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ABSTRACT

We first study the inverse problem of recovering a complex Schrödinger potential

from a discrete set of measurements of the solution to the Schrödinger equation using

different source terms. We solve this problem by generalizing the inverse Born series

method to nonlinear mappings between Banach spaces. In this general setting, we

show convergence and stability of inverse Born series follow from a single problem-

specific bound. We show this bound for the inverse Schrödinger problem, and study

numerically an application of this inverse problem to transient hydraulic tomography.

Additionally, we develop a family of iterative methods based on truncated inverse

Born series that are akin to iterative methods based on truncated Taylor series.

Next, we study the inverse problem of imaging scatterers in a homogeneous

medium when only intensities of wavefields can be measured. Classic imaging meth-

ods, such as Kirchhoff migration, rely on phase information contained in full waveform

data and thus cannot be used directly with intensity-only data. In situations where

scattered wavefields are small compared to the incident wavefields, we can form and

solve a linear least squares problem to recover a projection (on a known subspace) of

full waveform data from intensity data. We show that for sufficiently high frequencies,

this projection gives a Kirchhoff image asymptotically equivalent to the Kirchhoff

image obtained from full waveform data. We also generalize this imaging method to

using stochastic incident fields with autocorrelation measurements.

Finally, we study a mathematical model of grain growth in polycrystalline mate-

rials. We review a simplified 1D grain growth model and an entropy-based theory for

the evolution of an important statistic harvested from this model, the GBCD. The

theory suggests the GBCD evolves according to a Fokker-Planck equation, which

we validate numerically. We derive methods to estimate times from the GBCD,

thus fitting it to Fokker-Planck time scales. This allows for direct comparisons of the

GBCD with the Fokker-Planck solution, where we find qualitative agreement. We also



find an energy dissipation identity which Fokker-Planck solutions must satisfy. We

verify the GBCD satisfies this identity both qualitatively and quantitatively, further

validating the Fokker-Planck model of GBCD evolution.
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CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) are common throughout applied mathemat-

ics. They are used to model physical phenomena by relating rates of change of certain

physical quantities. The coefficients in such an equation carry physical information

about the problem at hand, e.g., the speed of propagation of waves in a medium, the

conductivity of a medium, or the temperature of a medium. Often, one is concerned

with recovering information about these coefficients from measured data; this is the

notion of an inverse problem. Other times, one is concerned with finding a PDE that

describes the most significant traits of an observed physical phenomenon; this is the

notion of mathematical modeling. These two facets of PDE study are the common

themes throughout this dissertation. Here, we summarize our work on three specific

problems: an inverse problem for an elliptic PDE (§1.1), an inverse problem for a

hyperbolic PDE (§1.2), and the mathematical modeling of polycrystalline material

dynamics (§1.3). Since these studies were developed independently, in this chapter

(resp. thesis) we use notations that are specific to each section (resp. chapter).

1.1 An inverse Schrödinger problem

We consider the Schrödinger equation




−∆u(x) + q(x)u(x) = φ(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ Rd. Here q(x) is the (possibly complex) Schrödinger potential and φ(x)

is a source term supported in Ω. A solution u ∈ H1
0 (Ω) satisfying (1.1) in the weak

sense exists if, e.g., φ ∈ L2(Ω) and q ∈ L∞(Ω) is such that the only solution to (1.1)
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with q instead of q and φ ≡ 0 is u ≡ 0 (see, e.g., [23])1. Furthermore, u is unique

if the only solution to (1.1) for φ ≡ 0 is u ≡ 0. The inverse problem we consider

here is to recover the potential q from knowledge of N source terms {φi}Ni=1, and the

measurements

Mi,j =

∫
ui(x)φj(x)dx, i, j = 1, . . . , N. (1.2)

We call the {Mi,j}Ni,j=1 “discrete internal measurements” because they provide infor-

mation about u inside Ω. We do not expect a unique solution for this inverse problem

since we are trying to recover a function q that generally lies in an infinite dimensional

vector space, from finitely many measurements (1.2). However, in other situations,

such as when sources and measurements are restricted to the boundary ∂Ω (see [40])

or when internal data of the form q(x)u2(x) is known for all x ∈ Ω (see [2, 43]), the

solution q is unique (under appropriate assumptions).

A motivating example for this inverse Schrödinger problem is transient hydraulic

tomography, where the objective is to recover characteristics of an underground

reservoir or aquifer from measurements of hydraulic pressure at a few wells resulting

from fluid injection at one or more wells (see, e.g., [13]). The hydraulic pressure

v(x, t) in an aquifer can be modeled by the parabolic PDE

S(x)
∂v

∂t
(x, t) = ∇ · (σ(x)∇v(x, t))− ψ(x, t),

subject to initial and boundary conditions. Here ψ denotes a pressure source (the

injection well) and S, σ, characterize physical properties of the aquifer that we are

interested in knowing. Different injection wells can be thought of as having different

source terms {ψi}Ni=1. By a series of transformations, this imaging problem for S and

σ can be recast as the inverse problem of finding the Schrödinger potential q in (1.1)

from measurements {Mi,j}Ni,j=1. The coefficients S, σ we were originally seeking can

then be estimated from q.

1In §2.5.1 and in [3], we overlooked the condition involving q. This was not fixed in Chapter 2
because of copyright reasons.
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1.1.1 Inverse Born series

For the inverse Schrödinger problem, we have a nonlinear mapping f that maps a

bounded Schrödinger potential q ∈ L∞(Ω) to the internal measurements {Mi,j}Ni,j=1 ∈
(CN×N , ‖ · ‖) where ‖ · ‖ denotes a suitable norm on CN×N . Thus, f : L∞(Ω) →
(CN×N , ‖·‖) is a nonlinear mapping from the Banach space L∞(Ω) to the Banach space

(CN×N , ‖ · ‖) with f(q) = {Mi,j}Ni,j=1. To recover q from f(q), we can try to find an

inverse mapping g : (CN×N , ‖ · ‖)→ L∞(Ω) such that g(f(q)) = q. The inverse Born

series method provides a systematic way of approximating such an inverse mapping g,

close to a known reference coefficient qref. This method can be formulated for general

nonlinear mappings between Banach spaces, as we now discuss.

The forward Born series represents a nonlinear mapping f from a Banach space

X (which we refer to as a “coefficient space”) to a Banach space Y (a “measurement

space”) as an infinite series involving multilinear mappings between the two spaces.

Assuming a reference coefficient x ∈ X is known, the forward Born series of f can be

formally written as

d(h) = f(x+ h)− f(x) =
∞∑

n=1

an[x](h⊗n),

where d(h) ∈ Y denotes measured data and h ∈ X is a small perturbation about

x. The an[x] are linear operators on the tensor products h⊗n = h ⊗ h ⊗ · · · ⊗ h,

and depend on the reference coefficient x. The inverse problem here is to recover the

perturbation h from knowledge of d(h), x, and f(x). If we had a mapping g : Y → X

that solves the inverse problem, i.e., h = g(d(h)), and if this mapping could be written

as a series involving multilinear mappings between Y and X:

g(d) =
∞∑

n=1

bn[x](d⊗n),

then the operators bn[x] can be found formally by a recursion formula involving the

an[x] operators in a fashion similar to finding the Taylor series coefficients of the

inverse f−1 of an analytic function f from the Taylor series coefficients of f . The

series expansion of g is called “inverse Born series” and can be used to estimate a

perturbation h about a known reference x from the data d(h).
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This concept was first introduced in the context of optical tomography and diffuse

waves by Markel, O’Sullivan and Schotland [34]. Here, the authors were concerned

with recovering a coefficient η that characterizes how light is absorbed in a body,

from nonintrusive measurements d made only at the boundary of the body. The first

convergence results of the inverse Born series were also shown in this physical context

by Moskow and Schotland [35]. Here the authors showed the inverse Born series

converges, provided certain bounds hold on the boundary data d. Moreover, they

characterized the error in reconstructing h = η − η0 for a known reference η0, using

the inverse Born series and showed it is a stable reconstruction method. The inverse

Born series was later studied by Arridge et al. [1] in the context of electrical impedance

tomography (EIT). In EIT, one is concerned with recovering the conductivity of a

domain, using electrical measurements on the boundary of the domain. Arridge et

al. [1] showed the same convergence and stability results hold for inverse Born series

in this physical context.

1.1.2 Born series in a Banach setting

Motivated by the successful application of inverse Born series in these multiple

contexts, we set out to apply the method to the inverse Schrödinger problem with

discrete internal measurements. In doing so, we discovered the forward and inverse

Born series can be generalized to nonlinear mappings between Banach spaces. This

allows us to formulate the convergence and stability results of Moskow and Schotland

[35] in a general setting, giving a common framework for the inverse Born series to be

readily applied in many physical contexts. We show the previous studies of Moskow

and Schotland [35], Arridge et al. [1], as well as the inverse Schrödinger problem

with internal measurements all fit within this general framework. We also establish

connections between Born series and the classical Taylor and Neumann series.

Given data d ∈ Y and a reference coefficient x0 ∈ X, we notice the inverse Born

series can be written as an iterative method:
{
x1 = b1[x0](d),
xn+1 = xn + bn+1[x0](d⊗n+1).

By truncating at step k and using xk as a new reference coefficient to restart the

inverse Born series, we develop a family of iterative methods we refer to as “restarted
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inverse Born series of order k” or RIBS(k). These iterative methods are closely

related to well-established iterative methods based on Taylor expansions, such as the

Gauss-Newton (see, e.g., [19]) and Chebyshev-Halley (see, e.g., [31]) methods. We

perform a brief numerical study of convergence properties of the RIBS(k) method,

but leave an in-depth investigation to future work.

In Chapter 2, we include a reprint of our publication [3] that details this study

and its application to the inverse Schrödinger problem with internal measurements.

1.2 Imaging with waves

Inhomogeneities in an otherwise homogeneous medium can be imaged using waves.

The basic principle is to probe a medium with a wave signal, wait for the signal to

reflect off of inhomogeneities or scatterers in the medium, and record these backscat-

tered echoes at one or more receivers. From these recordings, one can then image the

scatterers’ locations using classical imaging functionals such as Kirchhoff migration

(travel-time migration) [11] or Multiple Signal Classification (MUSIC) [16]. The

underlying PDE is the wave equation

1

c2

∂2u

∂t2
−∆u = f.

The goal of these imaging methods is to recover information of the wave speed c(~x) of

the medium from measurements of the wave field u(~x, t) and knowledge of the wave

source f(~x, t). The Kirchhoff and MUSIC imaging functionals are well understood,

but they both rely on the phase information contained in full waveform measurements

of the scattered field. Here, full waveform measurements refer to measuring both the

amplitude and phase of the complex field û(~x, ω), where ·̂ denotes the Fourier

transform of u(x, t) with respect to the time variable. When this phase information

is lost and only intensity (amplitude) measurements |û(~x, ω)|2 can be made, these

classical imaging methods cannot be used directly.

1.2.1 Intensity-only measurements

Intensity measurements arise in practice, e.g., when the response time of a receiver

is much longer than a typical wave period. This is common in optical applications,

such as optical coherence tomography [38, 39] and diffraction tomography [26, 27].
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Another form of intensity measurement occurs when one measures autocorrelations

of a signal, i.e., correlating a recorded signal with itself. Owing to the Wiener-

Khinchin theorem (see, e.g., [32]), measuring the autocorrelation is equivalent to

measuring the power spectrum of the signal, i.e., the intensity measurements for each

frequency contained in a signal. Because intensity measurements are common in

applications, imaging from such data is crucial to develop cheaper and more robust

imaging techniques.

A common approach for imaging with intensities is known as phase retrieval.

Here one tries to recover full waveform data (i.e., phase information) from intensity

data, and then use this recovered field to form an image. Gerchberg and Saxton

[28] developed an iterative method to fit an initial guess of full waveform data to

the intensity measurements made at two different measurement planes. Gbur and

Wolf [27] used a similar principle to essentially recover full waveform data on a

single measurement plane, from the intensity measurements made on two different

measurement planes. A method of Teague [42] uses a differential identity to relate

measured intensity data on a plane with full waveform data measured on the plane’s

perimeter, ultimately allowing for full waveform data reconstruction. Still other

methods use spatial constraints (e.g., [24]), or optimization techniques (e.g., [18])

to approximately recover phases.

Some intensity-only imaging methods bypass the phase retrieval step altogether.

The approaches [12, 14, 44] each reformulate the problem of imaging a few point

scatterers as a convex optimization problem involving low-rank matrices. These

methods increase the dimensionality of the problem in that one tries to recover a

matrix rather than a vector, but in doing so they also linearize the problem. By

using specific illuminations (i.e., source signals), these methods can obtain exact

recovery of a few point scatterers from single frequency intensity measurements. Other

non-phase-retrieval methods fit assumed models of scatterers to measured intensity

data (e.g., [41]), or simply treat intensity data as noisy measurements of full waveform

data (e.g., [20]).

Recently, several imaging methods have been developed that do not recover phase

information fully. Instead they recover sufficient phase information that one can then
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image with existing techniques (e.g., Kirchhoff migration or MUSIC). The method of

Novikov, Moscoso, and Papanicolaou [36], uses linear combinations of single-source

experiments and the polarization identity to measure inner products of single-source

experiments from intensity data. They show these inner products determine full

waveform data, up to a global phase that does not affect images when using, e.g., the

MUSIC imaging functional. The work by Chen and Huang [15] uses intensity-only

measurements scaled by the full waveform incident field as data to image with reverse

time migration. Through a series of bounds, they show the image obtained using the

scaled data is asymptotically equivalent to the image obtained from full waveform

data. In [15], the asymptotic equivalence is in the far-field limit, meaning the distance

between the sources/receivers and the scattering object tends to infinity.

1.2.2 Phase retrieval as a least squares problem

We develop an imaging method in [4] that also exploits the concept of an imaging

functional being unaffected by imperfect knowledge of phases. Our method is built

around a specific illumination strategy and a smallness assumption on the scattered

field. We consider a physical setup consisting of multiple point sources located at

{~xs}Ns=1 and a single receiver located at ~xr. Using source pairs (i.e., sending the same

signal from a pair of locations ~xs1 , ~xs2 , for s1, s2 ∈ {1, . . . , N} simultaneously), we

measure the intensity of the resulting wavefield at the receiver location ~xr. Up to some

approximations, we can view the problem of recovering the full waveform data from

intensity data as a linear system. We show this linear system has a one-dimensional

nullspace and thus does not admit a unique solution for full waveform data. However,

we show its least squares solution gives sufficient data to image using Kirchhoff

migration. Essentially, the Kirchhoff migration functional ignores the nullspace of this

matrix for high frequencies. We also generalize our method to using stochastic source

signals with autocorrelation measurements at the receiver, thus relaxing constraints

on the knowledge of probing wave fields. A reprint of our publication that first

proposes and details this imaging method and its specific illumination strategy is

included in Chapter 3.

In Chapter 4, we generalize our imaging method to a simpler illumination strategy
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and framework. Our physical setup here consists of multiple receivers located at

{~xr}Nr=1 and a single point source located at ~xs. We probe the medium with a source

signal at ~xs and measure intensities of the resulting wavefield at each receiver location

{~xr}Nr=1. Again, up to some approximations we can view the problem of recovering

the full waveform data from intensity data as a linear system. The linear system is

underdetermined of size N×2N since we are measuring intensity data at the receivers,

i.e., we measure N real numbers, while the full waveform data consists of N complex

or 2N real numbers. We show the nullspace of this system is N−dimensional, but

more importantly, it again leaves Kirchhoff images unaffected for high frequencies.

Moreover, the least squares solution of the system can be expressed simply as the

scattered intensity data scaled by the incident field. Therefore, the least squares

solution can be understood as a preprocessing step to use Kirchhoff migration with

intensity data.

We recently realized that the recovered full waveform data and imaging functional

we use in Chapter 4 is essentially the same as that in the preprint of Chen and Huang

[15]. Although these methods are developed in different physical setups (we use a

limited-aperture or array setup while Chen and Huang [15] use a full-aperture setup),

they do share some similarities. Our method relies on a smallness assumption of

the scattered field at the receivers, which is satisfied if scattering in the medium is

sufficiently weak and the sources and receivers are close together. This smallness

assumption is automatically satisfied in the setup considered by Chen and Huang

[15] because the sources and receivers are located far from the scatterer. We use a

stationary phase argument to show the asymptotic equivalence of Kirchhoff images

for recovered data and full waveform data, in a high frequency limit. Chen and Huang

[15] use bounds to show this asymptotic equivalence in the far field limit. Finally,

in our approach we motivate the data we use for the Kirchhoff imaging functional

as an incomplete phase retrieval resulting from the solution to a linear least squares

problem. In [15] the imaging data is interpreted as preprocessed or “corrected” data.
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1.3 Polycrystalline material dynamics

Polycrystalline materials are commonly found throughout science and engineering.

These are materials composed of a multitude of small crystallites or grains, separated

by interfaces known as grain boundaries. They are generally metastable and can

undergo a rearrangement process known as grain growth or coarsening. Here, coars-

ening refers to the rearrangement of the polycrystalline material into an energetically

preferable configuration by growing or shrinking its grain boundaries. Understanding

how material properties change during coarsening is crucial to advance materials

science technology. Thus, mathematical models of coarsening are needed.

1.3.1 Modeling grain growth

Many different mathematical models and numerical methods are used to study

different aspects of coarsening on different length scales. For example, the math-

ematical models [17, 29, 37] are particle-based in the sense that grain boundaries

are modeled as an alignment of individual particles with dynamics imposed on each

particle. These models allow one to study local changes in the grain boundary network

arising from intermolecular forces and interactions. However, due to computational

cost these studies are generally restricted to a few individual grains. Therefore, other

models have been proposed to study material dynamics on a large or macroscopic scale

[6, 21, 22, 33]. These models are constructed using sets of coupled PDEs to impose

curvature-driven growth on grain boundaries (known as the Mullins equation [25]),

with boundary conditions imposed at locations where multiple grain boundaries meet

(known as the Herring condition [30]). The models [21, 22], model grains as charac-

teristic functions with diffuse boundaries, which is suitable to study the evolution of

geometric material features, e.g., average grain sizes, grain lattice orientations, etc.

Alternatively, the models [6, 33], employ sharp front tracking methods to accurately

resolve grain boundary locations, which is useful when one is concerned with studying

features of the grain boundary network itself.
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1.3.2 The GBCD and a theory for its evolution

Of significant interest is understanding how a polycrystalline material rearranges

itself according to the energetics of the grain boundary network. Energy in the

network arises from the misalignment of the grain lattice of neighboring grains (termed

misorientation) and/or a preferred direction of grain lattice orientation. Experimen-

tally it is observed that grain boundaries with high energy tend to shrink while

low-energy boundaries tend to grow. The recent mathematical models developed in

[6, 33], thus impose grain boundary dynamics by using an interfacial energy density

ψ(α, θ) that gives the energy per unit length of grain boundary with misorientation α

and normal direction n = (cos(θ), sin(θ)). These advances in simulation eventually led

to the discovery of the grain boundary character distribution (GBCD). The GBCD is

the probability density ρ(α, θ, t) that gives the probability of finding a grain boundary

somewhere in the network, with a given α and θ, at time t. It is a stable statistic that

can be collected easily in simulation and physical experiments, and is thus a leading

candidate to characterize texture development in polycrystalline materials.

To better understand the behavior of the GBCD in two- and three-dimensional

grain growth models, a one-dimensional coarsening model is proposed and analyzed

in [5, 6, 7, 10]. The model captures crucial dynamics of grain growth in two and

three dimensions, yet it simplifies the analysis of the grain boundary network. Dy-

namics are imposed in the model using an energy density ψ(α) that depends only on

misorientation (i.e., no preferred growth direction). By defining a GBCD ρ(α, t) for

the one-dimensional network, the authors [5, 6, 7, 10] derive an energy dissipation

inequality that strongly suggests Fokker-Planck dynamics of ρ, i.e.,

µ
∂ρ

∂t
=

∂

∂α

(
σ
∂ρ

∂α
+ ψ′ρ

)
,

for some µ > 0, σ > 0. The dissipation inequality they derive uses a crucial entropic

assumption: the one-dimensional network evolves to maximize its entropy. Thus, the

Fokker-Planck model for GBCD evolution is a theory that can be validated.

1.3.3 Validating the entropy-based theory

In Chapter 5, we review and extend the work of [5, 6, 7, 10] by providing numerical

validations of their entropy-based theory. The first validation we perform is originally
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proposed and performed in [5, 6, 7, 8, 9, 10]. Essentially, by comparing the steady-

state solution of the Fokker-Planck equation (a Boltzmann) with the GBCD harvested

at the final time of simulation, one can estimate the coefficient σ and determine if the

Boltzmann and final time GBCD agree qualitatively. We next extend this validation

to intermediate times (rather than only at steady-state) by developing routines to

assign Fokker-Planck times to the empirically harvested GBCD, allowing us to freely

choose the coefficient µ. We refer to these routines as time-fitting procedures, and

they are based on formulas for the evolution of expected values of given functions,

where expectations are computed using the Fokker-Planck solution. Upon fitting the

GBCD to Fokker-Planck time scales, we directly compare the GBCD with Fokker-

Planck solutions at a few intermediate times, and determine they agree qualitatively.

We provide an additional validation procedure in the form of an energy dissipation

identity that is satisfied for solutions to the Fokker-Planck equation. By verifying

the GBCD satisfies this identity both qualitatively and in a quantitative probabilistic

sense, we find further evidence validating the Fokker-Planck model of the GBCD

evolution.
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2.1 Introduction

We consider the problem of finding a Schrödinger potential q(x) (which may be

complex) from discrete internal measurements of the solution ui(x) to the Schrödinger

equation {−∆ui + qui = φi, for x ∈ Ω,

ui = 0, for x ∈ ∂Ω,
(2.1)

in a closed bounded set Ω ⊂ Rd for d ≥ 2, and for different (known) source terms

φi ∈ C∞(Ω), i = 1, . . . , N . We further assume q ∈ L∞(Ω) is known in Ω\Ω̃, where Ω̃

is a closed subset of Ω with a finite distance separating ∂Ω̃ and ∂Ω.

The internal measurements we consider are of the form

Di,j =

∫

Ω

φj(x)ui(x)dx, for i, j = 1, . . . , N. (2.2)

The measurement Di,j is a weighted average of the field ui resulting from the i−th

source term. Although it is not necessary for our method to work, we assume for

simplicity the same source terms are used as weights for the averages.

A motivation for this inverse Schrödinger problem is transient hydraulic tomog-

raphy (see, e.g., [4] for a review). The hydraulic pressure or head v(x, t) in an

underground reservoir or aquifer Ω resulting from a source ψ(x, t) (the injection well)

satisfies the initial value problem





Svt = ∇ · (σ∇v)− ψ, for x ∈ Ω, t > 0,

v(x, t) = 0, for x ∈ ∂Ω, t > 0,

v(x, 0) = g(x), for x ∈ Ω.

(2.3)

Here S(x) is the storage coefficient and σ(x) the hydraulic conductivity of the aquifer.

The inverse problem is to image both S(x) and σ(x) from a series of measurements

made by fixing a source term at one well, and measuring the resulting pressure

response at the other wells. We show in section 2.6 that the inverse problem of

reconstructing S(x) and σ(x) from these sparse (and discrete) internal pressure

measurements, can be recast as an inverse Schrödinger problem with discrete mea-

surements as in (2.2).

The main tool we use here for solving the inverse Schrödinger problem is inverse

Born series. Inverse Born series have been used to solve inverse problems in different
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contexts such as optical tomography [10, 11, 12, 13], the Calderón or electrical

impedance tomography problem [1] and in inverse scattering for the wave equation

[8].

In section 2.2 we generalize the inverse Born series convergence results of Moskow

and Schotland [12] and Arridge et al. [1], to nonlinear mappings between Banach

spaces. The convergence results of inverse Born series in this generalized setting are

given in section 2.2.3 and proved in section 2.9, following the same pattern of the

proofs in [1, 12]. This new framework is applied in section 2.3 to a few problems that

have been solved before with inverse Born series. We also show that both forward and

inverse Born series are closely related to Taylor series. Since the cost of calculating

the n−th term in an inverse Born series grows exponentially with n, we restart it

after having computed a few k terms (i.e., we truncate the series to k terms and

iterate). We show in section 2.4 that restarting the inverse Born series gives a class of

iterative methods that includes the Gauss-Newton and Chebyshev-Halley methods.

For the discrete measurements Schrödinger problem, we prove that the necessary

conditions for convergence of the inverse Born series are satisfied (section 2.5). Then

in section 2.6, we explain how the transient hydraulic tomography problem can be

transformed into a discrete measurement Schrödinger problem. Finally in section 4.5

we present numerical experiments comparing the performance of inverse Born series

with other iterative methods and their effectiveness for reconstructing the Schrödinger

potential in (2.1) and for solving the transient hydraulic tomography problem. We

conclude in section 4.6 with a summary of our main results.

2.2 Forward and inverse Born series in Banach
spaces

We start by extending the notion of Born series and inverse Born series [10, 12]

to operators between Banach spaces, the idea being to give a common framework

for the convergence proofs of the inverse Born series for diffuse waves [12], the

Calderón problem [1] and the discrete internal measurements Schrödinger problem.

This generalization also highlights that the inverse Born series are a systematic way

of finding nonlinear approximate inverses for nonlinear mappings. The resulting
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approximate inverses are valid locally and have guaranteed error estimates.

In sections 2.2.1 and 2.2.2 we define forward and inverse Born series for a mapping

f from a Banach space X (the parameter space) to another Banach space Y (the data

space). Then in section 2.2.3 we state local convergence results for inverse Born series

in Banach spaces that are valid under mild assumptions on the forward Born series.

The proofs are included in section 2.9 as they are patterned after the proofs in [1, 12].

Examples of forward and inverse Born series are included in section 2.3.

2.2.1 Forward Born series

Let X and Y be Banach spaces and consider a mapping f : X → Y . In

inverse problems applications X is typically the parameter space and Y the data

or measurements space. The forward problem is to find the measurements y = f(x)

from known parameters x. The inverse problem is to estimate the parameters x

knowing the measurements y.

Born series involve operators in L(X⊗n, Y ), i.e., bounded linear operators from

X⊗n to Y . Here we used the notation

X⊗n = X ⊗ · · · ⊗X︸ ︷︷ ︸
n times

.

If M(Xn) is the space of n−linear forms acting on Xn, the (elementary) tensor

product x1 ⊗ . . . ⊗ xn ∈ X⊗n, with xj ∈ X, j = 1, . . . , n, is a linear form acting

on M(Xn) such that (x1 ⊗ . . . ⊗ xn)(u) = u(x1, . . . , xn), for u ∈ M(Xn). The

tensor product space X⊗n is the subspace of the dual of M(Xn) that is spanned by

linear combinations of elementary tensor products, i.e., any x ∈ X⊗n admits a (not

necessarily unique) representation x =
∑k

i=1 x
(i)
1 ⊗ . . .⊗ x(i)

n . In general, X⊗n is not a

Banach space. In an abuse of notation we also denote by X⊗n its completion under

the projective norm:

‖x‖X⊗n = inf

{
k∑

i=1

‖x(i)
1 ‖X · · · ‖x(i)

n ‖X : x =
k∑

i=1

x
(i)
1 ⊗ . . .⊗ x(i)

n

}
, (2.4)

where the infimum is taken over all representations of x in terms of elementary tensors.

Out of all the norms on a tensor product space we choose the projective norm because

it has the properties (see, e.g., [14, Prop. 2.1, 2.3]):
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1. For xi in X, i = 1, . . . , n,

‖x1 ⊗ . . .⊗ xn‖X⊗n = ‖x1‖X . . . ‖xn‖X .

2. If a ∈ L(X⊗m, Y ) and b ∈ L(X⊗n, Y ) then a⊗ b ∈ L(X⊗(n+m), Y ⊗2) is defined

by (a⊗ b)(u⊗ v) = a(u)⊗ b(v) for u ∈ X⊗m and v ∈ X⊗n. Moreover, when the

projective norm is used,

‖a⊗ b‖L(X⊗(n+m),Y ⊗2) = ‖a‖L(X⊗m,Y )‖b‖L(X⊗n,Y ).

For the sake of clarity, and when there is no ambiguity, the norm subscripts are

omitted.

Notice that a map a ∈ L(X⊗n, Y ) can be identified to a bounded multilinear (or

n−linear) map ã : Xn → Y defined by

ã(x1, . . . , xn) = a(x1 ⊗ · · · ⊗ xn),

and that ‖ã‖ = ‖a‖, where

‖ã‖ = sup{‖ã(x1, . . . , xn)‖Y | ‖xi‖X ≤ 1, i = 1, . . . , n}.

Remark 1 The isometry ‖ã‖ = ‖a‖ is only valid when the projective norm is used. It

may be possible to extend the theory on forward and inverse Born series to other tensor

product norms such as the injective norm (see, e.g., [14, §3]) or even to reasonable

crossnorms (see, e.g., [14, §6]). However it is not clear to us if there is any advantage

in doing so. Therefore we focus only on the projective norm because it gives an

isometric isomorphism between bounded multilinear forms Xn → Y and L(X⊗n, Y )

(see, e.g., [14, §2.2]).

Forward Born series express the measurements for a parameter x+ h ∈ X near a

known parameter x ∈ X, assuming knowledge of y = f(x).
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Definition 1 A nonlinear map f : X → Y admits a Born series expansion at x ∈ X
if there are are bounded linear operators an ∈ L(X⊗n, Y ) (possibly depending on x)

such that

d(h) = f(x+ h)− f(x) =
∞∑

n=1

an(h⊗n), (2.5)

and the an satisfy the bound

‖an‖ ≤ αµn for n = 0, 1, . . .. (2.6)

It follows from the bounds on the operators an, that the Born series converges locally,

i.e., when h is sufficiently small:

‖h‖ < 1/µ. (2.7)

This restriction on the size of the perturbation h can be thought of as the radius

of convergence of the expansion about the point x.

2.2.2 Inverse Born series

The purpose of inverse Born series is to recover h from knowing the difference

in measurements d(h) = f(x + h) − f(x) from a (known) reference combination of

parameters x and measurements y = f(x). The original idea in [10] is to write a

power series of the data d,

g(d) =
∞∑

n=1

bn(d⊗n), (2.8)

involving the operators bn ∈ L(Y ⊗n, X), which are obtained by requiring (formally)

that g is the inverse of d(h), i.e., g(d(h)) = h. By equating operators L(X⊗n, Y ) with

the same tensor power n, the operators bn need to satisfy:

I = b1(a1)

0 = b1(a2) + b2(a1 ⊗ a1)

0 = b1(a3) + b2(a1 ⊗ a2) + b2(a2 ⊗ a1) + b3(a1 ⊗ a1 ⊗ a1)

...

0 =
n∑

m=1

∑

s1+···+sm=n

bm(as1 ⊗ · · · ⊗ asm)

(2.9)

where I is the identity in the parameter space X. The requirement that b1a1 = I is

quite strong and may not be possible, for example when the measurement space Y is
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finite dimensional and X is infinite dimensional. Nevertheless if we assume that b1

is both a right and left inverse of a1 we can express the operators bn in terms of the

operators an and b1:

b2 = −b1a2(b1 ⊗ b1)

b3 = −(b1a3 + b2(a1 ⊗ a2) + b2(a2 ⊗ a1))(b1 ⊗ b1 ⊗ b1)

...

bn = −
(
n−1∑

m=1

∑

s1+···+sm=n

bm(as1 ⊗ · · · ⊗ asm)

)
(b⊗n1 ).

(2.10)

Since an inverse of a1 is not necessarily available, the key is to choose b1 ∈ L(Y,X)

as a regularized pseudoinverse of a1 so that b1a1 is close to the identity, at least in

some subspace. This allows us to define the inverse Born series.

Definition 2 Assume f : X → Y admits a Born series (Definition 1) and let b1 ∈
L(Y,X). The inverse Born series for f using b1 is the power series g(d) given by (2.8)

where the operators bn ∈ L(Y ⊗n, X) are defined for n ≥ 2 by (2.10). Here again we

note the dependence of the operators bn, n ≥ 2, on the expansion point x ∈ X and

the operator b1.

We now state results that guarantee convergence of the inverse Born series, and

give an error estimate between the limit of the inverse Born series and the true

parameter perturbation h. The error estimate involves ‖(I−b1a1)h‖, that is how well

the operator b1a1 approximates the identity for h. These results require that both h

and d(h) = f(x+ h)− f(x) are sufficiently small.

2.2.3 Inverse Born series local convergence

Convergence and stability for the forward and inverse Born series were established

by Moskow and Schotland [12] for an inverse scattering problem for diffuse waves (see

also section 2.3.3). Specifically they obtained bounds on the operators an in (2.27)

similar to the bounds (2.6). With these bounds, it is possible to show convergence

and stability of the inverse Born series and even give a reconstruction error bound

[12].

The convergence and stability proofs in [12] for the diffuse wave problem carry
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out without major modifications to the general Banach space setting. We give in this

section a summary of results analogous to those in [12]. The proofs are deferred to

section 2.9, as they closely follow the proof pattern in [12].

The following Lemma shows that if the forward Born operators satisfy the bounds

(2.6), the operators bn are also bounded under a smallness condition on the linear

operator b1 that is used to prime the inverse Born series.

Lemma 1 Assume f : X → Y admits a Born series and that

‖b1‖ <
1

(1 + α)µ
, (2.11)

where α and µ are as in Definition (1). Then the coefficients (2.10) of the inverse

Born series satisfy the estimate

‖bn‖ ≤ β((1 + α)µ‖b1‖)n, for n ≥ 2 (2.12)

where

β = ‖b1‖ exp

(
1

1− (1 + α)µ‖b1‖

)
. (2.13)

Convergence of the inverse Born series follows from the bounds in Lemma 1 and

a smallness condition on the data d.

Theorem 1 (Convergence of inverse Born series) The inverse Born series (2.8)

induced by b1 and associated with the forward Born series (2.5) converges if

‖b1‖ <
1

(1 + α)µ
(2.14)

and the data is sufficiently small

‖d‖ < 1

(1 + α)µ‖b1‖
. (2.15)

If h∗ is the limit of the series, one can estimate the error due to truncating the series

by ∥∥∥∥∥h∗ −
N∑

n=1

bn(d⊗n)

∥∥∥∥∥ ≤ β
((1 + α)µ‖b1‖‖d‖)N+1

1− (1 + α)µ‖b1‖‖d‖
.

Stability also follows using essentially the same proof as in [12].
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Theorem 2 (Stability of inverse Born series) Assume ‖b1‖ < ((1 +α)µ)−1 and

that we have two data d1 and d2 satisfying M = max(‖d1‖, ‖d2‖) < ((1 +α)µ‖b1‖)−1.

Let hi = g(di) for i = 1, 2 (i.e., the limit of the inverse Born series). Then the

reconstructions are stable with respect to perturbations in the data in the sense that:

‖h1 − h2‖ < C‖d1 − d2‖, (2.16)

where the constant C depends on M , α, µ, and ‖b1‖.

Theorem 1 guarantees convergence of the forward and inverse Born series:

d =
∞∑

n=1

an(h⊗n) and h∗ =
∞∑

n=1

bn(d⊗n). (2.17)

The limit h∗ of the inverse Born series is, in general, different from the true parameter

perturbation h. The following theorem provides an estimate of the error ‖h− h∗‖.

Theorem 3 (Error estimate) Assuming that ‖h‖ ≤M , ‖b1a1h‖ ≤M with

M <
1

(1 + α)µ
,

and that the hypothesis of theorem 1 hold, i.e.,

‖b1‖ ≤
1

(1 + α)µ
and ‖d‖ ≤ 1

(1 + α)µ‖b1‖
,

we have the following error estimate for the reconstruction error of the inverse Born

series: ∥∥∥∥∥h−
∞∑

n=1

bn(d⊗n)

∥∥∥∥∥ ≤ C‖(I − b1a1)h‖, (2.18)

where the constant C depends only on M , α, β and µ and ‖b1‖.

The proofs of lemma 1, theorems 1, 2, and 3 can be found in section 2.9.

Remark 2 To invoke theorems 1–3 for a specific mapping f , it is necessary to show

the forward Born operators an satisfy certain bounds (2.6). By the bounded linear

extension theorem (see, e.g., [9, §2.7]), it is sufficient to show the bound for elements

of X⊗n before completing the tensor product space with the projective norm. In other

words, we only need to check that the bound ‖an(x)‖ ≤ αµn‖x‖ holds for x that are
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finite linear combinations of elementary tensor products, i.e., for x =
∑k

i=1 x
(i)
1 ⊗· · ·⊗

x
(i)
n where x

(i)
j ∈ X for all i = 1, . . . , k and j = 1, . . . , n. Since we use the projective

norm for tensor product spaces, another way of showing the bound (2.6) is to show it

is satisfied by the associated multilinear operator ãn : Xn → Y (see remark 1).

2.3 Examples of forward and inverse Born series

We write examples of forward and inverse Born series in the framework of sec-

tion 2.2. We start by showing in section 2.3.1 that forward and inverse Born series

are intimately related to Taylor series. Another example is that of Neumann series

(section 2.3.2). We also include the forward and inverse Born series from [1, 12],

namely those for the diffuse waves for optical tomography (section 2.3.3) and the

electrical impedance tomography problem (section 2.3.4). We finish the examples

with the discrete internal measurements Schrödinger problem (section 2.3.5), which

is the main application of inverse Born series that we are concerned with here.

2.3.1 Taylor series

• Parameter space: X = Banach space

• Measurement space: Y = X (for simplicity)

• Forward map: f analytic (see, e.g., [15])

• Forward Born series coefficients: About x ∈ X, the coefficients an can be

any operators in L(X⊗n, X) agreeing with f (n)(x)/n! on the diagonal, i.e., for

any h ∈ X,

an(h⊗n) =
1

n!
f (n)(x)(h⊗n).

Here f (n) is the n−th Fréchet derivative of f , see, e.g., [16, §4.5] for a definition.

Here we use the theory of analytic functions between Banach spaces (see, e.g., [15])

which assumes that the function f is C∞ and that the Taylor series of the function

f(x+ h) =
∞∑

n=0

1

n!
f (n)(x)(h⊗n) (2.19)
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converges absolutely and uniformly for h small enough. If in addition we assume that

f admits a Born series expansion at x, then we have

d(h) = f(x+ h)− f(x) =
∞∑

n=1

1

n!
f (n)(x)(h⊗n) =

∞∑

n=1

an(h⊗n).

That is the Taylor series and Born series coefficients, f (n)(x)/n! and an respectively,

agree at the diagonal h⊗n.

Since f is C∞, the Fréchet derivatives f (n) are symmetric in the sense that for any

permutation π of {1, . . . , n} we have that

f (n)(h1 ⊗ · · · ⊗ hn) = f (n)(hπ(1) ⊗ · · · ⊗ hπ(n)).

The Born series coefficients an in general do not satisfy this property, however we can

consider their symmetrization ãn : X⊗n → Y defined by

ãn(h1 ⊗ · · · ⊗ hn) =
1

n!

∑

π

an(hπ(1) ⊗ · · · ⊗ hπ(n)) (2.20)

where the summation is taken over all permutations π of {1, . . . , n}.
Clearly we have that

ãn(h⊗n) =
1

n!

∑

π

an(h⊗n) = an(h⊗n),

and so we have the following equality:

d(h) = f(x+ h)− f(x) =
∞∑

n=1

1

n!
f (n)(x)(h⊗n) =

∞∑

n=1

ãn(h⊗n).

We then have two analytic functions that are equal for h sufficiently small, therefore

the symmetric operators 1
n!
f (n)(x) and ãn must be identical (see [15]). Therefore the

Born series and Taylor series coefficients are essentially the same, up to a symmetriza-

tion.

If a1 = f (1)(x) is invertible (this is where the assumption X = Y is used), we

can apply the implicit function theorem (see, e.g., [15] or [16, §4.6]) to guarantee the

existence of f−1 in a neighborhood of x. Moreover the inverse is analytic [15] in a

neighborhood of y = f(x) and admits a Taylor series near y

f−1(y + d) =
∞∑

n=0

1

n!
(f−1)(n)(y)(d⊗n). (2.21)

On the other hand, if b1 = a−1
1 we can define an inverse Born series for f as in

(2.8). By the error estimate for the inverse Born series (Theorem 3) we can guarantee
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that h = g(d(h)) = g(f(x + h) − f(x)) for h and d(h) sufficiently small. Since f is

invertible in a neighborhood of y we can also write g in terms f−1

g(d) = f−1(y + d)− f−1(y) = f−1(y + d)− x.

Using the Taylor series (2.21) for f−1 we can write

g(d) =
∞∑

n=1

bn(d⊗n) =
∞∑

n=1

1

n!
(f−1)(n)(y)(d⊗n). (2.22)

As is the case for the forward Born operators an, the inverse Born operators bn are

in general not symmetric. If we consider their symmetrization b̃n (as in (2.20)), then

we find that the symmetric operators b̃n and 1
n!

(f−1)(n)(y) are the same. Therefore

inverse Born series is a way of calculating (up to a symmetrization) the Taylor series

for f−1 from the Taylor series for f .

2.3.2 Neumann series

• Parameter space: X = RN

• Measurement space: Y = Rn×n

• Forward map: f(x) = MT (L − diag(x))−1M, where L ∈ RN×N is invertible

and M ∈ RN×n.

• Forward Born series coefficients: About 0, the coefficients are an(h) =

MT (L−1 diag(h))nL−1M.

The forward Born series in this is example comes from the Neumann series for

the inverse of L − diag(h), when it exists. Indeed if for some matrix induced norm

‖L−1 diag(h)‖ < 1, this inverse exists and is given by the Neumann series

(L− diag(h))−1 =

( ∞∑

n=0

(L−1 diag(h))n

)
L−1. (2.23)

The forward Born series is then

f(h)− f(0) = MT (L− diag(h))−1M−MTL−1M

=
∞∑

n=1

MT (L−1 diag(h))nL−1M.
(2.24)

The inverse Born series can be defined by using as b1 a regularized pseudoinverse

of the linear map a1(h) = MTL−1 diag(h)L−1M. By the convergence results of
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section 2.2.3, the inverse Born series converges under smallness conditions for h,

f(h)− f(0) and b1.

This problem is motivated by a discretization of the Schrödinger equation ∆u −
qu = φ with finite differences. The matrix L is the finite difference discretization of

the Laplacian and h is the Schrödinger potential at the discretization nodes. The

matrix M corresponds to different source terms φ, which are also used to measure u

(collocated sources and receiver setup as the one we use for the Schrödinger problem

with discrete internal measurements in section 2.3.5). This example can be easily

modified when the discretization of the qu term in the Schrödinger equation is not

a diagonal matrix (as is often the case for finite elements). The collocated sources

and receivers setup can be changed as well by using a matrix other than MT in the

definition of f(x).

2.3.3 Optical tomography with diffuse waves model [12]

In the diffuse waves approximation for optical tomography (see, e.g., [2] for a

review), the energy density Gq(x,y) resulting from a point source y ∈ Ω satisfies a

Schrödinger type equation:
{ −∆xGq(x,y) + q(x)Gq(x,y) = −δ(x− y), for x ∈ Ω,

Gq(x,y) + `n(x) · ∇xGq(x,y) = 0, for x ∈ ∂Ω,
(2.25)

where the domain Ω ⊂ Rd, d ≥ 2 has a smooth boundary ∂Ω, and q(x) ≥ 0 is the

absorption coefficient. The ` ≥ 0 in the Robin boundary condition is given and, as

usual, n(x) denotes the unit outward pointing normal vector to ∂Ω at x. The inverse

problem here is to recover the absorption coefficient q(x) from knowledge of Gq(x,y)

on ∂Ω × ∂Ω. This data amounts to taking measurements of the energy density at

all x ∈ ∂Ω for all source locations y ∈ ∂Ω or to knowing the Robin-to-Dirichlet map

for q. If the difference between the absorption coefficient q(x) and a known reference

coefficient q0(x) is supported in some Ω̃ ⊂ Ω (with ∂Ω and ∂Ω̃ separated by a finite

distance), then Gq satisfies the Lippmann-Schwinger type integral equation:

Gq(x,y) = Gq0(x,y) +

∫

Ω̃

dz Gq0(x, z)(q(z)− q0(z))Gq(z,y). (2.26)

Moskow and Schotland [12] show that the forward Born or scattering series for

this problem can be defined as follows.
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• Parameter space: X = Lp(Ω̃) for 2 ≤ p ≤ ∞.

• Measurement space: Y = Lp(∂Ω× ∂Ω)

• Forward map: f : q → Gq(x,y)|∂Ω×∂Ω.

• Forward Born series coefficients: For η1, . . . , ηn ∈ Lp(Ω̃) and x1,x2 ∈ ∂Ω,

the coefficient for the Born series expansion about q = q0 is

(an(η1 ⊗ · · · ⊗ ηn))(x1,x2) =∫

Ω̃n
Gq0(x1,y1)Gq0(y1,y2) . . . Gq0(yn−1,yn)Gq0(yn,x2)

η1(y1) . . . ηn(yn) dy1 . . . dyn. (2.27)

In particular, the results of Moskow and Schotland [12] show that the operators an

satisfy bounds similar to (2.6) assuming q0 is constant and that q is sufficiently close

to q0. The authors formulate bounds on an in the context of multilinear operators

an : Lp(Ω̃n) → Lp(∂Ω × ∂Ω), but with minor modifications, the bounds also hold in

the context of linear operators an : (Lp(Ω̃))⊗n → Lp(∂Ω × ∂Ω). Therefore one can

define an inverse Born series through the procedure (2.10), and this series converges

under appropriate conditions (see [12] and section 2.2.3).

2.3.4 The Calderón or electrical impedance tomography
problem [1]

The electric potential inside a domain Ω with positive conductivity σ(x) ∈ L∞(Ω)

resulting from a point source located at y ∈ Ω satisfies the equation

{ ∇x · [σ(x)∇xGσ(x,y)] = −δ(x− y), for x ∈ Ω

Gσ(x,y) + zσn(x) · ∇xGσ(x,y) = 0, for x ∈ ∂Ω.
(2.28)

Here we assume the contact impedance z ≥ 0 is known and that σ is constant on ∂Ω.

The domain Ω is also assumed to be in Rd, d ≥ 2 and with smooth boundary. The

electric impedance tomography (EIT) problem consists in recovering the conductivity

σ from the Robin-to-Dirichlet map, i.e., from knowledge of Gσ(x,y) on ∂Ω×∂Ω (see,

e.g., [3] for a review of EIT). If the difference between σ and a known reference
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conductivity σ0 is supported in Ω̃ ⊂ Ω (with ∂Ω̃ at a finite distance from ∂Ω), Gσ

satisfies the integral equation

Gσ(x,y) = Gσ0(x,y) +

∫

Ω̃

dz Gσ0(x, z)∇z · [(σ(z)− σ0(z))∇zGσ(z,y)]. (2.29)

Integrating by parts and using that σ = σ0 on ∂Ω, Gσ obeys a Lippmann-Schwinger

type equation:

Gσ(x,y) = Gσ0(x,y)−
∫

Ω̃

dz (σ(x)− σ0(x))∇zGσ0(x, z) · ∇zGσ(z,y). (2.30)

As shown by Arridge et al. [1], one can then define a forward Born series that can be

summarized as follows.

• Parameter Space: X = L∞(Ω̃).

• Measurement space: Y = L∞(∂Ω× ∂Ω).

• Forward map: f : σ → Gσ(x,y)|∂Ω×∂Ω.

• Forward Born series coefficients: For η1, . . . , ηn ∈ L∞(Ω̃) and x1,x2 ∈ ∂Ω,

the coefficient for the Born series expansion about σ = σ0 is

an(η1 ⊗ · · · ⊗ ηn)(x1,x2) =

(−1)n
∫

Ω̃

dy1 η1(y1)∇y1Gσ0(y1,x1) · ∇y1

∫

Ω̃

dy2 η2(y2)∇y2Gσ0(y2,y1)·

· · · ∇yn−1

∫

Ω̃

dyn ηn(yn)∇ynGσ0(yn,yn−1) · ∇ynGσ0(yn,x2). (2.31)

Arridge et al. [1] show that for σ0 constant, the operators an satisfy bounds similar

to (2.6) and so an inverse Born series can be defined following the procedure (2.10).

As in section 2.3.3, Arridge et al. [1] establish bounds on an as multilinear operators

an : L∞(Ω̃n) → L∞(∂Ω × ∂Ω), but with minor modifications, the bounds also hold

for linear operators an : (L∞(Ω̃))⊗n → L∞(∂Ω× ∂Ω). The convergence of this series

is established in [1] and can also be shown using the generalization in section 2.2.3.

2.3.5 The Schrödinger problem with discrete internal
measurements

Instead of having infinitely many measurements as in the optical tomography

inverse Schrödinger problem (outlined in section 2.3.3), we consider here the case
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where we only have access to finitely many internal measurements Di,j (see equation

(2.2)) of the fields ui, i = 1, . . . , N , satisfying (2.1). We also allow the Schrödinger

potential in (2.1) to be complex (as discussed in section 2.6, this is useful when solving

the transient hydraulic tomography problem).

The Green function Gq(x,y) for the problem (2.1) satisfies (2.25) with homo-

geneous Dirichlet boundary conditions (instead of homogeneous Robin boundary

conditions). The fields ui can be expressed in terms of the Green function Gq as

ui(x) = −
∫

Ω

dy Gq(x,y)φi(y), i = 1, . . . , N. (2.32)

If the difference between the Schrödinger potential q(x) and known reference q0(x)

is supported in Ω̃ ⊂ Ω (with ∂Ω̃ and ∂Ω separated by a finite distance), Gq and Gq0

are still related by the Lippmann-Schwinger type equation (2.26). By a fixed point

procedure we can define a forward Born series as follows.

• Parameter Space: X = L∞(Ω̃).

• Measurement Space: Y = CN×N , with norm ‖A‖ = maxi,j=1,...N |Ai,j|.

• Forward map: Owing to (2.32), the data D in (2.2) becomes:

f : q → D = −
[∫

Ω2

dxdy φi(y)φj(x)Gq(x,y)

]

i,j=1...N

.

• Forward Born series coefficients: For η1, . . . , ηn ∈ L∞(Ω̃) the coefficient

for the Born series expansion about q0 is

[an(η1 ⊗ · · · ⊗ ηn)]i,j =

(−1)n
∫

Ω̃n+2

Gq0(x,y1)Gq0(y1,y2) · · ·Gq0(yn−1,yn)Gq0(yn, z)·

η1(y1) · · · ηn(yn)φi(z)φj(x) dzdy1 · · · dyndx, (2.33)

for i, j = 1, . . . , N . Note that we have have assumed suppφi ⊂ Ω̃ so that instead

of integrating over Ω̃n × Ω2 integrate over Ω̃n+2.

We show in section 2.5 that the operators an satisfy the bounds (2.6) (with q0

not necessarily constant), so it is possible to show convergence of the corresponding

inverse Born series by the results of section 2.2.3.
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2.4 Inverse Born series and iterative methods

The main goal of this section is to show that inverse Born series can be used to

design superlinear1 iterative methods converging to an approximation x∗ of the true

parameter xtrue from knowing measurements ymeas = f(xtrue) and the forward map

f : X → Y . The iterative methods we study here are of the form

{
x0 = given,

xn+1 = Tn(xn), for n ≥ 0,

where Tn : X → X. Of course, for such an iterative method to be useful, the iterates

xn need to converge to x∗ as n → ∞ (with an a priori rate of convergence) and

one should be able to estimate the error ‖xtrue − x∗‖ between the desired parameter

xtrue and the limit x∗. Our results are in some sense a generalization of the result

by Markel, O’Sullivan and Schotland [10] that shows that the limits of inverse Born

series and the Newton-Kantorovich method are the same. The Newton-Kantorovich

method is a “frozen” Gauss-Newton method, i.e., the Gauss-Newton method (which

we recall in section 2.4.2), modified so that the pseudoinverse of the linearization

of the forward map is found once and for all for the first iterate and used as is in

subsequent iterates.

2.4.1 Inverse Born series as an iterative method

We start by reformulating the results of section 2.2.3 in the context of iterative

methods. Let us assume that we have a good guess x0 for xtrue, and that we know

the forward Born series about x0, i.e., we know the coefficients aj[x0] ∈ L(X⊗j, Y ) so

that

f(x)− f(x0) =
∞∑

j=1

aj[x0](x− x0)⊗j.

Theorem 1 means that for an appropriate choice of b1[x0], if ‖x0−xtrue‖ and ‖f(x0)−
ymeas‖ are sufficiently small then the inverse Born series

xn − x0 =
n∑

j=1

bj[x0](ymeas − f(x0))⊗j, (2.34)

1We recall that superlinear convergence of xn to x∗ means that ‖xn+1 − x∗‖ ≤ εn‖xn − x∗‖,
where εn → 0 as n→∞.
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converges linearly2 to some x∗ ∈ X as n → ∞. Here we write explicitly the

dependence of the inverse Born operators bn[x0] (defined recursively as in (2.10))

on the reference parameter x0. Notice that the inverse Born series (2.34) can be

written as the iterative method,

{
x0 = given,

xn+1 = xn + bn+1[x0](ymeas − f(x0))⊗(n+1), for n ≥ 0.
(2.35)

The error estimate of theorem 3 quantifies how close the limit x∗ of the iterative

method (2.35) is to the true parameter xtrue, i.e., there is some C > 0 such that

‖x∗ − xtrue‖ ≤ C‖(I − b1[x0]a1[x0])(x0 − xtrue)‖. (2.36)

Unfortunately this is an expensive method to implement as the computational cost

of each term bn[x0] in the inverse Born series (see (2.10)) increases exponentially with

n. Indeed if applying the forward Born operator an[x0] requires n forward problem

solves (as is the case for the Schrödinger problem), an application of the inverse Born

operator bn[x0] involves 2n−1 − 1 forward problem solves.

Remark 3 We emphasize that the inverse Born series (2.34) and (2.35) does not

require evaluating the forward map f at any other point than the initial iterate x0.

In inverse problems, this means the inverse Born series needs only solutions to the

background problem, which may be less expensive to compute, perhaps because it

corresponds to a homogeneous medium or a medium with other symmetries. In

contrast, Gauss-Newton type methods and the restarted inverse Born series introduced

in section 2.4.2 need to evaluate the forward map f (and its linearization) at every

iterate xn.

2.4.2 Restarted inverse Born series (RIBS)

A natural idea to reduce the cost of inverse Born series is to use the k−th iterate

of the inverse Born series (2.35) as the starting guess for a fresh run of inverse Born

series. This gives rise to the following class of iterative methods:

2We recall that linear convergence rate of xn to x∗ means that there is some 0 < C < 1 such that
‖xn+1 − x∗‖ ≤ C‖xn − x∗‖.
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



x0 = given,

xn+1 = xn +
k∑

j=1

bj[xn](ymeas − f(xn))⊗j, for n ≥ 0,
(2.37)

which we denote by RIBS(k).

If f is a differentiable mapping and we choose b1[xn] = (f ′(xn))† (where the sign

† stands for a regularized pseudoinverse of f ′(xn)), the RIBS(1) method is in fact the

Gauss-Newton method:
{

x0 = given,

xn+1 = xn + f ′(xn)†(ymeas − f(xn)), for n ≥ 0,
(2.38)

and is quadratically convergent in a neighborhood of xtrue under fairly mild conditions

on f (for X and Y finite dimensional, see, e.g., [5]).

If in addition to choosing b1[xn] = (f ′(xn))† we have a2[xn] = f ′′(xn)/2, the

RIBS(2) method can be written as




x0 = given,

xn+1 = xn − f ′(xn)†
[
rn −

1

2
f ′′(xn)(f ′(xn)†rn, f

′(xn)†rn)

]
, for n ≥ 0,

(2.39)

where rn ≡ ymeas− f(xn). This is the so called Chebyshev-Halley method, which has

been studied before by Hettlich and Rundell [7] in the context of inverse problems.

This method is guaranteed to converge cubically when f ′′ is Lipschitz continuous [7].

Remark 4 Although the inverse Born series, and the Gauss-Newton and Chebyshev-

Halley methods are guaranteed to converge (under appropriate assumptions), the

limits may be different.

2.4.3 Numerical experiments on a Neumann series toy
problem

Here we compare the performance of inverse Born series, Gauss-Newton and

Chebyshev-Halley on the Neumann series problem discussed in section 2.3.2. We

used for discrete Laplacian L the matrix

L =




−3 1
1 −3 1
· · ·
1 −3 1

1 −3



∈ R256×256.
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The true parameter is a vector with zero mean, independent, normal distributed

entries and standard deviation 0.1. The measurement operator M is a 256×8 matrix

with zero mean, independent, normal distributed entries and standard deviation 1.

For the inverse Born series, b1 is a pseudoinverse of the Jacobian of the forward

problem, where the singular values smaller than 10−6 times the largest singular value

(of the Jacobian) are treated as zeroes. The same pseudoinverse is applied to the

Jacobian matrices involved in the Gauss-Newton and Chebyshev-Halley methods.

The initial guess for all the methods is x0 = 0. For each method we display in

Figure 2.1 (a) the quantity ‖xn − x∗‖. Since we do not have access to the limiting

iterate, we simply took one more step of each method and used it instead of x∗. The

residual terms ‖f(xn) − f(xtrue)‖ are shown in Figure 2.1 (b). As expected, we see

linear convergence for the iterates and the residuals from the truncated inverse Born

series method. Also the first Gauss-Newton (resp. Chebyshev-Halley) iterate error

and residual matches that of the first (resp. second) inverse Born series iterate. The

Gauss-Newton method has the expected quadratic convergence of the error, while the

Chebyshev-Halley exhibits super-quadratic convergence of the error.
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Figure 2.1. Convergence of (a) iterates ‖xn−x∗‖ and (b) residuals ‖f(xn)−f(xtrue)‖,
for the inverse Born series (∗), Gauss-Newton (◦) and Chebyshev-Halley (4) methods.
These methods are applied to the Neumann series problem of section 2.3.2.
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2.5 Born series for the Schrödinger problem with
discrete internal measurements

Recall from section 2.2.3 that local convergence of the forward and inverse Born

series follows from showing that the forward Born operators an satisfy bounds of

the type (2.6). We show in section 2.5.1 that bounds of the type (2.6) hold for

the operators an for the Schrödinger problem with discrete internal measurements

(defined in (2.33)). Then we report in section 2.5.2 a numerical approximation to

the convergence radius of inverse Born series, in a setup related to the hydraulic

tomography application of section 2.6.

2.5.1 Bounds on the forward Born operators

We recall from section 2.3.5 that the parameter space for this problem is X =

L∞(Ω̃) where Ω̃ ⊂ Ω and the distance between ∂Ω and ∂Ω̃ is positive. The difference

between the unknown and the reference Schrödinger potentials is assumed to be

supported in Ω̃. The measurements space is Y = CN×N where N is the number of

sources used and the norm is the entry-wise `∞ norm of a matrix in CN×N .

The proof of lemma 2 below follows a pattern similar to [12]. There are two

main differences. The first is that we work with finitely many measurements. The

second is that we allow the (possibly complex) reference Schrödinger potential q0 to

be in L∞(Ω), whereas in [12] the reference potential is assumed to be constant and

real. The bound (2.6) immediately gives a smallness condition that is sufficient for

convergence of the forward Born series. The smallness condition we obtain is identical

to that in [12]. This is to be expected because the underlying equation is the same

and only the measurements differ.

To prove lemma 2, we need that the reference Schrödinger potential q0(x) ∈ L∞(Ω)

is such that the only solution to

{−∆u+ q0u = 0, in Ω,

u = 0, on ∂Ω,
(2.40)

is u = 0. Such q0 are sometimes called “nonresonant” and we assume that all the

Schrödinger potentials that we deal with in what follows are nonresonant. We also

need two properties for the Green function Gq0(x,y) for the Schrödinger equation (as
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defined in section 2.3.5):

1. The function x 7→ Gq0(x,y) is in L1(Ω) for all y ∈ Ω,

2. The function y 7→ ‖Gq0(·,y)‖L1(Ω) is in L∞(Ω).

These properties can be easily verified in both R2 and R3 for G0 (i.e., when q0 ≡ 0)

and hold for general bounded q0. Indeed, we have (∆+q0)(Gq0−G0) = −q0G0. Since

the right hand side belongs to L2(Ω), the difference Gq0 − G0 must be in H2
loc(Ω)

by standard elliptic regularity estimates (see, e.g., [6]) and therefore continuous (by

Sobolev embeddings). This argument shows that (Gq0 − G0)(x,y) is continuous as

function of x and for all y. By reciprocity Gq0−G0 is continuous on Ω×Ω. Therefore

Gq0 satisfies the desired properties.

We can now show boundedness of the operators an for the Schrödinger equation

with discrete measurements. The proof of the following lemma is similar to that in

[12].

Lemma 2 Let q0(x) be a (possibly complex) nonresonant Schrödinger potential. Then

the operators an defined in (2.33) satisfy the bounds

‖an‖ ≤ αµn, (2.41)

with α = ν/µ, and where ν and µ are constants depending on Ω and q0 only (see

equations (2.43) and (2.44) below for their definition). The norm on an is the operator

norm in L(X⊗n, Y ), with parameter space X and data space Y as in section 2.3.5.

Proof. Following remark 2, we first establish the bound on the space of finite linear

combinations of elementary tensor products of L∞(Ω̃). Let η ∈ (L∞(Ω̃))⊗n with

representation η =
∑N

k=1 η
(k)
1 ⊗ · · · ⊗ η

(k)
n where η

(k)
j ∈ L∞(Ω̃), j = 1, . . . , n, k =

1, . . . , N , and observe
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‖an(η)‖ = sup
i,j

∣∣∣∣∣∣

(
N∑

k=1

an(η
(k)
1 ⊗ · · · ⊗ η(k)

n )

)

i,j

∣∣∣∣∣∣

≤
N∑

k=1

sup
i,j

∫

Ω̃n+2

∣∣Gq0(x,y1) · · ·Gq0(yn−1,yn)·

· · ·Gq0(yn, z)η
(k)
1 (y1) · · · η(k)

n (yn)φi(z)φj(x)
∣∣dzdy1 · · · dyndx

≤
N∑

k=1

‖η(k)
1 ‖L∞(Ω̃) · · · ‖η(k)

n ‖L∞(Ω̃) sup
i,j

∫

Ω̃n+2

∣∣Gq0(x,y1)·

· · ·Gq0(yn−1,yn)Gq0(yn, z)φi(z)φj(x)
∣∣dzdy1 · · · dyndx.

(2.42)

Since this bound holds for all representations of η, it must hold for the infimum

over all the representations of η, which gives the projective norm (2.4). Therefore

the operator an is bounded on the space of finite linear combinations of elementary

tensor products and

‖an(η)‖ ≤ ‖η‖(L∞(Ω̃))⊗n sup
i,j

∫

Ω̃n+2

∣∣Gq0(x,y1) · · ·Gq0(yn−1,yn)·

· · ·Gq0(yn, z)φi(z)φj(x)
∣∣dzdy1 · · · dyndx.

By the bounded extension theorem (see, e.g., [9, §2.7]) this also gives an (identical)

upper bound for the extension of an to the completion of (L∞(Ω̃))⊗n under the

projective norm.

Hence we can estimate the operator norm ‖a1‖ by

‖a1‖ ≤ sup
i,j

∫

Ω̃×Ω̃×Ω̃

∣∣Gq0(x,y1)Gq0(y1, z)φi(z)φj(x)
∣∣dzdy1dx

≤ sup
i,j

∫

Ω̃

∫

Ω̃

∣∣Gq0(y1, z)φi(z)
∣∣dz
∫

Ω̃

∣∣Gq0(x,y1)φj(x)
∣∣dxdy1

≤ sup
i

(
sup
x∈Ω̃

∫

Ω̃

∣∣Gq0(x,y)φi(y)
∣∣dy
)2

|Ω|.

Since q0 is assumed to be nonresonant and using that φi ∈ L∞(Ω), the quantity

ν =

(
sup
i

sup
x∈Ω̃

∫

Ω̃

∣∣Gq0(x,y)φi(y)
∣∣dy
)2

|Ω| (2.43)

is bounded. We have established that ‖a1‖ ≤ ν.
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For the remaining Born operators, we proceed recursively. Considering again

(2.42) for n ≥ 2, we have

‖an‖ ≤ sup
i,j

∫

Ω̃n+2

∣∣Gq0(x,y1)Gq0(y1,y2)·

· · ·Gq0(yn−1,yn)Gq0(yn, z)φi(z)φj(x)
∣∣dzdy1 · · · dyndx

≤ sup
i,j

(
sup
y1∈Ω̃

∫

Ω̃

∣∣Gq0(x,y1)φj(x)
∣∣dx
)(

sup
yn∈Ω̃

∫

Ω̃

∣∣Gq0(yn, z)φi(z)
∣∣dz
)

·
∫

Ω̃n

∣∣Gq0(y1,y2) · · ·Gq0(yn−1,yn)
∣∣dy1 · · · dyn

≤
(

sup
i

sup
x∈Ω̃

∫

Ω̃

∣∣Gq0(x,y)φi(y)
∣∣dy
)2

In−1

where

In−1 =

∫

Ω̃n

∣∣Gq0(y1,y2) · · ·Gq0(yn−1,yn)
∣∣dy1 · · · dyn.

Estimating In−1 we find that

In−1 ≤ sup
yn−1∈Ω̃

∫

Ω̃

∣∣Gq0(yn−1,yn)
∣∣dyn ·

∫

Ω̃n−1

∣∣Gq0(y1,y2) · · ·Gq0(yn−2,yn−1)
∣∣dy1 · · · dyn−1

≤ µIn−2,

where the quantity

µ = sup
x∈Ω̃

‖Gq0(x, ·)‖L1(Ω̃) (2.44)

is finite by the properties that Gq0 satisfies. Finally, noting that

I1 =

∫

Ω̃×Ω̃

∣∣Gq0(y1,y2)
∣∣dy1dy2

≤ µ|Ω|,

it follows that

In−1 ≤ |Ω|µn−1,

and thus

‖an‖ ≤
(

sup
i

sup
x∈Ω̃

‖Gq0(x, ·)‖L1(Bρ(xi))

)2

|Ω|µn−1 = αµn.

Remark 5 (Lp Bounds) Bounds similar to those in lemma 2 can be proven when

the parameter space is X = L2(Ω) and the data space is Y = CN×N , endowed with
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the Frobenius norm. Once we have bounds for the ∞ and 2 norms, it is possible

to invoke the Riesz-Thorin theorem (as in [12]) to show bounds for 2 ≤ p ≤ ∞ by

interpolation. In this case the data space is X = Lp(Ω) and the parameter space is

Y = CN×N , endowed with the entry-wise p−norm (i.e., the p−norm of the CN2
vector

obtained by stacking the columns of a matrix in CN×N).

Having established norm bounds on the operators an for the discrete measurements

Schrödinger problem, we can apply the results from section 2.2.3 to establish local

convergence of the forward Born series, local convergence of the inverse Born series

(provided the linear operator b1 used to prime the series has sufficiently small norm,

see theorem 1), stability of the inverse Born series (theorem 2) and even an error

estimate (theorem 3). The actual choice of b1 is discussed in section 4.5.

2.5.2 Numerical illustration

Applying theorem 1 to the Schrödinger problem with discrete measurements, we

can expect the inverse Born series to converge when the difference d between the data

for the unknown and reference Schrödinger potentials satisfies

‖d‖ ≤ 1

(1 + α)µ‖b1‖
,

where the constants α = ν/µ and µ are constants defined by (2.43) and (2.44) and

the norms are as in section 2.3.5.

In preparation for the application to hydraulic tomography, we consider the setup

depicted in Figure 2.2 with computational domain Ω = [0, 1]2. The distance between

Ω and Ω̃ is ε ∈ [0, 1/4] and the sources φi are supported in disks of radius 0.05

with centers (0.2k, 0.2l), for k, l = 1, . . . , 4. The sources are φi(x) = φ(x − xi)

where xi is the center of the disk support and φ is an infinitely smooth function

with 0 ≤ φ(x) ≤ 1. Although theorem 1 allows for the supports of the sources to

overlap, we take them to be disjoint as this is the case in the hydraulic tomography

application.

The constants µ and ν are approximated by solving appropriate (forward) Schrö-

dinger problems with q0 = 0. The grid we use for this purpose is uniform and consists

of the nodes (kh, lh) for k, l = 0, . . . , 400 and h = 1/400. We display in Figure 2.3
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Ω

Ω̃ǫ

ǫ

0
0

1

1

Figure 2.2. Setup for the numerical experiments with the Schrödinger problem with

internal measurements. The domain Ω is the unit square. The domain Ω̃ where the

Schrödinger potential is unknown is in dotted line and its boundary ∂Ω̃ is at a distance
ε from ∂Ω. The supports of the functions used as source terms/measurements are the
red circle.

13

15

17

19

21

1
(1+α)µ

0.05 0.1 0.15 0.2 0.25

ǫ

Figure 2.3. Numerical approximation of the radius of convergence for the inverse
Born series for the Schrödinger problem with discrete internal measurements and
assuming ‖b1‖ ≥ 1. The reference Schrödinger potential is q0 = 0 and the setup is
that given in Figure 2.2.

the radius of convergence of the inverse Born series predicted by theorem 1, assuming

‖b1‖ = 1. We observe that the radius of convergence increases as ε increases, or

in other words, the larger the region where we assume the Schrödinger potential is

known, the larger the perturbations in the data the method can handle.

2.6 Application to transient hydraulic tomography

Consider an underground aquifer confined in a bounded domain Ω. The head

or hydraulic pressure ui(x, t) in the aquifer due to injecting water in the i−th well
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satisfies the equation




S
∂ui
∂t

= ∇ · (σ∇ui)− φi, for x ∈ Ω, t > 0,

ui(x, t) = 0, for x ∈ ∂Ω, t > 0,

ui(x, 0) = g(x), for x ∈ Ω.

(2.45)

where i = 1, . . . , N . Here we assume there are no sources or leaks of water in the

aquifer, other than those prescribed at the wells. Hence the source term φi(x, t) is

supported at the i−th well and represents the water injected at the i−th well. The

physical properties of the aquifer are modeled by the storage coefficient S(x) and the

hydraulic conductivity σ(x). The initial head (at t = 0) is given by g(x).

The inverse problem of hydraulic tomography that we consider here, is to deter-

mine the coefficients σ and S from knowledge of the discrete internal measurements

Mi,j(t) =

∫

Ω

φj(x, t) ∗ ui(x, t)dx, i, j = 1, . . . , N, (2.46)

where the convolution is in time. Physically these measurements correspond to time

domain measurements at the j−th well of a spatial average of the hydraulic pressure

ui generated by injecting in the i−th well. Here for simplicity, we use for the impulse

response (in time) of the j−th measurement well the function φj(x, t). In a more

general setup, the injection and measurement “well functions” can be different.

2.6.1 Reformulation as a discrete internal measurements
Schrödinger problem

The frequency domain version of problem (2.45) is



∇ · (σ∇ûi)− ıωSûi = φ̂i, for x ∈ Ω,

ûi = 0, for x ∈ ∂Ω,
(2.47)

where the hat denotes Fourier transform in time, i.e.,

ûi(x, ω) =

∫

R
ui(x, t)e

−ıωtdt and φ̂i(x, ω) =

∫

R
φi(x, t)e

−ıωtdt.

The inverse problem is now to recover σ and S from the discrete internal measure-

ments

M̂i,j(ω) =

∫

Ω

φ̂j(x, ω)ûi(x, ω)dx, (2.48)

which is the Fourier transform in time of the discrete internal measurements for the

time domain problem (2.46).
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Next we use the Liouville transformation by defining vi = σ1/2ûi. If ûi satisfies

(2.47) then vi must satisfy the Schrödinger equation



∆vi −
(

∆σ1/2

σ1/2
+
ıωS

σ

)
vi =

φ̂i
σ1/2

, for x ∈ Ω,

vi = 0, for x ∈ ∂Ω.

(2.49)

The internal measurements M̂i,j(ω) can now be expressed in terms of vi as

M̂i,j(ω) =

∫

Ω

φ̂j(x, ω)ûi(x, ω)dx =

∫

Ω

φ̂j(x, ω)

σ1/2(x)
vi(x, ω)dx.

Hence the measurements M̂i,j(ω) are of the form defined in (2.2) with test functions

φ̂i/σ
1/2 (modeling both injection and measurement).

If we do have access to the inside of the wells (i.e., supp φ̂i), it is reasonable to

assume that σ is known in supp φ̂i. Hence the test functions φ̂i/σ
1/2 are known and

we can use any method for solving the inverse Schrödinger problem with discrete data

to obtain an approximation to the complex Schrödinger potential

Q(x;ω) =
∆σ1/2

σ1/2
+
ıωS

σ
, for x ∈ Ω. (2.50)

Remark 6 A limitation of transforming the hydraulic tomography problem into an

inverse Schrödinger problem is that the conductivity σ appears as ∆σ1/2/σ1/2 in the

Schrödinger potential. Therefore any high (spatial) frequency components in σ1/2 are

magnified. The resulting Schrödinger potential can easily fall outside of the radius of

convergence of the inverse Born series. It may be possible to overcome this limitation

if we apply the inverse Born series to the hydraulic tomography problem directly (i.e.,

without doing the Liouville transform).

2.6.2 Recovery of S and σ from one frequency

Once we have approximated Q(x;ω) for a single (known) frequency ω, the real

part of Q(x;ω) can be used to estimate the hydraulic conductivity σ. This can be

achieved by solving for σ1/2(x) in the equation

∆σ1/2 − Re(Q(x;ω))σ1/2 = 0,

on the aquifer without the wells, i.e.,

Ω′ ≡ Ω\
n⋃

i=1

supp φ̂i,
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and with Dirichlet boundary conditions at ∂Ω′ determined from the (assumed) knowl-

edge of σ at the measurement wells and at ∂Ω. An estimate of the storage coefficient

S from Im(Q(x;ω)) and σ(x) follows since

S(x) = σ(x)Im(Q(x;ω))/ω.

In principle, measurements M̂i,j(ω) for one single frequency are enough to find

both parameters σ(x) and S(x). Unfortunately, this procedure seems to be much

more sensitive to changes in σ than to changes in S. This is due to ∆σ1/2 appearing

in the expression of Q(x;ω) (see remark 6). We deal with this problem by using data

for two frequencies as is explained below.

2.6.3 Recovery of S and σ from two frequencies

Here the data we have is M̂i,j(ω1) and M̂i,j(ω2) for two frequencies ω1 6= ω2 and

we use it to solve two discrete measurements Schrödinger problems for Q(x;ω1) and

Q(x;ω2), for x ∈ Ω. A good rule of thumb is to choose the frequencies so that ω1 is

sufficiently low to make Re(Q(x;ω1)) the largest term in Q(x;ω1) and ω2 is sufficiently

large to make Im(Q(x;ω2)) the largest term in Q(x;ω2). For each point x in Ω′ (the

domain without the wells), we solve for r1(x) and r2(x) in the 2× 2 system:
[
1 ıω1

1 ıω2

] [
r1(x)
r2(x)

]
=

[
Q(x;ω1)
Q(x;ω2)

]
. (2.51)

Then to estimate the conductivity we solve for σ1/2 in the equation:

∆σ1/2 − r1(x)σ1/2 = 0, for x ∈ Ω′, (2.52)

with Dirichlet boundary condition given by the knowledge of σ on ∂Ω′. Once we

know σ, the storage coefficient S can be easily obtained from r2, indeed:

S(x) = σ(x)r2(x). (2.53)

2.7 Numerical Experiments

We now present numerical experiments comparing inverse Born series with the

Gauss-Newton and Chebyshev-Halley methods for both the discrete internal measure-

ments Schrödinger problem (section 2.7.1) and an application to transient hydraulic

tomography (section 2.7.2).
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2.7.1 Schrödinger potential reconstructions

As discussed in section 2.3.5, our objective is to recover an unknown Schrödinger

potential q from the measurements f(q) = D, where the entries Di,j of the N × N
matrix D are given by (2.2).

We discretize the computational domain Ω = [0, 1]2 with a uniform grid consisting

of the nodes (kh, lh), for k, l = 0, . . . , 400 and h = 1/400. We use a total of

16 measurement functions φj, which are smooth and satisfy: ‖φj‖L∞(Ω) = 1 for

j = 1, . . . , 16; φj is compactly supported on a circle of radius ρ = 0.05; and the

centers of the wells are uniformly spaced in the domain at the points (0.2m, 0.2n) for

m,n = 1, . . . , 4. The Laplacian in the Schrödinger equation is discretized with the

usual five point finite differences stencil and the true Schrödinger potential is simply

evaluated at the grid nodes. The measurements Di,j = 〈φj, ui〉L2(Ω) involve integrals

that are approximated by the trapezoidal rule on the grid. Measurements f(q0) for

the reference potential q0 are computed in the same grid. The data that we use for

the reconstructions is f(q)− f(q0).

The reconstructions are performed on a different (coarser) grid consisting of the

nodes (khc, lhc) for k, l = 0, . . . , 80 and hc = 1/80. We compare the results obtained

from a truncated inverse Born series of order 5, and 10 iterations of the Gauss-Newton

and Chebyshev-Halley methods. These three reconstructions are applied to F , a

coarse grid version of the map f . For instance, the reconstructions for the inverse

Born series are

k∑

n=1

Bn((f(q)− f(q0))⊗n),

where the coefficients Bn are the inverse Born series coefficients for the coarse grid

F (rather than those for the fine grid f , which would be an inverse crime). For

the inverse Born series, the operator B1 is a regularized pseudoinverse of A1 (i.e.,

the linearization of the coarse grid forward map F ) where the singular values of A1

which are less than 0.01 times the largest singular value (of A1) are treated as zero.

The same regularization is used for the Jacobians involved in the Gauss-Newton

and Chebyshev-Halley methods. We use q0 = 0 as the reference potential for the

inverse Born series as well as the initial guess for the iterative Gauss-Newton and
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Figure 2.4. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with
no noise. The color scale is identical for all images in a row.

Chebyshev-Halley methods.

Figure 2.4 shows the reconstructions of a real smooth Schrödinger potential −14 ≤
q(x) ≤ 4 and a real piecewise constant potential with −6 ≤ q(x) ≤ 12. In both cases,

the potential and the generated data are small enough to satisfy the hypotheses of

theorem 3. Figure 2.5 displays the reconstructions of the same potentials from noisy

data. The noisy data is obtained by first generating the true data f(q) − f(q0) as

above, and then perturbing it with 1% zero mean additive Gaussian noise, i.e., with

standard deviation 0.01 maxi,j |(f(q) − f(q0))i,j|. Similarly, Figure 2.6 displays the

reconstructions with 5% additive Gaussian noise, i.e., with zero mean and standard

deviation 0.05 maxi,j |(f(q) − f(q0))i,j|. In the experiments with noise present, the

pseudoinverses of the Jacobians have been additionally regularized to compensate for

the noise level (i.e. only singular values above 0.02 (resp. 0.06) times the largest

singular value are retained for inversion for 1% (resp. 5%) noise).

2.7.2 Transient hydraulic tomography

In the frequency domain hydraulic tomography problem (see section 2.6), the

objective is to estimate the hydraulic conductivity σ(x) and the storage coefficient
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Figure 2.5. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with
1% additive Gaussian noise. The color scale is identical for all images in a row.
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Figure 2.6. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with
5% additive Gaussian noise. The color scale is identical for all images in a row.
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S(x) from the frequency-dependent measurements M̂i,j(ω) defined in (2.48).

As before, the computational domain Ω = [0, 1]2 is discretized with a uniform grid

with nodes (kh, lh) for k, l = 0, . . . 400 and h = 1/400. The true storage coefficient

S is evaluated on this grid. The discretization of the term ∇ · [σ∇u] is done through

the stencil

(∇ · [σ∇u])(kh, lh) ≈σk+1/2,l
uk+1,l − uk,l

h2
+ σk−1/2,l

uk−1,l − uk,l
h2

+σk,l+1/2
uk,l+1 − uk,l

h2
+ σk,l−1/2

uk,l−1 − uk,l
h2

,

where uk,l ≈ u(kh, lh) and similarly for σ. This means that the true conductivity

is evaluated at the midpoints of the horizontal and vertical edges of the grid. The

boundary points have a different stencil that takes into account the homogeneous

Dirichlet boundary conditions, and that we do not include here for the sake of clarity.

The frequency domain measurement functions φ̂i(x, ω) we use are, for simplicity,

independent of the frequency ω and are given in x by the same 16 compactly supported

smooth functions described in section 2.7.1. The measurements M̂i,j(ω) = 〈φ̂j, ûi〉L2(Ω)

involve integrals over Ω that are evaluated by using the trapezoidal rule on the

same grid that is used for the forward simulations. Recalling section 2.6.1, the

measurements M̂i,j(ω) can also be viewed as discrete internal measurements of a

Schrödinger field vi (see (2.49)) associated with the potential Q(x;ω) defined in (2.50),

i.e., M̂(ω) = f(Q(x;ω)) with well functions φ̂i/σ
1/2. We also compute measurements

for the reference potential Q0 = 0 on this grid using the well functions φ̂i/σ
1/2 (this

corresponds to S = 0 and σ = 1). The measurements we use for reconstructions are

f(Q(x;ω))− f(Q0) (for two different frequencies).

Reconstructions are again performed on the coarse grid consisting of the nodes

(khc, lhc) for k, l = 0, . . . , 80 and hc = 1/80. For each method (inverse Born series

order 5, Gauss-Newton, and Chebyshev-Halley), an approximation of the complex

Schrödinger potential Q(x;ω) is found from the frequency domain data f(Q(x;ω))−
f(Q0) for ω = 1, 10. The parameters S and σ are then estimated with the procedure

of section 2.6.3. The grid used for solving the problems (2.52) for the conductivity

is the same coarse grid used for the reconstructions (to avoid an inverse crime). The

boundary conditions for (2.52) are obtained from the true conductivity evaluated at
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appropriate points.

Figure 2.7 shows the reconstructions of the hydraulic conductivity σ and storage

coefficient S when data has no noise. The conductivity σ is smooth and |1−σ| < 0.8.

The storage coefficient S is also smooth and −5 ≤ S ≤ 3. We use the true conduc-

tivity σ inside the wells but the storage coefficient S inside the wells is computed,

as in the rest of the domain, from (2.53). Reconstructions with 1% additive zero

mean Gaussian noise are included in Figure 2.8. As before this means the noise has

standard deviation 0.01 maxi,j |[f(Q(x;ω))− f(Q0)]i,j|, which is different for the two

frequencies we use. Similarly, Figure 2.9 displays reconstructions with 5% additive

zero mean Gaussian noise.

Remark 7 In our experiments, the parameters σ and S are chosen so that the

corresponding Schrödinger potential Q(x;ω) and the generated data are small enough

to satisfy the hypotheses of theorem 3 (for ω = 1, 10). This makes the contrasts in σ

(especially) and S too small to represent a realistic problem (see, e.g., [4]). As noted

before in remark 6, it may be possible to overcome this by using the inverse Born

series on the hydraulic tomography problem directly.

True Potential Inverse Born Series Gauss-Newton Chebyshev-Halley

σ

0

0.7

S

-5

0

3

Figure 2.7. Hydraulic tomography reconstructions of the hydraulic conductivity
σ(x) (top) and the storage coefficient S(x) (bottom) for noiseless data and different
methods.



49

True Potential Inverse Born Series Gauss-Newton Chebyshev-Halley
σ
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Figure 2.8. Hydraulic tomography reconstructions of the hydraulic conductivity
σ(x) (top) and the storage coefficient S(x) (bottom) for data with 1% additive
Gaussian noise and different methods.

True Potential Inverse Born Series Gauss-Newton Chebyshev-Halley

σ

0

0.7

S

-5

0

5

Figure 2.9. Hydraulic tomography reconstructions of the hydraulic conductivity
σ(x) (top) and the storage coefficient S(x) (bottom) for data with 5% additive
Gaussian noise and different methods.
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2.8 Discussion

We show here that with little modification, the inverse Born series convergence

results of Moskow and Schotland [12] can be generalized to mappings between Banach

spaces. With this abstraction, we only need to show that the forward Born operators

are bounded as in (2.6) to obtain convergence, stability and error estimates for the

inverse Born series. Such results are then proven for the problem of finding the

Schrödinger potential from discrete internal measurements. A nice byproduct of our

approach is that we can relate forward and inverse Born series coefficients (up to a

symmetrization) to the Taylor series coefficients of an analytic map and its inverse

(provided it exists).

Since the cost of computing the n−th term of the inverse Born series increases

exponentially in n, we also consider the iterative method obtained by restarting the

inverse Born series after summing the first k terms. We obtain a class of methods

that we call RIBS(k) and that includes the well-known Gauss-Newton and Chebyshev-

Halley iterative methods. Our numerical results show these methods give reconstruc-

tions comparable to those obtained with the inverse Born series.

Among the future directions of this work would be to show the RIBS(k) method

is convergent. We conjecture that the convergence rate of RIBS(k) is of order k. The

RIBS(k) method is only locally convergent, meaning that we need to be already close

to the solution for the method to converge. Globalization strategies that keep, when

possible, this higher order convergence rate are needed.

The application we use to illustrate our method is a problem related to transient

hydraulic tomography. Since we convert this problem to the problem of finding a

Schrödinger potential and all the methods we use here are locally convergent, the

contrasts that we can deal with are far from realistic ones. We believe that a

proper globalization strategy will allow us to deal with higher contrasts. Another

important question that we have not dealt with here is that of regularization. The only

regularization that we consider here is the choice of the linear operator that primes

the inverse Born series. By analogy with what can be done with the Gauss-Newton

method, we believe it is possible to include specific a priori information about the

true parameters by formulating the problem as minimizing the misfit plus a penalty
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term that takes into account the a priori information.

2.9 Inverse Born series convergence and stability
proofs

The proofs in this section are an adaptation of the proofs in Moskow and Schotland

[12] to inverse Born series in Banach spaces. The results are stated in section 2.2.3.

2.9.1 Proof of bounds for inverse Born series
coefficients (lemma 1)

Proof. Since ‖an‖ ≤ αµn, we can estimate for n ≥ 2:

‖bn‖ ≤
n−1∑

m=1

∑

s1+···+sm=n

‖bm‖‖as1‖ · · · ‖asm‖‖b1‖n

≤ ‖b1‖n
n−1∑

m=1

‖bm‖
∑

s1+···+sm=n

(αµs1) . . . (αµsm)

= ‖b1‖nµn
n−1∑

m=1

‖bm‖αm
∑

s1+···+sm=n

1.

(2.54)

The last sum is the number of partitions of the integer n into m ordered parts. Hence

for n ≥ 2, we get

‖bn‖ ≤ (µ‖b1‖)n
n−1∑

m=1

‖bm‖αm
(
n− 1

m− 1

)

≤ (µ‖b1‖)n
(
n−1∑

m=1

‖bm‖
)(

n−1∑

m=1

αm
(
n− 1

m− 1

))

≤ (µ‖b1‖(α + 1))n
n−1∑

m=1

‖bm‖.

(2.55)

To get the last inequality we used

n−1∑

m=1

αm
(
n− 1

m− 1

)
=

n−2∑

m=0

αm+1

(
n− 1

m

)
≤ α

n−1∑

m=0

αm+1

(
n− 1

m

)
= α(1 + α)n−1 ≤ (1 + α)n.

Following [12] we can estimate the coefficients in the inverse Born series by

‖bn‖ ≤ Cn(µ‖b1‖(α + 1))n‖b1‖, for n ≥ 2, (2.56)

where the constants Cn are defined recursively by

C2 = 1 and Cn+1 = 1 + ((α + 1)µ‖b1‖)n for n ≥ 2. (2.57)
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The constants Cn are then

Cn =
n−1∏

m=2

(1 + ((α + 1)µ‖b1‖)m) ≤ exp

(
1

1− (α + 1)µ‖b1‖

)
. (2.58)

where the bound for Cn can be derived as in [12] and is valid when (α+ 1)µ‖b1‖ < 1,

which is one of the hypotheses. The result follows from the bounds (2.56) and (2.58).

2.9.2 Proof of local convergence of inverse Born series
(theorem 1)

Proof. Using the estimate of lemma 1, we can dominate the term of the inverse Born

series by a geometric series as follows

‖bn(d⊗n)‖ ≤ β((α + 1)µ‖b1‖‖d‖)n. (2.59)

Therefore the Born series is absolutely convergent when (α+1)µ‖b1‖‖d‖ < 1, which is

one of the assumptions of this theorem. The tail of the series with terms the absolute

values of the inverse Born series terms, can be estimated by noticing that
∞∑

N+1

β((α + 1)µ‖b1‖‖d‖)n = β
((α + 1)µ‖b1‖‖d‖)N+1

1− (α + 1)µ‖b1‖‖d‖
. (2.60)

2.9.3 Proof of stability of inverse Born series
(theorem 2)

Proof. We use an identity on tensor products to conclude that

‖h1 − h2‖ ≤
∞∑

n=1

‖bn(d⊗n1 − d⊗n2 )‖

=
∞∑

n=1

∥∥∥∥∥bn
(
n−1∑

k=0

d⊗k1 ⊗ (d1 − d2)⊗ d⊗(n−k−1)
2

)∥∥∥∥∥

≤
∞∑

n=1

nMn−1‖bn‖‖d1 − d2‖.

(2.61)

The desired estimate follows from applying the estimate for the ‖bn‖ in lemma 1,

‖h1 − h2‖ ≤ ‖d1 − d2‖
∞∑

n=1

nMn−1β((α + 1)µ‖b1‖)n

≤ ‖d1 − d2‖
β

M

1

(1−M(α + 1)µ‖b1‖)2
,

(2.62)
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since we assumed that M(α + 1)µ‖b1‖ < 1. Here we used the following inequality:

β
∞∑

n=1

nMn−1δn =
β

M

∞∑

n=1

n(Mδ)n ≤ β

M

∞∑

n=0

(n+ 1)(Mδ)n =
β

M

1

(1−Mδ)2

where δ ≡ (α + 1)µ‖b1‖.

2.9.4 Proof of inverse Born series error estimate
(theorem 3)

Proof. Taking the expression for d in (2.17) and replacing in the expression for h∗

in (2.17) we get

h∗ =
∞∑

n=1

cn(h⊗n), (2.63)

where

c1 = b1a1,

cn =

(
n−1∑

m=1

bm

( ∑

s1+···sm=n

as1 ⊗ · · · ⊗ asm

))
+ bn(a⊗n1 ), for n ≥ 2.

(2.64)

Using the expression (2.10) of bn in terms of bm, 1 ≤ m ≤ n − 1, we get for n ≥ 2

that

cn =
n−1∑

m=1

bm

( ∑

s1+···sm=n

as1 ⊗ · · · ⊗ asm

)
(
I − (b1a1)⊗n

)
. (2.65)

Hence the reconstruction error is

h− h∗ = (h− b1a1h)−
∞∑

n=2

n−1∑

m=1

bm

( ∑

s1+···sm=n

as1 ⊗ · · · ⊗ asm

)
(
h⊗n − (b1a1h)⊗n

)
.

(2.66)

We now estimate the error:

‖h− h∗‖ ≤ ‖h− b1a1h‖+
∞∑

n=2

n−1∑

m=1

∑

s1+···sm=n

‖bm‖‖as1‖ · · · ‖asm‖
∥∥h⊗n − (b1a1h)⊗n

∥∥ .

(2.67)

For n ≥ 1 we can estimate:

‖h⊗n − (b1a1h)⊗n‖ =

∥∥∥∥∥
n−1∑

k=0

h⊗k ⊗ (h− b1a1h)⊗ (b1a1h)⊗(n−k−1)

∥∥∥∥∥
≤ nMn−1‖h− b1a1h‖,

(2.68)
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where we used the hypothesis ‖h‖ ≤ M , ‖b1a1h‖ ≤ M . Since we assumed the Born

series coefficients satisfy ‖an‖ ≤ αµn we get

‖h− h∗‖ ≤ ‖h− b1a1h‖
(

1 +
∞∑

n=2

n−1∑

m=1

∑

s1+···sm=n

‖bm‖(αµs1) · · · (αµsm)nMn−1

)

= ‖h− b1a1h‖
(

1 +
∞∑

n=2

n−1∑

m=1

‖bm‖αmnµnMn−1

(
n− 1

m− 1

))
.

(2.69)

Here we have used again the fact that the number of ordered partitions of n into m

integers is
∑

s1+···sm=n

1 =

(
n− 1

m− 1

)
.

Clearly we have that

‖h− h∗‖ ≤ ‖h− b1a1h‖
(

1 +
∞∑

n=2

nµnMn−1

(
n−1∑

m=1

‖bm‖
)(

n−1∑

m=1

αm
(
n− 1

m− 1

)))
.

(2.70)

Now using the two facts:

n−1∑

m=1

‖bm‖ ≤ β
n−1∑

m=1

((α + 1)µ‖b1‖)m (lemma 1),

n−1∑

m=1

αm
(
n− 1

m− 1

)
≤ (1 + α)n (as in (2.55)),

(2.71)

we get the inequality

‖h− h∗‖ ≤ ‖h− b1a1h‖
(

1 +
∞∑

n=2

n

M
(µM(1 + α))nβ

n−1∑

m=1

((α + 1)µ‖b1‖)m
)
. (2.72)

Adding the m = 0 term to the geometric series over m and summing we get

‖h− h∗‖ ≤ ‖h− b1a1h‖
(

1 +
β

M

∞∑

n=1

n(µM(1 + α))n
1− ((α + 1)µ‖b1‖)n

1− (α + 1)µ‖b1‖

)
. (2.73)

The hypothesis µM(α+1) < 1 and µ(α+1)‖b1‖ < 1 imply the quantity in parentheses

is bounded and depends only on M , α, β and µ and ‖b1‖.
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3.1 Introduction

Scatterers in a homogeneous medium can be imaged by probing the medium with a

wave emanating from a point source, and recording the reflected waves at one or more

receivers. An image of the scatterers can be generated by repeating this experiment

while varying the position of the source and/or receiver and using classic methods

such as Kirchhoff (travel time) migration (see, e.g., [2]) or MUSIC (see, e.g., [8]). We

are concerned here with the case where only intensity measurements can be made at

the receiver; destroying phase information that migration and MUSIC need to image.

Intensity measurements occur, e.g., when the response time of the receiver is larger

than the typical wave period or when it is more cost effective to measure intensities

than the full waveform. This is typical in, e.g., optical coherence tomography [28, 29]

and radar imaging [9]. Another situation is when the wave sources are stochastic

and the measurements consist of correlations of the signal recorded at different points

[12, 32]. In the special case of autocorrelations (i.e., correlating the signal with itself),

the Wiener-Khinchin theorem guarantees we are measuring power spectra (see, e.g.,

[21]), another form of intensity measurements.

The setup we analyze consists of an array of sources and one single receiver that

can only record power spectra, i.e., the intensity of the signal at certain frequency

samples. A crucial assumption for our method is that we can use source pairs, meaning

we can send correlated signals from two different locations. However we do allow for

certain known delays or attenuations between the signals in a source pair. One way

of achieving this would be to drive two transducers in an array with the same signal.

This would be possible when the source phases are relatively easy to control, e.g., in

acoustics.

At optical frequencies, controlling phases is challenging. For light, one could use a

spatial light modulator or configurable mask (e.g., an LCD mask [20, 24]). By placing

a light source behind the mask and letting light through only two small holes (e.g.,

pixels for an LCD mask), the holes behave as two point sources (Huygens-Fresnel

principle). If the light source is a plane wave propagating in the direction perpen-

dicular to the mask, the two point sources have identical phases (see Figure 3.1).

The illuminations we obtain are similar to doing Young’s double slit experiment with
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reflector

secondary point sources

mask

plane wave

receiver

Figure 3.1. One way of obtaining two point sources with identical phases by using
a plane wave, a configurable mask and the Huygens-Fresnel principle.

pinholes whose location can be adjusted. The same effect may be achieved with a

Digital Micromirror Device (see, e.g., [27] for a review). Yet another way would be

to use optical fibers (see, e.g., [1]) to divide a signal and pipe it along two paths of

equal length to two different locations.

Our method can be used for imaging from both measurements of intensities

(§3.1.1) and autocorrelations (§3.1.2).

3.1.1 Intensity only measurements

One way to deal with intensity measurements is phase retrieval, i.e., first recovering

the phases from intensity measurements and using this reconstructed field to image.

In diffraction tomography, intensity measurements at two different planes can be used

to recover phases [17, 18, 34]. If additional information is known (e.g., the support of

the scatterer), intensities at one single plane can be used [11, 22, 23]. Total or partial

knowledge of the incident field can also be exploited to image from intensities at one

single plane [10].

Chai, Moscoso, and Papanicolaou [6] recast the phase retrieval problem as the

problem of recovering a rank-one matrix with convex programming techniques. With

knowledge of the incident field, the location of a few point scatterers can then be

resolved in both range and cross-range with monochromatic measurements. The same

ideas can even be used to deal with multiple scattering [7]. Novikov, Moscoso, and

Papanicolaou [25] use the polarization identity 4Re(u∗v) = ‖u+v‖2−‖u−v‖2, u,v ∈
CN , and linear combinations of single-source experiments to recover dot products of
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two single-source experiments from intensity data. MUSIC can then be used to image

with this quadratic functional of the full waveform data. Other convex programming

techniques for the phase retrieval problem are [5, 36].

Here we do not completely recover phases of the total field, but we do recover the

projection of the total field onto a known subspace and we show that this is enough

to image with Kirchhoff migration. To achieve this, we assume the scattered field is

small to reduce the problem of recovering the total field from intensity measurements

to a linear system. The linear system has a one-dimensional nullspace that we can

write explicitly in terms of the incident field. There is one (very sparse) linear system

per frequency sample to solve, and the linear system has size comparable to twice

the number of source positions. Intuitively we are recovering a field in CN from 2N

(or more) real measurements. Our main result (theorem 5) shows that vectors in

the one-dimensional nullspace do not affect Kirchhoff migration. Hence we can use,

without modification, Kirchhoff migration and its standard range and cross-range

resolution estimates (see, e.g., [2]).

3.1.2 Correlation-based methods

In seismic imaging, correlations of traces (or recordings) at many receivers have

been used to image the earth’s subsurface, especially when the wave sources and their

locations are not well known [30, 31, 32]. The idea is that correlations of the signals

at two different locations contain information about the Green’s function between

the two locations, and this information can be exploited to image the medium and

any scatterers. This principle can even be exploited to do opportunistic imaging with

ambient noise [12, 13, 16]. Cross-correlations can also be used to image scatterers

in a random medium [4, 14, 15]. In radar imaging, the measurements are in fact

correlations [9], and so even stochastic processes can be used instead of deterministic

signals [33, 35].

The method we present here can also be used to image scatterers using autocorrela-

tions. We show it is possible to form an image by exploiting angular diversity in source

pairs instead of cross-correlations among different receivers. Just as in the intensity

measurements case, we are able to recover (up to a one-dimensional nullspace) full
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waveform array measurements. One advantage of using autocorrelations instead of

cross-correlations is that the data acquisition at the (single) receiver is simpler. The

drawback is that our illumination strategy requires us to illuminate with pairs of

sources, but also with each of the sources in a pair on its own. To get the same full

waveform data as an array with N sources, we need at least 3N different experiments.

Another advantage of using autocorrelations is that the measurements are extremely

robust to noise. As an example, our numerical experiments show that it is possible to

image scatterers with an array that is sending noise from all possible source positions;

the only assumption about the noise being that all the sources are independent

stochastic processes except for two correlated sources whose positions we can control.

Because of this robustness, it may be possible to use our imaging method in situations

where the medium is to be probed in a nonintrusive way, i.e., active imaging with

waves that are of the same magnitude as the ambient noise.

3.1.3 Contents

The particular physical setup we consider is described in §3.2. The illumination

strategy with source pairs is explained in §3.3, which leads to a phase retrieval problem

that can be formulated as a linear system (§3.4). The least-squares solution to the

linear system is then used as data for imaging with Kirchhoff migration, and we show

that this gives essentially the same images as full waveform data (§3.5). The extension

to stochastic source pairs is given in §3.6. Then we show that our method is robust to

additive noise when using autocorrelations (§3.7). Numerical experiments illustrating

our method are given in §4.5 and we conclude with a discussion in §4.6.

3.2 Array imaging for full waveform measurements

Here we introduce the experimental setup we consider (§3.2.1) and recall the

classic Kirchhoff migration imaging method (§3.2.2).

3.2.1 Experimental setup

The physical setup is illustrated in Figure 3.2. We probe a homogeneous medium

with waves originating from N point sources with locations ~xs ∈ A, s = 1, 2, . . . , N .

For simplicity we consider a linear array in 2D or a square array in 3D, i.e., A =
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~xs

~xr

ρ(~x)

A

Figure 3.2. Physical setup for array imaging with an array A of sources ~xs and a
single receiver ~xr. The scatterer is represented by a compactly supported reflectivity
function ρ(~x).

[−a/2, a/2]d−1 × {0}, where d = 2 or 3 is the dimension. Our imaging strategy

imposes only mild restrictions on the source positions, so other array shapes may be

considered. Waves are recorded at a single known receiver location ~xr.

The total field generated by the array (or incident field) can be written as

ûinc(~x, ω) = g0(~x, ω)Tf(ω), (3.1)

where

g0(~x, ω) =
[
Ĝ0(~x, ~x1, ω), Ĝ0(~x, ~x2, ω), . . . , Ĝ0(~x, ~xN , ω)

]T
∈ CN , (3.2)

and the source driving signals are f(ω) = [f̂1(ω), f̂2(ω), . . . , f̂N(ω)]T. Since we assume

waves propagate through a homogeneous medium, we used the outgoing free space

Green function,

Ĝ0(~x, ~y, ω) =





ı

4
H

(1)
0 (k|~x− ~y|), d = 2,

exp(ık|~x− ~y|)
4π|~x− ~y| , d = 3.

(3.3)

Here H
(1)
0 is the zeroth order Hankel function of the first kind, k = ω/c0 is the

wavenumber, ω is the angular frequency and c0 is a known constant background wave

speed. For functions of time, the Fourier transform convention we use is

f̂(ω) =

∫
f(t)eıωtdt, and f(t) =

1

2π

∫
f̂(ω)e−ıωtdω, where f ∈ L2(R). (3.4)

The scatterers we want to image are represented by a reflectivity function (or

scattering potential) ρ(~x) with compact support P . We assume the scatterers are
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sufficiently weak (e.g., ρ� 1) so that the total field at the receiver can be expressed

using the Born approximation:

û(~xr, ω) = (g0 + p)Tf , (3.5)

where the array response vector is

p(~x, ω) = k2

∫

P
d~yρ(~y)Ĝ0(~x, ~y, ω)g0(~y, ω). (3.6)

We emphasize here that we neglect multiple scattering events, which leaves out

situations where the sources, scatterer, and receiver are not in direct line of sight

of each other.

3.2.2 Kirchhoff migration

By, e.g., using illuminations f(ω) = ei, i = 1, . . . , N corresponding to the

canonical basis vectors, it is possible to obtain the array response vector p(~xr, ω)

from the measurements (3.5). The scatterers can then be imaged using the Kirchhoff

migration functional (see, e.g., [2]), which for a single frequency ω is

ΓKM[p, ω](~y) = Ĝ0(~y, ~xr, ω)g0(~y, ω)∗p(~xr, ω), (3.7)

where ~y represents a point in the image. This image has a Rayleigh or cross-range

(i.e., in the direction parallel to the array) resolution of λL/a, where L is the distance

from the array to the scatterer (see, e.g., [2]). To get range (i.e., in the direction per-

pendicular to the array) resolution we need to integrate ΓKM[p, ω](~y) for frequencies

ω in some frequency band B = [−ωmax,−ωmin] ∪ [ωmin, ωmax], the same frequency

band of the signals f(ω). The range resolution is then c0/(ωmax − ωmin) (see, e.g.,

[2]). We discuss this imaging functional further in section 3.5.

3.3 Intensity only measurements

We begin this section by making a smallness assumption on the scattered field p

with respect to the incident field when evaluated at the receiver ~xr (assumption 1).

This allows us to neglect higher order terms in p and formulate the recovery of p as

a linear system (§3.3.2).
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Assumption 1 We assume the reflectivity ρ with supp(ρ) = P is such that

|p(~xr, ω)| � |g0(~xr, ω)| (3.8)

where g0 and p are given by (3.2) and (3.6), respectively.

One physical setup where (3.8) is satisfied (for fixed k) is when the reflectivity

‖ρ‖∞ � 1 and the receiver location ~xr is near the source array A, as in Figure 3.2.

The condition breaks down if the receiver location ~xr (resp. the source array A) is

too close to the scatterer support P since the Green functions in (3.6) become large.

Condition (3.8) also breaks down (for fixed A and ~xr) if k2‖ρ‖∞ is large.

Remark 8 We consider for simplicity real reflectivities ρ. Complex conductivities

that are independent of the frequency ω may also be considered with minor modifica-

tions.

3.3.1 Illumination strategy

The data we use come from probing the medium with Np source pairs that are

sending signals with known power and phase difference. Since the number of distinct

source pairs out of an array with N sources is N(N − 1)/2 we must have Np ≤
N(N − 1)/2. We assume the power and phase differences remain the same for all

Np illuminations. The case where these quantities depend on the source pair is left

for future studies. To be more precise, the illumination corresponding to the m−th

source pair (i(m), j(m)) ∈ {1, . . . , N}2 is

fm(ω) = Fm

[
α(ω)
β(ω)

]
, where Fm = [ei(m), ej(m)] ∈ RN×2. (3.9)

We emphasize that only |α|2, |β|2 and the phase difference φ(ω) ≡ arg(αβ) is assumed

to be known for the signals α and β. A particular case is when the same signal is

sent from the source pair, i.e., β = α and φ(ω) = 0.

The intensity of the field um arising from the source pair illumination fm is

|ûm(~xr, ω)|2 = gTfmf
T
mg = g∗Fm

[|α|2 αβ

βα |β|2
]
FT
mg, (3.10)
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where we used g = g0 + p. Note that since αβ = |α||β|eıφ, the inner 2× 2 Hermitian

matrix is uniquely determined by the magnitudes of α and β and their phase difference

φ. By using the single-source reference illumination ei we additionally measure

|û0
i (~xr, ω)|2 = g∗eie

T
i g, for i = 1, . . . , N. (3.11)

The data we exploit to recover p is obtained by subtracting the appropriate reference

illuminations (3.11) from (3.10), that is

dm(~xr, ω) = |ûm|2 − |α|2|û0
i(m)|2 − |β|2|û0

j(m)|2

= g∗Fm

[
0 αβ

βα 0

]
FT
mg.

3.3.2 A linear system to recover the total field

By recalling that g = g0 + p, the measurements dm are

dm(~xr, ω) = (g0 + p)∗Fm

[
0 αβ

βα 0

]
FT
m(g0 + p).

To make the following expressions concise, we denote by D the Hermitian matrix

D =

[
0 αβ

βα 0

]
. (3.12)

By the smallness assumption 1, we may neglect the quadratic terms in p and collect

all measurements for m = 1, . . . , Np as a single vector d ∈ RNp :



d1(~xr, ω)
d2(~xr, ω)

...
dNp(~xr, ω)


 ≈ d(~xr, ω) = Re







g∗0F1DF
T
1

g∗0F2DF
T
2

...
g∗0FNpDF

T
Np


 (g0 + 2p)




= M(~xr, ω)

[
Re(g0 + 2p)
Im(g0 + 2p)

]
,

(3.13)

where the Np × 2N real matrix M is given by

M(~xr, ω) =




Re(g∗0F1DF
T
1 ) −Im(g∗0F1DF

T
1 )

Re(g∗0F2DF
T
2 ) −Im(g∗0F2DF

T
2 )

...
...

Re(g∗0FNpDF
T
Np

) −Im(g∗0FNpDF
T
Np

)


 . (3.14)

Note that by construction, the matrix M has at most 4 nonzero elements per row,

and is thus a very sparse matrix for N large.
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3.4 Analysis of the linear system for the total field

We now address the question of whether there is enough information in the

measurements d ∈ RNp to recover the array response vector p ∈ CN . The main

result of this section is Theorem 4, where we show that with appropriately chosen

pairs of sources, M†d (i.e., the Moore-Penrose pseudoinverse of M times d) gives p

up to a complex scalar multiple of the vector g0, which is known a priori.

Let us first consider the case where we take measurements using all possible source

pairs, i.e., that Np = N(N − 1)/2. Clearly, we need N ≥ 5 to guarantee that

Np ≥ 2N , i.e., that the matrix M has more rows than columns and the system

d = M[Re(g0 + 2p)T, Im(g0 + 2p)T]T is overdetermined.

Instead of using all possible source pairs, we use the following strategy which for

N ≥ 5, guarantees Np = 2N .

Strategy to choose source pairs:

1. All 10 distinct source pairs between the source positions {1, . . . , 5}.

2. For source position s > 5, choose any two different source pairs of the form

(s, i) and (s, j) where i, j ∈ {1, . . . , 5}.

This strategy is illustrated in Figure 3.3. More source pairs can be added without

affecting the recoverability of p (Theorem 4). We now make the following assumption

on the first 5 source positions.

Figure 3.3. An example illustrating the strategy to choose the source pairs for
N = 8 source positions. Each source position is represented by a node in the graph,
and source pairs are represented by edges. The first 5 source positions are in the
circle.
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Assumption 2 We assume the receiver is located at a position ~xr such that for

i, j = 1, . . . , 5, the vector g0 ≡ g0(~xr, ω) satisfies

Re
(
g0

)
i
6= 0, Im

(
g0

)
i
6= 0, and Re

(
g0

)
i
Im
(
g0

)
j
6= Re

(
g0

)
j
Im
(
g0

)
i
. (3.15)

Additionally for one pair i, j ∈ [1, . . . , 5] we assume

cos(φ)
(

Re
(
g0

)
i
Im
(
g0

)
j
− Re

(
g0

)
j
Im
(
g0

)
i

)
6=

− sin(φ)
(

Re
(
g0)iRe

(
g0

)
j

+ Im
(
g0

)
i
Im
(
g0

)
j

)
.

(3.16)

This assumption is by no means necessary for the end result (Theorem 4) to hold,

but it is sufficient. If d = 3, condition (3.15) is equivalent to the geometric condition

|~xi − ~xr| /∈
λ

4
Z and |~xi − ~xr| − |~xj − ~xr| /∈

λ

2
Z for all i, j = 1, . . . , 5, (3.17)

while condition (3.16) implies for one pair i, j ∈ [1, . . . , 5] that

|~xr − ~xi| − |~xr − ~xj| /∈
λ

2
Z− λ

2π
φ. (3.18)

Here the set (λ/2)Z is the set of all integer multiples of λ/2, where λ = 2πc0/ω is the

wavelength. In d = 2, conditions similar to (3.17) and (3.18) are sufficient for large

enough frequencies ω because of the Hankel function asymptotic

H
(1)
0 (t) =

√
2

πt
exp[ı(t− (π/4))](1 +O(1/t)), as t→∞.

Lemma 3 Provided α 6= 0, β 6= 0, Re(αβ) 6= 0, the source pairs are chosen with the

above strategy and assumption 2 holds, the matrix M ≡ M(~xr, ω) satisfies

nullM = span

{[
−Im

(
g0(~xr, ω)

)

Re
(
g0(~xr, ω)

)
]}

. (3.19)

Proof. For clarity of exposition, we adopt the notation

ai = Re
(
g0

)
i
, bi = Im

(
g0

)
i
,

for i = 1, . . . , N and with g0 ≡ g0(~xr, ω). The proposed vector spanning the nullspace

is [vT,wT]T = [−Im(g0)T,Re(g0)T]T and has components vi = −bi and wi = ai for

i = 1, . . . , N .
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The proof is by induction on the number of sources N . For the purpose of the

induction argument, we denote by M(N) the measurement matrix M( ~xr, ω) corre-

sponding to N sources, which if we use the strategy explained above, must be a

2N × 2N real matrix. For the base case N = 5 of the induction, M(5) can be written

as

M(5) =




A−2 A+
1 0 0 0 B+

2 B−1 0 0 0
A−3 0 A+

1 0 0 B+
3 0 B−1 0 0

A−4 0 0 A+
1 0 B+

4 0 0 B−1 0
A−5 0 0 0 A+

1 B+
5 0 0 0 B−1

0 A−3 A+
2 0 0 0 B+

3 B−2 0 0
0 A−4 0 A+

2 0 0 B+
4 0 B−2 0

0 A−5 0 0 A+
2 0 B+

5 0 0 B−2
0 0 A−4 A+

3 0 0 0 B+
4 B−3 0

0 0 A−5 0 A+
3 0 0 B+

5 0 B−3
0 0 0 A−5 A+

4 0 0 0 B+
5 B−4




,

where we have used

A±i = |α||β|(cos(φ)ai ± sin(φ)bi), B±i = |α||β|(cos(φ)bi ± sin(φ)ai). (3.20)

Using the expressions (3.20), the leading principal 9× 9 minor of M(5) is

|M(5)
1:9,1:9| = −4|α|9|β|9 cos2(φ) (cos(φ)(b3a1 − b1a3) + sin(φ)(b3b1 + a3a1))×

a5(b3a2 − b2a3)(b2a1 − a2b1)(b5a4 − a5b4).

Therefore if assumption 2 holds and cosφ 6= 0 (which we get from Re(αβ) 6= 0), we

must have rankM(5) ≥ 9. By direct calculations, we have that

nullM(5) = span
{

[−b1, . . . ,−b5, a1, . . . , a5]T
}
.

Thus the base case N = 5 holds and rankM(5) = 9.

For the induction hypothesis we assume that N ≥ 5 and that

nullM(N) = span
{

[−bT,aT]T
}
,

where a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T. If the first 2N source pairs to construct

M(N+1) are chosen in exactly the same way as the source pairs to construct M(N), and
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the last two source pairs are, e.g., (N + 1, 1) and (N + 1, 2), we must have for any

v,w ∈ RN and vN+1, wN+1 ∈ R that

M(N+1)




v
vN+1

w
wN+1


 =




M(N)

[
v
w

]

A−N+1v1 + A+
1 vN+1 +B+

N+1w1 +B−1 wN+1

A−N+1v2 + A+
2 vN+1 +B+

N+1w2 +B−2 wN+1


 . (3.21)

Hence if [vT, vN+1,w
T, wN+1]T ∈ nullM(N+1), then we must have [vT,wT]T ∈ nullM(N),

i.e., there is some real k 6= 0 such that v = −kb and w = ka. Equating the last two

components of (3.21) to zero and using that vi = −kbi and wi = kai for i = 1, 2, one

gets the linear system

[
A+

1 B−1
A+

2 B−2

] [
vN+1

wN+1

]
=

[
kA−N+1b1 − kB+

N+1a1

kA−N+1b2 − kB+
N+1a2

]
.

Since A+
1 B
−
2 − A+

2 B
−
1 = |α|2|β|2(a1b2 − a2b1) 6= 0, the unique solution to this system

is vN+1 = −kbN+1 and wN+1 = kaN+1. Thus the desired result holds for any N ≥ 5.

In Figure 3.4, we show the condition number of M(~xr, ω) (i.e., σ1/σ2N−1 the ratio

of the largest singular value to the smallest nonzero singular value) over a frequency

band. The experimental setup is that given in §4.5 and corresponds to sending

exactly the same signal from both locations in a source pair (i.e., α = β and φ = 0).

Figure 3.4a shows the condition number of M with ~xr chosen so that assumption 2

is satisfied, while Figure 3.4b shows the condition number of M with ~xr chosen so

that assumption 2 is violated for some frequencies. In both cases, we see improved

conditioning by using more than 2N source pair experiments.

We now tie M†d to the array response vector p.

Theorem 4 Under the assumptions of lemma 3 it is possible to recover p ≡ p(~xr, ω)

from the intensity data d up to a complex scalar multiple of g0 ≡ g0(~xr, ω), more

precisely, M†d determines the vector p+ ζg0 where

ζ ≡ ζ(~xr, ω) =
1

2
− ıIm(g∗0p)

g∗0g0

. (3.22)
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Figure 3.4. Condition number of M(~xr, ω) with receiver location ~xr chosen so that
(a) assumption 2 is satisfied, (b) assumption 2 is violated for some frequencies. The
number of source pair experiments used is Np = N(N − 1)/2 (in red) and Np = 2N
(in blue).

Proof. Recalling the form of our data we have

d = M

[
Re
(
g0 + 2p

)

Im
(
g0 + 2p

)
]
.

By lemma 3, the matrix M has a one dimensional nullspace therefore

M†d =

[
Re(g0 + 2p)
Im(g0 + 2p)

]
− ζ̃

[
−Im(g0)
Re(g0)

]
,

where ζ̃ ∈ R is found by enforcing orthogonality with [−Im(g0)T,Re(g0)T]T, i.e.,

ζ̃ =
1

g∗0g0

[−Re(g0 + 2p)TIm(g0) + Im(g0 + 2p)TRe(g0)] =
2Im(g∗0p)

g∗0g0

.

Thus from M†d we can get the CN vector

1

2
[Re(g0 + 2p) + ζ̃Im(g0)] +

ı

2
[Im(g0 + 2p)− ζ̃Re(g0)] =

1

2
g0 + p− ı

2
ζ̃g0 = p+ ζg0,

where the scalar ζ ≡ ζ(~xr, ω) ∈ C is given by (3.22).

3.5 Kirchhoff migration imaging

We now show that we can image with the reconstructed field p+ ζg0 instead of p

by using Kirchhoff migration. This is because the Kirchhoff migration image of ζg0

is negligible compared to the image of p for high frequencies. In order to show that

this nullspace vector does not affect the imaging, we need to make sure the receiver

satisfies the following condition.
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~y

~xs

A

W

Figure 3.5. Given an array A and a region W containing the scatterers to image,
assumption 3 ensures the receiver location ~xr is outside of the blue shaded region.
This guarantees the Kirchhoff images using data p and the recovered p + ζg0 are
essentially the same. A ray indicating the direction ~xs − ~y for particular ~xs ∈ A
and ~y ∈ W is shown in red. If ~xr is outside the blue shaded region, we have
(~xs − ~xr)/|~xs − ~xr| 6= (~xs − ~y)/|~xs − ~y| for all ~xs ∈ A and all ~y ∈ W .

Assumption 3 (Geometric imaging conditions) For a scattering potential with

support P contained inside an image window W, we assume ~xr satisfies

~xs − ~xr
|~xs − ~xr|

6= ~xs − ~y

|~xs − ~y| , (3.23)

for s = 1, . . . , N and ~y ∈ W.

One way to guarantee assumption 3 holds is to place the receiver at location ~xr

outside of the shaded region in Figure 3.5.

Theorem 5 Provided assumption 3 holds and for large frequencies ω, the image of

the reconstructed array response vector is

ΓKM[p+ ζg0, ω](~y) ≈ ΓKM[p, ω](~y).

Proof. First we approximate the Kirchhoff imaging functional (3.7) by an integral

over the array A, i.e.,

ΓKM[ζg0, ω](~y) = Ĝ(~xr, ~y, ω)g0(~y, ω)∗ζ(~xr, ω)g0(~xr, ω)

∼ ζ(~xr, ω)

∫

A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~xr| − |~xs − ~y| − |~y − ~xr|

))
,

(3.24)

where the symbol ∼ means equal up to a constant and C(xs) collects smooth geo-

metric spreading terms.
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Let us first use the stationary phase method (see, e.g., [2]) on the integral over A.

In the high frequency limit ω →∞, the dominant contribution comes from stationary

points of the phase, i.e., the points ~xs for which

∇~xs

(
|~xs − ~xr| − |~xs − ~y| − |~y − ~xr|

)
= 0.

The stationary points must then satisfy

~xs − ~xr
|~xs − ~xr|

=
~xs − ~y

|~xs − ~y| .

Thus by assumption 3, there are no stationary points in the phase of the integral over

the array A appearing in (3.24). Neglecting boundary effects, this integral goes to

zero faster than any polynomial in ω (see, e.g., [3]).

We now show that in the high frequency limit ω → ∞, we have ζ(~xr, ω) → 1/2.

Recalling (3.22), we have

ζ(~xr, ω) =
1

2
+
g0(~xr, ω)∗p(~xr, ω)− p(~xr, ω)∗g0(~xr, ω)

g0(~xr, ω)∗g0(~xr, ω)

∼ 1

2
+
ω2

c2
0

∫

P
d~z

∫

A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~z|+ |~z − ~xr| − |~xs − ~xr|

))

− ω2

c2
0

∫

P
d~z

∫

A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~xr| − |~xs − ~z| − |~z − ~xr|

))
,

(3.25)

where C(~xs) collects geometric spreading terms and |g0(~xr, ω)|−2, which is actually

independent of the frequency ω. By assumption 3, the integrals overA in (3.25) do not

have any stationary points. Thus if we neglect boundary terms, these integrals must

go to zero faster than any polynomial in ω (see, e.g., [3]), meaning that ζ(~xr, ω)→ 1/2

as ω →∞. Thus ΓKM[ζg0, ω](~y)→ 0 as ω →∞.

Remark 9 Theorem 5 is a high frequency asymptotic result. At a given frequency,

the image ΓKM[g0, ω](~y) may not be negligible with respect to ΓKM[p, ω](~y), especially

since we assumed the scattered field p is much smaller than g0 (assumption 1). This

problem did not appear in the numerical experiments reported in §4.5. However it

does appear if one makes p smaller by, e.g., choosing a smaller reflectivity. One

can remedy this by recalling the expression for ζ in (3.22) and imaging with data

p+ (ζ − 1/2)g0 instead of p+ ζg0. This makes the error in the data comparable to p



73

(since ‖(ζ−1/2)g0‖ ≤ ‖p‖) instead of being comparable to ‖g0‖, while also vanishing

as the frequency increases.

3.6 Autocorrelation measurements

Up to this point we have assumed deterministic control over the source illumi-

nations. In this section we relax this control by driving the array with stochastic

signals. We start in section 3.6.1 by recalling an ergodicity result of Garnier and

Papanicolaou [12] which guarantees that if Gaussian stochastic processes are used to

drive the sources, the realization average of the total field can be well approximated

by time averages of the total field. Then in section 3.6.2 we adapt the source

pair illumination strategy to pairs of sources driven by two correlated Gaussian

processes, with (known) correlation identical for different pairs. From these pairwise

illuminations we measure empirical autocorrelations to obtain intensity measurements

that are essentially (up to ergodic averaging) the same as those using the deterministic

strategy of section 3.3.1.

3.6.1 Stochastic array illuminations

We consider array illuminations f(t) ∈ CN given by a stationary Gaussian process

with mean zero and with correlation the N ×N matrix function

R(τ) = 〈f(t)fT(t+ τ)〉. (3.26)

Here 〈·〉 denotes the expectation with respect to realizations of f , and in an abuse of

notation we have denoted by f(t) the time domain vector of signals driving the array.

Since Rs,s′(τ) = 〈f s(t)fs′(t + τ)〉 = 〈f s′(t+ τ)fs(t)〉 = Rs′,s(−τ) for s, s′ = 1, . . . , N ,

we have R(τ) = R∗(−τ) and so R̂(ω) is a Hermitian N ×N matrix.

The total field u at the receiver arising from the array illumination f is, in the

time domain,

u(~xr, t) =
N∑

s=1

∫
dt′G(~xr, ~xs, t− t′)fs(t′), (3.27)

where G is the Born approximation of the inhomogeneous Green function, i.e.,

G(~xr, ~xs, t) =
1

2π

∫
dωe−ıωt

[
Ĝ0(~xr, ~xs, ω) + k2

∫

P
d~zρ(~z)Ĝ0(~xr, ~z, ω)Ĝ0(~z, ~xs, ω)

]
.
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The empirical autocorrelation of u is

ψ(~xr, τ) =
1

2T

∫ T

−T
u(~xr, t)u(~xr, t+ τ)dt, (3.28)

where T is a known measurement time. Following Garnier and Papanicolaou [12],

we formulate proposition 1 regarding the statistical stability and ergodicity of (4.18).

This proposition is essentially the same as [12, Proposition 4.1], but we make small

modifications to allow for complex fields and more general correlations in space. We

include it here for the sake of completeness and the proof can be found in §3.10.

Proposition 1 Assume f satisfies (3.26). The expectation (w.r.t. realizations of f)

of the empirical autocorrelation (4.18) is independent of measurement time T :

〈ψ(~xr, τ)〉 = Ψ(~xr, τ), (3.29)

where

Ψ(~xr, τ) =
N∑

s,s′=1

∫
dt′
∫
dt′′G(~xr, ~xr,−t′)G(~xr, ~xs′ , τ − t′′)Rs,s′(t

′′ − t′)

=
1

2π

∫
dωe−ıωτg(~xr, ω)∗R̂(ω)g(~xr, ω).

(3.30)

Furthermore, (4.18) is ergodic, i.e.,

ψ(~xr, τ)
T→∞−−−→ Ψ(~xr, τ). (3.31)

3.6.2 Pairwise stochastic illuminations

We make Np illuminations each corresponding to using only two distinct sources

(i(m), j(m)) ∈ {1, . . . , N}2, m = 1, . . . , Np. The correlation matrix for the m−th

experiment has the form

R̂m(ω) = FmC(ω)FT
m, (3.32)

where Fm = [ei(m), ej(m)] ∈ RN×2 and C(ω) is a known 2 × 2 Hermitian positive

semidefinite matrix that represents the correlation between the two sources and is



75

assumed to be the same for all experiments. For instance, if we send the same signal

with power spectrum F (ω) from both sources in a pair, this correlation matrix is

C(ω) = F (ω)

[
1 1
1 1

]
.

By the ergodicity (3.31) of proposition 1, when we measure the empirical au-

tocorrelation ψm of um at the receiver ~xr for long enough time T , the empirical

autocorrelation is close to an intensity measurement, i.e.,

Ψ̂m(~xr, ω) = g(~xr, ω)∗FmC(ω)FT
mg(~xr, ω). (3.33)

By using appropriate single-source illuminations driven by a signal with known cor-

relation, it is possible to measure

Ψ̂0
i (~xr, ω) = g∗(~xr, ω)eie

T
i g(~xr, ω). for i = 1, . . . , N . (3.34)

From (3.33) and (3.34) we obtain the m−th measurement

dm(~xr, ω) = Ψ̂m(~xr, ω)− C11(ω)Ψ̂0
i(m)(~xr, ω)− C22(ω)Ψ̂0

j(m)(~xr, ω)

= g(~xr, ω)∗FmD(ω)FT
mg(~xr, ω),

(3.35)

where the matrix D is 2× 2, Hermitian with zero diagonal, i.e., precisely of the same

form as the matrix D we encountered in the intensity measurements case (3.12).

Proceeding analogously as in section 3.3.1 and recalling that g = g0 + p we have

dm(~xr, ω) =
(
g0 + p

)∗
FmD(ω)FT

m(g0 + p
)
.

Collecting the measurements for m = 1, . . . , Np and neglecting the quadratic term in

p we have the approximate data



d1(~xr, ω)
d2(~xr, ω)

...
dNp(~xr, ω)


 ≈ d(~xr, ω) = M(~xr, ω)

[
Re
(
g0 + 2p

)

Im
(
g0 + 2p

)
]
, (3.36)

where the matrix M ∈ RNp×2N is again given by (3.14). Thus, the data (3.36)

obtained by measuring the empirical autocorrelation (4.18) and using correlated pair

illuminations, are essentially the same as the data obtained using deterministic source

pairs (3.13). Hence the analysis of the matrix M of §3.4 holds and we can use Kirchhoff

migration as we did in §3.5 for the intensity measurements case.
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Remark 10 (Uncorrelated background illumination) The proposed illumination

strategy is robust with respect to noise and even allows us to send the same Gaussian

signal from the m−th source pair (i(m), j(m)) and independent Gaussian signals

from all remaining sources on the array. If the independent signals have the same

spectral density F (ω) as the source pair signal, the correlation matrix for the m−th

experiment is

R̂m(ω) = F (ω)

(
I + Fm

[
0 1
1 0

]
FT
m

)
, (3.37)

where I is N × N identity matrix. By subtracting from the autocorrelation for the

m−th experiment, the autocorrelation for a reference illumination that sends inde-

pendent Gaussian signals with correlation matrix F (ω)I, it is possible to obtain m−th

measurement (3.35) with

D(ω) = F (ω)

[
0 1
1 0

]
.

3.7 Additive noise

Here we discuss the effects of additive instrumental noise in autocorrelated mea-

surements of the total field. The total field at ~xr resulting from illuminating with the

m−th pair and tainted with additive noise is um(~xr, t) + ξ(t). We assume the noise

ξ is a stationary Gaussian process with mean zero and spectral density

Ξ̂(ω) = exp

(−l2c(ω − ω0)2

4π

)
. (3.38)

Here lc represents the correlation time of the noise (i.e., Ξ(τ) = 〈ξ(t)ξ(t + τ)〉 ≈ 0

for τ � lc) and ω0 is the central angular frequency of the noise. If the noise ξ is

independent of the signals used to drive the source pairs, it can be shown using the

techniques of §3.10 that

1

2T

∫ T

−T
dt
(
um(~xr, t) + ξ(t)

)(
um(~xr, t+ τ) + ξ(t+ τ)

) T→∞−−−→ Ψm(~xr, τ) + Ξ(τ),

where Ψm is given by (3.30).

Assuming the same form of instrumental noise in the single-source reference mea-

surements, the m−th measurement dm(~xr, ω) is

dm(~xr, ω) =
(
g0 + p

)∗
FmD(ω)FT

m

(
g0 + p

)
+ CΞ̂(ω).
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for some C ∈ R. Neglecting the terms which are quadratic in p and going back to

the time domain we have

dm(~xr, τ) ≈ 1

2π

∫
dωe−ıωτ

[
g0(~xr, ω)∗FmD(ω)FT

mg0(~xr, ω)

+g0(~xr, ω)∗FmD(ω)FT
mp(~xr, ω)

+p(~xr, ω)∗FmD(ω)FT
mg0(~xr, ω)

]
+ CΞ(τ),

with the slight abuse of notation of using dm for both time and frequency domain

quantities. The second and third terms in the integrand are incident-scattered field

correlations and contain the available information about the scattering potential ρ(~y).

For simplicity, we now focus on the case where the source pair signals have

correlation matrix

D(ω) = F (ω)

[
0 eıωφ

e−ıωφ 0

]
.

Such correlation corresponds to sending a signal from one of the sources in a pair and

a copy of the same signal delayed by φ from the other source. For a point scatterer

at ~y, the incident-scattered terms have peaks at delay times τ(~y) corresponding to

differences between travel times of a reflected path and direct path, i.e., for the m−th

experiment the peaks occur at the four possible delays

τ(~y) =

{
±((|~xj(m) − ~y|+ |~y − ~xr| − |~xi(m) − ~xr|)/c0 + φ),

±((|~xi(m) − ~y|+ |~y − ~xr| − |~xj(m) − ~xr|)/c0 − φ).

Consider then the minimal delay time τmin(~y) given by

τmin(~y) = min
~xs,~xs′∈A

∣∣∣∣
|~xs − ~y|+ |~y − ~xr| − |~xs′ − ~xr|

c0

± φ
∣∣∣∣ , (3.39)

that is the minimal delay time we expect the incident-scattered correlations to peak. If

we assume the additive noise decorrelates much faster than the first incident-scattered

arrival from ~y (i.e., lc � τmin(~y)), then the information of the scatterer ρ(~y) contained

in dm(~xr, τ) is essentially unchanged (up to ergodic averaging). Hence we can stably

image using the proposed method at ~y provided τmin(~y)� lc.

3.8 Numerical experiments

Here we include 2D numerical experiments of our proposed imaging routine for

scalings corresponding to acoustics (§3.8.1) and optics (§3.8.2). We demonstrate the
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stochastic source pair illumination strategy for the acoustic regime, i.e., we compute

the autocorrelations for time domain data. In the optic regime this is an expensive

calculation, so we use instead power spectra (i.e., deterministic illuminations). We

also provide experiments for physical setups where our method is not expected to

work (§3.8.3).

3.8.1 Acoustic regime

For imaging in an acoustic regime, our choice of physical parameters corresponds

to ultrasound in water. We choose the background wave velocity to be c0 = 1500

m/s. The central frequency for all signals (sources and additive noise) is 3 MHz,

which gives a central wavelength of λ0 = 0.5 mm. We center a source array A at the

origin consisting of 41 point sources at coordinates ~xs = (0,−10λ0 + (s− 1)λ0/2) for

s = 1, . . . , 41. A single receiver is located at the coordinate ~xr = (−20λ0,−20λ0) (see

Figure 3.2).

We generate a stationary Gaussian time signal f(t) with mean zero and correlation

function

F (τ) = exp

(
−πτ

2

t2c

)
,

using the Wiener-Khinchin theorem. The correlation time tc ≈ 1.25 µs which gives

the signal an effective frequency band [1, 5] MHz. We generate time signals of length

2T for T ≈ 260 µs with 8001 uniformly spaced samples. This sampling is enough

to resolve the frequencies in the angular frequency band B, while T is sufficient to

observe ergodic averaging (see §3.6). By placing the same realization of this signal

f̂(ω) at the locations ~xi(m) and ~xj(m) we generate the pair illumination fm(ω) =

f̂(ω)(ei(m)+ej(m)). Similarly, by placing an independent realization of f̂(ω) at location

~xi we generate the single-source reference illumination f 0
i (ω) = f̂(ω)ei.

For all experiments, synthetic data are generated in the frequency domain using

the Born approximation. We assume 3D wave propagation for simplicity so that G0

is given by (3.3) for d = 3. The m−th measurement is obtained through the formula

dm(~xr, ω) = Ψ̂m(~xr, ω)− Ψ̂0
i(m)(~xr, ω)− Ψ̂0

j(m)(~xr, ω),

where
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Ψ̂m(~xr, ω) =
∣∣∣
(
g0(~xr, ω) + p(~xr, ω)

)T
fm(ω)

∣∣∣
2

,

Ψ̂0
i (~xr, ω) =

∣∣∣
(
g0(~xr, ω) + p(~xr, ω)

)T
f 0
i (ω)

∣∣∣
2

,

with g0 and p defined by (3.2) and (3.6), respectively. Thus, the quadratic term

pTHmp is present in each measurement dm.

For these simulations we use the full set of pair illuminations, which for N = 41

source locations, generates a measurement matrix M(~xr, ω) ∈ R820×82. We use the

Moore-Penrose pseudoinverse M† to recover p + ζg0 for each ω ∈ B. When the

number of sources N and thus the dimension of M is large (recall M ∈ RN(N−1)/2×N),

the pseudoinverse could become computationally expensive. However, the system is

sparse as it contains only 4 nonzero elements per row, so linear least-squares solvers

that exploit sparsity (e.g., CGLS [19]) may be more efficient than our approach.

Furthermore, as discussed in §3.4 we can reduce the size of M to 2N × 2N while

keeping the nullspace of M one-dimensional by using an appropriate subset of source

pairs.

We form an image at ~y ∈ W = {(100λ0+iλ0/2.5, jλ0/2.5), for i, j = −25, . . . , 25}
using the Kirchhoff migration functional (§3.2.2), summed over the bandwidth band

B,

ΓKM[p+ ζg0](~y) =

∫

B
dωΓKM[p+ ζg0, ω](~y).

For our first experiment, we place a single point reflector at the location ~y = (100λ0, 0),

with reflectivity ρ(~y) = 1 × 10−8 (roughly equivalent to a reflector of area λ2
0 with

reflectivity 0.04). The migrated image (Figure 3.6a) indeed exhibits the cross-range

(Rayleigh) resolution estimate λ0L/a ≈ 5λ0 and range resolution estimate c0/|B| ≈
1λ0. Note that there is a trade-off in the choice of the reflectivity. We need ρ to be

sufficiently small so that assumption 1 is valid and quadratic terms of p in (3.13) are

negligible. However the smaller ρ is, the longer the acquisition time T has to be in

order to better observe the reflected-incident correlations in the data.

In our second experiment (Figure 3.6b), we consider two oblique reflectors located

at ~y1 = (99λ0,−2λ0) and ~y2 = (103λ0, 4λ0) each with ρ(~yi) = 1× 10−8. We include

a reconstruction of an extended scatterer (line segment) in Figure 3.7. Here the line
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Figure 3.6. Kirchhoff images of (a) one point and (b) two point reflectors, whose
true positions are indicated with crosses. The left column uses the full waveform data
p, while the right column use the recovered data p+ ζg0. The horizontal and vertical
axes display the range and cross-range respectively, with scales in central wavelengths
λ0.

segment is generated as a set of point reflectors each with ρ(~yi) = 1× 10−9 uniformly

spaced by λ0/8.

We now demonstrate the robustness of the proposed method with respect to

additive noise (see section 3.7). Here we have taken a realization of the data for

a single point reflector (Figure 3.6a) and perturbed each measurement with additive

noise as follows. The m−th signal ûm(~xr, ω) has total power pm =
∫
|ûm(~xr, ω)|2dω.
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Figure 3.7. Kirchhoff images of an extended reflector. The left image uses the
full waveform data p, while the right image uses the recovered data p + ζg0. The
horizontal and vertical axes display the range and cross-range respectively, with scales
in central wavelengths λ0.

We construct a Gaussian signal ξm(t) with mean zero, spectral density (3.38), lc ≈ 1.25

µs and total power 1. This allows us to obtain the perturbed total field ûm(~xr, ω) +
√
νpmξ̂m(ω) for some ν > 0. The m−th measurement with additive noise is thus

dm(~xr, ω) = |ûm(~xr, ω)|2 +νpm|ξ̂(ω)|2. Thus the ratio of the signal power to the noise

power is 1/ν. The signal-to-noise ratio (SNR) is then

SNRm = −10 log10(ν)dB.

Figure 3.8 shows the reconstruction from data with SNRm = 0 dB for eachm, meaning

that the signal and the noise have the same power.

Lastly we perform an experiment that sends as the m−th illumination the usual

correlated pair illumination fm, and uncorrelated noise from the remaining sources

on the array A (see remark 10). To generate this illumination we place the same

realization of the signal f̂(ω) at the locations xi(m) and xj(m), and independent real-

izations of f̂(ω) at the remaining source locations. Similarly, a reference illumination

is generated by placing independent realizations of f̂(ω) at all locations on the array

A. By measuring the autocorrelation of the resulting fields we obtain data that are
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Figure 3.8. Additive noise: (left) array response vector migration ΓKM[p](~y), (right)
recovered array response vector migration ΓKM[p + ζg0](~y) for SNRm = 0dB. The
horizontal and vertical axes display the range and cross-range respectively measured
in central wavelengths λ0.

essentially the same form as dm(~xr, ω). Figure 3.9 shows this experiment with the

single point reflector located at ~y = (100λ0, 0) and reflectivity ρ(~y) = 1× 10−8.

3.8.2 Optic regime

For imaging in an optic regime, we use the background wave velocity c0 = 3× 108

m/s and central frequency ≈ 589 THz which gives a central wavelength λ0 ≈ 509

nm. Our source array A is again centered at the origin, but now consists of 501 point

sources located at coordinates ~xs =
(
0,−0.005+(s−1)(0.01/500)

)
for s = 1, . . . , 501,

and we set ~xr = (−0.005,−0.005). This corresponds to centering a 1cm source array

at the origin with sources spaced approximately 20µm apart and a receiver placed

slightly behind. We use this spacing for sources since it is physically attainable

by using a Digital Micromirror Device (e.g., the Texas Instruments DLP4500 has

a micromirror pitch of 7.6µm). Our numerical experiments assume the sources are

points, which is not the case if we were using such a device (since each pixel is several

wavelengths across). The effect of this approximation is not studied here.

We generate intensity data d(~xr, ω) as
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Figure 3.9. Uncorrelated background illumination: (left) array response vector mi-
gration ΓKM[p](~y), (right) recovered array response vector migration ΓKM[p+ζg0](~y)
for SNRm = 0dB. The horizontal and vertical axes display the range and cross-range
respectively measured in central wavelengths λ0.

dm(xr, ω) =
∣∣∣
(
g0 + p

)T
(ei(m) + ej(m))

∣∣∣
2

−
∣∣∣
(
g0 + p

)T
ei(m)

∣∣∣
2

−
∣∣∣
(
g0 + p

)T
ej(m)

∣∣∣
2

,

for 1000 (angular) frequencies ω uniformly spaced in the frequency band [429, 750]

THz. This corresponds to performing the source pair experiments (source pair illumi-

nations and single-source reference illuminations) for 1000 different monochromatic

visible light sources with wavelengths λ ∈ [400, 700] nm, equally spaced in frequency.

Since there are a large number of sources in this setup (N = 501), we implement

the strategy discussed in §3.4 to reduce the number of source pair experiments from

Np = N(N − 1)/2 to Np = 2N .

As before, we use the pseudoinverse M† to recover p+ζg0 for each frequency ω ∈ B,

and then use the Kirchhoff migration functional (§3.2.2) to form an image. Here we

use the image window W = {(0.05 + iλ0/2.5, jλ0/2.5), for i, j = −25, . . . , 25}. In

Figure 3.10 we demonstrate the migrated image for two point reflectors placed at

~y1 = (0.05 − 2λ0, 2λ0) and ~y2 = (0.05 + 3λ0,−4λ0) each with reflectivity ρ(~yi) =

1× 10−15. Although we are significantly undersampling the data in frequency and on

the array (the source spacing is of about 40λ0, much larger than λ0/2), the spot sizes



84

ΓKM[p](~y) ΓKM[p+ ζg0](~y)

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure 3.10. Optic regime: (left) array response vector migration ΓKM[p](~y),
(right) recovered array response vector migration ΓKM[p + ζg0](~y). The horizontal
and vertical axes display the range and cross-range respectively measured in central
wavelengths λ0 from the center (0.05, 0).

still exhibit the Kirchhoff migration resolution estimates (§3.2.2) of λ0L/a ≈ 5λ0 in

cross-range and c0/|B| ≈ 2λ0 in range.

3.8.3 Breakdown of the imaging method

Here we consider physical setups in the acoustic regime (c0 = 1500 m/s, (2π)−1B =

[1, 5] MHz, λ0 = 0.5 mm) for which assumptions 1 and/or 3 are violated. For these

experiments we fix the source positions ~xs = (0,−10λ0 +(s−1)λ0/2) for s = 1, . . . , 41

and vary a point scatterer location ~y, reflectivity size ρ(~y) and receiver location ~xr.

Deterministic intensity data are collected as

dm(ω) =
∣∣∣(g0 + p)(ei(m) + ej(m))

∣∣∣
2

−
∣∣∣(g0 + p)ei(m)

∣∣∣
2

−
∣∣∣(g0 + p)ej(m)

∣∣∣
2

,

for each m = 1, . . . , N(N − 1)/2 and 1000 equally spaced frequencies ω ∈ B.

In Figure 3.11 we show the Kirchhoff migrated images of the recovered array

response vector ΓKM[p + ζg0] for the situations indicated in Table 3.1. From

Figures 3.11a, 3.11b and 3.11c, our method appears most sensitive to the smallness

assumption 1. In these situations, the quadratic term p∗Hmp is non-negligible and
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Figure 3.11. Breakdown of imaging method: migrated images of the recovered
array response vector ΓKM[p+ ζg0] for setups violating assumptions 1 and/or 3. The
physical setups are given above and correspond to (a) ~xr placed too close to ~y, (b) A
placed too close to ~y, (c) large reflectivity ρ and (d) ~xr placed in front of the array
A. The true position of the point scatterer is indicated with a cross.
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Table 3.1. Breakdown of imaging method: physical setups and violated assumptions
for each of the numerical experiments shown in Figure 3.11.

Assumptions ~y ρ(~y) ~xr
violated

(a) Receiver near scatterer 1 and 3 (100λ0, 0) 1× 10−8 (85λ0, 0)
(b) Sources near scatterer 1 (11λ0, 0) 1× 10−8 (−200λ0, 0)
(c) Large reflectivity 1 (100λ0, 0) 1× 10−3 (−10λ0, 0)
(d) No geometric condition 3 (100λ0, 0) 1× 10−8 (10λ0, 0)

the linearization we use in §3.3.2 is invalid, which leads to artifacts in the images. As

seen in Figure 3.11d where only assumption 3 is violated, the method appears more

robust than expected.

By the ergodicity result (proposition 1) we are guaranteed these experiments also

indicate the performance of our method when using stochastic source pairs, at least

in the limit T → ∞. One additional situation where we expect our method to

breakdown, is when using stochastic source illuminations with large correlation times

tc. If tc is sufficiently large, incident-incident correlations may dominate the data,

preventing us from resolving the reflected arrivals necessary for imaging. This follows

from a discussion similar to that in §3.7.

3.9 Discussion

By sending correlated signals from different pairs of locations we have shown

that the intensity data can be approximated by a linear system on the condition

that smallness assumption 1 holds. This linear system has a known one-dimensional

nullspace provided the sources and receiver satisfy the distance conditions given by

assumption 2, which allows for the recovery of p + ζg0. We show this quantity is

enough to use standard migration techniques (e.g., Kirchhoff migration ΓKM) provided

the sources and receiver satisfy the additional geometric conditions of assumption 3.

Thus we obtain full waveform resolution estimates for an image formed from intensity-

only data.

Our method relies on assumption 1 to neglect quadratic terms in p. As expected

our method breaks down if such terms are large, e.g., when the sources or the receiver

are near the scatterers or for large scattering potentials.
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Our method relies only on knowledge of paired source locations and the correlation

of the signals being sent. This allows us to relax illumination control by using paired

stochastic signals. By measuring autocorrelations of the resulting fields, we obtain

essentially the same intensity data as with using deterministic source pairs. These

stochastic illuminations can be created, e.g., by using a configurable mask that is

parallel to the wave fronts of an incoherent plane wave.

The linear system we solve has size 2N × 2N and is very sparse (up to 4 nonzero

entries per row). In our simulations we used M†, however sparse solvers such as CGLS

(see, e.g., [19]) could be used. To form the system we need at least 3N different

illuminations, 2N pair illuminations plus N reference illuminations. However, in our

illumination strategy, the phase of the source signals does not need to be known. We

replace the direct phase control by the natural phase modulation that comes from

the different positions of the signals.

We use the geometric imaging conditions (assumption 3) to show the nullspace of

M does not affect imaging via ΓKM. This assumption imposes some restrictions on the

juxtaposition of the sources and receiver and in turn on the forms of illuminations we

can consider. For example, using a stationary phase argument, it can be shown the

autocorrelation of the total field is negligible if spatially continuous array illuminations

(rather than paired point sources) are used. In future work, we would like to address

this more thoroughly to determine if more general illuminations can be used. It

may also be interesting to see if the source pair strategy we propose works for other

imaging setups.

Lastly we recall our method assumes line-of-sight between sources, scatterers and

receiver and a homogeneous linear response from the medium. We leave the study of

more complicated setups and media for future work.

3.10 Proof of Proposition 1

In this section we prove proposition 1 which details the statistical stability of the

measured autocorrelation (4.18) with respect to realizations of the illumination f .

The theorem and proof are patterned after the result by Garnier and Papanicolaou [12,

Proposition 4.1], only we make small modifications to allow for complex fields and
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the form (3.26) of the correlation function R(τ).

Proof. Since we are assuming f is a stationary process in t, the resulting total field

u is also a stationary random process in t. So we have

〈u(~xr, t)u(~xr, t+ τ)〉 = 〈u(~xr, 0)u(~xr, τ)〉,

which allows us to compute

〈ψ(~xr, τ)〉 =
1

2T

∫ T

−T
dt〈u(~xr, t)u(~xr, t+ τ)〉

=
1

2T

∫ T

−T
dt〈u(~xr, 0)u(~xr, τ)〉 = 〈u(~xr, 0)u(~xr, τ)〉.

So (4.18) is independent of T . By expressing the quantity 〈u(~xr, 0)u(~xr, τ)〉 through

the Green’s function G we verify (3.29):

〈ψ(~xr, τ)〉 =
N∑

p,p′=1

∫
dt′
∫
dt′′G(~xr, ~xp,−t′)G(~xr, ~xp′ , τ − t′′)〈fp(t′)fp′(t′′)〉

=
N∑

p,p′=1

∫
dt′
∫
dt′′G(~xr, ~xp,−t′)G(~xr, ~xp′ , τ − t′′)Rp,p′(t

′′ − t′)

=
1

2π

∫
dωe−ıωτg(~xr, ω)∗R̂(ω)g(~xr, ω).

To show the ergodicity (3.31), we need to compute the variance of ψ. We first

compute the covariance as

Cov
(
ψ(~xr, τ), ψ(~xr, τ + ∆τ)

)
=

N∑

p,p′,q,q′=1

1

(4T )2

∫ T

−T

∫ T

−T
dtdt′

∫
dsds′dudu′

×G(~xr, ~xp, s)G(~xr, ~xp′ , u− τ)G(~xr, ~xq, s
′)G(~xr, ~xq′ , u

′ − τ −∆τ)

×
(
〈fp(t− s)fp′(t− u)f q(t

′ − s′)fq′(t′ − u′)〉

− 〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉
)
.

(3.40)

The product of the second order moments is

〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉 = Rp′,p(u− s)Rq,q′(s
′ − u′).

Since f(t) is Gaussian (in time), the fourth order moment is given by the complex

Gaussian moment theorem (see, e.g., [26]) as

〈fp(t− s)fp′(t− u)f q(t
′ − s′)fq′(t′ − u′)〉 = Rp′,p(u− s)Rq,q′(s

′ − u′)

+Rq,p(t− t′ − s+ s′)Rp′,q′(t
′ − t− u′ + u).
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We now integrate over the t, t′ variables to obtain

1

4T 2

∫ T

−T
dt

∫ T

−T
dt′
(
〈fp(t− s)fp′(t− u)f q(t

′ − s′)fq′(t′ − u′)〉

− 〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉
)

=
1

4T 2

∫ T

−T
dt

∫ T

−T
dt′Rq,p(t− t′ − s+ s′)Rp′,q′(t

′ − t− u′ + u)

=

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)
eıω
′(s−s′)e−ıω(u−u′)R̂q,p(ω)R̂p′,q′(ω

′).

Plugging this into (3.40) we obtain

Cov
(
ψ(~xr, τ), ψ(~xr, τ + ∆τ)

)
=

N∑

p,p′,q,q′=1

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)

× Ĝ(~xr, ~xp, ω
′)Ĝ(~xr, ~xp′ , ω)Ĝ(~xr, ~xq, ω)Ĝ(~xr, ~xq′ , ω)R̂q,p(ω)R̂p′,q′(ω

′)eıω∆τ

=

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)(
g(~xr, ω)∗R̂(ω)g(~xr, ω

′)
)

×
(
g(~xr, ω)∗R̂(ω′)g(~xr, ω

′)
)
eıω∆τ ,

where g = g0 + p is given by (3.2) and (3.6), and
(
R̂(ω)

)
i,j

= R̂i,j(ω) is a CN×N

Hermitian matrix for each ω. Then taking T →∞ we compute the variance as

T Var
(
ψm(~xr, τ)

) T→∞−−−→
∫
dω
∣∣∣g(~xr, ω)∗R̂(ω)g(~xr, ω)

∣∣∣
2

,

and so the variance is O(1/T ) as T →∞. This establishes (3.31).
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KIRCHHOFF MIGRATION

WITHOUT PHASES
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4.1 Introduction

In Chapter 3 we developed a method to image scatterers in a homogeneous medium

from intensity-only measurements. Our method used a specific illumination strategy

of source pairs, meaning we sent correlated signals from two different locations on a

source array and measured the intensity of the resulting wavefield at a single receiver

location. We showed a projection of full waveform data could be recovered from a

collection of these intensity measurements (i.e., intensity measurements from multiple

source pair experiments) by solving a linear least-squares problem. Moreover, we

showed this projection was sufficient to image with Kirchhoff migration. In this

chapter, we generalize and in fact simplify this imaging method by considering a

reciprocal physical setup consisting of a single source location and a receiver array

where intensities are recorded. Since we have only one source, we can no longer use

source pairs and thus we can only record intensities for a single experiment. This

means we work with less data than in Chapter 3, and our illumination strategy is

greatly simplified. However, even in this simplified setup we can still exploit the

principle that Kirchhoff migration does not require complete phase information to

form an image.

The setup we now analyze consists of one source and N receivers, all of known

location. The receivers can only record intensities and only the source intensity is

known. If the scattered field is small compared to the probing field (at the receivers)

then the scattered field projected onto a known subspace can be found from the

intensity data by solving an underdetermined, real, least-squares problem of size

N × 2N (per frequency sample). This system is underdetermined because we are

trying to use the intensity data, i.e., N real measurements, to recover the scattered

field, i.e., N complex or 2N real numbers. Fortunately, a stationary phase argument

similar to that in §3.5, shows that the error made by projecting the scattered field

does not affect Kirchhoff imaging (for high frequencies). Moreover the least-squares

problem is typically well conditioned and its solution is embarrassingly simple: it

merely costs about 2N complex operations (additions or multiplications). Hence our

method is comparable in computational cost to Kirchhoff migration. Well-known

resolution studies for Kirchhoff migration, discussed in §3.2.2, can also be used for
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this method.

4.1.1 Contents

The physical setup and notations we use for this chapter are described in §4.2.1,

where we also briefly review Kirchhoff migration in this setting. Using the Born

approximation, we formulate the problem of recovering the full wave scattered field at

the array from intensity-only measurements as a linear least-squares problem §4.2.2.

In §4.3 we analyze and solve the least-squares problem and show that its solution

can be used with Kirchhoff migration. We extend this imaging method to stochastic

illuminations and autocorrelation measurements in §4.4. Numerical experiments for

an optic regime are provided in §4.5, and we conclude with a discussion in §4.6.

4.2 Wave propagation and intensity-only measurements

Here we introduce the setup we work with and briefly recall Kirchhoff migration.

As in Chapter 3, we use the Fourier transform convention for functions of time t:

f̂(ω) =

∫ ∞

−∞
dtf(t)eıωt, f(t) =

1

2π

∫ ∞

−∞
dωf̂(ω)e−ıωt, for f(t), f̂(ω) ∈ L2(R). (4.1)

4.2.1 Wave propagation and imaging in a homogeneous medium

The physical setup we consider is depicted in Figure 4.1. We probe the medium

with a point source located at ~xs. Waves are recorded on an array of receivers

~xr = (xr, 0) ∈ A for r = 1, . . . , N , where A ⊂ Rd×{0} and d = 2, 3 is the dimension.

We use the notation x for the first d−1 components of a vector ~x ∈ Rd. For simplicity

we consider a linear array in 2D or a square array in 3D, i.e., A = [−a/2, a/2]d−1×{0},
however other shapes may be considered. We impose only mild conditions on the

positions of the source and receivers, in particular that the source is not in the array.

We assume the medium contains scatterers with reflectivity ρ(~y) with supp(ρ) = P ,

and background wave velocity c0.

The total field arriving at the receiver location ~xr from frequency modulation

f̂(ω) at the source location ~xs is

û(~xr, ~xs, ω) = Ĝ(~xr, ~xs, ω)f̂(ω), (4.2)

where Ĝ is the Green’s function for the (inhomogeneous) medium in the frequency
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x1

x2

x3

~xs

~xr

ρ(~y)

A

Figure 4.1. Physical setup for an array A of receivers with a wave source located
at ~xs. The scatterer is characterized by the compactly supported function ρ(~y) (in
yellow).

domain. We assume the scatterers are weak so that multiple scatterings may be

neglected and by the Born approximation

Ĝ(~xr, ~xs, ω) ≈ Ĝ0(~xr, ~xs, ω) + k2

∫

P
d~yρ(~y)Ĝ0(~xr, ~y, ω)Ĝ0(~y, ~xs, ω), (4.3)

where Ĝ0 is the Green’s function for the Helmhotz equation given by (3.3).

We express the total fields received on the array with linear algebra notation as

u(~xr, ~xs, ω) = eTr
(
g0(~xs, ω) + p(~xs, ω)

)
f̂(ω), for r = 1, . . . , N ,

where the vector g0 is the vector of direct arrivals (or incident field) at the array

g0(~xs, ω) =
[
Ĝ0(~x1, ~xs, ω), Ĝ0(~x2, ~xs, ω), · · · , Ĝ0(~xN , ~xs, ω)

]T
, (4.4)

and the array response vector (or scattered field at the array) is

p(~xs, ω) = k2

∫

P
d~zg0(~z, ω)Ĝ0(~xs, ~z, ω)ρ(~z). (4.5)

Note, the vectors g0 and p now represent fields arriving at different receiver locations

{~xr}Nr=1 from a single illumination at ~xs, instead of fields arriving at a single receiver

location ~xr from illuminations at different source locations {~xs}Ns=1 as was the case in

Chapter 3. In this sense, the vectors g0 and p defined in (4.4) and (4.5) are reciprocal

of those defined in (3.2) and (3.6), respectively.

When full waveform measurements are available, i.e., u(~xr, ~xs, ω) is known for

r = 1, . . . , N , the scattered field p can be obtained from the total field at the array,



97

g0 and f̂(ω). The scatterers in the medium can be imaged with Kirchhoff migration

applied to p, which, for a single frequency ω and the physical setup we consider here

has the form:

ΓKM

[
p, ω

]
(~y) = Ĝ0(~xs, ~y, ω)g0(~y, ω)∗p(~xs, ω), (4.6)

where ~y is a point in the image. The Kirchhoff migration functional has been studied

extensively (see, e.g., Bleistein et al. [2] for a review). As discussed in §3.2.2, we can

expect a cross-range resolution of λL/a, and integrating ΓKM[p, ω] over a frequency

band B = [−ωmax,−ωmin] ∪ [ωmin, ωmax], a range resolution of c0/(ωmax − ωmin).

4.2.2 Intensity-only measurements

Using the illumination f̂(ω) at the source location ~xs, the intensity-only measure-

ment of the wave field at ~xr ∈ A is

|u(~xr, ~xs, ω)|2 = |f̂(ω)|2eTr
[
(g0 + p)� (g0 + p)

]
, (4.7)

where the operator � denotes the componentwise or Hadamard product of two vectors

and {er}Nr=1 is the standard orthonormal basis of RN . Our objective is to find as

much as we can about p from the vector of measurements [|u(~xr, ~xs, ω)|2]r=1,...,N .

This is done by linearization, so we need to assume that the scattered field p is small

compared to the direct arrival g0 at the array.

Assumption 4 The position of the receivers, the source, and the reflectivity are such

that |eTr p| � |eTr g0|, r = 1, . . . , N .

This assumption is satisfied, e.g., if the reflectivity is sufficiently small and the source

~xs is near the receiver array (as is shown in Figure 4.1). With assumption 4 we can

neglect quadratic terms in p to approximate the intensity measurements (4.7) by a

vector d(~xs, ω) defined by

|u(~xr, ~xs, ω)|2 ≈ eTr d(~xs, ω) ≡ |f̂(ω)|2eTr Re [g0 � (g0 + 2p)] .

This is not, strictly speaking, a linear system for p ∈ CN since u → Re(u) is not

a linear mapping from CN to CN . However we can write an underdetermined linear

system for the real and imaginary parts of g0 + p as follows
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|f̂(ω)|2M(~xs, ω)

[
Re(g0 + 2p)
Im(g0 + 2p)

]
= d(~xs, ω), (4.8)

where the matrix M(~xs, ω) ∈ RN×2N is given by

M(~xs, ω) =
[
diag

(
Re(g0)

)
diag

(
Im(g0)

)]
. (4.9)

We give in the next section an explicit solution to the least-squares problem (4.8).

4.3 Migrating a least-squares estimate of the
scattered field

The first step in our imaging method consists of a cheap least-squares prepro-

cessing step that gives an approximation to the array response vector (§4.3.1). The

second step is to migrate this approximation with standard Kirchhoff migration §4.3.2.

Crucially we show in theorem 6 that the mistake we make by using this approximation

of the array response vector does not affect the Kirchhoff images.

4.3.1 Recovering a projection of the array response vector

We start by finding a simple and explicit expression to the pseudoinverse of the

matrix M that we obtained from linearizing the problem of finding the real and

imaginary parts of the array response vector p. This can be used to recover from the

data d the orthogonal projection of [Re(p)T, Im(p)T]T onto a known N dimensional

subspace (that depends only on g0). Moreover the process is well conditioned.

First notice that the matrix M is full-rank. Indeed a simple calculation gives

that MMT = diag(g0 � g0). This matrix is clearly invertible because it is a diagonal

matrix with the moduli of 2D or 3D Green functions on the diagonal. Hence the

Moore-Penrose pseudoinverse M† can be written explicitly

M† = MT(MMT)−1 =

[
diag

(
Re(g0)

)

diag
(
Im(g0)

)
]

diag(g0 � g0)−1. (4.10)

We can use M† to see what information about p we can recover from the right hand

side d in the least-squares problem (4.8). Since M has an N dimensional nullspace,

we can only expect to recover the orthogonal projection of [Re(p)T, Im(p)T]T onto

range(MT) = (null(M))⊥. This projection has a simple form when we write it in CN ,

as can be seen in the next proposition.
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Proposition 2 Provided |f̂(ω)|2 6= 0, the intensity measurements d determine

p̃ ≡ p+ (g0)−1 � g0 � p, (4.11)

where the inverse of a vector is understood componentwise. Moreover p̃ can be

obtained in about 2N complex operations from d with

p̃ = |f̂(ω)|−2(g0)−1 � d− g0. (4.12)

Proof. Since we use the first (resp. last) N rows of M† to recover the real (resp.

imaginary) part of a vector in CN , it is convenient to consider the matrix

[
I iI

]
M† = diag(g0) diag(g0 � g0)−1 = diag(g0)−1,

where I is the N×N identity matrix. To see what information about p we can recover

from the right hand side d in the least-squares system (4.8) we can evaluate:

|f̂(ω)|−2
[
I iI

]
M†d = diag(g0)−1M

[
Re(g0 + 2p)
Im(g0 + 2p)

]

= diag(g0)−1[Re(g0)2 + Im(g0)2 + 2Re(g0)Re(p) + 2Im(g0)Im(p)]

= g0 + diag(g0)−1(g0 � p+ g0 � p)

= g0 + p+ g0 � (g0)−1 � p = g0 + p̃.

Hence we can get p̃ from the intensity data d with essentially N complex multiplica-

tions and N complex additions.

A natural question to ask is whether we can obtain p̃ in a stable manner from d.

This can be answered by looking at the conditioning of M, i.e., the ratio of the largest

singular value σ1 of M to σN , the smallest one. These are easily obtained from the

square roots of the eigenvalues of the diagonal matrix MMT = diag(g0 � g0). Hence

the conditioning of M is the ratio of the largest to the smallest moduli of the entries

of g0:

cond(M) =





maxr
∣∣H(1)

0 (k|~xr − ~xs|)
∣∣

minr
∣∣H(1)

0 (k|~xr − ~xs|)
∣∣ , for d = 2,

maxr
∣∣~xr − ~xs

∣∣
minr

∣∣~xr − ~xs
∣∣ , for d = 3.

(4.13)

In Figure 4.2 we show the condition number of M(~xs, ω) plotted over an optical

frequency band. The experimental setup is that given in §4.5. The condition number
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Figure 4.2. Condition number of M(~xs, ω) for d = 2 (red) and d = 3 (blue) for the
setup given in §4.5

(4.13) is clearly independent of frequency for d = 3, and for d = 2 we have the

approximation for high frequencies:

condM(~xs, ω) =
maxr |~xr − ~xs|1/2
minr |~xr − ~xs|1/2

(1 +O(1/ω)), as ω →∞.

This approximation follows from the Hankel function asymptotic (see, e.g., [7])

H
(1)
0 (t) =

√
2

πt
exp[ı(t− π/4)](1 +O(1/t)), as t→∞.

Thus the conditioning of M is determined by the ratio of largest to smallest source-

to-receiver distances.

4.3.2 Kirchhoff migration

We now show that migrating the recovered data p̃ (4.11) using ΓKM gives es-

sentially the same image as migrating the true data p. We establish this result by

means of a stationary phase argument but in order to do this, we need the following

assumption on the location of the source ~xs.

Assumption 5 (Geometric imaging conditions) For a scattering potential with

support contained inside an image window W, we assume ~xs satisfies

~xr − ~xs
|~xr − ~xs|

6= ~xr − ~y

|~xr − ~y| ,

for r = 1, . . . , N, and ~y ∈ W.
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~y

~xs

A

W

Figure 4.3. Illustration of assumption 5. If ~xs is outside of the light blue region
then (~xr − ~xs)/|~xr − ~xs| 6= (~xr − ~y)/|~xr − ~y| for all ~xr ∈ A and ~y ∈ W .

We interpret this assumption as a restriction on the placement of our source

location ~xs as follows. Fix a receiver position ~xr and consider the cone

K(~xr) =

{
α
~y − ~xr
|~y − ~xr|

: α > 0, ~y ∈ W
}
.

As long as ~xs /∈ K(~xr), then we have that (~xs− ~xr)/|~xs− ~xr| 6= (~y− ~xr)/|~y− ~xr| for

any ~y ∈ W , i.e., assumption 5 holds for ~xr. Ensuring this is satisfied for all receiver

locations ~xr for r = 1, . . . , N , we require ~xs /∈ ∪Nr=1K(~xr). In Figure 4.3 we illustrate

this assumption. Here, the dark blue region depicts the cone K(~xr) while the union of

cones ∪Nr=1K(~xr) is depicted by the light blue region. Assumption 5 simply requires

~xs to be outside the light blue region.

Theorem 6 Provided assumption 5 holds, the image of the reconstructed array re-

sponse vector is

ΓKM

[
p+ (g0)−1 � g0 � p, ω

]
(~y) ≈ ΓKM

[
p, ω

]
(~y).

Proof. We begin by approximating the Kirchhoff migration functional (4.6) by an

integral over the array A:

ΓKM

[
(g0)−1 � g0 � p

]
(~y)

= Ĝ0(~xs, ~y, ω)g0(~y, ω)∗
[
(g0(~xs, ω))−1 � g0(~xs, ω)� p(~xs, ω)

]

∼ k2

∫

P
d~z

∫

A
dxrC(~xs, ~xr, ~z, ~y)×

exp (ık(2|~xr − ~xs| − |~xr − ~z| − |~z − ~xs| − |~xr − ~y| − |~y − ~xs|)) .

(4.14)

Here ∼ denotes equal up to a constant and C(~xs, ~xr, ~z, ~y) is a smooth real valued

function that collects the various Ĝ0 geometric spreading terms.
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Now we apply the method of stationary phase (see, e.g., [2]) to the integral over

A. In the large wavenumber limit k → ∞, dominant contributions to the integral

come from stationary points of the phase, i.e., points ~xr that satisfy

∇~xr (2|~xr − ~xs| − |~xr − ~z| − |~z − ~xs| − |~xr − ~y| − |~y − ~xs|) = 0.

This expression is equivalent to

~xr − ~xs
|~xr − ~xs|

=
1

2

(
~xr − ~y

|~xr − ~y| +
~xr − ~z
|~xr − ~z|

)
. (4.15)

If (4.15) holds then we must have

∣∣∣∣
~xr − ~xs
|~xr − ~xs|

∣∣∣∣
2

=
1

4

∣∣∣∣
~xr − ~y

|~xr − ~y| +
~xr − ~z
|~xr − ~z|

∣∣∣∣
2

⇐⇒ 1 =
~xr − ~y

|~xr − ~y| ·
~xr − ~z
|~xr − ~z|

.

(4.16)

Since (~xr − ~y)/|~xr − ~y| and (~xr − ~z)/|~xr − ~z| are both unit vectors, it follows from

the Cauchy-Schwarz equality that (4.16) holds only if ~z = ~y. Thus stationary points

must satisfy

~xr − ~xs
|~xr − ~xs|

=
~xr − ~y

|~xr − ~y| ,

where ~y ∈ W . By assumption 5 there are no such stationary points and therefore,

neglecting boundary effects, this integral vanishes faster than any polynomial power

of ω (see, e.g., [3]).

Remark 11 We used a similar idea in [1] to show that with multiple sources, a single

receiver, and a specific pairwise illumination scheme it is possible to image with sole

knowledge of the intensities of the wave fields at the receiver and of the probing fields.

We approached the problem by estimating the array response vector (a vector in CN)

with 2N (or more) real measurements, which are essentially the measured intensities

for 2N or more different pairs of sources. The results of §4.3.1 and §4.3.2 can be

modified by reciprocity to apply to the setup we considered in [1]. Hence images

similar to those in [1] can be obtained without the pairwise illumination scheme and

the number of required illuminations is reduced from 3N to N .
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4.4 Stochastic illuminations and autocorrelations

Our imaging method can also be used when the source is driven by a stationary

stochastic process (for which we only assume knowledge of the autocorrelation or

power spectra), and only empirical autocorrelations are measured at the receiver

locations.

To be more precise, the source at ~xs is driven by f(t), a stationary mean zero

Gaussian process with autocorrelation function

〈f(t)f(t+ τ)〉 = F (τ). (4.17)

Here 〈·〉 denotes expectation with respect to realizations of f and we recall that

F (τ) = F (−τ). In the time domain, the field recorded at ~xr is

u(~xr, ~xs, t) =
1

2π

∫
dωe−ıωtĜ(~xr, ~xs, ω)f̂(ω), for r = 1, . . . , N,

where we assume Ĝ is given by the Born approximation (4.3).

The measurements at the receiver locations ~xr are the empirical autocorrelations:

ψ(~xr, ~xs, τ) =
1

2T

∫ T

−T
dtu(~xr, ~xs, t)u(~xr, ~xs, t+ τ) for r = 1, . . . , N, (4.18)

where T is a fixed acquisition time. As shown by Garnier and Papanicolaou [4], these

measurements are independent of the acquisition time T and ergodic as we summarize

in the following proposition.

Proposition 3 Assume f(t) is a stationary mean zero Gaussian process satisfying

(4.17). The expectation of the empirical autocorrelations (4.18) is independent of the

acquisition time T :

〈ψ(~xr, ~xs, τ)〉 = Ψ(~xr, ~xs, τ),

where

Ψ(~xr, ~xs, τ) =
1

2π

∫
dωe−ıωτ F̂ (ω)eTr [g(~xs, ω)� g(~xs, ω)] , (4.19)

with g ≡ g0 + p. Furthermore, (4.18) is ergodic, i.e.,

ψ(~xr, ~xs, τ)
T→∞−−−→ Ψ(~xr, ~xs, τ). (4.20)
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Proof. The proof is a straightforward application of [4, Proposition 4.1].

The ergodicity (4.20) of this proposition guarantees that for sufficiently large ac-

quisition time T , the autocorrelation ψ(~xr, ~xs, τ) is close to an intensity measurement,

i.e.,

ψ̂(~xr, ~xs, ω)
T→∞−−−→ Ψ̂(~xr, ~xs, ω) = F̂ (ω)eTr

[
(g0 + p)� (g0 + p)

]
.

Proceeding analogously as in §4.2.2, we neglect the quadratic term in p:

Ψ̂(~xr, ~xs, ω) ≈ F̂ (ω)eTr Re (g0 � (g0 + 2p)) .

The collection of autocorrelations for r = 1, . . . , N can be expressed, approximately,

as

[
Ψ̂(~xr, ~xs, ω)

]
r=1,...,N

≈ d(~xs, ω) ≡ F̂ (ω)M(~xs, ω)

[
Re(g0 + 2p)
Im(g0 + 2p)

]
,

where M(~xs, ω) ∈ RN×2N is given by (4.9). Therefore, the techniques developed in

§4.3 can be applied to image from the autocorrelation measurements (4.18).

4.5 Numerical experiments

We now provide 2D numerical experiments of our proposed imaging method. The

physical scalings we use correspond to an optic regime. We use the background

wave velocity of c0 = 3 × 108 m/s and central frequency of about 590 THz, which

gives a central wavelength λ0 of about 509 nm. Our receiver array A is a linear

array centered at the origin and consists of 501 receivers located at coordinates ~xr =

(0,−5 + (r − 1)(10/500))mm for r = 1, . . . , 501. This corresponds to using a 1 cm

linear array of receivers spaced approximately 20µm apart. We place the wave source

at coordinate ~xs = (5,−7.5)mm to guarantee assumption 5 is satisfied. We begin

with experiments in the deterministic setting (§4.5.1) followed by an experiment in

the stochastic setting (§4.5.2). Lastly, we investigate situations where assumptions 4

and/or 5 are violated and our method is not expected to work (§4.5.3). For all

experiments, we assume 3D wave propagation for simplicity so that Ĝ0 is given by

(3.3) for d = 3.
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4.5.1 Deterministic illuminations

Using the illumination f̂(ω) ≡ 1, we generate the intensity data d(~xs, ω) using

the Born approximation:

d(~xs, ω) = (g0 + p)� (g0 + p),

with g0 and p defined by (4.4) and (4.5), respectively, for 100 uniformly spaced

frequencies in the frequency band [430, 750] THz. This corresponds to obtaining

intensity data for 100 different monochromatic illuminations with wavelengths λ ∈
[400, 700] nm, equally spaced in the frequency band. Note that the quadratic term

p � p is present in our data, but using assumption 4 we proceed assuming d is well

approximated by the linear system (4.8).

We recover the approximate array response vector p̃ = (g0)−1 � d − g0 for each

frequency ω in the angular frequency band B, where (2π)−1B = [430, 750] THz. An

image is then formed using the Kirchhoff migration functional integrated over B:

ΓKM[p̃](~y) =

∫

B
dωΓKM[p̃, ω](~y),

where ΓKM is defined in (4.6). Here we consider image points ~y ∈ W = {(50mm +

iλ0/2.5, jλ0/2.5), for i, j = −25, . . . , 25}.
For our first experiment, we consider a point reflector located at coordinate ~y =

(50, 0)mm with refractive index perturbation ρ(~y) = 1 × 10−15 (roughly equivalent

to a reflector of area (λ0)2 and reflectivity 5978). The migrated images of the true

array response vector p and the recovered array response vector p̃ are shown in

Figure 4.4a. Although we are significantly undersampling both in frequency and on

the array (recall the spacing between receivers is approx. 20µm � λ0/2), the images

still exhibit the cross-range (Rayleigh) resolution estimate λ0L/a ≈ 5λ0 and range

resolution estimate c0/|B| ≈ 1λ0. Our second experiment (Figure 4.4b) uses two point

reflectors located at coordinates ~y1 = (50mm−3λ0,−λ0) and ~y2 = (50mm+6λ0, 5λ0),

each with ρ(~yi) = 1 × 10−15. We show an extended scatterer (a disk) in Figure 4.5.

The disk is generated as a set of point reflectors, each with ρ(~yi) = 1×10−15 separated

by λ0/4.
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Figure 4.4. Kirchhoff images of (a) one and (b) two point scatterers whose true
locations are indicated by crosses. The left column uses the full array response vector
p while the right column uses the array response vector p̃ recovered from intensity
data. The horizontal and vertical axes display the range and cross-range respectively,
measured in central wavelengths λ0 from (50, 0)mm.
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Figure 4.5. Kirchhoff images of an extended scatterer (disk). The boundary of the
disk is indicated by the black and white circle. The left image uses the true array
response vector p while the right image uses the array response vector p̃ recovered
from intensity measurements. The horizontal and vertical axes display the range and
cross-range respectively, measured in central wavelengths λ0 from (50, 0)mm.

4.5.2 Stochastic illumination

Here we image with power spectrum data d generated from a stochastic illumi-

nation as in §4.4. Since we work in an optic regime, adequately sampling signals in

the time domain and performing the autocorrelations (4.18) is an expensive calcula-

tion. We instead use the Wiener-Khinchin theorem [5] to simulate power spectrum

measurements directly.

We assume the wave source at ~xs is driven by a stationary mean zero Gaussian

process f(t) with correlation function 〈f(t)f(t+τ)〉 = F (τ). By the Wiener-Khinchin

theorem, f̂(ω) is a mean zero Gaussian process with correlation function

〈f̂(ω)f̂(ω′)〉 = 2πδ(ω − ω′)F̂ (ω). (4.21)

Thus frequency samples of f̂(ω) are independent normal random variables with vari-

ance proportional to F̂ (ω). Here we use

F̂ (ω) = tc exp

(−(ω − ω0)2

4π/t2c

)
, (4.22)
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where (2π)−1ω0 = 590 THz is the central frequency and tc = 150 × 10−12 sec is the

correlation time of f(t) (i.e., F (τ) ≈ 0 for τ � tc). This choice of tc gives the signal

an effective frequency band of (2π)−1B = [430, 750] THz (i.e., F̂ (ω) ≈ 0 for ω /∈ B).

Using (4.21) and (4.22) we generate frequency samples f̂(ωi) for 100 frequencies ωi

equally spaced in B.

For a large enough acquisition time T , the empirical autocorrelations (4.18) give

frequency domain measurements proportional to

ψ̂(~xr, ω) =
∣∣eTr (g0 + p)f̂(ω)

∣∣2 for r = 1, . . . , N .

Thus for each frequency ωi ∈ B we generate the power spectrum data

d(~xs, ωi) =
(

(g0 + p)f̂(ωi)
)
�
(

(g0 + p)f̂(ωi)
)
. (4.23)

Because correlations are robust with respect to additive noise, we also consider

autocorrelations with additive noise:

ψ̂(~xr, ω) =
∣∣eTr (g0 + p)f̂(ω) + η̂r(ω)

∣∣2 for r = 1, . . . , N ,

where the noise η̂r(ω) is an independent mean zero Gaussian process with correlation

function given by (4.21) and (4.22) for each r = 1, . . . , N . Here we set the noise power

equal to 10% of the signal power at each receiver, i.e.,

∫
dω|η̂r(ω)|2 =

1

10

∫
dω|eTr (g0 + p)f̂(ω)|2, for r = 1, . . . , N .

Noisy data for each frequency ωi ∈ B is then generated as

d(~xs, ωi) =
(

(g0 + p)f̂(ωi) + η̂(ωi)
)
�
(

(g0 + p)f̂(ωi) + η̂(ωi)
)
, (4.24)

where η̂(ω) =
[
η̂1(ω), · · · , η̂N(ω)

]T
. We can indeed consider noise with much larger

power (e.g., noise power equal to 100% signal power), but to compensate we then need

additional frequency samples to maintain sufficient averaging in migration images. In

Figure 4.6 we show the migrated images ΓKM[p̃] for p̃ = (2πF̂g0)−1�d−g0 recovered

from clean data (4.23) and from noisy data (4.24).
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Figure 4.6. Kirchhoff images of a point scatterer using a stochastic illumination
and autocorrelation measurements. The images are generated using (left) the true
array response vector p, (center) p̃ recovered from clean power spectrum data (4.23)
and (right) p̃ recovered from noisy power spectrum data (4.24). The horizontal
and vertical axes display the range and cross-range respectively, measured in central
wavelengths λ0 from (50, 0)mm.

4.5.3 Breakdown of the method

We now investigate situations where assumptions 4 and/or 5 are violated. For

these experiments, we fix the receiver array A (again consisting of 501 receivers with

locations ~xr given above) while varying the source position ~xs, the reflector location

~y and the reflectivity ρ(~y).

In Table 4.1, we indicate a few situations where our imaging method breaks down.

The corresponding migrated images of the recovered array response vector ΓKM[p̃] are

shown in Figure 4.7. From Figures 4.7a, 4.7b and 4.7c we see the imaging method

is most sensitive to breaking assumption 4. In these situations the quadratic term

p � p cannot be neglected in the intensity data (4.7) and thus the linear system we

Table 4.1. Breakdown of imaging method: physical setups and violated assumptions
for each of the numerical experiments shown in Figure 4.7.

Assumptions ~y ρ(~y) ~xs
violated

(a) Source near scatterer 4 and 5 (50mm, 0) 10−15 (50mm− 10λ0, 0)
(b) Receivers near scatterer 4 (11λ0, 0) 10−15 (−50mm, 0)
(c) Large reflectivity 4 (50mm, 0) 10−10 (5,−75)mm
(d) No geometric condition 5 (50mm, 0) 10−15 (5mm, 0)
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Figure 4.7. Breakdown of imaging method: migrated images ΓKM[p̃] for setups
violating assumptions 4 and/or 5. Details of each setup are listed above and
correspond to (a) ~xs placed to close to ~y, (b) A placed too close to ~y, (c) large
reflectivity ρ and (d) ~xs placed in front of the array A. The axes are measured in
central wavelengths λ0 from the scatterer’s true location ~y which is indicated by a
cross.
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consider in (4.8) is no longer a good approximation. This leads to artifacts in the

images. Figure 4.7d demonstrates the imaging method is more robust than expected

with respect to assumption 5 and the position of ~xs.

4.6 Discussion and future work

We have shown that when the scattered field is small compared to the incident

field (assumption 4), one can consider the problem of recovering full-waveform data

from intensity measurements as a linear least-squares problem. For N receivers, the

corresponding real matrix is N ×2N , so all we can expect to recover is the projection

of the real and imaginary parts of the full-waveform data onto an N dimensional sub-

space. This turns out to be sufficient to image with Kirchhoff migration (theorem 6).

Crucially, we do not need to manipulate the fields at the receiver end, e.g., to introduce

phases. The least-squares problems we obtain are usually well conditioned and the

computational cost of solving them (O(N) complex operations, each) is negligible

compared to the cost of Kirchhoff migration. Since we make no assumptions on the

source phases, our method adapts well to situations where the source is driven by a

Gaussian process and the measurements are autocorrelations at the receiver locations.

The fundamental principle we have used here is that the imaging method (in this

case Kirchhoff migration) does not require all the data (in this case the full-waveform

scattered field) to form an image. For Kirchhoff migration this is exploited, e.g., by

undersampling in frequency and/or using only a few sources or receivers to image.

We have shown that there is another way in which one can use incomplete data,

as projections of the array response vector on certain subspaces leave the Kirchhoff

images unaffected. A similar principle is what is exploited by Novikov et al. [6] to

image with intensities, since they show that knowing inner products of single-source

experiments is enough to image with MUSIC. It would be interesting to carry this

idea further and see whether the same preprocessing we use here works for MUSIC

and also whether it is possible to image scatterers with even fewer data.
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CHAPTER 5

DISSIPATION MECHANISM:

EVOLUTION OF MATERIAL

MICROSTRUCTURE AND

THE GBCD.

A joint work with Yekaterina Epshteyn and David Kinderlehrer.
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5.1 Introduction

Cellular networks are commonly found in the natural world. An example of such

a network occurs in polycrystalline materials, which find many useful applications

throughout science and engineering. These are materials composed of a multitude

of small crystallites or grains, separated by interfaces known as grain boundaries

(see, e.g., Figure 5.1). These materials are generally metastable and can undergo

a rearrangement and growth process under specific conditions, e.g., exposing the

material to a heat source such as in annealing. This rearrangement and growth process

is often referred to as coarsening or grain growth. As a material undergoes coarsening,

two competing processes take place. A total energy is minimized by reducing the total

number of grain boundaries in the material, while simultaneously, available space in

the material is filled. As the number of grain boundaries decreases, the average size of

the grains or cells increases, and still more grain boundaries are eliminated in order to

maintain the space-filling constraint. Understanding the mathematical relationship

between the grain boundary network and the total energy is the primary theme of

this chapter.

There are many models and numerical routines to simulate coarsening in poly-

Introduction Motivation

Motivation

Experiment: evolution of grain boundary character distribution (GBCD)
GBCD = relative areas of grain boundaries sorted by misorientation angles and normal

Gorzkowski et al. Zeitschrift fur Metallkunde, 96 (2005) 207.

Recent discovery

Grain boundary character (GBCD) is a scale invariant steady state characteristic of a
material.

Maria Emelianenko (GMU) Kinetic Theories in Multiscale Modeling of Polycrystals March 4, 2009 5 / 33

Experiment: evolution of Grain boundary character distribution (GBCD)!
GBCD = relative areas of  grain boundaries sorted by misorientation 
angles and normal

Figure 5.1. Coarsening in polycrystalline materials: (top) polycrystalline mi-
crostructures in a real material, (bottom) stereograms of the distribution of interfacial
orientations. These images are compiled with permission from the journal “Zeitschrift
für Metallkunde”, IJMR 2005, pp. 207-210, by E.P. Gorzkowski, T. Sano, C.-S. Kim,
G.S. Rohrer, H.M. Chan, and M.P. Harmer, c©Carl Hanser Verlag GmbH & Co. KG,
Muenchen, [21].
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Figure 5.2. An instance of the grain boundary network during the 2D coarsening
simulation in [4, 5].

crystalline materials, see, e.g., [5, 12, 18, 19, 22, 26, 30], and each one of them is well

suited for studying a particular aspect of grain growth. Molecular dynamics (particle-

based) models [12, 22, 30] are best used to study local topological changes happening

during coarsening, while implicit methods that treat grains as diffuse characteristic

functions [18, 19] are useful to study geometric features such as average grain size or

average number of sides of a grain. In recent years, explicit front tracking methods

[26, 5] have been developed, which are crucial to study grain boundary dynamics

and intergranular energies on a macroscopic scale (see, e.g., Figure 5.2). This is

the approach employed by K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn,

D. Kinderlehrer, R. Sharp, and S. Ta’asan [4, 5, 6, 9] to study of the evolution of

large grain boundary networks, and is the method of study we pursue here.

To characterize material coarsening on a macroscopic scale, one can collect a

statistic from the material microstructure and develop a theory for its evolution. Until

recently, research has traditionally focused on geometric features of the polycrystalline

system such as average grain size or preferred direction of grain lattice orientation.

However, owing to the recent advances in experimentation and simulation [1, 25, 26,

32, 33], a new statistic has been discovered, the grain boundary character distribution
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(GBCD). The GBCD is an empirical distribution of the relative length (in 2D) or area

(in 3D) of interface with a given lattice misorientation and grain boundary normal

[1, 4, 5, 6, 9, 25, 26, 32, 33]. It is a statistic that can be harvested from grain boundary

networks both in vivo and in silico and is a leading candidate to characterize texture

development [1, 4, 5, 6, 9, 25, 26, 32, 33].

To better understand the dynamics of GBCDs collected from physical materials,

in [4, 5, 6, 9] the authors employ a simplified 1D coarsening model of a grain boundary

network. This 1D model captures important dynamics of coarsening in polycrystalline

materials. Grain boundaries are modeled by 1D subintervals as they grow/shrink to

minimize an associated energy in the system, and critical events (the elimination of

small shrinking grain boundaries) occur which mimic space-filling constraints. The

authors [4, 5, 6, 9] define an associated GBCD and find that its behavior agrees

qualitatively with GBCDs harvested both from large-scale 2D simulations as well as

physical experiments. Using an assumption that the grain boundary network evolves

to maximize configurational entropy, they develop a theory for the GBCD evolution.

Their theory suggests the GBCD of the 1D coarsening model evolves as the solution

of a Fokker-Planck equation. We review this 1D model and entropy-based theory in

§5.2 and §5.3, respectively.

The next step is to validate the Fokker-Planck theory of GBCD evolution. There

are some challenges here as there are two a priori unknown coefficients in the Fokker-

Planck PDE that must be specified before comparing traits of the GBCD with traits

of the Fokker-Planck solution. More precisely, one must first specify an unknown

diffusion coefficient and an unknown time scale coefficient. These unknown coefficients

arise from two physical uncertainties: the grain boundary system generates entropy

at an unknown rate or “temperature”, and the coarsening simulation time scale needs

to be compared with the time scale of the Fokker-Planck solution [4, 5, 6, 7, 8, 9]

The unknown diffusion coefficient can be found, as shown in [4, 5, 6, 7, 8, 9], using

convergence properties of the Fokker-Planck solution. It is known that the Fokker-

Planck solution converges in relative entropy to a Boltzmann distribution with an

associated “temperature” (see, e.g., [20]). The authors [4, 5, 6, 7, 8, 9] use this concept

to find the unique “temperature” whose corresponding Boltzmann distribution best
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matches the GBCD harvested at the final time of simulation, i.e., at steady state.

Here, the final time for simulations is typically the simulation time corresponding to

80% removal of the initial grain boundaries. A direct comparison of the final time

GBCD and this optimal Boltzmann distribution show very good agreement, providing

a first and important validation of their theory. In §5.4.1 we recall this validation in

more detail, and demonstrate its use on an empirically harvested GBCD in §5.4.4.

In a similar spirit, in §5.4.2 we overcome the time scaling difficulties by developing

time-matching procedures based on established theory of the Fokker-Planck PDE.

These time-matching procedures fit the GBCD to the Fokker-Planck time scale and

allow us to freely choose the unknown time scale coefficient. The procedures are

developed by first deriving a formula for the time-varying expected value of a given

function, where expectations are computed using the Fokker-Planck solution. Invert-

ing this formula (or approximately inverting it), we obtain a formula to recover time

from the function’s expected value. This allows us to estimate the “Fokker-Planck

time” of the GBCD by computing expectations with the GBCD instead of the Fokker-

Planck solution. After the time scale is set in this manner, in §5.4.4, we compare the

GBCD with the corresponding Fokker-Planck solution at a few intermediate times

and indeed find qualitative agreement.

In §5.5, we use an energy dissipation principle to validate the Fokker-Planck model

of GBCD evolution [4, 5, 6, 9]. The Fokker-Planck equation is equivalently expressed

as the Wasserstein-2 (W2) gradient flow of a free energy (see [23] for the original proof

of this equivalence). By collecting facts of W2 gradient flows and mass transport

theory (see, e.g., [2, 23, 35]), we find an energy dissipation identity that must be

satisfied for the Fokker-Planck solution. This identity tells us that if the system

exhibits Fokker-Planck dynamics, the system must dissipate its energy according to

the W2 metric derivative (see §5.5.3 or [2, 23] for more detailed analyses). In §5.5.4,

we apply this principle to the GBCD harvested from the 1D coarsening model, and

determine that this dissipation identity is approximately satisfied, another validation

that the GBCD evolves according to the Fokker-Planck equation.

In §5.6, we quantitatively validate the Fokker-Planck theory of [4, 5, 6, 9] by

taking a probabilistic approach to the energy dissipation identity. Because the 1D
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grain boundary network is initialized randomly, the evolution of the GBCD is random.

Thus, the energy dissipated by the system between two times is a random variable

that depends on the particular realization of the grain boundary network. With

this in mind, we ask if the GBCD dissipation samples converge in some sense to

W2 metric derivative samples (Fokker-Planck dissipation samples). We first estimate

the distribution of the GBCD energy dissipation samples and the distribution of the

W2 metric derivative samples using histograms and multiple realizations of the 1D

grain boundary system. Then, using a pseudometric known as an f−divergence,

we compute the “distance” between the two distributions. This gives us a prob-

abilistic and quantitative understanding of how well the Fokker-Planck equation

models GBCD evolution. Moreover, we find numerical evidence of convergence of

these energy samples, in distribution, as the number of initial grain boundaries is

increased. This suggests that the Fokker-Planck equation models GBCD evolution

more accurately in a continuum or many particles limit, i.e., an infinite number of

initial grain boundaries.

We conclude our study in §5.7 by summarizing our findings, discussing ongoing

work, and commenting on ideas for future research directions.

5.2 A simplified 1D coarsening model [4, 5, 6, 9]

Here we discuss a simplified coarsening model of grain boundaries, that was first

employed in studies of the GBCD evolution by K. Barmak, E. Eggeling, M. Emelia-

nenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta’asan [4, 5, 6, 9]. This

simplified 1D critical event model is driven by boundary conditions and has similar

dissipative properties as that of 2D and 3D grain growth systems. Important dy-

namics of grain growth processes are captured in that grain boundaries grow and

shrink to minimize an internal energy and it accurately models critical events, i.e.,

the disappearance of shrinking grain boundaries. Yet, it also simplifies analysis and

allows one to find a macroscopic description of the grain boundary dynamics by

characterizing the evolution of its GBCD.

As it was presented in [4, 5, 6, 9], an interval [0, L] is considered, which has been

randomly subdivided into n smaller subintervals. The endpoints of the subintervals
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Figure 5.3. Configuration of a typical 1D grain boundary system. The subinterval
[xi−1, xi] models a grain boundary with misorientation parameter αi while the end-
points {xi}ni=0 are 1D analogues of triple junctions. Here misorientation parameters
denote the difference in angle of the crystalline lattice orientation of two neighboring
grains.

are denoted as xi for i = 0, . . . , n where x0 = 0 and xn = L, and for simplicity,

the interval endpoints x0 ≡ xn are periodically identified. A random misorien-

tation αi ∈ Ω = [−π/4, π/4] is assigned to each of the subintervals [xi−1, xi] for

i = 1, . . . , n. In many simulations (including ours), the misorientations are sampled

as αi ∼ Unif(−π/4, π/4) i.i.d., although other distributions may also be used. The

i−th subinterval [xi−1, xi] then models a grain boundary (not a grain itself) with

grain lattice misorientation αi. The endpoints {xi}ni=0 where two grain boundaries

meet are then analogues in 1D of triple junctions (i.e., nodal points where three grain

boundaries meet) in 2D and 3D simulations. A typical grain boundary configuration

is depicted in Figure 5.3.

Each grain boundary is assigned a grain boundary energy given by a smooth

energy density function ψ. By assuming ψ depends only on the misorientation of

neighboring grains, one assumes there are no body forces (e.g., gravity) acting on

the grain boundary system. The quantity ψ(α) then gives the internal energy per

unit length of grain boundary with misorientation α. The total internal energy in the

grain boundary system at a given time t is then defined as (see [4, 5, 6, 9])

E(t) =
N∑

i=1

ψ(αi)`i(t), (5.1)

where `i(t) = xi(t) − xi−1(t) denotes the length of the i−th grain boundary. Next,

gradient flow dynamics are imposed on the endpoints {xi(t)}ni=0 with respect to the

internal energy E:

ẋi(t) = − ∂

∂xi
E(t) = ψ(αi+1)− ψ(αi) for i = 0, . . . , n. (5.2)
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The velocity of the i−th grain boundary (i.e., how fast the i−th subinterval is growing

or shrinking) is then given by

vi(t) = ẋi(t)− ẋi−1(t) = ψ(αi+1)− 2ψ(αi) + ψ(αi−1) for i = 0, . . . , n. (5.3)

In 1D, the grain growth simulation is simply a sorting problem. Beginning at

time t0 = 0, the grain boundary system is initialized as indicated above. Lists

of the endpoint locations {xi(tj)}ni=0, lengths of grain boundaries {`i(tj)}ni=1, and

misorientation parameters {αi}ni=1 are then created. The velocities of the grain

boundaries {vi(tj)}ni=1 are computed according to (5.3), which allows one to compute

the admissible time step

τj = min
i=1,...,n
vi<0

−
(
`i(tj)

vi(tj)

)
.

The time step τj is the time elapsed until one of the grain boundaries has length zero

and thus disappears from the simulation. This grain boundary, its misorientation

parameter, and one of its endpoints are then removed from the system. The remaining

endpoint locations are updated according to (5.2), and the simulation time is updated

as tj+1 = tj + τj. This removal and update process is repeated for the set of times

{tj}Nj=1 (termed critical events or removal events) until a stopping criterion is satisfied.

In most simulations (including ours), this criterion is chosen to be 80% removal of

the initial grain boundaries. After this time in the simulation, it has been observed

that finite system size effects strongly influence and in fact stagnate the evolution of

the GBCD.

At any time t of the simulation, the GBCD is defined using a histogram of the

relative length of grain boundary with a given misorientation parameter [4, 5, 6, 9].

The state space Ω = [−π/4, π/4] is divided into m uniform bins of size h = π/(2m),

and the GBCD is defined as the probability density

ρ(α, t) :=
n∑

i=1

`i(t)

Lh
I
(
αi ∈ ((k − 1)h, kh]

)
for α ∈ ((k − 1)h, kh], (5.4)

where I is the indicator function satisfying

I
(
αi ∈ ((k − 1)h, kh]

)
=

{
1 if αi ∈ ((k − 1)h, kh],
0 otherwise.

(5.5)
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The 1/h scaling in (5.4) is to ensure ρ is a probability density on Ω, i.e.,
∫

Ω
ρdα =

1. Thus, ρ(α, t) essentially gives the probability of finding a grain boundary with

misorientation parameter α at time t.

5.3 Fokker-Planck dynamics: a review of the
entropy-based theory [4, 5, 6, 9]

Here we review the entropy-based theory developed in [4, 5, 6, 9] which character-

izes the evolution of the GBCD (5.4) as the solution of a Fokker-Planck equation. In

§5.3.1, we recall the derivation of a dissipation inequality for a free energy associated

with the grain boundary system. In this derivation, the authors [4, 5, 6, 9] made

a crucial modeling assumption that the grain boundary system evolves to maximize

configurational entropy. In §5.3.2, we review a refined version of this dissipation

inequality. This refinement uses concepts from mass transport theory (see, e.g., [35])

and suggests the grain boundary network evolves to minimize viscous dissipation.

This in turn suggests the GBCD evolves according to a Fokker-Planck PDE.

5.3.1 Dissipation of the free energy

It is straightforward to show the coarsening system is dissipative for the internal

energy E(t) defined in (5.1):

d

dt
E(t) =

n∑

i=1

∂E

∂xi
ẋi(t) = −

n∑

i=1

(ẋi(t))
2 ≤ 0. (5.6)

Now, for a small enough τ > 0 such that the time interval (t, t+ τ) does not contain

any critical events, by the Fundamental Theorem of Calculus one has

∫ t+τ

t

n∑

i=1

(
ẋi(s)

)2
ds = −

∫ t+τ

t

d

ds
E(s)ds = E(t)− E(t+ τ). (5.7)

Using the triangle inequality and Young’s inequality1 one obtains

12ab ≤ a2 + b2
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n∑

i=1

v2
i =

n∑

i=1

|v2
i | =

n∑

i=1

∣∣(ẋi − ẋi−1)2
∣∣

=
n∑

i=1

∣∣ẋ2
i + ẋ2

i−1 − 2ẋiẋi−1

∣∣

≤
n∑

i=1

ẋ2
i + ẋ2

i−1 + |2ẋiẋi−1|

≤
n∑

i=1

ẋ2
i + ẋ2

i−1 +
∣∣ẋ2
i + ẋ2

i−1

∣∣ ≤ 4
n∑

i=1

ẋ2
i .

(5.8)

Combining (5.7) and (5.8), the dissipation inequality can be shown:

∫ t+τ

t

1

4

n∑

i=1

v2
i (s)ds+ E(t+ τ) ≤ E(t).

This dissipation inequality is valid under the assumption that there are no critical

events in the system, and resembles a similar dissipation inequality for 2D grain

growth systems [24, 26]. Using the definition of the GBCD (5.4) and internal energy

(5.1), it was shown in [4, 5, 6, 9] this can be further expressed as

µ0

∫ t+τ

t

∫

Ω

|ρ̇(α, s)|2 dαds+

∫

Ω

ρ(α, t+ τ)ψ(α)dα ≤
∫

Ω

ρ(α, t)ψ(α)dα, (5.9)

where µ0 is some positive constant and for notational brevity

ρ̇(α, t) =
∂

∂t
ρ(α, t).

In [4, 5, 6, 9] a crucial modeling assumption was made to account for time intervals

that do contain critical events. Namely, it was assumed the grain boundary system

evolves to maximize configurational entropy. Mathematically, this assumes the grain

boundary system evolves so that

µ0

∫ t+τ

t

∫

Ω

|ρ̇|2dαds+

∫

Ω

(ρψ + σρ log ρ) dα|t+τ ≤
∫

Ω

(ρψ + σρ log ρ) dα|t, (5.10)

for some σ > 0 will be determined later. This assumption is consistent with the lack

of reversibility of the system upon a grain boundary removal event. The system lacks

knowledge of which boundary was removed, and as such the uncertainty of its initial

state increases (i.e., its entropy increases). Also note that for the case ψ ≡ 0, by
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minimizing the left hand side of (5.10) the GBCD ρ tends to the uniform distribution

on Ω (i.e., all grain boundary misorientations are equally likely).

Note that a free energy of the grain boundary system at time t can be defined as

(see [4, 5, 6, 9]):

Fσ(ρ(·, t)) =

∫

Ω

ρ(α, t)ψ(α) + σρ(α, t) log ρ(α, t)dα. (5.11)

Hence, as shown in [4, 5, 6, 9], inequality (5.10) can be reformulated as

µ0

∫ t+τ

t

∫

Ω

|ρ̇(α, s)|2 dαds+ Fσ(ρ(·, t+ τ)) ≤ Fσ(ρ(·, t)). (5.12)

5.3.2 Mass transport paradigm and the W2 implicit scheme

Inequality (5.12) expresses that the free energy at time t+ τ is bounded above by

the free energy at time t. As observed in [4, 5, 6, 9], the term
∫ t+τ

t

∫

Ω

|ρ̇(α, s)|2 dαds

fails as a proper dissipation mechanism as it does not represent energy lost due to

frictional or viscous forces. To refine this term, in [4, 5, 6, 9] the authors derived the

additional bound

C

minΩ ρ(α, t)

∫ t+τ

t

∫

Ω

v2(α, s)ρ(α, s)dαds ≤
∫ t+τ

t

∫

Ω

|ρ̇(α, s)|2 dαds, (5.13)

for some C > 0, where ρ and v are related through the continuity equation

∂ρ

∂t
(α, t) +

∂

∂α
(v(α, t)ρ(α, t)) = 0.

The term on the left hand side of (5.13) is a proper dissipation term as it represents

loss of energy due to viscous forces. Owing to a formulation of the W2 metric by

Benamou and Brenier [10], the left hand side of (5.13) in turn bounds the W2 distance

d2(·, ·) between ρ(α, t) and ρ(α, t+ τ):

1

τ
d2(ρ(·, t), ρ(·, t+ τ)) = inf

f,v

∫ t+τ

t

∫

Ω

v(α, s)2f(α, s)dαds (5.14)

where the infimum is taken over all f, v satisfying




∂f

∂t
(α, t) +

∂

∂α
(v(α, s)f(α, t)) = 0,

f(α, t) = ρ(α, t), f(α, t+ τ) = ρ(α, t+ τ).
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Assuming ρ(α) > δ > 0 for all α ∈ Ω, by combining (5.12), (5.13) and (5.14), it was

shown in [4, 5, 6, 9] that

µ

2τ
d2(ρ(·, t), ρ(·, t+ τ)) + Fσ(ρ(·, t+ τ)) ≤ Fσ(ρ(·, t)), (5.15)

where µ > 0 is some constant.

The dissipation inequality (5.15) is highly suggestive of a mass transport implicit

scheme (see, e.g., §5.5.3, [23]). That is, assuming the grain boundary network

evolves in a manner that minimizes viscous energy dissipation (i.e., its viscous energy

dissipation is given by the W2 metric as in (5.14)), one obtains the GBCD at time

t+ τ from knowledge of the GBCD at time t by solving the minimization problem

ρ(α, t+ τ) = arg minρ∗
µ

2τ
d2(ρ(·, t), ρ∗(·)) + Fσ(ρ∗(·)). (5.16)

As shown by R. Jordan, D. Kinderlehrer, and F. Otto [23], such a minimization

problem is a time-discrete implicit scheme with respect to the W2 metric for the

solution of a Fokker-Planck equation. More precisely, as τ → 0 the solution ρ(α, t+τ)

of (5.16) converges to the solution of the PDE

µ
∂ρ

∂t
=

∂

∂α

(
σ
∂ρ

∂α
+ ψ′ρ

)
, (5.17)

with periodic boundary conditions and initial data ρ(α, t).

We summarize the above theory. In [4, 5, 6, 9], two crucial assumptions are

made to develop an evolution equation for the GBCD ρ. Namely, it was assumed

that the grain boundary network evolves to simultaneously maximize configurational

entropy (5.10) while minimizing viscous dissipation (5.14). With these assumptions

in place, one finds the GBCD evolves according to a time-discrete form of the Fokker-

Planck equation. The remainder of this chapter is focused on validating this theory

numerically.

5.4 Determining the parameters σ and µ

In order to validate the Fokker-Planck equation (5.17) as a model for GBCD

evolution, the unknown parameters σ and µ need to be specified. The diffusive

parameter σ can be estimated using a relative-entropy procedure originally developed



125

in [4, 5, 6, 7, 8, 9]. We recall this method in §5.4.1. Then in §5.4.2, we develop two

novel time-matching procedures to estimate Fokker-Planck times from the GBCD ρ.

These procedures abandon the simulation times {tj} in favor of times recovered from

theoretical formulas, allowing us to freely choose the parameter µ. In §5.4.3 we show

µ only scales the time of the Fokker-Planck solution, and so an obvious choice for

simplicity is choosing µ ≡ 1. With σ and µ determined, we can directly compare

the GBCD with the solution of the corresponding Fokker-Planck equation (5.17).

Numerical demonstrations of these routines and comparisons are provided in §5.4.4.

5.4.1 Relative entropy test

Here we review the relative entropy validation procedure developed in [4, 5, 6,

7, 8, 9]. To estimate the parameter σ we look to the stationary solution of the

Fokker-Planck PDE (5.17), which is given by the Boltzmann distribution [20]

ρσ(α) =
1

Zσ
e−

ψ(α)
σ ,

with partition function (i.e., normalization factor)

Zσ =

∫

Ω

e−
ψ(α)
σ dα.

Solutions of the Fokker-Planck PDE (5.17) have the property that they converge ex-

ponentially fast to ρσ in Kullback-Leibler (KL) relative entropy. KL relative entropy,

or KL divergence, is a particular f−divergence, i.e., it is a particular function that

measures the difference between two probability densities (see, e.g., [15, 16]). We

denote the KL relative entropy Φ between the GBCD ρ(α, t) and the Boltzmann

distribution ρσ(α) as

Φ(ρ(·, t), ρσ(·)) =

∫

Ω

ρ(α, t) log
ρ(α, t)

ρσ(α)
dα

=
1

σ
Fσ(ρ(·, t)) + log(Zσ)

=
Fσ(ρ(·, t))− Fσ(ρσ(·))

σ
.

If the GBCD ρ(α, t) indeed evolves according to (5.17), it must converge exponentially

fast to ρσ(α) in KL relative entropy as t → ∞. In other words, the free energy of

the grain boundary system must decrease (exponentially fast) to the free energy of
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the Boltzmann distribution ρσ(α). This concept was introduced in [4, 5, 6, 7, 8, 9] to

estimate σ as described below.

Consider the final time of the harvested GBCD ρ(α, tN). As stated in §5.2,

typically tN is the simulation time when 80% of the initial grain boundaries have

been removed. Assuming ρ(α, tN) as the steady-state of the GBCD, the parameter σ

can be estimated via

σ = arg minλ>0 Φ(ρ(·, tN), ρλ(·)). (5.18)

This finds the unique value of λ for which the free energies Fλ(ρ(·, tN)) and Fλ(ρλ(·))
best agree, or in other words, the value of λ for which the Boltzmann distribution

ρλ(α) best matches ρ(α, tN). We demonstrate this procedure numerically in §5.4.4

and defer to [4, 5, 6, 7, 8, 9] for the original formulation of this validation procedure.

5.4.2 Time-matching formulae

Here we provide two time-matching procedures which can be used to assign Fokker-

Planck times to empirically harvested GBCDs. The main principle we use here is that

expected values evolve in a predictable way, assuming the GBCD indeed solves the

Fokker-Planck equation (5.17). Our first method (§5.4.2.1) inverts a formula for the

time evolution of the expectation of certain eigenfunctions. These eigenfunctions are

observed to be heavily weighted near the boundary ∂Ω. We thus provide another

method (§5.4.2.2) that uses expectations of functions which are heavily weighted on

the interior of Ω, and is based on inverting numerical quadrature formulas.

5.4.2.1 Time-matching via eigenfunctions

Denote ρfp as the solution of the Fokker-Planck equation (5.17). We can express

ρfp using an eigenfunction expansion (see, e.g., [20, Sec. 5.2.5] or [31, Sec. 5.4]) as

ρfp(α, t) =
∞∑

i=1

aipi(α)e−
νi
µ
t, (5.19)

where pi are eigenfunctions (with eigenvalue −νi) of the operator

L(u) =
∂

∂α

(
σ
∂u

∂α
+ ψ′u

)
. (5.20)

The coefficients ai in (5.19) are obtained from a projection of the initial data:

ai =

∫

Ω

ρfp(α, 0)qi(α)dα,



127

where qi are eigenfunctions (again with eigenvalue −νi) of the adjoint operator

L†(u) = σ
∂2u

∂α2
− ψ′ ∂u

∂α
. (5.21)

Together, the eigenfunctions qi and pi form a biorthogonal system on Ω, i.e.,
∫

Ω

pi(α)qj(α)dα = δij,

where δij is the usual Kronecker delta.

Now, consider observing the expected value of qi over time. Using representation

(5.19) and the orthogonality of pi, qj for i 6= j, we obtain

f(t) =

∫

Ω

qi(α)ρfp(α, t)dα =
∞∑

j=0

aje
− νj
µ
t

∫

Ω

pj(α)qi(α)dα

= aie
− νi
µ
t

=

(∫

Ω

qi(α)ρfp(α, 0)dα

)
e−

νi
µ
t

= f(0)e−
νi
µ
t.

Thus, we can recover the time t from ρfp as

t = − µ
νi

log

(
f(t)

f(0)

)

= − µ
νi

[
log

(∫

Ω

ρfp(α, t)qi(α)

)
− log

(∫

Ω

ρfp(α, 0)qi(α)

)]
.

(5.22)

For a given value of µ and eigenfunction qi, we can use (5.22) as a formula to

estimate Fokker-Planck times for the GBCD ρ:

tef
j := − µ

νi

[
log

(∫

Ω

ρ(α, tj)qi(α)

)
− log

(∫

Ω

ρ(α, t0)qi(α)

)]
(5.23)

for j = 0, . . . , N . Here the superscript “ef” is to denote “eigen-fit”. We define the

eigen-fit GBCD as

ρef(α, tef
j ) := ρ(α, tj) for j = 0, . . . , N . (5.24)

Thus, by using the GBCD ρ to compute expected values instead of the Fokker-Planck

solution ρfp, we match the GBCD with its most representative Fokker-Planck time.

We remark on a few points here. First, the eigenfunctions qi do not necessarily

have an explicit representation for a given energy density ψ. Thus in practice, we will
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estimate the eigenfunctions and eigenvalues numerically by discretizing the operator

L† and computing the spectrum of the discrete operator. Furthermore, it can be

shown (see, e.g., [31]) the eigenvalues −νi ≤ 0 for all i, i.e., the operators L,L†,
are negative semidefinite. Theoretically there should be no difference in computing

eigen-fit times using different eigenpairs (qi,−νi). However, this procedure is observed

to work better when using eigenpairs with larger nonzero eigenvalues −νi since higher

modes decay more rapidly. We include numerical simulations of the eigen-fit time-

matching procedure in §5.4.4.

5.4.2.2 Time-matching via numerical quadrature

Consider a function w(α) ∈ C∞0 (Ω), i.e., a smooth function with compact support

on Ω such that w(α) ≥ 0 for all α ∈ Ω. Its expected value at time t is given by

f(t) =

∫

Ω

ρfp(α, t)w(α)dα,

where ρfp denotes the solution of the Fokker-Planck equation (5.17). We derive an

evolution equation for f(t) by formally computing f ′(t):

f ′(t) =

∫

Ω

∂ρfp

∂t
wdα =

∫

Ω

1

µ

∂

∂α

(
σ
∂ρfp

∂α
+ ψ′ρfp

)
wdα

1
= −

∫

Ω

1

µ

(
σ
∂ρfp

∂α
+ ψ′ρfp

)
w′dα

2
=

∫

Ω

1

µ

(
σρfpw′′ − ψ′ρfpw′

)
dα =

∫

Ω

ρfp 1

µ
(σw′′ − ψ′w′) dα,

where equalities 1 and 2 indicate integration by parts and the boundary terms vanish

from the compact support of w. Denoting

g(t) =

∫

Ω

ρfp(α, t)
1

µ
(σw′′(α)− ψ′(α)w′(α)) dα =

∫

Ω

ρfp(α, t)L†w(α)dα

where L† is given by (5.21), we have the ODE

f ′(t) = g(t).

If f(tj) and g(tj) are known for some time tj, the ODE f ′(t) = g(t) can be solved

approximately for f(tj+1) using, e.g., the trapezoidal rule

f(tj+1) = f(tj) + (tj+1 − tj)
g(tj+1) + g(tj)

2
. (5.25)
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Now, if we instead assume tj, f(tj), f(tj+1), g(tj) and g(tj+1) are known, we can invert

(5.25) to solve for tj+1:

tj+1 = tj + 2
f(tj+1)− f(tj)

g(tj+1) + g(tj)

= tj + 2µ

∫
Ω
ρfp(α, tj)w(α)dα−

∫
Ω
ρfp(α, tj−1)w(α)dα∫

Ω
ρfp(α, tj)L†w(α)dα +

∫
Ω
ρfp(α, tj−1)L†w(α)dα

.

(5.26)

Note there is no restriction to using the trapezoidal rule above, we simply choose it

for its second-order behavior and its simplicity.

For a given value of µ and function w(α), we can use (5.26) as a formula to

estimate Fokker-Planck times for the GBCD ρ:

tqf
j :=





0, j = 0,

tqf
j + 2µ

∫
Ω
ρ(α, tj)w(α)dα−

∫
Ω
ρ(α, tj−1)w(α)dα∫

Ω
ρ(α, tj)L†w(α)dα +

∫
Ω
ρ(α, tj−1)L†w(α)dα

, j > 0.
(5.27)

Here the superscript “qf” is to denote “quadrature-fit”. As before we define the

associated time-matched GBCD as

ρqf(α, tqf
j ) := ρ(α, tj) for j = 0, . . . , N. (5.28)

We remark this procedure is a slight generalization of the eigen-fit method. The

eigen-fit method uses w(α) ≡ qi(α), i.e., an eigenfunction of L†. In this case, the

ODE f ′(t) = g(t) can be easily solved and inverted exactly to recover formula (5.22).

However, the eigenfunctions qi are observed (numerically) to be heavily weighted near

the boundary ∂Ω. Thus, eigen-fit times computed from expectations of qi mostly use

information of the GBCD near the boundary ∂Ω. This boundary information is

known to be less accurate than GBCD information in the interior of Ω, due to finite

size effects of the grain boundary system. Using the quadrature-fit method, we have

control over the function w(α), so we can choose one heavily weighted in the interior

of Ω and hopefully obtain more accurate time estimates. Numerical simulations of

the quadrature-fit time-matching procedure are included in §5.4.4.

5.4.3 Time scaling effect of µ

The effect of µ in the Fokker-Planck equation (5.17) is simply a global time scaling.

This can be seen as follows. Assume ρfp(α, t) satisfies (5.17) and define a new function
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ρ̃ as

ρ̃(α, t) := ρfp(α, µt).

Thus, ρ̃ is a time-dilated version of the Fokker-Planck solution ρfp. By direct compu-

tation we find ρ̃ satisfies

∂

∂t
ρ̃(α, t) =

∂

∂t
ρfp(α, µt) =

(
µ
∂

∂t′
ρfp(α, t′)

) ∣∣∣∣∣
t′=µt

=

(
∂

∂α

(
σ
∂ρfp

∂α
(α, t′) + ψ′(α)ρfp(α, t′)

)) ∣∣∣∣∣
t′=µt

=
∂

∂α

(
σ
∂ρfp

∂α
(α, µt) + ψ′(α)ρfp(α, µt)

)

=
∂

∂α

(
σ
∂ρ̃

∂α
(α, t) + ψ′(α)ρ̃(α, t)

)
.

Hence, ρ̃ satisfies the Fokker-Planck equation (5.17) with µ ≡ 1.

From this observation we note that by choosing a value of µ to use one of the

time-matching formulae (5.23) or (5.27), we are simply choosing a global time scaling

for the GBCD. For simplicity then, we will use µ ≡ 1 when computing GBCD times

{tef
j } or {tqf

j } as this will not affect qualitative behaviors, merely the global time scale

on which they occur.

5.4.4 Numerical validation and parameter estimation

We begin our numerical demonstrations by illustrating the relative entropy val-

idation procedure reviewed in §5.4.1. We consider a GBCD ρ harvested from a 1D

coarsening simulation (§5.2) with energy density ψ(α) = 1 + 2α2 and 215 initial

grain boundaries. We compute the KL relative entropy Φ(ρ(·, tj), ρλ(·)
)

for all of

the collection times {tj}Nj=0 and for 30 uniformly spaced values of λ ∈ [0.02, 0.04].

The resulting relative entropy curves are shown in Figure 5.4(a). By computing the

minimum over all λ of Φ(ρ(·, tN), ρλ(·)) at the final time tN , i.e., using (5.18), we

estimate σ ≈ 0.03069. Its corresponding relative entropy curve is depicted in red. We

also plot the corresponding Boltzmann distribution ρσ(α) (red) against the final time

GBCD ρ(α, tN) (blue) in Figure 5.4(b). The agreement between the two densities is

a first validation of the Fokker-Planck model of the GBCD evolution as discussed in

[4, 5, 6, 7, 8, 9].
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Figure 5.4. Relative entropy: (a) KL relative entropy curves Φ(ρ, ρλ) for 30 trial
values of λ ∈ [0.01, 0.05]. The red curve depicts the optimal curve for σ = 0.03069,
(b) comparison of the final time GBCD ρ(α, tN) (blue) with the optimal Boltzmann
distribution ρσ(α) (red dashed).

Next, we numerically investigate the time-fitting procedures of §5.4.2. As a

benchmark test, we apply the time-fitting formulae (5.23) and (5.27) to the solution

ρfp of the Fokker-Planck equation (5.17) to see if the correct times are recovered, at

least approximately. To this end, we first generate a numerical solution ρfp of (5.17)

with µ ≡ 1, σ = 0.03069, ψ = 1+2α2, using an initial GBCD as initial data ρfp(α, 0).

The numerical solution is obtained by discretizing the operator L(u) = ∂
∂α

(σ ∂u
∂α

+ψ′u)

with second-order finite differences with periodic boundary conditions, and using the

backward Euler method to solve for the time steps tfpj = (j−1)/999 for j = 1, . . . , 1000.

To test the eigen-fit procedure, we discretize the operator L†(u) = σ ∂
2u
∂α2 − ψ′ ∂u∂α

with second-order finite differences with periodic boundary conditions, and compute

the discrete eigenpairs (qi,−νi). Using formula (5.22) with µ ≡ 1 and the eigenpair

(qi,−νi) with largest nonzero eigenvalue −νi(≈ −4), we recover the times {tef
j }. We

plot the recovered times against the true Fokker-Planck times (backward Euler times)

{tfpj } in Figure 5.5(a). The linear relation here shows the eigen-fit method indeed

recovers the true times approximately. The slight break from linearity at later times

shows the method has difficulties recovering times as the solution ρfp nears its steady-
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Figure 5.5. A comparison of the true Fokker-Planck times {tfpj } with the (a)

the eigen-fit recovered times {tef
j } and (b) the quadrature-fit recovered times {tqf

j }.
The linear relation shows the recovery formulas approximately recover the true
Fokker-Planck times.

state.

To test the quadrature-fit procedure, we use formula (5.27) with µ ≡ 1 and

function w(α) = cos(2α) to recover the times {tqf
j }. We again use the second-order

finite difference approximation of L† in formula (5.27). We plot these recovered times

against the true Fokker-Planck times {tfpj } in Figure 5.5(b). Here we again see a

linear relation indicating the quadrature-fit method approximately recovers the true

times. Similar to the eigen-fit method, there appears to be a slight break in the time

recovery as the solution ρfp approaches its steady-state.

We now apply the time-fitting procedures to the GBCD ρ. For the eigen-fit

method, we again discretize the operator L† and compute its eigenpairs (qi,−νi). We

use (5.23) with µ ≡ 1 and the eigenpair (qi,−νi) having largest nonzero eigenvalue

−νi(≈ −4) to compute the Fokker-Planck times {tef
j }, and define the eigen-fit GBCD

ρef according to (5.24). We compare the eigen-fit GBCD ρef with the Fokker-Planck

solution ρfp (obtained as above) at a few times. The two densities are plotted in

Figure 5.6 at eigen-fit times tef
j = 0.057, 0.136, 0.263, 1. These times correspond
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Figure 5.6. Comparison of the time-fitted GBCD (blue) with the Fokker–
Planck solution ρfp (red dashed). Here ρfp is obtained using the backward Eu-
ler method. The left image compares the eigen-fit GBCD ρef with ρfp at times
tef
j = 0.057, 0.136, 0.263, 1. The right image compares the quadrature-fit GBCD ρqf

with ρfp at times tqf
j = 0.059, 0.14, 0.267, 1.

to approximately 20%, 40%, 60%, 80% initial grain boundary removal, respectively.

The agreement between the time-matched GBCD ρef (blue) and the Fokker-Planck

solution ρfp (red) further validates the Fokker-Planck model of the GBCD evolution.

For the quadrature-fit method, we use (5.27) with µ ≡ 1 and w(α) = cos(2α) to

compute the Fokker-Planck times {tqf
j }. We then define the quadrature-fit GBCD ρqf

according to (5.28). In Figure 5.6, we compare ρqf with the Fokker-Planck solution ρfp

(obtained as above) at quadrature-fit times tqf
j = 0.059, 0.14, 0.267, 1, corresponding

to approximately 20%, 40%, 60%, 80% initial grain boundary removal, respectively.

Again we observe validation of the Fokker-Planck model of GBCD evolution as we

see good agreement between the densities ρqf (blue) and ρfp (red).

Lastly, we compare the time-matched GBCDs ρef and ρqf with the Fokker-Planck

solution ρfp obtained from the eigenfunction expansion (5.19). To compute ρfp we

discretize the operators L and L†, compute the eigenpairs of the discrete operators,

compute the coefficients ai using an initial GBCD as the initial data, and finally form
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Figure 5.7. Density comparisons the time-fitted GBCDs (blue) with the Fokker–
Planck solution ρfp (red dashed). Here ρfp is obtained using the eigenfunction
expansion (5.19). The left image compares the eigen-fit GBCD ρef with ρfp at times
tef
j = 0.263, 1. The right image compares the quadrature-fit GBCD ρqf with ρfp at

times tqf
j = 0.267, 1.

the expansion (5.19) with µ ≡ 1. In Figure 5.7 we compare ρef and ρqf with ρfp

at Fokker-Planck times corresponding to approximately 60% and 80% initial grain

boundary removal. We note the qualitative agreement is similar to that of Figure 5.6,

an additional validation of the Fokker-Planck model of GBCD evolution.

5.5 Gradient flows and dissipation mechanisms

In this section we study gradient flows in several contexts. It was first shown in [23]

that the Fokker-Planck equation (5.17) can be regarded as the W2 gradient flow of the

free energy Fσ. Thus to validate the Fokker-Planck equation (5.17) as a description

of the GBCD evolution, we seek an energy dissipation principle the GBCD must

satisfy if it is a W2 gradient flow of Fσ. We begin in §5.5.1 by recalling a classical

gradient flow in Rd, and reformulating it as variational problem. This variational

formulation can be generalized and in §5.5.2 we consider an example L2 gradient

flow in the space H1(Ω), namely, the diffusion equation. From a simple quadratic

inequality, we derive an energy dissipation identity that holds only for solutions to
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the diffusion equation. These examples are patterned after a series of lecture notes

by M. Peletier [28, 29]. They serve as analogies of our main result in §5.5.3, where

we derive an energy dissipation identity that holds if and only if a function is a W2

gradient flow of the free energy Fσ, i.e., the solution of the Fokker-Planck equation

(5.17). In §5.5.4, we determine that the GBCD approximately satisfies this identity

which validates the Fokker-Planck model of GBCD evolution.

5.5.1 Gradient flows in Euclidean space

Consider the gradient flow for x(t) ∈ Rd of an energy function F : Rd → R given

by the system

d

dt
x(t) = −∇F(x(t)) ⇐⇒ ẋ(t) +∇F(x(t)) = 0. (5.29)

If initial conditions x(0) are known, the backward Euler approximation of this system

is given by
x(τ)− x(0)

τ
+∇F(x(τ)) = 0. (5.30)

Notice, x(τ) then satisfies the stationary condition implied by the minimization

problem

min
x(τ)∈Rd

‖x(τ)− x(0)‖2

2τ
+ F(x(τ)), (5.31)

where ‖ · ‖ denotes the standard Euclidean norm in Rd. Thus, we may approximate

the solution of the gradient flow system (5.29) by finding the minimizer of (5.31).

Moreover, as τ → 0, the approximation (5.30) becomes exact. These are motivating

observations to generalize gradient flows to infinite dimensional vector spaces.

5.5.2 An L2 gradient flow

Consider an analogous minimization problem for functions in H1(Ω), where we

recall Ω = [−π/4, π/4] ⊂ R:

min
u(·,τ)∈H1(Ω)
∂u
∂x
|∂Ω=0

‖u(·, τ)− u(·, 0)‖2
L2(Ω)

2τ
+

1

2

∫

Ω

∣∣∣∣
∂u

∂x
(x, τ)

∣∣∣∣
2

dx, (5.32)

where u(x, 0) is assumed to be known and ‖ · ‖L2(Ω) denotes the L2 norm of functions

defined on Ω. Setting the first variation of this expression to zero, we obtain the
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stationary condition
∫

Ω

u(x, τ)− u(x, 0)

τ
v(x)dx = −

∫

Ω

∂u

∂x
(x, τ)

∂v

∂x
(x)dx, (5.33)

for all functions v ∈ H1(Ω). Recalling the backward Euler time derivative approxi-

mation
u(x, τ)− u(x, 0)

τ
≈ ∂u

∂t
(x, τ),

we recognize (5.33) as a weak approximation of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, (5.34)

with Neumann boundary conditions ∂u
∂x

∣∣
∂Ω

= 0 and u(x, 0) as initial data. As τ → 0,

the minimizer of (5.32) converges to the solution of (5.34) with initial data u(x, 0).

Thus, (5.32) is a variational formulation of the diffusion equation (as τ → 0). Noting

the explicit dependence of (5.32) on the L2 metric and energy F(u) = 1
2

∫ ∣∣∂u
∂x

∣∣2 dx
in (5.32), the diffusion equation is considered the L2 gradient flow of the energy

functional F(u).

We now derive an energy dissipation identity that only solutions of (5.34) satisfy.

For any sufficiently regular function u(x, t) satisfying ∂u
∂x
|∂Ω = 0, we observe the rate

of change of the energy F(u):

− d

dt
F(u) = −

∫

Ω

∂u

∂x

∂2u

∂x∂t
dx =

∫

Ω

∂2u

∂x2

∂u

∂t
dx, (5.35)

where we have integrated by parts in the last equality and the boundary terms vanish

because ∂u
∂x

∣∣
∂Ω

= 0. We also have

0 ≤
∫

Ω

(
∂u

∂t
− ∂2u

∂x2

)2

dx =

∫

Ω

(∣∣∣∣
∂u

∂t

∣∣∣∣
2

+

∣∣∣∣
∂2u

∂x2

∣∣∣∣
2

− 2
∂u

∂t

∂2u

∂x2

)
dx, (5.36)

where equality with zero holds if and only if ∂u
∂t

= ∂2u
∂x2 almost everywhere in Ω.

Rearranging (5.36), we have

∫

Ω

∂u

∂t

∂2u

∂x2
dx ≤ 1

2

∫

Ω

(∣∣∣∣
∂u

∂t

∣∣∣∣
2

+

∣∣∣∣
∂2u

∂x2

∣∣∣∣
2
)
dx. (5.37)

Finally, we combine (5.35) and (5.37) to obtain

− d

dt
F(u) =

∫

Ω

∂2u

∂x2

∂u

∂t
dx ≤ 1

2

∫

Ω

(∣∣∣∣
∂u

∂t

∣∣∣∣
2

+

∣∣∣∣
∂2u

∂x2

∣∣∣∣
2
)
dx, (5.38)
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where equality holds if and only if ∂u
∂t

= ∂2u
∂x2 almost everywhere in Ω. Thus, (5.38)

is satisfied with equality if and only if u(x, t) is a solution of the diffusion equation

(5.34), i.e., the L2 gradient flow of the energy F .

5.5.2.1 Estimating the dissipation of L2 gradient flows

Assuming u solves the diffusion equation (5.34), we compute the rate of dissipa-

tion, which by (5.38) is

− d

dt
F(u(·, t)) =

∫

Ω

(
∂u

∂t
(x, t)

)2

dx.

Expressing the time derivatives as limits we have

lim
τ→0

F(u(·, t)−F(u(·, t+ τ))

τ
= lim

τ→0

1

τ 2

∫

Ω

(u(x, t+ τ)− u(x, t))2 dx

= lim
τ→0

1

τ 2
‖u(·, t+ τ)− u(·, t)‖2

L2(Ω),

where we have assumed sufficient smoothness of u to pass the limit outside of the

integral. By dropping the limits and multiplying by τ , we can estimate the energy

dissipation of an L2 gradient flow using the L2 metric:

F(u(·, t)−F(u(·, t+ τ)) ≈ 1

τ
‖u(·, t+ τ)− u(·, t)‖2

L2(Ω). (5.39)

In §5.5.3, we will find an analogous estimate for the energy dissipation of a W2

gradient flow.

5.5.3 A Wasserstein-2 gradient flow

For a W2 gradient flow, we consider the state space

P(Ω) = {ρ : Ω→ [0,∞)
∣∣
∫

Ω

ρ(α)dα = 1,

∫

Ω

α2ρ(α)dα <∞}, (5.40)

where Ω = [−π/4, π/4] ⊂ R. Thus, P(Ω) is the space of probability densities on Ω

with finite second moment. For densities ρ(·, τ) ∈ P(Ω) we can write the variational

form

min
ρ(·,τ)∈P(Ω)

d2(ρ(·, τ), ρ(·, 0))

2τ
+ Fσ(ρ(·, τ)), (5.41)

where ρ(·, 0) ∈ P(Ω) is a known probability density, d(·, ·) denotes the W2 distance

(5.14), and Fσ(·) is the free energy defined in (5.11). Clearly, (5.41) is analogous to
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(5.32) with the W2 metric d(·, ·) in place of the L2 metric and with energy functional

Fσ : P(Ω)→ R, i.e., the free energy (5.11). R. Jordan, D. Kinderlehrer and F. Otto

introduced this scheme in [23] and showed as τ → 0, the minimizer of (5.41) converges

to the solution of the Fokker-Planck equation (5.17) with µ ≡ 1 and ρ(α, 0) as initial

data. Thus, we interpret the dynamics implied by the Fokker-Planck equation (5.17)

as the W2 gradient flow of the free energy Fσ.

Analogous to §5.5.2, we now derive a dissipation identity that is satisfied only for

the solution of the Fokker-Planck equation (5.17) with µ ≡ 1, i.e., the W2 gradient

flow of Fσ. The following theorem is essentially a collection of a few facts of W2

gradient flows and W2 spaces. We assume sufficient smoothness of the underlying

functions for clarity and precision. However, similar statements can be made in a

much more general setting. We defer to [2, 3] for these generalized statements.

Theorem 7 (W2 dissipation identity) For Ω = [−π/4, π/4] ⊂ R, define P(Ω) as

in (5.40). We assume ρ(·, t′) ∈ P(Ω) for all t′ ∈ (t, t+ τ) and satisfies the following:

ρ ∈ C2(Ω× (t, t+ τ)), (5.42)

ρ(α, t′) > δ > 0, ∀t′ ∈ (t, t+ τ), (5.43)

ρ(−π/4, t′) = ρ(π/4, t′), ∀t′ ∈ (t, t+ τ) (5.44)

d(ρ(·, t1), ρ(·, t2)) ≤
∫ t2

t1

f(s)ds for t < t1 ≤ t2 < t+ τ, (5.45)

for some f ∈ L1((t, t + τ)) where d(·, ·) denotes the W2 metric (5.14). The energy

dissipation identity

− d

dt
Fσ(ρ) =

1

2

∫

Ω

((
σ

1

ρ

∂ρ

∂α
+ ψ′

)2

+ v2

)
ρdα

holds if and only if v = −(σ 1
ρ
∂ρ
∂α

+ ψ′), where v and ρ satisfy continuity equation

∂ρ

∂t
+

∂

∂α
(vρ) = 0. (5.46)

Proof. As discussed in [2, Definition 2.28], assumption 5.45 implies ρ(·, t) : t 7→
ρ(α, t) is an absolutely continuous curve in P(Ω). By [2, Theorem 2.29], if ρ(·, t) is

an absolutely continuous curve then there must exist a velocity field v(α, t) such that
∫

Ω

v2(α, t′)ρ(α, t′)dα <∞ for t′ ∈ (t, t+ τ),
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and the continuity equation (5.46) holds in the sense of distributions. By our assumed

smoothness (5.42) of ρ and the Riesz Representation Theorem, (5.46) must hold in

the classic sense for some v. Furthermore, since ρ is a probability density we have
∫

Ω
ρ(α, t′)dα = 1 for all t′ ∈ (t, t+ τ), and so

0 =
d

dt

∫

Ω

ρdα =

∫

Ω

∂ρ

∂t
dt = −

∫

Ω

∂

∂α
(vρ)dα = (vρ)

∣∣∣
π/4

−π/4
.

Then, using the periodic boundary conditions (5.44) and positivity (5.43) of ρ, we

have

(
v(π/4, t′)− v(−π/4, t′)

)
ρ(π/4, t′) = 0 =⇒ v(−π/4, t′) = v(π/4, t′). (5.47)

Analogous to our derivation of the L2 dissipation inequality (5.38), we now com-

pute the dissipation rate of the free energy Fσ:

− d

dt
Fσ(ρ) = −

∫

Ω

∂

∂t
(σρ log ρ+ ψρ) dα = −

∫

Ω

(
σ
∂ρ

∂t
log ρ+ σ

∂ρ

∂t
+ ψ

∂ρ

∂t

)
dα

= −
∫

Ω

(σ log ρ+ σ + ψ)
∂ρ

∂t
dα

=

∫

Ω

(σ log ρ+ σ + ψ)
∂

∂α
(vρ)dα

= −
∫

Ω

(
σ

1

ρ

∂ρ

∂α
+ ψ′

)
vρdα,

(5.48)

where we have integrated by parts in the last line and the boundary terms have

vanished owing to the periodic boundary conditions (5.44) and (5.47). We also have

0 ≤
∫

Ω

((
σ

1

ρ

∂ρ

∂α
+ ψ′

)
+ v

)2

ρdα

=

∫

Ω

((
σ

1

ρ

∂ρ

∂α
+ ψ′

)2

+ v2 + 2

(
σ

1

ρ

∂ρ

∂α
+ ψ′

)
v

)
ρdα,

(5.49)

where equality with zero holds if and only if v = −
(
σ 1
ρ
∂ρ
∂α

+ ψ′
)

, which follows by

the assumed positivity (5.43) and continuity (5.42) of ρ. Rearranging (5.49), we have

−
∫

Ω

(
σ

1

ρ

∂ρ

∂α
+ ψ′

)
vρ ≤ 1

2

∫

Ω

((
σ

1

ρ

∂ρ

∂α
+ ψ′

)2

+ v2

)
ρdα. (5.50)

Finally, we combine (5.48) and (5.50) to obtain

− d

dt
Fσ(ρ) = −

∫

Ω

(
σ

1

ρ

∂ρ

∂α
+ ψ′

)
vρdα ≤ 1

2

∫

Ω

((
σ

1

ρ

∂ρ

∂α
+ ψ′

)2

+ v2

)
ρdα, (5.51)
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where equality holds if and only if

v = −
(
σ

1

ρ

∂ρ

∂α
+ ψ′

)
.

We remark at the similarity between (5.51) and (5.38). In (5.38), we formed a

dissipation inequality that is satisfied with equality only for a solution of the diffusion

equation, i.e., the L2 gradient flow of an energy F . Similarly, inequality (5.51) is

satisfied with equality only for a density ρ such that

∂ρ

∂t
+

∂

∂α

(
−
(
σ
∂ρ

∂α

1

ρ
+ ψ′

)
ρ

)
= 0 ⇐⇒ ∂ρ

∂t
=

∂

∂α

(
σ
∂ρ

∂α
+ ψ′ρ

)
.

Thus, (5.51) is satisfied with equality if and only if ρ(α, t) is the solution of the

Fokker-Planck equation (5.17) with µ ≡ 1, i.e., the W2 gradient flow of the free

energy Fσ (owing to the equivalence of (5.17) and (5.41) established in [23]). Finally,

we note that if v = +
(
σ 1
ρ
∂ρ
∂α

+ ψ′
)

, then the system described by ρ is nondissipative

since we have
d

dt
Fσ(ρ) =

∫

Ω

(
σ

1

ρ

∂ρ

∂α
+ ψ′

)2

ρdα > 0.

5.5.3.1 Estimating the dissipation of W2 gradient flows

From (5.51) we find the solution ρfp of the Fokker-Planck equation (5.17) with

µ ≡ 1 dissipates the free energy Fσ as

− d

dt
Fσ(ρfp) =

∫

Ω

v2ρfpdα, (5.52)

where v = −
(
σ 1
ρfp

∂ρfp

∂α
+ ψ′

)
. We can estimate (5.52) from below as

− d

dt
Fσ(ρfp) =

∫

Ω

v2ρfpdα
1
= lim

τ→0

1

τ

∫ t+τ

t

∫

Ω

v2ρfpdαds

≥ lim
τ→0

1

τ
inf
ρ̃,ṽ

∫ t+τ

t

∫

Ω

ṽ2ρ̃dαds,

where equality 1 is the mean value theorem for integrals. Here the inf is taken over

all ρ̃, ṽ satisfying




∂

∂t
ρ̃+

∂

∂α
(ṽρ̃) = 0,

ρ̃(α, t) = ρfp(α, t), ρ̃(α, t+ τ) = ρfp(α, t+ τ).
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Recalling the Benamou-Brenier formulation of the W2 metric (5.14) and writing the

time derivative of Fσ as a limit we have

lim
τ→0

Fσ(ρfp(·, t))− Fσ(ρfp(·, t+ τ))

τ
≥ lim

τ→0

1

τ 2
d2(ρfp(·, t), ρfp(·, t+ τ)). (5.53)

Remark 12 (W2 metric derivative) Numerical observations and a theoretical re-

sult found in [2, Proposition 3.22], show that ρfp in fact satisfies (5.53) with equality2:

lim
τ→0

Fσ(ρfp(·, t))− Fσ(ρfp(·, t+ τ))

τ
= lim

τ→0

1

τ 2
d2(ρfp(·, t), ρfp(·, t+ τ)).

Thus analogous to §5.5.2.1, by dropping the limits and multiplying by τ , we estimate

the dissipation of a W2 gradient flow using the W2 metric:

Fσ(ρfp(·, t))− Fσ(ρfp(·, t+ τ)) ≈ 1

τ
d2(ρfp(·, t), ρfp(·, t+ τ)). (5.54)

5.5.4 Numerical validation of W2 dissipation

We now use the dissipation estimate (5.54) to numerically validate the Fokker-

Planck model of GBCD evolution. The principle we use here is that if a density evolves

according to the Fokker-Planck equation (5.17), it must dissipate energy according

to (5.54). As a benchmark test, we first generate a numerical solution of the Fokker-

Planck equation (5.17) and determine the dissipation estimate (5.54) indeed holds.

Next, we consider a time-matched GBCD harvested from the 1D critical event model,

and find the estimate (5.54) is approximately satisfied for the GBCD, away from initial

times. Thus, the GBCD exhibits W2 dissipation of the free energy Fσ, validating it

as an approximate solution of the Fokker-Planck equation (5.17).

We begin with the benchmark test. We construct a numerical solution of (5.17)

with µ ≡ 1, σ = 0.03069, ψ = 1+2α2, using an initial GBCD as initial data. To solve

(5.17) numerically, we use second-order finite differences for spatial derivatives and

solve for 1000 time steps using the backward Euler method to estimate ρfp(α, tj) where

tj = (j−1)/999 for j = 1, . . . , 1000. We compute the free energy dissipation Fσ(ρfp
j )−

Fσ(ρfp
j+1) and the W2 distances d2(ρfp

j , ρ
fp
j+1)/τj where we have abbreviated ρfp

j =

2A similar dissipation identity holds for gradient flows for general metrics and sufficiently convex
energy functionals, i.e., not only for the W2 gradient flow of Fσ in one-dimension. See [2] for details.
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Figure 5.8. Fokker-Planck dissipation: the energy dissipation Fσ(ρfp
j ) − Fσ(ρfp

j+1)

(left) and the W2 distances d2(ρfp
j , ρ

fp
j+1)/τj (right). The difference between the two

curves is depicted in magenta (approx. 0). Here the density ρfp is a numerical solution
of the Fokker-Planck equation (5.17). The agreement between the curves indicates
(5.54) is satisfied and thus ρfp is indeed an approximate solution of (5.17).

ρfp(α, tj) and τj = tj+1 − tj for j = 1, . . . , 999. Here the W2 distances are computed

using a numerical algorithm developed by D. Kinderlehrer and N. Walkington [27].

In Figure 5.8 we plot the energy dissipation and the W2 distances. The difference

between the two curves, depicted in magenta, indicates the free energy dissipation

agrees with the W2 distances, and thus (5.54) is satisfied. As expected, we validate

the numerical solution ρfp satisfies the Fokker-Planck equation (5.17).

Now we apply the dissipation estimate (5.54) to time-matched GBCDs. We first

apply the test to a GBCD harvested from the 1D simulation (§5.2) with n = 215 initial

grain boundaries. We use the energy density ψ = 1 + 2α2 and harvest the GBCD

at the set of collection times {tj}Nj=1. The parameter σ ≈ 0.03069 is estimated using

the relative entropy test of §5.4.1. Next, we implement the quadrature-fit method of

§5.4.2 to fit the GBCD to Fokker-Planck times:

ρqf(α, tqf
j ) = ρ(α, tj) for j = 0, . . . , N,

where tqf
j is given by (5.27) (with µ ≡ 1). Finally, we compute the energy dissipation

Fσ(ρqf
j ) − Fσ(ρqf

j+1) and W2 distances d2(ρqf
j , ρ

qf
j+1)/τqf

j , where we have abbreviated

ρqf
j = ρqf(α, tqf

j ) and τqf
j = tqf

j+1 − tqf
j for j = 0, . . . , N − 1. We compare the energy

dissipation and the W2 distances in Figure 5.9, where we see qualitative agreement

between the curves, away from initial times. Because the solution of (5.17) must



143

satisfy the dissipation estimate (5.54), we have further validation that the Fokker-

Planck equation characterizes the GBCD evolution. We believe the disagreement at

these earlier times can be understood as transient startup effects of the 1D coarsening

simulation. That is, at the beginning of the 1D simulation high-energy grain bound-

aries (i.e., grain boundaries with misorientation parameters α near the boundary of

Ω = [−π/4, π/4]) are not eliminated as rapidly as in later times of the simulation

(cf. Figure 5.6). We focus more on the later times of the simulation since the 1D

grain boundary system at these times is more representative of the theory derived in

[4, 5, 6, 9].

In Figure 5.9, we also show the dissipation estimate for GBCDs harvested from

simulations having n = 217 and n = 219 initial grain boundaries. We observe as the

number of initial grain boundaries increases, the dissipation estimate (5.54) improves.

This improvement suggests the Fokker-Planck equation is a more accurate description

of GBCD evolution as the number of grain boundaries n → ∞, i.e., in a continuum

or many particles limit.

5.6 Statistical validation of Fokker-Planck dynamics

We now quantify the agreement between the GBCD evolution and Fokker-Planck

dynamics by asking how well (5.54) is satisfied. Since the grain boundary system

is initialized randomly, the GBCD itself is random and thus the energy dissipation

Fσ(ρ(·, tj)) − Fσ(ρ(·, tj+1)) and W2 distances d2(ρ(·, tj), ρ(·, tj+1)) between any two

times are themselves random variables. Therefore, we consider generating many

realizations of the grain boundary system and associated statistics to determine if

the energy dissipation samples and W2 distance samples agree in a statistical sense.

In §5.6.1 we develop a procedure to quantify the agreement between the distributions

of the energy dissipation samples and the W2 distance samples. We implement

this procedure in §5.6.2 and observe the energy samples appear to converge, in

distribution, as the number of initial grain boundaries n increases, i.e., in a continuum

or many particles limit. To summarize this observation we formulate Conjecture 1,

and characterize the implications of such convergence for the grain boundary system

dynamics.
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Figure 5.9. GBCD dissipation: the energy dissipation Fσ(ρqf
j )− Fσ(ρqf

j+1) (left) and

the W2 distances d2(ρqf
j , ρ

qf
j+1)/τqf

j (right) for GBCDs harvested from 1D simulations
for different numbers of initial grain boundaries n (indicated). Here the time scales
have been set using the quadrature-fit method of §5.4.2.2 with µ ≡ 1. The difference
between the two curves is depicted in magenta and indicates (5.54) is satisfied, thus
validating the Fokker-Planck model of GBCD evolution.
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5.6.1 Energy samples as random variables

Consider the 1D coarsening simulation of §5.2. The grain boundary system

is initialized randomly both by the random subdivision of the interval [0, L] into

subintervals (grain boundaries), and by the initial prescription of random misorien-

tation parameters αi. Thus, statistics harvested from the grain boundary system are

inherently random. For a given realization of the grain boundary system, we collect

the statistics

{ρ(α, tj)}Nj=0, σ, {tef
j }Nj=0, {tqf

j }N0=1,

{Fσ(ρ(·, tj))}Nj=0, d2(ρ(·, tj), ρ(·, tj+1))}N−1
j=0 ,

and more importantly, the energetic statistics (as they are energetic quantities)

{∆Fj}N−1
j=0 = {Fσ(ρ(·, tj))− Fσ(ρ(·, tj+1))}N−1

j=0 ,

{Wj}N−1
j=0 =

{
d2(ρ(·, tj), ρ(·, tj+1))

tqf
j+1 − tqf

j

}N−1

j=0

.
(5.55)

In this context, in §5.5.4 we verified that ∆Fj ≈ Wj for each j = 0, . . . , N − 1 and

for a single realization of the 1D grain boundary system. This in turn validated

the Fokker-Planck model of GBCD evolution qualitatively for the given realization.

We now validate the model in a quantitative and probabilistic sense by considering

multiple realizations of the grain boundary system.

Denote by f∆F (e, t) and fW (e, t), the time-dependent probability densities for the

energetic random variables ∆F and W , respectively. That is, f∆F (e, t) gives the

probability of observing an energy dissipation sample e at time t, and likewise for

fW (e, t). The state space for these probability densities is R+ = [0,∞) since energy

is a non-negative quantity. For the time being, we assume f∆F (e, t) and fW (e, t) are

known, but we will estimate them empirically in §5.6.2.

To quantify the difference between the probability distributions of ∆F and W ,

we use an f−divergence. An f−divergence is a real-valued non-negative function,

that measures the difference between two probability densities (see, e.g., [13, 14]).

Crucially, an f−divergence is zero if and only if the densities, and therefore the
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associated distributions, are equal. Of the many choices of f−divergence forms, we

focus on the KL divergence of f∆F from fW at time t which is given by

Φ(f∆F (·, t), fW (·, t)) =

∫ ∞

0

f∆F (e, t) log

(
f∆F (e, t)

fW (e, t)

)
de. (5.56)

Our choice of KL divergence is because it also provides an upper bound on the

total variation distance between the two distributions, i.e., the L1 norm between

the densities:

0 ≤ 1

2
‖f∆F (·, t)− fW (·, t)‖2

L1(R+) ≤ Φ(f∆F (·, t), fW (·, t)), (5.57)

which is known as the Csiszár-Kullback-Pinsker inequality (see, e.g., [11]). Thus,

convergence of f∆F (e, t) to fW (e, t) in KL divergence, implies convergence in L1.

These two quantities give a measurement of the difference between the probability

densities f∆F (e, t) and fW (e, t) at a given time t, with smaller values indicating

statistical agreement.

For global (in time) quantification, we then integrate the time-dependent curves

Φ(f∆F (·, t), fW (·, t)) and ‖f∆F (·, t)− fW (·, t)‖2
L1(R+):

∫ ∞

0

Φ(f∆F (·, t), fW (·, t))dt =

∫ ∞

0

∫ ∞

0

f∆F (e, t) log

(
f∆F (e, t)

fW (e, t)

)
dedt,

∫ ∞

0

‖f∆F (·, t)− fW (·, t)‖2
L1(R+)dt =

∫ ∞

0

(∫ ∞

0

|f∆F (e, t)− fW (e, t)|de
)2

dt.

(5.58)

Small values of these global quantities indicate the densities f∆F (e, t) and fW (e, t)

agree at all times t, i.e., the energy dissipated as the GBCD evolves is statistically

equivalent to the energy dissipated as the Fokker-Planck solution evolves. Thus, small

values of the quantities (5.58) will statistically validate the Fokker-Planck model of

GBCD evolution.

5.6.2 Convergence of the energetic statistics in a continuum
limit

To estimate f∆F (e, t) and fW (e, t) we use empirical histograms of two-dimensional

energy×time samples as follows. Multiple (independent) realizations r = 1, . . . , R of

the 1D coarsening simulation are generated, each realization using the same number

of initial grain boundaries n. For each realization r, we estimate σ(r) using the relative
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entropy procedure of §5.4.1, and then collect the statistics {(tqf
j )(r)}Nj=0, {∆F (r)

j }N−1
j=0

and {W (r)
j }N−1

j=0 . We uniformly discretize a suitable energy×time window E×T ⊂ R2

(see Remark 13) with mesh given by [Ei, Tk] for i = 1, . . . , I and k = 1, . . . , K. Finally,

we form the density estimators f̂∆F (e, t) and f̂W (e, t) as normalized histograms of

the two-dimensional energy×time samples (∆F
(r)
j , (tqf

j )(r)) and (W
(r)
j , (tqf

j )(r)), respec-

tively. More precisely, for (e, t) ∈ [Ei, Ei+1]× [Tk, Tk+1] we define

f̂∆F (e, t) :=
1

H(t)

R∑

r=1

N−1∑

j=0

I
(
∆F

(r)
j ∈ [Ei, Ei+1]

)
I
(
(tqf
j )(r) ∈ [Tk, Tk+1]

)
,

f̂W (e, t) :=
1

H(t)

R∑

r=1

N−1∑

j=0

I
(
W

(r)
j ∈ [Ei, Ei+1]

)
I
(
(tqf
j )(r) ∈ [Tk, Tk+1]

)
,

(5.59)

where I is the indicator function (5.5) and the normalization is

H(t) =
N−1∑

j=0

R∑

r=1

I
(
(tqf
j )(r) ∈ [Tk, Tk+1]

)
for t ∈ [Tk, Tk+1].

This normalization ensures that for any t ∈ T we have
∫

E

f̂∆F (e, t)de =

∫

E

f̂W (e, t)de = 1.

Remark 13 (The energy×time window) We use the energy×time window E ×
T = [0, Emax]× [Tmin, Tmax]. For our simulations, we use a nonzero initial time Tmin =

0.1 as we wish to ignore transient startup effects of the 1D coarsening simulation (see

our discussion in §5.5.4). This time corresponds to approximately 20% initial grain

boundary removal in all realizations r = 1, . . . , R. Similarly, we use Tmax = 1 as we

wish to ignore any effects of using a finite-sized grain boundary system, and these

are most prominent at later times. The maximal energy Emax = 2.5× 10−3 is simply

chosen larger than any of the observations ∆F
(r)
j and W

(r)
j , i.e.,

Emax > max
j,r

∆F
(r)
j and Emax > max

j,r
∆F

(r)
j .

In Figure 5.10 we display the density estimators f̂∆F (e, t) and f̂W (e, t) computed

for different numbers of initial grain boundaries n = 215, 216, 217, 218. Each estimator is

generated from R = 1000 independent realizations of the 1D coarsening simulation.

At least to the eye, the densities appear similar. For each n, we compute the KL
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Figure 5.10. Density estimators (left) f̂∆F (e, t) and (right) f̂W (e, t) computed using
(5.59), n = 2x initial grain boundaries and R = 1000 realizations.
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Table 5.1. The global quantifier values (5.58) for density estimators f̂∆F (e, t) and

f̂W (e, t) for grain boundary systems with n initial grain boundaries. Here we observe
convergence as the number of initial grain boundaries n is increased, suggesting a
better statistical agreement between the energy dissipation samples and W2 distance
samples as n→∞.

n
∫
T

Φ(f̂∆F , f̂W )
∫
T
‖f̂∆F − f̂W‖2

L1(E)

215 0.045322 0.037916
216 0.023644 0.018025
217 0.014968 0.010740
218 0.009261 0.007013

divergence curve Φ(f̂∆F (·, t), f̂W (·, t)) and the L1 error curve ‖f̂∆F (·, t)−f̂W (·, t)‖2
L1(E).

Finally, we integrate the KL divergence and L1 error curves over the time interval T

to compute the global quantification values
∫
T

Φ(f̂∆F , f̂W )dt and
∫
T
‖f̂∆F − f̂W‖2

L1dt.

The results are displayed in Table 5.1. Here we notice a striking phenomenon: the

global values
∫
T

Φ(f̂∆F , f̂W )dt and
∫
T
‖f̂∆F − f̂W‖2

L1(E)dt exhibit convergence toward

zero as the number of initial grain boundaries n increases. Moreover, this convergence

is approximately linear in n. We summarize these findings in the following conjecture.

Conjecture 1 (W2 dissipation in a continuum limit) Recall n as the number

of initial grain boundaries and the energy×time window E×T = [0, Emax]×[Tmin, Tmax]

defined in Remark 13. Table 5.1 provides evidence of global convergence of f∆F (e, t)

to fW (e, t):

0 ≤ 1

2

∫

T

‖f∆F (·, t)− fW (·, t)‖2
L1(E)dt ≤

∫

T

Φ(f∆F (·, t), fW (·, t))dt n→∞−−−→ 0.

Note that in Conjecture 1 we have used the true densities f∆F (e, t) and fW (e, t)

since the estimators f̂∆F (e, t) and f̂W (e, t) can be made arbitrarily close to the true

densities by using sufficiently many realizations R while refining the energy×time

grid discretization (see, e.g., [15]).

We interpret Conjecture 1 and the observed convergence in KL divergence Φ as

follows. Assume the energy dissipated by the grain boundary system at time t is

distributed according to a density f(e, t; θ0) where θ0 is an unknown parameter, but

the form of the density is otherwise known. Minimizing the KL relative entropy
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min
θ

Φ(f(·, t; θ0), f(·, t; θ)) = min
θ

∫

E

f(e, t; θ0) log

(
f(e, t; θ0)

f(e, t; θ)

)
de

with respect to the parameter θ, is equivalent to finding the maximum likelihood

estimator θ̂ for θ0. That is, the parameter θ̂ that most accurately predicts the true

density based on observed data (see, e.g., [13]). If we think of θ as parameterizing

various dissipation mechanisms and their associated dynamics, a minimum of the

relative entropy characterizes the most likely dissipation mechanism and its asso-

ciated dynamics. Since zero is the unique global minimum of the relative entropy

Φ(f∆F (·, t), fW (·, t)), if Φ(f∆F (·, t), fW (·, t)) → 0 as n → ∞, the most likely dissipa-

tion mechanism for the GBCD will be W2 dissipation. Therefore, in a continuum

limit, Fokker-Planck dynamics would be the most likely description of the GBCD

evolution.

Another interpretation of Conjecture 1 follows from the observed convergence

in L1 of the probability densities f∆F (e, t) and fW (e, t). Owing to Scheffe [34],

convergence of densities in L1 implies convergence in distribution of the associated

random variables. We have observed evidence that the distribution of the energy

dissipation samples ∆F converges to the distribution of W2 distance samples W , in

a continuum limit n → ∞. This convergence would imply the energy dissipation of

the GBCD to be statistically equivalent to energy dissipation of the Fokker-Planck

solution (5.17), in the limit n→∞.

5.7 Conclusion

The empirical GBCD (5.4) harvested from the 1D coarsening simulation described

in §5.2 possesses many traits of the solution of the Fokker-Planck equation (5.17). In

this chapter, we have described and performed validation tests that support this claim.

We first estimated the diffusive coefficient σ and set time scales for the GBCD by ap-

pealing to the theory of Fokker-Planck solutions. This allowed us to directly compare

the GBCD with the corresponding Fokker-Planck solution where we found qualitative

agreement. We then studied W2 gradient flows and found a dissipation identity

the GBCD must satisfy if it indeed evolves according to the Fokker-Planck PDE.

We determined the GBCD approximately satisfies this identity both qualitatively
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and quantitatively. Moreover, we found as the number of initial grain boundaries n

increases, the GBCD satisfies this identity more accurately. We interpreted this as

indicating that the Fokker-Planck equation (5.17) is a more accurate model of the

GBCD evolution in a continuum or many particles limit.

Current work on this project has shifted toward analyzing the dissipative behavior

of GBCDs harvested from 2D simulations. The 2D simulation is outlined in [5, 17],

and in our work we use a modified code originally developed by E. Eggeling and S.

Ta’asan [17]. Although the simulation is two-dimensional, the harvested GBCD is still

a one-dimensional probability density (assuming there is no directional dependence

in growth), and so all of the analysis provided in this chapter can be applied. The

simulations are computationally expensive, and at this time only relatively small sim-

ulations are available (∼ 10, 000 initial grains). However, even GBCDs harvested from

these small-scale simulations exhibit similar qualitative behaviors as those harvested

from the 1D simulations. In Figure 5.11 we show results of the relative entropy

procedure (see §5.4.1) applied to GBCDs harvested from grain boundary systems

having 10, 000 and 20, 000 initial grains. Here we see qualitative agreement between

the final time GBCDs and the optimal Boltzmann distributions. We can also use

the energy dissipation estimate (5.54) for these GBCDs and we find it indeed holds

(approximately). We depict this estimate in Figure 5.12 for the two grain boundary

systems of 10, 000 and 20, 000 initial grains. These preliminary results again suggest

the Fokker-Planck equation may be a good approximation of the evolution of GBCDs

harvested from 2D simulations. However, the system sizes here are too small to

truly validate the Fokker-Planck model; thus, we hope to soon apply these validation

techniques to GBCDs harvested from much larger simulations.

In the near future, we hope to address time scalings (see §5.4.2) using other

methods, e.g., with dimensional analysis. We are also interested in studying the

case when grains grow in a preferred direction and the interfacial energy density ψ

depends on grain boundary orientation, i.e., ψ = ψ(α, θ) where n = (cos(θ), sin(θ)) is

the grain boundary normal direction. Extending the present theory and techniques

to this case is an important step since these energy densities are more representative

of the dynamics of true polycrystalline materials.
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Figure 5.11. Relative entropy results for a GBCD harvested from a 2D simulation
with (top) 10, 000 and (bottom) 20, 000 initial grains. The left column shows KL
relative entropy curves Φ(ρ, ρλ) for 30 trial values of λ ∈ [0.08, 0.2]. The right
column compares the final time GBCD ρ(α, tN) (blue) with the optimal Boltzmann
distribution ρσ(α) (red dashed). The optimal value is estimated as σ = 0.113 for both
n = 10, 000 (top) and n = 20, 000 (bottom).
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CHAPTER 6

CONCLUSION

6.1 Inverse Born series

In Chapter 2, we generalized the inverse Born series convergence and stability

proofs of Moskow and Schotland [10] to nonlinear mappings between Banach spaces.

This generalization allows for the inverse Born series machinery to be used in a

given physical setting by showing a single problem-specific bound. Moreover, this

generalization highlights the connection between inverse Born series and classical

Taylor and Neumann series. Indeed we find that for analytic functions, Born series

expansions and Taylor series expansions are equivalent up to a symmetrization. We

also discovered a new class of iterative methods, which we refer to as restarted inverse

Born series RIBS(k) since they are based on truncating and restarting inverse Born

series. These methods are closely related to well-known iterative methods based on

truncated Taylor expansions, e.g., the Gauss-Newton and Chebyshev-Halley methods.

In the future, we plan to study the RIBS(k) methods in more detail. At this point,

we have only proposed the methods and performed a simple numerical convergence

study. A rigorous convergence analysis needs to be carried out for the methods to be

used in practice. Furthermore, we currently only expect these methods to be locally

convergent owing to the local convergence of inverse Born series themselves. Thus,

we hope to pursue globalization strategies to extend the convergence regions of these

methods to arbitrary starting guesses.

Another interest we have is to characterize improvements that are made to a linear

model (i.e., Born series of order 1) by considering a k-linear model (i.e., Born series

of order k). In the linear case, i.e., when solving for h from d = a1(h) where a1 is a

linear mapping, it is well-known the SVD of a1 provides the most efficient basis to

represent h with. The best (linear) inversion we can hope for is the projection of h

onto the singular vectors with nonzero singular values (or above measurement noise
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thresholds). When considering a k-linear model, i.e.,
∑k

j=1 aj(h
⊗j) where aj are linear

mappings of the tensor products h⊗j, we may find a different or improved basis to

represent h with. This improved basis might be characterized by lifting the problem

to a higher dimension and considering bases of higher-order tensors.

6.2 Intensity-only imaging

In Chapter 3, we developed a novel method to image scatterers in a homogeneous

medium from intensity-only measurements. The method uses N point sources, a

single receiver and a specific illumination strategy of source pairs (i.e., sending the

same signal from two different locations simultaneously). With a smallness assump-

tion on scattered fields, we showed that a projection of full waveform data onto a

known subspace can be recovered by solving, in the least squares sense, a linear

system involving the intensity data measured at the receiver for multiple source

pair experiments. Using a stationary phase argument, we showed this imperfect

knowledge of the full waveform data does not affect Kirchhoff migration images in

a high frequency limit. Thus, the least squares solution of the linear system can be

used as input data for Kirchhoff migration.

In Chapter 4, we developed a similar imaging method for a setup consisting of N

receivers and a single point source. With a smallness assumption on the scattered

field, we again showed a projection of full waveform data can be recovered by solving,

in the least squares sense, a linear system that involves the intensity data measured

at the N receivers. In this case, the linear system is underdetermined of size N ×
2N , and has an N -dimensional nullspace that can be characterized in terms of the

incident wavefield. We showed this nullspace does not affect Kirchhoff images for high

frequencies, and thus, as before, we can use the least squares solution of the linear

system as input data to image with Kirchhoff migration. This generalization of our

previous work thus relaxes the illumination strategy from using source pairs to using

a single source. Moreover, the least squares solution has a simple expression in terms

of the incident field, and can be interpreted as a preprocessing step to use Kirchhoff

migration with intensity data (see also [7]).

We generalized each of our imaging methods to using stochastic illuminations with



158

autocorrelations measured at the receiver locations (instead of intensities). Since

correlations are robust with respect to measurement noise, we expect these methods

to perform well in situations having a low signal-to-noise ratio, e.g., nonintrusive

imaging when probing wavefields have the same magnitude as background ambient

noise.

In future work, we would like to apply similar imaging principles to different

physical problems. For example, optical stellar interferometry (see, e.g., [9, 11]) is an

inverse source problem (i.e., one wishes to determine the location and/or magnitude of

an unknown wave source), where measured data consists of correlations of intensity

measurements. In the frequency domain, these measurements are quartic in the

wavefield rather than quadratic as in the intensity-only case. Thus, we may be able

to image with a classic imaging functional (e.g., matched field) by also preprocessing

the intensity correlation data, but new machinery and analysis will likely need to be

developed.

6.3 Evolution of the GBCD

In Chapter 5, we provided numerical validations of an entropy-based theory for the

evolution of the GBCD first proposed and studied in [1, 2, 3, 6]. This theory suggests

the GBCD evolves according to a Fokker-Planck equation. Our first numerical valida-

tion was a repeat of the relative entropy procedure developed in [1, 2, 3, 4, 5, 6]. Here,

we compared the steady-state Fokker-Planck solution (a Boltzmann distribution) with

the GBCD harvested from the final time of simulation. We found, as did the original

authors [1, 2, 3, 4, 5, 6], a qualitative agreement between the two densities, giving a

first validation of their entropy-based theory. Next, we developed novel time-matching

procedures to assign Fokker-Planck times to the empirical GBCD. We then compared

the Fokker-Planck solution with the time-fitted GBCD at intermediate times. Here

we again found a qualitative agreement between the densities, a further validation of

the Fokker-Planck model of GBCD evolution.

Our final validation tool was derived by exploring the energy dissipation of W2

gradient flows. Here we found a free energy dissipation identity that must be satisfied

if the GBCD evolves as a Fokker-Planck solution. We determined the GBCD approx-
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imately satisfies this identity, again validating the Fokker-Planck model of GBCD

evolution. Moreover, by taking a statistical approach and sampling many realizations

of the GBCD, we found numerical evidence that the Fokker-Planck model of GBCD

evolution improves as the number of grain boundaries tends to infinity (i.e., in a

continuum limit).

Among our ideas for future work, we are most interested in applying our same

validation principles to GBCDs harvested from 2D simulations. In simulations where

the energy density ψ depends only on misorientations α and not on normal directions

θ, the harvested GBCDs are still one-dimensional and our validation principles can

still be applied. This could determine if the Fokker-Planck model accurately describes

GBCD evolution in this setting, and perhaps aid in development of a theory for

the evolution of such GBCDs. We also plan to investigate GBCDs harvested from

simulations having an energy density ψ that does depend on θ, since these are more

exemplary of those encountered in real materials. In these situations the harvested

GBCDs are two-dimensional, further complicating the analysis. Moreover, numeri-

cally computing W2 distances between multivariate densities is currently not possible

except for special cases (see [8, Section 5]). Since our energy dissipation principle relies

on such computations, perhaps an alternate energetic validation principle should be

considered for 2D GBCDs.

6.4 References

[1] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinder-
lehrer, R. Sharp, and S. Ta’asan, Critical events, entropy, and the grain
boundary character distribution, Phys. Rev. B, 83 (2011), p. 134117.

[2] , An entropy based theory of the grain boundary character distribution,
Discrete Contin. Dyn. Syst., 30 (2011), pp. 427–454.

[3] , A theory and challenges for coarsening in microstructure, in Analysis
and numerics of partial differential equations, vol. 4 of Springer INdAM Ser.,
Springer, Milan, 2013, pp. 193–220.

[4] , Materials microstructure: Entropy and curvature-driven coarsening, RIMS,
Research Institute for Mathematical Sciences, U. Kyoto, (2014), pp. 71–91.

[5] , Recent developments in material microstructure: a theory of coarsening, in
Symposium NN - Mathematical and Computational Aspects of Materials Science,
vol. 1753 of MRS Proceedings, 2015.



160

[6] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinder-
lehrer, and S. Ta’asan, Geometric growth and character development in large
metastable networks, Rend. Mat. Appl. (7), 29 (2009), pp. 65–81.

[7] Z. Chen and G. Huang, Phaseless imaging by reverse time migration: Acous-
tic waves, arXiv, (2015).

[8] D. Kinderlehrer and N. J. Walkington, Approximation of parabolic
equations using the Wasserstein metric, ESAIM: Mathematical Modelling and
Numerical Analysis, 33 (2010), pp. 837–852.

[9] A. Labeyrie, S. Lipson, and P. Nisenson, An Introduction to Optical Stellar
Interferometry, Cambridge University Press, 2006.

[10] S. Moskow and J. C. Schotland, Convergence and stability of the inverse
scattering series for diffuse waves, Inverse Problems, 24 (2008), p. 065005.
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