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ABSTRACT 
 
 
 
 Hybrid nanomaterials composed of synthetic and biological building blocks 

possess high potential for the design of nanomedicines. We propose a new therapeutic 

approach that mimics the mechanism of immune effector cells to crosslink surface 

receptors of target cells and induce apoptosis. The receptor crosslinking is mediated by 

biorecognition of high-fidelity natural binding motifs (antibody fragments or 

oligonucleotides) that are grafted to the side chains of synthetic polymers. This approach 

features the absence of low-molecular-weight cytotoxic compounds. Thus, we name it 

“drug-free macromolecular therapeutics.” 

 This dissertation describes the development and preclinical evaluation of two 

drug-free macromolecular therapeutic platforms. The designed therapeutics were tested 

against B-cell malignancies that highly express the surface antigen CD20. 

 In the first design,	
   a multivalent conjugate comprising high-molecular-weight, 

linear copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) grafted with multiple 

Fab' fragments of an anti-CD20 antibody was synthesized. Exposure of human non-

Hodgkin lymphoma (NHL) Raji B-cells to the multivalent construct resulted in 

crosslinking of CD20 receptors and commencement of apoptosis. 

 In the second design, two hybrid conjugates were produced: (1) an anti-CD20 

Fab' attached to an oligonucleotide1, and (2) a linear HPMA copolymer grafted with 

multiple complementary oligonucleotide2. We showed that the two conjugates self-



	
  iv 

assembled via oligonucleotide hybridization at the surface of CD20+ B-cells, which 

crosslinked CD20 antigens and initiated apoptosis. When tested in a mouse xenograft 

model, the two conjugates, either administered consecutively or as a premixture, 

eradicated Raji cells and produced long-term survivors. 

 The consecutive administration approach was chosen for further studies where a 

two-step pretargeting strategy was employed. We showed that the time lag between 

administering the two conjugates can be optimized based on pharmacokinetics and 

biodistribution of the Fab'-oligonucleotide1 conjugate. Using the optimized treatment 

regimen, the designed nanomedicine achieved superior anti-lymphoma efficacy to 

rituximab, a clinically used drug for NHL. We also evaluated the nanomedicine in patient 

mantle cell lymphoma and chronic lymphocytic leukemia cells. The treatment 

demonstrated potent apoptosis-inducing activity. 

 In summary, we have developed novel nanotherapeutics that may constitute 

potent treatments for NHL and other B-cell malignancies. The verified concept can be 

applied to crosslink receptors other than CD20 and potentially treat different diseases. 
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CHAPTER 1 
 
 
 

INTRODUCTION1 
 
 
 

 Macromolecular therapeutics, also referred to as polymeric nanomedicines, are a 

diverse group of drugs characterized by their large molecular weight (MW), including 

polymer-drug conjugates, polymeric micelles, polymer-modified liposomes, etc. The 

advantages of macromolecular therapeutics when compared to low-molecular-weight 

compounds are reviewed elsewhere.1–3 In particular, water-soluble polymeric drugs (MW 

> 40 kDa)	
  attain prolonged plasma half-lives and achieve tumoritropic accumulation due 

to the enhanced permeability and retention (EPR) effect.4,5 Conventional polymeric 

nanomedicines utilize polymers as delivery vehicles to carry anticancer therapeutic 

agents. Many of these approaches are under clinical development.6–12 Increasingly the 

role of nanomedicine is not only to deliver a given drug to diseased tissues efficiently but 

also to trigger or improve therapeutic effects through innate biological responses.13,14 The 

design of macromolecular therapeutics has extended towards a unique paradigm where 

biomimetic strategies are employed to incite or control specific cellular activities.15–17 For 

instance, receptor coupling (or clustering) can be used to sensitize diseased tissues to a 

therapeutic agent.18–21 In this dissertation, we describe a novel paradigm in the 

1This chapter is adapted from the following publication: T.-W. Chu and J. Kopeček. Drug-free 
macromolecular therapeutics – a new paradigm in polymeric nanomedicines. Biomater Sci.	
  2015; 3(7): 
908–922. Adapted by permission of The Royal Society of Chemistry. 
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nanomedicine research area – drug-free macromolecular therapeutics. This approach was 

firstly proposed by our laboratory in 2010.21 The basic idea is to induce apoptosis by 

crosslinking of cell-surface noninternalizing receptors mediated by the biorecognition of 

high-fidelity natural binding motifs, such as antiparallel coiled-coil peptides or 

complementary oligonucleotides. The general design concept of drug-free 

macromolecular therapeutics is shown in Figure 1.1. An important feature of these 

designs is the absence of low-molecular-weight cytotoxic compounds (thus named “drug-

free”). This chapter introduces recent developments in this exciting new area, which 

mainly includes research performed in our laboratory using B-cell malignancies as a 

disease model and the CD20 receptor as a pharmacological target, as well as relevant 

approaches reported by other researchers. 

 

1.1 B-Cell Lymphoma and CD20 

 Non-Hodgkin’s lymphoma (NHL) is a prevalent cancer with over a half-million 

individuals having a history in the United States and an estimated 70,800 new cases 

diagnosed in 2014.22 Over the past 3 decades, the incidence of NHL has continuously 

increased (doubled since 1980). NHL has a high mortality rate; from 2006 to 2010, there 

were 18,990 deaths for every 100,000 patients in the U.S.22 The disease is comprised of a 

diverse and heterogeneous group of lymphatic malignancies, which makes the treatment 

challenging. About 85% of NHLs are cancers originating from B-cells; the remaining 

diseases are mostly of T-cell origin.23 This dissertation focuses mainly on designs and 

developments of novel therapeutics against B-cell lymphomas (or B-NHLs), including 

Burkitt’s, diffuse large B-cell, follicular, immunoblastic large cell, precursor B-
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lymphoblastic, and mantle cell lymphomas. These malignancies are generally classified 

as either indolent or aggressive, which then dictates the type of therapy the patient may 

receive.23,24 Besides conventional chemotherapy and radiotherapy, which are usually 

accompanied by severe adverse reactions, monoclonal antibodies (mAbs) targeted to the 

B-cell surface antigen CD20 have become common treatments.25 Such 

“immunotherapies” have revolutionized the field. The current standard of B-NHL 

treatment is rituximab (the most commonly used anti-CD20 mAb) in combination with 

chemotherapy.26,27 However, large populations of patients exist who do not respond or 

develop resistance to these therapies. For example, the overall response rates for the 

treatment of relapsed/refractory low-grade or follicular NHL typically ranged from 40 to 

50% (complete response 6, 3, 17, 3, and 14%; overall response 48, 46, 47, 39, and 43% in 

five different clinical trials).28 The nonresponsiveness and/or resistance have been 

attributed to the inability of immune effector cells (e.g., macrophages, natural killer cells) 

to hypercrosslink ligated mAbs,29,30 and Fc receptor (FcR)-mediated endocytosis31 or 

“trogocytosis”32 of CD20 antigens. These clinical obstacles create the need for new, 

improved therapeutic strategies. 

 CD20 is a 35–37 kDa integral membrane protein highly expressed on more than 

95% of B-cell lymphomas.33,34 Free CD20 antigen is not present in serum, and there is no 

known natural ligand of CD20. When bound by antibodies, CD20 has a very low 

intracellular internalization rate;35,36 it is often considered a noninternalizing receptor. 

Studies suggest that CD20 functions as a store-operated calcium channel and a cell cycle 

regulator.37–39 It is one of the most reliable biomarkers of B-lymphocytes, thus providing 

an ideal target for treatment of B-NHL.23,24 CD20 is also expressed on normal B-cells; 
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however, it is not expressed on stem cells or progenitor cells and mature or activated 

plasma cells.33 Therefore, the “B-cell depletion” therapeutic approach is considered safe; 

normal numbers of B-cells can be restored after treatment.25–27 The therapeutic efficacy 

of anti-CD20 mAbs is ascribed to three cellular events: antibody-dependent cellular 

cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and CD20-mediated 

apoptosis.40–42 All of these mechanisms require immune effector cells to function.41 In 

contrast, drug-free macromolecular therapeutics trigger direct and specific apoptosis of 

B-cell lymphomas without the help of effector cells. This is achieved by the design of 

synthetic effectors that reproduce the function of immune effector cells. The advantages 

of such an approach will be further discussed in this dissertation. 

 

1.2 Receptor Crosslinking and Apoptosis 

 Cell receptor clustering (crosslinking) is a natural process and driving force for 

numerous biological responses. For instance, the following cellular events have been 

reported to result from receptor clustering: hormone uptake,43 cell adhesion,44 cell 

activation45 and apoptosis.42,46 In particular, crosslinking of the surface antigen CD20 

induces apoptosis of B-cells. Research has shown that when CD20-bound antibodies are 

hypercrosslinked by FcR-expressing immune effector cells (or polyclonal secondary 

antibodies), CD20 receptors tend to cluster as dimers or tetramers, redistribute and 

become localized into lipid rafts.47 Such events mediate the interaction between clustered 

CD20 and Src-family kinases (which are also located in lipid rafts), and trigger apoptotic 

signaling.48,49 Without the hypercrosslinking, apoptosis initiated by ligated mAbs is 

limited.50–52 These mechanistic studies warranted various earlier designs of multivalent 
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mAb constructs. For example, Ghetie et al. synthesized a homodimer of rituximab by 

using a heterobifunctional crosslinker and showed that the mAb dimer potentiated 

apoptosis in human B-cell lymphomas, which synergized with a chemotherapeutic agent 

and an immunotoxin.51 Rossi et al. produced a hexavalent anti-CD20 antibody by 

covalently assembling 6 Fab' to 1 Fc.53 Anti-lymphoma efficacy of this hexavalent 

construct in mouse xenografts was comparable to that of the monovalent mAb, but it was 

independent of effector mechanisms such as CDC. Stein et al. used a monomeric Ab that 

lacks effector cell functions hypercrosslinked by a secondary Ab to specifically facilitate 

apoptosis.54 These previous research studies showed that approaches aimed at direct 

apoptosis induction via cell surface receptor clustering are becoming attractive. 

 

1.3 Origin of Drug-Free Macromolecular Therapeutics 

 The initial design of	
  drug-free macromolecular therapeutics was inspired by our 

previous work on hybrid hydrogels self-assembled from synthetic polymers and coiled-

coil protein domains. We developed “smart” biomaterials composed of N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymers grafted with biorecognition 

domains.55–58 The biorecognition	
   of complementary grafts resulted in physical 

crosslinking of polymer chains and formation of 3D networks (hydrogels). In particular, a 

pair of oppositely charged pentaheptad peptides (CCE and CCK) that form antiparallel 

coiled-coil heterodimers were designed (Figure 1.2). Multiple copies of CCE or CCK 

were grafted to the HPMA polymer (P) backbones to produce P-(CCE)x and P-(CCK)y, 

respectively. Equimolar mixtures of P-(CCE)x and P-(CCK)y solutions self-assembled 

into hydrogels where the coiled-coil peptides served as macromolecular physical 
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crosslinkers.58,59 The excellent CCE/CCK biorecognition was also employed by Lv et al. 

for the development of tandem modular protein-based hydrogels.60 On the other hand, our 

laboratory pioneered the design of HPMA copolymers as anticancer drug carriers,61,62 

which led to the development of PK1 (HPMA copolymer–doxorubicin conjugate), the 

first polymeric drug that entered clinical trials.63 HPMA copolymers are water-soluble,	
  

biocompatible, and long circulating in the bloodstream.3,64 They have flexible (random-

coil) conformation in aqueous solutions; thus, targeting moieties or biorecognition motifs 

that are grafted to the side chains can be effectively presented.65 Based on these 

studies58,59 and the above-mentioned mechanism of receptor clustering mediated 

apoptosis, we hypothesized that the unique biorecognition of the CCE/CCK peptide 

motifs could be used to crosslink not only polymer chains but also cell surface receptors 

(e.g., CD20) to induce apoptosis of target cells (e.g., B-cell). Such an application of 

hybrid materials to biological systems to mediate specific cellular events (i.e., apoptosis) 

provides a bridge between the designs of functional biomaterials and novel 

nanomedicines. 

 Due to the specific intermolecular interactions and the high degree of structural 

control based on primary sequences, coiled-coil peptides have become attractive as a 

building block for nanomedicine design.66–68 Our laboratory pioneered the development 

of drug-free macromolecular therapeutics, which employed the coiled-coil forming 

peptides CCE and CCK as the biorecognition motif.21 Two macromolecular conjugates 

were synthesized: (1) CCE tethered to a Fab' fragment of an anti-CD20 mAb (Fab'-CCE); 

(2) an HPMA copolymer grafted with multiple CCK peptides (P-(CCK)y). Exposure of a 

CD20+ human B-NHL cell line (Raji) to the Fab'-CCE conjugate first decorated the cell 
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surfaces with CCE. Further treatment of the decorated cells with P-(CCK)y resulted in 

formation of antiparallel coiled-coils at cell surfaces, which crosslinked CD20 receptors 

and induced apoptosis. This concept has been successfully proven by Wu et al.21,69 In 

vitro apoptosis induction of Raji B-cells was achieved after co-treatment with Fab'-CCE 

and P-(CCK)y, either consecutively or as a premixture.21 In vivo anticancer efficacy was 

evaluated in mice bearing systemically disseminated B-cell NHL.69 Both the consecutive 

and the premixed treatments were able to eradicate lymphoma cells in the blood and in 

the bone marrow, which produced long-term survivors. 

 The biorecognition of the coiled-coil forming oligopeptides, CCE and CCK, in 

the “drug-free” system functioned well to induce cell apoptosis. However, to achieve a 

strong anticancer effect (produce tumor-free long-term survivors), we used a 1:25 molar 

ratio of CCE equivalent (in Fab'-CCE) to CCK equivalent (in P-(CCK)9).69 This is 

because the individual peptide sequences (CCE and CCK) do not have a pronounced 

secondary structure at pH 7 and are in a random coil conformation.58 Binding of 

oligopeptides to macromolecules increases their secondary structure only slightly.58,70 

Consequently, Fab'-CCE and P-(CCK)y interact first via hydrophobic and electrostatic 

interactions, and then the oligopeptides fold into a strong antiparallel coiled-coil 

heterodimer. Such relatively complex binding pattern likely results in inadequate 

interaction of polymer conjugates with Fab' conjugates when administered at the 1:1 

molar ratio condition. Therefore, in order to design improved therapeutic systems, it is 

essential to identify a biorecognition pair that possess a more direct and efficient binding 

pattern.	
  Oligonucleotide hybridization was chosen for the further studies. 
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1.4 Nucleic Acid Hybridization and Morpholino Oligonucleotide 

 Nucleic acid hybridization is a crucial biorecognition event in life. A DNA double 

helix is composed of Watson-Crick base paring, i.e., hydrogen bonding of A/T and C/G, 

between two single-stranded polynucleotides with complementary sequences. The 

conformation is further stabilized by base stacking, i.e., π-π interaction of neighboring 

bases on the same strand. Such a self-recognition property plays the central role for 

coding, storing and transferring of genetic information; it possesses a high fidelity 

feature. Since early 1980s, DNA has been used as building blocks for biomaterials 

design,71,72 and more recently, functional nanostructures for drug delivery.73,74 In 

particular, hybrid materials comprising oligonucleotides and synthetic polymers can be 

utilized to fabricate nanoconstructs with precise geometry and versatile functionality.75–77 

 Over the years, a variety of artificial oligonucleotides with chemically modified 

backbones have been synthesized.78 These nonphosphodiester backbones are nuclease 

resistant and stable in the body; thus, they are suitable for biopharmaceutical applications. 

We decided to pursue phosphorodiamidate morpholino (MORF) oligomers as the 

biorecognition motifs for the second-generation “drug-free” therapeutic design. The 

MORF oligos are charge neutral, resulting in significantly stronger binding than natural 

DNA and RNA.79 Hybridization of MORF pairs has well-defined binding specificity, 

which prevents potential off-target effects.80,81 In addition, MORF oligos have good 

aqueous solubility and favorable pharmacokinetics.82,83 Their base sequence can be 

designed to achieve optimal binding efficiency and minimal off-targets with human and 

murine mRNA, and to prevent self-complementarity.79 
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Figure 1.1  Drug-free macromolecular therapeutics for apoptosis induction. Crosslinking 

of cell surface noninternalizing receptors is mediated by the biorecognition of natural 

binding motifs. Two hybrid conjugates can be administered consecutively as pretargeting 

and crosslinking doses, or premixed to form a multivalent construct and used as a single 

dose. 
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Figure 1.2  Helical wheel diagram of the CCE/CCK coiled-coil antiparallel heterodimer. 

The heptad repeat of each peptide is labeled a–f. Both CCE and CCK were modified with 

a YGG peptide spacer (to prevent steric hindrance of binding after grafted to polymer 

chains) and functionalized with a cysteine (for conjugation). 

 



	
  

	
  

CHAPTER 2 
 
 
 

ANTI-CD20 MULTIVALENT HPMA COPOLYMER – FAB'  

CONJUGATES FOR THE DIRECT INDUCTION OF  

APOPTOSIS1 
 
 
 

 In this chapter, a hybrid biomimetic system comprising high-molecular-weight, 

linear copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) grafted with multiple 

Fab' fragments of anti-CD20 monoclonal antibody (mAb) was synthesized by reversible 

addition-fragmentation chain transfer (RAFT) polymerization followed by attachment of 

Fab' fragments via thioether bonds. Exposure of human non-Hodgkin’s lymphoma (NHL) 

Raji B-cells to the multivalent conjugates resulted in crosslinking of CD20 receptors and 

commencement of apoptosis. Five conjugates with varying molecular weight and valence 

(amount of Fab' per polymer chain) were synthesized. One of the copolymers contained 

enzyme degradable peptide sequences (GFLG) in the backbone. The multivalency led to 

higher avidity and apoptosis induction compared to unconjugated whole mAb. Time-

dependent studies showed that the cytotoxicity of conjugates exhibited a slower onset at 

shorter exposure times than mAb hyper-crosslinked with a secondary Ab; however, at 

longer time intervals the HPMA copolymer conjugates achieved significantly higher

1This chapter is adapted from the following publication: T.-W. Chu, J. Yang and J. Kopeček.           
Anti-CD20 multivalent HPMA copolymer – Fab' conjugates for the direct induction of apoptosis. 
Biomaterials. 2012; 33(29): 7174–7181. Elsevier. 



	
  

	
  

18 

biological efficacies. In addition, study of the relationship between the structure of 

conjugates and Raji B-cell apoptosis revealed that both valency and polymer molecular 

weight influenced biological activities, while insertion of peptide sequences into the 

backbone was not a factor in vitro. 

 

2.1 Background 

 The use of hybrid biomaterials composed of synthetic and biological 

macromolecules to design “smart” nanomedicines is an emerging field.1,2 The goals 

include precise targeting to diseased sites, enhancing therapeutic efficiency, reducing 

adverse effects, and minimizing drug resistance. In particular, water-soluble HPMA 

copolymers are extensively used as delivery vehicles to conjugate anticancer therapeutic 

agents (e.g., small molecule drugs) and targeting moieties (e.g., antibodies).3 HPMA 

polymer and copolymers have favorable physicochemical and pharmacokinetic properties 

to provide a well-defined safety profile, increase circulation half-life of therapeutics, and 

provide a flexible (random coil) conformation of the polymer backbone in solution.4 The 

design of macromolecular therapeutics has extended towards a unique paradigm where 

biomimetic strategies are used to trigger specific responses or facilitate therapeutic 

efficiency through innate biological processes.1,3,5,6 For instance, an HPMA-based hybrid 

system has been used as a “drug-free” macromolecular platform to induce apoptosis via 

biorecognition and receptor crosslinking at the cell surface; a clinically relevant 

therapeutic efficacy was demonstrated in vitro6 and in vivo7. 

 Non-Hodgkin’s lymphoma (NHL) is a prevalent cancer in the United States with 

a history of over a half-million incidences and projected 70,130 new cases diagnosed in 
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2012.8 Because about 85% of NHL is of B-cell origin and more than 95% of B-

lymphomas bear the CD20 surface antigen,9 immunotherapies using anti-CD20 

monoclonal antibodies (mAb) have revolutionized the treatment of NHL.10 However, the 

overall response levels to clinically used mAb, mainly rituximab (Rituxan®), for 

treatments of relapsed/refractory low-grade or follicular NHLs are less than 50%.11 Rare 

but lethal side effects such as progressive multifocal leukoencephalopathy (PML) and 

lung injuries observed in patients treated with rituximab or other anti-CD20 mAb also 

raised biocompatibility concerns.12–15 Therefore, new therapeutic strategies are needed. 

 The clinical nonresponsiveness and adverse effects of rituximab or other 

therapeutic mAb has been partly attributed to Fc fragment-related biological events.14,16–

18 The inactivity of effector cells to hyper-crosslink bound rituximab on B-cell surface via 

Fc results in failure of antibody-dependent cellular cytotoxicity (ADCC) and 

complement-dependent cytotoxicity (CDC), the main thrusts of anti-CD20 mAb’s 

therapeutic effect.16,18–20 In addition, Fc-mediated cellular events such as complement 

activation or the surge release of tumor necrosis factor-α (TNFα) upon mAb infusion are 

related to the severe side effects.12,14,17 Consequently, approaches aiming at direct 

apoptosis induction through cell surface receptor clustering are becoming attractive.21–25 

In these previous studies, either multimeric Abs covalently linked to each other,24,25 

bound to dextran,22 to lipid nanoparticles,23 or monomeric Ab lacking effector cell 

functions hyper-crosslinked by a secondary Ab21 were used to specifically enhance 

apoptosis. In particular, Rossi et al. developed a hexavalent anti-CD20 Ab by covalently 

assembling 6 Fab' to 1 Fc, and demonstrated that its antitumor efficacy in a murine model 

was comparable to mAb monomer (Veltuzumab), but without any sign of CDC.25 
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 We have reported a hybrid biomimetic system composed of branched HPMA 

copolymer and multiple Fab' fragments of the anti-CD20 mAb (1F5), which targets and 

crosslinks CD20 on the surface of B-cells.26,27 We hypothesized that the crosslinking 

would lead to clustering of (noninternalizing) CD20 antigens and induction of apoptosis 

via CD20-mediated signaling pathways. The design features the absence of Fc fragment 

and multimeric interactions with targets. Superior binding affinity26 and apoptosis 

induction27 when compared to unconjugated mAb were observed in several B-cell lines. 

Here, we aimed at improving this system using high-molecular-weight linear HPMA 

copolymers synthesized by controlled radical polymerization. This provided tailor-made 

multivalent conjugates with narrow molecular weight distribution, precise control of 

valences (Fab' content per polymer chain), well-defined and reproducible architectures, 

and potentially longer circulating half-lives. The improved design permitted the study of 

the relationship between the structure of conjugates and their biological activities, which 

facilitated the understanding of processes involved in CD20-crosslinking mediated 

apoptosis induction. 

 

2.2 Materials and Methods 

2.2.1 Materials 

 N-(3-Aminopropyl)methacrylamide hydrochloride (APMA) was purchased from 

Polysciences (Warrington, PA). 4,4'-azobis(4-cyanopentanoic acid) (V-501) was obtained 

from Wako Chemicals (Richmond, VA). Succinimidyl-4-(N-maleimidomethyl) 

cyclohexane-1-carboxylate (SMCC) and sulfo-SMCC were purchased from Soltec 

Ventures (Beverly, MA). o-Phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic 
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acid (MPA) were purchased from Sigma-Aldrich (St. Louis, MO). N-(2-

Hydroxypropyl)methacrylamide (HPMA)28 and 4-cyanopentanoic acid dithiobenzoate 

(CPDB)29 were prepared as previously described. All solvents were obtained from 

Sigma-Aldrich as the highest purity available. 

 

2.2.2 Cell Line, Hybridoma, and Fab' Fragment Preparation 

 Human Burkitt’s B-cell non-Hodgkin’s lymphoma Raji cell line (ATCC, 

Bethesda, MD) was used for biological evaluations. Cells were cultured in RPMI-1640 

medium (Sigma, St. Louis, MO) supplemented with 10% fetal bovine serum (Hyclone, 

Logan, UT) and grown at 37 °C in a humidified atmosphere with 5% CO2 (v/v). All 

experiments were performed using cells in exponential growth phase. Murine 1F5 anti-

CD20 IgG2a antibody was prepared from the hybridoma clone 1F5 in a CellMax 

bioreactor (Spectrum Laboratories, Rancho Dominguez, CA) according to the 

manufacturer’s instructions. Cells were initially cultured in aforementioned conditions 

and adapted to chemically defined, serum-free medium (Invitrogen, Carlsbad, CA). Anti-

CD20 mAb was purified on a Protein G Sepharose 4 Fast Flow column (GE Healthcare, 

Piscataway, NJ) from bioreactor harvest supernatant. Preparation of Fab' fragment from 

the whole Ab was achieved using a previously reported procedure.6, 26 Briefly, 1F5 mAb 

was digested into F(ab')2 with 10% (w/w) pepsin (Sigma, St. Louis, MO) in 0.1 M citric 

buffer (pH 4.0) and labeled with Rhodamine Red™-X succinimidyl ester (R6010) 

(Molecular Probes®, Invitrogen). Immediately before use, 5 mg/mL of F(ab')2 was 

reduced to Fab' with 5 mM tris(2-carboxyethyl)phosphine (TCEP) (Thermo Scientific, 

Waltham, MA) in 0.1 M phosphate buffered saline (PBS) (pH 6.5). 
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2.2.3 HPMA Copolymers and Polymer Precursors 

 Synthesis of HPMA copolymer with pendant amino groups (P-NH2) and its 

conversion into maleimide-derivatized polymer precursor (P-mal) are depicted in Figure 

2.1. P-NH2 was synthesized by reversible addition-fragmentation chain transfer (RAFT) 

copolymerization of HPMA and APMA in deionized (DI) water at 70°C using CPDB as 

chain transfer agent (CTA) and V-501 as initiator. For the backbone degradable polymer 

precursor, a bifunctional dithiobenzoate containing enzyme cleavable oligopeptide Gly-

Phe-Leu-Gly (GFLG) was synthesized29 and used as CTA (Nα,Nε-bis(4-cyano-4-

(phenylcarbonothioylthio)pentanoylglycylphenylalanylleucylglycyl)lysine, abbreviated 

peptide2CTA) (Figure 2.1A). A typical polymerization was as follows: HPMA (134.6 

mg, 0.94 mmol) and APMA (10.7 mg, 0.06 mmol) were added into an ampoule attached 

to a Schlenk-line. After three vaccum-nitrogen cycles to remove oxygen, 0.46 mL 

degassed DI H2O was added to dissolve monomers, followed by addition of CPDB 

solution (0.35 mg in 60 µL methanol) and V-501 solution (0.12 mg in 60 µL methanol) 

via syringe. The mixture was bubbled with nitrogen for 15 min before sealing the 

ampoule; the copolymerization was performed at 70°C for 20 h. The copolymer was 

isolated by precipitation into acetone and purified by dissolution-precipitation in 

methanol-acetone twice and dried under vacuum. Yield of P-NH2 was 127 mg (87.3%). 

The molecular weight (Mw) and molecular weight distribution (Mw/Mn) were 

determined by size-exclusion chromatography (SEC) on ÄKTA FPLC system (GE 

Healthcare, Piscataway, NJ) equipped with miniDAWN and OptilabREX detectors. 

Superose 6 HR10/30 column (GE Healthcare) was used with sodium acetate buffer (pH 

6.5) and 30% acetonitrile (v/v) as mobile phase. The content of amino groups in the 
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copolymer was determined by ninhydrin assay.30 

 After polymerization, P-NH2 copolymers were reacted with 2,2'-azobis(2,4-

dimethyl valeronitrile) (V-65) (Wako Chemicals) to remove the terminal (active) 

dithiobenzoate groups. Briefly, HPMA copolymer (45 mg, Mn = 105 kDa, 0.43 µmol) 

and V65 (20× excess, 2.13 mg, 8.57 µmol) were added into an ampoule. After three 

vacuum-nitrogen cycles to remove oxygen, 0.4 mL methanol was added. The solution 

was bubbled with nitrogen for 15 min, sealed and reacted at 50°C for 3 h. The end-

modified copolymer was purified by precipitation into acetone twice and then dried under 

vacuum (yield 42 mg). 

 The side chain amino groups of P-NH2 were converted to maleimides by reaction 

with SMCC or sulfo-SMCC in DMF in the presence of triethylamine (TEA). A mixture 

of 42 mg P-NH2 (12.6 µmol NH2) and SMCC (12.7 mg, 37.8 µmol) was dissolved in 0.5 

ml DMF followed by dropwise addition of TEA (ratio of [NH2]:[SMCC]:[TEA] = 1:3:3), 

then kept at room temperature overnight. The product was precipitated into acetone/ether 

(2:1, v/v), filtered, and redissolved in methanol, precipitated into acetone again, filtered 

and dried under vacuum. The amount of maleimide in copolymer was determined by a 

modified Ellman’s assay.31 The conversion of amine into maleimido groups was 54%–

59% with SMCC and > 80% when sulfo-SMCC was used. 

 

2.2.4 Preparation of Multivalent Conjugates 

 The polymer precursors P-mal were conjugated with reduced 1F5 Fab' fragments 

via thioether bonds following a previously established protocol.32 In brief, 10 mg of P-

mal were dissolved in 100 µL of DMSO, and the solution was added to Fab' (5 mg/mL) 
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in PBS (pH 6.5) (ratio of [mal]:[Fab'] = 5:1). The products were purified on a Superose 6 

HR16/60 column (GE Healthcare) to remove unbound Fab', if any. The HPMA 

copolymer–Fab' conjugates (P-Fab') containing varying amounts of Fab' per 

macromolecule were collected and analyzed on a Superose 6 HR10/30 column. Fab'-

equivalent concentration of conjugates was determined by UV spectroscopy, measuring 

absorbance at 280 nm on a Varian Cary 400 Bio UV-visible spectrophotometer, and 

confirmed by bicinchoninic acid (BCA) protein assay (Thermo Scientific). 

 

2.2.5 Determination of Valence and Effective Diameter 

 A modified amino acid analysis procedure was utilized to determine the 

concentrations of amino acid residues from Fab' as well as 1-amino-2-propanol derived 

from the HPMA polymer backbone. This enables the calculation of valence (number of 

Fab' per polymer chain) of P-Fab' conjugates. In practice, after hydrolysis in 6 N HCl 

(125 °C, 24 h), samples were precolumn derivatized with o-phthalic dicarboxaldehyde in 

the presence of 3-mercaptopropionic acid, and analyzed by HPLC (Agilent Technologies, 

Santa Clara, CA) equipped with an eclipse XDB-C8 column and fluorescence detector 

(excitation 229 nm, emission 450 nm). Free 1F5 Fab' and HPMA homopolymer were 

used for calibration, which was performed by a significant peak indicating glutamate (for 

Fab') and a significant peak indicating 1-amino-2-propanol (for HPMA polymers). 

 The effective diameters of HPMA copolymer–Fab' conjugates were analyzed by 

dynamic light scattering using a Brookhaven BI-200SM goniometer and BI-9000AT 

digital correlator equipped with a He-Ne laser (λ = 633 nm) at room temperature in PBS 

(pH 7.4). The scattering angle was 90°. Samples in PBS (1 mg/mL, Fab' equivalent 
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concentration) were filtered through a 0.45 µm filter before measurement. To rule out the 

possibility of aggregation of P-Fab' conjugates in solution, samples were also measured at 

lower concentrations (0.5, 0.25 mg/mL). P-NH2 polymer precursors, 1F5 mAb, and Fab' 

fragment were also analyzed. All measurements were performed in at least triplicate. 

 

2.2.6 Confocal Fluorescence Microscopy 

 Confocal fluorescence microscopy was used to detect the biorecognition of 

(rhodamine-labeled) P-Fab' conjugates at the surface of Raji B-cells. Cells at a density of 

2.5–5.0 × 105 per well were incubated with 0.5 mL of varying concentrations of 

conjugates (1, 2, 5, and 10 µM) in culture medium at 37 °C, 5% CO2 for 2 h prior to 

analysis. After incubation, media containing conjugates were discarded. The cells were 

washed twice with PBS, and then plated onto sterile 35 mm glass bottom dishes with 14 

mm microwells (MatTek Corporation, Ashland, MA) for live cell fluorescence imaging 

using Olympus laser scanning confocal microscope (FV 1000). As controls, cells 

incubated with FITC-labeled 1F5 mAb, rhodamine-labeled F(ab')2, and PBS were also 

examined. 

 

2.2.7 Apoptosis Evaluation 

 Apoptosis induction of Raji cells following exposure to the multivalent conjugates 

was evaluated by three assays: caspase-3 activation, annexin V binding, and TUNEL 

(terminal deoxynucleotide mediated-dUTP nick-end labeling) assay. Quantification of 

apoptotic activity was performed by flow cytometry, and presented as “apoptotic index” 

(% apoptotic cells). In all experiments, 1F5 mAb hyper-crosslinked with a goat 
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antimouse (GAM) secondary antibody (2° Ab) (KPL, Gaithersburg, MD) was used as a 

positive control (molar ratio 1F5:GAM = 3:1). Cells treated with: (a) free anti-CD20 Fab' 

fragments, (b) mixture of Fab' and P-NH2 (equivalent amounts to conjugates), and (c) 

culture medium only, were used as negative controls. 

 

2.2.7.1 Caspase-3 Activity 

 Caspase-3 activity was characterized by analysis of treated cells with the 

PhiPhiLux kit (OncoImmunin, Gaithersburg, MD). Prior to analyses, 2.5 × 105 Raji cells 

were suspended in 0.5 mL fresh growth medium with 2 µM of Fab' equivalent of 

conjugates. The cells were treated for 6 h in a humidified atmosphere at 37 °C and 5% 

CO2 and then analyzed for caspase-3 activation following the manufacturer’s protocol. 

For treatments using hyper-crosslinked mAb, cells were firstly incubated with 2 µM of 

1F5 mAb for 1 h, and then washed twice with PBS + 1% BSA, followed by re-

suspension in 0.5 mL of fresh growth medium with 100 µg per mL of GAM. The cells 

were incubated for another 5 h at 37 °C prior to staining. All experiments were carried 

out in triplicate. 

 

2.2.7.2 Annexin V Binding 

 Apoptotic activity was studied by treating Raji cells with conjugates followed by 

annexin V staining using the RAPID protocol provided by the manufacturer (Oncogene 

Research Products, Boston, MA). In addition, annexin V binding assay was chosen to 

further study the processes in time- and concentration-dependent manner. For each assay, 

2.5 × 105 cells were suspended in 0.5 mL of fresh growth medium with an appropriate 
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amount of conjugate (conjugates in Fab' equivalent ranged from 1 to 8 µM) and incubated 

for 20 h, 40 h, or 60 h. For positive controls, cells were treated with 1F5 mAb at 

concentrations from 1 to 8 µM in growth medium for 1 h. The cells were then washed 

and suspended in 0.5 mL of fresh growth medium with corresponding amounts of GAM 

antibody (from 50 to 400 µg per mL) (molar ratio 1F5:GAM = 3:1). The cells were 

treated for another 19 h, 39 h, or 59 h at 37 °C prior to staining. All experiments were 

carried out in triplicate. 

 

2.2.7.3 TUNEL Assay 

 Analysis of DNA fragmentation as characteristics of apoptosis was conducted 

using the TUNEL assay. In these experiments 7.5 × 105 Raji cells were treated with 2 µM 

of Fab' equivalent of conjugates in 0.5 mL of fresh growth medium and allowed to 

incubate for 20 h. Raji cells were treated with 2 µM of 1F5 mAb, and they were allowed 

to incubate for 1 h, and then washed twice with PBS + 1% BSA, followed by re-

suspension into 0.5 mL of fresh growth media with 100 µg/mL of GAM antibody. The 

cells were incubated for another 19 h. Prior to analysis, the cells were fixed with 2% 

paraformaldehyde in PBS for 1 h at room temperature. Cells were then permeabilized in 

70% ethanol overnight at 4 °C. Nick-end labeling was done using an Apo Direct TUNEL 

kit (Phoenix Flow Systems, San Diego, CA) following the manufacturer’s protocol. All 

experiments were carried out in triplicate. 
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2.2.8 Cell Viability Study 

 Viabilities of Raji cells after different treatment times were analyzed by 

propidium iodide (PI) binding. Quantification of cell viability was performed with flow 

cytometry. For these experiments, all treatment conditions were identical to those in the 

time-dependent annexin V binding assays except for selection of different time intervals 

for analysis. In brief, cells were incubated with 2 µM (Fab'-equivalent) of HPMA 

copolymer–Fab' conjugates (or 1F5 mAb) for 24 h, 48 h, or 72 h (or 1 h for 1F5 mAb 

followed by exposure to 100 µg/mL of GAM for 23 h, 47 h, and 71 h). All experiments 

were carried out in triplicate. 

 

2.2.9 Statistics 

 All quantified data were presented as means ± standard deviation (SD). Analyses 

were performed by the Student’s t-test, with p < 0.05 considered as statistically 

significant. 

 

2.3 Results and Discussion 

2.3.1 Synthesis of Multivalent HPMA Copolymer – Fab' Conjugates 

 Previously, we have demonstrated that attaching multiple Fab' fragments to 

soluble, branched HPMA copolymer resulted in antigen binding enhancement.26 

Multivalent HPMA copolymer–Fab' conjugates showed significant apoptotic activity 

initiated by crosslinking the B-cell antigen CD20.27 To further elucidate the relationship 

between the structure of HPMA copolymer–Fab' conjugates and their biological 

activities, a series of linear HPMA copolymers with variable chain lengths and different 
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contents of APMA comonomer (Fab' attachment points) was designed (Figure 2.1 and 

Table 2.1). Polymer precursor P1 with polymer backbone with average molecular weight 

100 kDa contained the lowest number of pendant amino groups per polymer chain; it 

served as a “control conjugate.” P2 had a double the backbone length (200 kDa) and 

identical amino group density with P1. P2a had a double the backbone length (200 kDa) 

but the same number of pendant amino groups as P1. Comparison of conjugates based on 

P1, P2, and P2a allowed evaluation of the impact of both valence and polymer chain 

length. P2b had polymer chain length (200 kDa) and pendant group numbers almost 

identical to P2; however, its backbone contained an enzyme cleavable oligopeptide 

(GFLG). Comparison of P2b with P2 will evaluate if the insertion of the peptide into 

polymer backbone would change the flexibility of polymer with potential influence on 

biorecognition by CD20 receptors. The degradability of the polymer backbone will be of 

utmost importance in future in vivo study. P3 possessed the longest polymer chain (300 

kDa) and the highest number of amino groups, and will be used to assess the impact of 

multivalency. 

 As described above, multivalent HPMA copolymer – (anti-CD20) Fab' conjugates 

(P-Fab') were prepared in a three-step process (Figure 2.1A). First, the copolymers of 

HPMA and APMA (P-NH2) were synthesized by RAFT copolymerization, which yielded 

copolymers with precisely designed molecular weight (Mw) and low polydispersity. This 

process is controllable; an excellent correlation between theoretical and experimental 

molecular weights was achieved (Table 2.1). This is an improvement over the synthesis 

using traditional radical polymerization.26,27 Previously, copolymerization of HPMA and 

APMA was performed in the presence of a small amount of tetraethyleneglycol 
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dimethacrylate and produced branched copolymers with high polydispersity. 

Consequently, fractionation was required to prepare narrowly dispersed polymer 

precursors.26 

 For the synthesis of biodegradable polymer precursor, a bifunctional chain 

transfer agent (peptide2CTA) was used. The monomers were incorporated at both 

dithiobenzoate groups of peptide2CTA with identical efficiency29 producing a diblock 

copolymer P2b with an enzyme degradable sequence (GFLG) in the middle of the 

polymer chain. Such diblock (or multiblock) HPMA polymers have demonstrated 

excellent backbone degradability in responses to papain and the lysosomal enzyme 

cathepsin B.29,33,34 

 After converting pendant amino groups to maleimido groups by reaction with 

heterobifunctional reagent, SMCC or sulfo-SMCC, HPMA copolymers (P-mal) were 

conjugated with freshly reduced Fab' fragments. Representative SEC profiles of P1 and 

P1-Fab' are shown in Figure 2.2; a significant shift of signal towards earlier elution time 

was observed which suggests successful attachment of Fab' to the polymer backbone. 

 For further characterization of the P-Fab' conjugates, dynamic light scattering 

(DLS) was used to determine the hydrodynamic effective diameters of the polymers 

before and after conjugation with Fab' (Table 2.2). To analyze the valence (number of 

Fab' fragments per polymer chain), a modified amino acid analysis (AAA) was 

performed (Table 2.2). The results of DLS on polymer precursors (P-NH2) and 

unconjugated Fab' fragment corresponded well with both published values35 and our 

previous observations26. For the conjugates, enlargement of the effective diameter was 

observed. To rule out aggregation, we measured the hydrodynamic volume at lower 
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concentrations of samples; no difference was found among different concentrations. The 

increased volume may be explained by dispersive forces between intrachain Fab' 

fragments, resulting in the expansion of the polymer coil. In addition, there is a slight 

possibility of a side reaction between residual amines from P-NH2 (or amines of Fab') 

with the maleimido groups resulting in the formation of interchain covalent crosslinks. 

Nevertheless, when compared to branched HPMA copolymer–Fab' conjugates of 

comparable Mw and valences,26 the effective diameters of linear P-Fab' are apparently 

larger. This could have significant impact on in vivo circulating half-life and 

biodistribution. 

 Several studies have demonstrated the positive correlation between hydrodynamic 

volumes of HPMA polymers, copolymers, or conjugates and their intravascular half-

lives.4,36–38 Thus, the P-Fab' conjugates presented here will very likely possess prolonged 

systematic circulation times. Previous studies on therapeutic mAb or multimeric Ab have 

pointed out the significant influence of unintended alteration of serum half-life after 

genetic engineering or physicochemical modification on in vivo therapeutic 

efficacy.22,23,25 For instance,	
   Popov et al. reported the rapid elimination from blood 

circulation of multivalent rituximab lipid nanoparticles (Ritux-LNPs), and ascribed the 

observed absence of increase in in vivo therapeutic efficacies (when compared to 

rituximab) to the decreased circulating half-life.23 The recent design of backbone 

degradable HPMA copolymers29,33,34 will permit the use of high-Mw, long-circulating 

conjugates without impairment of therapeutic efficacy. 

 Confocal fluorescence microscopy (Figure 2.3) demonstrated the localization of 

(rhodamine-labeled) conjugates at the surface of Raji B-cell, corresponding to a high 
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expression level of noninternalizing CD20 surface antigen of this cell line. This result 

further illustrated the successful synthesis of conjugates with retained biological activity 

of anti-CD20 Fab' in order to target B-cells. 

 

2.3.2 Relationship Between Polymer Chain Length and Valence of 

P-Fab' Conjugates and Apoptosis Induction in Raji B-Cells 

 Previous studies demonstrated that crosslinking of noninternalizing CD20 

receptors on Raji B-cells results in receptor clustering with concomitant apoptosis 

induction. The evaluation of apoptosis initiation following Raji B-cell exposure to 

multivalent conjugates was performed by three distinct assays from differing 

perspectives: caspase-3 activation (gene expression due to CD20-mediated signaling), 

annexin V binding (cell membrane flipping as an early apoptotic event), and the TUNEL 

assay (DNA fragmentation as a late apoptotic event). Levels of apoptosis induction by the 

five conjugates (Table 2.2) were compared; results from the three assays were consistent 

and showed very similar trends (Figure 2.4). P1-Fab' designed as a “control conjugate” 

had the weakest apoptotic activity among the five, with only minimal effects detected 

when compared to the untreated group (culture medium only), unconjugated Fab', and 

Fab' + P-NH2 controls. Conjugate P2-Fab' with doubled backbone length and doubled 

valence (than P1-Fab') produced significant apoptotic levels as expected. Interestingly, 

P2a-Fab' with similar valence as P1-Fab' but a longer polymer chain seemed to have 

stronger apoptotic efficacy than P1-Fab' (but less than P2-Fab'), suggesting that in 

addition to valence, polymer chain length could also be a factor for apoptosis induction. 

This result is striking because, first, none of the previous literature on multimeric anti-
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CD20 mAb has published the positive influence of polymer length on apoptosis, and 

second, Rossi et al. suggested the need for clustering at least three CD20 to induce 

cytotoxicity25 (noting that the mean valence of P2a-Fab' is 1.3). Data reported here could 

be potentially explained by either an improved binding kinetics of the conjugate, or a 

better range of “reaching” to cluster neighboring CD20 as a result of the longer polymer 

chain, although further analysis is necessary. 

 Furthermore, P2b-Fab' had almost identical polymer chain length and valence as 

P2-Fab' but with a peptide (GFLG)-containing enzyme cleavable backbone. The similar 

degrees of apoptosis observed in P2b-Fab' and P2-Fab' indicate that the insertion of 

peptide segments into the polymer backbone does not have a noticeable impact on the 

flexibility of the macromolecule and on its potential to attach to multiple CD20 antigens 

on the surface of Raji B-cells. In addition, these biodegradable HPMA-based polymer 

carriers29,33,34 possess favorable properties for in vivo applications. They have long 

plasma circulation time, their biodegradability profiles can be easily manipulated, and 

they possess favorable pharmacokinetics and a favorable tumor-to-normal tissue 

accumulation ratio.4,39 Data presented here rationalize the future design of a 

biodegradable, multiblock P-Fab' system composed of HPMA copolymer blocks of 

molecular weight below the renal threshold (40–45 kDa). 

 The conjugate P3-Fab' was designed with the longest backbone and highest 

valence with the aim of achieving an optimal biological efficacy. Although the conjugate 

P3-Fab' produced the highest apoptotic level among the five conjugates, the enhancement 

of activity observed at the experimental conditions used (2 µM Fab'-equivalent 

concentration, 20 h incubation) was modest. We hypothesize that the combination of a 
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high valence (11.3) and a long polymer chain (336 kDa) might result in a solution 

conformation that renders some Fab' fragments less accessible (shielded) to interaction 

with CD20, thus limiting the targeting effect.40 This explanation was supported by results 

of DLS (Table 2.2); P3-Fab' had a mean hydrodynamic diameter of 97.3 nm – a modest 

increase when compared to the other conjugates. 

 

2.3.3 Impact of Exposure Time and P-Fab' Concentration on 

Apoptosis Induction and Cytotoxicity 

 A time-dependent cell viability study (Figure 2.5) was performed using propidium 

iodide (PI) and flow cytometry. PI is a fluorescent DNA-intercalating agent commonly 

used to bind and detect nonviable cells, or to distinguish late apoptotic cells depending on 

the experimental setup;41 here, we applied the former to stain and quantify all nonviable 

cells. The viability of Raji cells was analyzed at varying time intervals after exposure to 

multivalent conjugates at similar conditions as used in apoptosis assays described above. 

The cytotoxicity of conjugates demonstrated a slower onset at shorter exposure times (24 

h, 48 h) than the whole 1F5 mAb hyper-crosslinked with a secondary Ab (mAb + 2°Ab); 

however, at the longer time interval (72 h) the conjugates appeared to be more effective. 

For instance, at 72 h, conjugates P2-Fab' and P2b-Fab' showed comparable effects as the 

positive control (mAb + 2°Ab), while P3-Fab' achieved a significantly better efficacy. In 

the time-dependent apoptosis evaluation (Figure 2.6A) using annexin V assay, the onset 

patterns of apoptosis were the same as observed in the cytotoxicity assay. Both, P2-Fab' 

and P3-Fab' reached comparable levels of early apoptosis as the positive control at longer 

exposure times (40 h, 60 h). In particular, at 60 h, the apoptotic activity of P3-Fab' 
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exceeded that of the positive control (p < 0.05). Since the trends of cytotoxicity compared 

well with results of apoptosis, we speculate that the PI-positive cells primarily resulted 

from CD20 clustering (late apoptotic cells); however, the potential contribution of cell 

necrosis cannot be ruled out. These data and the previous observation that the therapeutic 

efficacy of anti-CD20 mAb may result in direct eradication of B-lymphomas10,11,18 bode 

well for the potential of P-Fab' conjugates as therapeutics for NHL. 

 The concentration (dose)-dependent apoptosis assay (Figure 2.6B) revealed an 

increase of apoptotic index with increasing concentration for all compounds tested. 

However, the dose-escalation effect was stronger in the positive control group (mAb + 

2°Ab) than in multivalent conjugates P2-Fab' and P3-Fab'. In addition, within the 

concentration range used (1–8 µM), saturation of apoptotic index at high concentrations 

was not observed in contrast to results obtained with branched polymer–Fab' 

conjugates.27 This suggests a better accessibility of Fab' fragments bound to linear 

polymer chains when compared to branched conjugates. This hypothesis is further 

supported by the comparison of effective diameters of conjugates; the linear P-Fab' 

conjugates possess larger hydrodynamic sizes than branched conjugates with equivalent 

Mw, polydispersity, and valency. 

 The data seem to suggest that to achieve enhanced biological activities, a long 

exposure time of linear P-Fab' was more important than a high Fab'-equivalent 

concentration. Two factors may contribute to this phenomenon: (a) shielding effect,40 and 

(b) different binding kinetics to CD20 between P-Fab' and mAb followed by 2° Ab. The 

impact of time corresponds well with the design of backbone degradable, long-circulating 

conjugates. Optimization of the structure of conjugates based on the best combination of 
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molecular weight and valency needs to be undertaken. 

 

2.4 Summary 

 A hybrid biomimetic system composed of RAFT-synthesized, linear, high-Mw 

HPMA copolymers grafted with multiple anti-CD20 Fab' fragments was designed. The 

preparation methods did not require fractionation by SEC, thus are well suited for scale-

up studies. The technique enabled synthesis of conjugates with low polydispersity and 

tailor-made properties to study the structure-activity relationship. The biorecognition of 

multivalent P-Fab' conjugates by CD20 receptors on the surface of Raji B-cells was 

visualized by confocal fluorescence microscopy. Crosslinking of CD20 receptors on the 

surface of Raji B-cells induced apoptosis as determined by caspase-3 activity, annexin V 

binding, and TUNEL assays. Both polymer chain length and valence (amount of Fab' per 

chain) were factors having an impact on apoptotic efficiency, whereas insertion of a 

peptide into the HPMA copolymer backbone was not. In addition, long exposure time of 

the conjugates with Raji B-cells resulted in enhanced apoptosis and higher cytotoxicity 

when compared to whole anti-CD20 mAb hyper-crosslinked by a secondary Ab; high 

dose (concentration) seemed to be less influential. The present system possesses ideal 

architecture (linear) and characteristics (suitable hydrodynamic size, as analyzed by DLS) 

to allow the further design of long-circulating biodegradable systems. Based on the 

presented data and the favorable characteristics of CD20 (noninternalizing, not present in 

serum under standard conditions, with no known natural ligand) as a target for B-

lymphoma, this study provides a potential strategy for the improved treatment of NHL 

and other B-cell malignancies through direct induction of apoptosis without Fc-related 
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mechanisms and side effects. 
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Figure 2.1  Synthesis of multivalent HPMA copolymer – Fab' conjugates. (A) Schemes 

for the synthesis of polymer precursors (P-NH2, P-mal) and multivalent conjugates (P-

Fab'). (B) Schematics of polymer conjugate architectures. 
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Figure 2.2  SEC profiles of 1F5 mAb, F(ab')2, Fab', P-NH2 and P-Fab'. (A) SEC profiles 

of harvested 1F5 mAb, digested F(ab')2 and reduced Fab' fragments by ÄKTA FPLC 

(Superdex 200 HR10/30 column, PBS). Purity of all products from each step were > 

95%. (B) SEC profiles of representative P-NH2 (P1) and P-Fab' (P1-Fab') by ÄKTA 

FPLC (Superpose 6 HR10/30 column, acetate buffer + 30% acetonitrile v/v). 
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Figure 2.3  Confocal fluorescence microscopic images of Raji B-cells. Cells were 

exposed to (A) PBS, (B) 1F5 mAb labeled with FITC, (C) F(ab')2 antibody fragment 

labeled with rhodamine, and (D) P-Fab' conjugate labeled with rhodamine. Raji cells (2.5 

× 105) were stained with varying concentrations of each compound for 2 h prior to 

analysis. 
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Figure 2.4  Apoptosis induction of Raji B-cells analyzed by (A) caspase-3 activity, (B) 

annexin V binding, and (C) TUNEL assay. Quantification was performed by flow 

cytometry. All experiments were carried out in at least triplicate (data shown as mean ± 

SD). Statistics performed by comparing each group with the untreated (* p < 0.05, by 

Student’s t-test). 
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Figure 2.5  Time-dependent cell viability study assessed by PI binding. Treatment 

conditions were identical to apoptosis assays. Quantification was performed by flow 

cytometry. Experiments carried out in triplicate (data shown as mean ± SD). (n) 

Untreated; (�) mAb+2oAb; (▲) P1-Fab'; (▽) P2-Fab'; (✕) P2a-Fab'; (○) P2b-Fab'; (☐) P3-

Fab'. 
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Figure 2.6  Cell apoptosis evaluated by annexin V binding in (A) time-dependent and (B) 

concentration-dependent assays. All experiments were carried out in triplicate (data 

shown as mean ± SD). Statistical analyses (unless otherwise indicated) performed by 

comparing each group with the corresponding shortest time interval or lowest 

concentration (* p < 0.05, by Student’s t-test). 
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Table 2.1  Synthesis and characterization of P-NH2 polymer precursors. 

*Modified CPDB containing enzyme cleavable peptide was used as chain transfer agent (CTA). 
a Conversion estimated by weight % polymer products. 
b Theoretical molecular weight of polymer calculated by the following equation: 
   Mwtheo.= [([M]0÷[CTA]0) × Conversion × Mean Mw of monomers] + Mw of CTA. 
c Average molecular weight and polydispersity determined by SEC. 
d Amine content (NH2 mol.%) determined by ninhydrin assay. 

 

 

 

Table 2.2  Characterization of P-Fab' conjugates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Degradable backbone containing GFLG oligopeptide. 
†	
  Branched conjugates with polymer Mw=193 kDa.26 

a Fab' per polymer chain as determined by modified AAA. 
b Determined by DLS (all samples with polydispersity < 0.2). 

No. [M]0:[CTA]0:
[I]0 

Conv.a 
% 

Mw (kDa) 
Theo.b    SEC 

c 
Mw/
Mn 

NH2 mol.% 
Fed     Found 

d 
Structure 

P1 800:1:0.33 87.3 102       105 1.09 6         4.31 Non-
degradable 

P2 1600:1:0.33 89.4 208       207 1.07 6         4.13 Non-
degradable 

P2a 1600:1:0.33 94.9 219       223 1.04 3         2.12 Non-
degradable 

P2b* 1600:1:0.25 84.1 197       201 1.11 6         4.23 Degradable 

P3 3000:1:0.33 75.7 330       336 1.05 6         4.75 Non-
degradable 

No. Valence 
a 

Effective Diameter 
b (nm) 

before conj.   after conj. 
 

P1-Fab' 1.7       12.4             36.2  
P2-Fab' 3.3       19.1             82.3  

P2a-Fab' 1.3       21.1             56.3  
P2b-Fab'* 3.4       21.6             74.3  

P3-Fab' 11.3       27.4             97.3  

Fab' – 4.5  

P-3Fab3.2†      3.2                     30.2  



	
  

	
  

CHAPTER 3 
 
 
 

CELL SURFACE SELF-ASSEMBLY OF HYBRID NANOCONJUGATES 

 VIA OLIGONUCLEOTIDE HYBRIDIZATION INDUCES APOPTOSIS1 
 
 
 

 Hybrid nanomaterials composed of synthetic and biological building blocks 

possess high potential for the design of nanomedicines. The use of self-assembling 

nanomaterials as “bio-mimics” may trigger cellular events and result in new therapeutic 

effects. Motivated by this rationale, we designed a therapeutic platform that mimics the 

mechanism of immune effector cells to crosslink surface receptors of target cells and 

induce apoptosis. This platform was tested against B-cell lymphomas that highly express 

the surface antigen CD20. In this chapter, two nanoconjugates were synthesized: (1) an 

anti-CD20 Fab' fragment covalently linked to a single-stranded morpholino 

oligonucleotide (MORF1), and (2) a linear, synthetic copolymer of N-(2-hydroxypropyl) 

methacrylamide (HPMA) grafted with multiple copies of the complementary 

oligonucleotide MORF2. We show that the two conjugates self-assemble via MORF1-

MORF2 hybridization at the surface of CD20+ malignant B-cells, which crosslinks CD20 

antigens and initiates apoptosis. When tested in a murine model of human non-Hodgkin’s 

lymphoma, the two conjugates, either administered consecutively or as a premixture, 

1This chapter is adapted with permission from: T.-W. Chu, J. Yang, R. Zhang, M. Sima and J. Kopeček. 
Cell surface self-assembly of hybrid nanoconjugates via oligonucleotide hybridization induces 
apoptosis. ACS Nano. 2014; 8(1): 719–730. Copyright (2014) American Chemical Society. 
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eradicated cancer cells and produced long-term survivors. The designed therapeutics 

contain no small-molecule cytotoxic compounds and are immune-independent, with the 

aim of a treatment improved over chemotherapy, radiotherapy and immunotherapy. This 

therapeutic platform can be applied to crosslink any noninternalizing receptor and 

potentially treat other diseases. 

 

3.1 Background 

 Molecular biorecognition is a fundamental feature of life – many biological 

processes are governed by the complex yet specific interactions between 

macromolecules, e.g., antibody-antigen binding and DNA base pairing. These high-

fidelity recognition motifs from nature can be employed to design self-assembling 

nanobiomaterials for applications in drug delivery,1–3 tissue engineering,4,5 bio-

detection,6–8 etc. A new direction of research is to use such precisely defined “smart” 

materials to incite or control cellular activities;9–11 in this case the materials alone, 

without any conventional drug, can provide therapeutic effects. Such biomimetic strategy 

translates molecular biorecognition into cellular responses to define new therapeutic 

entities with high functional specificity. 

 Non-Hodgkin’s lymphoma (NHL) is a prevalent cancer worldwide with a high 

mortality rate.12 Conventional chemotherapy and radiotherapy are accompanied by 

significant adverse reactions, particularly cytopenias leading to increased risk of infection 

and need for transfusions. Because most NHLs are of B-cell origin, immunotherapies 

using monoclonal antibodies (mAbs) targeted to the B-cell surface antigen CD20 have 

become common treatments.13 However, large populations of patients exist who are not 
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responsive to immunotherapies, especially in the relapse setting. For example, rituximab, 

the most commonly used anti-CD20 mAb, has a less than 50% overall response rate for 

relapsed/refractory NHL.14 This is largely attributed to the inactivity of immune effector 

cells to hyper-crosslink ligated mAbs.15,16 Moreover, mAb treatments cause rare but 

lethal side effects such as progressive multifocal leukoencephalopathy17 and lung 

injuries,18,19 which are due to Fc-mediated effector cellular events (e.g., complement 

activation).20 These clinical obstacles warrant new, improved therapeutic strategies. 

 We designed a biomimetic material platform composed of self-assembling hybrid 

nanoconjugates (Figure 3.1A) as a therapeutic system against B-cell lymphomas (Figure 

3.1B). It comprises an anti-CD20 Fab' antibody fragment, a pair of complementary 

phosphorodiamidate morpholino oligomers (MORF1 and MORF2), and a linear polymer 

(P) of N-(2-hydroxypropyl)methacrylamide (HPMA). We hypothesized that: (1) the 

exposure of malignant CD20+ B-cells to the conjugate of anti-CD20 Fab' and MORF1 

(Fab'-MORF1) decorates the cell surfaces with MORF1; and (2) further treatment of 

decorated B-cells with HPMA copolymer grafted with multiple copies of MORF2 (P-

MORF2) results in MORF1-MORF2 hybridization at the cell surface with concomitant 

CD20 crosslinking, which triggers apoptosis. The proposed mechanism of apoptosis 

induction is shown in Figure 3.1B. 

 This design is inspired by the fact that cell surface receptor clustering is a driving 

force for numerous cellular events, e.g., cell adhesion,21 cell proliferation,22 and hormone 

uptake.23 In particular, when CD20-bound antibodies are hyper-crosslinked by	
   Fc 

receptor (FcR)-expressing immune effector cells (e.g., macrophages, natural killer cells),	
  

CD20 clustering occurs within lipid rafts and induces apoptosis.24 We named the 
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designed platform “drug-free macromolecular therapeutics” due to the absence of low-

molecular-weight drugs that are often toxic (e.g., chemotherapeutic agents).9 

Furthermore, each component (Fab', morpholino oligo, HPMA polymer) of this system, 

when used individually, does not have any pharmacological effect. The apoptosis 

induction is direct (i.e., independent of immune function) and specific (i.e., targeted to 

CD20); thus, it has the potential to address the side effect problems of currently used 

immunotherapy, chemo- and radiotherapy. 

 The design is based on a pair of morpholino (MORF) oligonucleotides	
   with 

complementary sequences. They form double helixes by Watson-Crick base pairing 

(hybridization) and serve as physical crosslinkers. MORF oligos have a charge-neutral 

phosphorodiamidate backbone resulting in much stronger binding affinity than DNA or 

RNA.25 More importantly, they are biocompatible and nuclease resistant; this ensures in 

vivo stability and safety.26 Due to these advantages, MORF oligos have been successfully 

used as macromolecular binders to enhance therapeutic delivery.2,27,28 The HPMA 

copolymers are water-soluble and long circulating in the bloodstream; they have well-

established safety profiles and are used extensively as therapeutic carriers.29 In aqueous 

solutions, linear HPMA copolymers have a random coil conformation and are able to 

effectively present targeting moieties that are grafted to the side chains.30 

 In this chapter, we show the development and preclinical evaluation of the 

proposed anti-lymphoma nanomedicine. Biorecognition of the two nanoconjugates (Fab'-

MORF1 and P-MORF2) was characterized. The therapeutic system was optimized to 

achieve efficient apoptosis induction of malignant B-cell lines. Excellent anticancer 

efficacy (100% survival without residual tumors) was demonstrated in a mouse model of 
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human NHL. These findings validate the concept of the designed therapeutic platform. 

 

3.2 Materials and Methods 

3.2.1 MORF1 and MORF2 

 The two complementary 3'-amine-derivatized 25-mer phosphorodiamidate 

morpholino oligomers were obtained from Gene Tools, LLC (Philomath, OR). MORF1: 

5'-GAGTAAGCCAAGGAGAATCAATATA-linker-amine-3' (MW: 8630.5 Da); 

MORF2: 5'-TATATTGATTCTCCTTGGCTTACTC-linker-amine-3' (MW: 8438.5 Da). 

Structure of the linker is shown in Figure 3.2. For the design of base sequences, sequence 

scrambling software (http://www.sirnawizard.com/scrambled.php) and sequence analysis 

software (http://www.basic.northwestern.edu/biotools/oligocalc.html) were used. 

 

3.2.2 Preparation of Fab'-MORF1 

 The 1F5 mAb was prepared from a murine hybridoma cell subclone 1F5 (ATCC, 

Bethesda, MD) in a CellMax® bioreactor (Spectrum Laboratories, Rancho Dominguez, 

CA). Antibodies were harvested from the culture media, and purified on a Protein G 

Sepharose 4 Fast Flow column (GE Healthcare, Piscataway, NJ). Preparation of Fab' 

from mAb followed a previously reported procedure.31 Briefly, mAb was digested into 

F(ab')2 with 10% (w/w) pepsin (Sigma, St. Louis, MO) in citric buffer (pH 4.0). 

Immediately before conjugation, F(ab')2 was reduced to Fab' by 10 mM tris(2-

carboxyethyl)phosphine (Thermo Scientific, Waltham, MA). To prepare the Fab'-

MORF1 conjugate, the MORF1 oligo containing a 3'-primary amine was reacted with 

succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to introduce a 
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terminal (thiol-reactive) maleimide group. This produced MORF1 with 3'-maleimide 

(MORF1-mal). MORF1-mal was then conjugated to Fab' (containing a terminal thiol 

group) via a thioether bond to obtain Fab'-MORF1. The conjugates were purified using 

size exclusion chromatography (SEC) to remove free, unconjugated Fab' and MORF1. 

 A typical procedure was as follows: first, 200 nmol MORF1-NH2 was reacted 

with 0.67 mg (2 µmol) SMCC (Soltec Ventures, Beverly, MA) in 170 µL DMSO to 

produce the MORF1-mal. The reaction was performed at RT (room temperature) for 24 

h. The product was isolated by precipitation into 1.5 mL acetone, purified by dissolution-

precipitation in deionized water-acetone twice, and dried under vacuum. Second, 200 

nmol MORF1-mal was dissolved in 200 µL 10 mM PBS (pH 6.5), and then the solution 

was mixed with 200 nmol (~10 mg) freshly reduced Fab'-SH in 2 mL PBS (pH 6.5). The 

reaction was performed at 4 °C for 24 h. Finally, the Fab'-MORF1 conjugate was purified 

using SEC. An ÄKTA FPLC system (GE Healthcare, Piscataway, NJ) equipped with 

Sephacryl S-100 HR16/60 column (GE Healthcare) eluted with PBS (pH 7.2) was used. 

Alternatively, Fab'-MORF1 was labeled with 5–10 molar excess Rhodamine RedTM-X 

succinimidyl ester (R6010) (Molecular Probes®, Invitrogen, Carlsbad, CA) for imaging 

studies. The product was purified using a PD-10 desalting column (GE Healthcare). To 

determine Fab' equivalent concentration of the Fab'-MORF1 conjugate, a bicinchoninic 

acid (BCA) protein assay (Thermo Scientific Pierce, Rockford, IL) was used. The 

obtained values were compared to the MORF1 equivalent concentrations obtained from 

UV-visible spectroscopy (using a molar absorptivity of 278,000 M-1 cm-1). Such 

comparison confirmed a 1:1 stoichiometry of the coupling reaction. 
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3.2.3 Preparation of P-MORF2 

 The multivalent P-MORF2 conjugates were prepared in two steps. First, the 

polymer precursors (P-TT), namely, copolymers of N-(2-hydroxypropyl)methacrylamide 

(HPMA), N-methacryloylglycylglycine thiazolidine-2-thione (MA-GG-TT), and 

optionally (for imaging studies only), N-methacryloylaminopropyl fluorescein thiourea 

(MA-FITC), were synthesized by RAFT copolymerization. Second, P-TT was reacted 

with MORF2-NH2 to produce the multivalent P-MORF2. 

 

3.2.3.1 Synthesis of P-TT 

 In the RAFT copolymerization, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] 

dihydrochloride (VA-044) was used as the initiator, and 4-cyanopentanoic acid 

dithiobenzoate (CPDB) as the chain transfer agent. CPDB32 and monomers HPMA,33 

MA-GG-TT,34 and MA-FITC35 were synthesized as previously described. The reaction 

was carried out in methanol containing 0.3% (v/v) acetic acid (MeOH/H+). A typical 

procedure was as follows: HPMA (272 mg, 1.9 mmol) and MA-GG-TT (30.1 mg, 0.1 

mmol) were added into an ampoule attached to an Schlenk-line. After three vaccum-

nitrogen cycles to remove oxygen, 1 mL degassed MeOH/H+ was added to dissolve 

monomers, followed by addition of CPDB solution (0.43 mg in 50 µL MeOH/H+) and 

VA-044 solution (0.25 mg in 50 µL MeOH/H+) via syringe. The mixture was bubbled 

with nitrogen for 15 min before sealing the ampoule; the copolymerization was 

performed at 40 °C for 36 h. The copolymer was isolated by precipitation into acetone 

and purified by dissolution-precipitation in methanol-acetone twice and dried under 

vacuum. Yield of P-TT was 160 mg (53%). The number average molecular weight (Mn) 
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and molecular weight distribution (polydispersity, Pd) of P-TT were determined by SEC, 

using ÄKTA FPLC equipped with miniDAWN and OptilabREX detectors (GE 

Healthcare). Superose 6 HR10/30 column (GE Healthcare) was used, with sodium acetate 

buffer (pH 6.5) and 30% acetonitrile (v/v) as mobile phase. To remove the terminal 

(active) dithiobenzoate groups, P-TT copolymers were reacted with 2,2'-azobis(2,4-

dimethyl valeronitrile) (V-65) (Wako Chemicals, Richmond, VA). Briefly, P-TT (39 mg, 

Mn = 92 kDa, ~0.42 mmol) and V-65 (20× excess, 2.1 mg, ~8.47 mmol) were added into 

an ampoule. After three vacuum-nitrogen cycles to remove oxygen, 0.4 mL MeOH/H+ 

was added. The solution was bubbled with nitrogen for 15 min, sealed and reacted at 50 

°C for 3 h. The end-modified copolymer was purified by precipitation into acetone twice 

and then dried under vacuum (yield 34 mg, or 86%). The content of TT groups in the 

copolymers was determined by UV absorbance at 305 nm (molar absorptivity = 10,900 

M-1 cm-1; in methanol).34 The content of FITC was determined by absorbance at 495 nm 

(molar absorptivity = 82,000 M-1 cm-1; in borate buffer pH 9.2 + 10% (v/v) DMF).35 

 

3.2.3.2 Attachment of MORF2-NH2 to P-TT to Produce P-MORF2 

 The P-TT described above was reacted with MORF2-NH2 to produce multivalent 

P-MORF2. A typical reaction was as follows: 10 mg P-TT (92 kDa; containing 3.83 

µmol TT groups) was mixed with 6.46 mg (766 nmol) MORF2-NH2 in 400 µL 10 mM 

PBS (pH 7.4). The solution mixture in an ampoule was stirred at RT for 24 h; then 1 µL 

1-amino-2-propanol (Sigma-Aldrich, St. Louis, MO) was added and stirred for another 15 

min to aminolyze unreacted TT groups on the polymer chains. After reaction, the solution 

was filtered through a 0.22 µm filter, and the conjugate was purified by SEC using 
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ÄKTA FPLC with Superose 6 HR16/60 column (GE Healthcare) eluted with PBS (pH 

7.2). P-MORF2 was characterized by UV absorbance at 265 nm after removal of 

unconjugated MORF2 (if any). To quantify the content of MORF2 and determine the 

valence (number of MORF2 per polymer chain), the fractionated P-MORF2 conjugates 

were freeze-dried and dissolved in 0.1 N HCl prior to UV-Vis analysis. A molar 

absorptivity of 252,000 (M-1 cm-1) was used for quantification of MORF2. The valences 

of the P-MORF2 conjugates were calculated based on the resulting MORF2 contents and 

the Mn of the polymer backbones (as previously determined by SEC). 

 

3.2.4 Analysis of Fab'-MORF1/P-MORF2 Self-Assembly by UV-Visible 

Spectroscopy and Dynamic Light Scattering (DLS) 

 Analysis of the hypochromic effect upon MORF1-MORF2 hybridization was 

performed using a Varian Cary 400 Bio UV-visible spectrophotometer (Agilent 

Technologies, Santa Clara, CA). MORF1 and MORF2 (or Fab'-MORF1 and P-MORF2) 

were firstly dissolved in 1 mL PBS (pH 7.4) each at a concentration of 2.5 µM (MORF 

equivalent) and then mixed in different ratios. The final concentrations of MORF oligos 

(MORF1 + MORF2) in every solution mixture were kept constant (2.5 µM). For 

example, the mixture containing 75% MORF1 (or 25% MORF2) was contained in a 0.75 

mL of 2.5 µM MORF1 solution and 0.25 mL of 2.5 µM MORF2 solution. Samples were 

placed in a 1-cm quartz cuvette for measurement. The optical density (OD) at 260 nm 

(contributed by bases) was recorded. All measurements were performed in triplicate. 

 The hydrodynamic effective diameters of the conjugates, Fab'-MORF1 and P-

MORF2, and their precursors, Fab'-SH and P-TT, were analyzed by DLS (dynamic light 
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scattering) using a Brookhaven BI-200SM goniometer and BI-9000AT digital correlator 

equipped with a He-Ne laser (λ = 633 nm) at RT in PBS (pH 7.4). The scattering angle 

was 90°. A NanosphereTM polystyrene bead with a standard diameter of 102 ± 3 nm 

(STD100nm) (Thermo Scientific, Waltham, MA) was used to measure in line. 

Conjugates and precursors at a concentration of about 1 mg/mL were filtered through a 

0.22 µm filter prior to measurement. All samples showed a polydispersity less than 0.2, 

and the mean particle diameters were recorded. Furthermore, DLS was used to 

characterize the change of particle size upon the binding of Fab'-MORF1 and P-MORF2. 

The analysis was performed at different times (10, 30 and 60 min) after mixing the two 

conjugates (at equimolar MORF1/MORF2 concentrations). All samples contained a 

major population of particles (polydispersity < 0.2) indicating the hybridized conjugates, 

as well as minor populations indicating unbound Fab'-MORF1 and P-MORF2. The mean 

effective diameter of the major population was recorded. All measurements were 

performed in triplicate. 

 

3.2.5 Circular Dichroism (CD) Spectrometry 

 An Aviv 62DS CD spectrometer with a thermoelectric temperature control system 

(Aviv Biomedical, Lakewood, NJ) was used. Regular measurements (excluding thermal 

melting analysis) were carried out at 25 °C where each sample was scanned from 200 to 

340 nm with 1 nm/step (bandwidth = 1 nm, each step = 2 sec). Samples were prepared in 

10 mM PBS (pH 7.4) at 50 µM MORF equivalent concentrations (Fab'-SH at 50 µM 

Fab'-eqv.). Prior to measurement, samples were filtered through a 0.22 µm filter and 

placed in a 0.1-cm path length quartz cuvette. The obtained spectra were subtracted from 
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the background (PBS, pH 7.4); data from three sequential scans were averaged. For 

thermal melting studies, the CD signal at 260 nm was recorded (n = 3). Fab'-MORF1 and 

P-MORF2 (or MORF1 and MORF2) were mixed in equimolar ratio (5 µM/5 µM 

MORF1/MORF2) in PBS for 1 h at RT. The solution mixtures were filtered and placed in 

a 1-cm path length quartz cuvette prior to measurement. Each sample first underwent a 

forward scan where the temperature increased from 25 to 95 °C at 2 °C/step. For each 

step, the sample was equilibrated for 2 min followed by 30 sec of data point averaging. 

Afterward, a reverse scan was performed where the temperature decreased from 95 to 25 

°C at -10 °C/step. For each step, the sample was equilibrated for 5 min followed by 30 

sec of data point averaging. 

 The measured ellipticity (θobs) was converted to molar ellipticity (θ) using the 

following equation: 𝜃 = 𝜃𝑜𝑏𝑠/(𝑙 ∗ 𝑐) where l is the cuvette’s optical path length and c is 

MORF-equivalent molar concentration. To analyze melting temperature (Tm) of 

MORF1-MORF2 hybridization, θ (at 260 nm) was plotted against temperature (T), and 

the data were fitted to a thermo-melting curve by nonlinear regression (GraphPad Prism 5 

software) using the following four-parameter logistic function: 

𝜃 = 𝜃𝑚𝑖𝑛 + (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)/[1+ (𝑇/𝑇𝑚)^𝐻  ] 

where θmin is the minimal molar ellipticity (at 260 nm) in the curve, θmax is the maximal 

molar ellipticity (at 260 nm) in the curve, and H is the Hill slope. 

 

3.2.6 Confocal Fluorescence Microscopy 

 Human Burkitt’s B-cell non-Hodgkin’s lymphoma Raji cell line (ATCC, 

Bethesda, MD) was cultured in RPMI-1640 medium (Sigma, St. Louis, MO) 
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supplemented with 10% fetal bovine serum (Hyclone, Logan, UT) at 37 °C in a 

humidified atmosphere with 5% CO2 (v/v). All experiments were performed using cells 

in exponential growth phase. For the consecutive treatment, cells at a density of 106 per 

well were incubated with 0.4 mL Fab'-MORF1-RHO (0.4 µM Fab' equivalent) in culture 

medium at 37 °C for 1 h; then the cells were washed twice with PBS prior to incubation 

with 0.4 mL of P-MORF2-FITC (0.4 µM MORF2 equivalent) in culture medium for 

another 1 h. For the premixed treatment, Fab'-MORF1-RHO and P-MORF2-FITC were 

firstly mixed in culture medium in equimolar concentrations (0.4 µM) for 1 h; then cells 

at the same density were incubated with 0.4 mL of the premixture solution for 1 h. After 

incubation, the cells were washed twice with PBS (to discard the media that contained the 

conjugates), and then plated onto sterile 35-mm glass bottom dishes with 14-mm 

microwells (MatTek Corporation, Ashland, MA) for imaging, using Olympus laser 

scanning confocal microscope (FV 1000). For control studies, concentrations of all 

corresponding components were kept consistent; excess amounts of P-FITC and P-

dsMORF were used. Prior to analysis, cells incubated with FITC-labeled 1F5 mAb, 

rhodamine-labeled F(ab')2, and PBS were used to adjust channel setting and confirm 

CD20 binding. 

 

3.2.7 In Vitro Apoptosis Evaluation 

 Apoptosis of human NHL B-cells was evaluated by three methods: caspase-3 

activation assay, annexin V/propidium iodide (PI) binding assay, and terminal 

deoxynucleotide mediated-dUTP nick-end labeling (TUNEL) assay. These assays 

evaluated apoptosis from different aspects – levels of caspase-3 activation represented 
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apoptotic protein expression; annexin V/PI binding characterized cell membrane flipping 

as an early apoptotic event; TUNEL assay analyzed genomic DNA fragmentation as a 

late apoptotic event. Quantification of apoptotic activity (% apoptotic cells) was 

performed by flow cytometry. In all experiments, 1F5 mAb hyper-crosslinked with a goat 

antimouse (GAM) secondary antibody (2° Ab) (KPL, Gaithersburg, MD) was used as a 

positive control (molar ratio 1F5:GAM = 2:1). Untreated cells (in culture media) were 

used as negative controls. The procedures of each assay are described below. 

 

3.2.7.1 Caspase-3 Activity 

 A Phi-PhiLux kit (OncoImmunin, Gaithersburg, MD) was used. For the 

consecutive treatment, 2 × 105 Raji cells were suspended in 0.4 mL fresh growth medium 

containing 0.5 µM Fab'-MORF1. The cells were incubated for 1 h in a humidified 

atmosphere at 37 °C with 5% CO2, and then washed twice with PBS + 1% bovine serum 

albumin (BSA), followed by resuspension in 0.4 mL medium containing 0.5 or 5 µM 

(MORF2-eqv.) P-MORF2. The cell suspension was incubated for 6 or 24 h. For the 

premixed treatment, first, 0.5 µM Fab'-MORF1 was mixed with 0.5 or 5 µM (MORF2-

eqv.) P-MORF2 in culture medium at RT for 1 h, and then 2 × 105 Raji cells were 

suspended in 0.4 mL of the premixed solution. The cell suspension was incubated for 6 or 

24 h. For the positive control, cells were firstly incubated with 0.4 mL 0.5 µM of 1F5 

mAb in culture medium for 1 h, and then washed twice with PBS + 1% BSA, followed 

by resuspension in 0.4 mL of fresh growth medium containing 0.25 µM GAM. The cells 

were incubated for another 6 or 24 h at 37 °C. After the treatments, cells were washed 

twice with PBS and analyzed for caspase-3 activity following the manufacturer’s 
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protocol. All experiments were carried out in triplicate. 

 

3.2.7.2 Annexin V/PI Binding 

 Annexin V-FITC and PI staining were performed following the RAPIDTM 

protocol provided by the manufacturer (Oncogene Research Products, Boston, MA). For 

the consecutive treatment, 2 × 105 Raji or DG75 (CD20 negative; control) cells were 

suspended in 0.4 mL fresh growth medium containing 0.5, 1, 2 or 5 µM Fab'-MORF1. 

The cells were incubated for 1 h in a humidified atmosphere at 37 °C with 5% CO2, and 

then washed twice with PBS + 1% bovine serum albumin (BSA), followed by 

resuspension in 0.4 mL culture medium containing 0.5, 1, 2 or 5 µM (MORF2-eqv.) of P-

MORF2. The cell suspension was incubated for 24 or 48 h. For the premixed treatment, 

first, 0.5, 1, 2 or 5 µM Fab'-MORF1 was mixed with 0.5, 1, 2 or 5 µM (MORF2-eqv.) P-

MORF2 in culture medium at RT for 1 h, and then 2 × 105 Raji or DG75 cells were 

suspended in 0.4 mL of the premixed solution. The cell suspension was incubated for 24 

or 48 h. For the positive control, cells were firstly incubated with 0.4 mL 0.5, 1, 2 or 5 

µM of 1F5 mAb in culture medium for 1 h, and then washed twice with PBS + 1% BSA, 

followed by resuspension in 0.4 mL of fresh growth medium containing 0.25, 0.5, 1 or 

2.5 µM GAM. The cells were incubated for another 24 or 48 h at 37 °C. Prior to staining, 

cells were washed twice with PBS. All experiments were carried out in triplicate. 

 

3.2.7.3 TUNEL Assay 

 An Apo Direct TUNEL kit (Phoenix Flow Systems, San Diego, CA) was used. 

For the consecutive treatment, 106 Raji cells were suspended in 0.5 mL fresh growth 
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medium containing 0.5 µM Fab'-MORF1. The cells were incubated for 1 h in a 

humidified atmosphere at 37 °C with 5% CO2, and then washed twice with PBS + 1% 

bovine serum albumin (BSA), followed by resuspension in 0.5 mL medium containing 

0.5 or 5 µM (MORF2-eqv.) P-MORF2. The cell suspension was incubated for 24 or 48 h. 

For the premixed treatment, first, 0.5 µM Fab'-MORF1 was mixed with 0.5 or 5 µM 

(MORF2-eqv.) P-MORF2 in culture medium at RT for 1 h, and then 106 Raji cells were 

suspended in 0.5 mL of the premixed solution. The cell suspension was incubated for 24 

or 48 h. For the positive control, cells were firstly incubated with 0.5 mL 0.5 µM of 1F5 

mAb in culture medium for 1 h, and then washed twice with PBS + 1% BSA, followed 

by resuspension in 0.5 mL of fresh growth medium containing 0.25 µM GAM. The cells 

were incubated for another 24 or 48 h at 37 °C. After the treatments, cells were washed 

twice with PBS and fixed with 2% paraformaldehyde in PBS for 1 h at RT. Cells were 

then permeabilized in 70% ethanol overnight at 4 °C. Prior to analysis, nick-end labeling 

was performed following the manufacturer’s protocol. All experiments were carried out 

in triplicate. 

 

3.2.8 Animal Model and Evaluation of In Vivo Anticancer Efficacy 

 Female C.B-17 SCID mice (Charles River Laboratories, Wilmington, MA) at 

about 7 weeks of age were intravenously injected with 4 × 106 Raji cells in 200 µL saline 

via the tail vein (day 0). This animal model represents dissemination, infiltration and 

growth of lymphoma cells in various organs, including the spinal cord which leads to 

hind-limb paralysis and subsequent animal death.36–38 The conjugates, Fab'-MORF1 (57.5 

µg/20 g; 1 nmol MORF1) and P-MORF2/v10 (22 µg/20 g; 1 nmol MORF2), were 
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dissolved in 100 µL PBS and injected via tail vein either consecutively (1-h interval) or 

as a premixture (mixed 1 h prior to treatment). The inoculated mice were divided into 

seven groups: (1) negative control (injected with 200 µL PBS), (2) single administration 

of the consecutive treatment (Cons ×1), (3) single administration of the premixed 

treatment (Prem ×1), (4) consecutive treatment administered three times (Cons ×3), (5) 

premixed treatment administered three times (Prem ×3), (6) single administration of the 

consecutive treatment but with 5× excess P-MORF2/v10 (110 µg/20 g; 5 nmol MORF2) 

to Fab'-MORF1 (Cons (1:5) ×1), and (7) positive control injected with three doses (75 

µg/20 g; 1 nmol Fab'-equivalent per dose) of 1F5 mAb via tail vein. For single-dose 

groups, conjugates were administered on day 1 (24 h after injection of cancer cells); for 

multiple-dose groups, conjugates (or mAb) were given on days 1, 3 and 5. 

 Posttreatment monitoring of the animals was performed twice a day. Body weight 

of mice was recorded every other day. Major aspects of the mice closely assessed 

included: hind-limb paralysis, food/water consumption, vital signs of abnormal 

mobility/activity (e.g., licking, biting, scratching a particular area, vocalizing), and 

physical appearance (e.g., failure to groom, unkept appearance, abnormal resting/hunched 

posters, piloerection). Animals were sacrificed in the following scenarios (whichever 

showed up first): (1) at the onset of (hind-limb) paralysis, and (2) body weight loss 

exceeding 20% of the baseline (one day before the injection of cancer cells). Animals 

without any aforementioned signs were kept until 125 days (after the injection of cancer 

cells) and sacrificed for further analysis. These procedures adhered to the Institutional 

Animal Care and Use Committee (IACUC) protocol #12-11004 of the University of 

Utah. Animals without signs of paralysis/sickness were kept until 125 days and 
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considered long-term survivors. 

 

3.2.9 Magnetic Resonance Imaging (MRI) of Mice 

 To monitor disease progression and treatment efficacy, mice (2–4 per group) were 

scanned by T1-weighted MRI on weeks 4, 5, and 16 after tumor inoculation. Gadobenate 

dimeglumine (MultiHance®; Bracco SpA, Milan, Italy) was used as a contrast agent for 

imaging. Precontrast images were also acquired (for comparison). A typical procedure 

was as follows: first, mice were anesthetized with 1%–2.5% isoflurane (IsoFlo®, Abbott 

Laboratories, Abbott Park, IL) in oxygen from a precision vaporizer, and then mice were 

placed in the prone position at the coil center. A 7-Tesla Bruker BioSpec MRI scanner 

(Bruker Biospin, Billerica, MA) with a 30-cm wide cylindrical bore and a 12-cm gradient 

insert was used. Precontrast images were firstly acquired, and then mice were injected 

with gadobenate dimeglumine via tail vein at 0.3 mmol/kg (100 µL, in physiological 

saline). Twenty minutes after the injection, postcontrast images were acquired. During 

the scanning, mouse body temperature was maintained at 37 °C using a warm-air 

circulation system (SA Instruments, Stony Brook, NY). Respiration was monitored 

continuously. Scanning was performed under the ParaVision® 5.1 software environment. 

Acquisition parameters were as follows: T1-weighted FLASH sequence with 

retrospective gating to suppress breathing artifacts, echo time (TE) 2.9 ms, repetition time 

(TR) 43.2 ms, flip angle 50°, 6 sagittal plane slice with thickness 0.5 mm, matrix 256 × 

256, field-of-view (FOV) 3 cm × 3 cm, 50 repetitions. After the scanning, images were 

analyzed and processed on an off-line workstation (OsiriX). 
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3.2.10 Flow Cytometry Analysis of Residual Raji Cells 

 After mice were sacrificed, the following organs/tissues were analyzed by flow 

cytometry for residual Raji cells: bone marrow (femur), mesenteric and inguinal lymph 

nodes, spinal cord, and spleen. Two fluorescently labeled antibodies, R-phycoerythrin 

(PE)-labeled mouse anti-human CD10 (IgG1, κ isotype) and allophycocyanin (APC)-

labeled mouse anti-human CD19 (IgG1, κ isotype) (BD Biosciences, San Jose, CA), were 

used to stain Raji B-cells.39 Single-cell suspensions were prepared from the organs/tissues 

using the following procedures. For bone marrow, fresh femurs were purged with 1 mL 

PBS to obtain cell suspensions. Cells were resuspended in 5 mL red blood cell (RBC) 

lysis buffer and incubated at RT for 5 min. Cells were then washed with 5 mL PBS and 

centrifuged to remove debris, followed by resuspension in 400 µL cold washing buffer 

and equally divided into four tubes: (1) nonstained control, (2) CD10 singly-stained, (3) 

CD19 singly-stained, and (4) CD10/CD19 doubly-stained cells. For the staining, 20 µL of 

each antibody was added to 100 µL cell suspension containing about 106 cells. Cells were 

incubated for 30 min at 4 °C in the dark, and washed with 1.5 mL washing buffer prior to 

analysis. For lymph nodes, spinal cord and spleen, a mechanical method was used. 

Tissues were gently disaggregated with the help of tweezers in a Petri dish containing 1 

mL PBS. The suspensions were passed through a 70-µm FalconTM cell strainer (BD 

Biosciences) to remove large clumps and debris, and then cells were centrifuged and 

resuspended in 5 mL RBC lysis buffer. The rest of the procedures were the same as 

aforementioned. For flow cytometry analysis, data of 1.0–1.5 × 105 cells were recorded. 
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3.2.11 Pathological and Histopathological Examinations 

 Immediately after mice were sacrificed, the following organs/tissues were 

harvested for pathological evaluation: brain, heart, lung, liver, spleen, kidneys, spinal 

cord and lymph nodes. These organs/tissues were fixed in 10% formalin overnight at RT, 

and then transferred and preserved in 70% ethanol. Histopathological examination was 

performed by a blinded veterinary pathologist at ARUP Laboratories (Salt Lake City, 

UT). Sections were cut at 4-µm thickness, mounted on glass slides, and stained by 

hematoxylin and eosin (H&E). 

 

3.2.12 Statistical Analysis 

 All experiments in this study were at least triplicated. Quantified data were 

presented as mean ± standard deviation (SD). Statistical analyses were performed by 

Student’s t-test to compare between two groups, or one-way analysis of variance 

(ANOVA) to compare three or more groups (with p value < 0.05 indicating statistically 

significant difference). Animal survival analysis was performed with the log-rank test 

using the GraphPad Prism 5 software. 

 

3.3 Results and Discussion 

 To verify the concept of hybridization-mediated drug-free macromolecular 

therapeutics, we selected CD20 as a pharmacological target. CD20 is a noninternalizing 

receptor expressed on most NHL malignant B-cells as well as on normal B-cells.40 

However, it is not expressed on plasma cells (effector B-cells) and stem cells. 

Consequently, humoral immunity of patients is not severely affected, and normal 
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numbers of B-cells can be restored after treatment.41,42 Here, we employed an anti-CD20 

Fab' fragment in the therapeutic system and used NHL as a disease model to demonstrate 

the first example of the designed platform. 

 

3.3.1 Design of MORF1 and MORF2 

 The MORF oligos used in this study were 25 bp and about 8.5 kDa (see structure 

in Figure 3.2 and base sequence in Subsection 3.2.1). Their 3' termini were modified with 

a primary amine used for conjugation. The A/T/C/G content was selected to achieve 

optimal binding efficacy and specificity (GC = 35–65%),26 maintain aqueous solubility 

(G < 36%),26 and potentially provide favorable pharmacokinetics (number of C < 7 to 

avoid rapid kidney uptake).27 After the base composition was determined, the sequences 

were generated by a scrambling software to minimize off-target binding with human and 

murine mRNA and further optimized to prevent self-complementarity. 

 

3.3.2 Synthesis and Characterization of Fab'-MORF1 and P-MORF2 

 To prepare the Fab'-MORF1 conjugate (Figure 3.2A), the Fab' fragment from a 

mouse anti-human CD20 IgG2a mAb (1F5)43 was tethered to the 3' end of MORF1 via a 

thioether bond. Optionally, the conjugates were labeled with rhodamine (RHO) for 

imaging studies. Fab'-MORF1 was successfully synthesized as confirmed by HPLC 

(Figure 3.2B) and size	
   exclusion chromatography (SEC) (Figure 3.3A); the coupling 

reaction followed a 1:1 stoichiometry as characterized by MALDI-ToF mass 

spectrometry (Figure 3.3B) and UV-visible spectroscopy (Figure 3.3C). The molecular 

weight (MW) of Fab'-MORF1 was about 57.5 kDa. 
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 To prepare the multivalent P-MORF2 conjugates (Figure 3.2C), we first 

synthesized HPMA copolymers containing glycyl-glycine (GG; spacer) side-chains 

terminated in (amine-reactive) thiazolidine-2-thione (TT) groups. These polymer 

precursors (P-TT) were synthesized by reversible addition-fragmentation chain transfer 

(RAFT) polymerization. A polymerizable fluorescein isothiocyanate (FITC) derivative 

was optionally added for imaging studies. Using RAFT polymerization, polymer 

backbones with narrow MW distribution (polydispersity index ≤ 1.15, as determined by 

SEC) were reproducibly synthesized. Furthermore, the amine-derivatized MORF2 oligos 

(MORF2-NH2) were grafted via stable amide linkage to the side chains of the HPMA 

copolymers to produce multivalent P-MORF2. The conjugates were purified and 

characterized by SEC (Figure 3.2D). Three different P-MORF2’s with varying backbone 

MW and valences (number of MORF2 per polymer chain) were synthesized; see Figure 

3.4 for details. The backbone number average molecular weights (Mn) of these 

conjugates ranged from 70 to 136 kDa. Valences of the three P-MORF2 conjugates were 

2, 3 and 10, respectively. 

 

3.3.3 In Vitro Hybridization of Fab'-MORF1 and P-MORF2 

 Hybridization of the two conjugates via MORF1-MORF2 biorecognition was first 

evaluated by UV-visible spectroscopy. The two conjugates were mixed in different ratios, 

and the optical density at 260 nm (contributed by bases) was measured. Upon mixing 

Fab'-MORF1 and P-MORF2, a “hypochromic effect” was observed (Figure 3.5A); the 

OD260 nm reached a minimum when a molar ratio of 1:1 (MORF1:MORF2) was used. 

Such decrease was due to hydrogen bonding between complementary bases that limited 
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the resonance of the aromatic rings. This method was also used to determine 

hybridization of the free, unconjugated MORF1 and MORF2, and the same 

hypochromicity was observed. These results indicated that the function of MORF1-

MORF2 hybridization was preserved after conjugation to Fab' or polymers. 

 Furthermore, the binding of Fab'-MORF1 and P-MORF2 was characterized by 

dynamic light scattering (DLS) (Figure 3.5B). As shown in Figure 3.5B, a significant and 

rapid increase of hydrodynamic size upon mixing the two conjugates (at equimolar 

MORF1/MORF2) was revealed. The fast attainment of stable diameter (~40 nm) 

reflected a fast binding kinetics (< 10 min) of MORF1-MORF2 hybridization of the 

conjugates. Such rapid binding is in agreement with the literature; for example, Mang’era 

et al. reported that a pair of 15-mer complementary MORF oligomers reached near-

maximal binding within 2–5 min.28 This characteristic is favorable for the design of drug-

free macromolecular therapeutics. 

 Circular dichroism (CD) spectroscopy was used to determine the melting 

temperature (Tm) of the Fab'-MORF1/P-MORF2 complex in physiological conditions 

(PBS pH 7.4) (Figure 3.5C). First, a pronounced optical signature (maximum at 260 nm, 

minimum at 210 nm) indicating A-form double helixes44 was obtained upon mixing the 

two conjugates; a similar CD profile was observed when unconjugated MORF1 and 

MORF2 were mixed (Figure 3.6). Second, a thermal melting study was performed to 

analyze the mixture of Fab'-MORF1 and P-MORF2. Data showed that the 

aforementioned CD signature no longer existed at 95 °C; the positive band at 260 nm 

underwent a significant bathochromic shift that produced a peak centered around 275 nm 

(Figure 3.7). The thermo-melting curves shown in Figures 3.5C and 3.7B demonstrate 
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that the signal at 260 nm decreased in a sigmoidal pattern as temperature increased. 

Results of nonlinear regression indicated a Tm value of about 57 to 62 °C. The Tm is 

well above body temperature, suggesting in vivo stability of the binding. 

 

3.3.4 Biorecognition of Fab'-MORF1 and P-MORF2 at B-Cell Surface 

 Human B-cell lymphoma Raji cell line (CD20+)40,45 was used to study the 

biorecognition of Fab'-MORF1 and P-MORF2 at the cell surface. This study was 

performed by confocal fluorescence microscopy. First, exposure of Raji cells to 

rhodamine-labeled Fab'-MORF1 resulted in cell surface red signal (RHO) decoration due 

to Fab'-MORF1 binding to CD20; cells exposed to only FITC-labeled P-MORF2 did not 

show any fluorescent signal (Figure 3.8A). Second, when Raji cells were exposed to both 

fluorescently labeled conjugates (Fab'-MORF1 + P-MORF2), either consecutively or as a 

premixture, the red and the green (FITC) signals were well colocalized at the surfaces of 

B-cells (Figure 3.8B). This observation indicated successful MORF1-MORF2 

hybridization at the cell surface. Figure 3.8C shows the microscopic images obtained 

from two control groups: (1) cells exposed to the premixture of Fab'-MORF1(-RHO) and 

an HPMA copolymer carrying FITC dye but without MORF2 (P-FITC); (2) a 

“preblocking” control achieved by exposing cells consecutively to Fab'-MORF1(-RHO) 

followed by a mixture of P-MORF2(-FITC) with an excess of unconjugated MORF1 (this 

produced HPMA copolymers grafted with double-stranded MORF; P-dsMORF). As 

expected, both control treatments resulted in only the red signal at cell surfaces (Figure 

3.8C) due to absence of a biorecognition pair. Results of these controls confirmed that the 

cell surface biorecognition of Fab'-MORF1 and P-MORF2 was indeed mediated by 
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MORF1-MORF2 hybridization. 

	
  

3.3.5 Apoptosis Induction of Human NHL B-Cells 

 Apoptosis induction of human B-cell lines (Raji and DG75) was evaluated by 

three methods: caspase-3 activation assay, annexin V/propidium iodide (PI) binding 

assay, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) 

assay. Throughout these studies, anti-CD20 1F5 mAb hyper-crosslinked with a goat anti-

mouse secondary Ab (2° Ab) was used as a positive control	
   to imitate the function of 

FcR+ immune effector cells.45 This control partly reflects the therapeutic efficacy of anti-

CD20 mAbs. Results showed that cotreatment with Fab'-MORF1 and P-MORF2, either 

consecutively or as a premixture, effectively induced apoptosis of Raji B-cells (Figure 

3.9). In contrast, single-component treatments with either Fab'-MORF1 or P-MORF2 

failed to initiate apoptosis. A series of control experiments validated the hypothesis that 

MORF1-MORF2 hybridization with concomitant crosslinking of CD20 antigens is 

responsible for the apoptosis induction. Raji cells were exposed to: (1) a mixture of Fab'-

MORF1 and the polymer precursor P-TT; (2) a mixture of Fab' and P-MORF2; (3) 

“preblocked” conjugates whose MORF1 or MORF2 binding sites were blocked by excess 

unconjugated complementary MORFs prior to treatment. None of these treatments 

induced apoptosis (Figure 3.10A), due to absence of MORF1-MORF2 hybridization. 

Furthermore, the apoptosis of a negative control B-cell line (DG75) that does not (or 

minimally) express CD20 was evaluated.46 The levels of apoptosis after cotreatment with 

two conjugates were very low, and similar to that of the untreated cells (Figure 3.10B). 

This result indicated that CD20 binding is a necessary event for apoptosis induction. 
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3.3.6 Optimization of Apoptosis Induction 

 To optimize the therapeutic system, several factors and their impact on apoptosis 

of Raji B-cells were examined, including concentration of conjugates, ratio between two 

conjugates, valence of P-MORF2, and exposure time. We started with a P-MORF2 

containing about 3 oligos per polymer chain (P-MORF2/v3). Results of annexin V/PI 

staining assay indicated that 1 µM Fab'-MORF1 and equimolar P-MORF2/v3 

(MORF1:MORF2 = 1:1) induced about 40% of apoptotic cells (more than 4 fold 

compared to untreated) (Figure 3.9A). When all conditions were kept identical except 

different concentrations of Fab'-MORF1 (and corresponding P-MORF2/v3), a 

concentration-dependent apoptosis induction was observed (Figure 3.9B). Data suggested 

that increasing concentrations of the conjugates from 0.5 µM to 2 and 5 µM (Fab' 

equivalent) resulted in higher levels of apoptosis. The dose-dependent trends were 

observed in both consecutive and premixed treatment regimens as well as in the positive 

control (mAb + 2° Ab). At the highest concentration tested (5 µM), apoptosis induction 

by drug-free macromolecular therapeutics (Fab'-MORF1 + P-MORF2/v3) reached about 

7 fold compared to untreated controls. In addition, the percentage of the apoptotic cells 

induced by mAb + 2° Ab seemed to saturate when the concentration of 1F5 mAb was 

increased from 2 to 5 µM; however, such saturation was not observed in the 

nanomedicine groups. This difference was likely due to P-MORF2 having multimeric 

interactions with targets, in contrast to mAbs with only two binding sites. 

 Furthermore, we examined the influence of the valence of P-MORF2 and the ratio 

between Fab'-MORF1 and P-MORF2 on apoptosis induction of Raji B-cells. A “high-

valence” P-MORF2 containing 10 oligos per chain (P-MORF2/v10) was compared with 
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P-MORF2/v3 (3 oligos per chain). Results showed that when all treatment conditions 

were identical (0.5 µM Fab', MORF1:MORF2 = 1:1 or 1:10), the P-MORF2/v10 

conjugate induced about 2-fold higher levels of apoptosis compared to P-MORF2/v3 

(Figure 3.9C). It is noteworthy that the consecutive treatment of Fab'-MORF1 and P-

MORF2/v10 induced apoptosis more effectively than the positive control (consecutive 

treatment of mAb and 2° Ab). The superior apoptosis induction observed here was likely 

due to multivalency of P-MORF2/v10 resulting in higher avidity to B-cells, as well as 

more effective CD20 clustering.47–49 Interestingly, when Raji cells were exposed to the 

same concentration of Fab'-MORF1 (0.5 µM), whereas a 10-time excess P-MORF2 was 

used (MORF1:MORF2 = 1:10), we did not observe significantly enhanced apoptotic 

levels compared to the treatment with equimolar MORF1/MORF2 (Figure 3.9C). 

Apparently, the MORF1 binding sites on the surfaces of the Fab'-MORF1-decorated cells 

were saturated, which suggests good accessibility of MORFs on the polymer chain for 

hybridization (minimal steric hindrance effect by the polymer chain). The same trends of 

apoptosis induction were observed at different exposure times (6, 24 and 48 h) and from 

different apoptosis assays (caspase-3, annexin V/PI, TUNEL). 

 

3.3.7 Preclinical Evaluation in a Murine Model of Human NHL 

 In vivo therapeutic efficacy of the hybridization-mediated drug-free 

macromolecular therapeutics was evaluated in SCID (C.B-17) mice bearing systemically 

disseminated Raji B-cells. This animal model has a near 100% tumor engraftment rate,36 

and the hind-limb paralysis-free survival time after treatment accurately reflects 

anticancer efficacy.37,38 The conjugates, Fab'-MORF1 and P-MORF2/v10, were injected 
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via the tail vein of mice either consecutively or as a premixture. Mice divided into 

different groups (n = 6–7) received either one or three doses of the nanomedicine, starting 

at 24 h after tumor injection. Doses and treatment regimens were based on literature37,38 

and our previous study with peptide conjugates.50 The animal survival curve is shown in 

Figure 3.11. The negative control mice treated with PBS (n = 8) developed hind-limb 

paralysis in 17–35 days after injection of cancer cells; the median survival time was 24 

days. This observation was in agreement with the literature.38,50 A single administration 

of the consecutive treatment (Cons ×1; MORF1:MORF2 = 1:1) substantially extended 

the animal survival (median survival time: 81 days). A single premixed dose (Prem ×1; 

MORF1:MORF2 = 1:1) had similar efficacy as the consecutive treatment, resulting in a 

median survival of 78 days. When the same dose of Fab'-MORF1 (57.5 µg/20 g) was 

given but followed by 5-times the excess P-MORF2/v10 (MORF1:MORF2 = 1:5), the 

efficacy significantly improved over the treatment with equimolar MORF1/MORF2. A 

single administration of such treatment (Cons (1:5) ×1) produced a 67% survival rate (4/6 

long-term survivors; 125 days). The discrepancy between in vivo and in vitro data (Figure 

3.9C), when excess P-MORF2 was used, can be explained by blood dilution of the 

conjugates, which interferes with binding saturation. 

 Excellent therapeutic efficacy was observed with the groups of mice that received 

three consecutive administration doses (Cons ×3; n = 7) or three premixed administration 

doses (Prem ×3; n = 7). All mice survived until the experimental endpoint (day 125). The 

positive control group (n = 7) that received three equivalent doses of 1F5 mAb (i.v.) had 

an 86% survival rate. Although the difference to the three-dose nanomedicine groups is 

not statistically significant, the anticancer activity of the nanomedicine, unlike mAbs, is 
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independent of immune effector mechanisms such as	
   antibody-dependent cellular 

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).45 These data 

indicated that the direct apoptosis induction strategy can be as effective as the 

immunotherapy while simultaneously reducing the concerns of side effects that are 

mostly associated with ADCC and CDC.20,51 The preclinical evaluation here 

demonstrated the in vivo anticancer efficacy of the hybridization-mediated drug-free 

macromolecular therapeutics and suggested that the therapeutic efficacy can be further 

improved by increasing the number of treatments and/or the dose of the second, 

therapeutically active conjugate (P-MORF2). 

 

3.3.8 Analysis of In Vivo Anti-Lymphoma Efficacy 

 Using the above-mentioned animal model, eradication of Raji cells in SCID mice 

after treatment with Fab'-MORF1 and P-MORF2 was confirmed by MRI, flow cytometry 

and histology. MRI with gadolinium-based contrast at 4–5 weeks after injection of cancer 

cells showed that the control mice treated with PBS developed tumors in the lumbar 

spinal cord, whereas three doses of the nanomedicine prevented tumor development 

(Figure 3.12A). The surviving mice treated with Cons ×3 or Prem ×3 were imaged again 

on week-16; no relapse of the disease was observed. After the mice were sacrificed, flow 

cytometry was performed to analyze residual Raji cells (human CD10+ CD19+) in the 

femoral bone marrow (Figure 3.12B). Two fluorescently labeled antibodies, PE-labeled 

mouse anti-human CD10 and APC-labeled mouse anti-human CD19, were used for flow 

cytometry analysis.39 Results indicated that the paralyzed animals (PBS-treated) bore 

significant amounts of Raji cells in the bone marrow, while all long-term survivors in the 
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therapy groups (Cons ×3 and Prem ×3) were tumor free (Figure 3.12C). Flow cytometry 

also confirmed Raji cells in the spinal cord of paralyzed mice (PBS-treated), but not in 

the long-term survivors (Figure 3.13), which was in agreement with MRI data. 

Furthermore, histological examination disclosed lymphoma dissemination in the liver, 

lung and brain of PBS-treated mice (Figure 3.14). In contrast, no tumors were found in 

the long-term survivors. Importantly, histology suggested no toxicity caused by the 

treatments in any of the tissues evaluated; this corresponded to a stable body weight 

growth of the treated animals. In conjunction these results indicated that the 

nanomedicine successfully inhibited lymphoma cell growth/dissemination in vivo without 

acute toxicity. 

 

3.4 Summary 

 Data presented here validate the proposed concept of hybridization-mediated cell 

surface antigen crosslinking and apoptosis induction. A unique bio-inspired nanomaterial 

system has been demonstrated where extracellular hybridization of oligonucleotide 

analogues translates into innate biological responses. The cellular event (apoptosis) is 

triggered by specific biorecognition defined from the molecular level (i.e., base pairing), 

suitable for the design of precisely targeted therapeutics. The proposed two-step 

(consecutive) treatment offers the opportunity of pretargeting.52–54 This is an advantage 

over the premixed treatment and other single-component anti-CD20 constructs, such as 

rituximab polymers55 and multivalent anti-CD20 Fab'-functionalized polymers.47–49 For 

example, the timing of administration of the crosslinking dose (P-MORF2) can be 

optimized based on biodistribution of the pretargeting dose (Fab'-MORF1), in order to 
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achieve maximal tumor-to-tissue accumulation in individual patients and enable more 

efficient treatment. This approach would also limit potential adverse reactions associated 

with off-target binding, thus being beneficial for the treatment of solid tumors as well as 

disseminated diseases. For blood-based cancers, the pharmacokinetics of Fab'-MORF1 

and the binding kinetics of Fab'-MORF1 to diseased cells can be further studied to 

determine the best timing for P-MORF2 administration. 

 The presented work offers a new strategy in lymphoma treatment by immune-

independent apoptosis induction. This is a potential improvement over currently used 

immunotherapies with type I anti-CD20 mAbs (e.g., rituximab).14,16 Comparing to type II 

anti-CD20 mAbs (e.g., obinutuzumab) that may also induce direct apoptosis,56 our 

nanomedicine approach still possesses two advantages: (1) superior targeting of B-cells 

due to multivalency, and (2) potential for decreased side effects that are associated with 

immune functions. Previously our lab has designed and developed a pilot anti-CD20 

drug-free macromolecular therapeutic system using a pair of pentaheptad peptides that 

formed antiparallel coiled-coil heterodimers as the biorecognition moieties.9,50 The 

binding of CCE and CCK served as the driving force for CD20 clustering and 

concomitant apoptosis induction in malignant B-cells. When the cell surface 

biorecognition and apoptosis were evaluated on Raji cells (using conditions similar to this 

study), we found that a 25-time excess of the second peptide (CCE:CCK = 1:25) was 

required in order to achieve significant efficacy in vitro9 and in vivo50. In contrast, for the 

hybridization-mediated system (Fab'-MORF1/P-MORF2), the treatment with equimolar 

MORF1/MORF2 was sufficient for biorecognition and apoptosis induction (Table 3.1). 

Results of the animal experiments showed that at equivalent doses, a single treatment of 
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Fab'-MORF1 + P-MORF2 (1:1) was significantly more effective than a single treatment 

of Fab'-CCE + P-CCK (1:25) in preventing lymphoma dissemination (Table 3.1). In 

conjunction these data suggested superior binding and accessibility of the MORF oligos 

on the HPMA polymer chains as compared to the coiled-coil forming peptides. In 

addition, for the MORF1-MORF2 hybridization, a rapid binding kinetics was observed 

(~10 min as characterized by DLS; Figure 3.5B in the main article). On the contrary, the 

CCE-CCK coiled-coil formation required a much longer time (~60 min).9 The 

comparison of CCs vs. MORFs clearly indicates that the hybridization system is 

advantageous for the design of drug-free macromolecular therapeutics. Other advantages 

of the MORF oligos include: (1) specific binding due to a well-defined hydrogen bonding 

pattern (i.e., base pairing), (2) charge-neutral property that prevents potential off-target 

effects, and (3) water solubility due to good base-stacking property resulting in favorable 

pharmacokinetics.26 

 Besides lymphomas, the therapeutic conjugates developed here can be used for 

other B-cell-associated diseases such as rheumatoid arthritis, multiple sclerosis, and 

chronic lymphocytic leukemia. The designed platform can be applied to crosslink any 

non- or slowly internalizing receptor (e.g., CD45,57 prostate stem cell antigen58) and 

control different cellular activities.21–23 In addition, other targeting moieties (e.g., aptamer 

instead of Fab')54 can be used to construct various self-assembling antigen crosslinkers. 

Therefore, this work constitutes a new paradigm of nanomaterial-based therapeutics with 

significant potential for the treatment of multiple different diseases. 

 

 



	
  

	
  

79 

3.5 References 

1. S. M. Douglas, I. Bachelet and G. M. Church, A logic-gated nanorobot for targeted 
transport of molecular payloads, Science, 2012, 335, 831–834. 

2. J. J. Mulvey, et al., Self-assembly of carbon nanotubes and antibodies on tumours 
for targeted, amplified delivery, Nat. Nanotechnol., 2013, 8, 763–771. 

3. Z. R. Lu, P. Kopečková and J. Kopeček, Polymerizable Fab' antibody fragments for 
targeting of anticancer drugs, Nat. Biotechnol., 1999, 17, 1101–1104. 

4. M. Gungormus,	
  M. Branco, H. Fong, J. P. Schneider, C. Tamerler and M. Sarikaya, 
Self assembled bi-functional peptide hydrogels with biomineralization-directing 
peptides, Biomaterials, 2010, 31, 7266–7274. 

5. T. C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich and S. Zhang, Extensive neurite 
outgrowth and active synapse formation on self-assembling peptide scaffolds, Proc. 
Natl. Acad. Sci. U.S.A., 2000, 97, 6728–6733. 

6. W. Yuan, J. Yang, P. Kopečková and J. Kopeček, Smart hydrogels containing 
adenylate kinase: translating substrate recognition into macroscopic motion, J. Am. 
Chem. Soc., 2008, 130, 15760–15761. 

7. J. D. Ehrick, S. K. Deo, T. W. Browning, L. G. Bachas, M. J. Madou and S. 
Daunert, Genetically engineered protein in hydrogels tailors stimuli-responsive 
characteristics, Nat. Mater., 2005, 4, 298–302. 

8. J. Liu, D. Mazumdar and Y. Lu, A simple and sensitive ”dipstick” test in serum 
based on lateral flow separation of aptamer-linked nanostructures, Angew. Chem. 
Int. Ed., 2006, 45, 7955–7959. 

9. K. Wu, J. Liu, R. N. Johnson, J. Yang and J. Kopeček, Drug-free macromolecular 
therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of 
antigens on the cell surface, Angew. Chem. Int. Ed., 2010, 49, 1451–1455. 

10. M. H. Cho, et al., A magnetic switch for the control of cell death signalling in in 
vitro and in vivo systems, Nat. Mater., 2012, 11, 1038–1043. 

11. J. Kopeček and J. Yang, Smart self-assembled hybrid hydrogel biomaterials, Angew. 
Chem. Int. Ed., 2012, 51, 7396–7417. 

12. R. Siegel, D. Naidsham and A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin., 
2013, 63, 11–30. 

13. B. D. Cheson and J. P. Leonard, Monoclonal antibody therapy for B-cell non-
Hodgkin’s lymphoma, N. Engl. J. Med., 2008, 359, 613–626. 



	
  

	
  

80 

14. A. Molina, A decade of rituximab: improving survival outcomes in non-Hodgkin’s 
lymphoma, Annu. Rev. Med., 2008, 59, 237–250. 

15. G. Cartron, et al., Therapeutic activity of humanized anti-CD20 monoclonal 
antibody and polymorphism in IgG Fc receptor FcγRIIIa gene, Blood, 2002, 99, 
754–758. 

16. M. R. Smith, Rituximab (monoclonal anti-CD20 antibody): mechanisms of action 
and resistance, Oncogene, 2003, 22, 7359–7368. 

17. M. Allison, PML problems loom for Rituxan, Nat. Biotechnol., 28, 105–106. 

18. L. C. Lands, New therapies, new concerns: rituximab-associated lung injury, 
Pediatr. Nephrol., 2010, 25, 1001–1003. 

19. K. Kamei, S. Ito and K. Iijima, Severe respiratory adverse events associated with 
rituximab infusion, Pediatr. Nephrol., 2010, 25, 1193. 

20. L. E. van der Kolk, A. J. Grillo-López, J. W. Baars, C. E. Hack and M. H. van Oers, 
Complement activation plays a key role in the side-effects of rituximab treatment, 
Br. J. Haematol., 2001, 115, 807–811. 

21. Y. Shimizu, et al., Crosslinking of the T cell-specific accessory molecules CD7 and 
CD28 modulates T cell adhesion, J. Exp. Med., 1992, 175, 577–582. 

22. L. D. Vallat, Y. Park, C. Li and J. G. Gribben, Temporal genetic program following 
B-cell receptor cross-linking: altered balance between proliferation and death in 
healthy and malignant B cells, Blood, 2007, 109, 3989–3997. 

23. C. R. Kahn, K. L. Baird, D. B. Jarrett and J. S. Flier, Direct demonstration that 
receptor crosslinking or aggregation is important in insulin action, Proc. Natl. Acad. 
Sci. U. S. A., 1978, 75, 4209–4213. 

24. J. P. Deans, H. Li and M. J. Polyak, CD20-mediated apoptosis: signalling through 
lipid rafts, Immunology, 2002, 107, 176–182. 

25. P. E. Nielsen, DNA analogues with nonphosphodiester backbones, Annu. Rev. 
Biophys. Biomol. Struct., 1995, 24, 167–183. 

26. J. Summerton and D. Weller, Morpholino antisense oligomers: design, preparation, 
and properties, Antisense Nucleic Acid Drug Dev., 1997, 7, 187–195. 

27. G. Liu, et al., Pretargeting in tumored mice with radiolabeled morpholino oligomer 
showing low kidney uptake, Eur. J. Nucl. Med. Mol. Imaging, 2004, 31, 417–424. 

28. K. O. Mang’era, et al., Initial investigations of 99mTc-labeled morpholinos for 
radiopharmaceutical applications, Eur. J. Nucl. Med. Mol. Imaging, 2001, 28, 1682–
1689. 



	
  

	
  

81 

29. J. Kopeček and P. Kopečková, HPMA copolymers: origins, early developments, 
present, and future, Adv. Drug Deliv. Rev., 2010, 62, 122–149. 

30. K. Ulbrich and V. Šubr, Structural and chemical aspects of HPMA copolymers as 
drug carriers, Adv. Drug Deliv. Rev., 2010, 62, 150–166. 

31. K. D. Fowers, J. Callahan, P. Byron and J. Kopeček, Preparation of Fab' from 
murine IgG2a for thiol reactive conjugation, J. Drug Target., 2001, 9, 281–294. 

32. H. Pan, J. Yang, P. Kopečková and J. Kopeček, Backbone degradable multiblock N-
(2-hydroxypropyl)methacrylamide copolymer conjugates via reversible addition-
fragmentation chain transfer polymerization and thiol-ene coupling reaction, 
Biomacromolecules, 2011, 12, 247–252. 

33. J. Kopeček and H. Bažilová, Poly[N-(2-hydroxypropyl)methacrylamide] — I. 
Radical polymerization and copolymerization, Eur. Polym. J., 1973, 9, 7–14. 

34. V. Šubr and K. Ulbrich, Synthesis and properties of new N-(2-
hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione 
reactive groups, React. Funct. Polym., 2006, 66, 1525–1538. 

35. V. Omelyanenko, P. Kopečková, C. Gentry and J. Kopeček, Targetable HPMA 
copolymer – adriamycin conjugates. Recognition, internalization, and subcellular 
fate, J. Control. Release, 1998, 53, 25–37. 

36. M. A. Ghetie, J. Richardson, T. Tucker, D. Jones, J. W. Uhr and E. S. Vitetta, 
Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice, 
Int. J. Cancer, 1990, 45, 481–485. 

37. M. A. Ghetie, K. Tucker, J. Richardson, J. W. Uhr and E. S. Vitetta, The antitumor 
activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi 
lymphoma is enhanced by either an anti-CD19 antibody or an anti-CD19 
immunotoxin, Blood, 1992, 80, 2315–2320. 

38. G. L. Griffiths, et al., Cure of SCID mice bearing human B-lymphoma xenografts 
by an anti-CD74 antibody – anthracycline drug conjugate, Clin. Cancer Res., 2003, 
9, 6567–6571. 

39. W. C. Chen, G. C. Completo, D. S. Sigal, P. R. Crocker, A. Saven and J. C. 
Paulson, In vivo targeting of B-cell lymphoma with glycan ligands of CD22, Blood, 
2010, 115, 4778–4786. 

40. P. Stashenko, L. M. Nadler, R. Hardy and S. F. Schlossman, Characterization of a 
human B lymphocyte-specific antigen, J. Immunol., 1980, 125, 1678–1685. 

41. K. C. Anderson, et al., Expression of human B cell-associated antigens on 
leukemias and lymphomas: a model of human B cell differentiation, Blood, 1984, 
63, 1424–1433. 



	
  

	
  

82 

42. E. Kimby, Tolerability and safety of rituximab (MabThera®), Cancer Treat. Rev., 
2005, 31, 456–473. 

43. O. W. Press, et al., Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B 
cell lymphomas, Blood, 1987, 69, 584–591. 

44. W. C. Johnson, CD of nucleic acids, In: Circular Dichroism: Principles and 
Applications, Eds.: N. Berova, K. Nakanishi and R. W. Woody, Wiley-VCH, 2000, 
pp 703–718. 

45. D. Shan, J. A. Ledbetter and O. W. Press, Apoptosis of malignant human B cells by 
ligation of CD20 with monoclonal antibodies, Blood, 1998, 91, 1644–1652.	
  

46. H. Ben-Bassat, et al., Establishment in continuous culture of a new type of 
lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.-75), Int. J. 
Cancer, 1977, 19, 27–33.	
  

47. R. N. Johnson, P. Kopečková and J. Kopeček, Synthesis and evaluation of 
multivalent branched HPMA copolymer–Fab' conjugates targeted to the B-cell 
antigen CD20, Bioconjug. Chem., 2009, 20, 129–137. 

48. R. N. Johnson, P. Kopečková and J. Kopeček, Biological activity of anti-CD20 
multivalent HPMA copolymer–Fab' conjugates. Biomacromolecules, 2012, 13, 727–
735. 

49. T.-W. Chu, J. Yang and J. Kopeček, Anti-CD20 multivalent HPMA copolymer–Fab' 
conjugates for the direct induction of apoptosis, Biomaterials, 2012, 33, 7174–7181. 

50. K. Wu, J. Yang, J. Liu and J. Kopeček, Coiled-coil based drug-free macromolecular 
therapeutics: in vivo efficacy, J. Control. Release., 2012, 157, 126–131. 

51. M. Okroj, A. Österborg and A. M. Blom, Effector mechanisms of anti-CD20 
monoclonal antibodies in B cell malignancies, Cancer Treat. Rev., 2013, 39, 632–
639. 

52. D. A. Goodwin and C. F. Meares, Advances in pretargeting biotechnology, 
Biotechnol. Adv., 2001, 19, 435–450. 

53.	
   J. Gunn, S. I. Park, O. Veiseh, O. W. Press and M. A. Zhang, Pretargeted 
nanoparticle system for tumor cell labeling, Mol. Biosyst., 2011, 7, 742–748. 

54. J. Zhou, B. Soontornworajit, M. P. Snipes and Y. Wang, Development of a novel 
pretargeting system with bifunctional nucleic acid molecules, Biochem. Biophys. 
Res. Commun., 2009, 386, 521–525. 

55. N. Zhang, L. A. Khawli, P. Hu and A. L. Epstein, Generation of rituximab polymer 
may cause hyper-cross-linking–induced apoptosis in non-Hodgkin’s lymphomas, 
Clin. Cancer Res., 2005, 11, 5971–5980. 



	
  

	
  

83 

56. S. Herter, et al., Preclinical activity of the type II CD20 antibody GA101 
(obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft 
models, Mol. Cancer Ther., 2013, 12, 2031–2042.	
  

57. J. T. Nguyen, et al., CD45 modulates galectin-1-induced T cell death: regulation by 
expression of core 2 O-glycans, J. Immunol., 2001, 167, 5697–5707. 

58. Z. Gu, J. Yamashiro, E. Kono and R. E. Reiter, Anti-prostate stem cell antigen 
monoclonal antibody 1G8 induces cell death in vitro and inhibits tumor growth in 
vivo via a Fc-independent mechanism, Cancer Res., 2005, 65, 9495–9500. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

84 

 

 

 

Figure 3.1  Self-assembling hybrid nanoconjugates for apoptosis induction. (A) General 

design concept of the therapeutic platform. Two nanoconjugates that self-assemble via 

biorecognition can be administered consecutively as pretargeting and crosslinking doses, 

or premixed to form a multivalent construct and used as a single dose. (B) Apoptosis 

induction of B-cells by crosslinking of the CD20 antigens that is mediated by 

extracellular hybridization of complementary morpholino oligonucleotides (MORF1-

MORF2). 
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Figure 3.2  Synthesis of Fab'-MORF1 and P-MORF2. (A) Scheme of Fab'-MORF1 

synthesis. *SMCC: succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate 

heterobifunctional linker. (B) HPLC analysis of the Fab' fragment (Fab'-SH) of 1F5 mAb 

and the Fab'-MORF1 conjugate; Agilent Zorbax 300SB-C18 column (4.6 x 250 mm) 

eluted with a gradient of buffer A (H2O + 0.1% trifluoroacetic acid v/v) and buffer B 

(acetonitrile + 0.1% trifluoroacetic acid v/v). (C) Scheme of the synthesis of polymer 

precursors (P-TT) and multivalent conjugates (P-MORF2). MA-GG-TT: N-

methacryloylglycylglycine thiazolidine-2-thione (MA-GG-TT). (D) SEC analysis of 

representative P-TT and P-MORF2 (valence = 3); Superose 6 HR10/30 column (acetate 

buffer + 30% acetonitrile v/v). 



	
  

	
  

86 

 

 

Figure 3.3  Characterization of Fab'-MORF1. (A) Size exclusion chromatography (SEC) 

analysis of the Fab' fragment (Fab'-SH) of 1F5 mAb and the Fab'-MORF1 conjugate 

using Sephacryl S-100 HR16/60 column eluted with PBS. The profile of Fab'-MORF1 

demonstrates the process of purification by ÄKTA FPLC – the first peak (eluted at 53 

mL) represents the conjugate (collected during purification); the second peak (eluted at 

70 mL) indicates unconjugated MORF1 (removed). Fab'-MORF1 was characterized by 

an earlier elution volume compared to Fab'-SH (56 mL). (B) MALDI-ToF mass spectrum 

of Fab'-MORF1. The major fraction shows that the molecular weight is about 57.5 kDa 

(Fab': ~48.8 kDa, MORF1: ~8.6 kDa); a small fraction of unconjugated Fab' was 

observed. (C) UV-Vis spectra of the purified Fab'-MORF1, unconjugated MORF1, and 

Fab' fragment. Concentrations of all components were 2.5 µM. The Fab'-MORF1 

conjugate was characterized by a combination of absorbance at 260 nm (contributed by 

MORF1) and 280 nm (contributed by Fab'). 
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Figure 3.4  Characterization of P-MORF2. (A) UV-Vis spectra of the SEC-purified P-

MORF2 conjugate (1 mg/mL), unconjugated MORF2 (2.5 µM), and HPMA polymers (P) 

(1 mg/mL). The multivalent P-MORF2 conjugates were characterized by UV absorbance 

at 260 nm (contributed by MORF2). (B) Physicochemical properties of different P-

MORF2 conjugates and their polymer precursors (P-TT) that were synthesized and used 

in this study. Number average molecular weight (Mn) and polydispersity (Pd) were 

determined by SEC. Number of thiazolidine-2-thione (TT) groups per polymer chain 

(TT/P) was determined by UV absorbance at 305 nm; number of FITC per chain 

(FITC/P) was determined by absorbance at 495 nm; number of MORF2 oligo per chain 

(MORF2/P) was determined by UV absorbance at 260 nm. (C) Size exclusion 

chromatography (SEC) analysis of P-MORF2 #3 and its P-TT polymer precursor by 

ÄKTA FPLC; Superose 6 HR10/30 column (acetate buffer pH 6.5 + 30% acetonitrile 

v/v). The retention limit of this column is about 7 mL. 
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Figure 3.5  In vitro hybridization of Fab'-MORF1 and P-MORF2. (A) Hypochromic 

effect upon hybridization of Fab'-MORF1 and P-MORF2 as analyzed by UV-Vis. The 

optical density (OD) at 260 nm decreased when the two conjugates were mixed (in 

different ratios). (B) Effective hydrodynamic diameters of the two conjugates and their 

mixture (equimolar MORF1/MORF2; tested at different times after mixing) as 

characterized by dynamic light scattering. The valence of P-MORF2 was 3. Statistics, 

unless otherwise indicated, was performed by comparing the mixture with P-MORF2 (* p 

< 0.05; ** p < 0.005; n.s., no significant difference). (C) CD thermal melting curve of the 

hybridized Fab'-MORF1/P-MORF2. The molar ellipticity (θ) at 260 nm underwent a 

sigmoidal decrease as temperature increased. The melting temperature (Tm) resulted 

from fitting the data to a logistic function using nonlinear regression (GraphPad Prism 5 

software). All experiments were performed at physiological conditions (PBS, pH 7.4). 

Data are presented as mean ± SD (n = 3, Student’s t-test). 
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Figure 3.6  CD spectra of free, unconjugated MORFs, the conjugates, and their mixtures. 

All components were dissolved in PBS (pH 7.4) at 50 µM MORF equivalent 

concentration. The y-axis shows molar ellipticity (θ). (A) Free MORF1, MORF2, and the 

equimolar mixture of both. When mixed, an optical signature (maxima at 260 nm, 

minima at 210 nm) indicates that A-form double helixes were formed. (B) Comparison of 

P-MORF2 (valence = 3) with free MORF2. An identical spectrum was observed. (C) 

Comparison of the Fab'-MORF1 conjugate with free Fab' fragment and free MORF1. The 

conjugate appears to have the combined optical signatures of Fab' and MORF1. (D) 

Mixing P-MORF2 with either free MORF1 or Fab'-MORF1 (equimolar MORF1/MORF2 

concentrations) shifted the CD spectrum from that of the single-stranded MORF2 to that 

indicating A-form double-stranded oligos. Such spectral shift suggested that the function 

of MORF1-MORF2 hybridization was preserved after conjugation to Fab' or polymers. 
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Figure 3.7  Analysis of melting temperature (Tm) of the Fab'-MORF1/P-MORF2 

hybridization by CD spectroscopy. (A) CD spectra of the mixture of Fab'-MORF1 (5 µM 

MORF1-eqv.) and P-MORF2/v3 (5 µM MORF2-eqv.; valence = 3) in PBS (pH 7.4) at 

different temperatures. When temperature increased from 25 °C to 60 and 95 °C, the 

positive band at 260 nm underwent a bathochromic shift that produced a peak centered 

around 275 nm. Molar ellipticity (θ) at 260 nm was used in the following thermal melting 

studies. (B) CD thermal melting curve of the hybridized Fab'-MORF1/P-MORF2. A 

sigmoidal decrease of θ at 260 nm was observed as temperature increased. Data are 

presented as mean ± SD (n = 3). These data were fitted to a logistic function to obtain 

Tm; results of nonlinear regression indicated Tm = 60–62 °C. The forward scan 

(increasing temperature) analysis as shown here gave similar results as the reverse scan 

(decreasing temperature; see Figure 3.5C). 
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Figure 3.8  Biorecognition of Fab'-MORF1 and P-MORF2 at the B-cell surface. Confocal 

microscopic images of Raji B-cells (CD20+) exposed to Fab'-MORF1 (labeled with 

rhodamine; red) and P-MORF2 (labeled with FITC; green; valence = 2) are shown. 

Trans: images acquired under transmitted light, R: red channel, G: green channel. (A) 

Cells exposed to only Fab'-MORF1 (0.4 µM) or P-MORF2 (0.4 µM, MORF2 equivalent). 

(B) Cells exposed to the mixture of Fab'-MORF1 (0.4 µM) and P-MORF2 (0.4 µM, 

MORF2 equivalent) (Premixed), or Fab'-MORF1 first, followed 1 h later by P-MORF2 

(Consecutive). (C) Control studies: (left panel) cells exposed to a premixture of Fab'-

MORF1 (0.5 µM) and polymer precursors labeled with FITC (P-FITC; excess amount); 

(right panel) cells exposed consecutively to Fab'-MORF1 (0.5 µM) and P-MORF2 

preblocked by MORF1 (P-dsMORF; excess amount). 
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Figure 3.9  Apoptosis induction of Raji B-cells. Percentage of apoptotic cells were 

analyzed by annexin V/PI binding and quantified by flow cytometry. Incubation time was 

48 h. (A) Untreated: cells in culture medium; mAb + 2° Ab: 1F5 mAb (1 µM) followed (1 

h later) by goat anti-mouse secondary Ab (0.5 µM); Fab'-MORF1: single-component at 1 

µM; P-MORF2: single-component of P-MORF2/v3 at 1 µM (MORF2-eqv.); 

Consecutive: Fab'-MORF1 (1 µM) followed (1 h later) by P-MORF2/v3 (1 µM); 

Premixed: premixture of Fab'-MORF1 (1 µM) and P-MORF2/v3 (1 µM). Statistics, 

unless otherwise indicated, were performed by comparing each group with untreated (*** 

p < 0.0001; n.s., no significant difference). (B) Treatments with different concentrations 

of Fab'-MORF1 (as indicated) and corresponding P-MORF2/v3 (at equimolar 

MORF1/MORF2). ** p < 0.005; n.s., no significant difference. (C) Treatments with 

different valences of P-MORF2 (3 or 10 MORF2 per polymer chain) and different 

MORF1:MORF2 molar ratios (1:1 or 1:10). Cons: consecutive treatment of two 

conjugates; Prem: premixture of two conjugates. Concentration of Fab'-MORF1 was 0.5 

µM. P-MORF2: single-component treatment with P-MORF2/v3 or P-MORF2/v10 at 5 

µM (MORF2 equivalent); mAb + 2° Ab: 1F5 mAb (0.5 µM) followed by goat anti-mouse 

secondary Ab (0.25 µM). Statistics, unless otherwise indicated, were performed by 

comparing each “high-valence” group with the corresponding “low-valence” group (** p 

< 0.005; n.s., no significant difference). All data are presented as mean ± SD (n = 3, 

Student’s t-test). 
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Figure 3.10  Control studies of in vitro apoptosis by annexin V/PI binding assay. (A) 

Apoptosis induction of Raji B-cells (high levels of CD20 expression). Incubation time 

was 48 h. (B) Apoptosis induction of DG75 B-cells (minimal or no CD20 expression). 

Incubation time was as indicated. The following indications apply to both figures – 

Untreated: cells in culture medium; mAb + 2° Ab: 1F5 mAb (0.5 µM) followed (1 h later) 

by goat anti-mouse secondary Ab (0.25 µM); Fab'-MORF1: single-component at 0.5 µM; 

P-MORF2: single-component of P-MORF2/v3 at 0.5 µM (MORF2 equivalent); 

Consecutive: Fab'-MORF1 (0.5 µM) followed (1 h later) by P-MORF2/v3 (0.5 µM 

MORF2-eqv.); Premixed: premixture of Fab'-MORF1 (0.5 µM) and P-MORF2/v3 (0.5 

µM MORF2-eqv.); Fab'-MORF1 + P-TT: premixture of Fab'-MORF1 (0.5 µM) and the 

polymer precursor P-TT #2 (1 mg/mL); Fab'-SH + P-MORF2: premixture of free Fab' 

(0.5 µM) and P-MORF2 (0.5 µM MORF2-eqv.); Fab'-MORF1 + P-dsMORF: 

consecutive treatment (1-h interval) of Fab'-MORF1 (0.5 µM) and “preblocked” P-

MORF2 (~1 mg/mL) whose MORF2 binding sites were blocked by excess free MORF1 

(1 h before treatment); Fab'-dsMORF + P-MORF2: consecutive treatment (1-h interval) 

of “preblocked” Fab'-MORF1 (0.5 µM) whose MORF1 binding sites were blocked by 

excess free MORF2 (1 h before treatment) and P-MORF2 (0.5 µM MORF2-eqv.). 

Apoptotic cells percentage was quantified by flow cytometry. Data are presented as mean 

± SD (n = 3). 
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Figure 3.11  Therapeutic efficacy of the nanomedicine against systemic lymphoma in 

mice. Four million Raji B-cells were injected via tail vein on day 0; incidence of hind-

limb paralysis or survival of mice was monitored until day 125. One-dose treatment on 

day 1; three-dose treatment on days 1, 3, and 5. PBS: mice injected with PBS (n = 8); 

Cons ×1: consecutive treatment of Fab'-MORF1 and P-MORF2/v10, one-dose (n = 7); 

Prem ×1: premixture of Fab'-MORF1 and P-MORF2/v10, one-dose (n = 7); Cons (1:5) 

×1: consecutive treatment, MORF1:MORF2 = 1:5, one-dose (n = 6); Cons ×3: three 

doses of consecutive treatment (n = 7); Prem ×3: three doses of premixture (n = 7); 1F5 

mAb ×3: three doses of 1F5 mAb (n = 7). The paralysis-free survival of mice is presented 

in a Kaplan-Meier plot. Numbers of long-term survivors in each group are indicated (if 

any). Statistics were performed with log-rank test (* p < 0.05; *** p < 0.0001; n.s., no 

significant difference). 
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Figure 3.12  Eradication of Raji cells in mice. Mice i.v. injected with 4 × 106 Raji B-cells 

on day 0 were exposed to different treatments – PBS: mice injected with PBS; Cons ×3: 

consecutive treatment of Fab'-MORF1 and P-MORF2/v10 on days 1, 3 and 5; Prem ×3: 

three doses of the premixture of Fab'-MORF1 and P-MORF2/v10 on days 1, 3 and 5. (A) 

Postcontrast T1-weighted sagittal MRI focusing on the lumbar spine of mice. A 

heterogeneous appearance and irregularly shaped masses indicating tumor nodules (red 

arrows) were observed in the spinal cord of control mice (PBS, n = 4), but not in the 

treated mice (Cons ×3 and Prem ×3, n = 4). (B) Flow cytometry analysis of residual Raji 

cells in the bone marrow (BM) of the PBS-treated, paralyzed mice (PBS) and the 

nanomedicine-treated, surviving mice (Cons ×3, Prem ×3). Bone marrow cells isolated 

from the femur of mice and Raji cells from culture flasks (upper right panel) were stained 

with PE-labeled mouse anti-human CD10 and APC-labeled mouse anti-human CD19 

antibodies. (C) Quantitative comparison of % Raji cells (human CD10+ CD19+) in the 

bone marrow of control mice (PBS, n = 6) and the nanomedicine-treated mice (Cons ×3 

and Prem ×3, n = 7 per group) as analyzed by flow cytometry. Each data point represents 

an individual mouse; mean % is indicated. Statistics were performed by Student’s t-test 

of unpaired samples (* p < 0.05). 
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Figure 3.13  Flow cytometry analysis of residual Raji B-cells in different organs/tissues. 

(A) Cells isolated from the inguinal and mesenteric lymph nodes (LN) of mice. (B) Cells 

isolated from the spinal cord (SC) of mice. These cells were stained with PE mouse anti-

human CD10 and APC mouse anti-human CD19 antibodies; upper right quadrant (CD10+ 

CD19+) represents Raji cells. Results indicated that the PBS-treated, paralyzed mice 

(PBS) bore Raji cells in both LN (n = 6) and SC (n = 3), while the long-term survivors in 

the therapy groups (Cons ×3, Prem ×3) were tumor free (n = 6 per group). 
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Figure 3.14  Histopathological examination. (A) Control mice that were injected with 

Raji cells and treated with PBS developed metastatic tumors in the liver (2 mice found 

with tumors/4 mice examined), lung (3/4), and brain (1/4), as demonstrated by invasion 

of monomorphic lymphoma cells (red asterisks) and disruption of normal tissue 

architecture. (B) Three doses of the consecutive treatment of Fab'-MORF1 and P-

MORF2 (Cons ×3) resulted in no evidence of lymphoma invasion (0/3, for all organs). 

(C) Three doses of the premixed treatment (Prem ×3) prevented lymphoma dissemination 

(0/3, for all organs). Hematoxylin and eosin (H&E)-stained tissue specimens were 

examined by a blinded veterinary pathologist. No toxicity of the treatment was suggested 

in any of the organs evaluated. 
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Table 3.1  Comparison of anti-B-NHL efficacies (coiled-coil vs. morpholino). 

In Vitro – Apoptotic Index* 

 CCE/CCK MORF1/MORF2 

Consecutive 
(1 µM, valence=9) (0.5 µM, valence=3) (1 µM, valence=3) (0.5 µM, valence=9) 

12% 23% 37% 50% 

Premixed 
(1 µM, valence=9) (0.5 µM, valence=3) (1 µM, valence=3) (0.5 µM, valence=9) 

16% 17% 39% 43% 

In Vivo – Median Survival Time† 

 CCE/CCK MORF1/MORF2 

Consecutive 
(1 nmol, 1:25) (1 nmol, 1:1) 

50 days 81 days 

Premixed 
(1 nmol, 1:25) (1 nmol, 1:1) 

55 days 78 days 

*Apoptotic index (%) of Raji cells assessed by annexin V assay. Concentrations of Fab' and 
valences of polymer conjugates are listed; comparison at time intervals corresponding to 
maximum apoptosis. 
† Median survival (day) of mice bearing systemic B-cell lymphoma and exposed to different 
treatments. 
 

 



	
  

	
  

CHAPTER 4 
 
 
 

A TWO-STEP PRETARGETED NANOTHERAPY FOR CD20 

CROSSLINKING MAY ACHIEVE SUPERIOR ANTI- 

LYMPHOMA EFFICACY TO RITUXIMAB1 
 
 
 

 The use of rituximab, an anti-CD20 mAb, in combination with chemotherapy is 

the current standard for the treatment of B-cell lymphomas. However, because of a 

significant number of treatment failures, there is a demand for new, improved 

therapeutics. We designed a nanomedicine that crosslinks CD20 and directly induces 

apoptosis of B-cells without the need for toxins or immune effector functions. The 

therapeutic system comprises a pretargeting component (anti-CD20 Fab' conjugated with 

an oligonucleotide1) and a crosslinking component (HPMA copolymer grafted with 

multiple complementary oligonucleotide2). Consecutive treatment with the two 

components resulted in CD20 clustering on the cell surface and effectively killed 

malignant B-cells in vivo. Here, to enhance therapeutic efficacy, a two-step pretargeting 

approach is employed. We show that the time lag between the two doses can be 

optimized based on pharmacokinetics and biodistribution of the Fab'-oligonucleotide1 

conjugate. In a mouse model of human non-Hodgkin lymphoma (NHL), increasing the

1This chapter is adapted from the following publication: T.-W. Chu, R. Zhang, J. Yang, M. P. Chao,     
P. J. Shami and J. Kopeček. A two-step pretargeted nanotherapy for CD20 crosslinking may achieve 
superior anti-lymphoma efficacy to rituximab. Theranostics. 2015; 5(8): 834–846. Ivyspring. 
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time lag from 1 h to 5 h resulted in dramatically improved tumor growth inhibition and 

animal survival. When the 5 h interval was used, the nanotherapy was more efficacious 

than rituximab and led to complete eradication of lymphoma cells with no signs of 

metastasis or disease recurrence. We further evaluated the nanomedicine using patient 

mantle cell lymphoma cells; the treatment demonstrated more potent apoptosis-inducing 

activity than rituximab hyper-crosslinked with secondary antibodies. In summary, our 

approach may constitute a novel treatment for NHL and other B-cell malignancies with 

significant advantages over conventional chemo-immunotherapy. 

 

4.1 Background 

 Non-Hodgkin lymphoma (NHL) is a prevalent cancer with an around 70,000 

projected new cases in 2014 in the United States.1 Approximately 85% of NHLs arise 

from B-lymphocytes, and the rest are of T-cell origin. Rituximab, an anti-CD20 

monoclonal antibody (mAb), was approved in 1997 for the treatment of B-cell NHL and 

remains one of the best-characterized antibodies in cancer immunotherapy.2 The current 

standard for the treatment of most B-cell NHLs is rituximab in combination with 

chemotherapy. However, in spite of significant success with this approach, primary 

resistance and relapse remain a problem.3 This has been attributed to the inability of 

immune effector cells to hyper-crosslink ligated mAbs,4,5 and Fc receptor (FcR)-mediated 

endocytosis6 or “trogocytosis”7 of CD20 antigens. These clinical problems warrant the 

development of new, improved therapeutic strategies. 

 CD20 is one of the most reliable biomarkers of B-lymphocytes. It is a 

noninternalizing8 or slowly internalizing9,10 receptor, highly expressed on the surfaces of 
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most malignant B-cells, as well as normal B-cells. However, CD20 is not expressed on 

stem cells and mature plasma cells.11 Consequently, therapeutics targeting CD20 are safe 

because normal B-cells can be restored after treatment. It is a well-established fact that 

crosslinking of CD20 at the surface of B-cells induces apoptosis.12 One widely accepted 

model suggests that when CD20-bound antibodies are hyper-crosslinked by FcR-

expressing immune effector cells (e.g., macrophages, natural killer cells), the clustered 

CD20 tend to redistribute at the cell surface and become localized to lipid rafts.13 Such 

events mediate the interaction of CD20 with Src-family kinases that are also located in 

lipid rafts, and trigger apoptotic signaling.14 Without hyper-crosslinking, apoptosis 

initiated by ligated mAbs is very limited.15 

 Based on the above-mentioned mechanism, we designed a biomimetic therapeutic 

system (Figure 4.1) that crosslinks CD20 and directly induces apoptosis of lymphoma B-

cells without the need for chemotherapeutic agents, toxins or immune effector functions. 

The therapeutic system is composed of two macromolecular conjugates: (1) Fab'-

MORF1: anti-CD20 Fab' attached to a morpholino oligonucleotide, MORF1, and (2) P-

MORF2: a linear N-(2-hydroxypropyl)methacrylamide (HPMA) polymer (P) backbone 

grafted with multiple copies of the complementary oligonucleotide, MORF2. We have 

previously shown that exposure of the human NHL B-cell line Raji to the first conjugate 

(Fab'-MORF1) decorated the cell surface with MORF1 via CD20 binding; further 

treatment of the cells with the second conjugate (P-MORF2) resulted in MORF1/MORF2 

hybridization at the cell surface, which mediated CD20 crosslinking and induced 

apoptosis in vitro and in vivo.16 We named the designed platform “drug-free 

macromolecular therapeutics” because it does not contain small-molecule cytotoxic 
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compounds (e.g., chemotherapeutics) and the individual components do not have 

apoptosis-inducing activity.17,18 This new therapeutic approach aims to selectively target 

B-cells for direct apoptosis induction. It has the potential to improve outcomes currently 

obtained with conventional chemo-immunotherapy. 

 A significant advantage of the designed “two-step” therapeutics (i.e., consecutive 

administration of Fab'-MORF1 followed by P-MORF2) is the opportunity of 

pretargeting. Pretargeting is an approach used in cancer radio-immunotherapy, by which 

targeting functionality and therapeutic modalities are separated in order to achieve 

desirable pharmacokinetic (PK) goals and reduce adverse side reactions.19 With the help 

of modern nanotechnology, the concept of pretargeting has been expanded in recent years 

and applied in such strategies as amplified therapeutic delivery20 and universal targeting 

of different tumor ligands.21 In the work presented here, Fab'-MORF1 and P-MORF2 are 

used as a pretargeting dose and a crosslinking dose (effector), respectively. We 

hypothesized that the time lag between the two doses could be optimized based on PK 

and biodistribution of the first dose (Fab'-MORF1), in order to achieve maximal tumor-

to-tissue accumulation in individual patients. This approach would enable more efficient 

treatment and limit potential side effects associated with off-target binding. 

 In this chapter, we show the development and preclinical evaluation of drug-free 

macromolecular therapeutics for B-cell lymphomas. In vivo therapeutic efficacy was 

evaluated in mice using a luciferase-based imageable model of human B-cell NHL. The 

two-step pretargeting approach was employed where the time lag was optimized after 

determining the PK and biodistribution of Fab'-MORF1. The designed therapeutic system 

was compared with rituximab in mouse xenografts and against patient NHL cells in order 
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to test its potential for clinical translation. 

 

4.2 Materials and Methods 

4.2.1 Preparation of Fab'-MORF1 and P-MORF2 

 A pair of 25 bp morpholino oligonucleotides (MORF1 and MORF2) with 3' 

primary amine modification was purchased from Gene Tools. MORF1 was modified with 

succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) and then 

conjugated to the Fab' fragment of the 1F5 mAb (IgG2a) via thiol-ene reaction. The 

second conjugate was obtained in two steps: The polymeric precursor was first 

synthesized by reversible addition-fragmentation chain transfer (RAFT) 

copolymerization of HPMA and N-methacryloylglycylglycine thiazolidine-2-thione 

(MA-GG-TT). Then, the complementary MORF2 was grafted to the copolymer backbone 

via amide linkage. Both conjugates were purified by size exclusion chromatography.16 

For detailed procedures, see Chapter 3, Subsections 3.2.1 and 3.2.2. 

 

4.2.2 Cell Lines 

 Burkitt’s B-lymphoma cell line Raji was purchased from the American Type 

Culture Collection (ATCC). ATCC confirmed this line tested positive for the presence of 

Epstein Barr viral DNA sequences via PCR. Luciferase-expressing Raji cell line (Raji-

luc) was generated as previously described.22 Raji-luc harbors a dual reporter gene L2G 

(Luc-2A-eGFP) containing a modified firefly luciferase gene joined to eGFP at the 3' 

end. The L2G construct was ligated into the pCDH-CMV-MCS lentiviral cDNA 

expression vector (System Biosciences). 
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4.2.3 Confocal Fluorescence Microscopy 

 Raji cell line was cultured in RPMI-1640 medium (Sigma) supplemented with 

10% fetal bovine serum (HyClone) at 37 °C in a humidified atmosphere with 5% CO2 

(v/v). Experiments were performed using cells in exponential growth phase. Cells at a 

density of 105 per well were incubated with 0.5 mL rhodamine-labeled Fab'-MORF1 (1 

µM) in culture medium at 37 °C for 1 h; then, the cells were washed twice with PBS prior 

to incubation with 0.5 mL of FITC-labeled P-MORF2 (1 µM, MORF2 equivalent) or 

FITC-labeled P-scMORF2 (1 or 5 µM, MORF eqv.) for another 1 h. Conjugates P-

MORF2 and P-scMORF2 were prepared from the same polymer backbone and had a 

similar valence (~5 oligos/chain). After the incubation, cells were washed twice with 

PBS, and plated onto sterile 35-mm glass bottom dishes with 14-mm microwells (MatTek 

Corporation) for imaging. An Olympus laser scanning confocal microscope (FV 1000) 

was used. Please note that all other experiments (except confocal microscopy) were 

performed with P-MORF2 containing 9 oligonucleotides/chain. For the CD20 

preblocking control studies, all conditions were kept the same, except that the cells were 

pretreated for 1 h with excess amounts of a mouse anti-human CD20 mAb, 1F5.23 

 

4.2.4 Pharmacokinetics and Biodistribution Studies 

4.2.4.1 Radiolabeling of Fab'-MORF1 

 Iodine-125 labeling of the Fab'-MORF1 conjugate was performed immediately 

before use. Na125I (PerkinElmer) was reacted with Fab'-MORF1 in 10 mM PBS (pH 7.4) 

in a precoated iodination tube (Thermo Scientific). The reaction mixture was gently 

stirred at room temperature for 10 min, followed by purification with a Sephadex PD-10 
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column (GE Healthcare) and then a Millipore® ultrafiltration tube (30 kDa cut-off). The 

specific radioactivity of the hot samples was in the range of 1.6–2.2 mCi/mg. 

 

4.2.4.2 Pharmacokinetics 

 Female C.B-17 SCID mice (6- to 8-week-old; 18–20 g; Charles River 

Laboratories) were used in all the following animal experiments in this chapter. Mice (n 

= 5) were intravenously injected with 125I-labeled Fab'-MORF1 (20 µCi per mouse; 1 

nmol Fab' equivalent; 58 µg). At predetermined time intervals, 10 µL blood samples were 

collected from tail vein, and the radioactivity of each sample was measured with a 

Gamma Counter (Packard). The blood pharmacokinetic parameters were analyzed using 

a two-compartment model with WinNonlin 5.0.1 software (Pharsight). 

 

4.2.4.3 Biodistribution 

 Mice were intravenously injected with 4 × 106 Raji cells (in 200 µL PBS) via the 

tail vein. At day 1 or 7 postinoculation, mice were i.v. administered with 125I-Fab'-

MORF1 (20 µCi; 58 µg). Healthy mice (without Raji cells injected) were also given the 

same dose of 125I-Fab'-MORF1 as controls. At 1 h or 5 h postadministration of 

conjugates, mice (n = 4 per group) were sacrificed. Various organs and tissues were 

harvested, weighed, and counted for radioactivity with a Gamma Counter. Uptake of 

conjugates was calculated as the percentage of the injected dose per gram of organs or 

tissues (% ID/g). 
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4.2.5 Fluorescence Molecular Tomography (FMT) Imaging 

 Raji cells were stained with 10 µM DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethyl 

indotricarbocyanine iodide) (PerkinElmer) at 37 °C for 20 min. Following staining, cells 

were washed twice with cold PBS. Four million DiR-labeled Raji cells (in 200 µL PBS; 

used immediately after stained) were injected into mice (n = 4) via the tail vein. At 24 h 

postinoculation, the mice were sacrificed, and various organs and tissues were harvested. 

The fluorescence signals of these organs and tissues were measured using an FMT 

camera (PerkinElmer) equipped with a 745 nm laser. Total signal intensities 

(count/energy) of each organ or tissue were quantified. Healthy mice (without tumor) 

were used as controls (n = 4). 

 

4.2.6 In Vivo Anti-Lymphoma Efficacy Study 

 Mice were injected via the tail vein with 4 × 106 Raji-luc cells. One week later, 

the inoculated mice were divided into groups (n = 6 or 7) and administered via the tail 

vein with three doses of different treatments (in 100 µL PBS) every other day. These 

treatments were: (1) PBS (100 µL), (2) Rituxan® (Genentech/Biogen Idec; 75 µg/20 g), 

(3) 1F5 mAb (75 µg/20 g), (4) Fab'-MORF1 (58 µg/20 g; 1 nmol MORF1) followed by 

P-MORF2 (119 µg/20 g; 5 nmol MORF2), 1 h interval, and (5) same as (4) but with 5 h 

interval. Mice were sacrificed at the onset of paralysis or when the body weight dropped 

below 80% of the baseline; otherwise, the mice were maintained until 125 days and 

considered long-term survivors. 
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4.2.7 Bioluminescence Imaging 

 Imaging of luciferase-expressing Raji lymphoma was performed in vivo and ex 

vivo, as previously described.22 Female C.B-17 SCID mice (6- to 8-week-old; 18–20 g; 

Charles River Laboratories) were intravenously engrafted with 4 × 106 Raji-luc cells via 

the tail vein and underwent different treatments as above-mentioned. In vivo imaging was 

performed twice per week on weeks 1–4 and once per week on weeks 5–7. Mice were 

anesthetized with 2% (v/v) isoflurane gas (IsoFlo®, Abbott Laboratories) in oxygen from 

a precision vaporizer and intraperitoneally injected with 3 mg firefly D-luciferin 

(Biosynth). At 15 min postinjection of luciferin (a predetermined time interval, with 

maximal luciferase signal intensity), mice were scanned in the prone position. Xenogen 

IVIS® Spectrum (Perkin Elmer) was used, with 1 min exposure time, medium binning, 

and 1 f/stop. Images were acquired and analyzed under the Living Image® (Perkin Elmer) 

software environment. Region of interest (ROI) was selected by drawing contours to 

include the whole mice. Luciferase light unit was quantified in average radiance 

(photons/sec/cm2/sr). For ex vivo analysis, mice were injected with 3 mg luciferin 12 min 

prior to being sacrificed. Various organs and tissues (heart, liver, spleen, kidney, lung, 

intestine, stomach, muscle, brain, spinal cord, femur, tibia, and mesenteric and inguinal 

lymph nodes) were harvested for imaging. Acquisition parameters were as follows: 1 min 

exposure time, small binning, and 1 f/stop. 

 

4.2.8 Microcomputed Tomography (MicroCT) Imaging 

 In vivo microCT imaging of mice was performed on week 10 after tumor 

implantation. Mice were anesthetized with 2% (v/v) isoflurane gas in oxygen and 
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positioned left lateral on the scanner bed. The hind limbs of mice were scanned using a 

high-resolution microCT Quantum FX system (Perkin Elmer) at 90 keV and 160 mA, 

with a field of vision (FOV) of 24 mm. The acquisition time was 4.5 min. Three-

dimensional (3D) reconstruction of bone architecture was performed under a Quantum 

FX viewer 1.3.0 software environment (Perkin Elmer). All above animal experiments 

were performed according to the protocol approved by the Institutional Animal Care and 

Use Committee (IACUC) of the University of Utah. 

 

4.2.9 Flow Cytometry Analysis of Femoral Bone Marrow Cells 

 After mice were sacrificed, fresh femurs (from both hind limbs) were purged with 

1 mL PBS to obtain bone marrow cells. The suspension was passed through a 70-µm 

FalconTM cell strainer (BD Biosciences), followed by centrifugation (200 g, 5 min) and 

resuspension in 5 mL red blood cell lysis buffer. The suspension was incubated at room 

temperature for 5 min and washed/resuspended in cold PBS. Allophycocyanin (APC)-

labeled mouse anti-human CD19 antibody (IgG1, κ isotype; BD Biosciences) (10 µL) 

was added to 100 µL single-cell suspension containing about 106 cells.24 Cells were 

incubated for 45 min at 4 °C in the dark, and washed with 1.5 mL PBS prior to analysis. 

For flow cytometry, data of 5 × 105 cells were recorded. 

 

4.2.10 Patient Samples Analysis and Apoptosis Assay 

 Leukocytes were isolated from four previously untreated mantle cell lymphoma 

(MCL) patients following ammonium chloride lysis. Two isolates were from lymph node 

biopsies (patients 1 and 2) and two were from the peripheral blood (patients 3 and 4). The 
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isolated cells harbor the t(11;14) chromosomal translocation, a typical MCL phenotype. 

Specimens were collected after informed consent under a protocol approved by the 

University of Utah Institutional Review Board. Primary cells (2 × 105) were suspended in 

0.4 mL RPMI-1640 medium (Sigma) supplemented with 10% fetal bovine serum 

(Hyclone) and treated consecutively (1 h or 5 h interval) with Fab'-MORF1 and P-

MORF2 (at equimolar MORF1/MORF2 concentrations). Untreated cells in the culture 

medium were used as negative controls. For positive controls, cells were treated 

consecutively (identical time intervals) with anti-CD20 mAbs (1F5 or rituximab) and a 

goat anti-mouse secondary antibody (KPL) (molar ratio mAb:2°Ab = 2:1). Incubation 

was carried out for 24 h at 37 °C in a humidified atmosphere with 5% CO2. All 

experiments were conducted in duplicate or triplicate wells. After treatments, cells were 

washed twice with PBS prior to staining by propidium iodide (PI) and FITC-labeled 

annexin V. Staining was performed following the RAPIDTM protocol provided by the 

manufacturer (Oncogene Research Products). Percentage of total apoptotic cells (annexin 

V+ PI+ + annexin V+ PI-) was quantified by flow cytometry where data of 104 cells were 

recorded. 

 

4.2.11 Statistical Analysis 

 Statistics were performed by Student’s t-test to compare two groups, or one-way 

analysis of variance (ANOVA) to compare three or more groups (with p value < 0.05 

indicating statistical significance). Animal survival analysis was performed with the log-

rank test using the GraphPad Prism 5 software. 
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4.3 Results 

4.3.1 Conjugates Fab'-MORF1 and P-MORF2 were Successfully 

Synthesized 

 The morpholino oligonucleotide pair, MORF1 and MORF2 (Figure 4.1), were 25 

bp and both about 8.5 kDa. Their base sequences were designed to achieve optimal 

binding and solubility, and to avoid self-complementarity and off-target binding with 

human and murine mRNA.16 The 3'-primary amine was used for conjugation to Fab' or 

the polymer backbone. The Fab' fragment was from a mouse anti-human CD20 mAb, 

1F5.23 MORF1 was tethered to the terminal thiol of Fab' via a thioether bond. This site-

specific conjugation would prevent undesirable impact on antigen binding. The coupling 

reaction followed a 1:1 stoichiometry; molecular weight of the conjugate was 57.5 kDa 

(see Chapter 3, Subsection 3.3.2). The hydrodynamic effective diameter of Fab'-MORF1 

was 9 nm, as characterized by dynamic light scattering (Figure 4.2). 

 To prepare the multivalent P-MORF2 conjugate, we first synthesized a copolymer 

of HPMA with MA-GG-TT by RAFT polymerization.25 The copolymer contained 

multiple side chains terminated in (amine-reactive) thiazolidine-2-thione groups and 

possessed a narrow distribution of molecular weights as determined by size exclusion 

chromatography (number average molecular weight, Mn = 136 kDa; polydispersity, Pd = 

1.15). Then, the MORF2 oligonucleotides (containing a 3'-primary amine) were attached 

to the HPMA copolymer side chains via amide bonds. The valence (i.e., number of 

oligonucleotide grafts per polymer chain) of the P-MORF2 was 9. The hydrodynamic 

effective diameter of P-MORF2 was about 19 nm (Figure 4.2). 
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4.3.2 Fab'-MORF1 and P-MORF2 Self-Assembled on the Surface 

of NHL B-Cells 

 We have previously shown that the MORF1–MORF2 hybridization was fast (< 10 

min) and stable (Tm = 59 °C) after conjugation to Fab' and the polymer.16 When the two 

conjugates were mixed at equimolar MORF1/MORF2 concentration, a near 100% 

binding between Fab'-MORF1 and P-MORF2 was observed (Figure 4.3). This indicated 

highly efficient in vitro self-assembly of the two conjugates. We further determined the 

cell surface biorecognition of the two conjugates by confocal microscopy (Figure 4.4). In 

these experiments, Fab'-MORF1 was labeled with rhodamine (red), and P-MORF2 was 

labeled with FITC (green). Results showed that Fab'-MORF1 successfully decorated the 

surfaces of Raji cells (a human NHL B-cell line) via CD20 binding (Figure 4.4A). 

Preblocking of the CD20 receptors at cell surfaces with an excess amount of 1F5 mAb 

resulted in no red signal decoration after the Fab'-MORF1 treatment. Furthermore, 

consecutive exposure of Raji cells to Fab'-MORF1 followed by P-MORF2 led to both the 

red and green signal decoration at the cell surface (Figure 4.4B). This was mediated by 

the MORF1/MORF2 hybridization, as confirmed by controls using an HPMA copolymer 

labeled with FITC and grafted with multiple copies of a scrambled sequence of MORF2 

(scMORF2). The polymer (P)–scMORF2 control conjugate, even in excess amounts, 

failed to bind to the surfaces of the MORF1-decorated B-cells, due to absence of the 

biorecognition pair. These data suggested that Fab'-MORF1 and P-MORF2 self-assemble 

on the surfaces of lymphoma B-cells with high functional specificity. 
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4.3.3 PK and Biodistribution Suggested an Optimal Time Lag of 5 

Hours for Efficient Tumor Pretargeting 

 We planned to employ the two-step pretargeting strategy in the in vivo therapy 

experiments. Therefore, we analyzed the PK and biodistribution of the pretargeting dose, 

Fab'-MORF1, in order to determine the optimal time lag. The blood radioactivity versus 

time profile of the 125I-labeled Fab'-MORF1 conjugate in mice is illustrated in Figure 

4.5A, and the PK parameters are summarized in Figure 4.5B. Results showed that Fab'-

MORF1 had a terminal plasma half-life of about 5 h, which was longer than the half-lives 

of other Fab' fragments of IgG antibodies.26 This was possibly due to the attachment of 

MORF1 since the PK of antibody fragments without Fc is molecular weight (MW)-

dependent.27 Importantly, at about 5 h after intravenous injection, Fab'-MORF1 reached a 

plateau or steady blood concentration, indicating a suitable timing for P-MORF2 

administration. At that point, most Fab'-MORF1 were cleared from the blood or 

distributed to tumors and tissues. Consequently, at this time point there were minimal 

free conjugates in the blood (unbound to B-cells) that would interfere with the 

hybridization when P-MORF2 is administered. Based on this result, we hypothesized 

that, by using a time lag of 5 h, the pretargeting and second-step targeting can be more 

effective, and the therapeutic efficacy of drug-free macromolecular therapeutics can be 

improved over our previous experimental conditions that used a 1 h interval.16 

 To further support this hypothesis, we compared the biodistribution of Fab'-

MORF1 at 1 h and 5 h (Figure 4.5C). The studies were performed in healthy SCID mice 

(no tumor), as well as SCID mice bearing systemically injected Raji B-cells (tumor). We 

first used fluorescence molecular tomography (FMT) imaging to determine the “hot 
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spots” of Raji lymphoma dissemination (Figure 4.5D); tumors were found abundantly in 

the tibiae, femora, spine, and lymph nodes, which is in agreement with previous reports.28 

Results of biodistribution showed that 5 h after intravenous injection, Fab'-MORF1 

indeed had a better tumor pretargeting efficiency when compared to 1 h postinjection. As 

shown in Figure 4.5C, at 5 h, significantly more conjugates were found in the tibiae, 

femora, and lymph nodes of the tumor-engrafted mice, when compared to 1 h 

postinjection. These organs with substantially more uptake of Fab'-MORF1 matched with 

the Raji lymphoma tumor sites (as determined by FMT; Figure 4.5D). Furthermore, in 

order to define tumor-specific uptake of Fab'-MORF1 (Figure 4.5E), the mean 

radioactivity (125I) in each organ of healthy mice (no tumor; background) was subtracted 

from the radioactivity of corresponding organs of the tumor-bearing mice. The increase 

from the background indicated tumor-specific uptake of the conjugates. This analysis 

suggested significantly more Fab'-MORF1 tumor uptake at 5 h, when compared to 1 h. 

Differences were statistically significant (5 h vs. 1 h) for all lymphoma hot spots (tibia, 

femur, spine, and lymph node) (p < 0.05), but not for organs without tumors (e.g., brain, 

muscle, and intestine). These data confirmed that, in this animal model, an optimal time 

lag of 5 h was suitable for tumor pretargeting of Fab'-MORF1. 

 Interestingly, we observed less accumulation of Fab'-MORF1 at 5 h (vs. 1 h) in 

several major organs, including the liver, kidneys, and lungs (Figure 4.5C), suggesting a 

lower chance of off-target binding after the administration of P-MORF2 (effector). This 

observation further strengthens the rationale of using 5 h as an optimal time lag. The 

biodistribution results were concordant with the PK data, which confirmed significant 

blood clearance of Fab'-MORF1 conjugates from 1 h (~18% ID/g) to 5 h (~5% ID/g for 
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healthy mice). In addition, at 5 h, mice bearing tumors had more conjugates in the blood 

(~10% ID/g) when compared to mice without tumors (~5% ID/g). This phenomenon 

likely resulted from Fab'-MORF1 targeting to the circulating lymphoma B-cells in the 

blood. The biodistribution study was performed on day 7 after tumor inoculation of mice; 

similar trends were also observed at day 1 after tumor inoculation. However, the tumor 

pretargeting efficiency was apparently better on day 7 (Figure 4.5C) when compared to 

day 1, presumably due to more pronounced tumor dissemination and infiltration on day 7. 

 

4.3.4 Pretargeted Nanotherapeutics Showed In Vivo Anti-Lymphoma 

Efficacy that is Superior to Rituximab 

 We used an imageable mouse model of systemically disseminated human B-cell 

lymphoma for preclinical evaluation of drug-free macromolecular therapeutics (Figure 

4.6). Luciferase-labeled Raji cells (Raji-luc) were engrafted intravenously into adult 

SCID mice, which have functional macrophages, natural killer cells and complement. 

One week after tumor inoculation, mice were administered three doses of different 

treatments every other day. Administration time and doses were based on a preliminary 

experiment (Figure 4.7) and our previous studies.16,29 In this animal model, the hind-limb 

paralysis-free survival time reflects the therapeutic efficacy.28–30 Luciferase imaging can 

be performed in vivo to determine tumor engraftment, dissemination, and 

growth/inhibition.22 Here, we employed the two-step pretargeting strategy where Fab'-

MORF1 and P-MORF2 were administered (via the tail vein) consecutively, using 1 h or 5 

h as an interval. These two nanomedicine groups (Cons 1h, Cons 5h) were compared 

side-by-side with the immunotherapy control (1F5 mAb) and a clinically used anti-CD20 
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mAb, rituximab. The animal survival curve is shown in Figure 4.6A. Data showed that 

mice in the placebo group (PBS) rapidly developed hind-limb paralysis within 4 weeks 

after tumor injection; the median survival time was 25 days (0% survival). The designed 

nanomedicine using the 1 h interval (Cons 1h) substantially prolonged animal survival, 

resulting in a median survival of 55 days (14% survival; p = 0.003 compared to PBS). 

The therapeutic efficacy of Cons 1h was comparable to a Fab'-equivalent dose of 

rituximab, which had a median survival of 72 days (17% survival; p = 0.772 compared to 

Cons 1h). Importantly, when the 5 h interval (previously optimized time lag) was used, 

the nanomedicine achieved a significantly improved anticancer efficacy over the 1 h 

treatment (p = 0.008). This optimized treatment regimen (Cons 5h) produced an 83% 

animal survival, which was comparable to the immunotherapy control (1F5 mAb; p = 

0.317) and was significantly better than rituximab (p = 0.009). 

 The in vivo tumor imaging studies (Figures 4.6B and 4.6C) were in agreement 

with the animal survival. Bioluminescent images of mice (on day 25) are shown in Figure 

4.6B. These images demonstrate B-cell lymphoma dissemination in various organs, 

including the spine, femora and tibiae. Furthermore, whole-body bioluminescent 

intensities of mice were quantified to compare groups; the averaged tumor signal versus 

time profiles are illustrated in Figure 4.6C. The negative control mice (PBS) showed a 

rapid progression of tumor burden after 10 days. At day 25, the luciferase signals in the 

PBS group reached saturation. Our drug-free nanotherapeutic using the 1 h interval (Cons 

1h) had a moderate effect of tumor inhibition, which was comparable to rituximab. The 

progression of lymphoma in these two groups (Cons 1h, Rituximab) was significantly 

delayed when compared to the placebo group. When the 5 h interval was used, the 
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nanomedicine (Cons 5h) showed a substantial improvement over the 1 h treatment, 

leading to complete elimination of tumor load in 5 (out of 6) animals. At day 49, the 

average luciferase signal of Cons 5h was similar to the background and was significantly 

lower than Cons 1h (p = 0.004). Although there is no difference between Cons 5h and 

1F5 mAb in tumor inhibition and animal survival, the anti-lymphoma efficacy of the 

designed nanotherapeutic, unlike mAbs, is independent of immune effector mechanisms, 

such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent 

cytotoxicity (CDC),31 and is a direct result of only apoptosis. 

     We also performed three-dimensional microcomputed tomography (3D microCT) 

imaging on the mice that bore Raji-luc lymphoma xenografts and underwent different 

treatments (Figure 4.8). These images were focused on the lumbar spine and hind limbs 

(hot-spots of B-cell NHL metastasis). Results revealed extensive bone destruction in the 

rituximab-treated mice and moderate bone lesions in the mice administered drug-free 

nanotherapeutics using the 1 h interval (Cons 1h). Observed bone heterogeneity was 

extensive in the femur, and in some cases, the proximal tibia (close to the knee joint), 

indicating abnormal osteoclast activation (bone remodeling) stimulated by lymphoma 

metastases.32 However, no signs of bone remodeling were found in mice treated with 

Cons 5h. Taken together, superior anti-lymphoma efficacy was achieved using the 5 h 

interval treatment, when compared to the 1 h treatment and rituximab. These results 

validate our hypothesis that 5 h is optimal for efficient pretargeting/2nd-step targeting in 

drug-free macromolecular therapeutics. 
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4.3.5 Optimized Nanotherapy Completely Eradicates Lymphoma Cells 

in 83% of Mice 

 Ex vivo luciferase imaging was performed to examine tumors in multiple organs 

and tissues (Figure 4.9A). Results were concordant with in vivo imaging and showed that 

Raji-luc lymphoma cells readily infiltrated in the femora, tibiae and lymph nodes of the 

negative control mice (PBS). Extensive infiltration of the spinal cord was also seen in the 

control animals, likely accounting for the occurrence of hind-limb paralysis.28 However, 

most of the surviving mice (5 out 6) that were treated with the nanomedicine using a 5 h 

interval (Cons 5h) were completely tumor-free. Furthermore, we used flow cytometry to 

quantitatively analyze residual lymphoma B-cells in the femoral bone marrow (BM) of 

mice (Figures 4.9B and 4.9C). Raji-luc cells harbor a dual reporter expressing both 

luciferase and green fluorescence protein (GFP).22 We additionally stained the cells with 

an anti-human CD19 antibody24 and analyzed the percentage of GFP+ CD19+ cells. 

Results showed that the negative control mice (PBS) harbored substantial amounts of 

Raji-luc cells in the bone marrow (average 6.4%). The mice treated with the 

nanomedicine using a 1 h interval (Cons 1h) demonstrated significant improvement 

(average 2.7%). In the group that was treated using optimized treatment conditions (Cons 

5h), all mice, including 5 long-term survivors and 1 animal sacrificed on day 105 due to a 

large abdominal tumor, had 0% lymphoma B-cells in the bone marrow. Histopathological 

examination further confirmed that the long-term surviving mice were tumor-free and 

suggested no acute or chronic toxicity caused by drug-free macromolecular therapeutics 

in any of the tissues evaluated, which corresponded to a stable body weight growth. 

These results demonstrate excellent anti-NHL efficacy of the nanotherapeutics with the 
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two components (Fab'-MORF1 and P-MORF2) administered at an optimal interval of 5 

h. A low dose (58 µg × 3) of the pretargeting agent with a 5× excess of effectors was able 

to completely eradicate lymphoma B-cells in mice and was not toxic to normal tissues. 

 

4.3.6 Drug-Free Nanotherapeutic Showed Higher Potency than 

Rituximab in NHL Patient Specimens 

 To further evaluate the clinical potential of the designed nanomedicine, primary 

cells were isolated from 4 mantle cell lymphoma (MCL) patients. MCL is an aggressive 

and incurable subtype of B-cell NHL. We treated the cells consecutively with Fab'-

MORF1 and P-MORF2, as well as rituximab (or 1F5 mAb) hyper-crosslinked with 

secondary antibodies. The purpose of using secondary antibodies is to reproduce the 

function of FcR+ immune effector cells, which partly reflects the in vivo therapeutic 

efficacy of anti-CD20 mAbs.12 Results showed that the designed nanomedicine 

effectively induced apoptosis of MCL cells from all 4 patients (Figure 4.10). The percent 

of apoptotic cells was increased by about 2 fold when compared to the untreated cells. 

When compared to mAbs, the nanomedicine demonstrated superior apoptosis-inducing 

activity to rituximab in all 4 patient samples, and to 1F5 mAb in 1 sample (patient 1). In 

patient 3, we observed an increase of apoptotic index with increasing concentration for all 

compounds tested. The efficacy of 1F5 and rituximab seemed maximized at 1 µM, 

whereas the nanomedicine reached maximal apoptosis induction at a lower concentration 

(0.5 µM). In patient 4, we employed two different time intervals (1 h and 5 h) between 

the treatments. Data showed that, when the time lag was increased from 1 h to 5 h, there 

was no change in efficacy for the nanomedicine. However, for both mAbs, the apoptosis-
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inducing activity dropped when the longer time interval was used. This phenomenon can 

be attributed to Fc-mediated endocytosis of the mAb/CD20 complex, which was 

observed elsewhere by other investigators.6 These results highlight the potential of drug-

free macromolecular therapeutics as a novel and potent treatment against B-cell 

lymphomas. 

 

4.4 Discussion 

 Data presented here validated the proposed concept and showed that the anti-

lymphoma efficacy of the designed nanomedicine was significantly better than rituximab, 

the most frequently used anti-CD20 mAb in the clinic, while also being comparable to 

1F5. In mice, the better efficacy of 1F5 (mouse mAb) when compared to rituximab 

(human/mouse hybrid mAb) was likely due to stronger binding of the Fc region of 1F5 

by (mouse) immune effector cells.33 It will be interesting to compare our approach with 

type II anti-CD20 mAbs (e.g., obinutuzumab) that can also induce direct apoptosis.34 It is 

worth noting that drug-free macromolecular therapeutics depleted tumors by a single, 

well-defined mechanism (apoptosis), whereas the efficacy of mAbs is related to apoptosis 

as well as other effector mechanisms, e.g., ADCC and CDC.31 We believe that the 

superior efficacy of our therapeutic results from the multivalent effect, i.e., the P-MORF2 

conjugate has multimeric interactions with targets, in contrast to mAbs with only two 

binding sites. Our laboratory has previously shown that the multivalency of anti-CD20 

constructs can magnify binding affinity and apoptosis induction by several fold, when 

compared to their monovalent or divalent counterparts.35–37 We have also reported that, in 

addition to valence, the polymer MW had a positive influence on CD20 clustering and 
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apoptosis.37 Thus, it is possible to further improve the efficacy by using P-MORF2 with a 

higher valence and/or a larger polymer backbone, together with a higher dose of the 

pretargeting agent. 

 This research offers a unique new strategy in lymphoma treatment by direct 

apoptosis induction; no small-molecule toxic drug or immune activation is involved. This 

approach avoids the severe side effects associated with conventional chemo- and 

radiotherapy. It has potential to treat or sensitize chemoresistant malignancies.38 

Compared to immunotherapies using anti-CD20 mAbs, the designed nanomedicine kills 

B-cells without the need for effector cells. This allows us to target diseases that are not 

responsive to immunotherapy, which constitute about half of all NHL patients.3 In the 

clinic, a large population of rituximab nonresponders harbors polymorphism in the IgG 

Fc receptor (FcR) gene,4,5 resulting in failure of effector cells to hyper-crosslink ligated 

mAbs (via Fc–FcR binding). Many other cases of mAb nonresponsiveness or resistance 

are due to CD20 downregulation.5–7 For instance, repeated treatment of mAbs may lead 

to CD20 internalization, which is mediated by the inhibitory FcR expressed on the target 

B-cells themselves.6 In contrast, once the Fc region was removed, Fab' of the same 

antibody was found to be noninternalizing.9 More recently, resistance to rituximab has 

been attributed to “trogocytosis” (shaving of CD20 antigens from the surfaces of B-cells 

by macrophages via the regulatory FcR).7 It is noteworthy that all these mechanisms 

accounting for the nonresponsiveness/resistance are mediated by Fc–FcR recognition 

between mAbs and immune effector cells. Since our design does not contain Fc 

fragments, it may circumvent these mechanisms and benefit patients who do not respond 

to immunotherapy. Furthermore, our nano-sized therapeutic conjugates likely have better 
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mobility and more rapid tumor penetration when compared to immune effector cells, 

which is advantageous to target solid tumors that are commonly seen in lymphoma 

patients. 

 This preclinical study demonstrated the possibility of optimizing the designed 

two-step therapeutics based on PK and biodistribution of the pretargeting dose (Fab'-

MORF1). The optimized time lag was 5 h after i.v. administration (in female SCID 

mice); at this time, most Fab'-MORF1 was cleared from the blood and reached a steady 

plasma concentration (Figure 4.5A) and was efficiently distributed to the tumors (Figure 

4.5E). This approach, in combination with imaging methods or with predetermined 

clinical characteristics of individual patients, can potentially be applied for personalized 

therapy to enhance therapeutic efficacy. Studies have shown that the pharmacokinetic 

profile of rituximab differs between responders and nonresponders.39 Therefore, a two-

step pretargeted platform, which offers flexibility to individualize the PK of therapeutic 

effectors, may benefit patients with inadequate response to mAbs treatment by 

overcoming the pharmacokinetic limitations. For clinical application, the pretargeting 

parameters can be more precisely determined with the aid of mathematical modeling.40 

Our approach may constitute a novel personalized nanotherapy for lymphomas and 

potentially other cancers. 

 Our approach will ultimately require validation and confirmation in properly 

conducted clinical trials. Nonetheless, the selection of CD20 as a pharmacological target 

is validated by extensive prior experience. Our therapeutic effector P-MORF2 will likely 

result in prolonged B-cell depletion compared to mAbs, due to a long blood circulation 

time of the HPMA polymer backbone.41,42 The plasma half-life of P-MORF2 can be 
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further increased using multiblock backbone degradable HPMA copolymers.25,43,44 

Before translation to the clinic, one major issue to be addressed is potential 

immunogenicity of the conjugates. Here, the preclinical evaluation was performed in 

SCID mice, which are severely immunocompromised. It will be important to conduct 

immunogenicity studies using immunocompetent animals. The HPMA polymer is 

nonimmunogenic.45,46 Its safety has been proven in clinical trials.47 Moreover, 

conjugation of immunogens to HPMA copolymers reduces the immunogenicity.45 

Therefore, we anticipate that the P-MORF2 conjugate will have a favorable safety 

profile. Indeed, in the animal experiment performed here, mice were administered three 

doses of the designed therapeutic containing a total of about 18 mg/kg P-MORF2, and no 

toxicity has been observed. In the reported system, we used Fab' from a mouse 1F5 

mAb;23 it is likely that when tested in humans, this system will trigger immune responses 

due to foreign, murine-derived protein fragments (e.g., production of anti-mouse 

antibodies and the associated allergic or hypersensitivity reactions). Such concerns can be 

addressed by switching to a humanized anti-CD20 mAb, e.g., ofatumumab, veltuzumab. 

Alternatively, we shall develop a humanized 1F5 mAb to address this issue. 

 Besides lymphomas, the therapeutic conjugates developed in this study can also 

be used for autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, and 

systemic lupus erythematosus, as well as chronic lymphocytic leukemia (CLL). All these 

diseases have been treated by anti-CD20 mAbs.48,49 Recently, we evaluated the designed 

therapeutics in patient CLL cells, including high-risk patients with the 17p13 deletion.50 

Results showed that our treatment effectively induced apoptosis of CLL B-cells and led 

to subsequent cell death, and was more potent than 1F5 mAb. In summary, we have 
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developed a novel two-step pretargeted nanotherapy for treatments of B-cell 

malignancies. This approach is more direct and effective than type I anti-CD20 mAbs and 

possesses significant advantages over conventional chemo-, radio-, and immunotherapy. 
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Figure 4.1  Drug-free macromolecular therapeutics by a two-step pretargeting approach. 

Two macromolecular conjugates, Fab'-MORF1 and P-MORF2, are administered 

consecutively as the pretargeting dose and the crosslinking dose to induce apoptosis of 

malignant B-cells. 
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Figure 4.2  Hydrodynamic effective diameters of the two conjugates (Fab'-MORF1 and 

P-MORF2) and their precursors (Fab' and P) as characterized by DLS. Samples were 

dissolved in PBS (pH 7.4) and measured at room temperature. NanosphereTM polystyrene 

beads with a diameter of 102 ± 3 nm (STD100 nm) were used as the size standard. Data 

are presented as mean ± SD (n = 3). 
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Figure 4.3  SDS-PAGE analysis of the two conjugates and their mixture. Lane 1, 1F5 

mAb (1.5 µg). Lane 2, protein ladder. Lane 3, Fab' fragment of 1F5 (1.5 µg). Lane 4, 

Fab'-MORF1 conjugate (0.3 µg, 5 pmol). Lane 5, mixture of Fab'-MORF1 (5 pmol) and 

P-MORF2 (5 pmol MORF2 equivalent). Lane 6, P-MORF2 conjugate (5 pmol MORF2 

equivalent). Samples were incubated with 1× Laemmli buffer without reducing reagents 

at 37 °C for 30 min prior to loading; 8–16% polyacrylamide gel. Fab'-MORF1 and P-

MORF2 were mixed in PBS (pH 7.4) at room temperature for 1 h. When mixed, the Fab'-

MORF1 band completely disappeared from the gel, indicating an efficient binding 

between the two conjugates. 
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Figure 4.4  Biorecognition of Fab'-MORF1 and P-MORF2 at the surface of Raji B-cells. 

Fab'-MORF1 was labeled with rhodamine (red) and P-MORF2 with FITC (green). Trans: 

images under transmitted light, R: red channel, G: green channel. (A) Top panel, Fab'-

MORF1 (1 µM) bound to the surfaces of B-cells. Bottom panel, pretreatment with 1F5 

mAb (10 µM) followed by Fab'-MORF1 (1 µM). (B) Top panel, consecutive exposure to 

Fab'-MORF1 (1 µM) and P-MORF2 (1 µM; MORF eqv.). Bottom panel, polymer grafted 

with scrambled MORF2 (P-scMORF2; 5 µM MORF eqv.) failed to bind to the surfaces 

of the MORF1-decorated cells; scMORF2: 5'-GTATCCTTATTCCACGTTCATTTGT-

3'. Note: P-MORF2 and P-scMORF2 used in this experiment only contained ~5 

oligonucleotides per chain. 
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Figure 4.5  Optimization of tumor pretargeting time lag by PK and biodistribution. (A) 

The blood radioactivity–time profile of 125I-labeled Fab'-MORF1 in healthy SCID mice 

(n = 5). The closed circles represent the mean radioactivity, expressed as the percentage 

of the injected dose per gram of blood (% ID/g). (B) Two-compartment plasma 

pharmacokinetic (PK) parameters of Fab'-MORF1 in mice. T1/2, α, initial half-life; T1/2, β, 

terminal half-life; AUC, total area under the blood concentration versus time curve; CL, 

total body clearance; MRT, mean residence time; Vss, steady-state volume of 

distribution. (C) Biodistribution of Fab'-MORF1 in healthy SCID mice (no tumor) and 

SCID mice bearing human B-cell lymphoma xenografts (n = 4 per group). Raji cells were 

injected from the tail vein of mice 7 days prior to the study. Mice were sacrificed at 1 h or 

5 h after i.v. injection of 125I-Fab'-MORF1. (D) Fluorescence molecular tomography 

(FMT) analysis of lymphoma B-cells dissemination in mice. Four million Raji cells were 

stained with the DiR dye and injected via the tail vein to SCID mice (n = 4). At 24 h after 

tumor inoculation, organs were harvested for ex vivo imaging. L.N., lymph node. (E) 

Tumor-specific uptake of Fab'-MORF1. Mean radioactivity in each organ of healthy mice 

(no tumor; n = 4) is defined as the background. Tumor-specific uptake was analyzed by 

subtracting the background from the radioactivity of corresponding organs of the tumor-

bearing mice (n = 4 per group). Negative values are shown as zero. All data are presented 

as mean ± SD. Statistics were performed with Student’s t-test of unpaired samples (* p < 

0.05). 
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Figure 4.6  In vivo therapeutic efficacy against systemic B-cell lymphoma. SCID mice 

were injected with luciferase-expressing Raji cells (4 × 106) via the tail vein on day 0. 

Three doses of each treatment were administered on days 7, 9, and 11. PBS: mice injected 

with PBS (n = 6); Cons 1h: consecutive treatment of Fab'-MORF1 and P-MORF2, 1 h 

interval (n = 7); Cons 5h: consecutive treatment of Fab'-MORF1 and P-MORF2, 5 h 

interval (n = 6); Rituximab (n = 6); 1F5 mAb (n = 6). (A) Paralysis-free survival of mice 

presented in a Kaplan-Meier plot. Numbers of long-term survivors in each group are 

indicated. Statistics were performed with log-rank test (* p < 0.05; ** p < 0.005; n.s., no 

significant difference). (B) In vivo bioluminescence images at 25 days after tumor 

injection. Mice were intraperitoneally injected with 3 mg firefly D-luciferin 15 min prior 

to imaging. (C) Whole-body bioluminescence intensity of mice. Data are shown as mean 

± SEM (n = 6 or 7). Statistics were performed by Student’s t-test (** p < 0.005). Black 

arrow: dose administration. 
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Figure 4.7  Preliminary in vivo therapy experiments. SCID mice were injected with 

luciferase-expressing Raji cells (4 × 106) via the tail vein on day 0. Fab'-MORF1 (57.5 

µg/20 g; 1 nmol) and P-MORF2 (119 µg/20 g; 5 nmol MORF2) were i.v. administered 

consecutively, using a 1 h interval. U.T.: Untreated mice (n = 3). D14: Mice given three 

doses of treatments on days 14, 16, and 18 (n = 2). D7: Mice given three doses of 

treatments on days 7, 9, and 11 (n = 2). (A) Whole-body bioluminescence intensity of 

mice. Mice were intraperitoneally injected with 3 mg firefly D-luciferin 15 min prior to 

imaging. Data are shown as mean ± SD. (B) Body weight charts. Data are shown as mean 

± SD. (C) Kaplan-Meier analysis of animal survival. Incidence of hind-limb paralysis or 

survival of mice was monitored until day 125. 
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Figure 4.8  Three-dimensional microcomputed tomography (microCT) analysis. Mice 

were intravenously injected with Raji-luc cells and exposed to different treatments as in 

Figure 4.6. Imaging was performed on day 70 and focused on the lumbar spine and hind 

limbs (n = 2 per group). Bone destruction, as a result of lymphoma metastasis, is 

indicated by the red arrow. Bioluminescence images (day 35) of the same mice are shown 

in the bottom right corner for comparison. 
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Figure 4.9  Eradication of lymphoma B-cells by drug-free macromolecular therapeutics. 

Mice i.v. injected with Raji-luc cells were exposed to different treatments as indicated in 

Figure 4.6. (A) Representative ex vivo bioluminescent images of the control mice (PBS) 

and the mice treated consecutively with Fab'-MORF1 and P-MORF2 using 5 h as an 

interval (Cons 5h). In vivo images of the same mice are shown alongside. bra: brain, hea: 

heart, lun: lung, liv: liver, spl: spleen, kid: kidney, s.c.: spinal cord, l.n.: lymph node, tib: 

tibia, fem: femur, mus: muscle, sto: stomach, int: intestine. (B) Flow cytometry analysis 

of residual Raji-luc cells in the bone marrow (BM) of mice. BM cells isolated from 

mouse femur and Raji-luc cells (with GFP expression) from culture flasks were stained 

with an APC-labeled mouse anti-human CD19 antibody. (C) Comparison of % 

lymphoma cells in the bone marrow of control mice (PBS) and the nanomedicine-treated 

mice (Cons 1h and Cons 5h) as analyzed by flow cytometry. Each data point represents 

an individual mouse (n = 6 per group); mean % is indicated. Statistics were performed 

with Student’s t-test of unpaired samples (* p < 0.05, ** p < 0.005). 
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Figure 4.10  Drug-free macromolecular therapeutics induce apoptosis of patient MCL 

cells. Two samples were from lymph node biopsies (patients 1 and 2) and two from the 

peripheral blood (patients 3 and 4). Percent apoptotic cells was analyzed by annexin V 

binding and quantified with flow cytometry. Nanomedicine, Fab'-MORF1 followed by P-

MORF2; Rituximab, rituximab followed by goat anti-mouse secondary Ab; 1F5 mAb, 

1F5 followed by goat anti-mouse secondary Ab. Time interval between treatments was 1 

h (unless otherwise indicated). Incubation time was 24 h. Fab' equivalent concentrations 

of treatments were 0.5 µM (for patients 1, 2 and 3) and 1 µM (for patients 3 and 4). Data 

are presented as mean ± SD (n = 2 or 3, independent replicates). Statistics were 

performed by Student’s t-test (* p < 0.05). All treatment groups had significantly higher 

apoptotic indices when compared to the untreated cells. 

 



	
  

	
  

CHAPTER 5 
 
 
 

DRUG-FREE MACROMOLECULAR THERAPEUTICS INDUCE 

APOPTOSIS OF PATIENT CHRONIC LYMPHOCYTIC 

LEUKEMIA CELLS1 
 
 
 

 A new drug-free nanotherapeutic approach for B-cell malignancies was 

developed. Exposure of B-cells to an anti-CD20 Fab'-morpholino oligonucleotide1 

(MORF1) conjugate decorated the cell surface with MORF1; further exposure of the 

decorated cells to multivalent polymer-oligonucleotide2 conjugates (P-MORF2) resulted 

in CD20 clustering at the cell surface with induction of apoptosis. In this chapter, we 

evaluate this concept in primary chronic lymphocytic leukemia (CLL) cells isolated from 

10 patients. Apoptosis and cytotoxicity were observed in eight samples, including two 

samples with the 17p13 deletion, which suggested a p53-independent mechanism of 

apoptosis induction. When compared to an anti-CD20 monoclonal antibody (mAb), the 

nanotherapeutic showed significantly more potent apoptosis-inducing activity and 

cytotoxicity. This was due to the multivalency effect (8 binding sites per polymer chain) 

of our design in comparison to the divalent mAb. In summary, we have developed a 

novel and potent therapeutic system against CLL and other B-cell malignancies with 

1With kind permission from Springer Science+Business Media this chapter is adapted from the 
following publication: Drug-free macromolecular therapeutics induce apoptosis of patient chronic 
lymphocytic leukemia cells. Drug Deliv Transl Res. 2014; 4(5–6): 389–394. 
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significant advantages over conventional chemo-immunotherapy. 

 

5.1 Background 

 B-cell malignancies are prevalent cancers worldwide.1 Crosslinking of CD20 

receptors at the surface of B-cells initiates apoptosis.2–4 Based on this mechanism, we 

designed a therapeutic system composed of two hybrid macromolecules: (1) a conjugate 

of the Fab' fragment of anti-CD20 1F5 monoclonal antibody (mAb) with a morpholino 

oligonucleotide MORF1; (2) a linear N-(2-hydroxypropyl)methacrylamide (HPMA) 

copolymer grafted with multiple copies of the complementary oligonucleotide MORF2 

(P-MORF2).5 Exposure of a B-cell non-Hodgkin lymphoma line (Raji) to the anti-CD20 

Fab'-MORF1 conjugate decorated the cell surface with MORF1. Further exposure of the 

decorated cells to P-MORF2 resulted in MORF1/MORF2 hybridization, which initiated 

CD20 crosslinking and triggered apoptosis in vitro and in vivo.5 In this design, the 

morpholino oligonucleotide pair serves as a physical crosslinker to cluster CD20 antigens 

at the cell surface. Extracellular hybridization of MORF1/MORF2 translates into innate 

biological responses, i.e., apoptosis. This “drug-free macromolecular therapeutic” 

involves no cytotoxic drug, and the individual parts of the system do not have apoptosis-

inducing activity. The two nanoscale conjugates (Fab'-MORF1 and P-MORF2) can be 

administered consecutively (for pretargeting approaches) or as a premixture. 

 Here, we evaluated the efficacy of drug-free macromolecular therapeutics on 

primary chronic lymphocytic leukemia (CLL) cells isolated from patients. We 

hypothesized that this CD20 receptor crosslinking system is cytotoxic to CLL cells and 

could constitute a new nanomedicine for CLL and other B-cell malignancies. 
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5.2 Materials and Methods 

5.2.1	
  Patient Samples and Treatments 

 Peripheral blood mononuclear cells were isolated from 10 untreated CLL patients 

(clinical details summarized in Table 5.1). All samples expressed dim CD20, a typical 

phenotype of CLL. Specimens were collected after informed consent under a protocol 

approved by the University of Utah Institutional Review Board. Cells were suspended in 

RPMI-1640 medium (Sigma, St. Louis, MO) supplemented with 10% fetal bovine serum 

(Hyclone, Logan, UT). Incubation was carried out at 37 °C in a humidified atmosphere 

with 5% CO2. Cells were treated with Fab'-MORF1 and P-MORF2 (at equimolar 

MORF1/MORF2 concentrations), either consecutively (1 h interval) or as a premixture (1 

h, 37 °C). Fab'-MORF1 and P-MORF2 were prepared as previously described.5 

 

5.2.2	
  Cytotoxicity and Apoptosis Assays 

 In all experiments, an anti-CD20 mAb (1F5)6 hypercrosslinked with a goat anti-

mouse (GAM) secondary antibody (KPL, Gaithersburg, MD) was used as a positive 

control (molar ratio 1F5:GAM = 2:1). Untreated cells were used as negative controls. All 

experiments were conducted in duplicate or triplicate wells. 

 

5.2.2.1	
  Cytotoxicity 

 Viability of cells was determined by Trypan blue staining	
   at the indicated time 

points. Alternatively, cells were stained with propidium idodie (PI) and the percentage of 

PI-positive cells was quantified by flow cytometry. 

 



	
  

	
  

142 

5.2.2.2	
  Annexin V Binding 

 Two hundred thousand cells were suspended in 0.4 mL medium for different 

treatments. Cells were harvested at the indicated time intervals, washed twice with PBS 

prior to staining by propidium iodide and FITC-conjugated annexin V. Staining was 

performed following the RAPIDTM protocol provided by the manufacturer (Oncogene 

Research Products, Boston, MA). 

 

5.2.2.3	
  Caspase-3 Activity 

 Two hundred thousand cells were suspended in 0.4 mL medium for different 

treatments. Cells were harvested at the indicated time intervals and washed twice with 

PBS. A PhiPhiLux® kit was used to assay caspase-3 activity using the manufacturer’s 

protocol (OncoImmunin, Gaithersburg, MD). 

 

5.2.2.4	
  TUNEL Assay 

 One million cells were suspended in 0.5 mL medium for different treatments. At 

the indicated time points, cells were fixed with 1% paraformaldehyde in PBS (1 h, 4 °C) 

and permeabilized in 70% ethanol overnight at -20 °C. An Apo Direct TUNEL kit was 

used to assay apoptosis using the manufacturer’s protocol (Phoenix Flow Systems, San 

Diego, CA). 

 

5.2.3	
  Cell Cycle Analysis 

 Cells were washed twice with PBS after the indicated treatments and 

permeabilized in 70% ethanol overnight at -20 °C. Cells were stained with an excess of 
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PI in PBS, and DNA content was determined by flow cytometry. 

 

5.2.4	
  Statistical Analysis 

 All experiments were at least duplicated. Data are presented as mean ± standard 

deviation (SD). Differences were considered significant for p values < 0.05 using the 

Student’s t-test. 

 

5.3 Results and Discussion 

 To evaluate the potential of drug-free macromolecular therapeutics for the 

treatment of chronic lymphocytic leukemia (CLL), cells from 10 patients were obtained 

(Table 5.1). As shown in Table 5.1, these patients fell into different prognostic categories, 

including 2 with the 17p13 deletion. 

 The isolated cells were treated with conjugates Fab'-MORF1 (58.5 kDa; 

equimolar MORF1/Fab') and P-MORF2 (P: 136 kDa; 8 MORF2 per chain), either 

consecutively or as a premixture. The experimental conditions and results of apoptosis 

and cytotoxicity assays are summarized in Tables 5.2 and 5.3, respectively. Results 

showed that both treatment regimens (consecutive and premixed) effectively induced 

apoptosis of CLL cells. Data from 8 patient samples (P1, P2, P4, P6-P10) showed 

significantly higher apoptotic and/or cytotoxic indices in the nanomedicine groups when 

compared to the nontreated cells. A trend of apoptosis induction was also observed in P3 

and P5; however, the changes with the latter samples were not statistically significant. 

Interestingly, the treatment showed activity against the two samples with the 17p13 

deletion (P7 and P8). Deletions of 17p are associated with the loss of one allele of P53 
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and portend a worse prognosis.7 Our results suggest that apoptosis induction by drug-free 

macromolecular therapeutics is p53-independent. It has been reported that the CD20-

crosslinking-mediated B-cell death is a distinct pathway that can bypass mitochondria 

and caspase activation, which could be an advantage in the treatment of chemoresistant 

malignancies.8 This indicates that what we propose has significant advantages over 

conventional chemo- and radiotherapy approaches, especially for high-risk patients with 

the 17p deletion whose disease is particularly difficult to treat. More mechanistic studies 

are needed to further elucidate the pathway(s) leading to apoptosis induction by drug-free 

macromolecular therapeutics. 

 In our experiments, an anti-CD20 mAb hypercrosslinked with a goat anti-mouse 

secondary Ab was used as a positive control in order to reproduce the function of 

immune effector cells.9 This control partly reproduces the therapeutic efficacy of anti-

CD20 mAbs that are used in the clinic (e.g., rituximab). Our drug-free macromolecular 

approach is more effective at apoptosis induction in CLL cells than the mAb control. As 

shown in Tables 5.2 and 5.3, five patient samples (P1, P2, P6, P7 and P9) showed 

significantly higher apoptotic and/or cytotoxic indices in the nanomedicine group when 

compared to the positive control (mAb + 2° Ab). This was likely due to multivalency of 

the P-MORF2 conjugate (8 binding sites per chain) in comparison to the divalent mAb.	
  

Our lab10,11 and others12, 13 have previously shown that the multivalency of anti-CD20 

constructs can increase binding affinity and apoptosis-inducing efficiency by several fold, 

when compared to their monovalent or divalent counterparts. We have also reported that, 

in addition to valence, the polymer length (i.e., MW) had a positive influence on CD20 

clustering and apoptosis.4 Therefore, it is possible to further improve the efficacy of this 
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design by using a P-MORF2 conjugate with a higher valence and/or a larger polymer 

backbone. For instance, multiblock backbone degradable HPMA copolymers can be 

synthesized.14–16 This approach can produce P-MORF2 with substantially increased MW 

and valence. 

 We evaluated apoptosis and cytotoxicity from multiple aspects: plasma membrane 

rupture (Figures 5.1A–5.1E), caspase-3 activation (Figure 5.1F), and genomic DNA 

fragmentation (Figures 5.1G and 5.1H). Results consistently showed that the designed 

nanomedicine was effective at inducing apoptosis in CLL cells. In contrast, single-

component treatments with either Fab'-MORF1 or P-MORF2 alone failed to induce 

apoptosis (Figure 5.1E), confirming the necessity to crosslink CD20 in order to trigger 

apoptosis. The effects of the nanomedicine were dose- (Figure 5.1B) and time-dependent 

(Figures 5.1C, 5.1D and 5.1G). In some cases, the mAb does not demonstrate apoptosis-

inducing activity, e.g., in P1, P3, P6 and P8 (as shown in Table 5.2 and Figure 5.1B), 

whereas the nanomedicine is effective. This observation suggests a higher potency of 

drug-free macromolecular therapeutics when compared to mAb treatment. 

 The field of CLL therapy has entered a period of significant change with the 

recent approval of two agents, ibrutinib and idelasilib, targeting the Bruton tyrosine 

kinase and phosphatidylinositide 3-kinase-δ, respectively.17 Mechanistically, both targets 

are related to the B-cell receptor signaling pathway. The drug-free nanotherapeutic 

approach constitutes yet another novel therapeutic approach. It induces apoptosis in the 

malignant cells without the need for cytotoxic compounds or immune system activation. 

It will be interesting to determine whether this strategy synergizes with the new, targeted 

agents. Furthermore, the proposed two-step (consecutive) approach allows the use of 
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pretargeting18,19 For example, the timing of administration of P-MORF2 can be optimized 

in individual patients based on pharmacokinetics and biodistribution of Fab'-MORF1, in 

order to enable more efficient treatment while limiting potential side effects associated 

with off-target binding. We have currently validated this concept in mice bearing B-cell 

lymphoma xenografts (see Chapter 4). With the use of an optimized time lag, a two-step 

pretargeting approach was employed to achieve favorable tumor-to-tissue accumulation, 

which resulted in significantly improved in vivo anticancer efficacy. 

 In summary, we have developed a novel and potent drug-free nanotherapeutic 

approach for the treatment of CLL and other B-cell malignancies. This approach has 

significant advantages over current cytotoxic therapies and immunotherapies. The clinical 

development of our strategy will likely contribute to the ongoing revolution in the 

treatment of these diseases. 

 

5.4	
  References 

1. R. Siegel, J. Ma, Z. Zou and A. Jemal, Cancer statistics, 2014, CA Cancer J. Clin., 
2014, 64, 9–29. 

2. J. K. Hofmeister, D. Cooney and K. M. Coggeshall, Clustered CD20 induced 
apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, 
calcium influx, and caspase 3-dependent apoptosis, Blood Cells. Mol. Dis., 2000, 
26, 133–143. 

3. N. Zhang, L. A. Khawli, P. Hu and A. L. Epstein, Generation of rituximab polymer 
may cause hyper-cross-linking–induced apoptosis in non-Hodgkin’s lymphomas, 
Clin. Cancer Res., 2005, 11, 5971–5980. 

4. T.-W. Chu, J. Yang and J. Kopeček, Anti-CD20 multivalent HPMA copolymer–Fab' 
conjugates for the direct induction of apoptosis, Biomaterials, 2012, 33, 7174–7181. 

5. T.-W. Chu, J. Yang, R. Zhang, M. Sima and J. Kopeček, Cell surface self-assembly 
of hybrid nanoconjugates via oligonucleotide hybridization induces apoptosis, ACS 
Nano, 2014, 8, 719–730. 



	
  

	
  

147 

6. O. W. Press, et al., Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B 
cell lymphomas, Blood, 1987, 69, 584–591. 

7. J. C. Byrd, J. J. Jones, J. A. Woyach, A. J. Johnson and J. M. Flynn, Entering the era 
of targeted therapy for chronic lymphocytic leukemia: impact on the practicing 
clinician, J. Clin. Oncol., 2014, 32, 3039–3047.	
  

8. L. E. van der Kolk, et al., CD20-induced B cell death can bypass mitochondria and 
caspase activation, Leukemia, 2002, 16, 1735–1744.	
  

9. D. Shan, J. A. Ledbetter and O. W. Press, Apoptosis of malignant human B cells by 
ligation of CD20 with monoclonal antibodies, Blood, 1998, 91, 1644–1652.	
  

10. R. N. Johnson, P. Kopečková and J. Kopeček, Synthesis and evaluation of 
multivalent branched HPMA copolymer–Fab' conjugates targeted to the B-cell 
antigen CD20, Bioconjug. Chem., 2009, 20, 129–137.	
  

11. R. N. Johnson, P. Kopečková and J. Kopeček, Biological activity of anti-CD20 
multivalent HPMA copolymer–Fab' conjugates. Biomacromolecules, 2012, 13, 727–
735. 

12. S. R. Aluri, et al., A hybrid protein-polymer nanoworm potentiates apoptosis better 
than a monoclonal antibody, ACS Nano, 2014, 8, 2064–2076.	
  

13. Z. Zhang, et al., DNA-scaffolded multivalent ligands to modulate cell function, 
Chembiochem, 2014, 15, 1268–1273.	
  

14. H. Pan, J. Yang, P. Kopečková and J. Kopeček, Backbone degradable multiblock N-
(2-hydroxypropyl)methacrylamide copolymer conjugates via reversible addition-
fragmentation chain transfer polymerization and thiol-ene coupling reaction, 
Biomacromolecules, 2011, 12, 247–252.	
  

15. J. Yang, K. Luo, H. Pan, P. Kopečková and J. Kopeček, Synthesis of biodegradable 
multiblock copolymers by click coupling of RAFT-generated heterotelechelic 
polyHPMA conjugates, React. Funct. Polym., 2011, 71, 294–302. 

16. R. Zhang, J. Yang, M. Sima, Y. Zhou and J. Kopeček, Sequential combination 
therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide 
copolymer paclitaxel and gemcitabine conjugates, Proc. Natl. Acad. Sci. U.S.A., 
2014, 111, 12181–12186.	
  

17. A. V. Danilov, Targeted therapy in chronic lymphocytic leukemia: past, present, and 
future, Clin. Ther., 2013, 35, 1258−1270.	
  

18. D. A. Goodwin and C. F. Meares, Advances in pretargeting biotechnology, 
Biotechnol. Adv., 2001, 19, 435–450.	
  



	
  

	
  

148 

19. J. Gunn, S. I. Park, O. Veiseh, O. W. Press and M. A. Zhang, Pretargeted 
nanoparticle system for tumor cell labeling, Mol. Biosyst., 2011, 7, 742–748.	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

149 

 

 

 

Figure 5.1  Drug-free macromolecular therapeutics induce apoptosis of patient CLL cells. 

(A) Representative flow cytometric analysis of cells exposed to different treatments and 

stained by propidium iodide (PI) and FITC-labeled annexin V. Nontreated: cells in 

culture medium; Consecutive: Fab'-MORF1 (0.5 µM) followed (1 h later) by P-MORF2 

(0.5 µM; MORF2-eqv.).	
   Incubation time was 20 h. Data from patient sample #2. (B) 

Dose-dependent apoptosis induction. Percentage of early apoptotic cells (annexin V+/PI−) 

was quantified by flow cytometry. mAb + 2° Ab: 1F5 mAb followed (1 h later) by goat 

anti-mouse secondary Ab; Consecutive: Fab'-MORF1 followed (1 h later) by P-MORF2; 

Premixed: premixture of Fab'-MORF1 and P-MORF2. Incubation time was 30 h. Data 

from patient sample #8. (C) Time-dependent apoptosis induction. Fab'-equivalent 

concentration was 0.5 µM (applied to D-H). Data from patient sample #6. (D) Time-

dependent cytotoxicity as determined by PI binding. Data from patient sample #6. (E) 

Cell viability as determined by Trypan blue staining. Incubation time was 20 h. Fab'-

MORF1: single-component control at 0.5 µM; P-MORF2: single-component control at 

0.5 µM (MORF2-eqv.). Data from patient sample #1. (F) Representative flow cytometric 

analysis of cells exposed to different treatments and stained by FITC-labeled anti-active 

caspase-3 Ab. Incubation time was 6 h. Data from patient sample #10. (G) Apoptosis as 

analyzed by TUNEL assay. FITC-labeled anti-bromodeoxyuridine (BrdU) Ab stains 

apoptotic cells. Data from patient sample #6. (H) Cell cycle analysis. Cells were 

permeabilized and stained by PI to measure DNA content. SubG1 phase represents 

apoptotic cells. Incubation time was 30 h. Data from patient sample #7. In B-E and G, 

data are presented as mean + SD (n = 2 or 3). Statistics in E and G, unless otherwise 

indicated, were performed by comparing each group with nontreated (** p < 0.005; * p < 

0.05; n.s., no significant difference; Student’s t-test). 
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Table 5.1  Clinical characteristics of CLL patients. 

Patient 
# 

Age 
(y) 

aSex Rai Stage 
bIgVH 

Mutation CD38 ZAP70 FISH 
Cytogenetics 

P1 83 F I n/a neg n/a n/a 
P2 76 M I M neg n/a 13q− 
P3 52 M I U neg pos normal 
P4 80 F II n/a pos n/a ts12 
P5 67 M I n/a neg pos 13q− 
P6 59 M II U neg pos 13q− 
P7 72 M I U n/a pos 17p−/11q−/ts12 
P8 60 M I U neg pos 17p−/13q− 
P9 49 F 0 n/a pos neg 13q− 

P10 72 F 0 U neg int 13q− 
IgVH, immunoglobulin heavy variable chain; ZAP70, ζ-chain-associated protein kinase 70; FISH, 
fluorescence in situ hybridization; n/a, not available; neg, negative; pos, positive; int, intermediate; 
ts12, trisomy 12. 
aM, male; F, female. 
bU, unmutated; M, mutated. 
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Table 5.2  Experimental conditions and results of apoptosis assays. 

Patient 
# 

Treatment 
Time Dose Assay 

Apoptotic Index (%) 
Non-

treated 
mAb + 
2° Ab 

Cons-
ecutive 

Pre-
mixed 

P1 20 h 0.5 µM Annexin 
V 30 ± 0.6 27 ± 2.1 48 ± 9.6 ‡49 ± 3.3 

P2 20 h 0.5 µM Annexin 
V 27 ± 1.4 37 ± 4.4 ‡52 ± 0.8 ‡58 ± 0.6 

P3 20 h 0.5 µM Annexin 
V 28 ± 4.6 25 ± 3.6 34 ± 6.8 32 ± 7.9 

P4 20 h 0.5 µM Annexin 
V 34 ± 4.6 †54 ± 5.4 †54 ± 5.9 †59 ± 2.8 

P5 20 h 0.5 µM Annexin 
V 25 ± 8.9 40 ± 3.0 38 ± 0.1 38 ± 0.1 

1 µM 39 ± 0.2 43 ± 1.5 40 ± 2.3 

P6 

20 h 0.5 µM Annexin 
V 

61 ± 2.8 64 ± 0.3 ‡69 ± 1.6 ‡72 ± 2.6 
30 h 59 ± 3.9 †76 ± 0.3 ‡78 ± 0.8 †77 ± 0.7 
20 h 0.5 µM TUNEL 24 ± 2.3 †31 ± 1.5 †36 ± 9.9 ‡42 ± 4.5 
30 h 39 ± 11.0 †58 ± 1.3 ‡71 ± 1.6 †66 ± 6.2 

P7 30 h 0.5 µM Annexin 
V 41 ± 1.7 †52 ± 1.4 ‡66 ± 0.3 ‡62 ± 1.1 

P8 30 h 0.5 µM Annexin 
V 15 ± 1.4 17 ± 0.8 23 ± 6.0 22 ± 3.3 

1 µM 16 ± 7.5 †30 ± 7.4 †34 ± 4.7 

P9 48 h 0.5 µM Annexin 
V 46 ± 7.2 †77 ± 1.0 ‡82 ± 0.1 †78 ± 2.8 

P10 6 h 0.5 µM Caspase-
3 10 ± 0.1 17 ± 4.2 †23 ± 3.5 †21 ± 4.6 

†Significantly higher than nontreated (p < 0.05; Student’s t-test). 
‡Significantly higher than nontreated and mAb + 2° Ab (p < 0.05; Student’s t-test). 
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Table 5.3  Experimental conditions and results of cytotoxicity assays. 

Patient 
# 

Treatment 
Time Dose Assay 

Cytotoxicity Index (%) 
Non-

treated 
mAb + 
2° Ab 

Cons-
ecutive 

Pre-
mixed 

P1 20 h 0.5 µM Trypan 
Blue 38 ± 0.3 †60 ± 1.3 ‡69 ± 1.9 ‡71 ± 2.1 

P2 20 h 0.5 µM Trypan 
Blue 59 ± 5.3 †88 ± 5.0 †82 ± 5.4 †91 ± 0.9 

P4 20 h 0.5 µM 
Trypan 

Blue 52 ± 6.0 63 ± 4.6 76 ± 7.1 †76 ± 3.9 

PI 49 ± 1.1 53 ± 6.0 †60 ± 2.8 †61 ± 1.3 

P6 20 h 0.5 µM PI 60 ± 1.8 60 ± 2.5 ‡68 ± 0.6 ‡70 ± 3.0 
30 h 63 ± 3.1 †75 ± 0.3 ‡78 ± 0.4 †78 ± 1.8 

P7 30 h 0.5 µM PI 22 ± 6.8 43 ± 2.5 ‡52 ± 1.1 †45 ± 0.7 

P9 48 h 0.5 µM PI 44 ± 0.2 †67 ± 1.4 †69 ± 0.3 †66 ± 0.1 

†Significantly higher than nontreated (p < 0.05; Student’s t-test). 
‡Significantly higher than nontreated and mAb + 2° Ab (p < 0.05; Student’s t-test). 

 

 

 

 



	
  

	
  

CHAPTER 6 
 
 
 

CONCLUSIONS AND BEYOND1 
 
 
 

 Adverse side effects and resistance remain major clinical obstacles for cancer 

chemo-immunotherapy. This dissertation proposes a nanomedicine approach that is 

“drug-free” and “immune-independent” to tackle these problems simultaneously. This 

approach utilizes multivalent cell surface receptor crosslinking constructs to trigger 

apoptosis of cancers specifically and effectively. The designs of two therapeutic 

platforms have been shown. In the first design, multiple targeting moieties (Fab' 

fragments) are tethered to a synthetic polymer for direct apoptosis induction (Chapter 2). 

In the second design, the treatment is two-step. First, cancer cells are marked for death by 

a pretargeting dose; then, the therapeutically active, multivalent effector is administered 

(Chapters 3–5). This two-step strategy allows optimization of the therapy for individual 

subjects. We have shown in a mouse model that the optimized therapy is more 

efficacious than rituximab, a clinically used immunotherapy drug for B-cell lymphomas 

(Chapter 4). This is striking evidence that the anticancer efficacy of receptor-

crosslinking-mediated apoptosis alone may be superior to immunotherapy. We have also 

demonstrated the potential application on other diseases such as leukemias (Chapter 5).  

1This chapter is adapted from the following publication: T.-W. Chu and J. Kopeček. Drug-free 
macromolecular therapeutics – a new paradigm in polymeric nanomedicines. Biomater Sci.	
  2015; 3(7): 
908–922. Adapted by permission of The Royal Society of Chemistry. 
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 One of the most important features of drug-free macromolecular therapeutics is 

the lack of low-MW cytotoxic compounds and, thus, the absence of nonspecific 

toxicities. The apoptosis induction is highly specific against the targeted cells, which will 

likely result in a better adverse effects profile when compared to conventional chemo- 

and radiotherapies. The mechanism of receptor crosslinking is unique. For instance, the 

CD20-clustering-mediated B-cell death has been identified as a distinct pathway that can 

bypass mitochondria and caspase activation, which offers the opportunity to treat 

chemoresistant malignancies.1 Besides the drug-free feature, other favorable aspects of 

our design are: (1) the immune-independent feature addresses the concern of mAbs 

nonresponiveness or resistance; (2) multivalency of the polymer conjugates has potential 

to improve therapeutic performance; (3) as mentioned above, the proposed two-step 

treatment is suitable for pretargeting. 

 Distinct from mAb-based immunotherapy, drug-free macromolecular therapeutics 

directly induce apoptosis in diseased cells without the need for immune activation. 

Successful treatment with mAbs requires FcR-expressing immune effector cells 

(macrophages, neutrophils, natural killer cells, etc.) to recognize the Fc region of ligated 

antibodies and trigger immune responses such as ADCC or CDC.2,3 However, a common 

clinical failure of immunotherapy is the inactivation of these effector mechanisms.4,5 For 

instance,	
   many rituximab nonresponders harbor polymorphism in the IgG FcR gene, 

which leads to the inability of effector cells to hypercrosslink mAbs that are bound to the 

surfaces of B-cells.4 In the drug-free design, we used synthetic effectors to reproduce and 

enhance the function of immune effector cells. High-fidelity biorecognition pairs are 

introduced externally to replace the Fc–FcR binding. This approach may benefit patients 
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who do not respond to immunotherapies, which constitute about half of all B-NHLs.6 In 

addition, the Fab' conjugates (without Fc) are used for pretargeting. This is advantageous 

because various reported mechanisms attributed to the mAb resistance are directly or 

partly mediated by the Fc–FcR recognition, for example, CD20 downregulation,7,8 

internalization,9,10 and “trogocytosis” (shaving of receptors from cell surfaces by 

macrophages).11 The designed Fc-independent apoptosis induction may circumvent these 

mechanisms, resulting in a potential to target mAb-resistant diseases. Michel and Mattes 

have shown that the 1F5 mAb/CD20 complex becomes noninternalizing when the Fc 

region of the mAb is removed.10 This observation further strengthens our point of view. 

Moreover, mAb therapies may “over-activate” the immune responses, which results in 

adverse side reactions, e.g., hypersensitivity due to complement activation that requires 

discontinuation of treatment and administration of corticosteroids.12 These side effects 

are sometimes fatal (e.g., cytokine storm13 and rituximab-associated lung injury14,15). In 

contrast, our direct apoptosis induction strategy does not rely on immune functions; this 

may ease such concerns. We have demonstrated that, at equivalent doses, the 

MORF1/MORF2 hybridization-mediated drug-free design possesses superior or 

comparable anti-lymphoma efficacies to type I anti-CD20 mAbs (see Chapters 4 and 5). 

These data suggest significant advantages of the drug-free therapeutics paradigm over 

conventional immunotherapies. Mechanistic studies to compare drug-free 

macromolecular therapeutics with Type II mAbs (e.g., obinutuzumab), which may also 

induce direct apoptosis,16,17 will provide further evaluation of the clinical potential. 

 Several previous platforms for CD20 crosslinking and apoptosis induction of B-

cells have been developed.18–24 One strategy is to construct multivalent mAbs or 
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polymer-mAb conjugates. For instance, multimeric rituximab bound to activated 

dextran18 or lipid nanoparticles19 have been synthesized. In Chapter 2, we describe 

multivalent HPMA copolymer – anti-CD20 Fab' conjugates, which successfully induced 

apoptosis of malignant B-cells in vitro. The advantage of such approaches18–22 is the more 

straightforward one-step treatment, likely resulting in better patient compliance. 

However, due to the large size of the antibodies or their fragments, it is difficult to 

synthesize such constructs with high valency (due to steric hindrance). This undesirable 

feature may severely limit the therapeutic efficiency. We have attempted to increase the 

valency by synthesizing branched HPMA copolymer backbones.20 A small amount of 

tetraethyleneglycol dimethacrylate was used as the crosslinker, and copolymers with high 

polydispersity were produced. Consequently, fractionation was required to prepare 

narrowly dispersed copolymers. Other researchers used biological polymers such as 

DNA21 or polypeptides22 as scaffolds to attach antibodies or the smaller size single-chain 

variable fragments (scFv). These polyvalent constructs indeed achieved better efficacies 

than their monovalent counterparts. However, one fundamental difference between these 

single-treatment designs and the “binary system” is that the binary systems have the 

advantage of performing pretargeting. Previously our laboratory has designed and 

developed a pilot “binary” anti-CD20 drug-free macromolecular therapeutic system using 

a pair of pentaheptad peptides (CCE and CCK) that formed antiparallel coiled-coil 

heterodimers as the biorecognition moieties.23,24 When compared to this previous design 

using peptides, the MORF oligos clearly demonstrated faster binding kinetics as well as 

more efficient self-assembly (equimolar MORF1/MORF2 reached binding saturation in 

vitro), therefore resulting in superior apoptosis induction and in vivo anti-lymphoma 



	
  

	
  

158 

efficacy (see Chapter 3, Table 3.1). This is because the individual peptide sequences do 

not have a pronounced secondary structure at the physiological pH.25 Fab'-CCE and P-

CCK interact first via hydrophobic and electrostatic interactions, and then, the 

oligopeptides fold into a strong antiparallel coiled-coil heterodimer. Therefore, we aimed 

to identify a biorecognition pair that would bind efficiently at the 1:1 molar ratio. 

Morpholino oligonucleotides were selected due to their fast hybridization, excellent 

binding affinity and stability in plasma, as well as water-solubility.26 

 The results of our study warrant further clinical evaluation of the morpholino 

oligonucleotide mediated drug-free therapeutic system. The selection of the CD20 target 

in this system is validated by extensive prior clinical experience; anti-CD20 “B-cell 

depletion” therapy has been used in the clinic for over 15 years. Before translation to the 

clinic, potential toxicity and/or immunogenicity of the conjugates needs to be carefully 

studied. Note that, here, the preclinical evaluation was performed in SCID mice. It is 

important to follow up immunogenicity studies using immunocompetent animals. 

Properly designed in vivo toxicity experiments with dose escalation also need to be done. 

In addition, in the proposed system, Fab' from a mouse mAb (1F5) is used; therefore, in 

humans, these foreign, murine-derived protein fragments may trigger immune responses, 

e.g., production of anti-mouse antibodies and the associated allergic or hypersensitivity 

reactions. In the future, such issues can be further addressed by producing the 1F5 mAb 

with humanized amino acid sequences or by directly switching to other humanized anti-

CD20 mAbs (ofatumumab, veltuzumab, etc.). 

 In summary, drug-free macromolecular therapeutics constitute a new paradigm of 

polymer-based nanomedicines that are free of toxins and immune activation. Cell surface 
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biorecognition of hybrid nanomaterials translates into innate biological responses, i.e., 

apoptosis. The apoptosis induction is direct (without the help of effector cells) and 

specific (targeted to certain receptors) and suitable for the design of precisely pretargeted 

nanotherapies. This novel approach has significant advantages over conventional chemo-, 

radio-, and immunotherapies. These promising perspectives warrant further developments 

within the same pipeline and may stimulate other designs. Here, we suggest potential 

future directions and provide supporting literature for each direction: 

• Targeting moieties: peptide ligands identified by combinatorial methods,27,28 

oligosaccharides,29,30 and oligonucleotide aptamers.31,32 An aptamer for the B-cell 

receptor has been identified.31 Bifunctional nucleic acids can be produced that 

contain aptamers (targeting moieties) and crosslinkers (binding motifs) on each 

end of one molecule.32 

• Binding motifs: different sequences and lengths (e.g., longer motifs with spacers 

may result in less steric hindrance of binding33), other types of binders such as 

peptide nucleic acids (PNA),34,35 locked nucleic acids (LNA),31,36 and 2'-O-

methyloligoribonucleotides (2'-OMe-RNA).36 

• Polymer backbones (or other carriers): liposomes,37 carbon nanotubes,38 or 

genetically engineered biopolymers (e.g., polypeptides,22 poly-DNA21). Mobility 

and biodistribution of carriers should be characterized. Flexible backbones are 

generally preferred for receptor crosslinking. 

• Different diseases: CD20 crosslinking and B-cell depletion can be used for 

autoimmune disorders such as rheumatoid arthritis,39 multiple sclerosis,40 and 

systemic lupus erythematosus.41 The same approach can potentially be used for 
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antirejection treatment of organ transplants, e.g., rituximab is used off-label for 

kidney transplant recipients.42 

• Cell receptors: potentially any non- or slowly internalizing cell surface antigen 

can be a target, such as CD45 (T-cell, B-cell, macrophage),43 death receptor 4 

(breast and colon cancers, etc.),44 prostate stem cell antigen (prostate cancer),45 

and carcinoembryonic antigen (many tumor types, but not on normal cells).46,47 

The crosslinking of these antigens can induce cell apoptosis. 

• Other directions: crosslinking two different receptors simultaneously to achieve 

synergistic effects (e.g., CD20/CD40,48 CD20/FGFR3,49 CD37/CD20 or 

CD37/CD1937), and designed as a switch for ON-OFF regulation of cellular 

events.44,50 

 For further translation into the clinic, the drug-free therapeutic approach will 

ultimately require validation and confirmation in properly conducted clinical trials, as 

well as carefully designed in vivo biocompatibility/toxicity studies. For applications in 

cancer, the tumor penetration capability of each of the therapy components shall be 

evaluated. It will be interesting to compare the mobility of the nanosized therapeutic 

conjugates with that of the immune effector cells, which have limited penetration into 

solid tumors. In conclusion, we anticipate more designs and research in this exciting new 

field of polymeric nanomedicines. 
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