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ABSTRACT

This thesis reviews the techniques used to model the circulation of the atmosphere

and oceans. Models of the atmospheric and oceanic circulation can be used to evaluate

future and past conditions of the climate of the Earth. They can also be used to

evaluate what affect any changes to the parameters for the Earth’s environment might

have on the climate of the Earth.

For models of the atmosphere, physical properties of the air and of the rotating

Earth are used to develop equations for the state and motion of the air in the

atmosphere. These equations represent the relationships between the temperature,

density, and wind speeds of the air in the atmosphere. The final equations are a set

of nonlinear partial differential equations which require a numerical solution. There

are several methods used to accomplish a numerical solution to these equations.

Models of the ocean can be developed in much the same way as models of the

atmosphere. The differences include the fact that sea water is essentially incompress-

ible. The models are much more complicated as the oceans are much more limited by

the shape of the continents and so do not cover the entire Earth like the atmosphere

does. To aid in the understanding of ocean circulation, simpler models of the main

circulation of the oceans have been developed as “boxes” of sea water connected

by flows of sea water between the boxes which are driven by differences in density

between the boxes of sea water. The density of the sea water is a function of the

temperature and salinity of the water in each part of the ocean. These box models

show that there are multiple equilibrium states for the circulation of the ocean.
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CHAPTER 1

INTRODUCTION

This thesis is about some of the techniques which are used when developing models

of atmospheric and oceanic circulation. These types of models can be used for short-

term weather forecasting or for long-term climate modeling.

There are no basic differences between the types of equations used for climate

modeling and weather prediction. Weather prediction is for a much shorter-time

period and requires a much higher resolution than what is required for a climate

model [10]. That is, time steps in a model used for weather prediction are usually

for a much shorter duration than the time steps used in a climate model. Also, the

physical dimensions of the cells used for the numerical solutions of the equations for

a weather forecasting model are much smaller than what is used for a climate model.

Note that weather prediction requires a much more exact result than a climate model.

For instance, misforecasting the track of a storm by 100 miles results in a poor weather

forecast. However, a climate model needs only to produce a long-term average forecast

over a period of at least a decade and sometimes much longer. Because of this, while

it remains difficult to forecast the weather for a period of 1 to 2 weeks, climate models

can give a good forecast of the average values of the weather system - the climate -

for hundreds of years into the future.

The first part of this thesis covers the development of some of the partial dif-

ferential equations used in models of atmospheric circulation. The models are a

combination of physical laws and the mathematics used to represent the effects of

those physical laws. The equations can be difficult to develop as they make use of a

number of simplifications so that the resulting partial differential equations (PDEs)

can be solved numerically.

The second part of the thesis discusses simplified models of the thermohaline
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circulation of the oceans. This is the oceanic circulation caused by the differences in

density which are the result of the differences in temperature and salinity of regions of

the ocean. The simplified models are “box models,” the first of which was developed

by Henry Stommel in 1961 [15]. These are high-level models of the oceanic circulation

which is driven by heat and salinity differences across the oceans. The thermohaline

circulation is responsible for moving both heat and salinity within the oceans of

the Earth and has a major effect on the climate of the Earth. An example of this

circulation is the Gulf Stream current which flows along the surface of the Atlantic

Ocean just off the coast of North America and which is responsible for keeping the

climate of Northern Europe warmer than it would be otherwise. The thermohaline

circulation of the oceans is responsible for the warming or cooling of different areas

of the Earth as heat is moved to different parts of the ocean.



CHAPTER 2

ATMOSPHERIC CIRCULATION MODELS

Atmospheric circulation models are used to predict the movement of atmospheric

air. They can be used for weather prediction, or for climate predictions. The

equations of the movement of the air are developed from physical properties of the

air. These equations represent the changes in the attributes of the air as a series of

partial differential equations (PDE’s).

2.1 Basic Physics

To begin the development of the equations used for atmospheric modeling, some

basic definitions are needed for the physical properties of the air to be modeled.

Some of these definitions simply to settle which symbols are used for which physical

attributes. Others delve deeper into the physics required to fully describe the flow of

the atmosphere.

The initial definitions are all in the context of a set of Cartesian coordinates. That

is, in the context of a set of x, y, and z coordinates with the orthogonal basis vectors

i, j, and k. The definitions will eventually be extended so that they work in a context

of spherical coordinates on the surface of the rotating Earth.

2.1.1 Wind Velocity

The wind velocity is one of the main outputs of these models. The position of

a parcel of air is given in the usual x, y, and z coordinates, while the velocity of

the parcel of air is given in terms of the x, y, and x components of the velocity, the

variables u, v, and w are used for the velocity components. The position and wind

velocity using the Cartesian basis vectors are:

x = xi + yj+ zk Position (2.1)
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v = ui+ vj+ wk Velocity (2.2)

The vector variable v represents the wind velocity as a vector. Each of the variables

u, v, and w are the time derivatives of each of the Cartesian coordinates x, y, and z,

respectively, of a parcel of air and are the scalar components of the v velocity vector.

2.1.2 Rates of Change

There are two ways to measure the rate of change of an attribute of a parcel of

air as it circulates in the atmosphere. An attribute of that parcel of air can be any

of temperature, density, wind speed, or other measurable values. The first way to

measure the rate of change of the attribute is to measure the rate of change within

the air parcel as that air parcel changes position in the atmosphere. This is referred

to as a Lagrangian frame of reference. The second way is to measure the rate of

change of that attribute at a fixed point in the atmosphere as various air parcels

move past that fixed point, this is referred to as an Eulerian frame of reference.

Using the Lagrangian frame of reference, the rate of change of an attribute N (such

as temperature, density, etc.) associated with that parcel of air is measured as the

total derivative of that attribute with respect to time or
dN

dt
. Using the chain rule

for derivatives the total derivative of this attribute with respect to time becomes:

dN

dt
=

∂N

∂t

dt

dt
+

∂N

∂x

dx

dt
+

∂N

∂y

dy

dt
+

∂N

∂z

dz

dt
(2.3)

=
∂N

∂t
+ u

∂N

∂x
+ v

∂N

∂y
+ w

∂N

∂z
(2.4)

While the left side of this equation makes use of a Lagrangian frame of reference,

the right side of this equation uses an Eulerian frame of reference. Generalizing this

equation to use the gradient operator gives the total derivative as an operator:

dN

dt
=

∂N

∂t
+ v · ∇N Using the gradient (2.5)

d

dt
=

∂

∂t
+ v · ∇ Total derivative as an operator (2.6)

This is the total derivative of an attribute of air, it can be interpreted as the

change in the value of the attribute over time within the parcel of air, as well as

the values added or subtracted from that attribute as air moves into or out of the
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boundaries of the parcel of air being measured. The total derivative of an attribute

will be used at many points in the development of the partial differential equations

used for atmospheric circulation.

2.1.3 Continuity/Conservation of Air

For these models, the atmosphere will be divided into a three-dimensional set of

cells of air. As the air circulates between these cells, many of the attributes of that

parcel of air will be conserved. The main attribute which is conserved is the mass or

density of the air. For the mass of a parcel of air, this means that the initial mass of

the air in a cell, plus the mass of the air entering the cell during a time period, and

minus the mass of the air leaving the cell during the time period gives the final mass

of air in the cell at the end of the time period. Figure 2.1 shows a diagram of this for

a small cube of air with a wind velocity parallel to the x-axis.

For the mass of an air parcel, the measured attribute is the density of the air,

which is the mass of the air per unit volume. Here, the variable N will be used to

emphasize that these equations work for any conserved attribute of the parcel of air

u
1
N

1
u

2
N

2

∆z

∆x

∆y

Figure 2.1. How the movement of air particles conserves mass. This shows the
movement of air particles into and out of a cube with a wind velocity parallel to the
x-axis. The variables u1 and u2 are the wind velocities (parallel to the x-axis) and
the variables N1 and N2 are the densities of the air at either side of the cube.
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and not just mass or density. If the density of the air particles is N1 on the left

side of the cube and the velocity of the air particles on the left of the cube is u1,

then the mass of the air entering the cube on the left side of the cube is the product

u1N1∆y∆z∆t. In the same way, the mass of air leaving the cube on the right side is

the product u2N2∆y∆z∆t. Since the mass of the air within the cube is the product

of the density of the air and the volume of the cube, these values can be put together

to show that the change of the density of the air within the cube depends on the

densities of the air at either face of the cube and the velocity of the air at that face:

∆N ∆x∆y∆z = u1N1∆y∆z∆t− u2N2∆y∆z∆t (2.7)

Equation (2.7) can be changed to a partial differential equation. First, divide the

equation by the product ∆x∆y∆z∆t, and then take the limit as both ∆x and

∆t approach zero. The resulting equation is a partial differential equation for the

continuity or conservation of the mass of the air:

∆N

∆t
= −

(

u2N2 − u1N1

∆x

)

After dividing by ∆x∆y∆z∆t (2.8)

∂N

∂t
= − ∂

∂x
(uN) Limit as ∆x → 0 and ∆t → 0 (2.9)

Equation (2.9) is the continuity equation for a gas affected by a velocity in only the x

direction. This equation was developed using the density of the air, but N could be

any conserved attribute of a parcel of air. Equation (2.9) can be extended for use in

three dimensions through a similar analysis as what was used to derive this equation:

∂N

∂t
= −∇ · (vN) (2.10)

= −N(∇ · v)− (v · ∇)N Expanding the gradient of the product (2.11)

This relationship is used to model attributes of a cell of air which are conserved in

the circulation model. For instance, the continuity equation for air, that is, how the

density of the air varies with time is:

∂ρ

∂t
= −∇ · (vρ) = −ρ(∇ · v)− (v · ∇)ρ (2.12)

Equation (2.12) shows two ways to represent the continuity or conservation of air.

It can be interpreted as the change in the mass per unit volume or density of the air
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within a parcel which is driven by the masses of air entering or leaving the parcel of

air under consideration.

2.1.4 Hydrostatic Models

The variation of air pressure with altitude can be estimated in different ways.

One of the most common of these is referred to as the “hydrostatic assumption.”

The hydrostatic assumption is that the density of the air in the atmosphere decreases

as a monotone function of the altitude. The use of the hydrostatic assumption in

a model means that the vertical velocities and accelerations of the atmosphere are

assumed to be very small compared to the horizontal velocities and accelerations.

This assumption is a good approximation when a model averages the air pressure

over a large enough horizontal area (an area greater than about 5 km2) and outside

of any storms [5]. The usual values of vertical velocities in the atmosphere are several

orders of magnitude below the values of the horizontal velocities. Using the equation

for hydrostatic air pressure results in a simple relationship between the pressure at

an altitude and the altitude. This relationship is used to convert equations to make

use of the hydrostatic assumption:

dp = −ρg dz (2.13)

The hydrostatic assumption will be used for most of the equations developed in

this thesis. The hydrostatic assumption for a model can be used to remove the
dw

dt
term from the momentum equation.

Another assumption about air pressure which has been used in atmospheric cir-

culation models is the anelastic assumption. This alternative was designed to remove

acoustic or sound waves from the modeled processes in the atmosphere [1] [9]. The

main result of using the anelastic assumption is the removal of the
∂ρ

∂t
term from the

continuity equation for air [5]. Another assumption similar to the anelastic assump-

tion is the Boussinesq approximation, which is a subset of the anelastic assumption

and which can be used for shallow flows of a fluid.
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2.1.5 Geopotential

Geopotential is the amount of work required against gravity to raise a parcel of

air from sea level to a given altitude. It represents the potential energy of a parcel

of air due to its altitude in the atmosphere. The value of the geopotential of a unit

mass of air is the integral of the force of gravity over the height that the air must be

raised to go to its altitude:

Φ(z) =

∫ z

0

g(z) dz (2.14)

Near the surface of the Earth, the geopotential can be approximated as simply gz

because the value of g is approximately constant over the height of most atmospheric

models. The value of g differs by about 0.39 % at an altitude of 25 km and about

1.55 % at 100 km [5]. Approximating the value of g as a constant introduces only a

small error into a model.

Geopotential is used when calculating the momentum of a parcel of air in the

atmosphere. It can be used to evaluate the force of gravity on that parcel of air.

2.1.6 Potential Virtual Temperature

The virtual temperature of a parcel of moist air is the temperature which a parcel

of dry air would need to have in order to be at the same pressure and density as

the parcel of moist air. Using virtual temperature is a way to scale the temperature

of a parcel of air in order to simplify calculations involving moist air. The virtual

temperature can be calculated from the temperature of the parcel of air and the value

of the specific humidity qv, which is the ratio of the mass of the water vapor content

to the total mass of the parcel of air:

Tv ≈ T (1 + 0.608qv) (2.15)

Note that the constant 0.608 in equation (2.15) is the ratio
Md −Mv

Md
with Md

being the molecular weight of dry air (grams per mole), which is approximately

28.966 gmol−1, andMv is the molecular weight of water vapor, which is approximately

18.02 gmol−1. The variable qv is the specific humidity of the moist air, which is the

ratio of the mass of the water vapor to the total mass of the moist air. For dry air,
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qv is zero so that the virtual temperature will be the same as the temperature of a

dry air sample, Tν = T .

The potential temperature θp of a parcel of air is the temperature which that parcel

would obtain if it were brought from its original pressure at its original altitude to a

pressure of 1000 hPa adiabatically, that is, without losing or gaining any energy from

its surrounding environment. The potential temperature of a parcel of air can be

evaluated by considering a parcel of air and its change of temperature given a change

of pressure. The variable cp,m is the specific heat of moist air at a constant pressure,

and ρ is the density of the air. From the ideal gas law, the relationship p = RmρT or

ρ =
p

RmT
can be used to simplify the relationship. The variable Rm represents the

specific gas constant for the moist air, which is the ideal gas constant R divided by

the molar mass of the moist air. Integrating the resulting differential equation gives

an equation for the change in temperature of a parcel of air as the pressure of the

parcel is changed, this equation is often referred to as Poisson’s equation [5]:

cp,mρ dT = dp (2.16)

cp,m
p

RmT
dT = dp (2.17)

dT

T
=

Rm

cp,m

dp

p
(2.18)

T = T0

(

p

p0

)Rm/cp,m

(2.19)

Equation (2.19) can be simplified by making use of the relationship for the spe-

cific heat of moist air in terms of the specific heat of dry air, which is cp,m =
Mdcp,d +Mvcp,v

Md +Mv
≈ cp,d(1 + 0.856qv) and another relationship between the specific

gas constant for moist air and the specific constant for dry air, which is Rm =

Rd

(

1 +
Md −Mv

Md

qv

)

≈ Rd(1 + 0.608qv). The simplified form of equation (2.19)

is:

T = T0

(

p

p0

)Rd(1+0.608qv)/[cp,d(1+0.856qv)]

(2.20)

≈ T0

(

p

p0

)κ(1−0.251qv)

(2.21)

κ =
Rd

cp,d
=

cp,d − cv,d
cp,d

≈ 0.286 (2.22)
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The variable cp,d is the specific heat of dry air at a constant pressure and cν,d is

the specific heat of dry air at a constant volume. These specific heat values are the

amount of energy required to raise the temperature of a unit mass of the substance

by one degree Kelvin keeping either the pressure or volume constant.

Potential virtual temperature θν is a combination of the concepts of virtual tem-

perature and potential temperature, it is the temperature of a parcel of air in which

all moisture is converted to dry air and then the pressure is brought to 1000 hPa.

θp,m = T

(

1000 hPa

p

)κ(1−0.251qv)

For moist air (2.23)

θp = T

(

1000 hPa

p

)κ

For dry air (2.24)

The pressure of 1000 hPa is a reference pressure of 1000 hecto pascals. This is near

to 1013.25 hPa, which is about the average air pressure at sea level on the Earth. For

dry air, the potential temperature and potential virtual temperature will be the same

value.

Potential virtual temperature is used to simplify the equations used for the ther-

modynamics of the atmosphere. Converting from temperature to potential virtual

temperature simplifies the equations for thermodynamics.

2.2 Thermodynamics Considerations

2.2.1 Thermodynamic Energy Equation

The laws of thermodynamics or how changes in heat and energy affect the parcels

of air in the atmosphere play a large role in how the circulation of the air is modeled.

The first law of thermodynamics, or the conservation of energy for a parcel of air, is:

dQ∗ = dU∗ + dW ∗ (2.25)

The term dQ∗ is the diabatic heating term or the energy transferred between the air

parcel and its environment. The dU∗ term is the change in the internal energy of the

parcel. The dW ∗ term is the work either done by (negative) or on the parcel of air

(positive). Dividing this equation by the mass of the parcel of air gives the energy

per unit mass of the parcel of the air:

dQ∗

M
=

dU∗

M
+

dW ∗

M
Dividing by the mass of the parcel of air (2.26)
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dQ = dU + dW Simplified to the energy per unit mass of air (2.27)

Equation (2.27) is in terms of the energy per unit mass of the air. The terms dU

and dW can be further evaluated in terms of other attributes of the parcel of air in

question. When a parcel of air changes its volume, the work done is the product of

the pressure at the boundary of the parcel of air and the volume of the air. That

work now done, can be stated in terms of a new variable, α =
1

ρ
, the reciprocal of

density, as:

dW =
dW ∗

M
=

p dV

M
= p dα (2.28)

The change in the internal energy of a parcel of air dU is the change in temperature

multiplied by the energy required to change its temperature by 1 Kelvin.

dU =

(

∂Q

∂T

)

dT = cv,m dT (2.29)

The constant cv,m is the specific heat of moist air at constant volume. Note that the

specific heat of dry air at a constant volume varies by less than 0.2% for temperatures

of 200 to 300 K [5], so that using a constant value for the specific heat values will only

incorporate a small error into the models. Combining equations (2.28) and (2.29) with

equation (2.27), the equation for the first law of thermodynamics has now become:

dQ = cv,m dT + p dα (2.30)

The ideal gas law is a combination of Boyle’s law, Charles’ law, and Avrogadro’s

law. The ideal gas law is the equation pV = nRT , where p is the pressure of the gas,

V is the volume of the gas, n is the number of moles of the gas, R is the ideal gas

constant or 8.3144621 Jmol−1K−1, and T is the temperature of the gas in Kelvins.

The constant Rm is the specific gas constant for moist air or the ideal gas constant

R divided by the molar mass of the moist air. Converting the ideal gas law to make

use of Rm changes it to pV = nmaRmT , with ma the molar mass or grams per mole

of the gas. The product nma is the number of moles of the gas times the molar mass

of the gas, which is simply the mass of the gas. Using this and then making use of

the variable α =
1

ρ
gives:

p =
M

V
RmT = ρRmT The converted ideal gas law (2.31)
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pα = RmT Using α =
1

ρ
=

V

M
(2.32)

p dα = Rm dT − α dp Differentiating and simplifying (2.33)

Substituting equation (2.33) into equation (2.30) gives a new expression for the energy

per unit mass of the air. Note that the value of cp,m = cv,m +Rm, or that the specific

heat of moist air at a constant pressure is equal to the sum of the specific heat of

moist air at a constant volume and the specific gas constant of the moist air. The

expression for the unit mass of the air becomes:

dQ = cv,m dT +Rm dT − α dp (2.34)

= (cv,m +Rm) dT − α dp (2.35)

= cp,m dT − α dp (2.36)

This equation can be expressed as an approximation using virtual temperature by

making use of equation (2.15) and the relationship cp,m = cp,d(1+0.856qv). Note that

the constant 0.856 is approximately the value of
Mdcp,d +Mvcp,v

Md +Mv
, where Md is the

molar mass of dry air, Mv is the molar mass of water vapor, cp,d is the specific heat

of dry air, and cp,v is the specific hear of water vapor. Because the specific humidity,

qv, is between 0 and 1, equation (2.36) can be approximated as:

dQ =
cp,d(1 + 0.856qv)

(1 + 0.608qv)
dTv − α dp (2.37)

≈ cp,d dTv − α dp (2.38)

Dividing equation (2.38) by dt, using α =
1

ρ
, and rearranging terms gives another

form of the thermodynamic energy equation:

dTv

dt
=

1

cp,m

dQ

dt
+

1

cp,mρ

dp

dt
(2.39)

Equation (2.39) can be further simplified by using potential virtual temperature

rather than virtual temperature. Differentiating the definition of potential virtual

temperature for dry air, equation (2.24), with respect to time results in a relationship

between the derivatives of virtual temperature and potential virtual temperature:

dθv
dt

=
dTv

dt

(

1000

p

)κ

+ κTv

(

1000

p

)κ−1(

−1000

p2

)

dp

dt
(2.40)
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=
θv
Tv

dTv

dt
− κθv

p

dp

dt
(2.41)

dTv

dt
=

Tv

θv

dθv
dt

+
κTv

p

dp

dt
Solving for

dTv

dt
(2.42)

Making use of (2.42) and the relationships κ =
R

cp,m
and p = ρRTv will reduce

equation (2.39) to an equation involving only potential virtual temperature:

Tv

θv

dθv
dt

+
RTv

cp,mρRTv

dp

dt
=

1

cp,m

dQ

dt
+

1

cp,mρ

dp

dt
(2.43)

dθv
dt

=
θv

cp,mTv

dQ

dt
+

θv
cp,mρTv

dp

dt
− θv

cp,mρTv

dp

dt
(2.44)

=
θv

cp,mTv

dQ

dt
(2.45)

∂θv
∂t

+ (v · ∇)θv =
θv

cp,mTv

dQ

dt
Using the total derivative (2.46)

Equation (2.46) can be expanded to include the effects of eddy turbulence [5].

The result of this transformation is that the equation becomes:

∂θv
∂t

+ (v · ∇)θv =
θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv (2.47)

The variable Kh represents the eddy diffusion tensor for energy.

The expression
dQ

dt
is the sum of a series of diabatic heating rates [5]. This sum

includes the reasons shown in Table 2.1. Any model of the atmosphere must have ways

to incorporate energy inputs and outflows which correspond to each of the reasons

shown in this table. Some of the reasons in the table come from daily or seasonal

variations of sunlight and heating. These always require additional preparation for

the model to represent actual physical conditions.

Table 2.1. Reasons for diabatic heating
Term in Sum Reason for energy change
Qc/e condensational growth (evaporation)
Qf/m freezing (melting)
Qdp/s depositional growth (sublimation)
Qsolar solar radiation (heating)
Qir infra-red radiation (cooling)
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2.3 Newton’s Law and Momentum

2.3.1 Conversion to Spherical Coordinates

The equations developed to this point are equations which disregard the curvature

of the Earth’s surface. They make use of the Cartesian x, y, and z coordinates and

the related basis vectors. For use in a global model of Earth’s atmosphere, these

equations should be converted for use with spherical coordinates. To do this, the x

and y coordinates will be changed to λ and ϕ coordinates where λ is the equivalent

of longitude ranging from 0 to 2π and ϕ is the equivalent of latitude ranging from −π
2

to π
2
. The third coordinate will be the height above the center of the Earth, initially

this will be the variable r to prevent confusion with the Cartesian z coordinate, but

eventually this will be converted back to being the z variable. Along with this, the

basis vectors i, j, and k used for Cartesian coordinates will be converted to new basis

vectors iλ, jϕ, and kr. The vector iλ always points to the East at the surface of the

Earth, jϕ always points to the North at the surface of the Earth, and kr always points

upwards in the vertical direction, again, at the surface of the Earth. Figure 2.2 shows

the orientation of these new basis vectors.

ϕ

λ

iλ

jϕ kr

Figure 2.2. The basis vectors for spherical coordinates.
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2.3.1.1 Spherical Unit Vectors

The equations (2.50) can be used to convert between Cartesian coordinates and

spherical coordinates. These transformation equations make use of the two-parameter

inverse tangent function so that there is no confusion about the quadrants of the

angles involved. This function is equivalent to the “atan2” function available in

many computer programming languages and spreadsheets. If x is greater than 0,

then the value of arctan(y, x) is the same as tan−1 y
x
so that arctan(y, x) is between

−π
2
and π

2
for this case. If x is less than 0, then arctan(y, x) = tan−1 y

x
+ π. If x

equals 0, then the value of arctan(y, x) is either −π
2
when y < 0, or π

2
when y > 0. In

this way, the value of arctan(y, x) gives a unique angle with the quadrant correctly

determined. Note that if both x and y are equal to zero, then the value of arctan(y, x)

is undefined.

r =
√

x2 + y2 + z2 x = r cosλ cosϕ (2.48)

λ = arctan(y, x) y = r sin λ cosϕ (2.49)

ϕ = arctan
(

z,
√

x2 + y2
)

z = r sinϕ (2.50)

The unit vectors for spherical coordinates can be calculated in terms of the

Cartesian unit vectors by making use of these transformation equations. To begin

this process, the spherical unit vector kr is a unit vector with the direction which

points away from the origin. Using the transformation equations (2.50), this unit

vector can be calculated as:

kr =
r

r
=

xi + yj+ zk

r
= i cosλ cosϕ+ j sinλ cosϕ+ k sinϕ (2.51)

The spherical unit vector iλ can be found by noting that it is a unit vector which is

orthogonal to both the kr spherical unit vector and the Cartesian k vector. This unit

vector can be found through the use of a vector cross product of the k and kr vectors.

The k vector should be first in the cross product so that the value of λ increases as

a position on the surface of the Earth moves in the direction of the iλ basis vector:

k× kr =

∣

∣

∣

∣

∣

∣

i j k
0 0 1

cosλ cosϕ sinλ cosϕ sinϕ

∣

∣

∣

∣

∣

∣

= −i sinλ cosϕ+ j cosλ cosϕ (2.52)
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‖k× kr‖ =
∥

∥− i sinλ cosϕ+ j cosλ cosϕ
∥

∥ = cosϕ (2.53)

iλ =
k× kr

‖k× kr‖
=

−i sinλ cosϕ+ j cosλ cosϕ

cosϕ
= −i sinλ + j cosλ (2.54)

Finally, the jϕ unit vector must be orthogonal to both the kr and iλ unit vectors.

Again, the value of this unit vector can be calculated through the use of a vector cross

product between these other two orthogonal unit vectors. The kr vector must be first

in the cross product so that the value of ϕ increases as a position on the surface of

the Earth moves in the direction of the jϕ unit vector. Note that this vector is a unit

vector; the norm of this vector will be 1 because it is the cross product of 2 orthogonal

unit vectors:

jϕ = kr × iλ =

∣

∣

∣

∣

∣

∣

i j k
cos λ cosϕ sin λ cosϕ sinϕ
− sinλ cosλ 0

∣

∣

∣

∣

∣

∣

(2.55)

= −i cosλ sinϕ− j sinλ sinϕ+ k cosϕ (2.56)

These three equations (2.51), (2.54), and (2.56) for iλ, jϕ, and kr in terms of i, j,

and k can be solved for the Cartesian unit vectors to give these equations:

i = −iλ sinλ− jϕ cosλ sinϕ+ kr cosλ cosϕ (2.57)

j = iλ cos λ− jϕ sin λ sinϕ+ kr sinλ cosϕ (2.58)

k = jϕ cosϕ+ kr sinϕ (2.59)

These expressions for the Cartesian basis vectors in terms of the spherical basis vectors

will be used to calculate the partial derivatives of the spherical unit vectors with

respect to the spherical coordinate values.

2.3.1.2 Partial Derivatives of Spherical Unit Vectors

The partial derivatives of the spherical unit vectors with respect to the spheri-

cal coordinate variables will be needed for converting the gradient from Cartesian

coordinates to spherical coordinates. Each of these nine partial derivatives can be

calculated through the use of the equations developed in the last section. The partial

derivatives of the iλ vector with respect to each of the spherical coordinates can

be found by taking the corresponding partial derivatives of equation (2.54) and then
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substituting for the values of the Cartesian unit vectors as per equations (2.59), (2.57),

and (2.58):

∂iλ
∂λ

= −(−iλ sin λ− jϕ cosλ sinϕ+ kr cosλ cosϕ) cosλ

− (iλ cos λ− jϕ sin λ sinϕ + kr sinλ cosϕ) sinλ (2.60)

= jϕ sinϕ− kr cosϕ (2.61)

∂iλ
∂ϕ

= 0 (2.62)

∂iλ
∂r

= 0 (2.63)

In the same way, the partial derivatives of jϕ and kr can be calculated using equa-

tions (2.56) and (2.51):

∂jϕ
∂λ

= (−iλ sin λ− jϕ cosλ sinϕ+ kr cosλ cosϕ) sinλ sinϕ

− (iλ cosλ− jϕ sinλ sinϕ+ kr sin λ cosϕ) cosλ sinϕ (2.64)

= −iλ sinϕ (2.65)

∂jϕ
∂ϕ

= −(−iλ sinλ− jϕ cosλ sinϕ+ kr cosλ cosϕ) cosλ cosϕ

− (iλ cosλ− jϕ sinλ sinϕ+ kr sin λ cosϕ) sinλ cosϕ

− (jϕ cosϕ+ kr sinϕ) sinϕ (2.66)

= −kr (2.67)

∂jϕ
∂r

= 0 (2.68)

∂kr

∂λ
= −(−iλ sinλ− jϕ cosλ sinϕ+ kr cosλ cosϕ) sinλ cosϕ

+ (iλ cosλ− jϕ sinλ sinϕ+ kr sinλ cosϕ) cosλ cosϕ (2.69)

= −iλ cosϕ (2.70)

∂kr

∂ϕ
= −(−iλ sinλ− jϕ cosλ sinϕ+ kr cosλ cosϕ) cosλ sinϕ

− (iλ cosλ− jϕ sinλ sinϕ+ kr sin λ cosϕ) sinλ sinϕ

+ (jϕ cosϕ+ kr sinϕ) cosϕ (2.71)

= jϕ (2.72)

∂kr

∂r
= 0 (2.73)

These partial derivatives will be used to convert the gradient operator to spherical



18

coordinates.

2.3.1.3 Converting Velocities

The horizontal measurements x (East/West) and y (North/South) when measured

at the surface of the Earth are replaced with the spherical coordinates λ and ϕ. Note

that x and y are now the local East/West and North/South directions as measured at

the surface of the Earth, not the corresponding Cartesian coordinates. Also, the local

z direction is outward from the center of the Earth and not the Cartesian z coordinate.

This means that the z coordinate is now the r coordinate which was initially used

for spherical coordinates, and there is no conversion here for the z coordinate as it is

not replaced by an angle measurement. The local x and y coordinates are related to

the λ and ϕ coordinates by simply being multiples (proportional to the z coordinate)

of each other, respectively. The derivatives of the local horizontal coordinates are

related by:

dx = (z cosϕ) dλ (2.74)

dy = z dϕ (2.75)

Converting horizontal velocities into spherical coordinates makes use of these rela-

tionships as:

u =
dx

dt
= z cosϕ

dλ

dt
(2.76)

v =
dy

dt
= z

dϕ

dt
(2.77)

w =
dz

dt
(2.78)

With these conversions, the local wind velocity can be converted to the corresponding

spherical coordinate representation. The local wind velocity makes use of the local x

and y coordinate values where these are the local East/West and North/South wind

velocities relative to the surface of the Earth.

2.3.1.4 Gradient in Spherical Coordinates

The gradient operator in Cartesian coordinates is:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(2.79)
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The same equation applies when the values of x, y, and z are the local coordinates at

the surface of the Earth and the basis vectors used in the gradient are the spherical

basis vectors. With the derivatives for velocities given in (2.78), the gradient operator

in spherical coordinates is transformed to:

∇ = iλ
1

z cosϕ

∂

∂λ
+ jϕ

1

z

∂

∂ϕ
+ k

r

∂

∂z
(2.80)

However, applying the gradient operator for the divergence of a vector function

like velocity, that is, when calculating a value such as ∇ · v, the derivatives of the

spherical basis vectors become involved as well because these basis vectors do not

have a constant direction so their derivatives are not zero. These basis vectors do

remain orthogonal; the inner products iλ · jϕ, iλ · kr, and jϕ · kr are all equal to zero

because of this orthogonality. To calculate ∇ ·v in spherical coordinates using (2.80)

and v = iλu+ jϕv + kr w:

∇ · v =

(

iλ
1

z cosϕ

∂

∂λ
+ jϕ

1

z

∂

∂ϕ
+ k

r

∂

∂z

)

· (iλu+ jϕv + kr w) (2.81)

=

(

1

z cosϕ

∂u

∂λ
+ iλ

u

z cosϕ
· ∂iλ
∂λ

+ iλ
v

z cosϕ
· ∂jϕ
∂λ

+ iλ
w

z cosϕ
· ∂kr

∂λ

)

+

(

1

z

∂v

∂ϕ
+ jϕ

u

z
· ∂iλ
∂ϕ

+ jϕ
v

z
· ∂jϕ
∂ϕ

+ jϕ
w

z
· ∂kr

∂ϕ

)

+

(

∂w

∂z
+ kr u · ∂iλ

∂z
+ kr v ·

∂jϕ
∂z

+ kr w · ∂kr

∂z

)

(2.82)

Substituting the values of the partial derivatives into (2.82) (and using z in place

of r) gives the value of the gradient in spherical coordinates:

∇ · v =

(

1

z cosϕ

∂u

∂λ
+ iλ

u

z cosϕ
· (jϕ sinϕ− kr cosϕ) + iλ

v

z cosϕ
· (−iλ sinϕ)

+iλ
w

z cosϕ
· (iλ cosϕ)

)

+

(

1

z

∂v

∂ϕ
+ jϕ

u

z
· 0+ jϕ

v

z
· (−kr) + jϕ

w

z
· jϕ

)

+

(

∂w

∂z
+ kr u · 0+ kr v · 0+ kr w · 0

)

(2.83)

=

(

1

z cosϕ

∂u

∂λ
− v sinϕ

z cosϕ
+

w

z

)

+

(

1

z

∂v

∂ϕ
+

w

z

)

+
∂w

∂z
(2.84)

=
1

z cosϕ

∂u

∂λ
+

(

1

z

∂v

∂ϕ
− v sinϕ

z cosϕ

)

+

(

2
w

z
+

∂w

∂z

)

(2.85)
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=
1

z cosϕ

∂u

∂λ
+

1

z cosϕ

∂

∂ϕ
(v cosϕ) +

1

z2
∂

∂z
(wz2) (2.86)

For modeling the atmosphere, the value of z can be taken as a constant relative

to the radius of the Earth, Re, without introducing too large an error. The maximum

height above sea level used in most models is on the order of 50 to 100 kilometers

while the radius of the Earth, Re, is about 6371 kilometers. Taking z ≈ Re being

approximately a constant changes the last term in equation 2.86 to:

∇ · v =
1

Re cosϕ

∂u

∂λ
+

1

Re cosϕ

∂

∂ϕ
(v cosϕ) +

∂w

∂z
(2.87)

This definition of the gradient in spherical coordinates is used later to find ∇ · (vh)

and ∇ · (vhπ) where π is the difference between the pressure at the surface of the

Earth and the pressure at the maximum height of the model. The variable vh is the

horizontal velocity or no kr component). These divergences are:

∇ · (vh) =
1

Re cosϕ

∂

∂λ
(u) +

1

Re cosϕ

∂

∂ϕ
(v cosϕ) (2.88)

∇ · (vhπ) =
1

Re cosϕ

∂

∂λ
(uπ) +

1

Re cosϕ

∂

∂ϕ
(vπ cosϕ) (2.89)

2.3.2 Rotation of the Earth

The motion of a parcel of air in the atmosphere depends on the forces applied to

that parcel of air. The acceleration of the parcel of air is proportional to the vector

sum of those forces. If the Earth were not rotating, the parcel of air in the atmosphere

would be moving in an inertial reference frame when its motion is measured using a

coordinate system based on the surface of the Earth. An inertial reference frame is a

frame of reference or a coordinate system which is not accelerating or rotating. This

means that the motion of the air appears to be affected by forces due to the rotation

of the Earth when viewed from a position rotating with the surface of the Earth.

Because the Earth is rotating, a frame of reference based on coordinates measured

from a point on the surface of the Earth is being measured in an accelerating frame

of reference, or a noninertial frame of reference. Sometimes the effects of the rotation

of the Earth can be seen in everyday events. The direction in which a large storm in

the atmosphere, such as a hurricane, rotates is determined by rotation of the Earth
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and the hemisphere in which the storm is located. A hurricane can be described as a

large area of lower pressure in the atmosphere, so that air tends to move toward the

center of the storm. Hurricanes in the northern hemisphere rotate counter-clockwise

while hurricanes in the southern hemisphere rotate clockwise. The movement of the

air in a storm like this is affected by the rotation of the Earth when the movement

of the air is measured based on the location of a point on the surface of the Earth.

Any observer at a fixed point in space (or a nonaccelerating point in space)

observing a parcel of air in the atmosphere of the Earth would be observing from

an inertial reference frame. If the parcel of air is moving at a velocity v relative to

the surface of the Earth, the Earth is rotating with an angular velocity vector Ω,

and Re is the radius vector from the center of the Earth to the parcel of air, then

the observer in the inertial reference frame would see the parcel of air moving with

absolute velocity of:

vinertial = vrotating +Ω×Re (2.90)

Note that for the Earth, |Ω| = Ω ≈ 2π/86164 ≈ 7.292×10−5 radians per second where

86164 seconds is the approximate length of a sidereal day. The vector Ω is parallel

to the axis of rotation of the Earth and points to the North so that Ω = Ωk. To use

this equation to determine the relationship between the observed inertial acceleration

and the acceleration in the rotating frame of reference, let Xrotating = x iλ+y jϕ+z kr

be the position of a particle relative to a point on the surface of the Earth. Now the

velocity as seen from a rotating position on the surface of the Earth is just the time

derivative of this value:

(

dX

dt

)

rotating

=
dx

dt
iλ +

dy

dt
jϕ +

dz

dt
kr (2.91)

This is what the rotating (noninertial) observer on the surface of the Earth would see

as the velocity of the particle. In order to convert this to the inertial reference frame,

the same derivative would need to take the variation of the unit vectors due to the

rotation into account. This conversion will make use of equations (2.51), (2.54), and

(2.56), and the fact that Ω = Ωk and
dλ

dt
= Ω. The derivatives of these unit vectors,
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in the inertial reference frame with ϕ and z both constant as they would be for an

object rotating with the surface of the Earth, are:
(

diλ
dt

)

inertial

=
d

dt
(−i sin λ+ j cosλ) = (−i cosλ− j sinλ)

dλ

dt
(2.92)

=

∣

∣

∣

∣

∣

∣

i j k
0 0 Ω

− sinϕ cosϕ 0

∣

∣

∣

∣

∣

∣

= Ω× iλ (2.93)

(

djϕ
dt

)

inertial

=
d

dt
(−i cos λ sinϕ− j sinλ sinϕ+ k cosϕ) (2.94)

= (i sinλ sinϕ− j cosλ sinϕ)
dλ

dt
= Ω× jϕ (2.95)

(

dkr

dt

)

inertial

=
d

dt
(i cosλ cosϕ+ j sinλ cosϕ+ k sinϕ) (2.96)

= (−i sinλ cosϕ+ j cosλ cosϕ)
dλ

dt
= Ω× kr (2.97)

Taking the derivative of the position in the inertial frame of reference and making

use of the chain rule for derivatives gives:
(

dX

dt

)

inertial

=
dx

dt
iλ + x

(

diλ
dt

)

inertial

+
dy

dt
jϕ + y

(

djϕ
dt

)

inertial

+
dz

dt
kr + z

(

dkr

dt

)

inertial

(2.98)

=
dx

dt
iλ +

dy

dt
jϕ +

dz

dt
kr +Ω× (x iλ + y jϕ + z kr) (2.99)

=

(

dX

dt

)

rotating

+Ω×X (2.100)

(

d

dt

)

inertial

=

[

(

d

dt

)

rotating

+Ω×
]

The derivative as an operator (2.101)

Using (2.90), and taking its derivative in the inertial frame of reference through the

use of equation (2.101), gives the acceleration in the inertial frame of reference:

(

dv

dt

)

inertial

=

[

(

d

dt

)

rotating

+Ω×
]

(v +Ω×Re) (2.102)

=

(

dv

dt

)

rotating

+Ω×
(

dRe

dt

)

rotating

+Ω× v +Ω×Ω× v (2.103)

The value of

(

dRe

dt

)

rotating

is approximately equal to the velocity of the particle v

when the vertical component of v is small compared to the horizontal component,
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which is usually the case in the atmosphere. With that change, the last equation

becomes:

ainertial =

(

dv

dt

)

inertial

=

(

dv

dt

)

rotating

+ 2Ω× v +Ω×Ω× v (2.104)

= aℓ + ac + ar (2.105)

The three components of ainertial are aℓ, which is the local (noninertial) acceleration;

ac, which is the Coriolis acceleration; and ar, which is the centripetal acceleration.

The total acceleration of a parcel of air is due to the different forces acting on the

parcel of air. These forces are due to gravity (Fg), the pressure gradient force (Fp),

and forces caused by the molecular viscosity of the air (Fv). Taking M as the mass of

the parcel of air, the effects of these forces can be related to the inertial acceleration

of the air parcel through Newton’s second law:

aℓ + ac + ar =
1

M
(Fg + Fp + Fv) (2.106)

Because the motion of the parcel of air will be calculated relative to a position on

the surface of the Earth, only the local acceleration is useful as an output from any

model. To better show the relationship between the local acceleration and the forces

involved, the Coriolis and centripetal accelerations will be converted to forces by

setting them equal to an equivalent force divided by the mass of the parcel of air.

Also, the centripetal force will be treated as a negative force so that it becomes an

apparent centrifugal force. With that, the local acceleration becomes:

aℓ =
1

M
(Fr − Fc + Fg + Fp + Fv) (2.107)

Each of the terms in this equation will be treated differently in the following sections.

2.3.2.1 Local Acceleration

The local acceleration is the total derivative of the velocity of the air parcel in the

rotating frame of reference:

aℓ =
dv

dt
=

∂v

∂t
+ (v · ∇)v (2.108)

Equation (2.108) shows that the local acceleration is due to the acceleration at that
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point plus any flux of acceleration due to air moving in or out of the cell or parcel of

air. Expanding this equation in Cartesian coordinates is not difficult, it becomes:

i
du

dt
+ j

dv

dt
+ k

dw

dt
=

(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)

(iu+ jv + kw) (2.109)

= i

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

+ j

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

(2.110)

+ k

(

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

(2.111)

Expanding this same equation in spherical coordinates requires more work. The left

side becomes:

dv

dt
=

d

dt
(iλu+ jϕv + kr w) (2.112)

= iλ
du

dt
+ u

iλ
dt

+ jϕ
dv

dt
+ v

jϕ
dt

+ kr
dw

dt
+ w

kr

dt
(2.113)

Now, the time derivatives of the spherical basis vectors are needed because these

basis vectors are not constant. Because dx = (Re cosϕ) dλ and dy = Re dϕ, the total

derivative in spherical coordinates is:

d

dt
=

∂

∂t
+

u

Re cosϕ

∂

∂λ
+

v

Re

∂

∂ϕ
+ w

∂

∂z
(2.114)

This can be applied to find the total derivatives of iλ, jϕ, and kr. Note that in the

rotating frame of reference, the derivatives of the spherical basis vectors with respect

to time will all be zero.

iλ
dt

=
∂iλ
∂t

+
u

Re cosϕ

∂iλ
∂λ

+
v

Re

∂iλ
∂ϕ

+ w
∂iλ
∂z

(2.115)

= 0 +
u

Re cosϕ
(jϕ sinϕ− kr cosϕ) +

v

Re
· (0) + w · (0) (2.116)

= jϕ
u tanϕ

Re

− kr
u

Re

(2.117)

jϕ
dt

=
∂jϕ
∂t

+
u

Re cosϕ

∂jϕ
∂λ

+
v

Re

∂jϕ
∂ϕ

+ w
∂jϕ
∂z

(2.118)

= 0 +
u

Re cosϕ
(−iλ sinϕ) +

v

Re
(−kr) + w · (0) (2.119)

= −iλ
u tanϕ

Re

− kr
v

Re

(2.120)

kr

dt
=

∂kr

∂t
+

u

Re cosϕ

∂kr

∂λ
+

v

Re

∂kr

∂ϕ
+ w

∂kr

∂z
(2.121)
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= 0 +
u

Re cosϕ
(iλ cosϕ) +

v

Re
(jϕ) + w · (0) (2.122)

= iλ
u

Re
+ jϕ

v

Re
(2.123)

Substituting these values into the total derivative for spherical coordinates (2.113)

gives:

dv

dt
= iλ

du

dt
+ u

(

jϕ
u tanϕ

Re
− kr

u

Re

)

+ jϕ
dv

dt
+ v

(

−iλ
u tanϕ

Re
− kr

v

Re

)

+ kr
dw

dt
(2.124)

+ w

(

iλ
u

Re
+ jϕ

v

Re

)

(2.125)

= iλ

(

du

dt
− uv tanϕ

Re

+
uw

Re

)

+ jϕ

(

dv

dt
+

u2 tanϕ

Re

+
uw

Re

)

(2.126)

+ kr

(

dw

dt
− u2

Re

− v2

Re

)

(2.127)

To further simplify this expression, note that the terms
uw

Re

and
vw

Re

are small for large

scale motions because w is much smaller than either u or v. These two terms can be

removed without incorporating too much of an error. To keep from adding energy to

the system, the
u2

Re

and
v2

Re

must also be removed from the vertical expression when

the other terms are removed [5]. Now the local acceleration in spherical coordinates

as a total derivative is:

dv

dt
= iλ

(

du

dt
− uv tanϕ

Re

)

+ jϕ

(

dv

dt
+

u2 tanϕ

Re

)

+ kr

(

dw

dt

)

(2.128)

Expanding equation (2.128) by making use of the total derivatives of u, v, and w

gives the velocity in the rotating frame of reference:

dv

dt
= iλ

(

∂u

∂t
+

u

Re cosϕ

∂u

∂λ
+

v

Re

∂u

∂ϕ
+ w

∂u

∂w
− uv tanϕ

Re

)

+ jϕ

(

∂v

∂t
+

u

Re cosϕ

∂v

∂λ
+

v

Re

∂v

∂ϕ
+ w

∂v

∂w
+

u2 tanϕ

Re

)

+ kr

(

∂w

∂t
+

u

Re cosϕ

∂w

∂λ
+

v

Re

∂w

∂ϕ
+ w

∂w

∂w

)

(2.129)

Equation (2.129) is the local acceleration of a parcel of air as seen by an observer

rotating with the Earth.
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2.3.2.2 Coriolis Forces

Coriolis forces are apparent forces acting on a moving parcel of air as seen from

the rotating reference frame which are caused by the rotation of the Earth. Note that

from a point on the Earth’s surface, the spherical basis vectors will be oriented at

an angle to the axis of rotation of the Earth. That angle will be equal to ϕ or the

latitude of the point on the surface of the Earth. Stated differently, the value of Ω is

Ωk = jϕ Ωcosϕ+kr Ω sinϕ in terms of the spherical basis vectors. To find the value

of the acceleration due to the Coriolis forces:

ar =
Fr

M
= 2Ω× v = 2Ω

∣

∣

∣

∣

∣

∣

iλ jϕ kr

0 cosϕ sinϕ
u v w

∣

∣

∣

∣

∣

∣

(2.130)

= iλ 2Ω(w cosϕ− v sinϕ) + jϕ 2Ωu sinϕ− kr 2Ωu cosϕ (2.131)

Further simplifications to equation (2.131) are that because the vertical velocities

are much smaller than horizontal velocities for any model with a sufficiently large

time scale; the 2Ωw cosϕ term can be removed from the iλ portion of this equation.

Since the vertical component of the Coriolis forces is much smaller than the vertical

component of gravitational or pressure gradient forces, the component for the kr term

can also be ignored and removed [5].

ar ≈ −iλ2Ωv sinϕ+ jϕ2Ωu sinϕ (2.132)

This leads to an approximation of the Coriolis forces as f = 2Ω sinϕ and the

Coriolis forces become:

Fr

M
≈ −iλfv + jϕfu = f

∣

∣

∣

∣

∣

∣

iλ jϕ kr

0 0 1
u v 0

∣

∣

∣

∣

∣

∣

= fkr × vh (2.133)

With the approximations used here, the Coriolis forces become very easy to calculate.

2.3.2.3 Gravitational and Centrifugal Forces

The force of gravity acts on all parcels of air in the atmosphere. The Earth itself

is not actually a sphere, it can be modeled more accurately as an oblate spheroid.

Calculating the actual gravitational attraction that a parcel of air experiences should

take the shape of the Earth into account. However, the Earth is usually modeled as
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a perfect sphere in order to simplify the calculations. With the Earth as a perfect

sphere, the acceleration due to gravity is:

ag =
Fg

M
= −kr g (2.134)

The constant g ≈ 9.81m s−2 is derived from Newton’s law of gravitation; the force

between two bodies is:

F = −r
GM1M2

‖r‖3 (2.135)

The variable G is the gravitational constant, G ≈ 6.6720× 10−11m3 kg−1 s−1 and M1

and M2 are the masses of the two bodies. For the force exerted on a parcel of air by

the Earth:

Fg

M
= −kr

GMe

R2
e

(2.136)

g =
GMe

R2
e

(2.137)

The Centrifugal force acting on a parcel of air is an apparent force. Its value as a

force per unit mass is:

−ar =
Fr

M
= −Ω× (Ω×Re) (2.138)

To evaluate this, first evaluate Ω×Re. Again, note that the angle between Re and Ω

is the angle ϕ of the position on the surface of the Earth corresponding to Re. This

cross product is:

Ω×Re = Ω

∣

∣

∣

∣

∣

∣

iλ jϕ kr

0 cosϕ sinϕ
0 0 Re

∣

∣

∣

∣

∣

∣

= iλReΩcosϕ (2.139)

Now the value of −ar becomes:

−Ω× (Ω×Re) = −Ω

∣

∣

∣

∣

∣

∣

iλ jϕ kr

0 cosϕ sinϕ
ReΩcosϕ 0 0

∣

∣

∣

∣

∣

∣

(2.140)

= −jϕReΩ
2 cosϕ sinϕ+ kr ReΩ

2 cos2 ϕ (2.141)

The vector in equation (2.141) is approximately vertical, or in the direction of

the kr vector. When the jϕ component of this vector is larger then the value of
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cosϕ will be small so the overall effect of this vector can be approximated as a

vertical force. Using this, the effects of the gravitational and centrifugal forces can

be combined into an effective gravitational force. Both act approximately along the

vertical direction. Together they can be approximated as variations in the constant g

based on the position of the parcel of air and variations in the centrifugal forces. The

geopotential is the vector Φ(z) = kr Φ(z), where the value of Φ(z) can be calculated

via equation (2.14) which is:

Φ(z) =

∫ z

0

g(s) ds (2.142)

For simplicity in the modeling, the value of g is taken to be a constant. With

the assumption that the value of g is a constant, the value of Φ = gz and ∇Φ =

kr
∂Φ

∂z
≈ kr g. With this, the value of the gravitational and centrifugal forces can be

approximated as:

Fg

M
= −kr g = −∇Φ (2.143)

Using these approximations, the gravitational and centrifugal forces are combined

into a single term which eases the calculation of the force.

2.3.2.4 Pressure Gradient Forces

These are the forces which cause parcels of air to move from regions of high

pressure to regions of low pressure. From Figure 2.3, the pressures on either side of

the cube can be approximated through the use of a Taylor series which is formed for

the center of the cube. The pressure on the left is pc −
∂p

∂x

∆x

2
and on the right the

pressure is −
(

pc +
∂p

∂x

∆x

2

)

where pc is the pressure at the center of the cube and

∆x is the width of the cube in the x-direction. Taking the sum of these pressures

(times the areas of the corresponding sides of the cube) and dividing by the mass of

the parcel of air gives:

Fp

M
=

(

pc − ∂p
∂x

∆x
2

)

∆y∆z −
(

pc +
∂p
∂x

∆x
2

)

∆y∆z

ρ∆x∆y∆z
≈ −1

ρ

∂p

∂x
(2.144)

This can be generalized into three dimensions in Cartesian coordinates and then

spherical coordinates as:

Fp

M
= −1

ρ
∇p (2.145)
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∆x
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Figure 2.3. The pressure gradient forces within a cube of air. This shows the
pressure gradient forces acting on two sides of a cube of air.

= −1

ρ

(

iλ
1

Re cosϕ

∂p

∂λ
+ jϕ

1

Re

∂p

∂ϕ
+ kr

∂p

∂z

)

(2.146)

2.3.2.5 Viscous Forces and Turbulence

The viscous forces in a parcel of air are the forces caused by the air’s resistance to

changes in motion. These forces arise from the collisions of air molecules with other

molecules in the air and with stationary surfaces. When a collision is between two

molecules of a gas, the molecules generally do not lose energy because the chemical

bonds in the molecules do not break, the molecules simply rebound with the same

total kinetic energy. However, when a molecule of a gas collides with a stationary

surface, that molecule may lose energy. This is one reason why the wind speed of the

atmosphere is reduced to zero at the surface of the Earth.

The dynamic viscosity of air is represented by the variable η. The viscous force

vector per unit mass of air is [5]:

Fv

M
=

η

ρ
∇2v (2.147)

The viscous forces in the atmosphere are usually quite small except near the surface

of the Earth.

Turbulence is caused by wind shear or a shearing stress caused by differences

in the velocities of nearby parcels of air. For instance, when a wind encounters a
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solid object, some of the momentum and energy of the wind is lost through collisions

between the molecules of air and the object. This means that on the downwind side

of the object, the air molecules which have collided with the object will have a lower

velocity, but other air molecules which have not been in collisions will remain at their

full velocity. The shear stress caused by these differences in velocity will result in

eddies or rotating motions in the air downwind of the object. These types of effects

can also be caused by buoyancy. For instance, if a surface is heated, the air near it

will tend to rise while other air above it will tend to fall. Again, the differences in

velocities of the many parcels of air will give rise to eddies. These rotating motions

are turbulence in the atmosphere.

When a model has cells with sides of a few millimeters or less, then the model will

be able to identify these turbulent motions without any special treatment. However,

for atmospheric circulation models, the size of the side of a cell is several kilometers.

For these models, the effects of turbulence must be handled as “subgrid” effects or

via parameterization. This is accomplished by making use of a tensor Km to describe

the effects of the turbulence. The turbulence force per unit mass of a parcel of air

is [5]:

Ft

M
= −1

ρ
(∇ · ρKm∇)v (2.148)

In this way, the effects of turbulence due to changes in the motion of the air which

occurs at a much finer resolution than what is used for most atmospheric circulation

models, can be included in a model.

2.3.3 Complete Momentum Equation

The complete momentum equation with both viscous forces and turbulence ig-

nored and f the factor for Coriolis forces is:

dv

dt
= −fkr × v −∇Φ− 1

ρ
∇p+

η

ρ
∇2v +

1

ρ
(∇ · ρKm∇)v (2.149)

The forces from viscosity are usually very small for models with an atmospheric

resolution. Because of that, the viscosity term is usually dropped from this equation

for atmospheric models:

dv

dt
= −fkr × v −∇Φ− 1

ρ
∇p+

1

ρ
(∇ · ρKm∇)v (2.150)
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These are the equations are used for the calculations for wind velocity in an atmo-

spheric circulation model. However, the altitude coordinate will be changed in order

to simplify the equations to some extent.

2.4 Vertical Coordinate Conversion

The use of altitude for the vertical coordinate has disadvantages when working

with models of the atmosphere [13]. The measurement of altitude which is the vertical

coordinate of a spherical coordinate system is just the measure of the altitude from the

center of the Earth or alternatively the measurement of the altitude above (or below)

some arbitrary altitude such as mean sea level. The disadvantage of using an altitude

coordinate measured in this way is that a surface of constant altitude may intersect

the surface of the Earth. To overcome this disadvantage, the altitude coordinate will

be converted to an intermediate coordinate system based on the air pressure at that

altitude, and then to the sigma-pressure coordinate system which is based on the

ratio of the pressure at an altitude to the pressure at the surface of the Earth just

below that point in the atmosphere. Converting to the final sigma-pressure coordinate

means that the vertical coordinate varies from a constant zero at the highest altitude

of the model to a constant 1 at the surface of the Earth. When the sigma-pressure

coordinate is used as the vertical coordinate, a surface with a constant sigma-pressure

value will not intersect the surface of the Earth, because the sigma-pressure coordinate

at the surface of the Earth is a constant 1 irregardless of the altitude of the surface at

that point. When either of the intermediate pressure-altitude or the sigma-pressure

coordinates is used, the actual altitude of the highest portion of the atmosphere

included in the model becomes variable. The top of the atmosphere in the model

becomes the altitude at which the air pressure reaches the minimum value specified

for the model. The actual altitude at which that occurs may vary based on how the

air pressure varies for different regions in the model. Also, the use of either of these

two pressure related coordinates requires using the hydrostatic assumption so that

the air pressure is a monotone strictly decreasing function of the altitude.
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2.4.1 Pressure or Isobaric Coordinate

The pressure coordinate is an alternative way to define the coordinate positions of

the tops and bottoms of layers of the atmosphere. The pressure coordinate is simply

the air pressure at that point in the atmosphere. Using this vertical coordinate system

requires making use of the hydrostatic assumption, that is, the valueof the air pressure

must be a (strictly) monotone decreasing function. This vertical coordinate system

is only used as an intermediate coordinate system to aid in the conversion to the

final sigma-pressure coordinate system. Using this coordinate system, the boundary

of a layer of the atmosphere is a surface with constant pressure. Figure 2.4 is an

illustration of how this coordinate differs from the z altitude coordinate. Note that a

surface of constant pressure can still intersect the surface of the Earth.

2.4.1.1 Gradient for Pressure Coordinate

Figure 2.5 can be used to calculate a gradient using the pressure coordinate.

The dashed lines show surfaces of constant pressure which vary in terms of altitude.

The value of some attribute of the atmosphere ξ which could be any of density,

temperature, or some other variable, varies with distance in the x direction as:

ξ3 − ξ1
x2 − x1

=
ξ2 − ξ1
x2 − x1

+
ξ3 − ξ2
x2 − x1

=
ξ2 − ξ1
x2 − x1

+

(

p2 − p1
x2 − x1

)(

ξ2 − ξ3
p1 − p2

)

(2.151)
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Figure 2.4. The pressure coordinate system. This shows how the pressure coordinate
is used as a vertical coordinate. Note that the pressure is not a constant value at the
surface of the Earth. Also, the altitude of the top of the model atmosphere may vary
with the pressure.
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Figure 2.5. Pressure coordinate surfaces of constant pressure. The value of ξ is
an attribute of the atmosphere such as density, temperature, or other measurements.
The dashed lines p1 and p2 represent surfaces of constant pressure.

Taking the limit as both x2−x1 → 0 and p2−p1 → 0 changes the individual rational

expressions in equation (2.151) to differentials. Each of the resulting differentials has

had a particular variable held to a constant value. The differentials, with subscripts

indicating which variable has been held constant, are:

(

∂ξ

∂x

)

z

=
ξ3 − ξ1
x2 − x1

(

∂ξ

∂x

)

p

=
ξ2 − ξ1
x2 − x1

(2.152)

(

∂p

∂x

)

z

=
p2 − p1
x2 − x1

(

∂ξ

∂p

)

x

=
ξ2 − ξ3
p1 − p2

(2.153)

Putting these differentials into equation (2.151) gives the value of a differential with

respect to the x coordinate. This can be expanded in three dimensions as the gradient

over a surface of constant pressure altitude, which is an expression involving the

gradient over a surface of constant pressure:

(

∂ξ

∂x

)

z

=

(

∂ξ

∂x

)

p

+

(

∂p

∂x

)

z

(

∂ξ

∂p

)

x

(2.154)

(

∂

∂x

)

z

=

(

∂

∂x

)

p

+

(

∂p

∂x

)

z

(

∂

∂p

)

x

As a generalized operator (2.155)

∇z = ∇p +∇z(p)
∂

∂p
Expanded to three dimensions (2.156)

In equation (2.156), these notations for gradients on a surface of constant altitude

and gradients on a surface of constant pressure have been used:
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∇z = i
∂

∂x
+ j

∂

∂y
Horizontal gradient (2.157)

∇p = i

(

∂

∂x

)

p

+ j

(

∂

∂y

)

p

Horizontal gradient for pressure coordinate (2.158)

Equation (2.156) can be used to find the partial derivatives of a variable along a

surface of constant pressure. The operator in equation (2.155) can be used to take

derivatives with respect to time as well:

(

∂

∂t

)

z

=

(

∂

∂t

)

p

+

(

∂p

∂t

)

z

(

∂

∂p

)

t

(2.159)

Also, from the approximation of geopotential, which is Φ = gz from equation (2.14)

with g held constant, the gradient of geopotential along a surface of constant altitude

is zero. The partial derivative
∂p

∂z
= −ρg. With these, the gradient of air pressure

along a surface of constant altitude is:

∇zp = − ∂p

∂Φ
∇pΦ = − ∂p

∂Φ
∇pΦ = ρ∇pΦ (2.160)

2.4.1.2 Continuity for the Pressure Coordinate

Using the equation for the continuity or conservation of air (2.11), taking the

partial derivative along a surface of constant Cartesian altitude z and using vh =

ui+ vj gives:

(

∂ρ

∂t

)

z

= −ρ

(

∇z · vh +
∂w

∂z

)

− (vh · ∇z)ρ− w
∂ρ

∂z
(2.161)

To simplify this expression, evaluate ∇z · vh:

∇z · vh = ∇p · vh +∇z(p) ·
∂vh

∂p
(2.162)

Substituting equation (2.162) into equation (2.161) and then using the hydrostatic

assumption from equation (2.13), for the continuity of air at a constant Cartesian

altitude, equation (2.161) can be simplified to:

(

∂ρ

∂t

)

z

= −ρ

(

∇p · vh +∇z(p) ·
∂vh

∂p
+

∂w

∂z

)

− (vh · ∇z)ρ− w
∂ρ

∂z
(2.163)

= −ρ

(

∇p · vh +∇z(p) ·
∂vh

∂p

)

− (vh · ∇z)ρ− ρ
∂w

∂z
− w

∂ρ

∂z
(2.164)
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= −ρ

(

∇p · vh +∇z(p) ·
∂vh

∂p

)

− (vh · ∇z)ρ−
∂

∂z
(ρw) (2.165)

= −ρ

(

∇p · vh +∇z(p) ·
∂vh

∂p

)

− (vh · ∇z)ρ+ gρ
∂

∂p
(ρw) (2.166)

The vertical scalar velocity for the pressure coordinate wp is the rate of change of

the pressure per second and is measured in hPa per second. It is the total derivative

of p with respect to time. The total derivative can be simplified by making use of the

hydrostatic assumption, equation (2.13):

wp =
dp

dt
=

(

∂p

∂t

)

z

+ (v · ∇)p Total/material derivative (2.167)

=

(

∂p

∂t

)

z

+ (vh · ∇z)p+ w
∂p

∂z
Horizontal/vertical split (2.168)

= −gρ

(

∂z

∂t

)

z

+ (vh · ∇z)p− gρw Using a hydrostatic model (2.169)

To find the continuity/conservation equation for air in the pressure-altitude coordi-

nates, take the partial derivative of wp with respect to the altitude coordinate z:

∂wp

∂z
= −g

(

∂ρ

∂t

)

z

+∇z(p) ·
∂vh

∂z
+ (vh · ∇z)

∂p

∂z
− g

∂

∂z
(ρw) (2.170)

Then substitute for the hydrostatic assumption which is dp = −ρg dz or equa-

tion (2.13):

−gρ
∂wp

∂p
= −g

(

∂ρ

∂t

)

z

− gρ∇z(p) ·
∂vh

∂p
− (vh · ∇z)(gρ) + g2ρ

∂

∂p
(ρw) (2.171)

ρ
∂wp

∂p
=

(

∂ρ

∂t

)

z

+ ρ∇z(p) ·
∂vh

∂p
+ (vh · ∇z)ρ− gρ

∂

∂p
(ρw) (2.172)

Substituting equation (2.166) into the last equation gives:

ρ
∂wp

∂p
= −ρ

(

∇p · vh +∇z(p) ·
∂vh

∂p

)

Substituting

− (vh · ∇z)ρ+ gρ
∂

∂p
(ρw)

+ ρ∇z(p) ·
∂vh

∂p
+ (vh · ∇z)ρ− gρ

∂

∂p
(ρw) (2.173)

= −ρ (∇p · vh) Simplifying (2.174)

∂wp

∂p
= − (∇p · vh) (2.175)

This is the continuity/conservation equation for air in pressure-altitude coordinates.
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2.4.1.3 Total Derivative for the Pressure Coordinate

The total derivative operator for Cartesian coordinates is:

d

dt
=

(

∂

∂t

)

z

+ (vh · ∇z) + w
∂

∂z
(2.176)

Substituting for

(

∂

∂t

)

z

using (2.159) and then using (2.156) for the horizontal gra-

dient ∇z results in:

d

dt
=

(

∂

∂t

)

p

+

(

∂p

∂t

)

z

(

∂

∂p

)

t

+ vh ·
(

∇p +∇z(p)
∂

∂p

)

+ w
∂

∂z
(2.177)

=

(

∂

∂t

)

p

+

(

∂p

∂t

)

z

(

∂

∂p

)

t

+ (vh · ∇p) +
[

vh · ∇z(p)
] ∂

∂p
+ w

∂

∂z
(2.178)

=

(

∂

∂t

)

p

+

(

∂p

∂t

)

z

(

∂

∂p

)

t

+ (vh · ∇p) +
[

vh · ∇z(p)
] ∂

∂p
− gρw

∂

∂p
(2.179)

From (2.168), the vertical velocity w can be written in terms of the vertical velocity

in pressure coordinates as:

w =

(

∂p
∂t

)

z
+ (vh · ∇p)− wp

gρ
(2.180)

Combining these last two gives the total differential in pressure-altitude coordinates

as:

d

dt
=

(

∂

∂t

)

p

+ (vh · ∇p) + wp
∂

∂p
(2.181)

2.4.2 Sigma Pressure Coordinate

To ease calculations, a new variable, σ, will be used in place of both the altitude

and the pressure vertical coordinate systems. To make conversion to the σ coordinate

easier, the equations are first converted to the pressure coordinate and then to the

σ coordinate. The σ coordinate is defined as the ratio between the total pressure

difference from top to bottom of the modeled portion of the atmosphere and the

difference between the pressure at the top of the modeled portion of the atmosphere

and the pressure at the altitude in question:

σ =
p− ptop

psurf − ptop
=

p− ptop
π

(2.182)
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p = ptop + πσ An alternate definition (2.183)

Note that the variable π is π = psurf − ptop or the difference between the surface

pressure and the constant top pressure for the model. The value of π will vary from

point to point in the model while the value of ptop is a constant for the model even

when the actual altitude of the top of the model may vary. The sigma pressure

coordinate is an alternative way to define the location of the tops and bottoms of

layers in a model. The σ coordinate can be any value between 0 and 1. The value

of 1 will occur at the surface of the Earth. The value of σ is zero at the top of the

model, but the actual vertical altitude of the top of the model may vary with time.

Note that the top of the model is defined by the constant pressure value to be found

at the top of the model. That is, a model of the atmosphere is defined as a model

of the atmosphere up to the altitude where the air pressure takes on a preassigned

minimum value for that particular model. The actual top of the atmosphere modeled

may vary in altitude as the pressure in a region of the model varies. Surfaces of a

constant σ value do not intersect the ground surface, see Figure 2.6. This makes

the sigma-pressure coordinate more useful than other vertical coordinate systems for

modeling atmospheric interactions.

∆σ
1

σ
5
 = 1

σ
4

σ
3

σ
2

σ
1

σ
0
 = 0

Figure 2.6. The sigma pressure coordinate system. This shows how the sigma
pressure coordinate is used as a vertical coordinate. Note that the sigma pressure
coordinate is a constant 1.0 at the surface of the Earth. The sigma pressure coordinate
is zero at the top of the model which may vary in actual altitude.
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2.4.2.1 Gradient for Sigma Pressure Coordinate

To calculate a gradient using the sigma pressure coordinate, use Figure 2.7. The

value of some variable ξ varies with distance in the x direction as:

ξ3 − ξ1
x2 − x1

=
ξ2 − ξ1
x2 − x1

+
ξ3 − ξ2
x2 − x1

=
ξ2 − ξ1
x2 − x1

+

(

σ2 − σ1

x2 − x1

)(

ξ2 − ξ3
σ1 − σ2

)

(2.184)

Allowing x2 − x1 → 0 and σ2 − σ1 → 0 allows this equation to be approximated

with differentials in the same say that this was done for the pressure coordinate. The

differentials are:
(

∂ξ

∂x

)

p

=
ξ3 − ξ1
x2 − x1

(

∂ξ

∂x

)

σ

=
ξ2 − ξ1
x2 − x1

(2.185)

(

∂σ

∂x

)

p

=
σ2 − σ1

x2 − x1

(

∂ξ

∂σ

)

x

=
ξ2 − ξ3
σ1 − σ2

(2.186)

Now the expression for the differential becomes:
(

∂ξ

∂x

)

p

=

(

∂ξ

∂x

)

σ

+

(

∂σ

∂x

)

p

(

∂ξ

∂σ

)

x

(2.187)

∇p = ∇σ +∇p(σ)
∂

∂σ
As an operator (2.188)

The value of ∇p(σ) along a surface of constant pressure can be calculated using

equation (2.182). Also, the gradient of pressure on a surface of constant pressure is

z

x

p
1

p
2

x
1

x
2

σ
1

σ
2

ξ
1

ξ
3

ξ
2

Figure 2.7. Sigma coordinate surfaces of constant measure. The value of ξ is
an attribute of the atmosphere such as density, temperature, or other values. The
horizontal lines represent surfaces of constant pressure. The dashed lines σ1 and σ2

represent surfaces of constant σ values.
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zero or ∇p(p) = ∇p(ptop) = 0, and the gradients of the difference between the surface

pressure and the top pressure, π, are the same irregardless of which of the altitude

coordinates is being used; ∇z(π) = ∇p(π) = ∇σ(π):

∇p(σ) = ∇p

(

p− ptop
π

)

(2.189)

= (p− ptop)∇p

(

1

π

)

+
1

π
∇p(p− ptop) Gradient of a product (2.190)

= (p− ptop)∇p

(

1

π

)

Removing zero terms (2.191)

= (p− ptop)

(

− 1

π2

)

∇p(π) Expanding the function composition

(2.192)

= −σ

π
∇p(π) (2.193)

= −σ

π
∇σ(π) (2.194)

Substituting this into equation (2.184) gives the equation for gradient conversion from

pressure-altitude to sigma-pressure coordinates:

∇p = ∇σ −
σ

π
∇σ(π)

∂

∂σ
(2.195)

2.4.2.2 Continuity for the Sigma Pressure Coordinate

The continuity/conservation equation for air in the pressure coordinate system

along with the hydrostatic equation and the total derivative of the sigma-pressure

coordinate are used to generate the continuity/conservation equation for air in the

sigma-pressure coordinate. Substituting the partial derivative of air pressure with

respect to σ,
∂p

∂σ
= π, which is the difference between the surface pressure and the

constant top pressure, and the gradient conversion to sigma-pressure (2.195) into the

continuity equation for air in the pressure coordinate (2.175) gives:

∂wp

∂p
+∇σ · vh −

σ

π
∇σ(π)

∂vh

∂σ
= 0 Using gradient conversion (2.196)

1

π

∂wp

∂σ
+∇σ · vh −

σ

π
∇σ(π)

∂vh

∂σ
= 0 Using

∂p

∂σ
= π (2.197)

Now an expression is needed for
∂wp

∂σ
. The vertical scalar velocity in the sigma-
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pressure coordinate is σ̇ =
dσ

dt
. Substituting p = ptop +πσ into the equation wp =

dp

dt
gives:

wp =
dp

dt
= σ

dπ

dt
+ π

dσ

dt
= σ

dπ

dt
+ πσ̇ (2.198)

The total derivative operator with respect to σ can be generated in a similar manner

to that for pressure in the pressure-coordinate system and is:

d

dt
=

(

∂

∂t

)

σ

+ vh · ∇σ + σ̇
∂

∂t
(2.199)

Now the total derivative of π can be calculated and substituted into (2.198) for:

wp = σ

[(

∂π

∂t

)

σ

+ vh · ∇σ(π) + σ̇
∂π

∂σ

]

+ σ̇π (2.200)

= σ

[(

∂π

∂t

)

σ

+ vh · ∇σ(π)

]

+ σ̇π (2.201)

Then the partial derivative of this last equation with respect to σ is:

∂wp

∂σ
=

(

∂π

∂t

)

σ

+ vh · ∇σ(π) + σ∇σ(π) ·
∂vh

∂σ
+ π

∂σ̇

∂σ
(2.202)

Substituting this value into (2.197) gives:

(

∂π

∂t

)

σ

+∇σ · (vhπ) + π
∂σ̇

∂σ
= 0 (2.203)

This is the equation for continuity or conservation in the sigma-pressure coordinate

system.

2.4.3 Surface Air Pressure

One of the first calculations in a time step of a model is to calculate the surface air

pressure for a vertical column of the atmosphere. What is actually calculated is the

value of π = psurf − ptop with ptop being a constant value specific to the model. This

surface pressure is needed in many other calculations in each time step of a model.

To calculate the surface air pressure, take the integral of equation (2.203) over all

of the layers of σ. Note that for the rightmost integral, the values of σ̇ are zero at

both the top and the bottom of the layers. This is because the vertical velocity is

zero at the surface. While the vertical velocity will not be exactly zero at the top of
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the model where σ = 0, it will be approximated as zero at the boundary at the top

of the model:
∫ 1

0

(

∂π

∂t

)

σ

dσ = −∇σ ·
∫ 1

0

(vhπ) dσ − π

∫ 1

0

dσ̇ (2.204)

= −∇σ ·
∫ 1

0

(vhπ) dσ (2.205)

(

∂π

∂t

)

σ

= −
∫ 1

0

∇σ · (vhπ) dσ (2.206)

Expanding the value of ∇σ · (vhπ) using (2.89) and multiplying by R2
e cosϕ gives this

equation, which can be used to calculate the surface air pressure π:

R2
e cosϕ

(

∂π

∂t

)

σ

= −
∫ 1

0

[

∂

∂λ
(Reuπ) +

∂

∂ϕ
(Revπ cosϕ)

]

σ

dσ (2.207)

2.4.4 Vertical Wind Velocity

To calculate the vertical wind velocity at any σ level, take the integral of (2.203)

from the top of the model where σ = 0 to the σ value for the layer in question. This

gives:

π

∫ σ

0

dσ̇ = −∇σ ·
∫ σ

0

(vhπ) dσ −
∫ σ

0

(

∂π

∂t

)

σ

dσ (2.208)

σ̇π = −∇σ ·
∫ σ

0

(vhπ) dσ − σ

(

∂π

∂t

)

σ

(2.209)

This last equation can be used to calculate the vertical wind velocity σ̇ at any σ-level

of the model. Note that this equation requires the value of π, which can be calculated

once the surface pressure has been calculated. The value of
∂π

∂t
will be calculated

through the use of (2.207) prior to using this equation. Again, expanding the value

of ∇σ · (vhπ) using (2.89) and multiplying by R2
e cosϕ gives the next equation, which

can be used to calculate the vertical wind velocity at any σ-level of the model:

R2
eσ̇π cosϕ = −

∫ σ

0

[

∂

∂λ
(Reuπ) +

∂

∂ϕ
(Revπ cosϕ)

]

dσ − R2
eσ cosϕ

(

∂π

∂t

)

σ

(2.210)

2.4.5 Thermodynamic Equation

Changing equation (2.47) to make use of a total derivative and then changing that

total derivative to a total derivative in sigma-pressure coordinates gives:

dθv
dt

=
θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv (2.211)
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(

∂θv
∂t

)

σ

+ (vh · ∇σ)θv + σ̇
∂θv
∂σ

=
θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv (2.212)

Multiplying equation (2.212) by π, multiplying equation (2.203) by θv, and adding

the results yields the flux form of the thermodynamic equation:

π

[(

∂θv
∂t

)

σ

+ (vh · ∇σ)θv + σ̇
∂θv
∂σ

]

+ θv

[(

∂π

∂t

)

σ

+∇σ · (vhπ) + π
∂σ̇

∂σ

]

= π

[

θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv

]

(2.213)

π

(

∂θv
∂t

)

σ

+ θv

(

∂π

∂t

)

σ

+ π(vh · ∇σ)θv + θv∇σ · (vhπ) + πσ̇
∂θv
∂σ

+ θvπ
∂σ̇

∂σ

= π

[

θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv

]

(2.214)

(

∂

∂t
(πθv)

)

σ

+∇σ · (vhπθv) + π
∂

∂σ
(σ̇θv)

= π

[

θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv

]

(2.215)

Converting the gradient to spherical coordinates via (2.88) and multiplying by

R2
e cosϕ gives the flux form of the thermodynamic energy equation in spherical-sigma-

pressure coordinates:

R2
e cosϕ

[

∂

∂t
(πθv)

]

σ

+

[

∂

∂λ
(Reuπθv) +

∂

∂ϕ
(Revπθv cosϕ)

]

+R2
eπ cosϕ

∂

∂σ
(σ̇θv)

= πR2
e cosϕ

[

θv
cp,d

dQ

dt
+

1

ρ
(∇ · ρKh∇)θv

]

(2.216)

2.4.6 Horizontal Momentum

The equation for horizontal momentum can be found by applying the total deriva-

tive with respect to σ, equation (2.199), to equation (2.150) for the horizontal velocity.

That gives:
(

∂vh

∂t

)

σ

+ (vh · ∇σ)vh + σ̇
∂vh

∂σ
= −fkr × vh −

1

ρ
∇zp+

1

ρ
(∇ · ρKm∇)vh (2.217)

To get the value of ∇zp in terms of σ, make use of (2.160) and (2.194) to get:

1

ρ
∇zp = ∇pΦ = ∇σΦ− σ

π
∇σ(π)

∂Φ

∂σ
(2.218)

Substituting this into (2.217) gives:
(

∂vh

∂t

)

σ

+ (vh · ∇σ)vh + σ̇
∂vh

∂σ
= −fk× vh −∇σΦ +

σ

π
∇σ(π)

∂Φ

∂σ



43

+
1

ρ
(∇ · ρKm∇)vh (2.219)

To convert equation (2.219) to spherical coordinates, first find an expression for
∂Φ

∂σ
. Using the ideal gas law, p = ρRmTv, the relationship Rm = κcp,d, the relationship

between virtual temperature and potential virtual temperature Tv = θv

(

1000
p

)κ

= θvP

and the derivative
∂p

∂σ
= π where π = psurf − ptop. Using these gives

∂Φ

∂σ
as:

∂Φ

∂σ
= g

∂z

∂σ
= −1

ρ

∂p

∂σ
= −π

ρ
(2.220)

= −πRmTv

p
= −

πκcp,dθv

(

1000
p

)κ

p
= −πcp,dθv

∂P

∂p
(2.221)

Substituting this into equation (2.219) changes the horizontal momentum equation

to:

(

∂vh

∂t

)

σ

+ (vh · ∇σ)vh + σ̇
∂vh

∂σ

= −fk× vh −∇σΦ− σcp,dθv
∂P

∂p
∇σ(π) +

1

ρ
(∇ · ρKm∇)vh (2.222)

Converting equation (2.222) fully to spherical coordinates gives these equations

for the horizontal momentum:

R2
e cosϕ

[

∂

∂t
(πu)

]

σ

+

[

∂

∂λ
(πu2Re) +

∂

∂ϕ
(πuvRe cosϕ)

]

σ

+ πR2
e cosϕ

∂

∂σ
(σ̇u)

= πuvRe sinϕ+ πfvR2
e cosϕ− Re

(

π
∂Φ

∂λ
+ σcp,dθv

∂P

∂σ

∂π

∂λ

)

σ

+R2
e cosϕ

π

ρ
(∇ · ρKm∇)u (2.223)

R2
e cosϕ

[

∂

∂t
(πv)

]

σ

+

[

∂

∂λ
(πuvRe) +

∂

∂ϕ
(πv2Re cosϕ)

]

σ

+ πR2
e cosϕ

∂

∂σ
(σ̇v)

= −πu2Re sinϕ− πfuR2
e cosϕ−Re

(

π
∂Φ

∂ϕ
+ σcp,dθv

∂P

∂σ

∂π

∂ϕ

)

σ

+R2
e cosϕ

π

ρ
(∇ · ρKm∇)v (2.224)

2.5 Final Equations

For each time step of a model, the variables for the model should be solved

for in a specific order [5]. First, the surface air pressure should be found for each
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vertical column in the model. Second, the vertical wind velocity should be found

for each cell in the model. The next step should be to solve for specific humidity

and moist air mixing ratios, those equations are not detailed in this thesis. The

potential virtual temperature is the next variable to be solved for each cell in the

model. The geopotential is the next variable to be solved for. Finally, the horizontal

wind velocities are found for each cell.

Equation (2.207) is used to calculate the surface air pressure:

R2
e cosϕ

(

∂π

∂t

)

σ

= −
∫ 1

0

[

∂

∂λe
(uπRe) +

∂

∂ϕ
(vπRe cosϕ)

]

σ

dσ (2.225)

Solving this integral equation numerically for the variable π requires the prior time-

step’s horizontal velocities.

Equation (2.210) can be used to calculate the vertical wind velocity:

σ̇πR2
e cosϕ = −

∫ σ

0

[

∂

∂λ
(uπRe) +

∂

∂ϕ
(vπRe cosϕ)

]

σ

dσ − σR2
e cosϕ

(

∂π

∂t

)

σ

(2.226)

The solution of this integral equation for the vertical wind velocity σ̇ requires the

prior time step’s horizontal wind velocities and then the prior and current surface

pressure values.

The thermodynamic energy equation is given in equation (2.216):

R2
e cosϕ

[

∂

∂t
(πθv)

]

σ

+

[

∂

∂λ
(uπθvRe) +

∂

∂ϕ
(vπθvRe cosϕ)

]

+ πR2
e cosϕ

∂

∂σ
(σ̇θv)

= πR2
e cosϕ

[

∇ · ρKh∇)θv
ρ

+
θv

cp,dTv

N
∑

n=1

dQn

dt

]

(2.227)

This equation depends on the eddy turbulence definition for the model, which is the

Kh tensor, as well as the various energy inputs given by the Qn values. It needs the

current time-step’s surface pressure values and the prior time-step’s potential virtual

temperatures and horizontal wind speeds in order to get solutions for this time-steps

potential virtual temperatures.

The hydrostatic equation as used for numerical solutions is derived from relation-

ships for the geopotential, potential virtual temperature with P =

(

1000

p

)κ

, and

equation (2.13):

dΦ = −cp,dθv dP (2.228)
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Equations (2.223) and (2.224) are used to calculate the horizontal momentum:

R2
e cosϕ

[

∂

∂t
(πu)

]

σ

+

[

∂

∂λ
(πu2Re) +

∂

∂ϕ
(πuvRe cosϕ)

]

σ

+ πR2
e cosϕ

∂

∂σ
(σ̇u)

= πuvRe sinϕ+ πfvR2
e cosϕ− Re

(

π
∂Φ
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+ σcp,dθv

∂P

∂σ

∂π

∂λ

)

σ

+R2
e cosϕ

π

ρ
(∇ · ρKm∇)u (2.229)

R2
e cosϕ

[
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(πv)

]

σ

+

[

∂

∂λ
(πuvRe) +

∂

∂ϕ
(πv2Re cosϕ)

]

σ

+ πR2
e cosϕ

∂

∂σ
(σ̇v)

= −πu2Re sinϕ− πfuR2
e cosϕ−Re

(

π
∂Φ

∂ϕ
+ σcp,dθv

∂P

∂σ

∂π

∂ϕ

)

σ

+R2
e cosϕ

π

ρ
(∇ · ρKm∇)v (2.230)

The exact usage of these equations depends on the grid being used and what scheme

is being used for the numerical solution.

2.6 Numerical Solutions

The equations used for atmospheric circulation are the equations given in sec-

tion 2.5. These equations do not have an analytical solution and so must be solved

numerically. At least three methods can be used to solve equations of this nature. The

first of the methods, finite differencing, is to approximate the values of the variables at

discrete points within the model, and then approximate the variation of the variables

via the earlier approximations. The second is spectral methods or making use of

Fourier series for the values of the variables in the model. Finally, finite element

methods can be used for the solution. However, these methods are not used for most

atmospheric circulation models [16].

2.6.1 Finite Difference Methods

These methods obtain values of the variables in the model at discrete points within

the model. For the simplest of these methods, the discrete points are spaced evenly

about the model. For the more advanced models in use today, the discrete points are

spaced unevenly based on the types of terrain or ocean surface at that point of the

model. For these advanced models, areas over the surfaces of oceans may have cells

with very large surface areas while areas over mountain ranges may have cells with
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much smaller surface areas. In this way, a more advanced model can evaluate the

variations involved with terrain which causes many of the variations in the climate in

great detail while spending much less computing time evaluating variables in areas

where the variables do not change quickly.

There are several ways to set where the variables are measured in a model. Most

of these methods of measurements or the grids related to them are named for Akio

Arakawa and were first presented by Arakawa and Lamb in 1977 [2]. For the Arakawa

A-Grid, each variable is measured at the center of a cell, or alternatively at the corners

or vertices of a cell. The remaining grid types have changes so that some variables

are measured at the center of a cell and others are measured at vertices or at the

sides of a cell.

The Arakawa C-Grid is the most successful of these grid types for rectangular cells.

See Figure 2.8 for a representation of this grid. The air pressure and temperature are

measured at the center of a cell while the horizontal wind velocities are measured at

the horizontal sides of a cell. While not easily represented in Figure 2.8, the vertical

wind velocities are measured on the top and bottom sides of a cell. This particular

grid is the most used grid type for models that make use of rectangular or nearly

rectangular cells. Other rectangular grid types have been used, the main differences

are the locations of the measurements of the many variables.

Models which make use of hexagonal or triangular grids make use of an alternative

means to measure the variables in the model. A hexagonal grid for the surface of the

Earth can be constructed by starting with an icosahedron and then subdividing each

triangular surface of the icosahedron into a triangular grid. This triangular grid is

then “expanded” so that it is a roughly triangular grid on the surface of the Earth.

The grid cells can be left as triangles or each set of 6 triangles can be joined to form a

hexagon. Note that for a hexagonal grid, there will be 12 pentagonal cells, one at each

vertex of the original icosahedron. There are hexagonal or triangular counterparts for

each of the rectangular Arakawa grids. The main issues with these grids is that there

are more instances of each value being measured in the model, or more places where

a variable must be measured [11]. Also, the main idea behind the Arakawa C-Grid,

that is, measuring some variables at the center of a cell and others at the sides of a
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Figure 2.8. The Arakawa C-Grid. The shaded area represents a rectangular cell in
the model with an approximation of the curvature of the Earth. The air pressure and
other variables are measured at the center of a cell. Wind velocities are measured at
the sides of a cell with the North/South wind velocity being measured at the upper
and lower sides of a cell and the East/West wind velocity measured at the left and
right sides of a cell. The vertical wind velocity is not measured at the center of a cell,
but at the top and bottom sides of a cell.

cell, must be changed for these types of grids. When wind velocities are measured at

the sides of the cells in a grid of this type, the measurement of the direction of the

wind at the side of a cell can be changed. Some measurement schemes measure the

perpendicular component of the wind at the side of the cell while others measure the

parallel component of the wind at that side of the cell.

Using finite difference methods, the values of the variables can be calculated by

approximating their values using Taylor’s series based on the PDEs for the model.

There are many ways to perform these calculations. Using a simple explicit Euler’s

method for the calculations, but without eddy diffusion terms [5], results in a solution

which is unconditionally unstable when used for any length of time. More complicated

implicit methods must be used to obtain solutions to these equations which are more
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stable. One of the complications with implicit methods for these solutions is that

when solving for vertical wind velocity, multiple vertical layers of the model must

be used at once, which results in a much larger amount of computer memory being

required for a numerical solution to be accomplished.

Finite differencing methods for a global model using a longitude/latitude grid all

need to deal with singularities at the North and South poles of the model. One

approach to this problem is to set the North/South wind velocities at the poles to

zero. In this way, the singularity can be avoided, but the wind velocities near the poles

may not be a good representation of the velocities for the physical Earth. Another

issue related to this singularity is that the width of a cell should be large enough, or

the time step should be small enough, so that a disturbance traveling at the speed of

sound cannot cross a cell within a single time step. This can mean that for cells near

the poles, the maximum time step must be smaller and smaller. From this, issues

related to the singularity at the poles can become a part of the model for cells near

the poles if the model’s horizontal resolution is small enough, or the time step is large

enough.

2.6.2 Spectral Methods

Spectral methods make use of Fourier expansions of the functions for the variables

in the model. The horizontal variation of variables in the model are expressed in terms

of orthogonal spherical harmonics. The use of spectral methods was not efficient

enough to be used until faster computers and improvements in computer algorithms.

Spectral methods were first adopted in the early 1970s for use in global circulation

models [11].

The main advantage of a spectral method is that while it still requires the solution

of a large set of linear equations to approximate the differences between time steps

for a variable in the model, the linear system is usually much smaller than for a finite

difference solution. However, the calculations required to set up the equations needed

for a spectral method may be much more complicated than those needed for a finite

difference method. This means that less computing time may needed for a numerical

solution using this method depending on how the solutions are accomplished.
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This type of model can still have a singularity at the North and South poles. How-

ever, work done by Stephen Orszag in 1974 showed ways to overcome this singularity

using specialized functions for the orthogonal spherical harmonics.



CHAPTER 3

OCEANIC CIRCULATION MODELS

Modeling oceanic circulation can be carried out in much the same manner as in

atmospheric circulation models. That is, the content of the oceans can be divided into

a three-dimensional set of cells of water, and the circulation of the water between those

cells can be modeled in much the same way as it is for the atmosphere. Differences

in the details of the models include the fact that, unlike air, salt water is essentially

in-compressible. Also, terrain features take a much more predominant role in the

models of oceanic circulation. This is because oceans do not cover the entire surface

of the Earth like the atmosphere does — there are regions which are above sea level

and so have no sea water present. The flow of ocean currents is very much affected

by the extent of the continents and the contours of the seabed.

Models of ocean circulation can be constructed using equations similar to the

ones used for atmospheric circulation. These models can be used to simulate oceanic

circulation and how that circulation responds to changes in the environment of the

Earth. Greatly simplified models can be created by modeling only the effects of

the primary currents in the oceans. These are the surface and deep water currents

that circulate heat and salinity about the oceans. These currents are called the

thermohaline circulation (THC) of the oceans, see Figure 3.1. They mix the heat and

salinity of the oceans on a global scale. The heat and salinity normally differ between

regions of the oceans because of a greater heat input as well as greater evaporation in

the equatorial regions. The ocean currents represented in Figure 3.1 are very stable

given the modern day climate.

The thermohaline circulation can be modeled at a high level as a series of “boxes”

of well-mixed sea water that are connected by currents, or flows of sea water from

box-to-box. These types of models are called box models. Box models can be used
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Figure 3.1. The simplified global thermohaline circulation of sea water. Red (light
gray) represents warmer surface currents and blue (darker gray) represents colder
deep currents.

to model theoretical effects of climate changes on the thermohaline circulation [14].

The earliest and simplest of these box models is the 2-box model developed by Henry

Stommel in 1961 [15]. It represents a simplified model of the circulation between

the tropical or equatorial Atlantic Ocean and the Northern Atlantic Ocean. More

complicated box models add additional boxes in an attempt to better understand

the relationships of the various currents to other factors such as temperature and

evaporation/precipitation. These models have been used to study what effect a past

or future change to the climate might have on the circulation of the oceans. For

instance, Lucarini and Stone [7] studied the effects of increased evaporation in the

equatorial Atlantic Ocean with increased precipitation in the Northern Atlantic and

how this might affect the strength of the circulation currents in the Atlantic Ocean,

which is seen today in the Gulf Stream and the corresponding deeper cold water

currents.

In a box model of ocean circulation, the direction and magnitude of the flow of

water between boxes is assumed to be driven by density differences between boxes.

One or more of the flows in the model are the key flows which drive the circulation

direction and strength for the entire model. The remaining flows have directions and
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strengths so that the amount of sea water in each box remains constant, that is, the

level of the sea water in each part of the ocean remains the same.

The key rates of flow of sea water between the the two boxes joined by the key

flows are driven by differences in the density of the salt water in those boxes. The

density of the salt water is affected by both the temperature and salinity of the water.

The density is not a linear function of the temperature and salinity (see Appendix

A for details on this), but it is approximately linear for the range of temperatures

and salinities encountered in these models. The density of the salt water is modeled

as the linear relationship to ease the numerical solutions to the differential equations

involved:

ρ = ρ0
(

1− α(T − T0) + β(S − S0)
)

(3.1)

The values of T0, S0, and ρ0 are reference temperature, salinity, and density measures.

The value of ρ0 is the density of the water when it has the reference temperature of

T0 and the reference salinity of S0. The values of α ≈ 1.5 × 10−4K−1 and β ≈
8.0 × 10−4 psu−1 are approximations which make the linear relationship best fit the

actual variation of density. Note that salinity is measured in “practical salinity units”

(psu) rather than a percent of composition by weight. Practical salinity units are

measured as a ratio of conductivities between the salt water and pure water, so a psu

is a dimensionless measure [6]. The average salinity of the Earth’s oceans is about

35 psu. This is similar to the percent of salt in sea water, which is about 3.5% by

weight of salt of all types, not just sodium chloride.

The parameters used in the box models for this thesis include the parameters

shown in Table 3.1. These are the parameters which were used by Lucarini and

Stone [7] to model changes in the flows of a 3-box model. In Table 3.1, the last

twelve entries do not include a corresponding box number, because the box numbers

for the various parts of the Atlantic change when the number of boxes in the model

are changed.

The temperature restoring coefficient or λ is used to calculate the rate of heating

or cooling for the salt water in a box. The difference between the target temperature

for a box (τi) and the current temperature of the sea water in the box is multiplied
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Table 3.1. Parameters for box models. These are the physical parameters used
by Lucarini and Stone [7] in their study of how changes in the climate affect
thermohaline circulation. Note that the last 12 parameters are four groups of three
similar parameters for the northern, equatorial, and southern boxes, respectively.
Because the box numbers change from model to model as used in this thesis, no box
numbers are included as subscripts for these entries.

Variable Meaning Value

V Ratio of equatorial box mass to high-latitude box 2

S0 Average salinity 35 psu

α Thermal expansion coefficient 1.5× 10−4K−1

β Haline expansion coefficient 8.0× 10−4 psu−1

λ Temperature restoring coefficient 25.8Wm−2K−1

F Total atmospheric freshwater flux, 0.41 Sv

Northern Atlantic

F Total atmospheric freshwater flux, -0.68 Sv

equatorial Atlantic

F Total atmospheric freshwater flux, 0.27 Sv

Southern Atlantic

τ Target temperature, Northern Atlantic 0◦C

τ Target temperature, equatorial Atlantic 30◦C

τ Target temperature, Southern Atlantic 0◦C

T Temperature, Northern Atlantic 2.9◦C

T Temperature, equatorial Atlantic 28.4◦C

T Temperature, Southern Atlantic 0.3◦C

S Salinity, Northern Atlantic 34.7 psu

S Salinity, equatorial Atlantic 35.6 psu

S Salinity, Southern Atlantic 34.1 psu

by a constant derived from the value of λ to determine the amount of heating or

cooling which occurs in a box over a time step. That constant is the product of this

λ and the surface area of the Earth multiplied by the fractional portion of the Earth

occupied by the Atlantic Ocean or ε = 1
6
, then divided by the total mass of water

in all boxes and finally divided by the specific heat per unit mass of water. This

calculation is performed for each box as each box has a unique target temperature

and unique current temperature. Note that the value of ε is a good approximation

for the surface area of the Atlantic Ocean but not for the surface area of the other
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oceans. Also, the variable λ used in the differential equations for each box model is

actually the product of the λ in this table with the other values as noted above.

The freshwater fluxes in Table 3.1 are the total amounts of the change of freshwater

water for a box, where the differential equations used for each model refer to a flux

per unit mass in a box. The conversion between total amounts of water for a box

and the change in salinity for a box is accomplished by multiplying the flux value

in the table by the total average density of the sea water for the entire model and

then dividing by the mass of water in that particular box. This product results in

a salinity change value for that box. This value is what is used in the differential

equations that describe each model.

3.1 Stommel 2-Box Model

The 2-box model was originally developed by Henry Stommel in 1961 [15]. The

model is an idealized view of the circulation of sea water in the Atlantic Ocean. The

ocean in this model is composed of a northern box and an equatorial box which is

presumably bounded to the South by a land mass. Figure 3.2 shows how the original

model works. There are two flows of sea water between the northern and equatorial

boxes. One flow is a surface flow and the other is a a deep flow. The deep flow is the

key flow and is driven by pressure differences in the densities of the sea water in the
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Figure 3.2. The original Stommel 2-box model. This is the original Stommel 2-box
model of thermohaline circulation.
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two boxes while the surface flow simply returns an equivalent volume of sea water to

the box from which the deep flow removes water.

The amounts of freshwater and salt are constant for the total system. The original

model as developed by Stommel has an amount of salt being added to the equatorial

region and an equivalent amount of salt being removed from the polar region. This

reflects the fact that water evaporates from the equatorial region of the ocean and then

precipitation without as much evaporation adds freshwater to the northern region.

These are modeled as salt being moved around the system in the original 2-box model.

Also, in the original model, the salinity of a box relaxes toward the average salinity

of the ocean bed for that box much in the same way that the temperature of a box

relaxes toward the average temperature of the seabed for that box.

The first difference between the original Stommel model and the model used here

is that the size of the two boxes of sea water are not the same. Like the 3-box model

used by Lucarini and Stone [7], this model will assume that each box of sea water

will have a unique size and that the ratio between the sizes of the equatorial box and

the northern box is V =
M2

M1
, where Mi is the mass of the salt water in the box i.

Taking the equatorial box as being the Atlantic Ocean between 30◦S and 30◦N and

the high-latitude box as being the Atlantic Ocean above 30◦N, the ratio V ≈ 2.

For the model used here, the freshwater or salinity changes for each box caused by

evaporation and precipitation will be modeled as changes in the freshwater content

of that box rather than as changes in the amount of salt as was done in the original

model as developed by Stommel, see Figure 3.3. This change is consistent with many

other later box models and appears to be more consistent with the fact that it is

freshwater which is moved about the system by evaporation and precipitation. The

amount of freshwater removed by evaporation in the equatorial box will be balanced

by the amount of freshwater added by precipitation in the high-latitude box. The

variable HS in Figure 3.2 represents salt addition or removal that will be replaced

with variables F1 and F2; one of which is positive and the other negative. These values

are derived from the values of the F s given in Table 3.1 by dividing the F value in

the table by the mass of sea water in the box receiving (or losing) the freshwater.

One complication with how the freshwater fluxes are handled in this model is that
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Figure 3.3. The modified 2-box model. This is the modified 2-box model of
thermohaline circulation as used in this thesis. Rather than salt content being moved
by evaporation/precipitation, an amount of freshwater is what is moved between
boxes.

the magnitude of the flows of sea water should be changed to reflect the fact that

the northern box would gain an amount of water over time due to precipitation and

that the flows into and out of this box should combine to give a net flow of sea water

from the northern box which reflects the increase of fresh water in that box. This is

not accounted for in the model since the amount of water involved in precipitation is

very small compared to the total amount of sea water in either box.

Because the evaporation and precipitation balance each other between the two

boxes, the average salinity of the entire system will be a constant in the model.

The salinity of each box will vary depending on the evaporation or precipitation and

circulation of water between the two boxes.

The temperatures of the sea water in each box will warm or cool toward a target

temperature for that box. The target temperatures for each box are τ1 = 30◦C for

the equatorial box and τ2 = 0◦C for the high-latitude box. These particular target

temperatures are in agreement with the model used by Lucarini and Stone [7]. The

target temperature of 0◦C may seem to be very cold, but sea water does not freeze

at this temperature and the temperature of the high-latitude box cannot actually

reach this temperature because of the warmer water flowing into that box from the

equatorial box. The equations for the temperatures of the sea water in each box will
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have a term which is proportional to the difference between the target temperature

and the current temperature of the water in that box. In this way, the temperature of

the sea water in a box will relax to the target temperature for that box in a manner

similar to Newton’s Law of Cooling.

Under current climatic conditions, the deep water flow will be from the high-

latitude box with a higher density and to the equatorial box with a lower density.

The surface flow will have the same magnitude but will be in the opposite direction.

The rate of the flow is proportional to the difference in the density of the water

in each box. Note that the equatorial box will have a higher salinity which raises

its density, but also a higher temperature which lowers its density. The current

conditions are referred to as a T-mode because density difference between the two

boxes is predominately the effect of the temperature differences. The condition of

the model would be referred to as S-mode when the density difference is dominated

by the difference in the salinities. Using q as the rate of flow, the value of q can be

expressed as:

q = k

(

ρ1 − ρ2
ρ0

)

= k
(

α(T1 − T2)− β(S1 − S2)
)

(3.2)

The value of k will be set so that the rate of the main surface current in this model is

flowing at the rate of about 15.5 Sv (Sverdrups or 1.0× 106m3s−1), which is the the

approximate rate of flow of the Gulf Stream in the Atlantic Ocean [12]. The constant

k is referred to as the hydraulic constant and represents the combined resistance to

the flow of sea water between the boxes.

3.1.1 Equations for Stommel’s 2-Box Model

This system, with the changes from the original Stommel 2-box model can be

modeled as a series of differential equations that take into account the movement of

sea water between boxes assuming immediate mixing within each box. The equations

for this model are:

dT1

dt
= λ(τ1 − T1) +

|q|
V

(T2 − T1) (3.3)

dT2

dt
= λ(τ2 − T2) + |q|(T1 − T2) (3.4)
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dS1

dt
= −F1 +

|q|
V

(S2 − S1) (3.5)

dS2

dt
= −F2 + |q|(S1 − S2) (3.6)

Note the use of absolute values in these equations, the mixing of the different types

of sea water is not affected by the direction of the flow, only the magnitude of the

flow. In these equations, the constant λ represents how quickly the temperature of

the water in a box relaxes to the target temperature. The value of λ used here is

based on the product of the value of λ given in Table 3.1 and one-sixth (ε) the surface

area of the Earth, then divided by the total mass of sea water in the model and finally

divided by the specific heat of water.

3.1.2 Equilibrium Points

For this model, the average salinity of the water in all boxes combined is a constant,

or V
dS1

dt
+
S2

dt
= 0. Manipulating the differential equations (3.5) and (3.6) shows that

this means that the freshwater flux for the first box is F1 = −F2

V
.

The flow state with the surface current flowing from the equatorial region to the

higher latitudes (as the Gulf Stream does today) is referred to as the northern sinking

state. If the flow changes direction, that would be referred to as the southern sinking

state. The equilibrium states of this system can be found by setting equations (3.4)

and (3.6) to zero as they would be when the system is at equilibrium, subtracting β

times equation (3.6) from α times equation (3.4), and then using equation (3.2) to

simplify:

0 = α
[

λ(τ2 − T2) + |q|(T1 − T2)
]

− β
[

− F2 + |q|(S1 − S2)
]

(3.7)

0 = αλ(τ2 − T2) + βF2 + α|q|(T1 − T2)− β|q|(S1 − S2) (3.8)

0 = αλ(τ2 − T2) + βF2 +
q|q|
k

(3.9)

q =

{

−
√

k(βF2 − αλ(T2 − τ2)) if q < 0
√

k(αλ(T2 − τ2)− βF2) if q ≥ 0
(3.10)

Using the assumption that the temperatures of the two boxes will come to an

equilibrium much more quickly than the salinities come to an equilibrium can be

used to simplify this system of equations. The simplified system of equations can be
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used to investigate the stability of the equilibrium solutions of the original system

of equations. The differential equations for temperature can be eliminated because

the two temperature variables would be nearly constant so their derivatives with

respect to time are zero. The difference between these two temperatures will also

be a constant of ∆T = T1 − T2 and this difference will usually be greater than zero

because of the target temperatures of the two boxes. Taking the difference of the

two differential equations for salinity and using ∆S = S1 − S2 results in a single

differential equation in ∆S:

d(∆S)

dt
= −V + 1

V
F2 +

V + 1

V
|q|∆S (3.11)

= −V + 1

V
F2 +

V + 1

V

∣

∣k
(

α∆T − β∆S
)
∣

∣∆S (3.12)

To make this differential equation dimensionless, first replace ∆S with ∆S =
α∆Ty

β
and the equation becomes:

α∆T

β

dy

dt
= −V + 1

V
F2 +

V + 1

V

∣

∣

∣

∣

k

(

α∆T − β
α∆Ty

β

)
∣

∣

∣

∣

α∆Ty

β
(3.13)

dy

dt
= −V + 1

V
F2 +

V + 1

V
kα|∆T | |1− y|y (3.14)

Then replace t with t =
V

kα|∆T |(V + 1)
x:

kα|∆T |(V + 1)

V

dy

dx
= −V + 1

V
F2 +

V + 1

V
kα|∆T | |1− y|y (3.15)

dy

dx
= − F2

kα|∆T | + |1− y|y (3.16)

Finally, letting σ be σ =
F2

kα|∆T | results in a dimensionless differential equation.

Note that σ > 0 because all components of this fraction are positive. In this model,

the value of F2 is the freshwater flux in the high-latitude box, which is positive as it

must counteract the evaporation that occurs in the equatorial box:

dy

dx
= −σ + |1− y|y (3.17)

The equilibrium states of this differential equation can be found by solving this

differential equation for y when
dy

dx
is zero. The equation has several different solutions

depending on the sign of 1− y:

|1− y| y = σ The equation to be solved (3.18)
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(1− y)y = σ If y < 1 (3.19)

y =
1

2
±

√
1− 4σ

2
(3.20)

(y − 1)y = σ If y ≥ 1 (3.21)

y =
1

2
+

√
1 + 4σ

2
Only the “+” works as y ≥ 1 (3.22)

y =

{

1
2
±

√
1−4σ
2

if y < 1
1
2
+

√
1+4σ
2

if y ≥ 1
(3.23)

To linearize this differential equation, let y = y∗ + u, where y∗ is a constant

equilibrium point so that |1 − y∗|y∗ = σ and u is a small perturbation from the

equilibrium point. Then find a first order approximation of the value of
du

dx
:

du

dx
=

∣

∣1− (y∗ + u)
∣

∣(y∗ + u) (3.24)

=

{

y∗ + u− (y∗)2 − 2y∗u− u2 if y∗ + u < 1
−y∗ − u+ (y∗)2 + 2y∗u+ u2 if y∗ + u ≥ 1

(3.25)

=

{

u− 2y∗u− u2 if y∗ + u < 1
−u+ 2y∗u+ u2 if y∗ + u ≥ 1

(3.26)

≈
{

u− 2y∗u if y∗ + u < 1
−u+ 2y∗u if y∗ + u ≥ 1

First order approximation in u (3.27)

=

{

u(1− 2y∗) if y∗ + u < 1
−u(1− 2y∗) if y∗ + u ≥ 1

(3.28)

Because y∗ is an equilibrium point, equation 3.23 can be used to get its value in terms

of σ. There are three ranges for y∗ which are [0, 1
2
], (1

2
, 1), and [1,∞). Each of these

ranges has a different value for y in terms of σ. Combining equations (3.23) and

(3.28) results in these differential equations for u.

du

dx
=



















u
[

1− 2
(

1
2
−

√
1−4σ
2

)]

if 0 ≤ y∗ ≤ 1
2

u
[

1− 2
(

1
2
+

√
1−4σ
2

)]

if 1
2
< y∗ < 1

−u
[

1− 2
(

1
2
+

√
1+4σ
2

)]

if y∗ ≥ 1

(3.29)

=







u
√
1− 4σ if 0 ≤ y∗ ≤ 1

2

−u
√
1− 4σ if 1

2
< y∗ < 1

u
√
1 + 4σ if y∗ ≥ 1

(3.30)

From this, the differential equation (3.17) will be stable for y ≤ 1
2
and y ≥ 1 and

unstable otherwise. See Figure 3.4 for a bifurcation diagram of this system. The
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Figure 3.4. The 2-box model’s bifurcation diagram. The lines represent stable
equilibriums, the dashed line is for unstable equilibriums.

stable branch toward the top of the graph with y∗ ≥ 1, or ∆S = S1 − S2 >
α∆T

β
with ∆T > 0, the salinity of the content of the two boxes drives the flow, or the

salinity term in equation (3.2) is greater than the temperature term. This is referred

to the S-mode [6], where the surface flow is toward the equator. The lower stable

branch with y∗ < 1
2
, or ∆S = S1 − S2 <

2α∆T

β
, is when the temperatures of the

boxes drive the flow. This is referred to as the T-mode, where the surface flow is away

from the equator, like today’s Gulf Stream current.

The analysis of the bifurcation diagram shows that according to this model, the

thermohaline circulation can become unstable and even come to a different stable

configuration which reverses the direction given major changes to the parameters

of this system. Also, there may be no hysteresis for this system; a change to the

parameters of the system which is subsequently reverted may not result in the system

returning to its original state. In the bifurcation diagram, the lower stable curve is

where the density difference is driven by the differences in temperatures rather than

the differences in salinity, or what is referred to as T-mode. The upper stable curve is

where the density difference is driven by the differences in salinities, what is referred
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to as S-mode. Today, the circulation in the Atlantic Ocean is in T-mode. From the

chart in Figure 3.4, if the value of σ =
F2

kα|∆T | is somehow gradually raised to where

it is greater than 1
4
, that is, so that F2 > 1

4
kα|∆T |, then the system would be in a

state such that it would tend to come to equilibrium on the upper stability curve

in the bifurcation diagram. This would mean a reversal of the surface currents in

the Atlantic Ocean so that the system would change to S-mode. If the value of the

freshwater input to the Northern Atlantic, or F2, were then gradually reduced back

to today’s value, the system would remain in S-mode rather than return to T-mode.

This type of change would reverse the direction of the surface and deep currents in the

Atlantic Ocean. It could alter the climate of Eastern North America and Northern

Europe by removing the warming effects of the Gulf Stream current in the Atlantic

Ocean.

3.1.3 Numerical Modeling

A GNU Octave (Matlab compatible) model of this system was used as a quick way

to to model changes in the freshwater flux, the values of F1 and F2. The model makes

use of a classical Runge-Kutta method to model the flows of sea water over 3000

years with a time step taken every year. Following the methods used in the article by

Lucarini and Stone [7]. Figure 3.5 shows a graph of this system of equations where

the freshwater flux is altered at different rates for the first 500 of 3000 years. The

flux in the high-latitude box increases in each of the first 500 years with the flux in

the equatorial box decreasing by a similar amount in those same 500 years according

to:

F2,current =

{

F2,original + t∆F if t ≤ 500 years (t in years)
F2,original + 500∆F if t > 500 years

(3.31)

Figure 3.6 shows this same increase over the first 500 years followed by 1000 years of

that increased flux, and then followed by 500 years of the flux reducing by the same

rate back to the original values. For this second graph, the flux in the high-latitude

box changes according to:

F2,current =















F2,original + t∆F if t ≤ 500 years (t in years)
F2,original + 500∆F if 500 < t ≤ 1500
F2,original + (2000− t)∆F if 1500 < t ≤ 2000
F2,original if t > 2000

(3.32)
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Figure 3.5. The THC strengths for changes to the freshwater flux. As the freshwater
flux increases in the high-latitudes, the equilibrium state for the system has a smaller
difference in temperatures. Each increment to ∆F adds 15% to the maximum
freshwater flux in the northern box. For a high enough change in the freshwater
flux, the system changes from T-mode to S-mode stability. Note that the curves
graphed here are in the same order as the legend in the upper right corner.

In this way, the values of the freshwater fluxes are gradually increased from the

initial equilibrium to the new values; then the system is allowed to settle into a new

equilibrium; and then the values are gradually returned their initial values.

The values for the temperature and salinity were taken from the 3-box model of

the Atlantic Ocean used by Lucarini and Stone [7], given in Table 3.1. However the

values for temperature and salinity were not at an equilibrium in this 2-box model.

The values for the initial temperatures and salinities were changed to:

T1 = 28.838◦C S1 = 35.613 psu (3.33)

T2 = 2.3268◦C S2 = 34.073 psu (3.34)
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Figure 3.6. The THC strengths for short-term changes to the freshwater flux. Each
increment to ∆F adds 15% to the maximum freshwater flux in the northern box.
The freshwater fluxes are raised leading up to year 500 and then lowered back to
the original values between years 1000 and 1500. For a high enough change in the
freshwater flux, the system changes to different equilibrium states showing the lack
of hysteresis in the system.

These values are similar to the physical properties of the Atlantic Ocean but not

exact; however, they do start this model very closely to an equilibrium point. Another

change from the values used by Lucarini and Stone is to the hydraulic constant k. In

order to keep the rate of flow in the surface current at approximately 15.5 Sv, which

is the approximate rate of flow in the surface current for today’s Atlantic Ocean [12],

the value of the hydraulic constant k was changed to 5.4120× 10−8 s−1. This choice

also makes the “overturning” rate of the model or the time needed to completely

replace all of the sea water in the high-latitude box with incoming flows about 213

years. This agrees well with the actual overturning rate which is closer to about 250

years. Because of the assumption in a box model of oceanic circulation that the boxes
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are well mixed, no prediction from a model which takes a much smaller amount of

time than this overturning rate should be assumed to be reliable.

The graph in Figure 3.5 shows that for smaller increases in the freshwater flux,

the system comes to an equilibrium which is still in T-mode, although with differing

temperatures and salinities from the original equilibrium. The differences in the

freshwater flux are such that when ∆F = 0.0003 the change in the freshwater flux

in the high-latitude box increases by a factor of 1.15, or an increase of 15%. The

higher freshwater fluxes drive the system into a state where the differences in salinity

drive the flows rather than the differences in temperature. This represents a change

from T-mode to S-mode and includes a reversal of the direction of the surface flow

in the Atlantic Ocean. Note that the third line from the top, where ∆F = 0.0006, is

actually coming to an equilibrium in S-mode with the flow directions reversed, but it

needs close to 6000 years of model time to come close to its equilibrium rather than

the 3000 years graphed here.

To demonstrate the lack of hysteresis in this system, Figure 3.6 is of the flows

in the system when the freshwater flux in the high-latitude box is increased for 500

years, held steady at the higher rate for 1000 years, and then decreased back to the

original value over the third 500 years. In the second graph, Figure 3.6, even though

the parameters of the system are returned to their original values, the system can

find a new equilibrium with a different value for the strength and direction of the

new surface flow. The change in the freshwater flux in the high-latitude box, F2, is a

change to the value of σ =
F2

kα|∆T | . Note that while the value of ∆T is also changed,

this difference remains somewhere between 25◦C and 30◦C, and nearer to 25◦C. The

change in the value of F2 are in the range of an added 15% for each of the new values

of ∆F . Once the value of σ is raised to be above 1
4
, the stability of the system shifts

so that the only stable fixed point is one which corresponds to the upper stable curve

in Figure 3.4, rather than the lower stable curve. The line in the second graph which

corresponds to ∆F = 0.0006, or an increase of 30% in the freshwater flux, changes

the system to S-mode. For the curve for ∆F = 0.0006, the system is changing to

S-mode, but does not come close enough to the new equilibrium within the 500 years

during which the freshwater flux remains at its maximum. Once the freshwater flux
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begins to decrease, the system in this case returns to the equilibrium in T-mode.

This simple 2-box model shows that the thermohaline currents in the oceans can

have multiple equilibrium values. If the parameters of the ocean circulation system

are changed, the system may go through irreversible changes. The ocean circulation

system may be altered to a new equilibrium state even if the parameters are changed

and then revert back to the original parameters. The Stommel 2-box model does show

that the circulation in the Atlantic Ocean has multiple equilibrium states. However,

it cannot address some of the issues involved in modeling global circulation or even

the circulation of the full Atlantic Ocean [14].

3.2 3-Box Models

While the Stommel 2-box model reveals some interesting points about the thermo-

haline circulation, it does appear to be too simple a model to represent the oceanic

circulation for all of the Earth’s oceans. In order to make a box model which is

more representative of the total circulation of the oceans, more must be added to the

model. The next step up in this sequence is to add another box to the 2-box model

to make a 3-box model which represents the entire Atlantic Ocean. There are several

different approaches to modeling ocean circulation with 3-box models. The main idea

behind 3-box models is to model the Atlantic Ocean with two high-latitude boxes and

an equatorial box. The Welander and Rooth 3-box models are presented here. The

Rooth 3-box model appears to represent the circulation in the Atlantic better than

the Welander 3-box model.

3.2.1 Welander 3-Box Model

The Welander 3-box model used here is similar to the Stommel 2-box model, but

with a third box representing the Southern Atlantic Ocean added, see Figure 3.7.

This is the Welander 3-box model used in Zhang (2007) [17]. It has flows to and

from the equatorial region and both high-latitude regions, but no flow connecting

the two high-latitude regions. This models the Atlantic Ocean as a symmetric basin,

symmetric in that the high-latitude boxes and the circulation for these boxes are

essentially the same.



67

F
2

F
1

F
3

q
3

q
1

q
3

q
1

T
1

S
1

T
2

S
2

T
3

S
3

Southern Ocean Equatorial Ocean Northern Ocean

Figure 3.7. Welander’s 3-box model of thermohaline circulation. The equatorial
region has both surface and deep flows that connect to the polar regions.

3.2.1.1 Equations for Welander 3-Box Model

The equations for this model are this series of differential equations:

dT1

dt
= |q1|(T2 − T1) +H1 (3.35)

dT2

dt
=

|q1|
V

(T1 − T2) +
|q3|
V

(T3 − T2) +H2 (3.36)

dT3

dt
= |q3|(T2 − T3) +H3 (3.37)

dS1

dt
= |q1|(S2 − S1)− F1 (3.38)

dS2

dt
=

|q1|
V

(S1 − S2) +
|q3|
V

(S3 − S2)− F2 (3.39)

dS3

dt
= |q3|(S2 − S3)− F3 (3.40)

Note the use of absolute values in these equations in the same way as they were

used in the equations for the Stommel 2-box model. The mixing of sea water between

the equatorial box and either high-latitude box does not depend on the direction of

the flow between the boxes, only the strength of the flow. The strengths of the two

flows, q1 and q3, depend on the densities of the salt water in the equatorial box and

the corresponding the high-latitude box. These flows are given by:

q1 = k
(

α(T2 − T1)− β(S2 − S1)
)

(3.41)

q3 = k
(

α(T2 − T3)− β(S2 − S3)
)

(3.42)
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Again, the variable k is a hydraulic constant that sets the strength of the flow based

on the density differences. The value of k is assumed to be the same for flows in the

northern and southern parts of the model. The values of α and β are the thermal

and haline expansion coefficients used to estimate the density of salt water given its

temperature and salinity.

3.2.1.2 Equilibrium Points

To find equilibrium points, assume that the temperatures of the boxes come to

equilibrium more quickly than the salinities so that the temperatures can be assumed

to be constant. The differences in the temperatures are ∆T1 = T2 − T1 and ∆T3 =

T2 − T3. The total salinity is held constant so that S0 = S1 + V S2 + S3 and then
S0

V + 2
is the constant average salinity of the entire system. The freshwater fluxes for

the three boxes are related by F2 = −F1 + F3

V
. This system of differential equations

can be reduced to a system of two differential equations dealing with the differences

in salinity of the first and third boxes with the second box. The differences in the

salinities of the boxes are ∆S1 = S2−S1 and ∆S3 = S2−S3. The system of differential

equations for this model has been reduced to these two equations:

q1 = k
(

α∆T1 − β∆S1

)

Flow strengths (3.43)

q3 = k
(

α∆T3 − β∆S3

)

(3.44)

d∆S1

dt
= −|q1|

V
∆S1 −

|q3|
V

∆S3 +
F1 + F3

V
− |q1|∆S1 + F1 (3.45)

= −(V + 1)|q1|
V

∆S1 −
|q3|
V

∆S3 +
V + 1

V
F1 +

1

V
F3 (3.46)

d∆S3

dt
= −|q1|

V
∆S1 −

|q3|
V

∆S3 +
F1 + F3

V
− |q3|∆S3 + F3 (3.47)

= −|q1|
V

∆S1 −
(V + 1)|q3|

V
∆S3 +

1

V
F1 +

V + 1

V
F3 (3.48)

There are four distinct equilibrium states for this model; these states come from

the signs of the flow strengths q1 and q3. To continue with a generalized solution

for this system of equations, let Z1 be -1 if q1 < 0 and +1 if q1 ≥ 0, and let Z3

have the same values depending on the sign of q3. With these new variables, the two

differential equations become:
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d∆S1

dt
= −Z1(V + 1)q1

V
∆S1 −

Z3q3
V

∆S3 +
V + 1

V
F1 +

1

V
F3 (3.49)

= −Z1(V + 1)k
(

α∆T1 − β∆S1

)

V
∆S1 −

Z3k
(

α∆T3 − β∆S3

)

V
∆S3

+
V + 1

V
F1 +

1

V
F3 (3.50)

=
Z1(V + 1)kβ

V
∆S2

1 −
Z1(V + 1)kα∆T1

V
∆S1 +

Z3kβ

V
∆S2

3 −
Z3kα∆T3

V
∆S3

+
V + 1

V
F1 +

1

V
F3 (3.51)

d∆S3

dt
= −Z1q1

V
∆S1 −

Z3(V + 1)q3
V

∆S3 +
1

V
F1 +

V + 1

V
F3 (3.52)

= −Z1k
(

α∆T1 − β∆S1

)

V
∆S1 −

Z3(V + 1)k
(

α∆T3 − β∆S3

)

V
∆S3

+
1

V
F1 +

V + 1

V
F3 (3.53)

=
Z1kβ

V
∆S2

1 −
Z1kα∆T1

V
∆S1 +

Z3(V + 1)kβ

V
∆S2

3 −
Z3(V + 1)kα∆T3

V
∆S3

+
1

V
F1 +

V + 1

V
F3 (3.54)

To simplify the solution for equilibrium points these two equations can be converted

to two new variables x = ∆S1 −
α∆T1

2β
and y = ∆S3 −

α∆T3

2β
so that the differential

equations become:

dx

dt
=

Z1(V + 1)kβ

V
x2 +

Z3kβ

V
y2

+
V + 1

V
F1 +

1

V
F3 −

kα2
(

Z1(V + 1)∆T 2
1 + Z3∆T 2

3

)

4V β
(3.55)

dy

dt
=

Z1kβ

V
x2 +

Z3(V + 1)kβ

V
y2

+
1

V
F1 +

V + 1

V
F3 −

kα2
(

Z1∆T 2
1 + Z3(V + 1)∆T 2

3

)

4V β
(3.56)

With these equations, the equilibrium points can be found by setting both derivatives

equal to zero and solving the linear system of equations for the equilibrium values x2

and y2, which gives:

x2 =
α2∆T 2

1

4β2
− Z1

kβ
F1 (3.57)

y2 =
α2∆T 2

3

4β2
− Z3

kβ
F3 (3.58)

Note that if either value Z1 or Z3 is greater than zero or equal to +1, then the
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equilibrium points may not exist depending on the respective signs of the expressions

in the right-hand sides of the equations above. The positive values of Z1 and Z3

correspond to the T-mode state of the Stommel 2-box model where the differences

in temperature drive the direction of the flows. When the freshwater flux becomes

large enough in one of the high-latitude boxes so that the equilibrium point does not

exist, that portion of the model will switch to its S-mode so that the value of the

corresponding qi becomes negative. Converting the equilibrium values x and y back

to ∆S1 and ∆S3 gives this solution for the equilibrium points:

∆S1 =
α∆T1

2β
±

√

α2∆T 2
1

4β2
− Z1

kβ
F1 (3.59)

∆S3 =
α∆T3

2β
±

√

α2∆T 2
3

4β2
− Z3

kβ
F3 (3.60)

This solution shows that there are multiple equilibrium solutions up to the point

where the value within the radical becomes negative. This solution can be non-

dimensionalized by allowing X1 =
β∆S1

α∆T1
and X3 =

β∆S3

α∆T3
and F ∗

1 =
βF1

kα2∆T 2
1

and

F ∗
3 =

βF3

kα2∆T 2
3

. The equilibrium solution becomes:

X1 =
1
2
±

√

1
4
− Z1F ∗

1 (3.61)

X3 =
1
2
±

√

1
4
− Z3F

∗
3 (3.62)

The values of the Z variables are the respective signs of the q values of the flows.

This solution for the equilibrium points of this model shows that the model operates

as if it were two different Stommel 2-box models. The temperature and salinity of the

equatorial box can be affected by both high-latitude boxes, but once equilibrium is

reached, the stability of either flow is determined in a similar manner to the Stommel

2-box model.

3.2.1.3 Numerical Modeling

A Gnu Octave script representing this model shows that the model also has two

stable states under certain conditions, like the Stommel 2-box model. These models

begin with the parameters used in the article by Lucarini and Stone [7]. However,
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those parameters would not have this model in an equilibrium state. The initial

temperatures and salinities required changes to:

T1 = 2.8246◦C S1 = 34.749 psu (3.63)

T2 = 26.960◦C S2 = 35.338 psu (3.64)

T3 = 3.2548◦C S3 = 34.576 psu (3.65)

These parameter changes do not have the model beginning with the current state of

the Atlantic Ocean, but do have the model starting in an equilibrium state. The main

reason that the equilibrium values change is that the input to the Southern Atlantic

comes from the equatorial box rather than from the Northern Atlantic, as is the case

in Rooth’s 3-box model. In addition, the hydraulic constant k was changed to the

value 4.7169×10−8 so that the original northern surface flow from the equatorial box

to the northern box is at a rate of about 15.5 Sv (Sverdrups or 106m3 s−1).

To show that there are two stable states, the freshwater flux in the high-latitude

boxes was changed slowly over the course of time. For the northern box (box 3), the

value of the freshwater flux was changed according to:

F3,current =

{

F3,original + t∆F if t ≤ 500 years (t in years)
F3,original + 500∆F if t > 500 years

(3.66)

The freshwater flux in the southern box (box 1) is increased at 3
10

of the rate of

increase in the northern box. The results of this are shown in Figures 3.8, 3.9, 3.10,

and 3.11. The Figures 3.9, and 3.11 show the effects of this same this same increase

over the first 500 years followed by 1000 years of that increased flux, and then followed

by 500 years of the flux reducing by the same rate back to the original values. For

the second graph, the flux in the high-latitude box changes according to:

F3,current =















F3,original + t∆F if t ≤ 500 years (t in years)
F3,original + 500∆F if 500 < t ≤ 1500
F3,original + (2000− t)∆F if 1500 < t ≤ 2000
F3,original if t > 2000

(3.67)

Again, the freshwater flux in the southern box (box 1) is increased at 3
10

of the rate

of increase in the northern box. The second value of ∆F , shown in Figures 3.10

and 3.11 are where ∆F = 2.01 so that the total freshwater flux in the northern box
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Figure 3.8. Welander model with a 134% increase in the freshwater flux. The
northern flux of freshwater is increased by 134%. The flows reach a new equilibrium
without reversing directions.

increased by 201%. In this set of graphs, the flows between the boxes change to a

new set of equilibrium values and the northern flow reverses direction. The graphs

in Figure 3.11 show that this model does not always exhibit hysteresis, that with the

same parameters, the model can reach a different equilibrium point.

Also, these four graphs show another facet of the Welander 3-box model. The

initial equilibrium state has sea water up-welling in the equatorial box with surface

flows proceeding from the equatorial box to both of the high-latitude boxes. However,

in Figure 3.11, the surface flow eventually changes so that both surface flows go from

North to South. That is, the value of q3 switches from a positive value to a negative

value. These directions for the flows are the opposite of today’s flows in the Atlantic

Ocean. In this model, the precipitation in the high-latitude boxes must increase by

more than 160% for this state change to happen. While the Welander 3-box model is a

simple extension of Stommel’s 2-box model, it does not match the current conditions
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Figure 3.9. Welander model with a short-term 134% increase in the freshwater flux.
The freshwater flux is increased the northern flux 134% and then reduced to the
original flux value. The flows return to their original values.

of the Atlantic Ocean very accurately.

3.2.2 Rooth’s 3-Box Model

The Rooth 3-box model is another model of the Atlantic Ocean. Figure 3.12 shows

how the components of this model interact with each other. This model is closer to

the actual flows in the Atlantic Ocean, that is, there is a deep flow of colder sea water

which does not mix to any extent with the warmer sea water in the equatorial region.

3.2.2.1 Equations for Rooth’s 3-Box Model

The deep flow is the key flow for this model. It is driven by the density differences

between the two high-latitude boxes. Note that because these are both high-latitude

boxes, their temperatures and densities are very similar so the hydraulic constant k is

much larger than for the 2-box model. The other two flows have the same magnitude

as the deep flow, but flow in the opposite of the direction of the deep flow. The
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Figure 3.10. Welander model with a 201% increase in the freshwater flux. The
northern flux of freshwater is increased by 201%. The flows reach a new equilibrium
with the northern flow reversing direction.

direction of the flow determines which box supplies the sea water flowing into each

of the boxes in the model. That is, the box upstream from a particular box provides

the new contents for that box. Also, a positive flow value is a flow where the surface

flows travel from South to North, or from box 1 (southern) to box 2 (equatorial) and

then to box 3 (northern). The equations for this model are:

q = k
(

α(T1 − T3)− β(S1 − S3)
)

Strength and direction of the flow (3.68)

dT1

dt
=

{

q(T1 − T2) + λ(τ1 − T1) = q(T1 − T2) +H1 if q < 0
q(T3 − T1) + λ(τ1 − T1) = q(T3 − T1) +H1 if q ≥ 0

(3.69)

dT2

dt
=

{

q
V
(T2 − T3) + λ(τ2 − T2) =

q
V
(T2 − T3) +H2 if q < 0

q
V
(T1 − T2) + λ(τ2 − T2) =

q
V
(T1 − T2) +H2 if q ≥ 0

(3.70)

dT3

dt
=

{

q(T3 − T1) + λ(τ3 − T3) = q(T3 − T1) +H3 if q < 0
q(T2 − T3) + λ(τ3 − T3) = q(T2 − T3) +H3 if q ≥ 0

(3.71)

dS1

dt
=

{

q(S1 − S2)− F1 if q < 0
q(S3 − S1)− F1 if q ≥ 0

(3.72)
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Figure 3.11. Welander model with a short-term 201% increase in the freshwater
flux. The freshwater flux in the high-latitudes is increased. The freshwater flux in
the northern box is increased to 201% of its original value and then reduced to the
original flux value. The flows do not return to their original values, but reach a new
equilibrium with the northern flow in a reverse direction.

dS2

dt
=

{

q
V
(S2 − S3)− F2 if q < 0

q
V
(S1 − S2)− F2 if q ≥ 0

(3.73)

dS3

dt
=

{

q(S3 − S1)− F3 if q < 0
q(S2 − S3)− F3 if q ≥ 0

(3.74)

Again, the variable λ is not the same as the temperature restoring coefficient given in

Table 3.1. The second version of the differential equations for temperature compress

these terms into a single variable, Hi, where i is the box number the value corresponds

to.

Because the total salt content of the sea water is held constant in this model, then

F2 = − 1

V
(F1 + F3). So the amount of water in the system also remains constant

meaning that evaporation in the equatorial box is balanced by precipitation in the

high-latitude boxes.
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Figure 3.12. Rooth’s 3-box model of thermohaline circulation. The northern
and southern boxes are connected with a deep current that does not flow into the
equatorial box.

To find equilibrium values of q when q < 0, set the equations for
dT3

dt
(3.71) and

dS3

dt
(3.74) equal to zero as they would be for equilibrium and then form the sum:

0 = −α
dT1

dt
+ β

dS1

dt
= −α

(

q(T3 − T1) +H3

)

+ β
(

q(S3 − S1)− F3

)

(3.75)

= q
(

α(T1 − T3)− β(S1 − S3)
)

− αH3 − βF3 (3.76)

= 1
k
q2 − αH3 − βF3 (3.77)

q = −
√

k(αH3 + βF3) (3.78)

Similarly, if q ≥ 0 then using equations (3.69) and (3.72) in the same manner results

in:

q =
√

k(αH1 + βF1) (3.79)

From these equations, the equilibrium value of the strength of the flow depends on the

equilibrium values of the heat and freshwater fluxes in the box that has an up-welling

of water.

3.2.2.2 Equilibrium Points

To find equilibrium points for this model, again assume that the temperatures

come to equilibrium values more quickly than the salinities. This means that the
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differences between the three temperatures can be taken as constant values. Here,

the values of ∆T1 = T2 −T1 and ∆T3 = T2 −T3 will become constant values. Taking

this further, the value of ∆T1 −∆T3 = ∆T will also be constant. With temperatures

at equilibrium, the derivatives of each of the three temperatures will be zero. Adding

the three differential equations for temperature shows that the sum of the products

of the equilibrium temperatures and the mass of water in each box is equal to the

sum of the products of the target temperatures and the mass of water in each box.

That is, T1 + V T2 + T3 = τ1 + V τ2 + τ3 when the temperatures are at an equilibrium

point. The three remaining differential equations for salinity are:

q = k
(

α(∆T3 −∆T1)− β(S1 − S3)
)

The equilibrium flow (3.80)

= −k
(

α∆T + β(S1 − S3)
)

(3.81)

dS1

dt
=

{

q(S1 − S3)− F1 if q < 0
q(S2 − S1)− F1 if q ≥ 0

(3.82)

dS2

dt
=

{

q
V
(S2 − S1)− F2 if q < 0

q
V
(S3 − S2)− F2 if q ≥ 0

(3.83)

dS3

dt
=

{

q(S3 − S2)− F3 if q < 0
q(S1 − S3)− F3 if q ≥ 0

(3.84)

Using the fact that the salinities of the three boxes must be such that the total

average salinity is a constant, or that S1 + V S2 + S3 = S0 is a constant, these three

differential equations can be reduced to two equations. To do this, let ∆S1 = S2−S1

and ∆S3 = S2−S3 and make use of the identity F1+V F2+F3 = 0 or F2 = − 1
V
(F1+F3).

This system of differential equations can be reduced to two differential equations:

d∆S1

dt
=

dS2

dt
− dS1

dt
=

{

q
V
(S2 − S3)− F2 − q(S1 − S2) + F1 if q < 0

q
V
(S1 − S2)− F2 − q(S3 − S1) + F1 if q ≥ 0

(3.85)

=

{

q
V
∆S3 +

F1+F3

V
+ q∆S1 + F1 if q < 0

− q
V
∆S1 +

F1+F3

V
+ q(∆S3 −∆S1) + F1 if q ≥ 0

(3.86)

=

{

q∆S1 +
1
V
q∆S3 +

V+1
V

F1 +
1
V
F3 if q < 0

−V+1
V

q∆S1 + q∆S3 +
V+1
V

F1 +
1
V
F3 if q ≥ 0

(3.87)

d∆S3

dt
=

dS2

dt
− dS3

dt
=

{

q
V
(S2 − S3)− F2 − q(S3 − S1) + F3 if q < 0

q
V
(S1 − S2)− F2 − q(S2 − S3) + F3 if q ≥ 0

(3.88)

=

{

q
V
∆S3 +

F1+F3

V
+ q(∆S3 −∆S1) + F3 if q < 0

− q
V
∆S1 +

F1+F3

V
− q∆S3 + F3 if q ≥ 0

(3.89)

=

{

−q∆S1 +
V+1
V

q∆S3 +
1
V
F1 +

V+1
V

F3 if q < 0
− 1

V
q∆S1 − q∆S3 +

1
V
F1 +

V+1
V

F3 if q ≥ 0
(3.90)
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Small perturbations near the equilibrium points of these equations can be used

to investigate the stability of the equilibrium points. For a small perturbation, let

∆S1 and ∆S3 be equilibrium values for the variables ∆S1 and ∆S3. Then let x

be a small perturbation of ∆S1 and y be a small perturbation of ∆S3. With these

changes of the variables in place, assume that the temperatures of the boxes remain

essentially constant so that the value of ∆T does not change. Also, the value of

the flow q becomes the sum of the equilibrium flow q and a change to the flow

q∗. Using these perturbations in equations (3.87) and (3.90) gives new differential

equations in the variables x and y. This model is symmetric, meaning that box

1 can be interchanged with box 3 without changing the equations. This analysis of

equilibrium points does not need to consider the changes in the equations which come

about when the direction of the flow reverses or when q changes to a negative value:

q + q∗ = −k
(

α∆T + β(∆S3 + y −∆S1 − x)
)

(3.91)

= −k
(

α∆T + β(∆S3 −∆S1)
)

+ kβ(x− y) (3.92)

d∆S1

dt
+

dx

dt
= −V + 1

V
(q + q∗)(∆S1 + x) + (q + q∗)(∆S3 + y)

+
V + 1

V
F1 +

1

V
F3 (3.93)

d∆S3

dt
+

dy

dt
= − 1

V
(q + q∗)(∆S1 + x)− (q + q∗)(∆S3 + y)

+
1

V
F1 +

V + 1

V
F3 (3.94)

These equations can be simplified by removing expressions which are equal to zero

because of the equilibrium at ∆S1 = ∆S1 and ∆S3 = ∆S3. These equations become

a system of differential equations in the variables for the perturbations:

dx

dt
= q

(

−V + 1

V
x+ y

)

+ q∗
(

−V + 1

V
(∆S1 + x) + (∆S3 + y)

)

(3.95)

dy

dt
= −q

(

1

V
x+ y

)

+ q∗
(

− 1

V
(∆S1 + x)− (∆S3 + y)

)

(3.96)

To analyze this system of equations, note that they have an equilibrium point at

the origin (x, y) = (0, 0), because q∗ = 0 at the origin. Then calculate the Jacobian

of this system. For q ≥ 0 and (x, y) = (0, 0) the components of the Jacobian are:

∂

∂x

(

dx

dt

)

∣

∣

∣

∣

∣

(0,0)

=

[

− V + 1

V
q + kβ

(

−V + 1

V
(∆S1 + x) + (∆S3 + y)

)
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− V + 1

V
q∗

]

(0,0)

(3.97)

= −V + 1

V
q + kβ

(

−V + 1

V
∆S1 +∆S3

)

(3.98)

=
V + 1

V
kα∆T + kβ

(

−2
V + 1

V
∆S1 +

2V + 1

V
∆S3

)

(3.99)

∂

∂y

(

dx

dt

)

∣

∣

∣

∣

∣

(0,0)

=

[

q − kβ

(

−V + 1

V
(∆S1 + x) + (∆S3 + y)

)

+ q∗

]

(0,0)

(3.100)

= q − kβ

(

−V + 1

V
∆S1 +∆S3

)

(3.101)

= −kα∆T + kβ

(

2V + 1

V
∆S1 − 2∆S3

)

(3.102)

∂

∂x

(

dy

dt

)

∣

∣

∣

∣

∣

(0,0)

=

[

− 1

V
q + kβ

(

− 1

V
(∆S1 + x)− (∆S3 + y)

)

− 1

V
q∗

]

(0,0)

(3.103)

= − 1

V
q + kβ

(

− 1

V
∆S1 −∆S3

)

(3.104)

=
1

V
kα∆T + kβ

(

− 2

V
∆S1 −

V − 1

V
∆S3

)

(3.105)

∂

∂y

(

dy

dt

)

∣

∣

∣

∣

∣

(0,0)

=

[

− q − kβ

(

− 1

V
(∆S1 + x)− (∆S3 + y)

)

− q∗

]

(0,0)

(3.106)

= −q − kβ

(

− 1

V
∆S1 −∆S3

)

(3.107)

= kα∆T + kβ

(

−V − 1

V
∆S1 + 2∆S3

)

(3.108)

To determine the stability of this system, the eigenvalues of the appropriate Jacobian

need to be calculated. If both eigenvalues have a real part less than zero then the

equilibrium point is stable. The eigenvalues have a value of 1
2

(

T ±
√
T 2 − 4δ

)

where

T is the trace of the Jacobian and δ is the determinant of the Jacobian. These values

can be calculated, but are very complicated expressions. One quick approximation

of the eigenvalues is to assume that the value of ∆T = 0 so that the temperatures

of both high-latitude boxes is the same. This assumption does not make physical

sense for this model because the sea water flowing into one of the high-latitude boxes

comes from the equatorial box and is warmer than the sea water which flows into the
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other high-latitude box from the first high-latitude box. The temperature between

the two high-latitude boxes should be different, however, these two temperatures can

be close to each other so the assumption does work as an approximation. Making

this assumption simplifies the values of the Jacobian and makes calculations of the

eigenvalues much easier. Making these changes to the Jacobian for q ≥ 0, which is

the case for the current Atlantic Ocean gives:

J+ =

[

kβ
(

−2V+1
V

∆S1 +
2V+1
V

∆S3

)

kβ
(

2V+1
V

∆S1 − 2∆S3

)

kβ
(

− 2
V
∆S1 − V−1

V
∆S3

)

kβ
(

−V−1
V

∆S1 + 2∆S3

)

]

(3.109)

For the eigenvalues of this Jacobian to have negative real parts, two things must

occur. First, the trace of the Jacobian must be negative. Second, the value of the

determinant of the Jacobian δ must be positive. In this way, both eigenvalues will

either be negative real numbers or complex numbers with negative real parts. The

determinant of this Jacobian is:

δ = kβ

(

−2
V + 1

V
∆S1 +

2V + 1

V
∆S3

)

· kβ
(

−V − 1

V
∆S1 + 2∆S3

)

− kβ

(

2V + 1

V
∆S1 − 2∆S3

)

· kβ
(

− 2

V
∆S1 −

V − 1

V
∆S3

)

(3.110)

=
k2β2

V 2

[(

− 2(V + 1)∆S1 + (2V + 1)∆S3

)(

− (V − 1)∆S1 + 2V∆S3

)

−
(

(2V + 1)∆S1 − 2V∆S3

)(

− 2∆S1 − (V − 1)∆S3

)]

(3.111)

=
k2β2

V 2
(2V 2 + 4V )(∆S1 +∆S3)

2 (3.112)

From this, the determinant of the Jacobian is always positive because V > 0. To

determine when the trace of the Jacobian is less than zero, solve this inequality for
∆S3

∆S1

:

0 ≥ kβ

(

−2
V + 1

V
∆S1 +

2V + 1

V
∆S3

)

+ kβ

(

−V − 1

V
∆S1 + 2∆S3

)

(3.113)

∆S3

∆S1

≤ 4V + 1

3V + 1
(3.114)

This expression can be changed from an expression involving ∆S1 and ∆S3 into

one involving F1 and F3. Then, using equations (3.82) and (3.83) for q ≥ 0, the values

of ∆S1 = 1
q
(F1 + F3) and ∆S3 = 1

q
F1. From this, the ratio

∆S3

∆S1

=
F1

F1 + F3
. Then
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the ratio
F1

F3
can be calculated as

F1

F3
=

∆S3

∆S1

− 1. Then the inequality for this real

part of the eigenvalues being less than zero can be solved for the ratio of
F1

F3

:

F1

F3

<
4V + 1

3V + 1
− 1 =

V

3V + 1
(3.115)

By equation (3.115), if the ratio between the freshwater fluxes in the high-latitude

boxes is such that the ratio is less than an amount that depends on the value of

V , then the equilibrium point is stable. This is for the nonphysical case where the

sea water temperatures in the two high-latitude boxes are equal, but it is a close

approximation for the physical cases where these temperatures are not equal but

within two or three Kelvins of each other. The full ratio of F1 to F3 for stability is

calculated in Scott et al. [14] and is:

F1

F3
< kβF1

kα(T 3−T1)
(

1+
1
2
V
)

[

kα(T 3−T 1)+
√

k2α2(T3−T 1)
2

+4kβF1

]

+kβF1(3+ 1

V )
(3.116)

This expression simplifies to equation (3.115) if T 3 = T 1 or ∆T = 0. This illustrates

the fact that the model has stable equilibrium points when F1 is smaller than F3

by some factor. Note that when this system has unstable equilibrium points, the

instability will move the model to a state where the value of the flow q will change

sign and the model will change state to a stable equilibrium point with the flow being

reversed.

3.2.2.3 Numerical Modeling

A numerical model in which the freshwater fluxes can be varied slowly can be

used to illustrate the lack of hysteresis in this system. A GNU Octave (Matlab

compatible) script was used for the model. The basic parameters used in the model

are from the study performed by Lucarini and Stone [7]. What will be varied from that

study are the amounts of freshwater flux in the high-latitude boxes of the model with

corresponding adjustments to the equatorial freshwater flux. The freshwater flux in

the southern high-latitude box will be kept at approximately 3
10

of the freshwater flux

in the northern high-latitude box, this is in keeping with the actual freshwater flux

amounts in the today’s Atlantic Ocean. The equilibrium temperatures in the boxes
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will be determined by allowing the model to run, beginning with initial conditions

near the estimated values for equilibrium and then using the temperatures of the

boxes after several thousand years of model time.

The variations in the freshwater flux in this model are similar to the variations in

the 2-box model. The Figures 3.13, and 3.14 show what happens to the model when

the freshwater fluxes are changed over time. For Figure 3.13, the flux in the high-

latitude boxes increases in each of the first 500 years with the flux in the equatorial

box decreasing by a similar amount in order to maintain the total average salinity at

a constant value. For Figure 3.14, the flux changes are reversed between years 1,500

and 2,000 after the start of the modeling time. For the northern high-latitude box

the freshwater flux changes according to:

F3,current =

{

F3,original +
∆F3

500
t if t < 500 years

F3,original +∆F3 if t ≥ 500 years
(3.117)

The change in the freshwater flux for the southern high-latitude box will be kept

to 3
10

of the change in the northern high-latitude box so that ∆F1 = 3
10
∆F3. The

difference in the changes in the flux represents the fact the northern high-latitude box

receives more precipitation than the southern high-latitude box. This change in the

freshwater flux is one possible effect of global climate change.

The northerly surface flow becomes stronger for lower levels increases in the fresh-

water flux. This is because while the salinity difference between the two high-latitude

boxes becomes slightly larger, so does the difference in temperature. This is due to

the fact that the sea water flowing into the northern high-latitude box comes from

the warmer and saltier equatorial box. The change in the difference in salinity has a

larger effect on the strength of the flow than does the change in the temperatures.

For a high enough increase in the freshwater flux, the surface flow in the Atlantic

Ocean will change direction according to this model. This is because the freshwater

flux in the northern high-latitude box becomes enough to offset the gain in salinity

in that box which is from the incoming flow from the equatorial box. That is, even

though the salinity of the southern box decreases, the salinity of the northern box

decreases much more quickly. The change in the salinity is enough to reverse the

direction of the flow of the system because the salinity of the equatorial box must
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Figure 3.13. Rooth’s 3-box model with changes to the freshwater flux. The THC
strengths when the freshwater flux is increased in the high-latitudes, the equilibrium
for the system has a smaller difference in temperatures. For a high enough change in
the freshwater flux, the system changes from T-mode to S-mode stability.

increase which means that the system changes to the analog of S-mode.

Also, for the scenarios where the flow of the system is reversed, the flow magnitude

oscillates to some extent about the final equilibrium value for the system. This shows

that the Jacobian for the system has complex eigenvalues as the system moves through

these states.

To show the lack of hysteresis, the same changes to the freshwater flux were applied

as were applied to the other box models. That is, the freshwater flux is increased for

500 years, remains fixed at the higher values for 1000 years, is reduced to the original

value over the next 500 years, and then remains at the original values. For the higher

increases in the freshwater flux, the system comes to a new equilibrium state even

when the freshwater fluxes are lowered back to their original values. The value of the

freshwater flux in the northern high-latitude box is this piecewise linear function:
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Figure 3.14. Rooth’s 3-box model with short-term changes to the freshwater flux.
The changes to the freshwater flux are that the high-latitude fluxes increase for the
first 500 years, remain at that higher level for 1000 years, and then decrease back
to the original amounts in the third 500 year period. For a high enough change in
the freshwater flux, the system changes from T-mode to S-mode stability and the
direction of the surface flow remains changed even when the fluxes return to their
original values.

F3,current =















F3,original + t∆F if t ≤ 500 years (t in years)
F3,original + 500∆F if 500 < t ≤ 1500
F3,original + (2000− t)∆F if 1500 < t ≤ 2000
F3,original if t > 2000

(3.118)

From the graph in Figure 3.14, the initial changes in the freshwater flux cause

the system to come to a different equilibrium state that what had been the original

equilibrium. Then changing the freshwater fluxes back to their original value causes

the system to either return to its original equilibrium state state, or to come to a

new equilibrium state. In the new equilibrium state, the directions of the surface and

deep-water flows are reversed. This means that, given a large enough change in the

parameters of the system, eventually returning the parameters to their original values
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may not return the system to its original state.

3.3 Models with More Boxes

There are other box models of thermohaline circulation of the oceans. These

are models with additional boxes added in ways to make the model better fit the

actual physical operation of the circulation. As box models show new and unexpected

results, additional updates are made to help in the understanding of the stability of

the thermohaline circulation. The equations for each of these models becomes more

complicated as additional variables are added to the system of differential equations.

One of the models that is often used is a 4-box model which is an extension of

Rooth’s 3-box model. See Figure 3.15 for this model. The new box is a box containing

deep water in the equatorial Atlantic Ocean. Variations on this model include adding

a flow between the surface and deep equatorial boxes. If that flow is added, then the

model resembles the Welander 3-box model. Without that flow the model is similar

to the Rooth 3-box model. The equations for those two models are very much like

the corresponding 3-box model.

Figure 3.16 shows another model which is used to model circulation between the

Atlantic and Pacific Oceans. These models include differing sizes of freshwater fluxes

between the two oceans. That is, the amount of precipitation can vary between the

corresponding regions of the Atlantic and Pacific Oceans. Depending on how the

boxes are connected with flows, this model can resemble a series of 2-box models or

two connected Rooth 3-box models.
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Figure 3.15. A 4-box model of thermohaline circulation. Some models add an
additional flow between the two two equatorial boxes.
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Figure 3.16. A 6-box model of thermohaline circulation. Each side of this model
represents one of the Atlantic or Pacific Oceans. The two oceans are connected with
flows either in the Straight of Magellan below South America or with flows through
the East Indies and Indian Ocean. The differences in the fresh water flux values in
the equatorial boxes reflects the fact that the rate of evaporation and precipitation
in the equatorial regions of the Atlantic and Pacific Oceans differ.



APPENDIX

SALT WATER DENSITY

A.1 Salt Water Density

The density of salt water varies with the temperature, salinity, and pressure of the

water. In the box models used for oceanic circulation, the variation of the density is

modeled as a linear function of the temperature and density. The currently accepted

formulas for the density of sea water are published in a manual prepared by the

Intergovernmental Oceanographic Commission, a part of the United Nations [4]. A

simplified description of the formulas is given by Gill [3], and Millero and Poission [8].

The density of sea water at a temperature of T ◦C, S salinity (in psu’s), and at one

atmosphere (1013.25 hPa) of pressure is given by these formulas:

A = 8.24493× 10−1 − 4.0899× 10−3 T + 7.6438× 10−5 T 2 − 8.2467× 10−7 T 3

+ 5.3875× 10−9 T 4 (A.1)

B = −5.72466× 10−3 + 1.0227× 10−4 T − 1.6546× 10−6 T 2 (A.2)

C = 4.8314× 10−4 (A.3)

ρ = AS +BS3/2 + CS2 + ρ0 (A.4)

The reference density ρ0 is given by:

ρ0 = 999.842594 + 6.793952× 10−2 T − 9.095290× 10−3 T 2 + 1.001685× 10−4 T 3

− 1.120083× 10−6 T 4 + 6.536332× 10−9 T 5 (A.5)

Further manipulations are required to get the density of sea water when it is under

a pressure higher than one atmosphere. However, the effects of high pressure on the

density of sea water is minimal as sea water is largely incompressible. The average

surface density of sea water is approximately 1027 kgm−3 while the average density

used for sea water in global box models is approximately 1035 kgm−3. This difference
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comes from the increase in density due to the higher pressures encountered at depth

for sea water throughout an ocean.

The graph in Figure A.1 shows how the density of sea water varies with tem-

perature and salinity at one atmosphere of pressure. Each of the lines in the graph

represents a particular density. As the temperature increases, the density of water

at the same salinity decreases. As the salinity increases, the density of water at the

same temperature increases. While this is not a linear relationship between density,

the density of salt water is only needed for salinities between 33 psu and 37 psu for

the box models of oceanic circulation.

The graph in Figure A.2 shows how the approximation of density used in the box

models compares to the density as calculated by the equations in this appendix for the

range of salinities between 33 and 37 psu’s. The calculated densities appear to have a

higher slope than in Figure A.1 because the graph has been stretched in the vertical

direction. The dashed red (light-gray) lines in the graph show the slope of the linear
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Figure A.1. The density of salt water. This is the density of salt water as calculated
for a range of temperatures and salinities.
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Figure A.2. The density of salt water for selected temperatures and salinities. This
is the density of salt water as calculated for the range of temperatures and salinities
found in the oceans of the Earth. The dashed red (light gray) lines show the slope of
the linear approximation used in the box models.

approximation for density used in the box models. While the approximation is not as

close as could be desired, it is close enough. Using a linear approximation for density

makes the differential equations used in the box models of thermohaline circulation

easier to work with. Using the linear approximation for density makes the functions

in the differential equations no more complicated than second order polynomials in

the variables involved. This makes the analysis of the resulting equations much easier,

although possibly not as accurate as they could be.
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