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ABSTRACT 

The Malaspina Glacier of Southern Alaska /Yukon Canada provides the 

opportunity to investigate the interaction between glaciers and tectonics, in an active 

orogen that is forming from the collision and accretion of the Yakutat Microplate in the 

Gulf of Alaska. Several large alpine glaciers coalesce on the piedmont of the Saint Elias 

Mountains to form the Malaspina Glacier. We use feature tracking by cross correlation of 

Landsat satellite images to map the velocity and strain rate fields on the surface of the 

Malaspina Glacier to explore how the structural geology at the bed of the glacier affects 

the dynamics and structure of the moving ice on the surface.  Rates of flow in alpine 

areas are fast and ice can move 90+ m/month in the summer and on the piedmont ice can 

move over 100-300 m a year. Strain rates calculated from the velocity fields are on the 

order of 10^-9 / s on the surface of the glaciers. Strain rate maps reveal the nature of the 

stress field in the ice where it moves over topographic features at the bed of the glacier. 

The results bear directly on the origin of ice falls that originate at thrust faults on the 

limbs of large folds, the origin of fast glacier flow along fault zones where rheology at the 

bed of the glacier is presumably impacted by rapid erosion and development of weak 

water saturated till, the pattern of ice flow around the termination of a large strike slip 

fault, and the presence and extent of subglacial lakes and distributary channels that feed 

outburst flooding at the terminus of glaciers. The morphology and dynamics of the 

Malaspina piedmont lobes also provide insight into the strike slip component of motion 



 
 

iv 

 

along the Esker Creek Fault that was activated during an M 8.1 earthquake in 1899, as 

well as some control on the basal topography, and perhaps structural geology, where the 

Fairweather Transform Fault and Aleutian Megathrust are currently linking together 

beneath the Malaspina Glacier.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

TABLE OF CONTENTS 

ABSTRACT……………………………………………………………………………...iii 

ACKNOWLEDGEMENTS……………………………………………………………..vii 

INTRODUCTION………………………………………………………………………...1 

GEOLOGIC BACKGROUND..…………………………………………………………10 

Regional Tectonics ………………………………………………………………………10 

Geology of  Study Area …………………………………………………………………12 

Stratigraphic Cover………………………………………………………………………13 

Major Geologic Structures……………………………………………………………….14 

THE MALASPINA GLACIER SYSTEM……………………………………………....17 

Glacial Dynamics………………………………………………………………………...17 

Glacial Surface Features…………………………………………………………………18 

Glacial Topography……………………………………………………………………....19 

METHODS………………………………………………………………………………23 

Image Acquisition and Preprocessing....………………………………………………....23 

Optical Feature Tracking ………………………………………………………………...24 

Strain Rate ……………………………………………………………………………….28 

Glacier Analog Modeling ………………………………………………………………..29 

RESULTS ……………………………………………………………………………….32 

Glacier Modeling...………………………………………………………………………33 

Upper Seward Glacier……………………………………………………………………33 

Lower Seward Glacier…………………………………………………………………...34 

Agassiz Glacier…………………………………………………………………………..38 

The Seward Lobe………………………………………………………………………...40 

Oily Lake....……………………………………………………………………………...41 

DISCUSION…………………………………………………………………………….71 

Affects of Rock Structure on Ice Flow…………………………………………………..71



 
 

vi 

 

Interpretation of Flow Patterns…………………………………….…………………….76 

COSI-CORR- Relevance to Glacial Monitoring……………………………………..….80 

General Observations on Glacier Structure and Hydrology……………………………..83 

CONCLUSIONS………………………………………………………………………...91 

REFERENCES…………………………………………………………………………..95 

 

 



 
 

 

 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor, Dr. Ronald Bruhn, for his 

unending guidance and support; he has been a source of wisdom and inspiration over the 

past two years. I would also like to thank my committee members, Dr. Richard Forester 

and Dr. David Chapman, for their guidance and input into my research. A great thanks to 

NASA and Jeanne Sauber for funding my research as well as being a wonderful resource 

for ideas and knowledge. Thank you to my fellow graduate students who helped motivate 

me when I needed it most. Thank you to my Mom for her love and encouragement 

through the whole processes. Finally, thank you to my friends and family for all your help 

and support.



 

 

 

INTRODUCTION 

The Saint Elias Mountains, in southern Alaska and Yukon, Canada, are located in 

an active orogen characterized by complex structural boundaries and extreme climatic 

influences that have formed the largest glaciers in North America (Fig. 1) (Plafker, 1987). 

The mountain peaks, rising to nearly 6 km, are blanketed with ice fields that spill out of 

the mountain fronts to feed two of the largest piedmont glaciers in North America, the 

Bering and Malaspina (Sharp, 1951). The majority of structural boundaries in the area are 

concealed beneath the ice with glaciers flowing along or across the major faults, 

providing the opportunity to study how tectonic and glacial processes interact to 

transform the landscape (Meigs and Sauber, 2000; Sauber et al., 2000; Spotilia et al., 

2004).  

 The Malaspina Glacier System is situated in a regional structural transition from 

strike slip faulting along the Fairweather Fault to thrust faulting along the Aleutian 

Megathrust, making the topography of the region an example of the interplay between 

tectonics and erosion  (Plafker, 1987; Bruhn et al., 2004). The Malaspina glacier is 

composed of three lobes, the central lobe being fed by the Seward Glacier, the western 

lobe being fed by the Agassiz Glacier, and the eastern lobe fed by the Marvine Glacier 

(Fig. 2) (Sharp, 1951). Underlying the glacier are several faults that accommodate the 

transition from strike slip to thrust faulting; most notable are the Fairweather Transform 

Fault, the Malaspina Fault, and the Esker Creek Fault (Figs. 3 and 4). The region is
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currently undergoing deformation as recorded by geodetic measurements and seismicity 

(Fletcher and Freymueller, 1999; Elliott et al., 2010). Noteworthy earthquakes of the 

region are the two M8+ events of 1899 (Tarr and Martin, 1912; Shennan et al., 2009), the 

M 7.9 earthquake on the Fairweather Fault in 1958 and the M 7.1 Saint Elias earthquake, 

with associated aftershocks sourced beneath the Malaspina piedmont, in 1979 (Estabrook 

et al., 1992).   

This study aims to use ice surface velocity patterns to infer the nature of basal 

topography and tectonic structures that lie beneath the glacier. Several examples are 

presented of how the topography, velocity field, and structure of the glacier ice changes 

where it flows over folds and faults that extend beneath the ice from where they are 

exposed in the adjacent mountains. These examples are compared with theoretical models 

and physical laboratory experiments concerning the perturbation of ice flow over basal 

topography and are also used to help identify geological structures where they are totally 

buried beneath the glacier. In this thesis, the problem of buried structures beneath the 

Malaspina Glacier is explored because of their significance to tectonic models and 

seismic potential of the Saint Elias Orogen. As comprehensive data on glacier flow is 

difficult to record in the field, velocity patterns on the ice will be derived from feature 

tracking pairs of Landsat satellite images. 

Glacier dammed and subglacial lakes can also alter ice flow patterns, as the 

storage of water can dramatically impact glacier dynamics (Capps et al., 2010). The 

ability to identify the presence of glacial lakes and to map the course of water discharge 

beneath a glacier is important when investigating hazards posed by outburst floods, and 

also has the potential to advance our understanding of the mechanics of glacial surging. 
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Hence, we will also focus on how the presence of subglacial lakes affects glacier surface 

velocity and structure.



4 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Tectonic elements of southern Alaska, illustrating the major faults and location 

of the Yakutat microplate. Relative plate movement between the Pacific and North 

American plates is 55 mm/yr aligned parallel to the large grey arrow. Figure modified 

from Bruhn et al., 2004. 
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Figure 2. Composite Landsat Thematic Mapper image (bands 4, 3, 2) of the Malaspina 

Glacier System with subdivisions of the glacier  highlighted within the red boxes A 

through E. Box  A corresponds to the Upper Seward Glacier, box B corresponds to the 

Lower Seward Glacier, box C corresponds to the Seward Lobe, box D corresponds to the  

upper  portion of the Agassiz Glacier, box E corresponds to the central portion of the 

Agassiz Glacier, box F corresponds to the Agassiz Lobe, and  box G corresponds to the 

location of the Marvine lobe (not analyzed in this study but highlighted for reference 

location). The location of Oily Lake is highlighted in blue.
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Figure 3. Regional geology and general stratigraphy of the Saint Elias orogen. The 

Malaspina glacier resides in a transitional region between the eastern and central 

segments.  Refer to Figure 1 for the location of plate boundaries. Figure modified from 

Bruhn et al., 2004.
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Figure 4.  A  geologic and stratigraphic map of the study area. Geologic cross section A-

A‟ shown in Fig. 30 and B-B‟ shown in Fig.31. Figure modified from Richter et al. 

(2006).
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GEOLOGIC BACKGROUND 

Regional Tectonics 

 The St. Elias Mountains of southern Alaska and Yukon, Canada are part of an 

active orogen formed by the collision of the Yakutat microplate with the North American 

plate (Fig. 1). The Yakutat microplate originated from the coast of southeast Alaska and 

British Columbia during the early Tertiary and was transported northward along the 

transform fault boundary of the dextral Queen Charlotte/Fairweather transform fault 

system (Fig.1) (Plafker et al., 1978; Bruns, 1983; Plafker et al., 1994a; Bruhn et al., 

2004). During the mid-to-late Miocene the Yakutat microplate began colliding with 

southern Alaska where it encountered the Aleutian Megathrust and became partially 

subducted beneath and accreted onto the continent (Plafker et al., 1994b). The subducted 

material is inferred to be oceanic lithosphere, possibly an oceanic plateau with unusually 

thick crust (Plafker et al., 1994b; Christeson et al., 2010). Flat slab subduction of the 

buoyant oceanic crust is responsible for the regional topography (Pavlis et al., 2004), 

deformation that extends far into interior Alaska, and formation of the Wrangell 

Mountain Volcanoes (Fig.1) (Page et al., 1989). The microplate is also driving orogenesis 

in the Fairweather, Saint Elias, and Chugach mountain ranges, where some of the world's 

greatest earthquakes and large tsunamis are generated (Bruhn et al., 2004;  Shennan et al., 

2009).  

 The Yakutat microplate contains a basaltic basement that is approximately 24-27 

Samovar Hills 
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km thick that presumably originated as an oceanic plateau (Christeson et al., 2010), this  

is overlain by Cretaceous metamorphosed flysch and accretionary mélange formed from 

late Mesozoic subduction along the edge of the North America plate (Plafker, 1987; 

Bruhn et al., 2004). Overlying the basement rocks is sedimentary cover composed of 

approximately 4 km of Paleogene shallow marine and fluvial deposits followed by an 

angular unconformity above which lie sedimentary deposits that record the onset of 

glaciation and mountain building in the late Miocene (Plafker, 1987; Eyles et al. 1991; 

Plafker et al., 1994b). The Cretaceous basement is decoupled from underlying oceanic 

basement, with the oceanic crust being subducted beneath southern Alaska and the 

overlying Cretaceous and younger rocks becoming folded and faulted onshore as they 

accrete onto the continental margin (Fig. 3). The Yakutat microplate is colliding obliquely 

with southern Alaska at a rate of 45-55 mm/yr (Fletcher and Freymueller, 1999; Elliot et 

al., 2010).  The oblique convergence is accommodated by a combination of dextral strike 

slip and thrust faulting and has formed three structural regions within the orogen, referred 

to as the eastern, central, and western segments of the Saint Elias Orogen  (Fig. 3) (Bruhn 

et al., 2004). The eastern segment is bounded by the Fairweather Fault and contains a 

coastal mountain belt with associated transpressive structures (Fig. 3) (Bruhn et al., 2004; 

Chapman et al., 2008). The central segment's eastern boundary is the Pamplona Zone 

offshore and the Malaspina Fault onshore; this region contains the Chugach Saint Elias 

Fault which is the suture zone of the Yakutat microplate, and a belt of east-west trending 

foreland folds and thrusts (Fig. 3). The western segment is characterized by secondary 

deformation and refolding of older folds and thrust faults as well as the Chugach Saint 
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Elias fault in the region west of the Bering Glacier (Fig. 3) (Bruhn et al., 2004; Pavlis et 

al., 2004).  

Geology of Study Area 

 This study focuses primarily on the transition between the eastern and central 

segments of the orogen (Figs. 3 and 4).This transition is structurally significant as it is 

situated in a orogenic corner or “syntaxis” where faulting styles change from dextral 

transform motion in the east along the Fairweather Fault to  thrusting in the west along 

the Malaspina Fault. The Malaspina Glacier System overlies this tectonic corner covering 

the structures involved within the transition. Understanding how these structures link up 

beneath the ice is important as the faults are active and have the potential to generate 

great to large magnitude earthquakes.  

 Both the Pamplona Zone and Malaspina Fault are located within a region of 

spatially concentrated and intense seismicity (Doser et al., 2000).  Offshore the Pamplona 

zone is a region of deformed Yakutat microplate that consists of a series of steeply 

dipping high angle thrust faults that sole into lower angle thrust faults at a depth of 2-8 

km along the easternmost part of the Aleutian Megathrust (Fig. 3)(Worthington et al., 

2010). The Pamplona zone has generated several large earthquakes including an M 6.1 

earthquake in 1958 and M 6.7 to M 6.2 earthquakes in 1970 (Doser et al., 1997). The 

Malaspina Fault extends northward from the Pamplona Zone beneath the Agassiz Lobe of 

the Malaspina Glacier (Fig. 3) (Plafker et al., 1994a; Bruhn et al., 2004). Its location is 

constrained by well data from the Chaix Hills #1A exploration well, drilled by Standard 

Oil in 1961 (Plafker et al., 1975), earthquake relocations (Estabrook et al., 1992), tilting

 of foreland structures in the Samovar Hills (Bruhn et al., 2004), and evidence of fault 
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rupture in the M 8.1 earthquakes of 1899 (Shennan et al., 2009). The Malaspina and 

Pamplona Fault system is one of the youngest structures of the orogen and reflects the 

eastward propagation of the Aleutian Megathrust system during the Pliocene (Plafker, 

1987; Estabrook et al., 1992; Shennan et al., 2009). 

The structural syntaxis formed by the Fairweather and Malaspina Faults 

corresponds to the area of the greatest exhumation rate and highest topography in the 

orogen. Zircon fission track ages on detritus sourced from the Seward Glacier Basin are  

< 3Myr, indicating that the region is undergoing rapid uplift and erosion. The young ages 

and rapid uplift are unique to the Seward Glacier System and are not found in other parts 

of the orogen (Enkelmann et al., 2009). Rapid uplift is also evident by the mountain 

peaks that obtain elevations in excess of 5000 m where they rim the Seward Glacier 

Basin. Notable peaks include Mount Logan, the highest peak in Canada at 5959 m, 

Mount Vancouver (4812 m), and Mt. Saint Elias (5489 m). 

Stratigraphic Cover 

 The main stratigraphic units (Fig. 5),within the study area are the Yakutat Group 

(Cretaceous to early Tertiary), Kulthieth Formation (Paleocene to early Eocene), Poul 

Creek Formation (latest Eocene to early Miocene), and the Yakataga Formation (late 

Miocene to present) (Plafker, 1987). Two minor stratigraphic units are present locally 

within the Samovar Hills, the Hubbs Creek Volcanics (Eocene 40-50 Ma) composed of 

Basalt and the Oily Lake Siltstone (Eocene 48-51 Ma)(Plafker et al. 1994b). 

 The Yakutat Group is several kilometers thick and composed of complexly

 deformed flysch and mélange. The flysch consists of greywacke, siltstone, and argillite, 

while the mélange contains discrete blocks of greenstone, limestone, marble, greywacke, 
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chert, conglomerate, and plutonic rocks in a sheared matrix of mudstone that is locally 

recrystallized to a green schist (Plafker, 1987). Structures and metamorphic isograds 

within the Yakutat Group are oriented northwest roughly parallel with the Fairweather 

fault. The Kulthieth Formation is a 2-3 km thick unit of arkosic sandstone, shales, and 

coal beds. The unit was deposited in a shallow marine deltaic environment (Plakfer, 

1987). Within the Samovar Hills,  the Kulthieth Formation consists of a 1-3 m thick white 

tuffaceous conglomerate which transitions upwards into 500 m of coarse sandstone and 

coal beds (Chapman et al., in press). The 1-2 km thick Poul Creek Formation is 

composed of concretionary marine siltstone, claystone, sandstone, conglomerate, minor 

basaltic tuff, and is locally glauconitic (Richter et al., 2006). The unit was deposited in 

marine waters adjacent to low lying coastal mountains, in a depositional environment 

marked by low sedimentation rates (Eyles et al., 1991). The Yakataga formation is a 0-6 

km thick unit composed of the youngest rocks in the orogen consisting mainly of 

interbedded glaciomarine sandstone, mudstone, and diamictite deposited on the 

continental shelf (Plafker et al., 1978; Eyles and Lagoe, 1990). Deposition of the 

Yakataga Formation coincided with the onset of renewed mountain building along the 

coast of the Gulf of Alaska, and the onset of widespread global cooling and glaciation 

(Plafker, 1987; Eyles et al. 1991; Plafker et al., 1994b). 

Major Geologic Structures 

 The major faults in the study area that are buried by ice and include the 

Fairweather Fault, a dextral transform fault that ends abruptly beneath the Upper Seward 

Glacier (Fig. 3); the Cascade Glacier Thrust Fault, a north dipping approximately east-

west trending thrust fault that terminates near the fault tip of the Fairweather Fault in the 
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Upper Seward Glacier (Fig. 4); the Chaix Hills Fault, a thrust fault that dips north and 

strikes approximately east-west. The fault extends beneath the Agassiz Glacier and 

continues towards the east where it crosses beneath the Lower Seward Glacier and forms 

a structural duplex with the Dome Pass Fault (Fig. 4). The Dome Pass Fault is an east-

west trending north dipping thrust fault (Fig. 4). The Malaspina fault, a thrust fault that 

dips towards the west, lies under the Agassiz Lobe of the Malaspina Glacier, and 

intersects with the Esker Creek Fault at roughly a 45 degree angle forming a tectonic 

groin in the southern front of the Samovar Hills (Fig. 4). The Esker Creek Fault is 

modeled as a north dipping thrust fault that connects to the Fairweather Fault in the east 

(Plafker and Thatcher, 2008).  
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Figure 5. A general stratigraphic section for the study area. Figure modified  from T.L. 

Pavlis in press 2011. 
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THE MALASPINA GLACIER SYSTEM 

The Malaspina Glacier system is subdivided into several glaciers or lobes (Fig. 2). 

The Seward glacier (composed of the Upper Seward, Lower Seward, and Seward Lobe) 

is the largest central portion of the Malaspina glacier (Fig. 2A-C), followed by the 

Agassiz Glacier (composed of the upper, central, and Agassiz Lobe) in the west (Fig. 2D-

F), and the Marvine glacier located in the east (Fig. 2G). Ice accumulates in the upper 

elevations of the Saint Elias Mountains and the ablation zone consists of the entire 

piedmont (Molnia, 2001; Muskett et al., 2008). The Marvine Glacier is not analyzed in 

this study but the Seward and Agassiz Glacier are discussed in detail.  

Glacial Dynamics 

The Malaspina Glacier System covers an area of approximately 5000 km
2
 

(Molnia, 2001), and occupies a large topographic basin on the piedmont that extends at 

least 320 m below sea level (Sharp, 1951; Molnia and Jones, 1989). Ice thickness on the 

piedmont ranges between 500 to 700 m (Conway et al., 2009). In the last 30 years,  ice 

thinning has been observed and large elevation decreases in the ablation areas are 

correlated with increased temperatures in Yakutat and Cordova during 1976 to 2000, 

relative to the interval 1950 to 1975 (Muskett et al., 2003). From 1972/73 to 1999/2002 

the surface of the Malaspina Glacier lowered 47 ± 5 m with localized thinning reaching 

up to 160 m (Muskett et al., 2003; Sauber et al., 2005).

The Malaspina Glacier is a temperate surging glacier, with surge cycles of 5 to 30 
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years for each of the three lobes separately (Post, 1969; Gustavson and Boothroyd, 1987; 

Muskett et al., 2008). Velocities on the lobes range from .5 to 1 m/d (Sharp, 1958; 

Krimmel and Meier, 1975; Lingle et al., 1997) during nonsurging flow; during surge 

conditions, velocities can reach 10 to 20 m/d (Molnia and Jones, 1989). A necessary 

precondition for surging is an increase of englacial water storage and build up of glacier 

ice that increases surface slope (Lingle and Fatland, 2003; Muskett et al., 2008).  The 

most recent series of surges occurred in 1999-2002 with concurrent events on the Agassiz 

Lobe, Lower Seward Glacier and Seward Lobe, and Marvine Glacier (Muskett et al., 

2008). This surge cycle was correlated with increased precipitation since 1976/77 that 

increased accumulation of ice and the volume of water stored within the glacier.  

Oily Lake is a glacial dammed lake that is bound by the moraine bands of the 

Seward and Agassiz Lobes (Fig. 2). Drainage of water from glacial lakes and associated 

outburst floods can affect glacier flow dynamics, valley bottoms, cause substantial 

erosion, and increase glacier velocity.  In 2003, Oily Lake was observed drained of water 

after a glacial surge, this indicates the interaction between Oily Lake and the Malaspina 

Glacier (Muskett et al., 2008). 

Glacial Surface Features 

Surface features on the glacier include foliation, crevassing, and folding (Sharp, 

1958). Crevasses are widespread on the glacier surface, primarily vertical, .5 to 4 m wide, 

20 to 25 m deep, and can span 100+ m in length. Transverse crevasses are located on the 

steep slopes of the glacier and form in response to ice flow and subglacial topography 

(Sharp, 1958). Radial crevasses are present on the Seward Lobe; these trend normal to the 

lobate borders, are more numerous, and converge toward the Lower Seward 
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Glacier throat, suggesting they form in response to the spreading of the ice over the 

piedmont (Sharp, 1958). 

Glacial Topography 

 Several topographic maps and digital elevation models (DEM) are used to 

identify static topographic features on the glacial surface versus transient features formed 

by changing ice dynamics (Fig. 6). Determining the topography and surface slopes of the 

glaciers requires the use of elevation data acquired by several techniques and at several 

different times because there is no uniform and high quality elevation model that covers 

the entire study area. Elevation data obtained at different times can be used to check as to 

whether or not surface features are persistent or changing. Perturbations in topography 

that are persistent over time reflect features at the base of the ice. 

Elevation data sets used for topographic analysis are: 15 minute USGS contour 

maps derived from 1972/73 air photos (www.usgs.gov), a 2- ARC second DEM from the 

National Elevation Dataset (NED) (http://ned.usgs.gov/NED/), several DEM‟s from the 

Shuttle Radar Topography Mapping (SRTM) mission 

(http://edcsns17.cr.usgs.gov/NewEarthExplorer/ and a specially processed elevation 

model provided by  R. Muskett), and a DEM from ASTER GDEM, a new global DEM 

dataset introduced in 2009 (http://www.gdem.aster.ersdac.or.jp/). 

For analysis of surface features, contemporary datasets are compared to the older 

USGS contour maps. The NED dataset is used for analysis of topography on the Upper 

Seward and Lower Seward Glaciers.  SRTM data are used for inspection on the Seward 

Lobe, one DEM on the southern portion of the Lobe, and another DEM on a portion of 

the northern Seward lobe near the mouth of the Lower Seward Glacier. The ASTER 
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GDEM dataset contains anomalous elevations on the Lower Seward and Seward lobe and 

is used only to inspect the Agassiz Glacier.  

 The Upper Seward Glacier is located in the Seward Glacier Basin at elevations 

between 1500 m and 2000 m. The glacier discharges into the head of the narrow and 

sinuous Lower Seward Glacier and flows down the southern front of the Saint Elias 

Mountains and out onto the piedmont (Fig. 2A-C). The ice at the head of the Lower 

Seward Glacier is located at approximately 1500 m in elevation with the ice surface 

sloping at a 6º angle over a 150 m topographic step (Fig. 6B, UTM location 6.678). After 

this step, the surface slope decrease to 2º until the ice encounters another topographic step 

at approximately 1100 m in elevation (Fig. 6B, UTM location 6.669). The surface slope 

at the step is approximately 6º over 100 m of elevation. The ice then decreases in slope to 

2º until it reaches the mouth of the Lower Seward Glacier where the slope steepens 3º 

before ice flows out onto the piedmont to become the Seward Lobe (Fig. 2B). Relief on 

the Seward lobe is nearly 500 m over a distance of ~ 40 km and the surface slope 

shallows to < 1º near the terminus.  

 The Agassiz Glacier begins in the high elevations (1500 m) on the southern front 

of Mount Saint Elias (Fig. 2D-F).  In the upper portion of the Agassiz Glacier, the surface 

slopes at a 5º angle (Fig. 6C).  The ice flows south down the valley and surface slope 

decreases to 1º to 2º until the ice flows over a  series of topographic steps that begin at 

approximately 900 m in elevation (Fig. 6C, UTM location 6.670-6.665). The

 topographic steps slope approximately 4 º  over 300 m  in elevation. The steps terminate 

as ice moves out of the mountain front onto the piedmont. Topographic relief on the 

piedmont is 500 m over a ~ 20 km distance with a surface slope <1º. 
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Figure 6: Topography of the Malaspina Glacier system. A) NED 2-ARC second shaded 

relief image of the entire Malaspina Glacier and surrounding mountain ranges.  Location 

of the profile lines are highlighted in red B) Airborne Terrane Mapper (ATM) profile of 

the Lower Seward Glacier. C) Profile of the Agassiz Glacier taken from ASTER GDEM.
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METHODS 

Image Acquisition and Preprocessing 

 Images are chosen on the criteria of limited cloud and snow cover from roughly 

the same time of year with a similar sun angle and azimuth; these criteria maximize the 

similarity of surface features in the image. Most glaciers are found in areas of poor 

weather, making repeated acquisition of cloud free images difficult. Landsat‟s continuous 

record of acquisitions over the globe during the last three decades with repeat coverage of 

16 days makes it an optimal sensor to acquire images of glaciers that can be compared at 

monthly and longer time intervals (http://landsat.gsfc.nasa.gov/about/L5_td.html). 

  For this study, several Landsat 5 Thematic Mapper and Landsat 7 enhanced 

Thematic Mapper images are acquired to track monthly and annual ice surface motion 

(Table 1). The images downloaded from the USGS Earth Explorer website are corrected 

(radiometrically and geometrically) to a level 1T as defined by the USGS 

(http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html#systematic_l5_l

1g).  

 The Landsat scenes are resized to subsets that encompass the study area. Dark 

subtraction is applied to radiometrically correct the images. Dark subtraction is a method 

that subtracts a minimum brightness value or a calculated average minimum brightness 

value from every pixel and multiple spectral bands of an image. The minimum value is 

determined from selected pixels in the image that should have zero reflectance, such as

http://landsat.gsfc.nasa.gov/about/L5_td.html
http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html#systematic_l5_l1g
http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html#systematic_l5_l1g
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 pixels over still water. The subtracted minimum value represents contributions from the 

atmosphere that may have increased pixel brightness values in the image (Jensen, 2005).  

Optical Feature Tracking  

 The velocity, topography, structures, and strain rates of a glacier are influenced by 

the geometry and mechanical properties of the material at its base, including bedrock, 

unconsolidated till, and fluvial deposits (Fowler, 1982; Boulton and Hindmarsh, 1987; 

Gudmundsson, 2003). Topographic features at the base of a glacier will modify ice flow 

direction and magnitude, but the effects become attenuated as they propagate upwards 

through the ice. To determine the underlying topography and structural geology, the 

surface topography, flow velocity, and surface features are analyzed using several remote 

sensing techniques. The approach follows that used by Bruhn et al. (2010) to explore 

relationships between ice flow and bedrock geology on the Bering Glacier.  

The velocity and strain rate fields on the surface of the glacier are determined 

from changes in the position of features that appear on two geographically coregistered 

images acquired at different times. In practice, the displacements are found at points on a 

regular grid that is superimposed on the older of the two images. A small patch of pixels 

centered on each grid point is matched as best as possible with a similar patch of pixels 

on the second image, and the displacement is the difference in coordinate positions of the 

centers of the correlated patches. This process is repeated for each point on the grid to 

create a set of displacement vectors on the surface of the ice. If a displacement vector 

cannot be resolved at a specific grid point because of poor correlation or an obvious error 

in correlation, then the displacement at that point is approximated by interpolation using 

the displacements at neighboring points. The displacement at each point divided by the 
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time between acquisitions of the images is an estimate of the velocity magnitude.  The 

components of the strain rate tensor at each grid point are then found from the spatial 

derivatives of the velocity field, using a finite difference approximation to calculate 

Cauchy‟s deformation tensor (Cardozo and Allmendinger, 2009).  

Three computer programs are used to implement the processing steps outlined in 

the previous paragraph. The displacement vector field is determined using Coregistration 

of Optically Sensed Images and Correlation software (COSI-Corr), obtained from the 

Tectonic Observatory group at the California Institute of Technology (Leprince et al., 

2007a,b). Editing of the displacement vectors is done using software written by the 

authors in the Matlab © scripting language. Strain tensors are computed from the edited 

velocity field using SSPX software written by Cardozo and Allmendinger (2009). 

COSI-Corr 

The algorithm implemented by the COSI-Corr software uses a phase difference 

technique to obtain a measure of similarity (correlation) between parts of two images. 

Pixel subsets extracted from both images are converted into the frequency domain by 

applying the Fast Fourier Transform. The phase spectrum of the second image subset is 

multiplied by the complex conjugate of the phase spectrum of the reference (first) image 

and then divided by the absolute value of the spectral product. The inverse Fourier 

Transform of this normalized cross spectrum produces a correlation peak; the coordinates 

of this peak provide the relative offset of a local „feature‟ between the two images 

(Shekarforoush et al., 1996; Leprince et al., 2007a). This method is resilient to image 

noise because a single coherent correlation peak is the choice for coregistration and 

noise distributed amongst other incoherent peaks can be assumed to have a mean value of 
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zero (Shekarforoush et al., 1996). 

This phase spectrum correlation routine requires specification of the size of the 

search window within which correlation will be attempted, the step or grid spacing size, 

and the acceptable signal-to-noise ratio below which correlation will fail. The window 

size defines the size of a sliding window that passes over the image and correlates points. 

The window size can be a fixed dimension or scaled to a maximum and minimum 

window. When the window is multiscaled, the larger window is correlated first and if 

correlation is successful, the correlation algorithm is re-executed on a smaller scale. This 

process is iterated until correlation fails or the minimum window size is reached. The step 

size determines the distance in pixels between the sliding windows. The SNR is the 

height of the correlation peak to the background noise, and measures the robustness of  

each correlated value (Ayoub et al., 2009).   

 No specific set of parameters is used when correlating images; the algorithm 

implemented in COSI-Corr is flexible to allow processing of any digital image acquired 

in any part of the electromagnetic spectrum (Leprince et al., 2007a). Each parameter must 

be adjusted to the specific image pair to obtain the best correlation.  Large windows 

produce displacement fields with less noise from inaccurate correlations but lose details 

within the velocity field. Smaller window sizes produce finer detailed velocity fields but 

also include more noise from miscorrelations. Trial and error adjustment is required to 

determine the parameters best suited for correlation of specific image pairs (Leprince et 

al., 2007a, b,). 

Scaling of windows sizes was needed to produce an accurate velocity field. On

 images that are acquired a year or more apart,  ice displacements can be over 100+ m 
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and larger window sizes are needed. Smaller window sizes are used when correlating 

images on shorter timescales. Multiscaled windows are successful at tracking the motion 

of glacial ice because the surface features frequency and size are not uniformly 

distributed over the glacier. The larger windows retrieve displacements in the noisy areas 

of the images, and the smaller windows in less noisy areas. The best parameters were 

chosen individually for each image pair on the basis of how well the calculated flow field 

matched the expected flow of ice, which flow fields had the least amount of 

miscorrelations or outliers, and if the calculated magnitudes of displacements were 

similar to manually measured displacements. 

Band 2 on the Landsat 5 TM and Landsat 7 ETM+ was chosen to run all 

correlations on. Band 2 lies within in the visible range of the electromagnetic spectrum 

(wavelengths from .52 to .60 µm); within this range of wavelength,  spectral reflectance 

curves for snow, glacier ice, and dirty glacier ice show the greatest difference in  

reflectance (Zeng et al. 1984; Winther, 1993). This difference in reflectance is useful to 

highlight distinct features and differences on the surface of the glacier that can be used to 

track ice motion from year to year. Bands in the near infrared range are not used because 

reflectance from glacier ice and dirty ice is similar, making features from clean and dirty 

ice that could potentially be tracked harder to distinguish.  

The COSI-Corr algorithm is unbiased because it does not account for a known 

direction of motion, and can therefore produce displacements that are anomalous to 

actual ice movements. Visual inspection of the displacements is done utilizing a script 

written in the Matlab programming language. If a vector direction or magnitude is

 significantly different than those at the surrounding grid points it is removed and 
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replaced by an interpolated vector calculated using displacement components from grid 

points in the surrounding region. This method preserves the majority of computed vectors 

while producing a coherent vector field free of noise from anomalous vectors.  

Coregistration of the images in geographic coordinates is checked by alternating 

or 'flicking' between images on the computer display screen. If the images are 

approximately coregistered, there is little or no apparent motion of rock or bare ground. If 

the image pairs pass this visual inspection test, then several correlations are run to 

quantitatively evaluate misregistration at subpixel scale between image pairs. The 

calculated offset in the images is no more than 2 m or 1/15
th

 of a pixel in any of the image 

pairs. 

Strain Rate 

The strain rate field on the surface of the glacier is calculated from the edited 

velocity grid, using an algorithm implemented in the SSPX software (Cardozo and 

Allmendinger, 2009). Displacement gradients are calculated at each grid point to produce 

a two-dimensional deformation tensor that relates the quadratic elongation of a line (Λ) 

following deformation either to the orientation of the line before (Green‟s Tensor) or after 

(Cauchy‟s Tensor) deformation. The eigenvalue and eigenvectors of Cauchy‟s Tensor are 

the inverse values of the principal quadratic elongations (Λ1 and Λ2) at each grid point, 

which are in turn the squared values of the maximum and minimum principal stretches S1 

and S2, where Si (i = 1,2) is the square root of the Λi. The principal strains are embedded 

in the stretches as Si = (1 + ei), where ei is longitudinal strain. The orientations of S1 and 

S2 correspond to the axes of principal strain. When the longitudinal principal strains are 

divided by the time between acquisitions of the images, we obtain an estimate of the 
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principal strain rates at each grid point. These rates are typically on the order 10
-9

 s
-1

 or 

less, which implies that the strain rate axes may lie subparallel to the principal axes of 

stress as discussed by Bruhn and Haeussler (2006). In this situation, we expect brittle 

fracturing that forms crevasses to propagate parallel to the direction of maximum 

shortening strain rate. 

The results of the velocity and strain rate calculations are presented as maps of the 

velocity and dilatational strain rate fields. Directions and relative magnitudes of velocities 

are shown by vector or „arrow‟ plots, with the tails of the arrows located at the grid 

points. Contour maps of velocity magnitude are also created with units of m/month to 

m/year, depending on the time span between image pairs. The dilatational strain rate is 

also displayed on contoured maps; this rate is positive if the area surrounding the grid 

point is dilating and negative if the area is contracting. The dilatational strain rate is the 

product of (S1xS2)/time. The orientation of the axis of principal maximum shortening 

rate is plotted as a dark blue line centered about each grid point.  

 The above method only calculates a two-dimensional velocity and strain rate field 

whilst in nature; ice flow is three dimensional as noted by Sharp in his discussion of the 

formation of foliation and folds on the Malaspina Glacier (Sharp, 1958). The results of 

this study therefore only reflect velocity and strain on the surface of the glacier. 

Glacier Analog Modeling

To investigate how glacial ice would respond to underlying topographic features, 

a glacial analog model is used (Fig. 7). A pseudo ice valley was constructed from 

Plexiglas to model a glacial ice valley.  To represent the geometry and dynamics of a 

glacier ice valley, the model was scaled following the principles discussed by Hubbert 
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(1937).  The model is scaled at a ratio of 2x10
5
, thus 2 cm on the model is equivalent to 1 

km in nature. Flubber is an analogue for glacial ice and is a viscoelastic material that 

flows plastically under low stresses but is brittle and fractures under high stresses much 

like ice (Gerbi, 2003). To model underlying topography,  scaled insets of topographic 

features, carved from Styrofoam, are placed on the bottom of the model (Hubbert, 1937; 

Aydin and Nur, 1982). Flubber is placed over the models and allowed to flow freely down 

the “glacial valley” at an angle of 2º. Dots are placed on the surface, before flow begins, 

in an evenly spaced grid and tracked to create flow fields for the glacier. Flow fields 

generated from physical experiments were compared to results on the glacier. The 

topographic models used in this study are a ridge oriented obliquely to ice flow at a 45º 

angle (Fig. 7A) and a ridge oriented parallel to ice flow (Fig. 7B).
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Table 1 

 

Image Data 

________________________________________________________________________ 

Image  Acquisition   Scene    Row Path  

Number Data    Number 

________________________________________________________________________ 

1  September 11, 1986  L5062018_0181986091 18 62 

2  August 29, 1987  L5062018_01819870829 18 62 

3  September 4, 1995  L5062018_01819950904 18 62 

4  September 27, 1995  L5063018_01819950927 18 63 

5  July 28, 1999   L71063018_01819990728 18 63 

6  August 2, 2001  L71063018_01820010802 18 63 

7  July 19, 2007   L5062018_01820070719 18 62 

8  August 11, 2007  L5063018_01820070811 18 63 

________________________________________________________________________
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Figure 7. A scaled glacial analog model constructed to understand how ice may respond 

to underlying topography. Flubber is placed over the topographic models with a grid of 

evenly space points marked on the surface to track surface flow.  A) A ridged placed at a 

45 degree angle. B) A ridge placed parallel to ice flow.



 
 

 

 

RESULTS 

Glacier Modeling 

Flow patterns from the physical model illustrate how ice on the glacier may 

respond to an underlying ridge, aiding in the interpretation of the feature tracking results. 

The pattern of flow as the flubber moves over the ridge shows that ice increases in speed 

on the down slope of the ridge (Fig. 7A). This implies that if this pattern is seen on the 

feature tracking results, the ice is likely responding to an underlying ridge or topographic 

step. The pattern of flow for a parallel ridge shows the ice flow slowing over the ridge 

with most of the ice motion being deflected and increased around the edges of the ridge 

and at the front of the ridge (Fig. 7B). This suggests that velocities over a ridge parallel to 

ice flow would show the pattern of slower velocities over the ridge with faster velocities 

deflected around the region of slower flow.   

Upper Seward Glacier  

Surface velocity maps of the Upper Seward Glacier are generated from a 1-year 

correlation with Landsat 5 TM images from September 11, 1986 and August 8, 1987 

(Table 1, Fig. 8). The surface flow field in this study is comparable to that found by Ford 

et al. (2003), which calculated velocity from Interoferometric Synthetic Aperture Radar 

(InSAR). The surface velocity maps of the Upper Seward Glacier show that velocities in 

the western portion of the glacier flow at a faster rate than those in the eastern portion of 

the glacier, with flow being subdivided by a northwest trending ridge (Fig. 8).  This ridge 
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is marked by a series of nunataks and crevassing along the length of the ridge (Fig. 8A).  

Ice in the western portion of the Upper Seward Glacier flows west to east at a rate 

of 0 to 300 m/yr. Faster velocities are located along the southern side of the glacier (100-

300 m/yr) and slower velocities (0-100 m/yr) are located along the northern side of the 

glacier (Fig. 8). A subtle topographic feature that trends east-west subdivides the flow in 

the region of the glacier as documented by Ford et al. (2003). As the ice continues east, 

flow is deflected towards the southeast where it encounters the northwest trending ridge; 

velocities increase rapidly to 400 to 600 m/yr before the ice flows into the head of the 

Lower Seward Glacier (Fig. 8).   

The ice in the eastern portion of the Upper Seward Glacier flows at a much slower 

rate (0-50 m/yr) towards the southwest (Fig. 8B). The ice is diverted toward the head of 

the Lower Seward Glacier as it encounters the northwest trending ridge. Before flowing 

into the Lower Seward Glacier, velocities reach up to 300 m/yr. Ice from the eastern and 

western Upper Seward Glacier converge at the head of the Lower Seward Glacier. 

Lower Seward Glacier 

 Velocity maps of the Lower Seward Glacier were created from Landsat 5 TM 

images acquired a month apart for the years 1995 (September 4, 1995 to September 27, 

1995) and 2007 (July 19, 2007 to Aug 11, 2007) (Table 1). The flow fields from 1995 and 

2007 exhibit similar velocity patterns in both direction and magnitude (Fig. 9). This 

suggests that the displacement field on the surface of the ice is being influenced by 

bedrock topography and underlying geology and departs from a simple pattern of down 

glacier flow. To discuss how glacial ice is moving down glacier, the velocity image is 

subdivided into three regions.            
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Zone S-1 

 Zone S-1 is located where ice from the Upper Seward Glacier flows into the 

Lower Seward Glacier over a topographic step at an elevation of 1500 m  (Figs. 6 and 9). 

Ice flowing over the topographic step reaches rates of up to 60 m/month (Fig. 9). Moving 

south down glacier, faster velocities (40-60 m/month) are located in the eastern portion of 

the glacier above the trace of the underlying Cascade Glacier Thrust Fault, with the 

surrounding ice flowing at a slower rate (10-20 m/month)  (Fig. 9). Where ice flows over 

the topographic step, crevasses trend perpendicular to ice flow direction (Fig. 10A). 

Where surface slope and velocities decrease, two types of crevasses are found on the 

glacier surface: marginal crevasses that trend up glacier oriented obliquely to the glacier 

walls and longitudinal crevasses that are oriented parallel to glacier walls (Fig. 10A).  

The channel of increased velocities in the eastern region of the glacier may be the 

surface representation of the Cascade Glacier Thrust Fault as ice preferentially erodes 

into the faulted and fractured rock in the subsurface. 

Zone S-2 

 The northern portion of zone S-2 contains velocities in the range of 20-50 

m/month. Moving south, the glacier flows over a topographic step at approximately 1100 

m in elevation and surface velocities increase rapidly down glacier, flowing at rates

 of 70-100 m/month (Figs. 6 and 9). Velocities below the topographic step decrease 

to 50-60 m/month. Transverse crevasses form on the surface of the glacier over the 

topographic step and where velocities are the fastest (Fig. 10B).  

The pattern of flow over the topographic step in zone S-2 compares to the analog 

model results where increased velocities occur on the down slope of the ridge (Fig. 7A). 
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Coincident with the topographic step is the trace of the Dome Pass and Chaix Hills faults 

(Fig. 11). Here Cretaceous metamorphic rocks of the Yakutat Group are faulted over the 

top of Tertiary sedimentary rocks of the Poul Creek Formation, which in turn are faulted 

over the sedimentary rocks of the Yakataga Formation and Yakutat Group in the footwall 

of the underlying Chaix Hills Fault (Fig. 11). There is no evidence for recent activity on 

the Dome Pass and Chaix Hills Thrust Faults and they are presumed to be inactive 

structures that were once linked to dextral shearing along the transform fault boundary 

and thrust belt to the southwest. The faults are exhumed by displacement and uplift above 

the Esker Creek, and Malaspina Faults (Bruhn et al., 2004; Bruhn et al., in press). Due to 

the inactivity on these faults, the formation of the topographic step is most likely caused 

by differential erosion rather than uplift from tectonic activity.  

Zone S-3 

 Within zone S-3, higher velocities are present near the margins of the glacier with 

regions of decreased velocities near the centerline of the glacier (Fig. 9).  Velocities near 

the center of the glacier range from 10-50 m/month increasing to upwards of 80 m/month 

near the glacier margins (Fig. 9). The glacier flows at a rate of 50-80 m/month before 

discharging into the Seward Lobe where the velocity decreases to 10-20 m/month. Fast 

flow out of the mouth of the Lower Seward Glacier corresponds to a steepening of the

 topography above the piedmont (Fig. 9). Crevasses in this region are predominately 

transverse and marginal (Fig. 9C).  

The pattern of slower velocities near the centerline of the glacier with velocity 

increasing towards the margin is similar to the flow pattern observed on the analog model 

of a ridge oriented parallel to ice flow (Fig. 7B). Ice in zone S-3 is flowing over the rocks 
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of the Yakutat Group. These rocks are exposed on both sides of the glacier valley and are 

a tightly folded and faulted unit (Fig. 11). The flow pattern is presumably caused by 

differential erosion of the underlying rock within the Yakutat Formation, possibly related 

to erosion along folded bedding surfaces which created an elongated dome shaped ridge 

of bedrock with the long axis aligned down slope.  

Strain on Lower Seward Glacier 

Strain rates calculated from the velocity field are shown in Fig. 12. Areas 

highlighted in red are regions on the ice surface that are undergoing dilation of surface 

area, while areas of blue are contracting in surface area. Areas of the greatest dilatational 

strain rate are located where the velocities are fastest and the slope of the glacier is 

steepest, like that in the region at the head of the Lower Seward Glacier, the Chaix Hills 

Fault, and the topographic step just above the mouth of the Lower Seward Glacier (Fig. 

12).   

The blue lines indicate the axis of principal maximum shortening rate and should 

be aligned parallel, or nearly parallel, to the crevasses that propagate in the direction of 

maximum contraction within the ice (Harper et al., 1998). The orientations of the axes of 

maximum shortening for the Lower Seward Glacier mirror the crevasses that form on the  

surface of the glacier (Figs. 10 and 12). This observation provides an independent check 

on the validity of the velocity field obtained by feature tracking  
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Agassiz Glacier 

The Upper Agassiz Glacier  

 Velocity fields for the upper Agassiz Glacier were generated from Landsat 5TM 

images acquired on September 4, 1995 and September 27, 1995 (Table 1, Fig. 13). The 

upper Agassiz Glacier flows down the southern flank of Mount Saint Elias between the 

elevations of 1500 m and 1100 m. In this region, the glacier‟s surface slopes at a 5º angle, 

and the velocities range between 20-90 m/month (Fig. 6). The velocity is greatest in the 

central part of the glacier and decreases outward toward the margins (Fig. 13). Crevasses 

on the surface are predominately transverse and marginal (Fig. 14). The axes of 

maximum shortening strain rate are oriented approximately subparallel to the crevasses 

on the surface of the ice, validating the velocity field in the upper portion of the Agassiz 

Glacier (Figs. 14 and 15). 

The Central Agassiz   

 The central part of the Agassiz Glacier is located between elevations of 1100 m to 

500 m. In the upper portion of the central Agassiz Glacier, the surface slopes at 1º- 2º 

along the northern side of the Samovar Hills (Fig. 6). Velocities decrease in this region 

from those of the upper Agassiz Glacier to rates of 10-15 m/month with several areas of 

faster velocities (30-50 m/month) located above the trace of the Chaix Hills Fault and 

down the centerline of the glacier (Fig. 16). A 1-year correlation done on Landsat 5

 TM images from the dates September 11, 1986 to August 29, 1987 show the same region 

of higher velocities, with the main body of the glacier flowing at 100 to 200 m/year and 

faster regions flowing at 400-600 m/year (Table 1, Fig. 17). Prominent crevassing is not 

present on the surface in the upper portion of the central Agassiz Glacier, but the strain 
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rate map shows dilatational strain that corresponds to the regions of faster flow above the 

underlying Chaix Hills Fault (Fig. 15). 

 Where the glacial ice bends through a 90º angle around the tip of the Samovar 

Hills, several topographic steps are present on the ice.  The steps dip at an angle of 4º 

over 300 m in elevation (Fig. 6). The surface velocities in this area range from 10 to 25 

m/month or 100-200 m/year (Figs. 16 and 17). The surface of the glacier is broken by 

transverse, longitudinal, and marginal crevasses where it flows over the steps (Fig. 14). 

Ogives initiate at the base of the topographic step and create a prominent striping of the 

glacier that continues to the terminus (Fig. 18). The strain rate map shows dilatational 

strain below the topographic step on the glacier and shortening axes trend roughly 

parallel to the crevasses (Figs. 14 and 15). The initiation of the topographic steps 

corresponds to where the Chaix Hills Fault is oriented oblique to ice flow and the 

Kultieth Formation is thrust on top of the Yakataga Formation (Fig. 19). Below the 

topographic velocities range from 10-25 m/month or 100-600 m/year (Figs. 16 and 17), 

with fastest flow contained on the western side of the glacier. This may be explained by a 

gentle 1 º westward dip on the glacier surface from the Samovar Hills toward the Chaix 

Hills, and mimics the tilting of bedrock bedding surfaces in this area. Before ice flows 

out of the mountain front onto the piedmont, the glacier surface slopes at 4º and flows 

over the trace of the Malaspina fault (Fig. 19).

The Agassiz Lobe  

 Ice discharges onto the piedmont from the upper and central part of the Agassiz 

Glacier to form the Agassiz Lobe of the Malaspina Glacier (Fig. 2F). The ice on the 

Agassiz Lobe flows at a rate of 6-22 m/month or 100-400 m/yr (Figs. 17 and 20). The 
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fastest moving ice is located in the central portion of the Agassiz Lobe and flows in an 

arcuate path towards the west. Surface velocities in the moraines to the east of the glacier 

lobe do not show this westward trend in flow: rather, they are directed south parallel to 

the moraine bands (Fig. 21). The westward deflected flow may be indicative of the uplift 

and tilting of the Chaix Hills and Samovar Hills by displacement on the Malaspina fault, 

or indicate uplift on a new incipient fault under the piedmont (Bruhn et al. 2004; 

Chapman et al., in press). This subdivision of velocities may also indicate the presence of 

a subglacial ridge beneath the Agassiz and Seward Piedmont, which trends subparallel to 

the Malaspina fault.  

The Seward Lobe 

 To determine velocities on the Malaspina Lobe feature tracking was done using 

Landsat 5 TM images from September 11, 1986 and August 29, 1987 and Landsat 7 

ETM+ images from July 28, 1999 and August 2, 2001 (Table 1). The attempt to track 

features over a period of 1 month failed because the movement of ice in this region was 

too small to be tracked by COSI-Corr‟s search window. However, velocities were 

obtained for several parts of the glacier over a period of 1 to 2 years (Fig. 22). 

The most distinct flow feature on the Seward Lobe is a prominent tongue of faster 

moving ice that extends southward from the mouth of the Lower Seward Glacier towards

 the terminus near the coast. The ice on the Seward Lobe moves at a rate of 200-300+ m  

per year in the faster tongue and 100-150 m per year in the surrounding areas of the 

glacier (Fig. 22). This tongue of rapidly flowing ice was also observed from feature 

tracking done on synthetic aperture radar (SAR) images (Burgess et al., 2010).The tongue 

of faster velocities corresponds with the location of a ~10 km wide and ~250 m deep 
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trough at the base of the glacier detected by ice penetrating radar (Fig. 23a) (Conway et 

al., 2009). The area of increased flow also corresponds to surface depressions seen on an 

SRTM image of the Lower Seward Lobe; these depressions appear to overlie englacial or 

subglacial conduits through which glacial melt water may discharge (Fig 23b).The 

surface depressions when traced up glacier toward the mouth of the Lower Seward 

Glacier transition into the topographic ice ridge, or „tongue‟, on the glacier (Fig. 24). This 

transition likely occurs as ice builds up when discharged out of the mouth of the Lower 

Seward Glacier then, as ice spreads out over the piedmont, this ridge disappears and 

becomes a depression on the surface, likely responding to subsurface channels or 

subglacial conduits beneath the surface of the ice.  

A noteworthy feature on the Seward Lobe is a westward offset of ice flow. This is 

observed in a deflection of the raised ice ridge (Fig. 24) and the offset of the tongue of 

fast flow observed on the Seward Lobe when projected northward. This deflection occurs 

where the ice exits the mouth of the Lower Seward Glacier and crosses the Esker Creek 

Fault.  The ice appears to have a 1-2 km offset towards the west.  

Oily Lake 

 As ice flows outward from both the Lower Seward and Agassiz Glacier, it is 

directed northward towards an area of lower elevation along the base of the Samovar 

Hills and into Oily Lake (Fig. 25). Ice flowing out from the Agassiz Glacier into Oily 

Lake moves at a rate of 30-50 m/yr and ice flowing from the Lower Seward Glacier into 

Oily Lake moves at a rate of 10-40 m/yr. Radial crevasses around the margins of the lake 

and calving of ice into the water suggests that the lake extends subglacially (Capps et al., 

2010) (Fig. 26). Pits that vary in diameter from tens to hundreds of meters wide and are 
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approximately 10-40 km deep are located on the surface of the glacier and extend south 

from Oily Lake along the moraine band that separates the Seward and Agassiz Lobes 

(Fig. 26). The pitting on the surface of the moraine band is similar to karst topography 

and suggests the collapse of the surface ice into englacial/subglacial conduits that drain 

water from Oily Lake. The pits extends south down the moraine band towards the 

location of Yana Stream, a discharge point for glacial melt water at the terminus (Fig. 26). 

Oily Lake is located at the intersection of the Malaspina and Esker Creek faults, 

which intersect at roughly a 45° angle within the structural groin of the Samovar Hills 

(Figs. 4 and 25). The Malaspina and Esker Creek faults are currently active and generate 

earthquakes (Bruhn et al., 2004; Plafker and Thatcher, 2008).  Activity on these faults 

presumably causes the surrounding rocks to become highly fractured, making glacial 

quarrying more efficient and forming a topographic low were Oily Lake now resides 

(Hallet et al., 1996).
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`Figure 8.  Velocity results for the Upper Seward Glacier generated from a correlation 

done between September 11, 1986 and August 8, 1987.  A.) Composite Landsat Thematic 

Mapper image (bands 4, 3, 2) with an overlay of velocity vectors. Vectors are deflected 

around an underlying northwest trending ridge, marked by the nunataks that are northeast 

of the mouth of the Lower Seward Glacier. B.) Color scaled velocity magnitude image of 

the Upper Seward Glacier. The red line represents an outline of the Upper Seward Glacier 

Basin. Refer to Fig. 2A for location.
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Figure 9. Color scaled velocity magnitude image showing ice motion on the Lower 

Seward Glacier for the years 1995 and 2007. For the year 1995, ice displacements are 

measured from September 4 to September 27 and for the year 2007, from July 19 to 

August 11. Images are subdivided into three regions; S-1, S-2, and S-3, with red outline 

representing the outline of the glacier. Refer to Figure 2B for location.
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Figure 10. Crevasse images on the Lower Seward Glacier. Base image is a composite 

Landsat 5 Thematic Mapper image (bands 4, 3, 2). Subsets are KH-4 Corona satellite 

images that have been converted to black and white and enhanced to highlight the 

crevasses patterns. Crevasses are represented by black lines on the surface of the glacier.
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Figure 11.Geology surrounding the Lower Seward Glacier. A) Geology of the Lower 

Seward Glacier with velocity results overlain on a Composite Landsat Thematic Mapper 

image (bands 4, 3, 2). Vectors on the surface of the ice are generated from a correlation 

done from September 2, 1995 to September 27, 1995. The locations of major geologic 

structures are approximated beneath the ice. B) A topographic profile  of the Lower 

Seward Glacier with the geology inferred beneath the surface of the ice. 
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Figure 12. Strain rate map for the Lower Seward Glacier. Areas in red are undergoing 

dilation, areas in blue are undergoing contraction and blue lines indicate axis of 

maximum shortening. Red line represents the outline of the Lower Seward Glacier and 

the faults are sketched in their approximate location. 
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Figure 13. Color scaled velocity magnitude image for the Upper Agassiz Glacier, 

generated from a correlation done from September 4, 1995 to September 27, 1995. 

Glacier outline shown in red.  See Fig. 2D for regional location.  
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14. Crevasse patterns on the surface of the Agassiz Glacier. Base image is a Landsat 5 

Thematic Mapper (band combination 4, 3, 2). Subset images are KH4-Corona satellite 

images enhanced to highlight crevasses, which are represented by black lines on the 

surface of the glacier.
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Figure 15. Strain rate map for the Agassiz Glacier generated from the 1995 correlation. 

Areas in red are undergoing dilation, areas in blue are undergoing contraction and blue 

lines indicate axis of maximum shortening. Red line represents the outline of the Agassiz 

Glacier and the faults are sketched in their approximate location.
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Figure 16. Color scaled velocity magnitude image on the central portion of the Agassiz 

Glacier generated from correlation done from September 4, 1995 to September 27, 1995. 

Red line represents the outline of the glacier. See Fig. 2E for regional location. 
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Figure 17. Color scaled image of velocity magnitudes on the Agassiz Glacier generated 

from correlation done on images between September 11, 1986 and August 29, 1987. Red 

line represent glacial outline. See Fig. 2 E and F for regional location. 
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Figure 18. Landsat 5TM image (band combination 4, 3, 2) highlighting ogives on the 

surface of the Agassiz Glacier, formation of ogives begins after a topographic step on the 

surface of the glacier.  
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Figure 19. Vectors overlain on a Landsat 5 Thematic Mapper image. The major lithology 

surrounding the glacier is shown and the geologic structures are inferred beneath the ice.  
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Figure 20. Color scaled image of velocity magnitudes for the Agassiz Lobe generated 

from a correlation done between September 4, 1995 and September 27, 1995.  Red line 

represents outline of actual glacier. See Fig. 2F for locations.   
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Figure 21. Vector overlain on a Landsat 5 Thematic Mapper image (band combination 4, 

3, 2).  Yellow vectors generated from movement on the ice between September 11, 1986 

and August 29, 1987, white velocity vectors generated from movement on the ice 

between from July 28, 1999 and Aug 2, 2001 correlation. 
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Figure 22. Color scaled velocity magnitude image for the Seward Lobe generated from 

Landsat 5 Thematic Mapper images.  A) Velocities from a correlation done between 

September 11, 1986 to August 29, 1987 B) Velocities from  a correlation done between 

July 28, 1999 to August 2, 2001. The red line represents the outline of the Seward Lobe. 

See Fig. 2C for location.
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Figure 23. Topography on the Seward Lobe of the Malaspina Glacier. A) Subglacial 

topography generated by Conway et al. (2009). Yellow lines are the approximate 

projection of the subglacial trough between point‟s c and d on the profile. B) SRTM of 

the lower half of the Seward Lobe, channel present on the surface corresponds to the 

location of the tongue of fast flow.  
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Figure 24. A contoured SRTM image of the transition of ice from the Lower Seward 

Glacier to the Seward Lobe, with the top contour at 700 m and 10 m contour intervals. 

The dotted blue line outlines the ridge of elevated ice flowing out the Lower Seward 

Glacier that is offset to the west. 
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Figure 25. Landsat 5 TM image with COSI-Corr velocity vectors overlain. Oily Lake is a 

glacial dammed lake that resides in a topographic low in the southern front of the 

Samovar Hills and is highlighted in blue. 
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Figure 26. Crevasses patterns around Oily Lake with collapse pits highlighted in blue. 

The collapse pits are present down the length of the moraine band and can be traced to 

Yana Stream, a possible discharge point for water drainage from Oily Lake.
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DISCUSSION 

Affects of Rock Structure on Ice Flow 

 The ice of the Malaspina Glacier flows over several large geologic structures 

(Figs. 3 and 4), with known locations and geometries that can be traced beneath the ice. 

The interaction between these structures and the ice is used to understand how surface 

topography, flow, and ice structures respond to the underlying geology. The results from 

this study are subsequently used to predict the nature of structures that lie beneath the 

glaciers in regions where the underlying geology is not well constrained.  

The Upper Seward Glacier; Strike Slip Fault Termination  

 The Upper Seward Glacier (Fig. 2A) is located at a tectonic juncture between the 

termination of the Fairweather Transform Fault in the east and Bagley Fault (also referred 

to as the Contact Fault) (Plakfer, 1987) in the west (Fig. 27). A northwest trending 

topographic ridge extends across the Upper Seward Glacier at a high angle to the 

Fairweather and Bagley Fault, and is responsible for subdividing ice flow into two 

distinct regions on the glacier (Fig. 27). This structure is proposed to be a down to the 

west normal fault formed from the abrupt termination of the Fairweather Fault (Ford et 

al., 2003). Coincident with the northwest structure is the Cascade Glacier Fault, a thrust 

fault that trends toward the northeast and is situated approximately perpendicular to the 

proposed  northwest trending normal fault. The structural configuration of the Upper 

Seward Glacier illustrates on a large scale, a classic termination of a strike slip fault with 
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regions of extension (the northwest ridge/ normal fault) and compression (Cascade 

Glacier Thrust Fault) that are situated orthogonal to each other (Fletcher and Pollard, 

1981). This interpretation is supported by the distributions of fault rupturing and 

aftershocks during the M 7.9 Fairweather Fault earthquake in 1958 (Doser and 

Rodriguez, 2010). The Fairweather Fault ruptured into the eastern Seward Glacier Basin 

averaging 4 m of right lateral slip during the earthquake, which was followed by a band 

of aftershocks that surrounded the termination of the fault and possibly activated the 

extensional and compressional fault splays beneath the basin. The Cascade Glacier Fault, 

if reactivated, will tend to close the outlet valley of the glacier, while at the same time 

provide highly fractured rock and weak „till‟ to the base of the glacier to enhance the rate 

of flow down slope, and also widen the valley by erosion. Therefore, the width of the 

head of the Lower Seward Glacier may be controlled by the relationship between two 

competing processes: tectonics (thrust faulting that closes the valley) and erosion (that 

widens the valley).  

Origin of Ice Falls and Their Relation to Thrust Faulting 

Topographic steps present on both the Lower Seward Glacier and the central 

portion of the Agassiz Glacier are associated with the location of underlying thrust faults. 

The topographic step on the Lower Seward Glacier occurs where the structural duplex of 

the Dome Pass and Chaix Hills Faults cross beneath the glacier (Fig. 11). Here rocks 

from the Yakutat Group are faulted over the top of younger rocks of the Poul Creek 

Formation, which are in turn faulted over Yakataga Formation and Yakutat Group strata 

in the footwall of the underlying Chaix Hills Fault (Fig. 11). The glacier‟s surface 

steepens from an angle of 2º above the step to 6º at the step, and then declines to an angle
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 of 2º degrees at the base of the step. The steep topography of the icefall corresponds to 

higher velocities on the surface of the ice (Figs. 9 and 11), transverse crevasses (Fig. 10), 

and a region of dilatation on the strain rate map (Fig. 12).  All these features indicate that 

the glacier is in extensional flow over the step created by the structural duplex of the 

Dome Pass and Chaix Hills Fault.  

 The formation of this step is interpreted as rock cliff retreat where the ice 

differentially erodes the underlying lithology. The Poul Creek and Yakataga Formation 

are glacial marine and marine sedimentary rock that are younger, less indurated, and 

more easily eroded than the metamorphosed flysch of the Yakutat Group. As ice flows 

across the structural duplex, the faulted and fractured rocks of the Poul Creek and 

Yakataga Formation erode preferentially, presumably by ice plucking, relative to the 

more indurated rock of the Yakutat Group. The difference in rates of erosion presumably 

undermines the more indurated rock of the Yakutat Group, which then collapses beneath 

the ice fall, maintaining a steep slope (Fig. 11).  

 The topographic steps on the central portion of the Agassiz Glacier begin at a 

similar geologic transition that is found on the Lower Seward. The steps are located near 

the southwestern end of the Samovar Hills where the Chaix Hills Fault is traced beneath 

the glacier (Figs. 4 and 6). Here rocks of the Kultieth Formation are faulted over younger 

rocks of the Yakataga Formation. Above the step, the surface of the glacier slopes at 1º-2º 

angle where ice flows over the Kultieth Formation, and increases to a 4º angle where the 

ice flows over the Chaix Hills Fault at the topographic step and continues to flow over the

 Yakataga Formation. The most prominent feature associated with this step is the intense 

crevassing present on the surface of the glacier and the initiation of ogives, alternating 
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bands of light and dark ice that form on the surface of a glacier below an ice fall (Fig.18).  

 The topographic steps on the surface of the Agassiz Glacier most likely are 

formed by differential erosion of the underlying rocks. Rocks of the Yakataga Formation 

are less indurated and more easily eroded than the rocks of the Kultieth Formation; this 

combined with faulting on the Chaix Hills Fault and subsequent fracturing of rock around 

the fault surface allows the glacier to preferentially erode into this contact, and steepen 

the basal slope.  

 The formation of ice falls on the surface of the Lower Seward Glacier and the 

Agassiz Glacier are related to the underlying geology. This implies that as glaciers flow 

over geologic structures that extend beneath the ice and juxtapose lithologies of different 

competence, a topographic step develops because of differential erosion into the fault 

zone and underlying rocks. In both examples, topographic steps form where ice has 

eroded weaker, less indurated rocks and glacial quarrying occurred at faster rates than on 

the surrounding, more indurated rocks.  

Ice Flow Parallel to Faults 

             The upper section of the Lower Seward Glacier and the central section of the 

Agassiz Glacier provide the opportunity to explore the dynamics of ice flow where 

glaciers are confined to valleys that are eroded along major faults (Fig. 4). This is an 

important structural setting for ice flow, because in many mountain belts, the most 

pronounced lineaments in the landscape occur where glaciers have previously excavated

 deep troughs along fault zones that extend for tens of kilometers.

The Cascade Glacier thrust fault is located beneath the upper region of the Lower 

Seward Glacier, where metamorphosed rocks of the Yakutat Group are juxtaposed on 

C 
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either side of the fault (Fig. 4). The slope of the glacier steepens to an angle of 6º where 

ice flows into the head of the Lower Seward Glacier, and then decreases to a slope of 2 º 

where the ice flows down slope over the trace of the thrust fault. The change in slope is 

accompanied by a change in ice velocity (Fig. 9). Ice in the main body of the Lower 

Seward Glacier flows at 10-20 m/month but velocities increase to 40-60 m/month over 

the topographic step at the head of the Lower Seward Glacier and along the trace of the 

Cascade Glacier Thrust Fault. Strain rate in this region shows dilation along the trace of 

the fault, which indicates that the ice is in extensional flow above the underlying fault. 

 North of the topographic steps on the central portion of the Agassiz Glacier, the 

Chaix Hills Fault trends parallel to the direction of ice flow (Fig. 4). Velocities on the 

main body of the glacier increase from 10-15 m/month, to 20-40 m/month along the trace 

of the fault (Figs. 16 and 17). Dilation on the strain rate map also coincides with the 

region of increased flow velocity above the Chaix Hills Fault (Fig. 15). 

 Rock along these contacts are likely weaker and fractured from faulting; 

quarrying along the fault trace would be easier than on that of surrounding less fractured 

rock. Hallet et al. (1996) proposed that the spacing and growth of fractures controls the 

rate of quarrying. Where fractures are closely spaced, glacial quarrying is efficient, in 

contrast to where the rock is massive with a few fractures and quarrying is ineffective. 

The surface slopes in these regions do not increase significantly along the trace of the

 faults, further implying that the rheology of the basal deposits is responsible for the
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 increased rate of flow. The weaker material may be water saturated till formed from 

plucking and abrasion of the comminuted fault rock (Boulton and Hindmarsh, 1987). The 

faster ice velocities are likely correlated to deformation of the underlying till.  

Interpretation of Flow Patterns 

Fault Propagation Fold under the Agassiz 

 The Agassiz Glacier flows across the large fault propagation fold formed by the 

Malaspina Fault where it exits the mountain front and flows towards the west onto the 

piedmont . The surface slope is 4º as the ice flows out of the mountain front decreasing to 

~1º  ice  moves over the piedmont (Fig. 6). Ice velocity over the step ranges from 300-

600 m/year (Fig. 17). The topographic step on the ice surface occurs where the Yakataga 

Formation is folded above the Malaspina Fault, forming a large fault propagation 

anticline with a gentle north dipping back limb. East of the Agassiz Glacier, a large 

anticline plunges towards the west in the upper plate of the Malaspina Fault where it is 

exposed in the Samovar Hills (Fig. 28). Bruhn et al. (2004) interpreted this structure as an 

older foreland fold that has been uplifted, exhumed by erosion, and tilted towards the 

west in the hanging wall of the Malaspina Fault (Fig. 29). The exposures in the Samovar 

Hills provide a down plunge view of the fault propagation fold across which the Agassiz 

Glacier flows (Fig. 28). Farther west, this fold disappears beneath the Chaix Hills and 

continues offshore into the Pamplona Zone where it has been imaged by seismic 

reflection profiling (Fig. 29) (Worthington et al., 2010).  

The topographic steps in the glacier are an example of glacial erosion across the

 back limb and hinge zone of a fault propagation fold. Three alternative models for the 

formation of the step are sketched in Figure 30, with the preferred model illustrated on 
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part 3 of the figure. The alternative models are 1) erosion across the exhumed tip of the 

Malaspina Fault where the faulted and fracture rocks are quarried out preferentially with 

respect to the surrounding rock; 2) differential erosion of the beds on the overturned limb 

forming a topographic step where the base of the glaciers extends across the steeply 

dipping beds; 3) differential erosion by plucking that removes rock by slip and quarrying 

along bedding surfaces in the gentle west dipping back limb of the fold. This latter 

scenario is preferred because the topographic step on the surface of the glacier is bounded 

on both sides by gently west dipping bedrock and plucking presumably results in a stair 

case geometry within the bedrock that forms the topographic step and icefall on the 

surface of the glacier. The steps associated with gently dipping bedrock surfaces are a 

common geomorphic feature observed in the floors of alpine glacier valleys following 

retreat of the ice (Hooke, 1991). Also the depth to the base of the glacier (~500 m) 

measured by Conway et al. (2009) is too shallow for interception of the Malaspina Fault 

at the base of the glacier, which was penetrated at a depth of 2500 m in the Chaix Hills 

#1A well (Plafker et al., 1975). Ice on the piedmont is, however, most likely flowing over 

the steeply dipping forelimb of the fault propagation fold. 

Esker Creek Fault: Evidence for Dextral Shearing 

The ice at the base of the Lower Seward Glacier is deflected towards the west 

where it crosses the Esker Creek Fault, and continues to the south beneath the Malaspina 

Glacier (Fig. 24). The amount of lateral offset is ~1-2 km, and indicates right lateral

 shearing in addition to reverse slip displacement on the north dipping Esker Creek Fault 

as proposed by Plafker and Thatcher (2008). Recognizing this lateral component of fault 

offset is important for several reasons. 1) The Esker Creek Fault ruptured during the M 
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8.1 earthquake on Sept. 10, 1899, creating the greatest measured cosiesmic uplift during 

an historical earthquake (Tarr and Martin, 1912). Cosiesmic slip on the Esker Creek Fault 

uplifted the coast in upper Yakutat Bay by as much as 14 m. 2) A significant component 

of lateral shearing on the Esker Creek Fault is predicted given the relative motion of the 

Yakutat microplate with respect to the Alaskan plate margin in this area. The evidence for 

1 km of dextral offset therefore confirms the general sense of motion and fault slip 

predicted by geodetic surveying (Elliott et al., 2010; J. Elliott, personal communication, 

2011). 3) This offset may further underscore how the structures of the Fairweather 

Transform Fault and Aleutian Megathrust are currently linking together beneath the 

Malaspina Glacier.  

Dextral shearing along the mountain front where the fault lies buried beneath the 

glacier provides a speculative, but plausible, explanation for a narrow trough at the base 

of the glacier that is observed on the ice penetrating radar profile published by Conway et 

al. (2009) (Fig. 23a). A linear fault trace that erodes to form a deep trough is common 

along faults where there is a significant component of lateral motion. In contrast, dip slip 

faults, and especially thrust faults, create a cuspate mountain front and sinuous fault zone 

where the moderate or gently dipping fault intersects the Earth‟s surface. Dextral shearing 

along the Esker Creek Fault may therefore control the geometry and even the position of 

the mouth of the Lower Seward Glacier where ice debauches onto the head of the 

Malaspina Glacier. The mountain front is offset to the north approximately 1 km at

 the base of the Lower Seward Glacier, as though the glacier exits the range front in a 

small pull apart basin formed within a right lateral shear zone (Fig. 24).  
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Oily Lake - Formation and Drainage 

 Oily Lake is located where the Malaspina and Esker Creek Faults intersect and 

form a structurally controlled groin in the Samovar Hills. Elevations on the surface of the 

glacier decrease towards Oily Lake, and tongues of ice flow towards the lake from the 

mouths of the Lower Seward Glacier and Agassiz Glacier (Fig. 25). The subglacier 

trough of the Esker Creek Fault presumably continues to the west along the mountain 

front towards the Samovar Hills where it intersects the Malaspina Fault. Oily Lake is then 

located in the depression formed by erosion of these two faults.  

 Understanding the interactions between the lake and glacier are important because 

of the potential for outburst flooding at the terminus of the Malaspina glacier, and 

possible link of outburst flooding to surging of the glacier. Oily lake shows evidence of 

extending subglacially from the radial crevasses that extend approximately .5-1 km 

beyond the ice/water boundary of the lake.  Another feature that suggests that the ice 

extends sub glacially are the collapse pits on the surface of the glacier that extend 

southward from the lake along the band of moraines leading to Yana stream at the 

terminus of the glacier (Fig. 26). The sizes of the pits vary from tens of meters to 

hundreds of meters and suggest the collapse of englacial conduits that drain water from 

Oil Lake. Ice flow paths down the moraines, observed from the correlation results, show 

that the ice flows south subparallel with the trace of the collapse pits (Fig. 26). Water 

from potential outburst floods would presumably mimic the current flow path of ice and 

trace of the collapse pits observed on the surface of the ice. The most likely

 discharge point for outburst flood would occur in the vicinity of Yana stream at the 

terminus of the moraine band between the Seward and Agassiz Lobe of the glacier.  
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Flow on the Agassiz Lobe 

 Directions of ice flow on the Agassiz Lobe and adjacent moraine band diverge on 

the piedmont, with ice on the Agassiz Lobe moving towards the west and ice in the 

moraine band flowing south (Fig. 21). Three possible explanations may account for the 

westward deflection of flow seen on the Agassiz Lobe. 1) Ice from the Seward Lobe 

spreads out onto the piedmont and pushes the ice in the Agassiz Lobe towards the west. If 

this were the case, ice in the moraine band would show a similar westward deflection; 

flow in the moraine band does not appear to be diverted towards the west but trends south 

towards the coast (Fig. 21). 2) Ice is flowing parallel to bedding of the steep forelimb of 

the fault propagation fold that underlines the Agassiz lobe. 3) Flow is deflected toward 

the west by uplift on an incipient fault that is oriented subparallel to but located to the 

east of the Malaspina. Evidence for faulting  beneath this part of the glacier includes 

several aftershocks from the M 7.3 Saint Elias earthquake (Estabrook et al., 1992). Also 

there is evidence for uplift of the coast just east of the moraine band where a series of 

beach berms appear to have been uplifted in the hanging wall of a thrust fault. Trees 

logged from this site show growth of about 100 years dating back to about 1900-1904. 

Uplift of the beach berms may have occurred during the great earthquakes of 1899 that 

occurred in the region of the Malaspina Glacier (R.L. Bruhn, personal communication, 

2011).  

COSI-Corr- Relevance to Glacial Monitoring

 COSI-Corr has proven to be reliable software for accurately tracking and 

monitoring ice flow on glaciers (Leprince et al., 2007a, b; Scherler et al., 2008). Flow 

fields generated for the Malaspina Glacier System illustrate the ability of COSI-Corr to 
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track subpixel ice motion over a variety of timescales and flow conditions. The success of 

feature tracking  can be hindered by the correlation routine because it does not 

discriminate between the image sensor, spectrum, or timescale; thus miscorrelations can 

be common if the user input parameters are unsuitable for the images that are being 

analyzed. When running a correlation on glacial images, a number of important points 

must be kept in mind to generate accurate results.  

  First, the images that are being compared should have similar snow cover. 

Images that contain vastly different snow cover characteristics, as in images from 

summer and winter, are difficult to correlate as features on the surface of the glacier are 

significantly different in “snow” and “no snow” conditions (Scherler et al., 2008). Images 

from the same season usually work well as surface features are likely to be similar and 

easier to track. For the Malaspina Glacier System, the best results were generated from 

summer season where snow cover is diminished and surface features (folds, crevasses, 

and debris) are clearly visible.  

 Second, cloud cover over the glacier needs to be low. Cloud cover is a major 

restriction when using optical satellite imagery, if clouds are present over the glacier, 

accurate correlations cannot be made. Thin partly transparent clouds may not pose a 

significant problem to correlation (Scherler et al., 2008), so scenes with some cloud cover 

can be used. Also, scenes with a large percentage of cloud cover can be used as long as 

the area of interest is not covered by clouds.

 Third, some knowledge is needed of the actual flow conditions on the surface of 

the glacier to determine the parameters used in COSI-Corr and to analyze the resulting 

flow field. General trends of glacial flow and rates can be inferred from visual inspection 
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of the images. COSI-Corr uses an unbiased processor and miscorrelations are common in 

areas of intense crevassing, shadowing, pooling water, and differing snow cover. 

Miscorrelations are characterized by vectors that point up glacier, opposite to flow, or 

vectors that greatly exceed reasonable rates of flow. These vectors can be removed or 

edited as discussed previously. For the Malaspina Glacier, the general direction of glacial 

ice motion is seen when flicking between two images. Manual measurements were made 

in several areas of the glacier to determine a general flow rate, which were then compared 

to the results generated in COSI-Corr. By adjusting the parameters within COSI-Corr‟s 

correlation routine, accurate measurements of velocity could be determined for the 

majority of the glacier surface. This is illustrated in the results of the Seward Lobe; 

correlations done in COSI-Corr show surface velocities on the Seward Glacier Lobe in 

the range of .2 to .82 m/day (correlation from 1986 to 1987) and .2 to 1.2 m/day 

(correlation from 1999-2001); Sharp (1958) manually measured velocities in the range of 

.5 to 1 m/day in the same region, velocities that compare to this study's results. 

 Fourth, the velocity of the glacier and temporal separation of images can 

complicate the correlation procedure. When velocities on the glacier are high, shorter 

time spans between images produce better correlations. Conversely slower velocities 

correlate better over longer time spans.  This is illustrated on the Lower Seward Glacier 

and Seward Lobe.  Images compared over a month timescale were able to accurately 

track velocities on the Lower Seward Glacier, while the Seward Glacier Lobe contained

 predominately miscorrelated velocities. Over longer time spans of a year to 2 years

 accurate velocities for the Seward Lobe were calculated but ice motion was too rapid on 

the Lower Seward Glacier to be tracked over the longer time span. Several correlations 
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over differing time spans were needed to accurately track motion over the entire glacier 

system.   

 Fifth, the search window size must be scaled to the amount of motion on the 

glacier. If search windows are too large or small, the correlations will be inaccurate.  In 

general, longer time spans between images need larger window sizes to track ice 

displacement and vice versa for shorter time spans. The longer the temporal span between 

images, the greater amount of ice displacement and larger search area needed in COSI-

Corr to accurately track ice motion. As ice movement can be variable on the surface of 

the glacier, the scaling option in the frequential correlator is useful to track both large and 

small scale movement on the glacier. To determine what window size(s) would be best to 

correlate on the Malaspina Glacier, manually measured ice motion was used to determine 

an upper limit for the window size. If correlations were inaccurate, with the majority of 

results miscorrelated, window sizes were adjusted to larger or smaller size until an 

accurate field was calculated. To generate the best results for the Lower Seward Glacier  

and Agassiz Glacier, multiscaling window sizes of 32x32 pixels scaled down to 4x4 

pixels were used; for year correlations on the piedmont, multiscaling windows of 64x64 

pixels scaled down to windows of 4x4 were used.  

General Observations on Glacier Structure and Hydrology 

Ogives and Surface Velocity

Ogives on the surface of the Agassiz Glacier are unique features found nowhere 

else on the surface of Malaspina Glacier system (Fig. 18). Ogives are recognized by a 

light and dark banding that have a convex down glacier shape and form below an ice fall 

where the glacier surface is fractured by multiple sets of crevasses (King and Lewis, 
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1961). The dark band forms in the summer when ablation is at its maximum and snow 

cover at a minimum. Dirt and dust transported from snow-free slopes are deposited 

within the crevassed region to create a dark band of ice with high dirt content. The lighter 

band is formed during the winter when ablation is low and snow accumulation is high; 

little dirt is transported onto the ice because adjacent slopes are covered with snow. This 

process creates the white band of the ogive (Allen et al., 1960). The difference in albedo 

between the light and dark band can lead to wavy   topography on the surface of the 

glacier because the dark bands ablates at a faster rate and forms a topographic low. Dirt 

can accumulate within this low and further accentuate the dark band (King and Lewis, 

1961). 

Ogives on the central portion of the Agassiz form below the topographic step on 

the surface of the glacier near the southern tip of the Samovar Hills and location of Chaix 

Hills Fault trace (Figs. 4 and 6). In this region, the surface of the glacier is marked by 

heavy crevassing (Fig. 14). The annual bands (light and dark) are on average 400-500 m 

wide with white bands thicker, averaging 300 to 350 m in width and dark bands 

averaging 100-150 m in width. Towards the outer margins of the glacier the ogives 

narrow to 100-200 m thick. The change in width is a common characteristic of ogives and 

correlates with the decrease in velocity as you move from the centerline of the glacier to 

the margins where ice velocity slows due to friction along the glacier walls. Annual ogive 

thickness is linked to glacier motion and should reflect yearly movement on the ice. A 

correlation done on the Agassiz from 1986 to 1987 calculated velocities that ranged from 

100 m per year on the margins and up to 600 m down the central portion of the glacier 

(Fig. 17). This suggests that the ogives on the Agassiz Glacier are annual features and
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 roughly estimate ice motion. Farther down glacier on the piedmont, the velocities slow 

and ogives become thin as the ice contracts. The ogives disappear 3 to 4 km before the 

terminus of the glacier and are presumably removed by ablation. 

 Strain on the surface of the Agassiz Glacier shows a pattern of dilation around the 

centerline of the glacier surrounded by zones of contraction as you move toward the 

margins of the glacier (Fig. 15), with the shape of the ogives mimicking the strain present 

on the glacier. The central portions of the ogives are extended down where the glacier is 

undergoing dilation. Near the margins, strain shows contraction and the ogives tend to 

curve up towards the valley wall because of increased shear strain (Fig. 18). 

Basal Hydrology Relation to Glacial Flow 

 An important note to make when correlating glacier surface features and flow 

patterns to the basal topography is that surface flow features may not correlate directly 

with the spatial distribution of topography beneath the glacier. Variations in surface flow 

can be influenced by the underlying rheology of basement cover and cause spatial 

variations of surface flow from the resistance to basal sliding at the glacier bed. Also as 

pore water within the glacier increases, higher water pressures at the base of the glacier

 can lead to deformation of underlying till and cause glacial sliding; this translates to 

acceleration of flow on the surface of the glacier (Fountain and Walder, 1998).

  The Malaspina Glacier System is a temperate glacier that is near the pressure 

melting point and has a high water table. The water within the Malaspina Glacier moves 

through a system of internal conduits and discharges at ice marginal fountains at the head 

of outwash fans (Gustavson and Boothroyd, 1987). During the spring and early summer, 

melt causes the water flux to increase and leads to periods of rapid flow, most likely from 
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basal sliding and deformation of the underlying till.  This can be problematic when 

analyzing flow features on a small scale, but as most flow features on the Malaspina 

Glacier are a kilometer or larger, variations in rheology most likely mimic the underlying 

topography. For example, fast flow will occur where the deformable till is thick in 

subglacial troughs and flow would be decreased over ridges where glacial till is thinner 

(Bruhn et al., 2010). The tongue of fast flow seen on the Seward Lobe (Fig. 22) is linked 

to a subglacial trough which is presumably filled with deformable sediment as evidenced 

from sediment laden water that discharges at the terminus of the glacier.
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Figure 27 Landsat Thematic Mapper image (band combination 3,2,1) , with velocity 

vectors overlain. A.) Proposed structural model for the Upper Seward Glacier, illustrating 

the structures involved in the termination of the Fairweather Fault B) Model of structures 

that form at a fault termination from Fletcher and Pollard, 1981. Configuration of actual 

faults in the Upper Seward compares to this model. 
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Figure 28. Cross section A-A‟, a large box fold that plunges to the west and is located in 

the Samovar Hills. See Fig. 4 for location. Figure modified from Chapman et al., in press.  
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Figure 29. Cross section B-B‟, the structure of the Samovar and Chaix Hills.  See Fig. 4 

for location. Figure modified from Chapman et al., in press.   
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Figure 30. Geologic cartoon cross sections of a fault propagation fold. Three erosion 

models for the Agassiz Glacier are shown. The lighter rock layer erodes preferentially to 

that of the darker rock layer. 



 

 

 

CONCLUSIONS 

 Results from this study show that optical feature tracking of ice motion on the 

alpine and piedmont lobes of the Malaspina Glacier System provides information on the 

velocity fields averaged over two discrete periods of time, ranging from 1 month for 

scenes acquired during a summer season to about 1 to 2 years for scenes acquired during 

two different summers. The resolution in ice displacement using the image cross 

correlation algorithm implemented in COSI-Corr software  for this study is about 1/15 of 

a pixel, or 2 m. Measured velocities range from 10-30 m per month on the piedmont 

glacier lobes,  to several hundred meters per year on faster  flowing ice of  the alpine 

terrain. Strain rates calculated from the surface velocity fields are on the order of 10
-9

 s
-1

. 

The axes of maximum shortening strain rate are oriented subparallel to the traces of 

crevasses, indicating that fracturing propagates in the direction of the maximum 

horizontal compressive stress, as predicted by fracture mechanics theory.  

Alpine glaciers that flow through narrow valleys provide the opportunity to 

investigate the response of the ice to underlying rock structure, where the location of 

faults and folds can be traced beneath the glacier from geological mapping of the 

surrounding terrain. In the study area, icefalls are located where the glaciers flow across 

thrust faults and juxtapose rocks of variable resistance to erosion, and where stair step 

like topography develops by plucking of rocks on the gently dipping back limb of a large 

fault propagation fold. The ice fall where the Dome Pass and Chaix Hills thrust faults 
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pass beneath the Lower Seward Glacier develops by cliff face collapse and retreat as the 

glacier preferentially plucks rocks from the weaker strata that lie beneath the more 

indurate and metamorphosed  rocks of the Yakutat Group. On the other hand, preferential 

plucking of gently dipping bedding in the back limb of a fault propagation fold creates 

the icefall on the Agassiz Glacier where it exits the Chaix Hills in the hanging wall of the 

Malaspina Fault. In this latter example, the bedding dips gently up glacier, and plucking 

presumably results in a stair case geometry within the bedrock that forms a topographic 

step and icefall on the surface of the glacier. This step (cliff face) trend (gently up glacier 

dipping bedrock surface) geometry is a common geomorphic feature observed in the 

floors of alpine glacier valleys following retreat of the ice (Hooke, 1991). 

The upper section of the Lower Seward Glacier and the central part of the Agassiz 

Glacier both flow parallel to thrust faults,  and  in these regions, the  highest velocities are 

located over the trace of the fault surface at the base of the glacier. We propose that this 

phenomenon is caused by development of water saturated till at the base of the glacier by 

excavation of the weak and highly fractured and fault rock. That is,  linear regions of high 

surface velocity corresponds to a weak basal layer of till that is sandwiched between the 

ice and underlying intact bedrock within the fault zone . 

The structure of the Seward Glacier Basin and the pattern of ice motion in the 

Upper Seward Glacier reflects splay faulting at the northwestern end of the Fairweather 

Fault. The fault that has  formed in the dilatational lobe of the strike slip fault tip is a 

large normal fault that subdivides the basin into western and eastern regions, and diverts 

westward flowing ice to the south and into the head of the Lower Seward Glacier. 

Conversely, the Cascade Glacier fault is located within the compressional lobe of the
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 strike slip fault tip, and if reactivated, will tend to close the head of  the outlet valley of 

the Upper Seward Glacier, while at the same time provide highly fractured rock and weak 

„till‟ to the base of the glacier that will enhance the rate of flow down slope, and tend to 

widen the valley by erosion. 

The dextral offset of 1-2  km at the mouth of the Lower Seward Glacier 

debauches onto the piedmont  and is caused by strike slip motion on the Esker Creek 

Fault. This fault is therefore accommodating some of the dextral motion along the plate 

boundary at the expense of motion on the Fairweather transform fault. 

 Oily Lake occupies a narrow basin formed by erosion at the intersection of the 

Esker Creek and Malaspina thrust faults. The lake extends beneath the ice and discharges 

from time to time through englacial or subglacial drainage (s) that are marked  by a linear 

belt of collapse pits on the surface of the ice. Collapse pits can be traced towards Yana 

Stream, a discharge site at the terminus of the Malaspina Glacier. The subglacier extent of 

the lake is revealed by the radial crevasses that surround the lake, and movement of the 

ice towards the lake basin that is revealed by feature tracking.
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