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ABSTRACT

This dissertation describes the design, fabrication, testing, reliability, and harsh 

environment performance of single-device Micro-electro-mechanical-system (MEMS)- 

based digital logic gates, such as XOR and AND, for applications in ultra-low-power 

computation in unforgiving settings such as high ionizing radiation and high 

temperatures.

Within the scope of this dissertation are several significant contributions. First, 

this work was the first ever to report the evolution in logic design architecture from a 

CMOS-paradigm to a MEMS architecture utilizing a single functional device per logic, 

as opposed to multiple relays per logic. This novel approach reduces the number of 

devices needed to implement a logic function by approximately 10X, leading to better 

reliability, yield, speed, and overall better characteristics (subthreshold characteristics, 

smaller turn-on/off voltage variations, etc.) and it simplifies implementation of MEMS- 

based circuits. The logic gates illustrate ~1.5V turn-on voltage at 5MHz with >109 cycles 

of reliable operations and low operational power consumption (leakage current and 

power <10-9A, <1^W).

Second, this work is the first ever to report an intensive study on the cycle-by- 

cycle evolution of contact resistance (Rc) up to 100,000 cycles, on materials such as, Ir, 

Pt, W, Ni, Cr, Ti, Cu, Al, and graphite, which are materials commonly used in MEMS 

switches. Adhesion forces between contacts were also studied using a contact-mode-



AFM, force vs. displacement, experiment. Results show that materials with high Young's 

modulus, high melting temperatures, and high density show low initial contact resistances 

and low adhesion forces (such as Ir, Pt, and W).

Third, the devices were interrogated separately in harsh environments where they 

were exposed to high doses of ionizing radiation (90kW) in a nuclear reactor for a 

prolonged time (120 min) and, separately, at high temperatures (409K). Here, results 

show that solid-state devices begin to deteriorate almost immediately to a point where 

their gate can no longer control the drain-to-source current, whereas MEMS switches 

survive such ionizing radiation and temperatures portraying clear ON and OFF states for 

far longer.

In terms of the applications empowered and the breadth of topics covered to 

accomplish these results, the work presented here demonstrates significant contributions 

to an important and developing branch of engineering
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CHAPTER 1

INTRODUCTION

Over the past decade, increasingly greater efforts are being made to maintain 

semiconductor industry growth in line with Moore’s law [1]. Continued progress is 

speculated to become exponentially complex as various critical issues are foreseen as 

limiting factors for further scaling. Quiescent power dissipation is one of the most critical 

factors that are gaining traction as power dissipation increases exponentially with 

continued scaling. This trend culminates in issues such as limited battery life and inability 

of cooling systems to remove excessive heat generation. Since 2003, the industry’s 

approach on maintaining Moore’s law has seen a diversion from a device scaling down 

paradigm to one that addresses improvements on the circuit level such that significant 

circuit modification and performance overhead for leakage reduction was introduced [2]. 

Nevertheless, this approach mainly targeted the subthreshold leakage while largely 

ignoring gate and pn-junction leakages, which are now comparable and possibly 

exceeding subthreshold leakage values as further scaling into the nanometer 

Complimentary Metal-Oxide-Semiconductor (CMOS) regime continues. These techniques 

were designed to address advancements in gate leakage reduction; they remain viable into 

the technology nodes currently in use today (45nm, 32nm, and 22nm). However, the 

leakage power from other means imposes terminal limitations on CMOS Very-Large-



Scale-Integrated (VLSI) circuits by way of power efficiency, cooling system 

requirements, and effects from ambient environmental changes. As CMOS is scaled 

further into the nanometer regime, the intrinsic physical limitations associated with CMOS 

technology, such as short-channel effects and leakage currents, will result in 

unmanageable leakage power culminating in reliability issues [3, 4]. If appropriate steps 

are not taken now, the road to semiconductor technology evolution stops here.

It is obvious now that there is an impending need to seek out other technologies 

that can facilitate further improvements, preferably, one that is compatible with current 

CMOS technology, addresses its inherent limitations such as power/energy efficiency and 

scalability, and is immune to performance deterioration due to ambient environment 

changes. Some alternative technologies recently developed include Spintronics [5], 

Carbon Nanotube Electronics [6], and Quantum Dots [7]. Spintronics is a very new realm 

in electronics that is based on detecting the intrinsic spin of an electron to define binary 

state. This technology is very promising in terms of reducing power consumption, 

increasing data processing speeds, and increasing integration densities compared to 

existing CMOS. Nevertheless, the challenge it faces currently is paramount and requires a 

colossal research effort to determine effective and reliable ways to detect electron spin. 

Furthermore, there is no controllable manufacturing technique to reliably fabricate 

spintronics-active materials or devices feasibly. Much work is needed to advance this field 

and as a result, these factors hinder the progress in spintronics. Carbon nanotube 

electronics are promising alternatives to CMOS as they have at least 20-30x higher ON 

current; however, their metal contact formation and mass fabrication techniques are far 

from developed to compete with CMOS. The issues with quantum dot technology are
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overlapping with those faced by the spintronics and CNT technology as it is still in the 

experimental stage and requires more time to mature into a commercial competitor.

Microsystems of the "More than Moore" era calls for miniature devices with 

exceedingly higher performance, functional diversity, reliability, low power consumption, 

and higher efficiency [8]. Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS) 

technology can fulfill this need through innovative research techniques coupled to modern 

technology developed for CMOS. One particular MEMS device that is highly beneficial to 

microsystems of the future is the MEMS switch [9-12]. Such devices have critical 

applications for use in phase shifter circuits, tunable RF filters, bio-implants and devices, 

radiation-hard and harsh environments such as outer space, e.g., space-radars, processors, 

etc. [9-16].

Simple micro-electro-mechanical switches (MEMS) have been reported for 

several decades now and this technology poses numerous inherent advantages such as its 

virtually zero leakage current, no subthreshold conduction resulting in power loss during 

inactivity, compatibility with existing CMOS technology, possibility to integrate with 

CMOS circuits on the same chip, scalability, and ability to operate in a multitude of harsh 

environments, such as high temperatures and high Ionizing Radiation (I-R). MEMS have 

been reported in the past for applications in processors and to address power management 

in scaled VLSI, programming interconnect in FPGAs, biomedical devices where it is 

desirable to reduce leakage power to prolong implanted battery life, and other 

applications in harsh environments where CMOS cannot operate due to high temperature 

or radiation [9, 10, 13, 14, 17-21]. One such case includes operation in the presence of I- 

R in troubled reactors like Chernobyl and Fukushima or at high temperatures encountered

3



inside combustion engines. In these cases, silicon channel in CMOS becomes highly 

conductive due to thermal generation of carriers or due to lattice defect generation caused 

by I-R radiation over prolonged exposure [9]. Space applications also require radiation- 

hard devices and materials. In some electronic materials such as SiC, the energy required 

to produce lattice defects is high, enabling these materials to withstand I-R longer than Si. 

In other materials such as InP, defects heal at relatively low temperatures, enabling them 

to recover quickly.

NEMS/MEMS devices are based on mechanical elements that are inherently 

insensitive to I-R. The I-R causes lattice defects in these devices, but these defects do not 

alter their characteristics the way they affect channel resistance in CMOS. Eventually, 

large defect densities created over extended I-R exposure leads to embrittlement that may 

affect NEMS/MEMS electrical and switching characteristics. NEMS/MEMS devices also 

have very low leakage power, making them very desirable in biomedical implant devices 

or other applications requiring very long battery lifetime.

Despite their very high off-to-on resistance (100 GO to 10 mO) ratios, and very 

low off-state leakage currents (<10-14A), MEMS switches tend to be slow (<1 MHz), 

large (>40 |im2), and unreliable with limited lifetime of ~106 operation cycles [2-4, 6, 9, 

10, 13, 17]. In addition, MEMS/NEMS switches have many interesting and challenging 

issues, including: a) contact reliability, b) stiction problem related to release during 

fabrication and micro-welding during hot-contact operation, c) reliability of flexure 

structures usually used as part of the switch, and d) particulate problems that occur during 

repeated operations that can lead to switch failure. To address some of these issues, the 

approach presented here has shifted away from the CMOS paradigm that uses individual
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p- and n-MOSFET (PMOS and NMOS) as complementary switches for implementing 

logic gates to single device functional structures, creating a platform for improved 

density, reliability, speed, and fabrication yield. The devices are based on a composite 

Si3N4/Polysilicon cross-bridge platform with metal contacts designed to provide XOR or 

AND capability from a single actuating structure. The following sections elaborate on 

the functional structure design, fabrication process, testing, and the results of these novel 

single device XOR and AND logic gates.

1.1. Significance of this Work: MEMS Logic Circuits 

and Microprocessors 

To enable computation using MEMS, individual MEMS relays have been 

combined in the CMOS paradigm (P-NEM and N-NEM) to create logic functions [13, 

17, 21-23]. There are clear advantages of MEMS switches over solid state transistors, as 

discussed earlier. Nevertheless, designing computational circuits with MEMS switches 

using the CMOS circuit design paradigm would imply combining a group of MEMS 

transistors to perform a single logic function and multiple such groups to form a 

computational circuit. The disadvantages of such an approach are rather apparent. There 

will be several mechanical delays within each logic operation, which is further 

exacerbated as the complexity of the circuit increases. The reliability drops exponentially 

as the number of mechanical transistors increases. The need for larger driving voltages to 

account for fan out voltage drops is also of significant concern. Additionally, the area 

required to set up the circuits is fairly large and the overall speed of the circuit is very 

low.



Now, consider changing the circuit design paradigm such that instead of grouping 

the MEMS switches to form simple gates, as is done with CMOS, the MEMS switches 

are combined together to operate in parallel such that a single mechanical delay results in 

a single logic operation. Furthermore, if this were extended to create a universal 

structural form that offered a single logic operation per switching cycle, along with a 

design so flexible that merely changing the electrode pattern offers an altered logic gate, 

it stokes the possibility of a mechanical microprocessor that eliminates the obvious 

disadvantages of MEMS-CMOS paradigm computation and runs at a fraction of the 

power that is required by current CMOS microprocessors. Additionally, such a paradigm 

will offer a savings on semiconductor real estate, translating to a much lower cost per 

chip. Of course, the speed will be lower compared to CMOS circuits; however, what the 

MEMS logic gates lack in speed, they more than make up for in terms of energy 

efficiency. By only requiring a fraction of the energy to run a circuit, one can dream up a 

whole gamut of new ultra-low-power applications that can run off scavenged energy from 

acoustic vibrations, light, or ambient radio signals on the fly. In terms of competing with 

CMOS scalability, studies have shown that MEMS and NEMS relays are scalable down 

to the deep submicron regime where current CMOS technology nodes are operating, and 

struggling to scale further [19, 20, 22, 24]. NEMS will not be limited by the adversities 

that plague CMOS at these nodes and beyond.

Another realm to which MEMS-based computation contributes significantly is 

that of enabling applications in harsh environments such as high temperatures and 

ionizing radiation. Such are the cases inside combustion engines, technologies facilitating 

rescue efforts in adversity stricken nuclear reactors, (like Chernobyl in 1986 and
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Fukushima in 2011), deep outer space exploration, etc. Current techniques of radiation 

hardening of VLSI devices include utilizing insulating substrates instead of 

semiconductors, such as SiO2 or sapphire, or even wider band gap semiconductors such 

as silicon carbide or gallium nitride, using shielding, designing circuits with BJTs instead 

of MOSFETS, as the former is less vulnerable to I-R, using MRAMs for memory, parity 

bits for logical error correction, etc. Nevertheless, these solutions are only slightly more 

reliable in harsh environments compared to their traditional non-rad-hard equivalents. 

The damage caused by I-R is by inducing displacement charges and ionization charges 

that, in CMOS, form mid-gap states, facilitate charge trapping at interfaces and oxides, 

and change doping characteristics amongst many other complications. A high 

temperature environment also generates detrimental charges in a similar fashion. A 

MEMS-based microprocessor solution, on the other hand, provides significant 

improvement, as the principle of operation here is based on requiring a physical 

connection between two contacts (separated by an air or vacuum gap) and not on the 

requirement of a solid-state conducting channel for its operation, like in CMOS. MEMS 

switches are not detrimentally influenced by the stray charges generated by I-R or high 

temperatures in the same way that they are in solid-state transistors. Such circuits benefit 

from not requiring additional resources for shielding and protection from harsh 

environments. One can even extend speculation that a future MEMS-based portable 

computer be self-powered by scavenging energy from such harsh environments.

As a result, based on the discussions presented in this section, it is evident that 

MEMS-based logic gates and their concomitant computational circuits are a significant
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contribution to the development of ultra-low-power computers of the future that can also 

inherently survive harsh environment operation.

1.2. State of the Art MEMS Switches and Logic 

(Literature Review)

CMOS technology has driven the semiconductor industry to produce astounding 

devices for the past few decades. No matter how great the strides o f technological 

advancement were in the past, it is getting harder to cope with the power and energy 

density needs o f next-generation devices. Today, the requirement o f ultra-low-power 

devices is far more pressing than ever before. It is gradually becoming universally 

evident that MEMS-based switches reveal potentially zero leakage current in the off- 

state, extremely low resistances in the on-state, and a much steeper subthreshold 

switching slope. In addition, it is known that MEMS RF switches have advantages in 

high isolation and low insertion losses compared to solid-state devices. Currently, there is 

a demand for a new technology that is not adversely affected by the scaling effects seen 

in CMOS, while, preferably, remaining compatible with multibillion dollar 

semiconductor industry fabrication lines. The field of MEMS has seen recent advances in 

their use as switches (or relays), logic gates, memory components, variable capacitors, 

RF device components, and wireless communication components. MEMS and NEMS 

devices are gradually but surely achieving the status quo of devices relying currently on 

CMOS and VLSI and are a strong contender for transition into microsystems of the 

“More than Moore” Era.
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This study summarizes the most recent advances in the area of MEMS and NEMS 

devices, their working principles, and a brief discussion of their features, parameters, and 

performances.

1.2.1. MEMS Switches and Logic Devices

There has been increasing interest in the area of MEMS switches as logic gates 

for ultra-low-power applications. A single-step fabricated, symmetric, laterally actuated, 

platinum-coated-polysilicon cantilever beam and fixed-fixed beam NEM relay has been 

reported [14, 25]. Fig. 1.1 provides some SEM images of the fabricated device, and its 

operational characteristics. This design incorporates stiffened beams and serpentine 

structures to reduce actuation voltage and also report overdrive voltages over 100% 

without failure. Actuation gaps of 500nm and voltages of ~12V for clamped-free and 

~26V for clamped-clamped structures are reported. The devices are said to show 3kQ 

contact resistance and operations as high as 108 cycles. In addition, they report testing the 

device in ambient environments, as well as immersed in oil -  showing lowered actuation 

voltages.

An analytical model on suspended gate-FETs (SGFET) has been developed and 

published [26]. These devices are a combination of an electrostatically actuated NEMS 

switch and a MOSFET (Fig. 1.2). The clamped gate electrode allows the MOSFET to 

circumvent high current limitation in lowering the threshold voltage in order to lower 

standby power consumption. As this technique is CMOS-compatible, SGFETs can be 

mass fabricated alongside CMOS.

9
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(a)

(b)

(c)

Figure 1.1: Single-step fabricated, symmetric, laterally actuated, platinum-coated- 
polysilicon NEM relay’s (a) SEM showing with 14.2p,m-long beam. (b) SEM showing 
clamped-clamped serpentine design (c) I-V results of the device being tested in air and in 
oil [14, 25].

In order to provide a thorough understanding of the device operation, the authors 

delve into details of the relationships governing pull-in, pull-out, and stable travel range 

(Fig. 1.3) based on the depletion approximation as a function of structural parameters. 

Also, the article develops a relationship between a movable MEMS gate alongside 

standard MOSFET models and highlights the potential of using SGFET as an ultra-low- 

power switch.
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Figure 1.2: N-channel SGFET. (a) 3D structure. (b) CS view parallel to channel length. 
(c) Equivalent circuit. (d) Circuit symbol [26].
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air gap

W 
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(a)

W
p-substrate

(b)

*— beam (SG) 
<4—  anchor

gate oxide

beam 
+— anchor 

gate oxide

Figure 1.3: CS view of SGFET across device width (a) Gate up (VFB < VG < Vpi, tgap0 > x 
> xpi). (b) Gate down (VG > Vpi, x = 0). and (c) Analytically and numerically calculated 
SGFET and MOSFET transfer characteristics. W=500 nm, L=100 nm, h=10 nm, E= 170 
GPa (Si), tgap0= 10 nm (k=4.35 N/m), tox=2 nm (SiO2), Vfb=-1.1 V, Na=1018 cm-3, Vd=1.5 
V, p= 250 cm2/(V*s), r=45 ^J/m2, and D0=0.2 nm. Leakage floor is assumed equal to 1 
pA/pm [26].



Additionally, there has been a report on design considerations for NEMS-based 

logic gates (CNEM) (Fig. 1.4) [19]. The authors present design predictions for NEMS 

devices 2-3 orders of magnitude smaller than those generally reported currently. They 

also present designs for CNEM inverters and CNEM NAND gates utilizing laterally and 

vertically actuated cantilever beams with 10nm gaps, nanosecond pull in delay, ~0.1fJ 

switching energy, and 1.5 V actuation voltages (Fig. 1.4).

Other work on using MEMS to design logic gates is presented in [27]. The device 

shown in Fig. 1.5 is capable of implanting either a NAND or NOR function, depending 

on its electrical interconnects. The device is a 2-layer structure and the operation depends 

on the see-saw motion of a shuttle electrode on top creating a connection to the fixed 

electrodes at the bottom. Table 1.1 summarizes its performance metrics and it is seen that 

for a plate dimension of 250^m x 100^m, it achieves an actuation voltage of 10/0V.

A 4-terminal relay technology was reported in [23] where a single MEMS 

platform was utilized to mimic solid-state transistors either as a p-channel or n-channel. 

This was done by exploiting the available terminals to electrically adjust the switching 

voltage. Fig. 1.6 provides a schematic of the device and its key dimensions. They report 

performance metrics such as Ion > 700p,A for VDS = 1V, zero off state leakage, low- 

voltage switching (< 2 V), low switching delay (100ns), and endurance in excess of 109 

on/off cycles.

Other variants of MEMS logic gate designs reported use piezoelectric materials 

such as AlN (Fig. 1.7). These complimentary logic switches are reported as having less 

than 1.5V actuation and by using opposite body biasing, allows the same switch to 

operate as an n-type and a p-type device [21, 28].
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(b)

out B

(c) GND

VDD

o u 1 B

(d) GND

Postal 1 (ftx)
Meta II (released) 
Metal 2 (fix)

1_| Pifletal 2 (released)

Figure 1.4: CNEM NAND gate (a) "Dual-beam" layout (b) CS view along beams (c) 
CMOS-equivalent CNEM NAND gate lateral and (d) vertical design [19].
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Figure 1.5: Torsional MEM Logic gate (a) 3D view and (b) CS view [27].

Table 1.1: Parameters and performance metrics of device shown in Fig. 1.5 [27].

Plate length 250 p,m
Plate width 100 p,m
Electrodes locations 50 p,m, 100 p,m
(x1, x2, x3, x4 shown in figure 3) 85 p,m, 100 p,m
Actuation voltages Vcc+, Vcc- 10, 0 V
Gap (g) 1 p,m
Dimple height 0.5 p,m
Max. plate angle 4 x 10-3 rad
Pull-in voltage (1,1) and (0,0) -- 3^m 4.15/6.32 V
Pull-in voltage (1,1) and (0,0) -- 4^m 5.13/7.82 V
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(a) Relay schematic (c) AA’ cross-section: ON-state

(d)

2 jn
. CHAt WEL

DRAIN T

V n
I'M m
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G A r £  \ \ i m

r ;
ANCHOR

n BODY

Figure 1.6: 4-terminal MEMS relay structure. (a) isometric view. Cross-section along A- 
A' in the (b) OFF state and (c) ON state. (d) Key dimensions [23].
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Figure 1.7: AlN-based three-finger dual beam transistor (a) SEM of 250nm thickness 
variant. (b) Layout of the NAND and (c) NOR complimentary logic operation [21, 28, 
29] .



The device is reported to show very small subthreshold slopes (0.8mV/dec), 

threshold voltage (30mV), operation cycles in excess of 109, and contact resistances as 

high as ~1MQ. Also, they demonstrate the use of logic elements such as NAND and 

NOR using a body-biased complimentary structure and using 250nm thick AlN switches 

[29]. Four complimentary AlN switches were used to form the logic gates having ± 2 V 

swing, and body-bias of <8V.

The switches reported have illustrated their operation as logic gates, some using 

complimentary P-NEM and N-NEM combinations to operate as NAND or NOR, while 

others have relied on either piezoelectric actuation or the use of multiple voltage levels to 

induce complimentary switch functions. However, there are problems with the 

approaches presented thus far, such as, (1) the fabrication of these devices are complex,

(2) several of these devices have a high operating (turn on) voltage, (3) using a 

combination of MEMS switch and solid-state device, like a MOSFET, will render the 

device inoperable in harsh environments, and (4) the power consumption of these devices 

are not really measured at a circuit level whereas this is paramount to evaluate 

performance when compared to CMOS VLSI.

The work presented in this thesis will present an entirely new paradigm in MEMS 

logic circuit design -  one that does not follow the trend seen in literature that heeds to the 

CMOS circuit design paradigm by using complimentary switches, and this will overcome 

all of the shortcomings of the previous work in MEMS-based logic gates.

18



1.3. Novel Single-Device MEMS Logic Gates 

The cross-bridge platform shown in Figs. 1.8 and 1.9 forms the basis for both 

XOR and AND gates. It illustrates the electrode design for an XOR gate where metal 

traces overlap at the intersection area o f the bridges and the bridges are actuated by 

electrostatic attraction between the gate electrodes. Other logic gates can be constructed 

using similar structures but different metallization/contact patterns, as shown in Fig. 1.9 

for an “AND” gate. In Fig. 1.10, the diagram has the two bridges, Gate 1, Gate 2, Drain, 

and Source labeled.

When both gates are low (“00”) or when both gates are high (“11”), there is no 

electrostatic attraction (see XOR in Fig. 1.8). When either one of the gates are high (“10” 

or “01”), electrostatic attraction causes the drain and source to collapse towards each 

other and thereby make contact. This is the XOR function (refer to truth table in Table 

1.2). A minor modification of the electrode design produces a function corresponding to 

AND logic (Fig. 1.9). The AND gate requires that both G1 and G2 be high at the same 

time to enable the top bridge to experience sufficient electrostatic attraction to cause the 

bridge to collapse towards the bottom bridge and thereby make a S-D connection. This is 

the ON state. All other conditions translate to OFF state. In the XOR gate, to prevent the 

drain-source electrodes from causing the attraction between the two bridges, their 

overlapping area is designed to be 4 times smaller than that of the gate electrodes. The 

same is true for the AND gate with the ratio being slightly lower. Other gates such as 

NAND and NOT can also be realized in a similar manner. An XOR gate can be 

converted to NOT gate by fixing one of its inputs at “1”. A NAND gate can be produced 

by NOT(AND) or by using a different device structure.

19
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Figure 1.8: Schematic of MEMS single-device XOR gate. The metallization patterns at 
the top surface of the bottom bridge (Gate 2 and Drain) and at the bottom surface of the 
top bridge (Gate 1 and Source)

Gate 1b

Figure 1.9: Schematic of MEMS single-device AND gate. The metallization patterns at 
the top surface of the bottom bridge (Gate 2 and Drain) and at the bottom surface of the 
top bridge (Gate 1a, Gate 1b, and Source).
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XOR Gate

Gate insulator

Top Bridge
AND Gate*

Gate 2 Drain

Gate la Gate lb |  Source

Gate insulator

Gate 2a Gate 2b Drain
■

Bottom Bridge

Figure 1.10: Cross-section of XOR and AND gates.

Ground electrode

Table 1.2: Truth tables for XOR and AND function (with reference to Fig. 1.10)

XOR Gate Truth Table AND Gate Truth Table*

Gate 1 Gate 2 S-D Gate 1a Gate 1b S-D

1 1 OFF 1 1 ON

1 0 ON 1 0 OFF

0 1 ON 0 1 OFF

0 0 OFF 0 0 OFF
*Gates 2a and 2 ) are grounded



The common implementation of XOR using 8 individual switches as used in 

CMOS implementation of XOR is shown in Fig. 1.11 [30]. The factor 8 reductions in 

device count and associated reductions in number o f moving parts and areas lead to 8 

times better reliability, at least 4 times faster overall logic gate speed, and proportionately 

higher yields. It must also be noted that multi-input (>2) gates can also be designed using 

the cross-bridge geometry with two or more metal traces for multiple contact electrodes. 

A 4-input XOR gate will reduce the device count by x24.
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Figure 1.11: XOR implemented using individual CMOS switches require 8 devices each2 . 9
25^m while our single XOR device requires only 25^m area.



1.4. Summary

This chapter highlights the increasing need for developing new technologies that 

are not adversely affected by scaling factors affecting CMOS. One of the biggest 

drawbacks from scaling down CMOS is the rapidly increasing power dissipation, 

resulting in dramatically reduced efficiencies. Some of the potential successors that 

promise to overcome these drawbacks have been identified as spintronics, carbon 

nanotubes, and quantum dots. However, each of these has its own set of limitations and is 

far from a mature technology. It can be argued that, due to its inherent zero-leakage 

current at OFF-state and other favorable characteristics, MEMS switches are a viable 

alternative, or a companion for hybrid MEMS-CMOS devices that reap the best benefits 

from both technologies. This chapter also compares the state of the art in MEMS 

switches being used in a combinatorial fashion as logic gates and presents their setbacks. 

Thereafter, a novel single-device MEMS logic gate is presented that reaps all the benefits 

of a traditional MEMS switch and is also designed such that each operation cycle 

produces a functional logic (such as AND or XOR). As a result, this new technology 

overcomes the drawbacks for a CNEMS paradigm followed by others in the field to date. 

Other significant contributions, such as contact resistance evolution and harsh 

environment performance (high temperature and high ionizing radiation), are also 

outlined here.

The proceeding sections of this thesis is divided into seven chapters. The first 

chapter discusses the motivation, background, state-of-the-art MEMS, and significant 

contributions of this work to the field. Chapter 2 deals with theoretical modeling 

(mechanical, electrical, and reliability), along with simulation and calculations relevant to
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the device described in this thesis. Chapter 3 covers an in-depth reliability and contact 

resistance evolution investigation on eight different metals and one nonmetal generally 

used as contact electrodes in MEMS. Following that, Chapter 4 provides details on the 

fabrication procedure of the single-device MEMS logic gates. Chapter 5 elaborates on the 

testing schemes utilized to characterize this device. Chapter 6 discusses the future work 

in this area, and finally, Chapter 7 completes this dissertation with a conclusion section.
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CHAPTER 2

DESIGN CONSIDERATIONS

2.1. Theoretical Aspects in Device Design 

In most cases, MEMS devices, e.g., electrostatic switches, harness the power of 

multiple energy domains, such as, electro-mechanics, optical electricity, 

thermoelectricity, and electromagnetism, into a single device. As such, their operation is 

highly nonlinear and requires complex analysis. Due to its virtually zero power 

consumption, small electrode size requirements, thin layers used, relatively short 

switching time, 100s of |iN achievable contact forces, the possibility of biasing using 

high-resistance bias lines, ease of integration with existing fabrication techniques, and the 

overall simplistic design, the electrostatic mode of operation is the most preferred and 

commonly employed technique in MEMS-based sensing and actuation modules [1, 2]. 

Nevertheless, due to the interaction between electrostatic and structural domains in 

electro-mechanical systems, it results in compound influences by multiple physical 

parameters ranging from thin film stresses to electrical fields, resulting in a highly 

nonlinear and unstable system that is prone to "pull-in" phenomena. The consequences of 

this are catastrophic failures by way of fatigue, charge migration, dielectric charging, 

stiction, micro-welding, wear, surface pitting, and/or asperity generation -  amongst many 

others that evolve as a function of operation cycles. In order to mitigate such detrimental
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processes and successfully design a structure that reaps benefit out of a potentially 

unstable system, a thorough understanding of the concepts behind the failure modes is 

necessary. Using a mechanical lumped model and an electrical circuit equivalent, this 

chapter covers the modeling mechanisms of the quasi-static pull-in voltage, transient 

behavior during a pulsed signal, and reliability (electrical contact and others) of MEMS 

switches, all of which are fundamentally important to understanding the operation of a 

MEMS switch. Additionally, numerical calculations on optimum switch dimensions and 

corresponding COMSOL simulation results are discussed.

2.1.1. Mechanical Lumped Model: Pull-in Voltage

The origins of the electrostatic charge build up culminating in “snap-down” in 

MEMS devices are rather well known. Considering a typical MEMS fixed-fixed bridge 

connected to a substrate via anchors, as shown in Fig. 2.1, whenever there is an electrical 

potential difference between two surfaces separated by a dielectric (bridge, substrate, and 

air gap, in this case), electric charge builds up, resulting in an electrostatic attractive 

force. This induces bending of the beam towards the substrate (downward), while the 

structural (elastic) properties of the beam continually try to restore the beam to its 

original disposition (upward force). In essence, the combination of the two results in an 

equilibrium state.

However, an increase in the applied voltage results in an increased deformation 

on the beam. Consequently, as the surface electrostatic charges redistribute, so does the 

electric field, resulting in a stronger attractive force and therefore more deflection of the 

beam until a new equilibrium is achieved by the counter-action of the elastic restoring
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force. The illustration in Fig. 2.2 represents a physical model of that shown in Fig. 2.1, 

which consists o f a spring-loaded parallel plate capacitor. The figure also includes a 

simplistic electrical circuit model of the MEMS capacitor.

The parallel plate capacitance is given by equation (1):

where e0 is the dielectric permittivity, A is the area of the parallel plate capacitor, g  is the 

gap between the plates, and a is the fringing field factor.

The energy stored in the MEMS capacitor is a function of an electrical variable 

(charge) and a mechanical variable (displacement or gap). As a result, the electrical 

equivalent model shown in Fig. 2.2 is a two-port device. This two-port device is a single 

capacitor with a single stored energy given by equation (2):

C = ^  [ a]g (1)

(2)

Consequently, the effort variables are partial derivatives of W, respectively

^ dW(Q.g) 
~  Sg (3)

_  d W(Q .g) . _  g_ 
V ~ dQ '8 ~  eA (4)

where, F  is the spring restoring force and V is the applied voltage.
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Figure 2.1: Schematic representation of nonlinear electro-mechanical system
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Figure 2.2: A lumped parameter model using a spring-loaded parallel plate capacitor 
(left) [3] and an electrical circuit equivalent (right). F  is the spring restoring force, g0 the 
nominal gap height, g  the gap as a function of voltage. The energy stored in the electrical

Q̂  Qmodel, W ( Q, g ) = — , where Q is the charge stored and g  is the gap height.
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Now, the electrostatic force, FE, that is generated on the plates is given by 

equation (5):

Equating this to the spring restoring force, (FE=F), and rearranging the variables results 

in a rudimentary relationship between V and g  given by equation (6):

Using the relation F=kg (hookes law), Fig. 2.3 illustrates a graph that summarizes 

the behavior of an electromechanical system coupling electrostatic forces and spring 

forces versus the deformation of a MEMS beam.

The graph is plotted with the abscissa labeled as the ratio of the beam deformation 

(g0-g) to the initial gap (g0) between the beam and the substrate, while the ordinate axis 

illustrates the force. It is clear from the graph that the mechanical domain is a linear 

function of the deformation of the beam, while the electrical domain is proportional to the 

square of the same parameter. When a small driving voltage is applied, the electrostatic 

forces and the elastic forces are sufficiently equal to maintain the system at a stable 

equilibrium point. However, with further increment in the drive voltage and consequent 

redistribution of charges and electric fields, the electrostatic attractive force is sufficiently 

larger such that the spring restoring forces can no longer contend with the former, 

resulting in instability and therefore radical collapse of the beam.

(6)
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Figure 2.3: Electrostatic force and elastic restoring force characteristics on a parallel plate 
electrostatic actuator [2]

This is known as "pull-in" voltage and is based on a positive feedback cycle of 

capacitive charge buildup between the parallel plates of the MEMS "capacitor". The pull- 

in occurs at one third of the nominal gap height and a crude form is given by equation

(7):

v- = v ( f ) = J ^  (7)

The development of this lumped model began from 1994 when Senturia et al. 

began publishing their research on the electro-mechanics of a MEMS device based on the 

model described previously (Fig. 2.2) [4] in order to mathematically evaluate the



fundamental functional forms of the pull-in voltage, geometric dimensions, and material 

parameters. Over the course of the first decade thereafter, much work was focused on 

fabrication and simulation of electrostatically actuated micro-beams and their 

characterization [5-8]. Various effects, including fringing capacitance, efficiency of 

plate-like phenomenon, and different boundaries, were also accommodated as the models 

evolved. The difference between the simulated characteristics (spring constant, pull-in 

voltage, etc.) and the fabricated device was reduced from 18% in 2002 to about 4% in 

2005 by virtue of improved modeling [9]. During 2004-2008, Krylov et al. published 

their research findings on pull-in behavior of microstructures [10-13]. They focused on 

the transient nonlinear dynamics that electrostatics impose on microbeams and developed 

a model that considered effects around distributed nonlinear electrostatic forces, 

nonlinear squeezed film damping, and rotational inertia of a mass on the beam.

Furthermore, from 2006 to 2009, Hu et al. developed on these models by 

incorporating inherent (initial) stresses, fringing capacitance effects, and elastic 

boundaries [14-18]. The conceptualization of treating a beam with elastic boundaries as 

having torsional springs at both ends is illustrated in Fig. 2.4. The beam length is denoted 

by L, anchor height La, width b, thickness h, and initial gap g0.

From their derivations, the equation representing equivalent torsional spring 

constant k  can be expressed as [15]:

34

k = M = 4£(2/gL+I ■IaLa) 
0 2/aLaL+/aL„ (8)
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Figure 2.4: Physical and analytical model of a micro-bridge treated as having a torsional 
spring at both ends [15].

where I  is the moment of inertia, subscript a denotes the anchor, and E  the Young’s 

modulus. Fig. 2.5 illustrates a state where a beam is subjected to load, P0, applied 

uniformly across its surface.

The reactive bending moment M, and the rotation angle d, for the uniform load of 

Fig. 2.5 can be derived as follows:

(9)
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Figure 2.5: Schematic illustrating loading effects: (a) uniform load P0 over a beam and 
(b) its free body diagram [15].

0 = P0L2
2 4e( 2-̂ -V La L/

(10)

The pull-in voltage, VPI, of such a beam was calculated, using Euler’s beam model and 

the minimum energy method, to be [15]:

V 2 —Vpi —
a0 J0L 2 bh(0 ')2dx+E J0L 2 1(0")2 dx+£ga)(0 ')L i

( ) (11)

where the initial stress is denoted by o0 and the first natural mode of the beam having 

torsional springs at both ends is represented by $ [19].

0<X) = [ s m ( f ) - s l n h  (f )] +  r  [cos (f )  -  cosh (Y ) - ' f r slnh ( f ) ]  (12)

Y
sinh(3-sinp

co sp-co sh p -^ ^ sin h p
(13)

0
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Also, P, must satisfy the following equation:

2 kL 2f(sinfcoshf- cosfsinhf) 2 f 2sinfsinhf _  ^ 
El 1 -cosficoshf} 1 -cosficoshf} (14)

From the three terms in equation (11), we can deduce an obvious physical meaning; the 

first term indicates that the pull-in voltage is dependent on initial residual stress, the 

second term illustrates dependency on flexibility, and the third denotes dependence on 

elastic boundary conditions.

The MEMS logic gates can be represented using electrical circuit components 

such as resistors and capacitors corresponding to those that are contributed by the gates 

and drain/source contacts as shown in Figs. 2.6 and 2.7 in the OFF and ON states.

The XOR gate equivalent circuit in the OFF state shown in Fig. 2.6(a) has G1 and 

G2 representing gates 1 and 2. D and S correspond to the Drain and Source terminals. 

RG1 and RG2 and RD and RS correspond to the fixed resistances associated with the gates 

and Drain and Source, respectively. The fixed capacitances CG1S and CG2S are associated 

with capacitance between Gate 1 and Source, while the latter is that between Gate 2 and 

Drain. The variable capacitance CDS and resistance RDS is that between the Drain and 

Source and represents the changing capacitance (and resistance) prior to snap-down. RDS 

is derived from the reciprocal summation of the tunneling current, calculated using the 

Fowler-Nordheim tunneling current expression.

2.1.2. Electrical Circuit Equivalent Model
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(a)

(b)

Figure 2.7: Electrical circuit model of AND gate in the (a) ON and (b) OFF state.



The surface current and the switching current are obtained from the experimental 

measurements. The variable capacitances Cg1g2 and CDS are calculated by the summation 

of the capacitances between corresponding bridges elements using the parallel plate 

model where the gap distances between each segment is calculated from the mechanical 

lumped model.

In the ON state (illustrated in Fig. 2.6(b)), the circuit model changes to account 

for the fact that there is no longer a separation between D-S -  Cds is eliminated. The gate 

capacitance CG1G2 is that between G1 and G2 separated by a thin insulator at snap-down. 

Furthermore, the variable resistance RDS is now a fixed resistor representing the contact 

resistance between the electrodes and can be calculated either by the Sharvin or the 

Maxwell model (as described in the following section).

Fig 2.7(a) illustrates the electrical circuit model of the split gate AND device. 

Gate 1 is divided into G1a and G1b while gate 2 (G2) and Drain (D) and Source (S) are 

similar to the XOR gate. The fixed contact resistances associated with G1a, G1b, G2, D, 

and S are represented by RG1a, RG1b, RG2, RD, and RS. The fixed capacitances between 

G1a and S, G1b and S, G2 and D are represented by CG1aS, CG1bS, and CG2D. Furthermore, 

the variable resistance and capacitance between D and S is indicated by RDS and Cds.

Additionally, the variable capacitance between G1a, G1b, and G2 are indicated by 

CG1aG2 and CG1bG2. In Fig 2.7(b), during the ON state, the circuit is modified to account 

for the fixed contact resistance RDS and thereby, the absence of capacitance between the 

D-S (as they are now shorted). Additionally, capacitances CG1aG2 and CG1bG2 are now 

fixed with their insulators acting as the dielectric contributing to the capacitance. The 

fixed contact resistance at the D-S electrodes after snap-down is given by RDS. The

39
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capacitances and resistances here can be determined in a similar fashion to that of the 

XOR gate.

2.1.3. Modeling a Digital Pulse Across a MEMS Switch 

A traditional switch (or relay) can be considered to be a 1-terminal device driven 

between its ON and OFF states by an actuating contact. In a similar fashion, a general 

MEMS switch can be also be modeled as a 1-terminal relay, as illustrated in Fig. 2.8.

The physical model above can be analyzed in an electrical equivalent model, as 

given in Fig. 2.9. The model consists of a resistor that is equivalent to the resistance 

imposed upon the flowing current when the switch is in the ON state and a capacitor that 

impedes flow of direct current between the electrodes when the switch is in the OFF 

state. The value of the resistor depends on material properties (resistivity) and surface 

area of contact, while the capacitance is related to the gap height, its dielectric properties, 

and the overlapping surface area of the electrodes.

Figure 2.8: MEMS relay model (a) OFF state, (b) ON state
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When a single digital pulse is applied to a MEMS switch, there are three 

associated voltages that are of interest: input voltage Vin, voltage across the switch Vs, and 

an output voltage Vout.

A MEMS switch can be considered to be a fusion between a traditional 

mechanical relay, and a previously charged fixed plate capacitor. The transient behavior 

of a MEMS switch in this case can be understood by examining the case of a relay switch 

and a (precharged) fixed capacitor, separately. The transient input voltage (when a digital 

pulse is applied) is shown in Fig. 2.10(a). For the case of a relay, the switch is considered 

to be a purely resistive device upon closing (Fig. 2.10(b)). The delay associated with the 

voltage stabilizing at VS is the time constant (tr ) that is due to the inertia of the 

mechanical bridge attributable to its mass. The dynamic equation of motion governing 

this is given in equation (17).

(15)

Ks' — Vin V0Ut (16)

(17)

where x is the bridge displacement, m is the mass, b is the mechanical damping 

coefficient, k is its spring constant, and fext is the external (electrostatic) force applied to 

it.
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In the purely capacitive case, the charge on the capacitor results in a pre-existing 

voltage across its leads (Fig. 2.10(c)). The analogy here is that when a voltage is imposed 

upon a MEMS switch, electric charges gradually build up across the two plates but are 

not sufficient to create a strong electrostatic field that will result in snap-down. When the 

voltage is further increased (application of a pulse) such that there is a sufficiently large 

increase in electric field between the plates generating larger forces to just overcome 

mechanical restoring forces and instigate a closed loop feedback between increasing 

capacitance and increasing electric field, it results in snap-down. The voltage across the 

capacitor during charging and discharging is given by equations (18) and (19), 

respectively.

The delay associated with stabilizing at V0 is the capacitive time constant, tc, related to 

the R*C value.

Fig. 2.10(d) shows the MEMS transient behavior that combines both capacitive 

and resistive features. Both time constants are illustrated together and the super-posed 

effects are what are visible in a typical MEMS relay. It is worth noting that only when 

VS > Vth, where Vth is a threshold voltage (a.k.a VpI), will the transient behavior swing 

away from capacitive (open switch) to resistive (closed switch).

Vr(t) = Vo + Vin( 1 -  e " t/RC) 

vc ( t) = Vo + Vin e " t/RC

(18)

(19)
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Figure 2.10: Wave forms depicting transient behavior through MEMS switch

Now, in equation (17), f ext is generated by electrostatic forces resulting from the 

applied voltage. At the moment the pulse is applied, the capacitor (i.e., MEMS switch in 

OFF state) is shorted out briefly and the voltage across the device is 0V. This results in 

f ext =0. With time, however, charges build up, on the capacitance and the voltage across 

the device builds up, which consequently builds up the electrostatic attractive force 

between the two plates, as given in eq. (20).

f ex t = ~ V 2—Jex t  2 dg (20)
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When the voltage-induced electrostatic force is sufficiently large, it results in 

snap-down, and the capacitance now drops to zero again, and so does the voltage across 

the switch (although the voltage now is, strictly speaking, not zero -  it is proportional to 

the contact resistance value).

It is seen that at the two instances when voltage across the switch is 0 V, eq. (17) 

turns into a homogeneous second-order ordinary differential equation, with the right-hand 

term equal to zero (eq. (21)). The solutions (or roots) for this equation are given by r1 and 

r2 below (eq. (2 2 )):

It is understood that both roots are real as there are two points on the loci of ‘x ’ at 

which the ODE equates to 0. The resulting solution can be written as

(2 1 )

(2 2 )

x =  C1eTlt + C1eTlt (23

(24)

Finally, values for the constants Cj and C2 can be obtained by substituting x=g0 

and x=0 corresponding to the positions of the switch during which f ext=0.



2.1.4. Reliability

12MEMS and NEMS switches require reliable “hot” contact materials for >10 

switching cycles without changing contact resistance, stiction, and micro-welding. It was 

seen from experimental extrapolations that if  a microprocessor is built using similar 

MEMS switches that lasts ~1015 operational cycles, it translates to 10 years of operating

lifetime at 100MHz (and 1% switching probability) [20]. There are many NEMS-based

8 10switches reported in the literature that report operational lifetimes ranging from 10 - 10 

cycles [21-27]. However, our understanding of the contact resistance and how it is 

affected by many DC and RF switching cycles is still very limited in spite of several 

attempts made by groups in universities and industry to investigate the performance of 

contact materials for applications in MEMS switches [28-33]. These past studies suggest 

that ideal contact materials for MEMS applications should have high melting points, high 

Young's modulus, low contact resistance, low diffusivity in each other, dissimilarity 

between the two contact materials (i.e., they should have different crystal structure, 

conductivity, etc.), and in some cases, the ability to "replenish" or "heal" itself over time.

Various models have been devised to study the switching and reliability issues 

greatly associated with MEMS. The most common failure mechanisms include 

mechanical fracture, stiction, wear, delamination, vibration and shocks, electrostatic 

discharge and dielectric charging, radiation effects, temperature, humidity, and 

particulates. The device discussed in this thesis is a fixed-fixed multilayered bridge 

structure which is prone to several of the above modes of failure that are design-limited 

such as hot-contact switching degradation (stiction, wear, ESD, dielectric charging) and 

fatigue at hinges (mechanical failure, delamination, inherent stresses).
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2.1.4.1, Contact Resistance Failure

Fig. 2.11 illustrates a schematic that emphasizes the region that makes electrical 

contact between two electrodes (fixed-fixed bridges, in this case). For simplicity, if  it is 

assumed that the bottom bridge is completely flat, while the top bridge possesses finite 

asperities that contribute to the actual electrical contact, we can further qualify that only 

few tens of such asperities will make intimate contact with the bottom bridge, with each 

asperity having a tip radii of 50-200nm. As soon as electrostatic forces are sufficiently 

high to initiate snap-down, these asperities on the surface of the bridges contact and begin 

deformation. This distorts the asperities into circular contact spots.

The number of these contact spots can be determined by the well-known 

“Asperity-based model” introduced by Greenwood and Williamson [34] and developed 

by Chang et al. [35].

47

Figure 2.11: Modeling contact resistance
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Their theories explain that a rough surface can be represented by a collection of 

independent spherical asperities with identical radii having a statistical height 

distribution. On the model proposed in [35], the deformation is calculated on the basis of 

volume conservation of the asperity under observation. These theories were applied to 

electrostatic switches by S. Majumder et al. [36] and are utilized in the simplified 

modeling presented here.

The effective modulus of elasticity is given by:

where E1 and E2 are the moduli of elasticity if  the contacting surfaces, u1 and v2, are their 

Poisson’s ratios, respectively. For an elastically deformed asperity, the relationship 

between radius of the contact spot and the contact force is given by

(26)

Here, Rt represents the end radius of curvature of the asperity. The contact radius r can be

related to its vertical deformation, a, by

r = jR a (27)
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It is assumed that plastic deformation commences when the maximum pressure at 

the contact interface exceeds 0.6 x hardness (H) of the contacting material. Thus, the 

vertical deformation qualifies to

Assuming an average pressure of 0.6H in the plastic region, the contact force is evaluated 

out to be

So, taking into account the conservation of asperity volume, the contact radius per 

asperity is

As a result, the force on each asperity as well as the radius of each can be calculated 

when the vertical deformation is known.

When applied to a real-world problem comprising a surface with “finite 

roughness”, say n asperities, each with a postdeformation (end) radius Rt, and heights 

zi>z2>...zn, with separation d  between them and a given contact force F  such that

(28)

F  =  0.6nHr2 (29)

(30)
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zn>d>zn+1, then the asperities numbered 1, 2 , ..., n come into contact and the vertical 

deformation of asperity i is given by

To relate the deformation radius change to the contact resistance change, we can 

assume that a single spot (asperity) with radius r separates two semi-infinite bodies of 

resistivity p. The resistance is dominated by the Sharvin mechanism [37] provided that 

the spot radius is small compared to the electron mean free path le. In this case, electrons 

are projected ballistically through the contact asperity without scattering. The resistance 

is now given by

Conversely, if  the radius r is much larger than le, the resistance is dominated by 

diffuse scattering mechanism given by the Maxwell resistance formula [38]

oCi —  Zi —  d (31)

(33)

For a solution that accounts for the transition between the Maxwell and Sharvin 

regions, Wexler [39] used the variational principle for resistance of a circular contact spot 

separating semi-infinite bodies and has produced a solution of the Boltzmann equation
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r  =  4P± + v leP_ (3 4 )
3 n r 2 r  2r

Essentially, on a real surface, there are multiple asperities of varying sizes that 

make contact with the surface. The resulting effective contact resistance depends on, 

both, the radii of the asperities as well as their distribution. To evaluate a range of the 

contact resistance, we can imagine the lower bound to be determined by a situation where 

each asperity, i, is independent of one another and separated such that they conduct in 

parallel, such that

where Ri is the contact resistance of a spot. The upper bound is consequently a state 

where all the asperities can be assumed to form one unanimous contact with an effective 

circular spot with radius r ef. In this case, the contact resistance evaluates out to

R = J £ h -  + v l-Z-?r- (36)
3nre ff r  2reff

It is reported that on a model with one asperity, all contact resistance 

characteristics (bounds) are identical at low contact forces (<1^N) [36]. The upper and 

lower bounds of resistance are very tight. This, however, becomes progressively looser as 

the model accommodates for an increased number of asperities. Additionally, there is a 

considerable discrepancy between theoretically predicted and experimentally determined 

contact resistance characteristics at low contact forces [36]. The agreement between



theory and experiment, however, is significantly better at larger contact forces (>10^N). 

This can be attributed to several factors, such as the model here does not account for 

adhesive forces between contacts, an insulating film is generally present at the interface, 

and that the interfacing asperities deform plastically at low contact forces so that the 

contact resistance at the next cycle is influenced by it.

2.1.5. Discussions

The complexity of a MEMS switch lies in its ability to harness multiple energy 

domains such as electro-mechanics, optical electricity, thermoelectricity, and 

electromagnetism into a single device. These render the design and operation of MEMS 

switches anything but trivial. As seen from the discussions presented in this section, 

various models can be employed to understand and exemplify aspects of the operation of 

a MEMS switch. Here, a lumped-mechanical model, electrical equivalent circuit model, 

and theories behind contact resistance leading to reliability issues are discussed. These 

models/theories combine a multitude of interdisciplinary parameters ranging from thin 

film stresses, spring constants, capacitances, resistances, etc. and require intimate 

understanding in the areas of materials science, mechanical engineering, physics, and 

mathematics combined rendering the analysis multidisciplinary. A thorough 

understanding of the quasi-static pull-in voltage, dynamic response, and reliability, 

amongst others, is critical to being able to successfully design a MEMS switch that 

performs up to required specifications.
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2.2. Theoretical Analysis

2.2.1. Calculations

Based on relatively well-developed mathematical models of fixed-fixed MEMS 

beams, switching time, frequency, and pull-down voltages were calculated (using 

equations 37-40) [1] for various thicknesses of silicon nitride, polysilicon, and tungsten. 

The results are shown in Fig. 2.12(a)-(c). Equations (37)-(40) were used in a MATLAB 

program to plot the relationships.
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k a =  k a +  k " =  3 2 Ew Q 3 g )  +  8  a (  1 -  v)w  (y) (3) (37)

vp = v ( ^ ° )  = I 8ka g 3 (38)p V 3 /  J  27e0Ww^° v ’

ts = 3.6 l - £ -  (40)
Ks^o

where,

k a =  Overall spring constant

Spring constant component due to material properties 

Spring constant component due to biaxial residual stress 

E =  Young’s Modulus

I ,w ,t  = Beam dimensions (length, width, thickness) 

a = Biaxial residual stress
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Figure 2.12: Graphs showing calculated a) switching time vs thickness for fixed length 
using Tungsten, Silicon Nitride, Polysilicon, and a composite of SiN and PolySi used in 
existing device. f0~MHz range, b) resonant frequencies corresponding to various bridge 
thicknesses at thickness/length ratio = 0.01. Bridge width is fixed at 12^m, c) pull down 
voltage vs gap height (go) for l=30^m, w=12^m.



v = Poissons ratio

Vp = Pull-down voltage

e q = Permittivity of free space

g q =  Beam actuation gap height

f Q = Resonant frequency

m = Effective mass

Vs = Applied external switching voltage

ts = Switching time

It is seen from Fig. 2.12(a) that silicon nitride-based devices have faster switching 

speeds than polysilicon or tungsten as a function of bridge thickness, with the bridge 

length fixed at 30 |im and width fixed at 15 |im. This is mainly due to the large stress 

built into the nitride layer during deposition.

However, it was experimentally observed that to structurally reinforce the silicon 

nitride throughout the fabrication process, a composite structure of silicon nitride 

( 100nm) and polysilicon (2 0 0 nm) was preferable -  the nitride being placed on the inner 

side of the cross-bridge platform. The resulting composite bridge had a performance very 

comparable to one built using silicon nitride alone (<10% difference in switching time, 

frequency, and actuation voltage for 300nm combined thicknesses and 30nm gap height), 

with the added benefits associated with processing Polysilicon in BOE (buffered oxide 

etchant) without deteriorating the silicon nitride.

Actuation voltage for each material was also calculated and is shown in Fig. 

2.12(c). It can be predicted based on calculation results that sub-1V actuation is possible
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with the appropriate combination of bridge dimensions and an air gap of 10nm. These 

results were used to further design and simulate the logic gate devices.

2.2.2. COMSOL Simulation 

COMSOL simulation for the XOR and AND gates was carried out at Case 

Western Reserve University and the processes are detailed in the Ph.D. dissertation of Dr. 

Sijing Han [40]. Fig. 2.13 illustrates a 3D FEA simulation carried out on the XOR gate. 

With permission, the most relevant results are extracted and compiled in Tables 2.1 and 

2.2 in this section. The dimensions of the various parts are provided in Chapter 4. The 

simulations were programmed to terminate at (2/3)g0 and the tunneling current was 

modeled using Fowler-Nordheim tunneling approximation.
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Figure 2.13: 3D FEA modeling of "XOR" gate.
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Table 2.1: COMSOL simulation results for the "XOR" switch.

Device Characteristic FEA Modeling Result

Pull-in Voltage

Switching time

Frequency
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Table 2.1 continued.

Capacitance

lT  4.0x10'"

. . . . . . .
----- Gate1-Gate 2

Drain-Source /
/

0 5 10 15 20 25 30 35 
Time (ns)

Electrostatic Force

Tunneling Current
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Table 2.2: COMSOL simulation results for the "AND" switch.

Device Characteristic FEA Modeling Result

Pull-in Voltage

Switching time

Frequency
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Table 2.2 continued.

Capacitance

Electrostatic Force

Tunneling Current



From Tables 2.1 and 2.2, the simulation results reveal pull-in voltages of roughly 

2V, switching times approximately 30ns, maximum electrostatic forces of 350^N, and 

the leakage currents are infinitesimally small, even just before snap-down. These are for 

single-device logic gates having dimensions described in Section 4.2.1 of this thesis.

2.3. Summary

This chapter discusses the significance of understanding the dynamics involved 

and the complexity associated with modeling a MEMS switch. These are attributed to the 

multiple energy domains involved such as electro-mechanics, optical electricity, 

thermoelectricity, and electromagnetism.

Due to the interaction between electrostatic and structural domains in electro

mechanical systems, various physical parameters are involved and lead to a highly non

linear and unstable system. The chapter uses a mechanical lumped model and an 

electrical circuit equivalent model to evaluate the quasi-static pull-in voltage, transient 

behavior during a pulsed signal, and reliability of MEMS switches. Furthermore, 

approximate numerical calculations are discussed that evaluate performance of various 

dimensions of the MEMS logic gates. Finally, COMSOL simulation results are included 

that confirm the calculated operation values.
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CHAPTER 3

CONTACT RESISTANCE EVOLUTION

This chapter presents an investigation of the evolution of contact resistance (Rc) of 

electrical contacts over 100,000 cycles. A contact-mode atomic force microscope 

connected to a current versus voltage (I-V) measurement system was used and successive 

I-V measurements between a Cr-coated AFM conducting tip and Ir, Pt, W, Ni, Cr, Ti, Cu, 

or Al thin-film metals on silicon in a nitrogen ambient were done. Additionally, a similar 

experiment was conducted on layers of graphite also. The contact regions were 

subsequently imaged using SEM and contact-mode AFM to correlate changes that 

occurred in the surface morphology, roughness, Vpull-in, and Rc. Adhesion forces between 

the conducting AFM tip and the thin-film material substrate was also measured. Three 

different regimes were observed in the evolution of Rc (=dV/dI) as a function of switching 

cycles. The first or initial regime lasted up to a few 100 cycles. In some cases, the contact 

resistance in this regime went down (improved, perhaps, due to clearing of the oxide 

layers or anodic etching), but on the average, the contact resistance was nearly constant. 

The second or middle regime started at a few 100 cycles and lasted up to 30,000 cycles. In 

this regime, the contact resistance changed gradually as a function of switching cycles and 

become larger in most metals tested here. The surface morphology of the contact area 

changed rapidly in this regime. The third or final regime started from ~30,000 cycles and



went up to 100,000 cycles. In this regime, the contact resistance usually reached its 

maximum value and remained constant in most cases. Additionally, the surface 

morphology of the contact area also remained constant. The initial Rc of Ir, W, Pt, Cu, Al,

Ti, and graphite were low (106-108 Q) compared to other metals (Ni~10n Q and

12Cr~10 Q). The best cyclic I-V performers were Ir, Pt, W, and graphite. The trend in 

changing Rc seen here was similar and can be attributed to one of several factors, 

including their high Young's modulus, high melting temperatures, and high density along 

with low adhesion forces. The worst were Ni and Cr, showing large contact resistance 

throughout experimentation but having midrange material properties (conductivity, 

density, melting temperature, and adhesion forces). Ti illustrated an interesting behavior 

where contact resistance improved as a function of cycling. Between Cu and Al -  both 

high conductivity metals -  Cu developed abrupt failure, while Al gradually developed 

failure over repeated I-V cycling.

3.1. Overview

It is known that cycling MEMS switches deteriorate the contact area as a function 

of time due to a multitude of phenomena, including surface pitting, fatigue, asperity 

generation, charge migration, stiction, and micro-welding and other physical damages.

MEMS switches that require reliable "hot-contact" should have their materials suitably

12selected to survive > 1 0  switching cycles without degradation due to the above

8 10mentioned phenomena. In spite of the numerous reports of 10 - 10 successful switching 

cycles reported in literature [1-8] and the large research interest from several groups in 

academia and industry [9-18], efforts made to unravel the metrological secrets of repeated
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cycling still remain fairly short of achieving a clear understanding of what really governs 

the "perfectly reliable" MEMS/NEMS switch. Some general guidelines for the ultimate 

contact material have been determined and include high melting temperature, high 

Young's modulus, low contact resistance, low diffusivity, dissimilarity between the two 

contact materials (i.e., they should have different crystal structures, conductivity, etc.), and 

in some cases, the ability to "replenish" or "heal" itself over time.

It is important to optimize parameters of contacting materials in hot-contact 

switching and understand the degradation of the contact areas over a function of time, 

current densities, switching cycles, and peak versus average electric power per switching 

event (P=IV), etc. In a hypothetically perfect MEMS switch comprised of minimal 

asperities (and therefore minimal "hot-spots"), operating at low voltages and limited to 

low currents, one can significantly reduce the possibility of micro-welding. Similarly, the 

issue of stiction due to electrostatic or ambient origins can be addressed using dissimilar 

metal contacts on the two electrodes as studies have shown that materials with dissimilar 

crystal structures result in large repulsive Casmir forces and are beneficial to prolonged 

MEMS switch lifetime. Dissimilar metals with dissimilar crystal structures also hinder the 

possibility of solid diffusion in the "hot-spots" and, as a result, can reduce stiction-related 

failure [12]. Other properties, such as a high Young's modulus, contribute by way of large 

mechanical restoring forces within the structure of the switch and may be directly related 

to high melting temperatures of the contact materials that usually reduce the diffusion 

coefficient and, hence, reduce the possibility of micro-welding.

The ideal contact material can be envisioned to have very low contact resistances 

to begin with, be highly immune to oxidation or its oxide is highly conductive. Some
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interesting materials, like graphene (or graphite), are difficult to oxidize or create defects 

into due to their 2D structures. Additionally, graphite, if  processed appropriately, can be 

made to "flake" off a few thin layers of graphene after a predetermined number of 

switching cycles, revealing a pristine contacting surface with low contact resistance over 

its lifetime. This may be undesirable in MEMS environments due to particulate 

generation; however, from a purely electrical-contact perspective, it could render graphite 

to be highly reliable. Other variants include using materials that are softer in nature, such 

as Au, and can be made to "flow" and restore their contact surface under certain 

conditions. An extension of this can be the use of liquid metal contacts for MEMS such as 

Hg or Ga where the metals are liquid at room temperature and provide a fresh contact after 

every switching activity.

In order to investigate the origin of changes that occur in surface morphology of 

MEMS switches, extensive voltage vs. current cycling was carried out on a range of 

materials generally employed for MEMS, such as, Iridium, Platinum, Tungsten, Nickel, 

Chrome, Titanium, Copper, and Aluminum (all 100nm thickness), using a specially 

modified AFM setup for contact mode I-Vs. Apart from these metals, layers of graphite 

were also tested in a similar way. The setup used Silicon AFM tips coated with 100nm Cr 

as one electrode and the other material (material 'X'; X corresponding to metal on the list 

above) as the second electrode. Their electrical properties were recorded as a function of 

time while cycling voltage between them. Their surface morphology after repeated I-V 

cycling was examined by SEM and AFM studies and was analyzed. The initial Rc of Ir, Pt,

W, Cu, Al, Ti, and graphite were low (106-108 Q) compared to other metals (Ni~10u Q &

12Cr~10 Q). The trend in changing Rc seen in Ir, Pt, W, and graphite are similar and can be
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attributed to one of several factors, including their high Young's modulus, high melting 

temperatures, hardness, high density, and their dissimilarity in crystal structure, especially 

emphasized in graphite and Ti. In addition to re-arrangements of metal atoms near the 

surface, possible oxidation, and micro-welding in the contact region, we also see 

“clearing” of the contact region from thin-film metal in some cases. This may be due to 

the lateral motion of the contacting AFM probe. In addition, adhesion forces for each 

material were also computed by force vs. displacement measurements using an AFM 

setup. There is a relationship between adhesion forces and defect generation in the contact 

region and the results of both sets of experiments are detailed here.

3.2. Experimental Setup

3.2.1. Cyclic I-V

The I-V experiments were carried out using eight different metals as follows: 

Iridium, Platinum, Tungsten, Nickel, Chrome, Titanium, Copper, and Aluminum and one 

nonmetal: graphite. All metals were deposited to a thickness of 100nm via DC sputtering 

over a 4" Silicon wafer coated with LPCVD silicon nitride (500nm). Iridium and 

Platinum required an adhesion layer of Cr (~8nm). The wafers were diced into 1cm2 

pieces for convenience during experimentation. In addition, chromium, out of the eight 

metals under investigation, was chosen to coat the AFM tips to a thickness of 100nm. As 

a result, the experiment was conducted with Metal X vs. Cr-coated AFM tip, where X 

represents the respective metal under investigation. Each sample was coated with 

photoresist (PR) (thickness 2um) during storage. Immediately prior to experimentation, 

this PR was stripped using Acetone/Methanol/DI water and dried using a N 2 gun. This
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step ensured that minimal surface oxidation due to ambient conditions during storage 

contributed to our cyclic I-V experimentation. The graphite sample was prepared by 

extracting layers of graphite (graphene) from bulk graphite using double-sided tape and 

transferred to a silicon nitride coated silicon wafer. The experiment was set up as shown 

in Fig. 3.1.

Due to its simple design and relative ease of use, a TT-AFM system was 

employed to mount the AFM tip and the metal substrate. The entire experimental setup 

was housed inside a plexi-glass enclosure with a constant N2 flow, temperature controlled 

to 2 6 C  and humidity to 35%. External to the controlled chamber was a Keithley 236 

Source Measure Unit (SMU) and a computer that was used to control and record readings 

off the SMU.

71

Conducting 
AFM Tip

Metal on silicon 
nitride coated 
silicon chip

AFM sample 
holder

Figure 3.1: Experimental setup for I-V. A Keithley 236 Source Measure Unit was 
controlled via a computer (LabView program) to operate the cyclic voltage and record 
corresponding current



The LabView program used to control the cyclic voltammetry was programmed 

to run from +3V to -3V at 0.25V steps indefinitely. A counter was used to keep track of 

the nth cycle that was being run. A closed circuit was set up between the SMU, AFM tip, 

and the metal substrate whereby the change in I-V characteristics due to repeated cycling 

of voltage and current was recorded.

After the experiment was successfully set up, the program was run and allowed to 

record the I-V characteristics indefinitely over a period of approximately 9-12 days. At an 

operating frequency of about 500 I-V cycles per hour, this allowed sufficient time to 

exceed 1 0 0 ,0 0 0  cycles of operation.

3.2.2. Adhesion Force Measurement

Here, the adhesion force of an AFM-tip to different materials was measured as 

this can be considered to be a reasonable substitute to model the behavior of MEMS and 

NEMS switches. The adhesion force is a result of various physical and chemical forces, 

such as, electrostatic and van der waals [19]. Several methods for obtaining adhesion 

forces of thin films to their substrates exist, such as peeling, shearing-off, pulling-off, 

centrifugal means, scratching, and twisting [2 0 ] and each method has its own respective 

advantages and disadvantages.

In this case, a Veeco Atomic Force Microscope was used to obtain adhesion 

forces between the nine samples and a silicon tip. The samples were mounted on AFM 

discs using conducting silver paste and were placed over the magnetic holder of the Piezo 

stage. To successfully obtain a force curve, first, the voltage to displacement sensitivity 

of the Position Sensitive Detector (PSD) sensor was calculated by ramping down the
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flexible probe on a hard sample (steel disc); second, the stiffness of the cantilever was 

calculated using the thermal-tune option of the AFM or external nano-indenters in order 

to confirm the values reported on the AFM tip packaging. Using these two conversion 

factors, the voltage-displacement was converted to deflection-displacement and, 

consequently, force-displacement curves. In this manner, the force was obtained from the 

voltage difference generated by the laser spot movement on the PSD sensor. The 

horizontal axis was the vertical displacement of the sample piezo stage (Fig. 3.2).

Prior to touching the sample surface, the AFM tip was not deflected. This was 

also the case during the tip-approach phase; hence, the force curve was horizontal (Fig.

3.2, region A). Upon making contact with the surface, the sloped part was formed and 

this was due to the compliance of the probe and the contact regions of the sample and the 

tip (Fig. 3.2, region B). The retracting curve was almost the same, apart from the 

hysteresis behavior generated because of the adhesion between the probe and sample 

materials (Fig. 3.2, region C). To calculate the adhesion forces, the vertical length of the 

triangular hysteresis section of the force curve was measured accurately, by extracting F

Z data points of the force curve from the AFM software (Fig. 3.2, region D).

Each force curve for each metal was plotted at least 6 times from different parts of 

the sample in order to capture the mean value and standard deviations of measured 

values. These data are included in the results in Section 3.4.2. It is known that a thin layer 

of native oxide covers the silicon tip so that the graph is actually indicative of the 

adhesion forces between silicon oxide and the tested materials.
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Figure 3.2: Schematic diagram illustrating the experimental setup of the AFM system 
used to capture a force curve

3.3. Results and Analysis

3.3.1. Cyclic I-V

The cyclic I-V data from each metal under investigation was obtained and 

metrology studies on the surface of the metal and AFM tip was carried out via AFM 

roughness measurements and SEM imaging. Fig. 3.3(a)-(i) illustrates the change in 

contact resistance as a function of number of cycles for each metal. Figs. 3.4 -  3.12 

demonstrate the cyclic I-V data obtained for each metal: Ir, Pt, W, Ni, Cr, Ti, Cu, and Al 

and a nonmetal, graphite, respectively, at particular stages in their I-V cycling 

experiment. Each graph that illustrates the cyclic I-V characteristic at the particular cycle 

number illustrates a snapshot of the contact resistance at that particular instant. The 

sequence of six I-V graphs on each figure (Figs. 3.4 -  3.12) provides a birds-eye 

manifestation of how the contact resistance evolves as a function of operating cycle. 

These data were used to plot the resistance as a function of number of cycles, as shown in 

Fig. 3.3.
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Figure 3.5: Cyclic I-V graphs on Platinum for (a) 1-5 cycles, (b) 10-15 cycles, (c) 100
105 cycles, (d) 1000-1005 cycles, (e) 10,000-10,005 cycles, and (f) 100,000-100,010
cycles
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The first metal investigated was Iridium. On the I-V graphs shown in Fig. 3.4, 

corresponding to Iridium, it is seen that upon commencement of the experiment, the I-V 

characteristic appears linear -  or ohmic. This trend is maintained throughout the first 100 

cycles, after which gradual deterioration is observed beyond 1000  cycles and is 

exacerbated past this point. From Fig. 3.3(a), it is seen that the initial contact resistance is 

in the ~108 Q to 109Q regime. Beyond 1000 cycles (and up to 100,000 cycles), the trend

in change in resistance illustrates approximately 4 orders of magnitude increase in

12resistance (to ~10 Q regime), indicating a catastrophic decrease in contact efficiency.

The next metal investigated was Platinum (with thin Cr adhesion layer -  8nm) 

and its cyclic I-Vs are shown in Fig. 3.5. These illustrate a perfectly ohmic contact during 

the initial stages ( 1 -1 0 0 0  cycles), which, as a function of time, also deteriorates in similar 

fashion as seen previously on Iridium. Pt illustrates a notably small initial contact 

resistance of ~106 Q. From Fig. 3.3(b)(i), the increase in contact resistance from 

beginning to end of experimentation was approximately 5 to 6 orders of magnitude.

From the 1000th cycle onward, it is seen that the various effects, such as, surface 

pitting, fatigue, asperity generation, charge migration, stiction, micro-welding, and other 

physical damages leading to contact failure may be gradually developing. Towards the 

final cycles before experimentation was concluded, the area of electrical contact may be 

considered as entirely depleted via electron migration and therefore, nonconducting. On a 

separate experiment on Platinum, using a thicker Cr adhesion layer (100nm), it was seen 

that the average resistance remained at 106 Q during the entire duration of the experiment 

(Fig. 3.3 (b)(ii)). This confirms the effect of electro-migration of Pt on the previous 

sample that contributed to its deteriorating contact resistance.
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The results from investigating Tungsten are seen in Fig. 3.6. These graphs 

indicate that the metal performed consistently as an ohmic contact, albeit with a few 

exceptions until the first couple of 100s of cycles. The initial contact resistance was 

notably small (~106 Q regime) compared to other metals. Beyond 1000 cycles, 

deterioration effects began to render the contact nonohmic and the area of contact 

degraded. The resulting increase in contact resistance at completion was approximately 6

13orders of magnitude. The final contact resistance was close to the 10 Q regime, as seen 

from Fig. 3.3(c). The trends in changing contact resistance seen in Ir, Pt, and W are 

similar and can be attributed to one of several factors, including their common high 

Young’s modulus, high melting temperature, and hardness that may be providing 

hindrance to rapid contact deterioration, such as that seen in Nickel.

Fig. 3.7 illustrates the cyclic I-Vs corresponding to Ni. In spite of carefully 

stripping the protective PR coating immediately before experimentation, the I-V cycles 

illustrate that the Ni surface was anything but conducting, compared to other metals 

investigated previously. A contact resistance of approximately 1x1011 Q as a starting 

point could only indicate rapid ambient oxidation on the surface of Ni as tested. From

Fig. 3.12(d), the overall trend indicates that the contact resistance remained in the high

11 1210 -10 Q regime, while a conspicuous drop after about 50,000 cycles resulted in a 

decline in the contact resistance to the 1010 Q - 1011 Q regime. Considering the fact that 

the contact resistance always remained relatively high, it may be concluded that Ni was 

poorly conducting throughout the entire experiment.

The graphs in Fig. 3.8 correspond to cyclic I-Vs carried out on Chromium. It 

appears that Cr was also affected by rapid ambient oxidation, resulting in poor
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conductivity, similar to, if  not worse than, that seen on Ni. The contact resistance began

12 11 at around the 5x10 Q regime, and ended in the 5x10 Q regime -  a small decrease in

contact resistance which may be anomalous. From Fig. 3.3(e), it is seen that there were

histrionics along the way as the cycles progressed, but all of these were in the high ohmic

resistance (poorly conducting) regime and could all be attributed to many nonlinear

effects that correspond to deterioration of contacts, as discussed previously.

The next metal investigated was Titanium and the results are compiled in Fig. 3.9. 

By far, Ti showed the most interesting results in terms of contact resistance change and 

also the trend of the change over the number of I-V cycles. It appears that Ti maintained a 

consistent ohmic contact throughout the testing period, illustrating a contact resistance in

n
the 10 Q regime during the entire experimentation period. The change in the contact 

resistance from the moment that testing began until the very last cycle was approximately 

1 order of magnitude. From Fig. 3.3(f), it is seen that this change is negative; indicating 

that the contact resistance improved as a function of time and the regime of operation was 

in the closed contact zone, entirely unlike that seen in Cr or Ni. This result is very 

surprising as all other metals have shown catastrophically deteriorating contact 

resistances as a function of operating cycles. One of the explanations could be favorably 

directed towards the conductivity properties of TiO2, and possibly, its differing lattice 

structure compared to the Cr coating on the AFM tip.

Copper was investigated next and Fig. 3.10 is a compilation of the cyclic I-Vs 

obtained. It is seen that Cu has a very small initial contact resistance comparable to Pt 

and W. From the onset of experimentation, Cu has maintained consistent ohmic 

characteristic for the longest period of time (approximately 30,000 cycles), after which
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contact deterioration effects became visible as the contact resistance began to increase. 

This change was fairly dramatic and abrupt, as seen by the trend on Fig. 3.3(g). The 

change in resistance was approximately 6 orders of magnitude.

The last metal investigated was Aluminum and the results are compiled in Fig. 

3.11. Al showed a trend seen before with metals such as Ir, Pt, and W. This is interesting 

as the conductivity of Al is known to be high; however, its Young’s modulus is far lower 

compared to the other metals listed. Al maintained consistent ohmic behavior until the

n
first few 1000s of cycles with the initial contact resistance being in the 10 Q regime.

Interestingly, from Fig. 3.3(h), it is seen that the contact resistance decreased within the

first 100s of cycles, indicating clearing of the native Al2O3 followed by cyclic

deterioration effects, rendering the contact to climb to high contact resistance values,

12stabilizing at the 10 Q regime. The overall change in contact resistance from best case 

to worst case was approximately 6 orders of magnitude.

The final material investigated was layers of graphite, which is a nonmetal known 

to have a highly planar 2-dimensional structure. The I-Vs on these layers of graphite are 

illustrated in Fig. 3.12. It is clearly seen from Fig. 3.3(i) that graphite has the most 

consistent (ohmic) I-V performance compared to all the other metals. Over the duration 

of its I-V cycling up to 100,000 cycles, the graphs show the shape of the I-Vs were 

mostly similar throughout, until the final stage. In addition to its being a nonmetal, 

graphite is known to have a 2 -dimensional planar structure and severe resistance to 

chemical reaction (oxidation, hydration, etc.), as a result of which, graphite is greatly 

immune to a decline in contact efficiency. From Fig. 3.12(i), it is seen that graphite
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n
maintains contact resistance at 10 Q consistently up to 100,000 cycles and this was 

unique to graphite.

After the electrical measurements on the metals were obtained, contact mode 

AFM studies and SEM imaging was carried out on each metal sample. The results of 

these studies are illustrated in Fig. 3.13(a)-(h). It is clear that a period of repeated cycling 

over a single point exposes the sample to adverse conditions that causes physical 

restructuring. Some of these are due to surface pitting, fatigue, asperity generation, 

charge migration, stiction, and micro-welding. Other failure modes include re

arrangements of metal atoms near the surface and possible oxidation in the contact 

region. Some instances of “clearing” near the contact region from the thin-film metal are 

also visible.

3.3.2. Adhesion Force Measurement

After carrying out force vs. displacement experiments on the metals, the results of 

the measurements were compiled into Table 3.1. The table also compiles some relevant 

material properties of the materials under investigation. Fig. 3.14 compiles data from 

Table 3.1 into a graphical comparison for convenience.

The following deductions can be made from Fig. 3.14: it appears that Cu clearly 

shows the highest surface adhesion force (~225nN), while W (~18nN) and Pt (~26nN) 

are close competitors for the lowest. The following list can summarize the sequence of 

average adhesion forces (in ascending order): W (18nN), Pt (25nN), Graphite (65nN), Ni 

(65nN), Cr (62nN), Ti (79nN), Al (100nN), Ir (115nN), and Cu (225nN).
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Figure 3.13: AFM surface scans and SEM imaging over region where cyclic I-Vs where 
carried out for (a) Iridium, (b) Platinum (c) Tungsten, (d) Nickel, (e) Chromium, (f) 
Titanium, (g) Copper and (h) Aluminum and (i) Graphite (AFM only)
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Figure 3.13: Continued
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Figure 3.13: Continued
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Figure 3.13: Continued
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Figure 3.13: Continued
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Figure 3.13: Continued

Table 3.1: Material properties of tested substrates

Material Conductivity 
% IACS

Young’s
Modulus

Gpa

Density
g/cm3

Melting
Temperature

°C

Hardness
(mohs)

Adhesion
force

nN

Crystal
Structure

Ir 36.6 [21] 516.0
[21]

22.56
[22]

2443[21] 6.5 115 FCC

Pt 16.0 [23] 146.8
[23]

21.45
[23]

1769 [23] 4-4.5 26 FCC

W 30.0 [23] 344.7
[23]

19.30
[23]

3422 [23] 7.5 18 BCC

Ni 25.2 [24] 206.8
[23]

8.90
[23]

1455 [23] 4.0 65 FCC

Cr 13.0 [25] 248.0
[23]

7.19
[23]

1860 [23] 8.5 62 BCC

Ti 13.9 [23] 100-145
[26]

4.51
[27]

1677 [28] 6.0 79 HEX

Cu 103.0 [23] 11.0 [29] 8.90
[29]

1080 [29] 3.0 225 FCC

Al 64.95 [23] 70.0 [29] 2.70
[29]

660 [29] 2.75 100 FCC

Graphite - 8-15 2.15 3642
(sublimation) 1-2 65 HEX
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(b)

Figure 3.14: Plots comparing material properties data from Table 1. (a) Conductivity, (b) 
Young’s Modulus (c) Density, (d) Melting Temperature (e) Hardness, and (f) Adhesion 
Force.
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Figure 3.14: Continued.



Both W and Pt have low adhesion forces while their (initial) contact resistances 

and overall evolution of contact deterioration were very similar (Fig. 3.3). Although Ir 

also falls in this category in terms of similarity, it has a much higher adhesion force and 

this may be attributable to its significantly higher Young’s modulus (Table 3.1). One 

reason that W has the lowest adhesion force may be due to its very high melting point. 

Interestingly, Ni and Cr show great similarity in adhesion force values as well as in 

(poor) initial contact resistances. Ti, with its best I-V and contact resistance performance, 

is midway between the least and most adhesion force measurement value. The same can 

be said about its other material properties such as Young’s modulus and melting 

temperature. Nevertheless, it does have the second lowest density amongst the eight 

metals.

3.4. Summary

This chapter discussed the details of an investigation on the evolution of contact 

resistance (Rc) in eight disparate metals and one nonmetal commonly used as electrode 

materials in MEMS switches, over 100,000 cycles. A contact-mode atomic force 

microscope connected to a current versus voltage (I-V) measurement system was used 

and successive I-V measurements between a Cr-coated AFM conducting tip and Ir, Pt, 

W, Ni, Cr, Ti, Cu or Al thin-film materials on silicon nitride-coated silicon and graphite 

in a nitrogen ambient were carried out. The contact regions were subsequently imaged 

using SEM and contact-mode AFM to correlate changes that occurred in the surface 

morphology, roughness, and Rc. Adhesion forces between the conducting AFM tip and 

the thin-film material substrates were also measured.
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It appears that high Young’s modulus, high melting point, and high hardness 

metals such as Ir, Pt, W, and Ti illustrate the best cycling I-V characteristics in terms of 

initial contact resistances while having the lowest adhesion forces. Metals such as Ni and 

Cr are amongst the worst performers in I-V cycling. Ti has material properties 

comparable to Ni and Cr, but has a fantastic I-V characteristic that actually maintained a 

relatively high conductivity throughout cycling and also showed a slight improvement in 

contact resistance over increasing cycles of operation. This may be attributable to the 

conducting oxide that forms as the surface is stressed. Cu and Al, both, have very high 

conductivities; as a result, both had very low initial contact resistances up to a certain 

point. Beyond that, Cu illustrated abrupt failure, while Al gradually developed a state of 

nonconductivity (due to formation of its oxide). Graphite was the only nonmetal tested 

and it illustrated very reliable and efficient contact performance compared to other 

materials. These were attributable to its highly planar 2D structure along with added 

resistance to ambient oxidation and furthermore, the significant lattice dissimilarity 

between the Cr-coated AFM tip and the graphite substrate. This dissimilarity also existed 

in Ti and may have also contributed to its high contact efficiency.
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CHAPTER 4

FABRICATION PROCESS

Fabrication of the devices shown in Fig 4.1 was carried out at the University of 

Utah Nanofabrication facility. The facility encompasses a class 100/1000/10,000 

cleanroom, packaging, and testing areas. In addition to conventional nanofab tools such 

as deposition, photolithography (including mask-making), and etch equipment, the Utah 

Nanofab comprises specialized tools such as ALD, XeF2 etch, LPCVD (TEOS, LTO, 

PSG), DRIE, and CMP. The following sections provide an overview of the process flow 

required to fabricate the MEMS-based XOR and AND gates.

4.1. Fabrication of Single-Device XOR and AND Gates

4.1.1. Overview

The devices, shown in 3D rendering in Fig. 4.1, were fabricated as summarized in 

the process flow given in Fig. 4.2. A 4” silicon wafer was insulated with 100nm LPCVD 

stoichiometric silicon nitride deposited at 780oC. Isolated square “wells” were patterned 

into this insulating nitride layer all the way through to the silicon substrate. The MEMS 

switches were fabricated around this well. The wells were next filled with thermal SiO2 at 

950oC (by timing the process precisely) up to the brim of the silicon nitride well.
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(a)

(b)

Figure 4.1: Cross-bridge platform for MEMS (XOR) logic (a) 3D isometric render and 
(b) top view.
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3D View Top view

Deposit 100nm LPCVD 
silicon nitride passivation 

layer on Si substrate

Etch “well” into silicon nitride 
and Si substrate

Grow thermal SiO2 up to brim 
of nitride well. Also deposit 10

15 layers of ALD AL2O3 as 
etch stop for next step.

Deposit structural bridge layer 
(100nm LPCVD Silicon nitride 
+ 200nm LPCVD Polysilicon)

Deposit and pattern first metal 
(tungsten) electrode layer (Gate 2 

and Drain). Gate insulation can be 
deposited here using ALD HfO2

Deposit ALD Al2O3 sacrificial 
layer (300 layers)

Deposit and pattern second 
metal (tungsten) electrode layer 

(Gate 1 and Source)

Deposit second structural 
bridge layer (100nm LPCVD 

Silicon nitride + 200nm 
LPCVD Polysilicon)

Carry out sacrificial release in 
BOE at room temperature

Figure 4.2: Fabrication process flow for XOR and AND gates. The process flow is 
the same for other gates, such as AND.



Next, the first bridge layer of LPCVD nitride (100nm) and LPCVD polysilicon 

(200nm) was deposited and patterned to form the first structural bridge. This bridge was 

designed to support gate 2 and drain electrodes. Following this, tungsten was sputtered 

and patterned to form the electrodes (gate 2 and drain) on the first nitride bridge. Next, 

the wafer was capped with 300 layers (~0.1 nm/layer) of thermal Al2O3 deposited using a 

Fiji Atomic Layer Deposition (ALD) system. This also served as the sacrificial gap 

between bottom and top electrode-bridges. This was followed by the second tungsten 

metallization (via sputtering), which was patterned to form electrodes (Gate 1 and 

Source) that reside under the second structural bridge. Thereafter, the second silicon 

nitride and polysilicon structural bridge was deposited and patterned to define the top 

bridge. Tungsten was patterned using 30% H2O2 at room temperature, silicon nitride and 

polysilicon was pattered using a dry etch recipe comprised of CF4/O2 at 200W, resulting 

in clean etch of the structural layers.

The ALD Al2O3 layers acted as an effective etch stop for this dry etch recipe 

while patterning the second bridge. Details of these are provided in the following section. 

At this point, the ALD layers were sacrificially etched in BOE etchant at room 

temperature to “free” the two bridges from each other and from the substrate. Upon 

release, the SiO2-filled well was also etched away, enabling the silicon substrate to be 

used as a gate in “MOSFET”-like operation of the device as well as to use field effect to 

separate the two bridges if needed. A variant of this design was to pattern a layer of 

tungsten electrodes prior to the first silicon nitride bridge. Both variants served the same 

purpose; however, the latter is not further discussed here. Optical images of the final 

devices are given in Fig. 4.3.
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Drain
“D”

Source
“S”

Gate 1 
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►
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Gate 1b
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Figure 4.3: Optical images of fabricated a) XOR gate. G1 and G2 are gate electrodes. S 
and D represent Source/Drain. b) AND gate. S-D will connect only if gate 1a and 1b are 
high at the same time.



In addition, it must be acknowledged that the need for gate insulators is 

recognized although absent in this prototype described here. Dielectric materials such as 

ALD HfO2 are strongly recommended here as they are excellent insulators and also their 

uniformity can be reliably controlled when deposited via ALD tools. The following 

section provides further details on fabrication and elaborates on each step.

4.2. Fabrication Process Details 

This section details the device dimensions, process steps, and recipes required to 

fabricate the MEMS-based XOR and AND logic gates. The section begins with providing 

the blueprints of electrodes (configuration and dimensions) for each logic gate and 

follows on with the fabrication process. Each step, such as, Silicon nitride deposition, 

tungsten sputtering, wet and dry etch, sacrificial release, etc. with their process 

parameters and documented results is provided. Also included are images of the wafer at 

each processing step. The Masks were designed using LEdit version 12 and were 

fabricated using the Electromask MM250 Pattern Generation tool in the University of 

Utah’s Nanofab.

4.2.1. Device Dimensions and Layout/Design 

The device footprint was designed to be 30^m x 30^m, as shown in Fig. 4.4. Both 

XOR and AND gate electrode patterns were conveniently packaged into this platform. 

Furthermore, the dimensions of each electrode are specified in Figs. 4.5 and 4.6, for XOR 

and AND gate configurations, respectively.
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30um

30um

Figure 4.4: Cross-bridge platform dimensions. XOR and AND gate layouts are shown.
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Figure 4.5: MEMS XOR gate Top and Bottom bridge layout and dimensions.
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MEMS AND: Top Bridge
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Figure 4.6: MEMS AND gate Top and Bottom bridge layout and dimensions.
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4.2.2. Deposition of Silicon Nitride Passivation Layer

A single-side-polished, 4”, conducting (n-type) Si-110 wafer was used as the

starting substrate onto which 100nm stoichiometric Silicon Nitride was deposited. This

was done using the Canary LPCVD Nitride Furnace inside the Nanofab. The preloaded

recipe was timed to run for 25 minutes, which was programmed as shown below. The

resulting nitride deposited had reliable uniformity (<5% variation) at ~110nm. Fig. 4.7

shows the wafer boat after deposition of 100nm LPCVD silicon nitride, and Fig. 4.8

illustrates a single wafer from the center of the boat emphasizing the uniformity.

Temperature : 780 C
Time : 25min
NH3 flow rate : 80 sccm
DCS flow rate : 20 sccm
Controller pressure : 430-440 mTorr

Figure 4.7: Silicon Nitride wafers on quartz boat.
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Figure 4.8: 100nm Silicon Nitride wafer surface.

4.2.3. Patterning “Wells” in Silicon Nitride 

Photoresist (Shipley 1813) was spun on and photolithography carried out using 

the first mask. This was used to define 40^m x 40^m ‘well’. Using the mask, the 

underlying silicon nitride later was dry etched (RIE) using a CF4/O2 plasma recipe. The 

tool used for this step was the Oxford 80 Plus RIE. The recipe is given below.

CF4 flow rate : 35sccm
O2 flow rate : 3.5sccm
Pressure : 75mTorr
Power : 200W
Time : 1min 40s

The Photoresist was next stripped off using Acetone and IPA rinse and further 

stripped using oxygen plasma using the same RIE tool. The recipe for O2 plasma is given 

below:



O2 flow rate : 30sccm
Pressure : 50mTorr
Power : 200W
Time : 30s

Fig. 4.9 provides SEM images of the wells that were etched into the silicon nitride 

all the way through to the silicon substrate.

One of the problems associated with this step was related to nonuniform etching 

at the edges of the wells. As the RIE etched silicon nitride through the PR “windows”, it 

caused nonuniformity while etching at the edges of the well, as seen in Fig. 4.10. If this 

problem were allowed to persist, it would translate onto the bridges in the proceeding 

fabrication steps. In order to avoid it, the RIE etching was extended from 1min 20s to 

1min 40s. The results were much better and a more uniform edge was obtained (Fig. 

4.11).
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Figure 4.9: SEM of wells etched into first insulating Nitride.
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Figure 4.10: SEM of wells’ edge shows rough edges on two separate wells. This was 
corrected for, as seen in fig. 4.11.

(a) Silicon nitride

Smooth edges 
at interface

Silicon dioxide 
filled well

300nm

(b)
Rough edges at 

interface

300nm

Figure 4.11: SEM of oxide-filled nitride wells. (a) Edges more uniform after over etching 
nitride wells, (b) Edges non-uniform



4.2.4. Oxide-filled Nitride Wells 

The nitride wells were next filled with SiO2 by timing the wet thermal oxidation 

step accurately. Wet oxidation was carried at 950°C out in the Canary Oxidation Furnace 

in the Nanofab. This filled the nitride wells to the brim of the well to act as a support for 

the proceeding bridge, and later as a sacrificial layer to release the lower bridge. The 

recipe used is given below:
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Temperature 
Loop counter 
N2 flow rate 
O2 flow rate 
H2 flow rate

950°C
70min
5slpm
2.25slpm
4slpm

The thickness of the oxide grown was approximately 260nm using the recipe 

above. Bearing in mind that 44% silicon is consumed while oxide is grown, the timing 

was characterized to be just right to grow until the edge of the nitride wells.

The SEM image in Fig. 4.11(a) shows the oxide-filled nitride wells after 

overcoming the rough edge issue on the nitride wells, while Fig. 4.11(b) shows the rough 

edges propagating onto the current step if the silicon nitride RIE etch time were not 

extended as discussed previously. Fig. 4.12 is an optical image of the wafer at this stage, 

highlighting the uniformity maintained. The golden hue is the silicon dioxide.

4.2.5. Deposition of Silicon Nitride and Polysilicon Layer 

for First Bridge

The next step was to deposit the first composite bridge layers. Stoichiometric 

silicon nitride (~100nm) followed by polysilicon (~200nm) was deposited in succession. 

Both steps were carried out in the respective Canary LPCVD furnaces in the Nanofab.



120

Figure 4.12: Image of wafer after oxide growth in Nitride wells.

The recipes are given below and the optical image of the wafer postdeposition is given in

Fig. 4.13:

Process 
Temperature 
Loop counter 
NH3 flow rate 
DCS flow rate 
Controller pressure 
Thickness 
Measured stress

Silicon Nitride Deposition
780 C
25min
80sccm
20sccm
430-440mTorr
100nm
760MPa (tensile)

Process 
Temperature 
Loop counter 
SiH4 flow rate 
Controller pressure 
Thickness 
Measured stress

Polysilicon Deposition
630 C
22min
55sccm
270-280mTorr
200nm
-50MPa (compressive)
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Figure 4.13: Image of wafer after (a) nitride layer deposition over oxide-filled wells (b) 
polysilicon deposition over nitride layer.

The reason for choosing a composite (layered) bridge structure over a bridge that 

relied only on one material was that the silicon nitride contributed a tensile stress that 

would keep the clamped-clamped bridge taut, while the polysilicon layer was 

compressive. In addition, silicon nitride is prone to being etched (very slowly) in the 

sacrificial etchant -  BOE, while the polysilicon is immune to this attack. As a result, both 

materials together contributed to having a relatively taut bridge that was compatible with 

BOE processing.

The wafer is next subjected to annealing in the Canary Oxidation furnace. This 

enabled the newly deposited polysilicon to relieve its compressive stresses and prevent 

buckling of bridges postrelease as seen in the SEM images of bridges formed using 

polysilicon without proper annealing (Fig. 4.14). The recipe used for annealing is given 

below.
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Buckling on un-annealed

Figure 4.14: Image showing buckled bridges after patterning polysilicon and nitride 
layers without including an annealing step. Compressive stresses are relieved in 
polysilicon by annealing.

The program was specially modified to allow growth of an extremely thin layer of 

SiO2 over the polysilicon initially and then followed by a pure N 2 flow. This prevented 

nitridization of the polysilicon at such high temperatures in pure N2 environment.

Temperature 
Loop counter 
N2 flow rate 
O2 flow rate 
H2 flow rate 
Measured stress

1050°C
60min
5slpm
2.25slpm
4slpm
545MPa (tensile)

4.2.6. Patterning First Bridge 

After annealing, photolithography was carried out to pattern the first bridges. This 

was then dry etched using the Oxford 80 Plus RIE tool in the Nanofab. The same recipe 

was applicable to etch both the polysilicon and the silicon nitride layers. The recipe used 

is given below.
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O2 flow rate : 3.5 sccm
SF6 flow rate : 26 sccm
Pressure : 75 mTorr
Power : 100 W
Time : 4 min

The etching was carried out with observation at intervals of 3min, 30s, and 

another 30s. The images of the wafer at intermediate stages are given in Fig. 4.15 and the 

structures formed as a result are given in Fig. 4.16. After patterning, the PR was stripped 

off in Acetone/IPA rinse and further in O2 plasma, as was previously done.

Figure 4.15: Sequence of images showing wafer at intervals of dry etch step for 
patterning first Polysilicon and Silicon Nitride bridges. a) Before dry etch, b) after 3 min 
dry etch, c) additional 30s etch, d) additional 30s etch.
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30^m

Figure 4.16: Images showing device at stage after composite bridge deposition. (a) 
Optical image, (b) SEM image of the interface region of the SiO2 well and composite 
bridge.

4.2.7. First Metallization 

In order to place the first set of electrodes (gate 2 and drain), a 100nm film of 

Tungsten was DC sputtered using the parameters given below.

Power
Argon flow % 
Chamber pressure 
Time
Thickness measured

100 W 
25 % 
2mTorr 
8min 50s 
100nm

Photolithography was carried out and this layer of tungsten was patterned using 

H2O2, at room temperature. Wet etching was carried out for ~3-4min. Optical images of 

the devices after first metallization are shown in Fig. 4.17.
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electrodes
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Figure 4.17: Optical image of devices after first metallization.

4.2.8. Gate Dielectric 

To prevent conduction between gates 1 and 2 upon snap down, the gate 2 region 

needs insulation. Although the devices being described here did not have this insulation, 

a material that would be suitable here is ALD HfO2 (~10nm). The deposition of such thin 

materials is very reliable using techniques like ALD and patterning HfO2 by RIE is now 

fairly well understood and characterized.

4.2.9. Deposition of Sacrificial Material (Gap Layer)

The gap between the metal contacts was formed by depositing 300 layers 

(~0.1nm/layer) of ALD Al2O3, resulting in a total gap thickness of approximately 30nm. 

This deposition was carried out in the Cambridge Nanotech ALD tool at 250°C. An 

optical image of the wafer at this stage is given in Fig. 4.18.
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4.2.10. Deposition of Second Metallization

The next step was to deposit the second metallization. As before, tungsten was

sputtered using the Denton Discovery 18 sputter tool in the Nanofab. The sputter

parameters used are given below.

Power : 100 W
Argon flow % : 25 %
Chamber pressure : 2mTorr 
Time : 8min 50s
Thickness measured : ~100nm

This layer of tungsten was patterned using H2O2 at room temperature, after 

photolithography with the appropriate mask. Wet etching was carried out for ~3-4min. 

Optical Images of the devices after second metallization are shown in Fig. 4.19.

Figure 4.18: Image of wafer after sacrificial layer deposition (300 layers ALD Al2O3)
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Figure 4.19: Optical images devices after second metallization.

4.2.11. Deposition of Second Structural Bridge 

The final structural layers were next deposited using the Canary Furnace stack in 

the Nanofab. The recipes used for stoichiometric silicon nitride (~100nm) and polysilicon 

(~200nm) deposition were similar to the first structural bridge. Prior to this step, 3-5 

layers of ALD Al2O3 at 200oC were deposited as a capping layer before inserting the 

wafers into the LPCVD furnaces. Furthermore, the deposited polysilicon was then 

annealed at 1050 oC for 60 min using the oxidation furnace in a nitrogen environment



using the program settings as before. This was necessary to ensure the compressive 

stresses were relieved from the polysilicon layer. The annealing recipe was modified, as 

previously, to grow a thin layer of oxide initially to prevent nitridization of the 

polysilicon in a pure N2 environment. Following this, the stresses were relaxed and the 

buckling effects, that would otherwise cause structural failure after sacrificial release, 

was avoided. Fig. 4.20 provides optical images of the devices at this stage.

4.2.12. Patterning Final Structural Bridge 

The final bridges are patterned using photolithography and etched using the 

Oxford 80 Plus RIE tool in the Nanofab. The recipe used for the dry etch was the same as 

that detailed previously and required a total period of 4 min of etching. The etch was 

carried out in intervals to allow for observation before proceeding with further etching. 

The images of the devices after this step are given in Fig. 4.21.
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Figure 4.20: Images of devices after deposition of second structural silicon nitride and 
polysilicon.
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Figure 4.21: Images showing devices after patterning final structural bridge.

4.2.13. Pattern “Windows” for Sacrificial Layer Etch 

This step was the last photolithography step for the devices. Photoresist was 

patterned using a mask such that “windows” were opened just around the switches to 

enable the release of the sacrificial layer around them. Additionally, there were openings 

above contact pads to enable probing the various electrodes. The rest of the wafer was 

protected by photoresist. The optical images in Fig. 4.22 show the photoresist 

“windows”.
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Figure 4.22: Images showing devices with photoresist “windows” patterned.

4.2.14. Sacrificial Layer Etch 

Finally, the sacrificial layer (ALD AL2O3 and SiO2) was released by immersing 

the wafer chips in BOE for anywhere between 5min to 20min. Immediately after BOE 

etch, the chips were gently flushed in DI water bath followed by a methanol bath. This 

step was followed by a vacuum dry-step which minimized damage to the released bridges 

via nitrogen-gun drying. The vacuum step ensured uniform evaporation of the methanol



and also prevented stiction of the fixed-fixed beams. The released devices are shown in 

Fig. 4.3.
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4.3. Summary

This chapter provides details of the process flow used to fabricate the single

device XOR and AND gates. The fabrication was carried out at the University of Utah 

Nanofabrication facility. Structural materials used to fabricate the device include a 

composite of LPCVD silicon nitride and LPCVD polysilicon. Electrodes were made of 

sputtered tungsten and the sacrificial layers were made of thermal Silicon dioxide and 

ALD aluminum oxide. Images of the wafer at each processing step are also provided.



CHAPTER 5

TESTING AND CHARACTERIZATION

This chapter discusses the electrical characterization of the single-device logic 

gates that were fabricated, as described in Chapter 4. Testing was carried out in the 

Advanced Metrology and Nano Device Applications (AMANDA) lab at the University of 

Utah. The devices were tested to investigate switching voltage, leakage power, longevity, 

logic gate function, and harsh environment performance (high temperature and high 

ionizing radiation). The experiments were carefully planned and repeated several times to 

confirm the results. Compilations of the best and most representative data are provided 

and discussed in the following sections.

5.1. Characterizing Switching

The micro-fabricated XOR gates were tested to find their switching characteristics 

and reliability using an Agilent 4156C Precision Semiconductor Analyzer (with 

compliance set at 1^A) and a probe station, as shown in Fig. 5.1. A switching voltage of 

approximately Vp ~  1.5 V was observed over repeated cycling, as can be seen in Fig.

5.2. In this and next tests, the gate 1 was shorted to source and gate 2 was shorted to the 

drain and the switching voltage was applied between the top and bottom bridges.
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Figure 5.1: Experimental setup to characterize switching performance
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Figure 5.2: I-V characteristics over a portion of a million switching cycles. In this test, 
the G1 was shorted to S and G2 was shorted to D and the voltage was then applied 
between the G2-D and G1-S electrodes. The experimental setup is shown in Fig. 5.1. The 
dashed circles and the associated arrows indicate the I-V  branch in the forward direction 
and reverse direction for the many traces shown here. The hysteresis is due to stiction 
between the bridges after they touch each other.

Multiple Switching Characteristics



The device’s drain and source electrodes were situated on separate bridges 

leading to very small surface leakage current. The electrodes had ~4^m  contact area and 

their leakage current was measured at less than 10-9 A at 0.5 V. The leakage power is 

shown in Fig. 5.3.

Additionally, device lifetime measurement was carried out and its continuous 

switching characteristic obtained over 109 cycles, as shown in Fig. 5.4. The device was 

intact even after the 109 cycles, after which the experiment was arbitrarily halted. The 

device operated reliably even after 109 cycles of accelerated-wear emulation.
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Measured Leakage Power

Voltage (V)

Figure 5.3: Graph showing leakage power characteristic of the fabricated XOR gate 
(1uW). The arrows show direction of scan. The hysteresis is caused by stiction, as 
discussed in Fig. 5.2.
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109 Switching Cycles

2.5

Time (sec)

Figure 5.4: Switching characteristics of the XOR gate operated as a switch. The gate 
switched up to 109 cycles and the study was limited by the experiment time.

5.2. Logic Gate Operation 

The setup used to test the device’s logic functionality is schematically shown in 

Fig. 5.5. As seen from the switching characteristics, the two gate regions attract each 

other only when one of them is high. No actuation was observed when either both gates 

are low or both gates are high. At the ON state (when the bridges contact each other), the 

drain and source electrodes contact each other and produce the desired output. This 

simple structure operates as an XOR gate.
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+VCC

Time (ns)
— — — Gate 1 — • ■ Gate 2 S-D (output)

Figure 5.5: Voltage transitions of a single XOR device. S-D transitions to HIGH only 
when either G1 or G2 are high. When both G1 and G2 are LOW (or HIGH) together, S-D 
transitions to LOW.



5.3. Harsh Environment Performance 

The devices were also tested at elevated temperature inside a vacuum chamber. I

V characteristics of the switch at 298 K and 409 K are shown in Fig. 5.6. The switching 

characteristics did not change considerably at elevated temperatures, albeit shifted by 

~0.5 V. The shift in the voltage at elevated temperatures can be caused by the 

temperature dependence of material parameters (i.e., Young’s Modulus) and by the 

temperature dependence of the electrical properties of the different parts of the switch. 

The temperature dependence of the contact region may dominate in most cases since it is 

the most active part of the switch.
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Figure 5.6: Switching characteristics at elevated temp eratures. These tests were 
performed using the same electrode arrangements used in F i^  5.5.



In order to investigate the performance of these devices in high radiation 

environments, the TRIGA reactor at University of Utah was engaged to bombard the

fabricated devices with high ionizing radiation. According to reactor specifications, at 9Q

12 2kW, typical neutron flux is~3*10 neutrons/cm -s. The energy of the neutrons varies 

from 0.025 eV to 10 MeV, but most have energies less than 1 MeV. In general, alpha 

particles do not exist in the reactor core except for inside the fuel element, which has an 

average energy of 6 MeV. It is known that gamma rays exist ubiquitously in the reactor

13 2core. Approximate gamma flux is on the order of 1013 gamma/cm2-s (or higher). Gamma 

particles’ energy ranges from approximately several keV to 3 MeV. Beta particles’ flux at

13 290 kW is approximately 10 beta/cm -s and typical energy of a beta particle is between 

100-1500 keV.

Figs. 5.7-5.8 show the I-V  characteristics of a MOSFET and an XOR gate 

connected as a switch (i.e., Gate 1 shorted to source and Gate 2 shorted to the drain) 

inside the TRIGA nuclear reactor at 90 kW, respectively. After a few minutes of 

exposure, the MOSFET’s IDS increased by an order of magnitude and its channel became 

permanently conducting (Fig. 5.7). At this point, the MOSFET gate voltage could no 

longer control the channel current. In the case of the XOR gate, the I-Vs were not 

affected appreciably by the radiation even after 120 min (Fig. 5.8). The switching voltage 

changed somewhat, but the device continued to operate with clear “ON” and “OFF” 

states. Many factors may contribute to the changes in the switching parameters of MEMS 

and NEMS exposed to intense ionizing radiation. Material embrittlement following large 

densities of defect generations, the resulting resistance changes, and heating are just to 

name a few.
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(a) MOSFET: 1 W ionizing radiation, lm in

(b) MOSFET: 90 kW ionizing radiation, 120min

Voltage (V)

Figure 5.7: MOSFET Ids-V ds at (a) 1 W ionizing radiation, 1 min. (b) 90 kW ionizing 
radiation for 120 min. After 120 min, even after increasing Vds up to 3 V, there is no 
change in Ids.
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MEMS Switch Performance in Ionizing Radiation
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Figure 5.8: MEMS switch I-V  characteristics at 1 W-1 min, 90 kW-60 min and 90 kW- 
120 min ionizing radiation. Clear “on” and “off” states are still discernible even after 
prolonged exposure to I-R. The arrows show scan directions.



5.4. Validation

A comparison between the calculated, simulated, and measured performance 

metrics of the switch are summarized in Table 5.1. It can be seen that the disagreement 

between most calculated and measured values are quite large. This is mainly due to the 

simple nature of the equations used. Essentially, factors such as fringing fields, viscous 

damping, squeeze film damping, torsional hinge effects, inertia, etc. were neglected 

during preliminary calculation. These, however, were taken into consideration to a larger 

extent in the FEA simulation and as a result, the agreement is much better with measured 

results.
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Table 5.1: Comparison of calculated, simulated, and measured performance metrics.

Metric Calculated Simulated Measured

Pull-in voltage 1.6V 2V 1.5V

Switching time 45ns 30ns 30ns

Resonant frequency 8MHz 10MHz 5Mhz

Leakage current - A
0-0 <10-9A

Spring constant / w ~ 24 N/m/^m 32.5 N/m/^m 10.1 N/m/^m



5.5. Summary

This chapter discusses the characterization techniques used to test the devices and 

results obtained. The devices were characterized for their switching and revealed a pull-in 

voltage of approximately 1.5 V, a lifetime exceeding 109 switching cycles, and successful 

operation as a logic gate (XOR). Additionally, the devices were interrogated in harsh 

environments where at elevated temperature (409K), the devices remained operational, 

albeit with a 0.5V shift in pull-in voltage attributable to material property changes 

corresponding to temperature elevation. When exposed to high ionizing radiation, the 

MEMS devices outperformed solid-state transistors by illustrating clear ON and OFF 

states even after prolonged exposure to high I-R doses (120min at 90kW), while the solid 

state devices were unresponsive within minutes of exposure to I-R.
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CHAPTER 6

ADDITIONAL WORK

This chapter discusses additional work that was done to complement the single

device-logic gate devices. First, scaled MEMS switches that rely on ALD SiO2-Al2O3 

electrets [1] that enable both attractive and repulsive field effects are discussed. As a 

result, the devices present field-assisted pull-in/pull-out voltage modulation. This 

technology renders the MEMS switches highly desirable in harsh environments such as 

high temperature and high ionizing radiations -  where pull-in voltage variation is seen [2 ] 

-  for in-situ voltage compensation/correction. Second, MEMS switches to efficiently 

manage power in scaled CMOS that can be integrated with Back-End-of-The-Line 

(BEOL) VLSI processes are discussed. And third, the design of simple, functional 

circuits making way for more complex systems using such circuits -  probably even 

electro-mechanical microprocessors -  is discussed.

6.1. Additional Work

6.1.1. Charged-Electret Scaled MEMS Switches and Logic Gates 

A considerable dependence of pull-in voltage change of MEMS switches on the 

environmental conditions in harsh environments has been seen [2]. To address this, 

charged SiO2-Al2O3 electrets are incorporated into the single-device MEMS logic gate



structure, illustrated in Fig. 6.1. These electrets were fabricated using a new technique 

based on ALD Al2O3-SiO2 stack deposition.

Charged electrets possess a net electric charge and can respond to applied external 

electric fields, resulting in a displacement in response to the applied E-field. The 

converse phenomenon may also occur where a displacement of an electret in an E-field 

can result in a current flow. As a result, such electrets have been widely used in 

transducers such as microphones, electric-field, pressure, temperature, and radiation 

sensors [3, 4]. However, with the increased popularity of MEMS, the use of electrets has 

seen new opportunities that take advantage of the massive reduction in actuation voltages 

for a given displacement [5-7]. Materials generally used to create these electrets include 

teflon, parylene, PVDF, PDMS, and frequently, SiO2. The stored charges can be both 

surface and/or bulk in nature. Interface trapped charges also contribute to the overall 

charge in a multilayered stack. In porous materials, electrets are created by charges 

trapped in the porous cavities. Due to the unipolar nature of these electrets, both attractive 

and repulsive forces can be obtained, as opposed to purely electrostatic that is only 

attractive.

Generally, electrets are produced by corona discharge or electron beam scanning, 

both based on a very high electric potential. In the devices discussed here, the electrets 

are formed by a combination of thermal ALD Al2O3 and plasma-enhanced ALD SiO2 

deposition technique that inherently results in electret formation within the bilayer stack 

and eliminates the need for further steps for electret charging [1]. The fabrication flow is 

outlined in Fig. 6.1.
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1. Deposit SiO2 
passivation over 

clean Si substrate

2. Sputter and 
pattern first metal 

(Pt) (gate 
electrodes)

3. Sputter and 
pattern 

Source/Drain (Pt)

4. Deposit and 
pattern bridge 

isolation

5. Deposit 
polysilicon 

sacrificial layer

6. Pattern 
sacrificial layer

7, Deposit and 
pattern bridge 

material (ALD 
SiO2-Al2O3)

8. Sacrificial 
release in XeF2

Figure 6.1: Fabrication flow of twin gate MEMS-AND gate. The XOR fabrication 
follows a similar flow, with a slight modification for patterning the first and second 
m etallization and for including electrode under the bridge.



SEM images of the fabricated devices, 3D render, and schematic of its G1, G2, S, 

and D terminals are illustrated in Fig. 6.2. The AND device consists of a clamped 

dielectric bridge (ALD SiO2-Al2O3) spanning across two gate electrodes and supports a 

Pt electrical contact underneath it. This contact terminal is attracted towards the gate 

regions only when both of them are high (“G 1, G2”=“ 1, 1”). When both are low or the 

combination of either "0 ,1" or "1,0 ", there is no (or insufficient) electrostatic attraction to 

cause drain-source contact if  the electrets are discharged. In the case of electrets being 

present, we observe field-assisted pull-in voltage control.

In the XOR device, G 1 is the insulating bridge, with a metal contact underneath. 

G2 is shorted between the adjacent electrode pads by a small interconnect. Only when G 1 

and G2 are "1,0" or "0,1" is there sufficient electrostatic force to cause the bridge to 

collapse, making a connection between Source and Drain..

The field effect modulation of pull-in voltage is illustrated in Fig. 6.3. With the 

application of Vg=-5V, the pull-in voltage is driven to 15 V, with gradual increase in gate 

voltage to Vg=-2.5V, VPi=10V, and finally at Vg=0V, VPi=3V. We can conclude that the 

electrets were negatively charged, owing to the trend seen when negative gate voltages 

were applied, and confirmed by measurement as explained in [1]. The density of the 

infused negative charges was measured at ~ 12pC/cm . Fig. 6.4 graphically summarizes 

the switching voltage (Von and Voff as a function of gate voltage VG). It is seen that Von 

increases nearly linearly with an increase in negative gate voltage (VG). Voff remains fairly 

constant and can be attributed to the fact that the surface energy between the contacts 

does not change as a function of applied gate voltage. As a result, the trend seen in the 

curve of Von-Vof  is similar to that of Von, alone.
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Figure 6.2: Next Generation (twin-gate) XOR and AND gate layout, 3D render, truth 
tables, and SEM Images.
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Figure 6.3: IDs-VDs characteristics of the MEM Logic gate shown in Fig. 6.2 with Vg=- 
5V, -2.5V, 0V, 2.5V, and 5V. Field-assisted pull-in voltage variation seen as a function 
of applied gate voltage. At (a) Vg=-5V, V p i= 1 4 V ; (b) Vg=-2.5V, V p i= 1 0 V ; (c) Vg=0V, 
V p i= 3 V , (d) Vg=2.5V, V p i= 6 .1 V  (e) Vg=5V, V p i= 6 .2 V .
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Figure 6.4: Graph illustrating switching voltage a function of gate voltage
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6.1.2. MEMS Switches for Efficient Power Management

in Scaled CMOS

Since 2003, the industry’s approach has addressed device power efficiency 

improvements on the circuit level such that significant circuit modification and 

performance overhead for leakage reduction was introduced [8]. Apart from using ultra- 

low leakage switches, as described in this thesis, there is a strong need today for ultra- 

low-leakage power management technology on scaled VLSI devices.

Here, a simple cross-bar geometry is discussed, as shown in Fig. 6.5(a), that can 

be easily fabricated at low temperature (<30oC) at the interconnect levels of a typical 

VLSI processes.

These devices were fabricated using a simple 2 -mask process using sputtered 

platinum at 50W at <2^torr pressures. The final released devices are illustrated in Fig. 

6.5(b) and (c), emphasizing the ON and OFF states that are clearly visible via change in 

transmission when observed through a microscope-mounted camera. The fabrication 

process is outlined in Fig. 6 .6 .
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OFF State 1  • (c) ON State 1 •

Line 1 Line 1

Line 2
10^m Line 2 10 jum

Figure 6.5: BEOL process compatible cross-bar Pt switches shown in (a) 3D rendering; 
optical image of (b) OFF, state and (c) ON (pulled-in) state.

CS View Top View
First Pt electrode

Silicon Nitride 
passivation layer

Sacrificial 
Polysilicon layer

Second Pt 
electrode

Figure 6.6: Fabrication process outline



Calculations on design were based on ANSYS simulation results and revealed the 

trend illustrated in Fig. 6.7 for pull-in voltage vs. gap height. From measurement on 

actual devices, it was seen that devices with 100 nm gaps were found to switch at just 

under 2 V, as seen in Fig 6 .8 . Other devices with larger gaps (500 nm) were tested for 

reliability and illustrated >1270 cycles of operation in ambient lab environment (Fig. 

6.9). Under more stringent/controlled environments, such as vacuum back-filled with N2, 

the ‘catalytic’ effects of Pt combined with O2 can be minimized to enhance reliability. 

The measured contact resistance in the ON state was on the order of 10’s mO. The design 

of these simple switches for use as interconnects for FPGAs are also illustrated here in 

Fig. 6.10.
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Voltage (V)

Figure 6.7: Design calculations on pull down voltage and gap height based on ANSYS 
simulations on beams having active switching areas of 10^m x 10^m and 5^m x 5^m.
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Voltage (V)

Figure 6 .8 : I-V Cycling measurements on 100nm gap devices. VPi~2V.

Voltage (V)

Figure 6.9: Prolonged I-V measurements on 500nm gap Pt switches. Switches worked 
>1270 cycles. Steady VPI~15V.
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Interconnects built 
with MEMS 

Switches

Figure 6.10: Schematic illustrating interconnect setup for FPGAs using MEMS cross-bar 
structures.

6.1.3. MEMS Circuit Design 

Simple electro-mechanical circuits were designed and fabricated using a 

fabrication flow that was slightly modified to incorporate boron-doped polysilicon 

resistors to enable functional circuits. Some examples of these are given in Fig. 6.11, 

which shows optical images of a 1-bit multiplexer chip built utilizing 4 AND gates, a 1- 

bit adder chip built using 3 XOR and 2 AND gates, and a multiplier circuit utilizing 6 

XOR and 4 AND gates. These represent the first steps towards developing more complex 

circuits, microcontrollers, and eventually mini-computers capable of ultra-low power 

computation in the age of the “Internet of Things” enabling the More than Moore’s law 

era.
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Figure 6.11: MEMS circuits fabricated using single-device XOR and AND gates. a) 2-bit 
multiplexer, b) 1-bit full adder, and c) multiplier circuit.
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6.2. Summary

This chapter presented the development of next-generation field-assisted MEMS 

logic gates for in-situ pull-in voltage compensation/control usually applicable in harsh 

environments using a unique method of introducing electrets using ALD SiO2-Al2O3 

deposition. Also discussed here are MEMS switches for efficient power management that 

can be integrated easily at low temperature with BEOL VLSI processes, and 

development of simple functional circuits designed and fabricated using single-device 

MEMS logic gates (XOR and AND).
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CHAPTER 7

CONCLUSIONS

This thesis discusses novel single-device MEMS-based logic gates, such as XOR 

and AND, for ultra-low leakage computation and for harsh environment usage such as 

those in high ionizing radiation and high temperatures.

The functional MEMS/NEMS structures operate as logic gates in a single device 

instead of using individual switches commonly employed in CMOS. Given that 6-14 

CMOS switches are typically needed in logic gates, the functional structures reduce the 

device count leading to better reliability, yield, speed, and overall better characteristics 

(subthreshold characteristics, smaller turn-on/off voltage variations, etc.). The theoretical 

considerations, design, fabrication, and characterization and analysis of XOR and AND 

gates as specific examples of single-device logic functions were discussed. The results 

showed a ~ 1 -2  V pull-down voltage, less than 1^W leakage power consumption, and 

reliable switching lifetime greater than 109 cycles.

An intensive study on the evolution of contact resistance of nine disparate, yet 

commonly used, contact electrode materials (Ir, Pt, W, Ni, Cr, Ti, Cu, Al, and graphite) 

were investigated on a cycle-by-cycle basis using a special AFM setup, up to 100,000 

cycles. The investigation revealed that the initial contact resistance (Rc) of Ir, W, Pt, Cu, 

Al, Ti, and graphite was low (106-107 Q) compared to other metals (Ni~1011Q and



12 11 Cr~10 O), which evolved to much higher values (>10 O) over the course of 100,000

cycles of operation, in nearly all cases. However, an anomaly was seen in the case of Ti,

n

which remained fairly conductive throughout (~10 O). This was attributed to its 

conducting TiO2 formation. The only nonmetal experimented with was graphite and it 

yielded the most reliable electrical performance by revealing the least deterioration over 

the testing period. Additionally, by using a separate adhesion-force measurement AFM 

setup, a relationship between contact resistance evolution and measured adhesion forces 

was seen where materials with high Young's modulus, high melting temperatures, and 

high hardness indicated low adhesion forces (such as Ir, Pt, and W). The study concludes 

that the best electrode materials (in terms of minimally deteriorating contact resistances) 

to choose from are generally W, Pt, Ir, Ti, and graphite; however, the ultimate choice is 

usually influenced by other device requirements and compatibility issues.

Furthermore, the fabricated single-device logic gates were interrogated for harsh 

environment operation at elevated temperatures (409 K) and high ionizing radiation 

environment (90 kW for 120min in a nuclear reactor). Both experiments showed 

successful and reliable operation of these MEMS devices compared to silicon MOSFETs.

Finally, additional work on charged-electret based scaled MEMS switches were 

presented that relied on a unique ALD SiO2-Al2O3 deposition technique that enabled 

field-assisted in-situ pull-in voltage compensation for MEMS in harsh environments. 

Also, a simple Pt-based cross-bar structure that can be used for efficient power 

management integrated with BEOL VLSI processes at low temperatures was discussed. 

Finally, micro-fabricated circuits, such as, multiplexers, 1-bit full adder, and a 2-bit full 

adder that employ the XOR and AND gates were also discussed.
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