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ABSTRACT 

 

 

 

The method of moments in conjunction with the maximum entropy method of 

reconstructing density distributions is applied to the energy dependent neutron diffusion 

equation to solve for neutron flux within a critical assembly. The energy dependent 

neutron diffusion equation (EDNDE) is converted into a moment equation which is 

solved analytically for a bare spherical critical assembly of pure 
235

U in the radial 

direction. The normalized energy dependent neutron diffusion moments (NEDNDM) 

generated analytically is verified to NEDNDM, as calculated by Monte Carlo N Particle 5 

version 1.40 (MCNP5) and Attila-7.1.0-beta version (Attila). The normalized NEDNDM 

are validated with the bare spherical critical assembly experiment, named GODIVA. The 

NEDNDM are then put into the maximum entropy method to solve for neutron flux 

within the two critical assemblies (100% 
235

U and GODIVA) and the neutron flux is 

verified with MCNP5 and Attila and validated with GODIVA. 

The analytic NEDNDM values fall between the NEDNDM from MCNP5 (lower 

bound) and Attila (upper bound). The error is taken to be relative to the Monte Carlo 

simulation.  The error range is from 0% to 14%. The error range of the NEDNDM 

compared to NEDNDM from GODIVA is 0% to 24%. The verification and validation 

error of the maximum entropy method is 12% to 25% where MCNP5 is taken to be the 

comparison standard. The error range of the reconstructed flux validated with GODIVA 

is 0% to 10%. The error range of the neutron flux spectrum from MCNP5 compared to 



 
 

iv 
 

GODIVA is 0%-20% and the Attila error range compared to the GODIVA is 0%-35%. 

The method of moments coupled with the maximum entropy method for reconstructing 

flux is shown to be a fast reliable method, compared to either Monte Carlo methods 

(MCNP5) or 30 multienergy group methods (Attila) and to GODIVA the bare sphere 

critical assembly experiment.
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

Neutron transport phenomenon is challenging because of the complicated physics 

of neutron-isotope interactions called cross sections. Solving neutron transport 

phenomenon requires solving the neutron transport equation (NTE), which is a 

mathematical statement of the balance of neutrons in a given system subject to these 

cross sections. Orchestrating the cross sections in the NTE gives rise to two different 

viewpoints and methods to solve the neutron transport equation. The two general 

methods or viewpoints are; stochastic (statistic/probabilistic) and deterministic. The two 

methods have different qualities that are unique and appear to be opposing philosophies 

to each other, yet each method is effective and the two methods are supplementary to 

each other. Either viewpoint taken to solve the NTE leads to a valid solution. The main 

difference between the two is less solution fidelity and fast simulations (deterministic) or 

very long computational simulation times and a more accurate solution (stochastic).  

Even though there is a vast amount of complexity to solve the NTE by either method, 

amazingly the simplest and least sophisticated method to solve the NTE (one-speed 

neutron diffusion theory) provides insight into neutron transport phenomena (Duderstadt 

& Hamilton, 1976). 

One-speed neutron diffusion theory is solvable analytically which makes it 
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attractive. Analytic solutions provide an equation to work with to understand the 

phenomena instead of a list of numbers with inherent numeric error. Analytic solutions to 

the neutron transport equation are very limited and can only be applied to a few cases 

(Lewis & Miller, 1993). The rest of the situations where the neutron transport equation 

must be solved require numerical methods. Some of the numerical methods that have 

become widely used to solve the NTE are: Monte Carlo, collision probability in lattice 

codes (the stochastic or probabilistic numerical methods) and the deterministic numerical 

methods which can be any combination of; SN, PN, method of characteristics and neutron 

diffusion theory. There are other numerical methods used to solve the NTE and this is not 

meant to be an exhaustive list of the numerical methods applied to neutron transport 

phenomena. The numerical methods are also broken down further into another broad 

classification; a continuous or discontinuous treatment of the energy variable. The 

discontinuous treatment of the energy variable is called multienergy group method or 

multigroup method, where the cross sections are broken into discrete energy groups and 

an energy dependent neutron diffusion equation (EDNDE) is written for each group 

carefully balancing the sources and sink terms to parallel a continuous treatment of the 

energy variable.  

Limits to multigroup methods come from an assumed neutron spectrum that is 

used to solve for the group averaged cross sections and due to the discretization of the 

energy variable the solution does not capture the entire energy spectrum unless there is an 

enormous number of energy groups. The multigroup method requires tens to thousands of 

energy groups for accurate solutions and to increase fidelity in the solution one must 

increase the number of equations to solve simultaneously. The continuous Monte Carlo 
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methods overcome any deficiencies in the lack of fidelity in a multigroup approach but at 

a computational price, long computational times for accurate answers, even on today’s 

computational platforms. Continuous Monte Carlo methods are not readily able to 

incorporate other physics effects where deterministic methods have been able to be fully 

coupled with other physics effects. Multiphysics methods can be fully implemented with 

deterministic neutron flux calculations to solve a much broader set of problems in reactor 

physics analysis. 

The method of moments in conjunction with the maximum entropy method for 

reconstructing density distributions applied to the energy dependent neutron diffusion 

equation (EDNDE) is a blend of the two broad methods mentioned (stochastic and 

deterministic) as well as a continuous energy solution that could be quickly implemented 

into a multiphysics calculation. The simple cases modeled in the research, allow for 

moments 0-5 to be solved analytically which provide an equation to work with to 

reconstruct the neutron flux. The moments of a population density distribution provide 

averaged information, the mean number of neutrons and the mean energy of the neutrons, 

the variance of the distribution, etc. For most reactor physics analysis the neutron flux 

spectrum is needed, not the moments of a distribution, to determine nuclear reaction 

rates. The neutron flux can be treated as a distribution where the moments of the 

distribution, (probabilistic parameters) are solved for with a deterministic equation, 

EDNDE and then the neutron flux (the distribution) is reconstructed by the maximum 

entropy method. 

Chapters 2 and 3 detail the theory of the method of moments and how the method 

of moments is verified and validated for the EDNDE by comparing normalized energy 
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dependent neutron moments (NEDNM) or moments to NEDNM from standard 

neutronics codes. The two standard codes are Monte Carlo N-Particle version 5 

(MCNP5) (A General Monte Carlo N-Particle Transport Code-Version 5, 2008), a 

continuous energy stochastic method and Attila-7.1.0 beta version (Attila), a SN, PN and 

30-energy group deterministic code. Chapter 4 explains the maximum entropy method 

and outlines the details for the validation and verification of the reconstructed neutron 

flux.



 
 

 
 

CHAPTER 2 

 

 

 

VERIFICATION OF ANALYTIC ENERGY MOMENTS FOR THE ONE- 

 

DIMENTIONAL ENERGY DEPENDENT NEUTRON DIFFUSION  

 

EQUATION WITH MCNP5 AND ATTILA-7.1.0 

 

 

 

Introduction 

 

Solving for neutron energy distributions in nuclear reactors is complex and has 

been studied with various methods, mostly numeric in nature (Cho, February 2008). The 

main difficulty in solving for neutron distributions lies in solving the neutron transport 

equation, (Duderstadt & Hamilton, 1976, p. 114). The complexities and difficulties in 

trying to solve the transport equation arise because it depends on seven variables: energy 

of the neutrons (E), angle of neutron travel ( and ), space (x, y and z) and time (t). 

Simplifications are made to create a more easily solvable equation, but numerical 

methods are still necessary to solve for neutron fluxes and populations (Lewis & Miller, 

1993).  

The success of quadrature method of moments (QMOM) for particles is 

encouraging and has motivated the work presented here. QMOM has been shown to be 

an excellent method to solve partial integro-differential equations for particle population 

balances (Marchisio, Pikturna, & Fox, May 2003), aerosols (McGraw, 1997), and 

suspended particles in a fluid within computational fluid dynamics codes  
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(Bin-Wan & Ring, October 2006), (Marchisio, Virgil, & O., August 2003). The particle 

equations in question are similar mathematically to the EDNDE. The EDNDE is shown 

in equation 2.1. This is the first attempt to verify the method of moments as an accurate 

solution to EDNDE. Once the method of moments is proven successful, QMOM may be 

used to drastically reduce the computational burden in multiphysics problems that include 

neutron transport. 

 

 

  ( ⃗    )

  
   ( ⃗  )  ( ⃗    )    ( ⃗  ) ( ⃗    )  ∫   ( ⃗    ́) ( ⃗  ́  )

 

 
  ́  

 ( ) ∫  ( ́)  (  ⃗  ́) ( ⃗  ́  )
 

 
  ́                                                                  Equation 2.1 

The method of moments (MOM) approach solves for the moments of a 

distribution instead of the distribution itself. MOM can be considered to be a 

deterministic method to find stochastic parameters. The neutron flux can be treated as a 

probability density function (PDF), where the normalized moments provide the mean, 

variance, skewness and kurtosis (Kenny, 1947) of the flux so once the moments are 

solved for they can be put into the correct PDF to reproduce the flux. Mathematically the 

mean, variance, skewness and kurtosis (Casella & Berger, 2002) for the energy variable 

of the neutron flux are represented here where   in equations 2.2-2.5 represents the 

energy dependent neutron flux  ( ⃗    ):   

     
∫      

 

 

∫    
 

 

                                                                                               Equation 2.2 

         
∫       

 

 

∫    
 

 

                                                                                       Equation 2.3 

         
∫       

 

 

∫    
 

 

                                                                                      Equation 2.4 

         
∫       

 

 

∫    
 

 

                                                                                        Equation 2.5 
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The starting point for the analysis is the EDNDE, we have assumed diffusion 

theory is applicable and consider only the 1-D analytic case for a bare sphere. The same 

analysis can be applied to an infinite slab as well with similar results. Neutron diffusion 

theory is well documented in literature; (Duderstadt 1976, Foster 1977, Lamarsh 2001, 

Lewis1993 and Weinberg 1958) and is not discussed in detail here. An average angle of 

scatter for the neutrons () is also assumed. This method does not assume any 

distribution to develop the cross sections or a specific spectrum for fission as a weighting 

value per energy group, which makes this method very unique. The method of moment’s 

analysis does cut off at 10MeV since this value captures 100% of the fission spectrum 

and the neutron flux above that energy is very small and assumed to be negligible. 

This paper is focused on deriving and comparing analytic moments from the 

energy dependent neutron diffusion equation (EDNDE) equation 2.1, with energy 

moments generated from MCNP5 (MCNP) and Attila 7.1.0-beta (Attila), which both are 

full neutron transport codes. This seems like an apples and oranges comparison, since this 

is a comparison between transport and analytic EDNDE moments, but it is necessary 

because the Monte Carlo method used in Los Alamos National Lab’s MCNP (A General 

Monte Carlo N-Particle Transport Code-Version 5, 2008) software is widely accepted 

and respected among nuclear engineers and scientists for determining neutron 

multiplication factors, reaction rates and for benchmarking criticality calculations (INL 

NEA/NSC DOC(95)03, September 2009). Comparison of moments with Attila is 

important also because it is a multigroup transport code where 30 energy groups were 

used in the reported calculations. Table 2.1 shows the energy groups in the Attila 30 

group library. 
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Table 2.1 Energy Group Structure for Attila-7.1.0-beta 

Group # 

Energy range 

MeV Group # 

Energy range 

MeV Group # Energy range MeV 

1 20 17 11 7.79 6.87 21 8.21E-1 2.35E-1 

2 17 16 12 6.87 6.07 22 2.35E-1 6.74E-2 

3 16 15 13 6.07 5.35 23 6.74E-2 1.93E-2 

4 15 13.9 14 5.35 4.72 24 1.93E-2 5.53E-3 

5 13.9 13.0 15 4.72 3.68 25 5.53E-3 3.54E-4 

6 13.0 12.0 16 3.68 2.87 26 3.54E-4 2.26E-5 

7 12.0 11.0 17 2.87 2.23 27 2.26E-5 3.47E-6 

8 11.0 10.0 18 2.23 1.74 28 3.47E-6 6.25E-7 

9 10.0 8.82 19 1.74 1.19 29 6.25E-7 1.24E-8 

10 8.82 7.79 20 1.19 8.21E-1 30 1.24E-8 1.0E-11 

 

 

 

Simplification of Energy Dependent Neutron Diffusion Equation 

 

The starting point for formulation of an expression for analytical moments is 

equation 2.1. Equation 2.2.1is solved over the entire fission spectrum; which is well 

approximated to be from 0 to 10 MeV (Lamarsh, Introduction to Nuclear Reactor Theory, 

1966). This analysis assumes steady state so the time dependent term,
 

 

  ( ⃗  )

  
  is set 

equal to zero. The system is homogenous so the energy dependent cross sections and 

diffusion coefficient depend on energy only. The EDNDE, after the assumptions are 

applied has the following form in equation 2.6.  

  ( )   ( ⃗  )    ( ) ( ⃗  )  

∫   (   ́) ( ⃗  ́  )
 

 
  ́   ( ) ∫  ( ́) ( ́) ( ⃗  ́)

 

 
  ́                        Equation 2.6 

The differential scattering cross section s (E’->E), is defined so that integrating 

from 0 to , the probability of scattering into E is unity and yields s (E) as the result 

(Duderstadt & Hamilton, 1976). The entire population of neutrons is treated as one large 

energy group E, from 0 to 10MeV. The two assumptions change equation 2.6 into 
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equation 2.7. Equation 2.7 looks like the one-speed theory equation  (Duderstadt & 

Hamilton, 1976, p. 295), except this equation retains the energy dependence of the cross 

sections over the range of interest, 0 to 10MeV where an overall energy dependent 

function F(E) will be derived for and then transformed into the moment form of the 

EDNDE. 

 –  ( )   ( ⃗  )    ( ) ( ⃗  )   ( )  ( ) ( ⃗  )                                   Equation 2.7 

 

 

Derivation of F(E) for Energy Moments 

 

An appropriate approximation to the energy dependency of the macroscopic cross 

sections and the diffusion coefficient is vital for any flux calculation; so a set of functions 

and constants have been carefully chosen so the energy dependent functionality is 

retained as much as possible and allow an analytic solution to be found. The macroscopic 

cross sections may generally be divided into three distinct regions: thermal, resonance 

and fast, and in this analysis the authors consider a 4
th

 region called the transition region 

and it spans from 2300eV to 0.9MeV. The reason for this subdivision is explained in 

more detail below.  

The 1/v or 1/E
1/2 

law is a good approximation to the thermal region of many 

isotopes and found to be mathematically viable in foil activation (Morry & Williams, 

1972). The cross section data referred to and in use for this paper are from the evaluated 

nuclear data files, ENDF information is found on the web at http://atom.kaeri.re.kr/ 

(Institute, 2000) and http://t2.lanl.gov/data/neutron7.html) (Lab, ENDF/B-VII Incident-

Neutron Data, 2000). A summation of Breit-Wigner single level resonance formulas will 

be used to generate a function for the resonance region to capture the complicated energy 

http://atom.kaeri.re.kr/
http://t2.lanl.gov/data/neutron7.html
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dependence. The functional piece that dominates the Breit-Wigner formulas in general is 

the 
         

(    )           
 term (Lamarsh, Introduction to Nuclear Reactor Theory, 1966, pp. 

43-64). The transition to the fast region of the cross sections generally has a 1/E drop off 

rate (Weinberg & Wigner, 1958, p. 57) and the fast region (0.1MeV to 10MeV) has a 

1/E
5/2

 with some broad resonances, which makes the fast region appear somewhat like a 

series of stair steps for 
235

U f (E). 

It is very difficult to fit an analytic function to the resonance region, and the 

number of resonance peaks makes writing a function for each peak even more daunting, 

but with patience a single level Breit-Wigner can be written for each peak and has been 

for this work. A summation of these single level Breit-Wigner resonance functions was 

assembled to provide a functional form, that when integrated over the function would 

provide correct values when compared to the resonance values from The Chart of the 

Nuclides and Isotopes 16
th

 Edition (Lockheed Martin/ Knolls Atomic Power Laboratory, 

2002). The simple functional approximations for the energy dependent cross sections are 

somewhat crude but “if we choose the group constants properly, even one-speed 

diffusion theory could give an accurate description of nuclear reactor behavior” 

(Duderstadt & Hamilton, 1976, p. 295).  

The general functional relationships for D(E), (E), f(E), T(E), S(E) and a(E) 

with energy are incorporated into one function of energy F(E).

 

The first step is to put all 

of the energy dependent functions together as one function of energy, labeled F(E), see 

equation 2.8. The second step is to take F(E) (equation 2.9) and determine the functional 

shapes of F(E) by using the ENDF-VII values arranged the same as F(E), called ENDF-

F(E). This work only shows curve fits of F(E) for 100% 
235

U. The third step is to curve fit 
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ENDF-F(E) with the appropriate function fit for the different energy ranges. The result of 

the curve fit of ENDF-F(E) is equation 2.16. 

   ( ⃗  )  (
 ( )  ( )   ( )

 ( )
) ( ⃗  )                                                            Equation 2.8 

 ( )  
 ( )  ( )   ( )

 ( )
  ( ( )  ( )    ( ))(  ( )   ̅  ( ))                  Equation 2.9 

It is assumed the total macroscopic cross section, the transport cross section, the 

function (E) (the number of neutrons released in fission by an incident neutron of 

energy E), the neutron diffusion coefficient and the average angle of scatter are: 

  ( )    ( )    ( )                                                                                   Equation 2.10 

 ( )     ( )   ̅   ( )                                                                              Equation 2.11 

  ( )  
 

      ( )
 

 

 (     ( )  ̅     ( ))
                                                               Equation 2.12 

 ( )                                                                                   Equation 2.13 

 ( )                                                                                     Equation 2.14 

 ̅  
 

  
                                                                                                           Equation 2.15  

A is the atomic mass number of isotope, (i). Equation 2.15 is a decent 

approximation for the average angel of scatter for large atoms i.e. A>16. The function 

(E) is for 
235

U where         ,          ,         and           (Duderstadt 

& Hamilton, 1976, p. 61) if the energy variable is in units of MeV. The result of the 

function fit of ENDF-F(E) is equation 2.16. Figures 2.1 through 2.5 show comparisons of 

equation 2.16 with the ENDF-F(E). 
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Figure 2.1 Log-log plot of F(E) from 1E-5eV to 1eV 

 

 

 

Figure 2.1 shows the thermal region from 1E-5eV to 1eV on a log-log plot. The 

first term in equation 2.16 is the dominate feature in figure 2.1. The first resonance in the 

F(E) of pure 
235

U is also seen in figure 2.1. Figures 2.2-2.5 are not put on a log-log plot 

format to point out the negative regions that show up from  ( ) ( )   ( )  term in 

F(E), where the absorption cross section is greater than the product of  ( ) ( ) . Figure 

2.4 is explicitly included to show the comparison and difference between the two, ENDF-

F(E) and equation 2.16, for 
235

U. Figure 2.4 demonstrates how the “tails” of the 

resonance peaks overlap and. equation 2.16 is not as sharp as the ENDF-F(E) in the 

overlap spaces between each resonance peak. 
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Figure 2.2 Plot of F(E) from 1eV to 100eV 

 

 

 

 
Figure 2.3 Plot of F(E) from 100eV to 1000eV 
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Figure 2.4 F(E) for pure 

235
U from 895eV to 1000eV to show a closer view of the 

comparison of the two F(E) functions 

 

 

 

Some of the minor peaks throughout the resonance region were not modeled 

because the peak height is less than 0.2cm
-2

 (see figure 2.4). A second reason for leaving 

out some of the extremely small peaks is because the resonance integral value from The 

Chart of the Nuclides and Isotopes 16
th

 Edition matched the resonance integral value 

from equation 2.16. Figure 2.5 shows the end of the resonance region and the beginning 

of the transition region. Figure 2.6 shows the transition region and the fast region up to 

10MeV. 

  ( )  

   

 
 ∑

   

(     )
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    (       )              

(     )    
 ∑
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                                                                                                             Equation 2.16 
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Figure 2.5 Comparison plot of derived F(E) to ENDF-F(E) in the energy range of 1000eV 

to 2300Ev 

 

 

 

 
Figure 2.6 Comparison of the two F(E) functions from 2300ev to 10MeV 

-5

0

5

10

15

20

1000 1200 1400 1600 1800 2000 2200

1/cm2 

eV 

F(E) in the energy range from 1,000eV to 2,300eV 

ENDF-F(E)

F(E) function fit

1.0E-03

1.0E-02

1.0E-01

1.0E+00

2.3E+03 2.3E+04 2.3E+05 2.3E+06

1/cm2 

eV 

F(E) in the energy range of 2,300eV to 10,000,000eV 

Log-Log plot 

ENDF-VII

Derived F(E)



16 
 

 
 

The constants from equation 2.16 are:  

      
      

   ,           
       

   ,                                     , 

        
       

                   ,           
        

      
 and                     , 

where N, NTRANS and NFAST are the number of terms included in each sum with indices l, 

m and n. The         can be positive or negative because in some energy ranges 

(   ( ))is greater than ( ( )  ( )) in equation 2.9. The data for each constant is in 

Appendix A. 774 individual terms, (
   

(     )
    

) are accounted for in the first 

summation, 104 terms (
    (       )              

(     )    
) in the second summation and 9 

individual terms (
    (       )

      

(     )      
) are accounted for in the third summation of 

equation 2.16.  

The first term 
   

 
 and the first summation term ∑

   

(     )
    

 
    in equation 2.16 

were observable by visual inspection of the ENDF-F(E) plot. The first term comes from 

the 1/v portions of the cross sections multiplied together and the first summation term 

captured ENFD-F(E) in the energy range of 1eV to 2250eV. This range remained visually 

similar to the resonance region of 
235

U  ( )  except for the few negative regions and the 

height and width of the each resonance peak which is specific to ENDF-F(E) resonance 

peaks. The height and width of each ENDF-F(E) peak can be matched by equation 2.16 

by adjusting     and    respectively.  

The second and third summation terms in equation 2.16 account for the linear 

effect of  ( ) on F(E). The first and second terms of equation 2.16 are not affected by 

 ( ) because the slope is so small, just the constant affects F(E) and it is absorbed into 
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    and the      . The slope of  ( )does not change the value of  ( ) until roughly 

46keV and only from 2.43 to 2.44 neutrons produced per incident neutron. It is included 

in the energy range at 2300eV because of the shape of ENDF-F(E) from 2300eV to 

0.9MeV is a rough 1/E function, which 
    (       )              

(     )    
 is approximately a 1/E 

function. A summation of these terms 
    (       )              

(     )    
 provided a few useful 

qualities to fit the ENDF-F(E) from 2300eV to 0.9MeV. The first is an ability to shift a 

1/E function to this energy range at various places without the sharp discontinuity from 

these two 
 

(     )
 or 

(       )

(     )
 functions or any similar function with an odd order in the 

denominator i.e. a term 
 

(     )     where n=0….   The second reason this function is 

chosen is because it produced a smooth curve (see figure 6 from 0.1MeV to 0.9MeV) 

with a long forward tail which is the 1/E shape desired in this region without the sharp 

discontinuity. The third reason for this function is small resonance peaks are in this 

energy range. The small peaks could be modeled with this function because it can be 

easily tuned by adjusting     and   to have a peak at the resonance energy    .  

The energy range 0.9 to 10MeV yielded a different shape.  In this energy range 

ENDF-F(E) increased in a stair step shape (broad resonance) similar to the 
235

U fission 

cross section shape from 0.9 to 10MeV. The slope of  ( ) in this energy range is larger 

and the effect from this linear function is greater. The term inside the third summation, 

    (       )
      

(     )      
  is used for similar reasons already mentioned: a smooth curve 

without sharp discontinuities (no odd ordered denominators), an ability to add an increase 

or “peak” at a specific energy(   ). The denominator ((     )      ) allowed for 

a much broader peak and a sharper drop off creating the level stair effect that corresponds 
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to the broad width of the peak. The      in the denominator along with the 4
th

 order 

term (     )  restricted any long forward or backward tail that is seen with this these 

denominator choices ((     )      ) and ((     )    ). The elimination of 

the long tails in this energy region was necessary to get the correct overlap between 

resonances; the other function choices investigated could not provide this effect in this 

energy region and consequently did not match the ENDF-F(E). Overall the functions 

included into equation 2.16 allowed for analytic analysis and the development of analytic 

moments to be created. 

 

 

Derivation of Energy Dependent Neutron Moments 

 

The set of analytical energy dependent neutron moments are found from 

transforming equation 2.8 with the definition of a raw moment. The mathematical 

definition of a raw moment is    ∫    

 
 ( ⃗  )    where k = 0, 1, 2, 3 … N (Casella 

& Berger, 2002) and N is the total number of moments desired. Transformation of 

equation 8 into moment form requires placing F(E) into equation 8, multiply by   , then 

apply the definition of a moment i.e. integrate from 0 to infinity; the result is equation 

2.17. The constant    
  in equation 2.17 is based on the diffusion boundary conditions 

that must be satisfied and is explained in the neutron diffusion boundary section of this 

paper.  

∫      ( ⃗  )  
 

 
 ∫    ( ) ( ⃗  )  

 

 
 ∫      

  ( ⃗  )  
 

 
         Equation 2.17 

The Laplace operator in equation 2.17 depends only on position so it comes 

through the energy integral, recognize the moment definition for two of the terms in 

equation 2.17 and equation 2.18 is the 1 dimensional EDNDE in moment form 
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     ∫    ( ) ( ⃗  )  

 

 
                                               Equation 2.18 

This new partial-integro differential equation, equation 2.18 needs to be 

simplified further to solve analytically. The term    ( ) can be simplified as follows.  

    ( )  

    
    ∑

      

            
    

          
    ∑

       (       )              

(     )    

      
    

∑
       (       )

      

(     )      

     
                                                                             Equation 2.19 

The summations can be broken down into the various k
th

 components by polynomial long 

division. This is an example of polynomial long division 
    

            
 

  

  
     

    

  
      

  (  
    )

  
      

  (  
      )

  
                        s. 

In general,     ( ) can now be written as     ( )      
        

    

    
        

        
                         

The constants (    ) for moment 1-5 and the units associated with them are shown in 

Table 2.2. The constants from the polynomial long division are listed specifically in 

equations 2.20 through 2.24. Polynomial long division allows an analytical treatment of 

the integral term in equation 2.18 which is unique to any neutron transport or diffusion 

method. 

 

 

Table 2.2 Constants from Polynomial Long Division of F(E) 

Constant Value Units 

CE1 0.0615 MeV/cm
2
 

CE2 0.0842 MeV
2
/cm

2
 

CE3 0.3551 MeV
3
/cm

2
 

CE4 2.1254 MeV
4
/cm

2
 

CE5 13.5917 MeV
5
/cm

2
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        ∑      
      
                                                                             Equation 2.20 

    ∑    
 
    ∑ (                )

       
                                      Equation 2.21 

    ∑        
 
    ∑ (         

                   )
       
    

∑      
      
                                                                                                    Equation 2.22 

    ∑ (       
       )

 
    ∑ (         

         
     

      
   

                    )  ∑ (                )
     
                   Equation 2.23 

    ∑        
  

    ∑ (         
         

             
      

      
   

                    
 )  ∑ (          

            )
     
     Equation 2.24 

The higher order moments (k > 5) can be derived from dividing F(E) further, but 

the 5
th

 energy moment is sufficient to show how the moments from MCNP and Attila 

compare to the derived neutron diffusion moments. It has been shown that five moments 

is enough to reconstruct a particle population (Marchisio, Pikturna, & Fox, May 2003), 

but for neutron fluxes that still needs to be researched and sorted out. 

Equation 2.18 becomes equation 2.25 by recognizing the terms in moment form in 

the integral of      ( ) . 

        
                                                                                                                                                                                         

           Equation 2.25 

Equation 2.25 is a set of partial differential equations, PDEs where the total number of 

equations is N. This analysis set N equal to 5. This set of PDE’s can be turned into a set 

of ordinary differential equations (ODEs) by making the assumption that the moments 

only depend on one dimension, r in this case. Each individual ODE moment equation is 

shown below and the set of moments work together as a system of equations. 
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                                         Equation 2.26 

        
                                          Equation 2.27 

        
                                           Equation 2.28 

        
                                            Equation 2.29 

        
                                             Equation 2.30 

        
                                              Equation 2.31 

Solution to the raw moment set come from setting the negative moments (k=-1, -

2, -3 etc…) equal to zero. The reason for this is these moments are not in the set by 

definition; k  0, 1, 2, 3…N.  

The set of ODEs is now 

        
                                                                                           Equation 2.32 

        
                                                                                     Equation 2.33 

        
                                                                           Equation 2.34 

        
                                                                 Equation 2.35 

        
                                                        Equation 2.36 

        
                                              Equation 2.37 

Each k
th

 moment can now be solved analytically beginning with the zero
th

 raw 

moment. The rest of the raw moments can be solved analytically with the method of 

undetermined coefficients (Edwards & Penney, 2001). The solution to equation 2.32 for a 

one dimensional case turns out to be mathematically the same as the solution to the one-

speed diffusion equation, which is comforting because this matches expectations and the 

flux shape from MCNP and Attila. The particular and homogeneous solutions to the ODE 
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set with the corresponding constants for the raw energy dependent neutron diffusion 

moments are listed below in equations 2.38-2.58.  

     
   (     )

 
                                                                                            Equation 2.38 

     
   (     )

 
         (     )                                                        Equation 2.39 

where 

   
     

    
                                                                                                        Equation 2.40 

     
   (     )

 
      (     )            (     )                             Equation 2.41 

where 

   
                 

    
                                                                                      Equation 2.42 

    
     

    
                                                                                                     Equation 2.43 

 

     
   (     )

 
      (     )         (     )     

    (     )  

   Equation 2.44 

where 

   
                      

    
                                                                            Equation 2.45 

    
                

    
                                                                                   Equation 2.46 

   
     

    
                                                                                                        Equation 2.47 

     
   (     )

 
      (     )         (     )      

     (     )  

    
     (     )                                                                                             Equation 2.48 
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where 

   
                            

    
                                                                  Equation 2.49 

    
                     

    
                                                                          Equation 2.50 

   
                 

    
                                                                                      Equation 2.51 

    
     

    
                                                                                                    Equation 2.52 

     
   (     )

 
      (     )         (     )      

     (     )  

    
     (     )      

     (     )                                                             Equation 2.53 

where 

   
                                  

    
                                                        Equation 2.54 

    
                           

    
                                                                Equation 2.55 

   
                      

    
                                                                             Equation 2.56 

    
                  

    
                                                                                 Equation 2.57 

    
     

     
                                                                                                       Equation 2.58 

The unknown coefficients of the raw moments, ak’s and BEk’s  are determined 

from the two neutron diffusion theory boundary conditions, after they are put in moment 

form. 

 

 

Neutron Diffusion Boundary Conditions in Energy Moment Form 

 

The first boundary condition that must be satisfied, is that the flux must be finite 

everywhere so the moments must be finite everywhere also. This condition is enforced by 
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setting the amplitude constants in the       (    )    terms (which come from the 

homogeneous portion of the solution for each moment) equal to zero. The reason    is set 

to zero is; as the radius approaches zero,       (    )    approaches infinity, so the 

Ck’s are set to zero.  

The second boundary condition is that the flux is zero at the transport corrected 

extrapolated boundary. The transport corrected extrapolated boundary is,  ̃      , and 

         ( ) where ro is the extrapolated correction distance. For one group or one 

speed theory, D(E) is the diffusion value for one energy value, i.e., a 1MeV neutron 

traveling through 
235

U, D(1MeV)  1cm  (Foster & Wright, 1977, p. 250). For the 

purposes of having the correct boundary for each moment, D(E) needs to ensure that at 

the appropriate extrapolated distance in moment form the neutron flux is zero. The 

boundary condition is satisfied and represented by the following relationship   ( ̃)  

∫    (   ̃   )    
 

 
. The boundary condition at the extrapolated distance in 

moment form is ∫  ̃   ( ⃗  )  
 

 
 ∫     ( ⃗  )  

 

 
      ∫    ( ⃗  ) ( )  

 

 
. 

Simplify the moment form of the extrapolated distance with the approximation 

that  ( ⃗  )   ( ) ( ⃗)  since this treatment is only at the boundary so the position 

dependence can be separated out R and  ̃ can be treated as constants. Divide by the raw 

moment definition on each side of the expression and the spatial dependence  ( ⃗) come 

through the integrals,  ̃
 ( ⃗) ∫    ( )  

 

 

 ( ⃗) ∫    ( )  
 

 

  
 ( ⃗) ∫    ( )  

 

 

 ( ⃗) ∫    ( )  
 

 

 

    
 ( ⃗) ∫    ( ) ( )  

 

  

 ( ⃗) ∫    ( )  
 

 

 see 2.59. Table 2.3 shows the extrapolated boundaries. 

 ̃         
∫    ( ) ( )  

 

 

∫    ( )  
 

 

                                                                      Equation 2.59 
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Table 2.3 The Extrapolated Boundaries for Moment 0-5 

 ̃   ̃   ̃   ̃   ̃   ̃  

10.24cm 10.25cm 10.37cm 10.38cm 10.40cm 10.40cm 

 

 

 

Values for  ̃  are found with the energy dependent diffusion coefficient, 

(  ( )  
 

      
 

 

 (      ̅     
)
) the ENDF values for the cross sections and the 

assumption that  ( ) is represented by equation 2.60 from 1eV to 10MeV (Duderstadt & 

Hamilton, 1976, p. 330). Below 1eV the neutron flux is assumed to be a Maxwell-

Boltzmann distribution at some temperature T (298K) (Duderstadt & Hamilton, 1976). 

Equation 2.61 represents ( ) the average increase in lethargy per collision (Lamarsh, 

1966, pp. 175-176). 

 ( )  
 

   ( )   
                                                                                               Equation 2.60 

  
 

  
 

 

                                                                                                            Equation 2.61 

This method allowed the extrapolated boundary to be found for each moment and 

maintain the entire energy range of interest in a nuclear reactor by numerically 

integrating (Chapra & Canale, 2002) this term  
∫    ( ) ( )  

 

 

∫    ( )  
 

 

 from equation 2.59. 

For the second boundary condition to be true, either ak = bk = ck = dk = ek = fk = 0, 

the null answer or BEk for each moment must satisfy the boundary condition. For the 0
th

 

moment, BE0 satisfies the second boundary condition by taking on the value of 
 

 ̃ 
, just 

like one speed theory and a0 the other unknown coefficient is found by, the power 

equation, equation 2.72 in the next section. The rest of the moments, k =1-5, the 2
nd

 

boundary condition is satisfied as follows, see equations 2.62-2.66. 
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 ̃ 
   (     ̃ )        (     ̃ )                                                            Equation 2.62 

(
  

 ̃ 
     ̃ )    (     ̃ )        (     ̃ )                                          Equation 2.63 

(
  

 ̃ 
    ̃ )    (     ̃ )   (      ̃ 

 
)    (     ̃ )                       Equation 2.64 

(
  

 ̃ 
    ̃      ̃ 

 
)     (     ̃ )   (       ̃ 

 
)     (     ̃ )      Equation 2.65 

(
  

 ̃ 
    ̃      ̃ 

 
)     (     ̃ )   (       ̃ 

 
      ̃ 

 
)     (     ̃ )  

           Equation 2.66 

It turns out the only way for these equations to be equal and have positive 

amplitudes (the     ), and positive moments is for the sine and cosine terms to be equal 

and opposite at  ̃ . Sine and cosine have equal and opposite values when the     values 

equal 
  

  ̃ 
, so the set of equations become the following because    (

  

  ̃ 
  ̃ )  

    (
  

  ̃ 
  ̃ ) and the remaining unknown coefficients,      follow from working 

through the algebra of this set of expressions and the amplitudes are positive. 

    ̃                                                                                                           Equation 2.67 

     ̃ (       ̃ )                                                                                      Equation 2.68 

    ̃ (      ̃     ̃ 
 
)                                                                        Equation 2.69 

     ̃ (      ̃      ̃ 
 
     ̃ 

 
)                                                      Equation 2.70 

     ̃ (      ̃      ̃ 
 
     ̃ 

 
     ̃ 

 
)                                        Equation 2.71 
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The Power Equation in Energy Moment Form, Finding a0 

 

For any nuclear reactor, the power is a design choice and a known quantity. 

Power is proportional to the fission rate multiplied by a conversion factor and averaged 

over the volume of the fueled region of the nuclear reactor. The power equation below is 

general and is applicable to any reactor (Lamarsh, 1966, pp. 257-258). Cfp is a conversion 

factor to convert from fissions to Joules. 

       
       

    
∫   ( ) ̅( )

 

 
                                                               Equation 2.72 

The constants and parameters in equation 2.72 are:  

                             ,                    

       
, 

                   ,                                 , 

                    , 

  ( )                                                     and  

 ̅( )  
 

 
∫  (   )  
 

                                                         Equation 2.73 

The volume averaged flux can be isolated and transformed into moment form by 

multiplying by E
0 

inside the volume integral since this is the only part of the expression 

that has position dependence shown below. 

 

 
∫ ∫    (   )

 

 
    

 
 

 

 
∫     
 

                                                         Equation 2.74 

The moment form of the volume average flux is the zeroth moment integrated 

over the volume 

 ̅( )  
 

 
∫     
 

                                                                                       Equation 2.75 

The Power equation in moment form becomes equation 2.76 
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∫   ( )∫     

 

 

 
                                                        Equation 2.76 

The Power equation can be numerically integrated by multiplying the ENDF-VII 

values with the results of the integrated volume averaged moments( ̅( )), where the 

differential volume for the sphere is 4πr
2
dr. 

∫     
 

     ∫
   (√     )

 

 

 
         (

    (     )

   
  

     (     )

   
)      Equation 2.77 

If  ̃    then equation 2.77 becomes equation 2.78 

∫     
 

 
     

   
     

                                                                            Equation 2.78 

The power equation becomes equation 2.79. 

       
       

   
∫   ( )    

  

 
                                                            Equation 2.79 

Now    is shown in equation 2.80. 

   
         

          ∫   ( )
 
   

                                                                              Equation 2.80 

Each of the constants ak’s, bk’s, ck’s etc…has a0 in the numerator so when these 

constants are normalized a0 is divided out, for the purposes of this paper power can be set 

is such a way that a0 is 1. 

 

 

Normalized Energy Dependent Neutron Diffusion Moments 

 

The set of moments that are plotted for comparison are the normalized moments. 

The moments mk = 1, 2, 3, 4, 5 are normalized by the 0
th

 moment, m0. The normalized 

moments provide information about the population density function i.e. mean energy 

(m1/m0), variance of the energy (m2/m0), skewness (m3/m0) and kurtosis (m4/m0). The 
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normalized energy dependent neutron diffusion moments (NEDNDM) are seen in 

equation 2.81-2.86, where a0 = 1. The set of normalized moments, mk/m0: 

  

  
 

  
   (     )

 

  
   (     )

 

                                                                                           Equation 2.81 

  

  
 

     (     )

     (     )
 

        (     )  

     (     )
                                                                    Equation 2.82 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

        (     ) 

     (     )
                                           Equation 2.83 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

       (     )

     (     )
 

       (     )

     (     )
                   Equation 2.84 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

    
    (     )

     (     )
 

         (     )

     (     )
 

        (     ) 

     (     )
    

                      Equation 2.85 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

       (     )

     (     )
 

         (     )

     (     )
 

        (     ) 

     (     )
 

         (     )

     (     )
                                                                                                    Equation 2.86 

The normalized moments or simply called moments for the rest of the paper are 

displayed in the Results and Discussion section of the paper. 

 

 

Results and Discussion 

 

Moments for Attila and MCNP5 were created by modeling concentric spheres in 

1 cm radial increments away from each other. Nine spheres in all were modeled, a sphere 

at 1cm, 2cm,…8cm and 8.35cm to model the entire critical spherical assembly. To make 

the moments in MCNP5 f2 tallies are taken at each sphere surface and each tally was 

broken into 1000 evenly spaced energy bins up to 10MeV. Energy bins from 10MeV to 

20 MeV showed large relative errors > 20% and were omitted due to limits in computer 

power the authors have access to, a 64-bit laptop with a hex core processor and 6 
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gigabytes of RAM. To get relative errors below 5% for energy bins from 1E-11 to 

10MeV 6million particles are tracked in the MCNP model. The f2 tally data in each 

energy bin is put in an excel spreadsheet and the various moments were computed 

numerically based on the definitions for the mean, variance, skewness, kurtosis and 

higher order moments. 

Attila moments are created from the 30 group cross section file radion5 created by 

Transpire Inc. (energy bins are in Table 2.1). The data to create energy moments from 

Attila are from a custom report created in Attila where a line edit was made to collect the 

flux in each energy group at approximately 1cm increments up to the system edge to 

match the MCNP5 sphere surface tallies. The points along the line edit from Attila are 

not exactly 1cm apart because each point lined up on a mesh point. The flux data in each 

energy group are also calculated according to the definitions for the mean, variance, 

skewness, kurtosis and higher order moments. Figures 2.7-2.11 show the comparison of 

the moments from the three methods (MCNP5, Attila and Analytic). There are three 

curves in Figures 2.7-2.11: in blue the MCNP moment, in red the Attila moment and in 

green the analytic moment. 

The most striking feature of the moment comparison is that the Attila moments 

are numerically greater than the MCNP and analytic moments. The reason the Attila 

moments are larger is because they are tuned to the fission spectrum which should give 

an expected mean energy of about 1.98MeV (Lamarsh & Baratta, 2001, p. 87). 

Researchers (Sevast'yanov, Koshelev, & Maslov, 2000) claim that the fission spectrum 

for 
235

U has an average energy value of 1.475MeV+/- 3.77%. If the researchers’ spectrum 

was used then Attila moments would line up more with MCNP5. 
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Figure 2.7 Comparison plot of the mean energy for the three computational methods 

 

 

 

 
Figure 2.8 Comparison of the variance of energy for the three computational methods 
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Figure 2.9 Comparison of the skewness of energy for the three computational methods 

 

 

 

 
Figure 2.10 Comparison of the kurtosis of energy for the three computational methods 
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Figure 2.11 Comparison plot of the 5

th
 energy moment for the three computational 

methods 

 

 

 

The method of neutron energy moments does not assume a fission spectrum so 

the values of the moments are not shifted to that spectrum. Even though the method of 

neutron energy moments is diffusion based the comparison plots show a good agreement 

with the transport codes in general. The faster neutrons populate the edges of the system 

which is seen by the slightly higher average energy. The upturn seen in each moment in 

Figure 2.7 match physical expectations, the fast neutrons have a longer diffusion length 

which is the streaming effect seen for high energy neutrons. 

Computing times for the three methods differed greatly: MCNP5 calculations 

were roughly a day, 26.3 hours, Attila computation times were 3-4 hours for a normal 

mesh of 0.01cm which gave about 100,000 mesh nodes and the method of moments is 
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analytic so the time frame is seconds to compute. The reason for the day time frame for 

MCNP was due to the high number of energy bins and particle histories needed to get in 

the 5% error range for the 1000 bins in the MCNP case. Extremely quick computational 

time frames are attractive especially when a multiphysics calculation is needed, so 

seconds compared to hours and days is a huge advantage for the method of moments. 

The interesting thing about the analytic moments is that they start to peel away 

from the MCNP moments right around 3 mean free paths from the boundary of the 

sphere, about 5 cm (if 1.1cm is taken to be the average mean free path) and then correct 

back to the boundary value, due to the transport correction factor,   . Diffusion theory is 

valid in finite media at points that are more than a few mean free paths near the edge of 

the medium (Lamarsh, Introduction to Nuclear Reactor Theory, 1966, p. 129). The 

limitation of diffusion theory near the boundary of a source is noted and is not valid near 

the boundary which why it is transport corrected (Glasstone & Sesonke, 1967, p. 112). 

Even though diffusion theory has its limits the results agree very well with MCNP, the 

industry gold standard. For multiphysics-engineering type calculations having a 

continuous energy solution quickly only14% off in the highest moment that is within 

engineering limits, i.e., 20% is an excellent benefit that can be very useful to see 

multiphysics effects on nuclear reactors. 

The shape of the functions for MCNP and Attila are very similar, the Attila 

moment functions have a sharper up turn and less of a parabolic shape which the analytic 

and MCNP moments have. The reason for this could be the group structure of the radion5 

neutron cross section file. The authors are thankful for the use of the code from Transpire 

Inc and the corresponding cross section file. In general the cross section files for Attila 
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can be custom made for any neutronics problem. The authors felt that the radion5 file was 

appropriately suited to a fast spectrum critical assembly like the 100% 
235

U sphere 

modeled in this work. 

The dominate functional shapes that form the constants, CE’s for the moments are 

from the last two summation terms in F(E), see equation 2.16. If the resonance region 

was not included it would not have changed the value of the analytic moments much for 

this case, because the contribution from the resonance summation was much smaller than 

the transition and fast region summations in equation 2.16. This makes sense for a fast 

reactor such as the theoretical sphere analyzed in this paper. The summation over index l 

from equation 2.16 does not contribute to the average energy (moment 1) at all and little 

to moments 2 to 5. A different functional shape might be more suited to fit the data better 

in this energy range, but the fit of F(E) to the ENDF-F(E) is good and the moments 

compare very well, so it might be that the fast reactor analyzed in this paper does not 

depend on the resonance region, so it would not affect the moment values. More work 

still needs to be done to see how reliable the method is for a broader set of reactor types. 

Overall the analytic moments compare well with the two computational 

platforms; Monte Carlo and the 30-energy group, SN order, PN order, finite element code 

Attila. The higher moments tend to drift away from the MCNP moments and the error 

bars shows this, where the error range is 5% for the 1
st
 moment to 14% in the 5

th
 moment 

and no surprises the normalized 0
th

 moment is 1 for all three cases with 0% error, there is 

not a figure showing this. 

The difficulty in finding continuous energy solutions with the multigroup method 

is the number of group equations to achieve an accurate solution which can be as high as 
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1000 (Duderstadt & Hamilton, 1976, p. 292). Continually iterating over the integrals of 

the neutron flux multiplied by the cross section until convergence is reached can be 

computationally expensive and Monte Carlo methods are very time intensive as well, 

although accurate. The method of neutron energy moments shown here is 

computationally cheap comparatively, only six equations to solve and diffusion equations 

which are relatively quick to solve computationally (Chapra & Canale, 2002) for many 

numerical methods. 

 

 

Conclusions and Future Work 

 

The EDNDE has been reformulated in terms of a moment equation and solved 

analytically for a 1-D sphere. The analytic moment solution to the EDNDE agrees quite 

with (MCNP5 and Attila) in terms of showing that the higher energy or faster neutrons 

populate the outer radius of the sphere where they leak out of the system. This leakage is 

seen by the upturn of all of the moments for all three solution methods at the outer radii 

of the sphere. The analytical moment results fall within the error bars associated with 

MCNP5 results for all moments (0 to 5) calculated. The analytical moment results are 

much more accurate than the 30 energy group Attila simulation because of the reasons 

stated in the Results and Discussion section of this paper. 

 

 

Appendix: Constants for 100% 
235

U F(E) 

This appendix is the list of constants for each functional piece in the summations 

that make up F(E), equation 2.16. The energies, Erl, m, n’s are listed in eV. The Rpl, m’s are 
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listed in eV/cm
2
. The Rpn’s are listed in eV

4
/cm

2
. The wl, m's are listed in eV

2
. The wn's 

are listed in eV
3
. Table 2.4-2.6 shows the constants. 

 

 

Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 
235

U 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

-1 0.206 8.0E-03 3.4 590.59 0.1 0.75 1308 0.11 

0.5 0.2819 2.1E-03 0.4 594.94 0.05 0.2 1311.8 0.23 

-70.25 0.25 5.5E-01 3 596.16 0.5 0.05 1315.05 0.2 

9.521 8.78 1.8E-03 0.675 598.9 0.1 0.2 1317.07 0.2 

-1.15 6.39 1.0E-03 0.35 600.3 0.1 0.1 1318.9 0.2 

-0.55 4.85 2.0E-03 1 603.22 0.1 0.7 1320.87 0.2 

0.175 1.12 1.5E-03 2 604.4 0.3 0.8 1323.3 0.25 

-0.125 2.04 2.5E-03 0.3 608.46 0.1 0.3 1326.05 0.2 

0.01 3.14 1.5E-03 1.45 610.21 0.1 0.4 1329.83 0.2 

0.1025 3.6 1.5E-03 0.3 612.9 0.1 0.4 1332.23 0.2 

-1.65 11.67 1.0E-03 0.3 615.43 0.1 0.8 1333.8 0.4 

0.48 12.38 8.0E-04 0.3 616.89 0.1 0.2 1335.5 0.5 

8 19.3 1.5E-03 0.725 619.02 0.1 0.5 1336.99 0.3 

0.4 23.41 1.5E-03 0.2 626.6 0.1 0.25 1338.75 0.2 

0.11 21.07 1.5E-03 0.75 628.99 0.1 1.2 1343.01 0.3 

0.13 22.94 1.8E-03 0.3 630.8 0.1 4 1346.56 0.85 

0.2 24.29 2.7E-03 0.3 631.69 0.1 0.9 1350.41 0.1 

1 23.62 4.8E-03 0.4 633.64 0.1 0.35 1355.6 0.3 

1.425 13.99 1.5E-02 0.4 635.41 0.1 0.65 1358.8 0.5 

0.075 15.4 1.5E-03 -0.4 636.5 0.1 1.5 1360.37 0.2 

-0.075 16.09 1.5E-03 0.7 639.14 0.2 0.6 1363.28 0.75 

3.175 25.55 4.2E-02 0.7 641.17 0.2 0.6 1364.07 0.95 

0.375 26.49 4.5E-03 2.9 644.96 0.1 0.4 1367.66 0.35 

0.115 16.67 1.5E-03 0.8 646.65 0.1 2 1372.05 0.35 

0.13 18.05 1.4E-03 0.025 648.83 0.02 0.05 1375.13 0.3 

0.625 27.79 4.5E-03 0.1 653.07 0.1 0.4 1378.2 0.1 

1.75 32.06 4.2E-03 0.35 656.4 0.3 0.35 1380.7 0.25 

-0.15 30.89 5.2E-03 0.65 658.38 0.1 1.35 1382.1 0.3 

0.25 33.55 5.2E-03 0.5 663.6 0.1 3.5 1387.6 0.6 

1.675 34.38 4.5E-03 1.85 665.92 0.1 0.5 1390.26 0.25 

15 35.18 6.5E-03 0.4 672.13 0.1 0.5 1393.8 0.35 

1.75 34.87 7.5E-03 0.9 674.11 0.1 1 1395.3 0.8 

3.15 39.4 7.0E-03 3.5 676.42 0.2 0.01 1396.16 0.15 

-0.675 41.86 6.5E-03 8 678.07 0.6 0.3 1400.75 0.4 

1 41.51 3.5E-02 1.75 681.79 0.1 0.3 1403.45 0.2 

0.8 42.25 4.0E-02 0.15 683.82 0.1 0.5 1406.4 0.23 

-0.3 42.7 3.0E-02 0.6 685.53 0.5 0.4 1410.5 0.22 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

-0.07 43.36 6.0E-03 0.45 689.12 0.1 0.4 1415.29 0.18 

0.65 189.5 2.5E-02 0.4 690.45 0.1 0.55 1418.47 0.18 

1.01 192.32 1.3E-02 2.75 692.75 0.2 0.65 1421.17 0.18 

0.6 194.18 2.5E-02 0.3 696.87 0.1 0.275 1423.63 0.2 

2.65 198.5 7.5E-02 0.8 699.1 0.1 0.28 1425.77 0.2 

3.05 200.28 2.0E-02 0.3 702.55 0.1 0.5 1427.2 0.4 

1 203.73 4.5E-02 0.3 703.83 0.1 1.5 1430.07 0.17 

0.95 206.99 2.5E-02 4 709.88 0.7 1.525 1433.53 1 

-1.65 209.6 2.1E-02 0.3 715.75 0.1 -0.2 1436.27 0.5 

1.15 213.65 1.5E-02 0.3 717.13 0.1 0.2 1439.5 0.5 

0.25 217.105 2.1E-02 0.3 718.9 0.1 0.1 1442.53 0.5 

5 220.62 7.5E-02 0.3 719.92 0.1 1.575 1431.75 1 

2.5 221.69 1.0E-01 0.5 721.59 0.1 1.25 1445.29 0.2 

0.55 223.16 1.5E-02 0.6 723.53 0.2 0.85 1449.75 0.28 

-0.255 226.32 2.1E-02 0.2 727.41 0.1 1.25 1451.81 0.3 

0.65 226.74 3.5E-02 0.65 729.38 0.1 0.25 1454.09 0.3 

0.65 229.09 6.5E-02 7.3 733.36 0.1 0.4 1456.41 0.4 

3.2 231.45 4.5E-02 0.4 737.69 0.1 1 1459.68 0.3 

1 232.89 2.5E-02 0.5 739.95 0.1 0.1 1463.74 0.4 

1 233.83 6.5E-02 -0.65 741.74 0.28 0.95 1465.65 0.34 

4.3 241.16 6.5E-02 0.6 745.35 0.1 -0.2 1467.57 0.2 

0.75 245.44 6.5E-02 0.4 747.06 0.1 0.2 1469.52 0.2 

0.75 247.91 6.5E-02 0.2 750 0.1 0.3 1472.37 0.4 

2 248.94 6.5E-02 0.2 751.22 0.1 0.6 1479.7 0.25 

4 253.5 1.5E-01 0.5 754.05 0.1 0.25 1483.01 0.25 

2 255.95 6.5E-02 1.6 758.84 0.1 0.5 1486.02 0.25 

0.55 259.92 6.5E-02 0.25 761.71 0.1 0.4 1494.8 0.3 

14.5 261.65 6.5E-02 0.25 762.87 0.1 0.35 1498.06 0.3 

1.25 266.35 3.5E-02 2.5 766.31 0.25 0.2 1500.95 0.3 

1 268.2 9.5E-02 0.1 767.99 0.1 0.45 1503.3 0.2 

3.5 270.01 8.5E-02 0.3 770.88 0.1 -0.3 1504.85 0.2 

3.5 272.78 8.5E-02 0.35 772.63 0.1 0.5 1507.83 0.2 

1.85 276.78 2.0E-02 1.5 778.46 0.1 0.025 1509.93 0.2 

2 279.84 6.5E-02 2.35 779.41 0.2 0.35 1511.82 0.2 

0.35 287.38 4.5E-02 0.25 782.38 0.1 0.3 1520.17 0.2 

4 289.46 1.0E-01 1.2 785.3 0.1 0.45 1524.9 0.3 

0.15 295.93 4.0E-02 0.3 790.32 0.1 0.2 1527.7 0.3 

0.075 298.5 5.3E-03 0.3 792.61 0.1 0.25 1530.29 0.3 

0.15 302.79 4.0E-02 0.5 795.5 0.08 0.65 1533.32 0.3 

0.2 43.96 7.5E-03 0.3 796.28 0.08 0.15 1535.37 0.3 

1 44.61 1.3E-02 1.65 801.33 0.2 0.15 1538.43 0.15 

1 46.93 9.8E-03 0.9 806.01 0.2 0.5 1541.51 0.15 

1 47.93 2.6E-02 1.6 806.95 0.4 0.1 1546.39 0.5 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

1.4 48.3 2.6E-02 0.05 810.11 0.08 1 1549.41 0.35 

0.2 48.8 5.5E-03 0.55 812.757 0.3 0.05 1551.61 0.2 

0.255 49.43 5.5E-03 1.45 815.11 0.5 0.2 1553.94 0.3 

0.3 50.48 5.5E-03 0.25 817.9 0.1 0.7 1559.77 0.25 

3.65 51.26 7.5E-03 0.65 818.9 0.2 1.5 1567.81 0.12 

3.5 52.21 2.0E-02 0.15 821.86 0.08 0.2 1570.94 0.2 

1.58 55.04 7.5E-03 0.05 823.55 0.08 0.5 1573.8 0.2 

6 55.88 2.5E-02 0.05 825.51 0.08 0.5 1575.55 0.75 

6.45 56.48 7.5E-03 0.05 828.5 0.08 0.7 1579.2 0.3 

1.7 57.95 2.0E-02 0.05 830.13 0.08 0.9 1581.44 0.3 

0.55 58.66 7.5E-03 0.675 837.15 0.15 0.3 1587.27 0.9 

0.85 60.18 2.0E-02 0.9 843.03 0.3 1.075 1589.71 0.2 

-0.55 64.3 1.0E-02 1.5 847.2 0.15 1.575 1594.4 0.2 

6 70.43 2.5E-02 0.1 851.29 0.15 -0.7 1596.31 0.4 

0.95 72.36 5.0E-03 0.05 852.8 0.1 0.4 1598.54 0.5 

0.65 74.54 5.0E-03 0.05 854.9 0.1 0.05 1600.54 0.5 

1.25 75.49 3.0E-02 0.1 858.3 0.1 1.35 1604.4 0.25 

-0.2 82.63 1.0E-02 0.7 861.36 0.08 -0.35 1606.4 0.4 

5.15 84.15 4.0E-02 0.7 862.68 0.08 0.1 1609.25 0.2 

0.65 84.99 3.0E-02 0.3 866.17 0.08 0.05 1612.53 0.2 

1.6 88.75 3.0E-02 0.75 867.95 0.08 0.4 1616.18 0.6 

-1.5 94.07 1.0E-02 0.025 871.5 0.08 0.2 1619.7 0.3 

-2.55 90.35 1.0E-02 0.3 875.45 0.08 0.5 1622.2 0.15 

0.5 89.77 3.5E-02 0.4 879.06 0.15 0.875 1628.13 0.15 

2.65 91.24 3.5E-02 0.4 881 0.15 -0.1 1630.18 0.15 

0.75 92.52 3.5E-02 0.5 883.81 0.08 0.55 1633.9 0.18 

1.5 98.07 2.5E-02 0.95 884.94 0.3 0.2 1637.74 0.6 

0.35 77.5 2.0E-02 0.1 886.84 0.3 0.45 1639.98 0.3 

0.5 78.08 2.0E-02 0.1 892.69 0.08 0.62 1644.06 0.18 

0.5 80.34 3.0E-02 -0.4 803.71 0.4 1 1647 0.18 

0.5 81.42 3.0E-02 2.05 897.16 0.15 0.3 1650 0.25 

0.65 102.91 1.0E-02 0.6 899.73 0.15 0.1 1652.5 0.5 

0.55 105.21 1.0E-02 0.6 902.9 0.15 0.875 1655.64 0.15 

-0.6 107.62 1.0E-02 0.5 906.09 0.15 1.2 1663.81 0.23 

0.25 305.06 4.0E-02 0.15 908.82 0.08 1.2 1665.9 0.24 

-0.25 308.95 4.0E-02 0.2 910.46 0.08 0.3 1671.24 0.24 

0.1 312.52 4.0E-02 -0.05 908.1 0.09 0.4 1672.77 0.15 

0.075 313.55 4.0E-02 0.1 914.25 0.08 0.375 1675.12 0.2 

1.25 315.35 6.5E-02 0.4 916.1 0.08 0.685 1679.47 0.18 

0.25 319.66 4.0E-02 0.02 920.34 0.07 0.685 1681.55 0.22 

1 323.56 6.5E-02 0.85 923.05 0.08 1.25 1683.76 0.21 

1.5 324.28 5.5E-02 0.6 924.42 0.1 -0.475 1685.43 0.4 

1 325.97 8.5E-02 0.075 926.53 0.08 0.7 1690.01 0.15 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

-0.25 327.21 4.0E-02 0.35 929.56 0.08 -0.2 1695 0.4 

0.25 329.27 4.0E-02 0.15 931.84 0.08 2.35 1699.63 0.15 

0.1 330.6 4.0E-02 0.2 934.66 0.08 0.4 1701.95 0.35 

0.3 332.44 4.0E-02 -0.2 940.09 0.3 0.25 1702.96 0.25 

0.25 334.05 1.7E-02 0.75 941.91 0.08 0.075 1706.86 0.25 

0.225 336.63 1.7E-02 0.15 944.72 0.1 0.17 1709.31 0.25 

0.1 338.71 4.0E-02 0.5 947.39 0.08 0.3 1713.64 0.25 

1.25 340.07 1.9E-02 0.15 949.25 0.1 0.4 1717.47 0.25 

0.125 342.23 4.0E-02 0.9 951.6 0.25 0.1 1720.12 0.3 

0.325 343.95 1.5E-02 0.5 957.19 0.08 0.65 1722.5 0.3 

0.31 346.98 1.5E-02 0.1 959.78 0.08 1.25 1726.36 0.23 

0.1 349.37 4.0E-02 -0.25 961.17 0.08 0.65 1731.66 0.22 

0.1 350.73 4.0E-02 0.075 965.36 0.08 0.65 1735.01 0.3 

0.2 351.65 4.0E-02 0.075 967.88 0.08 0.2 1738.22 0.4 

0.25 353.14 3.8E-02 0.17 974.9 0.08 0.6 1741.22 0.2 

0.25 355.33 2.3E-02 0.475 978.14 0.08 0.7 1745.56 0.2 

-0.12 356.06 4.0E-02 0.5 980.58 0.2 1.32 1749.6 0.2 

0.1 359.66 4.0E-02 0.5 983.69 0.2 0.6 1751.58 0.5 

0.1 360.51 4.0E-02 0.6 984.99 0.2 0.2 1755.03 0.35 

0.275 361.6 3.0E-02 0.1 986.79 0.08 1 1760.23 0.2 

0.7 365.28 8.0E-02 0.2 990.9 0.08 1 1762.1 0.5 

0.1 370.38 4.0E-02 0.1 993.05 0.08 1.2 1771.82 0.2 

0.1 371.31 4.0E-02 0.1 998.23 0.08 0.3 1774.44 0.15 

-0.25 372.6 4.0E-02 0.7 898.5 0.25 0.8 1777.28 0.25 

0.125 373.14 4.0E-02 0.5 901 0.25 0.9 1779.3 0.25 

0.165 377.72 4.0E-02 1 953 0.85 0.9 1783.3 0.3 

1 379.81 3.5E-02 0.6 1001.05 0.08 1 1788.37 0.25 

0.6 383.34 5.4E-02 0.1 1004.42 0.08 0.1 1791.43 0.2 

0.85 387.48 4.0E-02 -0.1 1005.67 0.08 2 1794.88 0.22 

-0.5 109.79 2.0E-02 0.225 1007.5 0.08 0.175 1799.53 0.4 

0.15 113.55 1.0E-02 0.03 1010.49 0.08 0.5 1803.07 0.2 

0.75 115.94 1.5E-02 -0.1 1011.24 0.15 0.3 1808.12 1 

1.75 118.23 4.5E-02 -0.15 1014.7 0.08 0.75 1815.7 0.2 

1.25 121.92 7.0E-03 0.12 1015.91 0.25 0.5 1819.56 0.3 

0.45 124.75 3.5E-02 -0.1 1017.62 0.08 2 1821.9 0.25 

5.5 125.98 7.5E-02 0.05 1019.08 0.25 0.4 1825.24 0.2 

2 126.35 5.0E-02 -0.1 1020.1 0.08 0.3 1829.04 0.5 

-0.5 125.5 1.5E-02 0.1 1022.77 0.25 0.3 1830.74 0.75 

-0.15 129.9 1.5E-02 0.175 1025.15 0.08 0.75 1835 0.2 

0.25 128.05 2.0E-02 0.1 1030.53 0.08 -0.8 1837.8 0.5 

1 131.29 4.0E-02 0.455 1033.27 0.08 1.55 1839.86 0.3 

1.4 132.08 7.5E-02 0.05 1036.5 0.08 0.2 1843.17 0.5 

1.1 132.7 5.0E-02 1.1 1043.75 0.3 4 1849.52 0.42 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.35 133.54 1.0E-02 0.825 1044.82 0.15 2.05 1857.55 0.2 

3 135.25 2.5E-02 0.2 1049.66 0.08 0 1860.42 0.1 

1.2 141.99 3.0E-02 0.9 1053.64 0.25 0.6 1863.3 0.3 

0.75 145.54 1.0E-02 0.85 1056.08 0.25 0.3 1865.9 0.3 

0.3 147.26 2.0E-02 0.15 1059.8 0.15 0.1 1868.3 0.3 

1.2 149.06 3.0E-02 -0.138 1061.87 0.08 1.15 1871.36 0.18 

0.35 149.88 3.0E-02 0.6 1064.03 0.3 0.295 1875.05 0.2 

0.285 153.38 5.0E-03 1.25 1068.19 0.18 0.5 1877.8 0.6 

0.25 154.83 3.0E-02 0.05 1071.4 0.06 0.9 1881.95 0.3 

0.35 156.75 2.0E-02 0.05 1074.62 0.1 0.75 1885.1 0.2 

0.55 158.51 5.0E-02 2.15 1076.83 0.23 1.2 1889.61 0.3 

0.55 159.12 5.0E-02 2.1 1077.74 0.2 0 1893.33 0.5 

-0.8 160.94 2.0E-02 0.1 1080.06 0.08 0.4 1897.04 0.2 

1.45 163.6 2.5E-02 1 1082.56 0.3 0.55 1902.6 0.2 

1.55 166.25 7.5E-02 0.6 1084.2 0.08 0.45 1906.65 0.3 

0.85 168.02 2.5E-02 0.05 1086.75 0.08 0.2 1910.42 0.3 

0.35 169.33 2.5E-02 0.8 1089.92 0.4 2.25 1915.5 0.3 

2.75 174.48 8.5E-02 0.4 1093.28 0.08 2.3 1917.54 0.3 

0.45 176.54 2.5E-02 0.4 1095.59 0.23 0.95 1922.7 0.3 

3.75 177.54 1.9E-02 0.75 1097.5 0.3 0.7 1924.5 0.4 

-0.3 178.54 2.5E-02 2 1100.16 0.3 0.6 1930.37 0.3 

-0.25 179.42 2.5E-02 1.5 1103.44 0.3 0.6 1933.32 0.2 

1.05 180.31 2.5E-02 0.075 1108.42 0.2 1.25 1937.95 0.3 

0.65 181.99 6.5E-02 -0.04 1110 0.1 1.85 1940.64 0.2 

0.7 392.17 4.0E-02 0.07 1111.2 0.1 1 1945.2 0.6 

0.1 356.7 4.0E-02 -0.1 1113.62 0.3 0.4 1952.2 0.35 

0.5 396.55 3.3E-02 0.1 1116.08 0.15 0.85 1955.3 0.3 

0.1 402.18 3.5E-02 0.75 1118.3 0.3 1 1960.3 0.3 

1.752 405.1 2.0E-01 0.35 1123.6 0.3 0.7 1963.67 0.3 

0.3 408.45 5.0E-02 0.535 1126.11 0.5 3.2 1967.8 0.21 

0.1 414.37 4.0E-02 0.425 1128.2 0.15 0.5 1972.71 1 

0.25 415.34 5.0E-02 1.345 1132.3 0.1 2.2 1977.16 0.18 

0.75 418.26 3.0E-02 0.15 1134.39 0.2 0.9 1979.7 0.28 

0.35 419.83 4.0E-02 0.6 1136.48 0.35 0.2 1983.8 0.8 

0.535 423.25 4.0E-02 2.645 1139.08 0.35 0.3 1985.8 0.5 

0.425 425.46 4.0E-02 0.85 1143.43 0.1 1.1 1989.29 0.3 

0.215 427.42 4.0E-02 1.7 1146.66 0.15 1.1 1993.6 0.2 

0.15 428.83 4.0E-02 0.075 1149.9 0.15 0.3 1997.85 0.7 

0.75 430.66 9.0E-02 0.1 1152.79 0.2 0.6 1999.84 0.7 

1.2 433.81 4.0E-02 0.5 1156.1 1 1 2002.45 0.5 

2 434.88 2.0E-01 1.1 1159.65 0.08 0.3 2006.36 0.5 

0.3 439.14 4.0E-02 1.9 1161.5 0.28 0.6 2008.22 0.5 

1.025 440.4 4.0E-02 3.8 1163.3 0.28 0.1 2010.9 0.3 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.81 442.26 4.0E-02 2.5 1165.23 0.25 -0.18 2037.9 0.5 

0.1 448.5 4.0E-02 1 1167.55 0.2 -0.27 2045.17 0.2 

0.85 449.94 1.0E-01 0.6 1170.27 0.1 0.1 2042.43 0.4 

0.3 453.7 4.0E-02 0.8 1172 0.1 0.75 2050.17 0.2 

0.7 458.7 1.0E-01 0.5 1174 0.2 0.7 2053.18 0.19 

1.5 462.02 1.0E-01 0.75 1175.99 0.2 2 2054.84 0.9 

3.5 463.8 8.5E-02 0.1 1178.6 0.25 0.2 2058.85 0.6 

0.05 466.53 2.0E-02 0.5 1180.7 0.3 0.4 2063.75 0.3 

0.6 468.93 1.0E-01 1 1184.41 0.3 0.5 2067.31 0.35 

0.75 471.77 4.0E-02 0.9 1187.46 0.25 0.4 2069.75 0.35 

-0.1 476.53 4.0E-02 0.1 1190.1 0.08 1 2072.1 0.5 

0.1 477.16 4.0E-02 0.1 1192.67 0.08 0.2 2081.23 1 

1 479.23 3.8E-02 0.1 1194.18 0.08 0.75 2085.12 0.26 

1.05 481.33 3.8E-02 0.4 1197.2 0.25 1 2090.43 0.6 

0.2 483.51 5.5E-02 1.25 1200.8 0.1 2 2093.07 0.42 

0.1 485.29 4.0E-02 0.3 1204.56 0.3 0.5 2095.29 0.4 

0.2 487.1 4.8E-02 -0.35 1206.15 0.1 1 2099.65 1.65 

0.4 489.46 5.5E-02 0.5 1207.49 0.35 -0.5 2106.22 1.25 

0.6 490.47 5.5E-02 3 1214.2 0.35 0.5 2108.78 0.8 

0.425 495.64 5.0E-02 0.175 1216.1 0.25 0.2 2118.2 0.7 

1.65 500.28 1.0E-01 0.4 1220.19 0.2 0.75 2121.42 0.7 

2 502.1 2.5E-01 0.6 1224.59 0.2 0.3 2124.65 0.5 

2 503.36 2.5E-01 0.25 1225.88 0.2 0.75 2129.05 0.5 

0.4 506.01 1.0E-01 0.75 1229.7 0.2 2.75 2134.61 0.5 

0.4 507.89 5.0E-02 0.5 1232.86 0.4 0.2 2137.75 0.35 

2.4 511.4 1.0E-01 0.4 1235.6 0.4 -0.35 2141.9 0.7 

2.35 513.16 5.0E-02 0.1 1237.34 0.1 1.75 2145.14 0.4 

1.2 519.76 1.0E-01 0.5 1239.65 0.2 0.85 2148.5 0.35 

0.2 524.29 5.0E-02 0.75 1243.2 0.4 0.6 2153.21 0.4 

0.3 528.03 5.0E-02 0.75 1248.2 0.4 0.4 2160.8 0.35 

4 530.51 4.0E-01 0.3 1251.71 0.25 1 2164.15 0.5 

0.3 535.33 9.0E-02 0.3 1254.05 0.25 0.7 2168.27 0.35 

1 537.81 1.0E-01 0.2 1255.81 0.25 -0.45 2172.9 1 

0.1 539.84 5.0E-02 0.45 1258.17 0.35 0.7 2179.37 0.4 

0.23 542.15 5.0E-02 0.65 1263.12 0.25 4 2183.35 1.4 

0.85 543.81 5.0E-02 0.15 1267.02 0.2 0.75 2189.31 0.23 

1.15 546.19 5.0E-02 0.4 1268.31 0.3 0.1 2196.33 1 

0.625 551.91 1.5E-01 0.4 1270 0.3 0.45 2199.99 0.75 

2 557.77 1.5E-01 1.15 1272.95 0.1 0.75 2202.8 0.4 

0.4 561.01 1.0E-01 0.25 1278.46 0.1 0.25 2207.17 0.7 

0.3 564.73 9.0E-02 0.25 1280.37 0.1 4 2213.88 2 

0.35 566.7 2.0E-01 0.35 1283.72 0.1 3.65 2216.99 1 

0.75 570.98 5.0E-02 0.2 1287.5 0.5 1.15 2223.71 0.45 
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Table 2.4 list of the Rpl’s, Erl’s and wl’s for 100% 235U continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

3 572.56 8.5E-02 0.3 1290.61 0.1 1.15 2226.61 0.45 

2 575.83 2.0E-01 1 1291.89 0.8 0.3 2233.24 0.45 

3.9 577.64 3.0E-01 1.375 1296.89 0.25 0.3 2236.21 0.75 

0.05 579.6 2.0E-02 1.375 1298.63 0.23 1.2 2240.52 0.9 

3 585.5 3.0E-01 0.1 1300.78 0.1 0.5 2247.9 0.35 

0.3 587.5 5.0E-02 1 1305.59 0.21 0.2 2250 0.1 

 

 

 

Table 2.5 list of the Rpm’s, Erm’s and wm’s for 100% 
235

U 

Rpm's Erm's wm's Rpm's Erm's wm's Rpm's Erm's wm's 

2.5E-5 2.3E+3 8.0E+3 5.0E-6 8.0E+3 2.0E+4 1.0E-5 2.1E+4 1.6E+5 

6.0E-5 2.5E+3 1.5E+4 5.0E-6 8.2E+3 2.0E+4 1.0E-5 2.2E+4 1.0E+5 

1.5E-5 2.7E+3 8.5E+3 5.0E-6 8.4E+3 2.0E+4 1.0E-5 2.3E+4 2.6E+5 

1.5E-5 2.9E+3 1.0E+4 5.0E-6 8.5E+3 2.0E+4 1.0E-5 2.4E+4 2.6E+5 

1.5E-5 3.0E+3 1.0E+4 5.0E-6 8.7E+3 2.0E+4 1.0E-5 2.4E+4 2.6E+5 

9.0E-6 3.2E+3 8.0E+3 5.0E-6 9.0E+3 2.0E+4 1.0E-5 2.4E+4 2.6E+5 

2.0E-5 3.3E+3 1.0E+4 5.0E-6 9.2E+3 2.0E+4 1.0E-5 2.5E+4 5.0E+5 

1.5E-5 3.5E+3 1.0E+4 5.0E-6 9.5E+3 2.0E+4 1.0E-5 2.5E+4 2.0E+5 

1.5E-5 3.7E+3 1.0E+4 5.0E-6 9.6E+3 2.0E+4 1.0E-5 2.6E+4 3.0E+5 

1.2E-5 3.8E+3 1.0E+4 7.0E-6 1.0E+4 5.0E+4 1.0E-5 2.6E+4 3.0E+5 

8.0E-6 3.9E+3 1.0E+4 1.0E-4 1.0E+4 1.0E+6 1.0E-5 2.7E+4 3.0E+5 

8.0E-6 4.0E+3 1.0E+4 1.0E-4 1.1E+4 1.0E+6 1.0E-5 2.8E+4 3.0E+5 

8.0E-6 4.2E+3 1.0E+4 1.0E-4 1.1E+4 1.0E+6 1.0E-5 2.8E+4 3.0E+5 

8.0E-6 4.3E+3 1.0E+4 5.0E-5 1.1E+4 1.0E+6 1.0E-5 2.9E+4 3.0E+5 

8.0E-6 4.4E+3 1.0E+4 5.0E-5 1.2E+4 1.0E+6 1.0E-5 2.9E+4 3.0E+5 

1.1E-5 4.5E+3 1.0E+4 5.0E-5 1.2E+4 1.0E+6 1.0E-5 3.0E+4 5.0E+5 

8.0E-6 4.8E+3 1.0E+4 5.0E-5 1.2E+4 1.0E+6 1.0E-5 3.1E+4 5.0E+5 

8.0E-6 5.0E+3 1.0E+4 5.0E-5 1.3E+4 1.0E+6 1.0E-5 3.2E+4 5.0E+5 

8.0E-6 5.2E+3 1.0E+4 5.0E-5 1.3E+4 1.0E+6 1.0E-5 3.2E+4 5.0E+5 

8.0E-6 5.4E+3 1.0E+4 5.0E-5 1.3E+4 1.0E+6 1.0E-5 3.3E+4 5.0E+5 

8.0E-6 5.5E+3 1.0E+4 5.0E-5 1.3E+4 1.0E+6 1.0E-5 3.4E+4 5.0E+5 

5.0E-6 5.6E+3 1.5E+4 5.0E-5 1.4E+4 1.0E+6 1.0E-5 3.5E+4 5.0E+5 

5.0E-6 5.7E+3 1.5E+4 5.0E-6 1.4E+4 1.0E+6 1.0E-5 3.6E+4 5.0E+5 

5.0E-6 5.8E+3 1.5E+4 5.0E-6 1.5E+4 7.0E+4 1.0E-5 3.7E+4 6.0E+5 

5.0E-6 6.0E+3 1.5E+4 5.0E-6 1.5E+4 7.0E+4 1.0E-5 3.8E+4 6.0E+5 

5.0E-6 6.2E+3 1.5E+4 5.0E-6 1.5E+4 7.0E+4 1.0E-5 3.9E+4 6.0E+5 

5.0E-6 6.4E+3 1.5E+4 1.0E-5 1.6E+4 7.0E+4 1.0E-5 4.0E+4 6.0E+5 

5.0E-6 6.5E+3 1.5E+4 1.0E-5 1.7E+4 7.0E+4 1.0E-5 4.1E+4 6.0E+5 
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Table 2.5 list of the Rpm’s, Erm’s and wm’s for 100% 
235

U continued 

Rpm's Erm's wm's Rpm's Erm's wm's Rpm's Erm's wm's 

5.0E-6 6.8E+3 2.0E+4 7.5E-6 1.8E+4 7.0E+4 5.0E-2 5.0E+4 1.1E+9 

5.0E-6 7.0E+3 2.0E+4 7.5E-6 1.9E+4 1.0E+5 5.6E-2 1.5E+5 1.1E+10 

5.0E-6 7.3E+3 2.0E+4 7.5E-6 1.9E+4 7.0E+4 7.0E-2 3.0E+5 4.4E+10 

5.0E-6 7.4E+3 1.0E+4 1.0E-5 2.0E+4 1.6E+5 1.2E-1 5.0E+5 4.9E+11 

5.0E-6 7.5E+3 1.0E+4 1.0E-5 2.0E+4 1.6E+5 6.2E-1 9.0E+5 1.0E+12 

5.0E-6 7.7E+3 2.0E+4 1.0E-5 2.1E+4 1.6E+5       

 

 

 

Table 2.6 list of the Rpn’s, Ern’s and wn’s for 100% 
235

U 

Rpn's Ern's wn's 

1.25E+12 1.00E+6 5.00E+22 

6.50E+11 3.00E+6 1.70E+18 

1.00E+10 4.00E+6 9.00E+16 

2.10E+10 5.00E+6 9.00E+16 

1.10E+10 6.00E+6 4.00E+16 

1.50E+10 7.00E+6 2.50E+16 

9.00E+9 8.00E+6 1.30E+16 

8.00E+9 9.00E+6 1.00E+16 

5.00E+8 1.00E+7 6.00E+14 
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CHAPTER 3 

 

 

 

 VALIDATION OF ENERGY MOMENTS FROM THE ONE-DIMENSIONAL  

 

ENERGY DEPENDENT NEUTRON DIFFUSION  

 

EQUATION, MCNP5 AND ATTILA-7.1.0  

 

WITH THE GODIVA EXPERIMENT 

 

 

 

Introduction 

 

This work is focused on validating the method of moments for the EDNDE with 

GODIVA as well as further the development of the method by investigating the method 

of moments on a system of more than one isotope. Analytic energy moments derived for 

a pure 100% sphere of 
235

U has been verified with MCNP5 and Attila based on the 

method of moment approach. The derivation for the method of moments for the EDNDE 

is not discussed here but can be found in literature (Crawford & Ring, submitted 2012). 

Equation 3.1 is the basis of the normalized moments in this work. 

 

 

  ( ⃗    )

  
   ( ⃗  )  ( ⃗    )    ( ⃗  ) ( ⃗    )  ∫   ( ⃗    ́) ( ⃗  ́  )

 

 
  ́  

 ( ) ∫  ( ́)  (  ⃗  ́) ( ⃗  ́  )
 

 
  ́                                                                  Equation 3.1 

The method of moments (MOM) approach solves for the moments of a 

distribution instead of the distribution itself. MOM can be considered to be a 

deterministic method to find stochastic parameters. The neutron flux can be treated as a 
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probability density function (PDF), where the normalized moments provide the mean, 

variance, skewness and kurtosis (Kenny, 1947) of the flux so once the moments are 

solved for they can be put into the correct PDF or PDF reconstruction method to 

reproduce the flux. Mathematically the mean, variance, skewness and kurtosis (Casella & 

Berger, 2002) for the energy variable of the neutron flux are represented here where   in 

equations 3.2-3.5 represents the energy dependent neutron flux  ( ⃗    ): 

     
∫      

 
 

∫    
 
 

                                                                                               Equation 3.2 

         
∫       

 
 

∫    
 
 

                                                                                       Equation 3.3 

         
∫       

 
 

∫    
 
 

                                                                                      Equation 3.4 

         
∫       

 
 

∫    
 
 

                                                                                       Equation 3.5 

To help determine the proper PDF or PDF reconstruction method, neutron energy 

moments need to be validated. 

This paper compares energy moments from three different numeric methods, with 

energy moments from the GODIVA experimental data. GODIVA is a well-documented 

experiment. Two documents were used as the foundation for the details of the 

computer/mathematical model creation of GODIVA in MCNP5, Attila and the EDNDE. 

The first document is from the International Handbook of Evaluated Criticality Safety 

Benchmark Experiments (INL NEA/NSC DOC(95)03, September 2010) and the second 

is a report outlining experiments done to measure 
235

U fission spectrum at the core center 

and on the surface of GODIVA (McElroy, Armani, & Tochilin, 1969). This report is 

referred to as the McElroy report for the rest of the paper. 
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A complete comparison of energy moments is achieved from the three different 

methods: the two well-known computational platforms are; MCNP5 and Attila, the third 

is energy moments derived from the one-dimensional energy dependent neutron diffusion 

equation (EDNDE). All three methods are compared to moments from the data in the 

McElroy report. MCNP5 and Attila are full neutron transport codes. MCNP5 is based on 

the Monte Carlo numerical method. Attila is a customizable energy group, SN, PN, finite 

element code. EDNDE is based on a moment transformation of equation 3.1. The 

GODIVA model made in Attila used a 30 group library file named radion5. 

Table 3.1 displays the group structure of the flux calculations performed in the 

Attila-7.1.0-beta software. The group structure in the radion5 file seems suitable for a fast 

reactor or fast critical assembly calculation, which GODIVA is a fast critical assembly. 

The greater number of energy groups in the fast region should capture the flux behavior 

for this situation. 30 energy groups are enough groups to demonstrate a multigroup 

method sufficiently to make the comparisons with the other two methods. 

 

 

Table 3.1 Energy Group Structure for GODIVA Model in Attila-7.1.0-beta 

Group 

# 

Energy range 

MeV 

Group 

# 

Energy range 

MeV 

Group 

# 

Energy range 

MeV 

1 20 17 11 7.79 6.87 21 8.21E-1 2.35E-1 

2 17 16 12 6.87 6.07 22 2.35E-1 6.74E-2 

3 16 15 13 6.07 5.35 23 6.74E-2 1.93E-2 

4 15 13.9 14 5.35 4.72 24 1.93E-2 5.53E-3 

5 13.9 13.0 15 4.72 3.68 25 5.53E-3 3.54E-4 

6 13.0 12.0 16 3.68 2.87 26 3.54E-4 2.26E-5 

7 12.0 11.0 17 2.87 2.23 27 2.26E-5 3.47E-6 

8 11.0 10.0 18 2.23 1.74 28 3.47E-6 6.25E-7 

9 10.0 8.82 19 1.74 1.19 29 6.25E-7 1.24E-8 

10 8.82 7.79 20 1.19 8.21E-1 30 1.24E-8 1.0E-11 
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Simplification of Energy Dependent Neutron Diffusion Equation 

 

Equation 3.1 is solved over the entire fission spectrum; which is well 

approximated to be from 0 to 10 MeV (Lamarsh, 1966). This analysis assumes steady 

state so the time dependent term,
 

 

  ( ⃗  )

  
  is set equal to zero. GODIVA is assumed to be 

homogenous so the energy dependent cross sections and diffusion coefficient depend on 

energy only. The entire population of neutrons is treated as one large energy group E, 

from 0 to 10MeV. The differential scattering cross section (  ( ⃗    ́)) is defined 

such that integration from 0 to infinity (∫   ( ⃗    ́)
 

 
    ( )), the probability of 

scattering into E is unity and yields s (E) (Duderstadt & Hamilton, 1976). It is assumed 

that scattering into “E” is unity for this paper. The fission spectrum integrated from 0 to 

infinity is unity (∫  ( )
 

 
    ). The assumption is that the energy dependence of the 

cross sections over the range of interest, 0 to 10MeV is retained and the result of the two 

assumptions yields equation 3.6.  

– ( )   ( ⃗  )    ( ) ( ⃗  )   ( )  ( ) ( ⃗  )                                     Equation 3.6 

We have assumed diffusion theory is applicable and consider only the 1-D 

analytic solution, for the EDNDE moments based on the shape (sphere) and isotopic 

concentrations of the GODIVA experiment. Neutron diffusion theory is well documented 

in literature; (Duderstadt 1976, Foster 1977, Lamarsh 2001, Lewis1993, Weinberg 

1958…) and is not discussed in detail here. An average angle of scatter for the neutrons 

() is also assumed and included in the neutron diffusion coefficient. This method does 

not assume any distribution to develop the cross sections or a specific spectrum for 

fission as a weighting value per energy group, which makes this method very unique, the 
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analysis does cut off at 10MeV since this value captures 100% of the fission spectrum. 

The neutron flux above that energy is very small and assumed to be negligible. The last 

assumption is to lump all of the energy dependent cross sections and parameters into one 

function of energy F(E). Equation 3.7 and 3.8 show the results of the stated assumptions. 

    ( ⃗  )  (
 ( )  ( )   ( )

 ( )
) ( ⃗  )                                                           Equation 3.7 

 ( )  
 ( )  ( )   ( )

 ( )
  ( ( )  ( )    ( ))(  ( )   ̅  ( ))                 Equation 3.8 

The derivation of the analytic moments from the EDNDE for GODIVA is shown in the 

next section. An overall energy dependent function F(E) is also derived for the isotopic 

mix of GODIVA. 

 

 

Derivation of F(E) and Neutron Energy Moments for GODIVA 

 

An appropriate approximation to the energy dependency of the macroscopic cross 

sections and the diffusion coefficient is vital for any flux calculation; so a set of functions 

and constants have been carefully chosen so the energy dependent functionality is 

retained as much as possible and allow an analytic solution to be found. The macroscopic 

cross sections may generally be divided into three distinct regions: thermal, resonance 

and fast, and in this paper the authors consider a 4
th

 region called the transition region and 

it spans from 2300eV to 1MeV. The reason for the subdivisions is explained in more 

detail below.  

The 1/v or 1/E
1/2 

law is a good approximation to the thermal region of many 

isotopes and found to be mathematically viable in foil activation (Morry & Williams, 

1972). The cross section data referred to and in use for this paper is from the evaluated 

nuclear data files, ENDF information is found on the web at http://atom.kaeri.re.kr/ 

http://atom.kaeri.re.kr/
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(Institute, 2000) and http://t2.lanl.gov/data/neutron7.html) (Lab, ENDF/B-VII Incident-

Neutron Data, 2000). In the resonance region, a summation of functions similar to Breit-

Wigner single level resonance formulas is used to capture the complicated energy 

dependence in the resonance region. The functional piece that dominates the Breit-

Wigner formulas is this (
         

(    )           
) term (Lamarsh, Introduction to Nuclear 

Reactor Theory, 1966, pp. 43-64). The cross sections for many isotopes in the transition 

region to the fast region generally has a 1/E drop off rate (Weinberg & Wigner, 1958, p. 

57) and the fast region (0.1MeV to 10MeV) has a 1/E
5/2

 with some broad resonances. The 

broad resonances give the fast region of 
235

U f (E) somewhat of a stair step like shape 

from 1MeV to 20MeV. 

It is very difficult to fit an analytic function to the resonance region and the broad 

resonance region. The number of resonance peaks makes writing a function for each peak 

a daunting task, but with patience a resonance function can be written for each peak. A 

resonance peak function has been written for 962 resonances in this work for the 

GODIVA F(E), see Appendix: Constants for GODIVA. A summation of these single 

level resonance functions was assembled to provide a functional form, that when 

integrated over the function would provide correct values when compared to the 

resonance values from The Chart of the Nuclides and Isotopes 16
th

 Edition (Lockheed 

Martin/ Knolls Atomic Power Laboratory, 2002). The functional approximations for the 

energy dependent cross sections are somewhat crude but “if we choose the group 

constants properly, even one-speed diffusion theory could give an accurate description of 

nuclear reactor behavior” (Duderstadt & Hamilton, 1976, p. 295).  

http://t2.lanl.gov/data/neutron7.html
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The general functional relationships for D(E), (E), f (E), T (E) , S(E) and 

a(E) with energy are incorporated into one function of energy F(E).

 

This work only 

shows curve fits of F(E) for the isotopic mix in GODIVA. The derived F(E) is fit to 

ENDF-F(E) with the appropriate function fit for the different energy ranges. The result of 

the curve fit of F(E) is shown in equation 3.16 and Figures 3.1-3.5. 

It is assumed the total macroscopic cross section, the transport cross section, the 

function (E) (the number of prompt neutrons released in fission by an incident neutron 

of energy E), the neutron diffusion coefficient and the average angle of scatter are: 

    ( )      ( )      ( )                                                                                 Equation 3.9 

     ( )      ( )   ̅     ( )                                                                          Equation 3.10 

  ( )  
 

      ( )
 

 

 (    ( )  ̅     ( ))
                                                               Equation 3.11 

 ( )                                                                                   Equation 3.12 

 ( )                                                                                     Equation 3.13 

 ̅  
∑       ̅ 

 
 

∑     
 
 

  ̅  
 

   
                                            Equation 3.14 

The parameter, Ai in equation 3.14 is the atomic mass number of isotope, (i), N in 

equation 3.14 is the total number of isotopes in the reactor, for GODIVA N = 3. The 

convention for a mix of isotopes is equation 3.15. 

            
   

   

   
   

   

   
   

   

                                                                  Equation 3.15 

Index j in equation 3.15 is the subscript to represent the specific nuclear reaction: 

fission (f), scatter (s), absorption (a), etc… This convention is used to calculate the 

system cross sections for GODIVA. Equation.3.14 is a decent approximation for the 

average angel of scatter,  ̅ for large atoms, A>16. The function (E) is approximated for 
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the isotopic mix of GODIVA where the (E) parameters for 
235

U is         ,     

     ,         and           (Duderstadt & Hamilton, 1976, p. 61) if the energy 

variable is in units of MeV. The parameters of (E) for 
238

U are        ,         for 

all energies (Lamarsh, Introduction to Nuclear Reactor Theory, 1966, pp. p96 Table 3-5) 

and for 
234

U         ,          for all energies. The slope and intercept of (E) for 

234
U are derived from the data provided by Los Alamos National Lab (Lab, ENDF/B-VII 

Incident-Neutron Data, 2000); the energy variable is in units of MeV. The parameters of 

(E) for the isotope mix of GODIVA are         ,          ,         and 

         . 

Figures 3.1 through 3.6 show comparisons of equation 3.16 with the ENDF-F(E). 

Figure 3.1 shows the thermal region from 1E-5eV to 1eV on a log-log plot. The first term 

in equation 3.16 is the dominate feature in Figure 3.1. The first resonance for the 

GODIVA F(E) is also seen in Figure 3.1. Figure 3.2 shows a comparison of ENDF-F(E) 

to equation 3.16 for GODIVA in the energy range of 1eV to 100eV to show the largest 

resonance peaks. Figure 3.3 shows the resonance region from 100eV to 1000eV of the 

cross section for GODIVA. Equation 3.16 is not as sharp as the ENDF-F(E) in the 

overlap spaces between each resonance peak. Figure 3.4 explicitly shows the difference 

between the ENDF-F(E) and the derived F(E) by showing the difference in the overlap of 

the resonance peaks. Figures 3.2-3.5 are not put on log-log plots to point out the negative 

regions that show up from the  ( ) ( )   ( )  term in F(E), where the absorption cross 

section is greater than the product of  ( ) ( ) . Figure 3.5 (1000eV to 2250eV) and 

Figure 3.6 (2250eV to 10MeV) show the difference between ENDF-F(E) and the derived 

F(E) for the end of the energy range of the GODIVA cross sections. 
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Figure 3.1 Log-log plot of GODIVA F(E) from 1E-5eV to 1eV 

 

 

 

 
Figure 3.2 Plot of GODIVA F(E) from 1eV to 100eV 
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Figure 3.3 Plot of GODIVA F(E) comparison from 100eV to 1000eV 

 

 

 

 
Figure 3.4 Close view of GODIVA F(E) and the overlap between resonance peaks 
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Figure 3.5 Comparison plot of the derived GODIVA F(E) to the ENDF GODIVA F(E) in 

the energy range of 1000eV to 2250eV 

 

 

 

 
Figure 3.6 Comparison of the two GODIVA F(E) functions from 2250ev to 10MeV 
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Some of the minor peaks throughout the resonance region were not included into 

equation 3.16. The reason for doing this is because these small resonance peaks did not 

add enough value to the resonance integral value. Another reason for not including some 

small peaks into equation 3.16 is because equation 3.16 over estimates the overlap from 

resonance peak to resonance peak so the two effects seem to balance each other. The 

resonance values from The Chart of the Nuclides and Isotopes 16
th

 Edition matched the 

resonance values from equation 3.16. 

 ( )  

   

 
 ∑

   

(     )
    

 
    ∑

    (       )              

(     )    
 ∑

    (       )
      

(     )      

     
   

      
     

                                                                                                                         Equation 3.16 

The constants from equation 3.16 are: 

       
      

   ,           
       

   ,                                     , 

        
       

                   ,           
        

      
 and                     , 

where N, NTRANS and NFAST are the number of terms included in each sum with indices l, 

m and n. The         can be positive or negative because in some energy ranges 

(  ( ) )is greater than ( ( ) ( ) ). The data for each constant is in Appendix 3.A. 832 

individual terms, (
   

(     )
    

) are accounted for in the first summation, 120 terms 

(
    (       )              

(     )    
) in the second summation and 10 individual terms 

(
    (       )

      

(     )      
) are accounted for in the third summation of equation 3.16. 

The first term 
   

 
 and the first summation term ∑

   

(     )
    

 
    in equation 3.16 

were observable by visual inspection of the ENDF-F(E) plot. The first term comes from 
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the 1/v portions of the cross sections multiplied together. The first summation term 

captured ENFD-F(E) in the energy range of 1eV to 2250eV. This range remained visually 

similar to the resonance region of 
235

U  ( )  except for the few negative regions and the 

height/width of the each resonance peak which is specific to the GODIVA ENDF-F(E) 

resonance peaks. The height and width of each ENDF-F(E) peak can be matched by 

equation 3.16 by adjusting     and    respectively. 

The second and third summation terms in equation 3.16 account for the linear 

effect of  ( ) on F(E). The first and second terms of equation 3.16 are not affected by 

 ( ) because the slope is so small, just the constant affects F(E) and it is absorbed into 

    and the      . The slope of  ( ) does not change the value of  ( ) until roughly 

46keV and only from 2.43 to 2.44 neutrons produced per incident neutron. It is included 

in the energy range at 2300eV because of the shape of ENDF-F(E) from 2300eV to 

0.9MeV is a rough 1/E function, which 
    (       )              

(     )    
 is approximately a 1/E 

function. A summation of these terms 
    (       )              

(     )    
 provided a few useful 

qualities to fit the ENDF-F(E) from 2300eV to 0.9MeV. The first is an ability to shift a 

1/E function to this energy range at various places without the sharp discontinuity from 

these two 
 

(     )
 or 

(       )

(     )
 functions or any similar function with an odd order in the 

denominator, for example a term 
 

(     )     where n=0…. The second reason this 

function is chosen is because it produced a smooth curve (see figure 3.6 from 0.1MeV to 

0.9MeV) with a long forward tail which is the 1/E shape desired in this region without 

the sharp discontinuity. The third reason for this function is small resonance peaks are in 
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this energy range. The small peaks could be modeled with this function because it can be 

easily tuned by adjusting     and   to have a peak at the resonance energy    .  

The energy range 0.9 to 10MeV yielded a different shape.  In this energy range 

ENDF-F(E) increased in a stair step shape (broad resonance) similar to the 
235

U fission 

cross section shape from 0.9 to 10MeV. The slope of  ( ) in this energy range is larger 

and the effect from this linear function is greater. The term inside the third summation, 

    (       )
      

(     )      
  is used for similar reasons already mentioned: a smooth curve 

without sharp discontinuities (no odd ordered denominators), an ability to add an increase 

or “peak” at a specific energy(   ). The denominator ((     )      ) allowed for 

a much broader peak and a sharper drop off creating the level stair effect that corresponds 

to the broad width of the peak. The      in the denominator along with the 4
th

 order 

term (     )  restricted any long forward or backward tail that is seen with this these 

denominator choices ((     )      ) and ((     )    ). The elimination of 

the long tails in this energy region was necessary to get the correct overlap between 

resonances. The other function choices investigated could not provide this effect in this 

energy region and consequently did not match the ENDF-F(E). 

These functions included into equation 3.16 allowed for analytic analysis and the 

development of analytic moments to be created. Table 3.2 is a list of the constants found 

with equation 3.16 needed for validation of normalized neutron energy moments with the 

GODIVA experiment. The constants represented in Table 3.2 also allow for verification 

and comparison of the GODIVA model in MCNP5 and Attila. 
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Table 3.2 List of the Energy Constants from F(E) Analysis for GODIVA 

Constant Value Units 

CE1 0.052 MeV/cm
2
 

CE2 0.079 MeV
2
/cm

2
 

CE3 0.310 MeV
3
/cm

2
 

CE4 1.720 MeV
4
/cm

2
 

CE5 12.185 MeV
5
/cm

2
 

 

 

 

Analytic Neutron Moments for GODIVA 

 

The set of analytical energy dependent neutron moments are found from 

transforming equation 3.7 and 3.8 with the definition of a raw moment. The mathematical 

definition of a raw moment is    ∫    

 
 ( ⃗  )    where k = 0, 1, 2, 3 … N (Casella 

& Berger, 2002); N is the total number of moments desired. Transformation of equation 

3.7 and 3.8 into moment form is not discussed here and can be found in literature 

(Crawford & Ring, submitted 2012) along with the derivation to obtain the constants in 

Table 3.2.The derivation and moment transformation of the extrapolated boundary 

conditions that come from the method of moment’s analysis of EDNDE are also found in 

literature and not reproduced here for briefness of this paper. The extrapolated boundaries 

for GODIVA are in Table 3.3. All of the other constants (a1 to a5, b1 to b5, c2 to c5, d3 to 

d5, e4 to e5 and f5) that are found in equations 3.17 through 3.22 are derived from the 

constants reported in Tables 3.2 and 3.3. 

 

 

Table 3.3 the Extrapolated Boundaries for GODIVA Moment 0-5 

 ̃   ̃   ̃   ̃   ̃   ̃  

11.02cm 11.08cm 11.18cm 11.19cm 11.19cm 11.19cm 
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The set of moments that are compared are the normalized moments. The moments 

mk = 1, 2, 3, 4, 5 are normalized by the 0
th

 moment, m0. The normalized moments provide 

information about the population density function i.e. mean energy (m1/m0), variance of 

the energy (m2/m0), skewness (m3/m0) and kurtosis (m4/m0). The normalized energy 

dependent neutron diffusion moments (NEDNDM) are seen in equation 3.17-3.22, where 

a0 = 1. The set of normalized moments, mk/m0: 

  

  
 

  
   (     )

 

  
   (     )

 

                                                                                           Equation 3.17 

  

  
 

     (     )

     (     )
 

        (     )  

     (     )
                                                                    Equation 3.18 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

        (     ) 

     (     )
                                           Equation 3.19 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

       (     )

     (     )
 

       (     )

     (     )
                   Equation 3.20 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

    
    (     )

     (     )
 

         (     )

     (     )
 

        (     ) 

     (     )
  

                                 Equation 3.21 

  

  
 

     (     )

     (     )
 

      (     )  

     (     )
 

       (     )

     (     )
 

         (     )

     (     )
 

        (     ) 

     (     )
 

         (     )

     (     )
                                                                                                    Equation 3.22 

 

 

Results and Discussion 

 

Table 3.4 shows the moment validation results with the three computational 

methods for the GODIVA experiment. The moments are based on foil activation data 

from the McElroy report (McElroy, Armani, & Tochilin, 1969) at the center of the 

sphere. The GODIVA experiment is considered a standard to validate a new method with 

even though only two locations within the sphere moments can be compared. 
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Table 3.4 Comparison of GODIVA moments 

Energy moments comparison with the GODIVA Experiment 

 

m0 unit 

less 

m1 [=] 

MeV 

m2 [=] 

MeV
2
 

m3 [=] 

MeV
3
 

m4 [=] 

MeV
4
 

m5 [=] 

MeV
5
 

GODIVA 

experiment 

1+/-

5.6% 

1.471+/-

5.6% 

4.151+/-

5.6% 

16.82+/-

5.6% 

86.39+/-

5.6% 

526.6+/-

5.6% 

NEDNDM 1+/-0% 
1.430+/-

2.8% 

4.41+/-

6.2% 

18.79+/-

10.5% 

100.38+/-

16.2% 

652.5+/-

23.9% 

MCNP5 1+/-0% 
1.460+/-

0.7% 

4.275+/-

3.0% 

18.14+/-

7.8% 

96.04+/-

11.2% 

588.4+/-

11.7% 

Attila 1+/-0% 
1.84+/-

25.0% 

6.069+/-

46.2% 

27.40+/-

62.9% 

150.16+/-

73.8% 

944.9+/-

79.4% 

 

 

 

The best comparison is the remarkable agreement of moment one (m1) between 

NEDNDM and the GODIVA experiment. Table 3.5 is the comparison of the time of 

Flight (T-O-F) measurement for the 1
st
 moment (mean energy) of the leakage neutrons 

from the surface of the GODIVA experiment. The T-O-F measurement is 1.55MeV+/-

2.9%. The NEDNDM compare very will well with the GODIVA experiment and the two 

computational platforms: Monte Carlo and Attila. There are two error values in Tables3.4 

and 3.5. The first error is the GODIVA experimental measurement error values in both 

Table 3.4 and Table 3.5. The second error values in Tables 3.4 and 3.5 are the 

computational methods error with respect to the GODIVA values or relative error, 

               
|                                      |
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Table 3.5 T-O-F Measurement of m1 

T-O-F measurement of m1 at sphere 

surface 

  m1 [=] MeV 

GODIVA 

experiment 
1.55+/-2.9% 

NEDNDM 1.64+/-5.8% 

MCNP5 1.58+/-2.0% 

Attila 1.94+/-25% 

 

 

 

The experimental GODIVA moments are not plotted along with the other 

moments because values for the moments were only measured in two places; at the center 

of the sphere and at the sphere edge, 8.7407cm. To see a comparison of moments from 

the computational models of GODIVA, moments were calculated for each of the three 

computational methods. Moments from MCNP5 were created with an f2 tally on 

concentric spheres 1 cm radii away from each other including the outermost sphere at 

8.7407cm. Moments from Attila are from a custom report created in Attila where a line 

edit was made to collect the flux in each energy group at approximately 1cm increments 

up to the system edge to match the MCNP5 sphere surface tallies. The points along the 

line edit from Attila are not exactly 1cm apart but close enough because each point lined 

up on a mesh point. The flux data in each energy group are numerically calculated similar 

to the MCNP5 method where the data was put in an excel spreadsheet and integrated 

according to the definitions for the mean, variance, skewness, kurtosis and higher order 

moments. 

The f2 tallies in MCNP are broken into 1000 evenly spaced energy bins up to 

10MeV. Energy bins from 10MeV to 20 MeV showed large relative errors > 20% and 

were omitted due to limits in computer power the authors have access to for this work, a 
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64-bit laptop with a hex core processor and 6 gigabytes of RAM. To get relative errors 

below 5% for energy bins from 1E-11 to 10MeV 6million particles were tracked in the 

MCNP model. Computing times for the MCNP5 calculations were roughly a day, 26.3 

hours, and Attila computation times were 3-4 hours for a normal mesh of 0.01cm which 

gave about 100,000 mesh nodes. The reason for the day time frame for MCNP was due to 

the high number of energy bins and particle histories needed to get in the 5% error range 

for the 1000 bins in the MCNP case. 

The normalized moments from MCNP, Attila and NEDNDM are plotted in 

Figures 3.7-3.11. There are three curves in Figures 3.7-3.11: in blue the MCNP moment, 

in red the Attila moment and in green the analytic moment. 

 

 

 
Figure 3.7 Comparison plot of the mean energy for the GODIVA benchmark 
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Figure 3.8 Comparison plot of the variance of energy for the GODIVA benchmark 

 

 

 

 
Figure 3.9 Comparison plot of the skewness of energy for the GODIVA benchmark 
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Figure 3.10 Comparison plot of the kurtosis of energy for the GODIVA benchmark 

 

 

 

 
Figure 3.11 Comparison plot of the 5

th
 energy moment for the GODIVA benchmark 
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The thing that stands out the most in the moment plots is that the Attila moments 

are higher than the GODIVA moments or the analytic and MCNP moments. The reason 

the Attila moments are higher is because they are tuned to the fission spectrum which 

should give an expected mean energy value of about 1.98MeV (Lamarsh & Baratta, 

2001, p. 87) for a sphere like GODIVA. The higher order moments should be higher 

valued than GODIVA because of the fission spectrum weighting. Researchers 

(Sevast'yanov, Koshelev, & Maslov, 2000) claim that the fission spectrum for 
235

U could 

be a superposition of 5 exponential functions and these researchers calculated an average 

energy value of 1.475MeV+/- 3.77%. Method of neutron energy moments is diffusion 

based which is not perfect but the bias from the group cross section constants is not seen 

in the comparison plots. The method of neutron energy moments show a good agreement 

with the transport codes general shape and the GODIVA experiment, meaning the faster 

neutrons populate the edges of the system because of the longer diffusion length and the 

streaming effect of these fast neutrons. 

The interesting thing about the NEDNDM is that they start to peel away from the 

MCNP moments right around 3 mean free paths from the boundary of the sphere, which 

is about 5 cm (if 1.1cm is taken to be the average mean free path) and then correct back 

to the boundary value, due to the transport correction factor,   . Diffusion theory is valid 

in finite media at points that are more than a few mean free paths near the edge of the 

medium (Lamarsh J. R., 1966, p. 129). The limitation of diffusion theory near the 

boundary of a source is noted and is not valid near the boundary which is why it is 

transport corrected (Glasstone & Sesonke, 1967, p. 112). Even though diffusion theory 

has its limits the results agree very well with GODIVA and MCNP. For multiphysics-
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engineering type calculations having a continuous energy solution quickly only 24% off 

in the highest moment (close to engineering limits i.e. 20%) is an excellent benefit that 

can be very useful to see multiphysics effects on nuclear reactors. 

The shape of the functions for MCNP and Attila are very similar, the Attila 

moment functions have a sharper up turn and less of a parabolic shape which the 

NEDNDM and MCNP moments have. The reason for this could be the group structure of 

the radion5 neutron cross section file. The authors do not have control over this file and 

are thankful for the use of the code from Transpire Inc. 

The dominate functional shapes that form the constants, CE’s for the moments are 

from the last two summation terms in F(E), see equation 3.16. If the resonance region 

was not included it would not have changed the value of the NEDNDM much for this 

case, because the contribution from the resonance summation was much smaller than the 

transition and fast region summations in equation 3.16. This makes sense for a fast 

reactor such as GODIVA. More work still needs to be done to see how reliable the 

method is for a broader set of reactor types i.e. thermal reactors. 

 

 

Conclusion 

The analytic EDNDE moments (0-5) has been validated with GODIVA. The 

NEDNDM agrees quite well with the GODIVA moments both at the core center and at 

the surface of the sphere. NEDNDM, MCNP5 and Attila moments agree with the 

experiment GODIVA in terms of showing that the higher energy or faster neutrons 

populate the outer radius of the sphere where they leak out of the system. This is seen by 

the difference in the value of moment 1 for all three computational moments and 
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GODIVA at the center and the edge of the sphere. The NEDNDM results fall within the 

relative error bars associated with GODIVA results for all moments (0 to 5) calculated. 

The analytical moment results are much more accurate than the 30 energy group Attila 

simulation because of the reasons stated in the Results and Discussion section of this 

paper. 

 

 

Appendix: Constants for GODIVA F(E) 

 

This appendix is the list of constants for each functional piece in the summations 

that make up F(E), equation 16. The constant     equals 85       
 

  
. The energies, Erl, 

m, n’s are listed in eV. The Rpl, m’s are listed in eV/cm
2
. The Rpn’s are listed in eV

4
/cm

2
. 

The wl, m's are listed in eV
2
. The wn's are listed in eV

3
. 

 

 

Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

-37.5 0.18 0.19 0.9 506.01 0.2 0.3 1254.05 0.25 

0.99 0.28 0.0035 0.6 507.89 0.087 0.3 1255.81 0.3 

-1.05 0.85 0.065 0.6 510.03 0.087 0.3 1258.17 0.25 

0.24 1.12 0.003 1.8 511.48 0.087 1.5 1263.12 0.7 

-0.6 2.04 0.015 3.6 513.21 0.087 0.3 1267.02 0.4 

0.12 3.6 0.002 0.75 519.66 0.087 0.3 1268.31 0.5 

-0.3 4.85 0.0013 0.45 520.6 0.1 0.45 1270 0.5 

-0.36 5.16 0.0009 0.54 524.36 0.1 2.25 1273 0.25 

1.05 6.3 0.015 0.54 527.85 0.087 0.6 1278.46 0.25 

-1.14 6.39 0.0011 2.4 530.33 0.3 0.45 1280.37 0.25 

0.3 6.54 0.004 0.24 535.37 0.087 0.75 1283.72 0.25 

-1.23 6.68 0.0011 0.3 536.91 0.087 0.15 1287.5 0.5 

0.54 6.81 0.012 0.9 537.91 0.087 0.66 1290.61 0.25 

12 8.78 0.0026 0.3 539.91 0.2 0.3 1291.89 0.3 

-1.2 11.67 0.0009 0.45 542.15 0.087 1.2 1296.89 0.25 

0.96 12.38 0.0019 1.5 543.78 0.1 1.35 1298.63 0.25 

2.7 13.96 0.04 1.95 546.22 0.1 0.3 1300.78 0.25 

13.8 19.3 0.003 0.3 551.8 0.1 0.9 1305.59 0.225 

-6 21.07 0.0024 0.45 556.41 0.1 0.9 1308 0.16 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.39 22.94 0.0064 1.2 557.77 0.1 0.15 1311.8 0.25 

-0.99 23.41 0.004 0.3 561 0.1 0.06 1315.05 0.25 

0.18 20.61 0.005 0.3 564.75 0.1 0.21 1317.07 0.25 

0.99 21.32 0.014 0.3 566.74 0.1 0.15 1318.9 0.25 

0.99 23.63 0.005 0.6 570.98 0.05 0.75 1320.87 0.25 

0.27 24.29 0.0045 3.3 572.51 0.11 0.75 1323.3 0.25 

3.3 25.55 0.0475 1.8 575.83 0.2 0.3 1326.05 0.25 

0.27 26.5 0.0045 2.19 577.64 0.2 0.45 1329.83 0.25 

0.54 27.79 0.0045 0.24 579.51 0.1 0.45 1332.23 0.25 

1.26 32.07 0.0035 0.75 585.22 0.1 0.45 1333.8 0.25 

-0.06 31.44 0.0035 0.57 585.83 0.1 0.15 1335.5 0.25 

-0.06 30.9 0.0035 0.6 587.54 0.1 0.36 1336.99 0.25 

2.25 34.38 0.0075 3.6 590.63 0.1 0.3 1338.75 0.25 

15 35.18 0.0078 0.6 592.03 0.1 0.9 1343.01 0.25 

-4.05 36.68 0.003 0.24 593.47 0.1 2.7 1346.56 0.75 

3 39.4 0.0075 0.9 595.02 0.1 0.84 1350.41 0.1 

0.15 40.52 0.0095 0.6 595.97 0.1 0.3 1355.6 0.25 

1.2 41.51 0.0475 0.51 598.94 0.1 0.3 1358.8 0.25 

-0.24 41.86 0.0025 0.42 600.4 0.1 1.5 1360.37 0.25 

0.24 42.24 0.0125 2.25 603.22 0.25 0.24 1363.28 0.25 

-0.09 42.68 0.01 1.05 604.4 0.25 0.3 1364.07 0.25 

-0.09 43.36 0.01 0.54 608.46 0.25 0.3 1367.66 0.25 

0.24 43.96 0.01 1.8 610.21 0.15 1.2 1372.05 0.25 

1.05 44.61 0.015 0.6 612.9 0.25 0.6 1378.2 0.18 

1.35 46.93 0.015 0.6 615.43 0.25 0.45 1380.7 0.3 

0.45 47.98 0.015 0.6 616.89 0.25 0.69 1382.1 0.18 

0.75 48.3 0.015 1.05 619.02 0.25 2.55 1387.6 0.5 

0.24 48.8 0.008 0.6 626.6 0.25 0.45 1390.26 0.25 

-0.24 49.43 0.0063 1.05 628.99 0.2 0.6 1393.8 0.4 

0.3 50.48 0.0063 0.45 630.8 0.25 0.6 1395.3 0.45 

3.45 51.26 0.0083 0.45 631.69 0.25 0.15 1397.37 0.25 

3 52.21 0.02 1.05 633.64 0.275 0.15 1400.75 0.25 

1.8 55.04 0.01 1.05 635.41 0.25 0.3 1403.45 0.25 

5.25 55.88 0.025 -0.6 636.5 0.25 0.45 1406.4 0.25 

6.6 56.48 0.009 1.05 639.14 0.25 0.36 1410.5 0.25 

1.5 57.95 0.02 0.6 641.17 0.2 0.45 1415.29 0.25 

1.2 58.66 0.02 2.4 644.96 0.1 0.63 1418.47 0.25 

0.66 60.18 0.02 0.6 646.65 0.1 0.84 1421.17 0.25 

0.3 60.84 0.03 0.3 648.83 0.2 0.3 1423.63 0.25 

0.84 63.66 0.075 0.3 653.07 0.2 0.3 1425.77 0.25 

-0.36 64.3 0.007 0.6 656.4 0.3 0.3 1427.2 0.25 

-0.96 66.35 0.005 0.6 658.38 0.1 1.5 1430.07 0.175 

0.3 69.29 0.03 -0.3 660.55 0.15 0.6 1431.75 0.35 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

3.75 70.46 0.018 0.6 663.6 0.15 0.6 1433.53 0.35 

2.79 72.36 0.018 1.5 665.92 0.1 -0.15 1436.27 0.35 

2.1 74.54 0.018 0.6 672.13 0.2 0.15 1439.5 0.35 

1.2 75.49 0.03 1.35 674.11 0.2 0.15 1442.53 0.35 

0.3 77.5 0.03 3 676.42 0.2 1.5 1445.29 0.27 

0.6 78.11 0.03 7.2 678.07 0.7 0.75 1449.75 0.25 

0.3 79.68 0.04 2.25 681.79 0.15 0.9 1451.81 0.25 

0.42 80.34 0.04 0.6 683.82 0.5 0.24 1454.09 0.25 

0.3 81.42 0.02 0.6 685.53 0.5 0.24 1456.41 0.25 

-0.84 82.67 0.04 0.6 689.12 0.2 0.66 1459.68 0.25 

4.35 84.15 0.04 0.6 690.45 0.2 0.15 1463.74 0.3 

0.9 84.99 0.04 2.4 692.75 0.2 0.6 1465.65 0.25 

1.8 88.75 0.04 0.6 696.87 0.2 -0.15 1467.57 0.2 

0.3 89.77 0.04 1.2 699.1 0.2 0.15 1469.52 0.2 

-1.5 90.35 0.0068 0.6 702.55 0.2 0.15 1472.37 0.25 

2.7 91.24 0.04 0.6 703.83 0.2 0.54 1479.7 0.25 

0.6 92.54 0.0355 5.1 709.88 1 0.24 1483.01 0.25 

-0.9 94.1 0.0055 0.6 715.75 0.2 0.45 1486.02 0.25 

0.24 94.77 0.05 0.6 717.13 0.2 0.3 1494.8 0.25 

0.3 95.6 0.04 0.6 718.9 0.2 0.24 1498.06 0.25 

0.24 96.46 0.05 0.6 719.92 0.2 0.24 1500.95 0.25 

1.2 98.1 0.022 0.6 721.59 0.2 0.45 1503.3 0.25 

-0.9 101.54 0.0058 0.6 723.53 0.2 -0.3 1504.85 0.25 

-0.9 101.7 0.009 0.6 727.41 0.2 0.45 1507.83 0.25 

0.9 102.9 0.015 1.2 729.38 0.2 0.3 1511.82 0.25 

0.72 105.19 0.015 9 733.36 0.15 0.24 1520.17 0.25 

0.24 106.09 0.02 0.6 737.69 0.2 0.33 1524.9 0.25 

-0.78 107.62 0.015 0.6 739.95 0.2 0.24 1527.7 0.25 

-0.3 109.79 0.015 -1.05 741.74 0.45 0.24 1530.29 0.25 

0.3 113.51 0.015 0.6 745.35 0.15 0.45 1533.32 0.25 

0.6 115.92 0.015 0.6 747.06 0.15 0.15 1535.37 0.25 

-0.39 117.59 0.015 0.6 750 0.35 0.24 1538.43 0.25 

0.9 118.18 0.024 0.6 751.22 0.35 0.75 1541.51 0.25 

0.45 118.8 0.03 0.6 754.05 0.1 0.15 1546.39 0.5 

2.1 121.92 0.0138 3 758.84 0.25 0.6 1549.41 0.25 

-0.15 122.92 0.05 0.6 761.71 0.25 0.24 1551.61 0.5 

0.66 124.72 0.05 0.6 762.87 0.25 0.24 1553.94 0.4 

-0.15 125.46 0.01 2.1 766.31 0.25 0.6 1559.77 0.25 

1.5 126.02 0.025 0.15 767.99 0.25 2.79 1567.81 0.25 

1.74 126.38 0.03 0.6 770.88 0.25 0.24 1570.94 0.4 

0.48 128.1 0.03 0.6 772.63 0.25 0.6 1573.8 0.25 

-0.3 130 0.03 1.2 778.46 0.1 0.24 1575.55 0.25 

1.05 131.26 0.05 1.8 779.41 0.2 0.45 1579.2 0.25 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.84 132.16 0.05 0.6 782.38 0.2 0.66 1581.44 0.25 

1.05 132.72 0.05 1.8 785.3 0.2 0.15 1587.27 0.5 

1.35 133.54 0.05 0.6 790.32 0.2 1.26 1589.71 0.25 

-1.2 134 0.1 0.6 792.61 0.2 1.35 1594.4 0.2 

9 135.25 0.09 0.9 795.5 0.2 -0.39 1596.31 0.25 

0.9 142 0.025 0.6 796.28 0.2 0.24 1598.54 0.25 

1.5 145.53 0.0225 1.5 801.33 0.2 0.24 1600.54 1 

0.3 147.29 0.0225 0.9 806.01 0.2 1.14 1604.4 0.25 

0.6 149.06 0.018 1.2 806.95 0.4 -0.15 1606.4 0.25 

0.3 149.93 0.025 0.6 810.11 0.4 0.15 1609.25 0.25 

0.6 153.42 0.0125 0.6 812.76 0.3 0.15 1612.53 0.25 

0.3 154.83 0.05 0.6 815.11 0.3 0.15 1616.18 0.25 

0.3 156.75 0.02 0.6 817.9 0.3 0.15 1619.7 0.25 

0.45 158.57 0.05 0.6 818.9 0.3 0.75 1622.2 0.25 

0.45 159.08 0.05 0.45 821.86 0.3 1.35 1628.13 0.25 

-0.33 160.94 0.009 0.45 823.55 0.3 -0.15 1630.18 0.25 

1.95 163.6 0.04 0.45 825.51 0.3 0.66 1633.9 0.25 

0.3 165.51 0.04 0.45 828.5 0.3 0.03 1637.74 0.25 

0.75 166.27 0.04 0.45 830.13 0.3 0.3 1639.98 0.25 

1.35 168.02 0.04 0.6 837.15 0.15 0.78 1644.06 0.25 

0.36 169.33 0.04 0.6 843.03 0.15 1.2 1647 0.25 

0.75 174.09 0.04 2.4 847.2 0.3 0.21 1650 0.25 

1.14 174.52 0.04 0.3 851.29 0.3 0.03 1652.5 0.25 

0.72 176.54 0.04 -0.3 852.33 0.3 1.23 1655.64 0.25 

3 177.54 0.0175 0.3 854.9 0.3 1.2 1663.81 0.25 

-0.3 178.45 0.0275 0.3 858.3 0.3 1.2 1665.9 0.25 

-0.3 179.5 0.0325 1.5 861.36 0.2 0.33 1671.24 0.25 

0.9 180.31 0.025 1.2 862.68 0.2 0.6 1672.77 0.25 

0.3 181.99 0.025 0.6 866.17 0.3 0.45 1675.12 0.25 

-0.9 188.54 0.015 1.5 867.95 0.2 0.75 1679.47 0.25 

0.3 189.53 0.015 0.9 875.45 0.3 0.66 1681.55 0.25 

1.5 192.32 0.022 0.6 879.06 0.3 1.2 1683.76 0.2 

0.75 194.18 0.0375 0.6 881 0.3 -0.3 1685.43 0.25 

3 198.55 0.1 0.6 883.81 0.075 1.05 1690.01 0.25 

2.4 200.28 0.019 0.6 884.94 0.3 -0.15 1695 0.25 

0.45 203.71 0.02 0.15 886.84 0.3 3.3 1699.63 0.25 

0.6 207.02 0.02 0.3 892.69 0.3 0.21 1701.95 0.25 

-0.39 207.58 0.02 -0.15 803.71 0.4 0.24 1702.96 0.25 

-0.69 209.6 0.01 1.65 897.16 0.145 0.03 1706.86 0.25 

0.3 210.72 0.05 0.6 898.5 0.25 0.09 1709.31 0.25 

0.3 211.47 0.05 0.6 899.73 0.145 0.24 1713.64 0.25 

1.29 213.65 0.02 0.3 901 0.25 0.3 1717.47 0.25 

0.3 217.11 0.025 0.6 903 0.25 0.15 1720.12 0.25 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

3.9 220.62 0.06 0.6 906.09 0.145 0.45 1722.5 0.25 

2.4 221.76 0.09 0.3 908.82 0.2 1.2 1726.36 0.25 

0.6 223.2 0.025 0.3 910.46 0.2 0.9 1731.66 0.25 

-0.3 226.36 0.025 0.3 914.25 0.2 0.66 1735.01 0.25 

0.45 226.82 0.03 0.6 916.1 0.1 0.15 1738.22 0.25 

0.45 229.12 0.06 0.15 920.34 0.3 0.6 1741.22 0.25 

3 231.45 0.048 0.9 923.05 0.1 0.75 1745.56 0.25 

1.5 232.95 0.048 0.6 924.42 0.1 1.2 1749.6 0.22 

1.2 233.94 0.075 0.3 926.53 0.2 0.3 1751.58 0.25 

-0.3 237.09 0.04 0.45 929.56 0.1 0.15 1755.03 0.25 

6 239.39 0.75 0.3 931.84 0.1 1.11 1760.23 0.25 

1.47 241.16 0.025 0.3 934.66 0.1 0.6 1762.1 0.35 

0.3 245.48 0.03 -0.6 940.09 0.3 1.2 1771.82 0.25 

0.3 246.36 0.03 1.95 941.91 0.2 0.6 1774.44 0.25 

0.3 247.87 0.03 0.18 944.72 0.2 0.9 1777.28 0.25 

0.6 248.94 0.03 1.2 947.39 0.2 0.9 1779.3 0.25 

0.3 251.56 0.06 0.15 949.25 0.2 0.75 1783.3 0.25 

1.2 252.94 0.06 0.9 951.6 0.25 0.84 1788.37 0.25 

1.35 253.65 0.06 1.2 953 0.85 0.15 1791.43 0.25 

1.35 255.95 0.052 1.2 957.19 0.2 1.5 1794.88 0.18 

9.9 261.65 0.052 0.3 959.78 0.2 0.15 1799.53 0.35 

1.5 266.35 0.052 -0.75 961.17 0.2 0.6 1803.07 0.25 

0.9 268.24 0.095 0.24 965.36 0.2 0.15 1808.12 0.6 

3 270.01 0.095 0.24 967.88 0.2 0.75 1815.7 0.25 

1.2 270.88 0.1 0.51 974.9 0.2 0.39 1819.56 0.25 

2.4 272.78 0.07 1.14 978.14 0.2 1.44 1821.9 0.2 

2.4 276.78 0.03 0.45 980.58 0.2 0.45 1825.24 0.25 

1.8 279.84 0.065 0.6 983.69 0.2 0.3 1829.04 0.6 

0.6 287.47 0.1 0.6 984.99 0.2 0.3 1830.74 0.6 

3 289.46 0.1 0.3 986.79 0.2 0.9 1835 0.25 

1.2 298.56 0.1 0.6 990.9 0.2 -0.3 1837.8 0.25 

0.6 302.79 0.15 0.3 993.05 0.2 0.9 1839.86 0.22 

0.6 305.12 0.1 0.3 998.23 0.2 0.3 1843.17 0.6 

0.6 307.81 0.3 1.5 1001.05 0.2 2.1 1849.52 0.25 

-0.6 308.99 0.1 0.3 1004.5 0.225 1.8 1857.55 0.2 

0.6 312.48 0.3 -0.3 1005.67 0.2 0.15 1860.42 0.8 

0.15 313.55 0.1 0.6 1007.5 0.2 0.36 1863.3 0.25 

1.8 315.3 0.1 0.09 1010.49 0.2 0.3 1865.9 0.25 

0.6 319.69 0.1 -0.24 1011.24 0.2 0.15 1868.3 0.25 

1.5 323.46 0.1 -0.45 1014.7 0.2 1.02 1871.36 0.175 

1.5 324.31 0.06 0.24 1015.91 0.25 0.3 1875.05 0.25 

1.8 325.97 0.165 -0.3 1017.62 0.25 0.24 1877.8 0.25 

-0.3 327.25 0.06 0.15 1019.08 0.25 0.6 1881.95 0.25 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.3 329.07 0.06 -0.3 1020.1 0.25 0.75 1885.1 0.25 

0.3 330.53 0.075 0.15 1022.77 0.25 0.84 1889.61 0.25 

0.45 332.51 0.06 0.54 1025.15 0.2 0.03 1893.33 0.25 

1.5 334.05 0.1 0.3 1030.53 0.2 0.42 1897.04 0.25 

0.75 336.61 0.06 1.2 1033.27 0.2 0.6 1902.6 0.25 

3.45 340.07 0.06 0.15 1036.5 0.2 0.54 1906.65 0.35 

0.15 342.32 0.075 0.9 1043.75 0.3 0.3 1910.42 0.35 

1.14 343.95 0.06 0.75 1044.82 0.15 2.1 1915.5 0.3 

1.11 346.98 0.06 0.6 1049.66 0.25 0.6 1902.6 0.25 

-0.3 348.33 0.06 0.9 1053.64 0.25 0.54 1906.65 0.35 

0.24 349.37 0.1 0.9 1056.08 0.25 0.3 1910.42 0.35 

0.24 350.63 0.1 0.15 1059.8 0.25 2.1 1915.5 0.3 

0.3 351.54 0.06 -0.42 1061.87 0.2 2.1 1917.54 0.3 

0.3 353.02 0.06 0.6 1064.03 0.3 0.9 1922.7 0.3 

0.54 355.33 0.06 1.8 1068.19 0.3 0.45 1924.5 0.3 

-0.24 356.06 0.06 0.15 1071.4 0.3 0.6 1930.37 0.3 

0.3 356.67 0.1 0.15 1074.62 0.3 0.9 1933.32 0.3 

0.3 359.59 0.1 1.8 1076.83 0.225 0.9 1937.95 0.3 

0.3 360.43 0.1 1.8 1077.74 0.2 1.5 1940.64 0.18 

0.54 361.6 0.06 0.3 1080.06 0.2 0.9 1945.2 0.55 

0.3 364.31 0.1 0.75 1082.56 0.3 0.6 1952.2 0.55 

0.54 365.28 0.06 1.8 1084.2 0.25 0.75 1955.3 0.3 

0.3 370.45 0.1 0.15 1086.75 0.25 0.9 1960.3 0.3 

0.3 371.37 0.08 0.6 1089.92 0.4 0.66 1963.67 0.3 

-0.3 372.6 0.06 1.2 1093.28 0.25 3 1967.8 0.18 

0.3 373.32 0.075 0.3 1095.59 0.225 0.45 1972.71 0.5 

0.3 377.78 0.075 0.6 1097.5 0.3 1.65 1977.16 0.15 

1.8 379.81 0.075 1.65 1100.16 0.3 0.9 1979.7 0.3 

0.75 383.32 0.075 1.5 1103.44 0.35 0.3 1983.8 0.75 

1.05 387.47 0.0575 0.24 1108.42 0.35 0.3 1985.8 0.75 

0.9 392.17 0.0575 -0.12 1110 0.2 0.9 1989.29 0.3 

0.75 396.58 0.0575 0.21 1111.2 0.3 1.05 1993.6 0.22 

0.3 402.3 0.1 -0.39 1113.7 0.3 0.3 1997.85 0.75 

0.75 405 0.1 0.3 1116.08 0.3 0.54 1999.84 0.75 

0.6 408.45 0.1 0.6 1118.3 0.3 0.6 2002.45 0.3 

-0.15 409.79 0.0575 0.6 1123.6 0.5 0.24 2006.36 0.3 

0.3 410.63 0.2 0.3 1125.22 0.5 0.3 2008.22 0.3 

0.3 414.18 0.2 0.3 1116.08 0.3 0.09 2010.9 0.3 

0.9 415.61 0.2 0.6 1118.3 0.3 -0.15 2037.9 0.3 

0.75 418.26 0.035 0.6 1123.6 0.5 0.15 2042.43 0.75 

0.45 419.83 0.0575 0.3 1125.22 0.5 -0.36 2045.17 0.3 

0.75 423.25 0.0575 0.3 1126.11 0.5 0.9 2050.17 0.3 

0.84 425.46 0.09 0.75 1128.2 0.3 1.05 2053.18 0.3 
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Table 3.6 List of the Rpl’s, Erl’s and wl’s for GODIVA continued 

Rpl's Erl's wl's Rpl's Erl's wl's Rpl's Erl's wl's 

0.3 427.54 0.08 2.1 1132.3 0.175 0.6 2054.84 0.3 

0.3 428.76 0.07 0.15 1134.39 0.3 0.3 2058.85 0.75 

0.75 430.53 0.09 0.3 1136.48 0.2 0.36 2063.75 0.3 

1.5 433.81 0.0575 1.95 1139.08 0.3 0.36 2067.31 0.3 

0.75 434.88 0.08 0.9 1143.43 0.115 0.3 2069.75 0.3 

0.75 439.11 0.1 1.14 1146.66 0.115 0.54 2072.1 0.3 

1.8 440.4 0.08 0.15 1149.9 0.3 0.15 2081.23 0.75 

1.2 442.19 0.068 0.15 1152.79 0.3 0.75 2085.12 0.3 

1.5 449.89 0.2 0.6 1156.1 1 0.54 2090.43 0.3 

0.6 453.7 0.075 1.2 1159.65 0.1 1.26 2093.07 0.3 

0.45 458.79 0.08 1.5 1161.5 0.2 0.6 2095.29 0.5 

0.3 459.57 0.08 3.81 1163.3 0.3 0.6 2099.65 1 

0.9 462.02 0.068 1.8 1165.23 0.2 -0.24 2106.22 1 

2.55 463.8 0.068 3 1167.55 0.7 0.15 2108.78 0.3 

0.75 2207.17 0.7 0.6 1170.27 0.1 0.15 2118.2 0.5 

12 2213.88 2 1.5 1172 0.2 0.3 2121.42 0.3 

10.95 2216.99 1 0.6 1174 0.3 0.15 2124.65 0.3 

3.45 2223.71 0.45 0.6 1175.99 0.25 0.6 2129.05 0.4 

3.45 2226.61 0.45 0.15 1178.6 0.3 1.8 2134.61 0.4 

0.9 2233.24 0.45 0.3 1180.7 0.3 0.15 2137.75 0.3 

0.9 2236.21 0.75 0.9 1184.41 0.3 -0.24 2141.9 0.75 

3.6 2240.52 0.9 0.9 1187.46 0.3 1.95 2145.14 0.5 

1.5 2247.9 0.35 0.3 1190.1 0.3 0.6 2148.5 0.3 

0.6 2250 0.1 0.6 1192.67 0.3 0.6 2153.21 0.4 

0.45 458.79 0.08 0.3 1194.18 0.3 0.3 2160.8 0.3 

0.3 459.57 0.08 0.9 1198 1 0.6 2164.15 0.35 

0.9 462.02 0.068 1.8 1200.8 0.15 0.6 2168.27 0.35 

2.55 463.8 0.068 0.3 1204.56 0.3 -0.3 2172.9 0.75 

0.3 466.61 0.1 -0.3 1206.15 0.125 1.8 2179.37 0.75 

0.9 469 0.2 0.3 1207.49 0.25 2.25 2183.35 0.75 

1.17 471.77 0.068 3.6 1214.2 0.5 0.9 2189.31 0.3 

-0.24 476.6 0.068 0.3 1216.1 0.25 0.3 2199.99 0.4 

0.6 477.25 0.2 0.54 1220.19 0.25 0.51 2202.8 0.3 

1.56 479.28 0.068 0.66 1224.59 0.25 0.15 2207.17 0.3 

1.65 481.33 0.068 0.3 1225.88 0.25 1.2 2213.88 0.6 

0.3 483.56 0.09 0.75 1229.7 0.25 1.8 2216.99 0.6 

0.3 485.29 0.09 0.3 1232.86 0.3 0.66 2223.71 0.3 

0.3 487.1 0.09 0.3 1235.6 0.3 0.66 2226.61 0.3 

0.6 489.55 0.09 0.3 1237.34 0.3 0.24 2233.24 0.3 

0.75 490.47 0.068 0.6 1239.65 0.25 0.12 2236.21 0.3 

0.66 495.7 0.087 0.6 1243.2 0.3 1.2 2240.52 1 

1.5 500.28 0.1 1.2 1248.2 0.8 0.45 2247.9 0.4 

0.9 502.01 0.1 0.3 1251.71 0.25 0.18 2250 0.1 
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Table 3.7 list of the Rpm’s, Erm’s and wm’s for GODIVA 

Rpm's Erm's wm's Rpm's Erm's wm's Rpm's Erm's wm's 

3.00E-6 2350 5.00E+2 3.00E-6 7100 6.0E+3 7.50E-6 20500 1.6E+5 

3.00E-6 2447 5.00E+2 3.00E-6 7200 7.0E+3 7.50E-6 21000 1.6E+5 

7.50E-7 2548 1.00E+2 3.00E-6 7350 7.0E+3 1.50E-5 22100 1.2E+5 

7.50E-7 2598 1.00E+2 3.00E-6 7500 7.0E+3 7.50E-6 23200 2.6E+5 

7.50E-7 2672 2.00E+2 3.00E-6 7750 7.0E+3 1.20E-5 23700 2.6E+5 

7.50E-7 2718 2.00E+2 3.00E-6 8000 7.0E+3 6.00E-6 24000 2.6E+5 

6.75E-6 2800 2.50E+3 3.00E-6 8200 7.0E+3 1.20E-5 24200 2.6E+5 

1.05E-6 2883 2.00E+2 1.50E-6 8400 7.0E+3 1.20E-5 24600 3.5E+5 

2.25E-6 2960 1.00E+3 3.00E-6 8500 7.0E+3 1.20E-5 25000 3.5E+5 

2.25E-6 3050 1.00E+3 3.00E-6 8750 6.0E+3 1.05E-5 25700 3.0E+5 

2.25E-6 3150 1.00E+3 1.50E-6 9000 8.0E+3 1.05E-5 26200 3.0E+5 

2.25E-6 3260 1.00E+3 3.45E-6 9150 8.5E+3 1.05E-5 27200 3.0E+5 

2.25E-6 3356 1.00E+3 3.00E-6 9300 8.5E+3 1.05E-5 27500 3.0E+5 

3.75E-6 3458 1.00E+3 3.00E-6 9500 8.5E+3 1.05E-5 28300 3.0E+5 

3.75E-7 3574 1.50E+2 3.00E-6 9800 7.0E+3 1.05E-5 28800 3.0E+5 

3.84E-7 3630 1.50E+2 1.20E-6 10000 6.0E+3 1.05E-5 29300 3.0E+5 

3.00E-6 3700 1.50E+3 1.05E-5 10400 7.0E+4 1.05E-5 30000 3.0E+6 

3.00E-6 3785 1.15E+3 1.05E-5 10650 7.0E+4 1.05E-5 31100 3.0E+6 

1.50E-6 3858 8.00E+2 9.00E-6 10850 7.0E+4 9.90E-6 31800 3.0E+6 

3.00E-6 3950 3.00E+3 1.35E-5 11200 7.0E+4 9.90E-6 32100 3.0E+6 

9.00E-6 4050 7.50E+3 1.20E-5 11650 7.0E+4 9.90E-6 32800 3.0E+5 

3.00E-6 4150 3.50E+3 7.50E-6 12000 7.0E+4 9.90E-6 34200 3.0E+5 

3.60E-6 4250 3.50E+3 7.50E-6 12400 7.0E+4 9.90E-6 35000 3.0E+5 

4.80E-6 4350 3.50E+3 9.00E-6 12800 7.0E+4 9.90E-6 36200 3.0E+5 

6.75E-6 4500 3.50E+3 3.00E-6 12900 7.0E+4 9.90E-6 37000 3.0E+5 

5.25E-6 4750 3.50E+3 9.00E-6 13100 8.0E+4 9.90E-6 37900 3.0E+5 

3.75E-6 5000 3.50E+3 7.50E-6 13250 7.0E+4 9.90E-6 39100 3.0E+5 

3.75E-6 5150 4.00E+3 7.50E-6 13700 7.0E+4 1.20E-5 40000 3.0E+6 

3.75E-6 5350 5.00E+3 7.50E-6 14300 7.0E+4 1.20E-5 41000 8.0E+5 

3.75E-6 5500 5.00E+3 7.50E-6 14800 7.0E+4 1.20E-5 42000 8.0E+5 

3.75E-6 5600 5.00E+3 7.50E-6 15000 7.0E+4 0.0112 50000 9.0E+8 

3.75E-6 5700 5.00E+3 9.00E-6 15300 7.0E+4 0.045 100000 1.8E+10 

3.75E-6 5800 5.00E+3 9.00E-6 16000 7.0E+4 0.01 200000 7.5E+10 

3.75E-6 6000 5.00E+3 1.20E-5 17200 7.5E+4 0.01 300000 8.0E+10 

3.30E-6 6150 6.00E+3 9.00E-6 17900 7.0E+4 0.025 400000 5.5E+11 

3.30E-6 6300 6.00E+3 9.00E-6 18400 7.0E+4 0.01 500000 1.0E+12 

3.00E-6 6450 6.00E+3 7.50E-6 18900 7.0E+4 0.01 600000 1.0E+12 

3.00E-6 6600 6.00E+3 7.50E-6 19400 7.0E+4 0.01 700000 9.0E+11 

3.00E-6 6750 5.00E+3 7.50E-6 19800 1.6E+5 0.2 800000 2.4E+12 

3.00E-6 6950 5.00E+3 7.50E-6 20000 1.6E+5 0.39 900000 4.0E+12 
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Table 3.8 List of Rpn’s, Ern’s and wn’s for GODIVA 

Rpn's Ern's wn's 

1.52E+12 1.00E+06 1.00E+20 

1.00E+10 2.00E+06 6.00E+16 

3.80E+10 3.00E+06 8.00E+16 

3.00E+09 4.00E+06 1.00E+16 

5.10E+10 5.15E+06 8.00E+16 

6.00E+10 7.00E+06 6.10E+16 

1.50E+10 8.40E+06 1.50E+16 

9.00E+09 9.40E+06 1.50E+16 

1.20E+09 9.70E+06 3.00E+15 
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CHAPTER 4 

 

 

 

VERIFICATION AND VALIDATION OF THE MAXIMUM ENTROPY 

 

METHOD FOR RECONSTRUCTING NEUTRON FLUX, 

 

WITH MCNP5, ATTILA-7.1.0 AND  

 

THE GODIVA EXPERIMENT 

 

 

 

Introduction 

 

The method of moments is a very useful approach in the solution of transport 

equations for density distributions  (Marchisio, Pikturna, & Fox, May 2003). This 

procedure however dampens much of the information contained in the continuous 

distribution. The resulting moments are useful for inferring integral information about a 

distribution such as the mean number of particles and their mean size, in the case of 

neutron flux the average number of neutrons and their average energy. For neutron flux it 

is desirable to calculate the continuous distribution itself (the neutron flux spectrum), 

which provides useful information for finding collision densities across the entire energy 

range, 0 to 10MeV (Duderstadt & Hamilton, 1976) for most nuclear reactors. 

The maximum entropy method provides an elegant means of reconstructing a 

density distribution given a finite number of moments. Neutron energy moments have 

been verified for a 100% 
235

U critical assembly (Crawford & Ring, submitted 2012) and 

validated with the GODIVA experiment (Crawford & Ring, submitted 2012); both can be 
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found in literature. In general, there are infinitely many continuous distributions whose 

moments match the known moments. This is commonly known as the moment’s problem 

(Bandyopadhyay, Bhattacharya, Biswas, & Drabold, may 2005). The precise statement of 

this problem is as follows: given a finite number of moments, is it possible to find a 

unique distribution that gives rise to these moments? Additional constraints are then 

required to guide the process of finding a continuous distribution that fits the known 

moments. The maximum entropy method is one such constraint. 

 

 

Overview of the Maximum Entropy Method for  

Reconstruction of Density Distributions 

 

The maximum entropy method is based on the concept that the distribution that 

maximizes the information entropy is the statistically most likely to occur. In the context 

of information theory, the information entropy S, of a distribution p(x), is given by the 

integral in equation 4.1, where  is the support of the distribution. 

   ∫  ( )     ( )  
 

                                                                                 Equation 4.1 

The problem becomes a search to find a p(x) that maximizes the information 

entropy S subject to the known moments (equation 4.2), where the number of known 

moments is (N + 1).  

   ∫    ( )  
 

                                                                            Equation 4.2  

This is accomplished by multiplying the definition of the entropy functional 

(equation 4.3) with Lagrangian multipliers, k and finding the maximum of this function. 

    ∑  (∫    ( )  
 

)   ∫  ( )     ( )  
 

 ∑  (∫    ( )  
 

   )  

             Equation 4.3 
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The maximum of equation 4.3 is when the derivatives (equation 4.4 and 4.5) are zero. 

  

   
                                                                                                              Equation 4.4 

  

  ( )
                                                                                                           Equation 4.5 

The derivative of equation 4.4 gives the moment constraint back, equation 4.2. The 

results of the derivative of equation 4.5 are equation 4.6. 

  

  ( )
  ∫ (     ( )   )  

 
 ∑   ∫     

 
 
                                      Equation 4.6 

The integrals in equation 6 must be valid on an arbitrary domain , so the integrand must 

be zero. The result is equation 4.7. 

     ( )    ∑    
  

                                                                            Equation 4.7 

Equation 8 gives the general solution.  

 ( )     (   ∑    
  

   )                                                                         Equation 4.8 

The maximum entropy solution is found by solving for the Lagrangian multipliers    

with a system of nonlinear equations based on finding    such that ( ̃    )is below a 

certain specified precision. The moments based on the reconstructed distribution are  ̃ .  

  ̃  ∫      (   ∑    
  

   )   
 

                                             Equation 4.9  

The moments based on the distribution (  ) are known via the method of 

moments. Gauss quadrature coupled with Newton’s method can be used to solve this 

system of nonlinear equations for ( ̃    )                 . 

The maximum entropy method is applied to the reconstruction of neutron flux 

spectrum within a 100% enriched 
235

U critical assembly and to the GODIVA experiment. 

Neutron moments are obtained from the method of neutron energy moments. Neutron 

energy moments have been verified (Crawford & Ring, submitted 2012) and validated  
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(Crawford & Ring, submitted 2012) for the cases in this paper, GODIVA and the critical 

assembly. The maximum entropy reconstruction method is verified for neutron flux with 

the spherical 100% 
235

U critical assembly modeled in Monte Carlo N Particle 5 version 

1.40 (MCNP5) and Attila-7.1.0-beta version (Attila) and validated with neutron flux 

calculated from foil activation measurements (McElroy, Armani, & Tochilin, 1969) from 

the GODIVA experiment (INL NEA/NSC DOC(95)03, September 2010). 

 

 

Application of the Maximum Entropy Method to  

Reconstruct Neutron Flux Spectrum 

 

Equations 4.1 to 4.9 can be quickly rewritten in the terms of energy dependent 

neutron moments following the same mathematical approach. Energy dependent neutron 

flux  ( ⃗  ) is taken to be the density distribution sought after i.e.  ( ) is replaced with 

 ( ⃗  ) as the distribution to solve for at a specific distance  ⃗.  The moments are known 

functions of  ⃗ so for any given  ⃗ the flux spectrum can be determined, (Crawford & Ring, 

Verification of Analytic Energy Moments for the One-Dimensional Energy Dependent 

Neutron Diffusion Equation with MCNP5 and Attila-7.1.0, submitted 2012). 

   ∫  ( ⃗  )     ( ⃗  )  
 

                                                                     Equation 4.10 

The moments,    are replaced with   , which can be found by the method of 

neutron energy moments previously mentioned.  

   ∫    ( ⃗  )  
 

                                                                    Equation 4.11 

   ∫  ( ⃗  )     ( ⃗  )   
 

 ∑  (∫    ( ⃗  )  
 

 
   )              Equation 4.12 

  

   
                                                                                                            Equation 4.13 
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  ( ⃗  ) 
                                                                                                        Equation 4.14 

  

  ( ⃗  )
  ∫ (     ( ⃗  )   )  

 
 ∑   ∫     

 
 
                            Equation 4.15 

     ( ⃗  )    ∑   
                                                                         Equation 4.16 

Equation 4.17 gives the general solution.  

 ( ⃗  )     (   ∑    
  

   )                                                                   Equation 4.17 

The same method can be used to solve ( ̃    )for the Lagrangian multipliers. 

The reconstructed moments,  ̃  are the moments based on reconstructed flux from the 

maximum entropy method. 

  ̃  ∫      (   ∑    
  

   )   
 

                                         Equation 4.18 

Gauss Quadrature was used for integrating the moments in conjunction with Newton’s 

Method to solve for the Lagrangian multipliers. The tolerance for the Newton solver is 

1E-6 and it is extremely sensitive to the initial guesses. The initial guesses ranged from -

1.5 to 0 for 0; -1 to 0 for 1; -1 to 0 for 3, 4 and 5. 

 

 

Results and Discussion 

 

The reconstructed neutron flux is compared to the MCNP5 and Attila neutron flux 

spectrum at the different radial positions within the spherical critical assembly for the 

100% 
235

U sphere. The different radial positions within the spherical critical assembly 

are: 1cm, 2cm, 3cm… 8cm and 8.35cm.The energy range for the spectrum plots is 0 to 

10MeV. The MCNP5 spectrum has 1000 data points, based on the energy bins used in 

conjunction with an f2 tally. MCNP5 (Los Alamos National Lab, April 24, 2003) has 
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become the gold standard for comparison so the relative errors were based on the 

MCNP5 continuous flux spectrum. 

Error bars are not explicitly shown on every data point in Figures 4.1 and 4.2 to 

keep the figures clean and readable. The relative error listed in the titles of Figure 4.1 and 

4.2 is the error comparison of the maximum entropy method with MCNP5 computation. 

Only figures at 1cm and at the sphere edge (8.35cm) were plotted. Figures at the other 

radii within the spherical critical assembly look extremely similar to Figures 4.1 and 4.2, 

and were omitted. The neutron moments did not change significantly enough from the 

center to the outer edge to change the flux spectrum shape, only the relative error. 

The overall results shown by figures 4.1-4.2 show the maximum entropy method 

produces a general 1/E shape which is consistent with the 1/E theoretical spectrum that is 

expected from a fast critical assembly or reactor (Duderstadt & Hamilton, 1976). 

 

 

 
Figure 4.1 Comparison plot of the three computational methods flux spectrum at 1cm 

radius within the spherical critical assembly 
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Figure 4.2 plot of the neutron spectrum for the three computation methods at the edge of 

the spherical critical assembly 

 

 

 

Table 4.1 shows the relative error of the maximum entropy method with MCNP5 

at each radius from the center of the spherical critical assembly. The % relative error in 

the maximum entropy reconstruction method is likely from the higher order neutron 

energy moments, specifically 4 and 5 which are 10% and 14% off of the MCNP5 

moments (Crawford & Ring, submitted 2012). The higher relative error towards the 

critical assembly edge is because neutron diffusion theory starts to break down at 3 mean 

free paths near a system boundary (Lamarsh J. R., 1966). The neutron diffusion theory 

limitation was observed in the comparison of the neutron energy moments as well. The 

system edge for both the 100% 
235

U sphere and the GODIVA is where the error is 

greatest. The error is within a reasonable range for practical engineering purposes and 

could be implemented in a multiphysics calculation involving other transport phenomena. 
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Table 4.1 Relative Error of the Maximum Entropy Method with Respect to MCNP5 

Radius from center within spherical critical 

assembly 
% relative error with respect to MCNP5 

1cm 15% 

2cm 15% 

3cm 15% 

4cm 15% 

5cm 16% 

6cm 18% 

7cm 20% 

8cm 21% 

8.35cm 23% 

 

 

 

The flux spectrum at the center of the GODIVA experiment was determined with 

foil activation measurements (McElroy, Armani, & Tochilin, 1969). The data for the 

GODIVA spectrum can be found in the McElroy reference in the reference section in this 

paper. Figure 4.3 compares the neutron flux spectrum from the three computational 

methods with the flux spectrum from the GODIVA experiment. Figure 4.3 shows the 

maximum entropy spectrum is in good agreement with the GODIVA spectrum, the 

relative error range is 0% to 10% from reported values, (see McElroy, Armani, & 

Tochilin reference). MCNP5 flux spectrum relative error range is 0% to 20% from 

GODIVA data and the Attila relative error range is 0% to 35% from GODIVA. The 

GODIVA spectrum has a very strong 1/E shape. In the energy range from 0 to roughly 

1eV the maximum entropy flux spectrum is within a 5% of the GODIVA spectrum while 

the other two methods are in the 10% to 30% range. 
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Figure 4.3 Comparison plot of the three computational methods with the neutron 

spectrum from GODIVA 
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MeV. A measurement of neutron flux near 1x10
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MeV was not made for 

GODIVA so there is not a real comparison at this energy. The neutron flux at a very 

narrow energy region i.e. 0 to 1x10
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 is not easily calculated in MCNP5 either. A 

calculation was attempted in MCNP5 for an energy bin of 1x10
-16

 to 1x10
-10

 and the 

relative error for this was 58%, and a value of 0, which means that the value is not 

meaningful (Los Alamos National Lab, April 24, 2003, p. 1.7). Thermal neutrons will 
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come to some equilibrium at some temperature (Weinberg & Wigner, 1958) and populate 

the thermal region of the neutron spectrum at this temperature not 0, which is what 

MCNP5 and Attila predict. More work needs to be done to include this into the maximum 

entropy reconstruction method, but the general 1/E shape is promising and does capture 

the neutron physics of the fast spherical 100% 
235

U critical assembly and the GODIVA 

experiment. Even though the peak of the maximum entropy flux is not around 0.4MeV 

the value is still within 20% of the MCNP5 flux spectrum at that point. 

 

 

Conclusion 

 

Overall the maximum entropy method applied to reconstruct a neutron flux 

spectrum from known neutron energy moments compares well to standard computational 

methods and the GODIVA experiment. The neutron flux spectrum calculated from the 

maximum entropy method has a relative error range of 0% to 10% with respect to 

GODIVA and a relative error range with respect to MCNP5 of 15% to 23%. The 

maximum entropy method as a way to reconstruct neutron flux spectrums shows great 

promise. The maximum entropy method is a computationally fast reliable method to 

calculate a full energy neutron flux spectrum. 
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CHAPTER 5 

 

 

 

SUMMARY, CONCLUSION AND FUTURE WORK 

 

 

 

The results of the research show the beginnings of a fast reliable new approach to 

solving neutron transport phenomena. Converting the EDNDE into moment form via the 

method of moments produced normalized energy dependent neutron moments, NEDNM. 

The NEDNM are used to reconstruct a continuous energy spectrum neutron flux with the 

maximum entropy method. The NEDNM are verified and validated for two bare 

spherical critical assemblies: a 100% enriched 
235

U theoretical case and the GODIVA 

experiment. The NEDNM and the reconstructed neuron flux spectrum is verified and 

validated with MCNP5, Attila and GODIVA with great results. 

The relative error of the neutron diffusion NEDNM based on MCNP5 as the 

standard is 0% to 14%. The relative error of neutron diffusion NEDNM based on 

GODIVA values as the standard is 0% to 24%. The estimated experimental error in the 

values from the GODIVA experiment is 5.6%. The relative error of the reconstructed 

neutron flux with respect to GODIVA is 0 to 10% and the reconstructed neutron flux 

relative error with respect to MCNP5 is 15% to 23%. The low relative error is very 

encouraging to continue to pursue developing the method of moments applied to neutron 

transport and to continue working on reconstructing neutron flux spectrum for other 

critical assemblies and isotope blends. The relative error with respect to GODIVA for the 
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reconstructed neutron flux shows the overall method is reliable and accurate. The 

reconstructed flux has the highest amount of error between 0 and 0.5MeV. This error is 

because the exponential function that satisfies the conditions of the maximum entropy 

method is a maximum at E = 0 instead of a value of 0. The maximum entropy method 

could be reformulated to maximize the log normal of the distribution to provide a better 

solution and a flux value of zero at E = 0. The reconstructed neutron flux captures the 

general expected theoretical functional shape, 1/E. Other limits of the method are due to 

the neutron diffusion approximation used as well as the assumed value for the average 

angle of scatter (µ=2/3*A). The limits of neutron diffusion theory can be seen in the 

moment plots in Figures 2.7 through 2.11, 3.7 through 3.11, and in the higher relative 

error of the reconstructed neutron flux towards the sphere edges, see Table 4.1 and Figure 

4.2. The diffusion approximation is where the method could be improved first to increase 

its accuracy by adding in a better approximation to the average angle of scatter and 

including more terms to the energy dependent diffusion coefficient. 

The method could be extended to a reflected critical assembly that has a reflector 

i.e. graphite or beryllium surrounding a critical assembly. A reflected boundary and the 

neutron physics from a reflected boundary could be investigated instead of a bare 

boundary which is what this research presented. This would add a crucial next step to 

broaden the maximum entropy method of moments towards a full neutron spectrum 

heterogeneous nuclear reactor type calculation. All nuclear reactors are composed of fuel, 

cladding, moderator and structure materials that are exposed to a harsh neutron rich 

radiation environment. All nuclear reactors are extremely affected by more than neutron-

isotope interactions alone. 
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There are many opportunities of expanding this method to capture the effect other 

transport phenomena (specifically momentum and heat) have on neutron transport in a 

nuclear reactor or the multiphysics effects on nuclear reactors. A full neutron spectrum 

solution allows for the inclusion of temperature effects (Doppler Broadening) across the 

entire resonance region in any isotope or mix of isotopes cross sections. Temperature 

effects on nuclear reactivity could be computed and modeled. Void coefficients could 

also be modeled in a multiphysics environment by solving for the neutron flux and 

simultaneously solving the heat and momentum equations which would provide the 

temperatures and velocities to determine: density changes and velocities of a fluid. Film 

and nucleate boiling that incorporates a full neutron spectrum could be modeled for a fuel 

pin which would provide insight into the moderator voids and where departure from 

nucleate boiling (DNB) takes place. The temperature effects from Doppler Broadening 

and void coefficients can be directly coupled to the reactivity changes and allow for 

transient calculations to be made.  

Isotope changes in the fuel, moderator or cladding could be computed by adding 

in the nuclear reaction sets of interest. Adding in nuclear reaction sets would provide a 

way to calculate fuel burn-up, i.e., the fission products created in fission events which 

change the isotopic concentrations within a fuel matrix and the fuels performance. 

Possible neutron damage calculations could be made for the cladding matrix from the 

entire neutron spectrum with the right nuclear reaction set. Activation analysis and 

activation of the moderator/support structures could be performed as well for many 

neutron transport problems including the constantly changing isotope inventory inside of 

a nuclear reactor fuel pin. 
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A great challenge for many operating nuclear power plants is to keep an up-to-

date record of the isotopes in the fuel and in the fuel inventory. Currently there are a only 

a few method to do this and all are multigroup methods and are not calculated in a 

multiphysics environment. This means that there is a great opportunity and the maximum 

entropy method of moment reconstruction of neutron flux could provide a way to 

determine an isotopic inventory. 

Overall the method of moments in conjunction with maximum entropy method 

applied to the energy dependent neutron diffusion equation for simple bare critical 

assemblies is computationally fast, reliable and accurate. The method of moments and the 

maximum entropy method show great promise as a technique to solve neutron transport 

phenomena and worth further research efforts. 


