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ABSTRACT

High strength alloy steel cast connector refers to a bracing system to be used in 

James L. Greene Science Center, Columbia University in New York. The cast 

connectors, as the name suggests, are the connection elements in a bracing system that 

uses stainless steel rods as the braces instead of traditional steel sections.

The bracing system was designed to support lateral wind load. The cast connector 

material is A148 GR. 115/95 (ASTM A958, 2006). The nominal yield strength is f y = 95 

ksi, whereas the nominal ultimate strength is f u = 115 ksi. Although the material has very 

high yield strength, its ductility is rather limited. Hence, limiting the use o f the 

connectors in a quasi-static load like wind load.

This study evaluates cast connector performance under monotonic and cyclic 

loading. Experimental results are validated by a finite element (FE) model created in 

ANSYS (Chapter 4).

Initial proposed tests on the cast connector specimens showed linear performance. 

For loads o f 2 and 2.5 times the design load (P = 275 kip), the test specimens exhibited 

linear behavior. Further tests with increased load were performed on a second specimen 

(Cast Connector 2) to obtain nonlinear behavior and connector failure modes. The non

linear portion of the curve was not well developed as one would expect for steel, which 

demonstrated the brittleness of the material.
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CHAPTER 1

INTRODUCTION

1.1 Background

The cast connector is a part of a new bracing system to be used in the James L. 

Greene Science Center at Columbia University in New York (NY). The bracing system 

provides lateral stability to the building under wind load. Each cast connector has to 

withstand a design load (P) of 275 kip. This bracing system was tested for the first time at 

full-scale in this experiment.

Each specimen o f cast connector (Cast Connector 1 and 2, see Section 1.2) was 

subjected to monotonic and cyclic tests. The monotonic test followed the procedure for 

testing notch bracing casting connection assembly of the New York City Building Code 

(NYCBC, 2012; Section 1714.3.1). The cyclic test included tensile loading and unloading 

cycles, but no compression loading cycles due to the nature of the bracing system. The 

connectors performed within the linear interval during the above tests. Hence further tests 

were performed on Cast Connector 2 (section 1.3).

The results from the experiments are presented in this thesis along with results 

from Finite Element (FE) analysis. Experimental tests were carried out on two connectors 

under quasi-static loading. The experimental test results reproduced in FE analysis to



determine the main parameters controlling the performance of cast connectors under 

quasi-static loading.

1.2 Objectives

The main objective o f this study is to evaluate the performance of a novel cast 

connector under quasi-static tensile loading using experimental tests and numerical 

simulations. The numerical analyses are used to identify the parameters controlling the 

cast connector response.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In recent years, the usage of steel castings has increased in frequency o f use and 

variety of applications. Steel castings became increasingly popular, especially in Europe, 

after they were used in the main stadium at the 1972 Olympics Games in Munich, 

Germany. However, the use o f steel cast components remained limited to special 

applications. Lack of sufficient research data is one of the main reasons behind the 

limited applications.

Traditional methods connect multiple members by using complex connection 

details, a complexity that can be reduced by using cast members or cast connectors. Steel 

casting connections use members formed by pouring molten metal into a mold, which is 

then connected to other structural members. This facilitates the fabrication process and 

enhances the system’s aesthetics because the casting can be molded into any geometry. 

This allows designer flexibility in selecting a bracing system that meets load carrying 

capacity requirements as well as an attractive aesthetic appearance. Despite these



apparent beneflts the development of steel castlngs as structural elements has not been 

satlsfactory.

Conventlonal connectlons tend to lnclude complex detalls leadlng to 

constructablllty problems, such as mlsallgnment, lncorrect drawlng lnterpretatlon, lack of 

avallable lnformatlon, hlgh fabrlcatlon and assemblage costs, among others. Steel 

castlngs are capable of overcomlng these requlrements, but there are no sufflclent 

research studles on the performance o f steel castlng connectors. Moreover deslgners, 

fabrlcators and erectors are unaware of the benefits of steel castlng components.

2.2 Cast Steel vs. Milled Steel

The term “cast steel” refers to steel castings of high strength alloy steel. It is a 

speclallzed form of castlng that ls used when normal (mllled) steel cannot dellver enough 

strength or the requlred geometry. Cast steel ls produced by pourlng molten steel mlxture 

lnto a preformed mold of the requlred geometry. Whereas, “milled steel” refers to steel 

that ls manufactured by steel mllls uslng tradltlonal methods, and lt ls avallable only ln 

flxed forms or shapes.

The use of cast or mllled steel has pros and cons. Cast steel can be formed to 

requlred dlmenslons or geometry, and has hlgher strength than mllled steel. However, 

such hlgh strength cast steel has low ductlllty compared to mllled steel. Also, the 

structural behavlor of cast steel ls not very well known. On the other, hand mllled steel ls 

a ductlle materlal has been used and studled for a long tlme now. On the down slde, 

mllled steel strength ls lower compared to cast steel. Sometlmes, strength requlrement 

dlctates the complexlty jolnt and slze for elements to be used. Heavy jolnt detalllng

4
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required when using such steel can be easily simplified using cast steel connections. 

Hence, cast steel can be a good alternative to tradition steel design provided proper study 

has been conducted.

2.3 Factors Governing the Steel Casting Design

Chen et al. (2010) conducted studies of two types of steel cast connectors and 

concluded that the design and performance o f cast steel joints are governed primarily by 

the geometric configuration, casting process and joint structural behavior. Usually, the 

cast steel connectors have higher strength than the members they connect. They found 

that in some cases, aesthetic and casting process control the design rather than the 

functional requirement of steel casting joint.

Chen et al. found that stresses in the steel casting are usually lower than those 

predicted by analytical formulations. This discrepancy pointed out, that the exact 

prediction of stress distribution and stress flow routine in the cast steel joint is very 

difficult using simple computations.

Monroe and Poweleit (2003) performed cast steel connector tests, concluding that 

although the functional requirements are the primary factors governing the connector 

design, geometric complexities and the casting process play a vital role. They also found 

that the connected members usually fail before the steel cast connectors, as expected from 

the applied design philosophy.

Their study also provided insights on the effect of strength, ductility, weldability 

of materials used for the casting on the overall connectors’ performance. Increasing the
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strength of steel normally reduces its ductility, toughness and weldability. Hence, it is 

often desirable to use lower strength grade steel and increase the section size.

Bjorhovde (2010) pointed that limited deformation capacity o f high strength steel 

could be problematic, in part because knowledge data base are very limited. Response 

characteristics o f high strength steel are still not fully known. This presents challenges as 

well as opportunities to engineers and designers to investigate more into application of 

such materials.

2.4 Use of Cast Connectors in Bracing System

Steel castings are broadly used in industrial equipments as connectors or 

component parts. Steel casting applications in structures have been limited to 

compression members, although recently their use is gaining popularity in other areas as 

well. Their use in the main stadium at 1972 Olympic Games in Munich increased their 

popularity. Cast connectors are used commonly in bridge applications to replace 

complicated welded connections. In buildings, castings have mostly been used for 

architecturally exposed connections, particularly bracing connections.

Casting connectors are used in many large-span spatial structures and high-rise 

buildings (e.g., the “Bird’s Nest” stadium for Beijing Olympics) because they can be 

fabricated in a large variety of geometrical shapes and with high strength steel.

Bracing systems are mostly designed to take tensile load. According to Bjorhovde 

(2010), high strength materials give major advantage in tension members and connection 

applications. Full advantage of higher strength of materials could be taken because



slenderness, local or overall buckling and rotation capacity are rarely considered for 

tension members.

Monroe and Poweleit (2003) mentioned that, “steel castings are expensive sources 

of steel but cheap suppliers o f geometry” to indicate that high steel casting costs can be 

easily compensated by savings achieved by fabricating and assembling less parts, and 

optimization of material and system geometry.

Engineers and designers are currently working to establish pre-engineered 

connection design and fabrication for hollow structural section connections. Studies are 

focused on using cast connectors to modify standard fabrication practices for seismic- 

resistant and aesthetic pin connections for hollow structural section. Oliveira et al. (2008) 

evaluated the seismic performance o f a proprietary cast connector design. They identified 

cases where the use o f mass produced cast steel components could provide significant 

advantages over standard fabrication practices. Their study focuses on development of 

seismic-resistant and aesthetic pin connections for hollow structural sections using 

standardized cast steel connectors developed at the University o f Toronto.

The cast connectors evaluated in this study are part of a bracing system designed 

to withstand tensile stress caused by lateral wind loads. The steel castings connect solid 

stainless steel rods as braces, unlike other system used for connecting HSS bracing. This 

is rather new concept compared to traditional bracing systems.

7



2.5. Analysis Techniques for Cast Connectors’ Structural Performance

The flexibility to fabricate castings of complex geometry presents engineers and 

designers with a tough task of analyzing their performance. In general structural design, 

the connection behavior can be computed using standard equations for joint capacity.

Numerical, analytical and/or experimental techniques are necessary to predict the 

behavior cast connectors with complicated geometry. However, information on structural 

design methods o f  cast connectors is sparse. Most o f  the available data refers to the 

mechanical properties of weldable steel castings (Herrion et al. 2007). The studies on the 

developments and applications o f  casting connections are limited and focused on the 

mechanical properties o f  casting, casting design, and quality control, rather than the 

structural design (Poweleit 2006 and Puthli 2008).

Unlike other steel components, steel casting manufacturing processes involved are 

not standardized. The casting process, including pouring into cast, cooling and heat 

treatment, may vary widely for different cases. This variation in casting processes affects 

the casting behavior. For these reasons standard methods for cast connector design are 

not available, and experimental tests and FE analyses are needed to validate new 

connector designs

Experimental tests can provide insights into strain distributions and failure modes, 

but there are limitations on the number o f  tests that can be performed, as well as in 

measuring techniques. In addition, for full scale specimens, it is usually difficult to obtain 

plastic deformations, or reach final failure due to loading capacity limitations. To 

overcome these limitations, FE analyses are performed to complement experimental tests.

8



CHAPTER 3

TEST SETUP AND DESCRIPTION OF 

CAST CONNECTORS

3.1 Cast Connector Description

The two cast connector specimens tested in this study are the two-halves of a 

single connector. The steel casting connections are welded to the column. To facilitate 

the testing of the connector, the tested specimens were cast as two separate halves. Figure

3.1 shows the tested two cast connectors. Both connectors have two circular legs 2.25 in. 

in diameter, coming out from 2 in. thick base. The orientation of the two legs and the 

geometry of the two connectors vary as shown in Figure 3.1.

A subassembly was fabricated to support the tension loads applied to the cast 

connector. Figure 3.2 shows the test assembly elevation used for fabrication. Figure 3.3 

presents the subassembly for Cast Connector 2, as installed in the tower frame at the 

structural laboratory of the University of Utah. This tower frame has a 2000 kip-actuator, 

and it is capable o f withstanding more than two times the factored design loads applied to 

the cast connectors.

The components and joints o f the subassembly and top assembly plate (Figures

3.2 and 3.3) were analyzed using SAP 2000 (CSI, 2009). The structural components’
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Cast Connector 1

Flg 3.1: Steel Cast Connectors Used ln the Experlmental Tests

Flg 3.2: Test Assembly Elevatlon 
(Reprlnted wlth permlsslon from Adan Englneerlng, LLC, 2012)
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Fig 3.3: Subassembly for Cast Connector for Experimental Tests
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strength capacity and deflection limits were evaluated for a maximum load of 2.5P = 688 

kips (Appendix A).

3.2 Description of Test Performed

ASTM A 370-05, Standard Test Methods and Definitions for Mechanical Testing 

of Steel Products, describes several tests applicable to wrought and cast steels, stainless 

steels and related alloys. These tests include tension test, bend test, hardness test, and 

charpy impact testing.

Tension test is related to the mechanical testing of steel products subjected to a 

measured load sufficient to cause rupture. Main properties sought are yield point, yield 

strength, tensile strength, elongation and reduction of area.

Generally the loading o f the test specimen is done by two loading systems, 

mechanical (screw power) and hydraulic. The essential requirement is that the load 

should be transmitted axially. Any convenient speed of testing may be used up to 0.5 

yield point or yield strength. If  the machine is equipped with a device to indicate rate of 

loading, the rate of loading from 0.5 yield point or yield strength through the yield point 

or strength should not exceed 100,000 psi/min. However the minimum rate of stressing 

shall not be less than 10,000 psi/min.

3.2.1 Force vs. Displacement Controlled Loading

The tension test can be categorized as per the method of loading to control speed 

of testing. The speed of testing is important because mechanical properties are a function 

of strain rate (Davis, 2004). Generally, a slow speed test results in lower strength values



and larger ductility than a fast speed test. A test’s speed can be determined by one o f the 

following methods:

a) Strain (displacement) rate

b) Stress (load) rate

c) Cross-head separation rate during the test

d) Elapsed time

These methods are listed in order o f  decreasing precision. The most common 

methods o f  testing are strain (displacement) rate and stress (load) rate. Strain 

(displacement) rate is expressed as the change in strain per unit time. As strain is a 

dimensionless value, it is expressed as a ratio of change in length per unit length. 

Generally, a strain rate between 10-5 and 10-1 is preferable for quasi-static tensile tests. 

Stress (load) rate is expressed as the change in stress per unit of time. This is usually 

determined by defining the load rate. ASTM A 370-05 “Standard Test Methods and 

Definitions for Mechanical Testing of Steel Products,” requires that stress rate not exceed 

100 ksi/min. This number corresponds to an elastic strain rate of about 5 x 10"5 s-1 for 

steel.

It is important to compare displacement (strain) controlled and load (stress) 

controlled loading. For elastic behavior, the stain and stress methods are identical. Once 

the elastic limit is exceeded, the strain rate increases when a constant stress rate is 

applied. Alternatively, the stress rate decreases when a constant strain rate is specified.

Experimental tests performed for this study employed stress controlled or load 

controlled loading. This method was chosen as New York City Building Code (NYCBC) 

recommends load based tension tests for such connectors. It was also difficult to control

13



the strain or displacement rate of the test setup, which included several components that 

could displace. Load controlled loading is usually not preferable for testing beyond 

elastic limit, however, the strain rate for any given load rate was found to be within the 

recommended values for load controlled tests (Appendix B). Moreover, the load rate was 

reduced for large load levels.

3.2.2 Test Procedures

3.2.2.1 Monotonic Test

The monotonic test followed the procedure for testing notch bracing casting 

connection assembly is based on the New York City Building Code (NYCBC, 2012), 

Section 1714.3.1. The test tensile load for the monotonic test is 2 times the superimposed 

design load of 275 kips (i.e., 550 kips). The cast connectors were loaded according to the 

following stages:

Stage 1. 0% of the load on the assembly, deflectio n gage readings set to read 0.000”

Stage 2. 25% of the test load on the assembly, deflection gage readings recorded.

Stage 3. 50% of the test load on the assembly, deflection gage readings recorded.

Stage 4. 75% of the test load on the assembly, deflection gage readings recorded.

Stage 5. 100% of the test load on the assembly, deflection gage readings recorded.

Stage 6. 100% of the test load on the assembly shall be left for 24 hours, deflection gage 

readings recorded.

Stage 7. 0% of the test load on the assembly, deflection gage readings recorded.

NYCBC also recommends the passing criteria for monotonic test under quasi

static tensile loading. The passing criteria given in the NYCBC states that, the test
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assembly has to recover more than 75% of the maximum deflection within 24 hours after 

removal o f the test load.

3.2.2.2 Cyclic Test

After visual inspection o f the specimen, the cast connectors were reloaded and 

subjected to a superimposed load of 2.5 times the design load. Because of the nature of 

the braced system, the loading protocol for cyclic tests only included reloading and 

unloading cycles in tension.

3.2.2.3 Additional Tests

Five additional tests were performed in Cast Connector 2 after the completion of 

proposed monotonic and cyclic tests which showed the linear behavior of the connectors. 

These tests were done as attempts to obtain nonlinear behavior or failure. The load was 

applied in quasi-static manner in all the additional tests.

The last two additional tests were performed by loading only one leg o f the Cast 

Connector 2. Each test was performed on a different leg. The load was applied only on 

one leg because o f failure of the nut connecting the rod to the top assembly plate, after 

the third test. Testing only one leg had another benefit. The load applied could be reduced 

by half o f the load that should have been applied if both legs were loaded. This meant 

that the subassembly and its connections were prevented from reaching failure (Section 

3.6).
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3.3 Material Characteristics

Material used for casting of the cast connectors is A148 GR. 115/95 (ASTM 

A958, 2006). The nominal yield strength is 95 ksi, whereas the nominal ultimate 

strength is 115 ksi. However, tests on two different heats used in the fabrication o f 

the cast connectors showed that the material mechanical properties-exhibit overstrength 

(Appendix C). The yield strength obtained for the two heats was f y = 115.8 and 121.8 ksi, 

and the ultimate strength was f u = 130.8 and 137.3 ksi. Therefore, the yield and ultimate 

strength are on average 25 and 17% larger than the nominal specification, respectively. 

The rest o f  the mechanical properties o f  the material used in the cast connectors are 

presented in Appendix C.

Figure 3.4 shows the stress-strain for the material compared to that for typical 

ASTM Gr. 60 mild steel and ASTM Gr. 75 (Gr. 520) steel (used for stainless steel rods). 

As observed, the casting material is a lot less ductile compared to typical mild steel and 

stainless steel used for rods. The curve for the stainless steel material is as recorded in lab 

and does not extend up to failure unlike the other three curves shown in the figure.

3.4 Experimental Results for Tests Performed on Cast Connector 1

Cast connector 1 was first tested under monotonic load. After reaching the 

maximum load of 550 kip (2P), the specimen was loaded at the maximum load for 24 

hours. Then the specimen was tested under cyclic load. The cast connector deformations 

were recorded with 12 strain gages (SG # 6 was out o f order) and 5 LVDTs (Figures 3.5 

and 3.6). See Appendix D for LVDTs and strain gage characteristics.
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Fig 3.4: Stress-Strain Curves for Different Steel Materials

Fig 3.5: LVDTs and Strain Gages Location on Cast Connector 1 (View I)
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LVDT # 2

1

Fig 3.6: LVDTs and Strain Gages Location on Cast Connector 1 (View II)

3.4.1 Monotonic Test: Maximum Applied Load 2P = 550 kips (CC1-T1)

The load protocol for the monotonic test was divided into four stages based on the 

fraction of total load (2P) applied at the end of each stage (see Section III). The load rate 

was 5 kips/min for Stage 2 (0.25 x 2P), 4 kips/min for Stages 3 (0.5 x 2P) and 4 (0.75 x 

2P), and 3 kips/min for Stage 5 (2P). There were 10-minute pauses between different 

stages.

Table 3.1 provides cast connector’s vertical deformations recorded by the 

five LVDTs installed in the subassembly. Deformations and strains are presented at 

the stages specified by Section 1714.3.1 of NYCBC, 2012. LVDTs # 2 and 3 measure 

the deformation at each side o f one o f the cast connector legs. Also, a comparison of



19

Table 3.1: LVDT Deflection Reading for CC1-T1. Maximum Load = 2.0 P = 550 kips.

On Cast Connector Leg
Stage Load Load LVDT# 1 LVDT # 2 LVDT # 3 LVDT # 4 LVDT # 5

(% 2P) (kips) (in.) (m.) (in.) (in.) (in.)
1 0% 0.0 0.00000 0.00000 0.00000 0.00000 0.00000
2 25% 137.5 0.01989 0.00615 0.00640 -0.01137 0.01712
3 50% 275.0 0.03598 0.01083 0.01152 -0.02135 0.03318
4 75% 412.5 0.05624 0.01812 0.01839 -0.04454 0.06537
5 100% 550.0 0.06979 0.02254 0.02300 -0.07097 0.11741
6 100%* 550.0 0.07104 0.02250 0.02336 -0.07097 0.11936
7 0% 0.0 0.00659 -0.00004 -0.00150 -0.02901 0.05171

The second reading at 100% was taken 24 hours after the maximum load was reached.*

deformations when the maximum load is reached (Stage 5) and after 24 hours of 

sustained load (Stage 6) indicates that the cast connector material did not exhibit creep 

effects. Also, the residual deformation after the load was withdrawn (Stage 7) is 

practically null. This indicates that the cast connector did not experience plastic 

deformations, and performed in the elastic interval. This behavior easily meets the 

passing criterion for the monotonic test, which requires the assembly to recover more 

than 75% of the maximum deflection within 24 hours after removal o f the test load.

The rest of LVDTs were installed to track the subassembly components’ 

performance. LVDT # 1 recorded the relative displacement of top assembly plate with 

respect to the actuator plate. The residual deformation in LVDT # 1, though small, was 

caused by the rearrangement of the bolts and nuts connecting the top assembly plate and 

the actuator plate. LVDT # 4 recorded the lateral displacement of the subassembly with 

respect to the tower frame. The readings from LVDT # 4 were constantly monitored to 

prevent contact of the subassembly with the brace o f the tower frame. These



deformations were caused by stiffness asymmetry o f  the subassembly frame that caused a 

slight lateral deformation to the right hand side of the test (Figure 3.4).

LVDT # 5 measured the vertical deflection from the subassembly with respect to 

the steel floor (Figure 3.3).The residual deformation of LVDT # 5 was mainly caused by 

slip o f the frame at the connection o f steel reaction box and the subassembly (see “Slip of 

Column -  Steel Box Connection”, Section 3.4.2.1).

Tables 3.2 and 3.3 present the strain gage readings at the fork and legs of the cast 

connector, and the lower half o f  the connector, respectively. In addition, Figure 3.7 

presents the maximum strains recorded at each strain gage. The results show that strains 

at the lower half o f the connector are significantly lower than those recorded at the legs 

and fork of the specimen. Strain gages 1, 2, 10 and 11 exhibited the largest tensile strain, 

whereas strain gage 3 showed maximum compressive strain. Strain gage 3 recorded large 

compressive strains at the saddle, but these strains rapidly decrease, as can be seen on the 

reading for strain gage 13, which is located right below strain gage 3.

The strain gage readings in Tables 3.2 and 3.3 confirm that the cast connector was 

capable o f sustaining 2 times the superimposed design loads for a period o f 24 hours, 

without exhibiting creep effects (compare strains at Stages 5 and 6). Stage 7 in Tables 3.2 

and 3.3 show strain readings close to zero after the specimen was unloaded, indicating 

that creep effects and permanent plastic deformations did not occur. Therefore, the 

NYCBC (2012, Section 1714.3.1) criterion is satisfied.
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Table 3.2: Strain Gage Reading (p strain) for CC1-T1 (Fork and Leg Locations). 
Maximum Load = 2.0 P = 550 kips.

End of Legs Fork Section Saddle
Stage Load Load SG # 10 SG # 11 SG # 1 SG # 2 SG # 3 SG # 13

(% 2P) (kips) p strain p strain p strain p strain p strain p strain
1 0% 0.0 0 0 0 0 0 0
2 25% 137.5 735 585 836 580 -566 -156
3 50% 275.0 1362 1114 1373 1098 -993 -267
4 75% 412.5 2281 1806 2137 1800 -1578 -426
5 100% 550.0 2913 2192 2652 2217 -1951 -528
6 100%* 550.0 2937 2204 2576 2229 -1951 -521
7 0% 0.0 172 -200 -90 -44 49 18

* The second reading at 100% was taken 24 hours after the maximum load was reached

Table 3.3: Strain Gage Reading (p strain) for CC1-T1 (Base Locations). 
Maximum Load = 2.0 P = 550 kips.

Stage Load
(% 2P)

Load
(kips)

SG # 4 
p strain

SG # 5 
p strain

SG # 6 f 
p strain

SG # 7 
p strain

SG # 8 
p strain

SG # 9 
p strain

SG # 12 
p strain

1 0% 137.5 0 0 - 0 0 0 0
2 25% 137.5 113 130 - 20 26 86 200
3 50% 275.0 190 214 - 50 47 147 329
4 75% 412.5 298 327 - 99 79 231 502
5 100% 550.0 373 401 - 130 100 285 615
6 100%* 550.0 383 409 - 133 102 267 622
7 0% 0.0 3 3 - 23 7 -36 -11

* The second reading at 100% was taken 24 hours after the maximum load was reached. 

 ̂The reading of SG # 6 could not be retrieved because of faulty wire.
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Fig 3.7: Maximum Strains for Monotonic Test of Cast Connector 1



3.4.1.1 Stress-Strain Behavior under Monotonic Loading

The stress-strain curves for all the cast connector strain gages were linear under a 

maximum monotonic load 2P = 550 kip, even after 24 hours of sustained loading. Figure

3.8 shows the strain versus time curves for the specimen at representative strain gages 10,

11 and 7. The curves showed that the increase in strain was linear, as it should be 

expected for linear materials subjected to a constant load application increase. The plots 

also show that the load was sustained during 24 hours without significant changes in the 

strain level.

The stress levels reached at the locations o f SGs # 10, 11, and 7 are shown on the 

stress-strain curves o f Figure 3.9, which were obtained based on an elastic modulus of 

elasticity E = 29 x 106 psi. The maximum computed stress for this test (SG # 10) is 

approximately 89.2 ksi, which is smaller than the nominal yield stress f y = 95 ksi, and the 

average recorded stress from the heat tests (fy = 118.8, Appendix C).

3.4.2 Cyclic Test: Maximum Applied Load 2.5P = 688 kips (CC1-T2)

Six cycles were performed for the cyclic test based on a maximum load 

equivalent to 2.5P = 688 kips (Figure 3.10). The protocol is adapted from the study 

performed by Krawinkler et al. (2001). The load rates were 30 kips/min for the first four 

cycles, 20 kips/min for the fifth cycle, and 10 kips/min for the sixth cycle.

Tables 3.4, 3.5 and 3.6 show LVDT deformations and strain gage readings of the 

cast connector under the last cycle o f  the loading protocol. The stages presented in these 

tables correspond to the load levels recorded during the monotonic test, but the load 

percentage changes because it is based on 2.5P. The NYCBC (Section 1714.3.1) criterion
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(a) (b)

(c)
Fig 3.8: Strain Variation with Time: (a) SG # 10; (b) SG #11; (c) SG # 7
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Fig 3.10: Cyclic Loading Protocol for Cast Connector 1

Table 3.4: LVDT Deflection Reading for Last Cycle of CC1-T2 
Maximum Load = 2.5 P = 688 kips.

On Cast Connector Leg
Load Load LVDT # 1 LVDT#2 LVDT # 3 LVDT # 4 LVDT # 5

(% 2.5P) (kips) (in.) (in.) (in.) (in.) (in.)
0% 0.0 0.00000 0.00000 0.00000 0.00000

20% 137.5 0.02169 - 0.00841 -0.01053 0.01886
40% 275.0 0.03801 - 0.01411 -0.02024 0.03524
60% 412.5 0.05274 - 0.02007 -0.03077 0.05233
80% 550.0 0.06739 - 0.02574 -0.04269 0.07159
100% 688.0 0.08408 - 0.03005 -0.11366 0.32184
0% 0.0 0.00107 - -0.00285 -0.05627 0.22277

* LVDT # 2 was removed to prevent any damages in case of failure.
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Table 3.5: Strain Gage Reading (p strain) for Last Cycle of CC1-T2 
(Gages at Fork and Legs). Maximum Load = 2.5 P = 688 kips

End of Legs Fork Section Saddle
Load Load SG # 10 SG # 11 SG # 1 SG # 2 SG # 3 SG # 13

(% 2.5P) (kips) p strain p strain p strain p strain p strain p strain
0% 0.0 0 0 0 0 0 0

20% 137.5 630 726 831 615 -591 -163
40% 275.0 1350 1319 1468 1193 -1082 -295
60% 412.5 2088 1903 2086 1769 -1564 -424
80% 550.0 2834 2484 2698 2343 -2040 -551
100% 688.0 3794 3102 3367 2958 -2494 -671
0% 0.0 222 23 -70 38 54 11

Table 3.6: Strain Gage Reading (p strain) for Last Cycle of CC1-T2 
Maximum Load = 2.5 P = 688 kips

Load 
(% 2.5P)

Load
(kips)

SG # 4 
p  strain

SG #  5 
p  strain

SG # 6 
p strain

SG #  7 
p  strain

SG #  8 
p  strain

SG #  9 
p  strain

SG #  12 
p  strain

0% 0.0 0 0 - 0 0 0 0
20% 137.5 127 130 - 15 27 91 207
40% 275.0 213 226 - 47 50 163 356
60% 412.5 301 321 - 81 73 233 502
80% 550.0 388 414 - 116 97 304 646

100% 688.0 460 485 - 170 120 361 759
0% 0.0 -29 -27 - 25 0 -26 -42

is satisfied because the specimen was able to support a load equivalent to 2.5 times the 

superimposed load. The cast connector material exhibited linear performance under the 

maximum applied loads. Also, the strains and deformations on the cast connector after 

unloading the specimen were close to zero, indicating material linear behavior under the 

applied loading protocol. A visual inspection o f the component after the test did not 

reveal cracks or permanent deformation o f the cast connector. The test showed that the 

specimen can support several large loading cycles, but cumulative damage due to several



excursions into the nonlinear interval was not recorded because the yield stress of the cast 

connector material was larger than expected (see Section 3.3.).

Figure 3.11 and 3.12 show the maximum strain at each of the strain gage locations 

for cyclic test. It is evident that strains are concentrated around the fork sections and the 

legs of the connector. Strains around the base are an order of magnitude lower.

Figure 3.13 presents load-deformation/strain relationships, indicating a linear 

relationship. The sudden strain variations on this curve are caused by slip of the overall 

frame, as explained in Section 3.4.2.1.
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Fig 3.11: Maximum Strain for Cyclic Test of Cast Connector 1 (View I)
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Fig 3.12: Maximum strain for cyclic test of Cast Connector 1 (View II)

Fig 3.13: Deformation and Strains for Cast Connector 1 under Final Cycle.
Deformation at LVDT # 3



3.4.2.1 Slip of Column -  Steel Box Connection

As observed in Figure 3.13, the load vs. vertical deflection curve for LVDT # 3 is 

linear but at a load of about 552 kips there is strain reversal, followed by a linear 

reloading path, and a couple of minor strain reversals. After each reversal the curve still 

follows a linear path with the same slope as that of original curve. This behavior was 

caused by slip o f the subassembly column -  steel reaction box connection (see Figure 

3.4). Pretensioned bolts were used to connect the subassembly with the reaction box. 

Once the load exceeded the pretension capacity the entire subassembly slipped, but it did 

not affect the performance o f  the cast connector, which only experienced a sudden small 

loss o f  strain.

The slip effect can also be observed in Figure 3.14, which shows the strain 

increase at each time step for strain gage 1 with respect to time. As can be seen, the first 

jump in strain takes place at around 9300 seconds when the load reached 552 kips in the 

last cycle. That first jump is followed by few more jumps, which coincide with the curve 

irregularities o f Figure 3.13.

3.4.2.2 Stress-Strain Behavior under Cyclic Loading

The strain variation with time under cyclic loading showed a linear relationship 

up to the maximum load 2.5P = 688 kips (Figure 3.15). The nominal yield stress of the 

material is f y = 95 ksi, but North Star Casteel report (Appendix C) indicated that the yield 

overstrength is approximately 25%. The stress level at strain gage 10 was about 113.8 ksi 

(Figure 3.16), which is less than average f y = 118.8 ksi. Hence, the connector material 

was in the linear interval.
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3.5 Experimental Results for Cast Connector 2

The tests for Cast Connector 2 are similar to those for Cast Connector 1. Cast 

Connector 2 was also tested under monotonic and cyclic load, but the load was increased 

3%. Therefore, the maximum load for the monotonic test was 1.03 (2P) = 567 kips, and 

for the cyclic load was 1.03 (2.5P) = 709 kips.

The location o f strain gages and LVDTs for Cast Connector 2 tests is presented in 

Figure 3.17. For the monotonic load test, two LVDTs and fifteen strain gages were 

installed in the cast connector. For the cyclic load test, LVDT # 2 was removed to prevent 

damage to the equipment in case of failure, but strain gages were added to one of the 

connector legs (strain gages 16, 17, and 18), and to one of the rods (strain gages 19 and 

20).
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Fig 3.17: Strain Gages on Cast Connector 2 for Monotonic and Cyclic Tests. 
(LVDT # 2 was used only for the monotonic tests. Strain Gages 16, 17 and 18 were used

only for the cyclic test).



3.5.1 Monotonic Test (CC2-T1)

The load rate for this monotonic test was also 5 kips/min for Stage 2, 4 kips/min 

for Stages 3 and 4, and 3 kips/min for Stage 5. There were 10-minute pauses between 

different stages. The deformations and strains presented below follow these stages 

specified by BC Section 1714.3.1 (NYCBC, 2012). Table 3.7 provides LVDT 

deformations, including the two LVDTs placed in the cast connector (LVDTs 2 and 3). 

Note that the residual displacement o f  LVDT # 5 was caused by slip o f  the frame. Table

3.8 presents the strains at the end of legs (Strain Gage (SG) # 1, 2, 3, 4, 5 and 6), at the 

fork section (SG # 7, 8, 9 and 10), and at the saddle (SG # 11). Table 3.9 provides strain 

gage readings for the gages at the lower half of the connector (SG # 12, 13, 14 and 15)1. 

The largest strains were recorded at the legs and fork o f  the cast connector.
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Table 3.7: LVDT Deflection Reading for CC2-T1 
Maximum Load = 1.03 (2.0 P) = 567 kips.

On Cast Connector Leg
Stage Load Load LVDT# 1 LVDT# 2 LVDT # 3 LVDT # 4 LVDT # 5

(% 2P) (kips) (in.) (in.) (in.) (in.) (in.)
1 0% 0.0 0.00000 0.00000 0.00000 0.00000 0.00000
2 25% 137.5 0.02596 0.00862 0.00733 -0.00633 0.01070
3 50% 275.0 0.04478 0.01175 0.01060 -0.02085 0.03332
4 75% 412.5 0.06095 0.01480 0.01430 -0.04470 0.06672
5 100% 550.0 0.07693 0.01863 0.02037 -0.09635 0.17868

5 f 103% 567.0 0.07892 0.01911 0.02076 -0.10175 0.18701

6 f 103%* 567.0 0.07940 0.01919 0.02066 -0.10320 0.18919
7 0% 0.0 0.00298 0.00586 0.00526 -0.05787 0.10948

t  New stage for load of 1.03 x (2P)
* The second reading at 100% was taken 24 hours after the maximum load was reached.

1 The parameters listed in Tables 3.7-3.9 were corrected to account for a delay of about 1300 
seconds on the initial deformation and micro strain recording
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Table 3.8: Strain Gage Reading (p strain) for CC2-T1 (Fork and Leg Locations). 
Maximum Load =1.03 (2.0 P) = 567 kips

End of Legs Fork Section Saddle
Stage Load Load SG # 1 SG # 2 SG # 3 SG # 4 SG # 5 SG # 6 SG # 7 SG # 8 SG # 9 SG # 10 SG # 11

(% 2P) (kips) p strain p strain p strain p strain p strain p strain p strain p strain p strain p strain p strain
2 25% 137.5 792 522 802 815 444 494 145 460 498 171 -115
3 50% 275.0 1333 1217 1277 1465 1109 839 274 902 922 306 -209
4 75% 412.5 1852 1885 1759 2146 1765 1196 423 1330 1333 439 -308
5 100% 550.0 2396 2509 2209 2917 2432 1567 613 1747 1758 538 -406

5 T 103% 567.0 2459 2602 2281 2997 2518 1618 629 1803 1810 560 -418

6 T 103%* 567.0 2452 2608 2281 2987 2522 1618 624 1806 1803 562 -414
7 0% 0.0 256 -166 299 235 -154 196 23 57 77 16 -14

New stage for load of 1.03 x (2P)
* The second reading at 100% was taken 24 hours after the maximum load was reached.

Table 3.9: Strain Gage Reading (p strain) for CC2-T1 (Base Locations). 
Maximum Load =1.03 (2.0 P) = 567 kips

Base
Stage Load Load SG # 12 SG #  13 SG # 14 SG #  15

(% 2P) (kips) p  strain p strain p strain p strain
1 0% 0 0 0 0 0
2 25% 137.5 61 55 131 143
3 50% 275.0 178 216 238 245
4 75% 412.5 301 368 343 340
5 100% 550.0 430 492 463 435

5 f 103% 567.0 448 512 474 446

6f 103%* 567.0 448 529 474 447
7 0% 0.0 -37 -79 36 45

 ̂N ew  stage for load o f  1.03 x  (2P)
* The second reading at 100% was taken 24 hours after the maximum load was reached.



As observed in Figure 3.17, strain gages were placed at the same height in the cast 

connector legs for the second tests. For instance, SGs # 1, 2, and 3; and SGs # 4, 5, and 6 

are placed at the same level. The average strains obtained from these gages is in 

agreement with the force applied at each stage, but significant variation among them is 

also observed. For instance, strain at SG # 6 is nearly half the strain at SG # 4. This 

discrepancy is partly attributed to the geometry of the specimen that is not perfectly 

circular. The main reason for this response is the restraining effect the rods had on the 

way that the connector deformed. Also note that the compressive strains recorded at the 

saddle of cast connector 2 (i.e., at the bottom of the fork) were approximately one-third of 

the strains recorded at the saddle o f the first connector. The reason is that the fork of the 

second cast connector is more flexible because the lower part of this connector is thinner. 

Figure 3.18 shows the maximum stains at each strain gage location for monotonic load. 

The figure indicates that strains are concentrated around legs and fork section o f the cast 

connector, in a similar fashion than the strain distribution of Cast Connector 1.

3.5.1.1 Stress-Strain Behavior under Monotonic Load

Figure 3.19 presents strain vs. time curves for SGs # 4 and 10, showing the 

maximum and minimum recorded strains, respectively. The overall linear behavior and 

flat plateau under sustained loading indicate that the specimen did not experience 

plastic deformations. Figure 3.20 shows the stress-strain curves for selected strain gages, 

which exhibit linearly elastic behavior up to a load 1.03(2P) = 567 kips. The maximum 

calculated stress for this test (SG # 4) is approximately 89.9 ksi, which is smaller than the 

average yield stress f y = 118.8 ksi.
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Fig 3.18: Maximum Strains for Monotonic Test of Cast Connector 2
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(a) (b)
Fig 3.19: Strain Variation with Time for: (a) SG # 4; (b) SG #10

Fig 3.20: Stress-Strain Curves for Strain Gage 4



3.5.2 Cyclic Test (CC2-T2)

The cyclic loading protocol o f Figure 3.21 was planned for the second cast 

connector. The seventh and ninth cycles were expected to reach a total load equivalent to

1.03 (2.5P) = 709 kips. However, a malfunctioning of the data acquisition system 

software interrupted the protocol several times. The cast connector was ultimately 

subjected to three cycles at 0.5 (2.5P) = 344 kips, one cycle at 0.7 (2.5P) = 482 kips, and 

a final cycle at 1.03 (2.5P) = 709 kips. The load rate for the first four cycles was 30 

kips/min. For the final cycle the load rate was 30 kips/min up to 482 kips, and 10 

kips/min thereafter.

The deformations recorded at the LVDTs for the final cycle of the loading 

protocol are presented in Table 3.10. The cast connector material exhibited linear 

performance under the applied load. The residual strains of LVDT # 5 were partly 

caused by slip of the frame connection. LVDT # 1 residual strains are the result of the 

plate and bolts interaction on the top plate connection.
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Fig 3.21: Original Cyclic Loading Protocol for Cast Connector 2
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Table 3.10: LVDT Deflection Reading Last Cycle of CC2-T2. 
Maximum Load = 1.03 (2.5 P) = 709 kips.

On Cast Connector Leg
Load Load LVDT # 1 LVDT#2 LVDT # 3 LVDT # 4 LVDT # 5

(% 2.5P) (kips) (in.) (in) (in.) (in.) (in.)
20% 137.5 0.02725 0.00875 -0.00705 0.01234
40% 275.0 0.04559 - 0.01198 -0.02157 0.03485
60% 412.5 0.06169 - 0.01608 -0.03817 0.05915
80% 550.0 0.07763 - 0.02040 -0.05113 0.08495
82% 567.0 0.07958 - 0.02098 -0.05331 0.08770
100% 688.0 0.09373 - 0.02537 -0.06783 0.16569
103% 709.0 0.09649 - 0.02617 -0.06845 0.18189
0% 0.0 0.02118 - 0.00632 -0.02821 0.10325

* LVDT # 2 was removed to prevent damages in case of failure

Tables 3.11 and 3.12 show the readings for strain gages on the legs and fork of the 

connector, respectively. Table 3.13 shows the recorded strains at the base of the 

connector. The maximum applied load for the last cycle o f the protocol was 1.03(2.5P) = 

709 kips. The results are consistent with those of previous tests. The maximum strains are 

recorded at the legs of the connectors, and the cast connector exhibits linear behavior up 

to 1.03(2.5P) = 709 kips.

3.2.2.1 Stress-Strain Behavior under Cyclic Loading

The strain vs. time curves (Figure 3.22) show linear behavior up to the maximum 

load of 1.03 (2.5P). A series of small or interrupted cycles are recorded after the first 

three cycles, prior to the last cycle that reached the maximum load. These interrupted 

cycles and long pause before the last cycle were caused by a malfunctioning of the data 

acquisition system that interrupted the protocols several times. The recorded cycles, 

however, show that the cast connector exhibited linear behavior.
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Table 3.11: Strain Gage Reading (p strain) for Last Cycle of CC2-T2 (Leg Location).

End ofLegs End of Legs Midsection o f Legs
Load Load SG # 1 SG # 2 SG # 3 SG # 4 SG # 5 SG # 6 SG # 16 SG # 17 SG # 18

(% 2.5P) (kips) p strain p strain p strain p strain p strain p strain p strain p strain p strain
20% 137.5 712 471 704 864 481 465 628 558 -
40% 275.0 1244 1155 1189 1516 1144 816 1032 1313 -
60% 412.5 1764 1818 1719 2171 1783 1191 1461 2035 -
80% 550.0 2301 2490 2303 2843 2423 1610 1919 2750 -
82% 567.0 2365 2571 2373 2922 2498 1661 1972 2835 -
100% 688.0 2819 3147 2882 3500 3044 2051 2374 3425 -
103% 709.0 2892 3253 2968 3595 3143 2121 2435 3532 -
0% 0.0 189 -151 220 166 -123 177 158 -127 -

Strains lor strain gage 18 could not be recorded due to a bad soldered wire.

Table 3.12: Strain Gage Reading (p strain) for Last Cycle of CC2-T2 
(Fork and Saddle Location).

Fork Section Saddle
Load Load SG # 7 SG # 8 SG # 9 SG # 10 SG # 11

(% 2.5P) (kiPs) p strain p strain p strain p strain p strain
20% 137.5 166 446 452 137 -99
40% 275.0 306 880 878 267 -198
60% 412.5 450 1305 1292 411 -298
80% 550.0 599 1742 1711 572 -402
82% 567.0 615 1794 1760 592 -414
100% 688.0 729 2187 2129 739 -498
103% 709.0 744 2259 2206 767 -512
0% 0.0 -2 56 101 1 1

Table 3.13: Strain Gage Reading (p strain) for Last Cycle of CC2-T2 (Base Location).

Base Base
Load Load SG # 12 SG # 13 SG # 14 SG # 15

(% 2.5P) (kips) p strain p strain p strain p strain
20% 137.5 81 138 138 129
40% 275.0 200 292 244 227
60% 412.5 317 428 349 326
80% 550.0 438 577 459 431
82% 567.0 452 592 472 444
100% 688.0 550 691 567 542
103% 709.0 568 704 582 557
0% 0.0 -26 -33 26 33
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(a) (b)
Fig 3.22: Strain vs. Time Curves for: (a) SG # 4; (b) SG # 10

Figure 3.23 shows the maximum strains at each strain gage location for the last 

cycle o f the cyclic test. Maximum strains were developed around the fork and the legs of 

the connector. Figure 3.24 shows the stress-strain curve for stain gage 4. Figure 3.24 

shows that the maximum stress was still below the average yield stress obtained from the 

heat tests (fy =  118.8 ksi, Appendix C).

3.6 Additional Test Performed on Cast Connector 2

To study the nonlinear performance of the connector and the material, Cast 

Connector 2 was subjected to additional tests. Five more tests were performed on the 

connector specimen, each test with a targeted maximum load higher than that of 

the previous test. In the first tests the specimen was subjected to a maximum load 

of 826 kips (3P). The second test performed reached a maximum load o f 894 kips (3.3P).
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Fig 3.23: Maximum Strains for Cyclic Test of Cast Connector 2 (CC2-T2)
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Fig 3.24: Stress-Strain Curves for Strain Gage 4

The third test targeted 1000 kips as the maximum load but a nut connecting one of 

the stainless steel rods to the top assembly plate failed at a load of about 888 kips. The 

next two tests were performed on only one leg of the connector, partly because o f the 

failed nut and partly to prevent failure of the subassembly. In these tests the targeted 

maximum loads were halved because only one leg was loaded. The first of these two 

tests, was performed on the west leg with targeted maximum load of 570 kips (equivalent 

to 1040 kips for both legs). However, at a load of 482 kips another nut connecting the 

steel rod and top assembly plate failed. The second test was performed on the east leg. 

This time the loading protocol was the same as the first one-legged test. This test, 

however, resulted in failure of the connector itself at load of about 475 kips (equivalent to 

950 kips for both legs).



3.6.1 Additional Test 1: Maximum Load 826 kips (1.2 x 2.5P = 3P)

The first additional test on Cast Connector 2 was performed by loading the 

specimen under the loading protocol shown in Figure 3.25. The load rate was 30 kips/min 

until the load reached 482 kips. After 482 kips the loading rate was 10 kips/min until the 

load reached 709 kips and 4 kips/min for the final loading stage. Figures 3.26 and 3.27 

show the load vs. strain and strain vs. time plot for SG # 4, respectively.

3.6.2 Additional Test 2: Maximum Load 894 kips (1.3 x 2.5P = 3.25P)

The second additional test on Cast Connector 2 followed a loading protocol 

similar to that of the first additional test. The difference being that the maximum load 

applied was 894 kips. Figure 3.28 shows the loading protocol followed for this test.

In this test the cast connector showed clear nonlinear behavior for first time. 

Figure 3.29 shows the load vs. strain curve for SG # 17. The nonlinear portion of the 

curve started around 842 kips. Figure 3.29 shows that the curve began incursion into 

nonlinear interval at a strain o f around 0.429% for SG # 17. The corresponding load was 

848 kips and stress 124.4 ksi, which are close to the values o f observed yield stress of the 

material (see Section 3.3). Figure 3.30 shows the stress-strain curve for the connector 

specimen at the location o f SG # 17. The curve shows that the material started yielding at 

stress of 128 ksi.

3.6.3 Additional Test 3: Maximum Load 888 kips 

The target load for this test was 1000 kips (1.45 x 2.5P = 3.63P). Figure 3.31 

shows the loading protocol used for the test. The objective of this test was to record cast
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Fig 3.25: Loading Protocol for Additional Test 1

Fig 3.26: Load vs. Strain Curve for SG # 4
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Fig 3.27: Strain vs. Time Curve for SG # 4
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Fig 3.28: Loading Protocol for Additional Test 2
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Fig 3.29: Load vs. Strain Curves for SG # 17

^ Strain

Fig 3.30: Stress-Strain Curve for SG # 17
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Fig 3.31: Loading Protocol for Additional Test 3

connector high nonlinear behavior. Unfortunately, as the load reached around 888 kips 

the nut connecting one o f the stainless steel rods and the top assembly plate failed and the 

test had to be stopped. Load vs. strain curve obtained for this was similar to the additional 

test 2. Figure 3.32 shows the load vs. strain and strain vs. time plot for SG # 17.

3.6.4 Additional Test 4: Single Leg Loaded, Maximum Load 482 kips 

This test was carried out after the failure o f the nut connecting one of the rods and 

the top assembly plate (test of Section 3.6.3), and consequently, only one leg was loaded 

in this test. Unfortunately, the same failure occurred as in additional test three. The 

failure of the nut resulted in lack o f reliable data.
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(a) (b)
Fig 3.32: (a) Load vs. Strain for SG # 17; (b) Strain vs. Time SG # 17*

* Change in the slope of line in Figure 3.26 (b) is due the change in the rate of loading.

3.6.5 Additional Test 5: Single Leg Loaded, Maximum Load 475 kips 

This was the final test performed on Cast Connector 2 specimen. Like additional 

test four, only one leg was loaded. Failure was observed at a load of 475 kips, equivalent 

to 950 kips (1.38 x 2.5P = 3.45P) if both the legs were loaded. The loading protocol of 

Figure 3.33 was used for the test. The protocol is similar to the test presented in Section 

3.6.3, but the load at each stage is halved.

Figure 3.34 shows the load vs. strain curve for SG # 5. The curve shows some 

nonlinearity. The nonlinear portion o f the curves is still not very prominent due to the 

position o f the strain gages relative to the fracture point. The strain gage was 

considerably distant from the fracture point to be greatly influenced by the failure. Strain 

gages # 7 and 8 were closer to the failure location but they were not greatly influenced 

either. This was due to increase in the cross section. This can be attributed to the 

geometry of the connector. The varying width of the connector legs significantly affected 

how the connector responded to the applied load and ultimately how the strain gages
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Fig 3.33: Loading Protocol for Additional Test 5

Fig 3.34: Load vs. Strain for SG # 5



responded. Figure 3.35 shows the stress-strain curves for SG # 5. The figure shows 

similar characteristics as observed for other cases. The yielding appears to start around

127.5 ksi.
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3.7 Summary of Experimental Tests

The experimental tests performed on cast connectors 1 and 2 demonstrate their 

ability to sustain large loads. Although Cast Connector 1 was not tested up to failure load, 

the final test on Cast Connector 2 showed the failure load was 475 kips for one leg. If 

both the legs were loaded the failure load would be much higher than that. To simulate 

and verify the experimental test and find the failure load, finite element (FE) analyses 

were performed (Chapter 4).

Fig 3.35: Stress-Strain Curve for SG # 5



CHAPTER 4

FINITE ELEMENT MODELING

The cast connectors were modeled in the finite element (FE) program ANSYS to 

simulate the specimens’ linear and nonlinear behavior, ultimately determining the 

response controlling parameters. The models’ results were compared to experimental data 

results. Once the models were sufficiently calibrated, a parametric study was carried out 

with the expected relevant parameters to investigate their effect on the connectors’ 

response.

This chapter includes the description of the FE model created for each connector 

and the results obtained from the analysis. Stress and strain distributions at different load 

levels obtained from the FE analysis were compared to experimental test results. Normal 

stress and von Mises stress for these simulations are similar (apart from fact that von 

Mises stress distribution does not show negative sign)

4.1. FE Modeling of Cast Connector 1

The three dimensional (3D) geometry was created in a preprocessing software 

(SolidWorks, Dassault Systemes) using the dimensions from drawings and actual sample 

measurements. This geometry was imported to ANSYS. The entire geometry of the 

connector was modeled as a solid element and SOLID95 was used as element type.



Modulus o f elasticity was defined as 30000 ksi as calculated from the material stress- 

strain curve for the material, Section 3.3. Yield strength was defined as 116 ksi and the 

ultimate strength was provided as 130.8 ksi. Poisson’s ratio of 0.3 was used, which is a 

standard value for steel. Most steels when used within their design limit exhibit a stable 

Poisson’s ratio of 0.3.

The connector was constrained at its base in three directions, and monotonically 

increasing tensile load was applied to the cast connector model’s legs. The results from 

this analysis were compared to the actual laboratory results. Figures 4.1 and 4.2 illustrate 

the von Mises stress distribution in cast connector 1 for a total tensile load of 688 kips. At 

this load level, the FE model exhibited linear performance with maximum stress of 

approximately 91.3 ksi, which is below the average measured yield strength of 118.8 ksi.
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Fig 4.1: von Mises Stress Distribution in Cast Connector 1 at 688 kips (View I)
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Fig 4.2: von Mises Stress Distribution in Cast Connector 1 at 688 kips (View II)

Figure 4.3 shows comparison o f load vs. stress curves for SG # 1 obtained from 

laboratory tests and FE analysis. The figure shows that the curves tend to agree with each 

other to some extent with a maximum error of 9.6%.

Regarding Cast Connector 1’s strain, lab tests show that for monotonic load of 

550 kips (CC1-T1), the maximum strain is 2653 pstrain with a corresponding stress of

79.6 ksi. For this test and load level, ANSYS analysis stress was 73 ksi, rendering an 

error of 8.3%. For the cyclic test with a maximum load of 688 kip (CC1-T2) the 

maximum strain is 3367 pstrain with a corresponding stress of 101 ksi. The 

corresponding stress in ANSYS was 91.3 ksi, a 9.6% difference. As observed, lab test 

results and ANSYS analysis show reasonable agreement.
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Fig. 4.3: Comparison of Load-Stress Curves from Lab Tests and FE Analysis (Cast
Connector 1)

After verifying that the FE model agrees with lab results (which also validates the 

model), the load on the FE model was increased to evaluate the connector’s nonlinear 

behavior. The material properties for this simulation were not changed from those used 

for previous simulation. The failure load criterion for the simulation was defined as the 

load when elements reached the provided ultimate stress.

The analysis revealed that Cast Connector 1 would fail at a load of 1044 kips. 

Figure 4.4 show von Mises stress distribution on the connector at a load of 1044 kips. 

The FE model showed that the connector would fail at the legs, close to the transition, to 

form a forked section.
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Fig 4.4: von Mises Stress Distribution for Cast Connector 1 at 1044 kips

4.1.1 Verification of the Model in a Different FE Program 

A different FE program (ABAQUS; Dassault Systemes, 2011) was also used to 

verify the model in addition to ANSYS. The ABAQUS model provided a verification of 

FE results, and the opportunity to perform a convergence study by refining the model 

mesh, a difficult task in ANSYS due to memory constraints.

ABAQUS results for Cast Connector 1 analyses were similar to those obtained 

from ANSYS. The latter model predicted a failure load of 1044 kips, while ABAQUS 

showed the failure load at 1045 kip.



4.1.2 Mesh Refinement Study (Convergence Study):

ABAQUS results at SG location one, and for a load o f 688 kips, were compared 

to those obtained from experimental tests on Cast Connector 1 by refining the mesh size. 

Table 4.1 shows the stress comparison at SG # 1 for the initial model with an average 

element size on 1 in. and for four additional models in which the average element size 

was reduced. Table 4.1 also shows the relative error for each case. It is clear that as the 

number o f elements increases, the error decreases up to case four. The difference in 

results stabilizes at an element size of 0.4 in. or lower.

The model created in ANSYS was similar to case one of Table 4.1, and the error 

was 9.6%. This value is close to 10.1% error obtained from the ABAQUS simulation. 

Figure 4.5 represents the plot of convergence study shown in Table 4.1.

4.2 FE Modeling of Cast Connector 2

Procedures similar to those used for Cast Connector 1 were implemented on Cast 

Connector 2. To gain sufficient confidence with the model, the FE analysis was run to 

simulate laboratory tests and match or compare the results. Figure 4.6 show the stress 

distribution on Cast Connector 2 for 709 kips (1.03*2.5P).

Comparison of the FE analysis results with the experimental data showed that the 

model was able to predict the stress distribution on the connector within reasonable 

accuracy with a maximum error of 12%. Stresses at SG # 8 and SG # 17 were compared 

(Figure 4.7) as the FE model showed that they were closer to the critical location (shown 

in red in Figure 4.6).
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Table 4.1: Results from Convergence Study with Relative Error. 
Experimental Stress at Location 1 = 101.01 ksi

Case No. Element Number of Average von Relative
Size (in.) Elements Mises Stress (ksi) Error

1 1 12747 90.7742 -0.10133
2 0.8 22035 91.7611 -0.09156
3 0.6 50910 93.3958 -0.07538
4 0.4 146357 95.8536 -0.05105
5 0.3 316894 95.8394 -0.05119

Convergence Study Plot
Number of Elements

0 75000 150000 225000 300000 375000

Fig 4.5: Plot of Relative Error with Respect to Number of Elements
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Fig 4.6: von Mises Stress Distribution on Cast Connector 2 at 709 kips

(a) (b)
Fig 4.7: Comparison o f  Load-Stress Curves from Lab Tests and FE Analysis (709 kips).

(a) SG # 8; (b) SG # 17 (SG #17 was not used for monotonic test)



As more test data were available for cast connector 2, comparisons were also 

made with results obtained from simulating each test (894 kip and 888 kip). Figures 4.8 

and 4.9 show load vs. stress curves for SGs # 4, 8 and 17 obtained from experimental 

tests and FE analysis.

All the curves show reasonable agreement (with a maximum difference of 19% at 

maximum load o f 894 kips). This difference is reduced by increasing the number of 

elements in the model as done for cast connector 1 (see Section 4.1.1).

After the above validations, the FE model was subjected to tensile loads only on 

one leg as the additional test 5 (Section 3.6.5). The failure load observed in FE analysis 

was 516.6 kip and that observed in experimental tests was 475 kip. The FE model’s 

prediction was 8.8% higher than the experimental failure load. Figure 4.10 shows the 

stress distribution on cast connector 2 as predicted by FE analysis at a failure load of

516.6 kips. Figure 4.11 compares the load vs. stress curves for SGs # 4, 8 and 17.
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(a) (b)
Fig 4.8: Comparison o f Load-Stress Curves: (a) SG # 4; (b) SG # 17
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Fig 4.9: Comparison of Load-Stress Curves from Lab Tests and FE Analysis (SG #17)
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Fig: 4.10: von Mises Stress Distribution on Cast Connector 2 at 516.6 kip
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(a) (b)

(c)
Fig 4.11: Load-Stress Curves from Lab Tests and FE Analysis at Failure Load (a) SG # 4;

(b) SG # 8; (c) SG #17



4.3 Parametric Study

A parametric study was performed based on the model used for verification and 

validation, to find those parameters affecting the response o f casted connectors. 

Geometry, material property, casting process and other parameters affect the response of 

such connectors. In this parametric study, material properties are considered. The 

parametric study is used to evaluate cases that are not viable during the experimental 

phase. The material properties investigated in this section are the modulus of elasticity, 

postyielding slope and yield stress.

4.3.1 Modulus of Elasticity (E)

For the first parametric study, three modulus o f elasticity were considered: 29000 

ksi, 30000 ksi and 32000 ksi. The tangential slope (postyielding slope) kept constant at 

6% of initial slope (as obtained from the stress strain curve for the material, see Section 

3.3). The stress-strain curve for each case was idealized as bilinear curve (Figure 4.12).

Ultimate failure load was compared for each case to evaluate if modifications to 

the modulus of elasticity would have a significant impact on the response of the 

connectors. Table 4.2 presents a comparison o f each case for both connectors. The table 

shows that although the modulus of elasticity of the material has some effect on the 

response of the connectors, the impact is not as significant. The results for base case 

(which utilizes the full stress-strain curve for simulation) and 30000 ksi case (which 

idealizes the stress-strain curve as bilinear) show good agreement. It shows that 

idealization of the curve as bilinear does not alter the results significantly.
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Table 4.2: Comparison of Failure Load for Different Modulus of Elasticity

Modulus of Elasticity 
E (ksi)

Maximum Load at Failure (kip)
Cast Connector 1 Cast Connector 2

Base Case* 1042.0 1035.4
29000 1024.4 1024.4
30000 1046.4 1035.4
32000 1093.5 1069.5

* Note: Base case refers to the simulation in which actual stress-strain curve was used.

Figure 4.13 presents load vs. stress curves for SG # 1 o f Cast Connector 1, for 

three modulus o f elasticity used for the study. Figure 4.14 shows similar comparison for 

SG # 4, 8 and 17 o f Cast Connector 2. Figures 4.14 (a)-(b) and 4.15 show that there is a 

small effect on Cast Connector 2 as modulus o f elasticity (E) changes; specifically when 

E changes from 30000 ksi to 32000 ksi. However, there is a small difference between the 

curves for 30000 ksi and 32000 ksi. One of the reasons for the small effect of change in E 

could be nonuniform change in stiffness or rigidity of different parts of the connectors.
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Fig 4.13: Load vs. Stress Curves for Three Different Modulus of Elasticity
(SG #1, Cast Connector 1)

(a) (b)
Fig 4.14: Load vs. Stress Curves for Different Modulus of Elasticity (Cast Connector 2)

(a) SG #4; (b) SG # 8
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Fig 4.15: Load vs. Stress Curves for Different Modulus of Elasticity (Cast Connector 2)
SG # 17

The legs o f Cast Connector 2 are more flexible compared to its base and Cast 

Connector 1 due to the difference in geometry. Hence, the change in E has varying 

degree of effect on legs and other parts of the connector. Figure 4.16 shows the load vs. 

stress curves for the three modulus o f elasticity for a location (A) away from the inner 

part of the legs, as shown in the figure. The figure shows that the effect of change in E is 

much greater for this location than that for locations shown in Figures 4.14 (a)-(b) and 

4.15.
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Fig 4.16: Location A (left); Load vs. Stress Curve for Location A (right)

4.3.2 Postyielding Slope 

For the second parametric study, tangential slope (postyielding modulus) was 

changed keeping the initial modulus, yield stress and the ultimate strain constant. The 

stress strain curve is still idealized as bilinear curve. Figure 4.17 shows the curves used 

for this parametric study. The tangential slope was varied as 2%, 4%, 6%, 8% and 10% of 

the initial slope.

Ultimate failure load was chosen as the comparison criteria for this case also. 

Table 4.3 summarizes the findings from this parametric study. The results show that for 

tangential slope less than 6%, the effect on connectors’ response is significant. However, 

for tangential slope greater than 6%, the response is affected but to a lesser degree.
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Fig 4.17: Idealized Stress-Strain Curves with Different Tangential Slopes.
(Initial Slope = 30,000 ksi)

Table 4.3: Comparison of Failure Load for Different Tangential Slopes

Tangential Slope Maximum Load at Failure (kip)
Cast Connector 1 Cast Connector 2

2% 936.7 936.7
4% 980.4 980.4
6% 1046.4 1035.4
8% 1057.5 1047.5
10% 1083.5 1079.2



4.3.3 Yield Stress

Yield stress was the third parameter studied in this study. Yield stress of a 

material is one of the most varying parameters. Hess et al. (2002) and Mansour et al. 

(1993) investigated the variance o f yield stress of high strength steels. They found the 

coefficient of variance (COV) for the yield stress to be 0.07-0.11.

Using the minimum COV, (i.e., 0.07), yield stress of the cast material was varied 

to see its effect on cast connectors’ behavior. New yield stresses used for this study were 

f y ± (COV) f y. Yield stress for first case was taken as 107.88 ksi with corresponding 

ultimate strength of 124.23 ksi. Ultimate strength was computed from strain maintaining 

constant ductility. Second case refers to the case with the actual yield stress (116 ksi). 

Yield stress and ultimate stress for third case was 124.18 ksi and 143.09 ksi, respectively. 

Table 4.4 compares the ultimate load for each case for Cast Connectors 1 and 2. Table

4.4 shows a wider range of failure load compared to that for different modulus of 

elasticity and different postyielding slopes. It can be concluded that of the three 

parameters investigated in this study, yield stress has the largest influence.

These results show that material property selection affects the casted connector’s 

performance. However, the effect is secondary to the influence o f geometric 

configuration.
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Table 4.4: Comparison of Failure Load for Different Yield Stress

Case New Yield Stress Maximum Load at Failure (kip)
Cast Connector 1 Cast Connector 2

I fy -  (COV) . fy 967.8 967.8
II fy 1042.0 1035.4
III fy + (COV) . fy 1135.8 1104.95



CHAPTER 5

DISCUSSION

5.1 Evaluation of Laboratory Tests

The tests performed on cast connectors 1 and 2, show that the connectors are 

capable of sustaining the design load. The initial monotonic and cyclic tests on the 

connectors helped establish the high strength capability o f the connector. The legs were 

identified as the critical sections of the connectors. Tensile loads o f 688 kips (2.5P) and 

709 kips (1.03* 2.5P) were supported by the connectors within linear regime. The study 

of additional tests on cast connector 2 indicated that under tensile loads as high as 848 

kips (3.1P) the connectors behave linearly.

The overall connector’s nonlinear performance was very close to expectations 

based on the material characteristics. The connectors exhibited large elastic capacity, but 

the stress-strain curve for the material (A148 GR. 115/95 (ASTM A958, 2006) show that 

the cast connector material is less ductile than other structural steels, a conclusion 

supported by the tests carried out to the failure limit state. Thus, the experimental tests 

performed in this study support the use of cast connectors to demand solicitations 

expected under wind loading conditions. Further tests are required prior to using cast



connectors under seismic demands. On the other hand, the cast connector’s high strength 

results in a more efficient bracing system.

5.2 Evaluation of FE Analysis

FE analyses were performed to verify the experimental test results and to perform 

a parametric study. FE analysis techniques accurately predicted the stress distribution 

over the complex cast connectors’ geometry.

FE analyses highlighted the complex stress distribution over the uneven geometry 

of the connectors, and showed good agreement with the findings from the experimental 

tests. The parametric study showed that effect of variation of the material properties is 

not as significant. Complex geometrical configuration o f  the connectors governs its 

overall response.

5.3 Limitations of the Study

The goals of the study are the cast connectors’ performance evaluation subjected 

to quasi-static loading, and identification o f  the parameters most affecting their 

performance. Experimental tests performed and FE analyses results show that the 

connectors should perform satisfactorily for the application o f  design quasi-static load o f 

275 kips. Results o f the parametric study show that the material properties affect the 

connectors’ performance. However, the factors that affect the material properties have 

not been investigated in this study.

The results from experimental tests and FE analyses show that the elongation or 

the ultimate strain at failure was less than the ultimate strain of around 1.1%. The FE
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analysis shows that at the most critical location the ultimate strain was 24.2% lower. This 

could be attributed to the size effect (effect of test-piece dimension). This means that the 

results, like the ultimate load capacity and ultimate strain, are limited to test specimens 

having dimensions similar to that of the tested connectors. Effect of test-piece dimension 

can be expressed by the Bertella-Oliver equation:

e = eo(L/A1/2)~a

1 /2where eo is the specific elongation constant; L/A is the slimness ratio of gage length 

(L) and cross-sectional area (A), a is another material constant. Graphical form of the 

Bertella-Oliver equation is shown in Figure 5.1.

The graph shows that the elongation decreases as the slimness ratio increases. 

This explains the reduction of strain for same stress as the dimension of cast connector 

was greater than the specimen used to obtain the stress-strain curve (which was 0.5 in. 

diameter). Also, the performance o f the connectors is evaluated only for quasi-static load. 

Performance o f such connectors under dynamic loads could render different conclusions.
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Fig 5.1: Graphical Form of the Bertella-Oliver Equaiton



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This study addresses the performance of high strength alloy steel cast connectors 

under quasi-static tensile loading, as well as the parameters controlling the structural 

response. Tension tests were performed on both connectors, and FE simulations were 

used to validate the experimental results and predict stress distributions. The main 

findings are:

• The cast connectors are capable o f withstanding the design load, P, of 

275 kips. NYCBC requires connectors to be used in bracing systems to 

be able to safely support 2 and 2.5 times the design load. Tests revealed 

that both connectors met the requirement. The only test taken to failure 

had a safety factor of 3.5.

• Experimental tests show a failure load o f 475 kip (for single leg test) for 

cast connector 2. FE analysis showed that to be 516.6 kip (single leg) for 

the same case, a difference of 8.8%. FE analysis for two legs loaded case 

showed that the failure load was about 1035.4 kips. Hence, for



experimental tests it would be expected to have an ultimate load o f at 

least 950 kips.

• Although cast connector 1 was not tested up to failure, the FE analysis 

showed a maximum load of 1044 kips.

• Stress distributions in the connectors were largely governed by their 

complex geometric shapes. Apart from geometry, material properties also 

affect their response, but to a lesser degree.

• Brittle failure was observed for Cast Connector 2 at 3.5 times the design 

load. This brittle behavior appears to be triggered by the cast connector 

legs dimensions.

In conclusion, cast connectors under quasi-static load performed better than 

expected. The connector was able to support 846 kips, which is 3.07 times more than the 

design load (P = 275 kips) and 1.23 times more than 2.5P, while still exhibiting elastic 

behavior. Hence, using such connectors in bracing systems, subjected to lateral loads like 

wind load, is justified provided that the connection designed to perform within linear 

range for expected loading.

6.2 Recommendations

It is recommended for future research to perform a more detailed exploration into 

factors affecting the material properties supplemented by sufficient laboratory tests and 

testing the connectors under dynamic or seismic load.

Because o f the limited number o f laboratory tests, it was difficult to create a 

complete picture of factors affecting the material properties and performance of such
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connectors. Further research is necessary to fully investigate and understand the extent of 

impact these factors have on the connectors’ responses. Some considerations could be 

taken towards improving the ductility o f the material, such as, altering the heat treatment 

and cooling rate of the material.

This study involved evaluation of performance of cast connectors under quasi

static load. As the cast connectors are a part of lateral bracing system, it is of interest to 

understand the performance o f the connectors under dynamic or seismic loading. These 

experimental tests are needed to determine the feasibility of high strength connectors in 

seismic regions.
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ANALYSIS OF DIFFERENT STRUCTURAL COMPONENTS

APPENDIX A



The subassembly and its different components, including the connections, were 

analyzed using SAP 2000. The structural components strength capacity and deflection 

limits were evaluated for a maximum load 2.5P = 688 kips. The subassembly had to 

safely sustain the applied loads. Deflection of the subassembly also had to be checked as 

there was small (3/8 in.) clearance between the subassembly and the load frame.

The top assembly plate (i.e., the plate connecting the steel rods and the actuator) 

was also analyzed. A simplistic finite element model was prepared in SAP 2000 to check 

if the plate was capable of transferring the load safely.

A.1 Analysis and Check for the Subassembly

The subassembly designed for the tests was analyzed in SAP 2000 to verify the 

demand capacity ratio of each element, deflection of the entire subassembly, and 

connection design (Figures A.1, A.2 and A.3). The joint reactions, axial force and shear 

force on each member are presented in Figures A.4, A.5 and A.6, respectively.
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Fig A. 1: Frame Label and Load Fig A.2: Joint Assignment
Assignment
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Fig A.4: Joint Reactions (Force in kips)
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Fig A.5: Axial Force on the Members Fig A.6: Shear Force on the Members
(Force in kips) (Force in kips)

Table A.1 shows that demand/capacity ratios of all members are less than unity 

for a tensile applied load of 688 kips. Along with the members, all the joint connections 

were designed in accordance with AISC design code (Part 7, 8, 9 and 10).

The analysis was also used to verify that the deflection of the subassembly did not 

exceed the clearance o f the load frame and the subassembly. Table A.2 presents the 

deflection o f all the joints. U1, U2 and U3 represent the deflection in X, Y and Z 

direction, respectively. Deflection of joint number 5 along X direction (U1 in the table) 

was the most crucial one as its deflection had to be smaller than the clearance of 3/8 in.

A.2 Analysis of Top Assembly Plate

A steel plate was used to tie the rods connecting the cast connectors to the 

actuator. Force was applied to the rod and ultimately to the connector via this plate. The 

top plate was modeled in SAP 2000 under the expected loading conditions.
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Table A. 1: Demand/Capacity Ratio of Each Member of the 
Subassembly for a Load of 688 kips

TAB] ^E: Steel Design 1-Summary Data-AISC-LRFD93
Frame Design Sect Design Type Status Ratio

1 W8X58 Column No Messages 0.699171
2 W8X58 Column No Messages 0.037151
7 Col 18 Brace No Messages 0.807028
8 Col 18 Brace No Messages 0.558839
9 W14X211 Brace No Messages 0.315086
11 4x4 Beam No Messages 0.707654
12 4x4 Beam No Messages 0.707654
13 4x4 Beam No Messages 0.548118
14 4x4 Beam No Messages 0.548118
15 W8X58 Column No Messages 0.772691
16 W8X58 Column No Messages 0.296337
17 W8X58 Column No Messages 0.068452

Table A.2: Joint Displacements

Joint OutputCase CaseType U1 U2 U3
Text Text Text in in in

1 live LinStatic 0 0 0
2 live LinStatic 0.07961 0 0.05383
3 live LinStatic 0.08723 0 0.05380
4 live LinStatic 0.16073 0 0.02135
5 live LinStatic 0.13843 0 0.02137
6 live LinStatic 0.02347 0 0.00975
8 live LinStatic 0.09996 0 0.07674
9 live LinStatic 0 0 0
10 live LinStatic 0 0 0
11 live LinStatic 0 0 0
12 live LinStatic 0 0 0
13 live LinStatic 0 0 0
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A 3 in. plate was reinforced with 1 in. central plate at the top and bottom to 

withstand the maximum tensile force of 2.5P. To reduce load concentration around bolt 

holes, 1 in. thick washers were used to distribute the load on the plate.

Figure A.7 and Figure A.8 show the FEM model in SAP 2000 and von Mises 

stress contour for the top plate. The central green portion in Figure A.7 is the 1 in. thick 

reinforcement plate welded on top and bottom of the 3 in. thick plate (represented in 

blue). The green elements at the sides and the yellow elements at the center of the plate 

represent the washers. Load was applied on the two central washers.

A.3 Connection Design Check

Calculations were made to find out capacity of each connection. Connections at 

joints numbered 1, 2, 5, 6, 8 and 13 (refer Figure A.2) were investigated. Calculations 

showed that the capacity of connections were as follows

• Joint 1 and 13: 557 kip (each),

• Joint 8 (welded connection): 664 kip

• Joint 2 and 6 : 329 kip (each)

• Joint 5 (bolted connection, with prying considered): 338 kip

The capacity o f each connection was greater than the forces acting on these 

connections shown in Figures A.5 and A.6. Sample calculations for finding out the 

capacity o f some connections are provided. All the calculations, presented in sample 

calculations, are based on AISC Steel Construction Manual.
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Fig A.8: von Mises Stress Distribution Contour



A.3.1 Sample Calculations

A.3.1.1 Joints 1 and 13

Connections given by joint number 1 and 13 each have two separate connections 

with six-1 /  in. diameter bolts arranged in two columns separated by 8 in. spacing. Each 

separate connection is subjected to eccentric shear force. The capacity o f these 

connections can be found out by “Instantaneous Center of Rotation Method” (ICR 

method) described in part 7 of the AISC Steel Construction Manual. Table A.3 provides 

the calculations for finding the capacity o f a connection.

The table shows that capacity o f each six bolt connection is 278.5 kip. Hence, the 

capacity o f joint 1 and 13 is equal to twice the capacity of a single six bolt connection 

(= 557 kip). This capacity is greater than the force acting on these connections.
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Table A.3: Calculations of Joint Capacity using ICR Method 

For A 325 X type bolt 1 1/4”
Instantaneous Center Distance (E) = 2.5364 in Shear strength of bolts $rn = 62.7 kips
Spacing of columns= 8 in
Distance of load from last bolt line (Lp) = 7 in moment arm : 9.536 in

Bolt No x; yi Li ri ri/^m (Xi/ L)*( r/<pr n) Li( r/9m) ry (Reaction)
1 2.54 4 4.74 34.41 0.86 0.461 4.07 18.42
2 10.54 4 11.27 39.26 0.98 0.918 11.06 36.70
3 2.54 0 2.54 28.35 0.71 0.709 1.80 28.35
4 10.54 0 10.54 39.08 0.98 0.977 10.29 39.08
5 2.54 4 4.74 34.41 0.86 0.461 4.07 18.42
6 10.54 4 11.27 39.26 0.98 0.918 11.06 36.70

Pu allowable = 278.5 kips
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A.3.1.2 Joint 2 and 6

Joint 2 and 6 each, have two-five bolt connections as shown in Figure A.9. They 

are concentrically loaded in shear and tension. The computations for finding out the 

capacity o f the connection are presented in the following.

A.3.1.2.1 Members Properties

A 572 Gr. 50

Fy = 50 ksi, Fu = 65 ksi

Thickness of plate (t) = 3/8”

a = 2 / ” < 3.5” (OK)

Leh = 2*d = 2(1) = 2” < 2 / ” (OK)

n < 6

A.3.1.2.2 Shear Strength

9m = 40 kips (p. 7-22 of AISC manual)

12r3"
J _

A 572 Gr. 50 plate

1” bolt holes

Fig A.9: Connection Detail of Joint 2 and 6
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Shear deformation, 9m = 0.75 (2.4) d t Fu

= 0.75 (2.4) (1) (3/8) 65 = 43.88 kip

Tear out:

9Rn = 0.75 (1.2) Lc t Fu = 0.75 (1.2) (1.5 -  17/32) (3/8) 65

= 26.57 kip

Tear trough:

9m = 0.75 (1.2) (3-17/16) (3/8) 65 = 42.5 kip

Therefore, ^Rn = 4*40 +26.57 = 186.57 kip

A.3.1.2.3 Weld Strength

wmin = 1/4” but, w = 5/16” (OK)

100*w = 100 (5/16) =31.25 > (3 x 5 +2 x 1 / )  = 18 in.

therefore, Le = 18 in.

9Rn = 0.75 (0.6) Fexx te Le = 0.75 (0.6) (70) (0.707) (5/16) 2 (18)

= 250.54 kip

A.3.1.2.4 Shear Yield on Plate

^Rn = 0.6 Ag Fy = 0.6 (18) (3/8) 50 = 202.5 kip

A.3.1.2.5 Shear Fracture (Rupture) on Plate

9Rn = 0.75 (0.6) [15-5(1 + 1/8)] 3/8 (65) = 102.83 kip
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A.3.1.2.6 Block Shear of Plate 

^Rn = 123.4 kip

A.3.1.2.7 Plate Bending

9Rn =0.9 Fy S/(23/4 ) = 0.9 (50) (3/8) (15)2 /(6 * 2.75) = 127.84 kip > 102.83 kip 

hence, Vu = 102.83 kip 

Therefore, Pu = Vu/cos(39) = 164.75kip

2 x Pu = 329 kip

Similar calculations can be done for the strength of connection in tension. 

However, the tensile strength is more than the shear strength, hence the shear strength 

governs. Hence, capacity o f the joint = 329 kips.



APPENDIX B 

STRAIN RATE COMPUTATION



Table B.1: Strain Rate Calculation for Cast Connector 1

Cast Connector I 

LVDT L0 = 13.25 in.
Monotonic

Load Load rate Time LVDT 2 LVDT 3 SG 10 SG 11 Avg Rate
(kip) (kip/min) (min) Deflection Strain rate (in/in/min) Deflection Strain rate (in/in/min) (in/in) (in/in) (in/in) (in/in/min)

137.5 5 27.5 0.0062 0.0005 1.688E-05 0.0064 0.0005 1.756E-05 0.00075 0.00059 0.00067 2.427E-05
275.0 4 34.4 0.0108 0.0008 1.028E-05 0.0115 0.0009 1.124E-05 0.00136 0.00111 0.00124 1.660E-05
412.5 4 34.4 0.0181 0.0014 1.601E-05 0.0184 0.0014 1.508E-05 0.00228 0.00181 0.00204 2.343E-05
550.0 3 45.8 0.0225 0.0017 7.278E-06 0.0230 0.0017 7.591E-06 0.00291 0.00219 0.00255 1.111E-05

Cyclic
Load Load rate Time LVDT 2 LVDT 3 SG 10 SG 11 Avg Rate
(kip) (kip/min) (min) Deflection Strain rate (in/in/min) Deflection Strain rate (in/in/min) (in/in) (in/in) (in/in) (in/in/min)

137.5 30 4.6 0 0.000E+00 0.00841 0.00063 1.385E-04 0.00063 0.000726 0.00068 1.479E-04
275.0 30 4.6 0 0.000E+00 0.01411 0.00106 9.386E-05 0.00135 0.001319 0.00133 1.432E-04
412.5 30 4.6 0 0.000E+00 0.02007 0.00151 9.814E-05 0.002088 0.001903 0.002 1.442E-04
550.0 10 9.1 0 0.000E+00 0.02574 0.00194 4.694E-05 0.002834 0.002484 0.00266 7.278E-05
688.0 10 13.8 0 0.000E+00 0.03005 0.00227 2.357E-05 0.003794 0.003102 0.00345 5.717E-05

*Note: LVDT 2 was not used in cyclic test.
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Cast Connector II 

LVDT L0 = 19.375 in.

Table B.2: Strain Rate Calculation for Cast Connector 2 (Monotonic Test)

Monotonic
Load Load rate Time LVDT 2 LVDT 3
(kip) (kip/min) (min) Deflection Strain rate (in/in/min) Deflection Strain rate (in/in/min)

137.5 5 27.5 0.00862 0.000445 1.618E-05 0.00733 0.00038 1.376E-05
275.0 4 34.4 0.01175 0.000606 4.700E-06 0.01060 0.00055 4.910E-06
412.5 4 34.4 0.01480 0.000764 4.579E-06 0.01430 0.00074 5.555E-06
550.0 3 45.8 0.01863 0.000962 4.313E-06 0.02037 0.00105 6.835E-06
557.0 3 2.3 0.01911 0.000986 1.062E-05 0.02076 0.00107 8.627E-06

Load
(kip)

SG 1 
(in/in)

SG 2 
(in/in)

SG 3 
(in/in)

Avg
(in/in)

Rate
(in/in/min)

SG 4 
(in/in)

SG 5 
(in/in)

SG 6 
(in/in)

Avg
(in/in)

Rate
(in/in/min)

137.5 0.00079 0.000522 0.000802 0.000705 2.565E-05 0.000815 0.00044 0.000494 0.0005843 2.125E-05
275.0 0.00133 0.001217 0.001277 0.001276 1.659E-05 0.001465 0.00111 0.000839 0.0011377 1.610E-05
412.5 0.00185 0.001885 0.001759 0.001832 1.618E-05 0.002146 0.00177 0.001196 0.0017023 1.643E-05
550.0 0.0024 0.002509 0.002209 0.002371 1.177E-05 0.002917 0.00243 0.001567 0.0023053 1.316E-05
557.0 0.00246 0.002602 0.002281 0.002447 3.257E-05 0.002997 0.00252 0.001618 0.0023777 3.100E-05



Table B.3: Strain Rate Calculation for Cast Connector 2 (Cyclic Test)

Cyclic
Load Load rate Time LVDT 2 LVDT 3
(kip) (kip/min) (min) Deflection Strain rate (in/in/min) Deflection Strain rate (in/in/min)

137.5 30 4.6 0 0.000E+00 0.00875 0.00045 9.853E-05
275.0 30 4.6 0 0.000E+00 0.01198 0.00062 3.637E-05
412.5 30 4.6 0 0.000E+00 0.01608 0.00083 4.617E-05
550.0 10 9.1 0 0.000E+00 0.02040 0.00105 2.446E-05
557.0 10 0.7 0 0.000E+00 0.02098 0.00108 4.276E-05
688.0 10 13.1 0 0.000E+00 0.02537 0.00131 1.730E-05
709.0 10 2.1 0 0.000E+00 0.02617 0.00135 1.966E-05

*Note: LVDT 2 was not used in cyclic test.

Load
(kip)

SG 1 
(in/in)

SG 2 
(in/in)

SG 3 
(in/in)

Avg
(in/in)

Rate
(in/in/min)

SG 4 
(in/in)

SG 5 
(in/in)

SG 6 
(in/in)

Avg
(in/in)

Rate
(in/in/min)

137.5 0.00071 0.00047 0.00070 0.00063 1.372E-04 0.00086 0.00048 0.00047 0.00060 1.316E-04
275.0 0.00124 0.00116 0.00119 0.00120 1.237E-04 0.00152 0.00114 0.00082 0.00116 1.212E-04
412.5 0.00176 0.00182 0.00172 0.00177 1.246E-04 0.00217 0.00178 0.00119 0.00172 1.214E-04
550.0 0.0023 0.00249 0.00230 0.00236 6.556E-05 0.00284 0.00242 0.00161 0.00229 6.329E-05
557.0 0.00237 0.00257 0.00237 0.00244 1.024E-04 0.00292 0.00250 0.00166 0.00236 9.762E-05
688.0 0.00282 0.00315 0.00288 0.00295 3.916E-05 0.00350 0.00304 0.00205 0.00287 3.852E-05
709.0 0.00289 0.00325 0.00297 0.00304 4.206E-05 0.00360 0.00314 0.00212 0.00295 4.190E-05



APPENDIX C 

NORTH STAR CASTEEL REPORT
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APPENDIX D 

LVDT AND STRAIN GAGE CHARACTERISTICS



LVDTs:

No. 1: LVDT located between the actuator plate and the subassembly’s top plates.

Model: MVL7C Range: ± 0.500 inch

Part No: 060-5654-01 

S/N: L6931600

No. 2: (On the cast connector, behind the visible side)

Model: MVL7C Range: ± 0.500 inch

Part No: 060-5654-01 

S/N: L6931200

No. 3: (On the cast connector, visible side)

Model: MVL7C Range: ± 0.500 inch

Part No: 060-5654-01 

S/N: L6931300

No. 4: (for the lateral deflection of entire assembly)

Model: MVL7C Range: ± 0.500 inch

Part No: 060-5654-01

S/N: L6931800

No. 5: (bottom of the frame)

Model: MVL7C Range: ± 0.500 inch

Part No: 060-5654-01 

S/N: L6931500
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Strain Gages

Grid Resistance in Ohms 
350.0 ± 0.3%

Grid Gage Factor @ 24°C
1 2.120 ± 0.5%

TC of Gage Factor, % / 100°C 
(+1.3 ± 0.2)

Transverse Sensitivity 
+0.1 ± 0.2%

Calculation o f Thermal Output for Strain Gages: 

a0 + a1*T + a2*T2 + a3*T3 +a4*T4

where, a0, a^ .... a4 are coefficients as given below and TN is temperature raised to the 

power N.

Order Fahrenheit Celsius
0 -2.26 E+2 -8.83 E+1
1 +5.46 E+0 +5.84 E+0
2 -3.87 E-2 -9.91 E-2
3 +8.80 E-5 +4.71 E-4
4 -5.62 E-8 -5.90 E-7

Foil Lot Number

A65AD853 

Item Code

Batch Number

CF531872

Code

3204 223113
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