collapses unrealistically to a zone of zero volume [29]. Furthermore, zero energy

is dissipated in the infinitesimally small localization region. In simulations, this

localization zone collapses to the smallest element size [30], and the failure energy

approaches zero as the mesh is refined. However, in laboratory observations the

localization zone has a finite and reproducible width.

Even though the localization instability is a real phenomenon, the governing
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equations must, nevertheless, be reformulated in some manner to create a well-posed

set of governing equations. One common regularization method is to use a nonlocal

plasticity model, possibly in combination with a realistic spatial perturbation to

induce a unique realization belonging to an infinite set of possible solutions (similar to

perturbing a column to induce buckling in one out of an infinite number of possible

directions). Chapter 4 contains a description of this theory, and also presents a

new method for solving the resulting constitutive equations using the material point

method.

1.4.2 Sandler-Rubin Instability

While the localization instability can occur in nonassociative models because of the

softening-like behavior that they predict for certain loading directions, nonassociative

models also predict a stiffening behavior for other loading directions [20]. Specifically,

for certain loading directions, the plastic tangent modulus exceeds the elastic tangent

modulus. It has been shown that this stiffening behavior is possible with any nonasso-

ciative model [15]. The result is that there are closed strain paths for which positive

net work can be extracted from a material. This is a violation of both Drucker’s

stability postulate, and the more restrictive Il’iushin stability postulate [17]. While

the knowledge that such load paths existed led to some concern about a possible loss

of stability, no specific mathematical example of this theoretical instability was found

until the 1987 paper by Sandler and Rubin. While this example demonstrates that

the instability of nonassociative plasticity exists in theory, subsequent discussions

below argue that, unlike the localization instability (which has been observed), the

Sandler-Rubin instability is not expected to exist in reality. Accordingly, revisions of

classical plasticity will be sought to eliminate the Sandler-Rubin instability.

Lade conducted triaxial compression tests in which sand specimens were shown to

exhibit apparent nonassociative behavior [4]. Samples of the same material were then

loaded in directions for which a violation of Drucker’s postulate would be expected.

No obvious unusual collapse of the specimens was observed, which was taken as

evidence that Drucker’s postulate may be violated without inducing any instability.

The study did not, however, actually measure plastic strain increments to verify that
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Drucker’s postulate was violated, but instead fit a nonassociative plasticity model to

the triaxial compression data. The direction of the plastic strain increment was then

inferred from the standard triaxial compression tests. This procedure itself assumes

the existence of a regular flow rule. Furthermore, as was shown by Sandler and

Rubin [31], the instability resulting from this stiffening behavior does not produce a

“gross collapse” as was anticipated by Lade. Instead this instability, if it exists in

real materials, would be observed in the unstable growth of propagating waves.

Until the work of Sandler, Rubin and Pučik [31, 32], all arguments as to the

existence of an instability related to this stiffening behavior had been based upon

abstract theoretical arguments. Sandler and Rubin devised a case study problem for

which an analytic solution exists that clearly illustrated the existence of the instability

and some of its salient features. Sandler and Rubin showed that their case study

problem is ill-posed and possesses an infinite number of solutions. In a paper that is

currently under review, Pučik, Brannon and Burghardt showed how this instability

and nonuniqueness can be observed in finite-element simulations [16]. Specifically, it

was found that both the amplitude and width of a propagating wave may increase in

finite-element solutions with a nonassociative model, and that the nonuniqueness is

manifest primarily through a mesh dependency of the solution. In a companion paper

that is also currently under review, and appears as Chapter 2 of this dissertation,

Burghardt and Brannon use this same case study to investigate several nontraditional

plasticity models to determine if they also admit this instability. These nontraditional

plasticity models include an incrementally nonlinear model, a viscoplastic model, and

a nonlocal model, each of which is described in detail in Chapter 2. In that chapter the

author demonstrates that, of the models considered, only the incrementally nonlinear

model is capable of eliminating the instability while maintaining agreement with

laboratory data. Chapter 3 describes the results of a validation study of incrementally

nonlinear models for aluminum 6061-T0. The validation study suggests that an

incrementally nonlinear model is applicable to this material. As part of the study

presented in Chapter 2, a new method was developed for solving the equations of

nonlocal plasticity with the material point method (MPM). A description of this new

numerical technique is presented in Chapter 4.



CHAPTER 2

NONUNIQUENESS AND INSTABILITY

OF CLASSICAL FORMULATIONS OF

NONASSOCIATIVE PLASTICITY:

EFFECT OF NONTRADITIONAL

PLASTICITY FEATURES ON

THE SANDLER-RUBIN

INSTABILITY

2.1 Abstract

The Sandler-Rubin instability is a dynamic instability resulting from nonasso-

ciative plastic flow. This instability allows stress waves to grow in both amplitude

and width as they propagate. In addition to this physically implausible behavior,

multiple solutions to the equations of motion have been shown to exist when the

instability occurs. Reformulation of some aspects of traditional plasticity theory is

necessary since associative models overpredict the amount of plastic dilatation, and

nonassociative models may result in this physically unrealistic behavior. The purpose

of this paper is to investigate the effects of various traditional and nontraditional

plasticity features on the existence of the instability and resulting nonuniqueness.

Using a simple case study, the instability and nonuniqueness are shown to persist

with both linear and nonlinear hardening and softening. An incrementally nonlinear

model is shown to eliminate the instability and result in mesh-independent solutions.

A viscoplastic model is shown to lead to unstable solutions for all loading rates.

However, mesh-independent unstable numerical solutions are found when the loading

time scale is much less than the plastic relaxation time. A nonlocal plasticity model is
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shown to produce solutions that are both unstable and mesh dependent. Therefore,

of the models considered, only the incrementally nonlinear model was capable of

eliminating this nonphysical instability. This work provides much needed direction

for laboratory investigations of the validity of incrementally nonlinear flow rules.

2.2 Introduction

An associative plasticity model is one for which the plastic strain rate tensor is

proportional to the normal to the yield surface. While associativity has been shown

to be a sufficient condition for the existence and uniqueness of solution for boundary

value problems [12], several studies have demonstrated that associative flow rules

are incompatible with experimental data. Specifically, Spitzig and Richmond [7]

showed that associative models overpredict the amount of plastic dilatation in triaxial

compression tests of metals. Lade [4] found a similar problem with associative flow

rules for geologic materials. More recently, Stoughton [33] and Mohr [11] have shown

that associative flow rules do not accurately describe the anisotropic plastic flow of

sheet metals.

For these reasons, nonassociative models have become increasingly popular. A

nonassociative model allows the yield strength and plastic flow direction to be inde-

pendently prescribed. This allows the dilatation and frictional angles to be indepen-

dently prescribed and thereby tuned to correctly fit the plastic dilatation observed

in triaxial compression tests. For anisotropic sheet metals a nonassociative flow rule

allows the degree of anisotropy of the yield function and the plastic flow potential

function to be independently tuned to match experimental data. This capability has

been demonstrated to lead to a significant improvement in the ability of plasticity

models to fit experimental data [11, 10, 34].

These studies have consistently demonstrated that an associative flow rule is

incompatible with experimental data, and that a nonassociative flow rule results

in a model with more mathematical flexibility, and therefore can be more accurately

tuned to experimental data. Despite this fact, the adoption of a nonassociative model

brings with it a host of possible problems. For example, nonassociative models do

not satisfy Drucker’s stability postulate for all loading directions [13]. Of course,



13

Drucker’s stability postulate has been proven to be only sufficient, but not necessary,

for stability and uniqueness [12]. As discussed in detail below, nonassociative models

have been shown to result in instability and a loss of uniqueness for certain loading

conditions.

A well-known loading condition that results in loss of uniqueness and instability

with a nonassociative flow rule was discovered by Rudnicki and Rice [19]. They

showed that under certain loading directions, a nonassociative model could result in

a localization instability even while the material remained in the hardening regime.

This localization instability has been shown to result in a loss of uniqueness of solution

for local rate-independent plasticity models. This instability and nonuniqueness have

been extensively studied over the years [28, 30, 35, 36]. Experimental data suggest

that real materials exhibit hardening behavior for some loading direction, and localize

for other loading directions [24, 25, 26], which is consistent with the existence of the

softening-like behavior of nonassociative models. While the softening-like behavior of

nonassociative models is consistent with experimental data, the governing equations

are nevertheless ill-posed with the onset of localization and must be reformulated

in some way to produce a well-posed problem. The current leading approaches are

nonlocal plasticity and gradient plasticity.

Another, and fundamentally different, source of instability and nonuniqueness

caused by nonassociative plastic flow was first observed by Sandler and Rubin [31].

They showed that with any degree of nonassociativity there exist loading directions for

which the wave speed in plastic loading exceeds the wave speed in elastic unloading.

This over-stiffening occurs any time the trial stress rate tensor has a positive inner

product with the normal to the yield surface, but a negative inner product with the

plastic strain rate tensor. This region of stress space, which lies above the yield

surface, but below the plastic flow potential surface, will be herein referred to as the

Sandler-Rubin wedge. Sandler and Rubin showed that the existence of these so-called

“fast plastic” waves causes a loss of uniqueness of solutions and that solutions are

admitted for which an infinitesimal stress perturbation can nonphysically grow in

amplitude and width as it propagates. This phenomenon is essentially equivalent to

spontaneous motion from a quiescent state, which can be construed as an implausible
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behavior for a passive material.

The numerical manifestation of the ill-posedness caused by the Sandler-Rubin

instability is remarkably similar to that caused by localization. Specifically, when a

local model is used to solve a localization problem, the strain in the localization region

becomes unbounded with mesh refinement. For localization problems, the region

of unbounded strain is stationary in a Lagrangian sense. For the Sandler-Rubin

instability, the region of unbounded strain lies at the peak of a propagating stress

wave. As the head and tail of the wave diverge because of the inversion in elastic and

plastic wave speeds, the region of unbounded strain expands linearly in time. In the

one-dimensional case study considered here, the solution in this region of space has

been previously shown [16] to be subject to only two constraints:

0 ≤ σ̇ (2.1)

and

CE < v < CP (2.2)

where σ̇ is the axial component of the stress rate, CE is the elastic wave speed, v is

the wave speed in the region of nonuniqueness, and CP is the plastic wave speed.

In a relatively recent series of articles on plastic stability, Stoughton and coauthors

[37, 38] have expressed some concerns about the range of validity of Sandler and

Rubin’s analysis. Most recently, Stoughton [38] has suggested that the Sandler-Rubin

instability is permitted by only a very small and simple subset of nonassociative

plasticity models. In this paper it is shown why this concern is not warranted, and

that the instability and nonuniqueness persist for nearly all nonassociative plasticity

models.

In light of both the loss of uniqueness of solution and the physically implausible

behavior permitted under the Sandler-Rubin instability, it seems that traditional

nonassociative models must be rejected. However, as discussed previously, associative

models also must be rejected since they are incompatible with experimental data.

Clearly a resolution to this problem lies outside of traditional plasticity theories. The

purpose of this paper is to investigate several nontraditional theories to determine



15

which, if any, of these theories are capable of matching experimental data while at

the same time eliminating the physically implausible Sandler-Rubin instability.

In a previous paper by Pučik, Brannon and Burghardt [16], the existence and

characteristics of the Sandler-Rubin instability were illustrated using both analytical

and numerical solutions to a simple one-dimensional wave-propagation problem. To

illustrate the instability in the simplest possible context, the previous paper employed

a rate-independent, perfectly-plastic model. In this paper we solve this same case

study with a variety of generalizations of this simple model.

The case study is briefly described in Section 2.3. In Section 2.5, we examine

various generalizations of the simple plasticity model considered in [16]. The first of

these generalizations discussed here is linear and nonlinear hardening and softening.

The second reformulation considered is the adoption of an incrementally nonlinear

flow rule, which allows the plastic flow direction to change based on the incremental

loading direction. The third alternative theory considered is the adoption of rate

dependence. The final reformulation of traditional plasticity theory considered here

is an integral-type nonlocal plasticity theory.

2.3 Description of the Case-Study Problem

In this section, a simple numerical case study problem is described that elicits

the Sandler-Rubin instability. The case study problem consists of a semi-infinite

elastic/plastic half space as shown in Fig. 2.1. The axial component of the initial

stress state σ∗
X is chosen to be −100 MPa, while the lateral component, σ∗

Y = σ∗
Z ,

is chosen to be −17.55 MPa, where stresses are taken to be positive in tension. The

material is also assumed to be in a quiescent initial state. The linear Drucker-Prager

yield function used in this case study is:

f =
√
J2 + βI1 − ko (2.3)

where J2 = 1
2
S:S, S is the deviatoric stress tensor, I1 = Tr(σ), and β and ko are

material parameters whose values are chosen to be 0.315 and 5.066MPa, respectively.

With these parameters, and the chosen initial stress state, the material is at incipient

yield in its initial condition. The dilatation angle is chosen to be zero, meaning that
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the plastic strain rate tensor is proportional to the deviatoric part of the stress tensor

and therefore has no volumetric part. Various generalizations of this simple model

will be considered and are discussed in detail below. This model was contrived to

simplistically demonstrate the existence and character of the instability. In what

follows, various enhancements to this model are systematically explored to determine

their effect on the instability in this case study.

The surface traction at the free surface is initially −100 MPa, which places the

material in equilibrium in the initial state. A small perturbation is applied to the

surface traction as shown in Fig. 2.1. The perturbation is characterized by the peak

change in stress σo = 10 MPa, and the duration of the pulse τ = 2 ms. Since the

axial component of stress changes from −100MPa to −90MPa, this is a tensile stress

increment that reduces both the confining pressure and the magnitude of the stress

deviator and induces plastic flow. This loading increment is reversed by returning the

axial component of the stress tensor to its initial value in what can be shown to be

an elastic recompression increment. This loading sequence results in the triangular-

shaped time history of the perturbation shown in Fig. 2.1, with the front of the

triangular pulse causing the material to undergo plastic loading and the tail of the

pulse causing elastic unloading. Here loading refers to an increment that induces

plastic flow and unloading refers to an increment that is purely elastic, even though

the plastic loading increment represents a decrease in the applied load.

This perturbation causes a longitudinal wave to propagate through the half space.

As shown by Pučik et al. [16] and illustrated in Fig. 2.2, this loading condition places

the trial stress rate in the Sandler-Rubin wedge and results in a plastic wave speed

that exceeds the elastic wave speed. This case study was also shown to possess a

two-parameter family of nonunique analytical solutions. The problem was also solved

numerically using the finite-element method. In subsequent work, and as shown in

Fig. 2.3, the finite-element results were reproduced using a material point method

(MPM) code [39, 40, 41], which is also used in the simulations presented in this paper.

As these solutions illustrate, the head of the wave (left-hand portion of the stress

wave history) and the tail of the wave (right-hand portion of the stress wave history)

are diverging from each other due to the plastic wave speed exceeding the elastic wave
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speed. This causes what is initially a single point at the top of the triangular stress

pulse to open up into a finite region. It is in this region that the solution is nonunique.

This nonuniqueness becomes apparent in analytical solutions by the presence of free

parameters in the solution. In contrast, nonuniqueness can be much more subtle in

numerical solutions. As with the nonuniqueness that occurs in localization problems,

the numerical manifestation of the Sandler-Rubin instability occurs primarily though

a mesh dependency of the solution. This can be observed by comparing the coarse

resolution plot on the left-hand side of Fig. 2.3 with the finer resolution on the

right-hand side of the same figure. At late times in the more resolved solution,

secondary peaks in the stress wave begin to form, which grow much more rapidly

than the primary peak. As the mesh is further refined, these secondary peaks begin

to form at earlier and earlier times and also grow at an increasingly rapid rate, with

the result being that the numerical solution diverges with mesh refinement. The same

trend was observed by Pučik et al. [16] using the finite-element method, though the

formation of the secondary peaks began at a different mesh resolution.

2.4 Directional Stiffness

The concept of directional stiffness as developed by Runesson [20] is a convenient

method for studying the stiffness properties of a plasticity model. The directional

stiffness Sε is defined such that

σ̇ε = Sεε̇ (2.4)

where σ̇ε is the projection of the stress rate, σ̇, onto the direction of ε̇. The directional

stiffness ratio is defined as the ratio of the plastic and elastic directional stiffness:

Rε =
Sε

Se
ε

=
ε̇:T:ε̇

ε̇:C:ε̇
(2.5)

where Se
ε is the elastic directional stiffness, T is the fourth-order elastic-plastic tangent

stiffness tensor, and C is the fourth-order elastic tangent stiffness tensor. This

quantity provides a scalar measure of the stiffness of a plasticity model relative to the

corresponding elastic stiffness for a given loading direction . As shown in Fig. 2.4, the

loading direction is quantified by the loading angle, θ, which is defined such that it is

zero when the strain rate tensor is tangent to the yield surface. Of the two tangent
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directions, θ is measured from the directional tangent tensor having a negative trace

(compressive).

The right-hand side of Fig. 2.4 is a plot of the directional stiffness ratio for both

associative and nonassociative, perfectly plastic, linear Drucker-Prager models for

0 ≥ θ ≥ π/2. As shown in the figure, the directional stiffness ratio for an associative

model is always greater than zero and less than one. However, with a nonassociative

model, the directional stiffness ratio is negative for some loading directions, and

greater than one for others. This results in the nonassociative model exhibiting a

softening-like behavior for certain loading directions, and an over-stiffening behavior

for others. The softening-like behavior occurs when the plastic directional stiffness

ratio is less than zero, and corresponds to the onset of localization even while the

material remains in the hardening regime [19].

In contrast to the softening-like behavior, the over-stiffening behavior of nonas-

sociative models has seen much less study, and its effects are much more subtle. As

discussed in Section 2.3, when the over-stiffening behavior occurs, the plastic wave

speed exceeds the elastic wave speed, resulting in a loss of uniqueness of solution and

the existence of a physically implausible instability. The loss of uniqueness of solution

itself is problematic from a practical standpoint as it can result in mesh-dependent

numerical solutions, or solutions that are very sensitive to small changes in the input

parameters, as is the case with localization problems. However, in contrast to the in-

stability seen in localization problems, the Sandler-Rubin instability is not physically

plausible. Therefore, resolving the mesh dependency arising from the Sandler-Rubin

instability is not a matter of only restoring the well-posedness, but rather the plasticity

model must be modified to preclude the existence of the instability.

Therefore, we draw a conclusion that a realistic plasticity model will have a

directional stiffness ratio that is less than zero for some loading directions (and

therefore admits localization in the hardening regime), but is never greater than

one (and therefore does not admit the Sandler-Rubin instability). We now examine

various modifications to the elastic perfectly-plastic model considered thus far to

determine which, if either, of these requisite properties each model exhibits.
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2.5 Use of Alternative Theories

In what follows, the case study problem is solved using the MPM with various

modifications to the nonhardening plasticity model considered by Pučik et al. [16].

Both isotropic hardening and softening are considered, as well as three nontraditional

plasticity model formulations. Each subsection describes the model reformulation

as well as its effect upon the existence and characteristics of the Sandler-Rubin

instability.

2.5.1 Hardening and Softening

In this section we examine the effect of hardening and softening upon the Sandler-

Rubin instability. Figure 2.5 shows the directional stiffness ratio for the modified

constitutive model, including both hardening and softening. As has been pointed

out by Runesson [20] and as witnessed by the increase in the minimum value of

the directional stiffness ratio with hardening shown in Fig. 2.5, hardening serves

to diminish the softening-like behavior exhibited by nonassociative models. In fact,

there exists a critical amount of hardening necessary to eliminate the possibility of

attaining a negative value for the plastic directional stiffness, which in turn eliminates

the possibility of localization. As would be expected, the figure shows that strain

softening serves to increase the softening behavior of a nonassociative model (the

minimum value of the directional stiffness ratio decreases with strain softening).

As shown in Fig. 2.5, the maximum value of the directional stiffness ratio increases

when the model includes softening. This means that the spurious stiffening caused

by nonassociative models is exacerbated by softening. Therefore, softening would be

expected to exacerbate the Sandler-Rubin instability. Hardening serves to slightly

decrease the maximum value of the directional stiffness ratio. Therefore, hardening

would be expected to ameliorate the Sandler-Rubin instability.

Figure 2.6 shows numerical solutions to the case study problem with hardening

and softening. For reference, the perfectly-plastic (nonhardening) solution is also

shown with dashed lines. As suggested by the increase in the maximum value of the

directional stiffness ratio with softening shown in Fig. 2.5, the plastic wave speed has

increased as compared to the nonhardening solution. With this increase in plastic
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wave speed with softening, the degree of instability has also increased. In contrast, the

solution with hardening shows a decrease in the plastic wave speed, and a decrease

in the degree of instability. It can be shown that only as the hardening modulus

approaches infinity does the plastic wave speed approach the elastic wave speed. In

contrast to what was found with the localization instability, there is no critical amount

of hardening or softening that eliminates the Sandler-Rubin instability.

Stoughton [38] has asserted that the Sandler-Rubin instability cannot exist if the

plastic tangent modulus is not constant to first order. The basis for this assertion is

that if nonconstant wave speeds are substituted into the Sandler-Rubin solution, the

resulting expressions fail to satisfy the governing equations. However, as discussed by

Pučik et al. [16], this does not mean that the Sandler-Rubin instability cannot exist

if the wave speed is not constant —it simply means that the Sandler-Rubin analytical

solution was limited to the special case of a constant wave speed. Accordingly there is

no reason to believe that such a solution should be expected to apply to a nonconstant

wave speed.

Stoughton defines several classes of plasticity models that do not result in a

constant plastic tangent modulus, and therefore were claimed not to admit the

Sandler-Rubin instability. One class of models that has this attribute is any model

with nonlinear hardening. To illustrate that such a model does admit the instability,

the case study problem was solved using the same linear Drucker-Prager model with

the following nonlinear hardening yield function:

f =
√
J2 + βI1 − klimit − (ko − klimit)e

−z/zref (2.6)

where klimit is the maximum value of the yield strength, z is the cumulative equivalent

plastic strain, and zref is a parameter that controls the rate at which the maximum

yield strength is approached.

The nonlinear hardening parameters were chosen to be klimit = 10 MPa, and

zref = 0.001. The left-hand side of Fig. 2.7 shows a plot of axial stress versus axial

strain for a uniaxial stress loading path with the nonlinear hardening model and the

chosen parameter values. As the plot clearly indicates, the plastic tangent modulus

(and thus the plastic wave speed), is continually changing with plastic loading. The
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stress histories found using this model and a mesh resolution of Δx = 0.125 m are

shown in Fig. 2.7. As the stress histories indicate, the instability remains even with

nonlinear hardening, thus providing a counter example contradicting Stoughton’s

conclusions. Furthermore, the solution also does not converge with mesh refinement,

indicating that the governing equations remain ill-posed for this case.

2.5.2 Incrementally Nonlinear Plasticity

While a large body of evidence suggests that the use of an associative flow

rule is inappropriate for many materials [7, 4], the physically implausible instability

illustrated above is inherent in all nonassociative flow rules. Since both an associative

and nonassociative flow rule seem to be at odds with experimental data, we ought to

question the validity of assumptions upon which both of these flow rules rest.

One such assumption is the existence of a regular flow rule. A regular flow rule is

defined as one for which the direction of the plastic strain rate is independent of the

direction of the strain rate itself. Of the very few studies to investigate the validity

of this assumption, most have cast considerable doubt on the validity of a regular

flow rule for general loading conditions [42, 43, 44]. Several incrementally nonlinear

flow rules have been proposed in the literature [45, 46, 47, 48, 44]. One of these,

the “Extended Flow Rule” (EFR) proposed by Hashiguchi [45], is investigated as a

possible alternative to the use of a regular flow rule. This flow rule was chosen since

it may be easily incorporated within the basic framework of classical plasticity. The

only difference is that the direction of the plastic strain rate is permitted to change

based on the direction of the strain rate tensor. For this flow rule, the direction of

the plastic strain rate M is given by:

M = N̂ ‖ė∗‖+ P v
t ėvI + P ∗

t ė
∗ (2.7)

where N̂ is the unit normal to the yield surface, ‖:‖ represents the Euclidean norm of

its argument, ė∗ is the deviatoric part of the strain rate tensor, ėv is the volumetric

part of the strain rate tensor, I is the identity tensor, and P v
t and P ∗

t are fitting

parameters that control the degree to which the direction of plastic strain rate will

be influenced by the direction of the strain rate tensor. Taking P v
t and P ∗

t to be zero
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would result in a regular, associative flow rule. By selecting nonzero values for one

or both of these parameters the constitutive model may be calibrated such that it

accurately predicts the volumetric strain observed in triaxial compression tests, while

at the same time preventing the Sandler-Rubin instability by precluding the plastic

wave speed from exceeding the elastic wave speed for any loading direction.

This flow rule was implemented using the Drucker-Prager constitutive model

used in the example problem, with P v
t = 0.5 and P ∗

t = 0. With these values, a

triaxial compression test will result in very little volumetric plastic strain, as would

be expected from a triaxial compression test on a rock-like material. The directional

stiffness ratio for this model, and a perfectly plastic Drucker-Prager yield function,

is shown on the left-hand side of Fig. 2.8. For all loading directions, the directional

stiffness ratio is less than one, indicating that no spurious stiffening is possible with

this flow rule. The right-hand portion of this figure shows the stress histories for

the case study problem with this flow rule. As expected by the boundedness of the

directional stiffness ratio, no instability is evident with this flow rule. In fact the

stress wave dissipates, rather than grows, as it propagates. Like a nonassociative flow

rule, there are loading directions for which the directional stiffness ratio is negative.

This means that this flow rule and choice of parameters will still admit localization

for some loading directions. As mentioned in Section 2.2, the ability to localize while

in the hardening regime is a desirable feature of a plasticity model.

While eliminating the Sandler-Rubin instability, being capable of matching triaxial

compression data, and admitting the localization instability, such flow rules have

undergone relatively little validation. Since an incrementally nonlinear flow rule

is capable of exactly duplicating the triaxial compression response of a standard

nonassociative model, triaxial compression tests alone will not validate or invalidate

the EFR. The experimental measurements necessary to validate an incrementally

nonlinear model are not straightforward. Additional data that measure the plastic

strain increments resulting from a variety of loading directions would be necessary to

determine if the EFR is in fact valid. As discussed in our concluding remarks, such

measurements may be critical to resolving the problems discussed in this paper, but

performing such tests introduces irreducible uncertainty in the data. In the absence
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of such data, it would seem most prudent to choose a flow rule such as the EFR,

which disallows any nonphysical instabilities and can be fit to existing data.

2.5.3 Rate-dependent Plasticity

In this section, we consider the effect of rate dependency on the existence and

characteristics of the Sandler-Rubin instability. In their original work, Sandler and

Rubin [31] suggested that rate dependence might eliminate the nonphysical behavior

caused by nonassociative plastic flow. The context of their suggestion was a discus-

sion of the impacts of the Sandler Rubin instability for quasi-static problems. The

instability is inherently dynamic, but it is rational to demand that the quasi-static

solution be admissible only if it is stable under infinitesimal dynamic perturbations.

The conclusion is that if a nonassociative flow rule is inappropriate for dynamic

problems involving infinitesimal perturbations, then it also ought to be rejected for

quasi-static problems. If rate dependence were shown to be capable of eliminating

the instability for dynamic problems, then there would be no concern in using current

rate-independent plasticity models for quasi-static problems.

With this motivation, the case study problem discussed above was solved using

a rate-dependent generalized Duvaut-Lions model. The generalized Duvaut-Lions

model is an “overstress” model, meaning that, under high-rate loading, it allows the

stress state to fall outside the yield surface. The “overstress” is quantified by:

σover = σ − σqs (2.8)

where σqs is the corresponding quasi-static stress state. The strain rate ε̇ is additively

decomposed into elastic ε̇e and viscoplastic ε̇vp parts:

ε̇ = ε̇e + ε̇vp (2.9)

The elastic strain rate is defined to be the same as in rate-independent theory. The

viscoplastic strain rate is governed by:

ε̇vp =
1

τmat

C
−1:σover (2.10)

where τmat is the plastic relaxation time, and C−1 is the inverse of the elastic tangent

stiffness tensor (elastic tangent compliance tensor). The basis for this type of model
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is that plastic deformation requires a finite amount of time to develop. The time scale

associated with plastic deformation is quantified by τmat. For a detailed description

of this model see the book chapter by Brannon [2]. For rate-dependent models it is

convenient to use the nondimensional Deborah number (De) to describe the loading

rate. The Deborah number is defined as:

De =
τmat

τload
(2.11)

where τload is a time scale associated with the loading. A large De indicates that the

loading time scale is short compared to the material relaxation time scale, which would

produce an elasticity-dominated response. A small De indicates that the loading time

scale is long compared to the material relaxation time scale, which would produce a

plasticity-dominated response. In the limit as De→ 0, a viscoplastic material model

would predict a material response similar to a rate-independent model. In the limit

as De → ∞, a viscoplastic material model would predict a response that is purely

elastic.

Figure 2.9 shows a series of plots of the stress history at various locations in the

problem domain using several values of De. As discussed above, for low De, the

material behavior would be expected to be similar to the rate-independent response.

However, for this case study problem the solution is nonunique across the peak of

the wave. This fact allows the solution in this region to change dramatically with

even small changes in the material response. This is evident in the stress histories

for De = 0.01 shown in Fig. 2.9. As would be expected, the head and tail of the

wave are propagating with essentially the same speed as with the rate-independent

solution (dashed line). However, the numerical solution across the peak of the wave is

dramatically different than with the rate-independent model, and has become much

more unstable. Again, this should not be cause for concern since no unique solution

exists for this region of (x, t) space. As discussed in Section 2.3, the only constraints

on the solution in this region are that the stress rate be greater than or equal to zero,

and that the wave speed be greater than the elastic wave speed and less than the

plastic wave speed. The numerical solution for De = 0.01 shown in Fig. 2.9 satisfies

both of these constraints.
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When the relaxation time is nearly the same as the loading rate, the material

behavior would be expected to become more elastic. This can be seen in the stress

history plots for De = 1 shown in Fig. 2.9. For this solution the head and tail

of the wave are diverging at a much lower rate, and are propagating with a wave

speed that lies between the elastic and plastic wave speeds. Because the actual stress

state can transiently lie outside the yield surface with the viscoplasticity formulation

used, the viscoplastic strain rate can be nonzero even when the quasi-static stress

state is within the yield surface. After the quasi-static stress state enters the yield

surface, the overstress will exponentially decay to zero so that the actual stress state

will approach the quasi-static stress state as the material is unloaded. The rate

at which this approach occurs depends upon the relaxation time. Therefore, when

the relaxation time is of the same order as the loading rate, a large part of the

tail of the wave may still be undergoing viscoplastic deformation, even though the

quasi-static stress state is within the yield surface. This is why the tail of the wave

becomes increasingly dispersed as De increases as seen in Fig. 2.9. This also causes an

increasing portion of the tail of the wave to be in a viscoplastic state as De increases.

This also reduces the rate at which the head and tail of the wave diverge at high

De, thereby decreasing the degree of instability in the solution. Also, for the mesh

resolutions considered (Δx = 2 m to Δx = 0.125 m), the numerical solutions for

De > 5 seemed to converge to a unique solution, although the instability remains.

2.5.4 Nonlocal Plasticity

As was mentioned in Section 2.2, there are two known material instabilities that

may arise with the use of nonassociative plasticity models: a localization instability

and the Sandler-Rubin instability. In the case of localization, the instability is an

actual phenomenon that a realistic model ought to admit. Nonetheless, to achieve

unique solutions to localization problems, some modification of the model is required

to regularize the governing equations. Two commonly used approaches to regular-

izing localization problems are nonlocal plasticity and gradient plasticity. Both of

these modifications to traditional plasticity theory cause wave propagation to become

dispersive, which means that waves of different frequencies propagate at different
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velocities. Dispersive wave propagation behavior has been shown to be critical to

allowing these types of models to lead to mesh-independent numerical solutions to

localization problems [49, 50].

Since nonlocal theory has proven useful to improve other aspects of plasticity

theory (the ill-posedness due to localization), and since nonlocal theory predicts

nonclassical wave propagation behavior, it seems prudent to investigate its effect

upon the Sandler-Rubin instability, which inherently involves wave propagation. In

this section, we investigate the effect of nonlocal plasticity and the resulting dispersive

wave propagation behavior on the Sandler-Rubin instability. This is done by solving

our case study problem using an integral-type overlocal plasticity model as described

by Stromberg and Ristinmaa [51]. An overlocal model includes both local harden-

ing/softening and nonlocal hardening/softening. The overlocal Drucker-Prager yield

function is given by:

f =
√
J2 + βI1 − ko − (1−m)η −mζ (2.12)

where η is the local hardening/softening function, ζ is the nonlocal hardening/softening

function, and m is the overlocal parameter. For m = 0, a purely local model is

obtained, and for m = 1 a purely nonlocal model is obtained. As discussed by

both Stromberg and Ristinmaa [51] as well as Di Luzio and Bazant [50], the best

localization limiting properties are obtained with the overlocal choice, m > 1. In this

paper we use m = 2. The hardening/softening functions evolve according to:

η̇(x) = hλ̇(x) (2.13)

where λ̇ is the magnitude of the plastic strain rate tensor (plastic multiplier), and

ζ̇(x) =
h

Vα

∫
Ω

α(x− s)λ̇(s)dV (2.14)

where x is the position vector of a given material particle, h is the hardening/softening

modulus (here taken to be a constant material parameter), Vα =
∫
Ω
α(s)dV , and

α(x) is the nonlocal weighting function, here chosen to be the Gaussian distribution

function given by:

α(x) = Exp
[
(−k ‖x‖ /L)2] (2.15)
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where k = (6
√
π)

1

3 , and L is the nonlocal length scale. With the nonlocal term,

the yield function at each material point becomes coupled with all material points

within the support of α(x). To solve this coupled set of equations, a new fixed-point

iteration scheme, which is described in Chapter 4, was developed and implemented

into the MPM solution procedure.

A perturbation analysis technique described by Di Luzio and Bazant [50] was

adapted to solve for the frequency-dependent wave propagation velocity for the uni-

axial strain wave propagation problem in this paper. The left-hand side of Fig.

2.10 shows the resulting wave propagation velocity versus frequency for the nonlo-

cal Drucker-Prager model. Unlike the dispersion relations for localization problems

reported in the literature, which focused on low values of the directional stiffness

ratio, with the overlocal Drucker-Prager model at high directional stiffness ratios, no

localization occurs. Hence there is no critical wave frequency at which the propagation

speed is zero. This is due to the over-stiffening behavior of the nonassociative model

for the loading directions involved in this problem. The wave propagation velocity

is bounded by the purely local softening wave speed (upper bound) and by the

purely local wave speed (lower bound). This is because with low frequencies (and

therefore small gradients) the nonlocal average of the plastic strain approaches the

local value, so the nonlocal model results in little change as compared to a purely

local softening model. For high frequency waves, the nonlocal average for a material

particle will be much less than the local value since neighboring “elastic” particles,

whose plastic strain rate tensor is zero, are included in the average. Therefore, for

high frequencies, the local term of the overlocal hardening/softening dominates, and

the response approaches that of a local hardening model.

The case study was solved using a nonlocal length scale of L = 1.0m. The

internal length scale is tied to the length scale associated with a critical material

microstructure. The critical material length scale depends upon the length scale

associated with the problem geometry and the wave length of the solution. This

case study problem is meant to represent a stress wave propagating through geologic

strata. For the length scales involved and the frequency of the solution, the critical
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material structure driving the nonlocal length scale would likely be the thickness of

bedding planes or similar geologic structures. With this in mind a nonlocal length

scale of one meter would be reasonable.

The right-hand side of Fig. 2.10 shows the stress histories at various locations in

the problem domain using the overlocal model discussed above. For reference, the

local softening solution is shown with a dashed line. Consistent with the dispersion

plot in the same figure, the overlocal model has resulted in a reduction in the plastic

wave speed relative to the local softening solution. Nevertheless the instability and

nonuniqueness persist. As can be seen by the horizontal separation of the curves in

Fig. 2.10, the difference in arrival time is greater for the secondary pulse than it is for

the primary pulse. This is thought to be due to the higher frequency of the secondary

pulse, which according to the dispersion relation for this problem results in a decrease

in wave speed as compared to lower frequency waves.

From the dispersion relation and the overlocal case study solution, we conclude

that a nonlocal plasticity model neither eliminates the Sandler-Rubin instability, nor

the resulting ill-posedness.

2.6 Concluding Remarks

Of the models considered, only Hashiguchi’s incrementally nonlinear extended

flow rule (EFR) [45] was found to eliminate the Sandler-Rubin instability. The

viscoplastic model considered here resulted in mesh-independent solutions for high

loading rates, but the nonphysical instability was present for all loading rates consid-

ered. Both the instability and the mesh dependency of the numerical solution were

observed with both linear and nonlinear hardening and softening. The fact that the

instability persisted even with nonlinear hardening constitutes a counter example to

Stoughton’s assertion [38] that nonlinear hardening would preclude the instability.

Hardening tended to diminish the instability, while softening tended to exacerbate it.

The nonlocal plasticity solutions were very similar to the local plasticity solutions.

Therefore, of the models considered here, the incrementally nonlinear EFR model is

the only one that eliminates the instability while maintaining the desirable aspects

of a nonassociative model.
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As discussed in Section 2.5.2, Hashiguchi’s EFR model introduces new material

parameters that must be calibrated to a material of interest. To choose these param-

eters for a given material, the plastic strain increment must be measured for several

loading directions. To measure the plastic strain increments, laboratory tests must

include unloading increments. Furthermore, to measure these increments at the same

material state for a different loading direction requires nonproportional loading. A

limited amount of such data is available in the literature, and collecting such data is

complicated by the loading-history dependent nature of plastic loading [52].

Measuring the components of any tensor (in our case the tangent stiffness) requires

measuring the response to more than one loading direction. In measuring the plastic

strain increment for one loading direction, however, the material is permanently

altered, making it impossible to know how the material would have responded to

a different loading direction from the same initial state. Any further loading of the

material with a loading increment in a different direction begins at a different material

state. Therefore it is impossible to measure the tangent stiffness in the laboratory

with certainty. Stoughton [33] pointed out a few additional problems with making

such measurements. Specifically he mentioned that many materials of interest do

not exhibit a “sharp” yield point, but instead the material gradually transitions from

elastic to elastic/plastic deformation, making detection of the onset of yield difficult.

Several techniques have been used to ameliorate this problem, each with its own

drawbacks [42, 43]. A new technique that seeks to overcome some of these problems

is presented in Chapter 3.

The flow rule validation studies from the sheet metal forming community [11,

10, 34] have performed a best-fit parameterization of associative and nonassociative

regular flow rule models to a subset of their experimental data. The models were

then used to generate predictions for other experimental data that were not used

for model calibration. As mentioned previously, these studies have shown that a

nonassociative flow rule is better able to match the experimental data. Although

these tests were performed for a wide variety of loading directions, none of these tests

explicitly measured the plastic strain increments by including unloading increments.

These and other tests already mentioned do provide a compelling case against an
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associative flow rule, but they do not provide any evidence for or against the validity

of a regular flow rule.

To our knowledge, no study has conclusively validated or invalidated the existence

of a regular flow rule. Therefore, the validity of the incrementally nonlinear approach

is a critical topic for future experimental work. It is suggested that future validation

efforts include incrementally nonlinear models as a possible alternative to traditional

regular flow rules. Until such experimental evidence becomes available, it seems

prudent to choose a model that fits known data while at the same time disallowing

the nonphysical instabilities evident in traditional nonassociative plasticity. Therefore

analysts may consider adopting an incrementally nonlinear approach if an analysis

involves loading paths in the directions which could potentially excite the Sandler-

Rubin instability.
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Figure 2.1. Geometry and loading for the case study problem.
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σz =

1√
3
Tr(σ)). M̂ is the direction of the plastic strain rate, σ̇trial is the stress rate,

and σ̇ is the actual stress rate.
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Figure 2.6. Stress histories for the numerical solution using hardening (left) and
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Figure 2.9. Stress histories for a Duvaut-Lions viscoplasticity model, with
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CHAPTER 3

EXPERIMENTAL VALIDATION OF

INCREMENTAL NONLINEARITY

3.1 Abstract

A new experimental method and data analysis technique for directly measuring

the incremental stress-strain response of a material is described. Using this technique

it is possible to measure the incremental response to a variety of loading directions

from a single material sample. This eliminates the need to fabricate a series of

identical specimens as with existing stress probe techniques. A rigorous mathematical

framework for fitting classical theories to the data, and quantifying the error, is

provided. This methodology is used to measure the incremental response of a series

of aluminum 6061-T0 specimens, and to evaluate the validity of classical theories

for this material. The results suggest that there is some degree of incremental

nonlinearity (i.e., the direction of the inelastic strain increment depends on the total

strain increment direction).

3.2 Introduction

The stress-strain relationship for most materials is nonlinear and path dependent.

For this reason the stress state at time t is, in general, a functional of the entire

loading history:

σ(t) = F [ε(τ), γ(τ); 0 ≤ τ ≤ t] (3.1)

where σ is the stress tensor, ε is the strain tensor, and γ represents other variables

such as temperature that might alter the mechanical behavior of the material. Since

formulating a constitutive model using nonlinear functionals would generally be in-

tractable, a useful simplification is to express the stress rate tensor, σ̇, as a function
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of the strain rate tensor, ε̇, the stress tensor, and a set of internal state variables,

denoted collectively as ξ, which account for previous loading history:

σ̇(t) = G[ε̇(t),σ(t), ξ(t)] (3.2)

In general, G is a nonlinear tensor-valued function. Again due to the difficulty

of working with nonlinear tensor-valued functions, further assumptions are often

introduced to simplify Eq. (3.2). One such assumption is rate independence. If

material response is assumed to be independent of the loading rate, then the function

G in Eq. (3.2) is a homogeneous function of degree one in the variable ε̇. Euler’s

theorem for homogeneous functions then allows Eq. (3.2) to be written as

σ̇(t) = H[̂ε̇,σ(t), ξ(t)]:ε̇ (3.3)

where H = ∂G
∂ε̇(t)

is a fourth-order tensor called the tangent stiffness, and ˆ̇ε is a

unit tensor in the direction of the strain rate tensor. Many assumptions have been

proposed that further simplify Eq. (3.3). The assumptions of interest in this paper

regard the degree to which the tangent stiffness tensor H depends on the loading

direction ˆ̇ε. For example, if the material response is assumed to be nonlinear elastic,

the tangent stiffness tensor is independent of the loading direction. This means that

the relationship between the stress rate, σ̇, and the strain rate, ε̇, is linear, and hence

is called an incrementally linear relationship. For this case, Eq. (3.3) can be reduced

to

σ̇ = C(σ):ε̇ (3.4)

where C is the fourth-order elastic tangent stiffness tensor. This result shows the

stress increment to be linear with respect to the strain increment, and does not

imply Hooke’s law in which stress is linear with respect to strain. Linear elasticity

corresponds to the the tangent stiffness being independent of σ.

For classical rate-independent plasticity theories, a loading increment is considered

to be elastic if f(σ(t), ξ(t)) < 0, where f is a scalar function called the yield function.

The set of stress states for which f = 0 defines the yield surface. When a stress

state has reached the yield surface, loading directions for which N̂ :C:̂ε̇ > 0 represent

plastic loading, and the directions for which N̂ :C:̂ε̇ < 0 represent elastic unloading.
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These regions of the loading space are referred to as tensorial zones. Figure 3.2

illustrates both a classical incrementally bilinear response, and a general nonlinear

response using a Gudehus strain response diagram. The results from this chapter will

be presented using Gudehus diagrams in Section 3.6.

Within each tensorial zone there exists a tangent stiffness tensor, each independent

of the loading direction. Thus, elasticity theory defines a single tensorial zone, and

classical plasticity defines two tensorial zones. These correspond to an incrementally

linear and bilinear constitutive relation, respectively. The validity of the incrementally

bilinear constitutive relationship of classical plasticity theory rests on the assumption

of the existence of a regular flow rule. A regular flow rule means that the direction of

the plastic strain rate is not a function of the loading direction. Two classes of regular

flow rules exist: associative and nonassociative. The associative flow rule assumption

uses the gradient of the yield function to fix the direction of the plastic strain rate.

The use of an associative flow rule has been shown to overpredict plastic volume

changes for materials with a pressure-dependent yield strength [7, 4]. This led to

the adoption of a nonassociative flow rule, where the direction of the plastic strain

rate is found from the gradient of a function, often called the plastic potential, that

is different from the yield function. Nonassociative flow rules have been shown to

accurately predict plastic volume changes under monotonic triaxial compression load

paths [7, 4]. However, adoption of a nonassociative flow rule has also been shown to

lead to physically unjustifiable instability, as well as nonuniqueness in the governing

equations for certain boundary value problems [31, 32, 16, 15, 53, 54, 55]. As discussed

in Sections 1.4.2 and 2.5.1, other studies have used experimental data [4] or theoretical

analysis [37, 38] to counter arguments against nonassociativity.

All of the aforementioned studies assume the validity of a regular flow rule, that

is, they begin with the premise that there exist only two tensorial zones. Despite

widespread acceptance, relatively little validation work has been done to justify the

use of a regular flow rule. Recently, however, several such studies have been under-

taken [56, 57, 43, 44]. These studies have used two basic approaches: computational

and experimental. The computational techniques use the discrete element method

(DEM) to model the response of granular materials to a variety of loading directions.
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The experimental investigations have used a “stress probing” technique where a set of

nominally identical samples are each loaded to a desired stress state along a specified

path. Once at the desired state, each sample is loaded in a different direction, and the

resulting strain response is measured. The advantage of the computational schemes is

that it is possible to exactly duplicate a particular material state for several tests by

simply using the same initial conditions for several simulations. In this way one can be

sure that each stress-strain increment pair is measured at an identical material state

and for an identical material. The drawback to these methods is that they rely on

many unvalidated assumptions, as well as parameters that are not easily measured

in the laboratory. For this reason, the results of the DEM studies are at best a

qualitative measure of the possible response of real materials.

This paper outlines an alternative experimental technique that allows the con-

stitutive relationship of Eq. (3.3) to be measured directly without introducing any

a priori assumptions regarding incremental linearity. This method also eliminates

the need for a set of identical material specimens. This approach is not only more

convenient, but broadens the applicability of the stress probing technique to materials

that have high levels of aleatory uncertainty.

3.3 Visualization of Nonlinear
Transformations

The analysis of the laboratory experiments that will be described in Section 3.5

will make no assumptions that the material is incrementally linear or even isotropic.

We will simply plot the strain increment (response) vectors resulting from stress

increment (stimulus) vectors that are in various directions, but each of equal length.

Because the stimulus vectors are all of equal length, plotting them joined at the tails

produces a set of vectors whose tips form a circle, as illustrated in Fig. 3.1. Doing

the same type of tail-to-tail plot for the response vectors allows direct visualization

of the degree to which the transformation from stress increments to strain increments

is linear. A necessary condition for a transformation to be linear is that the response

envelope must form an ellipse, as in 3.1(b). This is not a sufficient condition, as

seen in Fig. 3.1(d); a linear transform has the appearance of a uniform stretching
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of the stimulus disk, possibly in combination with some rotation. An example of a

more “ordinary” nonlinear transformation is shown in Fig. 3.1(c). Fig. 3.2 shows a

Gudehus response envelope for a classical elastoplastic theory, which is incrementally

bi-linear, as well as a more general incrementally nonlinear response envelope.

Incidentally, the plots in Fig. 3.1 are superior to Reynolds glyphs [58] because a

Reynolds glyph fails to convey information about rotation and, as mentioned, it does

not depict irregular vector distributions on the ellipse (or ellipsoid in 3D). Reynolds

glyphs for stress-strain transformations are often referred to as “Gudehus” diagrams

[59]. It is also important that all stimulus-response (for our case stress-strain) vectors

be taken beginning at the same material state, which includes both the same stress

state, as well as the same loading history. Loading history must be included in

the definition of “material state” for plastic materials since inelastic loading can

irreversibly alter the material. This makes it literally impossible to measure a strain

response envelope for history-dependent materials with certainty. The experimental

method in Section 3.4 and the data analysis technique in Section 3.5 describe a new

technique that seeks to address the uncertainty in measuring the strain response

envelope for history-dependent materials.

3.4 Experimental Methodology

Because of the history-dependent nature of plastic loading, obtaining multiple

independent stress-strain increment measurements from the same initial material

state is literally impossible. The act of making one such measurement can irreversibly

alter the material and thus preclude knowing with certainty how the material would

have responded to a different loading increment. To avoid this problem, most studies

of this nature turn to computational methods, which allow exactly resetting the

material state for probing in new directions. As discussed in Section 3.2, most

experimental studies have sought to overcome this problem by preparing a set of

nominally identical specimens, loading them each through identical load paths to

the same reference state, and then applying a different loading increment to each

specimen. To eliminate the need for “identical” samples, the method described

in this report allows independent loading increments to be obtained at the same
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material state from a single specimen using cyclically applied loading increments and

an interpolation scheme.

This concept is illustrated in Fig. 3.3, where the cyclical load begins at an initial

material state denoted by ψ1. An incremental stress loading vector dσA is then applied

taking the material state to ψ2. Then, a different stress loading vector dσB is applied,

taking the material state to ψ3. Finally, the incremental loading vector dσA is applied

again, this time beginning from material state ψ3. In each case, the incremental

strain vector is measured. This results in three stress-strain incremental vector sets

at three different material states. To find the tangent stiffness tensor at material

state ψ2, the strain response vector that would have resulted if loading vector dσA

had been applied at material state ψ2 is needed. While this information is obviously

not available, the strain response vectors corresponding to dσA at states ψ1 and ψ3

are available. It is postulated that interpolation may be used with these two pieces of

information to infer what the strain response would have been at material state ψ2 if

the loading vector dσA had been applied at that point. In the limit of small loading

increments this assumption is a reasonable approximation if the material changes

in a continuous manner with the state variables. It amounts to approximating a

hypersurface with a hyperplane between two points on the hypersurface. A one-

dimensional analogy is approximating a continuous function with a straight line.

As the end-points of the line become closer together, the approximation becomes

increasingly good. Accordingly, the interpolation scheme is probably not appropriate

in situations that include discontinuous changes in the material constitutive functions

such as phase transformations.

The loading cycle used in this study is slightly more complicated than the one

illustrated in Fig. 3.3. Rather than only two independent loading directions, eight

have been used to allow better sampling of the material response to changes in the

loading direction. Each loading leg also has been fully unloaded then reloaded before

moving on to the next loading leg. The unloading allows the plastic strain increments

to be inferred from the residual strain associated with each loading leg.

Four of the stress increment directions selected are anticipated to cause significant

plastic flow. That is, for most pressure-sensitive nonporous plasticity models, these
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four loading directions would be directed outward from the yield surface (increasing

the stress deviator and/or decreasing the confining pressure). If a classical incremen-

tally bilinear plasticity model is assumed, these loading directions allow the plastic

tangent stiffness to be directly computed from measured stress-strain increments. We

define a stress increment by:

σ̇z = Σ̇ cos φ

σ̇r = Σ̇ sinφ
(3.5)

where Σ̇ is the increment magnitude and φ is the angle formed between the stress

increment and the hydrostatic compression axis. The stress measures σz and σr are

the axial and radial Lode coordinates, which are measures of the hydrostatic and

deviatoric stresses, respectively. The precise definitions of these stress measures will

be given in Section 3.5. Using this description of an incremental loading vector given

in Eq. (3.5), the four plastic loading legs labeled A, B, C and D are described in

Table 3.1.

The direction of increment B consists simply of a reduction in the hydrostatic

pressure with no change in the deviatoric stress. This direction is of particular interest

since, as described in Chapter 2, for many nonassociative plasticity models it lies in

the Sandler-Rubin wedge, which is the region between the yield surface and the

isosurface of the plastic potential function.

Small increments (Σ̇ = 100 psi) were used in early tests, but the measurements

had a low degree of repeatability since the “noise” from the measurements was of

the same order of magnitude as the measurements themselves. The increments were

progressively made larger until good repeatability was attained (Σ̇ = 300 psi).

Four additional stress increments were selected to be in the opposite direction

of the four stress increments previously described. For most plasticity models these

loading directions would be directed into the yield surface and therefore would be

considered elastic unloading directions. If a traditional incrementally bilinear plastic-

ity theory is assumed, these loading directions will allow the elastic tangent stiffness

to be directly computed from measured stress-strain increments.

After each stress increment was applied, it was fully reversed before continuing

with the next stress increment. This allows the plastic strain increment to be mea-
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sured for each loading direction. The plastic strain increment was taken to be the

strain increment that remained after the stress increment was fully reversed.

A triaxial compression fixture at Sandia National Laboratories was used to apply

such a load path to a series of aluminum specimens. The specimens were all right-

circular cylinders with a length-to-diameter ratio of 2:1 as recommended by ASTM

D4534 for uniaxial and triaxial compression tests. The metal specimens were 1 inch

in diameter extruded and annealed aluminum 6061-T0 cylinders that were cut to a

length of 2 inches. Three strain gage pairs, each with a resolution of 10 microstrain,

were then mounted at 120◦ intervals, with each gage pair being composed of an axial

and lateral gage. As will be discussed below, it will be assumed that the specimens are

at most transversely isotropic. The redundant gaging was used to confirm specimen

alignment and to detect nonaxisymmetric deformation, which would be an indication

of more general anisotropy or localization.

The results from three different tests will be discussed. Before conducting each test

with a cyclical loading path, a specimen from the same batch of material was loaded

through the same nominal loading path, but without the changes in loading direction.

This was done to determine the point at which significant yielding was expected to

begin. Based on this test, a new specimen was subjected to the same load path up to

the point where significant plastic flow was expected, at which point the cyclical load

path described above was performed. For each test, an initial hydrostatic confining

stress was first applied to the specimen. Tests 1, 2, and 3 used an initial confining

stress of 19.4 ksi, 18.8 ksi, and 18.4 ksi, respectively.

3.5 Data Analysis

As discussed in Section 3.4, only axisymmetric loading is considered in this study.

It is assumed (and monitored through redundant gaging) that the specimens are at

most transversely isotropic. With this assumption any second-order tensor in the

analysis may be written in the form

[A] =

⎡
⎣ AA 0 0

0 AL 0
0 0 AL

⎤
⎦ (3.6)
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where the subscripts “A” and “L” refer to axial and lateral components, respectively.

Equation (3.6) may be written as a linear combination of unit base tensors as⎡
⎣ AA 0 0

0 AL 0
0 0 AL

⎤
⎦ = (AA)

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦+

(√
2AL

) 1√
2

⎡
⎣ 0 0 0

0 1 0
0 0 1

⎤
⎦ (3.7)

The normalization of the base tensors allows reducing the generally six-dimensional

entity (a fully-populated symmetric second-order tensor [A]) to a simple two-dimensional

vector having components AA and
√
2AL. The introduction of the

√
2 ensures that

the ordinary magnitude of the vector[
AL√
2AL

]
(3.8)

is the same as the magnitude of the corresponding tensor. For this reason, the two

values (AA and
√
2AL) are said to be isomorphic to a six-dimensional tensor space.

They are Euclidean coordinates within a two-dimensional plane that “cuts through”

six-dimensional tensor space. With this reduction in dimension, the incremental

equations of plasticity may be written as[
σ̇A
σ̇L

]
=

[
TAA TAL

TLA TLL

] [
ε̇A
ε̇L

]
(3.9)

Whereas the above decomposition into axial and lateral components is most

natural for the laboratory control, data analysis that aims to draw connections with

conventional plasticity theories is better served by introducing a change of variables.

For any axisymmetric tensor [A] defined by its isomorphic components (AA and
√
2AL), an alternative pair of isomorphic components, corresponding to an orthogonal

basis rotation in the same two-dimensional space, is given by[
Az

Ar

]
=

1√
3

[
1

√
2√

2 −1
] [

AA√
2AL

]
(3.10)

With this change of variables, Eq. (3.7) can be written as an equivalent expansion

in terms of a different pair of unit base tensors as⎡
⎣ AA 0 0

0 AL 0
0 0 AL

⎤
⎦ = (Az)

1√
3

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦+ (Ar)

1√
6

⎡
⎣ 2 0 0

0 −1 0
0 0 −1

⎤
⎦ (3.11)

which illustrates that these two alternative coordinates decompose axisymmetric

tensors into their isotropic and deviatoric parts.
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These alternative axisymmetric measures are subscripted “r” and “z” because

they can be shown to correspond to the cylindrical coordinates that are naturally

implied in the symmetry of common yield surfaces about the [111] axis (see, for

example, [60]). For triaxial compression loading, the angular coordinate, called the

Lode angle, is fixed on the compressive meridian. Therefore, because z-r Lode coor-

dinates are isomorphic to stress space, all plots in z-r stress space are geometrically

accurate depictions of a “side view” of the yield surfaces as plotted in principal stress

space (i.e., they possess the same lengths and angles). It is this feature, as well as

inheritance of tensor properties, such as symmetries and eigensystems of the tangent

tensor, that recommends isomorphic tensor measures over perhaps more (initially)

intuitive or familiar coordinate pairs. The axial Lode coordinate σz is the hydrostatic

component of the stress, and it is related to pressure p by σz =
√
3p. The Lode

radius σr is a measure of shear stress, and it is related to the conventional measure

of shear stress, q = σA − σL, by σr = q
√
2/3. Thus, not only may a plot of σr vs.

σz be regarded as a “side view” of an isotropic yield surface, such a plot also may be

seen as loosely depicting shear strength vs. pressure, with the only difference being

constant scaling of the axes. The Lode coordinates represent decomposition of the

tensor into isotropic and deviatoric parts, which reveals structure in simple idealized

solid mechanics theories. For example, with the Lode measures for axisymmetric

problems, the isotropic form of Hooke’s Law becomes simply[
σ̇z
σ̇r

]
=

[
3K 0
0 2G

] [
ε̇z
ε̇r

]
(3.12)

where the 2×2 matrix is the elastic tangent stiffness tensor C, K is the bulk modulus,

and G is the shear modulus. Of course, the general form for incremental plasticity

becomes [
σ̇z
σ̇r

]
=

[
Tzz Tzr
Trz Trr

] [
ε̇z
ε̇r

]
(3.13)

For simplicity, we may write this in a more compact notation as simply σ̇ = T ε̇,

where it must be understood from context that σ̇ and ε̇ are 2x1 vectors, while T is a

2x2 matrix.

Our analysis of laboratory data will not presume that a classical (incrementally lin-

ear) plastic tangent stiffness tensor even exists. Suppose that incremental nonlinearity
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is observed in the data, but only incrementally linear plasticity models are available

in a finite element code. Then a short-term workaround is needed while awaiting

model enhancements. A rational strategy for interim use of existing classical plasticity

models would set the incrementally linear parameters to values that minimize error

with observed incrementally nonlinear data. In analogous problems involving scalars

(instead of tensors), the rational approach is to use a least-squares fit to nonlinear

data until a nonlinear model is available.

In our more general case, for which the data consist of a collection of stimulus

vectors and their corresponding response vectors, an unweighted least-squares best

linear fit to the data is obtained as follows: (1) place the stimulus vectors into columns

of a matrix [S]; (2) place the corresponding response vectors into columns of a matrix

[R]; and (3) evaluate the best-fit linear transformation matrix [L] = [R][S](−1); where

the superscript “(-1)” denotes the pseudo-inverse (also called the Moore-Penrose

inverse, and is available in most numerical linear algebra packages, and required in

data analysis because [S] is generally nonsquare). The pseudoinverse is an ordinary

inverse if there are exactly the same number of linearly independent stimulus vectors

as the dimension of the space. The residual error of the approximation is quantified by

the norm of [R]−[L][S]. Of course, a weighted linear regression may be used if greater

accuracy for particular loading directions is desired. Incidentally, the experiments

described in this report are all stress controlled. Therefore, the stimulus matrix [S]

holds the stress increment vectors, and the response matrix [R] holds the measured

strain increment vectors (interpolated to the current material state, as described in

Section 3.4). Therefore, the [L] matrix computed in our data analysis is actually the

tangent compliance, [L] = [T ]−1.

As discussed above, this method allows a particular constitutive model to be fit to

the experimental data, with a quantitative measure of the goodness of the fit. This

is done using classical incrementally-bilinear plasticity theory. For this reason, the

governing equations of classical plasticity theory will briefly be outlined here and then

specialized to axisymmetric loading using the Lode coordinates discussed above.

In classical plasticity theory, the plastic tangent stiffness T is given by
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T = C− 1

μ
P ⊗Q (3.14)

where P = C : M̂ (in which M̂ is the unit flow direction) and Q = C : N̂ (in which

N̂ is the unit normal to the yield surface), and μ = P : N̂ +H (in which H is the

“ensemble hardening modulus” [2]). For axisymmetric loading, the 81 component

fourth-order plastic stiffness T reduces to the four-component matrix in Eq. (3.13).

Specifically,

T = C − 1

μ
P ⊗Q (3.15)

where [
Pz

Pr

]
=

[
Czz Czr

Crz Crr

] [
Mz

Mr

]
(3.16)

[
Qz

Qr

]
=

[
Czz Czr

Crz Crr

] [
Nz

Nr

]
(3.17)

μ = P ·N +H (3.18)

and the subscripts r and z indicate the components in the corresponding Lode

coordinate directions. The four components of the elastic tangent stiffness C can

be found from the four loading increments that are taken to be elastic increment

directions. The validity of the assumption that these directions correspond to elastic

unloading is confirmed by verifying that the measured plastic strain increments from

these loading directions is small.

Knowing the plastic and elastic tangent stiffness tensors, as computed directly

from the experimental data, will allow M and N to be calculated directly from the

experimental data. To do this we solve Eq. (3.15) for the second term on the right,

which we will label A:

A = C − T =
1

μ
P ⊗Q (3.19)

If classical plasticity theory applies, then, by properties of dyadic multiplication, the

rows of A would be scalar multiples of Q and the columns would be scalar multiples

of P . Otherwise, if classical plasticity is not strictly applicable (e.g., if the rows or

columns of A are not multiples of each other), but if we nevertheless seek a best fit

to classical plasticity, then a method is needed to assign values to P and Q. To find
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the directions of P and Q we perform a polar decomposition of A. To perform this

decomposition we define:

U2 = AT · A
= (Q⊗ P ) · (P ⊗Q)
= (P · P )Q⊗Q

(3.20)

As shown, U2 will be a scalar multiple of the dyad Q ⊗ Q. U2 should then have

one large eigenvalue and one small eigenvalue (identically zero if classical plasticity

applies). The eigenvector associated with the large eigenvalue will be in the direction

of Q. Similarly we define:

V 2 = A · AT

= (P ⊗Q) · (Q⊗ P )
= (Q ·Q)P ⊗ P

(3.21)

Again, the eigenvector associated with the largest eigenvalue of V 2 will be in the

direction of P . We now use the definitions of P and Q to write:

P ∗ = γC ·M (3.22)

Q∗ = βC ·N (3.23)

where γ and β are some unknown scalars, and P ∗ and Q∗ are scalar multiples of P

and Q respectively. Since C is known from the unloading vectors, Eqs. (3.16) and

(3.17) may be solved for the directions of M and N :

M∗ = C−1 · P ∗ (3.24)

N∗ = C−1 ·Q∗ (3.25)

where ∗ is again used to indicate some scalar multiple of a variable, which may then

be used to generate a unit vector in the direction of the vector.

3.6 Discussion of Results

3.6.1 Incremental Nonlinearity

Figures 3.4 and 3.5 show the strain response envelopes for three different tests.

These envelopes are constructed from interpolated strain increments produced during

the second and third loading cycles, respectively. The solid lines in these plots are a
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representation of the best-fit elastic and plastic tangent stiffness tensors, which were

found using the pseudo-inverse technique discussed in Section 3.5.

As described in Section 3.4, since each of these tests used a different level of

confining stress, and began the incremental loading cycle at a different stress state,

the response to a given loading cycle would not be expected to be the same for each

test. For example, as Fig. 3.4 indicates, during loading cycle 2, the plastic strain

increments of test 2 are much greater than those of test 1. This is because for test 2,

cycle 2 occurs much closer to the failure point than does cycle 2 of test 1. The results

from each cycle are merely plotted in the same figure for convenience.

The important aspect of the plots in Figs. 3.4 and 3.5 is the distribution of the

plastic strain increments for each loading direction (each is labeled with an “x”). As

the figures illustrate, to varying degrees, the direction of the plastic strain increments

is observed to change with the loading direction. This dependence appears to be

stronger for the material states where large plastic strains are observed. For example,

in the results from test 1 shown in Fig. 3.4, the plastic strain increments, which are

small relative to the other tests, all lie in nearly a straight line (with the exception

of the one point in the third-quadrant, which is discussed below). In contrast,

the plastic strain increment directions change significantly with the directions of

the stress increments in Fig. 3.4 for test 2, which involved larger plastic strain

increment magnitudes. This suggests an incrementally nonlinear response, which

is not consistent with classical plasticity theory.

Another indication that these data tend to invalidate a classical regular flow

rule is seen by examining the ellipses representing the plastic and elastic tangent

stiffness tensors. The elastic tangent stiffness tensor is represented by the ellipse

at the bottom of each strain envelope. In each case the elastic tangent stiffness

tensor appears to accurately represent the strain increments for the anticipated elastic

unloading directions. Even though these increments are anticipated to correspond to

elastic unloading, to verify that the resulting deformation is elastic, the plastic strain

increments for these directions were measured and are displayed in the plots. For

all of these loading directions the measured plastic strain was small. This, together

with the good fit of the elastic tangent stiffness ellipse to these increments, seems
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to validate the original proposition that these are nearly perfectly elastic unloading

directions.

In contrast to the good fit of the elastic tangent stiffness ellipse, the plastic tangent

ellipse does not fit the data as well in all cases. The most important discrepancy is

seen in the plots in Fig. 3.4, where the plastic strain increments are larger because

each specimen is closer to failure. According to classical plasticity theory, the strain

response envelope ought to be accurately described by two ellipses (one for each of

the two tensorial zones). These two ellipses also ought to intersect. In other words,

there should not be a discontinuity in the strain response envelope. This condition

was not enforced with the least-squares fit to the data. Obviously, this requirement

could be enforced, but this would result in a poorer fit to the total strain increments

for the plastic loading directions. For example, consider the plot for test 2 in Fig.

3.4. If the ellipse corresponding to the plastic tangent stiffness were drawn such that

it intersected the elastic tangent ellipse, then it clearly would be too narrow to pass

through some of the strain increments for the plastic loading directions. In other

words, the strain response envelope is wider at the top than at the middle, which is

not compatible with the two-ellipse response envelope required by classical plasticity

theory.

The plastic strain increments in the third quadrant for test 1 merit some discus-

sion. The increments shown for Test 1 in Figs. 3.4 and 3.5 are not anomalies, but

were observed for every load increment B in that test. This loading direction is of

particular interest because it lies in or near the Sandler-Rubin wedge for models that

use a pressure-dependent yield strength and a nonassociative flow rule. Some degree

of pressure dependence in the yield strength was observed in these tests. This means

that loading increment B should be directed outward from the yield surface, but at a

relatively shallow angle. For such a stress increment, the corresponding plastic strain

increment would be expected to be small compared to the total strain increment.

Since the plastic strain increments are small for these loading increments, they are

more prone to experimental error. Nevertheless, the fact that every loading increment

B exhibited this behavior is enough to suggest that there may be something at odds

with classical plasticity theory occurring for loads in this direction.
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As discussed in Section 3.5, even if classical plasticity theory does not provide an

optimal description of the experimental data, the data analysis technique presented

in that section nevertheless provides a means for determining the best fit of classical

parameters to the data. Using these best-fit tangent stiffness tensors, the directions

of the yield surface normal N and plastic strain rate direction M were calculated

using Eqs. (3.19) through (3.23). The results of these calculations are found in Table

3.2. The directions of M and N do not coincide for any of the cases, which seems

to indicate that if only a classical plasticity model is available, a nonassociative flow

rule provides a better fit than an associative flow rule.

3.7 Conclusion

Systematic laboratory experiments have been conducted to validate or invalidate

assumptions common to virtually all plasticity models used in production-level engi-

neering simulations. A particular goal has been to resolve the paradox that nonas-

sociativity has been experimentally well established for most materials (including

metals), while at the same time any form of nonassociativity admits the physically

inadmissible Sandler-Rubin instability, which is equivalent to spontaneous motion

from a quiescent state. Noting that the stress increments in standard testing are

significantly different from the increments that induce the Sandler-Rubin instability,

it was conjectured that a revision might be required in engineering plasticity models

that allows the plastic tangent tensor to vary with the loading direction. Such a

feature, if observed, would correspond to a need to revise existing plasticity theories

to accommodate incremental nonlinearity. Testing for this possibility required non-

standard tests that aim to quantify the effect of a variety of loading directions on the

material response.

For tractability, the laboratory experiments were limited to axisymmetric loading,

and changes in the loading direction were achieved through independent control of

axial and lateral components of stress. A new technique was developed to interpolate

repeated pairs of stimulus-response vectors from a cyclic loading path (each occurring

at a different material state) to a common material state.

A cyclic sequence of stress increments was applied to nonmonotonically move



53

the stress state through stress space. Additionally a means to interpolate repeated

pairs of stimulus-response vectors to any desired point along the loading path was

developed. The result of this data analysis is information about material response to

stress increments in eight different directions. The response vectors were visualized

using strain-response diagrams (Gudehus diagrams), which simply join the strain

increment vectors at their tails so that the tips of these vectors form a closed curve.

If the classical plasticity assumption of incremental linearity were correct, then the

Gudehus diagram for total strain increments would be an ellipse in elastic loading

and the continuous union of two ellipses in elastic-plastic loading. Furthermore, the

plastic strain increments would all lie along a single line. The results of this study,

however, suggest that as the specimen approaches failure, the plastic strain increment

direction increasingly depends upon the direction of the applied stress increment. This

is a manifestation of incremental nonlinearity, which, for example, could correspond

to formation of vertices in the yield surface. This is further evidenced by the non-

ellipsoidal shape of the strain response envelope for plastic loading directions.

Even though the data suggest an incrementally nonlinear response, there are

currently few engineering plasticity models that include incremental nonlinearity. The

new data analysis technique presented allows the classical plasticity parameters that

best fit the data to be calculated. By performing these calculations, it was found

that a classical nonassociative model fits the data better than a classical associative

model. However, as discussed in Chapter 2, nonassociative models have been shown

to produce nonphysical instabilities for certain loading directions. Therefore, pending

much needed further experimental data for the effect of changes in the loading direc-

tion, it seems prudent to adopt nonclassical plasticity theories such as the extended

flow rule (EFR) described in Chapter 2.
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Figure 3.1. Visualization of vector transformations.



55

dσ

σ1

σ2 ε2

ε1

dε

ε1

ε2

dε

Plastic

Bilinear Response Nonlinear Response

Elastic

Figure 3.2. Sketch of Gudehus strain response diagrams for an incrementally bilinear
and nonlinear response. The response to the stress increments that form a circle in
stress space (left) is plotted in the corresponding strain space. An incrementally
bilinear response (center) is characterized by two intersecting ellipses, each of which
corresponds to a tensorial zone. An incrementally nonlinear response (right) is
characterized by a more general envelope shape.
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Figure 3.3. A simple cyclically applied incremental loading scheme. Beginning at
material state ψ1, a stress increment dσA is applied, changing the material state to ψ2.
A stress increment dσB is then applied, changing the material state to ψ3. Finally,
dσA is applied beginning at material state ψ3.
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Figure 3.4. Response envelopes for the second stress cycle of tests 1, 2 and 3. Dots
indicate total strain increments, “x” indicates a plastic strain increment.
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Table 3.1. Description of stress increments where φ is the angle formed with the
hydrostatic compression axis, and Σ̇ is the total increment magnitude.

Leg φ Σ̇
A 90◦ 300 psi
B 180◦ 300 psi
C 35◦ 300 psi
D 125◦ 300 psi

Table 3.2. Direction of the yield surface normal N̂ and the plastic strain rate M̂
referenced to the hydrostatic compression axis.

(a) Test 1

Step θM θN
2 39◦ 66◦

3 105◦ 146◦

4 125◦ 198◦

(b) Test 2

Step θM θN
2 99◦ 120◦

3 153◦ 173◦

4 - -

(c) Test 3

Step θM θN
2 83◦ 122◦

3 116◦ 163◦

4 131◦ 179◦



CHAPTER 4

A NONLOCAL PLASTICITY MPM

FORMULATION

4.1 Abstract

A new multivariate fixed-point iteration scheme is devised for solving the coupled

dynamic integral equations governing nonlocal plasticity using the Material Point

Method (MPM). Novel use of the MPM grid for particle-particle communications

results in a simple and efficient, matrix-free method. Moreover, a straightforward

method for deriving a convergence criterion for this method is developed and applied

to a classical verification problem that is well known to be mesh dependent with

a local model, but is shown to be mesh independent with the new nonlocal MPM

formulation.

4.2 Introduction

The material point method (MPM) is a particle-based method for solving large-

deformation solid mechanics problems [40, 41]. In this method, the problem domain is

discretized into particles that carry material data such as mass, velocity, internal state

variables, etc. At each time step, the mass, velocity, and internal force are projected

from the particles to a “background” grid, which is typically (though not necessarily)

taken to be Eulerian. The equations of motion are solved on the background grid,

and the updated velocity and acceleration fields at the grid nodes are then mapped to

the particles to update the particle position and velocity, respectively. The updated

grid velocity field is used to calculate the velocity gradient, rate of deformation, and

updated deformation gradient tensors at each particle, which then may be used by

the constitutive model to update the stress at each particle. The MPM equations
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and algorithm are summarized in Section 4.3. For a more complete description of

the method see Steffen and Wallstedt for a review [61]. An implicit version of the

MPM has also been developed [62, 63], but only the explicit MPM is considered in

this paper.

The material point method has successfully been used to solve a wide variety of

solid mechanics problems including fluid-structure interaction [64], finite-deformation

plasticity [65], fracture mechanics [66, 67], and impact/penetration [68, 69]. Many

potential areas of application of the MPM involve material softening (i.e., loss of

strength due to inelastic deformation). When softening occurs, plastic deformation

often localizes into a discrete region, which has been shown to result in a loss of

hyperbolicity and ill-posedness of the governing equations [70, 30]. The consequence

of this ill-posedness, in numerical simulations, is that the localization zone becomes

proportional to the mesh spacing. As the mesh is refined, the localization zone

therefore becomes ever smaller, and the failure energy of the structure approaches

zero. In a real material, the size of a localization zone would be determined by the

length scale of the underlying material microstructure (grain size, void distribution,

etc.). However, local material models possess no intrinsic length scale from which the

size of a localization zone can be established.

Nonlocal plasticity theory has been developed to introduce an intrinsic length scale

to plasticity models. This intrinsic length scale results in two important characteris-

tics. First it serves as a localization limiter, which restores the well-posedness of the

initial boundary-value problem by limiting the width of a localization zone [71, 72, 73].

Second, it results in the prediction of a size effect, which causes the length scale of a

structure relative to the material’s structure to influence its mechanical response, as

has been observed in the laboratory [74, 75]. This is in contrast to a traditional local

continuum material where no intrinsic length scale is associative with the material,

and hence, no size effect is predicted.

Here the term nonlocal is used to describe any type of plasticity model that

includes an intrinsic length scale. Two classes of nonlocal models have emerged in the

literature: strongly nonlocal and weakly nonlocal. The strongly nonlocal formulations

include nonlocal models of the integral type, as well as the implicit gradient model of
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Engelen and Geers [76, 77]. The weakly nonlocal models include the explicit gradient

models [73, 78]. For a comparison of the explicit gradient, implicit gradient, and

integral-type nonlocal models see the paper by Peerlings et al. [79]. For a more

complete survey of the various nonlocal models that have been developed see the

papers by Bazant [80] and Di Luzio and Bazant [50].

In terms of implementation, a local plasticity model results in an uncoupled set

of algebraic constitutive equations, whereas nonlocal formulations, when discretized,

result in a coupled set of constitutive equations. The integral-type formulation results

in a coupled set of integral equations [72, 51]. The explicit gradient formulation results

in a partial differential equation which must be solved over the plastic portion of the

domain [78]. The implicit gradient formulation results in a partial differential equation

of the Helmholtz type which must be solved simultaneously with the equations of

motion or equilibrium [76]. Various methods have been employed to solve these

additional equations. The focus of this paper is solving the equation of the integral-

type nonlocal models.

The integral-type nonlocal models have a few distinct advantages and disad-

vantages as compared to the gradient models. Both the integral-type and implicit

gradient models are strongly nonlocal, which makes them effective at limiting the size

of localized regions and thereby restoring the well-posedness to localization problems.

An advantage of nonlocal models is that no additional boundary conditions are neces-

sary for the plastic strain field, as is the case with both implicit and explicit gradient

models. The primary disadvantage to the integral-type models is the difficulty of

solving the resulting system of integral equations. The purpose of this paper is to

present a new method of solving this coupled system of integral equations using the

material point method (MPM). The approach taken in this paper is closely related

to that used by Stromberg and Ristinmaa with the FEM, however there are several

primary unique contributions made by the present work.

Firstly, whereas integral-type nonlocal models have been implemented previously

using other methods [72, 51, 81, 82, 83], this is the first paper to present a nonlocal

plasticity algorithm for the MPM.

Secondly, a method for evaluating the nonlocal integrals is presented that uses
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the MPM background grid rather than body-fixed Lagrangian points. This scheme

eliminates the need to maintain a list of “neighboring” material points within the

support domain of the nonlocal weighting function around each material point. This is

particularly important for large deformation problems where the number and identity

of the particles within the nonlocal support domain of a particle changes in time.

The third unique contribution made by the present work is a straightforward

method for deriving a convergence criterion for the new method is presented. Stromberg

and Ristinmaa demonstrated that their iteration scheme converged for the problems

considered in that work, but they did not derive a general convergence criterion.

In the present work, we show that a similar iteration scheme may be derived using

a multivariate fixed-point iteration scheme. Using a Drucker-Prager yield model,

Section 4.5 summarizes various fixed-point systems that can be derived from the

same set the yield equations. The Banach contraction mapping theorem is used

to derive a general convergence criterion for two of these possible iteration schemes

for the Drucker-Prager model. The resulting convergence criteria reveal under what

conditions each fixed-point formulation is preferred.

The organization of the paper is as follows. Section 4.3 is a brief overview of the

MPM. Section 4.4 provides an overview of the equations of nonlocal plasticity. In

Section 4.5 we derive two fixed-point iteration schemes for a nonlocal Drucker-Prager

plasticity model. Section 4.6 discusses the implementation of the fixed-point iteration

scheme within the MPM. Finally, in Section 4.7, results are presented from a simple

localization problem. The nonlocal plasticity method presented here is shown to cause

the localization zone to converge to a finite width as the mesh is refined. The width

of the localization region is shown to be proportional to the nonlocal length scale

parameter. Additionally, the behavior of a structure is shown to depend upon the

ratio of the specimen length scale and the nonlocal length scale.

4.3 Review of the Material Point Method

With the material point method (MPM), the problem domain is discretized into

a set of Lagrangian material point particles. Each MPM particle represents a finite

Lagrangian volume of the material, and is used to track the properties of that volume
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(e.g., mass mp, volume Vp, density ρp = mp/Vp, stress σp, deformation gradient tensor

F p, internal variables, etc.). The method also makes use of a “background” grid.

Though it is not required by the method, a uniform, structured Eulerian background

grid is often used. For each time step, the equations of motion are solved on the

background grid in the same manner as with the finite element method (FEM).

Accordingly, the lumped mass array is given by

mi =

∫
Ω

ρ(x)Si(x)dV (4.1)

where ρ is the mass density, and Si is the shape function associative with the ith grid

node. With the FEM, the integral in Eq. (4.1) is broken up, without loss, into a sum

of integrals over element domains. With the MPM, on the other hand, the integral in

Eq. (4.1) is broken up into a sum of integrals over nonoverlapping particle domains

Ωp:

mi =
∑
p

ρp

∫
Ωp

Si(x)dV (4.2)

where ρp is the density of the pth particle, which is assumed to be constant over the

particle domain. Similarly, the internal force array is

f int
i = −

∑
p

σp ·
∫
Ωp

∇Si(x)dV (4.3)

In principle, each integral over the particle domain may be evaluated exactly if

Ωp is treated as the Voronoi cell for the particle. To avoid the need for finding the

Voronoi tessellation, these integrals may be approximated as follows:

mi =
∑
p

mpφip (4.4)

and

f int
i =

∑
p

σp ·Gip (4.5)

where

φip =
1

V ∗
p

∫
Ω∗

S∗
i (x)χp(x)dV (4.6)

Gip =
1

V ∗
p

∫
Ω∗

∇S∗
i (x)χp(x)dV (4.7)
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and

V ∗
p =

∫
Ω∗

χp(x)dV (4.8)

Equations (4.6) and (4.7) have introduced a generalized integration domain Ω∗, as

well as a weight function χp(x), and possibly an approximate shape function to

allow these integrals to reduce to the various MPM formulations in the literature.

If S∗
i (x) = Si(x), Ω

∗ = Ωp, and χp is the Dirac delta function, then the result is

the standard MPM formulation [40]. If S∗
i (x) = Si(x), Ω∗ = Ωu, with χp = 1

on Ωu and 0 elsewhere, where Ωu is an undeforming cuboid, then the result is the

“uGIMP” formulation [41]. Finally, if S∗
i (x) = Sapp

i (x), where Sapp
i (x) is a linear

interpolating function across the generalized domain Ω∗ = ΩCPDI, and χp = 1

on ΩCPDI and 0 elsewhere, where ΩCPDI is a parallelepiped that deforms with the

particle’s deformation gradient, then the result is the CPDI formulation [84].

Regardless of the MPM formulation that is used, the internal force vector, along

with any external force vector f ext
i , and the lumped mass mi are used to solve for the

nodal acceleration vector:

ai =
f int

i + f ext
i

mi
(4.9)

The updated grid velocities vi, are found using an explicit forward-Euler time inte-

gration scheme:

vn+1
i = vn

i + aiΔt (4.10)

The velocity gradient at each particle is calculated using:

∇vn+1
p =

∑
i

Gipv
n+1
i (4.11)

The symmetric part of the velocity gradient tensor is then used to update the stress

state of each particle. Finally, the particle position, velocity are updated according

to:

xp = xn
p +

∑
i

φipviΔt (4.12)

and

vp = vn
p +

∑
i

φipaiΔt (4.13)

respectively.
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As mentioned, all problem data (density, stress, etc.) are saved at particles.

Accordingly, the continuous approximation to any field h(x) is then described on the

background grid as

h(x) =
∑
i

hiSi(x) (4.14)

where hi is the nodal value on the grid, calculated from particle values, hp, by

hi =
1

mi

∑
p

φiphpmp (4.15)

The MPM formally belongs to the class of meshless methods for which fields are

described by

h(x) =
∑
p

hpBp(x) (4.16)

in which Bp(x) are particle basis functions. The computational advantage of the

MPM is that these particle basis functions do not need to be constructed explicitly.

In particular, substituting Eq. (4.15) into (4.14) shows that the MPM particle basis

functions are

Bp(x) =
∑
i

mp

mi
φipSi(x) (4.17)

4.4 Nonlocal Plasticity

In nonlocal plasticity theory, as in classical elastoplasticity theory, the strain rate

ε̇ is assumed to be additively decomposed into elastic and plastic parts, ε̇e and ε̇p,

respectively:

ε̇ = ε̇e + ε̇p (4.18)

The stress rate tensor σ̇ is given by elasticity theory according to

σ̇ = C:ε̇e (4.19)

where C is the fourth-order elastic tangent stiffness tensor. The plastic strain rate is

described by the flow rule according to Eq. (4.20):

ε̇p = λ̇M̂ (4.20)

where λ̇ is the “rate-like” plastic multiplier and M̂ is a unit tensor defining the

direction of the plastic strain rate tensor.
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Bazant and Lin’s nonlocal plasticity model included a nonlocal average of the

plastic strain rate tensor in the strain rate decomposition equation [72]. In that

seminal work, every occurrence of the plastic strain rate tensor in classical theory

was replaced with a nonlocal average. Subsequent work demonstrated that this is not

necessary (and, in some cases, not sufficient) to regularize the governing equations

[51, 50]. Specifically, nonlocal terms are needed only in the evolution equations for

the internal state variables that drive softening.

As in classical plasticity, the yield function f is a scalar function of the stress

tensor and a set of internal state variables that change in response plastic loading.

Each internal state variable may either be a local or nonlocal variable. For simplicity,

only one local internal state variable, η, and one nonlocal internal state variable, ζ ,

will be considered. Extension of the theory to account for any number of local or

nonlocal internal state variables should be self evident.

The standard Kuhn-Tucker plastic consistency conditions are:

fλ̇ = 0, f ≤ 0, λ̇ ≥ 0 (4.21)

These equations may equivalently be cast as a complementarity problem (c.f. [51]):

f = w, wλ̇ = 0, w ≤ 0, f ≤ 0, λ̇ ≥ 0 (4.22)

The solution to the complementarity problem consists of finding w and λ̇, at least

one of which must be zero, at each material point. In practical terms, this involves

determining which particles are undergoing plastic deformation in a given time step,

and determining the value of λ̇ during that step. If w �= 0, the actual value of w is

not of interest.

Although within the plasticity community the complementarity form is an uncom-

mon way of expressing the plastic consistency condition, this form highlights the fact

that determining which particles are undergoing plastic deformation is an important

part of the solution procedure. For a local model this involves only checking the sign of

the yield function. As will be shown, for a nonlocal model, making this determination

is not so trivial. The complementarity form of the consistency equation also results

in a more straightforward means of expressing the iteration scheme described in the

next section.
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The local internal state variable η evolves according to

η̇ = hηλ̇ (4.23)

where hη is the local hardening/softening modulus. The nonlocal internal state

variable ζ evolves according to

ζ̇ = hζ〈λ̇〉 (4.24)

where hζ is the nonlocal hardening/softening modulus, and 〈:〉 is the nonlocal averag-
ing operator defined by a weighted average integral over the entire problem domain

Ω:

〈λ̇〉 = 1

Vα

∫
Ω

α(x− s)λ̇(s)ds (4.25)

Here, x is the location of a given particle and α(x) is the nonlocal weighting function,

and

Vα =

∫
Ω

α(x− s)ds (4.26)

The divisor Vα normalizes the nonlocal average, and also serves an important role

at boundaries. The weighting function of a particle that is adjacent to a material

boundary will have a portion of its support outside of Ω. This portion of the weighting

function will not contribute to Vα, thus reducing the value of Vα compared to that

of an interior particle. The result is that the material near a boundary has a higher

weighting in the nonlocal average than material far from a boundary. Unlike gradient

plasticity models, no additional boundary conditions for the field of plastic multipliers

is necessary.

A Gaussian bell curve is used for the nonlocal weighting function:

α(x) = Exp
[
(−k ‖x‖ /L)2] (4.27)

where k = (6
√
π)

1

3 , and L is the nonlocal length scale. This choice for the nonlocal

weighting function is not unique. The critical properties of the weighting function are

the extent of the function’s support, and the smoothness. It has been reported in the

literature that a smooth weighting function results in a higher rate of convergence

[72].
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The generalized nonlocal model described here allows for both local and nonlocal

hardening/softening. If hη were zero, the result would be a purely nonlocal model,

and if hζ were zero, a purely local model is recovered. Several studies in the literature

advocate using both local and nonlocal terms [51, 85, 50]. Stromberg and Ristinmaa’s

model of this type, which was called an overlocal model by Di Luzio and Bazant, is

obtained by letting hη > 0 and hζ < 0. If each internal variable is defined such that an

increase in the internal variable tends to increase the yield strength, then an overlocal

model corresponds to local contributions to hardening and nonlocal contributions to

softening.

If a backward Euler implicit integration scheme is used for updating σ, η, and ζ ,

the first equation in (4.22) may be written at the end of time step k as

f
(
σn + σ̇n+1Δt, ηn + hηλ̇

n+1Δt, ζn + hζ〈λ̇〉n+1Δt
)
= wn+1 (4.28)

where the superscripted n refers to the time step number. In general the hardening

moduli can change during plastic loading increments, but are often simply taken to

be constant over a time step. Equations (4.18), (4.19) and (4.20) can be combined to

give:

σ̇ = C:ε̇− λ̇A (4.29)

where A = C:M̂ . Substituting Eq. (4.29) into Eq. (4.28) gives

f(σtrial −ΔλA, ηn+1, ζn+1) = wn+1 (4.30)

where

ηn+1 = ηn + hηλ̇
n+1Δt (4.31)

ζn+1 = ζn + hζ〈λ̇〉n+1Δt (4.32)

and

σtrial = σn + C:ε̇n+1Δt (4.33)

The objective of the nonlocal plasticity algorithm is to find the fields λ̇n+1, and

wn+1, that satisfy Eq. (4.30), ensuring that the plastic consistency condition is

satisfied at each time step.
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4.5 Fixed-Point Iteration Scheme for Linear
Drucker-Prager Yield Function

For simplicity, we restrict the discussion to a linear Drucker-Prager yield function

with linear isotropic hardening/softening. The discretization method used here may

nevertheless be used for any yield function desired. The Drucker-Prager yield function

is:

f(σ, η, ζ) =
√
J2 + βI1 − ko − η − ζ (4.34)

where J2 = 1
2
S:S, S is the deviatoric stress tensor, and I1 = Tr(σ). The material

parameters are β, and ko. These parameters are proportional to the friction angle and

cohesion, respectively. The direction of the plastic strain rate tensor is prescribed to

be proportional to the unit normal to the plastic flow potential surface. The plastic

flow potential is taken to have the same functional form as the yield function. The

only material parameter affecting the direction of the plastic strain rate tensor is

the dilatation parameter βp. The dilatation angle controls the ratio of volumetric to

deviatoric plastic strain. If βp is chosen to coincide with β, then the plastic potential

and the yield surface are identical, which is called an associative model. The plastic

flow direction is then

M̂ =

1√
2

S
n+1

‖Sn+1‖ + βpI√
1
2
+ 3β2

p

(4.35)

where, consistent with the backward-Euler scheme, Sn+1 is the deviatoric stress tensor

at the end of the time step, and I is the second-order identity tensor. Using the yield

function in (4.34), and substituting these expressions into equation (4.30) for plastic

particles (w = 0) under the addition assumption that the elastic stiffness is constant

and isotropic, the yield function at the end of the step evaluates to

f(σtrial −ΔλA, ηn+1, ζn+1) = ftrial −Δλ
G√

1
2
+ 3β2

p

−Δλ
9βKβp√
1
2
+ 3β2

p

− hηΔλ− hζ〈Δλ〉 = 0 (4.36)

where G is the shear modulus, K is the bulk modulus, Δλ = λ̇Δt, and

ftrial = f(σtrial, η
n, ζn) (4.37)
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Since 〈Δλ〉 is an integral operator that includes contributions from other particles,

Eq. (4.36) gives a coupled system of integral equations to be satisfied at each plastic

particle. The new technique presented in this paper solves this system by first

transforming it into an equivalent system of fixed-point equations. There are several

ways of transforming Eq. (4.36) into a system of fixed-point equations, some resulting

in better convergence behavior than others. In most cases, convergence depends upon

the selected material parameters. To illustrate this point, two fixed-point expressions

of Eq. (4.36) are examined. The first is generated by taking all local values of Δλ

to be the updated value, with the nonlocal term being evaluated using the previous

estimate for Δλ. This gives

ftrial −Δλk+1 G√
1
2
+ 3β2

p

−Δλk+1 9βKβp√
1
2
+ 3β2

p

− hηΔλ
k+1 − hζ〈Δλk〉 = 0, (4.38)

where k is the iteration number. Solving this expression for Δλk+1 gives

Δλk+1 =
ftrial − hζ〈Δλk〉
G√

1

2
+3β2

p

+ 9βKβp√
1

2
+3β2

p

+ hη
(4.39)

The other fixed-point equation considered is the same as that in Eq. (4.39) except

that the local hardening term (i.e., coefficient of hη) is evaluated using the previous

estimate for Δλ:

ftrial −Δλk+1 G√
1
2
+ 3β2

p

−Δλk+1 9βKβp√
1
2
+ 3β2

p

− hηΔλ
k − hζ〈Δλk〉 = 0. (4.40)

The resulting fixed-point equation is

Δλk+1 =
ftrial − hηΔλ

k − hζ〈Δλk〉
G√

1

2
+3β2

p

+ β9Kβp√
1

2
+3β2

p

(4.41)

The convergence criterion for each of these fixed-point schemes is found by com-

puting the derivative of Δλk+1 with respect to Δλk. Applying the Banach fixed-point

theorem, this fixed-point scheme will converge to a unique fixed-point if

L = Nα

∥∥∥∥∂Δλ
k+1

∂Δλk

∥∥∥∥ < 1 (4.42)
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where Nα is the number of particles within the support of α(x). L is called the

Lipschitz constant of the system of equations. The Lipschitz constant for the first

iteration scheme is bounded by

L1 ≤ Nα

∥∥∥∥∥∥
hζ

G√
1

2
+3β2

p

+ 9βKβp√
1

2
+3β2

p

+ hη

∥∥∥∥∥∥ (4.43)

where, referring to Eq. (4.25), use has been made of the fact that

∂〈Δλk〉
∂Δλk

≤ 1 (4.44)

Similarly the Lipschitz constant for the second fixed-point scheme is bounded by:

L2 ≤ Nα

∥∥∥∥∥∥
hη + hζ

G√
1

2
+3β2

p

+ 9βKβp√
1

2
+3β2

p

∥∥∥∥∥∥ (4.45)

Smaller values of the Lipschitz constant correspond to faster convergence to the fixed

point. Notice that for the local case (hζ = 0) the Lipschitz constant for the first

scheme is zero, indicating that the scheme will converge to the exact solution in one

step. This is to be expected since purely local linear hardening/softening corresponds

to a single uncoupled linear equation. For a nonlocal or overlocal model, the rate of

convergence depends upon the material parameters (hη, hζ , G, K, β and βp), as well

as the number of particles within the support of the nonlocal weighting function (Nα).

With the MPM it is generally a good practice to keep the number of particles per

cell constant as the mesh is refined [86]. However, this practice leads to an increase

in Nα as the mesh is refined, resulting in a reduction in the convergence rate. Of

course, if the Lipschitz constant becomes greater than unity, the fixed-point scheme

may diverge. Therefore, for materials for which the softening modulus is large enough

to produce a Lipschitz constant greater than one, this fixed-point iteration scheme

may not be suitable. However, as will be demonstrated with a case study problem in

Section 4.7.2, the structural response may become brittle as a result of either a large

softening modulus, or as a result of the structure’s length scale being much larger

than the length scale of the material’s microstructure. Thus a structure may behave

in a very brittle manner without necessarily requiring large softening modulus.
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For nonlinear hardening/softening it would not generally be possible to alge-

braically transform the yield condition into a fixed-point system. While not demon-

strated here, the same general procedure may nevertheless be used, but instead of

algebraically solving the yield equation for Δλk+1, a Newton iteration scheme can be

used to generate a fixed-point equation. Stromberg and Ristinmaa’s algorithm [51] is

a special case of this method. In this case a convergence criterion can be derived in the

same way as when the fixed-point equations are algebraically derived. Such a scheme

is a nonlinear generalization of the Gauss-Seidel method. A detailed discussion of

such schemes can be found in a text by Ortega [87].

4.6 Solution Strategy for the MPM

This section describes how the fixed-point iteration scheme presented in the pre-

vious section may be incorporated into the MPM. As mentioned in Section 4.2, the

MPM saves field data at particles, and projects the data to grid nodes for solving

field equations.

Referring to Eqs. (4.14) and (4.15), the standard MPM solution procedure uses

particle values of a field, hp, to construct a grid-based representation of that field,

h(x). The new nonlocal algorithm presented in this paper is distinguished from other

nonlocal solvers in the literature by its use of this MPM mapping to evaluate the

nonlocal integrals in the yield equations. As discussed below, this technique makes it

unnecessary to build and maintain a list of which particles are involved in the nonlocal

average of each particle. An outline of the algorithm is shown in Algorithm 1, and

each step is described in detail below.

The first step in the nonlocal algorithm is to generate an initial estimate for which

particles are undergoing plastic deformation, and an initial estimate for Δλ at those

particles. As is done with traditional local constitutive models, the trial stress is

computed using the symmetric part of the velocity gradient, which is given in Eq.

(4.11). If evaluating the yield function with the trial stress results in a negative value

of the yield function, the particle is tentatively considered to be an elastic particle

(i.e., λ̇ = 0; w �= 0). If the trial stress state results in a zero or positive value for

the yield function, then the particle is considered to be plastic (i.e., λ̇ > 0; w = 0).
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An initial estimate for the increment of the plastic multiplier is found by neglecting

nonlocal effects and using a backward Euler integration scheme [88]. Using Eq. (4.15),

the estimate for the plastic multiplier increment is then projected to the grid nodes

as

Δλi =
1

mi

∑
p

φipΔλpmp (4.46)

Once the initial estimate for the plastic multiplier increment has been projected to

the grid nodes, the initialization for the iterative scheme is complete.

Step two of the nonlocal algorithm is the main iteration loop. For each iteration,

the nonlocal integral is evaluated for each plastic particle. This is done by first

identifying which grid nodes are within the support domain of the nonlocal weighting

function α(x). Then, the incremental form of the nonlocal integral in Eq. (4.25) is

approximated by a discrete sum using

〈Δλ〉p = 1

Mα

∑
i

α(xp − xi)Δλimi (4.47)

and

Mα =
Nα∑
i=0

α(xp − xi)mi (4.48)

By using the nodal mass mi in the integral, nodes that lie outside of a material

boundary are automatically excluded from the sum since mi = 0 for such nodes.

Once the nonlocal integral has been evaluated for a given plastic particle, a fixed-

point expression, such as any of those discussed in Section 4.5, can be used to calculate

an improved estimate for the local plastic multiplier, Δλk+1
p , where k is the iteration

number. The nonlocal internal state variables are also updated using backward-Euler

time integration of Eq. (4.24).

During the loop over the particles, the estimate from the previous iteration Δλkp

can be removed from the grid nodes using

Δλi ← Δλi − mp

mi

φipΔλ
k
p (4.49)

for each grid node that receives information from the particle. The updated value of

Δλp can then be placed on these grid nodes using
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Δλi ← Δλi +
mp

mi
φipΔλ

k+1
p (4.50)

By immediately replacing Δλkp with Δλk+1
p on the grid nodes, all remaining plastic

particles for the iteration will be using the most up-to-date data, making the scheme

a Gauss-Seidel iteration rather than a Jacobi iteration.

After each loop over the plastic particles, if the maximum value of |Δλk+1
p −Δλkp|

is less than some specified tolerance, the solution is considered converged and the

iteration scheme is terminated.

After a converged solution for the field of plastic multipliers has been computed,

the nonlocal internal state variables must be updated for the elastic particles as well.

This is due to the unique feature of nonlocal models that allows plastic deformation

at a given particle to change the state of another particle a finite distance away,

even if that particle is not undergoing plastic deformation itself. This phenomenon is

called plastic diffusion. This also introduces the possibility that the yield surface of a

particle that was initially considered to be elastic will contract due to plastic diffusion

such that it begins to undergo plastic deformation. If this occurs, the particle must be

reclassified as a plastic particle and the field of plastic multipliers must be recomputed,

including the new plastic particle. As discussed in Section 4.4, this illustrates why

nonlocal plasticity is best viewed as a complementarity problem where determining

which particles are undergoing plastic deformation is an important nontrivial aspect

of the solution.

4.7 Shear Band Localization Case Study

In this section, a simple 2D localization problem is solved to illustrate the effec-

tiveness of the nonlocal MPM algorithm just described. As illustrated in Fig. 4.1, this

problem consists of 4 meter wide and 5 meter tall rectangular plane strain plate with

a symmetry (i.e., roller) boundary condition at the bottom and a one meter square

region with reduced yield strength at the lower left-hand corner. The top surface of

the plate is subject to a prescribed axial velocity, with all other velocity components

on that surface set to zero. The lateral surfaces of the plate are traction free.

For all simulations, the bulk modulus is 76 GPa, the shear modulus is 26 GPa and
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the yield strength, ko, was set to 375 MPa in the weakened region, and 400 MPa in

the rest of the domain. For both the local and overlocal cases, a von Mises model was

used. This is equivalent to setting β = βp = 0 in equation (4.34). This algorithm was

implemented into the Uintah explicit dynamics MPM code [39]. This code along with

the CPDI interpolation scheme [84] was used to solve the case study problem. Using

this interpolation scheme, each particle domain is initially rectangular, and deforms

into a parallelogram determined from the deformation gradient of the particle. The

prescribed velocity of the top surface was chosen to be 7.5 m/s. Artificial viscosity

was used to help dampen out the transient portion of the solution. The time step

was chosen to be 20% of the Courant-Friedrichs-Lewy stable time step. For all mesh

resolutions used, four material point particles were used in each cell, two in each

direction.

4.7.1 Local Plasticity Solutions

The case study problem was first solved using a local von Mises plasticity model

with linear softening. The local hardening modulus, hη, was set to −4.0 GPa, where

the negative sign indicates softening. Figure 4.2 shows a contour plot of the magnitude

of the plastic strain tensor for a mesh spacing, h, of 0.5 m, 0.25 m, and 0.125 m.

With all mesh resolutions, a shear band nucleates at the weakened region in the

lower left-hand corner of the domain. The anomalous lack of convergence, as seen

by the dependence of the shear band width on mesh size, and as further seen in the

mesh-dependent post-peak stress-strain response of Fig. 4.3, is consistent with well-

known observations from the literature using other analytical and numerical methods

[28, 30].

4.7.2 Overlocal Plasticity Solutions

To illustrate the effectiveness of nonlocal theory at eliminating mesh sensitivity,

the case study problem was solved using an overlocal von Mises plasticity model using

the nonlocal MPM algorithm outlined in Section 4.6. The local hardening modulus

was set to hη = 2 GPa, and the nonlocal hardening modulus was set to hζ = −4 GPa.

This is equivalent to setting Stromberg and Ristinmaa’s [51] overlocal parameter to
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m = 2, with the hardening modulus set to h = −2 GPa. The nonlocal length scale

was set to L = 0.5 m. With these values the nonlocal iteration scheme converged in

fewer than seven iterations for each time step. Figure 4.4 shows contour plots of the

magnitude of the plastic strain tensor using the overlocal model and three different

mesh spacings. As the plots indicate, the shear band converges to a fixed width with

mesh refinement. The width of the shear band is controlled by the nonlocal length

scale. Unlike the results found using a local model, the overlocal stress-strain curve

in Fig. 4.5 converges with mesh refinement. Specifically, the post-peak stress-strain

response is driven by the problem geometry and material parameters rather than by

the mesh spacing.

In addition to the convergence of the shear band width to a finite value, nonlocal

models also have the advantage of being able to capture a size effect. Specifically, two

structures of the same shape but different sizes will behave differently under the same

applied tractions. With a nonlocal model, the ratio of the length scale associative with

the problem geometry to the nonlocal length scale becomes a significant parameter.

This is an important characteristic for a model to be capable of predicting large-scale

problems based on small-scale laboratory experiments. To illustrate the size effect,

the 2D plate case study was also solved using a specimen that is 8 meters wide and

10 meters high, which is exactly double the size of the original problem. The velocity

at the top surface was prescribed to be 15 m/s, which is also exactly double the rate

in the previous problem. The result is that the bulk strain rate in the plate is the

same as with the original problem. The resulting apparent axial stress versus strain

plot, along with that of the original problem, is shown in Fig. 4.6. Both the original

problem and the scaled up problem were solved with a mesh resolution of h = 0.25 m.

As the plot indicates, the apparent structural response for the problem with the larger

length scale is more brittle than with the original problem. This illustrates the fact

that a brittle structural response can result from either a large softening modulus, or

from a material microstructure with a length scale much smaller than the structure’s

length scale.
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4.8 Conclusion

Whereas nonlocal iteration schemes in the literature are typically specialized to

apply to a particular choice of yield function, a general framework for deriving a

nonlocal iterative solver has been elucidated in this work to apply to any general

yield function. Moreover, a straightforward rigorous basis for deriving a corresponding

convergence criterion scheme has been here developed using the Banach fixed-point

theorem.

While these methods can be applied to any host code framework, they are particu-

larly well suited to incorporation into the material point method (MPM). Specifically,

by using the MPM background grid to evaluate the nonlocal integrals, there is no need

to maintain a list of particles within the nonlocal neighborhood of a given particle.

This attribute not only produces a matrix-free algorithm, but it is especially appealing

for large-deformation problems in which the number and identity of material points

in the vicinity of any given material point change in time.
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Figure 4.1. Schematic of the case study geometry. A symmetric boundary condition
is used along the bottom surface, a prescribed velocity boundary condition is used
along the top surface, and the lateral faces are stress free. The plate is in a state of
plane strain.

Figure 4.2. Contour plot of the magnitude of the plastic strain tensor using a local
von Mises plasticity model with isotropic softening. The width of the shear band
anomalously reduces with mesh spacing, h.
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Figure 4.3. Nonconvergence of applied stress versus apparent axial strain (i.e., %
change in plate height) when using a local von Mises plasticity model at three different
mesh sizes, h.

Figure 4.4. Contour plot of the magnitude of the plastic strain tensor using an
overlocal von Mises plasticity model with isotropic softening, and a nonlocal length
scale of 0.5m. Unlike the local model, the overlocal solution converges with mesh
refinement.
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Figure 4.5. Plot of the applied stress versus apparent axial strain in the plate using
an overlocal von Mises plasticity model with a nonlocal length scale of 0.5m and three
different mesh resolutions, h, as indicated. With the overlocal model the stress/strain
curve converges with mesh refinement.
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Figure 4.6. Plot of the applied stress versus apparent axial strain in the plate using
an overlocal von Mises plasticity model with a nonlocal length scale of 0.5m and two
different plate widths, W , as indicates. All other lengths have been scaled as well so
that the two curves are for geometrically similar plates. The difference in the response
is due to the size effect that results from nonlocal models.
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Algorithm 1 Nonlocal plasticity algorithm for the material point method with a
Drucker-Prager yield function

Step 1: Initialization

Initialize Δλi ← 0 at each grid node i.
for each particle p do

Compute trial stress, and evaluate ftrial using Eq. (4.37)
if ftrial ≥ 0 then

Compute initial guess for Δλp by omitting 〈Δλ〉p in Eq. (4.41).
Project Δλp to the ith grid node using Δλi ← Δλi + (mp/mi)φipΔλp

else

Δλp ← 0
end if

end for

Step 2: Main Iteration Loop

Initialize iteration counter: k ← 0
while ERROR > TOLERANCE do

k ← k + 1
for each plastic particle p do

initialize: 〈Δλ〉p ← 0, Mp ← 0
for each node i within nonlocal support domain do

〈Δλ〉p ← 〈Δλ〉p + α(xp − xi)Δλimi

Mα ← Mα + α(xp − xi)mi

end for

〈Δλ〉p ← 〈Δλ〉p/Mα; ζn+1 ← ζn + hζ〈Δλ〉p
Calculate Δλkp using Eq. (4.39) or (4.41)
Update stress using Eq. (4.49) and (4.50).
ηn+1 ← ηn + hηΔλ

k
p

end for

ERROR← max(|Δλkp −Δλk−1
p |)

end while

Step 3: Evaluate Nonlocal ISVs for elastic particles

for each elastic particle p do

for each node i within nonlocal support domain do

〈Δλ〉p ← 〈Δλ〉p + α(xp − xi)Δλimi

Mα ←Mα + α(xp − xi)mi

end for

〈Δλ〉p ← 〈Δλ〉p/Mα; ζn+1 ← ζn + hζ〈Δλ〉p
ftrial ← f(σtrial, η

n, ζn+1)
if ftrial ≥ 0 then

Add particle to list of plastic particles
end if

end for

If the list of plastic particles changed, return to Step 2; otherwise stop.



CHAPTER 5

CONCLUSIONS

5.1 Novel Contributions to the Current
State of Knowledge

This dissertation has advanced the current state of knowledge of plasticity theory

in several important areas. Each subsection below describes one of these areas.

5.1.1 Effect of Nontraditional Plasticity Theories
on the Sandler-Rubin Instability

As described in Chapter 2, the Sandler-Rubin instability is a physically unrealistic

instability that may occur with any nonassociative plasticity model. When this

instability is manifest, the governing equations become ill-posed, which results in

mesh-dependent numerical solutions. Previous researchers had recognized the exis-

tence of this instability and ill-posedness, but no clear means of eliminating it (while

maintaining agreement with experimental data) had been provided. In Chapter 2, the

effect of three nontraditional plasticity models on this instability were investigated.

These nontraditional models included a viscoplastic model, an incrementally nonlinear

model, and a nonlocal model. Numerical and analytical analyses demonstrated that,

of these models, only the incrementally nonlinear model is capable of eliminating the

instability while maintaining agreement with existing experimental data.

5.1.2 Validation of Incrementally Nonlinear
Plasticity Theory

While incrementally nonlinear plasticity theory was shown to eliminate the Sandler-

Rubin instability, traditional material characterization tests are incapable of distin-

guishing between incrementally linear and incrementally nonlinear material response.

Therefore, new experimental techniques are required to validate incrementally non-
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linear models. A new experimental method and a new data analysis technique for

studying the incremental response of materials were presented in Chapter 3. These

new techniques were used to study the incremental response of aluminum 6061-T0.

This study suggested that there is significant nonlinearity in the incremental response

of this material, though additional experimental investigation using nonmonotonic

loading is warranted to gain greater accuracy and precision. Moreover, since direct

measurement of tangent tensors requires measuring material response for multiple

loading directions, and since measuring the response for one loading direction can

irreversibly alter the material microstructure (to preclude knowing with certainty the

response to a different loading direction), advances in mesoscale modeling may be

critical to validate the new data analysis method.

5.1.3 A Nonlocal Plasticity Algorithm for
the Material Point Method

One of the nontraditional plasticity theories studied in Chapter 2 is a nonlocal

theory. The reason for investigating nonlocal effects on the Sandler-Rubin instability

is that nonlocal theory has been known to resolve other problems (e.g., nonconver-

gence with localization problems) that occur with traditional plasticity theories, as

well as the unique dispersive wave propagation behavior predicted by nonlocal models.

While nonlocal theory is a well-established means of regularizing otherwise ill-posed

localization problems, there have been few efficient numerical schemes developed for

solving the equations of nonlocal plasticity. Schemes have previously been developed

for solving these equations using finite-element or element-free Galerkin methods,

but no general convergence criteria had been developed for these methods. A new

numerical scheme for solving these equations using the material point method (MPM)

was presented in Chapter 4. This is the first nonlocal plasticity algorithm that has

been developed for the MPM. The new algorithm exploits unique features of the MPM

to result in a simple and efficient algorithm. A new convergence criterion was derived

that is not only applicable to the new method, but was also shown to be applicable

to some of the finite-element methods developed previously. The new method was

implemented in the Uintah MPM code, and a classical localization problem was
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solved. It was demonstrated that the new algorithm produces mesh-independent

solutions, whereas with a traditional local plasticity theory the solution is mesh

dependent.

5.2 Suggestions for Future Work

The new developments reported in this dissertation suggest several avenues for

further research. Incrementally nonlinear and nonlocal plasticity theories are both

relatively new theories, and have yet to be incorporated into mainstream engineering

analysis. A significant impediment to more widespread adoption of both incrementally

nonlinear and nonlocal theory has been a lack of established testing methods to

parameterize and further validate these models. For example, incrementally nonlinear

plasticity results in at least one new material parameter that controls how much

the loading direction influences the plastic flow direction. Nonlocal plasticity theory

requires the specification of an intrinsic length scale associated with a material. While

it is clear that this length scale is tied to the size of localization regions that can easily

be measured in the laboratory, no theory has yet been developed that accounts for

how the size of this localization region changes with respect to loading conditions,

such as confining pressure or the loading rate.

The new techniques described in Chapter 3 may play an important role in both

further validation and parameterization of incrementally nonlinear models such as

the extended flow rule (EFR) used in Chapter 2. Because of the limited number

of tests reported in Chapter 3, more tests of that type need to be performed to

confirm the trends observed in that chapter. Furthermore, additional theoretical

analysis is needed to validate or invalidate the assumptions made in the interpolation

scheme presented in Chapter 3. As described in that chapter, the most general way

of describing history-dependent nonlinear material response is using a functional of

the deformation history. A starting point for validating the proposed interpolation

scheme would be to identify some of the mathematical properties of such a constitutive

response functional. For example, if it could be shown that the constitutive functional

is a bounded linear functional. Then the Riesz Representation Theorem could be used

to represent the functional as the inner product of the deformation history function
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with some kernel function. There are many other theorems that apply to bounded

linear functionals and could help to prove or disprove the appropriateness of the

proposed interpolation scheme.

In addition to the reformulations of classical theory that were investigated in

Chapter 2, there are other alternative theories that merit further investigation. For

example, a new variational formulation by Krabbenøft [89] dispenses with the need

to specify a separate plastic potential function, allows arbitrary stress-dilatancy re-

lations, and results in a symmetric plastic tangent stiffness tensor. As discussed in

Chapter 2, loss of symmetry of the tangent stiffness tensor is what allows both the

shear banding and Sandler-Rubin instability to develop. Therefore, this new theory

may provide a means of eliminating the instability while also matching existing data.

In addition to developing and validating new theories, as suggested in Chapter

4, improved numerical schemes are needed to solve the equations that result from

these new theories. Specifically, the new iterative scheme presented in Chapter 4 will

diverge for extremely large values of the softening modulus. The development of an

alternative iterative scheme that increases the convergence range of this scheme would

be helpful. As was suggested in that chapter, a combination of a global fixed-point

iteration with a local Newton iteration scheme has been used in other applications [87],

and may prove advantageous for nonlocal plasticity. Also, an over/under relaxation

scheme ought to be investigated as a means of accelerating convergence. Finally, the

nonlocal MPM formulation presented in this dissertation has only been applied to the

MPM with an explicit time integrator. For many applications, it would be useful to

extend the applicability of this iteration scheme to the MPM with an implicit time

integrator.
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[70] Bažant, Z. P., and Zubelewicz, A., 1988. “Strain-softening bar and beam: exact
non-local solution,” Int. J. Solids Structures, 7(7), pp. 659–673.

[71] Erigen, A. C., 1981. “On nonlocal plasticity,” International Journal of Engi-
neering Science, 19, pp. 1461–1474.
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