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ABSTRACT 

 

Self-explanation is a robust learning strategy, but automatic, scalable methods 

are needed to make it a practical strategy for large-scale implementation in classrooms. 

This study explored the effects of using visual interactions to engage students in self-

explaining while they learned geometry using a computer-based intelligent tutoring 

system (ITS). The current study compared students who were asked to highlight 

diagram elements relevant to geometry principles during problem-solving against 

students who were not asked to highlight diagram elements. Verbal protocols generated 

during use of the ITS, as well as pre- and posttests targeting retention and transfer, were 

used to assess learning. Results showed that while the number of overall utterances did 

not differ across conditions, students who highlighted diagram elements produced a 

higher proportion of deep self-explanations that connected domain principles to problem 

diagrams and a lower proportion of shallow utterances that simply paraphrased diagram 

information (i.e., reading angles from the geometry diagrams). Shallow diagram 

utterances were negatively correlated with learning but deep diagram explanations were 

not correlated to learning. Thus, additional interactive elements may be needed to 

support successful self-explanation using visual interactions.  
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CHAPTER 1 
 
 

INTRODUCTION 

 

Supporting Deep Learning 

One of the continual challenges in instruction is facilitating deep learning. A well-

known model of comprehension, Construction-Integration (CI), categorizes knowledge 

as occurring at three different levels: the surface level, the textbase, and the situation 

model (Kintsch, 1994). The surface and textbase representations each refer to levels of 

knowledge that can be encoded directly from learning materials and retained by 

students, whereas the situation model refers to a deeper level of understanding that is 

formed through the integration of new with prior knowledge.  

The knowledge representation that is formed during learning determines the 

potential depth and breadth of its application. When students form a surface 

representation of the to-be-learned content, students can recall specific details such as 

the exact phrasing of a text. Students rarely try to form this exact representation, 

although it can be useful in cases where specific words and word order are central to the 

learning task (e.g., memorizing a poem). When a typical student tries to memorize the 

content of learning materials, the textbase representation usually is formed. The 

textbase representation contains the basic propositions drawn from a set of learning 

materials but does not go beyond the encountered information. Students remember 

concepts but may not recall the exact words or sentences used to explain them. Even 

when students successfully retain information by forming a textbase representation, they 
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often fail to apply it correctly in new situations. Doing so requires creating a situation 

model, which is formed by the integration of incoming, to-be-learned content with 

existing background knowledge. The resulting situation model is a flexible representation 

that allows the learner to transfer and apply knowledge to new contexts.  

 

Assessing Cognitive Processes During Learning 

Ongoing research seeks to investigate how to support the construction of deep, 

transferrable understanding. Learning assessments, ranging from multiple choice 

questions to open-ended essays, are used to explore student knowledge (Messick, 

1994). Performance on such assessments can provide information about students’ grasp 

of content as well as the cognitive complexity of their problem-solving processes (Linn, 

Baker, & Dunbar, 1991). However, outcome assessments address the current state of 

knowledge, revealing little about the comprehension processes in which students have 

engaged during a specific learning task.   

Learning processes are something that must be investigated as they happen. 

Computer interfaces provide one solution, since they can easily record and compare 

how individuals interact with a system. The step-by-step log data generated by such 

systems can provide a detailed record of students’ efforts related to learning (Baker, 

Corbett, & Koedinger, 2004). For example, log data may include the amount of time 

spent on a task or the order in which a user completes subgoals necessary to solve a 

problem. Both variables might contribute to our understanding of a learner’s ultimate 

mastery and knowledge. 

However, even similar interactions with an interface do not guarantee similar 

cognitive processes. Some students who demonstrate mastery of a rule in simple 

situations can successfully apply it to more complex contexts, while others cannot 

(Corbett & Anderson, 1995). For example, consider a problem in which students are 
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asked to solve the measure of an angle PLA (see Figure 1). One student might 

understand that the measure of PLA is 60 degrees because the corresponding angles 

theorem applies: angle PLA is formed by the intersection of the transversal PLS with LA, 

the segment parallel to SY. The resulting angles, PLA and LSY, are corresponding 

angles and have congruent measures. Another student might take the same amount of 

time to enter the same answer of 60 degrees, but do so with the shallow reasoning that 

the measure of PLA is probably the same as another measure provided in the diagram. 

Or, the student may reason that because PLA and LSY look similar, they are probably 

equal. Lacking a deep understanding of the corresponding angles theorem, the student 

in the latter example will be less likely to correctly apply the corresponding angles rule in 

more complex situations. 

Understanding the processes that occur during learning requires a methodology 

that can make cognitive processing visible. Verbal protocols, in which students describe 

their active thought processes (Ericsson & Simon, 1993), can provide rich insight into the 

learning differences that produce different outcomes. Cognitive processes associated 

with deep learning can be assessed by analyzing the content of student utterances 

produced during a verbal protocol. For example, researchers have examined utterances 

that exhibit the integration of new and prior knowledge, the generation of inferences, and 

the development of predictions (Butcher & Kintsch, in press). These can be contrasted 

with cognitive processes that are associated with shallow learning, such as 

paraphrasing.  

Verbal protocols can be produced as the result of a variety of experimental 

methods; the most common methodologies used to gather verbal protocols are think 

alouds and self-explanation (McNamara & Magliano, 2009). During a think aloud, 

students report their spontaneous thoughts to an experimenter as they study and work 

with learning materials. Think alouds are intended to provide insight into students’ 
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thoughts without interfering in their thought processes (Ericsson & Simon, 1993). Thus, 

the verbal protocols produced from a think aloud are intended to reflect individuals’ 

naturally occurring thoughts and processing.  

The self-explanation verbal protocol is distinct from the think aloud protocol in 

that verbalization typically is trained and prompted (rather than spontaneous), and the 

emphasis of learners’ utterances is focused on explanations of the to-be-learned content 

(Chi, de Leeuw, Chiu, & LaVancher, 1994). As the name “self-explanation” suggests, the 

purpose of the self-explanation is for learners to explain the meaning, importance, and 

impact of the materials to themselves as they engage in a learning task. Unlike a think 

aloud protocol, a self-explanation protocol is acknowledged to change the typical 

processes of a learner: as discussed below, students who self-explain during learning 

tend to learn more than students who fail to engage in these explanations (Chi, Bassok, 

Lewis, Reimann, & Glaser, 1989).  

 

Supporting Deep Learning Through Self-explanation 

Self-explanation originally was studied in the context of individual differences 

during problem solving. To identify differences between good and poor problem solvers, 

Chi et al. (1989) invited students to spontaneously explain aloud to themselves what 

they were learning as they studied. Students varied in how often and how much they 

self-explained; that is, whereas all students were asked to articulate their thinking as 

they worked through the problems, not all students successfully engaged in explanation 

that attempted to reason through problem content and domain principles. The variation 

was significantly related to learning success: students who verbalized more explanations 

to themselves performed better in assessments of near and far transfer. In other words, 

students who spontaneously self-explained the content of a set of learning materials to 
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themselves as they worked learned more deeply. The benefit of these self-generated 

explanations was termed the self-explanation effect (Chi et al., 1989).  

Because the self-explanation effect was established by looking at the 

spontaneous learning processes of successful students, an open question was whether 

self-explanation was a by-product of successful learning or if self-explanation itself could 

be used as a robust learning strategy. Chi et al. (1994) showed that students who were 

trained and prompted to self-explain were better able to understand, answer complex 

questions and make inferences about the material that they had studied. These results 

showed that self-explanation is not simply a passive description of the cognitive 

processing of successful learners; it can be implemented as a successful strategy to 

promote the active integration of new knowledge with prior knowledge. Since integration 

is a hallmark process in the formation of a situation model (Kintsch, 1994), it is clear that 

the impact of self-explanation on cognitive processes during learning can account for its 

support in developing deep understanding during learning and problem solving.  

  Additional research has replicated and elaborated these findings, showing that 

the kinds of explanations that novice learners generate during self-explanation also 

affect the quality of the learning outcomes. In a study by Renkl (1997), students were 

prompted to self-explain as they studied probability calculation. Renkl categorized 

utterances according to their purpose: to understand the problem (e.g., elaboration of 

the problem situation and noticing coherence); to apply knowledge of problem-solving 

strategies to the problem (e.g., principle-based explanations, goal-operator 

combinations, and anticipative reasoning); and, to monitor understanding (e.g., negative 

monitoring and positive monitoring). See Table 1 for short descriptions of all seven 

codes. 

In his study, Renkl (1997) found that those who learned less (as measured by 

pre- to posttest learning gains) focused more on elaboration of the problem situation. 
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Elaboration of the problem situation and noticing coherence are important to creating a 

mental model of the task at hand. When students elaborate the problem situation, they 

interpret given information to better understand the nature of the problem task. Similarly, 

utterances noticing coherence contribute to a mental model of the problem situation by 

comparing the problem at hand with other problems encountered previously. However, 

the weakness of these explanations may be that even a well-developed understanding 

of the problem is not enough for producing a solution. 

Successful problem-solving requires not only understanding the problem 

situation, but applying knowledge of domain-specific principles to that situation. 

Accordingly, Renkl (1997) found that those who voiced more principle-based 

explanations and anticipative reasoning statements achieved better learning outcomes. 

Principle-based explanations, goal-operator combinations, and anticipative reasoning 

statements involve applications of different problem-solving strategies to the problem 

situation. When making principle-based explanations, students refer to a domain-specific 

rule and elaborate its implications for the task at hand. In geometry, for example, a 

student might make a principle-based explanation by explaining that the triangle sum 

rule means that all three angles in a triangle must add to 180 degrees. Goal-operator 

combinations explain how specific mathematical operations can be applied to achieve a 

named subgoal of the learning task. Utterances characterized by anticipative reasoning 

predict solution steps needed to solve a problem. The benefit of producing these 

explanation types suggests that students are better served by explaining the application 

of problem-solving strategies than by elaborating the problem itself. This is not 

surprising, considering that applying problem-solving strategies is likely to require a 

situation model able to transfer existing knowledge to novel situations.  

Taken together, the studies on self-explanation show us that high-quality self-

explanations – especially those that integrate to-be-learned material or examples with 
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high-level principles from the target domain – can yield impressive learning outcomes. 

Unfortunately, while the associated outcomes are desirable, self-explanations are not 

easily elicited or evaluated in the majority of learning contexts. In order to prompt the 

student to engage in self-explanation during learning, typical self-explanation 

experiments have used a one-to-one ratio of human facilitator to participant (Butcher, 

2010; Chi et al., 1989; Renkl, 1997). This factor alone presents a scalability problem in 

traditional classroom settings, in which one instructor is responsible for many students. 

Furthermore, researchers have assessed the quality of self-explanations through a time- 

and resource-intensive process of verbal protocol analysis. Conversations must be 

recorded, transcribed, and coded in order to evaluate the quality and accuracy of 

learners’ self-explanations, and to investigate the relationship between self-explanations 

and learning outcomes. Since this is not efficient for widespread educational use, there 

is a need for practical alternatives. 

 

Intelligent Tutoring Systems (ITSs) 

How can we reap the learning benefits of self-explanation without requiring 

individual, human facilitation? Research on Intelligent Tutoring Systems (ITSs) may offer 

a potential solution. ITSs provide a digitized learning environment designed to support 

individual student needs. ITSs that have been built on Adaptive Control of Thought – 

Rational (ACT-R) theory, such as the Geometry Cognitive Tutor, seek to scaffold 

students in transforming declarative knowledge into procedural knowledge through 

problem-solving and practice (Anderson, Corbett, Koedinger, & Pelletier, 1995). Many 

studies have shown that ITSs support students in solving problems (Aleven, Koedinger, 

Sinclair, & Snyder, 1998; Anderson et al., 1995). 

Like all ITSs, the Geometry Cognitive Tutor uses adaptive programming 

algorithms to compare a student’s responses to a model of expert knowledge (Koedinger 
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& Aleven, 2007). This comparison allows the tutor to estimate a student’s current level of 

knowledge and overall progress; it uses this information to compute an individual 

student’s estimated knowledge level, select targeted problems that address skills or 

knowledge that it has determined that the student is lacking, and provide detailed 

feedback as the student works in the tutoring system. Within the Geometry Cognitive 

Tutor, the learning experience varies by individual but the tutoring system provides all 

students with a number of common scaffolds as it guides them toward mastery. As 

shown in Figure 2, the Cognitive Tutor sets up the problem situation, organizes the 

problem into a series of subgoals, provides students with a problem diagram, and makes 

on-demand help available (Koedinger & Aleven, 2007). As students solve missing 

angles, the tutor responds to student input with immediate feedback (e.g., correct or 

incorrect).    

 As discussed earlier, similar interactions with a computer interface do not 

guarantee similar cognitive processes. Thus, despite the demonstrated successes of 

ITSs, shallow learning and misconceptions are still a concern (Baker, Corbett, & 

Koedinger, 2004). Students may achieve the correct answer in an ITS while failing to 

achieve the correct understanding. In geometry for example, conceptually different 

principles sometimes utilize the same equation (see Table 2). A student may correctly 

solve an angle measure and still misattribute or misunderstand the underlying geometry 

rules.  

An important step in preventing shallow learning in ITSs is identifying common 

shallow strategies. As described by Aleven et al. (1998), one shallow strategy 

sometimes used by geometry students in ITSs is the use of “guessing heuristics.” 

Students guess the measurements of unknown angles based on perceived similarity to 

other angles or by using other angle measurements provided. A related shallow strategy 

in ITSs identified by Baker, Corbett, and Koedinger (2004) is termed “gaming the 
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system.” In that study, many students proceeded as quickly as possible through the tutor 

by quickly trying many different answers (e.g., 60, 90, 180) until they succeeded. 

Additionally, some students systematically made use of on-demand help in order to 

solve problems: since the final hint in a series basically provides the answer to students 

in order to allow them to proceed, some students skipped to the final hint without reading 

the preceding help. These “gaming” strategies reflect the need to embed features in 

ITSs that help students become more thoughtful and reflective in their work. Overall, 

shallow strategies and processes are a concern because they make it possible for 

students to successfully solve problems without building a deep situation model. Thus, 

researchers who study and develop ITSs seek to develop interactions and algorithms 

that can reduce or eliminate the use of shallow strategies during intelligent tutoring 

practice. An example of algorithmic intervention is the work by Baker, Corbett and 

Koedinger (2004) to detect systematic abuse of help features. However, the current 

research is focused on the development of interactions in the ITS that combat the use of 

shallow strategies. Specifically, this work expands on previous research that has 

attempted to implement efficient forms of self-explanation via interactive elements in 

ITSs. 

 

Text-based Explanation in Intelligent Tutoring Systems 

How can self-explanation be incorporated into a computer-based interface to 

prevent shallow learning? Instead of eliciting spoken explanations, ITSs can require text-

based explanations. Hausmann and Chi (2002) investigated the general effectiveness of 

typed self-explanations. Their initial results showed that free-form typing inhibited 

spontaneous self-explanation and increased shallow techniques such as paraphrasing. 

Hausmann and Chi concluded that the nature of written language seems to delay and 

obscure the expression of cognitive processes, which is a fundamental component of 
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successful self-explanation. However, a second experiment in the same study found that 

participant responses could be scaffolded: tutor prompting improved the quality and 

quantity of participants’ typed explanations. The improved output, in turn, produced 

better learning outcomes. This suggests that appropriate prompts and scaffolds may 

support explanation-like thinking in students using ITSs.  

ITS cues are likely to be most effective when they prompt students to engage in 

the self-explanation processes that best support learning. As noted earlier, Renkl (1997) 

found that even orally-produced self-explanations varied in how effective they were for 

learning, with explanations that connected problem-specific information to high-level 

domain ideas (e.g., principle-based explanations, goal-operator combinations, and 

anticipative reasoning) yielding the best outcomes. By extension, computer-based 

interventions are most likely to improve deep learning when they engage students in 

interactions that result in explanations or reasoning about the connection between 

specific problem features and high-level, domain-relevant concepts or principles.  

Within ITSs, several functions already have been developed to encourage 

students to make principle-based “explanations.” These functions do not elicit free-form, 

spontaneous verbal explanation; rather, they prompt students to reason about the 

meaning and application of appropriate problem-solving principles via interactive 

elements in the computer environment. Conati and VenLehn (2000) implemented drop 

down menus that required students to “explain” physics principles during problem-

solving. This drop-down explanation consisted of a menu that students used to name the 

principle that justified their calculation of a numerical answer for the current problem.  

(Figure 3 shows an example drop-down menu for a geometry problem: after correctly 

solving the numerical value of an angle, the drop-down menu allows students to select 

the rule that justified the calculation of that numerical answer.) Although using a drop-

down menu to name problem-solving rules or principles may seem to be an 
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impoverished form of self-explanation, requiring students to select rule names helped 

them develop more successful problem-solving skills.   

Similarly, Aleven and Koedinger (2002) compared students who self-explained 

their problem solving in a geometry tutor by either typing rule names or selecting them 

from a glossary. This simple, self-explanation condition was compared against students 

who did not have to justify their answers (and simply solved the geometry problems in 

the tutor). Aleven and Koedinger found that students who were required to choose rule 

names gained greater understanding and demonstrated improved transfer. Although 

selecting a rule name from a drop-down menu or a glossary does not specifically explain 

the relationship between the problem and the domain concept, the interaction supports 

students in developing a better understanding of the principles underlying their problem-

solving.  

 

Visual Explanation in Intelligent Tutoring Systems 

ITS-facilitated “explanations” need not only be text-based. Considering the 

decreased output of typed explanations and the nongenerative nature of menu 

selections (e.g., drop-down menus), other student activities may have the potential to 

support deep learning in a computerized environment. Since ITSs often are used in 

domains that rely heavily on visual as well as textual information (e.g., mathematics), 

appropriate interactions with visual elements may support students in learning more 

deeply. In such domains, the visuals provided and the interactions they support can be 

especially important for promoting the integration of visual and verbal information for a 

more complete situation model.   

Support for integrating visual information is important because students often 

struggle to relate multiple representations of information, such as text and pictures 

(Bodemer, Ploetzner, Bruchmuller, & Hacker, 2005). In geometry, for example, students 
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have been found to rely most strongly on visual features of diagrams (vs. underlying 

structure or principles) when forming problem-solving memories. Lovett and Anderson 

(1994) found that when students were given a series of geometry problems, they had the 

most difficulty when the two problems utilized similar diagrams but the logic of the proofs 

was different. Students focused on similar elements across the problem diagrams to 

retrieve irrelevant domain principles, failing to recognize important diagram elements 

related to the underlying structure of the problem. These results showed that students 

lacked meaningful integration of domain knowledge and visual problem features. A 

similar finding was published by Kozma (2003), who found that novices in chemistry 

tended to fall back on easier-to-perceive surface features of chemical representations to 

build understanding.  

How can we scaffold students to use visual representations in deep and 

meaningful ways? Recent studies of interactions with visual elements show promise. In 

ITS research comparing the learning of geometry students who entered answers into an 

answer box against students who entered answers directly into a geometry diagram, the 

latter group achieved better transfer (Butcher & Aleven, 2008). Additionally, think-aloud 

protocols showed that the interactive diagram group verbalized more deep thinking 

(Butcher, 2010). This suggests that simple interactions with visual information provided a 

learning benefit by prompting students to actively integrate visual and verbal information.       

The promise of visual interactivity has prompted further exploration of how visual 

elements might support self-explanation-like reasoning. Butcher and Aleven (2009)  

examined the learning of geometry students who made “visual explanations” by 

highlighting diagram elements to justify geometry proofs. These visual explanations were 

generated by students following an error during problem solving. Following an error, 

students were asked to (correctly) identify a geometry principle that would be used to 

solve the problem step. Following the identification of this principle, the tutor prompted 
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students to highlight the visual elements that are necessary to apply the principle. For 

example, alternate interior angles are formed when two parallel lines are intersected by 

a transversal. The angles on opposite sides of the transversal are “alternate interior 

angles.” If a student correctly identified this principle as relevant to the current problem 

step, the tutor would cue the student to highlight (in turn): the parallel lines, the 

transversal, and each of the alternate interior angles (angle 1 and angle 2). They found 

that the students who highlighted diagram elements achieved better long-term retention 

and transfer than students who did not. The prolonged duration and successful 

application of their learning indicated a better-developed situation model. However, the 

study did not explore the actual cognitive processes underlying the learning benefit.  

We know that students who self-explain are better able to understand, answer 

complex questions and make inferences about material studied. The learning outcomes 

from visual explanations, as reported by Butcher and Aleven (2009), are similar to those 

achieved by verbal self-explanation. If diagram highlighting does yield deep student 

learning by facilitating self-explanation, it may provide a generative form of self-

explanation that is more practical to implement than language-based explanation. This 

can lead to the development of other computer-based interactions that prompt self-

explanation.  

Alternatively, the learning benefit of highlighting may be the result of attentional 

cueing. That is, perhaps the highlighted diagram simply serves to direct student attention 

to relevant areas of the problem diagram. In that case, student generation of these 

highlights may not be necessary. Rather, students may be supported if the tutoring 

system simply provides these highlights in order to guide students’ visual attention 

during learning.  

The current study was conducted to answer three key questions: 
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1) Does highlighting diagram elements result in improved retention and transfer 

over time (as shown previously)? 

2) Does highlighting diagram elements in order to justify problem-solving steps 

in geometry lead students to generate more effective self-explanations?  

3) How do the types of self-explanations that students generate correspond to 

learning outcomes, including retention and transfer? 

 

The Current Study 

This research seeks to explore how deep learning can be supported via visual 

explanations that are generated by highlighting diagram elements to justify problem-

solving steps in an intelligent tutoring system for geometry. To determine how these 

prompted visual interactions influence cognitive processes, the experiment compared 

the learning of those required to highlight diagram elements following problem-solving 

errors against the learning of those not required to do so. Verbal protocols were used to 

obtain a rich understanding of students’ cognitive processes while learning with a 

geometry intelligent tutoring system.  

Since (as noted earlier) previous research has found a learning benefit of 

highlighting diagram elements, a secondary goal of this research was to replicate those 

results. We hypothesized that our students who highlighted diagram elements would 

demonstrate better retention and transfer over time. Our primary research goal was to 

better understand the impact of visual self-explanation on students’ learning processing 

during intelligent tutoring practice. We hypothesized that the highlighting interaction 

would support more frequent generation of deep self-explanations than in the control 

condition (as evidenced in verbal utterances). 
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Figure 1. An example geometry problem that could be solved using geometry principles 

(i.e., corresponding angles) or shallow strategies. 



 

 

Figure 2. A screen shot of the Geometry Cognitive Tutor interface that includes: given information; an interactive diagram; and, 

access to a glossary and on-demand hints. 

Glossary 

If the measure of Angle ACD = 62.1 degrees, find the measure of Angle ABC. 

16 
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Figure 3. Example of a drop-down menu used to select a geometry rule name. 
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Table 1 

Descriptions and examples of Renkl’s (1997) self-explanation categories 

Category Name Description Example 

Principle-based 
Explanation 

Elaborating about a principle 
used in problem-solving. 

“Triangle sum means that all three 
angles in the triangle must add to 
180.” 

Goal-operator 
Combination 

Mentioning a goal and the 
operation or strategy by 
which it could be achieved. 

“I can solve the whole angle by 
adding together the measures of 
these two adjacent angles.” 

Anticipative 
Reasoning 

Predicting solutions steps 
needed to solve a problem. 

“The next step should be to subtract 
the angle measure from the 
measure of the whole line.” 

Elaboration of 
Problem Situation 

Using known information to 
build a mental model of the 
problem situation. 

“The angle I just solved is this one 
here; it’s 45 degrees.” 

Noticing 
Coherence 

Referring to the similarity 
between current and 
previously-solved problems. 

“This problem is the same as the 
barn door problem from before.” 

Monitoring-
negative 

Indicating confusion or non-
understanding. 

“I don’t understand what I need to 
do.” 

Monitoring-
positive 

Indicating understanding 
during problem-solving. “Oh, I see now.” 

 
 
 
Table 2 

Examples of different geometry rules that utilize the same mathematical equation 

Equation Applicable Geometry Rules 

m∠A = 180-x 

Interior Angles Same Side 
Linear Pair 
Supplementary Angles 
Triangle Sum 

m∠A = m∠B 
Alternate Interior Angles 
Corresponding Angles 
Vertical Angles 

 

 



 

 
 
 
 
 

CHAPTER 2 
 
 

METHODS 

 

Participants 

Participants were recruited via fliers as well as through the Educational 

Psychology Research Subject Pool. A total of twenty-four undergraduate students were 

recruited for the study (13 males and 11 females). Seventeen participants were 

compensated $30 for their participation, while the other 7 participants received credit in 

an undergraduate educational psychology course. Four participants were dropped from 

final analyses: two students lacked a basic understanding of mathematical principles 

(e.g., order of operations) which impeded their progress through the problems presented 

by the tutor; one student was excluded due to technical problems (the audio failed to 

record during the learning session); and, one participant did not complete the study. 

 

Design 

This study used a two-condition, between-subjects design to assess whether the 

added requirement of interactive visual explanations could improve learning beyond 

what is achieved with the Cognitive Tutor alone. All participants were randomly assigned 

to one of the two conditions. 
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Materials 

Two versions of the Geometry Cognitive Tutor, an intelligent tutoring system, 

formed the experimental conditions for this study: a visual explanations version and a 

control version. Pre-, post-, and delayed posttest assessments, as well as a rubric for 

coding verbal data, also were developed for the study. Each of these materials is 

described below. 

 

Geometry Cognitive Tutor 

The Geometry Cognitive Tutor is an intelligent tutoring system (ITS) that supports 

student learning-by-doing in geometry. The Geometry Cognitive Tutor assesses 

students’ knowledge development by analyzing their solution attempts on geometry 

problems and comparing students’ individual knowledge to an expert model. The Tutor 

uses this information to select future problems to help meet identified learning needs. 

 Each problem presents students with textual information, including given 

measurements and missing angles to be solved, as well as a diagram that visualizes the 

problem situation described in the text (see Figure 2). Students have access to a 

glossary of geometry principles (see Figure 4) and a hint button that provides on-

demand help. Students must solve the measures of one or more missing angles in each 

diagram; angles to be solved are marked with a question mark icon. Along with each 

numerical answer, students must type (or select) the name of the single geometry 

principle they used to solve the angle. When the students’ answers are correct, the tutor 

allows them to proceed to the next problem. When the students’ answers are incorrect or 

incomplete, the tutor outlines the incorrect answer in red to notify the student of errors 

(see Figure 5).   
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Visual Explanations Condition  

In the visual explanations condition, participants clicked directly on the diagram 

to enter their answers (see Figure 2). When participants made an error (whether on 

angle measurement or geometry principle name), they could not proceed until they 1) 

correctly named the required geometry principle and 2) highlighted components of the 

diagram corresponding to the geometry principle (see Figure 6).  

This condition is referred to as the visual explanations condition because 

students used highlighting to visually “explain” how the elements of the geometry 

diagram are relevant to the geometry principle being used to solve the problem step. For 

example, if a student entered the incorrect numerical answer for an angle measure, the 

tutor would mark the answer as incorrect and prompt the student to identify the name of 

the rule required to solve the angle. Once the student had identified the correct rule 

name, the student would be prompted to highlight diagram elements relevant to that rule. 

In the case of the corresponding angles theorem, the student would need to understand 

that applying this rule requires the intersection of a transversal with two parallel lines, 

and that this configuration yields a pair of two corresponding angles. Therefore, the 

student would be asked to highlight each of the relevant diagram elements: the pair of 

parallel lines, the transversal, and the two angles that correspond to one another (see 

Figure 6). Simple diagrams (encountered early during use of the tutor) may contain few 

additional diagram elements other than those relevant to the problem step, but complex 

diagrams (encountered during subsequent problems) required students to discriminate 

between several relevant and irrelevant diagram features when generating these 

explanations.  
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Control Condition 

In the control condition, participants also clicked directly on the diagram to enter 

their answers (see Figure 2). They had to provide angle measurements and the names 

of geometry principles used, but this condition did not involve any highlighting of diagram 

components. Following an error, participants would retry their answers until accepted by 

the tutor as correct.  

 

Problem-solving Assessments 

 Learning assessments were administered on three occasions during the study: at 

the beginning of Session 1 (pretest), at the end of Session 1 (posttest), and during 

Session 2, 1 week later (delayed posttest). Below are descriptions of the types of items 

that made up the pre- and posttests. 

 

Pretest Assessment 

The pretest consisted of two types of questions; geometry principle recognition 

items and problem-solving items.  

 

Recognition Items 

The recognition items were intended to assess participants’ recognition of 

several geometry principles. Students were provided with eight simple diagrams, each 

indicating a pair of angles. Given the choice of several geometry principles, participants 

were asked to mark the principle that applied to the relationship between angles 1 and 2 

as portrayed in each diagram (see Figure 7). If none of the principles applied, they were 

instructed to mark “None of the Above.” Seven of the eight problems had the correct 

geometry principle available as a listed option; one of the problems merited the selection 

of “None of the Above.” Each item was worth one point, for a total of eight points. 
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Problem-solving Items 

The problem-solving items were intended to capture participants’ pre-knowledge 

of both the skills and the geometry rules to be practiced and applied within the Cognitive 

Tutor. This assessment was made up of nine diagrams with questions asking for angle 

measures (numerical answers) and written explanations of how those answers were 

obtained (see Figure 8). All nine problems were solvable. One point was awarded for 

each correct numerical answer: one point for mentioning the correct name of the 

geometry rule used; and, one point for each correct explanation of how the problem was 

solved (e.g., the mathematical formula). Each problem was worth three points, one for 

each element of the problem, for a possible total of 27 points. 

 

Posttest Assessment 

The posttest consisted of items intended to assess retention of practiced 

knowledge and various transfer applications.  

 

Practiced Items 

Within the Cognitive Tutor, students in all conditions used diagrams and given 

information to solve for missing angles. Additionally, in all tutored items, they completed 

problems in which they correctly named the geometry principles used to solve those 

angles. To evaluate these practiced skills, the posttest assessment included seven items 

that again required students to solve missing angles and name the geometry principles 

used (see Figure 9). Each of these items was worth two points, for a total of 14 points.  
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Transfer Items 

When students demonstrate transfer, their understanding evidences a depth and 

flexibility that can be applied to situations quite different from the original problem-

solving. The posttest items intended to measure transfer tested students on their ability 

to apply and explain geometry principles. Principle-based explanations involving 

application and explanation evidence a deep, “situation model” level of understanding.  

Visual transfer items. To assess students’ abilities to recognize varied 

configurations of geometry principles learned in the tutor, the posttest included visual 

items. These questions provided visual examples of diagrams and asked participants to 

identify instances of specific geometry principles. One type of visual transfer item  

included illustrations that were new and different configurations from those practiced in 

the tutor. Provided with a rule name, participants were instructed to circle examples of 

angle pairs fitting the geometry rule. They were also instructed to draw X’s over 

nonexample angle pairs (see Figure 10). Half of the illustrations were examples and half 

were nonexamples. Each correct circle and each correct X received 1 point. The posttest 

included 30 illustrations, for a possible total of 30 points.  

The second type of visual transfer item also asked participants to identify 

appropriate applications of geometry principles. Provided with the name of a geometry 

principle and a diagram with given information, participants were asked whether a 

specific angle could be solved by applying the named geometry principle (see Figure 

11). Seven of the instances were true applications, and three were not. Participants were 

awarded one point for identifying true and false applications, for a total of 10 points.  

Explanation transfer items. To assess students’ abilities to generate principle 

explanations in novel contexts, the posttest included formula explanation items and 

unsolvable explanation items. Formula explanation items were associated with solvable 
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practiced and visual transfer items, and unsolvable explanation items were associated 

with unsolvable practiced and visual transfer items.  

Solvable practiced and application transfer items required students to justify their 

answers by describing the formula of the relevant geometry principle (see Figure 9 and 

Figure 11). For example, if a student had solved the measure of an angle and named 

alternate interior angles as the rule used, the student would generate additional 

explanation by providing the formula of the alternate interior angle theorem. Formula 

generation was not a skill practiced in the tutor, and so could be used to demonstrate a 

deep understanding of the geometry principle. For each formula explanation associated 

with a practiced item or visual transfer item, participants received one point for a correct 

formula explanation, for a total of 14 points.  

When the practiced and visual transfer items were unsolvable, participants were 

asked to suggest which geometry rules and missing elements could be used to find a 

solution (see Figure 9 and Figure 11). For example, a student might suggest that an 

angle adjacent to another known angle could be solved using the angle addition theorem 

with the measure of the whole angle encompassing the two adjacent angles. Students 

did not encounter any unsolvable problems in the tutor; thus, the ability to propose an 

accurate problem-solving solution to unsolvable items in the posttest would demonstrate 

knowledge transfer. For each unsolvable explanation associated with practiced and 

visual transfer items, participants received one point for naming a correct geometry rule 

and one point for correctly specifying a needed element, for a total of nine points.  

Overall, the transfer items requiring explanations were worth 23 points.  

 

Delayed posttest assessment  

The delayed posttest was administered 1 week following the posttest; it 

contained the same numbers and types of (practiced and transfer) items as the posttest. 
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All items were isomorphic versions of those found on the posttest. The numerical values, 

illustrations, and order of items were the only significant differences. 

 

Verbal Analysis 

As participants worked with the Geometry Cognitive Tutor, they were asked to 

self-explain. Verbal utterances were recorded with the Morae Usability Suite and later 

transcribed by a professional transcription service. Verbal data are useful for 

distinguishing between self-explanations that are more, or less, effective.   

In order to maximize the usability of the verbal data, both the first and last 15 

minutes of the learning session were excluded from the analysis. During the first 15 

minutes, students are still learning how to navigate the system. During the last 15 

minutes, they are more likely subject to fatigue. Thus, the middle 30 minutes of the 

learning session were considered the most useful sample. The utterances were 

segmented into complex propositions (Kintsch, 1998); complex propositions are roughly 

equivalent to an idea unit. They focus on a single idea, concept or process – thus, one 

sentence may be broken into several segments (see Table 3, for an example of text 

segmenting). Following segmenting, each segment was assigned a code as described 

below.  

 

Coding Rubric 

The coding rubric was adapted from previous research using verbal protocols 

(Butcher, 2010; Renkl, 1997). It consisted of 24 codes belonging to seven code families. 

The code families categorized utterances as relating to self-explanations, diagram 

explanations, monitoring, planning, problem-solving techniques, reading and 

paraphrasing, or tutor interactions. These code families are explained in greater detail 
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below. Table 4 provides definitions and examples of all codes that were organized under 

each code family. 

 

Self-explanation Code Family 

To address the question of whether highlighting diagram elements resulted in 

increased self-explanation, the self-explanation code family included specific codes that 

distinguished between different types of self-explanations. These specific codes 

borrowed from previous research (Butcher, 2010; Renkl, 1997). Shallow explanations 

categorized those utterances making use of guessing heuristics or gaming strategies. 

Elaboration explanations expanded on prior knowledge to clarify the problem situation. 

Goal-operator combinations were explanations relating mathematical operations with 

problem-solving goals. Utterances elaborating the meaning of geometry principles were 

coded as principle-based explanations. As in Renkl’s (1997) study, shallow and 

elaboration explanations are considered less effective, while goal-operator and principle-

based explanations are considered more effective for learning. Table 4 provides 

example utterances that would be coded in each of these categories. 

 

Diagram Explanation Code Family 

Because of the highly visual nature of geometry, additional codes were created 

to capture self-explanations specific to diagram interactions within the Geometry 

Cognitive Tutor. At the shallowest level, diagram reading consisted of just that – reading 

angles or information directly from the diagram (e.g., “OK, angle A - B - C”). At the 

deepest level, diagram explanations identified the geometrical function of diagram 

elements and relationships between them (e.g., “That means, Angles PLA and LSY must 

be the same because they are congruent angles”). Diagram interactions were utterances 

consisting of more than reading from the diagram but less than a complete diagram 
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explanation – these utterances went beyond simple reading of diagram angles or 

features, but stopped short of fully explaining relationships or principles involved in the 

diagram (e.g., “So, these two should be the same”). Diagram reading and diagram 

interaction utterances are considered shallow or incomplete and thus, less effective; 

diagram explanations are considered more effective self-explanations for learning. Table 

4 provides additional example utterances that would be coded in each of these 

categories. 

 

Monitoring and Planning Code Families 

During problem-solving, students often show different levels of metacognitive 

awareness. Thus, the broader metacognition family was retained to capture participant 

utterances indicating monitoring and planning of their own problem-solving. Positive and 

negative monitoring consisted of statements of comprehension or lack thereof, 

respectively. Statements recognizing errors made were coded as error monitoring, while 

statements acknowledging overall progress were coded as progress monitoring. Plans to 

access the glossary or on-demand help were coded as glossary planning and hint 

planning, respectively. Utterances about aspects of the task to work on next received the 

subgoal planning code. While metacognitive utterances do not support learning directly, 

indirectly they are important for self-regulated learning (Azevedo, 2005). Table 4 

provides example utterances that would be coded in each of these categories. 

 

Techniques Code Family 

The techniques family was created to capture mentions of problem-solving 

actions without elaboration or explanation. When mathematical operations were 

described without being tied into geometry reasoning, they were coded as mathematical 

procedures. Numerical answer was the code for utterances stating only the 
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measurement of an angle, without elaboration. The principle-naming code was applied 

to mention of specific geometry principles, also without elaboration. Principle-naming 

was divided into two due to the high frequency of the “given” rule in geometry problems. 

Because the codes in this family fail to tie in problem-solving actions with geometry 

reasoning, they are considered shallow and less effective for learning. Table 4 provides 

example utterances that would be coded in each of these categories. 

 

Reading and Tutor Code Families 

Because students frequently read textual on-screen information aloud, a reading 

family was created to distinguish between the reading from different sources of 

information. These sources included the problem statement, the glossary, and hints. A 

final family of codes captured utterances specific to the tutor interface. The feedback 

response code included all statements acknowledging tutor feedback about correct and 

incorrect answers. The narration code was used for participant statements about non-

content interactions, such as hitting the enter key. If students commented on the 

functionality of the tutor interface itself, the tutor code was applied. Reading codes are 

considered to be more or less effective depending on their application: for example, 

over-reliance on hints would likely undermine a student’s learning, while prudent 

references to the glossary would likely support learning. Table 4 provides example 

utterances that would be coded in each of these categories.          

 

Procedure 

This study was run in a computer lab on the University of Utah campus. The lab 

was equipped with personal computers on which the participants used their randomly-

assigned condition of the Geometry Cognitive Tutor. All students were run individually 

through the research protocol.  
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Session One 

Upon arrival at the study, students first were guided through an informed consent 

procedure. After informed consent was obtained, participants were given an 

identification number, which was used to log in to the cognitive tutor and served as a de-

identified label for all experimental materials collected during the study. 

Next, each participant completed the two pretests, taking up to 10 minutes for 

each test. Participants were instructed to make their best guess if they were not sure of 

the answer or to write “I don’t know” if they were unable to attempt a solution. Tests were 

collected prior to moving on to the next task.  

Next, participants were trained in the self-explanation procedure for about 10 

minutes. The experimenter modeled a poor and a good example and then the participant 

practiced self-explaining. As a practice task, both the experimenter and participant used 

the utah.edu website to find information (e.g., the nearest location of a student parking 

lot) while thinking aloud. The experimenter provided feedback to the participant about 

their self-explanation following practice – the purpose of this feedback was to help the 

participant determine if she/he was explaining their actions (e.g., “I want to find out the 

parking costs, so I’ll choose …”) rather than narrating their activities (e.g., “I’m clicking 

on …”). 

Following the self-explanation practice, each participant was instructed in how to 

work with the cognitive tutor interface. Participants were instructed to log in to the 

Cognitive Tutor using the identification number they had been randomly assigned. The 

experimenter used a static example problem provided upon logging in to the tutor to 

explain how to submit answers, get help using the glossary and hints, recognize errors 

made, navigate to the next problem, and (for the visual explanations condition only) 

highlight diagram components. 
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Next, participants spent 60 minutes using the Cognitive Tutor while verbally self-

explaining. When participants paused for more than 5-10 seconds, the experimenter 

would remind them to keep talking aloud. When they neglected to give an explanation 

for their actions, the experimenter prompted participants by asking a question. For 

example, if a participant solved an angle without explanation, the experimenter would 

prompt the student with, “What made you decide to do that?” 

Immediately following the tutor task, the experimenter administered the posttest. 

Thirty minutes were allocated for this test. At the end of the first session, participants 

were paid $20 and were scheduled to return 1 week later for a follow-up session.  

 

Session Two 

During the follow-up session, participants were asked to complete the delayed 

posttest, again with a time limit of 30 minutes. Five minutes at the end of the follow-up 

session were set aside for payment and debriefing. Participants received an additional 

$10 for completing the follow-up visit. Participants were given the opportunity to ask 

questions about the study; they were also provided with a debriefing form that included 

information about the study, as well as the principal investigator's contact information for 

any future questions or to find out the results of the study. 
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Figure 4. A screenshot of the glossary from the Geometry Cognitive Tutor, showing  a 

list of geometry principle names (left-hand side) as well as a definition and diagram 

illustrating the selected principle (right-hand side). 

 

 

Figure 5. The Geometry Cognitive Tutor outlines incorrect answers in red. 

 

 

m<LSY =  

Rule = 

47 
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Figure 6. A screenshot from the visual explanation condition of the Geometry Cognitive 

Tutor. In the visual explanations condition, students who make an error must a) name 

the geometry rule needed and b) highlight diagram elements relevant to the rule.   

 

 

Figure 7. A sample pretest item testing recognition of geometry principles.  

 

80 

? 
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Figure 8. A sample problem-solving item from the pretest. These items ask students to 

provide a) angle measures and b) written justification. 

 

 

 

 

 

Given: Angle CGB is 115°, Angle FGB is 45° 
 

1a. ∠AGE =  

1b. Explain how you got your answer: _____________________________ 
__________________________________________ 
__________________________________________ 
__________________________________________ 
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Figure 9. A practiced/transfer posttest item. When solvable, these problems were 

comprised of a) practiced items, including angle measures and geometry rule names, 

and b) explanation transfer items (formula used). When unsolvable, these items required 

only c) explanation transfer items (the geometry rule and missing element that could be 

used to find a solution).  

 

 

 

 
 

Given: Angle UWA = 45°, Segment OUNT is parallel to Segment WAS 
 

1a. Do you have enough information to find the measure of ∠WUN? 

______  YES.     The measure of ∠WUN =  _______________________________ 

     Rule:   _______________________________ 

           Formula Used: _______________________________ 

______  NO. You can’t with the given information, but you could find ∠WUN using: 

Rule:   _______________________________ 

        If you also knew: _______________________________     
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Figure 10. A visual transfer posttest item asking students to circle examples of the 

specified geometry rule and cross out nonexamples.  

 

 

 

 

 

 

Please examine the 10 diagrams seen below. For each diagram, decide if angles 1 
and 2 form a pair of Alternate Interior Angles. 

• If angles 1 and 2 are alternate interior angles, circle the diagram. 
• If the angles are NOT alternate interior angles, draw an “X” over the 

diagram. 
• If you are not sure, draw a question mark on the diagram. 
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Figure 11. A transfer posttest item. This required a) visual transfer to identify geometry 

principle applications as true or false. In the case of a true application, students were 

asked to generate b) the formula used. In the case of a false application, students were 

asked to suggest c) the missing element needed to solve the problem using the 

specified rule. 

 

 

 

  

Given: Segments FO, RMA, and NE are parallel to each other 
 
2. For each of the following statements about the diagram, decide if the statement is 
true or false (put a chekmark in the appropriate box). If the statement is false, then tell 
us what information you would need to use that geometry rule. 
 
A) You can use the corresponding angles rule to find Angle FMA in one step if you 
know only the measure of Angle MNE. 

� True: You could find the answer using that rule. Formula: ______________ 

� False: To use that rule you’d need to know __________________________ 
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Table 3 

Verbal utterances segmented into complex propositions  

Transcribed Utterances Segmented Utterances 

Because I was thinking it’s the 
same as this one – oh, maybe 
not, though. So this is 41.8 
and this is 63, and DAC, CB 
are – ABC, are - so this is 
104.8, right there, so that 
means that, that means that B 
is equal to DCB. And so that 
means that this angle, CB 
whatever, is 104.8 because 
they’re corresponding, I think, 
and then – so you have 180 
minus, 180 minus 104.8.    

Because I was thinking it’s the same as this one – // 

oh, maybe not, though.  // 

So this is 41.8 and this is 63, // 

and DAC, CB are – ABC, are- // 

so this is 104.8, right there, // 

so that means that, that means that B is equal to DCB.// 

And so that means that this angle, CB whatever, is 
104.8 because they’re corresponding, I think, // 
and then – so you have 180 minus, 180 minus 104.8.  // 

 
 
 
 
  



 
  

 

Table 4 

Verbal code families, codes, descriptions, and examples 

Family Code Description Example 

Self-
explanation 

Shallow 

The student explains reasoning using only a shallow basis, such 
as: 1) using the numbers 180 or 90 without geometry rationale; 2) 
using the same measure of other known or solved angles; or 3) 
using the same rules as the previous angles/problems solved.  

And I’m just going to guess 41, 
since BAR is 41. 

Elaboration The student evidences use of prior knowledge without focusing on 
specific actions, operators, or geometry terms. 

So this angle we know is 66.5.  
[indicating previously solved angle] 

Goal 
Operator 

The student names a (sub)goal and explicitly names an operator 
which will lead to this (sub)goal.  

so I’m going to take 41 degrees 
minus 35.4 to find the new angle   

Principle-
based 

The student focuses on one specific geometry principle, what it 
means, or how it does/does not apply. 

So this has to add 180, since it's a 
triangle.   

Diagram 
Explanation 

Diagram 
Reading 

The student reads off information from the diagram, usually as an 
angle or line or other geometry figure.  

XCT-  

Diagram 
Interaction 

The student uses mouse to indicate interaction with diagram or 
diagram features but does not make a complete explanation.  

Uh, that side, that side, and that 
side. 

Diagram 
Explanation 

The student identifies diagram components as being specific 
geometry elements or diagram features as having specific 
relationships.  

This line here is the transversal 
because it connects two parallel 
lines to create these angles.  

Monitoring 

Positive 
Monitoring The student indicates knowledge or understanding.  Okay, that makes sense.  

Negative 
Monitoring 

The student indicates confusion or a lack of knowledge about the 
content or about what to do.  

So I’m sort of stuck. 

Error 
Monitoring 

The student acknowledges s/he has made a mistake and/or 
describes the mistake made.  

and I was reading it wrong, um, 
when I tried to put the answer in.   

Progress 
Monitoring 

The student reflects on progress made (e.g., summarizes 
completed work); includes moving on to the next problem. 

So that problem is done. 
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Table 4 (cont.) 

Family Code Description Example 

Planning 

Glossary 
Planning The student voices plans to use the glossary.  so I’m gonna check the glossary. 

Hint 
Planning The student plans to seek a hint.  So I need a hint and I just click here.  

Subgoal 
Planning 

The student mentions which aspect of the task s/he is working 
on/will work on next.  

So now to find the measure of angle 
IRL.  

Techniques 

Mathematics 
Procedures 

The student talks about the mathematical procedures being used 
without explaining geometry components or referring to a goal. 

so I’m just gonna go ahead and put 
180 minus 72.6 minus 72.6. 

Numerical 
Answer 

The student states the numerical measurement only, without 
explanation, analysis, or elaboration.  

Um, so this has to be 35.5.  

Principle-
Naming 
(Given) 

The principle “given” is attributed, whether as a single word or in a 
longer narrative.  

It’s given. 

Principle-
Naming 
(NOT Given) 

One of the geometry principles is being named but no actual self-
explanation occurs.  

Interior angle same side.  

Reading / 
Paraphrasing 

Glossary  The student reads or paraphrases (part of) the clarifications in the 
Glossary text. 

"Corresponding, equilateral, linear 
pair."   

Hint The student reads or paraphrases (part of) the hints. Includes hints 
that pop up to offer help to student. 

"You can find the measure of NIE 
using the linear pair postulate.” 

Problem 
Statement 

The student reads or paraphrases the problem or given information 
presented. 

"Find the measure of angle IRL."  

Tutor 
Interaction 

Feedback 
Response 

The student acknowledges system feedback.  Yes.  And that is right.  

Narration The student narrates his or her noncontent-related interactions with 
the tutor. 

Now I’ll hit enter. 

Tutor 
The student comments on the tutor interface, the appearance of 
the problems on screen (e.g., question mark placement or 
highlighting), or anything related to superficial aspects of the tutor.  

It's waiting. 
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CHAPTER 3 

 

RESULTS 

 

Analyses 

Learning Assessments 

Previous research found a learning benefit for students who highlighted diagram 

elements to justify geometry problem-solving. Thus, we used pre- and posttest 

assessments to determine if the effect would be replicated. Analyses for the practiced 

problem-solving component of pre-, post-, and delayed posttests were conducted using 

a repeated measures multivariate analysis of variance (RM-MANOVA). A mixed design 

was used where the between-subjects factor was Cognitive Tutor version (visual 

explanations condition vs. control condition). The within-subjects factor was test time 

(pretest, posttest, and delayed posttest). Dependent measures included performance on 

the skills practiced in the tutor: angle measures and geometry principle names. These 

scores were calculated as percent correct. 

Because posttests were administered immediately after the intervention as well 

as 1 week later, analyses for transfer items were conducted using a repeated measures 

multivariate analysis of variance (RM-MANOVA). The between-subjects factor was 

Cognitive Tutor version, and the within-subjects factor was test time (posttest vs. 

delayed posttest). Dependent measures included performance on visual and explanation 

transfer items during the posttest and delayed posttest.  
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Self-explanations 

An important research question was how highlighting relevant diagram elements 

might influence students’ processes of self-explanation. To examine potential differences 

in overall verbal output as well as potential differences in self-explanation patterns, a 

multivariate analysis of variance (MANOVA) was performed. The independent variable 

was condition, and the dependent variables included the total number of utterances, the 

percent of total utterances for each code family, and the percent of family utterances for 

each individual code. To control for overall verbosity, the numbers of coded utterances in 

each code families were examined as percent of total utterances. To examine patterns 

within each code family, individual codes were examined as a percentage of their 

respective code families. Five codes were excluded from the individual and family code 

analyses because of low relevance or low incidence. Principle-naming of given rules was 

excluded from the analysis because it meant that students simply were noting that they 

had used “given” information to fill in angle measures provided by the tutor at the 

beginning of each problem. Similarly, problem statement reading was excluded since all 

students generally read the problem statements to begin each problem and seldom 

referred back to them. The entire tutor code family was excluded because its codes 

tended to be very low in quantity across all participants, and tutor-specific utterances 

were not theoretically meaningful to the purpose of the study (i.e., these comments refer 

to design features rather than domain-based thinking about tutored content). 

 

Self-explanations and Learning Assessments 

How do specific self-explanations contribute to retention and transfer? To answer 

this question, we examined the relationship between significant diagram codes and 

learning measures. Bivariate correlations were calculated to examine the relationship 

between individual explanation codes and practiced and transfer scores from both the 
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posttest and delayed posttest assessments. To control for overall verbosity, correlations 

used the percent of total utterances for individual codes.    

For all analyses, main effects and interactions of the independent variables were 

examined and conclusions were based on a standard alpha level of .05.  

 

Findings 

Learning Assessments 

Practiced Items  

The Geometry Cognitive Tutor has been shown to produce significant learning 

gains (Aleven & Koedinger, 2002; Butcher & Aleven, 2008); and, as expected, the RM-

MANOVA showed a significant main effect for test time (F(4, 15) = 11.97, p < .001). There 

was no significant effect for condition (F < 1), and no interaction between condition and 

test time (F < 1). Univariate tests showed that the test time effect was significant for both 

angle measures (F(2, 36) = 22.13, p < .001) and for naming geometry rules (F(2, 36) = 23.62, 

p < .001). A pairwise comparison (with Bonferroni’s adjustment) found that overall 

learning gains on practiced items were significant between the pretest and posttest (Mdiff 

= .35, p < .001) and between the pretest and delayed posttest (Mdiff = .30, p < .001); the 

changes between posttest and delayed posttest were not significant (Mdiff = .04, p > 

.99).). Means and standard deviations are shown in Table 5. 

 

Transfer Items 

On items of transfer (visual transfer and explanation transfer), the RM-MANOVA 

showed there was no significant main effect for condition (F(2, 17) = 1.02, p = .38) or test 

time (F(2, 17) = 1.36, p = .28), and no interaction between condition and test time (F < 1). 

See Table 6 for means and standard deviations. 
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Self-explanations 

In terms of overall verbal output, the two conditions were similar. Means and 

standard deviations for family codes as percent of total utterances are listed in Table 7. 

Overall, the MANOVA showed no significant effect for condition (F(6, 13) = 2.12, p = .12). 

Within the univariate analyses, some dependent variables did not differ significantly 

between conditions while others did. Total utterances (the total number of coded 

utterances) showed no main effect of condition (F(1, 18) = 2.80, p = .11). The code families 

that did not differ significantly by condition included: self-explanations (F < 1); monitoring 

statements (F < 1); and, planning statements (F < 1). The reading code family showed a 

nonsignificant trend (F(1, 18) = 4.16, p = .06) with participants in the visual explanations 

condition reading slightly less (M = 17.1, SD = 4.2) than the control condition (M = 21.3, 

SD = 5.0). Reading utterances for this analysis included the reading of glossary 

information or hints. Two code families showed significant differences in the percentage 

of total utterances by condition: diagram explanations, and technique utterances. The 

percent of diagram explanations produced by participants was higher in the visual 

explanations condition (M = 24.9, SD = 6.9) than in the control condition (M = 18.3, SD = 

4.9; F(1, 18) = 6.12, p = .02). Diagram explanation statements included diagram reading, 

diagram interactions, and diagram explanations. A significant effect was also seen for 

the percent of techniques described in utterances (F(1, 18) = 4.9, p = .04): participants in 

the control condition talked about techniques more frequently (M = 11.6, SD = 3.1) than 

students in the visual explanations condition (M = 8.7, SD = 2.5). Techniques consisted 

of problem-solving strategies that were not explained or tied into geometry principles 

(e.g., stating unexplained mathematical operations or single numerical answers, and 

mentioning principle names without elaboration).  

Overall, condition did not have a significant effect on the distribution of individual 

codes within code families (F(1,18) = 70.9, p = .09). However, four codes differed 
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significantly between conditions (see Table 8 for means and standard deviations for 

individual codes). For the visual explanations condition, subgoal planning utterances 

represented a higher proportion of the planning code family (M = .67, SD = .14) than 

seen for the control condition (M = .48, SD = .13; F(1, 18) = 9.45, p < .01). Subgoal 

planning consisted of students referring to the part of the problem they planned to work 

on next. The visual explanations condition also produced a higher proportion of 

numerical answers (M = .46, SD = .16) in the technique family than the control condition 

(M = .30, SD = .10; F(1, 18) = 6.84, p = .02); the numerical answer technique was used to 

code utterances stating angle measurements without elaboration. For a visualization of 

the distribution of individual codes within each family by condition, see Figures 12-17. 

The two other individual codes found to differ between conditions belonged to the 

diagram explanations code family. As noted earlier, the diagram explanations code 

family included specific codes that indicate how deeply the learner was utilizing the 

visual information: diagram reading, diagram interactions, and diagram explanations. 

Diagram reading consisted only of reading from the diagram and was considered a 

shallow utterance; diagram explanations were considered deep utterances, consisting of 

more complete explanations of how geometry principles applied to the diagram. Diagram 

interactions consisted of more content than diagram reading but less than a complete 

explanation. Students prompted to highlight diagram elements in the tutor did not differ 

from the control condition in their proportion of diagram interactions (F < 1). However, as 

seen in Figure 13, students who were prompted to highlight diagram elements produced 

a higher proportion of deep diagram explanations (M = .48, SD = .16) than students in 

the control condition (M = .28, SD = .15; F(1,18) = 8.78, p < .01). Conversely, students 

who were prompted to highlight diagram elements produced a smaller proportion of 

shallow diagram reading (M = .14, SD = .08) than students in the control condition (M = 

.34, SD = .22; F(1,18) = 6.63, p = .02).  
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Self-explanations and Learning Assessments 

 Regarding the relationship between diagram explanation family codes and 

learning outcomes, the percent of total utterances coded as diagram reading was 

inversely related to performance on nearly all practiced and transfer items on the 

posttest and delayed posttest (see Table 9). No correlations between deep diagram 

explanations and learning outcomes reached significance at an alpha of .05. However, 

there was a slight – though nonsignificant – pattern to the correlations across the 

assessments. All learning outcome measures on the posttest and delayed posttest 

correlated negatively with the percent of diagram reading codes and all but one 

correlated positively with the percent of diagram explanation codes. 

 Because of the trend differentiating the overall quantity of reading utterances 

between conditions, the relationship between reading family codes and learning 

outcomes was also explored. The reading category was comprised of two different 

sources of information (reading hints vs. reading glossary items). Whereas students who 

focus on reading and considering glossary items are working more generatively in the 

system, an overreliance on hints has been shown to be a shallow strategy. Thus, 

correlations between posttests and delayed posttest items and the percent of total 

utterances made up by reading from these specific types of information sources were 

investigated. Overall, reading is negatively correlated to performance on the posttest and 

delayed posttest; however, these correlations are not significant. Although both 

conditions were similar in the proportions of their reading belonging to these two 

sources, hint reading made up a majority of reading for both the control condition (M = 

62.3, SD = 29.8) as well as the visual explanations condition (M = 68.7, SD = 30.4). The 

percent of total utterances coded as glossary reading was positively correlated with 

every learning outcome; however, only its correlation with performance on posttest 

practiced items reached significance at an alpha of .05 (r = .589, p < .01). Meanwhile, 
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the percent of total utterances coded as hint reading was significantly, negatively 

correlated with every learning outcome. See Table 10 for the magnitude and significance 

level of these correlations.    

  



 
  

 

 
Figure 12. The percent of total utterances coded in the self-explanation code family by condition (left); and, the distribution of 

individual codes within the self-explanation code family by condition (right).   
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Figure 13. The percent of total utterances coded in the diagram explanation code family by condition (left); and, the distribution of 

individual codes within the diagram explanation code family by condition (right).  
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Figure 14. The percent of total utterances coded in the monitoring code family by condition (left); and, the distribution of individual 

codes within the monitoring code family by condition (right).  
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Figure 15. The percent of total utterances coded in the planning code family by condition (left); and, the distribution of individual 

codes within the planning code family by condition (right).  
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Figure 16. The percent of total utterances coded in the techniques code family by condition (left); and, the distribution of individual 

codes within the techniques code family by condition (right).  
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Figure 17. The percent of total utterances coded in the reading code family by condition (left); and, the distribution of individual codes 

within the reading code family by condition (right).  

 

 

  

0

5

10

15

20

25

30

%
 o

f T
ot

al
 U

tte
ra

nc
es

 

Visual Explanations Control

0

20

40

60

80

100

Glossary Hints

%
 o

f F
am

ily
 U

tte
ra

nc
es

 

Visual Explanations Control

Overall Reading Utterances Distribution of Reading Utterances 

53 



 
  

 

Table 5 

Percent Correct Means (and Standard Deviations) for Practiced Items 

 Visual Explanations (n=10) Control (n=10) 
DV 

Pretest Posttest 
Delayed 
Posttest Pretest 

 
Posttest 

Delayed 
Posttest 

Angle 
Measures 43.3 (26.9) 74.3 (29.2) 72.9 (24.7) 48.9 (23.5) 87.1 (21.8) 80.0 (23.5) 

Geometry Rule 
Names 2.2 (4.7) 31.4 (28.4) 34.3 (28.7) 0 (0) 47.1 (41.5) 45.7 (39.2) 

 
 
 
Table 6 

Percent Correct Means (and Standard Deviations) for Transfer Items 

 Visual Explanations (n=10) Control (n=10) 

DV Posttest Delayed Posttest Posttest Delayed Posttest 

Visual Items 70.0 (14.0) 69.5 (15.3) 72.5 (11.2) 71.5 (14.0) 

Explanation Items 51.4 (36.9) 61.4 (28.8) 67.9 (30.7) 73.6 (29.4) 

54 
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Table 7   

Percent of Total Utterances (and Standard Deviations) for Code Families 

Code Family Visual Explanations 
(n=10) 

Control  
(n=10) 

Self-explanations 13.6 (4.7) 13.4 (3.2) 
Diagram Explanations 24.9 (6.9) 18.3 (4.9) 
Monitoring 23.4 (7.6) 23.4 (7.0) 
Planning 12.3 (4.5) 12.0 (5.1) 
Techniques 8.7 (2.5) 11.6 (3.1) 
Reading 17.1 (4.2) 21.3 (5.0) 
 
 
 
Table 8 

Percent (and Standard Deviations) of Code Family for Individual Codes 

Code Family Code 
Visual 

Explanations 
(n=10) 

Control  
(n=10) 

Self-
explanation 

Shallow 62.3 (13.1) 56.6 (16.7) 
Elaboration 23.1 (10.0) 26.2 (10.7) 
Goal-operator 6.1 (6.5) 3.8 (4.6) 
Principle-based 8.5 (8.3) 13.4 (7.7) 

Diagram 
Explanation 

Diagram Reading 14.1 (8.8) 33.7 (22.4) 
Diagram Interaction 37.8 (11.6) 37.9 (14.7) 
Diagram Explanation 48.2 (15.6) 28.2 (14.6) 

Monitoring 

Positive Monitoring 32.2 (12.7) 38.5 (11.3) 
Negative Monitoring 50.1 (12.6) 46.8 (13.2) 
Error Monitoring 9.4 (6.3) 7.2 (6.1) 
Progress Monitoring 8.3 (5.9) 7.2 (4.1) 

Planning 
Glossary Planning 8.8 (8.7) 13.8 (10.0) 
Hint Planning 24.6 (13.0) 38.2 (17.7) 
Subgoal Planning 66.8 (14.4) 47.7 (13.3) 

Techniques 
Mathematics Procedures 32.8 (16.6) 40.8 (9.0) 
Numerical Answer 45.8 (16.0) 30.0 (10.4) 
Principle-naming (NOT Given) 21.3 (10.8) 29.1 (16.2) 

Reading / 
Paraphrasing 

Glossary  31.3 (30.4) 37.8 (29.9) 
Hint 68.7 (30.4) 62.3 (29.8) 
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Table 9        

Correlations between percent of diagram reading and diagram explanation and the 

posttest and delayed posttest learning assessments 

 Posttest Delayed Posttest 
 

Practiced Visual 
Transfer 

Explanation 
Transfer Practiced Visual 

Transfer 
Explanation 

Transfer 
Diagram 
Reading -.526* -.482* -.504* -.573** -.506* -.397 

Diagram 
Explanations  .118 .302 -.051 .062 .151 .116 
 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 
 
 
Table 10        

Correlations between overall reading, proportion of glossary reading, and proportion of 

hint reading and the posttest and delayed posttest learning assessments 

 Posttest Delayed Posttest 
 

Practiced Visual 
Transfer 

Explanation 
Transfer Practiced Visual 

Transfer 
Explanation 

Transfer 
Overall 
Reading -.107 -.166 -.083 -.239 -.283 -.228 

Glossary 
Reading .589** .432 .384 .423 .401 .377 

Hint 
Reading -.686** -.574** -.457* -.624** -.637** -.567** 
 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 



 

 
 

 
 
 

CHAPTER 4 
 
 

DISCUSSION 

 

Does Highlighting Diagram Elements Result in Improved  

Retention and Transfer over Time? 

In previous research investigating visual explanations, students who highlighted 

geometry diagrams to justify geometry proofs achieved better long-term retention and 

application than students who did not (Butcher & Aleven, 2009). The purpose of our 

study was to replicate that finding and to use verbal protocols to investigate the impact of 

visual interaction on cognitive processes during learning with an intelligent tutoring 

system. We hypothesized that visual explanations would produce better, longer-lasting 

learning outcomes by supporting the generation of deep self-explanations, particularly 

those explanations that linked visual features of problem diagrams to relevant domain 

concepts. 

On practiced and transfer items, the current study did not find a learning 

advantage for the visual explanations condition. Instead, students in both conditions 

made significant learning gains from pre- to posttest and sustained those gains on the 

delayed posttest (see Tables 5 and 6). Differences in methodology between the current 

study and previous research with visual explanations may explain the conflicting results 

in learning assessment outcomes. For example, one possibility for the lack of condition 

differences could be the use of verbal self-explanation. As noted in the introduction, self-

explanation is a robust learning strategy that repeatedly has been found to support 
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deeper learning (Chi et al., 1989; Chi et al., 1994; Renkl, 1997). Because students in 

both conditions were trained to self-explain as they worked with the tutor, the self-

explanation effect may have prompted the control condition students to think more 

deeply about their problem-solving. Thus, the visual highlighting prompts may not have 

spurred explanation that was significantly greater than what can be achieved by 

prompting verbal explanations.  

Alternatively, the brevity and laboratory setting of this study may have resulted in 

more shallow learning strategies among participants, thereby minimizing potential 

learning benefits. The previous study took place in a high school classroom, while the 

current study examined university undergraduate students in a laboratory setting. Away 

from an authentic setting, the stakes may not have been high enough to motivate 

participants to interact thoughtfully with the Cognitive Tutor. For example, students in the 

classroom tend to avoid asking for hints until after errors are made. In this laboratory 

study, students frequently asked for hints even before attempting problems and relied 

heavily on hints and glossary entries to guide them through the problems. As noted 

earlier, systematic abuse of hints can lower student learning (Baker, Corbett, & 

Koedinger, 2004; Baker, Corbett, Koedinger, & Wagner, 2004). In this study as well, hint 

reading was significantly negatively correlated with every learning outcome. Longer-term 

studies in the laboratory may be necessary for students to form sufficient levels of 

knowledge that will allow them to engage with tutor interventions in more authentic ways.     

 

Does Highlighting Diagram Elements In Order to Justify Problem-solving Steps in 

Geometry Lead Students to Generate More Effective Self-explanations? 

Though learning assessments showed no effect for condition, the verbal analysis 

provided insight into the role of highlighting in altering the pattern of students’ self-

explanations. We found that students who highlighted diagram elements to justify 
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geometry proofs produced proportionally more deep diagram explanations and fewer 

shallow diagram reading utterances than the control condition. This pattern is important 

because students in the visual explanations condition could have responded to the 

highlighting prompts by continuing to simply read from the diagram, or engaging in lower 

level diagram interaction (in which students fail to engage in actual explanation of the 

visual elements). The fact that highlighting prompts served to increase students’ deep 

diagram explanations suggests that the interaction helped them to engage in deeper 

thinking about the visual diagram elements as related to domain principles and 

concepts.  

 The visual explanations condition also produced fewer utterances of unexplained 

techniques. Technique utterances are considered shallow because they name steps in 

the problem-solving process without adequate justification. Visual interactions with the 

diagram may have prompted students in the visual explanations condition to incorporate 

their mathematical calculations and principle references with diagram information, 

transforming them into deep diagram explanations.  

 Although the deep process changes observed in this research show the potential 

for these types of visual explanations to improve the depth with which students engage 

with the intelligent tutoring system during problem-solving practice, the lack of 

differences in learning gains across conditions suggest that these changes may not have 

been significant enough to impact learning outcomes. As discussed earlier, longer-term 

usage in more authentic contexts may amplify these benefits. However, another 

possibility is that stronger interventions may be needed in order to influence outcomes. 
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How Does Explanation Type Correspond to Learning Outcomes,  

Including Retention and Transfer? 

The significant negative correlations between diagram reading and performance 

on practiced and transfer items on the posttest and delayed posttest indicates that 

students who produced a higher proportion of diagram reading learned less overall. This 

result suggests that shallow diagram interactions are detrimental to learning. It is 

somewhat troubling that deep diagram explanations were not significantly correlated to 

learning outcomes. The absence of significant correlation with practiced, visual transfer, 

or explanation transfer items suggests that the visual explanation prompts may not have 

been sufficient for facilitating deeper thinking than in the control condition.  

While increasing the depth of processing of visual content during intelligent 

tutoring, the addition of visual interaction in the form of diagram highlighting may also 

serve to reduce students’ dependence on external sources of geometry information. 

Students in the visual explanations condition relied less on reading overall than did the 

control condition. This could mean that deeper reasoning about the diagram, evoked by 

highlighting cues, reduces the perceived need for guidance; or, it may suggest that the 

highlighting cues serve as a form of guidance in and of themselves. 

For both conditions, the majority of reading utterances were made up of hint 

reading (as noted above). This is important to note because the source of reading 

material influenced learning outcomes in very different ways. Overreliance on ITS hints 

has been shown before to contribute to shallow learning (Baker, Corbett, Koedinger, & 

Wagner, 2004). Here, again, hints were strongly negatively correlated with performance 

on all learning measures. This indicates that students used the hint function to arrive at 

solutions without engaging in deep cognitive processes. In contrast, glossary reading 

seemed to provide a learning benefit: glossary reading was positively correlated with 

performance on all learning measures.  
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What could drive the difference in learning outcome between reading from the 

hints versus reading from the glossary? For the most part, the language of the hints is 

similar to the language found in the glossary; both the hints and glossary provide 

students with definitions of geometry principles. One difference between the two is that 

the hints are specifically catered to the problem at hand while the glossary entries are 

not. It may be that the tailored help in hints actually hurts novice learners by reducing 

their need to reason and self-explain. Another difference is that the glossary includes 

diagrams along with text to illustrate each principle. Consequently, the glossary may 

support learning by facilitating integration of geometry principles with visual applications. 

Alternatively, the benefit of glossary reading may lie in why and how students approach 

supplementary reading material. Students may access the two resources with different 

purposes: using hints to simply find the answer, or using the glossary to learn about 

geometry principles. Students may choose a different resource depending on their prior 

knowledge: students are likely to access hints when they have no idea how to proceed, 

while students who access the glossary may do so with some idea of what they are 

looking for and have more pre-existing knowledge with which to work. Future 

interventions may consider exploring methods that would encourage students to make 

use of the glossary and discourage overreliance on hints.  

 

Conclusions 

Participants think differently about geometry diagrams when asked to provide 

visual explanations by highlighting relevant diagram elements. The differences in 

verbalized diagram explanations suggest that prompting visual explanations can 

increase deep self-explanations about the diagram. The simultaneous reduction in 

shallow diagram utterances, shallow techniques, and reliance on supplemental 

information (hints and glossary) influences learning. By decreasing students’ tendencies 
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to engage simply in diagram reading, visual explanations can improve students’ 

performance on items of retention and transfer over time. They may also serve to reduce 

students’ dependence on external help.   

However, learning outcomes in this study were not entirely consistent with earlier 

research of visual explanations (Butcher & Aleven, 2009). The evidence is insufficient to 

support the claim that increased self-explanations about the diagram improve deep 

understanding. The visual interaction implemented in this research may not have helped 

students carry their self-explanations far enough. Additional interactive applications may 

be needed to support the successful integration of visual and verbal information. To 

confirm mastery of a principle after successful problem-solving, perhaps students could 

be prompted to highlight angle pairs demonstrating the specified principle in new 

diagram configurations. Or, students could be asked to resolve unsolvable angles by 

highlighting diagram elements representing information that could be used with a 

specific geometry principle to obtain an angle measure. Or, students could be asked to 

select an explanation that provides a verbal rationale for why the selected principle is 

represented in the highlighted diagram configuration. Ultimately, the interactions 

involved in ITS problem-solving practice should help students build a situation model 

that can be applied to new, complex contexts. Further exploration should identify 

appropriate additions. 
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