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ABSTRACT

T his d isserta tio n  solves th e  collision avoidance problem  for single- and  m ulti-robo t 

system s w here dynam ic effects are significant. In  m any robo tic  system s (e.g., highly m aneu­

verable and  agile unm anned  aerial vehicles) th e  dynam ics can n o t be ignored and  collision 

avoidance schemes based on k inem atic  m odels can result in collisions or provide lim ited 

perform ance, especially a t high op era tin g  speeds. H erein, real-tim e, m odel-based collision 

avoidance algorithm s th a t  explicitly  consider th e  ro b o ts ' dynam ics and  perform  real-tim e 

in p u t changes to  a lte r th e  tra je c to ry  and  steer th e  robo t away from  po ten tia l collisions 

are developed, im plem ented, and  verified in sim ulations and  physical experim ents. Such 

algorithm s are critica l in app lications w here a high degree of au tonom y and  perform ance 

are needed, for exam ple in robo t-assisted  first response w here aerial a n d /o r  m obile ground 

robo ts are required  to  m aneuver quickly th ro u g h  c lu tte red  and  dangerous environm ents in 

search of survivors. F irstly , th e  research ex tends reciprocal collision avoidance to  robots 

w ith  dynam ics by unifying previous approaches to  reciprocal collision avoidance u nder a 

single, generalized rep resen ta tio n  using contro l obstacles. In  fact, it is shown how velocity 

obstacles, acceleration  velocity obstacles, continuous contro l obstacles, and  linear q u ad ra tic  

regu la to r (L Q R )-obstacles are special instances of th e  generalized fram ew ork. F urtherm ore , 

an  ex tension  of control obstacles to  general reciprocal collision avoidance for nonlinear, 

nonhom ogeneous system s w here th e  robo ts m ay have different s ta te  spaces and  different 

nonlinear equations of m otion from  one an o th er is described. B o th  sim ulations and  physical 

experim ents are provided for a com bination  of differential-drive, differential-drive w ith  

a tra ile r, and  car-like robo ts to  d em o n stra te  th a t  th e  approach  is capable of le ttin g  a 

nonhom ogeneous g roup of robo ts w ith  nonlinear equations of m otion safely avoid collisions 

a t real-tim e co m p u ta tio n  ra tes. Secondly, th e  research develops a stochastic  collision 

avoidance algo rithm  for a te le-operated  unm anned  aerial vehicle (UAV) th a t  considers 

u n ce rta in ty  in th e  ro b o t's  dynam ics m odel and  th e  o b stac les ' position  as m easured from  

sensors. T he m odel-based au to m atic  collision avoidance a lgorithm  is im plem ented on 

a custom -designed q u ad co p te r UAV system  w ith  on-board  co m p u ta tio n  and  th e  sensor 

d a ta  are processed using a sp lit-and-m erge segm entation  a lgorithm  and  an  approx im ate



M inkowski difference. F ligh t te s ts  are conducted  to  validate  th e  a lg o rith m ’s capab ilities for 

providing te le-operated  collision-free operation . F inally, a set of hum an  sub ject stud ies are 

perform ed to  q u an tita tiv e ly  com pare th e  perform ance betw een th e  m odel-based algorithm , 

th e  basic risk field a lgorithm  (a varian t on p o ten tia l field), and  full m anual control. T he 

resu lts show th a t  th e  m odel-based a lgorithm  perform s significantly b e tte r  th a n  m anual 

control in b o th  th e  num ber of collisions and  th e  UAVs average speed, b o th  of w hich are 

ex trem ely  vital, for exam ple, for U A V -assisted search and  rescue applica tions. C om pared to  

th e  poten tial-field-based  algorithm , th e  m odel-based a lgorithm  allowed th e  p ilot to  o p era te  

th e  UAV w ith  higher average speeds.
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CHAPTER 1

INTRODUCTION  

1.1 Motivation and Research Focus
T he num ber of civil and  com m ercial applications for g round, w ater, and  aerial robo ts has 

grown significantly over th e  p ast few decades due to  advances in th e ir  hardw are , as well as 

th e ir  design, m anufactu ring , and  th e  developm ent of innovative algorithm s for artific ial in tel­

ligence and  autonom y. A pplications include m apping  [1], search and  rescue [2], [3], precision 

farm ing [4], space exp lo ra tion  [5], traffic m anagem ent [6], environm ental m onito ring  [7], and 

even en te rta in m en t [8]. D espite  recent advancem ents, one of th e  m ajo r challenges in mobile 

g round, w ater, and  aerial robo tic  system s is th e  ta sk  of avoiding collisions w ith  su rround ing  

obstacles as robo ts trave l and  navigate  th ro u g h  com plex and  u n s tru c tu red  environm ents. 

Therefore, reliable, robust, and  effective au to m atic  collision avoidance algorithm s are critica l 

in app lications w here a high degree of au tonom y and  perform ance are needed, for exam ple 

in robo t-assisted  first response w here aerial a n d /o r  m obile g round robo ts are required  to  

m aneuver quickly th ro u g h  c lu tte red  and  dangerous environm ents in search of survivors 

following a n a tu ra l d isaster. M otivated  by th is  need, th e  m ain  focus of th is  d isserta tio n  is 

solving th e  collision avoidance problem  for single- and  m ulti-robo t system s w here dynam ic 

effects are significant. In  fact, th e  dynam ic effects inheren t in highly m aneuverable and 

agile system s such as unm anned  aerial vehicles canno t be ignored w hen developing collision 

avoidance schemes. For instance, collision avoidance schemes based on kinem atic  m odels can 

resu lt in collisions or provide lim ited  perform ance, and  thus such system s ten d  to  o p era te  

m ore conservatively com pared  to  schemes th a t  consider th e  ro b o t’s dynam ics. Herein, 

real-tim e, m odel-based collision avoidance algorithm s th a t  explicitly  consider th e  ro b o ts ’ 

dynam ics and  perform  real-tim e in p u t changes to  a lte r th e  tra je c to ry  and  steer th e  robot 

away from  po ten tia l collisions are developed, im plem ented, and  verified in sim ulations and 

physical experim ents. D eveloping innovative collision avoidance algorithm s th a t  enable 

robo ts (including team s of robo ts) to  b e tte r  m aneuver th ro u g h  challenging te rra in  w ith  

g rea te r efficiency, speed, and  safety helps to  b roaden  th e ir app lica tion  space.
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Collision avoidance algorithm s can  typ ically  be classified as e ith er a global or a local 

m ethod . G lobal m ethods work on a knowledge of all th e  obstacles in th e  w orkspace 

and  typ ically  focus on optim izing  some crite rion  and  perform ing p a th  refinem ent [9]—[13]. 

O th e r m ethods perform  sam pling provided knowledge of th e  environm ent and  can  also 

perform  rap id  rep lann ing  in th e  presence of m oving obstacles [14]-[17]. Local m ethods 

are preferable in s itua tions w here th e  environm ent is no t well characterized  or known a 

priori, and  these algorithm s typ ically  ru n  in real-tim e and  avoid collisions w ith  respect 

to  a lim ited, local obstacle definition, e lim inating  th e  need for a global obstacle m ap  to  

be provided or estim ated . However, m any early  collision avoidance m ethods are developed 

u nder th e  assum ption  th a t  th e  ro b o ts ’ dynam ics can  be ignored [18]-[29]. This is no t a valid 

assum ption  for highly dynam ic robots, such as quadcop ters  or fixed-wing aircraft. W hen 

these robo ts are o p era ted  a t high speeds w here th e ir  dynam ic effects are no t negligible, th e  

collision avoidance m ethods can  still have collisions occur from  approx im ating  these robots 

as k inem atic  agents. To fully utilize these ro b o ts ’ capabilities, th e ir  dynam ics should be 

considered in avoiding collisions.

1.2 Research Objectives
T he outcom es of th is d isse rta tio n  will advance th e  sta te -o f-th e -a rt for local collision 

avoidance th ro u g h  th e  developm ent of local collision avoidance algorithm s th a t  inco rporate  

th e  ro b o ts ’ p o ten tia lly  nonlinear dynam ics and  perform  real-tim e in p u t changes to  a lte r 

th e  ro b o ts ’ tra jec to ries  to  avoid collisions. Specifically, a lgorithm s for b o th  m ulti- and 

single-robot system s are developed th ro u g h  th e  following objectives:

1.2.1 O b jective 1: E xten d  R eciprocal C ollision A voidan ce  
to  R ob ots w ith  D ynam ics

T his objective focuses on crea ting  a reciprocal collision avoidance a lgorithm  for nonho- 

m ogeneous system s of robo ts w ith  p o ten tia lly  nonlinear dynam ics [30]. T his objective was 

com pleted  by perform ing th ree  task s  th a t  are described as follows:

1.2.1.1 D evelop  control obstacles for linear, 
hom ogeneous system s

F irs t, C ontrol O bstacles for linear, hom ogeneous system s are developed. These system s 

have been used in previous reciprocal collision avoidance algorithm s. However, th e  previous 

m ethods avoid collisions by selecting a new to ta l re lative inpu t. C ontrol O bstacles are de­

veloped in te rm s of a change in relative inpu t. T his difference in th e  in p u t rep resen ta tio n  is
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significant for th e  generalization  of previous m ethods and  th e  extension to  nonhom ogeneous 

system s w ith  p o ten tia lly  nonlinear dynam ics.

1.2 .1 .2  G eneralize previous reciprocal collision  
avoidance algorithm s

T his ta sk  generalized previous reciprocal collision avoidance algorithm s by showing how 

th e ir  robo t m odels are represented  by C ontrol O bstacles. I t  is shown how velocity o b s ta ­

cles [20], acceleration  velocity obstacles [31], continuous control obstacles [32], and  linear 

q u ad ra tic  regu la to r (L Q R )-obstacles [33] are special instances of th e  generalized fram ework. 

T hese system s each use different m odels for th e  robo ts w ith  varying com plexities, ranging 

from  purely  k inem atic  to  general, linear dynam ics. All of th em  can  be represen ted  as 

C ontrol O bstacles w ith  th e  p ro p er selection of te rm s as shown.

1.2 .1 .3  E xten d  control obstacles to  nonlinear system s

T his ta sk  ex tended  C ontrol O bstacles for use w ith  nonhom ogeneous system s of robots 

w ith  possibly nonlinear dynam ics. B y  an  approx im ation  of th e  ro b o ts ' tra jec to ries  th ro u g h  

a first-o rder Taylor expansion ab o u t th e ir  cu rren t inpu ts, m ultip le  robo ts w ith  different, 

nonlinear dynam ics can  avoid collisions.

1.2.2 O b jective  2: D evelop  a Feedforw ard C ollision  A voidance  
A lgorith m  for a T ele-O perated  R ob ot

A feedforw ard (m odel-based) collision avoidance a lgorithm  th a t  perform s well in real­

tim e op era tio n  for te le-operation  by a hum an  o p era to r is developed [34]-[37]. T his ob jective 

is com pleted  by perform ing th ree  tasks th a t  are described as follows:

1.2.2.1 D evelop  stoch astic  collision  avoidance algorithm

T his ta sk  com pleted  th e  theo re tica l developm ent of th e  a lgorithm  for perform ing au to ­

m atic  collision avoidance for te le-operated  unm anned  aerial vehicles [34], [35]. T his algo­

rith m  explicitly  considers u n ce rta in ty  in th e  m otion  m odel of th e  robo t for th e  feedforw ard 

pred ic tion  of th e  tra je c to ry  as well as th e  u n ce rta in ty  in th e  location  of th e  obstacles.

1.2 .2 .2  Im p lem en t in real tim e w ith  onboard sensing

T he theo re tica l developm ents from  [34], [35] are  im plem ented on a custom -designed 

q u ad co p te r UAV system  w ith  on-board  co m p u ta tio n  and  sensing capab ilities [36]. Sensor 

d a ta  are processed using a sp lit-and-m erge segm entation  a lgorithm  w ith  an  approx im ate  

M inkowski difference. F ligh t te s ts  are conducted  to  validate  th e  a lg o rith m ’s capabilities.
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1.2 .2 .3  S tu d y  im pact o f collision  avoidance algorithm s  
on p ilot perform ance

T he final ta sk  presen ts a set of h u m an-sub jec t stud ies th a t  are  perform ed to  q u a n tita ­

tively  com pare th e  perform ance of pilots betw een th e  m odel-based a lgorithm  of O bj. 1.2.2 

and  th e  basic risk field (a varia tion  of th e  p o ten tia l field [24]) and  full m anual control [37]. 

T he hum an-sub jec t s tu d y  has been reviewed and  approved by th e  U niversity  of U tah  

In s titu tio n a l Review  B oard.

A dditional details  re la ted  to  th e  tw o objectives are presen ted  next.

1.3 Multirobot Systems: Reciprocal Collision Avoidance
W hen m ultip le  robo ts share a com m on w orkspace, collisions m ust be avoided betw een 

th e  robo ts as well as betw een th e  obstacles in th e  environm ent. E arly  approaches involved 

using algorithm s developed for single-robot collision avoidance w here each robo t assum es 

every o th er robo t is a passive obstacle  in th e  environm ent. However, such approaches can 

be insufficient w hen th e  robo t encounters o th e r robo ts th a t  also actively m ake decisions 

based on th e ir  surroundings: considering th em  as m oving obstacles overlooks th e  fact th a t  

th ey  react to  th e  robo t in th e  sam e way as th e  robo t reacts to  them , and  inheren tly  causes 

subop tim al and  oscillatory  m otion [38], [39].

T his has lead to  th e  developm ent of reciprocal collision avoidance techniques, which 

specifically account for th e  reactive n a tu re  of th e  o th er robo ts w ithou t relying on coord ina­

tion  or com m unication  am ong robots. T he earliest approaches were d irect extensions of Ve­

locity  O bstacles [20], in which each robo t is given half th e  responsib ility  of avoiding pairw ise 

collisions [39], [40]. Since th is  approach  only applies to  robo ts  w ith  very sim ple equations 

of m otion  th a t  allow th e  robo ts to  change th e ir  velocity instan taneously , m ost subsequent 

research on th e  top ic  has focused on ex tend ing  th e  approach  to  robo ts w ith  m ore com plex 

dynam ics constra in ts , such as differential-drive [41], [42], car-like [43], doub le-in teg rato r

[31], [44], arb itra ry -d eg ree  in teg ra to r [32], and  linear q u ad ra tic  regu la to r (L Q R )-controlled

[33] robo ts. A m ajo r lim ita tion  of these approaches, though , is th a t  all robo ts are assum ed 

to  have exactly  th e  sam e equations of m otion, i.e., th ey  app ly  to  homogeneous system s only. 

M oreover, in all of these approaches th e  assum ed equations of m otion  are linear, as these 

approaches rely on th e  ab ility  to  express th e  relative  m otion  of pairs of robo ts  in te rm s of th e  

relative  contro l in p u t (i.e., th e  difference betw een th e  contro l inpu ts) of th e  robo ts. Hence, 

th ey  do no t app ly  to  nonhom ogeneous or nonlinear system s, w here robo ts  have different 

a n d /o r  nonlinear equations of m otion, w hich lim its th e ir  app licab ility  on real-w orld robots. 

T he reciprocal collision avoidance a lgorithm  in th is  d isserta tio n  advances th e  previous work
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by developing C ontrol O bstacles for system s of robo ts  th a t  can  have different, po ten tia lly  

nonlinear dynam ics [30]. C ontrol O bstacles w ork in th e  space of changes in in p u t while 

Velocity O bstacles work in th e  space of abso lu te  velocities. T hese C ontrol O bstacles are 

shown to  be a generalization  of th e  previous reciprocal collision avoidance m ethods and  th e ir 

ex tension  to  nonlinear system s is shown in b o th  sim ulation  and  real-w orld experim ents.

1.4 Single-Robot Systems: Automatic Collision Avoidance 
for Teleoperation

In  th e  aforem entioned app lications such as search and  rescue or inspection  of hazardous 

locations, a p ilot or o p e ra to r of a robo t such as an  unm anned  aerial vehicle (UAV) m ust 

m ake high-level decisions ab o u t w here to  fly th e  vehicle in p o ten tia lly  unknow n indoor 

environm ents, and  sim ultaneously  ensure th a t  th e  vehicle does no t crash  in to  obstacles, 

walls, floors and  ceilings. UAVs can  be difficult to  fly even for tra in ed  operato rs , p a r tic ­

u larly  in indoor G PS-denied  environm ents w here th e  o p era to r m ust nav igate  w ith  lim ited 

in form ation, such as a live cam era-feed from  th e  vehicle.

To aid th e  hum an  o p era to r in such tasks, it would be beneficial to  inco rporate  an  

a lgorithm  th a t  lets th e  vehicle au to m atica lly  perform  collision avoidance, such th a t  th e  

o p era to r can  focus th e ir  a tte n tio n  on global decision m aking. W hereas collision avoidance 

system s such as those th a t  can  be found in m odern  autom obiles w arn  th e  d river or even 

override o p era to r control as a last resort [45]-[48], th is  d isse rta tio n  focuses on approaches 

designed specifically so th a t  th e  o p e ra to r can  rely on th e  collision avoidance system . O ur 

system  ensures th a t  collisions are avoided while m ain ta in ing  th e  objective of th e  o p era to r 

by continually  selecting a contro l in p u t th a t  is as close as possible to  th e  o p e ra to r’s control 

inpu t, resu lting  in an  in tu itive  control interface. T his is no t unlike th e  concept of v irtu a l 

fix tures [49] th a t  are com m only used in surgical robotics [50]-[54]. T his d isserta tio n  develops 

a feedforw ard collision avoidance a lgorithm  for a te le-operated  robo t [35]-[37]. G iven some 

desired in p u t, th e  p o ten tia lly  nonlinear dynam ics of th e  robo t can  be p ropagated  forw ard 

in tim e to  es tim ate  th e  tra jec to ry . If  a collision is p red ic ted  to  occur given th e  estim ated  

tra jec to ry , th e  u se r’s in p u t is u p d a ted  in real tim e to  avoid collision. T he a lgorithm  is 

developed to  consider b o th  th e  u n ce rta in ty  in th e  m otion m odel of th e  robo t and  th e  

u n ce rta in ty  in th e  sensing of th e  obstacles’ positions th ro u g h  a sim plified G aussian  repre­

sen ta tio n  [35]. T he approach  is validated  w ith  real-w orld im p lem entation  using on-board  

sensing and  co m p u ta tio n  [36]. S tudies are also perform ed in sim ulation  to  quan tify  how a 

p ilo t’s perform ance is im proved w hen using th e  a lgorithm  [37].
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1.5 Organization
T his d isse rta tio n  is organized as follows. C h ap te r 2 describes th e  work th a t  ex tends 

reciprocal collision avoidance to  robo ts w ith  dynam ics. C h ap te r 3 presen ts th e  theo re tical 

work for th e  stochastic  au to m atic  collision avoidance a lgorithm  for te le-operated  UAVs 

and  shows sim ulation results. C h ap te r 4 describes th e  real-tim e, on-board  im plem entation  

and  experim ental verification of th e  stochastic  au to m atic  collision avoidance algorithm  

for a custom -designed tele-operated  UAV. T he experim ental system  consists of on-board  

co m p u ta tio n  and  sensing, and  flight experim ents are presen ted  to  d em o n stra te  th e  p e r­

form ance of th e  algorithm . C h ap te r 5 deals w ith  hum an  sub ject stud ies to  determ ine 

q u an tita tiv e ly  th e  im pact on U AV -pilot perform ance w hen using th e  au to m atic  collision 

a lgorithm  com pared to  full m anual control and  a po ten tial-field-based m ethod . D iscussions 

and  fu tu re  considerations are presented  in C h ap te r 6 , and  finally conclusions are  presented 

in C h ap te r 7.
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CHAPTER 2

GENERALIZED RECIPROCAL 
COLLISION AVOIDANCE

T he work in th is ch ap te r com pletes O bjective 1 of th e  research and  it was published in 

th e  In terna tiona l Journa l o f Robotics Research  in 2015. T he p ap e r form alizes a generalized 

rep resen ta tio n  of reciprocal collision avoidance. Previously, reciprocal collision avoidance 

consisted  of m any approaches applied  to  specific equations of m otion for a given robot 

system . In  th is  paper, these  approaches are unified th ro u g h  C ontrol O bstacles. I t  is also 

shown how th is  approach  can  be ex tended  to  system s of robo ts  w ith  different, non-linear 

equations of m otion, w hich was previously no t possible. T h e  approach  is verified b o th  in 

sim ulations and  physical experim ents. T he rep rin t here is w ith  perm ission.

D. B areiss and  J . van den  Berg, “G eneralized R eciprocal Collision A voidance,” in In te rn a ­

tional Journal o f Robotics Research, 34(12):1501-1514, O ct. 2015.
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Abstract
Reciprocal collision avoidance has become a popular area of research over recent years. Approaches have been devel­
oped for a variety of dynamic systems ranging from single integrators to car-like, differential-drive, and arbitrary, linear 
equations of motion. In this paper, we present two contributions. First, we provide a unification of these previous 
approaches under a single, generalized representation using control obstacles. In particular, we show how velocity 
obstacles, acceleration velocity obstacles, continuous control obstacles, and LQR-obstacles are special instances of our 
generalized framework. Secondly, we present an extension of control obstacles to general reciprocal collision avoidance 
for non-linear, non-homogeneous systems where the robots may have different state spaces and different non-linear equa­
tions ofmotion from one another. Previous approaches to reciprocal collision avoidance could not be applied to such sys­
tems, as they use a relative formulation of the equations of motion and can, therefore, only apply to homogeneous, linear 
systems where all robots have the same linear equations of motion. Our approach allows for general mobile robots to 
independently select new control inputs while avoiding collisions with each other. We implemented our approach in simu­
lation for a variety of mobile robots with non-linear equations of motion: differential-drive, differential-drive with a trailer, 
car-like, and hovercrafts. We also performed physical experiments with a combination of differential-drive, differential- 
drive with a trailer, and car-like robots. Our results show that our approach is capable of letting a non-homogeneous 
group of robots with non-linear equations of motion safely avoid collisions at real-time computation rates.

Keywords
Collision avoidance, multi-robot system, decentralized control, mobile robot navigation, motion control

1. Introduction

Collision avoidance is a fundamental problem in robotics. 
The problem can generally be defined in the context of an 
autonomous mobile robot navigating in an environment 
with obstacles and/or other moving entities, where the robot 
employs a continuous sensing-control cycle. In each cycle, 
the robot must compute an action based on its local obser­
vations of the environment, such that it stays free of colli­
sions with the moving obstacles and the other robots, and 
progresses towards a goal. Many works in robotics have 
addressed the problem of collision avoidance with moving 
obstacles (Fox et al., 1997; Fiorini and Shiller, 1998; Hsu 
et al., 2002; Petti and Fraichard, 2005). Typically, these 
approaches predict where the moving obstacles might be in 
the future by extrapolating their observed trajectories, and 
let the robot avoid collisions accordingly. Velocity obstacles 
(VO) (Fiorini and Shiller, 1998) formalize this principle by 
characterizing the set of velocities for the robot that result 
in a collision at some future time. Continually selecting a 
velocity outside of this set will then guarantee collision-free 
navigation for the robot.

However, such approaches are insufficient when the 
robot encounters other robots that also actively make deci­
sions based on their surroundings: considering them as 
moving obstacles overlooks the fact that they react to the 
robot in the same way the robot reacts to them, and inher­
ently causes suboptimal and oscillatory motion (Kluge and 
Prassler, 2004; Van den Berg et al., 2008).

This has lead to the development of reciprocal collision 
avoidance techniques, which specifically account for the 
reactive nature of the other robots without relying on coor­
dination or communication among robots. The earliest 
approaches were direct extensions of VO, in which each 
robot is given half the responsibility of avoiding pairwise 
collisions (Van den Berg et al., 2008, 2009). Since this
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Table 1. Classification of reciprocal collision avoidance approaches.

Homogeneous Non-homogeneous

Linear VO/ORCA
AVO
CCO
LQR-obstacles

Control obstacles

Non-linear
Control obstacles 
Control obstacles Control obstacles

approach only applies to robots with very simple dynamics 
that allow the robots to change their velocity instanta­
neously, most subsequent research on the topic has focused 
on extending the approach to robots with more complex 
dynamic constraints, such as differential-drive (Alonso- 
Mora et al., 2010; Snape et al., 2010), car-like (Alonso- 
Mora et al., 2012), double-integrator (Lalish and 
Morgansen, 2012; Van den Berg et al., 2012), arbitrary 
integrator (Ruffli et al., 2013), and robots with linear quad­
ratic regulator (LQR) controllers (Bareiss and van den 
Berg, 2013). A major limitation of these approaches 
though is that all robots are assumed to have exactly the 
same equations of motion, in other words, they apply to 
homogeneous systems only Moreover, in all these 
approaches the assumed equations of motion are linear, as 
these approaches rely on the ability to express the relative 
motion of pairs of robots in terms of the relative control 
input (i.e. the difference between the control inputs) of the 
robots. Hence, they do not apply to non-homogeneous or 
non-linear systems, where robots have different and/or 
non-linear equations of motion, which limits their applic­
ability to real-world robots and in real-world applications.

In this paper, we address this shortcoming by presenting 
a new reciprocal collision avoidance method with two main 
contributions (see Table 1):

• First, we provide a unification of all previous 
approaches to reciprocal collision avoidance under a 
single, generalized representation using control obsta­
cles. We will show specifically that approaches such as 
VO (Fiorini and Shiller, 1998), acceleration velocity 
obstacles (AVO) (Van den Berg et al., 2012), continu­
ous control obstacles (CCO) (Ruffli et al., 2013), and 
LQR-obstacles (Bareiss and van den Berg, 2013) are 
each a special instance of our generalized framework. 
Moreover, we will show that our formulation is gener­
ally applicable to all homogeneous systems with linear 
equations of motion, and as such covers that entire 
class of systems.

• Second, we present an extension of control obstacles to 
reciprocal collision avoidance for general non-linear 
and/or non-homogeneous systems where the robots 
may have different state spaces and different non-linear 
equations of motion. No previous approaches to

The International Journal o f  Robotics Research 34(12)

reciprocal collision avoidance could be applied to these 
categories of systems, even though some previous work 
has shown how specific instances of non-linear systems 
can be turned into a linear system formulation to which 
one of the previous approaches could be applied (see 
the next section for a more thorough discussion).

We implemented our approach in simulation for a vari­
ety of mobile robots with non-linear equations of motion: 
differential-drive, differential-drive with a trailer, car-like, 
and hovercrafts. We also performed physical experiments 
with a combination of differential-drive, differential-drive 
with a trailer, and car-like robots. Our results show that our 
approach is capable of letting a non-homogeneous group of 
robots with non-linear equations of motion safely avoid col­
lisions at real-time computation rates.

The remainder of the paper is structured as follows. 
Section 2 reviews previous approaches to reciprocal colli­
sion avoidance. Section 3 formally defines the problem of 
reciprocal collision avoidance. Section 4 presents our gen­
eralized approach for homogeneous systems with linear 
equations of motion using control obstacles. Section 5 
shows how the previous reciprocal collision avoidance 
approaches can be represented in our generalized approach. 
In Section 6 we explore the potential of our approach to 
non-homogeneous systems with non-linear equations of 
motion. Section 7 presents our results and Section 8 sum­
marizes and concludes.

2. Previous work

One of the early developments in collision avoidance was 
the velocity obstacle (VO) (Fiorini and Shiller, 1998). The 
VO is defined as a cone in the velocity space based on rela­
tive positions and geometries which defines all relative 
velocities which will result in a collision. To avoid a colli­
sion, the robot needs to select a new velocity that lies out­
side the VO.

The approach of the VO was initially developed for a 
single active agent avoiding collisions with passive agents 
or moving obstacles. The approach was extended to per­
form reciprocal collision avoidance between two active 
agents in reciprocal velocity obstacles (RVO) (Van den 
Berg et al., 2008). In RVO, the concept of the VO is used 
but each robot must take half the responsibility to avoid 
collisions rather than the entire responsibility as in the VO 
algorithm. However, as the number of agents increases 
RVO tends to result in oscillatory motions. Optimal reci­
procal velocity obstacles (ORCA) (Van den Berg et al., 
2009) was developed to address this issue. In ORCA, the 
set of safe velocities is evenly divided between two robots 
by defining halfplanes of safe, possible velocities. These 
halfplanes are defined with respect to the VO and are the 
sets of individual velocities for two robots that result in 
relative velocities outside of the VO, thus avoiding colli­
sions. Each robot selects a new velocity from the set of
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safe, possible velocities that is as close as possible to a tar­
get velocity.

These algorithms all have the limitation that they are 
only guaranteed to provide safe, collision-free motion for 
robots with the linear equation of motion p = v where the 
position p defines the state and the velocity v defines the 
control input. This model is not practical for most real- 
world robots. Several extensions of these earlier 
approaches were introduced to address this issue and 
present reciprocal collision avoidance for more compli­
cated dynamics. AVO (Van den Berg et al., 2012) were 
defined for robots with states consisting of position and 
velocity x = [pTvT]T with acceleration control inputs u = 
k(vH — v) where k is some proportional gain, vH is some 
target velocity, and v is the current velocity. The 
approach in AVO was further generalized to apply to 
arbitrary-degree integrators through CCO by Ruffli et al. 
(2013). Further extension was provided by Bareiss and 
van den Berg (2013) for robots with arbitrary, homoge­
neous, linear equations of motion.

Table 1 summarizes the types of multi-robot system that 
have been considered in reciprocal collision avoidance 
based on a high-level categorization along two axes:

• Homogeneous versus non-homogeneous systems: 
Homogeneous teams of robots consist of robots that all 
have exactly the same state space and equations of 
motion, for example all robots are single-integrators 
with directly controllable velocity. Non-homogeneous 
teams of robots on the other hand may include robots 
with different state spaces and equations of motion, for 
example a single-integrator interacting with a double­
integrator (a robot with directly controllable 
acceleration).

• Linear versus non-linear equations of motion: For sys­
tems with linear equations of motion, the derivative of 
the state is a linear function of the state and the control 
input, as is the case with single and double integrators 
for example. Differential-drive and car-like robots are 
examples of systems with non-linear equations of 
motion.

It turns out that all existing approaches to reciprocal col­
lision avoidance are limited to specific instances of homo­
geneous systems with linear equations of motion, as these 
approaches are reliant upon the ability to express the equa­
tions of motion in terms of their current relative states and 
relative control inputs, which is generally not possible for 
non-homogeneous and/or non-linear systems. Our approach 
extends this previous work and is generally applicable 
across this two-dimensional spectrum.

There have been some developments for reciprocal col­
lision avoidance for non-linear equations of motion. 
Reciprocal collision avoidance for differential-drive robots 
was performed by Snape et al. (2010) where the center of

the robots was shifted and the bounding radius was 
increased in order to model the robots as holonomic with 
linear equations of motion. In Alonso-Mora et al. (2010), 
non-holonomic ORCA (NH-ORCA) was developed. NH- 
ORCA increases the radius of the robot based on the error 
in a tracking controller which allows non-holonomic robots 
to track holonomic trajectories as demonstrated for 
differential-drive robots. The NH-ORCA algorithm is 
applied to car-like robots by Alonso-Mora et al. (2012). In 
Van den Berg et al. (2012) it was shown how car-like 
robots can be represented as double integrators, to which 
AVO can be applied. These approaches all have in common 
that they transform specific instances of non-linear equa­
tions of motion into a linear formulation to which recipro­
cal collision avoidance can be applied. Our approach, in 
contrast, will apply directly to any general non-linear equa­
tions of motion.

Our work has some similarities to non-linear velocity 
obstacles (NLVO) (Shiller et al., 2001) and generalized 
velocity obstacles (GVO) (Wilkie et al., 2009). The NLVO 
algorithm expands the VO algorithm to allow for a robot 
with linear equations of motion to avoid collisions with 
passive obstacles moving with known, possibly non-linear 
trajectories. The self-motion velocity obstacle (SMVO) is 
another approach that utilizes the NLVO while considering 
more general robot trajectories (Shiller et al., 2008). The 
GVO algorithm does basically the opposite of the NLVO 
by defining a “control obstacle’’ for robots with non-linear 
equations of motion to avoid a passive obstacle moving 
along a linear trajectory. This approach samples the space 
of possible control inputs to determine if a collision will 
occur in the future. Neither of these approaches can be tri­
vially extended to reciprocal collision avoidance.

3. Problem statement

3.1. Notation

We use the following notational conventions in this paper. 
Vector sets A are denoted using calligraphics, vectors a are 
denoted using boldface, matrices A are denoted using 
upper-case italics, and scalars a are denoted by lower-case 
italics. Scalar and matrix multiplication, and Minkowski 
sums of sets, are defined as

aX = {ax|x eX}, AX  = {Ax|x eX}
X©Y = {x + y|x eX , y eY}

It follows that A©{a} denotes a translation of a set A 
by a vector a.

3.2. Problem setup

We consider multiple mobile robots sharing a common 
workspace where the robots have potentially different, non­
linear equations of motion and state spaces. Let the state
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space of robot i be X; C Rn;. Let Rd be the robots’ physi­
cal workspace, where d = 2 or d = 3 typically. We assume 
the position p; 2 Rd of robot i can be derived from its state 
x; 2 X, by some potentially non-linear projection function
q, 2 X; !  Rd:

P;(t) = qI(x;(t)) (1)

Let O; C Rd be the geometry of robot i relative to its 
position. We assume that the geometric shape of the robot 
is determined only by its position and not its orientation, in 
other words, it is rotationally invariant. More specifically, 
we consider the robot geometry as its bounding circle simi­
lar to the approach in the original VO (Fiorini and Shiller, 
1998). This is a reasonable assumption for most mobile 
robots that greatly simplifies the development of our 
approach. See Giese et al. (2014) for work specifically 
including the orientation dimension in reciprocal collision 
avoidance.

We further assume that the dimension of the control 
input is equal to the dimension of the workspace, where 
U; C Rd is the valid control input space, which is assumed 
to be convex. Let the continuous-time equation of motion 
for robot i be given by a potentially non-linear function 
f; 2 X; X  U; !  Rni:

X;(t) = f;(x;(t), U;(t)) (2)

where x,(t) is the state and u,(t) is the control input at time t 
for robot i. It is important to remember that X;, q;, and fi 
may be different for every robot i.

Given a current state xi = xi(0) of robot i and some con­
stant control input ui = ui(0), the state of the robot at a 
given time t > 0 is given by

X(t) = g;(t, XU UO (3)
where g; 2 R X  X; X  U; !  X,- is the solution to the differ­
ential equation of equation (2), which can be obtained 
numerically, for example through a Runge-Kutta 
integration.

3.3. Problem statement

The problem of reciprocal collision avoidance we are 
addressing can now be defined as having each robot i inde­
pendently compute a change Du; 2 U  ©{—u;} of its cur­
rent control input ui given the current states xj and control 
inputs Uj of all other robots j / i ,  such that the robots do not 
collide within a time horizon t .

8(j + i, 0 < t<T) :: (O; © {qI(gI(t, xu u; + Au))})n
(Oj ® {qj(gj(t, xj , uj + Duj))}) = ;

3.4. Challenges and assumptions

The challenge of reciprocal collision avoidance is that 
robot i does not know the change in control input Duj the

other robots are going to choose. Therefore, we rely on the 
assumption that all robots use the same algorithm in order 
to select their change of control input. In this paper we dis­
cuss the design of an algorithm to compute changes in con­
trol inputs such that collision avoidance is achieved. In 
doing so, we make the following assumptions.

(I) When computing a control input, we assume that it 
remains constant over finite time t  into the future. 
The actual sensing-action cycle is much shorter than 
t  and a new control input is computed in every 
sensing-action cycle.

(II) We assume that the robots can fully observe each oth­
er’s state and control input.

(III) We assume that the robots have the same type of con­
trol input, for example desired velocity, which is equal 
in dimension to the dimension of the workspace.

4. Generalized reciprocal collision avoidance 
for homogeneous, linear equations of motion

In this section we introduce the general concept of control 
obstacles that applies to general linear and homogeneous 
systems. The control obstacle generalizes all previous 
approaches on reciprocal collision avoidance, as we will 
show in Section 5. In Section 6 we present the extension to 
non-linear, non-homogeneous systems.

4.1. Control obstacles

In this section, we consider a system of robots that all have 
the same linear equations of motion, that is, a linear, homo­
geneous system. Equation (1) can be expressed for all 
robots i in a linear, homogeneous system as

P;(t) = q(x;(t)) = Cx;(t) + d (5)
where the matrix C 2 Rd X n and the vector d 2 Rd map a 
robot’s state to its position and are identical for all robots.

Let the state space X; = X C Rn be identical for all 
robots i. Equation (2) can be expressed for all robots i as

x,(t) = f(x,(t), u ;(t)) = Ax;(t) + Bu;(t) + C (6)

where A 2 Rn X n, B 2 Rn X d, and c 2 Rn
Given a current state xi = xi(0) and a constant control 

input ui = ui(0), solving the differential equation in equa­
tion (6) gives

x,(t) = g(t, x;, u) = F(t)x; + G(t)u; + h(t) (7)

where F(t) 2 R !  Rn X n, G(t) 2 R !  Rn X d, and 
h(t) 2 R !  Rn are identical for every robot and are given 
as

F(t) G(t) h(t) A B c
0 I 0 tpxe= 0 0 0
0 0 1 0 0 0
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Remember that for homogeneous systems with linear 
equations of motion, q, f, and g are the same for all robots. 
A unique property for these systems is that

g(t, xt, Ui) -  g(t, xj, Uj) = g(t, xt -  xj, Ui -  Uj)
= g(t, x j  uij) (9)
= F(t)xj + G(t)u,j + h(t)

where xij = xi — xj and uij = ui — uj are the relative initial 
states and relative control inputs, respectively. This prop­
erty has been exploited by all previous work on reciprocal 
collision avoidance. However, it does not hold for homoge­
neous systems with non-linear equations of motion, non- 
homogeneous systems with linear equations of motion, or 
non-homogeneous systems with non-linear equations of 
motion. We will discuss these cases in Section 6.

Substituting equation (7) into equation (5) for a given 
control input ui + Dui, where ui is the current control 
input and Dui is the change in control input, gives

Pi(t) = p(t, x,-, Ui) + J  (t)Dui (10)

where p(t, x,, u,) e Rd and J(t) e Rd x d are

p(t, x,, U,) = C(F(t)x, + G(t)Ui + h(t)) + d (11) 

J  (t) = CG(t) (12)

Given equation (10), we now define the control obstacle 
UO,j for a robot i avoiding collisions with robot j. In order 
for the robots to avoid collision, their relative position 
P j(t) = Pi(t) — Pj(t) must remain outside of the Minkowski 
sum of the robots’ geometries O,j = Oj © — Of.

Pj(t) 2 O,j (13)

Substituting equation (10) into equation (13) and solving 
for the relative change in control input Au,  gives

p(t, xj, Uj) + J(t)DUj 2 Oj ^  DUj 2 J(t) ^14
(O,j © {-^)(t, xj  U,j)})

Equation (14) represents a constraint on the change in 
relative control input Au,j such that robots i and j  do not 
collide at time t. We define the control obstacle as the union 
of equation (14) for all time t less than the time horizon t.

UOij = [  J(t)-I(Oi,■ ©{-^(t, x,j, Uj)}) (15)
0 < t<r

In other words, a collision will not occur between robot 
i and robot j  within t  time into the future when their rela­
tive change in control input Auij lies outside the control 
obstacle.

A Uj2UOj (16)

The geometry of UOij can be seen as a union of copies 
of the relative geometry Oij, each translated to 
—p(t, x,j, U,j), that is, the nominal trajectory of robot j

relative to robot i, and then transformed by J—1. If the geo­
metries of the robots are discs, UOij is hence a union of 
ellipsoids.

4.2. Avoiding collisions with passive robots

For a passive robot or environmental object, we can assume 
that Du,- = 0. That is, we assume the other robot does not 
change its control input. Avoiding collisions with that robot 
or object can then be performed simply by selecting a 
change in control input Aui outside the control obstacle.

AUi 2UOj (17)

For the case where it cannot be assumed that Auj = 0, 
in other words, both robots are actively avoiding collisions, 
reciprocal collision avoidance must be performed, which 
we discuss next.

4.3. Reciprocal collision avoidance using control 
obstacles

Equation (16) gives the constraint on the relative change in 
control input Auij for two robots to avoid collisions. When 
it cannot be assumed that Auj = 0, robot i has to consider 
the change in control input Auj robot j  is going to select in 
order for robot i to select a safe change in control input Aui 
for itself. The challenge is that Auj is unknown to robot i 
and the robots are not allowed to communicate. Hence, our 
approach is that robot i computes sets RCA,j and RCAj, of 
possible safe changes of control inputs for robot i and robot 
j , respectively, that satisfy the constraint

((RCA,j n U) ©-(RCAj,n Uj)) nuOy = 0 (18)

where U, = U, ©{—u,} is the set of feasible changes in 
control input for robot i given the control input constraints. 
If robot i selects a change in control input Au; from RCAj 
and robot j  selects a change in control input Auj from 
RCAj,-, which each satisfy their respective control input 
constraints, then it is guaranteed that Au,j 2 UO,j and the 
robots will not collide within t  time in the future. We will 
let robot i compute RCA,j and RCAj, in such a way that if 
robot j  were to apply the same algorithm to its situation, it 
would compute the same sets RCAj, and RCA,j. Robot i is 
then free to choose any change in control input from the 
set RCA,j to avoid collisions with robot j.

There are infinitely many pairs of sets of changes in 
control inputs RCA,j and RCAj, that satisfy equation (18). 
Therefore, we choose to find a pair of sets that divides the 
responsibility of avoiding collisions equally between both 
robots. Let us define a convex set C of safe relative changes 
in control inputs such that

(cnUj) nUOj = 0 (19)

where U,j = U © —Uj' represents the feasible relative 
changes in control inputs. Any relative change in control
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Fig. 1. On the left, a control obstacle UOj is given by its outline. The set of feasible relative changes in control input Ujj (i.e. those 
that adhere to the control input constraints) is shown as the light gray hexagon. The minimum change in relative control input required 
to avoid collision is shown as the vector w which defines the position of the halfspace C. The vector w is defined as the closest point 
to the origin outside the convex hull (dark gray region) of the intersection of the control obstacle and the feasible changes in control 
input UOj n Uj. Each robot constructs a set of safe changes in control input, RCAj for robot i and 'R.CAji for robot j, at w/2 and — w/ 
2 respectively as shown in the middle and right images.

input Au,j that does not violate control input constraints 
and that is within C, in other words any Duj 2 (C n Uj), 
will avoid collisions between robots i and j  within t  

time.
Since for convex sets it holds that X = — X  ® — X , the 

set C can be “halved” to determine sets of safe changes in 
control input for both robot i and robot j  as

RCAj = — C, RCAji = -  — C (20)

where the desire to divide the responsibility for collision 
avoidance equally between the two robots motivates halv­
ing of the set C for each robot. We will define the convex 
set C more concretely below, but if it satisfies the condition 
of equation (19), we can prove that our definition of RCAj 
and RCAji in equation (20) satisfies our constraint on 
RCAj and RCAji of equation (18):

((RCAj n U) ® -  (RCAji n Uj)) nUOj 

= ( ( 2 CnUi) ® - (~ 2 C n U j) )  nUOj 

-  ( ( — C®2 c) n (Ui®-Uj))  nUOj 

= (cnUj) nUOj 
= 0 (21)

where we use the fact that

(W n X) ® (y  n z ) = (w  ® Y) n (W ® Z)n 
(X ® y) n (X ® z ) 
-  (w  ® Y) n(X  ® z )

What remains is choosing the convex set C of safe rela­
tive changes in control inputs. Ideally C should be the larg­
est set of safe relative changes in control input, but such a 
set can be difficult to compute exactly. Therefore, we define 
C to be the halfspace tangent to the convex hull of the set of

feasible relative control inputs that will result in a collision, 
that is, CH(UOj n Uj), at the point w on the convex hull’s 
boundary closest to the origin:

w = argmin u (22)
ue3CH(MOj n«j)

c = f {u|(u -  w) • w > 0} if 0 2 CH(UOj n Uj) ^
\  {u|(u -  w) • w < 0} if 0 2 CH(UOj n Uj) ( )

where d refers to the boundary of a set. By construction, 
this definition of C satisfies equation (19).

This is illustrated in Figure 1. The set of feasible relative 
changes in control input Uj (i.e. those that adhere to control 
input constraints) is represented by the light gray hexagon. 
The dark gray region represents the convex hull of the inter­
section of the feasible relative changes in control input and 
the control obstacle, that is, CH(UOj n Uj). The set C is 
shown located tangent to this convex hull at the point clo­
sest to the origin. Placing the set C at the closest point to 
the origin represents the desire to keep the relative changes 
in control input as small as possible and, therefore, allow 
the robots to maintain their current, desired control input as 
closely as possible.

Since C is a halfspace, it follows that RCAj and RCAj; 
are halfspaces as well. If the robots are currently on a colli­
sion course, that is, Duj 2 UOj, the vector w represents the 
smallest relative change in control input required to avoid a 
collision. Given that the two robots share the responsibility 
for avoiding collisions equally, the sets RCAj and RCAj; 
are halfspaces located at — w and — — w from the origin of 
their respective control input spaces, as shown in Figure 1.

It is important to note that each robot i and j  can inde­
pendently compute their halfspaces RCAj and RCAji since 
the construction of the control obstacle from robot j 's per­
spective UOj results in the same sets RCAji and RCAj 
since UOj = —UOj.

If both robots desire to keep their changes in control 
inputs as small as possible while ensuring they avoid colli­
sions, each robot selects a change in control input as
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Fig. 2. A scenario for a group of seven robots avoiding 
collision. Robot 1 creates a safe set of changes in control inputs 
RCAij for every other robot j. The intersection of the union of 
these planes and the space of possible changes of control input 
Uij is shown as CA, which is the set of changes in control input 
that avoid collisions with every other robot while adhering to 
control input constraints.

Aumm = argmin 11 Dui 11 (24)
Au,eRCA,j

Given the symmetry of RCAij and RCAji, it follows that

Aumin = -  Aumin (25)

We use this observation later in the extension of the reci­
procal collision avoidance approach to non-linear systems.

4.4. Avoiding collisions with multiple robots

A control obstacle is defined for pairwise collision avoid­
ance but can easily be extended to more than two robots 
with an approach similar to Van den Berg et al. (2009). 
Each robot i creates a control obstacle and determines its 
set of safe potential changes in control input RCAij with 
respect to every other robot j, as in Figure 2. After consid­
ering every robot j, the change in control input for robot i 
is selected that is safe from all collisions:

Aui 2 Hi np |R C A j (26)
j+i

where Aui can be found with a convex optimization method 
in the d-dimensional space of control inputs similar to the 
method by Van den Berg et al. (2009).

Given a preferred change in control input, the convex 
optimization will result in a change in control input that is 
as close as possible to some preferred input while not vio­
lating equation (26). However, there can be cases in which 
the set of safe changes in control input may be empty, that 
is, n riĵ ,- RCAj = 0. When this occurs, a convex opti­
mization in a (d + 1)-dimensional space will select the 
change of control input that will least violate the con­
straints. See Van den Berg et al. (2009) for full details. 
This potentially results in a collision within t  time if the 
control inputs truly remain constant, but given that a new 
control input is selected in each sensing-action cycle, in 
practice this turns out to typically result in safe motion. 
However, the fact that collision avoidance can only be theo­
retically guaranteed in some cases remains a limitation of 
our approach.

5. Generalization of previous reciprocal 
collision avoidance approaches

Above, we have developed a method for reciprocal collision 
avoidance for a homogeneous system of multiple robots 
with general, linear equations of motion. We did so through 
a new method of control obstacles. Previous approaches of 
reciprocal collision avoidance can be shown to be special 
cases of control obstacles. As shown in the previous sec­
tions, the control obstacle is fully defined for a system if 
given A, B, and c from equation (6) and C and d from equa­
tion (5). We will now show how previous methods of reci­
procal collision avoidance can be represented as control 
obstacles using these terms.

5.1. VO

The VO algorithm assumes the robot’s equations of motion 
are a single integrator kinematic model:

P = v (27)

where x = p and X c  R2 is the space of positions, u = v 
and U c R 2 is the space of velocities. For equation 27 we 
find

A = 0, B = I , c = 0, C = I, d = 0

Solving equation (7) for these, we find

F(t) = I , G(t) = tl, h(t) = 0

When Oij is a circle or sphere, the control obstacle is 
equivalent to the VO translated by the negative of the cur­
rent relative input —v,j as in Figure 3. This discrepancy 
arises from control obstacles being developed based on 
changes in control input rather than the absolute control 
input.

5.2. AVO

The AVO algorithm is presented by Van den Berg et al. 
(2012) as an alternative to the VO. One of the major prob­
lems with the VO is the assumption that instantaneous 
changes in velocity are possible. However, as this is not the 
case for physical systems, the AVO algorithm was 
developed.

In AVO, the robots have four state variables (the two­
dimensional position and velocity) x 2 R4 and two control 
inputs (the two-dimensional acceleration) u 2 R2. The con­
trol inputs are driven by a proportional controller:

v = 1 (vH -  v) (28)

where vH is the desired velocity, v is the current velocity, 
and 8 is a controller parameter

Integrating equation (28) twice to obtain the system’s 
trajectory gives
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Fig. 3. Left: a pair of robots with equation of motion p = v where their current velocities will lead to a collision course with each other. 
Middle: an infinite time horizon control obstacle is given for the robot configuration on the left. As can be seen, the control obstacle 
contains the origin, meaning that the robots will indeed collide if they continue with their current control input. Right: the same control 
obstacle is shown, except now it is bounded by a finite time horizon t. This control obstacle is equivalent to the VO for the single­
integrator dynamics except it is shifted by the negative of the current relative velocity —vy. This discrepancy between the control 
obstacle and VO arises because the control obstacle is defined in terms of the change in velocity rather than the absolute velocity.

v(t) = vH -  e-t=d(vH -  v(0)) (29)

p(t) = p(0) -  8(e-‘=s -  1)v(0) + (t + 8(e-‘=s -  1)) vH

(30)

Hence, we can represent the AVO with a control obstacle
T  T  T  Hby choosing the state x = [p v ] , the control input u = v , 

and

c = 0
0 1 0

A = , B =0 - d|- .d i .

C = [i 0 ], d = 0

Solving equation (7), we find 

S(e-t=d -  1) G(t) = t + 8(e-t=s -  1) 
1 -  e-t=d

The state is x = [pTpT ... (p(n))T] and the control input 
is u = vH. Solving for the state equation gives

0 i 0 0

A =
0 0 i

, B =
0

0 -C;i .. .c1.

c = 0

C = [i 0 0 ], d = 0

5.4. LQR-obstacles

LQR-obstacles by Bareiss and van den Berg (2013) provide 
a method for reciprocal collision avoidance for homoge­
neous systems of robots with the same arbitrary linear equa­
tions of motion. The equations of motion of each robot are

F(t) = 1 

h(t) = 0

5.3. CCO

CCO (Ruffli et al., 2013) generalizes the previously men­
tioned AVO algorithm by defining the (n + 1)th derivative 
of position as the low-level control input where

p(n + l) = -  CBpW -  . . . -  C2p + C[(vH -  p) (31)

where the superscript (n) represents the nth derivative ofthe 
term and vH is the target velocity that is a high-level control 
input.

he low-level control input is an input given directly to 
the robot which determines the next state through the equa­
tions of motion. he high-level control input abstracts the 
low-level control input to velocity through a controller. his 
abstraction to velocity as a control input is common in reci­
procal collision avoidance and we discuss its use in our 
method in Section 6.1.

For example, controlling the jerk of a robot p(3) is shown 
in full in Ruffli et al. (2013).

X = A x + Bu + c (32)

An LQR controller is used to obtain the low-level input
from the high-level input v using the control law 

u = -  Lx + EvH + ' (33)

By substituting equation (33) into equation (32), the 
closed-loop equations of motion are given as

where

X = Ax + BvH + c

A = A -  BL, B = BE, c = S ' + c

(34)

(35)

Along with equation (34), the control obstacle is fully 
defined for a given C and d that extract the position from 
the state, similar to equation (5).

6. Non-homogeneous, non-linear equations 
of motion

he previous discussion defined a generalized method for 
reciprocal collision avoidance using control obstacles WOj 
for sets of robots with the same linear equations of motion. 
We present the extension of these methods for robots in
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non-homogeneous systems, that is, different types, with 
possibly non-linear equations of motion.

Given the equations of motion of robots i and j  (see 
equation (2)), we can approximate the relative position pij(t) 
given each robot’s current state xi and xj as well as constant 
control inputs ui and uj through a first-order Taylor approx­
imation about the current control input.

pIj (t)~qi[gi(t, ^  u )]-  qj[gj(t, xj , uj)]

+ ■9(qi°gi)
3ui (t, xi , Ui )AUi d(qj ° gj)

3U; (t, xj , Uj)Auj

(36)

In the spirit of equation (25), we make the assumption 
that Au,'Au,j/2 and Au, ' —Au,j/2 such that each robot is 
required to take half the responsibility for avoiding pairwise 
collisions. For this assumption to be realistic, we require 
that the control input of both robots be of the same ‘‘type’’, 
for example a desired velocity, which we will discuss in 
Section 6.1. We can then re-write equation (36) as

p,j(t)'p,j(t, xi, Ui, xj, Uj) + J j t ,  x,-, Ui, xj, Uj)Au,j (37) 

where

pIj(t, ^  ^  xj , j  = q, [gi(t, ^  ui) ] -  qj [gj(t, xj , uj)] (38)

r , , I f  3(q; »g,0, , 3(qj»gjO, ,
j  xi, ^  xj , <)= -  ( — ^ —  & xi, u0+ 3u xj , uj)

2 V 3u,

(39)

Given the definitions of equations (38) and (39), the 
control obstacle can be given similar to before as

UO,j = U  Ji/(t,x,,Ui,xj,Uj)-I(O,j© {-jt,x,,Ui,xj,Uj)})
0< t< t

(40)

The methods for performing reciprocal collision avoid­
ance with this new control obstacle formulation (equation 
(40)) are identical to those defined in Sections 4.3 and 4.4.

6.1. Higher-level control input

We have presented a method for reciprocal collision avoid­
ance for robots in non-homogeneous systems with general, 
non-linear equations of motion. In doing so, we have made 
three key assumptions, which are.

(I) The control input remains constant over finite time t ;

(II) The robots observe each other’s state and control 
input;

(III) The robots have the same type of input, equal in 
dimension to the workspace.

Many robots have control inputs which violate some or 
all of these assumptions. Let us consider a car-like robot 
with control inputs of acceleration at the rear axle and the

steering angle. It is not reasonable to assume that these 
remain constant for long periods of time as required by (I). 
Of course, it will not remain constant because it changes 
every sensing-action cycle, but at least we want the con­
stant assumption to give a reasonable estimate of the future 
motion of the other robots. For low-level control inputs that 
can change quickly (unlike a goal velocity), it cannot be 
assumed that a constant control input gives a reasonable 
estimate. It is also unreasonable to assume that these low- 
level control inputs can be observed by the other robots, 
violating (II). Performing reciprocal collision avoidance 
between a car-like robot and a differential-drive robot 
would violate (III).

For these reasons, we implement a controller which 
abstracts the low-level control inputs to a high-level control 
input, such as a target velocity, similar to Van den Berg 
et al. (2012), Bareiss and van den Berg (2013), and Ruffli 
et al. (2013). Abstracting to a high-level input makes the 
assumptions reasonable for most mobile robots. A target 
velocity typically remains approximately constant over long 
periods of time. A velocity is inherently equal to the dimen­
sion of the workspace. Lastly, it is reasonable to assume the 
current velocity of other robots can be observed, and it can 
be assumed the target velocity is approximately equal to 
the current velocity.

7. Results

We performed both simulations and physical experiments 
to verify the performance of the algorithm. In this section, 
we present the equations of motion for the robots used in 
the simulations and physical experiments as well as the 
result from those experiments. Each robot presented uses a 
controller to define a target velocity as a higher-level con­
trol input.

7.1. Robot dynamics

7.1.1. Dfferential-drive robot. We implemented a 
differential-drive robot in both simulation and experiments. 
We used the kinematic model with a three-dimensional 
state consisting of the two-dimensional position and the 
orientation (x, y, U). The low-level control inputs are the left 
and right wheel velocities (vr, vl). The equations of motion 
are given as

x = (vr + V;) cos (U) /  2 

j  = (Vr + V;) sin (U)/2 

U = (Vr -  v;)/'

(41)

(42)

(43)

where '  is the distance between the wheels.
The low-level control inputs vr and vl are abstracted to a 

high-level input vH through a controller where

Vr = ||v*|| + 'k (\vH -  U)/2 (44)
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Fig. 4. The configuration of a differential-drive robot pulling a 
trailer with the origin (x, y) considered to be the point of 
connection between the robot and the trailer.

Fig. 5. The model of the hovercraft-like robot implemented in 
simulation. The two thrusters are shown as fr and fl with the 
distance between them as £. The center position and orientation 
are shown.

v- = ||v*|| -  £k(Zv* -  U)/2 (45)

where Zv is the angle the target velocity makes with the 
positive x-axis and k is a controller gain. Substituting the 
new high-level control inputs from 
‘equations (44) and (45) into equations (41) to (43) gives

I cos(U),gty = ||vH|| sin(U),gtU = k(ZvH U)
(46)

7.1.2. Differential-drive with off-axle trailer. We imple­
mented a differential-drive robot pulling a trailer in both 
simulation and experiments. The equations of motion were 
adapted from Lee et al. (2004) which uses a car with an 
off-axle trailer. For the configuration given in Figure 4, the 
state is given as (x, y, u0, u1) and the equations of motion 
are given as

x = (vr + vi) cos (Uo)/2 + Uodo sin (Uo) (47 ) 

y = (vr + vi) sin (Uo)/2 -  Uodo cos (Uo) (48 ) 

Uo = (vr -  vi)/'o (49 )

vl- sin(Uo -  U—) -  Uodo cos (Uo -  U—)) /d—

(50

where d0, dj, and £0 are the parameters shown in Figure 4. 
We implemented a controller such that

vr + v- 
2 Uodo = k(Zv* -  Uo) (51)

which when substituting equation 51 into equations (47) to 
(50) gives

x = ||vH|| cos(Uo) + k(\vH -  Uo)sin(Uo) (52) 

y = ||vH|| sin(U—) -  k(Zv* -  Uo)cos(Uo) (53 ) 

Uo = k(\vH -  Uo)/do (54)

U — = (|vH| sin (Uo -  U—) -  k(\vH -  Uo)cos(Uo -  U—̂/d —
(55

7.1.3. Car-like robot. We implemented a car-like robot in 
simulation and physical experiments. We used a four­
dimensional state consisting of the two-dimensional posi­
tion, the orientation, and the speed (x, y, U, v). The low- 
level control inputs are the acceleration at the rear axle and 
the steering curvature (a, k) where equations of motion are 
defined at the midpoint by

x = v cos(U) -  £vk sin(U)/2 (56)

y = v sin(U) + £ v k  cos(U)/2 (57 )

U = v k  (58)

v= a (59)

where £ is the distance between the front and rear wheels.
Deriving the equations of motion in terms of the midpoint
of the robot, rather than at the midpoint along the rear axle
keeps the enclosing disc as small as possible.

We implemented a proportional controller to determine
the low-level control inputs in terms of the target velocity 
, rH .

i = ko(J|> v), k  = ̂ '(Zv* -  U)/v (60)

where k0 and k1 are proportional controller gains. 
Substituting equation 60 into equations (56) to (59) gives

x = v cos(U) -  k—(Zv* -  U)sin(U)/2 (61) 

y = v sin(U) + k—(Zv* -  U)cos(U)/2 (62) 

U = k— (Zv* -  U) (63 )

v = ko(J|> v) (64

7.1.4. Hovercraft. We implemented a simulated hovercraft- 
style robot with two thrusters as seen in Figure 5. The 
hovercraft's state is given as the two-dimensional position, 
the heading, the two-dimensional velocity, and the rate of 
change of the heading (x,y, xc,j>, U, U). Given the forces

*x = v

*v

★
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provided by thrusters (f, f), the midpoint equations of 
motion are given as

€ = ((f +fi) cos (U) -  btx:)/m (65)

€ = ((£■ + f ) sin (U) -  by)/m (66)

U = (fr - f ) '/2  -  brU)/i (67)

where m is the mass of the robot, i is the robot’s rotational 
inertia, bt is the translational friction coefficient, and br is 
the rotational friction coefficient.

Including a proportional-derivative controller to solve 
for control inputs as a function of the target velocity vH 
gives

(fr + f)  = k0m(||vH|| -  l|vk) (68)

(fr - f ) '/2  = k1i(\vH -  U) -  k2 U (69)

where k0 and k1 are controller gains, v = (x, j) is the velo­
city, and ZvH is the angle the target velocity makes with 
the x-axis. Substituting equations (68) and (69) into equa­
tions (65) to (67) gives

€ = k0(||vH|| -  ||v||)cos (U) -  btx/m (70) 

€ = k0(||vH|| -  ||v||)sin(0) -  bt__/m (71) 

€ = k1 (\vH -  U) -  (k2 + b-/i)U (72)

7.2. Simulation setup and implementation details

We performed simulations on a desktop machine running 
Windows 7 Professional 64-bit with an Intel i7-2600 CPU 
(3.40 GHz) and 8 GB RAM. The simulations were devel­
oped in a Visual Studio C + + environment. The fre­
quency of the sensing-action control sequence was 10 Hz. 
The equations of motion were discretized using Runge- 
Kutta integration at 0.1 s time-steps.

The relative geometry O j was approximated using a set 
of 16 points uniformly sampled around a circle of the 
robots’ combined radii. The control obstacle can then be 
approximated by performing the operations in equation 
(14) on the generated set of points for each time-step up to 
the time horizon t. The convex hull of the control obstacle 
was computed using the Boost library (Dawes et al., 2009). 
Upon determining the halfplanes, the RVO2-2D library 
(Van den Berg et al., 2009) was used to compute the new 
control input through a convex optimization method.

The differential-drive robots had bounding circle radii 
of 0.3 m. The car-like robots had radii of 0.45 m. The 
hovercraft robots had radii of 0.47 m. The differential-drive 
robots with trailers had radii of 0.45 m. The desired speed 
of the robots during the simulations was 0.3 m/s.

Unless otherwise noted, we used a time horizon of 
t  = 7 s during simulations. This value was determined 
experimentally. We found the selection of the time horizon 
to have a significant impact on the performance of our

Fig. 6. Simulations where five robots avoid collisions while 
crossing the workspace. Top left: differential-drive robots. Top 
right: car-like robots. Bottom left: hovercraft-like robots. Bottom 
right: differential-drive robots with off-axis trailers.

algorithm. Too short a time horizon can lead to a ‘‘late’ 
reaction from the robots. This can lead to situations where 
a rather large change in control input is necessary to avoid 
collisions. If this large input violates the control input con­
straints on the robot, the collision-avoiding input is not 
obtainable and a collision can occur. On the other hand, 
selecting t  to be too large has a negative effect as well. The 
halfplanes from equation (18) become more restrictive as t  
increases, possibly leading to no solution for equation (26). 
The time horizon is an empirical term that is situation- 
dependent, which is a limitation of our algorithm. We note 
that for the specific case of single integrator dynamics, Gal 
et al. (2009) have performed systematic analysis on the 
optimal value of the time horizon.

7.3. Simulation results

We performed a variety of simulations to validate our 
approach. One set of simulations consisted of groups of 
five robots, where each robot type was simulated separately 
as shown in Figure 6. We ran simulations with all the robot 
types included. One such simulation included two of each 
type, eight in total. A selection of screenshots is shown in 
Figure 7. We included a simulation where two groups of 
four tried to cross the workspace as shown in Figure 8. We 
also performed a simulation where a group of four passive 
robots cross the workspace in a vertical line while a group 
of four active robots cross in the opposite direction. The 
four passive robots do not update their control input based 
on the positions of the other robots. Selected screenshots 
of this are shown in Figure 9. We performed a simulation
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Fig. 7. A simulation that contains eight robots: two differential-drive (red discs), two differential-drives with trailers (red and white), 
two car-like robots (red rectangles), and two hovercrafts (yellow rectangles). They begin on a circle and cross the circle to finish on 
the side opposite their starting positions. Six screen shots from the simulation with the individual robot paths are shown.

•  «  •  •  

•  •  •  •

— •  * 0  ® ____

Fig. 8. Two groups of four robots crossing the workspace while 
avoiding collisions with each other.

with 100 robots moving from random starting positions to 
random goal positions. This simulation can be seen in the 
video found at http://arl.cs.utah.edu/research/grca/.

In physical experiments, it cannot be assumed that the 
robots can have perfect state estimation of the other robots. 
A series of simulations were performed to demonstrate our 
algorithm’s robustness in the presence of noise. A group of 
eight differential-drive robots were initialized in a circle 
and their goal was to cross to the antipodal position. In 
these simulations, we introduced artificial noise by adding 
a normal random variable to the position components of Xj 
in equation (14). Increasing the robot’s radius is a common 
practice in reciprocal collision avoidance methods, and 
therefore we increased our robots’ radii by 10% (0.03 m). 
Using a time horizon of t  = 5 s, no collisions were 
observed until the standard deviation of the sensed position 
was 0.07 m. We repeated the experiments with the radii

increased by 25% (0.075 m) and observed collisions at a 
standard deviation of 0.15 m. Similar simulations were run 
for the same scenario with two of each robot type (differen- 
tial-drive, differential-drive with a trailer, car-like, and 
hovercraft). In this case, the algorithm was less robust to 
noise with collisions resulting from standard deviations of 
0.02 m and 0.04 m for bounding radii increases of 10% 
and 25%, respectively. This is likely due to the more con­
strained input space Uy for the more complicated dynamics 
as well as our use of very simple controllers for complex 
equations of motion. These experiments, as we expected, 
suggest that for larger noise values a larger increase in the 
bounding circle can be used. However, too large a bound­
ing circle makes for extremely conservative actions which 
may be too limiting for a given robot’s control input 
constraints.

In order to quantify the speed of our algorithm, we cal­
culated the per-time-step-per-robot average computation 
time, that is, the time it takes for one robot to determine its 
set of safe changes in velocity with respect to every other 
robot in a single sensing-action cycle. As can be seen in 
Figure 10, this quantity is linear with respect to the number 
of robots, as expected. In simulation, we found that it is 
possible for over 100 non-homogeneous, non-linear robots 
to perform reciprocal collision avoidance at real-time com­
putational rates for a time horizon of t  = 20 s with a simu­
lation frequency of 10 Hz. At higher frequencies, for 
example, 20 Hz, the trends in Figure 10 would have a slope 
of twice that for 10 Hz, due to the doubled frequency dur­
ing the integration in equation (15). As can be seen, the 
computation time also shows a linear trend with the value

• © 
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Fig. 9. A case where two active car-like robots and two active hovercraft robots cross the workspace from right to left as four passive 
differential-drive robots cross from left to right. The paths the robots take are drawn and it can be seen that the car-like and hovercraft 
robots make the necessary adjustments to avoid collisions with each other and the differential-drive robots.

http://arl.cs.utah.edu/research/grca/
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Fig. 10. Timing calculations were made for a number of experiments shown above. The data and the first-order fit are shown. For a 
sensing-action cycle frequency of 10 Hz, a single time-step is 0.1 s and our algorithm can produce real-time results for over 100 robots.

Fig. 11. An image taken while performing the physical 
experiments of our reciprocal collision avoidance algorithm.

of the time horizon, as twice as large a time horizon results 
in twice as complex a control obstacle (at least in the way 
we implemented its construction).

7.4. Experiments

The physical experiments were performed using the Robot 
Operating System (ROS) software platform. A motion- 
capture environment was used to estimate the positions and 
orientations of the robots. Similar to the simulations, the 
control obstacles were approximated using sets of 16 points 
uniformly sampled around the robots’ bounding circles. 
While the state estimates of the robots are performed by 
the motion capture system, the algorithm is developed as a 
decentralized method where on-board state estimation 
could be implemented in the future.

For the experiments, we used six iRobot Creates. Three 
of the Creates were used as differential-drive robots, two 
were used to simulate car-like motion by restricting their 
minimum turning radius, and the sixth Create had a custom 
trailer mounted to it. The Creates have a radius of 0.335 m. 
The trailer axle is located 0.25 m behind the center of the 
Create. The robots were driven with a desired speed of
0.2 m/s. Their maximum speed possible is 0.5 m/s. The 
experiments were performed with a frequency of 50 Hz 
and a time horizon of 3.5 s.

Due to the stochastic nature of the experiments from 
modeling and sensor error, the robots' bounding circle was 
increased by 25%. Less accurate models or less accurate 
sensors could require a further increase in the radius. At 
times the robots can be seen moving back and forth 
between each other in a form of ‘‘reciprocal dance’ due to 
sensing noise. This phenomenon has been more thoroughly 
studied by Conroy et al. (2014).

During the experiments, we recorded the desired velo­
city before the control obstacles algorithm was performed 
as well as the collision-free target velocity resulting from 
the control obstacles. To further quantify the experimental 
results, we determined the Euclidean norm between the 
desired and the calculated target velocities, representing the 
change in input from the algorithm. From approximately 
5500 data points the mean and standard deviation of the set 
were found to be 0.0794 m/s and 0.128 m/s, respectively.

We ran experiments similar to the simulations with the 
robots crossing through the center of the workspace and 
avoiding collisions as shown in Figure 11. We also
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performed experiments of situations more applicable to 
real-world scenarios where the robots were divided into 
two groups crossing the workspace. Videos of the experi­
ments and simulations can be found at http://arl.cs.uta-
h.edu/research/grca/.

8. Conclusions

Previously, reciprocal collision avoidance has been applied 
to a variety of robotic systems with both linear and special 
cases of non-linear equations of motion. In these 
approaches, the fact that all the robots were the same type 
allowed for a relative state formulation to be used. 
However, for non-homogeneous systems, that is, systems 
of robots that are different types, this is not possible.

In this paper, we presented a unified method for recipro­
cal collision avoidance of non-homogeneous systems of 
robots with non-linear equations of motion. In order to do 
so, we presented the control obstacle for homogeneous sys­
tems of robots with linear equations of motion. We then 
showed how the control obstacle generalizes previous reci­
procal collision avoidance methods and provided examples 
of how previous methods fit into our framework. More spe­
cifically, we showed VO (Fiorini and Shiller, 1998), AVO 
(Van den Berg et al., 2012), CCO (Ruffli et al., 2013), and 
LQR-obstacles (Bareiss and van den Berg, 2013). Finally, 
we extended control obstacles for use with non-linear equa­
tions of motion and/or non-homogeneous systems. In our 
simulations and physical experiments, we saw that our algo­
rithm was able to provide smooth, collision-free motion for 
all robots in the environment.
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CHAPTER 3

STOCHASTIC AUTOMATIC COLLISION 
AVOIDANCE FOR TELE-OPERATED 

UNM ANNED AERIAL VEHICLES

T he work in th is ch ap te r addresses O bjective 2, Task 1, w here a s tochastic  (feedforward 

m odel-based) au to m atic  collision avoidance algo rithm  was developed and  applied to  te le ­

o p era ted  unm anned  aerial vehicles. T he theo re tica l and  sim ulation  resu lts were published 

in th e  IE E E /R S J  In t. Conf. on In te lligen t Robots and System s (IR O S)  in 2015 and  th e  full 

p ap e r is rep rin ted  here w ith  perm ission. M ore specifically, th e  p ap e r develops th e  m ethod  

to  avoid collisions in th e  presence of u n ce rta in ty  in th e  ro b o t’s m otion m odel as well as th e  

sensing of th e  obstacles’ position . T he a lgorithm  is s tud ied  in sim ulation w ith  varying levels 

of uncertain ty , quan tify ing  th e  tru e  p robab ility  of collisions using th is  a lgorithm  as well as 

com paring  th e  perform ance of th e  a lgorithm  to  a determ in istic  system .

D. B areiss, J. van den  Berg, and  K . K. Leang. “S tochastic  A u to m atic  Collision A voidance 

for T ele-O perated  U nm anned  Aerial Vehicles,” in IE E E /R S J  In t. Conf. on In telligen t 

Robots and System s, H am burg, G erm any, O ct. 2015, pp. 4818-4825.
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Abstract—This paper presents a stochastic approach for 
automatic collision avoidance for tele-operated unmanned aerial 
vehicles (UAVs). Collision detection and mitigation in the 
presence of uncertainty is an important problem to address 
because on-board sensing and state estimation uncertainties are 
inherent in real-world systems. A feedforward-based algorithm 
is described that continually extrapolates the future trajectory of 
the vehicle given the current operator control input for collision 
avoidance. If the predicted probability of a collision is greater 
than a user-defined confidence bound, the algorithm overrides 
the operator control input with the nearest, safe command 
signal to steer the robot away from obstacles, while maintaining 
user intent. The algorithm is implemented on a simulated 
quadrotor helicopter (quadcopter) with varying amounts of 
artificial uncertainty. Simulation results show that for a given 
confidence bound, the aerial robot is able to avoid collisions, 
even in a situation where the operator is deliberately attempting 
to crash the vehicle.

I. In t r o d u c t io n

The num ber o f  civil and com m ercial applications for 
unm anned aerial vehicles (UAVs) has risen trem endously 
over the past few decades. The applications include environ­
m ental control and m onitoring [1], 3D m apping [2], telecom ­
m unication [3], crop and aquaculture farm  m onitoring [4], 
unexploded ordnance detection [5], traffic m onitoring [6], 
and m edia resources [7]. Since many sm all to m edium  sized 
m ulti-rotor UAVs have the ability to access hard to reach in ­
door and outdoor locations or areas that are unfit for hum ans, 
they can be used for search and rescue, law  enforcem ent, 
or first responders to enhance situational aw areness [8], [9]. 
However, one o f  the m ost daunting tasks for even a  skilled 
UAV pilot is collision avoidance, especially in tight and 
com pact environm ents such as inside o f  a  partially collapsed 
building w here usually the only feedback is a  live-cam era 
feed. Thus, autom atic collision avoidance technology for tele­
operated UAVs is critical and necessary to allow pilots to 
focus on higher-priority tasks such as locating survivors.

In this paper, a  feedforw ard-based collision avoidance 
algorithm  that considers sensing and estim ation uncertainties 
while m aintaining the u se r's  intent is presented [see block 
diagram  in Fig. 1(b)]. Specifically, a  collision is avoided 
by exploiting the dynam ics o f  the robot and the m easured
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Fig. 1. Collision avoidance for tele-operated UAVs: (a) concept where UAV 
pilot controls the aircraft and provides a user input u. When a collision is 
detected, with on-board sensing and state estimation, the algorithm produces 
an input A u that augments the pilot’s input u to steer the robot away from 
the obstacle. (b) Control block diagram and (c) the collision avoidance block 
where the pilot’s input u is passed through the dynamics model to obtain 
the estimated trajectory p along with uncertainty in the motion model m. 
This trajectory is checked for collisions against the obstacles O including 
uncertainty w. If a collision is detected, the algorithm calculates a change 
in input A u to avoid collisions. If the input u +  A u is deemed safe, it is 
then passed to the robot.

relative distances betw een objects in the environm ent for 
autom atically determ ining control inputs to safely steer the 
UAV away from  obstacles [10]. To enable the use o f  UAVs in 
real-w orld applications, UAVs w ill need to be equipped with 
on-board sensors to m easure and/or estim ate the distance to 
nearby obstacles and m aintain an internal estim ate o f  their 
state [11]. However, w hen on-board sensing technology, such 
as light detection and ranging (LIDAR), is used  the uncer­
tainty in  the sensor’s output can significantly affect the per­
form ance o f  the collision avoidance algorithm . For example, 
the popular Hokuyo RG-04LX-UG 01 LIDAR range sensor 
m ost com m only used in  robotics for obstacle avoidance has 
an accuracy up to ± 3 %  o f  the m easurem ent. M easurem ent 
error com bined w ith uncertainty in state estim ation (due to 
the fact that a  m odel o f  the robot’s dynam ics are used) 
can lead to collisions. B ecause sensing and state estim ation 
uncertainties are inherent in  real-w orld applications, it is 
necessary to consider these uncertainties w hen developing 
collision avoidance algorithms.

The contribution o f  this w ork is a  feedforw ard-based colli­
sion avoidance algorithm  that explicitly considers uncertainty 
in the location o f  the obstacles and uncertainty in  the robot
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m odel [see collision avoidance b lock in  Fig. 1(c)]. In particu­
lar, the proposed m ethod estim ates the trajectory o f  the robot 
from  the current tim e into the future for som e predeterm ined 
am ount o f  tim e given the robot's dynam ics and the control 
input (from the operator). This trajectory is checked for any 
collisions w ith the obstacles in the environm ent given the 
uncertainty in the estim ated trajectory and the uncertainty in 
the obstacle location, w here an on-board LID A R sensor could 
be used  for obstacle detection. I f  the probability o f  a collision 
is found to be above some confidence bound, the algorithm  
determ ines a  new  control input that is as close as possible to 
the operator's original input w hile avoiding collisions through 
a  convex optim ization. The m inim al change in  the input 
allows the m ethod to m aintain the u se r's  intent as m uch as 
possible w hile avoiding collisions.

The feedforw ard-based algorithm  is im plem ented on a 
sim ulated quadrotor helicopter in a  variety o f  environm ents 
w ith different m agnitudes o f  artificial uncertainty added to 
the obstacle detection and trajectory estim ation. It is dem on­
strated in  sim ulation that the algorithm  provides collision-free 
m otion probabilistically given the confidence bound selected.

The rem ainder o f this paper is structured as follows. 
R elated w ork and com parisons o f  the proposed w ork w ith 
sim ilar techniques are discussed in  Sec. II. The problem  
is defined in  Sec. III, follow ed by a  detailed presentation 
o f  the stochastic collision avoidance algorithm  in Sec. IV. 
Sim ulation details, results, and discussion are presented in 
Sec. V. Finally, concluding rem arks and future w ork are 
presented in Sec. VI.

II. R e l a t e d  W o r k

C ollision avoidance is an im portant research topic in 
robotics, w here num erous approaches have been developed 
and applied to m anufacturing systems [12], m edical de­
vices [13], and m obile service robots [14]. Som e early 
m ethods include potential fields [15], [16], the dynam ic 
window approach [17], velocity obstacles [18], and vector 
field histogram s (VFH) [14].

In general, collision avoidance methods can be classified 
into one o f two m ain categories: global and local (reac­
tive methods). First, collisions betw een a  m obile robot and 
obstacles can be achieved through a  m otion planning algo­
rithm  [19]-[23] w hich typically assum es a priori inform ation 
about the environm ent. These m ethods search the robot’s 
possible trajectories for the best trajectory w ith respect to 
som e goal, typically choosing a  trajectory that m inim ize 
the uncertainty. These m ethods share the sim ilarity that 
they select a  trajectory and define the control inputs to 
control the robot optim ally along the selected trajectory. 
Often, global planners are com putationally expensive and 
inform ation about the environm ent is required.

A  second class o f collision avoidance algorithm s are local 
or reactive m ethods. These methods do not optim ize a  trajec­
tory, but rather they find a  change in  control input that will ap­
proxim ately avoid collisions given a  local know ledge (sensor

inform ation) o f  the obstacles. In many o f the reactive algo­
rithm s uncertainty is often handled by im proving sensory per­
ception [24], [25] or using relative sensing inform ation and 
developing control laws that guarantee separation betw een 
agents (and obstacles) in the presence o f  uncertainty [26]. 
A dditionally, algorithm s also approxim ate the noise by artifi­
cially increasing the size o f  the robot em pirically based on the 
uncertainty [27]. O ther techniques deal w ith state uncertainty 
by exploiting dynam ic program m ing [28].

Integrated global and local planners have been explored, 
w here proposed algorithm s use a  predicted trajectory to avoid 
collisions w ith the observable, local obstacle [18]. Typically, 
these algorithm s avoid collisions by com puting a  given 
change in input for a  current sensing-action cycle, but lim ited 
w ork has explicitly considered uncertainty and those that do 
typically add a  buffer or safety zone around the robot [24 ]- 
[27] . The approach in this paper also exploits both global and 
local inform ation, but considers explicitly the uncertainty in 
the estim ation and m easurem ent process. By using a  feedfor­
ward prediction o f  the flight path and com puting the expected 
robot position along the trajectory, the proposed m ethod 
can perform  a  less approxim ate consideration o f  noise than 
increasing the radius o f the robot arbitrarily as in reactive 
planners, but less exact than a  full trajectory optim ization 
o f the global planners. This results in an approxim ate, but 
reliable and robust m ethod that can operate in  real-tim e to 
assist UAV pilots w ith collision avoidance.

III. P r o b l e m  F o r m u l a t io n

A. Notation

In the follow ing, vector sets are denoted using calligraph- 
ics, for exam ple A . Vectors are represented by boldface 
fonts, such as a ; m atrices are denoted by upper case italics, 
for exam ple A; and scalars are represented by lower-case 
italics, such as a. Scalar and m atrix m ultiplications, and 
M inkowski sums o f  sets are defined as a B  =  { a b  | b  e  B }, 
A B  =  {A b  | b  e B } ,  A ® B  =  { a  +  b  | a  e  A ,  b  e  B} .

A vector a  sam pled from  a  m ultivariate norm al distri­
bution w ith m ean n  and variance S , w here S  is positive- 
semidefinite, is denoted by a  ~  N ( ^ ,  S ) .

B. System equations, uncertainty, workspace, and  obstacles

Consider a  robot w ith general, nonlinear equations of 
m otion and a  state space o f arbitrary dim ension m . Let 
X  c  R m be the state space o f  the robot and let U  c  R "  be 
the control input space o f  the robot. Let the continuous-tim e 
equations o f m otion o f  the robot be defined by the function 
f  e X x U ^  R m ,

X(t) =  f  ( x ( t ) ,  u ( t ) )  +  m , m  ( 0 , M ), (1)

w here x ( t)  e  X  and u ( t )  e  U  are the state and control input 
at tim e t , respectively. It is assum ed that the m otion o f  the 
robot is corrupted by zero-m ean G aussian noise m  e  R m 
with a  given covariance M  e  R m x m , w here M  is positive 
semi-definite.
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For a  given input u , the predicted state x.(t) follows

x ( t )  =  f(X , u , t ) .  (2)

Given an initial state x  =  x (0 ), X =  X (0), and a  constant 
input u , the state o f the robot for t  > 0 is defined by

x ( t )  - N ( x ( t ) , P ( t ) ) ,  (3)

w here x ( t )  =  g (x , u , t) is the expected state at tim e t , g  e  
X  x U  x  R  ^  X  represents the solution to f  in  Eq. (1)). 
P (t ) is the uncertainty o f the state, defined as

P ( t )  =  E  [(x( t )  -  x ( t ) ) (x ( t )  -  x ( t ) ) T ] . (4)

The uncertainty at tim e t, Eq. (4), is found by solving the 
follow ing differential equation:

P ( t )  =  A ( t ) P  (t) +  P  ( t ) A ( t ) T  +  M ,  (5)

where

A ( t )  =  d x ( x ( t ) ’ u ( t ) ) . (6)

Let R d be the w orkspace in w hich the robot m aneuvers, 
w here typically d <  3, and let O  c  R d define the subset o f  
the w orkspace occupied by obstacles. In order to m aintain 
com patibility with the im plem entation o f on-board sensing, 
those regions o f the w orkspace that are occluded by the 
obstacles as seen from  the current state o f  the robot are 
also considered obstacles. In  o ther words, the subspace o f  
the w orkspace that cannot be seen by the robot is also an 
obstacle. The obstacles ' positions can be defined relative 
to the robot's position including uncertainty with known 
variance Z  e  R dxd

n
O  =  Oi  ® {w }, w  — N ( 0 , Z ), (7)

i=1

w here O i represents individual objects in  the environm ent 
that are considered obstacles and w  is draw n from  a  zero- 
m ean norm al distribution with variance Z . The relative 
obstacle paradigm  provides the benefit o f  elim inating the 
need for the robot to m aintain an estim ate o f  its position 
over time.

Let R ( x )  c  R d denote the subset o f the workspace 
occupied by the robot when it is in state x  e  X . Then, a 
colliding state is defined as

R ( x ( t ) )  n O  =  0. (8)

C. Problem  Definition

The problem  is defined as finding a  m inim al change 
A u  e  U  to the control input u  e U  given the initial state 
x  e  X  o f  the robot to avoid collisions w ith obstacles w ithin 
a  tim e horizon t . The probability that the robot w ill collide 
with an obstacle given the variance in  the state estim ate and 
obstacle location m ust be  less than a  predeterm ined value p  
for all tim e less than the tim e horizon t  e  R, hence

m inim ize: A u T R A u  (9)

subject to: p  (Vt e  [0, t ] :: R ( x ( t ) )  n  O  =  0 | P( t ) ,  Z ) < p,

w here R  e  R nxn  is a  positive-definite w eight m atrix, P( t )  
is the variance in  the forw ard prediction o f  the state, and Z  
is the variance in the obstacle location.

IV. A S t o c h a s t ic  A p p r o a c h  t o  C o l l is io n  
Av o id a n c e

A. Approach

in  the follow ing, a  feedforw ard approach is presented for 
collision avoidance [see b lock diagram  in  Fig. 1(b)]. First, the 
follow ing assum ptions are m ade to simply the nonlinear, non- 
convex optim ization problem  for real-tim e im plem entation.

A ssu m p tio n  1. The robot’s position  p  e  R d can be derived  
fro m  the state through a projection

p ( t )  =  C x ( t ) ,  (10)

where C  e  R dxm .

A ssu m p tio n  2. The geom etry o f  the robot R  is defined as the 
sm allest enclosing sphere centered a t its reference po in t such  
that the geom etry is rotationally invariant. L et R ( p )  c  R d 
be the spherical subset o f  the workspace occupied by the 
robot a t position  p .

A ssu m p tio n  3. The robot’s trajectory can be represented 
through a first-order Taylor expansion, i.e.,

p ( t ,  A u )  ~  p*( t )  +  J ( t ) A u ,  (11)

where

p * (t)  =  C g ( x ,  u , t ) ,  J ( t )  =  C ^ g ( x ,  u , t ) .  (12)

A ssu m p tio n  4. I f  the robot is collision-free at tim e t  w ith  
respect to an appropriately chosen convex subset o f  the free  
workspace, then it is assum ed that the robot is also collision- 
free  fo r  all time t  e  [0, t ]. This is reasonable fo r  relatively 
short time horizons t .

G iven the robot's current state x  and the current control 
input u  (from the operator), the estim ated positions o f  the 
robot in the future are found by Eq. (11). The variance on 
the predicted state was given in Eq. (4).

From  A ssum ption 1, the m apping from  the robot’s state to 
its position also defines the variance on the robot’s position,
i.e.,

Pc(t)  =  C P  ( t ) C T . (13)

From  A ssum ption 4, w hen there is uncertainty in  both 
the obstacle location and the robot’s estim ated trajectory, a 
probability for a  collision m ust be considered rather than 
a  determ inistic collision or collision-free state. Thus, given 
independent Gaussian distributions representing the uncer­
tainty in the trajectory estim ation and the obstacle location, 
respectively, the probability for a  collision is non-zero if

N ( p ^ ( t ) , P c(T) +  Z ) n O  =  0. (14)

The robot is considered to be collision-free (probabilistically) 
i f  for all tim e t  e  [0, t ] the probability for a  collision to occur
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Pc =  p*(tc) ,

one-dim ensional (along the norm al n )  Gaussian distribution 
centered at p c ,

N ( p * ( t ), (P c(T ) +  Z ) )  *  N ( P * ( t ), n T (Pc(T ) +  Z ) n ) .
(18)

Using this approxim ate representation o f  the uncertainty, 
the probability o f  avoiding collision can now  be  represented 
very simply by the num ber o f  standard deviations for a 
desired confidence bound.

Equation (15), given this approxim ate representation o f  the 
uncertainty, is now  redefined such that the robot is considered 
to be collision-free for all tim e t  e  [0 ,t]  if

y t  e  [0 ,t]  :: R ( p * ( t) )  n  (O  © { a n } )  =  0, (19)

Fig. 2. Shown is a scenario where a quadrotor helicopter has uncertainty 
in both its trajectory estimation and the obstacle location. The a priori 
variance P c ( t ) +  Z  for a given obstacle normal n is represented as 
nT (P c ( t ) +  Z)n. The collision point pc is defined as the point along 
the trajectory where this transformed variance is some distance from the 
obstacle based on the selected confidence bound p. The halfspace is defined 
such that nTP ( t ,  Au) > c where c =  nTpc.

is less than the confidence bound p  given the distributions o f  
the position estim ate and obstacle locations, i.e.,

p ( ( R ( p ( T )) n O  =  0) I ( N ( P * ( t ) , P c ( T ) +  Z ) n O  =  0))

< P- (15)

For a  trajectory that is determ ined to be collision free, the 
current operator’s input u  is deem ed safe and does not need 
to be changed, hence A u  =  0. Conversely, i f  the probability 
for a  collision is greater than the bound p  then the operator’s 
input is unsafe and m ust be  corrected in  order for the robot 
to obtain a  collision-free trajectory, hence A u  =  0.

Let p c be defined as the first point along the trajectory that 
has a  probability o f  colliding w ith an obstacle greater than 
the confidence bound, thus

w here a  is the distance calculated from  the standard deviation 
and selected confidence bound p  w here

' ( V P c(t ) +  Z j  n , (20)

w here a is a  scaling factor that corresponds to a  Chi-Squared 
distribution for the given confidence bound p.

Equations (16) and (17) can now be approxim ated by the 
follow ing simplified expression:

pc =  p* ( a rg m in { R (p *(t))  n  ( O © { a n } )  =  0 M  , (21)
V te[0,T] J

w here if  the system has no uncertainty a  =  0, then Eqs. (19) 
and (21) are equivalent to the determ inistic solution in  [10].

Next, given Eqs. (16) and (19), a  linear constraint is 
defined on the position p ( t ,  A u )  o f the robot at tim e t  (see
Fig. 2)

n T p (t , A u )  >  n T p c. (22)

(16)

w here

t c =  a rg m in {
te[0,T]

p ( ( R ( p ( t ) )  n O  =  0) I ( N ( p *(t ) , P c(t ) +  Z ) n O  =  0))

> p } -  (17)

The probabilities in  Eqs. (15) and (17) can be  difficult to 
com pute exactly. A pproxim ating the solution is desirable to 
m ake the algorithm  tractable for real-tim e im plem entation.

Given a  unit norm al vector n  o f  the obstacle O  that points 
into the free workspace, consider a  halfspace w ith the same 
norm al n  (pointing toward the free space) that provides a 
convex approxim ation o f  the local free space. The halfspace 
is located at the collision point p c, determ ined by Eq. (17).

Given the local approxim ation o f  the free space provided 
by the halfplane, the uncertainty can be m apped into the 
halfspace by transform ing the m ultivariate distribution into a

Substituting Eq. (11) from  A ssum ption 3, the constraint 
on the robot’s position in  Eq. (22) can be transform ed into a 
constraint on its change in input A u

n T J ( t )A u  >  n T (pc  -  p * ( t )).  (23)

Equation (9) is approxim ated using Eq. (23) as

minim ize: A u T R A u  (24)

subject to: n T J ( t )A u  >  n T ( p c -  p * ( t )),

w here solving this convex optim ization, such as is done by 
the RVO library in  [29], provides a  collision free change in 
input A u  with the control input given to the robot as u + A u .

B. Handling Convex Edges and Corners Through Iteration

The use o f  an approxim ation o f  a  convex region o f the local 
free space near the robot’s trajectory m eans that it cannot be 
assum ed that the newly selected control input u  +  A u  avoids 
collisions w ith respect to all obstacles for all tim e t  e  [0, t ]. 
This is, in  particular, true near convex edges or corners o f 
the w orkspace as shown in  Fig. 3. However, the approach 
can simply be repeated in an iterative fashion to solve this 
problem.
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Fig. 3. The iterative process of the algorithm is shown. A trajectory is 
estimated from the original operator’s input such that A u =  0 and is shown 
as p (r, 0). The variance on this estimated position is shown as the gray 
ellipsoid located at p(r, 0). Considering this uncertainty, a new input is 
determined u +  A ui to avoid the first detected collision. The trajectory for 
the new input is predicted and is shown with its variance at p (r, A ui). 
This also results in a collision and the algorithm computes a new change 
in input A u 2 . The resulting trajectory p (r, A u 2 ) is collision free and the 
input u +  A u 2 is passed to the robot.

Assum e the algorithm  has com puted a  change in control 
input according to Eq. (9) and that it is the first iteration 
o f  the algorithm . Continuing to iteration i, the control input 
u  +  A u* is used to extrapolate the trajectory and check for 
a  potential collision. If  a  collision is found to occur, a  new 
linear constraint is defined as

where

a T A u  >  bi

' =  n T  J i ( r ),

bi =  n T (pc,i  -  P i ( r )).

(25)

(26) 

(27)

The convex optim ization problem  in Eq. (24) can now be 
solved for all iterations i by the follow ing:

m inim ize: A u T R A u  (28)

subject to: f '\ij= 1{a'TA u  > bj }.

Every i th iteration o f  the algorithm  introduces an addi­
tional constraint to the convex optim ization problem. A fter 
at m ost d  iterations, the control input u  +  A u , w here A u  is 
the change in control input com puted in the latest iteration, 
is then applied to the robot. The num ber o f  iterations, and 
therefore, the num ber o f  constraints is m axim ized at d , 
w here d  is the dim ension o f  the workspace. This upper lim it 
accounts for corners o f the free space in  d  dim ensions as 
shown in  Fig. 3. This iterative approach is perform ed during 
every sensing-action cycle o f  the robot.

This iterative approach aligns w ith the LP-type algorithm  
in  [30]. The LP-algorithm  solves low -dim ensional convex 
optim ization problem s in O(i )  expected tim e by considering 
the constraints in an iterative fashion, w here i is the num ber 
o f  constraints. The dim ension o f  the optim ization problem  
in  this paper equals the dim ension n  o f  the control input

A u , which, typically, is equal to the dim ension d  o f  the 
workspace. M axim izing the num ber o f  iterations to d ensures 
the convex optim ization problem  rem ains feasible.

V. S im u l a t io n : R es u l t s  a n d  D is c u s s io n

The proposed approach is im plem ented in sim ulation on 
a  quadrotor helicopter. Results and discussion are presented 
below.

A. Im plem entation D etails

All com putations were perform ed on a  desktop com puter 
w ith an Intel Core i7-4790K , 8GB RAM , and the 64-bit 
Ubuntu 12.04 operating system. The algorithm  was im ple­
m ented within the R obot opera tin g  System  (R oS ) fram ew ork 
[31]. The sim ulations used a  control cycle frequency of 
50 Hz. The VRep sim ulator from  Coppelia Robotics [32] 
was used to sim ulate the behavior o f  the quadcopter. The 
quadcopter was controlled through the use o f  the V-Rep 
R o S  plugin that allows com m unication betw een a  running 
R o S  node and the simulator. The V-Rep sim ulator sends the 
position o f  the robot into R o S  while the R o S  node sends the 
control input to be applied to the robot.

The obstacles in  the environm ent are predefined for each 
sim ulation scene and represented as oriented triangular facets. 
These triangles m odel the true obstacles offset along their 
norm als by the radius r  o f  the bounding sphere o f  the robot, 
approxim ating the M inkowski difference o f  the robot and 
the obstacles so the robot can be  considered as a  point. The 
trajectory o f  the robot is estim ated by integrating Eq. (1) 
forw ard in tim e using a  Runge-K utta integration with 0.01s 
tim e-steps. Each increm ent o f  the trajectory is considered a 
straight-line segm ent that is checked for intersection w ith the 
obstacle’s triangular facets. The m atrices J ( r ) and L ( t ) were 
approxim ated through num erical differentiation.

1) Q uadcopter Dynamics: The sim ulations incorporated a 
m odel o f  a  quadrotor helicopter sim ilar to w ork in  [10]. The 
m odel has a  12-dim ensional state x  =  [pT , v T , rT , w T ]T e  
X  that consists o f  position p  e  R 3, velocity v  e  R 3, 
orientation r  e  R 3 (rotation about r / | | r | |  by an angle ||r ||) , 
and angular velocity w  e  R 3. The 3-dim ensional control 
input u  =  [uz , u r , u p]T e  U  consists o f  the desired vertical 
velocity u z , desired roll u r , and desired pitch u p . Typically, a 
quadcopter also has input for the yaw, but this is a  redundant 
degree-of-freedom  that is held fixed at zero. The equations 
o f m otion are given as

P  =  v ,

v  =  -fcdragV +  exp( [ r ] ) [0 ,0 , kp i (uz

r  =  w ,

k p2( ur — r x ) — k dw x
kp2(u y) k dw y

kp3w z

(29)

(30)

(31)

(32)

w here [r ] represents the skew-sym m etric cross product m atrix 
o f r. The terms kdrag =  0.2, k d =  0.1, kp1 =  1.0, kp2 =  
10.0, kp3 = 0 .1 ,  and kp4 =  0.05 are coefficients and gains

a

vz

rp
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whose values w ere estim ated to provide realistic motion. The 
robot was sim ulated w ith an aggressive flight m odel that 
allows for m axim um  roll and pitch angles o f  0,35 rad (20 
degrees).

2) Artificial Uncertainty: Artificial noise was included in 
the sim ulations to represent the uncertainty in the trajectory 
estim ate and the obstacle locations. For the uncertainty in the 
estim ated trajectory, as the robot propagates its state forward 
in  tim e according to the dynam ics, a  sam ple was draw n from 
a  norm al distribution o f  variance M  and added according to 
Eq. (1). For the uncertainty in  the obstacle location, a  random 
sam ple was drawn from  a norm al distribution o f  variance 
Z  at the beginning o f  each sensing-action cycle. This value 
was then added to the relative obstacle location that is newly 
provided to the robot every sensing-action cycle.

The value to offset the halfplane based on the confidence 
bound a  was calculated by first taking taking the Cholesky 
decom position o f  the covariance m atrix such that S  =  

. The m atrix - / S  was then projected onto the norm al 
and scaled as a n v ^ n 1  w here a represents the value from 
the Chi-Squared distribution for a  given confidence bound. 
For the experim ents discussed in the subsequent section, the 
confidence bound was set to be  p  =  0,5, or in  other words 
the robot has a  probability o f  not colliding that is at least 
95% and, therefore, a =  3,841.

B. Results and  D iscussion

Experim ents w ere perform ed to investigate the relationship 
betw een the confidence bound p  and the true probability 
o f  avoiding collisions using the algorithm  presented in  this 
paper. These experim ents w ere perform ed by placing the 
quadcopter directly next to a  wall and providing the robot 
w ith a  constant control input in the direction o f  the wall, or 
in  other words opposite the w all’s norm al n . This constant 
input and initial position constantly provides a  potential 
collision. For this experim ent, the m otion covariance and 
sensing covariance w ere defined as

M  =  d iag([202/3 , 102/3 , 52/3 , 2,52h ] ) 1 0 - 4 , (33) 

Z  =  0 ,2 2/3 , (34)

w here d ia g ( , , , )  represents a  block-diagonal m atrix, / 3 rep­
resents a  3 x  3 identity matrix. The experim ent consisted 
o f  200 ,000  tim e steps and the num ber o f  collisions was 
recorded. The true probability o f  collision for the algorithm  
was found to be 0,713%  w ith an accurate estim ate o f  the 
covariance. This is significantly less probable to have a 
collision than the 5% defined by p  due to the conservative 
nature o f  the algorithm.

The covariance values can, in  practice, be difficult to 
properly estim ate, particularly the covariance with respect to 
the robot’s model. The sensitivity o f  the algorithm  with re­
spect to erroneous values in covariance estim ates was tested. 
A n experim ent was perform ed w here the true uncertainty 
applied to the robot m odel and the obstacle location, M  and 
Z  respectively, are underestim ated by the algorithm  when

TABLE I
Error Calculations as Fraction of Radius

Smaller Covariance Larger Covariance
x y x y

Maximum Deviation 10.33 10.01 10.28 8.231
RMS-Average 4.811 5.317 4.634 4.240

Standard Deviation 4.813 3.602 4.621 2.507

com puting a  change in input [Eq. (20)] by 25% and 50%. At 
a  25% underestim ate o f  the covariance, the true probability 
o f collision only increased by 24,3%  to a  value o f  0,886% . 
For an underestim ate o f  the covariance by 50%, the true 
probability o f  collision increased by 176% to 1,97%. This 
shows that the true probability o f collision is sensitive to the 
errors in  covariance estim ates, but due to the conservative 
nature o f  the algorithm , it is still robust to errors in  the 
covariance estimates.

Next, three experim ents w ere perform ed to evaluate the de­
viation from  the nom inal (determ inistic) path in the stochastic 
approach. In these experim ents, the robot was controlled with 
a  constant input in  the negative y-direction  (see Fig. 4) 
for a  fixed am ount o f  time. The first experim ent ran the 
determ inistic version o f the algorithm . The second and third 
experim ents ran the stochastic version o f  the algorithm  as 
developed in this paper. The second experim ent used a 
sm aller covariance o f

M  =  d iag([52/ 3 , 2 ,52/ 3 , 1,252/ 3 , 0 ,6252/ 3])10- 4 , (35)

Z  =  0 ,052/ 3, (36)

while the third experim ent used a  larger covariance o f

M  =  diag([102/3 , 52/3 , 2 ,52/3 , 1,252/3 ])1 0 - 4 , (37) 

Z  =  0 ,12/3 , (38)

The entire trajectories w ere recorded during the experi­
m ents and are shown in  Fig. 4. The deviations o f  trajectories 
for both covariance values w ere calculated and are presented 
in Fig. 4. A t every tim e-step, the deviation in the trajectory 
was calculated in the x  -  y  plane. The deviation in  the 
z  direction is negligible because the algorithm  does not 
change the input w ith respect to the robot’s altitude due 
to the obstacles being vertically aligned. In the x  and y  
directions, the m axim um  deviation over the entire trajectory 
was calculated as well as the RM S-average value and the 
standard deviation. The results o f  those calculations, nor­
m alized by the robot’s radius, are given in  Table I for both 
covariance values. As can be  seen, the algorithm  can have 
large deviations from  the determ inistic results in  the presence 
o f uncertainty while still avoiding collisions. The m axim um  
deviations were observed to correlate w ith the robot taking a 
m ore conservative trajectory around the ends o f  the obstacles 
and the deviation grew over tim e as the determ inistic case 
results in  a  faster com pletion o f this trajectory.

A sim ulation was perform ed w here the quadcopter was 
guided through a  window-like opening in  a  large wall (see 
Fig. 5). The goal position o f the robot was set directly on 
the o ther side o f  the window from  the quadcopter’s initial
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Deviation o f X vs. Time

Deviation o f Y vs. Time

Fig. 4. An experiment was performed to compare the path of the quadcopter through the environment for deterministic collision avoidance and stochastic 
collision avoidance with two sets of variances [Eqs. (35)—(38)]. On the left, the resulting paths are given and a zoomed portion is given for clarity. On the 
right, the deviations from the deterministic case are given for the two covariances.

position. The quadcopter strafes along the non-vertical wall 
and then passes through the w indow w hen it reaches it and is 
not avoiding collisions w ith the wall in front o f it. This sim u­
lation dem onstrates the algorithm s capabilities to perform  3­
d collision avoidance w ith non-vertical obstacles even when 
using a sim ple 1-d approxim ation o f  the uncertainty.

Videos o f  the above experim ents along with other scenarios 
can be found at the U niversity o f  U tah DARC Lab w ebpage1.

V I. C o n c l u s io n s  a n d  F u t u r e  W o r k

A feedforw ard-based collision avoidance algorithm  for 
tele-operated unm anned aerial vehicles that explicitly con­
siders uncertainty was presented. Specifically, the m ethod 
estim ates the trajectory o f  the robot from  the current tim e into 
the future for som e predeterm ined am ount o f tim e given the 
robo t’s dynam ics and the control input (from  the operator). 
This trajectory is checked for any collisions with the obsta­
cles in the environm ent given the uncertainty in the estim ated 
trajectory and the uncertainty in the obstacle location. E xper­
im ents w ere perform ed on a  sim ulated quadrotor helicopter 
that show ed the approach is capable o f avoiding collisions 
with a  probability greater than a  selected confidence bound. 
The approach provides an input that is as close as possible 
to the original operator's input w hile avoiding collisions. The 
m inim al change in user input provides a  m ethod to control 
the quadcopter that is intuitive and safe, allowing the operator 
to focus on other tasks.

The approach was developed for general, nonlinear dy­
nam ics. Future w ork includes im plem entation on different 
types o f  m obile robotic system s and on-line im plem entation 
involving on-board range-finding sensors, such as LIDAR. 
Additionally, authors plan to apply the technology to UAVs 
for search and rescue, to enhance situational aw areness for 
first responders, and to enable autonom ous environm ental 
m onitoring in urban environments.

1http://www.kam.k.leang.com/academics/robotics/

Fig. 5. A 3-dimensional example is shown where the quadrotor is steered 
towards a goal point through a window on a slanted wall. The window has 
tight clearance with respect to the robot. The height of the window is only 
25% larger than the robot’s diameter, however, the diameter is a conservative 
estimate provided by the minimum-radius bounding sphere. The width of 
the window is 75% larger than the robot’s diameter.
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CHAPTER 4
ONBOARD MODEL-BASED AUTOMATIC 
COLLISION AVOIDANCE: APPLICATION  

IN REMOTELY PILOTED UNM ANNED  
AERIAL VEHICLES

4.1 Introduction
Recent advances in unmanned aerial vehicles (UAVs) include improved flight times [1],

[2], advanced flight control systems [3], and reduced development costs [4], and have led to 

a dramatic increase in the number of civil and commercial applications for UAVs. Appli­

cations of UAV technology include mapping and media resources [5], [6], search and rescue

[7], precision farming [8], space exploration [9], traffic management [10], environmental 

monitoring [11], [12], telecommunication [13], and even entertainment [14]. In fact, many 

small multirotor UAVs (such as quadcopters) have the ability to access indoor locations or 

complex urban environments that may be hard to reach or unsafe for humans. These UAVs 

are ideally suited for search and rescue, law enforcement, and/or emergency response to 

enhance situational awareness [15]-[19].

Despite recent advances in the design and development of UAVs, particularly hover- 

capable rotorcraft UAVs, the task of carefully navigating the UAV through a cluttered 

environment and avoiding a collision with nearby obstacles and humans remains a chal­

lenge [20], [21]. Thus, one of the most daunting tasks for even a skilled UAV pilot is collision 

avoidance, especially when a UAV is deployed to help look for survivors inside of a partially 

collapsed building where usually the only feedback information is a live-camera feed. The 

need for automatic collision avoidance technology for tele-operated UAVs is critical and 

necessary to allow pilots to focus on higher-priority tasks such as locating survivors.

Herein, an on-board model-based automatic collision avoidance algorithm that consid­

ers sensing and estimation uncertainties while maintaining the user’s intent is described, 

implemented, and validated on a custom-designed experimental multirotor UAV system.
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Specifically, a collision is avoided by exploiting the dynamics of the robot and the measured 

relative distances between objects in the environment for automatically determining control 

inputs to safely steer the UAV away from obstacles. This work is based on leveraging the 

theoretical developments presented in [22], [23], and it is not only applicable to UAVs, but 

the algorithm can be applied to other robotic and autonomous systems (such as self-driving 

cars) where collision avoidance is needed.

Figure 4.1 shows the block diagram of the collision avoidance approach along with the 

newly proposed on-board sensing scheme. During flight, the UAV with on-board computa­

tion continuously predicts the trajectory of the robot given the pilot’s input. At the same 

time, on-board sensing such as laser illuminated detection and ranging (LIDAR) sensors 

are used for sensing obstacles along the trajectory of the robot. To allow implementation 

on low-cost on-board computation, the LIDAR data are processed using a split-and-merge 

segmentation algorithm and an approximate Minkowski difference, and the information is 

used to predict a collision. If the predicted trajectory and the sensing information lead to 

a possible collision, then the algorithm alters the input to the robot to avoid a collision. 

Measurement error combined with uncertainty in state estimation (due to the fact that a 

model of the robot’s dynamics is used) is also considered in the algorithm. It is pointed 

out that when on-board sensing technology is used, the uncertainty in the sensor’s output 

can affect the performance of the collision avoidance algorithm. For example, the popular 

Hokuyo RG-04LX-UG01 LIDAR range sensor most commonly used in robotics for obstacle 

avoidance has an accuracy up to ±3% of the measurement. Because sensing and state 

estimation uncertainties are inherent in real-world applications, it is necessary to consider 

these uncertainties in the collision avoidance algorithm.

The main contribution of this work is the real-world implementation and verification 

of the proposed local, model-based automatic collision avoidance algorithm for remotely- 

piloted UAVs with on-board sensing. Compared to existing local or reactive approaches 

such as the potential field technique [24], the dynamic window approach [25], velocity 

obstacles [26], and vector field histograms (VFH) [27], the proposed approach is based 

upon local sensor information but can exploit global information as well. The approach 

also considers the uncertainty in the estimation and measurement process, and applies to 

the full (possibly nonlinear) robot dynamics.

The remainder of this chapter is structured as follows. A detailed summary of related 

work and the comparison of this work to similar techniques is presented in Sec. 4.2. A 

detailed summary of the stochastic collision avoidance algorithm is given in Sec. 4.3, fol­
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Sensing block

u
Pilot
input

Figure 4.1: Collision avoidance for tele-operated UAVs: A UAV pilot controls the aerial 

vehicle and provides input u. When a collision is detected with on-board sensing and state 

estimation, the algorithm produces an input Au that augments the pilot’s input u to steer 

the robot away from the obstacle. The control block diagram includes the sensing block 

and the collision avoidance block where the pilot’s input u is passed through the dynamics 

model to obtain the estimated trajectory p along with uncertainty in the motion model m. 

This trajectory is checked for collisions against the obstacles O. If a collision is detected, 

the algorithm calculates a change in input Au to avoid collisions. If the input u + Au is 

deemed safe, it is then passed to the robot.

lowed by a description of the custom-designed experimental UAV system with on-board 

computation and obstacle detection in Sec. 4.4. The experimental results and discussion 

are presented in Sec. 4.5. Finally, concluding remarks and a discussion of future work are 

presented in Sec. 4.6, and acknowledgments are found in Sec. 4.7.

4.2 Related Work and State-of-the-Art
Collision avoidance is an important research topic in robotics, where numerous ap­

proaches have been developed and applied to manufacturing systems [28], medical de­

vices [29], and mobile service robots [27]. Some early methods include potential fields [24], 

the dynamic window approach [25], velocity obstacles [26], and vector field histograms 

(VFH) [27]. In general, collision avoidance methods can be classified into one of two main 

categories: global (motion planning methods) and local (reactive methods).

First, collisions between a mobile robot and obstacles can be achieved through a global 

motion planning algorithm which typically assumes a priori information about the environ­

ment [30]-[32]. In [33], a path planning approach is used where collisions are avoided during
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the trajectory generation stage. These methods search the robot’s possible trajectories for 

the best trajectory with respect to some goal, typically choosing a trajectory that minimize 

the uncertainty while reaching some desired goal state (i.e., position). Often, global planners 

are computationally expensive and complete information about the environment is required. 

Thus, in applications where robots are equipped with cameras for search and rescue in 

collapsed buildings or in unstructured environments, global planners may provide limited 

performance.

The second class of collision avoidance algorithms are local or reactive methods. These 

methods do not optimize a trajectory, but rather they find a change in control input that 

will approximately avoid collisions given a local knowledge (sensor information) of the 

obstacles and environment. Many of the reactive algorithms use relative sensing information 

and develop control laws that guarantee separation between agents (and obstacles) in the 

presence of uncertainty [34]. Other techniques deal with state uncertainty by exploiting 

dynamic programming [35].

In many implementations of the local algorithms the collision avoidance is approximated 

through a first-order model by predicting time to impact between the robot and an obstacle 

while only considering some maximum acceleration [36]-[39]. The algorithm in this chapter 

performs collision avoidance with an explicit model of the robot’s full, possibly nonlinear 

equations of motion, rather than approximating collisions through the relative velocity 

formulation.

Integrated global and local planners have been explored, where these algorithms use a 

predicted trajectory to avoid collisions with the observable, local obstacle [26]. Typically, 

these algorithms avoid collisions by computing a given change in input for a current sensing- 

action cycle [34], [40], [41]. The approach in this chapter is intended for use with local sensor 

information, but it can also be applied in situations where global knowledge is provided. 

The formulation is applicable to the full robot dynamics and the method considers explicitly 

the uncertainty in the estimation and measurement process.

In [36], the FastSLAM algorithm [42] is implemented to predict distance to obstacles. 

Much research has been focused on using vision to detect and avoid obstacles, especially in 

the field of autonomous automobiles [43], [44]. Vision has been applied to obstacle detection 

and avoidance in UAVs as well [45]-[48]. Vision has been shown to provide robust obstacle 

position estimates, but it can be computationally expensive when compared to the more 

traditional approach of using range-based sensors such as described in [49]-[51].
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4.3 Automatic Collision Avoidance Algorithm
This section presents the details and main results of the model-based stochastic auto­

matic collision avoidance algorithm. Additional details of the theoretical framework are 

described in [23]. First, the problem is formally defined below in Sec. 4.3.1, followed by 

details of the algorithm in Sec. 5.3.3. It is pointed out that the work in [22], [23] assumed 

that the UAV was not able to yaw by operator commands. On the other hand, for many 

applications, including search-and-rescue, the UAV pilot must be able to provide a yaw 

command to the robot to enable the operator to search and survey a given area through video 

feedback. Thus, the method proposed herein incorporates yaw for practical application in 

UAVs, and Sec. 4.3.2.4 presents the details.

4.3.1 Problem  Form ulation
4.3 .1 .1  N otation

Throughout this chapter, vectors are denoted by boldface lower-case letters, for example 

a. Vector sets are represented by calligraphics, such as A. Scalar and matrices are denoted 

by lowercase italic letters, such as a, and uppercase italic letters, such as A, respectively. 

Scalar and matrix multiplications as well as Minkowski sums of sets are defined as follows:

xA =  {xa | a e A}, (4.1)

X A  =  {X a  | a e A}, (4.2)

X  © A  =  {x + a | x e X , a e A}. (4.3)

A vector a that is sampled from a normal distribution with mean a and variance £, 

where £  is positive-semidefinite, is given by

a (a, £ ). (4.4)

4.3 .1 .2  Problem  D efinition
Consider a robot with general, potentially nonlinear equations of motion and a state 

space of dimension m. Let the state space of the robot be X  c  Rm and let the control 

input space be U c  Rn . Let the continuous-time equations of motion of the robot be 

defined by the function f  e X x U ^  Rm,

X(t) =  f(x(t), u(t)) + m, m  (0, M ), (4.5)

where x(t) e X  and u(t) e U are the state and control input at time t, respectively. It is 

assumed that the motion of the robot is corrupted by zero-mean Gaussian noise m  e Rm 

with a given covariance M  e Rmxm, where M  is positive semidefinite.
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For a given input u, the predicted state x(t) follows the relationship

x(t) =  f  (x(0), u ,t) . (4.6)

Given an initial true and predicted state, x =  x(0) and x =  x(0) respectively, and a 

constant input u, the state of the robot for t > 0 is defined by

x(t) (x (t) ,p (t))  (4.7) 

where x(t) =  g(x, u, t) is the expected state at time t, g e X  x U x R  ^  X  represents the 

solution to Eq. (5.1), and P(t) is the uncertainty of the state, defined as

P (t) =  E [(x(t) - x(t))(x(t) - x(t))T]. (4.8)

The uncertainty at time t, Eq. (4.8), is found by solving the following differential 

equation:

P(t) =  A (t)P  (t) + P  (t)A (t)T + M, (4.9)

A ( t )= i x  (x (t )u (t )) . (4.10)

Let R d be the workspace in which the robot maneuvers, where typically d <  3, and let 

O C Rd define the subset of the workspace occupied by obstacles. In order to maintain 

compatibility with the implementation of on-board sensing, those regions of the workspace 

that are occluded by the obstacles as seen from the current state of the robot are also 

considered obstacles, meaning the subspace of the workspace that cannot be seen by the 

robot is also considered an obstacle. The obstacles’ positions can be defined relative to the 

robot’s position, including uncertainty with known variance Z(x) e Rdxd as

n

O =  Oi ®{w}, w (0 , Z(x)), (4.11)

i= 1

where O i represents individual objects in the environment that are considered obstacles and 

w is drawn from a zero-mean normal distribution with variance Z(x). The variance in the 

sensing Z(x) is a function of the state x to represent how the uncertainty in some sensors 

can change with the distance to obstacles, such as with laser rangefinders the uncertainty 

typically decreases as the distance to an object decreases.

Let R(x) C Rd denote the subset of the workspace occupied by the robot when it is in 

state x e X  .A  colliding state is then defined as

R(x(t)) n O  =  0. (4.12)

The problem is now defined as finding a minimal change A u  e U to the control input 

u e U given the initial state x e X  of the robot to avoid collisions with obstacles within
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some time horizon t . The probability that the robot will collide with an obstacle given the 

variance in the state estimate and obstacle location must be less than p for all time less 

than the time horizon t  G R, therefore

minimize: AuT RAu (4.13)

subject to:

p (Vt G [0, t] :: R(x(t)) n O  = 0 | P  (t), Z (x)) < p, 

where R G Rnxn is a positive-definite weight matrix and P(t) is the variance in the forward 

prediction of the state.

4.3.2 Technical Approach
In the following, a model-based feedforward approach is presented for collision avoidance 

(see block diagram in Fig. 4.1).

4.3 .2 .1  A ssum ptions
First, the following assumptions are made to simplify the nonlinear, nonconvex op­

timization problem for real time implementation with potentially limited computational 

power:

• The robot’s position p G Rd can be derived from the state through a projection

p(t) = C x(t), (4.14)

where C G Rdxm.

• The geometry of the robot R  is defined as the smallest enclosing sphere centered at 

its reference point such that the geometry is rotationally invariant. Let R(p) C Rd be 

the spherical, or ellipsoidal, subset of the workspace occupied by the robot at position 

p.

• The robot’s trajectory can be represented through a first-order Taylor expansion, i.e.,

p(t, Au) «  p*(t) + J(t)Au, (4.15)

where

p*(t) = Cg(x, u, t), J(t) = c | u (x , u, t). (4.16)

• If the robot is collision-free at time t with respect to an appropriately chosen convex 

subset of the free workspace, then it is assumed that the robot is also collision-free 

for all time t G [0,t]. This is reasonable for relatively short time horizons t.



41

4.3 .2 .2  A lgorithm ic Solution
Given the robot’s current state x and the current control input u (from the operator), 

the estimated positions of the robot in the future are found by Eq. (5.8) (see block diagram 

in Fig. 4.1). The variance on the predicted state is given in Eq. (4.8).

From Assumption 4.3.2.1, the mapping from the robot’s state to its position also defines 

the variance on the robot’s position, i.e.,

Pc(t) = CP (t)CT. (4.17)

From Assumption 4.3.2.1, when there is uncertainty in both the obstacle location and 

the robot’s estimated trajectory, a probability for a collision is to be considered rather 

than guaranteed prediction of a collision. Thus, given independent Gaussian distributions 

representing the uncertainty in both the trajectory estimation and the obstacle location, 

respectively, the probability for a collision is nonzero if

Pcollision = (N (p*(t) ,P c (t) + Z(x)) n O) = 0. (4.18)

The robot is considered to be probabilistically collision-free for all time t e [0,t] if the 

probability for a collision to occur is less than the confidence bound p, given the distributions 

of the position estimate and obstacle locations, i.e.,

p((R(p(T)) n O = 0) | (Pcollision = 0)) < p. (4.19)

For a trajectory that is determined to be collision free, the current operator’s input u is 

deemed safe and does not need to be changed, hence Au = 0. However, if the probability 

for a collision is greater than the confidence bound p then the operator’s input is deemed 

unsafe and must be corrected in order for the robot to obtain a collision-free trajectory, 

resulting in Au = 0.

Let pc be defined as the first point along the trajectory that has a probability of colliding 

with an obstacle greater than the confidence bound, thus

pc = p*(tc), (4.20)

where

tc =

argmin{p((R(p(t)) n O = 0) | (Pcollision = 0)) > p}. (421)
te[o,r ]

The probabilities in Eqs. (4.19), (4.21) can be difficult to compute exactly. Therefore, 

the approximate solution is considered. Given a unit normal vector n of the obstacle O
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that points into the free workspace (see Fig. 4.2), consider a halfspace with the same normal 

n (pointing toward the free space) that provides a convex approximation of the local free 

space. The halfspace is located at the collision point pc, determined by Eq. (4.21).

Given the local approximation of the free space provided by the halfplane, the uncer­

tainty can be mapped into the halfspace by transforming the multivariate distribution along 

the normal n into a one-dimensional Gaussian distribution centered at pc,

Pcollision ~ N (p * (r ), nT(Pc(r ) + Z(x))n). (4.22)

Using this approximate representation of the uncertainty, the probability of avoiding 

collision can now be represented very simply by the number of standard deviations for a 

desired confidence bound.

Equation (4.19), given this approximate representation of the uncertainty, is now rede­

fined such that the robot is considered to be collision-free for all time t e [0 , t] if

Vt e [0, t] :: R(p*(t)) n (O ® {an}) =  0, (4.23)

where a  is the offset distance calculated from the standard deviation and selected confidence 

bound p where

a  =  anT ■J P c(t ) + Z  (x) n, (4.24)

where a is a scaling factor that corresponds to the Chi-Squared distribution for the selected 

confidence bound p.

Equations (5.9) and (4.21) can now be approximated by the following simplified expres­

sion:

Pc =  p* ( argmin{R(p*(t)) n (O ® {an}) =  0} ) , (4.25)
V te[0,r] )

where if the system has no uncertainty a  =  0, then Eqs. (4.23),(4.25) are equivalent to the 

deterministic solution in [22].

Next, given Eqs. (4.23), (5.9), a linear constraint is defined on the position P(t, Au) of 

the robot at time t (see Eq. (4.2))

nTP(t, Au) > nTpc. (4.26)

Substituting Eq. (5.8) from Assumption 4.3.2.1, the constraint on the robot’s position 

in Eq. (5.10) can be transformed into a constraint on its change in input A u

nTJ (t)A u  > nT(pc - P*(t)). (4.27)
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Figure 4.2: Shown is a scenario where a quadcopter UAV has uncertainty in both its 

trajectory estimation and the obstacle location. The a priori variance Pc(t) + Z(x) for a 

given obstacle normal n is represented as nT(Pc(t) + Z(x))n. The collision point pc is 

defined as the point along the trajectory where this transformed variance is some distance 

from the obstacle based on the selected confidence bound p. The halfspace is defined such 

that nTP(t, Au) > c, where c = nTpc.

Equation (5.7) is approximated using Eq. (5.11) as

minimize: AuT RAu (4.28)

subject to: nTJ(t)Au > nT(pc — p*(t)),

where solving this convex optimization, such as is done by the RVO library in [52], provides 

a collision-free change in input Au with the control input given to the robot as u + Au.

4.3 .2 .3  H andling C onvex Corners
The use of an approximation of a convex region of the local free space near the robot’s 

trajectory means that it cannot be assumed that the newly selected control input u + Au 

avoids collisions with respect to all obstacles for all time t e [0, t ]. This is, in particular, 

true near convex edges or corners of the workspace, as shown in Fig. 4.3. However, the 

approach can simply be repeated in an iterative fashion to solve this problem as described 

below.

Assume the algorithm has computed a change in control input according to Eq. (5.7) 

and that it is the first iteration of the algorithm. Continuing to iteration i, the control 

input u + Aui is used to extrapolate the trajectory and check for a potential collision. If a 

collision is found to occur, a new linear constraint is defined as
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Figure 4.3: The iterative process of the collision avoidance algorithm: (a) A trajectory, 

p (t, 0), is estimated from the original operator’s input such that Au = 0. The variance on 

this estimated position is shown as the gray ellipsoid located at p (t, 0). Considering this 

uncertainty, a new input, u + A u i, is determined to avoid the first detected collision. (b) 

The trajectory, p (t, A u1), for the new input is predicted, also resulting in a collision, and 

the algorithm computes a new change in input A u2 with respect to halfplane constraints 

defined by both p (t, 0) and p (t, A u1). The resulting trajectory p (t, A u2) is collision free 

and the input u + Au2 is passed to the robot (compare block diagram in Fig. 4.1).

aTAu > bi , (4.29)

where

af  = nf  Ji (t  )> (4-30)

bi = nT(pc,i - Pi(t)). (4-3l )

The convex optimization problem in Eq. (5.12) can now be solved for all iterations i by 

the following:

minimize:AuTRAu (4.32)

subject to:P|j=1 {aTAu > bj}.

Thus, every ith iteration of the algorithm introduces an additional constraint to the 

convex optimization problem. After at most d iterations, the control input u + Au is then 

applied to the robot. The number of iterations, and therefore the number of constraints, is 

maximized at d, where d is the dimension of the workspace. This upper limit accounts for 

corners of the free space in d dimensions as shown in Fig. 4.3. This iterative approach is 

performed during every sensing-action cycle of the robot.

This iterative approach aligns with the LP-type algorithm in [53]. The LP-algorithm 

solves low-dimensional convex optimization problems in O(i) expected time by considering



45

the constraints in an iterative fashion, where i is the number of constraints. The dimension 

of the optimization problem in this chapter equals the dimension n of the control input Au, 

which, typically, is equal to the dimension d of the workspace. Maximizing the number of 

iterations to d ensures the convex optimization problem remains feasible.

4 .3 .2 .4  Incorporating Yaw Control
For a hover-capable multirotor UAV, yaw is a redundant degree-of-freedom that can be 

held constant. This condition is further emphasized in Sec. 4.4.1.1. However, when the 

UAV is equipped with cameras that enable a pilot to survey an area in applications such 

as a search and rescue, the pilot must be able to rotate the robot. This is particularly 

important if the pilot is flying through a first-person video feed on a forward-facing camera.

The yaw degree-of-freedom is controlled completely by the pilot, meaning the algorithm 

does not augment this input. As discussed in Sec. 4.3.2.3, the dimension of the input 

adjusted by the algorithm is equal to the dimension of the workspace d to ensure the 

convex optimization problem is feasible. However, the yaw rate of the robot can still be 

controlled by the user with this algorithm. The algorithm will calculate the feedforward 

trajectory estimate assuming a constant yaw-rate (from the user) and will calculate the new 

roll, pitch, and thrust at time t =  0 to avoid a collision at time t . The yaw-rate affects the 

algorithm’s change in roll and pitch through the Jacobian in Eq. (4.16).

It is pointed out that the maximum yaw-rate and time horizon must be carefully selected. 

If either value is too large the predicted trajectory of the robot can be poorly predicted by 

Assumption 4.3.2.1 or can violate Assumption 4.3.2.1, possibly leading to collisions.

4.4 The Experimental UAV System with Onboard Computation and Sensing
In this section, the custom-designed experimental quadcopter UAV system is described, 

along with the onboard obstacle detection hardware and relevant signal processing algo­

rithms.

4.4.1 T he E xperim ental Q uadcopter UA V  System
The collision avoidance and obstacle detection algorithms are implemented on a custom- 

designed physical quadrotor helicopter shown in Fig. 4.4. The UAV has a footprint of 

75 cm from rotor-tip to rotor-tip. In Fig. 4.4, the key components are listed, where the 

quadcopter uses the Pixhawk commercial autopilot from 3D Robotics for flight control. The 

2D spinning LIDAR is the RPLidar 360° LIDAR. The LIDAR-Lite laser rangefinder from
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Figure 4.4: The custom-designed experimental quadcopter UAV system with onboard 

obstacle detection hardware shown on the left. The Odroid XU4, running the Robot 

Operating System (ROS), reads the sensor data and runs the algorithms onboard and 

provides commands to the Pixhawk autopilot to control the motion of the UAV. The right 

shows the top-down view of the quadcopter and the x/y  coordinate frame in which the 2D 

spinning LIDAR provides data. The range finders (single-point LIDAR and sonar sensors) 

are oriented in the z-direction in and out of the page.

PulsedLight serves as the downward-facing laser rangefinder. In addition, the system has 

two upward-facing sonar sensors (Maxbotix XL-EZ4); however, the experiments performed 

focus on the results of collision avoidance with respect to walls in the environment using 

the 2D LIDAR rather than the floor and ceiling.

The collision avoidance algorithm is running on an onboard single-board computer 

(Odroid XU4). The computer is equipped with the Ubuntu 14.04 operating system running 

the Robot Operating System (ROS), version Indigo. The Pixhawk and sensors are connected 

to the Odroid through a USB interface. The Pixhawk receives the pilot’s desired roll, pitch, 

yaw rate, and throttle commands through a standard 2.4 GHz RC transmitter and passes 

these values to the Odroid. These inputs are then updated if a collision is predicted and the 

new values are passed from the Odroid to the Pixhawk to control the motion of the UAV.

4.4.1.1 R obot D ynam ics
The Pixhawk autopilot contains onboard proportional-integral-derivative (PID) con­

trollers to stabilize the attitude of the robot. The Pixhawk also uses a raw throttle 

command. This throttle command is calculated by a controller about the vertical velocity. 

The closed-loop model is used to calculate the feedforward trajectory estimate provided 

an estimate of the current state through an onboard Kalman Filter, implemented on the 

Odroid. The model has a 12-dimensional state that consists of position p e R 3, velocity
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v G R3, Euler RPY angles r G R3, and angular velocity w G R3:

x = [pT, vT, rT, w]T G X . (4.33)

The 4-dimensional control input consists of the desired roll and pitch angles, r* and r 

respectively, the vertical velocity v*, and the yaw-rate w*:

u =  [r*,r*,v*,w*]T g U . 

The equations of motion are given as

= R [0, 0,fcpy(v* - Vz)] T - g,

w,

w

kpx(r* - rx) - kdxWx 

kpy(r* - ) - kdywy 
kpz(w* - Wz)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

where R is the rotation matrix from the robot frame into the world frame, the terms 

kpv, kpx, kdx, kpy, kdy, and kpz are gains whose values were determined through system 

identification of the physical system. These model parameters, given in Table 4.1, were 

determined experimentally.

4.4.2 O nboard O bstacle D etection
The algorithm, in general, requires a set of three-dimensional planar faces to perform the 

collision avoidance. However, to simplify the problem a two-dimensional spinning LIDAR 

and one-dimensional laser rangefinders are used to detect obstacles. The LIDAR provides 

a set of 2D data points representing the distance to the nearest object in the x/y plane 

of the quadcopter body frame (see Fig. 4.4). These obstacles are assumed to be vertical 

in the inertial frame such that the 2D data can be used rather than utilizing a 3D point 

cloud rangefinder, allowing for fast computation with onboard processing without requiring 

more complex implementations such as GPU processing. This assumption is feasible for 

situations where the user will not be commanding large vertical velocities at the same time 

as large roll or pitch commands, possibly creating a trajectory into an unsensed region of 

the workspace.

Table 4.1: Quadcopter Dynamic Parameters

Parameter kpv kpx kdx kpy kdy kpz
Value 10.0 150.0 2.5 150.0 2.5 3.5
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4.4 .2 .1  L ID A R  Segm entation
In order to provide a more efficient obstacle representation to the collision avoidance 

algorithm in this chapter, the 2D range data provided by the spinning LIDAR will be 

segmented through the clustering and split-and-merge algorithm as discussed in [54]. This 

will reduce the number of planar faces that must be checked for a collision against the 

predicted trajectory of the robot. The algorithm is presented below in Algorithm 1 and 

described next.

The clustering process first takes the list of raw range readings from the sensor and 

separates it into clusters. If two points have a difference in range greater than a predefined 

magnitude rthresh, then they are considered to be two separate sets of data and the list of 

range data is split between the two example points (Fig. 4.5(a)). Next, these subsets from 

the clustering process are provided to the split-and-merge algorithm. The split-and-merge 

process considers each set of points and creates a line between the first and last points in 

a given cluster. The point between the first and last point in the segment, if one exists, 

with the maximum distance to the line is selected (Fig. 4.5(b)). If that computed maximum 

distance is greater than some threshold dmax, the segment is split into two segments at the 

point with the maximal distance to the line between the first and last points (Fig. 4.5(c)). 

This process is continued over all subsets until a list of line segments remains where all 

the data points are within dmax distance from one of the line segments (Fig. 4.5(d)). The 

first and last point in each of the resulting segments are then considered as vertices of the 

obstacles for the collision avoidance algorithm.

4.4 .2 .2  M inkowski Difference A lgorithm
The data that have been processed by the LIDAR segmentation, discussed previously, 

are used to compute an approximate Minkowski difference which will expand the obstacles 

by the robot’s radius. This new volume, after the Minkowski difference, is provided to the 

collision avoidance algorithm as the true obstacles to avoid in the environment. A fast 

Minkowski solution such as those in [55], [56] can be used if the robot or obstacles are 

complicated shapes, however, in this application the robot is bounded by the minimum 

volume sphere. Given the simple geometry of the sphere, the Minkowski difference was im­

plemented approximately and directly to avoid the additional computations of, for example, 

the reduced convolutions in [56].
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A lgorithm  1 Clustering and Split-and-Merge 

L ^  s0, s1,..., sN ranges from LIDAR 

for all Si E L  do

if  |si - Si-11 > rthresh or |si - Si+11 > rthresh then 

Split L at si 

end if 

end for

for all L j E L 0, L 1,. . . ,L j  do

L ^  line between endpoints of Lj 

d ^  max(distance(L, sk E L j )) 

if d > dmax then

Split L at argmax(distance(L, sk E L j )) 

else

Segment L j  is complete 

end if 

end for
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Figure 4.5: Shown is the graphical representation of the clustering and split-and-merge 

algorithm for the LIDAR data. (a) First, the data are clustered based on the difference in 

the range data. If two points have a radial distance greater than a threshold |r1 —r21 > rthresh 

then they are clustered separately, shown as sets of blue and red points for the two clusters. 

(b) Shown is the red cluster performing the split-and-merge algorithm. A line is created 

between the beginning and end of the cluster and the distance d of the point furthest from 

the line is calculated. If that distance is greater than a threshold d > dthresh, the cluster 

is split at that point. (c) The results from (b) were split to create two separate clusters of 

points. These two new clusters have their furthest point within the threshold d1 < dmax 

and d2 < dmax as shown. Therefore, the split-and-merge algorithm is complete for that set 

of clusters. (d) Shown is the result of the clustering and split-and-merge algorithm on the 

small example data set.
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4.4 .2 .3  P ractical C onsiderations
The algorithm previously presented is developed to provide collision-free motion, in­

cluding uncertainty in the forward prediction of the trajectory as well as in the obstacles’ 

sensed positions. In [23], the algorithm was studied for varying amounts of uncertainty 

and confidence bounds. Provided the uncertainty covariance matrices, the experimental 

application in this chapter could follow that approach directly, but during preliminary 

experiments the performance of the algorithm was found to be dominated by other factors 

discussed next, and these covariances were not implemented directly.

When the quadcopter is some small distance from the wall and uncertainty causes it 

to move closer to the wall than the offset distance value a in Eq. (4.24), the algorithm 

will provide small desired roll and pitch angles. The Pixhawk autopilot was found to be 

unable to respond to these small inputs as they are within the signal-to-noise ratio from the 

lower-quality sensors’ hardware. This could lead the quadcopter to not physically respond 

to the algorithm’s desired output. Secondly, this application on a multirotor vehicle in 

constrained indoor environments is also subject to aerodynamic disturbances which can be 

large and difficult to model, as shown in current research [57], [58]. These disturbances 

will also likely violate the assumptions in [23] that the noise can be modeled as normal 

distribution.

The lack of control authority for low-angle desired roll and pitch as well as aerodynamic 

disturbances were found to dominate the performance of the algorithm, leading to collisions. 

Therefore, through preliminary experiments a constant offset distance value of a = 1.2 m 

was empirically selected. Even in situations with the combined effects of the state estimate 

error, lack of control authority, and aerodynamic disturbances, this value of a was observed 

to be able to keep the quadcopter free of collisions.

4.5 Experimental Results and Discussion
The model-based collision avoidance algorithm was implemented on the experimental 

quadcopter system to demonstrate the performance of the algorithm. In particular, four 

cases were studied. In the first case the pilot commanded the aerial robot to fly straight at 

a wall. In the second case, the pilot flew the robot into a corner. In the third case, the pilot 

flew the robot through a zone with internal obstacles. Finally, in the fourth experiment the 

robot was flown through a hallway with an “S” turn. In each experiment, the data from the 

spinning LIDAR were collected as well as the output of the split-and-merge segmentation 

and the approximate Minkowski difference. The initial desired trajectory from the pilot’s 

input is also recorded along with the final, collision-free trajectory the algorithm calculates.
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In all four cases, the robot executed the algorithm performed as expected, and the measured 

responses also agreed with simulations and expected behaviors. The results are described 

next.

In the first case, the quadcopter was flown straight at a wall and the results are shown in 

Fig. 4.6. The series of images shown in the first two columns in Fig. 4.6 present a sequence of 

side- and top-view images extracted from recorded video during the experiment. The results 

on the far right-hand column shows the recorded raw LIDAR points, segmented points, 

Minkowski points, and the initial and final trajectories of the robot at the corresponding 

time steps. The red arrows show the desired trajectory given the user’s input while the 

green arrows show the resultant trajectory from the algorithm. Also, it can be seen in the 

sensor data in the right column that there are times when the LIDAR returns a maximum 

range reading when it should be located on the obstacle. This is from errors in the LIDAR 

that can be filtered with post-processing, however, in this chapter these “blips” in the scan 

are accounted for in the Minkowski difference and do not need to be filtered from the LIDAR 

data initially. As can be seen, initially at t =  2 s the robot is commanded to fly into the wall 

on the left, indicated by the red arrow. Since the wall was sufficiently far from the robot, 

the algorithm did not alter the pilot’s control input. But as the relative distance between 

the wall and robot began to shrink (t =  4, 6 , 8 s) and a possible collision was detected by 

the onboard LIDAR sensor, the algorithm began to adjust the control input such that it 

forced the robot to slow down, and eventually come to a stop in front of the wall in the 

limiting case, irrespective of the pilot continuing to command the robot toward the wall. 

The motion away from the wall rather than completely stopping is a result of uncertainty 

in the motion model causing the robot to pass the safety bound (t =  6 , 8 s) of the algorithm 

and have to reverse (t =  10s), overshooting the desired position. A more accurate state 

estimate through additional sensors would reduce the magnitude of this overshoot. Based 

on the results in this first case, the robot can automatically detect an obstacle (such as the 

wall) along its trajectory and the algorithm altered the control input to avoid a collision.

In the second case, the quadcopter was flown at a corner and the experimental results 

are shown in Fig. 4.7. As shown, the robot was first flown toward a wall on its right and 

then it strafed along that wall into the corner (t =  2, 4 s), followed by strafing along the wall 

in front of the robot (t =  6 , 8,10 s), as shown in the sequence of images in the first column 

in Fig. 4.7. The resulting behavior is collision-free motion with respect to both of the 

walls. Again, it can be seen in the physical sensor data in the right-hand column in Fig. 4.7 

that there are times when the LIDAR returns a maximum range reading when it should
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x  ( m)
---Raw LIDAR points o Segmented points .....Minkowski points — Initial trajectory — Final trajectory

Figure 4.6: Case 1: Experimental results where the aerial robot was flown directly at 

a wall in front of it. A sequence of time steps is shown along with the data from the 

sensors and the resultant desired trajectories. The left column shows the side view where 

the quadcopter moves toward the wall and then back away from it. The motion away from 

the wall rather than completely stopping is a result of uncertainty in the motion model 

causing the robot to pass the safety bound (t = 6, 8s) of the algorithm and have to reverse 

(t = 10s), overshooting the desired position. A more accurate state estimate through 

additional sensors would reduce the magnitude of this overshoot.
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Figure 4.7: Case 2: Experimental results where the aerial robot was flown into a corner. 

The quadcopter is first flown toward the wall on the right, then strafes along it temporarily 

(t = 2, 4 s) before moving along the wall in front of it (t = 6, 8,10 s), resulting in collision-free 

motion with respect to both of the walls.
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be located on the obstacle, but these errors are accounted for in the Minkowski difference. 

Similar to the results from Case 1, the robot can automatically detect surrounding obstacles 

in the x/y plane (such as two walls that form a corner) along its trajectory and modify the 

control input to avoid a collision.

In the third case, the robot was tested to determine its ability to handle internal obstacles 

(such as office file cabinets). As shown in Fig. 4.8, the quadcopter was flown at a narrow 

obstacle that is within the environment rather than only using the exterior walls. The 

quadcopter flies toward the cabinet obstacle (t = 0,1 s) until it then strafes to the right 

along the front face of the cabinet (t = 2, 3s). After passing the cabinet, the quadcopter is 

able to move toward the wall and come to a stop (t = 4 — 9s).

Finally, in the fourth case, both simulations and experiments were performed to study 

the performance of the algorithm in a more natural environment, such as flying through 

an “S”-shaped basement hallway. Simulation of the hallway scenario was created within a 

deterministic simulation environment (V-REP, Coppelia Robotics) to be compared to the 

real-world experimental results. The simulation used the robot model presented above in 

Sec. 4.4.1.1 and the collision avoidance algorithm presented herein. The simulation and 

experimental results are shown in Fig. 4.9(a) and (b), respectively. The results also include 

the simulated and measured raw LIDAR points, segmented points, Minkowski points, and 

the initial and final trajectories of the robot at the corresponding time steps. As shown 

in both the simulation and experimental results, the quadcopter was flown from a straight 

hallway toward a wall (t = 0, 2, 4, 6 s), where it strafes to the left (t = 8,10,12,13 s), then 

the space opened up into a straight hallway and the robot continued to fly down the straight 

hallway (t = 14,16 s). Both the simulated trajectories and LIDAR scan data showed good 

agreement with the measured experimental results shown in Fig. 4.9(b). Thus, the results

Figure 4.8: Case 3: In this experiment, the quadcopter is flown at a narrow obstacle that 

is within the environment, rather than only using the horizontal walls. The quadcopter flies 

toward the cabinet (t = 0 ,1s) until it then strafes to the right along the front face of the 

cabinet (t = 2, 3s). After passing the cabinet, the quadcopter is able to move toward the 

wall and come to a stop (t = 4 — 9s).
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Figure 4.9: Case 4: (a) Simulations and (b) experiments of the robot flying through an 

“S”-shaped basement hallway. The quadcopter was flown from a straight hallway toward 

a wall (t = 0, 2,4,6 s), where it strafes to the left (t = 8,10,12,13 s), then the space 

opened up into a straight hallway and the robot continues to fly down the straight hallway 

(t = 14,16 s).
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in this case show that the robot can automatically detect and react to obstacles along its 

trajectory, and the results also demonstrate application of the collision avoidance algorithm 

in a natural environment.

4.6 Conclusions and Future Work
In this chapter, a feedforward-based automatic collision avoidance algorithm was pre­

sented and implemented on an experimental quadcopter with onboard sensing and com­

putation. From a pilot’s input, the algorithm predicts the trajectory given the current 

state that the robot will follow if the input remains constant over some time horizon. If 

there is a probability for a collision along the trajectory greater than some predetermined 

bound, considering uncertainty in the robot’s motion model and sensing accuracy, then 

the algorithm modifies the pilot’s input for a new, collision-free input. A 2D spinning 

LIDAR was used to obtain the planar distances to objects in the environment. These range 

data were processed using a clustering and split-and-merge algorithm to reduce the number 

of planar faces to be considered in the collision avoidance algorithm. An approximate 

Minkowski difference of these planar faces was then used to avoid collisions in real time 

operation. The implementation was tested in a variety of environments to demonstrate 

its performance. The quadcopter was shown to avoid collisions even when the pilot was 

intentionally controlling it towards a collision with obstacles in the environment.

In the future, this algorithm could be improved by including an adaptive model for the 

feedforward trajectory estimate as well as including additional sensing to provide a more 

accurate prediction of collisions. A more accurate collision prediction through improved 

models of the aerodynamics as well as more state estimates for the onboard attitude 

controllers would allow for the safety buffer to be decreased, which would cause the robot 

to fly closer to obstacles and with higher speeds.
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CHAPTER 5
STUDY OF IMPROVED PILOT PERFOR­

MANCE USING AUTOMATIC COLLISION 
AVOIDANCE FOR TELE-OPERATED  

UNM ANNED AERIAL VEHICLES
5.1 Introduction

Unmanned aerial vehicles (UAVs), particularly small, low-cost platforms, have gained 

considerable attention for civil and commercial applications ranging from mapping [1] to 

precision farming [2], traffic management [3], and environmental monitoring [4]. More 

recently, the emergence of small multirotor UAVs (such as quadcopters), which can access 

indoor locations and maneuver through environments that are hard to reach or unsafe for 

humans, has captured the attention of the public-safety sector and law-enforcement officials 

as a viable tool to enhance situational awareness for search and rescue, law enforcement, 

and/or emergency response [5]-[7]. However, one of the most daunting tasks for even a 

skilled UAV pilot is controlling the aircraft for collision avoidance, especially in tight and 

compact environments such as inside of a partially collapsed building where usually the 

only feedback information is a live-camera feed through first-person view (FPV) mode (see 

Fig. 5.1 illustrating the typical UAV system that is controlled through a remote command 

station). Thus, automatic collision avoidance technology for tele-operated UAVs (as well 

as mobile ground robots) is critical and necessary to allow pilots to focus on higher-priority 

tasks such as locating survivors and acting quickly to help assist survivors or call for 

additional support.

To quantitatively investigate the impact of automatic collision avoidance technology on 

UAV-pilot performance, the contribution of this paper is a human-subject study that com­

pares the performance between a feedforward-based collision avoidance algorithm [8], [9], a

This m aterial is based upon work supported by the National Science Foundation, Partnership for 
Innovation Program , G rant No. 1430328.
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Figure 5.1: A UAV system for search and rescue and emergency response, where pilots 

control the unmanned aerial vehicle (UAV) through (a) a mobile command station or similar 

interface following (b) deployment of (c) the UAV with on-board cameras and sensors. 

Control signals and data flow between the UAV and command station. Images courtesy of 

Mike Richards and Drone America, Inc.

basic risk (potential) field algorithm [10], and full manual control. Specifically, experiments 

are described where pilots operate a simulated UAV system running the algorithms through 

three maze-like environments. In the experiments, the number of collisions, the path length, 

trial time, and average speed are recorded. There are four hypotheses being tested in this 

paper. First, it is hypothesized that the algorithm in this paper will result in fewer collisions 

than manual control. Second, of the trials that do not collide, it is hypothesized that there 

will be higher operating speeds (i.e., shorter completion times) with the algorithm in this 

paper over manual control. Third, it is hypothesized that this algorithm will result in fewer 

collisions than the potential-field variant, the basic risk field algorithn [10]. Lastly, it is 

hypothesized that the algorithm in this paper will provide higher operating speeds than 

the basic risk field algorithm. The first, second, and fourth hypotheses are supported by 

the experiments, while the third hypothesis is inconclusive, but suggests that there is not a 

significant difference in the frequency of collisions between the two algorithms.
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5.2 State-of-the-Art in Collision Avoidance
Early research on motion planning and collision avoidance for mobile robots included 

potential-field planners [11] and the vector field histogram (VFH) approach [12]. Improve­

ments were made to the VFH in [13]. Although these algorithms are effective, they do 

have some potential limitations for applications such as search and rescue. For instance, 

these algorithms have an inherent requirement to keep the robot some minimum distance 

away from the obstacles in the environment. The need to maintain a minimum distance 

from the walls comes from the fact that the algorithms do not explicitly consider the 

dynamics of the robot. However, in a search and rescue scenario the robot may need to be 

controlled near walls in constrained environments or in order to more quickly to survey the 

environment. Thus, factoring in the robot’s dynamics can improve the performance of the 

collision avoidance process.

Collision avoidance methods that do consider the robot’s dynamics typically require a 

global knowledge of the environment [14]-[16]. Unfortunately, such information may not be 

readily available at the time of search and rescue and is often not practical. Furthermore, 

these algorithms are more computationally expensive than the reactive planners such as 

potential-fields and VFH.

Herein, a feedforward-based local collision avoidance algorithm is presented that has 

similarities to both classes of collision avoidance algorithms [8], [9]. More specifically, the 

algorithm considers the robot’s dynamics and extrapolates the robot’s trajectory given an 

operator’s input. The resulting trajectory is checked for collisions against the obstacles in 

the environment. If a collision is predicted, the user’s input is modified to guide the robot 

along a collision-free trajectory. Similar to the reactive planners, such as potential-field, 

this algorithm only requires a limited knowledge of the local environment in the immedi­

ate vicinity of the robot. It also has similarities to more complex planners through the 

propagation of the trajectory using the robot’s dynamics. However, rather than optimizing 

this trajectory explicitly, the algorithm is designed to alter the user’s input directly which 

results in collision-free motion while maintaining the user’s intent as closely as possible.

The remainder of this paper is structured as follows. The feedforward-based automatic 

collision avoidance algorithm is reviewed in Sec. 5.3. The methodology of the experiments 

is presented in Sec. 5.5 and the results are presented and discussed in Sec. 5.6. Finally, 

concluding remarks and a discussion of future work are presented in Sec. 5.8.
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5.3 Automatic Collision Avoidance
This section provides a review of the feedforward-based automatic collision avoidance 

(ACA) algorithm studied in this paper. The full theoretical details for the deterministic 

and stochastic approaches are presented in [8] and [9], respectively.

5.3.1 S ystem  E quations and R obot W orkspace
Consider a robot with general, nonlinear equations of motion and a state space of 

arbitrary dimension m. Let X  c  Rm be the state space of the robot and let U C Rn be 

the control input space. The continuous-time equations of motion of the robot are defined 

by the function f  E X  x U ^  Rm, i.e.,

x(t) =  f(x (t)  u (t))  (5.1) 

where x(t) E X  and u(t) E U are the state and control input at time t, respectively.

Given an initial state x =  x(0) and a constant control input u up to the time-horizon 

t , the state of the robot for t > 0 is defined by

x(t) =  g(x, u ,t), (5.2)

where g E X  x U x R  ^  X  represents the solution to the differential equation (5.1).

Let Rd be the workspace in which the robot maneuvers, where typically d < 3, and let 

O C Rd define the subset of the workspace occupied by obstacles.

Remark: In order to maintain compatibility with the implementation of on-board sensing, 

those regions of the workspace that are occluded by the obstacles as seen from the current 

state of the robot are also considered obstacles. In other words, the subspace of the workspace 

that cannot be seen by the robot is also an obstacle.

Let R(x) c  Rd denote the subset of the workspace occupied by the robot when it is in 

state x E X . Then, a colliding state is defined as R(x(t)) n O  =  0.

The model has a 12-dimensional state x =  [pT, vT, r, w]T E X  that consists of position 

p E R 3, velocity v E R 3, Euler angles r E R 3, and angular velocity w E R 3. The 4­

dimensional control input u =  [r*, r*,v*,w*]T E U consists of the desired roll and pitch 

angles (roll, pitch, and yaw), r* and r*, respectively, the desired vertical velocity v*, and 

the desired yaw rate w*. Assuming a quadcopter UAV system, the equations of motion are 

given as



65

=  v, (5.3)

=  R  [0, 0, fcpy(v* — vz)]T — g — kdragv, (5.4)

=  w, (5.5)

kpx(r* — rx) — kdxWx

w kpy(r* ry) kdy wy 
kpz(w* — Wz)

(5.6)

where R  is the rotation from the quadcopter body frame into the world frame, the terms 

kpv, kpx, kdx, kpy,kdy,kpz, and kdrag are gains whose values (given in Table 5.1) are equal 

to an analogous physical system. Similar to many physical quadcopters, the simulated 

quadcopter has a maximum limit on the roll and pitch angles that is 0.35 rad (approximately 

20.0 degrees).

5.3.2 Problem  Statem ent
The collision avoidance problem is defined as finding a minimal change A u  e U to 

the control input u e U given the initial state x e X  of the robot to avoid collisions with 

obstacles within a time horizon t, hence

minimize: A uTQ A u (5.7)

subject to: Vt e [0, t] :: R(g(x, u + Au, t)) n O =  0,

where Q e Rnxn is a positive-definite weighting matrix.

5.3.3 Approach
The details of the automatic collision avoidance algorithm are presented below, where 

additional details are found in [9].

Given the robot’s current state x and the current control input u (from the operator), 

the positions of the robot in the future are found by

p(t, Au) «  p*(t) + J(t)A u , (5.8)

where p*(t) is the position the robot would obtain if the operator’s input remains constant, 

i.e., A u  =  0, and J(t) is the Jacobian of the position with respect to the input.

For a trajectory that is determined to be collision free (Vt e [0,t] :: R(p*(t)) n O =  0), 

the operator’s current input u is deemed safe and does not need to be changed, hence the 

change in input is set to zero: A u  =  0. Conversely, if a collision does occur (Vt e [0,t] :: 

R(p*(t)) n O =  0) the operator’s input leads to a collision and must be corrected in order 

for the robot to obtain a collision-free trajectory, hence the change in input is nonzero: 

A u  =  0. The process to select a nonzero change in input is discussed next.
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Table 5.1: Quadcopter Model Parameters

Parameter kpv kpx kdx kpy kdy kpz kdrag

Value 10.0 150.0 2.5 150.0 2.5 3.5 0.25

Let pc be the first point along the trajectory in which the robot collides with an obstacle 

(see Fig. 5.2), thus

pc =  p*(min{t £  [0,t] | R(p*(t)) n O =  0}). (5.9)

Given a unit normal vector n of the obstacle O that points into the free workspace, 

consider a halfspace with the same normal n (pointing toward the free space) that provides 

a convex approximation of the local free space. The halfspace is located at the collision 

point pc, determined by Eq. (5.9).

Given Eq. (5.9), a linear constraint is defined on the position p(r, Au) of the robot at 

time t ,

nTp (t, Au) > nTpc. (5.10)

The constraint on the robot’s position in Eq. (5.10) can be transformed into a constraint 

on its change in input A u  by substituting in Eq. (5.8), thence

nTJ ( t )A u  > nT(pc - p*(t)). (5.11)

Equation (5.7) is approximated using Eq. (5.11) as

minimize: A uTQ A u (5.12)

subject to: nTJ (t)A u > nT(pc — p*(t)),

where solving this convex optimization, such as is done by the RVO library in [17], provides 

a collision-free change in input Au, where finally the total control input provided to the 

robot is u + Au.

5.3.4 Iteration for C onvex Corners and Edges
The use of an approximation of a convex region of the local free space near the robot’s 

trajectory means that it cannot be assumed that the newly selected control input u + A u  

avoids collisions with respect to all obstacles for all time t £  [0, t]. In particular, this is true 

near convex edges or corners of the workspace as shown in Fig. 5.2. However, the approach 

can simply be repeated in an iterative fashion to solve this problem, as described in [8].
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Figure 5.2: Robot with its bounding geometry R , where the estimated trajectory for a 

user’s input is given with the desired position at the time horizon p(r, 0) causing a collision 

with the obstacle O at pc. The new collision-free input at time t is solved for; however, 

in convex corners this process needs to be iterated to detect possible collisions between the 

updated trajectory. Given the first iteration, the new estimated trajectory with the desired 

position as p (t, A u i) and a new input is chosen if a collision occurs. This is repeated until 

the trajectory is collision free, as shown by p (t, A u 2).

5.3.5 Including Yaw as an A dditional D egree-of-Freedom
In [8], [9], yaw motion is treated as a redundant degree of freedom and is held constant. 

However, to better enable a pilot to survey an area in a search-and-rescue scenario, holding 

the yaw constant limits performance. Yaw motion is especially necessary if the pilot is flying 

through a first-person video feed using a forward-facing camera.

To enable the yaw to be controlled by the pilot, the yaw degree of freedom is not affected 

by the algorithm. The algorithm determines the feedforward trajectory estimate assuming 

the user’s current commanded yaw rate remains constant over the time horizon t, similar 

to the desired roll and pitch angles. Through the Jacobian in Eq. (5.8), the algorithm 

can determine new roll and pitch angles and vertical velocity to avoid a collision given a 

constant yaw rate.

5.4 Potential-Field for UAV Tele-operation
The potential-field algorithm provides a repulsive force on the robot based on the 

distance between the robot and an obstacle detected by a range sensor [11]. The repulsive
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force increases as distance between the robot and the obstacle decreases. However, since 

this algorithm produces forces only based on the distance, it can still provide large repulsive 

forces even if the robot is moving away from a nearby obstacle, which is not desirable for 

tele-operated applications.

In [18], the potential-field algorithm was augmented to include the velocity and ac­

celeration constraints of a robot. However, in this approach the repulsive force is zero 

when the robot has no velocity component towards the obstacle. This is undesirable for a 

tele-operation application where a user may suddenly provide a control input towards that 

obstacle and the robot can collide if a repulsive force cannot counter that input fast enough. 

Lam et al. [10] presented the basic risk field (BRF), a potential-field variant, to address 

this concern. Their approach provides a small repulsive force for nearby obstacles even 

when there is no velocity component of the robot towards that obstacle. Therefore, there is 

always a small repulsion force pushing the robot away from obstacles, but the repulsive force 

is only a large force when reacting to velocities toward the given obstacle. The potential 

function P(d, Vj) that defines these repulsive forces given in [10] is

where amax is the maximum deceleration of robot toward an obstacle, Vj is the robot’s 

velocity component toward the obstacle, d is the distance between the robot and obstacle, 

and G is a gain to tune the magnitude of the repulsive gain.

Three experiments were performed by 24 subjects (eight per experiment). The subjects 

were recruited from the University of Utah student population. The subjects had the 

physical ability to use a commercial video game console controller and were at least 18 

years of age. The subjects were not compensated for their participation.

tres(d,Vi) d G

otherwise,

if tres < 0 

+...Jd v •) + d — G

(5.13)

5.5 Experimental Methods
5.5.1 Subjects

The experiment was approved by the University of U tah Institutional Review Board.
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5.5.2 D evice
The quadcopter model provided in Sec. 5.3.1 is implemented in simulation on a desktop 

computer with an Intel Core i5-3470 3.2 GHz processor, 8GB RAM, and 64-bit Ubuntu

12.04 operating system. The algorithms are implemented using the Robot Operating System 

(ROS) [19]. The aircraft is flown in first-person view (FPV) mode, where simulated FPV is 

made available to pilots operating the UAV. The simulator includes a 2D LIDAR to detect 

the obstacles in the environment in real time during the experiments.

Three environments were created in simulation using the V-REP software package [20] as 

shown in Fig. 5.3. The environments each used the same starting position of the quadcopter 

but have different finish locations. The corridors of each environment are either 2 m, 1.5 m, 

or 1 m wide. The simulated quadcopter has a diameter of 0.564 m.

5.5.3 D esign
A full-factorial repeated-measures design is used for the three experiments. There are 

two factors being considered in the experiments: the control method (manual, automatic 

collision avoidance, or basic risk field) and the environment (mazes shown in Fig. 5.3). A 

block design is used in which the three environments are presented to the participant in 

eight blocks of three, for 24 total trials. The order of the mazes in each block of three 

mazes is a random permutation. Each environment is seen an equal number of times by all 

participants.

The experiments compare pairs of control methods. The first and second experiments 

compare manual control to the ACA algorithm. These studies test the hypotheses that the 

ACA algorithm will result in fewer collisions than manual control, and that when collisions 

do not occur, the ACA algorithm will enable higher operating speeds. During a pilot study, 

it was observed that many subjects preferred to fly the quadcopter similar to a car, where 

they provided a constant forward input and steered the UAV through yaw. However, the 

yaw rate input being applied with maximum roll and/or pitch can lead to collisions due to 

the assumptions in the ACA algorithm’s development. Thus, the first experiment allowed 

the quadcopter to yaw, which led to a relatively high number of collisions. The second 

experiment is designed such that the quadcopter cannot yaw. Instead, the camera rotates 

and the pilot’s roll and pitch commands are defined in the camera frame and mapped into 

the robot frame. The third experiment compares the BRF algorithm to the ACA algorithm. 

This experiment tests the hypotheses that the ACA algorithm will result in fewer collisions 

than the BRF algorithm, and that the ACA algorithm will enable higher operating speeds 

than the BRF algorithm. In [10], the simulated quadcopter was a velocity-controlled robot
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Quadcopter Starting Locations

Finish Locations
Figure 5.3: Three mazes used during the experimental trials. Every maze has the same 

starting location with different finish locations as annotated in the image.

with simplified dynamics. The simulations in this paper, however, utilize the full nonlinear 

dynamics of the quadcopter with inputs including roll and pitch, i.e., accelerations. There 

were unnecessary oscillations observed when using the BRF so a damping term was included 

for the roll and pitch inputs.

In each experiment, each participant completed half of their trials (12 trials) using one 

of the two control methods and then the second half with the alternate control method. 

The experiments alternated the order of the control methods for each successive participant 

to attempt to minimize learning effects on the results. For example, the first subject would 

be tested first using manual control and second with the ACA algorithm, then the second 

subject would first use the ACA algorithm and use manual control second.

5.5.4 Procedure
For each experiment, the subjects completed two sessions with at least 24hrs between 

each session. For each session, the subject sat at a desk and held a wireless game console 

controller while directly facing a 24in. desktop computer monitor located approximately 

24 in. away from the subject. The subject is instructed that, for each trial, they should 

attempt to complete each maze as fast as possible while avoiding collisions. A collision is 

indicated by the screen turning red and the current trial stopping automatically.

Before each session, the subject is required to practice with the control method of that 

session for three minutes. The quadcopter model is the same during the practice as it is 

during the experiments. The environment during the three minutes of practice consists of
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2 m-wide hallways and has a similar appearance to the experiment’s environments.

During the experiment, the subject knows which control method they are using but not 

the technical details of the algorithm (or lack thereof). A verbal cue is given to the subject 

before each trial begins. A trial ends automatically with a collision or the crossing of the 

finish line, after which the process is repeated for all 12 trials of that session. Each session 

typically lasts 15-30 min, for each subject, with each subject completing two sessions.

In the first experiment, the subjects are informed that the automatic collision avoidance 

algorithm could still have collisions if a full roll or pitch input is applied at the same time as 

a yaw input, but no further information about the algorithm is provided. In the second and 

third experiments, when the quadcopter cannot yaw, the subjects are not provided with 

this additional information about the algorithm.

5.5.5 M easures
To quantify the performance of the subjects operating the simulated quadcopter, their 

performance is defined by several metrics: if a collision occurred (yes/no), the time to 

complete each trial, the path length traveled, and the average operating speed. The time, 

path length, and average operating speed are recorded for the duration of each trial that 

ended in either a collision or crossing the finish line.

The collision data can be represented as a binomial distribution and analyzed using the 

Friedman test [21]. The maps had a small effect on the results and are distributed equally 

in the experiment design, therefore the collisions are only categorized on one level, by which 

collision avoidance algorithm (or lack thereof) is being used by the subject. The remaining 

measures can be analyzed using a two-way ANOVA [22].

5.6 Experimental Results
The experimental results (the means, standard deviations, and comparison metrics) 

are summarized in Table 5.2. Analysis of operating speeds for only the trials that are 

completed (i.e., no collisions) is provided in Table 5.3. Table 5.4 shows if each participant’s 

individual results supported ( / )  or contradicted (X) the hypothesis being tested, with 

statistical significance at 95% confidence. A “-” represents that no conclusions can be 

drawn for or against the hypothesis with statistical significance. Figure 5.4 provides box 

plots of the data set for measures in which ANOVA is performed (i.e., all measures except 

collisions). For hypothesis two, that the ACA algorithm enables higher operation speeds 

than manual control for completed trials, a value of “N/A” means that no manual trials
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Table 5.2: Distribution Statistics for All Subjects and All Trials

(a) Sample Means (^) and Standard Deviations (s)
Collisions Time Path Len. Avg. Speed

V s V s V s V s

E1
Man. 0.89 0.32 66 74 32 25 0.64 0.27

ACA 0.53 0.501 74 56 54 25 0.87 0.27

E2
Man. 0.86 0.34 42 38 29 23 0.83 0.35

ACA 0.10 0.31 76 21 71 11 0.97 0.12

E3
BRF 0.073 0.26 112 34 76 17 0.70 0.092

ACA 0.10 0.31 77 17 73 10 0.96 0.12

(b) Comparison Metrics
Collisions Time Path Len. Avg. Speed

Chi-Sq. p F p F p F p
E1 33 1.2e-8 1.5 0.23 43 1.1e-9 55 1.6e-11

E2 103 3.7e-24 68 1.9e-13 351 1.7e-38 15 1.8e-4

E3 0.58 0.44 136 6.7e-22 4.1 0.045 468 1.4e-44

Table 5.3: Distribution Statistics for Completed Trials Only, for All Subjects

(a) Sample Means (^) and Stan­
dard Deviations (s) (b) Comparison Metrics

Avg. Speed Avg. Speed

V s F p

E1
Man. 0.46 0.14 E1 21 2.5e-5

ACA 0.78 0.23 E2 26 1.7e-6

E2
Man. 0.76 0.18 E3 268 5.1e-37

ACA 0.96 0.12

E3
BRF. 0.70 0.09

ACA 0.95 0.11

Table 5.4: Hypothesis Results for Individual Subjects

(a) Exp. 1 (b) Exp. 2 (c) Exp. 3
H1 H2 H1 H2 H3 H4

S1 / N/A S1 / / S1 - /

S2 - - S2 / N/A S2 - /

S3 - N/A S3 / N/A S3 - /

S4 - / S4 / N/A S4 - /

S5 / N/A S5 / / S5 - /

S6 / N/A S6 / / S6 - /

S7 / / S7 / / S7 - /

S8 - - S8 / - S8 - /
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Figure 5.4: Box plots for the experiments comparing automatic collision avoidance (ACA) 

algorithm, manual control (Manual), and basic risk field (BRF) algorithm. Results in 

(a1)-(a3) show ACA versus manual control of the UAV with yaw. Results in (b1)-(b3) 

show ACA versus manual control of the UAV without yaw. Results in (c1)-(c3) show 

performance of ACA versus BRF algorithm. Left column shows the trial time [(a1)-(c1)], 

middle column shows the path length [(a2)-(c2)], and right column shows the average speed 

[(a3)-(c3)].

were completed, or in other words all 12 trials resulted in a collision for that participant 

and no statistical testing can be completed regarding the second hypothesis.

5.6.1 E xperim ent One: A utom atic  Collision A voidance (A C A ) vs.
M anual Control W ith  Yaw

In regards to Hypothesis 1, the statistical results that include the data from all subjects 

and all trials (Table 5.2) indicate that the ACA algorithm results in significantly fewer 

collisions than manual control. The mean number of collisions decreased by 40% from
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manual control when using the ACA algorithm. When considering the results for individual 

subjects (Table 5.4(a)), four out of the eight subjects showed a significant improvement when 

using ACA, and the other four subjects are inconclusive. No subject showed significant 

improvement when using manual control.

In regard to Hypothesis 2, the statistical results from all subjects and completed trials 

(Table 5.3) indicate that the ACA algorithm enabled pilots to fly the UAV with higher aver­

age operating speeds compared to manual control with a 70% increase in speed. Considering 

only the individual results (Table 5.4(a)), two of the eight subjects showed improvement in 

their operating speeds with statistical significance. Another two subjects are inconclusive, 

with no statistical significance between their speeds. The remaining four subjects did not 

complete a single trial with manual control. Although the statistics of their operating speeds 

cannot be assessed, the fact that they did not complete a single trial manually demonstrates 

the usefulness of the ACA algorithm. No subject showed improvement when using manual 

control compared to the ACA algorithm.

5.6.2 E xperim ent Two: A C A  vs. M anual Control W ith ou t Yaw
The second experiment addressed Hypotheses 1 and 2 as well, but, unlike the first 

experiment, in this experiment the quadcopter cannot yaw. Hypothesis 1 is strongly 

supported by the statistical results for all subjects and all trials (Table 5.2). There is an 

observed 88% decrease in the number of collisions from manual control when using the ACA 

algorithm in this experiment. Looking at the individual subject’s results in Table 5.4(b) 

shows that, in fact, every subject had fewer collisions with the ACA algorithm than they 

did with manual control with statistical significance.

Considering the statistical results from the completed trials for all subjects (Table 5.3), 

Hypothesis 2 is supported as well, where the subjects had a higher mean average operating 

speed with statistical significance with a 26% increase in speed. The individual results in 

Table 5.4(b) support Hypothesis 2 as well. Four of the eight subjects showed improved 

operating speeds with statistical significance. One of the eight subjects is inconclusive and 

the remaining three could not be analyzed because they did not complete a single trial using 

manual control. None of these subjects showed improvement with significance when using 

manual control.

5.6.3 E xperm ent Three: A C A  vs. B asic R isk F ield (B R F )
This experiment addressed Hypotheses 3 and 4. Regarding Hypothesis 3, there is no 

conclusive evidence found from the experiment. There is no significant difference in the
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mean number of collisions between the ACA algorithm and the BRF algorithm. This is the 

case for all subjects and all trials (Table 5.2) as well as each individual subject (Table 5.4).

Although Hypothesis 3 is inconclusive, the results of this experiment strongly support 

Hypothesis 4. The subjects performed at higher operating speeds with the ACA algorithm 

compared to the BRF algorithm as seen by the statistics for all subjects and all trials (Ta­

ble 5.2) and the completed trials only (Table 5.3). When looking at the individual subjects’ 

results in Table 5.4(c), the hypothesis is supported by all eight subjects independently.

5.7 Discussion
It is observed that there is a large difference in the speed increase between the first and 

second experiment, both comparing ACA to manual control. It is hypothesized that this 

resulted from the fact that the subjects were informed during the first experiment that a 

large yaw input at the same time as roll and pitch could result in collision with the ACA 

algorithm and tended to fly differently in both the manual and ACA trials, typically flying 

a short distance and stopping and then rotating in place.

The third hypothesis is that there would be fewer collisions using the ACA algorithm 

than the BRF algorithm. The results of the third experiment are inconclusive with regard 

to this hypothesis. It was expected that the BRF would perform well regarding collisions 

due to the potential field’s conservative nature, leading to the slower operation speed, so 

these results are not surprising. The ACA algorithm could be made more conservative 

to reduce its number of collisions as well. Given the mean number of collisions from the 

third experiment, obtaining statistical significance would require a much higher power of 

the study through an increased number of subjects. However, the effect size is small (0.12 

when considering the BRF as the control group) and a study with higher power is not likely 

necessary from a practical standpoint.

The third experiment supported the fourth hypothesis, which is that the ACA algorithm 

would perform at higher average operating speeds than the BRF algorithm. An increase 

in speed of approximately 37% is observed in the experiment. This improvement in per­

formance is predicted due to the ACA algorithm’s ability to adjust the input based on the 

full dynamics and, for example, allowing the robot to strafe along a wall and only alter the 

trajectory when a collision is predicted. The BRF is more conservative with a repulsive force 

always applied with a magnitude based on velocity and distance to the wall. In the current 

implementation, the forces were tuned to be able to travel through the narrow corridors, 

which are problematic for potential-field algorithms [23], while still being able to decelerate 

the robot to a stop when it approaches a wall at high speed. Although it is predicted that the
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BRF could allow higher operating speeds in less constrained environments, in applications 

like search-and-rescue a tightly constrained environment can be expected.

5.8 Conclusions and Future Work
This paper studied UAV-pilot performance with and without the assistance of colli­

sion avoidance algorithms. A comparison was done between a feedforward-based collision 

avoidance algorithm, a basic risk field (potential field-based) algorithm, and full manual 

control. Human-subject tests were performed where pilots operated a simulated UAV 

system running the algorithms through three maze-like environments. In the experiments, 

the number of collisions, the path length, trial time, and average operating speed were 

recorded. The experimental results showed that the proposed feedforward-based automatic 

collision avoidance algorithm is capable of significantly improving a pilot’s performance 

compared to manual control and the basic risk field algorithm for the tele-operation of 

UAVs.

Further studies would include more extensive comparison of the feedforward-based colli­

sion avoidance algorithm to other local collision avoidance methods and field studies of the 

algorithms on various UAV platforms, including fixed-wing configurations.
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CHAPTER 6
DISCUSSION AND FUTURE  

CONSIDERATIONS
The desire to incorporate mobile robots into applications that may be dangerous or 

undesirable for humans has led to large bodies of research on collision avoidance. Many 

approaches have been developed for local obstacle knowledge that react to sensor infor­

mation. Many of the early local collision avoidance methods made assumptions about the 

robot being modeled as a kinematic system. This assumption allows for many algorithms 

to determine obstacle avoidance maneuvers purely based upon relative distance or relative 

velocity between the obstacle and the robot. However, for many robots operating at high 

speeds or with large inertial effects, their dynamics should not be ignored. Typically, 

algorithms that assume kinematic models compensate for the known error between the 

robot’s true model and the kinematic model by making the robot maintain some distance 

from the wall to prevent collisions. Some applications, such as operating a robot indoors 

with obstacles constantly in close proximity, could perform better if the robot was allowed 

to get as close as possible to the obstacles without colliding. These robots can maintain 

smaller distances to obstacles if their dynamics are known and explicitly considered.

In Chapter 2, the Control Obstacle was developed and shown for reciprocal collision 

avoidance within systems of robots where the robots could have different, nonlinear equa­

tions of motion. In this work, the Control Obstacle was shown to be a generalized repre­

sentation of previous reciprocal collision avoidance methods. An extension to the nonlinear 

systems was shown and tested in both simulations and experiments. However, the algorithm 

required careful selection of the time horizon over which trajectories were predicted for the 

nonlinear systems, such as car-like robots or hovercrafts. If the time horizon was selected 

to be too small, the robots could create a dead-lock situation where they got too close to 

each other before attempting to perform evasive actions. Due to their limited control input 

space, a collision-free input was not always feasible. A time horizon that is too long can 

also cause the collision-free control input space of the robots to be an empty set. While this
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result may not be intuitive at first, consider that the algorithm creates the convex hull of 

the Control Obstacle with respect to every other robot in the environment. A longer time 

horizon creates a longer, possibly highly curved, Control Obstacle that sweeps out a larger 

area as the time horizon increases. Essentially, the algorithm can be overly conservative 

for a longer time horizon and still lead to a collision by failing to find a feasible change in 

control input that is collision free. Currently, simple proportional controllers on heading 

and speed, for example, are implemented to initially test the algorithm. By considering 

a more complex control system for nonlinear systems that could include sets or sequences 

of inputs, using Lie algebra for example [1], could allow for more complex trajectories to 

be considered in the model. An alternative could be to perform reinforcement learning on 

the system to determine optimal time horizons for varying configurations of robots. Also, 

given a set of robots and their dynamics, an offline learning algorithm could potentially be 

implemented to determine the estimated best time horizon for the provided set of robots 

to avoid collisions [2]-[4].

Chapters 3 and 4 provided an algorithm designed for a single tele-operated robot to avoid 

collisions. This algorithm incorporates linear halfspace constraints to find a change in input 

similar to the algorithms in Chapter 2. The algorithm is developed for a stochastic motion 

and sensing model. However, in practice it can be very difficult to estimate the uncertainty 

in a motion model that can capture unmodeled dynamics and external disturbances prop­

erly. Particularly, with a small unmanned aerial vehicle (UAV) such as a quadcopter, the 

aerodynamic effects near obstacles can create very large disturbances which are complicated 

to model [5], [6]. The inclusion of an adaptive model, such as model predictive control [7],

[8], could help to update the uncertainty in real time.

In Chapter 4, the sensing uncertainty was developed as a function of the relative distance 

between an obstacle and the robot. This conveys the fact that many range sensors are more 

accurate at shorter distances. However, a more generalized approach could be implemented. 

Through sensing and segmentation of the obstacle into planar faces, each vertex could be 

assigned a unique covariance value. Through considering the covariance of each vertex, the 

algorithm could potentially avoid obstacles and respond differently based on the uncertainty 

of each particular object in the environment. For example, if a set of vertices representing 

a wall were determined by several sensors’ fused data, those vertices would have a lower 

uncertainty than another wall that was only seen by one obstacle, allowing the robot to 

maneuver closer to the wall with less uncertainty in its relative position. By computing each 

vertex’s uncertainty with respect to the sensor(s) used to detect it, a generalized sensing
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approach could be proposed.

The feedforward model-based collision avoidance made several simplifying assumptions 

during its derivation. One such assumption was that if the position of the robot at the end 

of the predicted desired trajectory was collision free, then the robot was collision free along 

the entire trajectory. This assumption allowed for linear halfspace constraints to define a 

collision, and a change in input could be calculated through linear programming method. 

However, there are limitations in the algorithm due to this assumption. Similar to reciprocal 

collision avoidance methods, the feedforward algorithm in Chapters 3 and 4 requires the 

selection of a time horizon to look ahead for a collision. This value, if too small, can lead to 

the robot overshooting its desired position and still potentially leading to a collision (a larger 

safety buffer through the stochastic algorithm can help alleviate this). However, making 

the time horizon too long makes the system respond more like an overdamped system and 

can potentially violate other assumptions in the algorithm’s development. Incorporating 

the velocity into the halfspace constraint through some kind of function, similar to an LQR 

cost matrix, for example, could provide for a desired position at the time horizon with no 

velocity component into the obstacle simultaneously.

A second limitation stemming from the position assumption is that nonholonomic robots 

may not inherently work in this algorithm. For example, imagine a car-like robot driving 

at an obstacle some extended distance away (see Fig. 6.1(a)). If that obstacle is within a 

certain distance where the robot has a limited turning radius and is traveling at a high speed, 

the resultant trajectory from the algorithm will be similar to the previously mentioned case 

when a controller overshoots its desired position and the endpoint of the position is outside 

the obstacle. This assumption can also fail to avoid collisions when a quadcopter is provided 

a yaw input at the same time as a large roll and/or pitch command (see Fig. 6.1(b)). This 

effect was observed in the first study in Chapter 5. A naive approach to solve this could be 

to use the maximum penetrating point on the trajectory to define the halfspace constraint, 

but this could create more halfspace constraints than there are dimensions of the workspace, 

possibly leading to an infeasible linear programming problem where no collision-free input 

can be found due to an overconstrained optimization problem.

In Chapter 5, studies were performed to quantify the human operator performance 

using the automatic collision avoidance (ACA) algorithm in Chapters 3 and 4, manual 

control, and the basic risk field (BRF) [9]. The ACA algorithm was found to perform 

better than both manual control and the BRF. In [9], however, the BRF was developed 

for a velocity-controlled robot with a simplified model. In this dissertation, the studies
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(b)
Figure 6.1: Two scenarios in which the algorithm can fail to avoid collisions provided 

non-holonomic constraints on a (a) car-like robot or a (b) quadcopter that can yaw.

were performed provided acceleration inputs on the simulated quadcopter. Further studies 

could be beneficial to compare the two algorithms in more depth. First, a study could 

be performed to determine what gains provide optimal performance for the BRF with 

acceleration-controlled robots. The ACA algorithm in this dissertation could also have 

studies performed to determine users’ preferred time-horizon for the feedforward prediction. 

These two user-selected values, the BRF gains and ACA time-horizon, could then be 

compared again to further verify the results of the studies presented in this dissertation. A 

set of studies could also be performed using the velocity-controlled robots which the BRF 

was originally designed for in order to provide a variety of robots for the configuration.
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CHAPTER 7
CONCLUSIONS

This dissertation focused on advancing the state-of-the-art of local collision avoidance 

methods by explicitly considering robots’ dynamics, for single- and multi-robot systems. 

For the growing number of applications for mobile robots, such as unmanned aerial vehicles 

(UAVs), the robots’ usefulness will increase dramatically if they are able to autonomously 

avoid each other and obstacles even under human supervision. Thus, automatic collision 

avoidance technology can improve safety as well as broaden applications of many robotic 

systems.

First, Objective 1 of this dissertation developed a method of reciprocal collision avoid­

ance for robots with dynamics. Previous methods assumed the robots were all the same 

type with linear equations of motions. This work, presented in Chapter 2, demonstrated 

the following:

• a unification of all previous reciprocal collision avoidance approaches under a gener­

alized representation using control obstacles

• real time computation rates for over 100 robots

• collision avoidance for nonhomogeneous systems of robots with nonlinear dynamics in 

both simulation and real-world experiments

Next, Objective 2 of this dissertation included three tasks. The first was the theoretical 

development of a stochastic algorithm for collision avoidance of a tele-operated unmanned 

aerial vehicle (UAV). This task demonstrated the following:

• implementation on a simulated quadcopter in two- and three-dimensional environ­

ments

• the approach is capable of avoiding collisions provided uncertainty in the motion model 

and sensing of obstacles



84

•  the approach performed with a lower true probability for collision than the estimated 

probability for collision

For the second task of Objective 2, the feedforward approach for automatic collision 

avoidance was implemented on a custom-designed quadcopter UAV. The following was 

demonstrated during this task:

• the stochastic approach of the previous task is applicable to real-world environments 

with completely on-board sensing and computation

• the quadcopter could maneuver in real-world environments without collisions even as 

the operator was attempting to cause collisions

For the final task in Objective 2, human-subject studies were performed to quantitatively 

compare pilots’ performance using the feedforward approach as well as the basic risk field 

(a potential field variant) and full manual control. The algorithm in this dissertation was 

found to perform better, particularly in terms of average robot speed, which is an extremely 

vital aspect of an application, such as search and rescue, where time is critical. Specifically, 

the following was found:

• the approach in this dissertation showed an improvement over manual control with a 

88% decrease in collisions and a 25% increase in average robot speed

• the approach in this dissertation showed an improvement over the basic risk field with 

a 36.7% in average robot speed

The results of this dissertation advanced the state-of-the-art of local collision avoidance 

methods by developing algorithms for both multi- and single-robot systems that can avoid 

collisions with other robots and obstacles in the workspace while explicitly considering the 

robots’ potentially nonlinear dynamics through a feedforward trajectory estimate. The 

results contribute to the field of research that is continuing to make mobile robots more 

useful in beneficial applications such as search and rescue.


