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ABSTRACT
The need for precise micro/nano-positioning has arisen in many fields of research and 

technology. Piezoelectric stick-slip actuators are widely used where precise positioning over 
a wide range of motion is required. Controlling manipulators th a t utilize piezoelectric 
stick-slip actuators is not a trivial task, as these actuators have a discrete stepping na­
ture, w ith a step size th a t is influenced by a variety of factors such as actuator loading, 
tem perature, and humidity. Absence of integrated joint sensors in m anipulators th a t use 
piezoelectric stick-slip actuators (which is typical), as well as difficulty in using vision 
feedback for closed-loop control, has led to  development of open-loop modeling methods to 
estim ate the step size of the actuators. Prior work has failed to  characterize and quantify 
the effects of various parameters on the displacement of such actuators to  a degree as to 
be easily utilized in the control of an actual m anipulator. In this thesis, we propose an 
empirically derived predictive open-loop model for the step size of the prismatic and rotary 
piezoelectric-stick-slip-actuated joints of a Kleindiek MM3A micromanipulator, based on 
static and inertial loads due to  the mass of the m anipulator's links as well as loads applied 
to  the end-effector. The effects of various parameters on the step size of each joint are 
quantified and characterized. The results obtained are then fit into a model based on 
nonlinear regression via joint-specific parameters. Calibration routines are developed to 
quickly determine the joint-specific parameters for use in the derived predictive step-size 
model. Using the model obtained, we can predict the step size with an accuracy of 20% 
(100 nm) for the prismatic joint of the manipulator, and 2% (1 ^rad) for the rotary joints 
of the manipulator.
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CHAPTER 1
INTRODUCTION

The need for precise micro/nano-positioning has arisen in many fields of research and 
technology, such as in the field of microbiology, electro-discharge machining, nanomaterial 
testing (e.g., carbon nanotubes), lithography, microelectromechanical systems (MEMS), 
and nanoelectromechanical systems (NEMS). The process of precise positioning at very high 
resolutions (to the scale of nanometers) can be implemented using effective and accurate 
positioning techniques. For the purposes of precise positioning at high resolution, while 
still allowing significantly larger range of travel, concepts such as stick-slip motion, impact 
drive principle, and inchworm-type motion have been employed by many researchers [1-3 ], 
w ith hydraulic, piezoelectric, pneumatic, and moving-coil actuators being the most common 
types of actuators th a t have been used for precise positioning. The stick-slip devices are 
characterized by a comparatively simple design consisting of few parts, backlash-free motion, 
and very high resolution. This makes them  attractive for building up small, cheap, and 
accurate positioners. The piezoelectric actuator is based on the piezoelectric effect, wherein 
application of a voltage to the material causes it to  expand. The result is very high voltages 
corresponding to only tiny expansion of the piezoelectric material. Moreover, they have 
a very high power-to-weight ratio, and therefore, can be scaled down and made compact. 
W hen these piezoelectric actuators run on the concept of stick-slip motion, they are termed 
“piezoelectric stick-slip actuators.” Piezoelectric stick-slip actuators have a simple structure, 
high positional accuracy owing to  their small piezoelectric coefficient [4], and theoretically 
unlimited distance [5, 6]. In addition, they have high stability and stiffness as they are 
supported by guiding surfaces [7]. Due to the above reasons, piezoelectric stick-slip actuators 
have proven to be very useful for achieving submicron accuracy and very fast response. Thus, 
these devices have been incorporated into many micropositioners and have drawn extensive 
attention over the last decade.

The piezoelectric stick-slip actuators work on the principle as shown in Fig. 1.1. The 
actuator consists of a piezoelectric element and a sliding mass th a t moves relative to the



2

<2

(3) time

F ig u re  1.1. Working principle of a piezoelectric stick-slip actuator. As the voltage slowly 
increases from 1 to 2 , the piezoelectric element stretches by a distance D , and due to 
stick-slip friction between the piezoelectric element and the sliding mass, the sliding mass 
also advances. W hen the voltage is quickly reduced from 2 to 3, the piezoelectric element 
quickly shrinks, but the inertia of the sliding mass prohibits it from moving backward as 
quickly, resulting in a net forward displacement of the sliding mass of d < D.

piezoelectric element. The sliding mass is attached to  the piezoelectric element via friction 
[8]. A sawtooth voltage signal is applied to the piezoelectric element. As the voltage slowly 
increases from point 1 to 2, the piezoelectric element expands. The friction between the 
piezoelectric element and the sliding mass causes the mass to  move with the expanding 
element. This is called the “stick” phase. Then, the voltage is quickly reversed from 2 to  3 
leading to  the piezoelectric element being retracted very quickly in the opposite direction. 
This, in turn, leads to the mass sliding relative to  the piezoelectric element because the 
force due to inertia becomes larger than the friction between the piezoelectric element and 
the sliding mass. This is called the “slip” phase. By alternating between the stick and slip 
phase, infinite motion in either direction is possible. Movement can occur in two phases, 
namely the fine mode (used for achieving the highest resolution possible) and the coarse 
mode (used for taking comparatively larger discrete steps and for achieving quicker motion).

In recent years, several companies such as Physik Instrum ente [9], NanoControl [10], and 
Nanomotion [11] have developed innovative piezoelectric-based actuators for the purposes of 
precise positioning at the micrometer and nanometer scale. More products based on inertial 
drives or walking mechanisms have now become available (e.g., SmartAct and Piezomotor) 
[12, 13]. The Kleindiek MM3A ( [14], Fig. 1.2), the Zyvex Nanomanipulator [15], Imina 
Technologies miBot [16], and the Attocube Nanopositioners [17] are some of the commercial 
m anipulators based on piezoelectric stick-slip actuators.

One m ajor challenge in the field of micromanipulation is controlling piezoelectric stick- 
slip actuators, as these actuators have a discrete step nature. Hence, it is not possible to 
send a continuous signal to these actuators to  achieve continuous motion for the end-effector

J D  ■  voltage

t
—  I *— Sliding Mass

d  B ,\P iezoe lec tric  
Element
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F ig u re  1.2. The Kleindiek MM3A micromanipulator, manufactured by Kleindiek Nan- 
otechnik, is a RRP m anipulator th a t utilizes piezoelectric stick-slip actuators. This is the 
m anipulator used throughout this thesis.

mounted on the manipulator. The input must be given in the form of number of steps to 
be taken by each joint of the manipulator. The problem is th a t these stick-slip actuators, 
being intimately connected with friction and inertia, do not have fixed step sizes, but rather, 
the step sizes vary based on the external loads on the nanom anipulator [18], the mass of 
the m anipulator’s links, environmental conditions [19, 20], and various other factors [21]. 
Moreover, such devices typically lack sensor feedback, making it difficult to  control the 
system ’s behavior in a closed-loop fashion.

To accurately control m icro/nano-m anipulators with piezoelectric stick-slip actuators, 
various closed-loop control schemes, typically using a vision system, have been implemented. 
Saiedpourazar and Jalili [22,23] developed an adaptive controller to  estim ate the parameters 
of the m anipulator, and fused visual servoing and force feedback to  enable closed-loop 
autom atic control of the Kleindiek MM3A. Yang et al. [24] developed a closed-loop controller 
for micromanipulation in an atomic force microscope (AFM). A m ultitude of other feedback- 
control schemes such as voltage/frequency control [25], hybrid control [26], and sliding-mode 
control [27] have been implemented. Research utilizing vision feedback from the scanning 
electron microscope (SEM) [28] and optical microscope [29] images has also been done. 
However, closed-loop control of manipulators using imaging da ta  is challenging as real-time 
nanoscale visual and force da ta  is difficult to  obtain [30]; such closed-loop techniques also 
require a dedicated SEM, which is not available to all researchers.

In addition to  friction, the behavior of piezoelectric systems are predominantly affected 
by nonlinearities such as hysteresis, creep, and drift [31], which degrade their performance. 
Due to the presence of such nonlinearities, it becomes necessary for accurate modeling of
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the dynamics for the displacement of these piezoelectric stick-slip actuators. This includes 
modeling of the nonlinearities including friction and hyteresis as well as modeling the 
piezoelectric element.

The research group at EPFL in Switzerland [1, 2] has focused their research on these 
actuators for precise m anipulation and nanoscale motion control. They have designed, 
developed, and modeled various manipulators and microrobots based on piezoelectric stick- 
slip devices. Edeler and Fatikow [4, 32] at University of Oldenburg in Germany have 
developed techniques for open-loop control of piezo-actuated systems. Lockwood et al. [33] 
characterized the performance of these actuators against gravity, and Peng and Chen [18] 
shed light on the effect of the end-effector mass on the behavior of such systems. Many other 
models (discussed in Chapter 2) utilizing different techniques for modeling piezo-actuated 
systems have been developed. However, knowledge of the effect of static and dynamic 
parameters on the behavior of piezoelectric stick-slip systems is still lacking in literature. 
In addition, there has been no attem pt to  accurately model the behavior of the piezoelectric 
stick-slip motion in its coarse mode.

The goal of this thesis is to  quantify the effect of loads on the behavior of these 
piezoelectric stick-slip actuators being driven in coarse mode. By doing so, we take a 
first step toward accurate control of m icro/nano-m anipulators with piezoelectric stick-slip 
actuators. Specifically, we will (1) experimentally dem onstrate the effect of various static 
loading conditions on the step size of the rotary and prismatic joints of the Kleindiek 
MM3A manipulator, (2) develop analytical predictive models, based on empirical data, for 
the effect on the joints of the MM3A based on current loading conditions, and (3) develop 
calibration routines to  quickly determine joint-specific parameters for use in the derived 
predictive step-size model. W ith this approach, we propose to accurately control the motion 
of m icro/nano-m anipulators by utilizing the derived empirical model in algorithms such as 
the one we presented in [34], which converts desired m anipulator end-point commands into 
the appropriate number of commanded joint steps.

In Chapter 2, an introduction to  the Kleindiek MM3A [14] and a review of existing 
literature on modeling of piezoelectric stick-slip actuators is discussed. The kinematics and 
dynamics of the MM3A (modeled as a traditional robotic m anipulator) are presented in 
Chapter 3, and the effects of related static and dynamic parameters are discussed. An 
empirical model describing the effect of static loads on prismatic joints of the MM3A is 
developed in Chapter 4. An empirical model describing the effect of static loads and inertial 
load due to  link 3 on rotary joint of the MM3A is developed in Chapter 5. A calibration
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routine to  determine the free model parameters is discussed in Chapter 6 . Finally, the 
conclusion and potential future work is presented in Chapter 7. The full development of 
the forward and inverse kinematics, m anipulator Jacobian, and Lagrangian dynamics of the 
MM3A is given as an appendix.



CHAPTER 2
BACKGROUND

Modeling of piezoelectric stick-slip actuators is a challenging task. This is mainly due 
to  the nonlinear nature of friction and hysteresis, which significantly affects the behavior 
of these actuators [31]. Consequently, a number of studies have focused on modeling these 
nonlinearities in a model of piezoelectric actuators. Moreover, when dealing with microma­
nipulation, various other factors such as pre-sliding displacement [35,36] and environmental 
conditions have been shown to  significantly affect the performance of these actuators. The 
working principle of the piezoelectric stick-slip actuator is explained in Chapter 1. In this 
section, we will give an overview on the characteristics of the Kleindiek MM3A. We will 
also discuss some of the dynamic models of these actuators presented by different research 
studies. Various studies have been conducted th a t shed light on the effect of certain external 
and intrinsic factors on the performance of these actuators. We conclude this chapter by 
summarizing the work of previous studies and comparing it with our work.

2.1 The Kleindiek MM3A Micromanipulator
The Kleindeik MM3A micromanipulator is a three-degree-of-freedom (3-DOF) rotary- 

rotary-prismatic) (RRP) m anipulator. It consists of three piezoelectric-driven actuators, 
named Nanomotors®, based on the same principle as described in Fig. 1.1. The two modes 
of movement (coarse and fine), which are described in section Chapter 1, are shown in Fig.
2.1. The piezoelectric actuators utilized in the MM3A provide wide range of motion (240 ° 
in the revolute joints and 12 mm in the prismatic joint). Each step of the end-effector in fine 
mode corresponds to  5 nm due to  revolute actuators and 0.25 nm due to  prismatic actuators, 
and each step in coarse mode corresponds to 20 ^  m and 15 ^  m for joints 1 and 2 (revolute 
joints), respectively, and 1 ^  m due to  joint 3 (prismatic joint) [6]. This nanoscale precision 
combined with a wide range of motion is achieved due to  the stick-slip movement of the 
Nanomotors*®. The am plitude of the applied voltage signal determines the step size, and 
the frequency of the signal affects the speed at which each step is executed.
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(b)

Speed 

cQ1 V

c08 V W V ^ / - “W —
c64

Positive Coarse Step Negative Coarse Step

T Amplitude = 80

0.37 ms at Frequency = 2.7 KHz 0.37 ms at Frequency = 2.7 KHz

F ig u re  2.1. The Kleindiek MM3A microm anipulator’s (a) fine positioning and (b) coarse 
positioning modes [6]. Reprinted with permission.
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2.2 Prior Work in Modeling of Piezoelectric Stick-slip Actuators
In the modeling of piezoelectric stick-slip actuators, early remarkable work was con­

tributed by Pohl [37]. In Pohl’s study, the piezoelectric actuator was simplified as a simple 
linear component, and the relationship between displacement of the piezoelectric actuator 
and the driving voltage was represented using a linear function. The following equation 
governed the study:

A X  =  D (A V )
Fp =  E  (AV)

where A X  is the expanding displacement of piezoelectric actuator, Fp is the force generated 
by the piezoelectric element, A V  is the voltage difference applied to the piezoelectric 
actuator, and E  and D  are coefficients relating the voltage to  the force and the displacement, 
respectively. However, this model failed to take into account the friction nonlinearity as 
well as the piezoelectric elem ent’s dynamics. Rabinowicz [21] studied the effect of static 
and kinetic friction on the stick-slip system via different experiments, and concluded tha t 
they have a significant effect on its displacement.

In another study, Chang and Li [38] developed a model for a piezoelectric actuator with 
a programmable step size. The schematic diagram of their actuator model is shown in Fig.
2.2, in which M  is the mass of the movable stage, m the mass of the slider or end-effector, 
k is the stiffness of the spring, and c is the damping of the damper. The equations for the 
motion of the slider resting horizontally on the movable platform are:

. d2X  dX  , , ^  r . .. . . ( d X  dx \
(M  +  m) O F  =  ~ cHt -  k(X  -  A L(t)) -  (^ mg)sgH i f  -  d t j

d2x  dx d X
m W 2 =  - (MmS)Sg^ n  -  - d f )

In this work, the friction between the slider and the movable platform was represented by 
Coulomb friction. However, the friction observed in stick-slip piezoelectric actuators has 
been shown to  have far more complex nature than  just Coulomb friction [39-42].

Goldfarb et al. [43] developed a nonlinear lumped param eter model of a piezoelectric 
actuator. Their model, which consists of both mechanical and electrical domains, as well as 
the connection between the two domains, is shown in Fig. 2.3. Their model was based on 
the generalized Maxwell resistive capacitor to  represent the static hysteresis th a t is observed 
in piezoelectric actuators. This was represented by a generalized elastoplastic Maxwell-slip 
model [44]. Despite the presence of this nonlinearity, the dynamics of the piezoelectric
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X

F ig u re  2.2. Simulation model of the piezoelectric-driven stick-slip actuator used by Chang 
and Li in [38]. Reprinted with permission.

F ig u re  2.3. Electromechanical model used by Goldfarb [43]. Reprinted with permission.

actuator was observed to  have simple second-order linear characteristics. Adriaens et al. [45] 
elaborated on the model presented by Goldfarb by incorporating a nonlinear first-order 
hysteresis effect and by modeling the piezoelectric actuator as a distributed param eter 
system. They studied the influence of the positioning mechanism on the overall behavior 
of the actuator based on the mechanical model of the actuator using Bode plots and root 
locus, and concluded th a t if the positioning system was designed well, the aforementioned 
second-order approximation was a good estim ate of the system dynamics. The combination
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of the piezoelectric element and slider mass was modeled as a simple mass-spring-damper 
system, and the interaction force between the piezoelectric elements and the slider mass, 
denoted by Fs, was given by:

+  Cs2/ +  ks =  Fs

Chen et al. [46] modeled these piezoelectric stick-slip actuators as a second-order system 
and provided a rationale for this second-order approximation, by employing the assumed 
mode method to  solve the governing equation. They provided the scope of and the errors 
involved with this approximation of the system dynamics.

Comprehensive simulations were presented by a group at EPFL, Switzerland. Breguet 
[47] designed several prototypes based on stick-slip actuators and designed an electrome­
chanical model of the piezo-actuator, with the friction force at the mechanical interface 
being modeled by a simplified form of the LuGre model [42]. Bergander [48] applied this 
aforementioned model to  devise a signal shaping technique to improve the behaviour of 
piezoelectric stick-slip dynamic system.

Zesch et al. [49] presented and analyzed two novel stick-slip mechanisms: Abalone and 
NanoCrab. M athem atical formulae are derived to  calculate step size and control signal 
timing. They were found to  have open-loop operation error of less than 1%. Their formulae, 
however, are based on parameters, which are not further investigated. Another study by 
Eigoli et al. [50] focused on developing a stick-slip model for a legged, piezoelectric-driven 
microrobot. Ham ilton’s principle, a linear piezoelectric relation, and linear Euler-Bernoulli 
beam theory was used to  derive the system ’s equation of motion. The model is comprised of 
the motion of these actuators in terms of robot’s physical characteristics, friction coefficient, 
and applied electrical voltage.

In recent years, only few research institutions worldwide dealt with piezoelectric stick- 
slip actuators as micropositioners; however, advancements have been made as far as under­
standing thier complexities are concerned. Studies have shown th a t for precise positioning 
at micro/nano-scale, more needs to  be done in regards to characterizing the stick-slip 
nature of these actuators [32]. The phenomenon of pre-sliding, which has been found to 
have significant effect on the displacement of these stick-slip drives, has thus come under 
examination. Al-Bender et al. [35, 36] presented a comprehensive investigation into this 
phenomenon. Studies have shown th a t in minute motion, the friction in these actuators is 
dominated by pre-sliding displacement, and its nature is inherently different from Coulomb 
friction. This displacement affects the step size as it affects the friction in these actuators.
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Peng et al. [18] developed a model for stick-slip actuators, incorporating pre-sliding effect 
into the elastoplastic LuGre model. They also presented the effect of change in end-effector 
mass on the performance of stick-slip actuators. The model used in [18] is:

M x 1(t) +  C x  i(t) +  K x 1(t) =  Du(t)
Du(t)  =  H (t) -  Ff

where H (t) is the Hysteresis model and F f  is the friction model:

F f =  ao(Me)z  +  a i Z
• n a (z)z  1Z =  x|1 — -T—:—,---1PMe/ao

where ao(M e) denotes th a t ao is a function of the end-effector mass (Me). Fig. 2.4 shows 
the effect of end-effector mass on the performance of stick-slip actuators.

A consequent piecewise function for ao(M e) was formulated as follows:

ao(Me) =  —(5.07 x 105)M e3 +  (1.25 x 105)M e2 +  287Me +  90.8 
=  when Me <  0.157 

ao(Me) =  (4.71 x 105)M e3 — (3.35 x 105)M e2 +  (7.22 x 104)Me — 3.66 x 103 
=  when 0.157 <  Me <  0.253 

ao(Me) =  —(2.29 x 104)M e3 +  (4.06 x 104)M e2 — (2.29 x 104)M e2 +  4.36 x 103 
=  when Me >  0.253

Fig. 2.4 shows th a t the end-effector speed increases with end-effector mass up to  a certain 
value of mass, and then decreases with mass.

Edeler et al. [32] recently presented a comprehensive model of piezoelectric stick-slip 
actuators for micromanipulation. They further investigated the effect of normal contact 
force, the aspects of elastic deformation, and the concept of pre-sliding. These effects were 
incorporated into a modified elastoplastic model, the param eters of which were derived from 
the material properties, and an empirical model of the preload characteristics was presented.

Lockwood et al. [33] characterized the performance of slip-stick actuators against gravity. 
He found th a t the step size of these slip-stick motors was affected by gravitational forces 
by ± 8%. However, he did not further model the behavior of these motors. Li et al. 
[51] investigated the therm al effect on these actuators and based on their experiments 
concluded th a t tem perature change affects the displacement of the actuators. Moreover, 
their studies also showed the tem perature changes within the system with time, leading to
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F ig u re  2.4. Measured and simulated results showing the effect of end-effector mass on 
stick-slip displacement [18]. Reprinted with permission.

a sense of therm al wear. They utilized their findings in the modeling of the piezoelectric 
stick-slip actuator by incorporating the therm al effects [52]. Another study by Cain et 
al. [53] concluded th a t the atmospheric relative humidity and tem perature has a marked 
effect on the displacement of stick-slip actuators.

2.3 Summary and Comparison to the Current Work
It is clear th a t a great deal of research has been conducted on the modeling and 

performance characterization of piezoelectric stick-slip actuators for micropositioning. Dif­
ferent techniques for modeling these actuators, ranging from modifying friction or hysteresis 
models to studying the effect of environmental conditions and change of param eters, have 
been used. In all of the prior literature, however, the effects of param eters such as inertia, 
gravity, and forces applied to the m anipulator’s end-effector on these stick-slip actuators 
have not been quantified in a way th a t can used to predict the step size of an actuator 
as a function of the current configuration and applied loads of the manipulator. In this 
thesis, we present a novel approach to quantifying the effects of static (i.e., noninertial) 
loads on the step size of these actuators, as a starting point for our larger modeling goals. 
A m athem atical model is formed th a t is based on empirical data  th a t does not require a 
sophisticated physics-based model, and must simply be calibrated using a set of well-defined 
controlled motions of the m anipulator’s joints. This empirical model can be used for effective 
analytical prediction of the step size of the actuators.



CHAPTER 3
SIMPLIFIED DYNAMICS OF THE 

KLEINDIEK MM3A
Derivation of the dynamic model of a m anipulator plays an im portant role in simulation 

of motion, analysis of m anipulator structures, and design of control algorithms. Com­
putation of the forces and torques required for the execution of typical motions provides 
useful information regarding the m anipulator parameters. The dynamic equations explicitly 
describe the relationship between force and motion [54].

The main goal of this study is to analyze the effect of various dynamic parameters such as 
inertial, gravitational, and Coriolis terms on the m anipulator joints considering the fact tha t 
each joint step begins and ends with the m anipulator at rest, due to  the discrete-step nature 
of the piezoelectric stick-slip actuators. In this chapter, we show the dynamic equations of 
the manipulator, which are simplified based on our discrete-stepping assumption; we show 
th a t the forces and torques acting on the Kleindiek MM3A depend only on the diagonal 
elements of the inertial m atrix and on the gravitational effects.

Kinematically, the Kleindiek MM3A m anipulator is no different than  any traditional 
robotic m anipulator in the sense th a t th a t each joint of the m anipulator results in the 
movement of the end effector (Fig. 3.1). Fig. 3.2 shows the param eterization of the manip­
ulator as per D-H convention.

Moreover, we can relate these joint movements to  end-effector movement via a configu­
ration dependent m anipulator Jacobian, J ( q) such th a t

X  =  j m  (3 .1)
where q =  [q1 q2 q3]T is the vector of joint positions, X  is the position of the end effector, 
and the “do t” indicates a time derivative.

Dynamically, a serial-link nanom anipulator has the same governing dynamic equation 
as a traditional robotic manipulator:

M (q )£ +  C (t,T )T +  G(q) -  J T (q) f  =  t  (3.2)
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F ig u re  3.1. The Kleindiek MM3A (RRP) manipulator.

Z 2= z 3

^ 2

F ig u re  3.2. The Kleindiek MM3A (RRP) m anipulator with D-H parameters at its zero 
angle position.

where M (f), C (f, f), and G (f) are configuration-dependent inertia, Coriolis, and gravity 
matrices, respectively. f  is any load applied to the tip, and f  is the vector of actuator 
torques and forces. This equation is useful for control of traditional robotic manipulators, 
where we have direct control over the joint torques and forces. However, in the case of 
a m anipulator such as the Kleindiek MM3A, torques/forces cannot be directly controlled 
at each joint due to the discrete nature of the piezoelectric stick-slip actuators. Rather,
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discrete steps must be commanded. Moreover, each discrete joint step begins and ends 
with the m anipulator at rest. However, (3.2) is still a valid equation, and matrices M (f), 
C(q, q), and G (f) are still valid. Knowledge of how these matrices affect the end-effector 
movement during each discrete step will help in accurate control of the manipulator.

The full dynamics of Eq. 3.2 for the Kleindiek MM3A are derived in appendix A , along 
with the derivation of the forward and inverse kinematics and the m anipulator Jacobian. 
The dynamics are derived there under the assumption th a t the actuators provide general 
torque/force, such as would be the case with the DC motors of a traditional manipulator. 
Here, we present the simplified dynamic equations th a t result for the discrete-step nature 
of the joints. Because the joints are stepped one at a time, when joint 1 is moving, q1 =  0 
and q1 =  0, but q2 =  q2 =  q3 =  q3 =  0. The relationships of joints 2 and 3 are analogously 
defined. The results is a significantly simplified dynamic equation th a t can be used during 
the coarse stepping mode:

" M n q1 ' G 1
M 22q2 + G2
M 33q3 G3

— J T ( f ) f  =  f

where

M n  =  mi f f  +  01133 +  01233 +  °1333 +  W ^ i  — V2S2)2 
+ m 3(ai — (l2 +  q3 — f3)s2)2 

M 22 =  m 2r 2 +  s2(01311 +  °1211) +  c\(°1322 +  °1222) — SiCl(0/ 321
+ °^  312 +  °1221 +  °1212) +  m 3(l2 +  q3 — r 3)2 

M 33 =  m 3

(3.3)

(3.4)

(3.5)
(3.6)

and

G 1 =  m 1r 1g1S1 — m 1f 1g2C1 +  m 2g1(a 1S1 — f 2S1S2) — m 2 g2(a 1C1 — f2 C1S2)
+m3g1(a1S1 — (I2 +  q3 — f3)S1S2) — m3g2(a1C1 — (I2 +  q3 — f3)C1S2) (3.7)

G2 =  m 2f 2g1C1C2 +  m 2 f 2g2S1C2 +  W2g3f2S2
+W3(l2 +  q3 — f3)g1C1C2 +  m 3 (I2 +  q3 — f3)g2S1C2
+W3g3(l2 +  q3 — f3)S2 (3.8)

G3 =  m3g1C1S2 +  m3g2S1S2 — m3g3C2 (3.9)
The individual entries are defined in the appendix.

As can be seen in Eq. 3.3, the Coriolis term s of Eq. 3.2 have effectively become zero, 
and the joint forces and torques depend only on the gravitational term s and the diagonal



16

elements of the inertia matrix, due to the stepping of an individual joint. Forces applied to 
the end-effector pass through the Jacobian to  load the joints, and the joints are unable 
to  distinguish static loads due to  applied forces from static loads due to  gravitational 
terms. In this thesis, we consider the effect of gravitational loading on the joints, w ith an 
understanding th a t the results generalize to  all static loads. We see th a t inertial loads on the 
rotary joints (M 11 and M 22) can change as a function of the m anipulator’s configuration 
q, so in this thesis we study inertial effects on the rotary joints. We see th a t M 33 does 
not change with m anipulator configuration, so we do not consider inertial effects on the 
prismatic joint; the effect of M 33 is accounted for during calibration.



CHAPTER 4
EMPIRICAL MODEL OF THE 

PRISMATIC JOINT
The step size of the prismatic joint is a function of the static loads acting on the actuator. 

This has been observed by a number of researchers as stated in Chapter 2, but never 
characterized and quantified. In this chapter, we study the effect of static loads on a 
prismatic piezoelectric stick-slip actuator using the distal prismatic joint of the Kleindiek 
MM3A, and we propose an analytical model to  predict the step size of the prismatic joint 
73 based on its current configuration. This model is based on empirical data  collected from 
a finite set of experiments. Also, the effect of factors such as the normal force (the force 
between the slider and the stator), the configuration of the rotary joint 2 , and change in 
environmental conditions th a t affect the step size of the prismatic joint are studied, and 
statistical tests are performed to  test the significance of these factors on the step size.

4.1 Methods
In this section, we will discuss the methodology adopted to carry out experiments and 

generate the required results.

4.1.1 Euler C onvention
Fig. 4.1 shows the D-H coordinates for the Kleindiek MM3A. Euler angles, as shown 

in Fig. 4.2, are used to  describe the orientation of the m anipulator base frame 0 in space. 
Coordinate system O0 is the coordinate frame for the joint axis of joint 1, and the Euler 
angles 9 and 0  are described as:

(1) 9 is the angle made by rotating the m anipulator about an original world frame’s 
to . In other words, it is the angle between the world’s vertical z0 with the new local z'0 as 
shown in Fig. 4.2(c).

(2) 0  is the angle made by rotating the m anipulator about the new local y '0. It is the 
angle made by the previous local z'0 with the new local z0° as shown in Fig. 4.2(c).
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F ig u re  4.1. The Kleindiek MM3A (RRP) m anipulator with D-H parameters at zero angle 
position.

zo, yO

F ig u re  4.2. Kleindiek MM3A. W ith the zo axis initially vertical, the base frame is rotated 
by d about x0 and then rotated by ^  about y0o. (a) Isometric view at d =  -n /2 . No 
gravitational loads acting on Joints 2 or 3. (b) Side view at d =  0, with gravitational 
loads acting on both Joints 2 and 3. Z =  ^-q2. (c) The euler convention for describing the 
orientation of the Kleindiek MM3A.
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(3) Z =  0  — q2. In Fig. 4.2(b), Z is shown to be equal to —q2 as 0  =  0.
The orientation of the m anipulator base frame with respect to the world frame is 

described by the rotation m atrix R =  R x (9)Ry(0).

4.1.2 A pparatus
The Kleindiek MM3A micromanipulation system consists of the MM3A micromanipula­

tor and a NanoControl (NC) unit as shown in Fig. 4.3(a). The NC unit is used to command 
control signals to the m anipulator. It has four knobs, three of which are used for controlling 
the three joints of the m anipulator in fine and coarse mode. The number of steps to be 
taken by any particular joint corresponding to one tu rn  of the knob can be set in the NC 
unit. In our experiments, the commands are being sent to this NC unit via a serial port. 
The time for one step was fixed at 10 ms and only one pulse per step was sent.

Before the start of any experiment, the joint is driven through its full range back and 
forth twice. This is done in an attem pt to m itigate any transients in the data  due to heating 
of the piezoelectric actuators; this effect has been explained in [51].

The step size of the prismatic joint is denoted by 73. As the step size of the prismatic 
joint is very small (on the order of 1 ^m ), it is not possible to visually detect when the joint 
reaches its end of travel. It was observed tha t a change in the sound of the piezomotor 
occurs upon hitting a mechanical stop. A custom software was made th a t monitors the 
sound from a microphone at each instant and computes the Fast Fourier Transform (FFT) 
of the audio signal. The sound when the joint hits a mechanical stop is detected as a peak 
in the power of the FFT. This FFT  algorithm loops after every 5 steps, so the accuracy 
w ith which this system captures the end of travel is up to five steps, or within 0.005% of the 
actual steps taken to reach the end of travel. The frequency at which this peak occurs, and

(a) (b) (c)

F ig u re  4.3. The Kleindiek MM3A m anipulator is shown at different orientations. (a) 
q2 =  —n / 2, 9 =  0, and 0  =  0; (b) q2 =  —n /2  and 0  =  0 at a particular 9; (c) q2 =  —n /2  
and 9 =  0 at a particular 0 .
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the intensity of the peak, may be different on different days, and thus, it has to  be tuned 
before each experiment.

The general formula used for computing the average step size of joint j  in direction i,
Yji, is

j  =  N  (4.1)
Nji

where Rj is the to tal range of joint j ,  N ji is the number of steps taken across the range of 
motion, and i £ {+, —} indicates the direction of joint motion. The number of steps (N 3i) 
the m anipulator took while traversing the whole range was recorded and the average step 
size taken by the prismatic joint, y 3i, was computed by the following relation:

_  12000000 .Y 3i =  — ^ —  nm (4.2)

The static load on the prismatic joint can be varied by changing the angles q2, 9, and 0 . 
q2 is changed by actuating joint 2. For changing 9 and 0 , a fixture is used as shown in Fig.
4.3, which allows us to  set the base plate at desired angles in steps of 15°. Thus, different 
orientations of link 3 can be achieved by varying q2, 9, and 0  as shown in Fig. 4.3.

4.2 Effect of Unmodeled Environmental Factors
Environmental conditions (e.g., tem perature, humidity) are uncontrolled in our exper­

iments, so there is no accurate model incorporating these factors. To minimize these 
unmodeled effects on the open-loop control of the Kleindiek MM3A, we propose to  calibrate 
the joints before each session of use. This assumes th a t there is a significant change from 
day to  day th a t warrants such recalibration. To substantiate this claim, the step size for 
prismatic joint 3 in the positive (y3+) and negative (y3 -) direction were taken on two 
different days, which would incorporate the change in environmental conditions.

Fig. 4.4 shows the change in the step size of the prismatic joint over two different days. 
The configuration of the prismatic joint in this plot is kept constant (at q2 =  —n /2 , 9 =  0, 
and 0  =  0) on both days, and three readings each of the step size value in both directions 
are taken on a single day. An ANOVA test on the da ta  shows th a t the difference in step 
size on different days is statistically significant (p < 0.05) for both positive (p =  0.0003) 
and negative (p =  0.001) directions. The ANOVA test also shows a significant difference 
(p =  0.000004) in the step size between the positive and negative directions within a given 
day. Thus, calibration on the rotary joints is recommended each time the m anipulator is to 
be used, and different calibration parameters should be found for each direction of motion.
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Error Bars: 95% CI over three trials each on

day

F ig u re  4.4. Plot showing the change in step size, Y3i over two different days. The 
configuration of the m anipulator was set at q2 =  —n / 2 , 0 =  0 , and ^  =  0 .

4.3 Experimental Procedure
We will now describe the experiments performed to  analyze the effects of static loads 

on the prismatic joint. The procedures explained encompass the experiments for analysing 
the effect of joint angle q2 combined with the effect of static loads, details of which will 
be explained in the subsequent sections. Step size y3 was recorded for values of q2 ranging 
from 0 to  —n at fixed intervals of —n / 6 , at values of 0 ranging from 0 to  —n /2  at fixed 
intervals of —n / 6 , and at values of ^  ranging from —n /2  to  n /2  at fixed intervals of n / 6 . 
The step size of joint 3 in the positive and negative directions is denoted by y3+ and y3 - , 
respectively. For each configuration of q2, 0, and ^ , y3+ was first recorded followed by y3 - . 
The step size, Y3, was recorded in the following order to reduce drift in the da ta  (if present):

(1) F irst, the MM3A was set at some angle ^  keeping q2 =  —n /2  and 0 =  0. The 
prismatic joint is first driven from q3 =  0 to  12 mm in the positive direction and the 
average step size reading Y3+ is computed. Then, the joint is driven back (12 to 0 mm) 
to  carry out its motion in the negative direction and the average step size reading Y3- is 
computed. Z, in this configuration, is equal to ^  +  n / 2 .

(2) Next, the MM3A was fixed at 0 =  0 and ^  =  0. Joint 2 was set at some angle q2. 
Y3+ and Y3- were recorded in the m anner described above. Z, in this case, is equal to  —q2.

(3) Next, the MM3A was titled at angle 0, keeping the same value of q2 used in the
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above step, with ^  =  0. The step size in both directions was then recorded for the entire 
range of 9 at fixed intervals as mentioned before.

(4) Steps 1 to  3 are repeated at the increments of ^  and then q2 at their fixed intervals 
within their aforementioned range.

The recordings for the step size for the prismatic joint at configurations of ^  =  0 and 
q2 =  —n /2  at values of 9 ranging from 0 to —n /2  at fixed intervals of —n /6  are used to 
analyze the effect of normal force on the prismatic joint. The analysis for this is explained 
in Section 4.4. The step size recordings gathered at 9 =  —n /2  at fixed intervals of q2 in 
the range 0 to  —n and at ^  =  0 was used to  study the step size of the prismatic joint with 
no gravitational force acting on it. The analysis of this is explained in Section 4.5. The 
orientation of the m anipulator at fixed intervals of ^ , at fixed intervals of q2 in the range 0 
to  —n, and at 9 =  0 allows us to  isolate the effect of gravity acting on the prismatic joint 
and thus, the step size recordings we gather in this configuration was used to  analyze the 
effect of gravity (and thus all static loads) on the joint. The analysis of this is explained in 
Section 4.6.

4.4 Effect of Normal Force between Slider and Stator
In the case of piezoelectric stick-slip actuators, the normal force is the force between the 

piezoelectric element and the sliding mass. The force of friction is dependent on this force, 
and the fact th a t friction has an effect on the step size of the actuator is evident from the 
review of Chapter 2. Although the third link of the MM3A appears radially symmetric, 
in this section we verify th a t the step size is unaffected by rotations about the axis of the 
prismatic joint.

Fig. 4.5 shows configurations of the m anipulator at which y3- and y3+ recorded were 
used to  obtain Fig. 4.6. Fig. 4.6 shows th a t changing 9 does not seem to affect Y3i. An 
ANOVA test was performed on the data  of the step size in the positive and negative direc­
tions, which revealed th a t the rotation of the prismatic joint about its axis is insignificant 
in both the positive (p =  0.4) and negative (p =  0.9) directions of the prismatic joint. Thus, 
the need for incorporating this effect in the modeling of the step size of joint 3 is eliminated.

4.5 Effect of Joint Angle q2
Fig. 4.7 shows the orientation of the Kleindiek MM3A for the experiments to  study the 

effect of joint angle q2 on the step size of the prismatic joint, independent of static loads. 
One might expect the step size of joint 3 in this configuration to be a constant as there is
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0 =  0

0
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z A 0

F ig u re  4.5. Procedure of experiment for analyzing the effect of normal force between 
the stator and the slider on joint 3. The figure shows the front view of the outstretched 
manipulator.

Error Bars: 95% CI over trials on 
three different days.

0 (rad)
F ig u re  4.6. P lot showing the effect of normal force on change in step size Y3i at q2 =  — n /2 , 
0  =  0 , and at fixed intervals of 9 .
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F ig u re  4.7. Figure showing orientation of the m anipulator (at 9 =  —n /2  and 0  =  0) for 
conducting the experiment for analyzing the effect of joint angle q2.

no effect of gravity acting on the link. The results of the experiment are shown in Fig. 4.8. 
In Fig. 4.8(a), we see th a t Y3i is not constant, rather, it changes with the joint angle q2. 
The result from Fig. 4.8(a) is normalized into Fig. 4.8(b) by dividing the step size, Y3i, at 
a given q2 in the shown configuration by the step size achieved at q2= -n /2 . This gives us 
an efficiency factor, n(q2) th a t is a function of q2, as shown by the equation below:

n(q2) =  1 — bi| cos q21 (4.3)

where bi is a dimensionless free param eter to be determined via calibration. This equation 
has a maximum efficiency at q2 =  —n /2 . The reduced step size, y 3i, at different values of q2 
other than —n /2  is most likely due to the component of the recoil force of the actuator acting 
perpendicular to  the link connecting joint 1 to  joint 2 , which causes a small deflection in the 
link (which is not infinitely rigid). This effect is captured by bi | cos q2|. The free parameter, 
bi , captures the loss of stepping efficiency when the prismatic joint is fully perpendicular to 
the maximum-efficiency configuration.

4.6 Effect of Static Loads
Fig. 4.9 shows the m anipulator in three different configurations of 0 , with q2 and 9 fixed. 

It describes the sequence of the configuration of the m anipulator at which Y3i was recorded 
in order to analyze the effect of gravity on the step size of the joint. The experimental 
procedure for the same has been explained in Section 4.3. In order to  isolate the effect of 
gravity w ithout any loss in the stepping efficiency, 9 and q2 are kept constant as shown in 
Fig. 4.9. Fig. 4.10 shows the effect at 9 =  0, while Y3i is a constant for 9 =  —n /2 . The 
behavior of the system with respect to  the change in gravitational force seems to  be well 
described by the m athem atical model:

Y3 i =  ai — Ci cos(Z) cos(9) (4.4)
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Error Bars: 95% CI over trials on

z (rad)
(a)

Error Bars: 95% CI over trials on

z  (ra d)
(b)

F ig u re  4.8. (a) Variation in step size, Y3i, with change in q2 w ith no gravitational force 
acting along the axis of the prismatic joint. (b) Y3i from (a) normalized by Yi3 at q2 =  .
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F ig u re  4.9. Configuration of the m anipulator at 0  =  ^ , 0, and — 2, with q2 =  — 
9 =  0. 0  is varied from — n to  n in steps of | .

Error Bars: 95% CI over trials on
three different days.

F ig u re  4.10. Plot showing the change in step size Y3i with change in gravitational force 
achieved by changing 0 , with q2 =  — n and 9 =  0.
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where ai and Ci are free parameters to be determined through calibration. The param eter ai 
represents the basic step size of the joint when no gravitational load or recoil inefficiency is 
acting on the joint, and the param eter ci cos(Z) cos(9) represents a function of the component 
of the gravitational load due to the weight of the joint acting along the axis of the joint. 
As per our equation for the dynamics of the Kleindiek MM3A, Eq. A.114, the force acting 
on the prismatic joint is a function the cosine of the joint angle q2 when the base frame is 
fixed. Comparing this with Eq. 4.4, we conclude th a t the Y3i is also a function of the cosine 
of joint angle q2, since Z =  0  — q2.

In order to  analyze the change in step size with change in joint variable q3, an experiment 
was conducted wherein the prismatic joint was commanded a fixed number of steps, and 
the subsequent distance travelled (q3) was measured. The m anipulator was fixed at q2 =  
-2 , 9 =  0, and 0  =  0. The measurements were collected by processing a microscopic image 
of the prismatic joint after every N number of steps. Fig. 4.11 shows the results of this 
experiment. Three readings each in inward and outward direction were taken on a single 
day separated by a fixed time. We can clearly see the the change in q3 is approximately 
linear with the number of steps (N) commanded. From this we can safely conclude th a t the 
step size does not vary significantly throughout the range of motion of joint variable q3.

4.7 Model for Static loads on Prismatic Joint
Fig. 4.12 shows the m anipulator in three different configurations of q2, with 9 =  0 and 

0  =  0. It describes the sequence of the configuration of the m anipulator at which Y3i was 
recorded at 9 =  0. Similarly, Y3i was recorded at other different values of 9.

As can be seen from the results obtained in Section 4.5, the step size taken by the 
prismatic joint is not constant when no gravitational force is acting on it. Rather, it is a 
function of q2 as described by Eq. 4.3. The pure effect of gravity on the step size of the 
joint observed in Section 4.6 is modified by the position of the rotary joint q2. This leads 
us to  propose th a t the effect of gravity, represented by Eq. 4.4, and the effect of joint angle 
q2, represented by Eq. 4.3, are coupled. A model, given by Eq. 4.5, takes into account both 
of these effects and is able to  predict Y3i at any configuration.

Y3i =  (1 — bi| cos(q2)|)(ai — Ci cos(Z) cos(9)) (4.5)

where the terms have the same meanings as described before.
The predicted plots, showing the change in step size at 9 =  0 and 9 =  —n /3 , were 

obtained using values of the free parameters after calibration and were found to be accurate 
with ±15%, details of which will be discussed in Chapter 6 . The change in step size at
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N 3+ (Number of steps)
(a)

N3- (Number of steps)
(b)

F ig u re  4.11. Experim ental results showing the distance travelled by the prismatic joint 
as a function of the number of steps (N) commanded in the (a) outward direction, and (b) 
inward direction. The position is measured from a microscopic image of pixel size of 54.79 
^m.
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F ig u re  4.12. Configuration of the m anipulator at q2 =  0, -2 and -n, with ^  and 9 fixed 
at 0 . q2 is varied from 0 to -n in steps of - | .

9 =  0 and 9 =  —n /3  are shown by Figures 4.13(a) and 4.13(b), respectively. Based on the 
working principle of the piezoelectric stick-slip actuators as shown in Fig. 1.1, the step size 
in the desired motion should decrease with increase in the opposing gravitational load (as 
is seen in Fig. 4.10) as an increase of this load would make tracking the rapid movement 
of the piezoelectric element much easier and thus, m itigate the effectiveness of the “slip” 
phase. However, a closer look into the effect of q2 as shown in 4.5 leads us to  believe tha t 
this unusual effect is owing to  the recoil nature associated with changing joint angle q2, as 
discussed in Section 4.5.
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Error Bars: 95% CI over trials on 
three different days.

C (rad)

(a)

Error Bars: 95% CI over trials on 
three different days.

C (rad)
(b)

F igure 4.13. Effect of static loads on change in step size j 3i at (a) 9 =  0 and 0  =  0, and
(b) at 9 =  — 3 and 0  =  0. Predicted model equation computed using experimental data for 
a single day. Calibrated parameter values of a+ =  972, b+ =  0.27, and c+ =  375.55, and 
a_ =  899, b_ =  0.25, and c_ =  -436 were found using the three calibration configurations 
described in the Chapter 6.



CHAPTER 5

MODEL OF THE ROTARY JOINT

The Kleindiek MM3A consists of two rotary joints, denoted by variables q1 and q2. The 

range of these rotary actuators is 240 ° . The resolution for the rotary actuators, as specified 

by Kleindiek, is 10-7  radians and the range of the actuator utilizing the piezoelectric effect 

is 4x10 -4  radians. Since joints 1 and 2 are both rotary joints having the same NanoMotor® 

as described in 2 .1, both the joints are expected to have the same behavioral trend, the 

change only being in the inertial load on the respective joints. Thus, we are going to explore 

the behavior of joint 2 with respect to static and inertial loads, the results of which can be 

used to predict the behavior of joint 1 as well. Additionally, we expect the behavior of the 

rotary joints of other MM3A manipulators to be basically the same. In this chapter, we 

propose a model for the analytical prediction of the step size for joint 2 and substantiate our 

claim via experiments. We also present ANOVA statistical analysis giving the significance 

of unmodeled environmental factors that vary from day to day.

5.1 Experimental Procedure
The average step size Y2i for rotary joint 2 is calculated using:

4n
Y 2i =  x 1000000 ^rad (5.1)

3N2i
where R 2 is the range of motion (the full range of motion for joint 2 is 4n), N2i is the 

number of steps taken across the range of motion, measured using the audio limit switch 

described in Section 4.1, and i e  {+ , —} indicates the direction of joint motion.

Before the start of any experiment, the rotary joint is driven through its full range back 

and forth twice. This is done in an attempt to mitigate any transients in the data due to 

heating of the piezoelectric actuators; this effect has been explained in [51].

5.2 Effect of Unmodeled Environmental Factors
Environmental conditions (e.g., temperature, humidity) are uncontrolled in our exper­

iments, so there is no accurate model incorporating these factors. To minimize these
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unmodeled effects on the open-loop control of the Kleindiek MM3A, we propose to calibrate 

the joints before each session of use. This assumes that there is a significant change from 

day to day that warrants such recalibration, proof of which could be seen in Fig. 5.1(a). To 

substantiate this claim, the step size for rotary joint 2 in the positive (72+) and negative 

(72- )  direction were taken on two different days, which would incorporate the change in 

environmental conditions.

Fig. 5.1(a) shows the change in the step size of the rotary joint over two different days. 

Three values of y2+ and y2- are recorded on each day, with q3 =  0 mm, d =  —n/2, and 

0  =  0. An ANOVA test on the data shows that the difference in step size on different days 

is statistically significant (p <  0.05) for both positive (p =  0.033) and negative (p =  0.016) 

directions. The ANOVA test also shows a significant difference (p =  0.0000004) in the step 

size between the positive and negative directions within a given day. Thus, calibration on 

the rotary joints is recommended each time the manipulator is to be used, and different 

calibration parameters should be found for each direction of motion.

Error Bars: 95% CI over three trials on

day

(a) (b)

F igure 5.1. Plot showing (a) the change in step size, y2 over two different days, and (b) the 
configuration of the manipulator at q3=0m m , 0=-n /2 , and 0 = 0 , at which this experiment 
was conducted.
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5.3 Effect of Static Loads
Fig. 5.2 shows two experiments that were performed to study the effect of gravitational 

loads on the rotary joint (in an effort to study static loading in general). In experiment 1, 

9 is kept at —n/2  such that there is no load due to gravity on the joint. In experiment 2, 

9 is kept at zero such that there is load due to gravity on the joint; here the gravitational 

load on joint 2 is a function of its own position q2 (Fig. 5.3). This makes the study of 

gravitational loads on the rotary joints more challenging than that on the prismatic joints. 

To study the step size as a function of q2, a fixture (Fig. 5.4) was developed to measure 

the average step size in intervals of n /6  in the range of q2 e [0 —n]. Starting with q2 =  0, 

the number of steps required to move to q2= -n /6  is measured using the fixture and the 

audio limit switch, and Y2- is calculated for that interval. Similarly, the average step size is 

measured for subsequent intervals until q2 =  —n. These readings are taken for both 9 =  0 

and 9 =  —n/2, and for both negative (y2 -) and positive (y2+) directions of motion, with 

two different values of q3 (0mm and 12 mm), as shown in Fig. 5.2. For both experiments, 

the step size values, taken at intervals of n /6 , are plotted at the average value for q2 in each 

interval (e.g., y2- measured for the interval [0 —n/6] is plotted at q2 =  —n/12).

Fig. 5.5 shows the results of experiment 1, in which the variation of step size for q3 =

0 mm at 9 =  —n/2, from which it is safe to conclude that the step size of the rotary joint 

is relatively constant when no load due to gravity is acting on the joint; since the variation 

in step size in this configuration is found to be less than ±1-2% , with no discernible trend 

in the data. The normalization was performed by dividing the average step size values (at 

9 =  —n/2 ) obtained at each of the six fixed intervals by the total average of all these values. 

It can also be concluded that the step size Y2 is not a function of q2 in the absence of any 

loading, in either the positive or negative direction.

The model for static loading on the rotary joint is derived based on the physics that, if 

9 =  0, the torque on joint 2 is related to gravitational loads as:

where g is the acceleration due to gravity; the constant of proportionality is related to the 

mass and lengths of the distal links, which are unknown to us. The empirical model to 

predict the step size for the rotary joint is formulated as:

where Y2i,e=-n /2 denotes the direction-dependent step size of the rotary joint when there 

is no effect of gravity on the link (i.e., at 9 =  —n/2), di is a free parameter that denotes

T2 a  g sin(q2) (5.2)

Y2i =  Y2i,e=-n / 2  +  disin(Z) (5.3)
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(a) (b)

F igure 5.2. Configurations for experiments 1 and 2. (a) 9 =  —n/2, 0  =  0, and q3 =  0mm 
(experiment 1); (b) 9 =  —n/2, 0  =  0, and q3 =  12mm (experiment 1); (c) 0 =  0, 0  =  0, 
and q3 =  0 mm (experiment 2); and (d) 9 =  0, 0  =  0 and q3 =  12 mm (experiment 2).

+m3g(l2+q3-r3)sin(-q2)

Figure 5.3. Loading due to gravity acting on joint 2 during experiment 2 (9 =  0). This 
loading appears as an equivalent static torque load at the joint.

the maximum increase in step size over the basic step size Y2i,e= -n / 2, and Z =  0  — q2 as 

described in Section 4.1. We assume that the step size at 9 =  —n/2  and 9 =  n /2  would be 

equal to the step size at q2 =  0 and q2 =  —n when 0  =  9 =  0, since there is no torque due 

to gravity on the joint in any of these cases. We expect di to vary linearly with q3 since it 

encapsulates the gravitational load due to the center of mass of link 3; thus, two values for 

each di must be known to enable linear interpolation based on q3.
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Figure 5.4. Figure showing the stopper mechanism set up for the rotary joint.

The results of experiment 2 are shown in Fig. 5.6, which shows the effect of static loads 

on the step size of joint 2 when 9 =  0. The results show the mean and confidence intervals 

for experiments on three separate days. As we have already seen, the variance between days 

is quite large, so daily calibration is desirable (a predicted model is also shown, obtained 

from the calibration method discussed in the next chapter, but based on the calibration 

data from only one of the three days, hence its offset from the mean). As can be seen 

from the figure, the nature of step size in the positive direction is an inverted form of its 

nature in the negative direction. This is attributed to the fact that the load due to gravity 

acts against the direction of motion of the joint in the positive direction, and with it in 

the negative direction. Hence, the step size obtained in the positive direction, y2+ , will be 

less than that obtained at 9 =  —n/2  where no gravitation load is acting on the joint. The 

opposite holds true for the step size in negative direction, y2 - . In other words, downward 

steps are bigger than horizontal steps, which in turn are bigger than upward steps, as we 

would expect.

If the manipulator were to be tilted by an angle 9 =  0, then the torque due to gravity 

on joint 2 would become proportional to the cosine of the gravitational component shown 

in equation 5.2, such that the model of equation 5.3 should be modified as:

Y2i =  Y2i,0=-n /2 +  di sin(C) cos(9) (5.4)

5.4 Effect of Inertial Loads
Inertia plays a significant role in determining the step size of the joints of the Kleindiek 

MM3A. In Chapters 4, we only studied the effect of static loads on the prismatic joint, with 

the understanding that calibration would be used to account for the change in step size of 

the joint with any additional load attached to the end-effector. Now, we will briefly discuss 

the effect of increase in inertial load on the rotary joint of the MM3A, as the inertia loads
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F igure 5.5. Experiment 1, corresponding to Fig. 5.2 and 5.2(a), with 9 =  —n/2  and 0  =  0.
(a) Y2 - , (b) data in (a) normalized the average of the six values across the full range, (c) 
Y2+, and (d) data in (c) normalized the average of the six values across the full range.

will change with the configuration of the manipulator, so we cannot safely assume they will 

be constant during operation of the manipulator between calibrations.

In rotary joint 2, the inertial load acting on joint changes with q3. Thus, the average step 

size for joint 2, Y2 was recorded at different values of q3 =  0, 4, 8, and 12 mm to study the 

effect of inertial load on the step size. Fig. 5.7 shows the change in step size with the change 

in q3. The step size data was recorded at 9 =  —n/2  so as to eliminate any effect of gravity, 

such that the variation in Y2 observed is purely due to a change in inertial load. The inertia
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th ree  d iffe ren t days.

z (rad)

(d)

F igure 5.6. Experiment 2. Step size Y2i as a function of Z at (a) q3 =  0 mm, 0  =  0, and 
9 =  0 in the negative direction, with calibration parameter d-  =  3.83 ^rad, (b) q3 =  0 mm,
0  =  0, and 9 =  0 in the positive direction, with calibration parameter d+ =  —8.15 ^rad,
(c) q3 =  12 mm, 0  =  0, and 9 =  0 in the negative direction, with calibration parameter 
d-  =  23.94 ^rad, and (d) q3 =  12 mm, 0  =  0, and 9 =  0 in the positive direction with 
calibration parameter d+ =  —19.40 ̂ rad.
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q3 (m m )

Figure 5.7. Effect of inertial loads on the step size of the rotary joint. The inertial load 
increases from q3 =  0 mm to 12 mm, as the moment arm of the center of mass of link 3 
increases with q3. The configuration of the manipulator is kept at d =  —n /2  and 0  =  0, 
such that gravity does not load the joint in question.

of a body with respect to a joint is directly proportional to the square of the perpendicular 

distance of the center of mass of the body to the joint axis due to the parallel-axis theorem, 

so the inertial load acting on the rotary joint due to q3 should affect y 2 quadratically. Also, 

based on the stick-slip principle, we might expect that an increase in inertial load would 

reduce the return travel of the slider in the slip phase, resulting in an increase in the step 

size. However, we observe that the step size of the rotary joint decreases almost linearly 

with an increase in q3 (or increase in inertial load). This contradicts our hypothesis that 

the step size of a joint generally increases with increase in inertial load. It might be possible 

that the displacement of the piezoelectric actuator in the stick phase is reduced due to the 

increase in inertial load, resulting in an overall reduction in step size with an increase in 

inertial load. Further research is required to explain this observed behavior. In this thesis, 

we will assume that the step size of joint 2 due to inertial effects of link 3 varies linearly with 

q3. This means we must consider that Y2i,e=-n /2 is a function of q3; this will be considered 

in the following chapter.



CHAPTER 6

CALIBRATION TECHNIQUE

In this chapter, we discuss a calibration routine that can be used to identify the param­

eters of the models for the prismatic and rotary joint that were developed in chapters 4 

and 5. The function obtained for the step size of joint j  is of the form 7j i=T ji(g, a i), where 

a i is a set of actuator-specific parameters that will be obtained via calibration by using 

measurements of j  at selected configurations for each joint. We will conclude this chapter 

by giving an effective calibration routine for the prismatic joint and the rotary joint 2 of 

the Keindiek MM3A. The step size model obtained by such a calibration technique can be 

used with previously developed methods described in [34] to perform open-loop control of 

the end-effector.

6.1 Prismatic Joint
The step size model for the prismatic joint as described in Eq. 4.5 is given by:

Y3i =  (1 — bil cos(q2)|)(ai — a  cos(Z) cos(0)) (6 .1)

where the subscript i denotes +  or — direction.

This model has six unknown parameters that can be calibrated for by taking six mea­

surements of Y3 as shown in Fig. 6.1. For simplicity, the average step size at a known 

configuration of q2, 9, and 0  is denoted by Y3i(q2,e,^). The following procedure is used to 

identify the six free parameters a 3 =  {a+, a _ , b+, b_, c+, c _ } of the prismatic joint:

(1) The prismatic joint is driven across its full range twice at 9 and 0  equal to 0, so as 

to minimize the thermal effect as is discussed before.

(2) The average step size Y3+ (-n/ 2,o,o) and Y3- ( - n/ 2,o,o) for outward and inward direc­

tions, respectively, are measured at (q2,9 ,0 )  =  (_n , 0 , 0). By substituting these values in 

Eq. 6.1, we find parameter ai of the model by the following relation

ai =  Y3i(—n/2,0,0) (6.2)
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(a) (b)

F igure 6.1. Calibrating configurations (in sequence) for identifying the six unknown 
parameters of the model of the prismatic joint (joint 3). (a) ai is calculated by measuring 
Y3i at (q2,d ,0 )  =  (-2 ,0 ,0), (b) bi is calculated using ai calculated in the previous step and 
Y3i at (q2,d ,0 ) =  (0,-2,0), and (c) ci is calculated using the values of ai and bi above, and 
73i at (q2,0 ,^ )=  (0 ,0 ,0).

(3) Next, the prismatic joint is driven outward and then inward, from 0 to 12 mm 

and back, at a configuration of q2 =  0, d =  —n/2, and 0  =  0. The average step size 

73+(o,-n/ 2,o) and Y3 -(0,-n / 2,0) for outward and inward directions, respectively, are measured 

at (q2,d ,0 )  =  (0, —~, 0). By substituting these values in Eq. 6.1 and using the calculated 

value of ai, we find parameter bi using the following relation:

bi =  1 — Y3i(0,-n /2 ,0) (6 .3)
ai

(4) Finally, the average step size Y3+(0,0,0) and Y3 -(0,0,0) for outward and inward direc­

tions, respectively, are measured at (q2, d, 0 ) =  (0 , 0 , 0), and by substituting these values in 

Eq. 6.1 along with ai and bi , we find parameter ci using the following relation:

73i(0,0,0)Ci =  ai — , ( , ’ ) (6.4)
1 bi

Fig. 6.2 shows the predicted model and actual experimental data for a single day at d =  0 

and —n/3. The value of d =  —n/3  is not included as one of the calibration configurations, 

yet the model captures the step size of the joint as a function of the configuration. The 

accuracy of the predicted model was found to be within ± 20% (within 100 nm).

6.2 Rotary Joint
The step size model for the rotary joint as described in Eq. 5.3 is given by:

Y2i =  Y2ifi=-*/2 +  di sin (Z) (6.5)

Fig. 6.3 shows the calibration sequence for rotary joint 2, which would eventually give us 

values for the joint specific parameter, d and Y2e__7:/2, for the rotary joint in the clockwise 

(-) and counterclockwise (+ ) direction respectively. For simplicity, the average step size at
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F igure 6.2. Predicted model at (a) 9 =  0 and — 3  with 0  =  0 in the outward direction, 
and (b) 9 =  0 and — ̂  with 0  =  0 in the inward direction. The calibration parameter values 
are the same used in Section 4.7.
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Figure 6.3. Calibrating configurations (in sequence) for identifying the six unknown 
parameters of the model of the rotary joint (joint 2). q2 is driven across its full range 
from n to - in the negative and positive directions at (a) q3 =  0 mm, 9 =  0, and 0  =  0; 
(b) q3 =  12 mm, 9 =  0, and 0  =  0; (c) q3 =  0 mm, 9 =  —n, and 0  =  0; and (d) q3 =  12 mm, 
9 =  —n, and 0  =  0.

a known configuration of q3, 9 and 0  is denoted by Y2(q3,e, )̂ unless otherwise mentioned. 

The following procedure is followed to obtain the free parameter:

(1) The rotary joint is driven across its full range twice at 9 and 0  equal to 0, so as to 

minimize thermal effect as is discussed before.

(2) Joint 2 is driven across its range from q2 =  n /6  to —7n/6 in the negative direction 

and then in the positive direction at q3 =  0 mm with 9 =  0 and 0  =  0. The step size 

data obtained is denoted as 72_(o,o,o) and Y2+(o,o,o) for the negative and positive directions, 

respectively.

(3) Joint 2 then is driven across its range from q2 =  n /6  to —7n/6 in the negative 

direction and then in the positive direction at q3 =  12 mm with 9 =  0 and 0  =  0. The 

step size data obtained is denoted as Y2_ (i2,o,o) and Y2+(i2,o,o) for the negative and positive 

directions, respectively.

(4) Joint 2 is then driven across its range at 9 =  —n/2  from q2 =  n /6  to —7n/6 in the 

negative and then in the positive direction at q3 =  12 mm and 0  =  0. The step size data 

obtained are denoted as Y2- ( 12, - n/ 2,o) and Y2+(12,_n/ 2,o) for the negative and the positive 

directions, respectively.

(5) Joint 2 is then driven across its range at 9 =  —n/2  from q2 =  n /6  to —7n/6 in the 

negative and then in the positive direction at q3 =  0 mm and 0  =  0. The step size data 

obtained are denoted as Y2 -(o,-n / 2,o) and Y2+(o,-n / 2,o) for the negative and the positive 

directions, respectively.

Since y2 is a function of q2 at each instant, it not a trivial task to calculate the parameter 

di from Eq. 6.5 by using the average step size values (Y2i) that are available to us. The 

following algorithm is used to estimate di . In short, a simulation calculates the number of 

steps required to move across the full range of motion for a given value of di , and then the 

value of di is adjusted until the number of steps matches the experiment.
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Algorithm for computing the free parameter di of the rotary joint

1: In put ~̂ 2ifi=-^/2 , 72i,0=O
2: Give an initial estimate for di

Iterate the value of di for convergence.

3: for i =  1 to 5 do

4: Initialize Z =  — f

5: Initialize j  =  1

6: w hile Zj <  i f  do

7 Y2j,0=O =  Y2,0=-n/2 +  di sin(Zj )
8: j  =  j  +  1

9: Cj =  72(j-1),0=O +  Cj-1
10: end w hile
11: Y / =  T,(l 2,e=o)
11: Y 2,0=0 =  j
12: Z =  sin-1  ( 7 2’9=° J2>*=-n/2)

13: d =  Y2’9=° -Y%e=-n/2 sin(C)
14: error =  Y 2,0=0 — Y '2,0=0

15: end for 

16: O utput di

After inputting the experimental values found for Y20=O and Y2,0= - n / 2 in our simulation, 

we initially estimate the free parameter di . The code in the while loop gives us the position 

and the step size of link 2 at each instant from Z =  f  to — in . Using this, we compute 

the average simulated value Y ;20=O. This average value would correspond to a position of 

link 2 within the entire range of Z taken. Thus, the corresponding Z value at which this 

step size occurs is computed; subsequently, we compute di . The updated value of di is then 

sent back in the loop, and the same procedure is followed. Thus, we solve for di using 

multiple iterations until convergence. The error between the computed (Y 20=O) and actual 

experimental value (Y2,0=O) was found to be less than 10-11 radians after 5 iterations.

Fig. 6.4 shows the simulation results obtained for the rotary joint after iterating q2 from 

6  to — in (i.e., the range of q2). This confirms the behavior of the rotary joint 2. For 

computing di in the algorithm above, we took values of Y2,0= - n / 2 ranging from 75 ^rad to 

115 ^rad with Y2,0=O varying such that the difference between the two average step size 

values never exceeds its limit as found in experiments (±9.2 ^rad). It was found that the 

difference between these two average step size values show a quadratic relationship with the 

free parameter di as shown in Fig. 6.5.
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z (rad)
(a)

z (rad)
(b)

F igure 6.4. Simulated model of the step size of joint 2 in (a) the negative direction, and 
in (b) the positive direction. The values of 72 ,0=0 and 7 2,0= - n / 2 are fixed.

As can be seen from Fig. 6.5, irrespective of the values of Y2,0=o and 7 2,0=-n / 2, the free 

parameter value di remains almost the same (difference of <  1 ^ rad) for the same difference 

between the two step size values aforementioned. The parameter di was calculated using 

the value of Y2,0=o — 7 2,0= - n / 2 from -9 .2  ^rad to 9.2 ^rad as this was the range of 7 2,0=o - 

72,0= - n/ 2 observed in experiments. A relation for computing di was formulated by fitting 

the simulation results obtained to a quadratic function as shown in Fig. 6.5. The equation 

formulated using nonlinear least-squares regression is:

di =  3.41(72i,0=o — 7  2i,0= -n /2)2 +  0.025 (72i,0=O — 72i,0=-n/2)

+6.42 x 10-7  (6 .6)

Fig. 5.6 shows that there is a significant effect of the joint 3 variable q3 on the step size 

of the rotary joint 2 . Also, 7 2i,0= - n / 2 and di are functions of q3. This is expected, as a
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Figure 6.5. Variation of the free parameter with respect to change in difference between 
Y2,e=0 and Y2,e= _n/ 2 at different values of Y2,e= _n/ 2. The vertical dash lines represent the 
range of this difference as observed in experiments.

change in q3 will lead to a change in inertial load on joint 2 and, as discussed in Chapter 

5, a change in the step size of joint 2. We observed that Y2,e= _n/ 2 varies linearly with q3 

(Fig. 5.7) and hence, a linear-interpolation model for Y2,e= _n/ 2 and di would be a good 

approximation of the variation in the step size of joint 2 due to a change in q3. Eq. 6.5 then 

becomes:

Y2i =  Y2i,e=_ n/2(q3) +  di(q3)s in (Z ) (6.7)

where i denotes +  or — direction of the rotary joint, and

/ \ _ . f  Y2i(12,_n/2,0) — Y2i(0,_n/2,0) \ , ,
Y2i,e=_n/2(q3) =  Y2i(0,_n/2,0) +  q3 ( ------------------^ ------------------ I (6 )

j / \ _ j , f  di(12,_n/2,0) — di(0,_n/2,0) \ , .
di (q3) =  di(0,_n/2,0) +  q3 ( ^  J (6 )

Although the inertial load on joint 2 increases with q3, our method for finding the free 

parameter di (Eq. 6.6) remains the same, as the change in step size due to an increase in 

inertial load due to q3 is reflected as a change in Y2,e= _n/ 2 and Y2,e=0. So, for finding the 

free parameter di, it does not matter what values of q3 we use.
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Fig. 6.6 shows the predicted model after computing di via calibration against experi­

mental data collected on a single day. Taking into account the effect of angle 9 on the load 

acting on the rotary joint, the equation for predicting the step size of joint 2 would become:

Y2i =  Y2i,0=-n/2(q3) +  di(q3)sin(Z )cos(9) (6.10)

Data were then collected at 9 =  —n /4  and 0  =  0 to verify this model in a different 

configuration, results of which are shown in Fig. 6.7. The predicted models obtained after 

calibration, as shown in Figures 6.6 and 6.7, is found to be accurate to within 1 ^rad or 

±2%.

Because joint 1 is another rotary joint with the same range as joint 2 and having the 

same properties except for the change in static load value, this model and calibration routine 

for joint 2 can be extended to joint 1. The only difference in the calibration routine would 

be that at 9 =  0 there is no effect of gravity on joint 1, while at 9 =  —n/2  the gravity 

is perpendicular to the joint axis. So, in short the definition of the terms, Y2i,0=O and 

Y2i,0=-n / 2 would be interchanged.

To conclude, a total of 14 calibration routines (6 for the prismatic joint and 8 for the 

rotary joint) have been presented to predict the 14 free parameters of our empirically derived 

analytical model. The model can be used to predict the step size of the joints at a given 

manipulator configuration.
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Z  (rad)
(a)

Z (rad)
(b)

Z (rad) Z (rad)

(c) (d)

F igure 6.6. Predicted model (after calibration) at (a) q3 =  0 mm, 9 =  0, and 0  =  0 in 
the negative direction; (b) q3 =  0 mm, 9 =  0, and 0  =  0 in the positive direction; (c) 
q3 =  12 mm, 9 =  0, and 0  =  0 in the negative direction; (d) q3 =  12 mm, 9 =  0, and 0  =  0 
in the positive direction.
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Figure 6.7. Predicted model (after calibration) at (a) q3 =  0 mm, 9 =  —n/4, and 0  =  0 
in the negative direction; (b) q3 =  0 mm, 9 =  —n/4, and 0  =  0 in the positive direction.



CHAPTER 7

ACCURACY

Kleindiek does not give specifications describing the step size of each joint of the MM3A, 

so it is not possible for us to compare our method to some preexisting manufacturer 

specification. To compare our developed model with a simpler, less-sophisticated model, we 

analyzed our model in comparison with the constant step size obtained for both prismatic 

and rotary joint when there is no effect of gravity acting on the respective joints. This 

alternate method still requires the audio limit switch or some equivalent method to detect 

the range of travel (which has not been developed previously), but it does not require the 

more complicated model developed herein, and it is an alternative that one might expect 

to have reasonable predicting power.

From Fig. 7.1, we can conclude that the developed model of the prismatic joint is accurate 

to within 15% of the experimental results throughout the configuration of the manipulator, 

whereas the constant step size model predicts the step size well only at configurations when 

there is little influence of gravitational force. In the worst-case configuration, the simpler 

model has an error in step size that is approximately 10% of the actual experimental value. 

From Fig. 7.2, we can conclude that the developed model of the rotary joint is accurate to 

within 2% of the experimental model, whereas the constant step size model predicts the 

step size well only when the gravitational force acting on the rotary joint is minimal. In 

the worst-case configurations, the simpler model has an error that is approximately 1.3% 

of the actual experimental value.

From this analysis,we find that our developed model increases the overall accuracy with 

which the step size taken by the respective joints of the Kleindiek MM3A could be predicted, 

even when compared to a simpler model that would in itself be novel compared to the state 

of the art.
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F igure 7.1. Comparison of our predicted model with the constant step size in the (a) 
outward direction, and (b) inward direction.
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Figure 7.2. Comparison of our predicted model with the constant step size in the (a) — 
direction, and (b) +  direction.



CHAPTER 8

CONCLUSION AND FUTURE WORK

The Kleindiek MM3A can be used in applications requiring high precision to the scale 

of a few nanometers, with larger steps on the order of 1 ^m. For effective control of the 

manipulator, it is often utilized using a device such as an SEM. However, this machine is 

very expensive, and research groups end up paying $50-$100 per hour. With the open-loop 

control algorithm as developed in this thesis, one only requires a quick calibration routine 

involving taking step-size readings of the joints of the Kleindiek at specific configurations. 

This procedure described not only is cheaper, it is also easy to follow, and could result in 

significant savings in time. Several closed-loop schemes, and modeling techniques for effec­

tive manipulation of the piezoelectric stick-slip actuators, have been discussed in Chapters

1 and 2. In Chapter 3, we explained the dynamics of the Kleindiek MM3A by incorporating 

the fact that the joints of this manipulator are decoupled. We modeled static-loading 

effects on the prismatic joint (Chapter 4 ), and static- and inertial-loading effects on the 

rotary joint (Chapter 5) of the manipulator. In spite of the highly nonlinear nature of the 

piezoelectric actuators, it was found that there is a repeatable stochastic pattern that they 

follow that depends on the loads acting on the joint. This pattern can be modeled and 

used for effective open-loop control of the Kleindiek MM3A. In Chapter 6, we discussed the 

calibration techniques employed for predicting the step size of the joints of the manipulator 

in any configuration. The accuracy we achieved was within ±15% (100 nm) for prismatic 

joint and ±2% (2 ^rads) for rotary joints.

In this work, we made the assumption that the joints are completely independent, in that 

a step in one joint has no effect in any of the other joints. This is a common assumption that 

appears accurate. We neglected any effect of dynamic coupling that may occur owing to 

its’ backdrivable nature. Further research needs to be done to incorporate this phenomenon 

if it is important, or verify that it is not. The experiments in this thesis were performed 

using a single Kleindiek MM3A, but we expect the results to generalize to other MM3As 

and other similar devices that utilize piezoelectric stick-slip actuators. Having said this, the
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effectiveness of this model has yet to be tested on other similar devices.

The next step in this research is to combine the open-loop model derived in this thesis 

with master-slave teleoperation algorithms. Such algorithms will enable a human user to 

command an end-effector velocity that is converted into necessary joint velocities, which in 

turn can be converted into a number of joint steps required. In this way, the micromanipu­

lator can be controlled more like other robots, rather than by controlling individual joints 

as is currently done.



APPENDIX

DERIVATION OF THE KINEMATICS AND 
DYNAMICS OF THE KLEINDIEK MM3A  

MICROMANIPULATOR

In this appendix we derive the forward kinematics, inverse kinematics, manipulator 

Jacobian, and dynamic equations for the Kleindiek MM3A.

A.1 Forward Kinematics and Manipulator Jacobian
The Kleindiek MM3A is a serial link rotary-rotary-prismatic (RRP) manipulator. We 

model the MM3A as a 3-DOF robotic manipulator, as shown in Fig. 4.1, where the MM3A 

has been modeled using the Denavit-Hartenberg (D-H) convention. Table A.1 shows the 

D-H parameters for the manipulator concerned.

The system shown in Fig. 4.1 has four coordinate systems defined. Frame 0 represents 

the base frame, with joint 1 corresponding to rotation about zO. Frame 1 is attached to the 

first link and rotates about zO by the angle q1, with joint 2 corresponding to rotation about 

Z1. Frame 2 is attached to the second link and rotates about z'1 by the angle q2, with joint 

3 corresponding to translation along z2. The frame’s origin O2 is coincident with O 1, which 

is the origin of frame 1. A tool frame 3 is attached to the distal end of the third link and 

translates prismatically along z2 by q3. It has an initial offset of 12 from frame 2.

The homogeneous transformation matrix of frame 3 with respect to the base frame is:

Table A .1 . D-H parameters for RRP manipulator.
i ai di ai 9i
1 a1 0 n/2 q1
2 0 0 —n/2 q2
3 0 I2 +  q3 0 0
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jT3 =

C1C2 —Si —C1S2
S1C2 Ci —S1S2
S2 0 C2
0 0 0

(l2 +  93)C2 
1

(A.1)

where si and ci represent the sine and cosine of the angle qi, respectively. Consequently, we 

deduce the forward kinematics for the manipulator as:

(A.2)

1
x3001

— (I2 +  q3)ciS2 +  ai Ci
°d03y = —(I2 +  q3 )siS2 +  ai si

1z300
1 (I2 +  q3)C2

where 0d03 is the vector from O0 to O3, expressed with respect to frame 0. 

The Manipulator Jacobian, J (q) is of the form:

0d03
W03

=  J (q)q =

' (I2 +  q3)siS2 -  aiSi (I2 +  93)ciC2 
- ( I 2 +  q3)ciS2 +  aici (I2 +  q3)siC2 

0 (I2 +  q3)s2
0 Si
0 -C i
1 0

—C1S2
—S1S2 r

qiC2
0 <?2

0 Sl3

0

(A.3)

A.2 Inverse Kinematics
For the inverse kinematics problem, we assume we are given 0d03, and our goal is to 

find the joint values q. We will now derive the inverse kinematics equations to compute the 

joint values.

To solve for qi , we look at the top view in Fig. A .1(a), finding:

qi =  atan2(0d03y ,0 d03x) 

Next, to solve for q2 we first compute

id i3 =
id i3x
id i3y

i3z
— 0R  (0d03 —0 d0i)

Looking at the front view in Fig. A .1(b), we get

q2 =  atan2(idi3y,i di3x)

Finally, to solve for q3, we see that from Eq.(A .2),

(0 d03x)2 +  (0d03y )2 +  (0d03z )2 =  ( — (q3 +  l2)ciS2 +  aiCi)2 +

(A.4)

(A.5)

(A.6)

( —(q3 +  12) s1s2 +  aiSi )2 +  ((q3 +  l2)c2)2 (A .7)
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Solving, we get

2a1s2 ±  \J(2als2)2 — 4(a1 — ((odo3x)2 +  (°do3y)2 +  (odo3z)2)) ,
qs =  -------------------------------------------- 2------------------------------------------------ 2̂

(A.8)

Thus, we have solved for the joint variables given the postion of frame 3 with respect to the 

base frame.

A.3 Dynamics
The Lagrangian formulation is used for computing the dynamics of the Kleindiek MM3A 

[54]. The Lagrangian of a mechanical system can be defined as a function of the generalized 

coordinates:

L =  T - U (A.9)

where T  and U respectively denote the total kinetic energy and potential energy of the 

system. The Lagrange equations are expressed by:
d dL dL 
dt %  dqi~TLW~.---- — =  Ti i =  1,2,3 (A.10)

(b)

F igure A .1 . Solving the inverse kinematics problem utilizing the (a) Top view, and (b) 
Front view.
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where Ti is the generalized force associated with the generalized coordinate qi . Equation 

A.10 can be written in compact form as

dt V dT dT
=  T (A.11)

where for a manipulator with an open kinematic chain, the generalized coordinates are 

gathered in the vector of variables T- The kinetic energy T  and potential energy U of link

i are computed as:

1 1ST t(L- )T t7,  ̂ . 1 1ST Jh )T,n T X jhTi =  2 m T T jp ii)TjP  T + _ TTjOi)T( 0 ^ )jO  T 

Ui =  —mk 0gT Ti

(A.12)

(A.13)

where Ti is the position vector of the center of mass of link i with respect to the base 

frame, 0/ii represents the inertia tensor of link i relative to the center of mass of link i when 

expressed in the base frame, and i/ii is the inertia tensor when expressed in the link’s frame 

(i/ 1i is a constant inertia tensor). 0/ 1i can be expressed in terms of i/ 1i as:

T (A.14)

where Ri is the rotation matrix from the link i frame to the base frame. Jp and Jo are the 

position and orientation Jacobians, written with respect to some link i, and are computed 

as:

J (h)

J

p
(h)
O

=  h(1i)=  Up i

=  [1(1i)=  [1O1

,(*01Pi

1Oi

0]

0]

with

^ i)jp j

^ i)
Joj

zj_  1
Tj_ i x (Ti — poi)

for a prismatic joint 
for a rotary joint

T0 for a prismatic joint
Tj_ 1 for a rotary joint

(A.15)

(A.16)

(A.17)

(A.18)

and 0g =  [g1 g2 g3]T is the gravity acceleration vector with respect to O0.

The Coriolis terms (according to Lagrange) can be found as follows. The generic element 

of C is

where the coefficients

cijfc

fc=1

ij I d^̂ ifc+
dMjfcX 

dqi J2 V dqfc
where M  is the n x n inertia matrix for an n-joint manipulator.

(A.19)

(A.20)

aij =
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A.3.1 Inertia Tensor Equation
Before formulating the equations for dynamics, we must compute the inertia tensor °/i.

Links 1 and 2 of the Kleindiek MM3A manipulator are both symmetric with respect to 

two planes passing through their respective centers of mass, and link 3 is symmetric with 

respect to all three planes passing through its center of mass, thus the inertia tensor iIli 

is diagonal (i.e., all off-diagonal terms are equal to zero). The inertia tensor of link i with 

respect to the base frame can be expressed as:

for all the three links of the manipulator. Let the constant inertia tensor be defined as

iIi11 iIi12 i Ii13 
=  iIi21 iIi22 i Ii23i21 ri22 ri23 (A.21)

i i i  ri31 ri32 ri33

O O O  ri11 ri12 ri13
Or Or Or OrJ-h =  ri21 ri22 ri23

O O O  ri31 ri32 ri33
(A.22)

Combined with Eq. A.14, we compute the inertia tensor O/ii as:

O O O  I111 I112 1113
Or — Or Or O r _ Or 1r O rT=  r 121 r 122 r 123 =  R 1 rli R 1

Or131 Or132 Or133
(A.23)

where

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

Similarly,
Or211 Or212 Or213

%  =  ^221 O/222 O /223 =  Ô T
O O Or231 r232 r233

(A.33)
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where

and

I211 = 2/21lC?c2 +  2I222S2 +  2/233C?s2

2̂12 =  1211s1c1c2 — 1222s1c1 +  1233s1c1s2 

0̂ 213 =  21211C1S2C2 — 21233C1C2S2

2̂21 = 2/ 211s 1 c1 c2 — 2 l222s1c1 +  21233s1c1s2

01222 =  21211«1c2 +  21222C2 +  21233«1«2

01223 =  21211S1S2C2 — 21233S1S2C2 

0̂ 231 =  21211s2c1c2 — 2l 233C1S2C2

01232 =  2l 211s1s2c2 — 2 l233s 1s2c2

01233 =  21211̂ 2 +  21233 c2

0l311 0l312 0l313 
0I321 0I322 0I323 
0l331 0l332 0l333

— 0 n 3 t 0 t> T =  R3 3̂ R 3

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

where all the elements of 0Il3 are analogous to those of 0Il2 (since 0R3 = 0 R2), except that 

the elements of 2Il2 are replaced by 3Il3.

A.3.2 Derivation of Dynamic Equation

The mass of link i is expressed as mi . We formulate the position and orientation 

Jacobians as follows. For link 1, we assume that m 1 is located at a distance r1 from 

O0 along x 1, and calculate:

(ii)TV‘1
JP

(ii)O

—r1s1 0 0 
r1c1 0 0 

0 0 0

0̂ 0 0̂  
0 0 0  
1 0 0

(A.44)

(A.45)

For link 2, we assume that m2 is located at a distance r2 from O1 along z2, and calculate:

Jp2) =  a1C1 — r2C1 S2 —r2S1C2 0 (A.46)
—a!S1 +  r2S1S2 —r2C1C2 0 
a!C1 — r2C1S2 —r2S1C2 0 

0 —r2S2 0

J (i2)
O

0 s 1 0 
0 —c1 0 
1 0 0

(A.47)

0
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For link 3, we use a different convention, and assume that m3 is located at a distance r3 

from O3 along —z3, and calculate:

(13)T(‘3
JP

(I2 +  q3 — r3)sis2 — aisi —(I2 +  q3 — 3̂)0102 —C1S2 
—(I2 +  q3 — r3)ciS2 +  aici —(I2 +  q3 — r3)siC2 —S1S2 

0 —(I2 +  q3 — r3)s2 C2
(A.48)

(13)
O

0 s 1 0 
0 —c1 0 
1 0 0

Next, we compute the kinetic and potential energy. In the case of link 1,

Ti =  1 m ir2<?2 +  1 o/i33<?2 

Ui =  —m irig ici — mirig2si

(A.49)

(A.50)

(A.51)

and for link 2,

T2 = 2 m2(ai — r2s2)2q2 +  2 m2r2q| +  2[o/ 233q2 +  q2(o/  2Us2 

+ oI 222c1 — (oI  221 +  oI  212)s ic i) +  qiq2(oI  213si — oI223ci

+ o  ̂231s 1 — °1232c1)] (A .52)

U2 =  — m 2gi(aici — r2cis2) — m,2g2(aisi — r2 si s2) — m2g3r2c2 (A.53)

and for link 3,

T3

U3 =

-  m3[(ai — (l2 +  q3 — r3)s2)2q2 +  (l2 +  q3 — R )2q| +  qf] +

2 [o^333q2 +  q2 (o 3̂11s2 +  o 3̂22c1 — (^ 321 +  o1312)s 1c1)

+ q1q2 (o  ̂313s 1 — °1323c1 +  °1331 s1 — ° I 332c1)] (A .54)

—m3gi (aici — (l2 +  q3 — r3)cis2)

—m3g2 (aisi — (l2 +  q3 — r3)si s2) — m3g3(^2 +  q3 — r3)c2 (A.55)

The Lagrangian becomes:

L =  E  Ti — E  Ui
i=1 i=1

(A.56)

Proceeding with equation A.10, we first formulate the inertial terms. For link 1:
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d—
—  =  (qi[mir2 +  0I 133 +  0I 233 +  0I 333 +  m2(ai — r2S2)2 +  m3(ai

— (l2 +  q3 — r3)s2)2] +  °.5q2[s1(0/  213 +  01231 +  °1313 +  °133i)

—ci (0^223 +  01232 +  01323 +  0 l332)] (A .57)

=  qi[m ir2 +  0I  i33 +  0I 233 +  01333 +  m2(ai — r2S2)2 +  m3(ai

—(I2 +  q3 — r3)s2)2] +  0.5q'2[s1(01213 +  01231 +  01313

+ 0133i) — ci (01223 +  0 l232 +  0 l323 +  0 l332)] (A .58)

For link 2:

d L
—— =  0.5(?i[si (01213 +  0 l 231 +  0 l 313 +  0l 33i) — ci (01223 +  0 l 232
d(?2

d d— 
dt dq2

+ 01323 +  0i 332)] +  q2[m2r2 +  s l (01 3ii +  012ii) +  322 

+ 01222) — s i cl (01321 +  0 l 312 +  0 l 221 +  0 l 212)] +  m3q2(l2 +  q3

—r3)2 (A.59)

0.5qi [si (01213 +  0 l 23l +  0 l 313 +  0l 33l) — cl (01223 +  0 l232 +  0 l 323 

+ 01332)] +  q2[m2 r2 +  s l (013ll +  0 l 2ll) +  cl (01322 +  0 l222)

—sl cl (0132l +  0 l 312 +  0 l 22l +  0l 2l2)] +  m3 '2 (l2 +  q3 — r3)2 (A .60)

and for link 3:

d— , . N 
=  m3<?3 (A.61)d<?3 

d d—
dtdq3 =  m3' 3 (A -62)

From equation A.61,A.59, and A.57, we can formulate the inertia matrix

M  =
M il M i2 Mi3 
M 21 M 22 M 23 
M 31 M 32 M 33

(A.63)

where
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M 11 =  m 1r2 +  oJ 133 +  oJ233 +  oJ333 +  m2(a1 — r2S2) 2

+ m 3(a1 — (I2 +  q3 — r3)s2) 2 (A.64)

M 12 =  0.5[S1(° / 213 +  ° r  231 +  ° r  313 +  0j  331)

—C1(° / 223 +  ° r 232 +  ° r 323 +  0j 332)] (A .65)

M 13 =  0 (A .66)

M 21 =  0.5[s1(° / 213 +  ° r  231 +  ° r  313 +  0j  331)

—C1(° / 223 +  ° r 232 +  ° r 323 +  0j 332)] (A .67)

M 22 =  m2r2 +  s1(°J 311 +  ° r  211) +  c1(° 1322 +  0j 222)

—S1C1(°1321 +  ° / 312 +  ° r  221 +  0 j 212) +  m3(12 +  q3 — r3)2 (A .68)

M 23 =  0 (A.69)

M 31 =  0 (A.70)

M 32 =  0 (A.71)

M 33 =  m3 (A.72)

Next, we formulate the centrifugal and coriolis terms. We first calculate the Christoffel 

symbols of the first kind, cijk, as defined in equation A.20 .

For link 1:

1 ( dM 11 d M u  d M n )  n
c111 =  2 ( - * r  +  - a q r — - b u t  )  = 0 (A 78)

1 (  d M 11 d M 12 d M 12 
C112 =  tt -t ;-------+2 \ dq2 dq1 dq1

=  s2c2 (2 r  211 +  3 j 311 — 2 j233 — 3j 333) — m2r2c2(a1 — r2s2)

+m3(s2C2(l2 +  q3 — r3) 2 — 0 ) 2(12 +  q3 — r3)) (A.74)
1 (  d M 11 d M 13 dM13 

C113 =  -  -------+2 \ dq3 dq1 dq1 
=  m3(l2 +  q3 — r3)s2 — m301S2 (A.75)



Ci Ci Ci Ci Ci Ci Ci Cito to to to to to to toco co co to to toco to H- co to I-1 co to

o  t o l h ^  O  t o l h ^  to I I—1 to | to I

+
03►Q

03

0 3►Q

+
0 3►Q

to |

CD CD CD

g§ § £ £
to
to

to to
to h-1 to

to
co to to to

+ + + +

CD CD CD

g§ § £ £
to
co

to to
to

to to 1—1 to
co 1—1 to

to

PI

+
►QGo
I

to
too

+

I
toto

0 3►Q
0 3

0 3►Q
CD CD CD

§ § £to
co

to to
to

to to to
co

to
to to

toO

+
►Q

+
►Q

+
►Q

I

> > > > > > > > >
CO bo bo bo bo bo bo bo bo
o CO 00 cn CO to



2i-i

I to |

+

03

CD

CD
£

0 3

to | to | to |

0 3 CD CD
Q d Q d Q d

1—1 co
co

to
to

to

+ + +

0 3►Q

0 3►Q

CD CD CD CD CD

|
co

Q d

co |
to

co
C/5

to to

Q d

co | Q d

to |
co

Q d

to |
to

+

oo
to
too

+
►Q

I
>  0 3  jS, kQ

I

I  I00 Cn ki

CD Q d
0 3

►Q

0 3
0 3

►Q

0 3

~-3co
to

1§ § §co to
co

to
to s>

C i
to

O O t o -

+

Co
toCi

tO|

CD

+  +
^-1 CD

>“-1
CD

>“-1

CD

CD

I
toCi

I
~-3toC/5

> > > > > >
00 bo
h-1 o CO 00



64

For link 3:

=  1 /  dM3i 9 M a i _  dM ii
C31i 2 \ dqi +  dqi dq3

=  —m3(l2 +  q3 — r3)s2 +  m3ais2

c3i2 =  0

c3i3 =  0

c321 =  0

c322 

c323 =  0

c331 =  0 

c332 =  0 

c333 =  0

Thus, the coriolis and centrifugal terms can be computed as:

C =
Cii C i2 C13'
C21 C22 C23
C31 C32 C33

with

C 11 =  q1c111 +  q2c112 +  q3c113

=  q2 [s2c2 (2  ̂211 +  3 l311 — 21233 — 3^333) — m2r2c2(a1 — r2s2) 

+m3(s2C2(l2 +  q3 — r3)2 — aiC2(l2 +  q3 — r3))]

+q3[m3(l2 +  q3 — r3>2 — m3ais2]

C 12 =  q1c121 +  q2c122 +  q3c123

=  q1 [s2c2 (2  ̂211 +  3 l311 — 21233 — 3^333) — m2r2c2(a1 — r2s2) 

+m3(s2C2(l2 +  q3 — r3)2 — aiC2(l2 +  q3 — r3))]

C 13 =  q1c131 +  q2c132 +  q3c133

=  qi[m3(l2 +  q3 — r3)s2 — m3ais2]

C21 =  q1c211 +  q2c212 +  q3c213

=  qi[—0.5[2s2C2 (21211 +  31311 — 21233 — 31333)] +  m2r2C2(ai 

—r2s2) — m3(s2C2(l2 +  q3 — r3 )2 — aiC2(l2 +  q3 — r3))]

(A.91)

(A.92)

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)

(A.104)
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C22 =  qi C22l +  <?2C222 +  '3C223

=  '3 [m3(l2 +  '3  — 3̂)]

C23 =  ' l  c23l +  q2 c232 +  '3 C233

=  '2  [m3(l2 +  '3  — 3̂)]

C3l =  ' l  c3ll +  <?2C3l2 +  <?3C3l3

=  qi [—m3(l2 +  q3 — r3)s2 +  m3aiS2]

C32 =  ql c32l +  '2 C322 +  '3 C323

=  '2 [m3(l2 +  '3  — 3̂)]

C33 =  ' l  c33l +  '2 C332 +  q3C333 

= 0

Next, we formulate the gravity terms:

G(q) =
G i
G2
G 3

with

G dU 
G i = dqi

=  m iri g isi — mirig2Ci +  m 2gi(aisi — r2SiS2) — m,2g2(aiCi 

—r2CiS2) +  m3 g i(a is i — (I2 +  '3  — r3)sis2) — m3g2(aici 

—(I2 +  '3 — r3)CiS2)

dU
d'2

dU
d'3
m3glCiS2 +  m3g2SlS2 — m3g3C2

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

m2r2 giCiC2 +  m2r2g2 si C2 +  m2g3 r2S2 +  m3(l2 +  '3  — r3)giCiC2 

+m3(l2 +  '3 — r3)g2SlC2 +  m3g3(l2 +  '3 — ^)S2 (A.112)

(A.113)

Using the inertial, coriolis, and gravitational terms formulated above, as well as the 

Jacobian, we compute the equation for the dynamics of the MM3A as:

M ( / ) ' +  C (q,q )q +  G(q) — J T (</)/ =  t (A.114)
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