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ABSTRACT

A new approach has been developed to use, store, and display seismic information 

as a time-dependent variable in block models.

The research illustrates a new technique to model seismic events and combine 

them into block models, providing the user with the ability to analyze these data as a 

function of time in a four-dimensional (4-D) model, with the possibility of combining 

different analysis criteria to display the data, create sections of the information in any 

direction needed, and cut the data at any elevation to see what has happened through the 

life and development of the mine.

Seismic data, comprising points in three dimensions placed spatially by their 

location coordinates (x: east, y: north, and z: elevation), are interpolated into a block 

model to develop solids in three dimensions (3-D) at various energy or magnitude cut

offs. These data are then accumulated in a (4-D) array which can be used to display the 

evolution of seismicity over a period of time. The data in the blocks can be filtered using 

the associated location errors, and the number of seismic stations triggered by the seismic 

events.

A model was developed with seismic data collected between the years 1992 and 

2012 from a large underground mine, using panel caving techniques. The data comprised 

approximately 2.1 million seismic events. The seismicity was interpolated using inverse-



distance interpolations to a block model that consisted of 1,875,000 blocks of 20x20x20 

m, with block model extents of 2.5, 3, and 2 km in the east, north, and elevation 

directions, respectively. The model was developed for the entire mine, using yearly and 

monthly resolutions for the accumulated parameters.

The results from the accumulated energy model were used to analyze the pre

mining seismic conditions of a project that started in 2010 and that it is located between 

two other projects, one to the north that started in the year 1990 and the other to the south 

that started in 1998.

The seismic history of the mine can be displayed and analyzed using the 

developed technique, defining areas of progressive deterioration associated to the energy 

levels released by the seismic events.
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1. INTRODUCTION

Induced seismicity in mining is usually studied using seismic software packages 

that show the seismic events as point clouds, with associated locations, and these data are 

related to the mine activity (undercutting, cave advance, blasting, etc .) being done at the 

time the events happen.

The idea of three-dimensional (3-D) modeling is to display something that is 

complex to imagine because it may consist of many elements, or because these elements 

have different variables that cannot be envisioned easily just by looking at tables and 

graphs.

The purpose of the modeling technique described here is to use block models to 

visualize seismic activity over time in 3-D and four dimensions (4-D), to better 

understand how mining-induced seismicity has been developed in the mine.

A simple and robust modeling technique should be easy to explain and implement 

in a logical manner, allowing the use of the same technique and modeling process in 

different platforms.

If the information can be analyzed and displayed by using a technique that 

accumulates the energy associated with the seismic events in a block model, it will be 

possible to represent the of the induced seismicity with respect to the mining activities in 

a simpler manner, making analysis and study easier.



2

A set of data with coordinates can be represented in a 2-D (two-dimensional) 

space as a graph that is defined by the x and y coordinates. In mining and surveying 

applications, the easting (X) and northing (Y) coordinates are used, providing the ability 

to display the data in a defined system where it can be referenced and located with 

respect to known areas or places.

The human brain can easily locate and understand the data in a 2-D environment, 

but when the data are presented in a 3-D format, by adding an elevation attribute to it, the 

amount of data and its display become more and more complex as the model grows, 

increasing the difficulty of relating to and understanding the combinations of different 

variables.

The commonly-used seismic packages (JDI by ISS, Norsar3D) are based on 

working on a 3-D environment but using 2-D data, giving the ability to display maps or 

sections on a 2-D surface on a 3-D space. Using this approach, the data can be better 

viewed and understood for later interpretation or display.

A three-dimensional (3-D) package allows the display of large, three-dimensional 

data sets, and also facilitates the interpretation of these data by providing drafting and 

drawing tools that can be used in different sections and on a 3-D or 4-D setting, providing 

an important impact in the mine business (Brown 2004).

The approach used here follows the idea of using the seismic information in 

correlation with a block model of the area, so seismic attributes, such as energy, 

magnitude, associated location error, and number of stations that recognized each event, 

can be interpolated and combined within the block model for their analysis.
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Adding the seismic attributes of the events, including the date and time for each, 

to the block model makes it possible to analyze the evolution of the weekly, monthly, or 

yearly seismicity. The time attribute can be correlated to the stages in mining at different 

milestones of the mine life.

A seismic time model can show how the seismicity has evolved and moved 

through the rock mass, providing insights and guidelines on the condition of areas that 

have yet to be mined.

The study was conducted using actual seismic data from a database comprising 

almost 2.1 million events that occurred over a period of 21 years at a large underground 

copper mine. The mine initially used the block caving method, but transitioned to panel 

caving during the study period.



2. BACKGROUND

Seismic data are collected from an array of geophones and accelerometers placed 

at various locations inside of the mine. The locations are chosen to achieve the optimal 

sensitivity for the variables being recorded.

The output data from each seismic station come as a series of events differentiated 

by the time or occurrence and the attributes for each event such as location, location 

error, moment, energy, and triggers or stations activated by the event.

These data, which may include a few or millions of events, can be interpolated 

into a block model to study the behavior of the events through the rock mass, and 

spatially place them in 3-D to allow correlation them with mining activity.

2.1 Block Models

The main idea of a block model is to partition the ore body or area of interest into 

units small enough to give interesting pictures of reality (Stanley 1979), with each block 

containing the desired information, such as lithology, structure, seismic activity, ore 

grades, etc., associated with a given block.

Block models were initially conceived as a way to store estimated values from 

existing data sets, and to use these values to determine which blocks represent a portion 

of the ore body that can be extracted economically.
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Block models can be used in many ways, but it must be considered that a single 

model that satisfies all curiosities and forms of expertise is difficult to construct (Stanley 

1979).

A block model can be thought of as a box that contains the area of interest that 

needs to be studied. The box contains many smaller boxes or blocks, each of which can 

store a number of variables associated with its volume.

The main parameters needed to define a block model are:

• Origin: The origin is usually the lowest point of the box, which translates to the 

lowest east, north, and elevation coordinates of the block model.

• Rotation: This attribute is only used if the block model needs to be rotated in the 

model axes to optimize the number of blocks used in the block model.

• Extents: The extents define how far in each direction the block model extends. Thus, 

a model with an origin of (100, 50, 200) and the extents on each coordinate of (100, 

200, 100) will extend from the 100 to 200 on the east, from 50 to 250 on the north, 

and from 200 to 300 on the elevation.

• Block Size: The block size defines the size of the smaller blocks that compose the 

block model. For a regular block size of 10 m on each side, the previous example will 

be composed of 10 blocks in the east direction, 20 blocks in the north direction, and 

10 blocks in the elevation orientation. The number of blocks can be calculated by 

multiplying the previous values. The model, which is 10x20x10 blocks, will have a 

total of 2,000 blocks.
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• Variables: The variables are used to store data inside each block; a block can have as 

many variables as the software or file size restrictions of the operating system 

installed on the computer will allow. A variable can be of any of four types: 

o Alphanumeric: Strings of letters or numbers combined, 

o Byte: This is a variable that uses a single bit of memory, usually with integer 

numbers in a range from 0-255. 

o Short: A short integer number using two bytes of memory in the range of 

values from -32,768 up to 32,768. 

o Integer: Integer numbers taking up to 4 bytes of memory in the range from - 

2,000,000,000 to 2,000,000,000. 

o Float: A real number taking up to 4 bytes and used with values that have up to 

seven significant figures,

o Double: A real number with greater precision, taking up to 8 bytes and used 

with values that have up to fourteen significant figures.

It can be easily seen that as the number of variables increases, so does the size of the 

block model in use, and also the size of the block model file.

2.2 Composites Files

A composites file is a set of points usually derived from drill-hole data where the 

length of the hole is divided into intervals, and a set of 3-D coordinates is defined for the 

top, middle, and bottom section of each interval.

The coordinates of each sample point on a drill-hole are used to estimate the 

distance from the known data point to the center of the block or the point being
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estimated. This distance in turn is used to determine which samples should be included 

in a given estimation, based on the respective distances of the samples from the point of 

interest (POI) being estimated, and also to calculate the weights that are used in the 

estimation of each block.

2.3 Inverse-distance Interpolations

Distance weighting methods became more popular when computer assistance 

became available because of the large number of repetitive calculations required (Hughes 

and Davey 1979).

The inverse-distance interpolation is a technique used to estimate an unknown 

value at a point or area of interest, for example, the center of a block, from known data 

around the point of interest.

The technique relies on the distance of the samples to the POI where a value 

needs to be estimated, and assigns weights to the samples depending on how close they 

are to the POI.

The known values are assigned weights that represent the respective influences of 

the surrounding samples upon the block being evaluated (Barnes 1979), and they are used 

to calculate a weighted average at POI.

The inverse-distance method can incorporate a power parameter. For example, 

inverse-distance-squared (ID2) places much more importance on samples that are closer 

to the POI than ID1, and ID3 (inverse-distance-cubed) gives even more importance to 

samples closer to the POI than ID2.
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The weight assigned to the known points increases as the distance from the POI 

decreases, with greater values of “p” assigning more importance or weight to values 

closer to the point being estimated.

Inverse-distance estimation techniques are based on the idea that things that are 

close to one another are more likely to be alike than points that are more widely spaced.

The regular formula for inverse-distance estimation is presented in Eq. 1.

u (x )  =  S i o
N Wj(x)uj

2j = 0 Wj (x)

W i(x) = d (x ,X j)P

(Eq 1) 

(Eq 2)

where,

x: interpolated arbitrary point

X;: interpolating known point

d: given distance from point x, to x

N: total number of known points used in the interpolation

p: positive real number called the power parameter

Many natural phenomena in nature exhibit an inverse distance effect, including 

gravity, magnetism, and the attenuation of light and sound, to mention a few (Hughes and 

Davey 1979).
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2.4 Seismic Information

A seismic system consists of hardware (a network of sensors) and the software 

that is used to collect the seismic data from the sensors (Essrich 2005).

The collected information is interpreted and used as one of the tools that help 

understand various phenomena occurring in underground mines, such as caving, stability 

of major infrastructure, activity in production areas, and the effects of mining on 

geological features (Hudyma et al. 2010).

The analysis of seismic events is usually carried out by studying them in an 

isolated manner, without taking into consideration the previous evolution of seismicity 

over different areas of the mine. Seismic history has never been added to a block model 

as a time-dependent, numerical input that can be further analyzed and studied with 

relation to the other properties of the blocks and the back-analysis of these blocks with 

respect to newer relevant seismic events.

2.4.1 Seismic Monitoring System

The specific objectives of seismic monitoring in a block caving environment are 

to monitor seismic events related to induced stress concentrations, to monitor seismic 

events related to cave propagation, and to monitor seismic events related to 

preconditioning of the rock mass (White 2004).

A seismic monitoring system is composed of seismometer stations distributed 

optimally within the observation area where the data need to be recorded. In general, the 

area of interest should be surrounded by the recording devices in all three dimensions to
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optimize the accuracy of the location of the events in all three directions, east, north, and 

elevation.

The density of stations within the system will determine the accuracy of the 

location of a seismic event, allowing the effective determination of the locations of 

different seismic events over time. The recording devices (geophones and 

accelerometers) transmit the signals from the seismometer stations to the recording center 

where the signal is processed for data storage and immediate or further interpretation.

Depending on the system capacity, the data can be continuously recorded or 

recorded only when relevant events occur, based on criteria such as magnitude, energy, or 

stations activated by the event. When the predefined conditions are met, the data within a 

time window before and after the event are stored in the recording center (K-UTEC 

2003). The system continuously collects data in a memory loop for a given interval, and 

the data are recorded once the triggering conditions are met.

2.4.2 Seismic Sensing Devices

The two very common instruments used to record of seismic events are 

geophones and accelerometers.

The geophone is an electro-mechanical system that transforms the movement of 

the rock mass to an electrical signal proportional to the particle velocity in the medium, 

as shown in Figure 2.1. Most seismic transducers operate on the principle of measuring 

the ground motion relative to an inertial mass (Mendecki 1997). The instrument uses a 

magnetic coil suspended by springs within a steel case. When the material to which the 

instrument is attached begins to vibrate, the case moves while the coil remains stationary.
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u: ground movement to measure 
x: ground movement 
m: inertial mass 
k: spring elastic constant 
c: attenuation coefficient

FIGURE 2.1 Inertial sensor schematic

The movement of the case in relation to the coil generates an electrical voltage 

proportional to the velocity of the coil with respect to the case. The variation in the 

electrical current through the coil is used to estimate the intensity of the vibration.

Geophones in mining applications usually work at frequencies of 4.5 Hz; these 

geophones have a usable frequency bandwidth between 3 Hz and 2,000 Hz. The 

geophones provide a low-cost tool with large bandwidth and excellent readability.

Accelerometers are sensors based on a piezo-electric effect generated by small 

crystals that are accelerated by the movement of the substrate to which the instrument is 

attached. That movement compresses the crystal and produces a signal that is 

electronically adjusted to make it proportional to the acceleration of the particles.

Accelerometers have higher sensitivity at higher frequencies than geophones. For 

very small seismic events that have high frequency content, such as those that result from 

caving, accelerometers are required to obtain accurate measurements 

(White 2004).
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2.4.3 Seismic Network Characterization

A seismic network can be defined by three main aspects related to the quality and 

resolution of the movements that can be recorded by the system (Codelco, 2001).

• Sensibility: The sensibility is related to the minimum magnitude that can be 

registered by the seismic network. The magnitude describes the network sensitivity 

and it corresponds to the magnitude over which the events are registered. This 

parameter depends mainly on the installed sensors and the spacings between them.

• Recording Capacity: Recording capacity is based on the rate at which the 

information is recorded by the system.

• Network Errors: Network errors are related to the quality of the system and how 

accurately it can define the locations of events and the reliability of the parameters 

recorded by the network.

The minimum magnitude recognized by the system can be estimated by the 

Gutenberg-Richter curve (Gutenberg and Richter 1954).

The curve is constructed using the logarithmic values of the quantity of events 

over a defined magnitude at different ranges.

The magnitude at which this curve adopts a decreasing lineal tendency defines the 

minimum magnitude recordable by the system.

A sample Gutenberg-Richter plot where the minimum magnitude achieved by the 

system is around -0.4 is shown in Figure 2.2.
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FIGURE 2.2 Sample Gutenberg-Richter curve

2.5 Induced Seismicity

Seismicity in mines is often referred to as induced seismicity because it is induced 

by the mining activities related to the extraction of the ore.

Seismicity occurs when rock is strained to its breaking point by mining-induced 

and/or tectonic stresses. The perturbation of the stress field may trigger a slip on faults 

that are in unstable equilibrium or rupture previously intact rock, releasing large amounts 

of energy (Durrheim 2005).

An increase in the stresses does not always result in rock breakage. For example, 

when an open-pit mine interacts with an underground caving project, the caving of the pit 

can concentrate stresses on the rock mass between the two projects, aiding the cave 

propagation by causing existing fractures to extend and create new fractures. The creation 

of new fractures can even affect primary fragmentation and reduce secondary breaking 

requirements (Moss 2006).
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Mines can exhibit different kinds of induced seismicity. For example, small-scale, 

localized events, with a high frequencies in high-stress areas, can be produced by the 

undercutting of an area, while large-scale events related to shear in intact rocks may 

represent the evolution of the cave upwards (Turner 2000).

Seismicity recorded in mines usually shows bimodal patterns. The first mode 

typically has magnitudes ranging from 0.0 to 0.5, and is associated with rock mass 

fracturing immediately ahead of the undercut and the propagating cave back, while the 

second mode has magnitudes up to 2.1, and results from events located at geological 

discontinuities at a greater distance from mining activity. The second mode events are 

usually connected with stress redistribution ahead of the undercut abutment and around 

the cave (Glazer, 2004).

The distribution of mining-induced seismicity is a good indicator of structural 

stress conditions; seismicity usually results from a geologic structure being stressed to its 

limits. The redistribution of stresses can create concentrations of stored elastic energy 

that might drive seismic rock failure, and as mine excavations approach these 

concentrations, the mining-induced disturbance of stress levels can accelerate the loading 

of the intact rock, pillars, and faults to the point of failure (Whyatt 1996).

In a study conducted to understand the characteristics of mining-induced 

seismicity and rock bursts in deep hard rock mines (Swanson, 1991), seismic events were 

studied over a 20-month period at a metal mine in Idaho. Each seismic event was 

analyzed for its Richter magnitude, time of the occurrence, location, and relation to rock 

bursting.
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One important result was that the accumulated seismic energy for the area was a 

result of only 5% or eight of the events, while half of these eight events did not produce 

any damage. The results were interpreted to show that the accumulation of energy in 

seismic areas where bursting or similar problems arise results mainly from sudden 

accumulations of energy and not from many events with low energy releases.

Other research has shown that the radiated seismic energy from an event provides 

a measure of the stress release at the source (White 2004).



3 CONCEPTUAL APPROACH

The approach developed in this work is based on studying the energy of each 

event and associating this energy with the blocks in the block model. The concept is 

based on the idea that the energy involved in a seismic event affects the rock associated 

in the place where the event takes place. The rock is subjected to forces and deformations 

resulting from the mining activities, and the energy is slowly accumulated until the 

internal strength of the rock mass is exceeded, generating a seismic event. The stored 

energy is released as elastic waves in the seismic event, damaging the rock to a greater or 

lesser extent.

As the number of events progresses and more events are located within the block 

boundaries, the energy releases continue to affect the blocks, leaving a deteriorative 

effect in each.

The releases of energy from mining-induced seismicity, as represented by 

recorded seismic events, can be used in combination with a block model to provide a new 

way of visualizing the historic seismic activity of an area at the mine. By interpolating to 

estimate the amounts of energy that have passed through a block, it is possible to define 

and delineate areas of the mine where significant deterioration may have occurred, as 

represented by the associated seismic activity.

In general, the interpolation techniques used here are based on estimating an 

average of the samples inside or around the block model, but by understanding the way
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the system works, the process can be modified to actually estimate the sum of all the 

events that take place inside a block.

As described above, the simple inverse-distance (ID) interpolation method creates 

an average of the values around a block by using the distance from the center of the block 

to the samples to assign a weight to each sample to use on the estimation of the block. To 

assign greater weights to values that are closer to the center of the block, the distance in 

the ID method can be raised to a power, x, as shown by the general expression for the 

inverse-distance method in Eq. 3. Similarly, if a simple average is desired, a power of 

zero can be used for ‘x’ in Eq. 3.

where,

d: distance from the sample to the center of the block 

w: sample value to interpolate 

x: inverse distance power 

n: total number of samples

With x = 0, the interpolation estimates the average of all the energy values inside 

a block. To calculate the sum of all the energy events inside each block, the average is 

multiplied by the number of samples used in the interpolation. Interpolation routines in 

standard mine-planning software (Vulcan, Gemcom, Datamine, or Minesight) can store 

the number of samples used in the estimation of each block, so by multiplying the

l

i d  =  s r = i — (Eq.3)
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number of samples and the estimated average of the energy, the sum of the energy inside 

of the block can be easily calculated.

When the true associated energy for each block has been estimated, it is possible 

to study how the energy is accumulated each year, by storing the progressive 

accumulation of energy in the correspondent variables for each year or month. For 

example, the accumulated energy of a block up to year 2001 will consist of the sum of 

accumulated energy values up to the year 2000 plus the real energy values for the year 

2001.

The blocks with the interpolated information can then be sorted by desired 

parameters, such as average number of triggers activated, average location error 

associated with the samples, or a combination of both, to search for areas where high 

releases of energy over time could produce problems or indicate increased deterioration 

due to a history of seismic activity.



4 MODELING APPROACH

The recorded seismic events are obtained from the seismic network system, which 

provides location coordinates, magnitude, energy, moment, location error, and the 

number of triggered stations for each event.

4.1 Input Data

The data for the model were delivered in a CSV (comma-separated values) 

format, separated by spaces. The file was divided into events that could be located in 

three dimensions using the provided coordinates, and these events were converted to a 

composites file suitable for use with an inverse-distance estimation technique. In the 

composites file, a header line provides the information for each column within the file. 

For ease of use and to minimize the use of nonrequired data, the files can be manipulated 

in MS Excel if they contain fewer than 1 million events, or by using MS Access if they 

have more.

It is of course desirable to model only the variables of interest, and the file can be 

easily filtered using MS Excel, MS Access, or any other type of database manager.

Once the data are manipulated in the database package, they can be exported to a 

new CSV file with the new attributes (variables that are going to be interpolated) and 

definitions (numerical configurations of the variables), according to the input file format 

accepted by the modeling package selected.
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The main column number, fields, units, and format for each variable are presented 

in Table 4.1.

The data are processed and manipulated in a database to create an input file that is 

suitable for import into a mine-modeling program such as Vulcan, Datamine, Gemcom, 

or Minesight. Vulcan was used in the work described here.

4.2 Postprocessed Data

The new input file is a CSV file. It has the inputs needed from the EVP files, but 

also includes the new columns that are required to reconfigure the data as a composites

TABLE 4.1: Column definitions in the seismic events file (EVP)

Column Field Units Format
1 Date - yyyymmdd
2 Time - hhmmss
3 Location Error m integer
4 Location (X) m float
5 Location (Y) m float
6 Location (Z) m float
7 Moment Nm float
8 Energy J float
9 Moment P Nm float
10 Energy P J float
11 Moment S Nm float
12 Energy S J float
13 Number of triggers - Integer
14 Corner frequency Hz float
15 Static Stress Drop Pa float
16 Dynamic Stress Drop Pa float
17 Moment deviation Nm float
18 Energy Deviation J float
19 Corner frequency S Hz float
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The use of a composites file makes it possible for the software to interpolate and 

extrapolate values from the seismic data into the blocks of the block model.

Each event of the EVP file is assigned coordinates as if it were a composite from 

the composites file. The format of the postprocessed data is presented in Table 4.2.

To show the manipulation used with each file, each field will be explained:

• compid: This field is the name of the composited group, since the same file can 

contain different composites groups.

TABLE 4.2: Postprocessed EVP as composite file

Column Field Units Format
1 compid - Alphanumeric
2 dhid - Alphanumeric
3 MIDX m float
4 MIDY m float
5 MIDZ m float
6 TOPX m float
7 TOPY m float
8 TOPZ m float
9 BOTX m float
10 BOTY m float
11 BOTZ m float
12 Length m float
13 From m float
14 To m float
15 Geocod - float
16 Bound - float
17 Energy J float
18 Location Error m integer
19 Num. Triggers - integer
20 Ore - float
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dhid: This field stores the year and date combined using a concatenating function to 

obtain a format yyyymmdd hhmmss, and can be used to restrict which samples or 

events are used in the estimations.

MIDX, MIDY, MIDZ: These are the x, y, and z coordinates of the event. This field 

is later used to estimate the distance from the events to the center of the blocks, and 

weight their importance.

TOPX, TOPY, TOPZ: These values are the same as the MIDX, MIDY, and MIDZ 

fields, and are only added to conform to the required composites file structure. 

BOTX, BOTY, BOTZ: These values are also the same as the MIDX, MIDY, and 

MIDZ fields, and are again added only to conform to the composites file structure 

needed.

Length: This is a constant field with a value of one for the spatial length of each 

event.

From: This is a constant field with a value of zero indicating the start of the event or 

sample.

To: This is a constant field with a value of one indicating the end of the spatial length 

of the event.

Geocod: This is a field used for insertion or addition of geological codes as needed to 

restrict the interpolations by lithology.

Bound: This is a boundary code which allows the events need to be selected by a set 

of triangulations.

Energy: This is the energy field from the EVP database, with the energy in joules.
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• Location Error: This field represents the error in the location of the event, and can be 

used to restrict the number of events to use to a certain error range.

• Num.Triggers: This variable shows the number of seismic stations or triggers that 

were activated by the event

• Ore: This is a constant field with a value of zero, and is not used in the interpolation.

4.3 Block Model

To interpolate the data from the composites file, a block model large enough to 

cover the area of interest was created. The block model must also have the variables that 

are going to be used to store each one of the interpolations.

The block model used has an origin at the coordinates x=-500 m, y=-l,000 m, 

and z=1000 m. The extents of the model are 2,500 m in the east direction, 3,000 m in the 

north direction, and 2,000 m in the vertical direction.

The seismicity is analyzed by years, so a variable was created for each year in the 

block model from the year 1992 up to 2012.

The interpolated value of the average energy for each block is stored in a variable 

with the form yXXXX, where ‘y’ is the energy and XXXX is the year, ranging from 1992 

to 2012. A second set of variables was also created to store the number of samples used 

for the estimation of each block, with the form nXXXX, where ‘n’ is the number of 

samples, and a third set of variables was created to show the real interpolated value of the 

sum of the energy in each block, rXXXX, where ‘r’ is the real value. Finally, the 

accumulated interpolated values for each year have the form aXXXX, where ‘a’ is the
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accumulated value. Each of the variables created is of the data type “double,” and has an 

assigned default value of zero.

The basic configuration of the model in the software is presented in Figures 4.1 to

The model comprises a total of 84 different variables that can be assigned to 

blocks in the block model, when an anslysis is designed on a yearly basis.

4.4 Interpolation

To calculate the sum of the energy from seismic events for each block of the 

block model, three variables are used: one variable to estimate an average of the energy 

values, a second variable to store the number of samples used in the estimation for each 

block, and a third variable which is the product of the first two, and represents the total 

energy released by all the events inside of the block.

X Coordinate: -500.0
Schemes
Variables
Boundaries
Limits

Y Coordinate: -1000.0

Z Coordinate: 1000.0 
Rotation

Exceptions
Bearing: 90.0 (absolute bearing of X axis around Z axis)

Format Plunge: 0,0 [relative rotation of X axis around V axis)

Dip: 0,0 (relative rotation of Y axis around X axis)

[Rotations follow left hand rule)

FIGURE 4.1 Block model orientation parameters

Orientation

Variables

Boundaries

Scheme Start 
X Offset

Start 
Y Onset

Start 
Z Offset

End 
X Offset

End 
Y Offset

End 
2 Offset

Block
XScze

Block
VStae

Block 
Z Size

I parent 0.0 0.0 0.0 2500.0 3000.0 2000.0 20.0 20,0 20.0

• ______ ______ ______ ______ ______ ______

FIGURE 4.2 Extent and size of the blocks in the block model
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Orientation

Schemes
Variable Data Type

-----
Default Value

1 yl992 Double (Real * 8) w 0

02 yl993 Double (Real *8) w

Limits

Exceptions

Format

3 yl994 Double (Real * 8) ▼ 0

4 yl995 Double (Real * 8) ▼ 0

5 yl996 Double (Real * 8) w 0

6 yl997 Double (Real * 8) ▼ 0

7 V1998 Double (Real * 8) w 0

8 y 1999 Double (Real * 8) ▼ 0

9 y2000 Double (Real * 83 0

10 y2001 Double (Real *8) w 0

11 y2002 Double (Real * 8) ▼ 0

12 y2003 Double (Real * 3 ! ▼ 0

13 y2004 Double (Real * 8) ▼ 0

14 y2005 Double (Real * 8) ▼ 0

15 y2006 Double (Real *8) ▼ 0

16 y2007 Double (Real *83 ▼ 0

17 y2008 Double (Real * 83 0

18 y2009 Double (Real * 3) w 0

19 y2010 Double (Real * 8) ▼ 0

20 y201l Double (Real *8) ▼

▼
0

021 y2012 Double (Real *8)

FIGURE 4.3 Variables for each year in the block model

Boundaries

Limits

Exceptions

Format

Variable Data Type Default Value

22 nl992 Double (Real * 8') 0

23 P1993 Double (Real * 8 ) 0

24 nl994 Double (Real * 3) - 0

25 nl995 Double (Real • 8) - 0

26 rl996 Double (Real * 3 ) 0

27 nl997 Double (Real * 3) - 0

26 nl998 Double (Real *3) 0

29 nl999 Double (Real • 3 ) - 0

30 n2000 Double (Real * 3) - 0

31 n2001 Double (Real " 3 ) • 0

32 n2002 Double (Real * 3) - 0

33 ri2003 Double (Real • 3) ▼ 0

34 r2004 Double (Real * 3 ) - 0

35 n200S Double (Real * 3 )
T

0

36 r>2006 Double (Real * 3 ) 0

37 n2007 Double (Real * 8) - 0

38 n2008 Double (Red * 3 J - 0

39 n2009 Double (Real * 3) - 0

40 n20l0 Double (Real * 8)

T

0

41 ft 2011 Double (Red • 3 ) 0

42 r2012 , Double (Real * 8) 0

FIGURE 4.4 Variables for the number of samples estimated on each block
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Orientation

Schemes
m r v T i

Boundaries

Limits

Exceptions

Format

Variable Data Type Default Value

64 rl992 Double (Real * 8) w 0

65 rl993 Double (Real * 8) w 0

66 rl99« Double (Real * 8) 0

67 rl995 Double (Real * 8) 0

68 rl996 Double (Real * 8) w 0

69 r 1997 Double (Real * 8) ▼ 0

70 rl998 Double (Real * 8) w 0

71 rl999 Double (Real * 8) ▼ 0

72 r2000 Double (Real * 83 0

73 r2001 Double (Real * 8) w 0
74 r2002 Double (Real * 8) ▼ 0

75 r2003 Double (Real * 83 0

76 r2004 Double (Real * 8) ▼ 0

77 r2005 Double (Real * 8) ▼ 0

78 r2006 Double (Real *83 ▼ 0

79 r2007 Double (Real “ 83 ▼ 0

80 r2008 Double (Real * 8) 0

81 r2009 Double (Real * 3) w 0

82 r20t0 Double (Real * 8) ▼ 0

83 r2011 Double (Real *8) ▼

▼
0

084 r2012 Double (Real * 8)

FIGURE 4.5 Variables for the final yearly estimated values

Orientation

Schemes

Boundaries

Limits

Exceptions

Format

Variable Data Type Default Value

43 a 1992 Double (Real “ 8) ▼ 0

44 a 1993 Double (Real * 8) ▼ 0

45 a 1994 Double (Real * 8) ▼ 0

46 a 1995 Double (Real * 8) ▼ 0

47 a 1996 Double (Real *83 ▼ 0

48 a 1997 Double (Real * 8) ▼ 0

49 a 1998 Double (Real * 8) w 0

50 a 1999 Double (Real * 8) w 0

51 a2000 Double (Real * 8) ▼ 0

52 a2001 Double (Real * 8) ▼ 0

53 a2002 Double (Real * 83 ▼ 0

54 a2003 Double (Rea< * 8) 0

55 a200*4 Double {Real * 8) 1 0

56 a2005 Double (Real *8) I 0

57 a2006 Double (Real * 8) : 0

58 a2007 Double (Real * 8) : 0

59 a2008 Double (Real * 8) • 0

60 a2009 Double (Real * 8) - 0

61 a 2010 Double (Real * 8) 0

62 a 2011 Double (Real * 8) • 0

63 a 2012 Double (Real * 8)
•

0

FIGURE 4.6 Variables for studying the accumulated interpolated values each year
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To establish the averages of the values involved in the interpolations, with 

variables such as location error and the numbers of triggers, an inverse-distance approach 

was applied.

Figures 4.7-4.10 show an example of the energy interpolation for the year 1992, 

with copies of the relevant screens from Vulcan. The interpolated value is stored in 

yl992 and the number of samples used in the interpolation is stored in nl992 (Figure

The search region defined is dependent on the block size in the block model. For 

cubic blocks of 20 m on each side, the search area used is 10 m in each direction from the 

center of the block, thus including a total of 800 cubic meters in the search for the total 

number of samples that fall inside of the block volume (Figure 4.8).

The inverse-di stance power used in the interpolation is zero, so that the 

interpolation calculates a weighted average of the values inside of the block (where each 

value has the same weight). The interpolated value is then used in conjunction with the 

variable that stores the number of samples to estimate the sum of the energy that was 

accumulated inside each block (Figure 4.9). Using a value of one in the inverse-di stance 

interpolation would provide a weighted average where the values closer to the center of 

the block have a greater weight in the estimation of the block average.

The medium composite coordinates are used to position the samples in space and 

to establish the values that fall inside of the boundaries of each block. The energy or 

magnitude values of these composites are used in the interpolation for each of the blocks 

(Figure 4.10).
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Inverse Distance Speoficatoons { 3992)
Eswnanon Oeait i  a* vabtes
Discretisation Steps 
Ostances to Samples 
Search Region 
Samples Counts 
Inverse Distance 
Samples Database

Select usng numeric tag 
Select usng character tag 
Select usng solid tr angulations 
Select usng field restrictions 

Sample Urmts 
Soft Boundaries 
Bode Options 

Extra Variables

Cross validation

Save sample identifiers n  map fft* 

© Block model estimation

Grade variable : yl992

■>tofe iagrange parame*; 

Store bkx>. vanance 

Store k n jn g  e ffftaency 

Store slope of legrd&C'

Store nunber of holes:

▼ Default value ! 0.0

/ Store nunber of samples: nl992 

Store flag when estmated:

♦ Default: 0.0

FIGURE 4.7 Estimation and storage variables used for year 1992

Inverse Distance Specifications (  1992) Search orientation:

Estimation Result variables 
-  Discretisation Steps 

Distances to Samples

Bearing o.o Rotation about the Z* axis

Pinge : 0.0 Rotation about the V axis
A - - 1 . /I

Samples Counts
-* Inverse Distance 

Samples Database
Positive plunge and dip angles are  upwards

I -  Select usng numeric tag 
I -  Select usng character tag Search dstances

j -  Select using solid tnangiiations Major ans i 10.0
: Select usng field restrictions 

Sample Lmts 
Soft Boundaries

Semi -  Major axis . 10.0

Mnor axis: 10 0

Block Options
• Extra variables Use search ellipsoid «  Use search box

Unfold by tetxatedral model

FIGURE 4.8 Search region restrictions used for 20m cubic blocks
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Inverse Distance Specifications ( 1992) 
Esbmabon Result Variables 
Discretisation Steps 

Distances to Samples 
Search Region 
L i  p t a  D m  i||

Samples Database
Select usng numeric tag 
Select usng character tag 
Select usng solid tnangulattons 
Select usng field restrictions 

Sample Limits 
Soft Boundaries 
Block Options 
Extra Variables

Aosotropic Rad* in X : 

Ar*sotropic R adi m Y : 

A ro o tro p ic  Rada n  2  :

1.0

L.O
1.0 | Normal re

Power: o.O

FIGURE 4.9 Inverse distance power to zero used in the interpolation

Inverse Distance Specifications (  1992 ) 
EsnmaTmn Result Variables 

Dtsoeosatw Steps 

Distances to Samoles 

Search Regwn 
Samples Counts 
Inverse Distance

Select usng numeric tag 

Select us no character tag 
Sdect usng k M  tnanyiiatwrs 

Select usng field -estictions 

Sample Lmts 
Soft Bo^xlanes 

Bloc* Opoons 
Eatoa Variables

® ‘v̂ ec* Databav c# Mao CG0CI**
pflter.os.lse »  3r»wse .. fcevgi

Sample fields

Sampe g roup: * -

Location X fieJd : MID> - Location Y RekJ: MIDY - Locator 2 Field : MIDZ -

Grade W r i : ET'P.G 

f l  Use ^arable wetfitmg :

DatabM*h#td contarm j th«

Cross »etdaton fields

Estmvaoon deduste^mg weghts fide

Sample database manculaton 

Q  fpply'ogantrvn. 

f l  Cut grace sanoles.

51

•jpp*r cv* 20 0

FIGURE 4.10 Location fields used in the interpolation
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4.5 Data Display

The advantage of interpolating data into blocks is that the estimated values can be 

displayed in 3-D, as sections and volumes. The sections can be displayed as pure blocks 

or if needed, sets of sections can be created for any selected direction, to display text data 

stored within the blocks, as shown in Figures 4.11 to 4.13.

The advanced loading options in Vulcan and other programs allow the user to 

restrict the display of one variable based on selected combinations of restrictions. For 

example, the user may select blocks in which the energy or magnitude is above a defined 

cutoff value (hiding the values that are not required in the visualization), and also to 

restrict the blocks with an average location error less than 20 m or an average number of 

seismic stations that recorded the events in each block to more than six.

The use of such options and combinations allows the analysis of areas where high 

concentrations of energy are located, while also minimizing the location errors of the 

events by using location and trigger restrictions.

When all the relevant information from the seismic database is assigned to blocks, 

it is possible to quantify and analyze the interpolated values at various ranges, and to 

associate them with existent mining conditions at certain periods.
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FIGURE 4.11 Level 2220 plan view of blocks with energy cut-off set at 10,000 J
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5 THREE-DIMENSIONAL MODELING OF PROGRESSIVE SEISMIC 

ACTIVITY USING BLOCK MODELING TECHNIQUES

5.1 Scope of the Study

In this study, the modeling of the seismic events was developed using data from a 

large underground copper mine that is mined using panel caving techniques. The mine is 

composed of several smaller production areas, also referred to as mines, that work as 

independent units.

The development is carried in a top-down manner, with older projects that are 

caved and depleted on the upper levels of the mine, and the new producing projects being 

developed below the older areas.

The caving history of the mine has created a subsidence cave that extends to the 

surface, and as new projects are developed, they continue to connect to the existing cave 

from the previous projects in the upper levels.

The study was conducted using actual seismic data from the underground mine. 

The area under study covers a total of 7.5 km" (2.5 km on the east, 3 km on the north, and

2 km in elevation).

The seismic data at the mine have been collected since 1992 and thus represent 

the evolution of the seismic events for a period of 21 years, with more than two million 

events recorded.
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The modeling was first developed at a yearly resolution, to check the results and 

the consistency of the modeling process. When the yearly models were seen to be 

satisfactory, a monthly model was also developed to obtain a better time resolution.

5.2 Elements of the Model

The modeling process can be divided in a series of steps (Figure 5.1). In the first 

step, the output data from the seismic network are organized into the required format, 

with the date, time, location error, triggered stations, energy, and magnitude for each 

event. In the second step, the information is preprocessed in a database manager package 

to create a file readable by the interpolation package in Vulcan. In the third step, the 

parameters for the block model are defined—origin, extents, size of blocks, and 

interpolation parameters. In the fourth step, the data are interpolated into the blocks, and 

the interpolated variables are manipulated as required. Finally, in the fifth step, the 

desired models are created and analyzed.

5.2.1 Input Data File

The model is based on the information collected from the seismic network for the 

events associated with the different mining-related activities taking place from 1992 to 

2012. The data were provided as a comma-separated-values (CSV) file, comprising 

information on date, time, location error, location coordinates, moment, energy, and 

triggers for each of the associated seismic events.
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FIGURE 5.1 Activities for modeling the progressive seismic activity

5.2.2 Data Preprocessing

The input data are loaded into MS Access to build a database that can be accessed 

by the interpolation software, where each event is associated with its specific location 

using the input data file coordinates. The events are uniquely marked by combining the 

date and time of the event. The variables from the input data file that must be considered 

are also selected and associated with the events. The resulting data file can be used to 

interpolate the seismic event values in the file from the selected variables into the blocks 

of the block model. The generated file resembles the original seismic event file, but with 

the variables ordered in a different manner and with added variables that are used in the 

interpolation process.
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5.2.3 Block Model

A block model covering the area of interest is defined by the origin coordinates 

(the minima in the east and north and the lowest point in the elevation of a box that 

covers the area of interest) and the extension of the model from that origin point. The 

used origin coordinates were East: 500 m, North: -1,000 m, and Elevation 1,000 m, with 

elevation in meters above sea level. The extents from the origin point are 2,500 m to the 

east, 3,000 m to the north, and 2,000 m in elevation. The resulting model covers a volume 

of 15,000,000 m \ The block size used was the same as that used in the mine operations 

model, 20x20x20 m. Thus, the model has a total of 1,875,000 blocks.

5.2.4 Data Interpolation

The data were loaded into Vulcan to combine it with the block model using the 

modified inverse-distance interpolation technique previously described. That technique 

locates the events located inside each block and interpolates the data as monthly or 

weekly variables.

The data interpolated into each block are associated by the block identification 

variable for the date. For example, the variable for May 2010 is y201005, and the events 

within the block for May 2010 have the unique id of 201005xxx, where xxx represents 

the rest of the string containing the day and time of the event.

The interpolated data (magnitude, energy, triggered stations, and location error) 

come from the seismic file, and are interpolated into the blocks of the block model.



37

5.2.5 Interpolation Verification

Once the interpolations are performed, the data interpolated into the block model 

are checked against the seismic events from the database. An example is shown in Figure

5.2. In the upper left of the block in white, the value 2.27 is the rounded average of the 

energy (in joules) inside the block. That average comes from four values, as shown with 

the number four at the center of the block. The lower right corner of the block shows the 

value for the sum of the energy of the events within the block dimensions, 9.06 J.

The 9.06 J value comes from multiplying the average energy, 2.27 J, and the 

number of samples (four). The colors of the blocks in Figure 5.2 represent the changes in 

the energy for each block shown.

To check that the values were correct, the seismic events inside of the block 

dimensions were isolated in the MS Access database, as shown at the bottom of Figure

5.2. Here the four values correspond to values from the year 2010, the first on April 10 at 

7:15 A.M., the second on July 12 at 8:14 A.M., the third on September 26 at 8:27 A.M., 

and the last on October 9 at 3:39 AM. The database image also shows that there were 

four events located inside the block for the 2010 period.

When the first yearly models were working correctly, the next step was to take the 

analysis to a finer level of detail, using monthly data 1992 to 2012. Monthly modeling 

provides a better analysis resolution when analyzing the correlation of relevant seismic 

events and the previous releases of energy at the mine. Obviously, the size of the model 

increased markedly when it was expanded to include monthly data.

The use of many variables in the block models depends solely on the accepted file 

size for the system and the number of parameters allowed by the interpolation software.
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FIGURE 5.2 Energy average, number of samples, and multiplication result with values
from the MS Access Database

The monthly model requires at least 980 variables for each block in the block 

model: 252 variables for each monthly interpolation, and the same number for the 

number of samples, location error, and triggered stations, respectively. These variables 

are required to store just averages, number of samples, real values, and accumulated 

values on a monthly basis. Thus, the block model becomes quite large, and an 

appropriately sized computer is required to expedite manipulation and analysis.

5.2.6 Modeling the Interpolated Data

The interpolated data for the blocks are analyzed and grouped into volumes to 

display any of the block model variables in space.
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Triangulations are created as shells of the information extracted from the block 

model. A triangulation is a closed solid shell defined by triangles. This creation of 

triangulations for different types of data restrictions allows the convenient visualization 

of the seismic data from a variety of perspectives. A few of the base models created are:

• Energy and magnitude for a specific year or month, filtered by trigger number, 

location error, or both.

• Energy or magnitude for a specific accumulation of years, which can also be filtered 

by triggers, location error, or both.

• Energy or magnitude located inside a specific area in the mine, such as an area to 

cave, a mine level, or a future project footprint.

The interpolated data are used to create 3-D, solid shapes that represent accumulations of 

seismic energy, as restricted by the number of triggered stations, location error, or any 

other variable in the interpolated data.

5.2.7 Sectioning the Data Solids

The interpolated data from the block model were used to create sections of the 

blocks and of the triangulation solids to display the seismic variables with restrictions 

like those mentioned in Section 5.1.5.

5.2.8 Model Results

The resulting values from the interpolation were used to create 3-D solids 

representing the associated released energy by year at the mine (Figure 5.3).
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A similar model was developed to show in 3-D solids the accumulated seismic 

energy at the mine every year 1992 to 2012. Figure 5.4 shows an example of the radiated 

seismic energy for year 2011 and its comparison to the radiated seismic energy from 

1992 up to 2011.

The same procedure can be used to study the compare the accumulated seismic 

energy for other years of the model, for example, between 2005 and 2010.

The initial results of the models with a yearly resolution, from 1992 to 2012, are 

presented in Appendix A. The solids shown represent the energy radiated from the events 

at a cut-off level of 90,000 J for each year.

The second model developed accumulates the events on a yearly basis, modeling 

how the seismic radiated energy is accumulated year after year for the whole mine, 

starting in 1992. The results for the second base model are presented in Appendix B.

5.3 Detailed Yearly Modeling

The effect of the seismic activity can be studied in more detail by focusing on 

specific criteria. For example, one could isolate specific areas at a certain elevation or 

between certain coordinates, or look at the energy ranges in the sections under study.

Figures 5.5 to 5.16, are west-east, north-south, and plan sections, all at an 

elevation of 2,194 m. They show how the radiated energy in joules can be sequentially 

studied, at increasingly fine detail, by filtering the blocks by location error and number of 

triggers.

The ranges used to color the data are representative of the wide spectrum of 

values in the blocks.
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A value of 90,000 j or higher could be considered a high accumulation of energy. 

By comparing different cut-off values for energy display values to known rock conditions 

in the mine, the cut-off value used to define areas with high energy accumulation could 

increase or decrease. As the cut-off value used increases, fewer blocks will be selected 

and used in the generation of the 3-D solids, resulting in a smaller representative volume. 

Using a lower cut-off value will have the opposite effect.

The effect of restricting the data lowers the number of blocks from the original 

interpolation selected for display, by displaying or loading only the blocks that comply 

with the established restrictions imposed on location error lower and number of triggers.

5.4 Three-dimensional Sections

Intersecting sections of blocks can be used to present a 3-D sectional view of the 

data, showing areas of interest and their possible intersections with volumes of interest 

where there may be a concentration of a certain type of data, such as accumulated seismic 

energy.

The advantage of creating sections is that they can be viewed in multiple 

directions, facilitating understanding of how the seismic events are located with relation 

to various activities infrastructure in the mine.

The 2-D data are loaded in a 3-D space to show how the data are related to other 

3-D developments of the mine.

The Figures 5.17 to 5.20 show how the filtering restrictions (location error and 

number of triggered stations) can be used to select and represent blocks in which the 

values for seismic energy have a higher confidence.
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The blocks with greater confidence come in this case by selecting blocks that 

have a lower location error and an average of at least 5 stations triggered by the seismic 

events. When such filtering restrictions are applied to the generation of 3-D solids, 

smaller volumes result, because fewer blocks are selected for the generation of the solid 

tri angulations.

5.5 Discussion of the Results

It has been shown that the interpolation of seismic variables such as energy, 

location error, and number of triggers activated into a block model can facilitate the 

effective and useful representation of seismic data. In many ways, this method is more 

effective than using points placed in 3-D and studying them as semistatic, isolated events.

The addition of a time stamp to the events used for such interpolations allows the 

differentiation of localized events in time and their use in separate interpolations to study 

selected periods of time such as years, months, or weeks.

The use of block models allows the detailed study of individual variables for any 

defined time period, and of the accumulation of seismic effects over such time periods.

The block models can be used to create sets of iso-triangulations over a specific 

range of values and times, to provide a better 3-D visualization of the data, and to load 

these triangulations with other geometries of the mine under study.

The advantage of using different variables in the same analysis opens the 

possibility of loading the data in 3-D but also differentiating the data by restricting their 

display with such criteria as average number of seismic monitoring stations activated by 

the events and the average location error associated for each block.
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The interpolated data can also be used to differentiate and represent triangulations 

that show how selected constraints affect the display of the interpolated seismic attributes 

in the blocks.



6 APPLICATIONS

The ability to visualize and analyze the seismic history of a mine using a block 

model can aid in establishing the seismic fingerprint or embedded history at any area of 

the mine that might have been affected by previous developments and surrounding 

projects. Some examples will be given.

6.1 Seismic Energy Conditions on a Planned Project

At a large underground mine, where panel caving is the main mining method, a 

new project is planned in an area between two older projects. The location of the new 

project provides an uncommon setting since the new block that will be caved sits between 

the two areas that have already been in production for a few years (Figure 6.1).

The undercut level (UCL) of the project placed to the north is at the same level as 

that of the new project, and the UCL of the project to the south is 100 m higher (Figure 

6.2). The new block that will be caved extends upward 220 m to the previous caved area 

on the west side, and its size increases as it goes to the east, with an estimated maximum 

height of up to 600 to 700 m as it gets closer to the mountainside.

The new block to cave is a mineralized pillar that sits between the two previously 

mined areas and its surrounding caved areas of influence associated with them (Figure
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6.1.1 Progressive Evolution of Seismic Energy

The seismic activity was analyzed to follow the conditions in the areas adjacent to 

the new project before the new project is developed, and to understand how the seismic 

activity progressed inside of the block that will be caved in the new project, during the 

mining of the two adjacent areas.

The effect of the previous mining activity around the new project showed that 

there was an associated seismic influence from that activity over the area of the new 

project. Since all the blocks from the block model include the time and accumulated 

seismic effect, the analysis was restricted to blocks that lie inside of the volume the new 

project will cave.

In a first step it was seen that the seismicity movement inside of the block to be 

caved, shown in green in Figure 6.4, was consistent with the mining activities that first
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took place on the north side of the block, with an increase of the seismicity in that area. 

The seismic activity from mining to the south can also be seen.

The volume to be caved, shown in red, was extended vertically upwards so it 

would intersect the two adjacent caves from the previously mined North and South 

Projects. The study also showed the effects of the caving activity from the North and 

South Projects in the sides of the volume representing the new project. The green color, 

which represents seismic activity in the red volume, shifted to first the right from the 

caving of the North Project (Figure 6.4), and then to the left from the caving of the South 

Project (Figure 6.5).

It was seen that the seismic activity progressed between 1992 and 2009, and was 

concentrated in the central area of the red volume (central project) and to the west side. 

The evolution of the seismic activity as blocks is shown in Figure 6.6. This information 

is shown as solid shapes in Figure 6.7. This provides another view of how the seismic 

activity has moved inside of the area between the two projects.

Figure 6.6 and Figure 6.7 both show that there has not been a significant history 

of seismicity on the east side of the new project.

The evolution of the seismicity was tracked with the model. In 1992 the North 

Project was in production where the caving of that project was taking place. In 1999, the 

South Project started, and Figure 6.5 shows how the seismic activity shifted to the south 

side of the new project area.

The evolution of the seismic activity is displayed for each year from 1992 to 2012 

in Figures 6.8 to 6.28.
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FIGURE 6.4 Seismicity associated with mining activities from the North Project from
year 1992 to 1996
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FIGURE 6.5 Seismicity associated with mining activities from the South Project from
year 1992 to 1999
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FIGURE 6.6 W-E view of blocks with accumulated seismic activity inside of the volume
to cave up to year 2009
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FIGURE 6.7 W-E view of interpreted solid covering the most important accumulated 
seismic activity (up to year 2009) inside the area to cave
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The seismicity associated with the new project in the central area (in red) showed 

that there was no relevant seismic activity on the east side, and the evolution of the 

seismicity that was generated from top to bottom from 1992 to 2009.

The effect of the accumulated seismicity was analyzed up to 2009, when the new, 

central project was scheduled to start, and continued to July 2012 to examine the 

evolution of the seismicity afterwards.

Figures 6.8 to 6.28 show how seismicity evolved from 1999 to 2012. The new 

project area is shown from different angles for each year.

On the upper left side of the figures is a view looking to the east; on the top right 

is a plan view of the area; on the lower left is a west-east view; and on the lower right is 

a view looking to the west.

The energy, shown in green in the figures, represents the accumulated radiated 

energy from 1992 to 2012, with a cut-off value of 90,000 Joules.

6.1.2 Progressive Evolution of Seismic Magnitude

The evolution of the accumulated seismic magnitude was analyzed to define how 

the area of the new project had been affected by the induced seismicity from the two 

adjacent projects to the north and the south. The accumulated magnitude was analyzed 

for the period from 1992 to 2009, before the project was planned to start. Figure 6.29 

shows the arrangement of the volumes studied. The new project is shown in red, between 

the North and South Projects, shown in yellow and blue respectively.

A new set of data was developed to display the accumulation of the seismic 

magnitude in the blocks inside the volume of the new project.
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FIGURE 6.15 Different views of accumulated seismic energy inside new project area for year 1999
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FIGURE 6.16 Different views of accumulated seismic energy inside new project area for year 2000
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FIGURE 6.18 Different views of accumulated seismic energy inside new project area for year 2002
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FIGURE 6.21 Different views of accumulated seismic energy inside new project area for year 2005
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FIGURE 6.22 Different views of accumulated seismic energy inside new project area for year 2006



FIGURE 6.23 Different views of accumulated seismic energy inside new project area for year 2007
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FIGURE 6.25 Different views of accumulated seismic energy inside new project area for year 2009
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N ew  Pro ject V olum e to Cave  
B etw een the South and North Pro jects

South
North Project

FIGURE 6.29 Real expected project volume between the caving shapes of the North and
South Projects

The seismic magnitude for an event inside a given block was added to the 

accumulated value when that event had an associated magnitude greater than one.

The volume to be caved, as shown in Figure 6.29, is different than the volume to 

be caved that was studied in Section 6.1.1. In this case, the volume has been cut to the 

expected, actual shape resulting from its interaction with the North and South Projects, to 

limit the study to the effects inside that volume. In Section 6.1.1, the projected caving 

volume for the new project extended up vertically, to allow visualization of the seismic 

effect of the adjacent projects.

The volume of the future project is shown in a west-east view in Figure 6.30.

Here it is seen that the accumulation of seismic magnitude throughout the area has been 

mostly on the west side of the block. The dashed lines in Figure 6.30 indicate boundaries 

for the magnitudes of the events, with red being greater or equal to 10, yellow greater 

than or equal to five and less than 10, blue greater or equal than one and less than five. 

The magnitudes displayed show the areas that had more seismic activity from year 1992 

to 2009.
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Accumulated Magnitude GE 5

Accumulated Magnitude GE 1

FIGURE 6.30 Project volume between the caving shapes of the North and South Projects
showing values greater than or equal (GE) to the defined magnitude index

The analysis then examined how the seismicity moved through the new project 

volume from 1995 to 2009. As shown in by the green triangulations in Figures 6.31 to

6.35, the seismic activity related to the modeled magnitude moved from the top to the 

bottom of the light blue volume.

6.2 Areas with Potential Seismic Activity

In another application of this method, modeling of the progressive evolution of 

seismicity could be used as an initial guide to locate and define possible areas where 

seismicity might be increased by nearby mining activities.

The model was used to review the progressive, seismic deterioration in blocks 

close to a seismic event of magnitude 2.2 that occurred in August 2012, and to check if 

some of the areas closer to the event could have been flagged with the use of the model.
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The event occurred at the coordinates 678 East, 786 North and Elevation 2,084 at 

8:05 P.M., with a magnitude of 2.2.

The block above the block where the event occurred showed values much higher 

than the rest of the surrounding blocks (Figure 6.36). It had a peak value of 103,000 J. 

This block sustained a series of energy releases that started with one event in 2009, then 

18 events in 2010, followed by 51 events in 2011, and 35 events from January to May 

2012. The highest event on the block occurred in April 2010, with an energy associated 

of 102,000 J.

The energy associated with the block that sustained the event was 853 J, and the 

blocks at the same elevation showed most of the associated values between 1,000 J to

3,000 J, with two blocks to the west showing higher values, around 16,000 J and 38,000 

J, as shown in Figure 6.37.

The model can be used to establish the location of areas with high energy values 

at a selected elevation. For example, Figure 6.38 shows the areas at level 2,300 that have 

values higher than 90,000 J.

The seismic event can be localized at a selected level, as shown in Figure 6.36, 

where with the block to the left has an accumulated energy of 15,863.64 J. This 

particular event shows a nearby block with an unusual accumulation of energy for the 

area of 103,158 J where the block is on top of the event localization, as shown in Figure

6.36. In addition, all of the blocks surrounding the event at the same level can be viewed, 

as shown in Figure 6.37.



Event 2.2 Magnitude 
E: 678, N: 786, L: 2.084

FIGURE 6.36 Seismic event location with high energy block on top (103,158 J)

FIGURE 6.37 Seismic accumulated energy on surrounding blocks of the seismic event
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FIGURE 6.38 Sample 20 m x 20 m areas with seismic accumulated energy over 90,000 J

6.3 Relationship between Relevant Events and Model Information

The technique that was developed for modeling progressive seismic activity was 

used to examine areas where significant geomechanical events had taken place, and 

determine whether nearby blocks showed unusual increases in energy prior to the event 

in question. In this study, significant geomechanical events were those that resulted in a 

disruption of mine production or other operations.

Thirty-four geomechanical events in one area were located within the developed 

block model. The relevant events were analyzed with the modeled data and the locations 

of the events were used to look for blocks that showed unusual seismic activity prior to 

the occurrence of each event. A monthly resolution model was used to find the blocks 

that had sudden increased seismic activity up to one month before the relevant event 

occurred.
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The events that showed a correlation with the modeled seismic data are shown in 

Table 6.1. The table shows the location of the block closest to the event that showed the 

highest accumulated seismic energy. It also shows the associated energy value, the 

difference in months between the seismic event and the time the seismic accumulation 

occurred, the distance between the event and the center of this block, and the date that 

this sudden accumulation of energy occurred.

The study of the events and their correlations showed the following results:

• There were 34 relevant geomechanical events in the mine area studied, which had a 

footprint of 160,000 n r. Those events were used to compare the locations of these 

relevant events and the accumulated energy distributions in the blocks surrounding 

the event one month before the occurrence of the event.

• Out of 34 major studied for the same level of the mine, 16 events (47%) took place 

near blocks that showed increased seismic activity prior to the relevant event taking 

place.

• The 16 relevant geomechanical events took place from March 1997 to December 

2012, with two events in 1997, three in 1998, three in 1999, two in 2001, one in 2002, 

and five in 2003.

• Out of the 16 events, there were four events that showed seismic activity in the 10 

months preceding the event, in a block close to the relevant seismic event.

• Out of the 16 events, 12 (called main events) showed an increase of energy in a 

nearby blocks in a period 4.1 months or less before the event.

• Of these 12 main events, 75% showed an increase in energy from 1 to 6 months 

before the event took place.



TABLE 6.1: Relevant geomechanical events and correlation with model blocks and accumulated energy

Relevant Events Block with Increased Seismic Energy

Number Date East (m) North (m) Level (m) East (m) North (m) Level (m) Acc.Energy (J) Acc.Date Diff.Months Distance (m)

1 Mar-97 1,117 537 2,205 1,130 530 2,210 164,000 Jan-97 2 16
2 Apr-97 1,095 514 2,200 1,110 530 2,210 14,317,752 Mar-97 1 24
3 Jul-98 969 486 2,288 990 490 2,290 16,722,190 Sep-97 10 21
4 Nov-98 1,120 559 2,337 1,130 570 2,350 18,600,000 Jul-98 4 20
5 Dec-98 956 462 2,165 990 450 2,170 328,500 Jun-98 6 36
6 Mar-99 1,000 433 2,313 1,010 430 2,310 660,000 Feb-92 86 11
7 May-99 992 441 2,177 970 450 2,170 4,800,009 Mar-99 2 25
8 Aug-99 1,372 464 2,158 1,370 490 2,150 288,000 Jul-99 1 27
9 Jun-01 1,024 354 2,216 1,030 370 2,210 656,320 Nov-00 7 18
10 Dec-01 1,440 322 2,322 1,430 290 2,330 235,000 May-01 7 34
11 Feb-02 1,155 288 2,230 1,170 310 2,210 364,101 Sep-00 17 33
12 Mar-03 1,006 272 2,277 1,030 290 2,290 391,201 Feb-03 1 33
IB Jun-03 1,027 259 2,310 1,030 290 2,290 391,293 Feb-03 4 37
14 Aug-03 1,010 275 2,275 1,030 290 2,290 391,366 Feb-03 6 29
15 0ct-03 1,274 275 2,258 1,250 290 2,230 94,977 Jul-01 27 40
16 Dec-03 1,306 314 2,203 1,330 330 2,210 538,293 Apr-03 8 30

VO
Ov
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• The average accumulated energy on the blocks that are closer to the events is 3.6 MJ.

• All of the blocks with increased seismic energy close to one of the main events 

showed an accumulated energy value of more than 90,000 J.

• For the blocks close to the 12 main events that showed increased seismic energy, four 

blocks showed increases in energy of 4 MJ or more, eight showed increases between

300,000 and 1,000,000 J, and the rest showed increases between 90,000 and 300,000 

J.

• In most of the blocks that showed an energy increase, the increase resulted from a 

single seismic event that represented a sudden accumulation of energy, and not from a 

series of smaller energy releases.

• The average distance between the blocks that showed increased seismic energy and 

the location of the relevant event was 27 m. The minimum and maximum distances 

four such blocks were 11m  and 39 m, respectively.

• The average distance of the relevant event and the blocks that presented increased 

energy activity was 16 m in the North and East directions and 11 m in the Z axis.

These results show that the developed model has potential to provide a useful tool 

to establish certain areas of the mine where relevant geomechanical events might occur, 

by defining an energy cutoff value and establishing surrounding areas that show sudden 

energy increases.
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6.4 Areas with Higher Damage Potential

In another application, a seismicity model using the radiated energy can be used 

to define areas where the seismicity induced by mining operations may include rock that 

has a higher potential for structural activation.

A block model can be constructed with different energy cut-off levels to show 

areas that have had increased dissipations of seismic energy (Figures 6.39 and 6.40).

Figures 6.39 and 6.40 show two options for viewing this information. Figure 6.39 

shows 2-D representations of triangulated solids, while Figure 6.40 shows a section 

through the same solids.

6.5 Seismicity Related to the Advance of the Undercut Front

The model developed in this study can also be used to visualize how the seismic 

activity relates to the advance of the undercut front in panel caving. In the following 

example, the model is use to show how seismicity evolves with the movement of the 

undercut front in two nearby projects, from 1996 to 2010 (Figures 6.41 to 6.55).

The model shows the difference between the seismicity associated with the 

undercut front advancing to the north-west in the North Project, in red, and to the south in 

the South Project, in blue. In the North Project, there is less seismicity associated with the 

undercut front. The South Project shows higher activity behind the undercut front up to 

2002. Then, from 2003 to 2006, the seismicity is almost in line with the undercut front, 

and from 2006 to 2010, it is concentrated ahead of the undercut front.
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Energy > 30kJ 
Energy > 60kJ 
Energy > 90kJ

FIGURE 6.39 Plan view of three levels of seismic energy from the model with areas in 
red showing a higher potential of damage from seismic activity
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FIGURE 6.40 Plan section of three levels of seismic energy from the model with areas in 
red showing a higher potential of damage from seismic activity (elevation: 2210 m,

section width: 20 m)
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FIGURE 6.41 Seismic energy model (for year 1996) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)

FIGURE 6.42 Seismic energy model (for year 1997) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.43 Seismic energy model (for year 1998) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)

FIGURE 6.44 Seismic energy model (for year 1999) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.45 Seismic energy model (for year 2000) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.46 Seismic energy model (for year 2001) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.47 Seismic energy model (for year 2002) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.48 Seismic energy model (for year 2003) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.49 Seismic energy model (for year 2004) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)

FIGURE 6.50 Seismic energy model (for year 2005) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.51 Seismic energy model (for year 2006) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)

FIGURE 6.52 Seismic energy model (for year 2007) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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FIGURE 6.53 Seismic energy model (for year 2008) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)

FIGURE 6.54 Seismic energy model (for year 2009) with undercut advance from two
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)
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WEST-EAST VIEW

, NORTH-SOUTH VIEW

FIGURE 6.55 Seismic energy model (for year 2010) with undercut advance from two 
projects south (blue) and north (red), showing three energy cut-offs in different views

(Top, Front, and Left side views)



7 COMMENTS AND RECOMMENDATIONS

The approach of storing the seismic history of a mine in a standard block model 

creates an effective tool for analyzing and understanding how various seismic events 

have migrated and affected different areas of the mine over time. The progression of 

seismicity can be used to establish the seismic history of areas that might have been 

affected by previous mining activities.

Analyzing how the seismicity has affected the surroundings of new areas to be 

mined by caving techniques can be useful in establishing the most suitable for the start of 

the undercutting of the block.

When the seismicity data are embedded in the blocks, seismic activity can be 

related in space and time to activities in the mine, and the block viewing filters can be 

manipulated to display the information contained in certain areas to show the seismic 

effects in desired areas and times. The behavior of a given area and the energy associated 

with other caving areas nearby can be tracked to show the effects from the caving process 

over time.

The analyses can be filtered for the individual blocks to achieve a higher 

confidence in the data. The two filters studied here, location error and the number of 

triggers activated by a given event, can also be used alone or together to increase the 

consistency of the data being used in a particular analysis.



8 CONCLUSIONS

The modeling approach used in this study has shown that the energies and 

magnitudes associated with seismic events, along with the numbers of triggers and the 

location errors, can be effectively interpolated into a block model, and that the resultant 

data can be used to determine areas with historic seismicity that may have resulted in 

accumulated deterioration of the rock mass.

The ability to model the seismic energy associated with the blocks over time 

allows analysis of the evolution of the seismicity in different areas of the mine. The 

resulting information can be displayed as two-dimensional sections in any direction 

required, or as triangulated solids to better understand how the seismic events evolve 

through the mine.

The new method presented here for interpolation of the seismic data facilitates the 

accumulation of the seismic history within a block model, and the modeling of potential 

deterioration solids. These can be used to study how previous mining activities have 

influenced areas where new projects are being planned for the future.

The seismic data can be displayed and located at different levels of the mine 

where seismicity has been recorded through time, for example in the undercut, 

production, haulage, and ventilation levels of a panel or block caving mine. These 

visualizations can be used to define areas where significant seismicity has occurred in the 

past, indicating where potential problems may occur in the future.



I ll

The interpolated data provide a powerful tool that facilitates analysis of how the 

seismicity has evolved in an area where mining with a caving technique is planned. This 

will allow the identification of preferred locations for the initiation of the undercutting of 

the block, leading to optimized caving performance and minimizing hangups.

The progressive analysis of seismic activity as presented shows a new way of 

looking at the evolution of seismic data by combining the data with inverse-distance 

interpolations and block modeling techniques. Induced seismicity occurs mainly as a 

consequence of caving and undercutting, both of which are dynamic processes. 

Undercutting events can vary depending on the undercut method used and when 

undercutting takes place in relation to other development activities. These variations in 

undercutting procedures will affect the “cavability” of the rock mass, and the 

accumulation of seismic area in particular is one good indicator of how the rock mass 

will behave during caving.

The methods presented here constitute a new approach to the study of seismic 

information, by allowing the association of several variables related to seismicity with the 

blocks in a block model. This is convenient and useful because mine operators, planners, 

and engineers use block models regularly, and are familiar with the organization and 

presentation of data in this manner. The association of seismic variables with the blocks 

in a model allows the seismic information to be filtered based on one or more parameters. 

Such filtering can eliminate minor or unimportant seismic events, allowing a much 

clearer visualization of the accumulation of seismic energy in a particular area of interest.

There is great potential in applying this modeling method to studying the 

correlation between relevant, geo-mechanical events that have caused problems at the
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mine and the blocks that have shown unusual increases in seismicity prior to the 

occurrence of the relevant event taking place. The example presented in Section 6.3 

considered 34 relevant geomechanical events, and the model showed that in 16 of them, 

there was a nearby block that experienced a sudden accumulation of energy prior to the 

occurrence of the relevant event.

Though examples are not shown here, it is clear that this modeling approach can 

be readily used in conjunction with numerical modeling packages, such as Flac, Map3d, 

or Abaqus, to define zones where rock mass properties have changed, and damage 

potential might be increased by mining resulting in geomechanical events leading to 

problems in production and operation.

The volumes derived with this approach, showing progressive seismic activity, 

can be used in finite element modeling analyses to define areas where the rock mass has 

been changed over time, providing an important tool for enhancing numerical analyses in 

the future.



APPENDIX A

SEISMIC ENERGY MODELED BY YEAR
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FIGURE A.7 Seismic energy for year 1998
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FIGURE A. 15 Seismic energy for year 2006
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SEISMIC ENERGY MODELED BY MONTH
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FIGURE B.2 Accumulated seismic energy up to the year 1993
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FIGURE B.5 Accumulated seismic energy up to the year 1996
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FIGURE B.9 Accumulated seismic energy up to the year 2000
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FIGURE B .l 1 Accumulated seismic energy up to the year 2002
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FIGURE B.12 Accumulated seismic energy up to the year 2003
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FIGURE B. 13 Accumulated seismic energy up to the year 2004
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FIGURE B. 14 Accumulated seismic energy up to the year 2005



FIGURE B. 15 Accumulated seismic energy up to the year 2006
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FIGURE B.16 Accumulated seismic energy up to the year 2007
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FIGURE B. 17 Accumulated seismic energy up to the year 2008
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FIGURE B.18 Accumulated seismic energy up to the year 2009



FIGURE B. 19 Accumulated seismic energy up to the year 2010



FIGURE B.20 Accumulated seismic energy up to the year 2011



FIGURE B.21 Accumulated seismic energy up to the year 2012
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