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ABSTRACT  

Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary 

syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The 

primary virus host is deer mice, and greater deer mice abundance has been shown to 

increase the human risk of HPS. There is a great need in understanding the nature of the 

virus host, its temporal and spatial dynamics, and its relation to the human population 

with the purpose of predicting human risk of the disease. 

This research studies SNV dynamics in deer mice in the Great Basin Desert of central 

Utah, USA using multiyear field data and integrated geospatial approaches including 

remote sensing, Geographic Information System (GIS), and a spatially explicit agent-

based model. The goal is to advance our understanding of the important ecological and 

demographic factors that affect the dynamics of deer mouse population and SNV 

prevalence. The primary research question is how climate, habitat disturbance, and deer 

mouse demographics affect deer mouse population density, its movement, and SNV 

prevalence in the sagebrush habitat. 

The results show that the normalized difference vegetation index (NDVI) and the 

enhanced vegetation index (EVI) can be good predictors of deer mouse density and the 

number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be 

very useful in predicting mouse abundance and SNV risk.  
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The results also showed that climate, mouse density, sex, mass, and SNV infection had 

significant effects on deer mouse movement. The effect of habitat disturbance on mouse 

movement varies according to climate conditions with positive relationship in predrought 

condition and negative association in postdrought condition. The heavier infected deer 

mice moved the most. Season and disturbance alone had no significant effects.  

The spatial agent-based model (SABM) simulation results show that prevalence was 

negatively related to the disturbance levels and the sensitivity analysis showed that 

population density was one of the most important parameters affecting the SNV 

dynamics. The results also indicated that habitat disturbance could increase hantavirus 

transmission likely by increasing the movement and consequently contact rates. 

However, the model suggested that habitat disturbance had a much stronger effect on 

prevalence by decreasing population density than by increasing mice movement. 

Therefore, overall habitat disturbance reduces SNV prevalence. 
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CHAPTER 1 

INTRODUCTION 

Problem Statement 

Animal populations and the diseases they carry are strongly affected by environmental 

change, which can enhance or control the development of certain diseases (IES, 2005a). 

The progression of human society in the past several centuries has dramatically changed 

the ecological landscape. Human population growth and related landscape modification 

threaten to reduce biological capital and disrupt ecological processes (Myers, 1998).  

From large-scale land transformation to the global movement of people, animals, and 

plants, very few ecosystems can be considered remote or pristine (IES, 2005a).  These 

are a few factors that have led to a dramatic increase in new and emerging zoonotic 

diseases (i.e. diseases spread from animals to people), such as hantavirus, Avian Flu, and 

West Nile Virus.  

Traditionally, infectious diseases have been addressed through the use of vaccines or 

drugs. However, an understanding of how ecological systems influence disease dynamics 

could help advance our ability to both manage and predict infectious diseases in humans, 

wildlife, and natural habitat. Karl Johnson, a world-famous virologist, noted at the 2005 

Ecology of Infectious Diseases Conference, “Successfully addressing the infectious 

diseases of the future will require building a bridge between both sides of the disease 
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equation: epidemiology and ecology”. Sharon Deem, a veterinarian at the Smithsonian 

Institution, commented, "Incorporating ecological approaches into the infectious disease 

framework will strengthen our ability to respond to emerging pathogens” (IES, 2005b). 

One example of a zoonotic disease that has occurred in North America is hantavirus 

pulmonary syndrome (HPS). HPS is characterized by acute respiratory distress with a 

high mortality rate (>50%) (Glass et al., 2000; Nichol et al., 1993). HPS has been traced 

to the infection with Sin Nombre virus (SNV), a strain of hantavirus of which the deer 

mouse (Peromyscus maniculatus) is the primary reservoir (CDC, 1993; Childs et al., 

1994; Hjelle et al., 1996). So far there is no vaccine or effective drug to prevent or treat 

HPS (Buceta et al., 2004; Custer et al., 2003). Therefore, there is a need to understand the 

nature of the virus host, its temporal and spatial dynamics, and its relation to the human 

population in order to predict the risk of the disease and design effective prevention 

policies.  

The goal of this research is to advance our understanding of the effects of 

anthropogenic habitat disturbance on deer mouse movement and the prevalence of SNV 

using remote sensing, Geographic Information System (GIS) and agent-based modeling 

(ABM). This research will help us understand the important ecological parameters of 

hantavirus infections in the deer mouse population, and expand our understanding of the 

risk factors of developing HPS in humans as a consequence of SNV infection. 

Research Objectives 

The objectives of this research are to increase the understanding of the ecology of the 

primary virus host of SNV and the dynamics of SNV in a desert sagebrush habitat in the 

Great Basin, Utah. The specific objectives are as follows: 
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1. Identifying the factors potentially affecting deer mouse movement in the desert 

sagebrush habitat by: (1) measuring deer mouse movement using GIS and 

recapture data, and (2) examining the relationships between deer mouse 

movement and various factors, including climate, season, habitat disturbance, 

population density, sex, mass, and SNV infection status. The results can help 

increase our understanding of the important factors that may affect hantavirus 

dynamics.  

2. Investigating the value of Moderate Resolution Imaging Spectroradiometer 

(MODIS) time-series data for estimating rodent abundance and SNV prevalence 

with the goal of predicting hantavirus risk. We examine the relationships 

between environmental conditions (vegetation greenness and moisture), deer 

mouse density, and SNV prevalence using high temporal resolution (16 day) 

MODIS satellite imagery and multiyear field survey data. The central hypothesis 

is that vegetation indices can serve as proxies for deer mouse food availability 

that affects deer mouse abundance and SNV prevalence.    

3. Identifying the relationships between habitat disturbance, deer mouse density, 

movement, and SNV prevalence using a spatially explicit agent-based model at 

microlevels. In recent years, agent-based modeling (ABM) has emerged as a 

very promising bottom-up modeling approach to simulate individual behaviors 

and their interactions at a microlevel, which results in emergent phenomena at a 

macrolevel. It is a great exploratory tool to test hypotheses as well as to 

experiment with a range of “what-if” scenarios.  
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Research Questions  

The primary research questions are the following: 

1. How do climate condition, deer mouse demographics (e.g. mass and sex), and 

anthropogenic habitat disturbance affect deer mouse movement in desert sagebrush 

habitats? 

It has been suggested that deer mouse movement through the landscape affects the rate 

and pattern of disease transmission (Langlois et al., 2001). Escutenaire et al. (2002) found 

that hantavirus infection was associated with higher mobility in juvenile and subadult 

males. However, much research still needs to be done to further understand the 

relationship between the movement and the disease transmission rate and pattern and how 

the environmental and demographic factors affect deer mouse movement.  

2. How do environmental conditions affect deer mouse population densities and SNV 

prevalence?    

Environmental conditions, such as climate (Glass et al., 2000; Langlois et al., 2001), 

seasonality (Cantoni et al., 2001; Dearing et al., 2009), and vegetation type have been 

associated with the geographic distribution of SNV in deer mouse populations in past 

studies.  One of the main drivers for the interannual changes in HPS cases is thought to 

be fluctuation in precipitation and temperature. The El Niño of 1991 - 1992 is believed to 

be the major climatic factor leading to the outbreak of HPS in 1993 in the southwestern 

U.S. The dramatically increased rainfall is thought to have brought more food and thus 

increased local rodent populations (Engelthaler et al., 1999; Parmenter et al., 1993). This 

affects the abundance of deer mice and subsequently, the human risk of HPS. 
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3. How might changes in habitat disturbance, mouse density, and deer mouse 

movement in this system affect hantavirus prevalence? Does disturbance hinder or 

increase the hantavirus transmission in deer mice? 

 There exist two contrasting hypotheses on how habitat disturbance affects hantavirus 

prevalence. Langlois et al. (2001) suggested that fragmented habitat increased mouse 

movement and thus contact rates, and consequently increased hantavirus transmission. In 

contrast, Calisher et al. (2000) proposed that habitat disturbance reduced rodents‟ habitat 

and thus virus host, and therefore decreased hantavirus prevalence.   

Hantavirus Dynamics  

In May 1993, an outbreak of HPS characterized by acute respiratory distress with high 

mortality rate (>50%) (Glass et al., 2000; Nichol et al., 1993) among previously healthy 

young people occurred in the Four Corners region of the southwestern United States, 

where the borders of Colorado, New Mexico, Arizona, and Utah meet. Hantaviruses are 

rodent-borne zoonotic agents that produce mild to severe hemorrhagic fevers in victims 

(Mills et al., 1999). There have been about 30 different types of hantaviruses identified 

throughout most of Europe, Asia, and the Americas (Schmaljohn & Hjelle, 1997). Sin 

Nombre virus (SNV), one of the hantaviruses, was not isolated until the 1993 outbreak in 

the Four Corners region. SNV causes HPS which has emerged as a significant public 

health problem throughout the Americas (Schmaljohn & Hjelle, 1997). 

The primary host of SNV is the deer mouse (Childs et al., 1994; Hjelle et al., 1996), 

Peromyscus maniculatus, one of the most common mammals in North America. The 

virus establishes a chronic infection in the mouse population, but it is not lethal to them. 

The principal means of the virus transmission in the mice population is believed to be 
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aggressive fighting (Calisher et al., 1999; Glass et al., 1988; Mills et al., 1997). Many 

studies have found that scars or wounds in the rodents are positively related to SNV 

infection (Calisher et al., 2002; Root et al., 1999). Humans are frequently infected by 

inhaling the infectious aerosols of the urine, feces, and saliva shed by the rodents (Tsai, 

1987). 

A number of factors have been related to the dynamics of hantaviruses in mouse 

populations, including environmental conditions (e.g. precipitation, vegetation type and 

structure, elevation), the demographics of rodent population (e.g. sex, reproductive status, 

age, mass, species richness, host density), and movement. The El Niño of 1991 - 1992 is 

believed to be the major climatic factor leading to the outbreak of HPS in 1993 in the 

Four Corners region. The dramatically increased rainfall is thought to have brought more 

food and thus increased local rodent populations (Engelthaler et al., 1999; Parmenter et 

al., 1993). Glass et al. (2000) found an association between environmental conditions and 

HPS risk using rainfall pattern data at weather stations combined with remotely sensed 

data. Boone et al. (2000) used remote sensing and GIS to characterize vegetation type and 

density, elevation, slope, and hydrologic features to predict SNV infection of deer mice 

with up to 80% accuracy. Many studies have found that there is a higher prevalence of 

SNV in male than female rodents (Calisher et al., 2002; Escutenaire et al., 2002)). 

Escutenaire et al. (2002) found that sexually active animals were significantly more often 

wounded and this was positively related with infection. Calisher et al. (2002) found a 

negative association between rodent species diversity and prevalence of SNV infection in 

deer mice. This was believed to be because higher species diversity reduces the primary 

disease reservoir (deer mice). 
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A few studies have suggested that landscape structure may have significant effects on 

disease dynamics. Langlois et al. (2001) found that virus transmission increased with 

habitat disturbance. They present two possible explanations for the positive effect of 

habitat disturbance on hantavirus transmission. First, if deer mice move further in a more 

disturbed habitat or fragmented landscape, which was found to be the case in 

Diffendorder et al. (1995), they may have a wider range of contact and therefore increase 

virus transmission probability. Second, habitat disturbance may confine deer mice in 

small habitat patches and therefore increase deer mouse local population density, contact, 

and thus virus transmission rates. Mackelprang et al. (2001) suggested that a high level of 

SNV prevalence at one site in Utah may be due to disturbance by humans, primarily the 

intensive use of all-terrain vehicles (ATVs) at a recreation area. Heavy recreation use 

produces numerous dirt roads, campsites, and large open spaces. Open space caused by 

this disturbance reduces preferred habitat for species such as deer mice, and may cause 

animal density to increase within a microhabitat. Increased interactions may lead to a 

higher rate of SNV transmission. From the opposite point of view, Calisher et al. (2001) 

suggested that habitat disturbance, primarily by grazing, decreased prevalence, in that a 

high rate of turnover could not maintain the virus as there were fewer good virus hosts in 

the disturbed habitat.  

The potential effect of landscape pattern on disease transmission is becoming 

increasingly recognized (Kitron, 1998; Ostfeld et al., 2002; Taylor & Merriam, 1996). A 

few recent studies have suggested that anthropogenic habitat disturbance may have 

significant effects on hantavirus dynamics (Calisher et al., 2001; Langlois et al., 2001; 

Mackalprang et al., 2001). However, the findings have been contradictory. Langlois et al. 
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(2001) found that virus transmission increased with habitat disturbance. They present two 

possible explanations for the positive effect of habitat disturbance on hantavirus 

transmission. First, if deer mice move further in a more disturbed habitat or fragmented 

landscape, which was found to be the case in Diffendorder et al. (1995), they may have a 

wider range of contact and therefore increase virus transmission probability. Second, 

habitat disturbance may confine deer mice in small habitat patches and therefore increase 

deer mouse local population density, contact, and thus virus transmission rates. 

Mackelprang et al. (2001) suggested that a high level of SNV prevalence at one site in 

Utah may be due to disturbance by humans, primarily the intensive use of all-terrain 

vehicles (ATVs) at a recreation area. Heavy recreation use produces numerous dirt roads, 

campsites and large open spaces. Open space caused by this disturbance reduces 

preferred habitat for species such as deer mice, and may cause animal density to increase 

within a microhabitat. Increased interactions may lead to a higher rate of SNV 

transmission. From the opposite point of view, Calisher et al. (2001) suggested that 

habitat disturbance, primarily by grazing, decreased prevalence, in that a high rate of 

turnover could not maintain the virus as there were fewer good virus hosts in the 

disturbed habitat. Calisher et al. (2001) also suggested that long-lived infected deer mice 

served as transseasonal, over-winter reservoirs for the virus, providing the mechanism for 

its survival. Whether disturbance hinders or increases hantavirus prevalence is still in 

question. 

Methodology Framework 

This section provides an overview of three major components of this research and 

their connections shown in Figure 1.1: 1) GIS movement mapping and analysis (in 
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green), 2) MODIS satellite data analysis (in cyan), and 3) the spatially explicit agent-

based model (in blue). The red lines represent interactions between the major 

components. GIS is used to visualize movement vectors and calculate movement 

distances to examine the effects of climate, season, habitat disturbance, mass, and sex on 

deer mice movement with a statistical testing approach. The GIS movement vectors are 

overlaid on the high resolution remote sensing imagery for a visual and qualitative 

evaluation of how habitat disturbance affects deer mice movement. Environmental 

indices derived from MODIS satellite imagery are examined for the relationships with 

deer mice density and hantavirus prevalence. The environmental indices may be used to 

specify the food resource level, which affects deer mice density in the spatial agent-based 

model (SABM). The SABM is fed with a GIS categorical habitat map derived from high 

resolution imagery, and mouse densities are calculated from the field data. Deer mouse 

population dynamics, their movement and contacts, and hantavirus transmission are 

simulated with various adjustable parameters, and the process is visualized with graphical 

displays. 
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Figure 1.1 Methodology Framework. 
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CHAPTER 2 

USING MODIS SATELLITE IMAGERY TO PREDICT 

HANTAVIRUS RISK 

Abstract 

Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary 

syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The 

primary virus host is deer mice, and greater deer mice abundance has been shown to 

increase the human risk of HPS. Our aim is to identify and compare vegetation indices 

and associated time lags for predicting hantavirus risk using remotely sensed imagery. 

A five-year time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite imagery and corresponding field data was utilized to compare various vegetation 

indices that measure productivity with the goal of indirectly estimating mice abundance 

and SNV prevalence. Relationships between the vegetation indices and deer mouse 

density, SNV prevalence, and the number of infected deer mice at various time lags were 

examined to assess which indices and associated time lags might be valuable in 

predicting SNV outbreaks. 

The results reveal varying levels of positive correlation between the vegetation indices 

and deer mouse density as well as the number of infected deer mice. Among the 

vegetation indices, the normalized difference vegetation index (NDVI) and the enhanced 

vegetation index (EVI) produced the highest correlations with deer mouse density and the 
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number of infected deer mice using a time lag of 1.0 to 1.3 years for May and June 

imagery.  

This study demonstrates the potential for using MODIS time-series satellite imagery in 

estimating deer mouse abundance and predicting hantavirus risk. The one-year time lag 

provides a great opportunity to apply satellite imagery to predict upcoming SNV 

outbreaks, allowing preventive strategies to be adopted. Analysis of different predictive 

indices and lags could also be valuable in identifying the time windows for data 

collection for practical uses in monitoring rodent abundance and subsequent disease risk 

to humans. 

Introduction 

In May 1993, an outbreak of hantavirus pulmonary syndrome (HPS) occurred among 

previously healthy young people in the Four Corners region of the southwestern United 

States. HPS has a relatively high mortality rate (>50%) and is characterized by acute 

respiratory distress (Glass et al., 2000; Nichol et al., 1993). HPS was traced to the 

infection with Sin Nombre virus (SNV), a strain of hantavirus of which the deer mouse 

(Peromyscus maniculatus) is the primary reservoir (CDC, 1993; Childs et al., 1994; 

Hjelle et al., 1996). There is currently no vaccine or effective drug to prevent or treat  

HPS (Buceta et al., 2004; Custer et al., 2003), and for this reason there is a need to 

understand the nature of the virus as well as its spatial and temporal dynamics in order to 

predict the risk of the disease and design effective prevention policies. 

Environmental conditions, such as climate (Glass et al., 2000; Yates et al., 2002), 

seasonality (Cantoni et al., 2001; Dearing et al., 2009), and vegetation type (Boone et al., 

2000) have been associated with the geographic distribution of SNV in deer mouse 
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populations in past studies.  One of the main drivers for the interannual changes in HPS 

cases is thought to be fluctuation in precipitation and temperature. The El Niño of 1991 - 

1992 is believed to be the major climatic factor leading to the outbreak of HPS in 1993 in 

the southwestern U.S. The dramatic increase in rainfall is believed to have resulted in 

more food and thus increased local rodent populations such as deer mice (Engelthaler et 

al., 1999; Parmenter et al., 1993). This increase in deer mice abundances enhances the 

human risk of HPS (Parmenter et al., 1993). Child et al. (1995) conducted a household-

based, case-control study of environmental factors associated with HPS and found that a 

higher number of captured, infected deer mice is associated with HPS occurrence.    

Yates et al. (2002) outlined the effects of climate change on the abundance of rodent 

populations in the Trophic Cascade Hypothesis. As precipitation increases and 

temperature is more tolerable, net primary productivity increases and subsequently results 

in a larger deer mouse population. Increased mouse density increases viral transmission 

among mice and results in a larger number of dispersing mice.  This leads to increased 

disease transmission to humans who come into contact with these mice. When 

environmental conditions become more severe, mouse populations decline, but the 

environmental conditions at some locations allow survival of a sufficiently large rodent 

population for the virus to persist. Thus, it is important to identify the environmental 

conditions needed to maintain host populations of sufficient sizes to sustain the virus. 

Hantaviruses are horizontally transmitted among members of the rodent population but 

are not vertically transmitted to offspring. They need a large host population to avoid 

local extinction (Glass et al., 2007).   
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Satellite imagery has demonstrated value in linking environmental conditions to 

disease distribution and dynamics. For example, Linthicum et al. (1999) found that Rift 

Valley Fever outbreaks could be predicted up to 5 months in advance in Kenya using the 

normalized difference vegetation index (NDVI) and Pacific and Indian Ocean sea-surface 

temperature anomalies. Thomson et al. (1997) used meteorological satellite data to model 

the spatial and seasonal dynamics of infectious disease transmission and developed 

affordable early warning systems for malaria. A study of malaria prevalence in the 

children of Gambia used NDVI to measure changes in vegetation growth as proxy 

ecological variables representing changes in rainfall and humidity to predict length and 

intensity of malaria transmission (Thomson et al., 1999).  

A few previous studies have utilized Landsat Thematic Mapper (TM) satellite imagery 

to study hantavirus dynamics. Glass et al. (2002) developed logistic regression models to 

predict human risk of HPS using Landsat TM imagery. They found that heavy rainfall 

associated with El Niño/Southern Oscillation increased the rodent population and 

preceded HPS cases in the southwestern U.S. (Glass et al., 2000). Goodin et al. (2006) 

evaluated the relationship between land-cover and hantavirus prevalence in rodents. Their 

land-cover map was derived from a variety of coarse resolution satellite imagery 

depending on the type of land cover being mapped (e.g. Along Track Scanning 

Radiometer (ATSR) and SPOT-VGT). A positive relationship was found between 

agricultural land cover disturbance and hantavirus in rodents in Paraguay.  However, 

single-date satellite imagery can be limited in capturing the vegetation dynamics that 

impact rodent population dynamics. 
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The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the 

NASA satellites Terra (December 1999) and Aqua (May 2002) significantly improved 

data availability for epidemiological studies. There have been a few studies that utilized 

MODIS time-series data in modeling rodent pathogen transmission and predicting disease 

risk to humans. Glass et al. (2007) applied MODIS NDVI data to compare vegetation 

growth patterns in years of severe drought from 2002 to 2004 and found high risk HPS 

areas had higher levels of green vegetation and longer durations of greenness. Marston et 

al. (2007) modeled the spatial distribution of the rodent species that were the hosts of a 

parasitic tapeworm. The rodent distribution was modeled with landscape characteristics 

using four different types of remotely sensed data. Their results showed that the MODIS 

time-series image data provided the strongest relationships and explained the highest 

percentage deviance of the relationships present (up to 41.4%). These results support the 

idea that using time-series NDVI data can offer improved results over single date 

imagery. 

In this study, we investigated the value of MODIS data for estimating rodent 

abundance and SNV prevalence with the goal of predicting hantavirus risk. We examined 

relationships between environmental conditions (vegetation greenness and moisture), 

deer mouse density, and SNV prevalence using high temporal resolution (16 days) 

MODIS satellite imagery and multiyear field survey data. The central hypothesis is that 

vegetation indices can serve as proxies for deer mouse food availability that affects deer 

mouse abundance and SNV prevalence. We applied MODIS time-series imagery to 

measure vegetation productivity and to indirectly estimate mice abundance and SNV 

prevalence in deer mouse population.    
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Methods 

Study Area 

 

The study area is located in proximity to the Little Sahara Recreation area in Juab 

County, Utah (39°40´ N, 112° 15´ W). The elevation in this area ranges from 1600 to 

1900 m.  Dominant vegetation species in the area include Great Basin sagebrush 

(Artemisia tridentata) and Utah juniper (Juniperus osteosperma). Areas with high 

sagebrush cover are positively correlated with deer mouse abundance (Pearce et al., 

2008).  The preferred habitat for deer mice is sagebrush. This particular area has 

experienced heavy recreation use, mainly by all-terrain vehicles (ATVs) (Lehmer et al., 

2008).  Landscape disturbance due to ATV recreation use has created new roads, trails, 

and open space. Trapping webs at the study area were selected based on low and high 

levels of disturbance. Low disturbance refers to those areas where ATVs have had little 

or no effect, and high disturbance refers to the areas with trails and vast bare ground 

caused by camping and the heavy use of recreational vehicles. 

Field Data 

Rodents were live-trapped in the spring and fall of 2004, 2005, and 2006. Twelve 

3.14-ha trapping sites using a web-based approach (Anderson et al., 1983) were 

established for spring and fall seasons of 2004, 2005, and 2006. There have been two 

general field sampling designs for estimating small-mammal population: grid-based 

regimes and web-based approaches (typically transect lines or trapping webs) (Anderson 

et al., 1983; Buckland et al., 1993, 2001; Burnham et al., 1980). Web-based trapping has 

been utilized in a number of studies, including small-mammal studies at a number of sites 

within the U.S. Long Term Ecological Research network, monitoring programs for 
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rodent-borne zoonotic diseases conducted by public health agencies in the United States 

(Parmenter et al. 1999), and global-change/biodiversity programs around the world. The 

trapping web design in this study is the most commonly used trapping arrangement in 

longitudinal studies of hantavirus (Abbott, 1999; Calisher et al., 1999; Kuenzi et al., 1999; 

Mills et al., 1999a, b; Root et al., 1999;).  

Trapping webs are centered on a reference location with traps emanating from this 

point. The trapping web contains twelve 100-m trap-transects radiated from the center 

trap at 30° angles from one another. Transects were numbered from 1 to 12 with the first 

transect facing south and other transects incremented in a clock-wise direction. Twelve 

traps are placed on each trap-transect.  For each trap-transect, the first four traps are 

spaced 5 m apart, and the other eight traps are 10 m apart. Each trap is coded and marked 

by the transect number and its location along each transect labeled by letters from A to L 

with A for the closest trap to the center and L for the furthest. 

In each sampling period, traps were set for each trapping web for three consecutive 

nights. Small mammal processing was conducted according to protocols and methods for 

trapping and sampling small mammals for virological testing (Mills et al., 1995). Ear tags 

with individual numbers were attached to newly captured mice. Captured mice were 

weighed and recorded for trap code, sex, reproductive status, weight, ear tag number, 

wounds, scars, etc. Blood was drawn from deer mice for testing the presence of SNV. 

Rodents were released where they were captured. 

Enzyme-Linked Immunosorbent Assay for detection of Sin Nombre virus antibody 

was performed on all blood samples (Feldman et al., 1993; Lehmer et al., 2008). 
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Prevalence is reported as the percentage of infected deer mice at each sampling site.  For 

this reason, an estimate of prevalence increases in accuracy with the sample size. 

MODIS Satellite Imagery 

This study utilized MODIS surface reflectance 16-day composite data with 500 m 

spatial resolution to derive environmental conditions of the study sites across multiple 

years (2003 to 2006). MODIS instruments capture data in 36 spectral bands ranging in 

wavelength from 0.4 to 14.4 µm and at varying spatial resolutions (2 bands at 250 m, 5 

bands at 500 m, and 29 bands at 1 km). They provide twice-a-day global coverage at 

250m (Red, NIR), 500m (MIR), and 1000m resolution (TIR). The data sets are available 

to the public approximately one week after acquisition, and they are designed to provide 

measurements in large-scale global dynamics and processes occurring on the land, and in 

the oceans and lower atmosphere.  MODIS imagery has been successfully used for a 

variety of applications, including quantifying vegetation cycles, assessing land cover 

change, and mapping the spatial distribution of habitats (Beck et al., 2006; Jinet et al., 

2005; Lunetta et al., 2006; Xiao et al., 2006). 

Temporal Compositing Methods 

Temporal compositing of remote sensing time-series data is a common practice to 

compress data and reduce the impacts of cloud effects and changing view geometry (Qi 

& Kerr, 1997). Temporal compositing algorithms analyze the pixel values across time 

and select the single best pixel value to represent the entire time period (Dennison et al., 

2007).  
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Many temporal compositing algorithms have been developed for moderate-to-coarse 

resolution remote sensing systems. Dennison et al. (2007) introduced a new class of 

compositing algorithms based on two measures of spectral similarity, endmember 

average root mean square error (EAR) and minimum average spectral angle (MASA). 

Their research demonstrated that these novel algorithms reduce short-term variability in 

spectral indices across several land cover types (Dennison et al., 2007). A set of 16-day 

MODIS compositing data across March to July of five years (2002 ~ 2006) using MASA 

and EAR methods were created and used to derive several vegetation indices. 

Vegetation Indices from MODIS 

The correlations between a set of vegetation indices calculated from five years of 

MODIS data and deer mouse density, hantavirus prevalence, and the number of infected 

mice for each site across four years (2003 to 2006) were examined using linear regression. 

The sample sizes varied from 36 for spring to 43 for fall because a few additional sites 

were added in fall 2003 and 2004. Four commonly used vegetation indices were 

calculated, including normalized difference vegetation index (NDVI; Rouse et al., 1973), 

the enhanced vegetation index (EVI; Huete et al., 2002), normalized difference water 

index (NDWI; Gao et al., 1996), and visible atmospherically resistant index (VARI; 

Gitelson et al., 2002). NDVI, EVI, and VARI are greenness indices based on chlorophyll 

absorption and near infrared reflectance and/or visible reflectance, while NDWI is a 

moisture index based on near infrared water absorption. 

NDVI is a very simple, well-known, and widely used remote sensing vegetation index. 

It is calculated from the individual measurements as follows:  

NDVI = (ρNIR – ρRED) / (ρNIR + ρRED)    (1) 
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where ρRED and ρNIR stand for the red and near-infrared reflectance. The resulting values 

range from -1.0 to + 1.0.  

EVI was developed to improve the NDVI by accounting for soil and atmospheric 

interference (Huete et al., 1997, 2002; Justice et al., 1998). EVI normalizes the red band 

reflectance by the blue band reflectance (Huete et al., 1997). EVI is more sensitive in 

high Leaf Area Index (LAI) vegetation, where NDVI saturates quickly and shows very 

little dynamic range for high LAI canopies in crop fields (Boegh et al., 2002). EVI is 

formulated as: 

EVI = G (ρNIR – ρRed)/ (ρNIR + C1*ρRed – C2 * ρBlue + L)   (2) 

where G = 2.5, C1 = 6, C2  = 7.5, and L =1.  VARI is a vegetation index based entirely 

on visible reflectance (Gitelson et al., 2002).  VARI is calculated as:   

VARI = (ρGreen- ρRed) / (ρGreen + ρRed - ρBlue)  (3) 

 NDWI was introduced by Gao (1996) to assess water content using near infrared water 

absorption.  NDWI increases with vegetation water content. It is defined as follows: 

NDWI = (ρ0.86 µm – ρ1.24 µm) / (ρ0.86 µm + ρ1.24 µm)   (4) 

The 0.86 µm and 1.24 µm channels of MODIS are band 2 and band 5, respectively. 

Time Lags 

Glass et al. (2002) found that there was an apparent one-year lag between the end of 

the 1997–1998 El Niño and the increase in hantavirus prevalence in high-risk areas, 

which was also the case in the 1993 HPS outbreak preceded by the 1991–1992 El Niño 
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event. This time lag is also in line with the trophic cascade hypothesis (Yates et al., 

2002). 

Vegetation indices were calculated for MODIS composites from March through July, 

2002-2006.  This time period coincides with vegetation green-up in the study area, and 

the index values during this time period should indicate vegetation productivity.  Time 

lag effects between the spring vegetation indices (2002-2006) and deer mouse density 

and hantavirus prevalence (2003-2006) were explored with lags of 0, 0.3, 1.0, and 1.3 

years. A 0-year lag examined the correlation between spring vegetation indices and the 

same-year spring field data. The 0.3-year lag examined the correlation between spring 

vegetation indices and fall field data in the same year. The 1.0-year time lag examined 

the correlation between spring vegetation indices and field data from the following 

spring. The 1.3-year time lag examined correlations between spring vegetation indices 

and fall field data in the following year. Linear regression was used and r
2
 was calculated 

and compared. 

Results 

Deer Mouse Density and Vegetation Indices  

 

Correlations between vegetation indices and deer mouse density typically peaked in 

May or June for NDVI and EVI and in March for NDWI. For VARI, the correlation with 

density peaked in March at 0-year and 0.3-year time lag and was highest in May at 1.0-

year and 1.3-year lag. Figure 2.1 shows an example of changing correlations between 

EVI and deer mouse density for each composite period, and at the four different lag 

times.  At peak r
2
, linear correlations between deer mouse density and NDVI/EVI at 1.3-
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year lag were mostly significant. Figure 2.2 shows an example of the relationship 

between June 10
th

 EVI and density at a 1.0-year time lag.   

The maximum r
2
 for each vegetation index and lag are shown in Table 2.1.  Linear 

regression showed that all vegetation indices had significant (P < 0.01) correlations with 

deer mouse density at various time lags. For correlations between deer mouse density and 

NDVI/EVI over various time lags, the 1.0-year and 1.3-year lags yielded higher r
2 

than 

the 0-year and 0.3-year lags, where the 1.3-year lag had the highest r
2
.  Correlations were 

highest for NDVI at a 1.3-year lag, with an r
2
 of 0.50 and significance greater than 99.9%. 

The intercept and slope coefficients of the linear regression were -99.39 and 527.26. 

Correlations were also high for EVI at 1.0-year and 1.3-year lag, with r
2 

of 0.46 and 0.47 

and significance greater than 99.9%. The intercepts and slope coefficients of the 

regression lines were -77.68 and 772.30 for 1.0-year lag, and -100.15 and 893.44 for 1.3-

year lag, respectively. Significant correlations were also found between VARI and deer 

mouse density at all time lags, with r
2 

ranging from 0.21 to 0.29. There were significant 

correlations between NDWI at 0-year and 0.3-year lag and deer mouse density, with r
2 
of 

0.35 and 0.23.  

Average May 9
th

 NDVI and mouse density in the fall across 12 study sites were 

computed and plotted in Figure 2.3. The average May 9
th

 NDVI increased 19% in 2005 

from 2004, while mouse density doubled in the fall of 2006 over the fall of 2005. When 

average NDVI varied little between 2002 and 2003, there was little change in mouse 

density from 2003 to 2004. 
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Total Number of Infected Mice and Vegetation Indices 

Correlations between the number of infected mice and the vegetation indices across 

the time lags (0, 0.3, 1.0, 1.3 years) were also examined. Table 2.2 lists the maximum r
2 

and the dates of the maximum r
2 

for the number of infected mice and the vegetation 

indices. The results were very similar to those of mouse density. This may indicate that 

density and the number of infected mice are correlated.  

All vegetation indices had significant (P < 0.01) correlations with the number of 

infected mice at various time lags. For correlations between the number of infected deer 

mice and NDVI/EVI over various time lags, the 1.0-year and 1.3-year lags yielded higher 

r
2 

than the 0 and 0.3 lags. Correlations were highest for EVI at 1.0-year lag, with an r
2 

of 

0.53 and significance greater than 99.9%. Correlations were also high for NDVI at 1.0-

year and 1.3-year lag, with r
2 

of 0.36 and 0.43, and significance greater than 99.9%. 

There were significant correlations between NDWI at 0-year, 0.3-year, and 1.0-year lag 

and the number of infected deer mice, with r
2 

of 0.25, 0.16, and 0.20. Similar to the 

results for density, the maximum r
2 

for NDWI and the number of infected mice were in 

March, while for NDVI and EVI, the high significant maximum r
2 

were in May and June. 

SNV Prevalence and Vegetation Indices 

Correlations between SNV prevalence and the vegetation indices across the time lags 

(0, 0.3, 1.0, 1.3 years) were examined. Table 2.3 lists the maximum r
2 
and the dates of the 

maximum r
2 

of SNV prevalence and the vegetation indices.  

Most of the r
2 

of prevalence and vegetation indices were not significant. The highest 

significant r
2
 (0.40) was of VARI in June at 1.0-year lag. The next highest r

2 
was for 

NDVI with an r
2 

of 0.28 at a 0-year lag.  The next highest r
2 

were of NDVI and EVI in 



24 

 

 

June at 1.0-year lag, with values of 0.27 and 0.25, respectively. NDWI did not have 

significant correlations with SNV prevalence at any time lag.  

Discussion and Conclusions 

This study examined the relationships between vegetation indices (NDVI, EVI, VARI, 

and NDWI), deer mouse density, SNV prevalence, and the number of infected deer mice 

(potential risk to humans) at various time lags with the goal of identifying useful 

vegetation indices and time lags for predicting the risk of hantavirus outbreaks. The 

results revealed reasonably good correlations between vegetation indices and deer mouse 

density, and the number of infected deer mice. In contrast, correlations between 

vegetation indices and SNV prevalence were much weaker. Prevalence is calculated as 

the ratio of the number of infected mice and the overall number of mice and but may not 

be necessarily correlated to either the number of infected mice or the overall number of 

mice. For example, the prevalence on a study site with a low number of infected mice and 

low overall number of mice may be the same to the prevalence on a study site with a high 

number of infected mice and high overall number of mice.  

Among four tested vegetation indices, NDVI and EVI yielded higher significant r
2 

while NDWI had lower significant values. VARI produced the lowest r
2
. The 1.0-year 

and 1.3-year lags for NDVI and EVI provided the best correlations overall, which 

suggests that spring NDVI and EVI are better correlated with next year‟s deer mice 

abundance and the number of infected deer mice than the current year‟s. This finding 

corresponds to the study by Glass et al. (2002), which found that there was an apparent 

1.0-year lag between the 1997–1998 El Niño and the increase in SNV prevalence in high-

risk areas in the subsequent year. This was also the case in the 1993 hantavirus 
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pulmonary syndrome outbreak in the southwestern U.S., which indicated that the 

previous 1991–1992 El Niño event was the major climatic factor leading to the outbreak. 

The dramatically increased rainfall is believed to result in greater food resources that 

permitted increases in deer mouse population sizes and subsequently the human risk of 

hantavirus pulmonary syndrome (Engelthaler et al., 1999; Parmenter et al., 1993). This 

time lag is also consistent with the findings of the trophic cascade hypothesis (Yates et 

al., 2002). The 1.0-year time lag provides great opportunities in applying satellite 

imagery to predict upcoming SNV outbreaks, allowing preventive strategies to be 

deployed in a timely manner.  

While NDVI and EVI had the most significant r
2 
at 1.0-year and 1.3-year lags, NDWI 

had most significant r
2 

at 0-year and 0.3-year lags. The significant correlation between 

NDWI and deer mouse density occurred on March 6
th

. The most significant correlation 

between NDWI and the number of infected mice was also on March 6
th

. This indicates 

that early spring vegetation moisture may be a predictor of deer mouse density and the 

number of infected mice in the same spring and following fall.  Combinations of different 

indices and lags could be valuable for identifying the time windows for data collection 

for practical uses in monitoring rodent abundance and subsequent disease risk to humans.  

Although there have been a few studies applying remotely sensed data in predicting 

hantavirus risk (Boone et al., 2000; Glass et al., 2000), most of them used single-date TM 

imagery. However, single-date image data makes it difficult to capture the vegetation 

dynamics and their effect on disease dynamics. The high temporal resolution compositing 

satellite data eliminates the cloud cover and bad imagery, providing more reliable data. 

Glass et al. (2007) explored the use of January 2002 to April 2004 MODIS NDVI data to 
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compare the seasonal patterns of vegetation growth at low-risk and high-risk hantavirus 

areas. The study showed that vegetation growth at high-risk sites started earlier and last 

longer than that at comparable lower risk sites regardless of land cover. Marston et al. 

(2007) showed the advantages and associated potential of using time-series MODIS 

NDVI datasets to model rodent distributions over single-time NDVI datasets. The use of 

high temporal resolution MODIS imagery in epidemiologic studies has been limited. This 

study demonstrated that using MODIS in estimating rodent abundance and predicting 

disease risk to humans has potential. While our study area is in Utah, USA, MODIS data 

is available for free with worldwide coverage. It is suitable to be extended to other 

rodent-borne diseases around the globe. A few examples are leptospirosis and the 

Argentine hemorrhagic fever. Herbreteau et al. (2006) explored the use of land use map 

and vegetation indices derived from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer satellite imagery in studying leptospirosis dynamics in the rice 

fields in Thialand. Porcasi et al. (2005) incorporated the Advanced Very High Resolution 

Radiometer NDVI as an environmental variable in a simple numerical model of rodent 

population dynamics and viral infection for Junin virus. These studies have shown the 

usefulness of satellite-derived vegetation indices in predicting rodent-borne diseases. 

MODIS data may improve predictive models for many of the 11 types of rodent-borne 

diseases listed in Table 2.4 (CDC, 2009). 

A predictive model utilizing NDVI or EVI and NDWI could be built to predict deer 

mice abundance and hantavirus risk to humans. Other factors should be built into the 

model, such as temperature and the length of vegetation greenness. Tersago et al. (2009) 

found high summer and autumn temperatures in the previous 1 and 2 years were related 
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to high hantavirus disease incidences in Belgium. Clement et al. (2009) reported the 

increase in bank vole populations may be because that the mild autumn in the previous 

year provides more food resources and therefore increases the survival rate in the winter. 

Longer vegetation greenness has been associated with high HPS risk areas. Glass et al. 

(2007) found the NDVI in high HPS risk areas had an early onset, with significantly 

higher levels of green vegetation that lasted longer than at lower risk sites. In a large 

extent of area, other variables have been found useful in relating environmental 

conditions with rodent borne diseases, such as land use (Goodin et al., 2006), vegetation 

types (Boone et al., 2000) and elevation (Jay et al., 1997).    

While the results were promising, further study with more years of data would help to 

prove the long-term efficacy. Long-term studies are crucial for understanding the 

temporal patterns of virus host population and identifying characteristics of reservoir 

ecology associated with outbreaks of human disease. In spite of their importance and 

utility, long-term studies of reservoir populations of zoonotic diseases are rare. They 

require continuous funding for many years, they are labor intensive, expensive, and may 

not produce significant results in the short term (Mills et al., 1999). Our study collected a 

rich amount of field mice trapping data that has not been seen in past hantavirus studies. 

During six field seasons from 2004 to 2006, over 8000 mice at twelve study sites were 

captured, recorded, and released. This valuable field data provides great opportunities in 

understanding mice population ecology and hantavirus dynamics. 
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Figure 2.1 The r
2 

of deer mouse density and the enhanced vegetation index (EVI) 

between March and July at 0, 0.3, 1.0, and 1.3-year lags. The correlation peaked in June, 

and the 1.0 and 1.3-year lag yielded highest significant r
2 

(0.46 and 0.47, respectively). 
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Figure 2.2 Deer mouse densities vs. EVI on June 10
th

 at 1.0-year lag. The r
2 

is 0.46 and 

significant at level of 0.001. 
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a) 

 
b) 

 

Figure 2.3 Deer mouse density and NDVI. a) Average fall deer mouse density (number of 

mice per web) from 2003 to 2006; b) Average NDVI on May 9
th

 across 2002 ~ 2005. 

0

20

40

60

80

100

2003 2004 2005 2006

Year

A
v

er
a

g
e 

F
a

ll
 D

ee
r 

M
o

u
se

 D
en

si
ty

 

(N
u

m
b

er
 o

f 
m

ic
e 

p
er

 w
eb

)

0.20

0.25

0.30

0.35

2002 2003 2004 2005

Year

A
v

er
a

g
e 

N
D

V
I 

(M
a

y
 9

th
)



 

 

Table 2.1 Maximum r² values and dates of maximum r² values between March and July for normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI), visible atmospherically resistant index (VARI), and normalized difference water index 

(NDWI) regressed against the deer mouse density at 0, 0.3, 1.0, 1.3-year lags. 

 

Time 

Lag 

(Year) 

Maximum 

NDVI r² 

Date of 

Maximum 

NDVI r² 

Maximum 

EVI r² 

Date of 

Maximum 

EVI r² 

Maximum 

VARI r² 

Date of 

Maximum 

VARI r² 

Maximum 

NDWI r² 

Date of 

Maximum 

NDWI r² 

0 0.31* March 6 0.28* June 10 0.29* March 6 0.35* March 6 

0.3 0.18 March 6 0.05 June 10 0.21* March 6 0.23* March 6 

1 0.32* May 9 0.46* June 10 0.24* May 9 0.11 May 25 

1.3 0.50* May 9 0.47* June 10 0.27* May 9 0.07 May 25 

 

* Significance (P < 0.01) 

 

3
7
 



 

 

Table 2.2 Maximum r² values and dates of maximum r² values between March and July for normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI), visible atmospherically resistant index (VARI), and normalized difference water index 

(NDWI) regressed against the number of infected deer mice at 0, 0.3, 1.0, 1.3-year lags. 

 

Time 

Lag 

(Year) 

Maximum 

NDVI r² 

Date of 

Maximum 

NDVI r² 

Maximum 

EVI r² 

Date of 

Maximum 

EVI r² 

Maximum 

VARI r² 

Date of 

Maximum 

VARI r² 

Maximum 

NDWI r² 

Date of 

Maximum 

NDWI r² 

0 0.18 March 6 0.11 June 10 0.23* March 6 0.25* March 6 

0.3 0.09 March 6 0.03 April 10 0.12 March 6 0.16* June 26 

1 0.35* June 10 0.53* June 10 0.40* June 10 0.20* May 25 

1.3 0.43* June 10 0.36* May 9 0.21* May 9 0.04 May 9 

 

* Significance (P < 0.01) 
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Table 2.3 Maximum r² values and dates of maximum r² values between March and July for normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI), visible atmospherically resistant index (VARI), and normalized difference water index 

(NDWI) regressed against the Sin Nombre virus (SNV) prevalence at 0, 0.3, 1.0, 1.3-year lags. 

 

Time 

Lag 

(Year) 

Maximum 

NDVI r² 

Date of 

Maximum 

NDVI r² 

Maximum 

EVI r² 

Date of 

Maximum 

EVI r² 

Maximum 

VARI r² 

Date of 

Maximum 

VARI r² 

Maximum 

NDWI r² 

Date of 

Maximum 

NDWI r² 

0 0.12 April 7 0.05 May 9 0.28* April 7 0.11 May 25 

0.3 0.11 June 26 0.11 April 7 0.07 April 7 0.02 April 7 

1 0.27* June 26 0.25* June 10 0.40* April 7 0.19 April 7 

1.3 0.06 July 28 0.03 July 28 0.05 April 7 0.03 March 6 

 

* Significance (P < 0.01)
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 Table 2.4 The diseases directly transmitted by rodents and their locations in the world. 

 

Disease Where the Disease Occurs 

Hantavirus pulmonary syndrome  Throughout most of North and South America  

Hemorrhagic fever with renal 

syndrome  

Primarily in eastern Asia, Russia, Korea, 

Scandinavia, western Europe, and the 

Balkans.  

Lassa fever  West Africa  

Leptospirosis  Worldwide  

Lymphocytic Chorio-meningitis 

(LCM)  

Worldwide  

Omsk hemorrhagic 

fever  

Western Siberia  

Plague  Western US, S. America, Africa, Asia  

Rat-Bite fever  Worldwide; Strepto-bacillus moniliformis in 

North America and Europe; Spirillum minus 

in Asia and Africa.  

Salmonellosis  Worldwide  

South American Arenaviruses 

(Argentine hemorrhagic fever, 

Bolivian hemorrhagic fever, Sabiá-

associated hemorrhagic fever, 

Venezuelan hemorrhagic fever)  

South America: parts of Argentina, Bolivia, 

Venezuela and Brazil  

Tularemia  Worldwide  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 3 

DEER MOUSE (PEROMYSCUS MANICULATUS) MOVEMENT 

IN DESERT SAGEBRUSH HABITAT  

Abstract 

Deer mouse (Peromyscus maniculatus) is the primary reservoir for Sin Nombre virus 

(SNV), a North American hantavirus that causes hantavirus pulmonary syndrome with 

high mortality in humans. Understanding deer mouse movement is critical for 

understanding disease transmission. Greater movement leads to greater potential for 

encounters and increases transmission probability. Our objective was to investigate the 

factors potentially affecting deer mouse movement in the desert sagebrush habitat of the 

Great Basin, Utah by: (1) measuring deer mouse movement using GIS and recapture data, 

and (2) examining the effects of climate, season, habitat disturbance, population density, 

sex, mass, and SNV infection on deer mouse movement. The results show that climate, 

mouse density, sex, mass, and SNV infection had a significant effect on deer mouse 

movement. There were also significant interaction effects between climate and 

disturbance, as well as mass and SNV infection. In predrought conditions, deer mouse 

movement at more disturbed sites was greater than the movement at less disturbed sites, 

whereas in postdrought conditions the movement at more disturbed sites was less than the 

movement at less disturbed sites. This suggests that the effect of habitat disturbance on 

mouse movement varies according to climate conditions. The larger infected deer mice 
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moved the most, and this may be because they are more territorial and aggressive. These 

infected aggressive mice could greatly increase SNV transmission in deer mouse 

populations. Season and disturbance alone had no significant effects. 

Introduction 

The deer mouse (Peromyscus maniculatus) is the most common small mammal in 

North America (Baker, 1968; Mills et al., 1998). It is the principal reservoir for Sin 

Nombre virus (SNV), which causes hantavirus pulmonary syndrome (HPS) with high 

mortality in humans. While there are few cases of HPS in humans, studying SNV 

dynamics in deer mouse populations may help us to better understand its spread.  There is 

currently no vaccine or effective drug to prevent or treat HPS (Buceta et al., 2004; Custer 

et al., 2003), and for this reason, there is a need to understand the nature of the virus host 

in order to predict the risk of the disease and design effective prevention policies. 

The principal mode of hantavirus transmission in deer mice is through direct 

interactions such as aggressive fighting and mating (Calisher et al., 1999; Glass et al., 

1988; Mills et al., 1997). Previous studies have found that scars or wounds in the rodents 

are positively related to SNV infection (Calisher et al., 2002; Root et al., 1999). For this 

reason, understanding deer mice movement is critical in understanding their interactions 

and thus the disease transmission. Increased movement increases the contact rates in a 

population, which in turn may lead to increased disease transmission. Escutenaire et al. 

(2002) found that hantavirus infection was associated with higher mobility in juvenile 

and subadult males. Langlois et al. (2001) suggested deer mouse movement through the 

landscape affected the rate and pattern of disease transmission.  
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An increased prevalence of infection of the Junin virus in male rodents may be due to 

their greater movement and a greater level of agonistic behavior, when compared to that 

of females (Mills et al., 1992). Junin virus is a rodent-born virus occurred in Argentina 

and is a strain of Arenavirus causing Argentine hemorrhagic fever with a mortality rate of 

between 20 and 30%. Further, differences in movement across habitat types may 

contribute to increased SNV prevalence among different deer mouse communities 

because movements of greater distances, relative to areas where movements are short, 

should increase the number of encounters and interactions. Longer movement distances 

may increase the probability that mice become infected with SNV. The average range of 

deer mice during a 1-month period in a Nevada desert was 159 m for males and 101 m 

for females (Allred & Beck 1963). 

Although deer mouse movement is critical in understanding animal ecology, 

population dynamics, and hantavirus dynamics, information on deer mouse movement is 

limited. Data on deer mouse movement in sagebrush habitat has been especially 

inadequate. This lack of data is due to the difficulties in estimating mouse movement 

(e.g. limitations of collecting locational data, limitations of estimating mouse space use, 

and equipment costs).  

Our objective was to investigate the factors potentially affecting deer mouse 

movement in the desert sagebrush habitat of the Great Basin, Utah by: (1) measuring deer 

mouse movement using GIS and recapturing data, and (2) examining the relationships 

between deer mouse movement and various factors, including climate, season, habitat 

disturbance, population density, sex, mass, and SNV infection status. The results can help 
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increase our understanding of the important factors that may affect hantavirus dynamics. 

They also can provide knowledge in building hantavirus transmission simulation models.   

Methods 

Study Area 

The study area is located in proximity to the Little Sahara Recreation area in Juab 

County in Utah (39°40´ N, 112° 15´ W). The elevation ranges from 1600 to 1900 m. The 

dominant vegetation in the area primarily consists of the Great Basin Sagebrush 

(Artemisia tridentata), followed by Utah Juniper (Juniperus osteosperma). The preferred 

habitat of deer mice is sagebrush, which provides them with food and cover. This 

particular area has experienced heavy recreation use, mainly by all terrain vehicles 

(ATVs).  Landscape disturbance due to ATV recreation use has created new roads, trails, 

and exposed landscape. Trapping webs at the study area were selected based on low and 

high levels of disturbance. Low disturbance refers to those areas where ATVs have had 

little or no effect, and high disturbance refers to the areas with trails and vast bare ground 

induced by camping and the heavy use of recreational vehicles. 

Trapping Webs 

There have been two general field sampling designs for estimating small-mammal 

population: grid-based regimes and web-based approaches (typically transect lines or 

trapping webs) (Anderson et al., 1983; Buckland et al., 1993, 2001; Burnham et al., 1980). 

The most commonly used trapping arrangement in longitudinal studies of hantavirus 

(Abbott, K.D., 1999; Calisher et al., 1999; Kuenzi, et al, 1999; Mills et al., 1999) is web-

based. It has also been utilized in a number of other studies, including small-mammal 
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studies at sites within the U.S. Long Term Ecological Research network, monitoring 

programs for rodent-borne zoonotic diseases conducted by public health agencies in the 

United States (Parmenter et al., 1999), and global-change/biodiversity programs around 

the world.  

The web-based trapping was used at all study sites analyzed in this paper. The size and 

configuration of these webs have been described elsewhere (Mills et al., 1999b). For 

spatial analyses, it was assumed that: (1) trap stations included in the trapping webs were 

sufficient to describe the general space use of the rodents captured, and (2) biasness in 

captures of rodents were equal between the groups that we analyzed. 

Twelve 3.14-ha trapping webs (Anderson et al., 1983; Root et al., 1999) were 

established for spring and fall seasons in 2004, 2005, and 2006. Trapping webs are 

centered on a reference location with traps emanating from this point. The trapping web 

contains twelve 100-m trap-transects radiated from the center trap at 30° angles from one 

another. Transects were numbered from 1 to 12 with the first transect facing south and 

other transects incremented in a clock-wise direction. Twelve traps are placed on each 

trap-transect.  For each trap-transect, the first four traps are spaced 5 m apart, and the 

other eight traps are 10 m apart. Each trap is coded and marked by the transect number 

and its location along each transect labeled by letters from A to L with A for the closest 

trap to the center and L for the furthest (Figure 3.1).  

Sampling Periods and ELISA 

Rodents were live-trapped in spring and fall of 2004, 2005, and 2006. In each 

sampling period, traps were set for each trapping web for three consecutive nights. Small 

mammal processing was conducted according to protocols and methods for trapping and 
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sampling small mammals for virological testing (Mills et al., 1995). Ear tags with 

individual numbers were attached to newly captured mice. Captured mice were weighed 

and recorded for trap code, sex, reproductive status, mass, ear tag number, wounds, scars, 

etc. Blood was also drawn from deer mice for testing the presence of hantavirus. Rodents 

were released where they were captured. 

Enzyme-Linked Immunosorbent Assay for detection of Sin Nombre virus antibody 

was performed on all blood samples. Prevalence is simply reported as the percentage of 

infected deer mice in a sample.  For this reason, estimated prevalence increases in 

accuracy with the sample size and the number of infected mice. 

GIS Movement Mapping 

 GIS provides a valuable tool to map and visualize the movement of mice, as well as to 

analyze movement data from the field sampling data. The field data recorded the trap 

code where each mouse was caught. Movement distances across recaptures can be 

utilized to examine the effects of disturbance, year, season, sex, and mass on deer mouse 

movement. A recapture is when a mouse is caught again in another trap (or the same 

trap). 

The movement distance for a given mouse recapture was measured by the straight-line 

distance from the first capture trap to the recapture trap. This underestimates the actual 

distance that deer mice move, but allows relative comparison between webs as well as 

mouse characteristics (e.g. male versus female) under the assumption that the error is 

uniform across sites. GIS is a valuable tool for efficiently measuring the movement 

distance and also in visualizing the movement vectors of deer mice. With digital aerial 
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photos as a backdrop, it is possible to infer whether deer mouse movement vectors are 

affected by habitat disturbance. 

 The coordinates of the center points of the trapping webs were recorded using a global 

positioning system (GPS) unit in the field. They were then mapped in GIS, and 12 

concentric buffers with distance 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 m from 

the center point were created. Twelve 100 m transects that radiate from the center point 

with 30° angles were delineated in GIS. The 144 traps where the buffers and transects 

intersect were represented as points, and each were recorded with the individual trap code 

described above. The attributes such as sex, age, and reproductive status of deer mice 

were geo-linked to the traps using the common field of trap code initially recorded in a 

spreadsheet. 

 The movement vectors were delineated by drawing a straight line from the trap where 

a deer mouse was initially captured to where the mouse was recaptured. This movement 

distance was calculated and associated with the individual deer mouse. The movement 

distances for each recapture were calculated using ArcGIS 9.1 and the associated 

attributes such as the climate condition (predrought/postdrought), season (spring/fall), 

disturbance level (low/high), sex (female/male), mass, and SNV infection status(yes/no) 

were geo-linked to each movement vector. Figure 3.2 shows an example of GIS mapping 

of the movement of recaptured deer mice. The movement vectors are displayed with 

different colors to represent various characteristics of the recaptured deer mice (e.g. sex, 

infection status). The aerial photo is used as a backdrop to illustrate the disturbance at the 

study area.  
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Statistical Analysis 

The dataset was then analyzed to examine the effects of climate, season, disturbance 

level, density, sex, mass, SNV infection, and all possible interactions of the factors on the 

deer mouse movement using a generalized linear mixed model (GLMM) in SAS 9.1. 

GLMM does not require balanced sampling of longitudinal repeated data (Cnaan et al., 

1997), and thus was appropriate considering our unbalanced study design (i.e. sites 

repeatedly sampled, but not equally). Deer mouse movement distances were nonnormal 

and were categorized into 10 m intervals that followed a Poisson distribution. The 

transformed movement distances were used as the dependent variable. The fixed factors 

were climate condition (predrought/postdrought), season (spring/fall), disturbance level 

(low/high), density (number of mice per site), sex (female/male), mass, and SNV 

infection status (yes/no). Spring 2004, 2005, and fall 2004 sampling periods were labeled 

as a predrought condition and fall 2005, 2006, and spring 2006 were labeled as a 

postdrought condition. The site is the random factor.  

A portion of the recaptures occurred in the same trap, which implied a movement 

distance of zero because the deer mice returned to the same trap. The recaptures with zero 

movement distance were excluded from further analysis, as they should not be considered 

movement. The deer mouse movement least square means and associated stand errors 

were also calculated and compared.  

Results 

GIS Mouse Movement Vectors 

A total number of 886 deer mouse recaptures over six sampling periods from 2004 to 

2006 were processed to create GIS movement vectors. The mouse movement vectors 
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were generated and visualized in GIS with high resolution remote sensing imagery/digital 

air photo as a backdrop showing the habitat conditions. Figure 3.2 reveals an inverse 

relationship between the number of recaptured deer mice and the disturbance level. We 

can see relatively longer movement vectors in high disturbance sites, and this may be due 

to the further distances that mice had to move to acquire the same amount of resources in 

these environments. 

Deer Mouse Movement, Climate, Season, and Disturbance 

The generalized linear mixed model revealed that climate had significant effect on 

deer mouse movement (F = 13.75, P < 0.01). Deer mice move greater distances in 

predrought conditions than in postdrought conditions. There was no significant difference 

in deer mouse movement between seasons. There was no effect of disturbance on deer 

mouse movement; however, the interaction of climate and disturbance (F = 4.59, P = 

0.03) was significant. Site was not a significant random effect. 

Figure 3.3 shows the disturbance and climate condition interaction effect on deer 

mouse movement. The mean deer mouse movement was highest at high disturbance sites 

in predrought conditions (33.3 m) and lowest at high disturbance sites in postdrought 

conditions (24 m). The mean deer mouse movement was 28.3 m in predrought conditions 

and 26.1 m in postdrought conditions at low disturbance sites.  In predrought conditions, 

the mean movement at high disturbance sites was 18% greater than that at low 

disturbance sites. In contrast, in postdrought conditions, the mean movement at high 

disturbance sites was 9% less than that at low disturbance sites. There was less variation 

in movement at low disturbance sites but greater change at high disturbance sites. 
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Deer Mouse Movement, Population Density, Sex, Mass, SNV  

Infection Status 

The generalized linear mixed model showed that there was a negative relationship 

between density and deer mouse movement (estimate = - 0.00268, F = 9.63, P < 0.01). 

The deer mice moved shorter distances as deer mouse density increased. Mass was found 

to be positively related to deer mouse movement (estimate = - 0.047, F= 24.36, P < 0.01), 

with heavier mice moving greater distances. Sex (F = 5.49, P = 0.02), SNV infection 

status (F = 13.77, P < 0.01), and mass against SNV infection status (F = 13.73, P < 0.01) 

have significant effects on deer mouse movement. The least square means of the deer 

mouse movement were 29 m for males and 26.5 m for females (Figure 3.4). The standard 

errors were 1.26 m for males and 1.17 m for females. Infected deer mice moved less than 

uninfected, with the mean movement of 26 m for infected deer mice and 29 m for 

uninfected deer mice (Figure 3.5). The standard errors were 1.2 m for infected deer mice 

and 1.25 m for uninfected mice. Figure 3.6 shows the interaction effect of mass and SNV 

infection status on deer mouse movement. The mean deer mouse movement was highest 

for heavier, infected mice. For infected mice heavier than 28g, the mean mouse 

movement rapidly increased to 45 m from 28 m for 24 ~ 26g mice. The mean movement 

for lighter infected mice (24 ~ 20g) was less than that of the uninfected deer mice with 

comparable mass.   

Discussion 

The objective of this study was to investigate and identify the potential factors that 

affect deer mouse movement in the desert sagebrush habitat. The effects of climate, 

season, habitat disturbance, population density, sex, mass, SNV infection, and all 
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possible interactions on the deer mouse movement were examined. The results showed 

that climate, mouse density, sex, mass, and SNV infection have a significant effect on 

deer mouse movement. There were also significant interaction effects of climate against 

disturbance and mass against SNV infection. Season and disturbance alone had no 

significant effects. 

Improving our understanding of the factors that affect mice movement increases our 

understanding of SNV dynamics in host populations. This would help health officials to 

predict the risk of the disease and design effective prevention policies. This study also 

contributed to the limited number of studies of deer mouse movement in the sagebrush 

habitat. The use of GIS in studying deer mouse movement is unique and demonstrated 

usefulness in measuring and visualizing deer mouse movement. Further spatial analysis 

could be performed to study the spatial relationships of deer mouse movement. 

Climate and Habitat Disturbance Effects on Deer Mouse  

Movement   

The results show that deer mice move more in predrought climate conditions than in 

postdrought conditions. This could be due to the limited food resources in predrought 

conditions forcing deer mice to search for food more intensively. The interaction effect of 

climate against disturbance was also significant. In predrought conditions, deer mouse 

movement at high disturbance sites was greater than that at low disturbance sites, 

whereas in postdrought conditions, the movement at high disturbance sites was less than 

that at low disturbance sites. This suggests that the effect of habitat disturbance on mouse 

movement varies according to climate conditions. In predrought conditions, areas with 

high disturbance have fewer food resources than areas with low disturbance, which forces 
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mice to move greater distances to obtain enough food to survive. In postdrought 

conditions, when there is enough food, the open spaces at high disturbance sites become 

barriers for mice to move across because of the high exposure risk to predators. Deer 

mice use the vegetation cover to reduce exposure to predators (Kotler & Brown, 1988). 

Falkenberg and Clarke (1998) found deer mice were more active and consume more 

seeds in areas with vegetation cover than in open areas. This may explain why deer mice 

move less at high disturbance sites when the food resources are relatively rich. 

Langlois et al. (2001) reported SNV prevalence was higher at fragmented habitats than 

less fragmented habitats. They proposed that increased deer mouse movement at 

fragmented sites increases contact rates and subsequently SNV prevalence. However, 

Lehmer et al. (2008) found a negative relationship between habitat disturbance and SNV 

prevalence. They suggested that when the food becomes limiting (in predrought 

conditions), deer mice are required to travel across open spaces more frequently, which 

leads them to emigrate to more favorable habitats compared to low disturbance site. The 

greater use of the open space could increase predation rates of deer mice, resulting in 

reduced virus hosts and thereby decreased SNV prevalence. These contrasting findings 

demonstrate the complex mechanisms that affect deer mouse movement and SNV 

dynamics. Thus, the role of deer mouse movement at disturbed habitats in SNV 

transmission warrants further investigation (e.g. relationship of movement and SNV 

prevalence in postdrought conditions). 

Population Density, Sex, Mass, and SNV Infection Effects  

Deer mouse density was negatively related to deer mouse movement. Increased mouse 

density may result from increased food availability, which does not require deer mice to 
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move as far to obtain food. Additionally, while density increased, the home range for 

each mouse becomes more constrained, which reduces mouse movement. This finding 

corresponded with previous home range studies of rodent populations that suggest that 

average home range size decreases as the density increases (Abramsky & Tracy, 1980; 

Erlinge et al., 1990).  

Our results also showed that male deer mice move more than female mice. Mills et al. 

(1999) suggested males are more often infected with SNV than females because males 

usually had larger home ranges and thus had greater chances in contacting with infected 

mice. The results also indicated that heavier deer mice move greater distances, and 

infected mice move more than uninfected mice. There was also significant interaction 

effect of mass and SNV infection. The heavy infected deer mice moved the greatest 

distances and had much greater movement than others. One interpretation is that these 

heavier infected deer mice are the territorial resident mice that move around a lot and 

often have aggressive encounters with other mice. These infected aggressive mice could 

greatly increase SNV transmission in deer mouse populations. We called these mice 

“super spreaders” as they are the primary virus hosts of SNV transmission. Fairbairn 

(1978) found that resident males were more aggressive than subordinate males and the 

level of aggression was positively related to mass. There has been very limited literature 

that suggests SNV infection affects deer mice behavior (e.g. aggression, movement). 

Further study would be helpful. 
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Figure 3.1 Trapping web. 
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           (a)                                                                  (b)                                      

Figure 3.2 Deer mouse movement vectors (a) at a low disturbed site; (b) at a highly 

disturbed site. There are more recaptures at low disturbance sites. Various colors 

represent various sex and reproductive status.  
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Figure 3.3 Disturbance and climate condition interaction effect on deer mouse movement. 

The mean deer mouse movement was highest at high disturbance sites in predrought 

condition and lowest at high disturbance sites in postdrought condition. In predrought 

condition, the mean movement at high disturbance sites is 18% greater than that at low 

disturbance sites. In contrast, in postdrought condition, the mean movement at high 

disturbance sites is 9% less than that at low disturbance sites.  
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Figure 3.4 Female and male deer mouse movement. The least squares means of the deer 

mouse movement were 29 m for males and 26.5 m for females. 
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Figure 3.5 Infected and uninfected deer mouse movement. The least squares means of the 

deer mouse movement were 26 m for infected deer mice and 29 m for uninfected deer 

mice. 
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Figure 3.6 The interaction effect of mass and SNV infection status on deer mouse 

movement. The mean deer mouse movement was highest for heavy infected mice. 
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CHAPTER 4 

SIMULATING HANTAVIRUS DYNAMICS IN DEER MICE  

USING A SPATIALLY EXPLICIT AGENT-BASED MODEL 

Abstract 

Hantavirus pulmonary syndrome (HPS) in humans is characterized by acute 

respiratory distress with a high mortality rate (>50%). HPS was traced to infection with 

Sin Nombre virus (SNV), a strain of hantavirus of which deer mice are the primary 

reservoir. This research helps us understand the important ecological parameters of 

hantavirus infections in deer mouse populations, and expand our understanding of the 

risk factors of developing HPS in humans as a consequence of SNV infection.  

A spatial agent-based model was developed to simulate deer mouse population 

dynamics, their movement, contacts, and subsequent hantavirus transmission using 

Repast Java 3.1. The model integrated GIS habitat maps where deer mice could interact 

to take into account the spatial dynamics of landscape effects on hantavirus dynamics. 

We used empirical data from a multiyear field survey and a habitat map derived from 

remotely sensed imagery as inputs. Four simulation experiments were performed with 

varying levels of population density and disturbance. Each simulation scenario was run 

1000 times to overcome the stochastic effects of the model. The averages at each time 

step were computed and recorded. 
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The simulation results consistently showed that prevalence was lower at high 

disturbance sites where deer mouse density was lower. These findings supported the 

hypothesis of Calisher et al. (2000) -- that habitat disturbance decreases prevalence 

because it reduces rodent habitat and thus the virus host population. The simulation also 

suggested that the prevalence is positively related to population density. The sensitivity 

analysis showed that population density was one of the most important parameters 

affecting the prevalence dynamics. The sensitivity analysis indicated that habitat 

disturbance could increase hantavirus transmission likely by increasing the movement 

and consequently contact rates. However, the results suggested that habitat disturbance 

had a much stronger effect on prevalence by decreasing population density than by 

increasing mice movement.  

Introduction 

Hantavirus pulmonary syndrome (HPS) is characterized by acute respiratory distress 

with a high mortality rate (>50%) (Glass et al., 2000; Nichol et al., 1993). HPS was 

traced to the infection with Sin Nombre virus (SNV), a strain of hantavirus of which deer 

mice are the primary reservoir (CDC, 1993; Childs et al., 1994; Hjelle et al., 1996). So 

far, there is no vaccine or effective drug to prevent or treat HPS (Buceta et al., 2004). 

Therefore, there is a need to understand the nature of the virus host, its temporal and 

spatial dynamics, and its relation to the human population in order to predict the risk of 

the disease and design effective prevention strategies. An understanding of how 

ecological systems influence disease dynamics could help advance our ability to both 

manage and predict infectious diseases in humans, wildlife, and natural habitat. 
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In recent years, agent-based modeling (ABM) has emerged as a very promising 

bottom-up modeling approach to simulate individual behaviors and their interactions at a 

microlevel, which results in emergent phenomena at a macrolevel. It provides virtual 

laboratories to replicate real or potential behaviors of the complex system and test various 

hypotheses as well as to experiment with a range of “what-if” scenarios. The spatially 

explicit dimension of the model takes account of the spatial variations of each individual, 

and their interactions among the agents and with the environment. 

This study built a spatially explicit agent-based model to simulate deer mouse 

population dynamics and movement, their interactions, and hantavirus transmission in the 

deer mice population. This research helps us understand the important ecological 

parameters of hantavirus transmission in the deer mouse population, and expand our 

understanding of the risk factors of developing HPS in humans as a consequence of SNV 

infection. The construction of a spatially explicit agent-based simulation model for virus 

dynamics in an animal population can facilitate the examination of the potential impacts 

of landscape patterns on disease transmission in deer mouse populations. The 

parameterization of mouse behaviors and coupling of geo-spatial data of a spatially 

explicit agent-based model in this research may inform other studies concerning disease 

dynamics in animal populations in a heterogeneous environment.  

The focus of this research is the question of whether disturbance hinders or increases 

hantavirus transmission in deer mouse populations. There exist two contrasting 

hypotheses on how habitat disturbance affects hantavirus prevalence. Langlois et al. 

(2001) suggested that fragmented habitat increased mouse movement and thus contact 

rates, and consequently increased hantavirus transmission. In contrast, Calisher et al. 
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(2000) proposed that habitat disturbance reduced rodent habitat and thus the virus host, 

and therefore decreased prevalence.   

Background 

Hantavirus 

In May 1993, an outbreak of hantavirus pulmonary syndrome (HPS) characterized by 

acute respiratory distress with high mortality rate (>50%) (Glass et al., 2000; Nichol et 

al., 1993) among previously healthy young people occurred in the Four Corners region of 

the southwestern United States, where the borders of Colorado, New Mexico, Arizona, 

and Utah meet. HPS was later traced to the infection with Sin Nombre virus (SNV), a 

strain of hantavirus of which deer mice are the primary reservoir or host (CDC, 1993, 

Childs et al., 1994; Hjelle et al., 1996). Whether the SNV infection affects deer mouse 

fitness is still unclear. Douglass et al. (2007) suggested that SNV infection may 

negatively
 
impact the health of infected deer mice. Adler et al. (2008) found the infected 

deer mice had a significant higher mortality rate in their preliminary analysis. However, 

Previtali et al. (2010) found no effect of SNV infection on deer mouse survival rate. 

Infection is chronic, and deer mice maintain SNV infection for life (Botten et al., 2000; 

Yamada et al., 1995). The SNV is believed to be horizontally transmitted between 

rodents and transmission is hypothesized to occur through intraspecific aggressive 

behaviors, such as biting and perhaps through social behaviors such as communal nesting 

(Boone et al., 1998; Calisher et al., 1999; Mills et al., 1997).  The primary mode of SNV 

infection in humans is through inhalation of the aerosolized virus particles contained in 

mouse urine, feces, and saliva (Mills et al., 1998). 
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Environmental conditions, such as climate (Glass et al., 2000), seasonality (Cantoni et 

al., 2001; Dearing et al., 2009), and vegetation type have been associated with the 

distribution of SNV in the past studies. However, few studies have investigated the 

effects of habitat disturbance on the dynamics of SNV in deer mice. Langlois et al. (2001) 

found that hantavirus transmission increased with habitat disturbance. Mackelprang et al. 

(2001) suggested that a high level of SNV prevalence at one site in Utah may be due to 

anthropogenic disturbance. There exist two possible explanations for the positive effect 

of habitat disturbance on hantavirus transmission. First, if deer mice move further in a 

more disturbed habitat/fragmented landscape (Diffendorfer et al., 1995), deer mice may 

have a wider range of contact, which increases virus transmission probability. 

Escutenaire et al. (2002) also found that hantavirus infection was associated with higher 

mobility in juvenile and subadult males. 

Alternatively, habitat disturbance may confine deer mice in small habitat patches and 

therefore increase the local population density and thus contact and virus transmission 

rates. Mackelprang et al. (2001) suggested that a high level of SNV prevalence at one site 

in Utah may be due to disturbance by humans, primarily intensive use of all-terrain 

vehicles (ATVs) at a recreation area. The heavy recreation use can produce numerous dirt 

roads, campsites, and barren spaces.  Barren space caused by this disturbance reduces 

preferred habitat for species such as deer mice and may cause animal density to increase 

within a microhabitat. Increased interaction within the microhabitat may lead to a higher 

rate of SNV transmission. Other demographics of deer mice such as sex, reproductive 

status, and mass are also believed to affect pathogen transmission.  
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Agent-based Modeling 

ABM has emerged as a very valuable tool in modeling space-time dynamics within 

complex environmental and urban systems in recent years (Batty and Jiang, 1999; 

Benenson et al., 2002; Jiang & Gimblett, 2002; Kohler & Gummerman, 2000). The basic 

idea of ABM is to specify the behavioral rules of individual agents and the rules of their 

interactions to explore the macrolevel consequences stemming from individual-level 

interactions. ABM is able to capture individual and collective behaviors in a complex and 

dynamic environment and has thus received significant attention (Bonabeau, 2002; 

Gilbert & Bankes, 2002). It helps researchers study the relationship between microlevel 

individual actions and the emergent macrolevel phenomena (Jiang, 2001). ABM has been 

widely applied in the areas of ecology (DeAngelis et al., 1996; Grimm, 1999; Grimm & 

Railsback, 2005; Judson, 1994; Uchmanski & Grimm, 1996), geography (An et al., 2005; 

Cederman et al., 2001; Parker et al., 2003;), epidemiology (Barrett et al., 2005; 

Carpenter, 2004; Hotchkiss et al., 2005; Joshua et al., 2002; Teweldemedhin et al., 2004), 

economics (Holland & Miller, 1991), business (Robertson, 2003), social science (Dean et 

al., 2000; Epstein & Axtell, 1996; Gotts et al., 2003), and political policy (Bernard, 

1999).   

 ABM has two essential components: agents and their environment. Franklin and 

Graesser (1997) defined the autonomous agent as “a system situated within and a part of 

an environment that senses that environment and acts on it, over time, in pursuit of its 

own agenda so as to effect what it senses in the future.” An agent is environment-

dependent and able to sense and act autonomously. It has the ability to satisfy internal 

goals through actions based on a set of internal rules (Iglesias et al., 1999). It has to be 
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situated in an environment. Once it leaves the environment, it is no longer considered an 

agent. Responding to what is sensed, agents take actions autonomously. The environment 

has a degree of autonomy but can also be influenced by the behaviors of agents. Agent 

dynamics are most naturally implemented in an ABM by a set of behaviors that can 

include conditional decision making and other (nonlinear) rules that distinguish them 

from mathematically continuous models (Parunak et al., 1998). 

ABM in Animal Movement and Disease Transmission 

While many studies have been conducted on pedestrian movement using ABM (Batty, 

2001; Batty et al., 2003; Jiang, 1999), relatively few researchers have investigated animal 

movement in the context of ecosystems. Railsback et al. (1999) studied the movements of 

fish in a stream using an agent-based model. Goodwin et al. (2001) modeled the detailed 

movement of juvenile salmon at a hydroelectric dam. Harper et al. (2002) simulated the 

movement of cowbirds and cattle herds at the landscape scale. Cater et al. (1999) 

developed a simulation model of animal behavior (MOAB) that can create spatially 

explicit, individual-based animal foraging models. MOAB can be used to explore 

hypotheses concerning the influence of landscape pattern on animal movement and 

foraging behaviors. Users can create heterogeneous landscape patterns and place various 

resources and individual animals of a given species on that landscape to simultaneously 

simulate the foraging behavior of multiple species. The heuristic rules for animal 

behavior are maintained in a user-modifiable expert system. The animal consults the 

expert system, which asks the animal questions regarding its hunger level and time of 

day. The expert system tells the animal what it should do based on the user-supplied rules 

of behavior. For example, if the hunger level is greater than a threshold, move to a 
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neighboring cell and look for food; if there is food, stay and eat; if there is no food, move 

to another neighboring cell. As animals forage, they build up a memory of where they 

have been and what they last saw at any particular spot. Beecham et al. (2002) developed 

an agent-based system, Hierarchical Object Orientated Foraging Simulator (HOOFS), to 

examine the interactions between foraging animals and a spatially explicit description of 

the environment. The model used direct walking towards a food source rather than a 

simple random walk. At this point, agent-based models of animal behavior are often not 

realistic in terms of the animal‟s bioenergetics (Beer & Anderson, 2000), and there is still 

much research and development to be done. 

Directly transmitted pathogens are transmitted from individual to individual following 

the network of contact between them through space and time. Epidemiological models 

are needed to represent spatially varying, temporally dynamic, and individual-based 

epidemiological phenomena. Traditional epidemiological models represent the dynamics 

of infectious diseases with a nonspatial and population-based approach (Bian, 2004). 

There has been increased interest in using ABM to model epidemics in recent years 

because of its ability to capture the essence of epidemiological phenomena – individuals, 

space, and time. ABM have been applied to modeling epidemics of small pox (Barrett et 

al., 2005; Joshua et al., 2002), anthrax, flu (Carpenter, 2004), pathogen dissemination 

(Hotchkiss et al., 2005), and AIDS (Callaghan, 2005; Heuveline et al., 2003; 

Teweldemedhin et al., 2004). Bian (2004) proposed a conceptual framework to formalize 

a spatially explicit agent-based model for the epidemiology of infectious diseases. The 

conceptual spatial agent-based model assumes that individuals are different, mobile, and 

interact with each other locally in an environment that is heterogeneous. The agent-based 
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model uses a stochastic computation approach to simulate the population instead of a 

deterministic approach, which is often used by traditional population-based 

epidemiological models. The model also takes into account the spatial distribution of 

individuals.  

Barrett et al. (2005) at Los Alamos National Laboratory (LANL) developed the largest 

agent-based epidemiological simulation model to date called EpiSims. It provides a 

virtual laboratory where health officials can test the effectiveness of various responses at 

time of diseases outbreaks. It helps officials to alter social networks through measures 

such as school closings and quarantines by knowing the paths by which diseases are 

transmitted. EpiSims was used to test several response strategies that are to contain the 

spread of small pox. It was found that response time was the most critical factor in 

limiting deaths and mass vaccination of the population would be unnecessary. Carpenter 

(2004) used ABM to simulate the influenza epidemic of a small community in Manitoba, 

Canada. The community was dispersed in small, family hunting groups, leaving a small 

group of people running the fort in winter. Hunters would return to the fort periodically 

for trade. In the summer, the entire community would gather near the fort.  The 

simulation was used to investigate the impact of seasonal travel pattern on the spread of 

the flu epidemic. It was found that in the summer, when people are gathered around the 

fort, the epidemic is short and intense and in the winter, when people are dispersed, the 

epidemic is long and less intense. Tweldemedhin et al. (2004) used ABM to estimate and 

predict the spread of the Human Immunodeficiency Virus (HIV). Callaghan (2005) 

applied ABM not only to model the spread of HIV/AIDS but also to investigate the 

aspects of the immune responses to HIV infection.  
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Most of the models in human epidemics are based on social networks whereas models 

in animal epidemics more often use geographic landscapes. Bagni et al. (2002) used an 

agent-based model implemented with Swarm to study Bovine Leukemia epidemic, a viral 

pathology sustained by a retrovirus from the same family as HIV that exclusively strikes 

cattle within dairy farms. The simulation model they implemented exhibited the 

emergence of a complex behavior although with quite simple behaviors of the agents. 

The overall dynamic of the system appeared very complex and sensitive to the initial 

conditions. This characteristic led to a great opportunity to evaluate the effect of changes 

at the microlevel on the entire system. Eisinger et al. (2005) developed a spatially explicit 

agent-based simulation model to contrast two strategies for emergency rabies vaccination 

in fox populations. The spatial explicit model is based on fox group home-ranges, which 

facilitates the simulation of rabies spread to larger areas relevant to management. The 

model helped to determine what the best spatial design is for an emergency vaccination 

program, especially when resources are limited. 

ABM Development Platforms 

Building agent-based models from scratch requires extensive programming efforts; 

thus, many toolkits and platforms have been developed to facilitate their implementation.  

These include Swarm (Santa Fe Institute, 2000), Recursive Porous Agent Simulation 

Toolkit (RePAST) (Collier et al., 2003), NetLogo (NetLogo, 2005) and ASCAPE 

(Parker, 1999; Parker, 2000). These tools allow researchers with limited computer-

programming background to construct relatively complex simulations. Swarm is one of 

the first software platforms for agent-based simulation of complex systems. It consists of 

a set of object-oriented libraries that facilitates the implementation of agent-based models 
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and helps to build user interfaces easily. RePAST borrows many concepts from Swarm. It 

has multiple pure implementations in several languages and built-in adaptive features 

such as genetic algorithms and regression. It has been evaluated rigorously and is 

considered to be a leader in terms of ease of use, user documentation, and support for 

modeling and simulation control (Tobias & Hofmann, 2004). 

These libraries require modelers to have a good working knowledge of the 

programming language (e.g. Java for RePAST).  Some software packages exist that allow 

building of simple agent-based models without much programming experience. A good 

example is Netlogo. However, these tools can have limited functionality. Gilbert and 

Bankes (2002) and Tobias and Hofmann (2004) provide valuable reviews of Swarm, 

RePAST and other agent-modeling toolkits. 

In recent years, interest in integrating GIS with agent-based modeling has grown in 

Geography and Ecology. GIS data can provide “real-world” representation of the 

environment with which the agents interact. A few GIS extensions to ABM have been 

developed such as the Kenge libraries, a Swarm GIS extension (Box, 2001), and Agent 

Analyst, a RePAST GIS extension (North, 2004). Agent Analyst is an open source 

ArcGIS extension that provides full integration of ABM into ArcGIS. Users can create 

agents directly from spatial objects in ArcGIS and include the rules for agent behaviors in 

the language Python. Agent Analyst is graphical and allows the user to create agents, 

schedule simulations, produce maps in ArcGIS, and specify the behaviors and interaction 

of the agents (North, 2004).  Dibble and Feldman (2004) developed the GeoGraph 

extension to the RePAST agent-based simulation platform support models in which 

mobile agents interact on network and other interesting geographic landscapes. 
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Interactive GeoGraph 3D visualizations allow researchers to zoom and pan within the 

simulation landscape as the model runs. GeoGraphs support building and testing 

simulation models on geographic scale-free networks, or GIS representations of real-

world landscapes.  

Methods 

Study Area and Field Data 

The study area was located in proximity to the Little Sahara Recreation area in Juab 

County in Utah (39°40´ N, 112° 15´ W). Vegetation in the area primarily consists of 

sagebrush (Artemisia tridendata) and juniper (Juniperus osteosperma). This particular 

area had experienced heavy recreation use, mainly by all terrain vehicles (ATV). ATV 

have created large amounts of pronounced trails throughout the area and made a 

substantial disturbance in desert habitats. We mainly studied the disturbance caused by 

ATV use as it is the predominant type of the disturbance in the study area (Lehmer et al., 

2008). The lowest disturbance sites were restricted to ATV access and had 10 ~ 17% bare 

ground, whereas the high disturbance sites experienced varying levels of ATV recreation 

use with the highest disturbance site having more than 40% bare ground (Previtali et al., 

2010) 

Rodents were sampled at twelve sites with low and high levels of disturbance in the 

spring and fall of 2004, 2005, and 2006. Low disturbance sites referred to those areas 

where ATVs have had little or no effect. High disturbance sites referred to the areas with 

trails and vast bare ground introduced by camping and the heavy use of recreational 

vehicles and ATVs. 
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Over 2000 mice were captured and released from 2004 to 2006. The ear tag 

identification number, trap location, sex, reproductive status, mass, wounds, and scars 

were recorded for each captured mouse. Blood was drawn from deer mice for testing 

SNV presence. Prevalence was calculated as the ratio of infected mice to the total number 

of mice. 

Spatially Explicit ABM Overview 

A spatial ABM model was developed to simulate deer mouse population dynamics, 

their movement, contacts, and subsequent hantavirus transmission using Repast Java 3.1. 

This model integrates GIS habitat maps where deer mice interact to take into account 

spatial dynamics of landscape effect on hantavirus dynamics. We used empirical data 

from a multiyear field survey and remotely sensed GIS habitat maps as input. The model 

was designed to answer various research questions on hantavirus dynamics in deer mouse 

populations. For example, how does habitat disturbance affect hantavirus prevalence? 

How does population density affect hantavirus? How does mouse movement affect 

hantavirus dynamics? The model itself is as a finite state machine describing how agents 

move, interact, are exposed to hantavirus, and become infected.  

The implementation of how deer mice move was one of the most critical components 

to the simulation. It determined the contact rates in the population and thus affected the 

prevalence.  

The mouse agents had the following properties: 

1) Home range. Wood et al. (2010) estimated that deer mouse home range in the 

desert sage brush habitat varied from 360 m
2 

to 5868 m
2
. We applied an 

approximate home range of 2835 m
2
 with 30 m radius from the initial 
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location. Wood et al. (2010) reported that deer mice had high site fidelity 

across a three-month period. We assumed that the mice would stay in their 

established territories and had no probability of moving out of their home 

range area. Their initial locations were considered as the center of their 

territory. 

2) Infection status. The infection status is either susceptible or infected. The 

infection is chronic and does not cause death. The mice carry hantavirus for 

their entire life once infected.   

3) Sex. There were male and female mouse agents. Their movement parameters 

could be varied for various experiments. 

4) Movement. This was represented by a vector with length and direction. 

In the simulation, the initial locations of the mice were considered as their home. They 

move around foraging for food on the landscape within their home range (e.g. 30 m 

radius from their home). The time step unit in this model represents one hour in the real- 

world. It is assumed that during one time period, mice move from an origin to a food 

destination. The food destination will only be on a sagebrush or juniper cell. If it occurs 

on a bare cell, a new selection would be made until a sagebrush/juniper cell is chosen. 

The mouse is counted to have contacts and probability of SNV transmission when it has 

neighbors at the food destination and also along the movement vector.  

Mouse agent actions include the following: 

1) Move. The movement rules were explained in the above paragraph.  

2) Contact. When two mice were in neighboring habitat cells, a contact is 

recorded, either at the destination or on the movement vector.  
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3) Infect. Whenever a susceptible mouse encounters an infected mouse, an 

infection probability can be defined by the simulation user that determines the 

transmission likelihood. 

Basic Mouse Population Model  

We adapted a basic stochastic population model to simulate deer mouse population 

dynamics (Renshaw, 1991). The model assumes each time step interval was short enough 

that there would be only three scenarios: 1) one mouse was born; 2) one mouse died; 3) 

nothing happened. Renshaw (1991) defined the probabilities for each case as follows: 

1) one mouse was born: hN  

2) one mouse died: hN  

3) nothing happened: hN )(1    

Here N is the number of deer mice at current time step;   is the birth rate and  is the 

death rate; h is the time interval of each simulation step. At each time step, the 

probability was independent with other time steps. 

This basic mouse population model assumed that hantavirus was transmitted within a 

relatively stable population level within the simulation time. It assumed no sudden 

decrease or increase in the population, which may be caused by severe weather or in the 

breading season. Seasonal variability was not considered. We assumed there was a 

consistent food resource to support the input population level.  During the simulation, 

there were newly uninfected mouse agents coming in the system and part of the mouse 

agents would die; however, the overall population level was relatively stable. The total 

number of births and deaths was determined by the birth and death rate. Only adult mice 

were considered in the simulation. There was no mouse growth simulated in the model. 
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Heterogeneous Environment 

The environment consists of a two-dimensional cellular lattice. Each cell contains a 

value which represents the habitat type. Real-world geographic data was integrated into 

this agent-based simulation model. The habitat maps were derived from 1 meter 

panchromatic digital air photos provided by Utah Automated Geographic Reference 

Center. The imagery was classified into three categories: sagebrush, juniper, and bare 

ground using ArcGIS 9.2 slice tool. Sagebrush habitat is the most preferred habitat for 

deer mice, which provided deer mice with food and cover (Pearce-Duvet et al., 2006). 

Juniper habitat is less preferred habitat. Bare ground contains no food resource and high 

exposure to predators. Thus, it is nonpreferred habitat.  

  Two sets of habitat maps (Figure 4.1) at the study area derived from the digital air 

photos with low and high disturbance levels were selected to examine the effect of habitat 

disturbance on hantavirus transmission. The low disturbance site had roughly 10% bare 

ground, whereas the high disturbance site had more than 50% bare ground. Dark green 

represents sagebrush habitat. Bright green cells correspond to juniper trees. White is bare 

ground. The geographic area that each habitat map covered was approximately 30,000 

square meters. GIS habitat raster maps were converted to ASCII files and used by the 

simulation model to represent the environment. When the mouse agents moved around, 

they utilized the habitat information to select a foraging destination. They are also 

assumed to stay on the preferred sagebrush and juniper habitat and avoid bare ground.  

Simulation Experiments 

Simulation experiments were performed with varying levels of population and habitat 

disturbance (low and high). Each simulation scenario was run 1000 times to overcome 
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the stochastic effects of the model. The averages of the prevalence at each time step were 

computed and recorded.  

Figure 4.2 shows the interface of the simulation model. We assume mouse movement 

occurs 5 hours per day during the night. The model was run for 500 steps with each time 

step representing an hour, and therefore, it simulates approximately three months of 

mouse movement and hantavirus transmission. The model was initialized with a number 

of mice (in blue) with 10% population infected (in red). 

The purpose of these experiments was to see how prevalence responds to changes in 

density and habitat disturbance, with real-world field surveyed population density data 

and GIS habitat maps as model inputs. The field data showed that the population levels 

varied significantly during the predrought and postdrought years. For example, in the 

predrought years of 2004, there were 51 deer mice at the lowest disturbance sites and 

there were 23 mice correspondingly at the highest disturbance site. In the postdrought 

year of 2006, the population density more than doubled from the predrought year mouse 

density with 134 mice at the lowest disturbance sites and 62 mice at the highest 

disturbance site. The year 2005 is the transition year from drought to postdrought 

weather.  Regardless of precipitation, mouse population density at the highest disturbance 

site was approximately half of the density at the lowest disturbance sites in 2004 and 

2006.  

Four simulation experiments were performed with varying levels of population and 

disturbance levels. Table 4.1 shows the specific input values for each simulation scenario. 

The first and second experiments used a low population density for predrought years at 

the lowest and highest disturbance sites as the input. The third and fourth experiments 
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applied a higher population density for postdrought years at the lowest and highest 

disturbance sites as the model input.  

The simulation applied 40% for the birth and death rates over the whole simulation 

period based on rodent‟s high population turnover rate. They were held the same for all 

four simulation experiments in order to compare the population density and disturbance 

effects alone. For other experiments, they could be adjusted according to the past studies 

or field observations. Transmission probability was artificially set to 10%, which meant 

whenever an infected mouse came into contact with a noninfected mouse, there was a 

10% probability of transmitting the infection. At each time step, a random number was 

generated to determine how many cells the mouse would move. The minimum or 

maximum movement size sets the movement range that a mouse could move. 

Sensitivity Analyses 

Sensitivity analysis was performed by examining the proportional change in 

hantavirus prevalence, which resulted from a given proportional change in parameter 

values. The tested parameters were population density, birth, death rates, transmission 

probability, maximum movement per time step, and initial infection rate. Disturbance 

levels were also tested for model sensitivity by altering disturbance level from low to 

high. We used +/-10% change in the parameter values, which was also used for the 

sensitivity analysis of other rodent disease transmission models (Holt et al., 2006; 

Sauvage et al., 2003). The final prevalence at the end of the simulation was then 

compared. 
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Simulation Results  

Population Density, Disturbance, and Prevalence 

The total population levels were very stable for all four experiments while 

approximately 40% of the initial number of deer mice moved out of the system (through 

death) and approximately 40% of the initial number of deer mice were added in the 

simulation (through birth) during the simulation period. All newly added deer mice were 

initially uninfected. For the example of the simulation of the low disturbance in the 

predrought year, the initial number of deer mice was 51. At the end of the simulation, 24 

deer mice were dead and 3 out of 24 dead deer mice were infected. The population 

dynamics from all simulations matched our assumption that population level was held 

relatively steady over the simulation period.  

In the predrought year, the population density for the low disturbance simulation (51 

mice per site) was more than twice that for high disturbance simulation (23 mice per site). 

In the postdrought year, the population density for low disturbance simulation (134 mice 

per site) was more than twice of the population density for high disturbance simulation 

(62 mice per site).  

Figure 4.3 shows the prevalence changes over 500 time steps for the four simulation 

experiments. The prevalence was the average prevalence from the 1,000 simulation runs 

at each given time step. All simulations resulted in increasing prevalence over time. All 

simulations were initiated with 10% prevalence, and the prevalence trended higher as 

population densities increased for the four simulation scenarios. In both the predrought 

and postdrought year simulations, the prevalence at low disturbance was higher than the 
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prevalence at high disturbance. The prevalence in the postdrought year was higher than 

the prevalence in the predrought year.  

Table 4.2 lists the prevalence at the end of each simulation experiment. The low 

disturbance in the postdrought year simulation yielded the highest final prevalence of 

0.57. The final prevalence for the high disturbance in the predrought year simulation was 

the lowest at 0.10 and remained almost unchanged from the initial infection rate. In the 

predrought year, the final prevalence for the low disturbance simulation (0.19) was 

almost twice the final prevalence for the high disturbance simulation (0.10). In the 

postdrought year, the final prevalence for the low disturbance simulation (0.57) was more 

than twice the final prevalence for the high disturbance simulation (0.26).  

Sensitivity Analyses   

Figure 4.4 shows the impacts of a 10% increase and decrease in parameter values on 

the changes in the final prevalence. The most sensitive parameters were the population 

density and initial infection rate when increased by 10%. The corresponding final 

prevalence increased 17% and 19%, respectively. When population density and initial 

infection rate were decreased by 10%, there was not much of a change in the final 

prevalence. A 10% increase and decrease in maximum movement and transmission 

probability yielded similar results. The final prevalence increased and decreased in the 

range of 6% ~ 9%. The birth and death rate were the least sensitive parameters. There 

was less than a 2.6% change in the final prevalence level when the birth and death rates 

were varied by 10%. When altering the disturbance levels alone and holding population 

densities the same, the final prevalence for the high disturbance simulation increased 

13% from that of the low disturbance simulation, which suggested that habitat 
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disturbance increases prevalence because of the changing landscape that may lead to the 

increased movement, whereas in reality, increased habitat disturbance would decrease 

population density, which would decrease the prevalence. These counter effects and the 

results showing negative effect of habitat disturbance using the field input data suggested 

that population had much greater effect than the movement, which supported the 

hypothesis of Calisher et al. (2001) that habitat disturbance decreases prevalence because 

of reducing virus host population.  

Discussion 

The focus of this study was to construct a spatially explicit agent-based model to 

simulate hantavirus dynamics in the deer mouse population utilizing field surveyed 

population data and a GIS habitat maps as model input. The main question was whether 

habitat disturbance decreases or increases hantavirus transmission. Four simulation 

experiments were performed using varying levels of population densities and disturbance. 

Sensitivity analysis was conducted by examining the change in the final prevalence 

resulting from a 10% increase or decrease in population density, birth, death rates, 

transmission probability, maximum movement per time step, and initial infection rate. 

Sensitivity for disturbance levels was also analyzed by altering the disturbance level from 

low to high. The sensitivity analysis also provides an indication of the importance of the 

different parameters (Holt et al., 2006).  

The simulations consistently showed that prevalence was lower at high disturbance 

site where deer mouse density was lower regardless of predrought or postdrought climate 

conditions. These findings support the hypothesis of Calisher et al. (2000) that habitat 

disturbance decreases prevalence because it reduces rodent habitat and thus the virus 
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host. The model results also correspond to the findings in Lehmer et al. (2008) and now 

Previtali et al. (2010) which suggest that habitat disturbance is negatively related to 

prevalence, and habitat disturbance has a strong effect on deer mouse population 

densities.  

The simulations also show that prevalence increases as population density increases, 

as mice that reside in a more crowded space have a higher encounter rate. The sensitivity 

analysis showed that population density is one of the most sensitive parameters in terms 

of affecting prevalence. These model results support the findings in the “El Niño” model 

of hantavirus studies that suggests prevalence is positively related to virus host density 

(Calisher et al., 2002) and predicts that hantavirus prevalence or the number of infected 

animals are highest during seasons or years when deer mouse density is greatest (Glass et 

al., 2000; Parmenter et al., 1999). Increased precipitation in the southwestern United 

States associated with an El Niño event is often accompanied by a subsequent boom in 

rodent populations (Parmenter et al., 1999). Some have proposed a „„delayed density-

dependence‟‟ mechanism, in which hantavirus prevalence in a particular season is 

positively correlated to the density of hosts in a previous season (Adler et al., 2008; 

Calsiher et al., 1999; Mills et al., 1999; Niklasson et al.,1995;). 

When altering the disturbance levels in the simulation, the final prevalence of the high 

disturbance simulation increased 13% from that of the low disturbance simulation. This 

indicated that habitat disturbance could actually increase hantavirus transmission. This 

may be because the open space and limited food resources force deer mice to move 

greater distances to forage, and therefore increase the encounter rate. However, the 

sensitivity analysis showed that population density is the most critical factor that affects 
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prevalence dynamics. A 10% increase in population density resulted in a 17% increase in 

prevalence. Our field data showed that mouse population density at the highest 

disturbance site could be about half of the density at the least disturbed sites in either a 

predrought or postdrought year. This suggests that habitat disturbance has a much 

stronger effect on prevalence by decreasing population density than by increasing 

movement. However, this may suggest that in some situations, habitat disturbance may 

not be a significant contributing factor. For example, severe environmental conditions 

(e.g. drought, early frost, sudden temperature drop) could result in dramatic population 

dynamics that could lead to chaotic hantavirus dynamics within a site.  

Sensitivity analysis also showed that the initial infection rate, which determined initial 

number of infected mice was another sensitive parameter in addition to population 

density. This may suggest that the transseasonal survival rate is critical in affecting 

prevalence dynamics. The virus needs a sufficient number of virus hosts to persist the 

virus transmission. Lehmer et al. (2008) also suggested that prevalence is higher during 

periods of increased deer mouse survival. 

A 10% increase and decrease in maximum movement and transmission probability 

yielded similar results. The final prevalence increased and decreased in the range of 6% ~ 

8% when the maximum movement varied by +/- 10%. This implied that increased 

movement may lead to increased prevalence because of the increased contact probability. 

 The positive relationship between deer mouse density and prevalence leads to the 

possibility of using remote sensing imagery in predicting hantavirus risk to humans over 

large geographic areas. Pearce-Duvet et al. (2006) related a high percentage of sagebrush 

within a habitat to high mouse density. This simulation model suggested a positive 
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relationship between mouse density and hantavirus. Therefore, the coverage of sagebrush 

within a habitat could be utilized to predict hantavirus prevalence.  

 This study is one of very few studies on rodent pathogen transmission using an agent-

based modeling approach. Our spatially explicit agent-based model of hantavirus 

dynamics has demonstrated the utility of SABM in identifying important ecological 

factors that affect prevalence. The use of real-world GIS data provided realistic 

representations of the environment and greatly enhances a model‟s representation of the 

real world. SABM helped us obtain a better understanding of hantavirus dynamics in the 

complex ecosystem. 

This spatially explicit agent-based model provides ecologists a virtual laboratory to 

experiment with numerous “what-if” scenarios, identify relationships, and test various 

hypotheses, which may be impossible or too expensive to test in the field. This type of 

modeling can also be used to guide the planning of field work with better resource 

utilization because field data collection is very expensive and labor extensive.   
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a) b) 

Figure 4.1 Habitat maps derived from a digital air photo. Dark green represents deer mice 

preferred sagebrush habitat. Bright green is juniper habitat. White cells are bare ground. 

a) the low disturbance study site; b) the high disturbance study site. 
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Figure 4.2 Simulation model interface. 



95 

 

 

 

Figure 4.3 The prevalence changes over 500 time steps for four simulation experiments 

that used field-surveyed population densities. The four sets of population densities were 

of the study sites that have low and high disturbance in the predrought and postdrought 

year.  
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Figure 4.4 Sensitivity analyses of birth rate, death rate, initial infection rate, maximum 

movement, population density, and transmission probability. 
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Table 4.1 Parameter values used for the four simulation scenarios. 

Parameters  Predrought Years Postdrought Years 

Low 

Disturbance 

High  

Disturbance 

Low 

Disturbance 

High  

Disturbanc

e 

Initial Number of Mice 51 23 134 62 

Birth Rate 40 40 40 40 

Death Rate 40 40 40 40 

Transmission Probability  0.1 0.1 0.1 0.1 

Minimum Movement 

(meter) 

2 2 2 2 

Maximum Movement 

(meter) 

20 20 20 20 
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Table 4.2 Final prevalence for each simulation. 

Prevalence Low Disturbance High Disturbance 

Predrought Year 0.19 0.10 

Postdrought Year 0.57 0.26 

 

 

 



 

 

 

 

 

CHAPTER 5 

CONCLUSION 

Environmental changes (e.g. climate, habitat disturbance) can have large impacts on 

the dynamics of population density and behaviors of a species. Consequently, these 

changes could greatly affect the dynamics of the pathogen they carry, threatening human 

health. In the past few decades, there has been a dramatic increase in zoonotic diseases 

such as HPS, SARS, and the West Nile Virus. There is a great need to understand the 

nature of the virus host, its temporal and spatial dynamics, and its relation to the human 

population with the purpose of predicting human risk of the disease and deploying 

effective prevention strategies and policies.  

The focus of this research is hantavirus dynamics in deer mice in the Great Basin 

Desert of Central Utah, USA using multiyear field data and integrated geospatial 

approaches, including remote sensing, GIS, and a spatially explicit agent-based model. 

The goal is to advance our understanding of the important ecological and demographic 

factors that affect the dynamics of deer mouse population and SNV prevalence, as well as 

expand our knowledge of the risk factors of developing HPS in humans as a consequence 

of SNV infection. The primary research question is how climate, habitat disturbance, and 

deer mouse demographics affect deer mouse population density, movement, and SNV 

prevalence in the sagebrush habitat. 
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To address the main research question, this research design includes three major 

components. The first component uses high temporal resolution (16-day) MODIS 

satellite time-series data (2002 ~ 2006) to estimate rodent abundance and SNV 

prevalence with the purpose of predicting SNV risk. The relationships between four 

MODIS vegetation indices and deer mouse density, SNV prevalence, and the number of 

infected deer mice at various time lags are examined and compared. The central 

hypothesis is that vegetation indices can serve as proxies for deer mouse food 

availability, which affects deer mouse abundance and SNV prevalence. The results reveal 

varying levels of positive correlation between the vegetation indices and deer mouse 

density, as well as the number of infected deer mice. Among the vegetation indices, the 

NDVI and EVI produce the highest correlations with deer mouse density and the number 

of infected deer mice using a time lag of 1 to 1.3 years for May and June data. This 

information can be very useful in predicting mouse abundance and SNV risk. The NDVI 

and EVI can be used to estimate population density that is one of the main input variables 

for the SABM. 

The second component is mapping the deer mouse movement from the recapture field 

data and identifying the potential environmental and demographic factors that can affect 

deer mouse movement. Understanding deer mouse movement is critical for 

understanding disease transmission. Greater movement leads to greater potential for 

encounters and increases transmission probability. The research investigates the roles of 

climate, seasonality, habitat disturbance due to ATV recreation use, deer mouse 

demographics, and infection with Sin Nombre virus on deer mouse movement. 

Generalized linear mixed models are used to estimate the effects of these factors and their 
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interactions by fitting movement data collected seasonally from 2003 to 2006 at twelve 

sites in the Great Basin Desert of central Utah, USA. The results show that climate, 

mouse density, sex, mass, and SNV infection have significant effects on deer mouse 

movement. There are also significant interaction effects between climate and disturbance, 

as well as mass and SNV infection. The effect of habitat disturbance on mouse movement 

varies according to climate conditions with a positive relationship in predrought 

conditions and negative association in postdrought conditions. The heavier infected deer 

mice move the most. Season and disturbance alone have no significant effects. 

Lastly a spatially explicit agent-based model is built upon the knowledge gained from 

the first and second components to further test the hypotheses and understand the 

mechanism of SNV dynamics. It is a great exploratory tool to test hypotheses as well as 

to experiment with a range of “what-if?” scenarios. The model simulates how SNV 

changes with deer mouse movement, population density, and demographics. There are 

two contrasting hypotheses on how habitat disturbance affects hantavirus prevalence. 

Langlois et al. (2001) suggests that fragmented habitat increases mouse movement and 

thus contact rates, and consequently increases hantavirus transmission. In contrast, 

Calisher et al. (2000) proposes that habitat disturbance reduces rodents‟ habitat and thus 

the virus host population, and in turn, hantavirus prevalence. This model tests these 

opposing hypotheses by including these variables. The simulation results consistently 

show that prevalence is lower at high disturbance sites where deer mouse density is 

lower, which supports the hypothesis of Calisher et al. (2000). The sensitivity analysis 

shows that population density is one of the most important parameters affecting 

prevalence dynamics and also indicates that habitat disturbance could increase hantavirus 
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transmission by increasing the movement of deer mice and consequently contact rates. 

However, the results suggest that habitat disturbance had a much stronger effect on 

prevalence by decreasing population density than by increasing mice movement. 

Therefore, overall habitat disturbance reduces prevalence mainly by reducing the size of 

the virus host population. 

Figure 5.1 shows the structure of the three main components and their interactions. 

The solid lines represent the data-flow in and out from the SABM model. The dashed 

lines correspond to the simulation results that explain how population density, movement, 

and habitat disturbance affect SNV infection. MODIS data can provide a means for 

population estimation that can serve as one of the important parameters in the SABM. 

Deer mouse movement measurements from mapping recapture field data can guide the 

settings of the movement parameters. SABM tests two contrasting hypotheses on the 

mechanisms of how various factors could affect hantavirus dynamics. The model results 

suggest that population density has much greater effects than the mouse movement. It 

also suggests that habitat reduces SNV infection by reducing the virus host population. 

The simulated prevalence is compared with the field surveyed prevalence and is found to 

be within the reasonable range. 

This research contributes to the fields of geography, ecology, and epidemiology in the 

following aspects: 1) it provides an example of studying ecology of animal hosts of 

zoonotic diseases in an arid environment. Zoonotic diseases are the diseases transmitted 

from animal to humans; examples are hantavirus, anthrax, and Avian Flu. The results will 

help us to identify important ecological parameters that affect disease dynamics in animal 

populations, and therefore enhance our ability to manage and predict disease risk to 
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humans. The results may also be applicable to other animal disease studies elsewhere in 

an arid land which covers 47% of the world‟s land surface; 2) It applies both top-down 

and bottom-up approaches to study the disease dynamics. This not only helps researchers 

understand the macrolevel phenomena but also the underlying mechanisms. The agent-

based modeling approach simulates individual movement, interactions, and hantavirus 

transmission as a probability of contacts. This simulation can increase the knowledge of 

pathogen transmission pattern and help public health officials make informed decisions. 

The incorporation of geospatial data in the simulation model provides a realistic 

simulation environment and good visualization capability. The model parameterization 

and coupling of geospatial data with a spatially explicit agent-based model may be 

illustrative for other studies concerning disease dynamics in animal populations in a 

heterogeneous environment. 
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Figure 5.1 The relationships between the three major components. 
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