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ABSTRACT 

 

Essential amino acids (EAA) are a potent stimulator of mammalian target of 

rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis.  However, the 

molecular regulators upstream of mTORC1 signaling that are stimulated by EAA are not 

well described in human skeletal muscle.  Leucyl tRNA synthetase (LRS) and RagB have 

recently been shown to be important in mTORC1 activation, but their role in human 

skeletal muscle following EAA ingestion is unknown.  The purpose of this study was to 

determine changes in protein expression and the association of the LRS- and RagB-

mTORC1 complexes following acute EAA ingestion in healthy human skeletal muscle. 

Muscle biopsies (vastus lateralis) were obtained from 13 young adults (7M, 6F, 22.9 ± 

0.9y, 21.7 ± 0.9 BMI) in the fasted state (basal) and 1 and 3 h after EAA (13g; 2.4g Leu) 

ingestion.  Co-immunoprecipitation and western blotting were used to determine LRS- 

and RagB-mTORC1 protein complexes and LRS and RagB protein expression, 

respectively.  We report that EAA ingestion did not alter LRS- or RagB-mTORC1 

association or LRS protein expression (P > 0.05) contrary to the robust increase in mTOR 

phosphorylation (P < 0.05).  However, we found that EAA increased RagB protein 

abundance following EAA ingestion (P < 0.05).  We conclude that LRS- and RagB-

mTORC1 complexes are not altered 1 and 3 h following EAA ingestion in healthy young 

adult skeletal muscle.  However, the transient increase in RagB protein expression after 

EAA ingestion may be an important mechanism to promote protein anabolism.  
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INTRODUCTION 
 
 
 

Net protein balance (NB) is regulated by the overall difference between muscle 

protein synthesis (MPS) and muscle protein breakdown (MPB).  When MPB exceeds 

MPS in a given day, a negative nitrogen balance ensues.  However, when MPS exceeds 

MPB, a positive nitrogen balance occurs allowing for hypertrophic adaptations and 

maintenance of muscle tissue.  While both MPS and MPB are affected by external and 

internal stimuli, such as essential amino acid (EAA) ingestion or insulin release (1, 2), 

MPS appears to be the more dynamic variable in a healthy population.  In a recent study, 

Glynn et al. showed that 10g EAA significantly increased MPS but did not affect MPB in 

young skeletal muscle (3). 

The mammalian target of rapamycin (mTOR), a 289 kDa protein kinase, has been 

established as a central regulator of MPS and cell size through mRNA translational 

control (4, 5).  mTOR interacts with several other proteins to form at least two main 

active protein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2).  mTORC1 consists of the proteins mTOR, regulatory associated protein of 

mTOR, DEP-domain-containing mTOR-interacting protein (Deptor), proline-rich Akt 

substrate-40, and β-subunit-like protein GβL (6).  The majority of research has focused 

on mTORC1 because of its sensitivity to rapamycin and its fundamental role in 

stimulating human MPS following a variety of anabolic stimuli such as hormones (i.e., 

insulin) (2, 7), contraction (8), and amino acids (9–11).  mTORC1 activation appears to
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be a prerequisite for the acute stimulation of MPS in humans in response to EAAs as 

described by Dickinson and colleagues (11).  In this crossover study, phosphorylation of 

S6K1, a downstream effector of mTORC1, and MPS significantly increased in skeletal 

muscle of young adults at 1 hour following EAA ingestion.  However, the normal EAA-

induced increase in S6K1 phosphorylation and MPS was attenuated when these subjects 

consumed rapamycin (16mg) two hours before 10g EAA ingestion (11). 

A wealth of information is known about the downstream signaling events of the 

mTOR pathway and subsequent stimulation of MPS in response to EAA.  On the other 

hand, upstream nutrient sensors leading to mTORC1 activation are currently less 

described in human skeletal muscle.  Several amino acid sensing molecules, including 

leucyl-tRNA synthetase (LRS) and RagB, have been investigated to describe how amino 

acids influence mTORC1 activation (12, 13).   

The four Rag GTPases (Rags A, B, C, and D) facilitate the binding of Rheb to 

mTORC1 by coordinating the translocation of mTORC1 to the lysosomal membrane 

(13).  Rag B has been shown to be most active in the GTP-bound state (13, 14).  In cells 

overexpressing Rag BGTP, mTORC1 translocates to the lysosomal surface regardless of 

amino acid deprivation, unlike cells expressing wild type Rag B.  This indicates that the 

GTP loading of Rag B is a rate limiting step to promote mTORC1 translocation.  

Additionally, in Rag BGTP knockdown cells, mTOR translocation does not occur (13). 

Thus, the amino acid-sensitive GTP loading of Rag B appears to be vital to stimulating 

lysosomal translocation of mTORC1. 

Amino-acyl tRNA synthetases have a key role in the first steps of protein 

synthesis by binding an amino acid with a corresponding tRNA (15).  LRS has recently 
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been identified in both the yeast cell and mammalian cell as an “amino acid sensing” 

protein.  During low amino acid concentration conditions, LRS, along with mTOR and 

Raptor, are found mainly in the cytosol and the endoplasm.  Upon addition of amino 

acids, LRS, mTOR, and Raptor translocate to the lysosomal membrane, where the Rags 

are bound.  Knockdown of LRS reveals an inability of mTOR and Raptor to translocate 

to the cell membrane, indicating that it has a pivotal role in coordinating translocation 

along with Ragulator.  Moreover, knockdown of LRS reduced S6K1 phosphorylation, 

while knockdown of isoleucyl tRNA synthetase, methionyl-tRNA synthetase, or valyl-

tRNA synthetase did not (12).  

Upon translocation to the lysosome, LRS bound with leucine interacted directly 

with RagD, functioning as a GTPase activating protein to facilitate the transition from 

RagD-GTP to RagD-GDP, in turn activating the mTORC1 signaling pathway. Together 

these data suggest that LRS has a unique role compared to the other branched-chain 

amino acyl tRNA synthetases and is critical for mTORC1 activation.   

While LRS and Rag proteins have been shown to be necessary to increase 

mTORC1 activation in response to amino acids in animal and cell models, there is no 

current literature describing this relationship in human skeletal muscle.  Therefore, the 

aim of this study is to investigate the acute changes in mTORC1-associated LRS and 

RagB protein expression in response to a bolus of EAA’s in adult human skeletal muscle.
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METHODS 
 
 
 

Screening of Participants 

A total of 13 healthy male and female young participants (age range: 18–28) were 

recruited through poster advertisements on the University of Utah campus and in the 

surrounding Salt Lake City community.  Participant characteristics are listed in Table 1.  

The subjects were recreationally active, but were not engaged in any regular exercise 

training program as defined by two or more exercise training sessions of moderate to high 

intensity aerobic or resistance exercise per week.  Exclusion criteria included, but were 

not limited to heart, lung, blood, vascular, liver, kidney, infectious, oncologic, and 

neurological diseases.  All subjects gave their written informed consent before 

participating in the study, which was approved by the Institutional Review Board of the 

University of Utah.   

 

Table 1. 
Subject characteristics and body 

composition of healthy, young adults 
Characteristic Measure 
Age 22.9 ± 0.88 
Height 1.7 ± 0.02 
Weight 65.9 ± 3.78 
BMI                 21.7 ± 0.91 
Values are means ± SE; n = 13 
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Acute Amino Acid Ingestion Study 
 

After a standardized evening meal (30% fat, 15% protein, 55% carbohydrate) and  

an overnight fast, subjects arrived at 0600 by transportation to the Center for Clinical and 

Translational Sciences at the University of Utah.  The subjects were allowed to rest in 

their hospital room for 2 hours after which a muscle biopsy was taken from the vastus 

lateralis.  Immediately after the biopsy, subjects ingested ~13g of crystalline EAA 

(Glanbia Nutritionals) mixed in a 400 ml flavored low calorie, noncaffeinated beverage.  

Additional muscle biopsies were taken 1 and 3 h after EAA ingestion.  The composition 

of EAA mixture was the following: histidine (1.6g), isoleucine (1.0g), leucine (2.5g), 

lysine (3.1g), methionine (0.8g), phenylalanine (1.2g), threonine (1.2g), and valine (1.5g).  

The proportion of EAA, in particular leucine, has been shown to maximally stimulate 

MPS in young adults (9, 16, 17). 

 
 

Muscle Biopsy Procedure 
 

Muscle biopsies were sampled from the vastus lateralis of the right leg using 

aseptic technique, local anesthesia (1% lidocaine), and a 5 mm Bergström biopsy needle 

with manual suction (18).  The first muscle biopsy (baseline) was taken from a single 

incision.  The second and third biopsies were taken from a separate incision, ~7 cm 

proximal from the first and inserted at an angle to separate the two sampling sites 

(biopsies 2 and 3) by at least 5 cm.  All muscle tissue was immediately blotted and 

dissected of visible nonmuscle tissue, flash-frozen in liquid nitrogen, and stored at -80°C 

for later analysis. 
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Co-Immunoprecipitation and Western Blotting 
 

Details to the co-immunoprecipitation for mTORC1 have been reported 

previously (19). Frozen muscle was homogenized in CHAPS buffer [40 mM HEPES (pH 

7.5), 120 mM β-glycerolphosphate, 40 mM NaF, 1.5 mM sodium orthovanadate, 0.3% 

CHAPS, 0.1 mM PMSF, 1 mM benzamadine, and 1 mM DTT], and the homogenate was 

rotated for 20 min at 4°C and then centrifuged at 10,000 rpm for 5 min at 4°C. Protein 

concentration was determined by Bradford Assay (BioRad).  700 µg of protein was 

aliquoted and diluted 3x in CHAPS buffer without inhibitors.  Six microliters of mTOR 

antibody (Cell Signaling; Catalog #2972) was added to each sample then rotated 

overnight at 4°C. The mTOR protein-antibody complex was isolated by adding BioMag 

goat anti-rabbit IgG (Qiagen, Valencia, CA) bead slurry then rotated for 1 h at 4°C. Just 

before using the BioMag beads, the beads were washed twice with CHAPS buffer 

without protease inhibitors, collected using a centrifuge tube magnetic stand (Qiagen) 

after each wash, then resuspended with one-quarter of the volume of CHAPS buffer with 

0.1% nonfat dry milk (NFDM).  500-µl of the bead+buffer mixture was added to the 

sample then rotated for 1 h at 4°C.  

Following incubation the bead-antibody-protein complex was isolated and 

collected using a magnetic stand (Qiagen), washed twice with CHAPS buffer without 

protease inhibitors and once in CHAPS buffer containing 150 mM of NaCl and 50 mM of 

HEPES. The bead-antibody-protein complex was eluted with 60µl of 2X sample buffer 

(125mM Tris, pH 6.8, 25% glycerol, 2.5% SDS, 2.5% β-mercaptoethanol and 0.002% 

bromophenol blue), then boiled for 5 min at 100°C.  An immunoprecipitated sample (25 

µl) was loaded on a 7.5 or 15% Tris-HCL polyacrylamide gel (Criterion; BioRad, 
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Hercules, CA), depending on the protein target size of interest, then separated with SDS-

PAGE for 1 hour at 150V. 

Each gel contained 6 samples in duplicate from two subjects (baseline, 1 and 3 h 

post EAA) and a molecular weight ladder.  An internal control (mouse quadriceps 

homogenate) was loaded in duplicate on each gel for band normalization and comparison 

across blots.  Protein was transferred (50V, 1 hour) to a polyvinylidene diflouride 

membrane then blocked for 45 min at room temperature with 2% NFDM in Tris-buffered 

saline in 0.1% Tween-20 (TBST) on a rocker.  Membranes were cut and incubated 

overnight separately in anti-leucyl-tRNA synthetase rabbit polyclonal antibody (1:1000; 

abcam, Cambridge, MA; Catalog #ab31534) and RagB rabbit polyclonal antibody 

(1:2000; Cell Signaling Technology, Inc., Danvers, MA; Catalog #8150) diluted in 2% 

NFDM.  The next morning, blots were rocked in rabbit secondary antibody (1:6000; 

sc2799; Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h at room temperature then 

washed 3x (5 min) with TBST.  Chemiluminescence reagent (ECL Plus, GE Healthcare) 

was applied to each blot then incubated for 5 min at room temperature.  Optical density 

measurements were obtained with a digital imager (ChemiDoc XRS+, BioRad).  

Membranes were stripped (Restore Western Blot Stripping Buffer; Pierce Biotechnlogy, 

CA) of primary and secondary antibodies then reprobed for total mTOR (1:1000; Cell 

Signaling Technology, Inc., Danvers, MA; Catalog #2972) on a separate day.  

Densitometric analysis was performed using Lab version 4.1 software (BioRad).  Co-

immunoprecipitation data were normalized to the internal control, and replicate samples 

were averaged.  Co-immunoprecipitation data were reported as target protein/total 

mTOR.  No signal was present when using an IgG control antibody (1:1000; Cell 
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Signaling Technology, Inc., Danvers, MA; Catalog #2729) for precipitation. 

 
 

Total Protein Expression 
 

To determine total protein abundance of LRS and RagB in skeletal muscle biopsy 

samples, frozen muscle samples were homogenized (1:9, w/v) in a buffer containing 50 

mM Tris-HCl, 250 mM mannitol, 50 mM NaF, 5 mM sodium pyrophosphate, 1 

mM EDTA, 1 mM EGTA, 1% Triton X-100, pH 7.4, 1 mM DTT, 1 mM benzamidine, 0.1 

mM PMSF and 5 µg ml−1 soybean trypsin inhibitor (SBTI). DTT, benzamidine, PMSF, 

and SBTI were added to the buffer immediately prior to use. Supernatant was collected 

after centrifugation at 10,000 rpm for 10 min at 4°C.  Protein concentration was 

determined by Bradford Assay (BioRad) and later boiled at 95°C for 3 minutes.  Forty 

micrograms of protein were loaded on a Tris-HCL polyacrylamide gel (Criterion; 

BioRad, Hercules, CA) then separated with SDS-PAGE for 1 h at 150V. 

Protein was transferred (50V, 1 h) to a polyvinylidene diflouride membrane then 

blocked for 45 min at room temperature with 2% NFDM in Tris-buffered saline in 0.1% 

Tween-20 (TBST) on a rocker.  Membranes were cut and incubated overnight 

individually in anti-leucyl-tRNA synthetase rabbit polyclonal antibody (1:1000; abcam, 

Cambridge, MA; Catalog #ab31534), RagB rabbit polyclonal antibody (1:2000; Cell 

Signaling Technology, Inc., Danvers, MA; Catalog #8150), and phospho-mTOR 

(Ser2481) rabbit polyclonal antibody (1:1000; Cell Signaling Technology, Inc., Danvers, 

MA; Catalog #2974) diluted in 2% NFDM.  The next morning, blots were rocked in 

rabbit secondary antibody (1:6000; sc2799; Santa Cruz Biotechnology, Santa Cruz, CA) 

for 1 h at room temperature then washed 3x (5 min) with TBST.  Chemiluminescence 
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reagent (ECL Plus, GE Healthcare) was applied to each blot then incubated for 5 min at 

room temperature.  Optical density measurement was obtained with a digital imager 

(ChemiDoc XRS+, BioRad).  Membranes were stripped (Restore Western Blot Stripping 

Buffer; Pierce Biotechnlogy, CA) of primary and secondary antibodies then reprobed for 

total mTOR (1:1000; Cell Signaling Technology, Inc., Danvers, MA; Catalog #2972) on 

a separate day.  Densitometric analysis was performed using Lab version 4.1 software 

(BioRad).  Whole muscle homogenate data were normalized to the internal control, and 

replicate samples were averaged and reported as fold change from basal.  Phosphorylated 

mTOR (Ser2481) was reported as p-mTOR/total mTOR (fold change). 

 
 

Statistical Analysis 
 

A 1-way repeated measures ANOVA was used to analyze differences across time 

(basal and 1 and 3 h after EAA ingestion).  Post hoc tests (Bonferroni) were conducted to 

assess specific interactions.  Significance was set at P < 0.05.  All values are presented as 

mean ± SE.  All analyses were performed with SigmaPlot (Version 12.0). 

 

 

 

 

 

 

 

 



10 

 

RESULTS 

 
 
 LRS-mTORC1 association was not different from basal at 1 h (1.11 ± 0.12-fold; 

P = 0.28 vs. basal) or 3 h post-EAA ingestion (1.10 ± 0.10-fold; P = 0.36 vs. basal) (Fig. 

1A).  Similarly, RagB-mTORC1 association was not different from basal at 1 h (1.02 ± 

0.09-fold; P = 0.62 vs. basal) or 3 h post-EAA ingestion (1.04 ± 0.16-fold; P = 0.67 vs. 

basal) (Fig. 1B).   

 mTOR phosphorylation at Ser2481 (relative to total mTOR) increased at 1 h (1.29 

± 0.12-fold; P = 0.03 vs. basal) and returned to baseline 3 h (1.01 ± 0.12-fold; P = 0.95 

vs. basal) following EAA ingestion (Fig. 2A).  LRS total protein expression was not 

different from basal at either 1 h (1.09 ± 0.08-fold; P = 0.32) or 3 h (1.08 ± 0.10-fold; P = 

0.34) following EAA ingestion (Fig. 2B).  RagB total protein abundance was not 

different from basal at 1 h (1.70 ± 0.17-fold; P = 0.10 vs. basal) following EAA ingestion 

but increased at 3 h (1.95 ± 0.42-fold; P = 0.03 vs. basal) following EAA ingestion (Fig. 

2C).  Figure 3 contains representative western blot images for proteins analyzed. 
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Figure 1. 
LRS- and RagB-mTORC1 Co-Immunoprecipitation in Human Skeletal Muscle at 

Basal and 1 and 3 h after EAA Ingestion. A) LRS-mTORC1 Association Fold Change. B) 
RagB-mTORC1 Association Fold Change. 
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Figure 2. 

mTOR (Ser2481), LRS, and RagB Total Protein Expression in Human Skeletal Muscle at 
Basal and 1 and 3 h after EAA Ingestion.  A) mTOR (Ser 2481)/Total mTOR Protein 

Expression Fold Change.  B)  LRS Protein Expression Fold Change.  C)  RagB Protein 
Expression Fold Change. 
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Figure 3. 
Representative western blot images for proteins analyzed. 
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DISCUSSION 

 

 We originally hypothesized that LRS- and RagB-mTORC1 association in human 

skeletal muscle would increase acutely following an ingested bolus of EAA: a dose 

previously known to maximally stimulate muscle protein synthesis. However, contrary to 

our hypothesis, we did not detect a change in LRS- and RagB-mTORC1 association from 

basal at either 1 or 3 h following EAA ingestion in young healthy human skeletal muscle.  

This occurred despite an increase in mTOR phosphorylation in whole muscle 

homogenates following EAA ingestion. Alternatively, skeletal muscle RagB total protein 

abundance increased at 1 h following EAA ingestion.  Although we observed a robust 

anabolic response to EAA ingestion in human skeletal muscle (e.g., mTOR 

phosphorylation), LRS- and RagB-mTORC1 association does not occur 1 or 3 h 

following EAA ingestion in healthy human muscle.  The increase in RagB protein 

abundance following EAA ingestion may be an important mechanism to increase the 

protein anabolic response to EAAs and/or increase sensitivity to a subsequent anabolic 

stimulus (e.g., exercise). 

 Recent cell studies have shown that a critical step in amino acid-induced 

mTORC1 activation is the binding of LRS and RagB to mTORC1 at the lysosome (12, 

13). However in the current study, LRS- and RagB-mTORC1 association was not altered 

following EAA ingestion, despite a robust anabolic environment as evidenced by 

increased mTOR phosphorylation.  The EAA dose used in the current study (13g EAA; 
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2.4g Leu) has been identified to elicit a maximal MPS response (10g EAA; 1.8g Leu) in 

young adult skeletal muscle (16, 17).  Moreover, the time points we chose were in 

accordance with maximal amino acid-induced MPS and mTORC1 activity (3, 10, 20–22).  

Our findings are consistent with those of Suryawan and colleagues, who found no change 

in RagB-Raptor association following a 2 h amino acid infusion in neonatal pig skeletal 

muscle (23).  While we initially hypothesized that LRS- and RagB-mTORC1 association 

might occur earlier than 2 h in human muscles (i.e., 1 h following EAA ingestion), this 

timepoint may still be too late to detect the formation of an LRS or RagB-mTORC1 

complex.  This notion is not unreasonable since an increase in plasma EAA 

concentrations are detected in as little as 30 min after whey protein (22), and 4E-BP1 

phosphorylation (downstream of mTORC1 activation) has been detected as early as 45 

min after EAA+CHO ingestion (24).   

 The lack of RagB-mTORC1 complex formation observed in this study may be 

due to a transient association/dissociation with mTORC1 that occurs in an alternative 

time sequence than hypothesized in the current study.  Prior cell studies have shown 

RagB to be a central regulator of mTORC1 activity by promoting mTORC1 translocation 

from the cytosol to the lysosome (13, 25). However, Sancak and colleagues determined 

that Rag function was no longer needed for the activation of mTORC1 when mTORC1 

was localized at the lysosomal surface (25).  These data suggest that once RagB has 

initiated mTORC1 translocation to the lysosome, RagB could possibly dissociate from 

the mTORC1 protein complex even in the presence of subsequent mTORC1 activation 

and muscle protein synthesis.  

 Based on our LRS-mTORC1 data, we propose that the binding of LRS to the 
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mTOR complex, much like RagB, may be transient and dissociates after initiating 

mTORC1 translocation to the lysosome.  In a cell model, LRS translocates to the 

lysosome and forms a complex with mTORC1, activating the mTORC1 pathway (12).  

The basic functions of LRS are to “charge” leucyl-tRNA with a leucine molecule and to 

“proofread” misacetylated tRNALeu molecules, ensuring the correct amino acid is placed 

on the tRNA (26).  More recently, LRS has been proposed to be necessary in mTORC1 

activation by translocating to the lysosome, forming a complex with mTORC1, and 

facilitating the transition of RagDGTP to more active RagDGDP.  The conformation of Rag 

DGDP and RagB GTP has been shown to promote the highest activation of mTORC1 

translocation and subsequent activation (12).  Once LRS facilitates the transition of 

RagDGTP to RagDGDP, LRS may dissociate from mTORC1, although this has yet to be 

confirmed.  This data fits a model in which LRS translocates to the lysosomal membrane 

upon amino acid stimulation, acts as a GTPase-activating protein towards RagDGTP, and 

dissociates from the complex.  Like RagB-mTORC1 association, presumably LRS-

mTORC1 association may be very transient (<1 h) to EAA ingestion despite a continual 

mTOR activation and protein synthesis response. 

Although we were unable to detect changes in LRS- or RagB- association to the 

mTORC1 complex, RagB protein abundance was shown to increase 3 h following EAA 

ingestion in human skeletal muscle.  We are unsure of what is responsible for the nearly 

100% increase in RagB protein abundance within hours of EAA ingestion.  However, it is 

not unreasonable to suspect parallel changes in RagB mRNA abundance contributing to 

this protein response since we have previously observed acute increases in both mRNA 

and protein abundance of other nutrient sensors following EAA ingestion in humans (27). 
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The increase in RagB protein abundance 3 h following EAA ingestion may not be related 

to the acute anabolic response to EAA ingestion since mTOR phosphorylation returns 

back to baseline at this timepoint.  Rather, an increase in RagB protein may be useful to 

amplify a subsequent anabolic stimulus such as resistance exercise as has been observed 

previously (28–30). The abundance of LRS needed for translocation of mTORC1 might 

already be at an optimal level such that additional LRS protein is unnecessary to serve as 

an additional signal for mTORC1 translocation and activation. 

In conclusion, RagB- and LRS-mTORC1 association was not altered in the early 

hours following EAA ingestion in human skeletal muscle. While this differs from 

previous cell data, complex formation of RagB and LRS is likely transient and may occur 

outside our sampling time points (e.g., <1 h EAA ingestion).  An increase in RagB 

protein abundance may serve to amplify the signal for mTORC1 translocation and further 

activation of postprandial human muscle protein synthesis.  A more elaborate time course 

of LRS- and RagB- association following EAA ingestion is warranted in humans. 
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