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ABSTRACT 
 
 
 

 Subcellularly resolved, excitable changes (i.e., those induced by electrical or 

chemical stimuli) in membrane capacitance, influenced by factors including integral-

membrane protein activity, lipid densities and membrane-bound water content, may be used 

to elucidate nonconductive ion-channel conformational state changes, lipid-raft locations 

and drug–membrane binding processes.  However, membrane capacitance has proven 

difficult to measure, partially because of bandwidth limitations associated with glass/quartz 

pipettes used during conventional electrophysiology.  To address these challenges, 

techniques introduced in this thesis integrate the principles of extracellular radio frequency 

(RF) recording with conventional two-electrode voltage clamp (TEVC) to 1) spatially 

resolve effective membrane capacitance and 2) monitor excitable changes in effective 

membrane capacitance.  Furthermore, this thesis also introduces a new multielectrode 

method to approximate electrode–electrolyte interfacial impedance, which might prove 

useful in electric impedance spectroscopic or electric impedance tomographic applications.  

Specific contributions include the following: 

1) A method that simultaneously estimates double-layer and interelectrode 

(chamber) impedances, in the linear regime of electrode voltage–current 

sensitivity, during extracellular electrode-based measurements.  This method 

estimates impedance parameters by applying a nonlinear least-squares regression 

to measurements between various groups or pairs of a three-electrode system 
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and, unlike previous double-layer approximation methods, can be done without 

the use of multiple calibration solutions or moveable electrode configurations.  

2) A platform capable of visualizing the spatial distribution of membrane 

capacitance, using extracellular RF electrode recordings, around a single cell. 

The proof-of-concept for this technique is demonstrated with dielectric maps 

around polarized Xenopus oocyte membranes.  

3) Development and characterization of a platform to enable RF impedance-

based measurements around voltage-clamped ShakerB-IR-expressing 

Xenopus oocytes.  Data indicated that the platform was most sensitive to 

effective changes in oocyte dielectric at 300 kHz and 500 kHz.  

4) Temporal characterization of changes in voltage-sensitive RF membrane 

capacitance associated with ShakerB-IR activation (expressed in Xenopus 

oocytes) and ShakerB-IR–Cu2+ interactions.  

Results indicate that extracellular RF-impedance-based measurements can temporally and 

spatially elucidate changes in excitable cell-membrane capacitance and could supplement 

conventional electrophysiological techniques to provide a broader understanding of cellular 

biophysics.
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CHAPTER 1 
 
 
 

INTRODUCTION 
                   
                   

 
1.1 Motivation 

 
Ion-channel pathologies, attributed to anomalies in protein structure, protein 

density and/or protein movement on the membrane, have been implicated in diseases 

including LongQT syndrome, cystic fibrosis, night blindness, epileptic episodes and 

migraines (Epstein et al., 1997; Lehmann-Horn & Jurkat-Rott, 1999; Hille, 2001; Hubner 

& Jentsch, 2002).  These findings, typically characterized using conventional pipette-

based electrophysiological techniques, have resulted in treatments like gene-therapy and 

targeted protein-delivery that highlight the clinical relevance of basic biophysical 

research.  However, the effective dielectric behavior of the cell membrane and associated 

membrane-bound protein structures at frequencies above 10 kHz is largely unknown 

because of bandwidth limitations associated with conventional electrophysiological 

techniques.  The present work was motivated by the hypothesis that radio-frequency-based 

impedance measurements around a cell will reflect excitable changes in membrane–protein 

charge arrangement or membrane–protein complex mobility. 

New techniques presented in this thesis integrate the principles of extracellular radio 

frequency (RF) interrogation with conventional two-electrode whole-cell voltage clamp 

(TEVC) to 1) spatially resolve effective membrane capacitance and 2) monitor excitable 
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changes in effective membrane capacitance.  Also, we introduce a new technique that 

provides an alternative strategy for extracellular electrode–electrolyte interfacial impedance 

estimation in a linear regime of electrode voltage–current sensitivity.  Experimental results 

illustrate the potential of these new techniques to elucidate 1) changes in integral-membrane 

protein conformational state, 2) lipid-raft regional distribution, 3) change in 

size:charge:mobility ratio of membrane-bound protein-ion complexes (associated with 

specific protein types) during whole-cell voltage clamp, 4) exocytotic activity, 5) 

phospholipid headgroup rotations, 6) charge distribution around a polarized cell-type and 7) 

membrane–drug binding processes.  Thus, the new methods presented in this thesis can 

supplement conventional pipette-based electrophysiological techniques to provide a more 

complete description of membrane biophysics.  

 

1.2 Outline 
 

This introduction is divided into five major sections.  The first section presents a 

general background to electric impedance spectroscopy (EIS), which provides a 

foundation for the extracellular RF measurements performed as part of this dissertation.  

The three subsequent sections introduce work represented by chapters in the thesis.  

Sections include 1) ‘Three Current-Passing Electrode Method (TCPE):  A New Method 

to Estimate Electrical Double-Layer Impedance (Chapter 2)’, 2) ‘Spatially Resolving 

Dielectric Properties Around a Xenopus Oocyte (Chapter 3, (Dharia et al., 2009))’, and 3) 

‘Monitoring Membrane-Potential-Dependent RF-Impedance Changes of ShakerB-IR 

Proteins Expressed in Xenopus Oocytes (Chapters 4 (Dharia & Rabbitt, 2010) and 5 

(Dharia & Rabbitt, Submitted))’.  Each of these introductory sections contains pertinent 
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‘Background and Motivation’ and  ‘Goals and Methodology’ subsections.  Specific ideas 

and tangibles contributed by this dissertation are summarized in the last introductory 

section, ‘Contributions and Summary.’  

 
 

1.3 EIS 
 

In electric impedance spectroscopy, alternating currents/voltages are applied to a 

given material through a group/pair of electrodes, and the corresponding voltage/current 

change between the electrodes can be used to characterize the electrical properties of the 

material in question.  This technique is well established, and has many applications in 

biology including cell counting (Hoffman & Britt, 1979; Coulter & Rodriguez, 1988; 

Gawad et al., 2001; Holmes & Morgan, 2003), cell/protein characterization (Coulter & 

Rodriguez, 1988; Gritsch et al., 1998; Ayliffe et al., 1999; Gawad et al., 2001; Treo et 

al., 2004; Cheung et al., 2005; Han & Frazier, 2006; Han et al., 2006), cell separation 

(Han et al., 2006) and tissue-culture monitoring (Keese & Giaever, 1994; Lo et al., 1995; 

Ehret et al., 1997; Pearce et al., 2005; Rahman et al., 2006; Rahman et al., 2008).  

Advances in microelectromechanical systems (MEMS) fabrication techniques 

provide a controllable approach to build systems on the micron scale, thereby enabling 

the application of EIS to single, excitable, living cells.  EIS has been used to visualize 

outer ear hair cell resonance (Rabbitt et al., 2005), quantify DNA content in fixed 

myeloma cells (Sohn et al., 2000a), track cardiac myocyte contraction (Werdich et al., 

2004) and monitor pharmaceutical responses of bovine chromaffin cells (Gritsch et al., 

1998). Generally, MEMS-based EIS devices consist of a series of (exposed) planar 

electrodes in a photo-patterned polymer-based recording channel.  A cell is positioned on 
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top of the electrodes in the recording channel, and the cell’s response to drug application 

and/or extracellularly applied electric fields across the channel is recorded.  The planar 

nature of MEMS-based technologies generally results in an enclosed recording channel 

(to enable fluidic control), and this limits conventional electrophysiological pipette-

access to the cell during EIS recording.  

Here we introduce techniques that integrate both MEMS- and rapid-prototyping- 

based technologies to enable simultaneous two-microelectrode whole-cell voltage-clamp 

and EIS measurements around isolated, living cells.  These techniques, as described in 

Chapters 3, 4 and 5, were used to 1) spatially resolve differences in membrane dielectric 

and 2) monitor excitable RF-impedance change associated with protein activity.  A new 

method to simultaneously estimate double-layer and interelectrode impedances, in a 

linear regime of electrode voltage–current sensitivity, is also included as part of this 

dissertation (Chapter 2).  Preliminary simulations indicate that this method could 

potentially facilitate both electric impedance spectroscopic and electric impedance 

tomographic recordings. 

 

1.4 The Three Current-Passing Electrode Method:  A New Method  

to Estimate Electrical Double-Layer Impedance 

1.4.1 Motivation and Background 

Ion accumulation at the electrode–electrolyte interface, partially an effect of 

solution-based electrostatic interactions with a charged electrode, results in the well-

documented electrode–electrolyte interfacial impedance (double-layer impedance) (Bard 

& Faulkner, 2001).  This interfacial impedance is significant over a wide range of 
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recording frequencies, and parallel resistor-capacitor (RC) circuits are generally used to 

model double-layer impedances at low frequencies (as they can be used to explain the 

passage of direct current), while series RC circuit-models are typically used for higher 

frequency recordings (Geddes, 1997).  However, double-layer impedance has proven 

difficult to model for an arbitrary system, as double-layer effects have been shown to 

nonlinearly vary with current density, frequency, material-type, electrolytic solution and 

duration of electrode use (Schwan, 1968; Geddes, 1972; Boer & Oosterom, 1978; 

Simpson et al., 1980; Onoral & Schwan, 1982; Ilic et al., 2000; Cui & Martin, 2003; 

Franks et al., 2005; Mirtaheri et al., 2005).   

Two methods to experimentally estimate double-layer impedances for a given 

recording chamber require measurements made 1) over multiple (a minimum of two) 

calibration solutions or 2) using multiple (a minimum of two) interelectrode distances.  

Every impedance measurement consists of a series addition of electrode double-layer 

impedances and an associated interelectrode solution resistance.  Double-layer impedance 

is assumed to be constant during these measurements, and subtracting measured 

impedances 1) between different calibration solutions or 2) at different interelectrode 

distances corresponds to a change in interelectrode resistance only (double-layer 

impedances subtract out of measurement).  This differential impedance value, in 

conjunction with a model for solution resistance like that shown in Eq. 1.1  

 
 

(1.1) 
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(ρ  - solution resistivity, L – distance between electrodes, A – the current-density 

dependent, effective cross-sectional area of recording chamber), and a method to estimate 

solution resistivity like that shown in Eq. 1.2  

 
 

 (1.2)  
 
 
 
 
(simplified version of the Nernst-Plank equation (i.e. Ohm’s Law) for uniform (in space 

and time) calibration solution concentrations; j - current density, Z - valence of the charge 

carrier, C - the concentration of the charge carrier, µ - the mobility of the ionic species, 

σ (1/ρ)  - solution conductivity, E - the electric field) can be used to calculate the effective 

cross-sectional area of the recording chamber, and subsequently, individual solution 

resistances and combined double-layer impedance values (Weiss, 1996).  

There are, however, several potential problems that arise from these double-layer 

impedance estimation strategies.  For example, if the solution resistance is much lower 

than the double-layer impedances, noise might prevent accurate solution impedance 

measurement that would then affect the accuracy of double-layer estimation (Schwan, 

1968).  Furthermore, double-layer is also known to significantly change based on 

interelectrode material, and introducing a cell or protein into the interelectrode space can 

significantly affect double-layer impedance estimates made using calibration solutions.  

Lastly, these double-layer estimation methods are usually performed before or after 

recording across an analyte of interest, and cannot be used to determine the temporal 

dependencies of double-layer impedance while recording from the analyte.  
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As such, alternative methods have been implemented to completely bypass the 

double-layer estimation challenge.  One such method uses difference-based impedance 

measurements, where a change in impedance is calculated by subtracting a control EIS 

measurement from the measurement of interest (Schwan, 1968).  One caveat of this 

approach is that it cannot be used to calculate absolute interelectrode (chamber) 

impedance values; instead, this subtraction-based method only allows for relative 

comparisons (compared to the control) of chamber impedances.  This subtraction-based 

method is used in Chapters 3-5 of this dissertation, where relative changes in membrane 

impedance were of interest. 

 The four-electrode method is the most common method to bypass the double-

layer impedance estimation challenge (Schwan, 1968).  In the four-electrode method, two 

recording-only electrodes are placed between two current-passing electrodes, and the 

electrodes are distributed such that the electrode–electrolyte interface on the stimulating 

sites does not interfere with the recording sites.  The recording electrodes have infinite 

(theoretically) input-impedances, preventing current flow and double-layer formation at 

their electrode–electrolyte interface (Schwan, 1968; Kalinowski & Figaszewski, 1995).  

As such, the voltage drop measured between the two recording sites reflects the voltage 

drop in the recording channel (interelectrode impedance).  However, in many MEMS-

based applications, implementing the four-electrode method is not convenient due to the 

size of the system (electrode-spacing cannot be achieved) and the multiple materials 

required to obtain the different electrode types.  Furthermore, achieving a high (current-

stopping) recording electrode input-impedance can prove difficult in any system.  To 

address these challenges, we have designed a new method, the three current-passing 
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electrode method (TCPE), that simultaneously estimates chamber (interelectrode) and 

double-layer impedances.  

 
 

1.4.2 Goals and Methodology  

In TCPE, the double-layer impedance and localized chamber impedances 

associated with three current-passing electrodes (3 double-layer impedances and 3 

chamber impedances) are simultaneously estimated in a linear voltage–current electrode 

regime.  Six different pairs and groups of the three electrodes are selected for unique 

impedance measurements.  A lumped electrical parameter model is created for each 

electrode recording configuration using symbolic double-layer and chamber impedance 

elements.  The Levenburg-Marquadt algorithm, a nonlinear least-squares algorithm that 

uses components of both the Newton-Raphson root-finding method and the steepest 

ascent minimization approach, is then used to minimize error between simulated noisy 

measurements and the symbolic lumped-parameter-based representation of every 

electrode measurement configuration (Chapra & Canale, 2002).  The set of parameter 

values that correspond to the minimized error level should constitute the desired chamber 

and double-layer impedance estimates.  The accuracy of TCPE estimation is 

characterized for different ratios of average chamber to double-layer impedance values, 

after adding variable amounts of noise in the simulated measurements and error to the 

least-squares parameter guesses.  The results, shown in Chapter 2, indicate that TCPE 

could potentially be a viable method for simultaneous double-layer and chamber 

impedance estimation in a linear voltage–current electrode regime.  
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1.5 Spatially Resolving Dielectric Properties Around a Xenopus Oocyte  
 

1.5.1 Motivation and Background 
 

Polarized cell-types, including mammalian spermatozoon, renal epithelial cell 

types, retinal rod cells and more classically, neurons, are organized into functionally 

important protein- and lipid- domains (Singer & Nicolson, 1972; Piepenhagen & Nelson, 

1998; Hille, 2001; Malinska et al., 2003).  Regulation of the ratio of cholesterol to 

phospholipids in the acrosomal region of spermatozoon cells, for example, strongly 

affects spermatozoon fusion with an egg cell, while retinal rod cells contain high amounts 

of the protein-portion of the pigment rhodopsin in their retinal disk membranes to achieve 

adequate light sensitivity (Corless et al., 1982; Ladha, 1998).  Furthermore, localized 

liquid-ordered lipid domains   (‘lipid rafts’ and/or ‘caveolea’, 25 nm – 700 nm diameters) 

have been targeted as ‘hot spots’ for signal transduction (McLaughlin & Aderem, 1995; 

Brown & London, 1998; Munro, 2003); in fact, caveolae have been implicated in the 

regulation of endothelial nitric oxide synthase activity, an enzyme essential to processes 

including angiogenesis, vasorelaxation and vessel permeability (Li et al., 2005).  

However, spatially localized dielectric measurements around isolated whole cells that 

rapidly enable the detection of compositionally distinct membrane localities have been 

difficult to achieve.   

Localized membrane-based measurements using pipette-based electrophysiological 

techniques require the arduous task of patching regularized, small domains of the cell 

membrane while simultaneously minimizing cellular leak currents.  Furthermore, 

dielectric measurements are difficult to make using pipette-based techniques because the 

parasitic capacitance of pipettes limits recordings to relatively low frequencies (< 1 kHz) 
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(Cahalan & Neher, 1992a; 1997; Stuhmer, 1998).  Vibrating probe-based methods have 

been used to spatially resolve membrane currents in gamete-like cells (Jaffe & Nuccitelli, 

1974; Robinson, 1979).  However, the frequency of probe vibration in these methods is 

limited by viscous effects on probe mass, and measurements require high integration 

times (~10 seconds).  Preliminary data collected around outer hair cells (1 kHz – 100 

kHz) indicate that electric impedance spectroscopy could successfully be used to 

visualize differences in membrane dielectric (Rabbitt et al., 2005). Chapter 3 introduces a 

new method, ‘sce-Topo’, to accomplish this goal.  

 
 

1.5.2 Goals and Methodology 

Sce-Topo uses localized RF impedance measurements around a single cell to 

visualize spatially resolved membrane dielectric properties.  Xenopus oocytes are used as 

a model cell in preliminary sce-Topo experiments because of their polarized structure; 

Xenopus oocytes (~1.2 mm diameter) consist of two visually identifiable ‘animal’ 

(brown/black) and ‘vegetal’ (white/yellow) hemispheres, and the polarization of Xenopus 

oocytes has been associated with hemispherical differences in protein expression, sub-

granular melanin content and asymmetries in intracellular distribution of the nucleus, 

yolk platelets and RNA production mechanisms (Robinson, 1979; Dascal, 1987; Gomez-

Hernandez et al., 1997; Chang et al., 1999; Weber, 1999). As such, it is hypothesized that 

either hemisphere of an oocyte will have a difference in membrane dielectric, and that 

these differences will be discernable using sce-Topo.  

The device and algorithm introduced in Chapter 3 are scalable, and a long-term 

goal for this technology is to visualize localized dielectric properties around micron-sized 
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cells.  Spatial resolution increases with electrode number, and utilizing techniques like 

electron-beam lithography could facilitate the fabrication of nanometer-sized electrode-

widths to potentially enable detection of the signaling-intensive liquid-ordered lipid 

domains.  As such, sce-Topo could eventually be used in conjunction with scanning 

electrochemical microscopy, surface-plasmon resonance and fluorescence-based methods 

to facilitate detection of electrochemical and molecular events on the membrane by 

prescreening localized lipid bilayer areas for membrane activity (Shan et al.; Yu et al., 

1996; Wightman, 2006). 

 
 

1.6 Monitoring RF-Impedance Changes of ShakerB-IR Proteins 

Expressed in Xenopus Oocytes 

1.6.1 Motivation and Background 

Membrane-delineated charge displacement currents, generally associated with 

excitatory membrane–protein charge rearrangements, cannot be measured using 

conventional pipette-based electrophysiological techniques due to stray capacitances 

associated with the glass/quartz pipette interface.  Cut-open vaseline-gap (COVG), a 

specialized voltage-clamp technique, addresses this challenge by carefully compensating for 

the capacitance associated with a single glass/quartz microelectrode to enable voltage-clamp 

rise times as low as 25 µs during whole-cell Xenopus oocyte recording (Stefani & 

Bezanilla, 1998).  Xenopus oocytes are model cells for COVG because they express 

exogenous proteins in their membrane with densities up to 10 times that of their 

endogenous protein levels, and as such, can amplify specific exogenous protein response 

(Stuhmer, 1998). Furthermore, the COVG platform allows for ion-channel blocker 
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application to the electrically isolated, permeabilized, bottom-half of a Xenopus oocyte, 

thereby eliminating signals associated with ion-channel conduction.  These technically 

difficult recordings, made using a measurement bandwidth of 5 kHz, have successfully 

been used to detect excitatory changes in ion-channel voltage-sensitive domain (voltage 

sensor) movement that generally precedes ionic conduction (Stefani & Bezanilla, 1998).  

However, even this technique is not sensitive enough to visualize other nonconductive 

changes in ion-channel conformational state or resolve changes in voltage-sensor 

movement at timescales less than 20 µs.  

Instead, other methods have been used to indirectly monitor smaller, rapid 

changes in membrane charge arrangement (Hille, 2001).  One method, the fast patch-

clamp method, extends the capabilities of COVG by integrating a larger recording pipette 

size (10-20 microns diameter tips) to further minimize voltage-clamp rise-time to a ~10 

µs timescale (Sigg et al., 2003b).  Noise fluctuation analysis, applied on several data sets 

collected using the fast patch-clamp technique, has successfully been used to recognize 

quantized charge movement associated with voltage-sensor activity on both sodium and 

potassium ion channels (Cole, 1968; Armstrong & Bezanilla, 1974, 1977a; Bezanilla & 

Armstrong, 1977; Conti & Stuhmer, 1989; Sigg et al., 1994; Loots & Isacoff, 1998; 

Bezanilla, 2000a; Hille, 2001; Bezanilla, 2005; Tombola et al., 2005).  These time- 

intensive fast patch-clamp recordings have also been used in conjunction with kinetic 

models based on single ion-channel recordings to identify multitudes of channel-

dependent open, inactive and closed conformational states.  In this way, these challenging 

techniques have significantly contributed to a better understanding of ion-channel 

biophysics.  
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Here we propose a new technique that may simplify displacement-current 

recording strategies by using extracellularly applied RF signals to vibrate excitable 

membrane-bound charges.  While the RF response of a protein in a living cell membrane 

is unknown, it is hypothesized that impedance changes associated with membrane-

associated RF vibration during whole-cell depolarization will reflect changes in membrane–

protein charge arrangement or protein–membrane complex mobility.  This might elucidate 

properties associated with protein–membrane domain size, charge and mobility.  Eventually, 

it is hoped that this technology complements other electrophysiological methods to further 

elucidate membrane biophysics.  

 

1.6.2 Goals and Methodology 

The new technique discussed above, which monitors RF changes associated with 

protein–membrane vibration during whole-cell voltage clamp, is calibrated in Chapter 4 

and implemented in Chapter 5.  The potential of the technique is explored by monitoring 

changes in RF vibration associated with a well-studied K+ ion channel, ShakerB-IR, 

expressed in Xenopus oocytes.  The N-terminus of the wild-type Shaker channel, 

implicated in fast-inactivation, has been removed from the ShakerB-IR channel.  As such, 

the ionic conduction currents associated with the ShakerB-IR channel, predominately 

noticeable above the channel’s half activation potential of ~-27 mV, should remain fairly 

constant after ion-channel activation (Hoshi et al., 1990; Islas & Sigworth, 1999), and 

excitable changes in measured membrane RF impedance will predominately reflect 

differences in a closed vs. open ion-channel conformational state.  Specific biophysical 

phenomena that may cause a measurable change in RF vibration include 1) Shaker 
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voltage-sensor displacement (1-2 ms after cellular excitation), 2) ion–pore interactions 

and 3) activity-dependent charge distribution associated with the outer vestibule of the 

ShakerB-IR (associated with both channel activation and slow-inactivation (~100 ms 

time scale)) (Liu et al., 1996; Hille, 2001).  

In a subset of experiments, Cu2+ will be applied to ShakerB-IR expressing 

oocytes, and changes in RF vibration associated with membrane–Cu2+ interactions will be 

temporally resolved.  There are several mechanisms by which a charged ion-channel 

inhibitor might alter ion-channel conduction; it might bind to 1) residues that line the ion-

channel, 2) the lipid bilayer around the ion channel, 3) the lipid-bilayer–protein interface 

or 4) the lipid-bilayer–solution interface (Kaczorowski et al., 2008).  Cu2+, a known 

potassium ion-channel inhibitor, has been shown to bind specifically to the S2-S3 

domains of BK channels, in locations that are known to affect movement of the voltage-

sensitive domain (Ma et al., 2008).  It is likely that copper binds in a similar location in 

Shaker channels (due to structural homologies between BK channels and Shaker channels 

(Ma et al., 2008)), and as such, it is hypothesized that the RF impedance associated with 

the mobility:size:effective charge ratio of these ShakerB-IR domains will change after 

Cu2+ application.  While the measured RF change may be membrane-potential dependent, 

data collected by Ma et al. indicate that Cu2+ may preferentially bind to the resting state 

of BK channels.  As such, it is possible that the RF signals associated with the ShakerB-

IR–Cu2+ complex will experience noticeable differences in measured RF impedance at 

potentials below those associated with ion-channel activation.  Results will be used to 

estimate the capabilities of this technique to elucidate excitable changes in charged 

ion/molecule–protein interactions relevant to membrane biophysics and pharmacology.  
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1.7 Contributions and Organization 

Here we introduce two new platforms, both based in EIS, which apply RF signals 

to extracellular electrodes to 1) spatially resolve the dielectric properties around a single 

cell membrane and 2) monitor changes in membrane dielectric associated with whole-cell 

voltage-clamp.  While designing these platforms, we also developed a new method 

(TCPE, Chapter 2) that could potentially be used to simultaneously estimate electrode–

electrolyte interfacial impedances and chamber (interelectrode) impedances in a linear 

electrode voltage–current regime (explicated in part via U.S. Patent Application No. 

12/249,643).  TCPE should be simpler to implement than the other conventional double-

layer estimation strategies that require either multiple calibration solutions or moveable 

electrode architectures.  TCPE may even facilitate chamber impedance measurements on 

size-limited platforms, where application of the four-electrode method can be difficult.  

As such, TCPE presents a potential contribution to any field where electrodes are used to 

record impedances in electrolytic solutions, including the other techniques introduced in 

this dissertation.  

One such technique, sce-Topo (Chapter 4), used extracellular pairs of adjacent 

electrodes, which are part of a radially distributed multielectrode array, to measure 

localized RF impedances around a polarized Xenopus oocyte.  The corresponding 

localized impedance measurements were used to spatially map the effective dielectric 

properties of the isolated oocyte membrane.  Our findings were published as a journal 

article in Lab on a Chip (reprinted in Chapter 4 with permission) (Dharia et al., 2009).  

The techniques mentioned in this paper are scalable, and could be applied to visualize 

micron-sized cell impedances after platform miniaturization.  The ultimate aims for this 
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technology would be to 1) characterize the dielectric properties of functionally polarized 

cell membranes and 2) detect localized clusters of lipid-rafts (liquid ordered lipid 

domains) on the membrane, known to be signaling hotspots.  

A second platform, characterized using both mathematical simulations and 

preliminary recordings on Xenopus oocytes, was used to show that extracellularly applied 

RF signals are sensitive to excitable changes in membrane capacitance in a narrow 

frequency band.  This platform, disseminated via a peer-reviewed conference proceeding  

(reprinted with permission in Chapter 5, (Dharia & Rabbitt, 2010)), shows that excitable 

changes in membrane impedance are the largest when measured at 300 kHz and 500 kHz.  

As such, the 500 kHz frequency was used to monitor RF impedance changes associated 

with ShakerB-IR (expressed in Xenopus oocytes) ion-channel activity and associated 

copper-ion—channel response at several membrane-potential levels (Chapter 6, (Dharia 

& Rabbitt, Submitted)). Preliminary results seem promising, and this technique might be 

used to monitor ion-channel conformational state changes and temporally resolve 

charged-molecule/drug–membrane binding processes to elucidate biophysically and 

pharmacologically relevant processes. 

Contributions of this dissertation to the fields of engineering and science include 

1) a method that could simultaneously estimate double-layer impedances and chamber 

impedances in a linear range of electrode voltage–current sensitivity, 2) development and 

implementation of a method to spatially resolve and visualize differences in dielectric 

properties around a single cell and 3) development and implementation of a method to 

temporally monitor RF impedance changes associated with protein activity and protein–

charged biomolecule interactions.



 

 
 
 
 
 

CHAPTER 2 
 
 
 

A THREE-ELECTRODE METHOD TO SIMULTANEOUSLY  

ESTIMATE ELECTRODE–ELECTROLYTE  

INTERFACIAL IMPEDANCES AND  

INTERELECTRODE  

IMPEDANCES 

 
 

Technique introduced in Patent:  “Systems and Methods for Measuring the Electrical 
Properties of a Microparticle.”  U.S. Patent Application No. 12/249,643 (Filed 

10/2008, Rabbitt and Dharia). 

 
 
 

2.1 Abstract 
 

Here we introduce a new method, the three current-passing electrode method  

(TCPE), which can simultaneously estimate electrode–electrolyte interfacial impedance 

values and interelectrode (chamber) impedance values in a voltage-limited regime where 

electrode impedance is current-density independent.  This method could simplify 

conventional double-layer estimation strategies that involve the use of multiple 

calibration solutions or moveable electrode architectures.  During TCPE simulations, 

individual impedance values were assigned to 1) the interface of three independently 

addressable, current passing, electrodes and 2) localized areas within the recording 

chamber, between each pair of electrodes.  Impedance measurements between 1) pairs of 
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electrodes (3 measurements) and 2) a shorted pair of electrodes and the remaining 

electrode (3 measurements) were simulated by numerically solving lumped electrical 

parameter models for each electrode configuration.  Noise was added to the simulated 

measurements, and a nonlinear least-squares algorithm minimized error between the 

noisy simulations and the associated symbolic lumped parameter models.  This least-

squares error minimization provided impedance estimates for each of the interfacial and 

interelectrode parameters.  Results indicated that impedance estimation was sensitive to 

measurement noise, error in the initial least-squares parameter guess and the average ratio 

of chamber to double-layer impedance.  However, multiple averaged applications of 

TCPE, simulated using reasonable amounts of measurement noise (up to +/- 10%) and 

error in the initial least-squares parameter guess (up to +/-100%), produced parameter 

estimates that were within a conventionally acceptable range (within 10%) of their actual 

values.  This indicates that TCPE, in a voltage-limited regime when electrode–electrolyte 

interfacial impedances are constant, might provide a useful alternative to conventional 

double-layer impedance estimation strategies.  

 
 

2.2 Introduction 
 

Electrode-based measurements in electrolytic solutions are commonly performed 

during electric impedance spectroscopy (Ayliffe et al., 1999; Werdich et al., 2004; 

Barnes, 2006; Dittami et al., 2008; Rahman et al., 2008; Dharia et al., 2009), impedance-

based flow cytometry and electric impedance tomography (Webster, 1990a; Brown, 

2003b; Bayford, 2006).  These emerging technologies have been used to sort/count 

different cell types and monitor gastrointestinal tract emptying, neonatal pulmonary 
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response and breast tissue impedances (Brown, 2003b; Bayford, 2006).  A challenge 

during these measurements, however, has been isolating the effect of the electrode–

electrolyte interfacial impedances (double-layer impedances) from the interelectrode 

impedance (chamber impedance).  Methods to experimentally characterize the electrode 

double-layer typically involve 1) multiple calibration solutions and a stationary pair of 

electrodes or 2) a moveable electrode configuration and a single calibration solution.  

However, double-layer impedances vary, often times nonlinearly, with frequency of 

stimulation, current density, material properties (both of the electrode and the solution 

between the electrodes) and time (Schwan, 1968; Geddes, 1972; Boer & Oosterom, 1978; 

Simpson et al., 1980; Onoral & Schwan, 1982; Ilic et al., 2000; Cui & Martin, 2003; 

Franks et al., 2005; Mirtaheri et al., 2005).  As such, the experimental methods 

mentioned above might not accurately a) represent the impedance of the electrode 

interface when a biological solution/material is in the chamber (rather than the calibration 

solution) or b) account for time-varying changes in double-layer impedance during 

sample-of-interest recordings. 

In response to these challenges, a four-electrode method has been developed to 

enable chamber impedance estimates without double-layer impedance estimation 

(Schwan, 1968; Kalinowski & Figaszewski, 1995).  During four-electrode measurement, 

two high input-impedance recording-only electrodes are placed between two current-

passing electrodes.  The corresponding chamber impedance measured between the two 

recording electrode sites excludes double-layer effects, as the high-input impedance of 

these electrodes prevents ion-accumulation at the electrode interface (Schwan, 1968).   

However, even this method has inherent challenges.  Four-electrode recordings are not 
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always convenient in microsized systems, where diversity in metallization layers 

increases fabrication complexity.  Additionally, there are channel-size limitations during 

four-electrode recording, and the two current-passing electrodes must be placed far 

enough away from the recording electrodes so that ions do not accumulate at the 

recording electrode–electrolyte interface.  Lastly, input-impedances large enough to 

completely prevent current flow can be difficult to achieve, and nonideal recording 

electrodes can affect accuracy of four-electrode recordings.  

Here we introduce a new method, the three current-passing electrode method 

(TCPE), that allows for simultaneous estimation of chamber and double-layer impedance 

elements using three current-passing electrodes in a magnitude-limited voltage regime, 

where double-layer electrode impedance values are independent of current density.  The 

exact value of maximal voltage application during TCPE is material-dependent, although 

maximal voltage values have already been identified for several electrode material types 

(Schwan, 1968; Geddes, 1972; Simpson et al., 1980; Mirtaheri et al., 2005).  During 

TCPE simulations, individual impedance values were assigned to 1) the interface of three 

independently addressable, current-passing, electrodes and 2) localized areas within the 

recording chamber, between each pair of electrodes (Fig. 2.1A).  Impedance 

measurements were simulated for each electrode configuration using the electrical 

lumped parameter models shown in Fig. 2.1B, and noise was then added to these 

simulated measurements.  Error was minimized between the noisy simulated 

measurements and the corresponding lumped parameter models to estimate chamber (Zc1, 

Zc2, Zc3) and double-layer impedance parameters (Zd1, Zd2, Zd3).  Results indicated that 

parameter (impedance) estimates are sensitive to measurement noise, the value of the 
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averaged chamber to double-layer impedance and error in the initial least-squares 

parameter guess values.  However, multiple applications of TCPE, made assuming 

reasonable amounts of measurement noise (up to +/- 10%) and error in the initial 

parameter guess (up to +/- 100%), resulted in average parameter estimates that converged 

to within 10% of each actual parameter value.  These preliminary estimates suggest that 

TCPE could enable simultaneous double-layer and chamber impedance parameter 

estimates in the linear regime of electrode voltage–current-density response.  

 
 

2.3 Methods  
 

Three electrodes were selected for recordings, and Fig. 2.1A shows the 

corresponding double-layer impedance elements (Zd1, Zd2, Zd3) and chamber impedance 

elements (Zc1, Zc2, Zc3) for the given recording chamber.  Lumped parameter models were 

used to represent 1) pairwise electrode measurements (Fig. 2.1B, 1-3) and 2) 

measurements between a shorted pair of electrodes and the remaining electrode (Fig. 

2.1B, 4-6), resulting in six lumped parameter models with six complex-valued unknowns 

(parameters).  The equivalent impedances of the first three circuits (Fig. 2.1B, 1-3 -- Z1, 

Z2 and Z3), shown here, were calculated using simple combinations of series and parallel 

impedance elements.  

 

Z1= Zd1+(1/Zc1+1/(Zc2+Zc3))-1 + Zd3                                                   (2.1) 

Z2= Zd2+(1/Zc2+1/(Zc3+Zc1)) -1 + Zd1                                                  (2.2) 

Z3= Zd3+(1/Zc3+1/(Zc1+Zc2)) -1 + Zd2             (2.3) 
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The remaining equivalent impedances (Z4, Z5 and Z6) were solved in Mathematica by 

applying Kirchoff’s current laws to the circuits shown in Fig. 2.1B (4-6) (Mathematica 

Wolfram Research, Champaign, IL).  The equivalent impedances for the circuit models 

representing Z4, Z5 and Z6 have been broken into two parts for simplicity.  

 

A =  (Zc3 Zd1 Zd2 + Zc2 Zd1 (Zc3 + Zd2) + Zc3 (Zd1 + Zd2) Zd3 + Zc2 (Zc3 + Zd1 + Zd2) Zd3  

                     + Zc1 (Zd1 Zd2 + Zc3 (Zd1 + Zd2) + (Zd1 + Zd2) Zd3 + Zc2 (Zc3 + Zd2 + Zd3)))       (2.4) 

 

(2.5) 

 

(2.6) 

                     

(2.7) 

 
 

2.3.1 Population-based Distribution of Estimated Impedance Values 

Each equivalent impedance was numerically solved for several ratios (.5, 1, 2, 

3,4,5,10) of the average real and imaginary chamber-impedance value to its respective 

double-layer impedance value (Zc_real/Zd_real = Zc_imag/Zd_imag (x-axis Fig. 2.2-2.4)); these 

numerical solutions assumed equal chamber impedance values of (2000 Ω  - 2000 Ω * i) 

and ratio-dependent (Zc_real/Zd_real), equal-valued, double-layer impedances (Zd1 = Zd2 = 

Zd3).  A Levenburg-Marquardt nonlinear least-squares algorithm (built-in function, IGOR 

Pro 6.02A, WaveMetrics, Portland, OR) was used to estimate parameter values by 

minimizing error between the symbolic equivalent impedance equations and their 
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corresponding calculated measurement values under the following conditions: noisy 

measurements (Mnoise, Fig. 2.2), error in the initial least-squares parameter guesses (initial 

guess, G0, Fig. 2.3) and a mixture of both of these conditions (Fig. 2.4).  Measurement 

noise and error in the initial guess were randomly selected from a uniform distribution of 

values within a stated percentage (‘level’, (+/- 0, 10%, 20%, 30%, 40%, 60%, 80%, 90%, 

100%)) of the actual measurement and/or parameter value (y-axis on Fig. 2.2-2.4).  

Mean parameter estimates and the associated standard deviation of Zc1, Zc2, Zc3, 

Zd1, Zd2 and Zd3 were calculated for every noise and initial guess error level at every ratio 

of Zc_real/Zd_real and Zc_imag/Zd_imag after 50 simulations.  Coefficients of variation  (CoV, 

σ/µ) were calculated using mean parameter estimates and standard deviations for the 

averaged 1) real chamber impedance estimates, 2) imaginary chamber impedance 

estimates, 3) real double-layer impedance estimates and 4) imaginary double-layer 

impedance estimates.  CoV contour plots (Fig. 2.2-2.4) were used to graphically depict 

the effects of measurement noise and/or initial guess error, as a function of Zc_real/Zd_real, 

on parameter estimation  (Fig. 2.2-2.4).     

 

2.3.2 Individual Parameter Values and TCPE Estimation 

The effects of measurement noise (Fig. 2.5) and error in the initial guess (Fig. 2.6) 

were then monitored on individual parameter estimates Zc1, Zc2, Zc3, Zd1, Zd2 and Zd3.  

Numerical solutions to each of the equivalent impedances shown in Fig. 2.1B were 

calculated assuming that each impedance component had both real and imaginary-values 

that were a given percent (0%, 10%, 20%, 30%, 40%) (see x-axis of Fig. 2.5 and Fig. 2.6) 

less than (Zc1_real, Zd1_real, Zc1_imag, Zd1_imag) or greater than (Zc3_real, Zd3_real, Zc3_imag, 
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Zd3_imag) the respective values of Zc2 (2000 Ω, 2000  Ω) and Zd2 (500 Ω, 500 Ω).  This 

percent variation between parameters was referred to as ‘parameter spacing’ (x-axis, Fig. 

2.5, Fig. 2.6).  TCPE was applied after 1) adding exactly 10% (solid lines Fig. 2.5) or 

20% (dotted lines Fig. 2.5) measurement noise to each equivalent impedance Z1-Z6 (Fig. 

2.5 – no error in the initial guess) or 2) adding exactly +50% (solid lines Fig. 2.6) or -

50% (dotted lines, Fig. 2.6) error to each initial parameter guess (Fig. 2.6 – no 

measurement noise).  All results were normalized to their actual impedance values (y-

axis, Fig. 2.5 and Fig. 2.6), and the slope for impedance estimation accuracy versus 

parameter spacing was calculated for every parameter in both the noisy measurement and 

initial guess error conditions.  Double-layer parameter estimates are shown in Fig. 2.5A 

and Fig. 2.6A, while chamber impedance estimates are shown in Fig. 2.5B and Fig. 2.6B.  

Estimated normalized parameter values for (Zc1_real, Zd1_real), (Zc2_real, Zd2_real) and (Zc3_real, 

Zd3_real) were shown in blue, orange and red, respectively.  

 

2.3.3 Trial-averages of TCPE and Parameter Estimation Accuracy 

Finally, individual parameter estimate convergence for Zc1, Zc2, Zc3, Zd1, Zd2 and 

Zd3 was monitored after averaging the results of multiple TCPE trials (3, 5, 10, 15, 20, 25, 

30, 35, 40, 45, 50, 55, 60, 65 and 70 trials) together.  This trial-averaged sensitivity of 

TCPE was monitored (real and imaginary impedance components separately) 1) for 

different average ratios of chamber to double layer impedance (Fig. 2.7) and 2) when 

individual parameters were spaced -20% (Zc1 and Zd1) or +20% (Zc3 and Zd3) away from 

a center parameter value (Zc2 and Zd2) (Fig. 2.8).  For the first purpose, equivalent 

impedance values (Z1-Z6) were calculated using actual complex-impedance values of Zc1, 
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Zc2 and Zc3 of (2000 Ω, -2000 Ω) at ratios of Zc_real/Zd_real and Zc_imag/Zd_imag = 8 (Panel 

A), Zc_real/Zd_real and Zc_imag/Zd_imag = 4 (Panel B) and Zc_real/Zd_real and Zc_imag/Zd_imag = 1 

(Panel C).  Double-layer impedance values were equal to each other (Zd1=Zd2=Zd3), and 

the rectified values of the real and imaginary double-layer impedance components were 

also equal (|Zd_real|=|Zd_imag|).  Towards the second purpose, lumped parameter equivalent 

impedances (Z1-Z6) were solved using the following values -- Zc1=(1600 Ω,-1600 Ω), 

Zc2=(2000 Ω, -2000 Ω), Zc3=(2400 Ω, -2400 Ω), Zd1=(400 Ω,-400 Ω), Zd2=(500 Ω,-500 

Ω) and Zd3=(600 Ω,-600 Ω) (Fig. 2.8) -- such that average values of Zc_real/Zd_real =4 and 

Zc_imag/Zd_imag = 4.  TCPE simulations for both purposes were performed after adding up 

to +/- 10% measurement noise to each equivalent impedance calculation and up to +/-

100% error in the least-squares initial parameter value.  As done previously, 

measurement noise and initial guess error was randomly selected from a uniform interval 

that spanned the stated percentage of each respective actual measurement and parameter 

value.   

Fig. 2.7 shows the averaged real impedance estimates (left y-axis, solid lines, 

filled markers) and standard error of the means (SEM, right y-axis, dotted lines, outlined 

markers) for each parameter after normalization to their actual parameter value.  Fig. 2.8 

shows the nonnormalized trial-averaged impedance estimates, and error bars denote +/- 1 

standard error of the mean.  Significant difference between pairs of the estimated real-

valued chamber impedances  (Zc_real1 - Zc_real2, Zc_real2 - Zc_real3, Zc_real1 - Zc_real3) and 

double-layer impedances (Zd_real1 - Zd_real2, Zd_real2 - Zd_real3, Zd_real1 – Zd_real3) in Fig. 2.8 

were tested using a two-tailed unpaired t-test after 70 trial-averaged simulations.  
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2.3.4 Real vs. Imaginary Impedance Component Estimation 

It should be noted that both the real- and imaginary-valued impedance response 

was analyzed in all these experiments.  In every case, the real- and imaginary-valued 

components of each individual chamber and double-layer impedance were assigned the 

same value.  As such, the properties of real and imaginary impedance estimation for all of 

the simulations were identical and could be represented by either the real or imaginary 

data set.  Only real-valued data were shown here. 

 
 

2.4 Results  

TCPE simulations, not shown here, indicated that parameter estimates were 

perfect with noiseless measurements and no errors in the initial parameter guess (as 

expected).  Here we explore the ability of the TCPE method to accurately estimate 

impedance parameters after the addition of 1) measurement noise (Mnoise) and 2) error in 

the initial least-square parameter guesses (G0).  The real and imaginary component for 

each individual impedance element in every simulation was equal, and as such, 

estimations of real impedance data were equivalent to imaginary impedance data 

(estimates of Zc_real and Zd_real are identical to the respective estimates of Zc_imag and 

Zd_imag, see Methods).  As such, only the real values of TCPE impedance estimation are 

shown in the figures here.  

 

2.4.1 Population-based Distribution of Estimated Impedance Values  

Fig. 2.2 compared the effects of measurement noise (y-axis, Fig. 2.2) on TCPE-

computed estimates of averaged real double-layer (Fig. 2.2A) and chamber (Fig. 2.2B) 
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parameter values for several ratios of Zc_real/Zd_real (x-axis, Fig. 2.2, see Methods).  The 

CoV (σ/µ) was used to represent spread in the estimated data and was computed using 50 

TCPE applications at every ratio of Zc_real/Zd_real and for every measurement noise level 

(see Methods 2.3.1).  Fig. 2.2 showed that the ratio of Zc_real/Zd_real dramatically affected 

the CoV for estimated chamber and double-layer impedance parameters: the CoV 

associated with Zc_real exponentially increased at small values of Zc_real/Zd_real (Zc_real/Zd_real 

<1) and high amounts of measurement noise, while the CoV associated with Zd_real 

increased approximately linearly as Zc_real/Zd_real increased.  The initial parameter guesses 

that corresponded to Zc1, Zc2, Zc3 and Zd1, Zd2, Zd3 for this simulation were perfect (the 

assigned values, see Methods), and a CoV > 0 indicated decreasing precision in 

parameter estimation caused by noisy measurements.  As such, data indicated that 

estimations of the complex-valued components of Zc_real, Zc_imag, Zd_real and Zd_imag are 

sensitive to measurement noise.  

The effect of error in the least-squares parameter guesses on TCPE parameter 

estimation was then evaluated for averaged real double-layer impedance estimates (Fig. 

2.3A) and averaged real chamber impedance estimates (Fig. 2.3B).  These simulations 

were done without measurement noise (Mnoise=0) at several ratios of Zc_real/Zd_real, and 

CoV was again used as an indicator of precision during parameter estimation.  Results 

indicated that initial guess errors produced lower CoVs than comparable values of 

measurement noise (compare Fig. 2.2 and Fig. 2.3), but were not 0.  As measurements 

were noiseless in these simulations, a CoV > 0 indicated that the least squares method 

was converging to a localized minima at parameter values other than the minima of 

interest, and that parameter estimation depended on the initial guess value to the least-
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squares minimization problem.  Fig. 2.4 shows a more realistic interpretation of how 

small amounts of noise in the measurement (up to +/- 10%, see Methods) will affect the 

CoV of parameter estimation for varying amounts of error in the initial guess (y-axis) at 

several ratios of Zc_real/Zd_real (x-axis).  Trends in this case are similar to those shown in 

Fig. 2.3, but with slightly higher CoVs. 

 
 

2.4.2 Individual Parameter Values and TCPE Estimation 
 

Next, we evaluated the effects of measurement noise and error in the initial guess 

on individual chamber and double-layer impedance parameter estimates.  In both the 

noisy measurement and initial guess error conditions (Fig. 2.5 and 2.6, respectively), 

actual values of Zc2_real and Zd2_real were held constant at 2000 Ω and 500 Ω, respectively 

(‘middle values’), Zc1_real and Zd1_real were a given percent (‘parameter spacing’, see x-

axis of Fig. 2.5 and Fig. 2.6) less than these middle values, and Zc3_real and Zd3_real were a 

given percent (‘parameter spacing’, see x-axis of Fig. 2.5 and Fig. 2.6) greater than these 

middle values (see Methods).  Estimated parameter values were normalized to their 

actual values (y-axis, Fig. 2.5 and Fig. 2.6), and parameter estimates are increasingly 

accurate as their normalized values approach 1.   

Fig. 2.5 illustrates the effects of adding exactly 10% (solid lines) and 20% (dotted 

lines) measurement noise (no error in G0) to every equivalent impedance, Z1-Z6 (Fig. 

2.1B) before least-squares parameter estimation (single TCPE application, Fig. 2.5A - 

double-layer impedance estimates, Fig. 2.5B - chamber impedance estimates).  Data 

indicated that measurement noise equally contributed to the final parameter estimates for 

equal-valued chamber, and separately, double-layer impedances (a parameter spacing 
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value of 0).  For nonequal chamber and double-layer impedance parameter values 

(parameter spacing > 0), however, the noise added to each equivalent impedance before 

TCPE simulation resulted in chamber and double-layer impedance estimates of varying 

accuracy (Fig. 2.5A and 2.5B).  Parameter accuracy increased for some parameters and 

decreased for others (when compared to parameter spacing = 0), and the standard 

deviation associated with parameter estimation accuracy increased as parameter spacing 

increased.  The measurement-noise induced change in parameter estimation accuracy 

with parameter spacing (the slope of each line) was linear for every respective double-

layer and chamber parameter value, and the slope of each line was exactly two times 

larger in the 20% noisy measurement condition (dotted lines) than the 10% noisy 

measurement condition (solid lines).  Interestingly, an increase in parameter spacing 

causes a respective increase and decrease in the estimation of the largest and smallest 

parameter values during double-layer estimation, although these trends reverse during 

chamber impedance estimation.  These phenomena might be explained by examining the 

actual parameter impedance values and the nonlinear nature of the equations that describe 

Z1-Z6, although further investigation is needed to completely understand these results.  

Fig. 2.6 shows the effects of introducing exactly +50% (solid lines) and - 50% 

(doted lines) error into the least-squares initial guess (no measurement error) on TCPE 

parameter estimation (Fig. 2.6A - double-layer impedance estimates and Fig. 2.6B - 

chamber impedance estimates).  Again, when chamber and separately double-layer 

impedance values were equal (parameter spacing = 0), initial guess error contributed 

equally to each parameter estimate.  However, when parameter spacing > 0, impedance 

estimation depended on the actual parameter value and larger parameter values resulted 
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in more accurate estimates than smaller parameter values (for both chamber and double-

layer impedances).  Estimation accuracy linearly changed for each parameter as 

parameter spacing increased, and rate of change of impedance estimates (with parameter 

spacing) made with +50% initial guess error (solid lines) had the same scalar value but 

opposite sign of the -50% initial guess error condition (dotted lines).  As such, it seems 

that error in the initial guess may produce impedance estimates that are symmetric across 

the normalized impedance value of 1 (where the impedance estimation is perfectly 

accurate), and this information might be incorporated into TCPE to enable more accurate 

parameter estimates.  

 
 

2.4.3 Trial-averages of TCPE and Parameter Estimation Accuracy 

Data indicate that in cases of high CoV, averaging parameter estimates from 

multiple applications of TCPE (trial-averaging) may be necessary for accurate parameter 

estimation.  Fig. 2.7 shows the effects of trial-averaging on final parameter estimation 

(trial-averaged estimate, x-axis shows number of averaged simulations) for multiple 

ratios of average Zc_real/Zd_real (see Methods, panel A shows Zc_real/Zd_real=8, panel B 

shows Zc_real/Zd_real = 4 and panel C shows Zc_real/Zd_real=1).  Measurement noise in these 

experiments was selected from a uniform distribution that spanned +/-10% of each actual 

equivalent impedance value, and error in the initial parameter guess was selected from a 

uniform distribution that spanned +/- 100% of each actual parameter value (see 

Methods).  The trial-averaged estimate for each parameter is normalized to its actual 

value and is shown using solid lines and markers in Fig. 2.5 (left y-axis).  The gray bar, 

centered at a normalized impedance of 1, included all estimates that were within +/-10% 
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of the actual parameter value.  Normalized standard errors of the mean (SEM, right y-

axis) for each parameter, denoted by dotted lines and outlined markers, were also shown 

on the same graph.  SEM plateaus to near its minimum value at ~10 trials for both 

chamber and double-layer impedance values when Zc_real/Zd_real ≥ 4.  When average 

Zc_real/Zd_real=1, however, even while double-layer impedance estimates approach 10% of 

their original value within 10 trials, 70-trial averaged chamber impedance estimates were 

as high as ~30% inaccurate. This indicates that trial-averaging might be used to 

accurately determine impedance estimates, although final estimation accuracy depends on 

ratio of Zc_real/Zd_real and the parameters of interest. 

To see if TCPE could discern significant differences in Zc1, Zc2, Zc3, and 

separately Zd1, Zd2 and Zd3 after trial-averaging, Zc1 and Zc3 were respectively assigned 

values -20% and +20% of a middle chamber impedance value (Zc2), while Zd1 and Zd3 

were respectively assigned values that were -20% and +20% of a middle double-layer 

impedance value (Zd2, see Methods).  Parameter values were selected such that 

Zc_real/Zd_real and Zc_imag/Zd_imag= 4, with initial guess errors of up to +/- 100% and 

measurement noise of up to +/- 10% (see Methods).  The x-axis in Fig. 2.8 shows the 

number of averaged parameter values (applications of TCPE), while the y-axis shows raw 

(nonnormalized) impedance values.  The straight nonmarkered lines indicate the actual 

impedance associated with each parameter (blue- Zc1, Zd1 orange-Zd2, Zc2 red- Zd3, Zc3).  

Statistical significance testing showed significant differences between all chamber and 

double-layer pairs ((Zc_real1 - Zc_real2, Zc_real2 - Zc_real3, Zc_real1 - Zc_real3, Zd_real1 - Zd_real2 and 

Zd_real1 – Zd_real3) except Zd_real2 - Zd_real3 after 70 trial-averages (p = .05).  
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2.5 Discussion 
  

The three current-passing electrodes method, introduced here, used a least-squares 

regression to estimate the value for each impedance element of the model shown in Fig. 

2.1 (Zd1, Zd2, Zd3, Zc1, Zc2, Zc3).  This was done without multiple calibration solutions or 

moveable electrode architectures, and chamber and double-layer impedance elements 

were solved simultaneously after recording.  Data indicated that chamber impedances 

were most effectively estimated for larger average ratios of Zc_real/Zd_real and 

Zc_imag/Zd_imag, double-layer impedances were most effectively estimated for smaller 

average ratios of Zc_real/Zd_real and Zc_imag/Zd_imag, and both chamber and double-layer 

impedances were estimated with approximately equal accuracy at a ratio of Zc_real/Zd_real 

and Zc_imag/Zd_imag = 4.  Parameter estimation is most accurate after minimizing 

measurement noise and error in the least-squares parameter guess, and also depends on 

the actual values of each parameter.  If these noise/error limits are not confined and 

relative parameter values are unknown, multiple applications of TCPE may be needed to 

correctly estimate parameter values.  Trial-averaging of TCPE parameter estimates 

achieved double-layer and chamber impedance accuracies within 10% of the original 

parameter values in as few as 10 trials (for some ratios of Zc_real/Zd_real) and indicate the 

potential utility of this technique to determine chamber and double-layer impedances.  

One caveat of the trial-averaged simulations described here is that initial guess error was 

randomly selected from a distribution centered around the actual parameter value; even 

while the parameter estimation error range was high (up to +/- 100% initial guess error), 

TCPE would more accurately be simulated using a mean distribution value for initial 

guess error different than the actual parameter value (this should be done in the future). 
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Methods to potentially heighten parameter estimation accuracy include lowering 

the tolerance used to determine least-squares convergence or applying a perturbation to a 

converged solution to ensure convergence to a global minima rather than a local minina. 

This could reduce the number of TCPE applications necessary for accurate parameter 

estimation.  Incorporating a fourth current-passing electrode to TCPE might also increase 

solution accuracy.  While adding an extra current-passing electrode to the measurement 

would increase the number of total parameters (4 more parameters – 1 more double-layer 

parameter and 3 additional chamber parameters), the number of potential recordings 

would increase by more than this amount, resulting in redundant data that could 

potentially be used to hone accuracy during least squares parameter estimation.  

Implementation of TCPE will ideally incorporate remotely controllable, 

individually addressable electrodes to facilitate pair- and group-wise electrode 

recordings.  Electrical switches can operate on submillisecond time scales, and fast 

recordings will minimize errors due to temporal changes in double-layer impedance. 

Average ratios of Zc_real/Zd_real and Zc_imag/Zd_imag can be controlled by changing electrode 

height or electroplating electrodes to increase surface area, and could enable more 

accurate estimation of chamber impedance (by lowering double-layer impedance) (Ilic et 

al., 2000; Cui & Martin, 2003; Werdich et al., 2004; Franks et al., 2005; Dharia et al., 

2009).  Preliminary data indicate that TCPE could also be used to simultaneously 

estimate both chamber and double-layer impedances for ratios of Zc_real/Zd_real and 

Zc_imag/Zd_imag  ~=4.  While additional simulations and experiments need to be conducted 

to ensure TCPE accuracy, preliminary data indicate that this system may simultaneously 

estimate chamber and double-layer impedances.  This cannot be accomplished using 
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current methodologies, and as such, TCPE promises to simplify design architectures or 

electrode calibration strategies in any electrode-in-electrolyte recording including those 

made during electric impedance tomography or electric impedance spectroscopy.
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Fig. 2.1 – An Overview:  The Three Current-Passing Electrode Model (TCPE) – TCPE 
simultaneously estimated the electrode double–layer (Zd1, Zd2, Zd3) and localized chamber 
(Zc1, Zc2, Zc3) impedances associated with three selected electrodes (A).  Electrical 
lumped parameter models were used to represent measurements between 1) every pair of 
electrodes  (B, 1-3 – with associated equivalent impedances of Z1, Z2, Z3) and 2) a 
shorted pair of electrodes and the remaining electrode (B, 4-6 – with associated 
equivalent impedances Z4, Z5, Z6).  A least-squares method was used to estimate each  
parameter value (Zd1, Zd2, Zd3, Zc1, Zc2, Zc3) by minimizing error between the electrical 
lumped parameter models and an associated set of simulated noisy measurements.  
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Fig. 2.2 – Noisy Measurements and Parameter Estimation – Noise, added to each set of 
six equivalent impedances (Z1, Z2, Z3, Z4, Z5, Z6), was randomly selected for each 
measurement from a uniform distribution that spanned +/- a given % of the specific 
measurement value (y-axis).  Equivalent impedances were calculated using chamber 
impedance values (Zc1, Zc2, Zc3) of (2000 Ω, -2000 Ω), and equal double-layer 
impedances whose values can be calculated using the stated ratio of the average 
Zc_real/Zd_real (x-axis).  TCPE was run 50 times at every noise level and ratio of 
Zc_real/Zd_real, and the coefficient of variation (CoV) that corresponded to the average 
chamber and double-layer impedance parameter estimates for each of these points is 
shown here (double-layer impedance (A) and chamber impedance (B)).  Contour lines 
indicate equivalent levels of CoV (darker line color indicates larger CoV), and results 
indicated double-layer impedances were more sensitive to measurement noise at large 
ratios of Zc_real/Zd_real (A) while chamber impedances were more sensitive to measurement 
noise at smaller ratios of Zc_real/Zd_real (B).  
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Fig 2.3 – G0 Error and Parameter Estimation – Equivalent impedances for each electrode 
recording configuration (Z1, Z2, Z3, Z4, Z5, Z6) were calculated using the same values of 
chamber and double-layer impedance detailed for Fig. 2.2.  Error was added to each 
initial parameter guess value before TCPE simulation, and the amount of error was 
randomly selected from a uniform distribution that spanned a given percentage (+/- %, y-
axis) of the actual parameter value.  TCPE was applied 50 times for each ‘error in the 
initial guess’ level (+/- %, y-axis, see Methods) and for every average ratio of 
Zc_real/Zd_real (x-axis, see Methods), and the CoV (σ/µ) associated with the average 
double-layer impedance estimates (A) and chamber impedance estimates (B) at each 
point are depicted here.  Contour lines indicate equivalent levels of CoV (darker line 
color indicates larger CoV), and nonzero values indicate that the average double-layer 
(A) and chamber (B) parameter estimates are, for at least some of the 50 trials, 
converging to localized minima other than the minima of interest. 
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Fig. 2.4 – Measurement Noise, Guess Error and Parameter Estimation – Noise, added to 
each set of six equivalent impedances (Z1, Z2, Z3, Z4, Z5, Z6), was randomly selected for 
each measurement from a uniform distribution that spanned +/- 10 % of the specific 
measurement value (actual chamber and double-layer impedance values are identical to 
those used for impedance estimation in Fig. 2.2).  Error in the initial parameter guess  
was also added to each initial parameter guess value, and the amount of error added to 
every parameter value was randomly selected from a uniform distribution that spanned a 
given percentage (+/- %, y-axis) of the actual parameter value (like Fig. 2.3). TCPE was 
applied 50 times for each initial guess error level (+/- %, y-axis, see Methods) at 
specified ratios of Zc_real/Zd_real (x-axis, see Methods) after incorporating up to +/-10% 
noise in each simulated measurement.  The coefficient of variation (CoV, σ/µ) associated 
with the average estimated double-layer (A) and chamber (B) impedance parameters for 
each ratio of Zc_real/Zd_real and at every ‘error in the initial guess’ level is shown here.  
Equivalent levels of CoV are indicated using contour lines (darker line color indicates 
larger CoV), and are slightly higher than those shown in the no measurement noise 
condition of Fig. 2.3. 
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Fig. 2.5 – Measurement Noise and Individual Parameter Estimation – Exactly +10% 
(solid lines) or +20% (dotted lines) measurement noise was added to each of the six 
simulated equivalent impedances (Z1, Z2, Z3, Z4, Z5, Z6).  Measurements were simulated 
using parameter values for Zd1_real and Zc1_real that were a given percentage less than (see 
x-axis, -% ‘parameter spacing’) Zd2_real and Zc2_real, while Zd3_real and Zc3_real were a given 
percentage more than (see x-axis, + % ‘parameter spacing’)  Zd2_real and Zc2_real (Zd2_real  = 
500 Ω and Zc2_real = 2000 Ω).   TCPE was used to estimate each parameter value at each 
parameter spacing level (x-axis) using noisy measurements, and parameter estimates 
were normalized to their assigned values (y-axis).  Parameter value estimation accuracy 
was the same for each parameter when parameter values were equal, and differences in 
parameter values affected individual parameter estimation accuracy.  
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Fig. 2.6 – Error in the Initial Guess and Individual Parameter Estimation –Noiseless 
simulated measurements (Z1, Z2, Z3, Z4, Z5, Z6) were calculated using values of Zd1_real 
and Zc1_real that were a given percentage less than (see x-axis, -% ‘parameter spacing’) 
Zd2_real and Zc2_real, and values of Zd3_real and Zc3_real were a given percentage greater than 
(see x-axis, +% ‘parameter spacing’) Zd2_real and Zc2_real (Zd2_real  = 500 Ω and Zc2_real = 
2000 Ω).  In these simulations, an exact percentage of error (+ 50% - solid lines, - 50% - 
dotted lines) was added to the initial guess of every parameter value before simulation.  
Individual parameter estimates were normalized to their assigned values (y-axis), and 
data for double layer impedances are shown in Fig. 2.6A while data for chamber 
impedances are shown in Fig. 2.6B.  TCPE estimates every impedance value with equal 
accuracy when all of the parameter values are equal. However, parameter estimation 
accuracy is parameter value dependent, and parameter values linearly change with 
parameter spacing > 0 after the addition of a fixed initial guess error.  
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Fig. 2.7 – Trial-averaged Parameter Estimation - Estimated predictions of the real 
components of Zc1, Zc2, Zc3, Zd1, Zd2 and Zd3 averaged together for multiple applications 
of TCPE.  Noise, added to each set of six simulated measurements (Z1, Z2, Z3, Z4, Z5, Z6) 
in each application of TCPE, was randomly selected for each measurement from a 
uniform distribution that spanned +/- 10 % of each equivalent impedance value.  
Likewise, error in each initial parameter guess was randomly selected for every 
parameter from an interval that spanned +/- 100% of that parameter value.  Actual 
chamber impedance values (Zc1 Zc2 Zc3) were assigned values of (2000 Ω, -2000 Ω), 
while the values of Zd1, Zd2 and Zd3 were determined by the ratios for Zc_real /Zd_real (Panel 
A - 8, Panel B - 4, Panel C -1, see Methods).   Estimated values of Zc1_real, Zc2-real, Zc3-real, 
Zd1-real, Zd2-real and Zd3-real, were normalized to the actual real-component of their 
respective impedance values (left y-axis, solid lines, solid markers).  The gray bar 
indicates all parameter estimates that are within 10% of their actual impedance value.  
Standard errors of the mean (SEM) for the real component of every impedance value are 
also shown here (right y-axis , dotted lines and outlined markers).  
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Fig. 2.7 – Part A.
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Fig. 2.7 – Part B.
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Fig. 2.7 – Part C.
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Fig. 2.8 – Parameter Estimation Sensitivity – Chamber and double-layer impedance 
components were assigned the following values (real and imaginary components are 
equal): Zc1=.8*Zc2 (blue), Zc2=2000 Ω  (orange), Zc3 = 1.2*Zc2 (red), Zd1=.8*Zd2 (blue), 
Zd2=500 Ω (orange), Zd3 = 1.2*Zd2 (red). The ability of averaged TCPE parameter 
estimates to identify these parameter-value differences was examined.  TCPE simulations 
assumed measurement noise values of up to +/- 10% and initial guess error values of up 
to +/- 100% (see Methods).  The actual value of each parameter is denoted by the 
nonmarkered colored line (color corresponds to the appropriate double-layer (A) or 
chamber (B) impedance value).  The lines with markers are indicative of the actual 
averaged impedance estimate, and error bars denote +/- 1 SEM. Statistical comparisons 
of the different pairs of real-valued impedance components (Zc1_real – Zc2_real, Zc1_real – 
Zc3_real, Zc2_real – Zc3_real, Zd_1real – Zd_2real, Zd1_real – Zd3_real, Zd2_real – Zd3_real) after 70 
applications of TCPE indicate differences were significant between all impedance pairs 
except Zd2_real – Zd3_real  (p=.05).  
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CHAPTER 3 

 
 
 

SINGLE-CELL ELECTRIC IMPEDANCE TOPOGRAPHY:  

MAPPING MEMBRANE CAPACITANCE 1  

 
 

Published:  Sameera Dharia, Harold E. Ayliffe, Richard D. Rabbitt 
 

LOC (2009), 9:  3370-3377 
 
 

 
3.1 Abstract 

 
Single-cell electric impedance topography (sceTopo), a technique introduced 

here, maps the spatial distribution of capacitance (i.e. displacement current) associated 

with the membranes of isolated, living cells. Cells were positioned in the center of a 

circular recording chamber surrounded by eight electrodes.  Electrodes were evenly 

distributed on the periphery of the recording chamber. Electric impedance 

measured between adjacent electrode pairs (10 kHz–5 MHz) was used to construct 

topographical maps of the spatial distribution of membrane capacitance. Xenopus oocytes 

were used as a model cell to develop sceTopo because these cells consist of two visually 

distinguishable hemispheres, each with distinct membrane composition and structure. 

Results showed significant differences in the imaginary component of the impedance 

between the two oocyte hemispheres. In addition, the same circumferential array was 
 

1 Reproduced by permission of The Royal Society of Chemistry, http://www.rsc.org.  Article can be 
found at http://pubs.rsc.org/en/Content/ArticleLanding/2009/LC/b912881f. 
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used to map the size of the extracellular electrical shunt path around the cell, providing a 

means to estimate the location and shape of the cell in the recording chamber.  

 
                            

3.2 Introduction 
 

Measurement of the electrical displacement current or capacitance of cell 

membranes provides a powerful means to examine key biological events such as synaptic 

transmission (Heidelberger et al., 1994), ion-channel gating (Armstrong & Bezanilla, 

1977b; Bezanilla, 2000b), cell division and growth (Huang et al., 1999; Sohn et al., 

2000b; Wang et al., 2002), protein-based electromotility (Santos-Sacchi, 1991) and 

membrane flexoelectricity (Petrov, 2002).  Capacitance provides information about cell 

size and structure resulting from lipid bilayer surface area, ultrastructure and molecular 

composition (Pethig, 1979; Foster & Schwan, 1989; Lo et al., 1995; Polk & Postow, 

1996; Gritsch et al., 1998).  Techniques to measure membrane capacitance, therefore, 

have significant applications in basic science and can also be used to screen candidate 

pharmaceutical compounds (Ratanachoo et al., 2002) and genetic manipulations for 

therapeutic efficacy.  

Here we introduce a new technique, single-cell electric impedance topography 

(sceTopo), that measures the spatial distribution of membrane2,3 capacitance around 

isolated living cells using radio frequency interrogation.  The recording system resembles 

that used in electric impedance tomography (EIT), where current/voltage measurements 

made by an array of electrodes around the human body are used to generate two- or three- 

 
2The term “membrane” used herein refers to the multiple layers of lipids, proteins and sugars on the 

periphery of the cell.   
  
3 Since the time of publication, the term “membrane” has been revised to mean multiple layers of lipids 

and proteins on the periphery of the cell. 
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dimensional (2D or 3D) electrical images of the bodies interior (Webster, 1990b; Brown, 

2003a; Brayford, 2006).  In the present study, electrode arrays were miniaturized to 

record electrical impedance values around an isolated, single cell.  The method differs 

from EIT, however, in that it is used to probe the electrical properties of a material near 

the electrode’s surface (in this case, the cell membrane and the extracellular solution) and 

is not well suited to image the interior of cells4.  Hence, the present method is referred to 

as single-cell electric impedance topography (rather than tomography).   

In sceTopo, isolated cells were positioned within a recording chamber that was 

surrounded by an array of conducting electrodes.  The conducting tips of the electrodes 

were equally spaced around the periphery of a circular recording chamber with the 

insulated shanks of the electrodes directed radially.  Local electrical properties of the 

membrane were examined by recording the impedance between adjacent pairs of 

extracellular electrodes at radiofrequencies, a method based in electric impedance 

spectroscopy (Hoffman & Britt, 1979; Pethig, 1979; Schwartz et al., 1983; Coulter & 

Rodriguez, 1988; Ayliffe et al., 1999; Gawad et al., 2001; Gawad et al., 2004; Werdich et 

al., 2004; Rabbitt et al., 2005; Han & Frazier, 2006).  The recording chamber was sized 

to minimize the distance between the electrodes and the plasma membrane in order to 

maximize interaction between the electric field and the plasma membrane.  Data were 

used to construct topographical maps showing the spatial distribution of membrane 

electrical properties.  The system was designed/fabricated for use on a microscope stage 

and facilitated application of chemical solutions, microinjections or electrophysiological 

recordings during sceTopo.   
 

4 A clarification of the published manuscript: The algorithm used here is designed specifically to monitor 
changes near the electrode-electrolyte interface.  An inverse algorithm could be applied (with a higher 
interrogation frequency) to monitor intracellular organelle distribution.  
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Xenopus oocytes (frog eggs) were used as the model cell to develop sceTopo 

because of their large size (~1 mm diameter), ease of manipulation, availability and 

polarized structure. These cells are a common model for electrophysiological studies 

because their size facilitates two-electrode voltage clamp and because they can express 

exogenous proteins (including ion channels) in their membrane (Dascal, 1987; Swanson 

& Folander, 1992; Stuhmer, 1998; Weber, 1999).  Oocytes have two distinct hemispheres 

or poles, the animal pole characterized by its dark brown color and the vegetal pole 

characterized by its yellow color.  The types of ion channels, organelles, melanin 

concentration and microvilli vary as a function of oocyte hemisphere.  This endogenous 

polarization makes the oocyte a natural choice to test the ability of sceTopo to resolve 

spatial inhomogenity of membrane properties.  

Results shown here specifically demonstrate the ability of sceTopo to resolve 

spatial differences in electrical impedance around native Xenopus oocyte membranes.  

Results also show, using phantoms (i.e. objects with known electrical properties), that the 

shape and location of the cell within the chamber can be estimated. 

 
 

3.3 System Design and Fabrication 
 

3.3.1 Electrode Array Fabrication 

Electrode arrays were constructed using a combination of thick-film, 

microfabrication and xurographic techniques (Bartholomeusz et al., 2005).  A knife-

plotter (Graphtec 7000 , Graphtec America, Santa Ana, CA) was used to pattern a 

circularly distributed set of 8 electrodes into the top layer of the double-layered Rubylith 

polymer (Rubylith RU3, Ulano Corp., New York City, NY). The top layer of the 
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patterned Rubylith served as a mask during metal deposition.  A 1.1–1.2 mm diameter 

hole was also cut in the center of the electrodes through both layers of the Rubylith 

polymer and acted as a recording chamber.  Platinum and titanium (seed layer) were 

sputtered on the patterned Rubylith (TMV SS-40C-IV, T-M Vacuum Products, 

Cinnaminson, NJ) at the University of Utah’s Microfabrication Laboratory.  The mask 

layer of the Rubylith was lifted off to reveal the electrode array.  Electrodes were plated 

using a current density of 10 mA/cm2 in a platinum black plating solution (3.3% (by 

weight) chloroplatinic acid and .03% (by weight) lead acetate).  Platinization increased 

electrode surface area, thereby decreasing electrode double-layer impedance.  The 

electrodes were individually isolated using a Kapton polyimide adhesive (5314 Kapton, 

3M, St. Paul, MN) (Fig. 3.1B). The volume above the triangular portion of each electrode 

was filled with either physiological saline (phantom experiments) or Superbarths oocyte 

media (88 mM NaCl, 1 mM KCl, 0.41 mM CaCl2, 0.33 mM Ca(NO3)2, 1 mM MgSO4, 

2.4 mM NaHCO3, 10 mM HEPES, 1 mM pyruvate and 50 µg/ml gentamicin, titrated 

using NaOH to a pH of 7.4).  This geometry increased the electrode surface area 

contacting the media and further lowered the double-layer impedance of the Pt 

electrodes.  Electrical bond pads, located near the periphery of each electrode array, 

connected the electrode array to a printed circuit board (PCB) (Fig. 3.1C).  The PCB was 

interfaced with electronic instrumentation described below. 

 
 

3.3.2 Platform 

The electrode array was clamped in a polycarbonate interface that allowed for cell 

loading and positioning (via a vacuum port) into the recording chamber (Fig. 3.1C).  The 
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bond pads on the electrode array contacted the PCB through a series of spring-loaded 

gold pins (B1363-D4 Interface Contacts, Rika Denshi, Attlebro, MA ) (Fig. 3.1C).  The 

electrical source consisted of either the Tektronix AFG320 or AWG430 (Tektronix, 

Beaverton, OR).  Each source was individually calibrated using a Thévenin equivalent 

model to compensate for load-dependent loss at frequencies greater than 100 kHz.  A 

voltage-dividing on-board reference impedance was used to calculate recording-chamber 

impedance (Ayliffe et al., 1999; Han & Frazier, 2006; Dittami et al., 2008).  High-

impedance voltage-follower operational amplifiers (OPA356, Texas Instruments, Dallas, 

TX) located on the headstage PCB were used to sample the voltage drop across the 

reference impedance to determine current.  All signals were recorded in quadrature by 

lock-in amplification (Stanford Research, SR830 SR844, Sunnyvale, CA).  Electrodes on 

the array were individually addressable, and the interrogating signal was directed to the 

electrode of interest using digital switches (Max4521, Maxim Integrated Products, 

Sunnyvale, CA) located on the custom headstage PCB (Fig. 3.1D).  Source output, signal 

recording and electrode pair selection were automatically controlled via a custom 

computer interface (IGOR Pro, WaveMetrics, Portland, OR).  The program remotely 

controlled the waveform generator and lock-in amplifier recording (GPIB, National 

Instruments IEEE 488).  Analog voltage sampling and digital switching were controlled 

via 16-bit analog–digital converters and digital outputs (ITC 1600, HEKA Inst., 

Bellmore, NY).  
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3.4 Theory 

3.4.1 Simulations 

A qualitative 2D finite-element model of the oocyte-loaded microchamber was 

developed to gain insight into the nature of electric fringe fields and to guide 

interpretation of results.  We modeled the cell membrane as a highly resistive linear 

dielectric (σ = 3.14*10-9 S/m, ε = 90 F/m, thickness = 20 nm),5 the cytoplasm as a simple 

ionic conductor (σ = 1.4 S/m) and the extracellular space as a conductor (σ = 1.4 S/m, 

thickness = 2 µm) (Barnes, 2006). The 2D Maxwell equations were solved in the 

frequency domain (Comsol Multiphysics, Los Angeles, CA).  Sinusoidal voltage stimuli 

were applied in the model across adjacent pairs of electrodes to simulate electric fringe-

field interaction with the cell membrane in the recording chamber.  The electrode–

electrolyte interface impedance was not included in the model and finite-element 

simulations pertain only to the impedance associated with the cell and extracellular shunt 

pathway.  A lumped-parameter model (Fig. 3.2) — including the electrode–electrolyte 

double layer, the conductive shunt extracellular pathway, the plasma membrane and the 

intracellular impedance — was also used to facilitate interpretation of results. 

 
 

 
5 A clarification of the published manuscript:  The simulations performed here use parameters that are 
specific for a Xenopus oocyte.  Double-layer and the fibrous vitelline membrane that surround the oocyte 
(highly conductive) were not included in these qualitative simulations, which were primarily intended to 
provide a better understanding of RF signal interaction with the oocyte lipid bilayer.  
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3.5 Experimental 
 

 3.5.1 Measurements from Passive Cells and Phantoms 

Xenopus oocytes were chosen as the model cell to develop and test the sceTopo 

approach.  Oocytes are visibly polarized into brown (animal) and white (vegetal) 

hemispheres, are large in size (1.2 mm in diameter) and have inhomogenous membrane-

bound protein/channel expression between the animal vs. vegetal hemispheres (Robinson, 

1979; Dascal, 1987; Gomez-Hernandez et al., 1997; Chang et al., 1999; Weber, 1999).  

Differences between the animal and vegetal hemispheres, thought to help in guiding 

oocyte development, also provide a polarized, easily visualizable, cellular structure ideal 

for testing the sceTopo platform (Robinson, 1979; Dascal, 1987; Gomez-Hernandez et 

al., 1997; Chang et al., 1999; Weber, 1999).  It was hypothesized that the imaginary 

component of the impedance associated with a resting oocyte would differ between the 

two hemispheres and would be detectable using sceTopo.  Oocytes (defolliculated) and 

phantoms were individually placed in the recording chamber using micropipettes, and 

impedance measurements between adjacent pairs of electrodes were made around the 

cell.  Data were collected in quadrature with a lock-in filter of 18 dB/octave and a lock-in 

integration time of 3 ms (SR844, Stanford Research, CA).  Results were corrected using a 

Thévenin source calibration and combined with an on-board reference impedance to 

obtain complex-valued impedance measurements between adjacent pairs of electrodes.   

Lock-in amplifier analog outputs were sampled in quadrature at 1 kHz (ITC 1600, 

InstruTECH, Bellmore, NY).  To estimate the contribution of the electrode–electrolyte 

double-layer impedance, data were also collected under the same stimulus conditions 

when the chamber was only filled with extracellular media (media-only condition) during 
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each experiment.  Since the impedance in the media-only condition was low relative to 

the tight-fitting cell-loaded condition, subtracting the media-only data from the cell-

loaded data removed major contributions of the double-layer impedance from the 

cell/phantom measurements (Ayliffe et al., 1999).  One caveat of this approach is that it 

also subtracts the electrical resistance of the media itself, and therefore, the real 

component of the impedance obtained is shifted by a real-valued constant.   

After subtracting the double-layer, the impedance measured between adjacent 

electrode pairs was divided in half and assigned to chamber positions that corresponded 

to the center point directly in front of each interrogating electrode.  This was done for 

every electrode-pair measurement, and the values associated with each electrode position 

were averaged together.  The procedure resulted in impedance data for 8 locations around 

the circumference of the cell, corresponding to the 8 electrode positions in the circular 

array.  Impedance data were interpolated between electrodes and smoothed using a five-

term Fourier series in the form .  An and Bn, 

calculated from the data using a least squares regression, are complex-valued Fourier 

coefficients.  Z is the interpolated impedance as a function of polar angle .   

Polar impedance plots were constructed for both toroidal glass washers 

(phantoms, 1 ± 0.1 mm diameter about its radially symmetric axis, 0.61 ± 0.06 mm thick, 

0.44 ± 0.06 mm dia. hole; purchased as seed beads from the Garden of Beaden, Upland, 

CA) and for single cells (oocytes).  The second moment of area and the centroid of  

were also computed as metrics of the shape and orientation of the phantom.  Impedance 

plots for each phantom were first constructed using 0 = 0, and subsequently rotated by 

angle  to align the phantom major axis with the horizontal. The major axis was 
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identified using a photomicrograph of the phantom in the chamber.  These rotated results 

were then averaged across phantoms.  Means and standard errors were plotted as a 

function angle .  Unpaired, Student’s t-tests were used to compare the major and minor 

axis lengths of the toroidal glass phantoms.  Unpaired, Student’s t-tests were also used to 

compare difference in angular position (the angle between the major axes of the phantom 

to the 0°–180° axes) of the phantoms in their photomicrographs to the impedance-based 

phantom representations. 

At high frequencies, the capacitive shunt impedance of the electronic head-stage 

board and cabling was significant.  At the frequencies used (< 5 MHz), the glass 

phantoms can be considered nearly perfect insulators.  This allowed us to find a 

correction factor to account for the additional capacitive shunt loss at 1 MHz by 

comparison to results obtained at 10 kHz. The correction factor was applied to 

subsequent oocyte data collected using the same array, since the capacitive shunt would 

be nearly the same in the two cases.      

The procedure to measure  described above for phantoms was also used for 

cells.  Cells were positioned in the channel using very small amounts of negative pressure 

(applied through a vacuum port, see Fig. 3.1D), so as to minimize any membrane 

distortion during cell loading.  Pressure release and application resulted in coarse 

manipulation of cell position in the recording chamber, and a constant negative pressure 

was used to hold the oocytes in place after the meridian of each oocyte was centrally 

aligned in the electrode array.  For each oocyte, a photomicrograph taken during sceTopo 

interrogation was used to rotate the data by an angle  (see Fourier series above) so that 

the meridian separating the animal and vegetal hemispheres for a particular cell was 
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aligned with the horizontal.  This allowed for alignment of the gross morphology of 

different oocytes and comparisons across cells.  Real and imaginary components of Z 

were plotted in polar form to map the impedance as a function of position around the 

circular electrode array.  Means and standard errors were determined across multiple 

cells, thus providing confidence intervals as functions of angular position around the cell.  

Unpaired Student’s t-tests were used to compare spatial differences between the two 

hemispheres of the oocyte.    

                  
 

3.6 Results and Discussion 
 

3.6.1 Simulations 

Figure 3 illustrates the results of a 2D finite-element model for pairwise fringe-

field electrical interrogation at three frequencies:  A) 50 kHz, B) 500 kHz and C) 5 MHz.   

Voltage magnitudes are shown as shades of gray ranging from maximum (white) to 

minimum (black). At low frequencies (A) where conduction current dominates, virtually 

all of the current is shunted in the extracellular space between the two interrogating 

electrodes.  This occurs because the resistance of the plasma membrane is much greater 

than the surrounding media.  While low-frequency fringe-field data is not useful in 

elucidating information about the membrane, intracellular organelles or proteins, it does 

provide information about extracellular shunt path size and therefore can be used to 

estimate the shape of a cell in the sceTopo recording chamber (see Phantom Data results).  

As interrogation frequency increases, current is divided between displacement current in 

the membrane and conduction current in the extracellular shunt path (B).  The amount of 

current displaced across the membrane in this midfrequency range can be used to 
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estimate the effective capacitance of the membrane.  At high frequencies (C), 

displacement current across the membrane dominates; the membrane effectively becomes 

transparent to the applied radio-frequency signals and more current is transmitted to the 

intracellular space.  These simulations are not intended to be quantitatively accurate since 

the electrode–electrolyte double-layer impedance was not included, thereby shifting the 

magnitude and phase of the electrode voltage relative to that shown.  Furthermore, the 

simulations are two-dimensional and cannot accurately capture out-of-plane current 

paths.  Nevertheless, the simulations do illustrate the concept of measuring electric 

impedance between adjacent electrodes to 1) estimate the shape of the cell, 2) measure 

the effective dielectric properties of the membrane and 3) possibly detect or measure 

effects of nearby intracellular organelle(s). As with the lumped parameter model 

illustrated in Fig. 3.2, finite-element simulations show that the size of the extracellular 

shunt path is the primary experimental parameter that must be minimized to enable 

measurement of displacement currents in the membrane at the low-to-mid radio 

frequency range of interrogation.  If the extracellular shunt path is too large, the corner 

frequency can quickly exceed 5 MHz, thus limiting the practical utility of the approach 

for membrane interrogation.  It is therefore advantageous to size the system so cells fit 

snugly within the chamber and are in close vicinity to the interrogating electrodes.  

 
 
     

3.6.2 Phantom Data – Mapping Cell Shape via the Extracellular 

Conductance 

Due to their low conductivity and permittivity, glass phantoms acted as nearly 

perfect insulators relative to the extracellular media.  Therefore, virtually all of the 
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current was conducted in the space around the phantom. This made the phantoms useful 

to demonstrate the utility of sceTopo in cell/object shape estimation.     

Photomicrographs of the phantoms in the array are shown in the left column of 

Fig. 3.4 and impedance maps are shown for the same phantoms in the right column.    

The electrodes are outlined in solid white (numbered 1–8) , and the recording chamber is 

outlined in a dotted white line.   The impedance magnitude at each electrode position 

(after subtraction of the double layer) is plotted in polar form to generate the maps in the 

right column (see Methods, section 3.5).  Notice the correspondence between the physical 

shape of the phantom (left) and the electrical map of the shunt conductance (right).  The 

centroid of the impedance data (right, square symbol at intersection of dotted lines) 

provides the electrical center of the phantom, and the principle directions of the second 

moment of area tensor provide the orientations of the major and minor axes of the 

phantom (dotted lines).  The electrical center and orientation (right) showed good 

qualitative comparison to the photomicrographs of the phantoms (left), and no significant 

difference was measured when comparing the angular position (the angle between the 

major axes of the phantom to the 0°–180° axes) of the phantoms in the photomicrographs 

to the impedance-based phantom representations (p=.95, n=4).  Data were not used in the 

statistical comparison if the inner annulus of the phantom was visible in the 

photomicrograph.  Since the phantoms were highly resistive relative to saline and fit 

loosely within the chamber, the interrogating currents were shunted in the space around 

the phantoms and the electrical impedance data reflected the magnitude of this shunt. 

Phantoms positioned more closely to the electrodes resulted in qualitatively more 

accurate representations of phantom shape.  
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 Data from individual phantoms were then compared to examine repeatability of 

impedance maps (n = 9).  To avoid any systematic errors associated with the array, 

phantoms were placed with random angular orientation in the recording chamber and the 

Fourier series representations produced by the data were subsequently rotated to the 

configuration depicted in Fig. 3.5A (see Methods).  Since the phantoms fit loosely in the 

chamber, impedance data were dominated by conduction current in the saline. The corner 

frequency where displacement currents in the phantom became significant was well 

beyond the 5 MHz limit of present experiments. Results mapping the magnitude of the 

impedance (normalized) as a function of angular position around the array are provided 

in Fig. 3.5B for data collected at 1 MHz (blue, long dashes, short error bar caps) and 10 

kHz (red, short dashes, long error bar caps).  Error bars and shaded bands show one 

standard error of the mean and are plotted around the averaged 10 kHz (longer error bar 

ends, pink color band) and 1 MHz  (shorter error bar ends, blue color band) data.  

Differences in extracellular shunt path length along the major vs. minor axes were 

statistically significant (p = 0.00014 for the 10 kHz data set).   The major conclusion 

from data shown in Fig. 3.4 and Fig. 3.5 is that sceTopo can map the gross shape of an 

insulating object by measuring spatial variations in the electrical shunt resistance around 

the outside of the object.    

 

3.6.3 Mapping Membrane Charge Displacement 
 
Xenopus oocytes were randomly placed in the recording chamber.  Cells fit 

snugly in the array with the electrodes separated from the plasma membrane by only a 

thin layer of oocyte media (Superbarths).   This tight fit reduced the extracellular shunt 



67 

 

pathway and placed the electrical corner frequency of fringe-field interrogation near 100 

kHz.  Above this corner frequency, displacement currents in the membrane became 

clearly observable in the data.  Below this corner frequency, the impedance was 

dominated by the extracellular shunt. Thus, comparison of measured impedance 

differences between high and low frequencies of interrogation allows for a description of 

cell electrical properties that accounts for cell location/morphology in the recording 

chamber.  After interrogation, impedance maps (n = 8) were rotated using 

photomicrographs of each cell, such that oocyte meridians were aligned with the 

horizontal axis (see Fig. 3.6A, horizontal axis stretched from 0°–180°) to compare data 

across cells (see Methods).  Impedance results at 10 kHz (pink, small dashes, long error 

bar caps) and 1 MHz (blue, long dashes, short error bar caps) are shown in the form of 

real (Fig. 3.6B: Re(Z)) and imaginary (Fig. 3.6C: Im(Z)) components after double-layer 

subtraction and unit circle normalization. The real-valued impedance map (Fig. 3.6B) 

showed no significant difference between the 10 kHz and 1 MHz interrogation as a 

function of oocyte hemisphere (p = 0.33).  This was expected since the real component of 

the impedance is dominated by the extracellular shunt conductance at these interrogation 

frequencies and is not very sensitive to the properties of the oocyte membrane.  In 

contrast, the imaginary component of the impedance showed a significant (p = 0.0058) 

difference between the 10 kHz and 1 MHz data when comparing the vegetal (0°–180°) 

and animal (180°–360°) hemispheres of an oocyte  (the oocyte meridian is horizontal, the 

white vegetal pole is at 90° and the brown animal pole is at 270°). There was very little 

difference in the imaginary component between the two frequencies on the animal pole of 

the cell (270°), but a much larger difference on the vegetal pole of the cell (90°).   
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The imaginary component is dominated by the displacement current in the 

membrane and includes capacitance contributions from the passive permittivity of the 

lipid membrane, mobile charges associated with membrane-bound proteins and excitable 

contributions associated with voltage-gated ion channel kinetics.  Known compositional 

differences between the animal and vegetal hemispheres of an oocyte include, but are not 

limited to, concentrations of calcium-activated chloride channels, microvilli 

ultrastructure, yolk platelets (cholesterol granules) and melanin granules (Dascal, 1987; 

Gomez-Hernandez et al., 1997; Chang et al., 1999; Weber, 1999).  The effective 

dielectric properties associated with these differences presumably underlie the asymmetry 

in the imaginary-valued impedance observed between the two hemispheres reported here 

(Fig. 3.6C).   We did not explore which of these potential factors was responsible for the 

difference, but it is hypothesized that differences in membrane(s) ultrastructure 

contributed significantly to differences in capacitance measured between the two 

hemispheres.  Future studies could use pharmacological agents to disrupt microvilli 

ultrastructure or bind ion channels to explore hypothetical contributions of these 

components to the effective dielectric properties of an oocyte membrane.   

 
 

3.7 Conclusion 

Results show that sceTopo can effectively be applied to map 1) cell shape and 

position in the recording chamber and 2) the endogenous spatial distribution of 

membrane capacitance around a single cell.  The two-dimensional maps reported here 

provide images around the meridian of a Xenopus oocyte.  Spatial resolution is directly 

dependent on the number of electrodes around the cell in the recording chamber 



69 

 

(currently, ~ 1/8 cellular circumference).  This could be increased, however, by 

incorporating additional electrodes in the array.  Incorporating a pressure control system 

to precisely position cells and a perfusion system to facilitate exchange of solutions and 

pharmacological agents would also improve the system.   

Furthermore, it is feasible that the sceTopo approach could extend to three 

dimensions (3D) and that the array could be downsized for smaller cells.  Both of these 

aims are within the scope of current technology.  Known thick film laminate 

technologies, based on heat and pressure sensitive films, allow for the simple stacking of 

individual electrode array layers and should result in a straightforward 3D array structure 

(Paul & Peterson, 1999; Han et al., 2003a; Han et al., 2003b; Goettsche et al., 2007; 

Moss et al., 2007).  The large size of Xenopus oocytes allowed the use of simple 

electrode fabrication techniques, but technology is already available to fabricate micron-

sized metal electrodes that surround 10 µm diameter cells (Ayliffe et al., 1999; Werdich 

et al., 2004; Dittami et al., 2008). Furthermore, electron-beam and ion-beam lithography 

have been used to construct nanometer-sized electrodes that can analyze DNA sequences 

and detect glucose containing analytes (Giordano et al., 2001; Gierhart, 2008).  Similar 

fabrication techniques could potentially be applied to the sceTopo platform to allow for 

micron-sized cell interrogation with nanometer scale resolution.  

Lastly, it is also possible that this approach could offer an alternative means to 

study the fast kinetics of charged, excitable, membrane-bound proteins in oocytes 

themselves.  Oocytes can express high concentrations of exogenous proteins in their 

membranes and are commonly used to study the kinetics associated with single proteins.  

As such, the sceTopo platform can be used to interrogate electrically excited oocytes 
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expressing exogenous, voltage-sensitive, membrane-bound proteins.  The high 

interrogation frequencies of the sceTopo system should time-resolve changes in charged 

protein conformation during cellular excitation, and these differences should manifest as 

measurable differences in effective capacitance.  If true, sceTopo might offer a new 

window to observe excitable integral membrane protein dynamics. 
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Fig 3.1 –  Experimental Setup - A)  Platinum was patterned onto a polyester substrate, 
and the electrodes near the recording chamber were plated with platinum black.  B) 
Insulated, electrode array.  C) A polycarbonate interface (C-i) allowed for positioning of 
the electrode array (C-ii) such that spring-loaded gold pins (C-iii) connected the bond 
pads on the electrode array to bond pads (C-iv) on a printed circuit board (PCB, C-v).  
Inset shows the multiple layers of the electrode array (a polyester base (ii1), recessed 
platinum-black coated electrodes (ii2) and insulating Kapton tape (ii3)).  D) PCB and 
fluidic interface positioned on the stage of an upright microscope showing the headstage 
amplifiers (D-i), computer controlled digital switches (D-ii) and vacuum-port (D-iii). 



72 

 

  

                        
 
 
 
 



73 

 

 
 
Fig 3.2 – Circuit Model - An electrical lumped parameter model of a cell in the recording 
chamber.  Impedances shown are associated with the electrode–electrolyte interface (Zdl1, 
Zdl2), the shunt path around the cell (Rmed) and the impedance of the cell including the 
membrane complex and intracellular space (Zm, Zcyt).  
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Fig. 3.3 – Quasi-Electrostatic 2D Model - A 2D frequency-domain (50 kHz–5 MHz) 
finite-element simulation of a cell in the recording chamber.   Contours show lines of 
constant voltage.  A) 50 kHz: Due to high resistance of the membrane, current flow is 
restricted to the extracellular space.  B) 500 kHz:  Current is divided between the cell 
membrane (displacement current) and the extracellular space (conductive current).  C) 5 
MHz:  Almost all of the applied current is displaced across the highly capacitive cell 
membrane. 
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Fig. 3.4 – Glass Toroid Impedance Magnitude Image - Polar plots of impedance 
magnitude (right column) around glass toroidal phantoms reflect the orientation and 
shape of the phantom (left column: microphotographs of phantoms) in the recording 
chamber.  Due to the highly resistive properties of glass, applied current (1 kHz– 1 MHz) 
shunted around the phantom and was not displaced across the phantom.  Dotted lines in 
the polar plots (right column) show the second moments of area indicating maximal and 
minimal axes for each phantom.  Solid lines show the second-order least-squared Fourier 
series representation of the phantom impedance data.    
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Fig. 3.5 –  Phantom Summary - Data for each phantom (n = 9) were rotated based on 
photomicrographs to have the orientation shown in A (top-down view).  Data were then 
averaged across phantoms, normalized and plotted in polar form (B: real, C: imaginary).  
Error bars denote 1 standard error of the mean.  Data at 10 kHz and 1 MHz are nearly 
identical, as would be expected since the applied current at these frequencies should 
shunt around the highly resistive phantom. 
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Fig. 3.6 – Cell Summary - Data for Xenopus oocytes (n = 8) were rotated based on 
photomicrographs of each cell to have the orientation shown (A).  B) Real component 
and C) imaginary component of the impedance.  Results are shown at 10 kHz (pink, 
longer error bar ends) and at 1 MHz (blue, shorter error bar ends) with error bars 
denoting one standard error of the mean.  Error bars denote 1 standard error of the mean.  
The difference between the high and low frequency measurement are significantly 
different when comparing the vegetal hemisphere of the oocyte to the animal hemisphere. 
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4.1  Abstract 
 

Here we present a new technique to monitor dynamic conformational changes 

in voltage-sensitive membrane-bound proteins using radio frequency (RF) impedance 

measurements.  Xenopus oocytes were transfected to express ShakerB-IR K+ ion 

channels, and step changes in membrane potential were applied using two-electrode 

voltage clamp (TEVC).  Simultaneously, bipolar extracellular electrodes were used to 

measure the RF electrical impedance across the cell (300 kHz - 1 MHz). RF current 

will either pass through the media, around the cell or displace charge across the cell 

membrane.  The change in displacement current in the cell membrane during voltage 

clamp resulted in measurable RF impedance change.  RF impedance change during 

DC membrane depolarization was significantly greater in ShakerB-IR expressing 

oocytes than in endogenous controls at 300 kHz, 500 kHz and, to a lesser extent, 1 

MHz.  Since the RF were too high to modulate ShakerB-IR protein conformational 

state (e.g. open channel probability), impedance changes are interpreted as reflections 

of voltage-dependent protein conformation and associated biophysics such as ion-

channel dipole interactions, fluctuations in bound water or charged lipid head-group 

rotations. 

 
 

4.2  Introduction 
 

Dynamic detection of charge displacement in electrically excitable cell 

membranes provides biophysical insight into voltage-sensitive membrane-bound 

protein physiology, such as mechanisms for protein stabilization, conformational 

change and ionic current (Alvarez & Latorre, 1978; Pethig, 1979; Conti & Stuhmer, 

1989; Cha & Bezanilla, 1997; Bezanilla & Stefani, 1998; Glauner et al., 1999; 
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Bezanilla, 2000a; Hille, 2001; Sigg et al., 2003a; Branden et al., 2006).  As such, 

monitoring membrane dielectric is of great interest as a tool in basic science.  Charge 

displacement measurements could also be used to track the kinetics of a charged drug 

binding to the membrane and has relevance in pharmaceutics.  

Monitoring small changes in effective dielectric during membrane electrical 

excitation is difficult, in part due to challenges associated with conventional pipette-

based electrophysiological techniques.  Glass pipettes have sizeable stray capacitance 

that limits recordings to relatively low frequencies (Cahalan & Neher, 1992b; 1997).  

Increasing the interrogation frequency beyond the typical patch-pipette range lowers 

the capacitive component of membrane impedance and enables a more sensitive 

detection of membrane dielectric properties.  The present report describes a new 

technique that uses RF interrogation between extracellular electrodes to dynamically 

monitor excitable membrane RF impedance changes evoked by step pulses in whole-

cell voltage clamp.   

 In the present study, Shaker potassium ion channels with fast inactivation 

removed (ShakerB-IR) were expressed in Xenopus oocytes and RF impedance was 

compared to oocytes with endogenous protein expression only (control) (Hoshi et al., 

1990).  Data indicate that Shaker RF-impedance is dependent on membrane voltage in 

a nonlinear way.  Furthermore, Shaker RF-impedance measurements are significantly 

larger than control cell responses under the same conditions.   Data are consistent 

with the hypothesis that RF-impedance reflects voltage-dependent changes in protein 

conformation and associated change in electrical dipole moments with ion channel 

opening (Pethig, 1979; Foster & Schwan, 1989).  



84 

 

4.3 Methods 
 

4.3.1 Oocyte Protein Expression 

Xenopus oocytes, known to express large amounts of specified exogenous 

membrane-bound proteins, were isolated and injected with cRNA using facilities at 

the University of Utah’s Cardiovascular Research and Training Institute. 

Complementary deoxyribonucleic acid (cDNA) for the Shaker ion-channel variant 

ShakerB-IR (inactivation removed) was transformed in E.coli and linearized using the 

restriction enzyme, Kpn-1.   cRNA was transcribed from linearized DNA, and 32 

nL/cell of the transcribed RNA was injected into oocytes. Recordings were done 24-

48 hours after injection to allow time for protein expression.   Currents were 

measured using two-microelectrode voltage clamp to verify ShakerB-IR ion channel 

expression. Oocytes were stored in Superbarths Oocyte media (88 mM NaCl, 1 mM 

KCl, 0.41 mM CaCl2, 0.33 mM Ca(NO3)2, 1 mM MgSO4, 2.4 mM NaHCO3, 10 mM 

HEPES, 1 mM pyruvate and 50 µg/ml gentamicin, titrated using NaOH to a pH of 

7.4) at 17° Celsius  (C).  Oocytes were also bathed in this media during RF recording. 

 
 

4.3.2 Recordings 

Oocytes were positioned into a recording chamber consisting of a belt of RF 

excitation electrodes surrounding the meridian of the cell and a ground electrode located 

in the oocyte media above an axial pole of the cell (Fig. 4.1). The RF electrode array and 

oocyte positioning system have been described previously (Dharia et al., 2009).  In the 

present experiments, all of the excitation electrodes were wired together such that the RF 

electrical currents were applied in a ring around the oocyte meridian.  Two glass 
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micropipettes (1-3 MΩ access resistance) filled with 3M KCL were carefully guided into 

the oocyte using an upright microscope (Zeiss AxioTech).  One micropipette was 

attached to a voltage-measuring headstage (HS-2Ax1LU, Molecular Devices, Sunnyvale, 

CA) and the second micropipette was attached to a current-injecting headstage (HS-

2Ax10MGU, Molecular Devices, Sunnyvale, CA).  These pipettes, in addition to a 

voltage-driving amplifier, were used to control low frequency (~DC steps) two-electrode 

voltage clamp in an oocyte (AxoClamp2B, Molecular Devices, Sunnyvale, CA).  Each 

oocyte was held at a -90 mV (holding potential) and was remotely commanded to three 

potentials using voltage-clamp software:  -120 mV, -30 mV and +40 mV  (Patchmaster, 

HEKA Inst., Bellmore, NY).  Voltage-command sequences were applied to cells between 

50-200 times and responses were averaged to improve the signal/noise (S/N) ratio in the 

electrode current and, more importantly, the RF lock-in data.  An on-board voltage 

divider circuit was used to measure the RF current and voltage (Dharia et al., 2009).  The 

RF source outputted a 300 mV (0-peak), randomized sinusoidal voltage (300 kHz, 500 

kHz or 1 MHz; AFG320, Tektronix, Beaverton, OR).  Voltage measurements were made 

relative to a Ag/AgCl ground wire placed ~5 mm above the cell in recording chamber 

media.  This ground was common for both the RF and TEVC measurements (Fig. 4.1B).  

 RF voltage measurements were sampled through a head-stage voltage-follower 

operational amplifier (OPA356, Texas Instruments, Dallas, TX).  The RF signal was high 

pass filtered (100 kHz, 48 db/oct Bessel HPF; SIM965, Stanford Research Systems, 

Sunnyvale, CA) and detected by a lock-in amplification (0 integration time, SR844, 

Stanford Research Systems, Sunnyvale, CA).  The quadrature outputs on the lock-in 

amplifier detected changes on the order of 10 microvolts, and time delays caused by the 
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lock-in amplifier and HPF were accounted for prior to data analysis.  TEVC data 

(command voltage, sensed voltage, measured current) and RF data (quadrature outputs 

from the lock-in amplifier) were sampled every 20 µs using a 16 bit A-D converter (ITC-

18, HEKA Inst. Bellmore, NY).  

 
 

4.3.3 Electrical Model 

A lumped parameter model of the chamber shown in Fig. 4.2A was used to 

estimate expected RF frequency responses.  Parameters were Rs and Ri = ~ 1 

kΩ   (estimated using media-only chamber measurements), Rm = 1 MΩ and Cm = 2.3 pF 

and 1.8 pF (Cm values for lower and higher trace, respectively).  Cm = 2.3 pF was 

estimated from the membrane-specific capacitance value, 4 µF/cm2, for a Xenopus oocyte 

(Dascal, 1987). Electrical double-layers (Zdl1, Zdl2) were not modeled and were 

considered unknowns in the experiments.  Partially because of this unknown, we report 

only changes in RF impedance relative to the holding potential (-90 mV). 

 
 

4.3.4 Data Analysis 
 

Both TEVC and RF data were postprocessed to 1) compensate for TEVC 

leak current and 2) calculate change in RF impedance of a cell stepped from holding 

potential to a command membrane potential (IgorPro, Wavemetrics, Lake Oswego, 

OR).  Multiple acquisitions under identical conditions were averaged together for 

individual cells: TEVC and RF data were recorded for each voltage-command train 

(command voltage signal, sensed voltage (TEVC), injected current (TEVC) and x/y 

lock-in data).  This averaging was done for each cell, for each frequency (300 kHz, 



87 

 

500 kHz or 1 MHz) and for each command potential ( -120 mV, -30 mV or 40 mV).  

Membrane leak currents were compensated in individual cells.  Membrane leak 

current varies linearly with voltage and is the predominant current measured at 

hyperpolarized potentials.  Thus, TEVC cell currents measured here during 

hyperpolarization (-120 mV) were used to estimate leak currents.2  For population 

results, TEVC and RF data were averaged across 1) Shaker injected cells and 2) 

control cells (endogenous oocyte protein expression only) for each interrogation 

frequency (300 kHz, 500 kHz and 1 MHz) and voltage-command step (-120 mV, -30 

mV, 40 mV). All data were binned in 1 ms intervals for the 40 ms prior to the voltage 

command, the 40 ms during the voltage command and the 40 ms after the voltage 

command.  Data reflect collective movement of a population of ion channels (not that 

of a single channel).  Quadrature RF voltage was compared to the average quadrature 

RF voltage of the cell 5-40 ms prior to cellular excitation (holding potential = -90 

mV). The magnitude of the change in impedance (|Δ Zc|) is reported here (e.g. Fig. 

4.3A).  Since the RF measurements include contributions from all membrane proteins 

and constituents, control cell RF impedance change was subtracted from Shaker 

impedance change to isolate Shaker component from endogenous response. The 

magnitude of impedance change 10-30 ms after depolarization was averaged to 

estimate a steady state change in impedance value (e.g. Fig. 4.4).  Shaker data were 

normalized by TEVC current to account for protein expression (n=5).  A two-tailed 

Student’s t-test with a p-value of .05 was used for all tests of statistical significance. 

 

 
2 Calcium-activated chloride channels can also elicit currents at -120 mV, although the currents measured 
here predominately had leak-current characteristics.  
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4.4 Results 
 

4.4.1 Modeling 
 

Present experiments were designed to examine charge displacements associated 

with voltage-sensitive proteins in the cell membrane. We formulated the simple lumped 

parameter model shown in Fig. 4.2A to estimate the magnitude of RF impedance change 

expected to occur for a small change in effective capacitance of the oocyte membrane.  

At low frequencies, below the membrane RC corner frequency, the RF impedance is 

dominated by the conductive shunt path around the cell, thus impeding measurement of 

membrane conductance using extracellular electrodes.  In contrast, based on this simple 

model, small changes in membrane impedance (ΔΖc, plotted as a magnitude) caused by a 

change in membrane capacitance should be observable in the 100 kHz – 3 MHz 

frequency band (2b).  The present study examined RF impedance within this band at 300 

kHz, 500 kHz and 1 MHz (2b, dotted lines).  

 
 

4.4.2 RF Data 
 

ShakerB-IR expressing oocytes and those expressing endogenous channels only 

(control) were used to track millisecond changes associated with change in membrane 

impedance (|Δ Ζc|) during TEVC electrical stimulation.  Temporal resolution was limited 

by the maximum sampling rates of the data acquisition software;  however, the system 

could eventually be used to track membrane changes on a microsecond time scale.  

Endogenous channel response was subtracted from the response of ShakerB-IR 

expressing oocytes (see Methods).  Fig. 4.3A shows ShakerB-IR (n=5, control: n=6) 

change in RF impedance |Δ Ζc| collected using 500 kHz interrogation for depolarized 
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(black line, ~ 40 mV), slightly depolarized (dark gray line, -28 mV) and hyperpolarized 

(gray line, ~-120 mV) membrane potentials.  Membrane current (leak subtracted, Fig. 

4.3B) and voltage (Fig. 4.3C) were monitored using conventional TEVC for both 

ShakerB-IR and control oocytes.   ShakerB-IR injected oocytes achieved a 3 µA current 

at the 40 mV depolarization (black line), as expected (Hoshi et al., 1990). Control 

oocytes did not exhibit significant currents during depolarization. |Δ Ζc| and ionic current 

increased nonlinearly in Shaker expressing oocytes.  

The steady-state (60-80 ms in Fig. 4.3) change in RF impedance (|Δ Ζc|) is 

summarized for 300 kHz, 500 kHz and 1 MHZ interrogation frequencies in Fig. 4.4.  

Impedance changes are relative to the RF impedance measured at the -90 mV holding 

potential, and are shown for voltage steps to -118 mV (control: n=7, ShakerB-IR: 

n=5), -28 mV (control: n=6, ShakerB-IR: n=5) and +41 mV (control: n=7, ShakerB-

IR: n=5).  At the -28 mV voltage step, when the Shaker channel was just beginning to 

open, a significant increase in steady-state |Δ Ζc| was measured at 300 kHz between 

ShakerB-IR and the control oocytes.  Results show statistically significant (*, p<.05) 

differences between RF impedance changes in ShakerB-IR vs. control cells at the 41 

mV membrane depolarization as well.  Hence, opening of ShakerB-IR channels 

causes an increase in membrane polarization that is detectable with RF interrogation 

frequencies. 

 
 

4.5 Discussion and Conclusion 
 

Membrane-voltage dependent changes in RF impedance (300 kHz, 500 kHz, 1 

MHz) were analyzed for Shaker-expressing oocytes and control oocytes (endogenous 
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protein expression only).  Differences between these data sets reflect changes in 

effective membrane capacitance imparted by voltage-dependent changes in Shaker ion 

channels. Results show that the RF impedance change with TEVC depolarization was 

significantly larger in Shaker expressing cells than control cells.  This held true for all 

three interrogation frequencies.  Statistically significant differences in RF impedance 

change between Shaker cells and control cells were not present when cells were 

hyperpolarized.  It is unlikely that ion-channel conformational state (e.g. from open-

close) was modulated by the RF interrogation frequencies used in these experiments.  

Data suggest that the open vs. closed states of Shaker ion channels lead to distinctly 

different electric dipole charge/mobility, leading to distinctly different effective 

membrane capacitance;  these differences can be measured using RF frequencies.  

Presumably, this dielectric behavior has origins in radio-frequency molecular 

dynamics of the protein-membrane-ion complex. While the RF-technique presented 

here used oocytes injected with well-characterized Shaker channels,  oocytes could 

potentially be injected with cRNA that encodes for other protein types as well, and 

this method may prove to be a useful tool to examine dynamic movements in a 

multitude of excitable membrane-bound proteins. 
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Fig. 4.1 – The Method - Detecting Voltage-Sensitive Changes in RF Membrane 
Impedance. A cell, positioned in a recording chamber milled into a polycarbonate 
interface (PC, Fig. 4.1A), is electrically excited using two-electrode voltage clamp 
(TEVC, TEVC electrodes are shown in sketch as V-sense and I-inject, Fig. 4.1A and Fig. 
4.1B).  Changes in voltage-sensitive membrane impedance induced by TEVC excitation 
are simultaneously monitored using radio wave interrogation. A radially distributed 
electrode array (EA, all electrodes shorted together), clamped within the two plates of the 
polycarbonate interface, passes signals from a sinusoidal voltage source (Vs, Fig. 4.1A), 
through the cell/conductive media in the recording chamber, to electrical ground (located 
several millimeters above the cell, Fig. 4.1B).  The source, reference impedance (Zref, 
Fig. 4.1A) and voltage-measuring site (Vm, Fig. 4.1A), are used to monitor changes in 
RF membrane impedance during membrane voltage-clamp. Signal integrity during 
measurement is preserved by headstage amplification (HA, Fig. 4.1A) and lock-in 
amplification. Fig. 4.1B shows a cross section of the cell as it sits in the recording 
chamber (segment 1-1’). 
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Fig. 4.2 – Fig. 4.2A shows a lumped parameter model of the recording chamber (Zc). 
Zc consists of a double-layer interfacial impedance associated with the electrode that 
surrounds the cell (Zdl), the shunt path around the cell (Rs) and the impedances 
associated with the cell membrane (Rm – membrane resistance, Cm – membrane 
capacitance and Ri –intracellular solution resistance). The double-layer impedance 
associated with the Ag/AgCl ground wire is nearly 0, as the wire is (approximately) 
nonpolarizable.  The lumped parameter model shown in Fig. 4.2A was solved, and results 
(shown in Fig. 4.2B) demonstrate the effect of frequency on measured impedance 
magnitude (the upper trace has a lower membrane capacitance than the lower trace). 
Results indicate that that frequencies in the 100 kHz – 3 MHz range will be most 
effective for detecting change in membrane dielectric during voltage-clamp. Three 
frequencies were chosen (300 kHz, 500 kHz and 1 MHz) for experimental validation.
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Fig 4.3 – Millisecond resolution of |Δ Ζc| (3a, collected using a 500 kHz interrogation 
frequency) for ShakerB-IR expressing oocytes (endogenous protein expression (average 
control cell response) subtracted) and oocytes expressing endogenous protein only 
(control) in response to TEVC excitation.  Membrane potential (TEVC) during 
experimentation for both Shaker and control cells is shown in 3c (-120 mV (gray trace), -
30 mV (dark gray trace) and 40 mV(black trace)). Holding potential for the clamp was set 
at -90 mV, and the onset of cellular excitation occurred at 40 ms for a 40 ms duration. 
Ionic conduction current traces (after leak subtraction) (3b) measured using TEVC verify 
channel expression in the ShakerB-IR cell and lack of expression (after leak subtraction) 
in the control oocytes.
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Fig. 4.4 – Steady state values of |Δ Ζc| (measured at 300 kHz, 500 kHz and 1 MHz) 
were compared for both control and Shaker BIR data when the cell was stepped to three 
membrane potentials (-118 mV, -28 mV, 41 mV). The corresponding TEVC currents are 
shown in Fig. 4.3B. Significant differences (p < .05) in measured RF steady-state |Δ Ζc| 
between Shaker and control cells are denoted by asterisks.
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CHANNELS USING RADIO FREQUENCY  

INTERROGATION 
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5.1 Abstract 

Here we introduce a new technique that probes voltage-dependent charge 

displacements of excitable membrane-bound ion-channel proteins using extracellularly 

applied radio frequency (RF, 500 kHz) electric fields.  Xenopus oocytes were used as a 

model cell for these experiments, and were transfected with cRNA encoding Shaker B-IR 

(ShB-IR) K+ ion channels to express large densities of this protein in the oocyte 

membranes.  Two-electrode voltage clamp (TEVC) was applied to command the whole-

cell membrane potential and to measure channel-dependent membrane currents.  

Simultaneously, RF electric fields were applied to perturb the membrane potential about 

the TEVC level and to measure voltage-dependent RF displacement currents.  ShB-IR 

 
1 This manuscript will be published in PLoS-ONE, an open-access journal published by the Public Library 
of Science. 
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expressing oocytes showed significantly larger voltage-dependence of the net RF 

displacement current than control oocytes.  Voltage-dependent changes in RF 

displacement currents further increased in ShB-IR expressing oocytes after addition of 

120 µM Cu2+ to the external bath.  Cu2+ is known to bind to the ShB-IR ion channel and 

block Shaker K+ conductance, indicating that changes in the RF displacement current 

reported here were associated with RF vibration of the Cu2+-linked mobile domain of the 

ShB-IR protein.  Results demonstrate the use of extracellular RF electrodes to interrogate 

voltage-dependent movement of charged mobile protein domains -- capabilities that 

might enable detection of small changes in charge distribution associated with integral 

membrane protein conformation and/or drug–protein interactions. 

 
 

5.2 Introduction 

 Techniques to monitor displacement currents in the protein-rich cell membrane 

have been used extensively in previous studies to examine ion-channel voltage-sensor 

movement (Armstrong & Bezanilla, 1977a; Perozo et al., 1993; Sigg et al., 1994; Cha & 

Bezanilla, 1997; Sigg & Bezanilla, 1997; Glauner et al., 1999) and the piezoelectric-like 

behavior of transmembrane proteins (Zheng et al., 2000; Santos-Sacchi & Navarette, 

2002; Rabbitt et al., 2005).  These and similar studies record the magnitude and timing of 

charge displacement in the membrane to reveal the nature of voltage-dependent protein 

function and excitability in living cells.  One technical challenge has been the electrical 

capacitance of the membrane lipid bilayer itself, which is in parallel with integral 

membrane proteins and obscures observations of protein-dependent electrical charge 

movements.  This is compounded by the passive capacitance of the patch-clamp 
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glass/quartz pipette that often limits the bandwidth of displacement charge recording.  In 

the present report, we introduce a new technique to monitor protein-dependent charge 

displacements by superimposing an extracellularly applied RF interrogation signal on top 

of a traditional voltage-clamp commanded membrane potential.  This RF interrogation 

technique has its basis in electric impedance spectroscopy, which has been applied 

previously to probe membrane dielectric properties of isolated cells by measuring the 

electrical impedance between pairs or groups of extracellular electrodes (Gritsch et al., 

1998; Ayliffe et al., 1999; Gawad et al., 2001; Werdich et al., 2004; Cheung et al., 2005; 

Han & Frazier, 2006).  Here, we extend such RF dielectric measurements to study 

electrical charge displacement arising from electrically excited voltage-sensitive 

membrane-bound proteins. 

Xenopus oocytes were used as a model cell for these experiments because they 

express a large amount of exogenous protein in their membrane; in these experiments, 

oocytes were transfected with the Shaker gene encoding ShB-IR (Dascal, 1987; Hoshi et 

al., 1990; Iverson & Rudy, 1990; Hoshi et al., 1991; Stuhmer, 1992; Werdich et al., 

2004), a well-characterized voltage-sensitive K+ ion channel with fast inactivation 

removed.  A custom recording chamber was devised to allow for simultaneous two-

electrode voltage clamp (TEVC) and RF impedance interrogation (Fig. 5.1A).  Oocytes 

were placed individually into the center of an annular electrode that formed a tight 

conducting extracellular belt around the meridian of an oocyte (Fig. 5.1A).  RF signals 

were passed from the annular belt (black electrode in Fig. 5.1A) to a single ground-wire 

electrode located above the oocyte.  Quadrature lock-in amplification was used to 

measure the frequency-domain RF component of the voltage drop (VRF), current (IRF) and 
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impedance (ZRF=VRF/IRF) across the recording chamber.  In this configuration, the RF 

component of the total current IRF was the sum of the conductive shunt current around the 

cell and the displacement current in the plasma membrane complex (Fig. 5.1B).  Since 

the extracellular shunt conductance was much greater than the membrane conductance 

(Fig. 5.1B, 1/Rs >>Real(1/Zm)), RF impedance was not sensitive to voltage-dependent 

changes in membrane conductance (Dharia et al., 2009).  Fig. 5.1C illustrates that a 

change in membrane displacement current would be detectable only over a limited 

frequency range due to the fact that shunt resistance (Rs) would dominate at low 

frequencies and membrane capacitance would effectively short at high frequencies.   In 

fact, previous work has shown extracellular shunt path estimation (frequencies < 100 

kHz) can be used to map cell shape in a recording chamber, and that frequencies above 3 

MHz may be used to interrogate intracellular organelle distribution (Dharia et al., 2009).  

Examination of the impedance spectra for the specific system used in the present study 

revealed 500 kHz to be near the center of the sensitive range to maximize detection of 

membrane-related RF charge displacements (Dharia & Rabbitt, 2010).  

Here we report changes in 500 kHz RF charge displacement evoked by step 

changes in membrane potential.  TEVC was used to step the membrane potential (Vm
*) in 

the time domain, and to measure whole-cell currents (Im
*, Fig. 5.1A).  RF interrogating 

signals (VRF, IRF) were superimposed on top of the low-frequency TEVC commands.  

TEVC Vm
* commands were low-pass filtered at 30 kHz so the TEVC signal contributed 

negligible power at the 500 kHz RF interrogation frequency.  Similarly, TEVC Im
* 

signals were low-pass filtered to avoid the RF component.  Lock-in amplification was 

used to extract electrical signals at the RF interrogation frequency.  Data for ShB-IR 
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expressing oocytes were compared to control oocytes to examine the contributions of the 

expressed ion channel relative to endogenous proteins and lipids constituting the native 

oocyte membrane (control).  In a subset of experiments, ~120 µM Cu2+ was applied to 

shift the voltage-dependence of ShB-IR to more depolarized levels (Elinder & Arhem, 

2004; Ma et al., 2008) and to bind charge to the protein.  Results show significant 

differences between voltage-dependent RF charge displacements in ShB-IR expressing 

oocytes vs. controls.  Differences are significant near the half-activation potential for the 

ShB-IR channels, suggesting that RF data might correspond to ion-channel activity.  

Results further show that Cu2+ increased the magnitude of RF charge displacement while 

simultaneously shifting Vm
* sensitivity to more depolarized levels on ShB-IR expressing 

oocytes.  This response was not noticeable in control oocytes, indicating that the RF 

signal measured reflects RF vibration of the channel protein–Cu2+ interaction.  These 

results suggest that the RF-based technique introduced here could potentially supplement 

conventional membrane-biophysics studies, by monitoring RF mobility associated with 

membrane-bound charge distribution and charged molecule (potentially a drug)–protein 

interactions during voltage-clamp.  

 

5.3 Results 
 

5.3.1 Time-resolved Changes in RF Impedance 
 

Fig. 5.2A compares time-resolved changes in RF impedance |ΔZRF| in control 

ooyctes expressing endogenous channels (avg. n=10, left) to oocytes expressing ShB-IR 

channels (avg. n=9, right).  Voltage-dependent RF charge displacement occurred in both 

cell expression systems, but differed in magnitude and temporal waveform between the 
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control and ShB-IR expressing oocytes2.  The left axis reports the magnitude of the 

change in impedance, |ΔZRF|= |ZRF- Z0|, where the reference, Z0, for each record was the 

average RF impedance 5-40 ms prior to the voltage step.  Although signals were noisy in 

our apparatus, milliohm changes in |ΔZRF| during depolarization were readily discernable 

from noise.  In all cases, |ΔZRF| consisted of an initial onset response when the rate of 

change of TEVC membrane potential was large (o, |ΔZRF|o, dVm
*/dt > 0) and a steady-

state response when TEVC membrane potential was approximately constant (s, |ΔZRF|s, 

dVm
*/dt ≅ 0).  The RF onset response (o) occurred in the first millisecond after a voltage 

step was applied to the cell, and was similar in both the control and ShB-IR expressing 

oocytes.  Interestingly, the RF onset response was rectified and did not occur at the end of 

the voltage command step.  Hence, the fast RF onset response was not causally related to 

the standard TEVC capacitive transient (current spikes in Fig. 5.2B).  Steady state RF 

changes (s) 5-35 ms after the voltage step were also observed in both control and ShB-IR 

oocytes, but were significantly larger in the ShB-IR expressing oocytes at membrane 

potentials above -20 mV.  This indicated a difference in RF response attributable to 

Shaker activation.  Simultaneous TEVC recordings shown in the lower panels (Fig. 5.2B, 

current; Fig. 5.2C, voltage) were used to confirm expression and test whole-cell currents.  

Darker lines indicate increased levels of depolarization during the voltage step, 

commanded from a holding potential of -90 mV (Fig. 5.2C).  TEVC whole-cell currents 

in the control condition (Fig. 5.2B, left) were small relative to the large currents in ShB-

 
2 The RF onset response here can also observed in the control data for Fig. 4.3.  |ΔZRF| is not directly 
comparable between the data in this paper and the previous paper, due to differences in shunt path around 
oocytes as well as slight differences in data acquisition.  The RF response associated with ShB-IR 
expressing oocytes is much larger than the control in Fig. 4.3 due to the larger ShB-IR expression, and is 
the likely reason that the onset response is not noticeable in Fig. 4.3 ShB-IR expressing data set. 



103 

 

IR expressing cells (Fig. 5.2B, right).  Voltage sensitivity and sustained ionic currents 

reported here are typical for ShB-IR cells with fast inactivation removed, and indicate 

successful protein expression and activity.  

 

5.3.2 Steady-state RF Response for ShB-IR and Control Cells 

To further examine differences between steady-state RF impedance in control 

(n=10, “Endo”, orange) vs. ShB-IR expressing oocytes (n=9, “ShB-IR + Endo”, brown), 

we averaged |ΔZRF|s 5- 35 ms (see Methods) after the onset of voltage step (see Methods), 

and plotted the result against the average membrane potential Vm
* (Fig. 5.3A).  ShB-IR 

expressing oocytes include the exogenously expressed ShB-IR proteins and endogenous 

membrane proteins and both contribute to the RF data.  Averaged control data were 

subtracted from the ShB-IR expressing oocyte data, to estimate the RF response 

associated with the ShB-IR protein only (3A, blue line).   Error bars denote standard 

errors of the mean (+/-, SEM), and are shown as a function of Vm
*

 for ShB-IR expressing 

oocytes and control oocytes in Fig. 5.3B.  To demonstrate successful transfection, steady-

state ionic currents are shown in Fig. 5.3C, and ShB-IR channel conductance is shown as 

in the inset.  Like the averaged RF data, the SEM associated with the ShB-IR proteins-

only was estimated by subtracting the SEM associated with the ShB-IR expressing oocyte 

at each membrane potential from the control oocyte SEM(s) (see Methods).  Significant 

differences in |ΔZRF|s were found between Shaker-expressing oocytes and control oocytes 

at and above -10 mV, and differences are easily observable above the half-activation 

voltage for ShB-IR channels (xp<0.10, *p<0.05, Fig. 5.3A).  Interestingly, the RF ShB-IR 

only data and the corresponding ShB-IR conductance data (shown in Fig. 5.3C) have a 
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linear correlation coefficient of .94 (and a correlation coefficient of .99 in the voltage 

range of -45 mV to 2 mV, when the ShB-IR data increase from 5-95% of their final 

value), indicating a positive association between channel activity and the measured RF 

response.  Furthermore, unlike the control oocytes that showed increased SEM for large 

Vm
*, the ShB-IR only SEM (blue line, Fig. 5.3B) showed the largest value near the half-

activation voltage (Fig. 5.3B), and standard errors for the ShB-IR expressing oocytes 

were comparable to baseline values when the ensemble of channels in the membrane 

were predominantly closed or open. These results are consistent with voltage-dependent 

SEM arising from probabilistic conformational state of the Shaker ion-channels 

expressed in the membrane.  

 

5.3.3 Copper Treatment and Steady-State ShB-IR RF Response 
 

A subset of ShB-IR expressing oocytes  (n=4) were treated with Cu2+, a K+ ion 

channel inhibitor, and normalized |ΔZRF|s was determined for these oocytes before and 

after Cu2+ treatment (exp2).  Results are shown in Fig. 5.4A as a function of steady-state 

membrane potential (Vm
*).  Data from each cell were normalized to its RF impedance at 

+30 mV for the nontreated ShB-IR expressing oocytes, to permit comparisons between 

cells before/after copper treatment (see Methods).  As expected, Cu2+ application greatly 

reduced the ShB-IR current (Im
*) in the voltage-range where ShB-IR channels activate 

(Fig. 5.4B).  ShB-IR channel conductance before and after copper addition are shown in 

the inset (Fig. 5.4B).  The change in RF impedance after copper treatment was larger than 

the untreated condition (Fig 5.4).  To examine statistical significance for this relatively 

small population, data above -60 mV (see Methods) were pooled together.  Pooled data 
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showed a statistically significant difference between nontreated vs. Cu2+ treated ShB-IR 

expressing oocytes (p=.04, U=1007, Total Points=80, normalized median-values of the 

nontreated/treated ShB-IR expressing oocytes are .36 and .90, respectively (see 

Methods)).  Results from control cells (n=2, Fig. 5.4A) are scaled by the ratio of the 

control cell to ShB-IR cell data at +30 mV (shown in Fig. 5.3) to enable intercellular 

comparison, after normalizing the data from each control cell to its nontreated |ΔZRF|s 

measured at +30 mV (see Methods).  A change in the normalized |ΔZRF|s is noticeable in 

the control cells after Cu2+ application (above -60 mV), indicating that Cu2+ might 

nonspecifically interact with the endogeneous oocyte membrane in addition to the known 

effect of binding the ShB-IR channels.  While Cu2+ likely contributed to the change in RF 

response before/after Cu2+ addition, the effect in ShB-IR expressing oocytes was much 

larger, suggesting that the RF detected Cu2+ interaction specifically with the Shaker 

channels.  As depolarization level increased, the effect of the bound Cu2+ increased.  At 

30 mV, the Cu2+-treated oocytes exhibited a response approximately 1.5 times that of the 

nontreated ShB-IR expressing oocytes, even though the ionic current (TEVC) was 

approximately one fifth of the nontreated cells.  

  

5.3.4 RF Onset Response in ShB-IR Expressing Oocytes 
 

RF onset responses, occurring during the rise of Vm
* (when dVm

*/dt was 

maximum), exhibited trends different than those seen in steady state.  Fig. 5.5 plots the 

onset response |ΔZRF|o, averaged 0-1 ms after voltage command was applied (see 

Methods) vs. membrane potential and rate of change (dVm
*/dt).  The data have been 

normalized using the same values in Fig. 5.4A, to allow for comparisons between 
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transient and steady-state RF results (see Methods).  The fast onset recorded in ShB-IR 

expressing oocytes and controls both increased with the magnitude of the membrane 

potential change, but there were no statistically significant differences due to expression 

of K+ channels (p>.05, data not shown).  Onset RF charge displacements in control 

oocytes treated with Cu2+ slightly decreased as voltage-step increased (Fig. 5.5, filled 

circles).  In contrast to ShB-IR expressing oocytes, the average onset response of controls 

treated with Cu2+  was smaller than the nontreated cells.  Cu2+ treated ShB-IR expressing 

oocytes pooled for all voltage commands > -60 mV exhibited significantly larger onset 

responses than nontreated ShB-IR expressing oocytes  (p=.005, U=1087, Total Points = 

80, median values untreated/treated ShB-IR expressing oocytes of 1.0/1.4, respectively). 

Interestingly, increases in the onset |ΔZRF|o for Cu2+ treated ShB-IR expressing oocytes 

were about 1.5 times greater than those for Cu2+ treated ShB-IR oocytes in the steady 

state (|ΔZRF|s).  One hypothesis that might explain the Cu2+-dependent onset response is 

that Cu2+ might stabilize a transitional state in the ion channel during rapid membrane 

depolarization that momentarily exposes additional charges on the protein, thereby 

enhancing the momentary RF charge displacement.  The onset response was not 

detectable for -dVm
* /dt at the end of the command pulse (see Fig. 5.2A), showing a 

rectification in |ΔZRF| quite distinct from dVm
* /dt driven linear capacitive transients 

(present in Fig. 5.2B). 

 
 

5.4 Discussion 

Here we introduce a new technique to monitor voltage-dependent charge 

displacement associated with ShB-IR K+ ion channels using RF electric fields during 
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TEVC.  The RF electric field provided a vibrational force that resulted in measurable RF 

charge displacement on a cell membrane complex caused by vibrating membrane-bound 

charges.  The 500 kHz RF was superimposed on top of low-frequency TEVC (<30 kHz) 

allowing the RF to continuously interrogate changes in charge displacement mobility 

during whole-cell depolarization.  Changes in RF impedance, |ΔZRF|, were recorded every 

20 µs, and provided a nearly instantaneous view of the effective dielectric behavior of the 

protein–membrane–ion complex.  Voltage-dependent changes in |ΔZRF| were averaged 

into millisecond bins (Fig. 5.2) and showed time-resolved differences for ShB-IR 

expressing oocytes relative to controls, demonstrating the sensitivity of this approach to 

detect RF vibrational motion associated with ion-channel-specific charge displacements. 

Analysis of RF charge displacements revealed significant differences in |ΔZRF|s 

between ShB-IR expressing oocytes and controls at depolarized membrane potentials 

(Fig. 5.3A).  Differences were largest above the half-activation potential for the Shaker 

channels used here. The ShB-IR channels have fast inactivation removed, and as such, 

significant changes in steady-state RF vibration demonstrate that the open conformation 

of ShB-IR channels have measurably different effective dielectric behavior than the 

closed conformation.  It is important to note that this difference was present at steady-

state and did not reflect the classical gating charge movement that typically occurs for 

these channels ~0-2 ms after voltage command(Perozo et al., 1993; Hille, 2001).  Instead, 

voltage-dependent changes in RF charge displacement |ΔZRF|s appear to reflect changes in 

mobile charge displacement magnitude within the transmembrane RF electric field and/or 

stiffness associated with the open vs. closed state of the Shaker protein (measured during 

steady-state).  Consistent with this, the steady-state RF impedance associated with the 
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ShB-IR proteins had a positive correlation with channel conductance (c.f. blue curve in 

Fig. 5.1A and 5.1C inset).  This hypothesis is further supported by the fact that the SEM 

for the ShB-IR proteins (ShB-IR expressing oocytes – control oocytes) was greatest at the 

channel’s half-activation potential, and smaller when the protein was completely 

hyperpolarized (all channels closed) or depolarized (all channels open).  This same trend 

in SEM was not observed in control oocytes, and can only be explained if the observed 

changes in effective dielectric were due to charge vibrations specific to the Shaker 

protein. 

Cu2+ addition to the bath significantly changed steady-state RF impedance |ΔZRF|s 

in ShB-IR expressing oocytes relative to controls.  In particular, data indicated that while 

a portion of the steady-state RF response may be caused by nonspecific binding of Cu2+ 

to the cell membrane, Cu2+ also binds specifically to the ShB-IR protein and increases RF 

–evoked charge displacement during membrane depolarization.   Analysis of the ShB-IR 

expressing oocyte data showed that differences between Cu2+-treated and nontreated cells 

were present at membrane potentials as low as -50 mV and increased with TEVC 

depolarization (Fig. 5.4A).  The increase in RF response caused by Cu2+ - Shaker 

interaction occured even as ion-channel conduction current decreased (Fig. 5.4B). One 

possibility is that Cu2+ binding to the ion channel enhanced |ΔZRF|s by increasing the 

effective charge moving within the transmembrane electric field and this thereby 

enhanced the signal arising from the RF-evoked protein vibration.   

In addition to steady-state changes in RF charge displacement, rapid onset 

responses |ΔZRF|o were detected during positive depolarizing steps (dVm/dt>0) in both 

ShB-IR expressing and control oocytes (see Fig. 5.2).  Interestingly, the onset response 
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was much larger and easily observable only for positive dVm/dt .  Hence, the onset RF 

data are not directly related to the traditional capacitive transient current evoked during 

voltage clamp.  The present data were not adequate to analyze the decay time constant of 

the RF onset response in the ShB-IR expressing cells due to the superimposition of the 

large RF response associated with the ShB-IR channel activation.   The magnitude of the 

transient response in both control and ShB-IR expressing oocytes was comparable, 

showing the importance of endogenous mechanisms contributing to the RF onset 

response.  This shows that the RF onset displacement currents measured here are not 

caused by the gating charge movement of Shaker channels.  This was not surprising, due 

to the slow voltage clamp rise time in the present experiments.  A faster voltage-clamp 

and RF recording system might allow future investigation of voltage-sensor displacement 

via RF interrogation. Even with the slow voltage-clamp used here, the onset response 

|ΔZRF|o increased significantly in ShB-IR expressing oocytes treated with Cu2+.  Data for 

Shaker-expressing cells in Fig. 5.5 were normalized to the same values as the steady-state 

figure, and show that |ΔZRF|o in the Cu2+-treated cells was 1.5 times as high as the values 

shown for the same copper-treated cells in the steady-state.  One possible explanation for 

the large value of |ΔZRF|o could be that the membrane-ion complex undergoes a 

nonequilibrium polarization when dVm/dt is positive, compelling a brief period of 

enhanced dipole mobility.  Previous studies on cation—protein interactions suggest that 

the cation applied to a protein may enter a transitional state during the onset of voltage-

clamp (Abbruzzese et al.).  A similar interaction between the Cu2+—ShB-IR channel 

could explain the amplified or augmented RF change measured during the onset period 

between Cu2+–membrane–ShB-IR interactions.  
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Although interpretation of the RF results can be challenging on the surface, this 

type of data cannot be obtained by traditional electrophysiological techniques and may 

prove useful in understanding membrane-bound protein dynamics.  Present results show 

that the method can be used to track time- and voltage-dependent changes in RF charge 

displacement associated with membrane-bound ion-channel state/conformation and 

electrostatic binding of charged compounds.  As such, the technique supplements 

conventional electrophysiological techniques and is suitable to examine voltage-

dependent membrane-bound protein conformations and pharmacological interactions. 

 
 

5.5  Methods 
 

5.5.1 Oocyte Protein Expression 
 

Xenopus oocytes were isolated at the University of Utah’s Cardiovascular 

Research and Training Institute.  cRNA encoding ShB-IR was injected into oocytes 1-2 

days before experimentation, to allow ample time for channel expression.  Oocytes were 

stored in Superbarths oocyte media  (88 mM NaCl, 1 mM KCl, 0.41 mM CaCl2, 0.33 

mM Ca(NO3)2, 1 mM MgSO4, 2.4 mM NaHCO3, 10 mM HEPES, 1 mM pyruvate and 50 

µg/ml gentamicin, titrated using NaOH to a pH of 7.4) at 17° Celsius and ionic currents 

measured using two-electrode voltage clamp (TEVC) were used to verify channel 

expression. 

 
 

5.5.2 Experimental Set-Up 
 

An oocyte (~1.2 mm diameter) was positioned in a 1.2 mm recording chamber 

filled with Superbarths oocyte media surrounded by a 18 µm thick, gold-plated copper, 
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effectively annular electrode (ORFLO, Woodinville, WA).  Oocyte positioning and 

electrode stabilization were facilitated by a polycarbonate interface; the electrode was 

stabilized by two separate plates of the polycarbonate interface, and an oocyte was loaded 

into the recording chamber through a bowl-shaped well (Dharia & Rabbitt, 2010). Two 

glass micropipettes, used for two-electrode voltage clamp and filled with 3M KCl, were 

carefully placed in the oocyte using a 2X magnification lens on an upright microscope 

(AxioTech, Zeiss, Thornwood, NY).  Each micropipette had a 0.5-2 MΩ access 

resistance, and were driven by a two-electrode amplifier (AxoClamp2B, Molecular 

Devices, Sunnyvale, CA) that controlled voltage-measuring (HS-2Ax1LU, Molecular 

Devices, Sunnyvale, CA) and current-injecting headstages (HS-2Ax10MGU, Molecular 

Devices, Sunnyvale, CA).  An Ag/AgCl ground electrode was placed approximately 5 

mm above the oocyte and immersed in media near the top of the recording chamber.  

This ground was common for both the RF recordings and TEVC.  Photographs taken of 

the oocyte before and after experimentation were used to confirm minimal oocyte 

movement during recording (Q-Color3, Olympus, Center Valley, PA).   

A ~ 120 µM Cu2+ solution (Copper ICP/DCP standard solution 10,000 µg/mL 

Cu2+in 2% HNO3, Sigma Aldrich, St. Louis, MO) was applied as an ion channel blocker 

to a small subset of the oocytes involved in experimentation.  The Cu2+ solution was 

manually pipetted directly above the cell. The concentration of Cu2+ added was 

approximate, as it depended on the volume of Superbarths oocyte media in the recording 

chamber (~ 1.25 mL). 
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5.5.3 Recording 

A 500 kHz radio frequency was passed from the gold-plated annular electrode to 

the ground electrode (Dharia & Rabbitt, 2010).  Simultaneously, TEVC was used to 

control membrane potential (Vm
*, single-pole low pass filter, 30 kHz).  Oocytes were held 

at -90 mV (holding potential) for 360 ms, and a voltage step was then applied for 40 ms.  

Nine different voltage steps were applied to the oocyte (-120 mV, -60 mV, -40 mV, -30 

mV, -20 mV, -10 mV, 0 mV, 10 mV, 40 mV), and are collectively referred to as a voltage 

train. Voltage trains were applied to each cell 50 times.   Voltage-clamp was automated 

using a software package designed for this purpose (Patchmaster, HEKA Inst., Bellmore, 

NY; Igor Pro, Wave Metrics, OR).  

RF voltage drop across the recording chamber (VRF) and RF current (IRF) were 

monitored using an onboard reference impedance to track excitable membrane impedance 

changes (ZRF=VRF/IRF).  Head-stage amplification (OPA356, Texas Instruments, Dallas, 

TX), a 100 kHz high pass filter (48 dB/Oct Bessel HPF; SIM965, Stanford Research 

Systems, Sunnyvale, CA) and lock-in amplification (SR844, Stanford Research Systems, 

Sunnyvale, CA) were used to extract the RF component applied during TEVC.  Voltage-

clamp current and commands were low-pass filtered at <30 kHz to further ensure 

minimal cross-talk between the TEVC and RF recording systems.  The quadrature lock-in 

signals, as well as TEVC ionic current, membrane potential and applied command 

potential were recorded through a 16-bit A/D converter (ITC-1600, HEKA Inst. 

Bellmore, NY).  Patch-clamp software  (Patchmaster, HEKA Inst., Bellmore, NY) 

sampled and saved data from each A/D channel at a rate of 20 µs.  This voltage-clamp 

software in conjunction with the signal averaging time on the lock-in were the rate 
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limiting factors for temporal resolution during RF interrogation.  The technique, however, 

given the Nyquist frequency of the RF, has the potential to resolve events down to 4 µs. 

 
 

5.5.4 Data Analysis 
 

Data from individual oocytes were averaged over 50 command presentations 

(each consisting of 9 voltage levels, as described above).  TEVC currents were leak 

compensated for each cell by assuming that currents measured during hyperpolarization 

were predominately caused by leak, and that these currents changed linearly with voltage.  

Leak-subtracted TEVC data for each oocyte were binned in 1 ms intervals in the time 

domain, and used to estimate ShB-IR channel conductances  (Ohm’s law:  ITEVC
*

 = GSHB-

IR (Vm
*-Erev)).  Capacitive transients were not subtracted.  TEVC currents were plotted as 

a function of membrane potential, and current data (  I * ) collected at Vm
* > - 10 mV were 

linearly interpolated to 0 to estimate Erev.  Error between I and (V- Erev) was then 

minimized by providing the best fits to a sigmoidal conductance (
  
I * = G Vm

* − Erev( ) , 

where 
  
G = Gmax 1+ e VHA−Vm

*( )/λ⎛
⎝

⎞
⎠ ;   Gmax is the maximum whole-cell conductance of ShB-

IR expressing oocytes; VHA is the half activation potential and λ  is the rate of 

conductance rise).  Channel conductance values were normalized to the maximum 

conductance value (G/Gmax), and are shown as insets in Fig. 5.3 and 5.4.    

Magnitude change in RF impedance (|ΔZRF|, 500 kHz interrogation frequency) for 

each cell was calculated relative to the average RF impedance 5-35 ms before voltage 

command (holding potential ~=-90 mV).  This was done in one millisecond bins.   

Temporally based comparisons of control vs. ShB-IR cells and Cu2+ treated vs. nontreated 
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oocytes (like in Fig. 5.2) were made by averaging data (TEVC current, TEVC voltage, 

|ΔZRF|) across control oocytes (n=10), ShB-IR expressing oocytes (consist of both 

endogenous and ShB-IR protein, n=9), ShB-IR expressing oocytes before/after Cu2+ 

treatment (n=4) and control oocytes before/after Cu2+ treatment (n=2).  Voltage data were 

used to align voltage steps from individual cells in time to minimize jitter during 

averaging.  

To facilitate comparisons across cells, the average value of |ΔZRF| was calculated 

for each cell at every voltage-step 1) 5-35 ms after the voltage step had been applied 

(|ΔZRF|s, dVm
*/dt (voltage clamp) ≅ 0, “steady state response”) and 2) 0-1 ms after the 

voltage step had been applied (|ΔZRF|o, dVm
*/dt (voltage clamp) ≠ 0, “onset response”). To 

compensate for slight differences in TEVC membrane potential between individual cells, 

normalized RF data were linearly interpolated between voltages for each cell before 

averaging.  Steady-state data were interpolated at the following membrane potential 

levels {-110 mV, -100 mV, -90 mV, -80 mV, -70 mV, -60 mV, -50 mV, -40 mV, -30 

mV, -20 mV, -10 mV, 0 mV, 10 mV, 20 mV, 30 mV}.  Onset response was plotted as a 

function of dVm
*/dt, and results were interpolated to the following values {-12 mV/ms, -8 

mV/ms,   -4 mV/ms, 0 mV/ms, 4 mV/ms, 8 mV/ms, 12 mV/ms, 16 mV/ms, 20 mV/ms, 

24 mV/ms, 28 mV/ms, 32 mV/ms, 36 mV/ms, 40 mV/ms, 44 mV/ms}.  

The sample sizes used in the ShB-IR cell (n=9) vs. control cell (n=10) experiment 

(exp1) allowed for direct (nonnormalized) comparison between both data sets, as it was 

assumed that the approximate shunt path associated with the ShB-IR expressing oocytes 

was approximately equal across the populations (Fig. 5.3).  Standard errors of the mean 

were calculated for both control and ShB-IR expressing oocytes at specified membrane 
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potentials (-110 mV, -100 mV, -90 mV, -80 mV, -70 mV, -60 mV, -50 mV, -40 mV, -30 

mV, -20 mV, -10 mV, 0 mV, 10 mV, 20 mV, 30 mV).  The ShB-IR expressing oocytes 

consisted of RF responses from both endogenous proteins on the oocyte membrane and 

the exogenously expressed ShB-IR protein (referred to as “ShB-IR + Endo” in Fig. 5.3).  

The ShB-IR and endogenous protein responses were assumed to be approximately 

independent, and the averaged control data (endogenous protein only, “Endo”) was 

subtracted from the averaged ShB-IR expressing oocyte data (“ShB-IR + Endo”, Fig. 5.3) 

to estimate the RF response associated with the ShB-IR-protein-only (blue line, Fig. 5.3).  

Similarly, the standard error of the mean associated with the ShB-IR protein-only was 

calculated by subtracting the SEM associated with control oocytes from the SEM 

associated with the ShB-IR expressing oocytes (blue line, Fig. 5.3B).   

The effects of Cu2+ application on both steady-state and transient RF impedance 

were compared for ShB-IR expressing oocytes (n=4) and control oocytes (n=2, exp2).  

The small sample size prevented voltage-dependent population statistics for these 

controls, but we were able to make comparisons within cells.  Data for each cell 

before/after copper treatment were normalized to the steady-state RF impedance value of 

that specific cell before Cu2+ treatment at +30 mV.   After normalization, data for each 

group (Control-untreated/treated, ShB-IR-untreated/treated) were averaged together, and 

the effects of Cu2+ before/after treatment were compared within each cell expression 

system.  Control data (both before/after copper treatment) were scaled by the ratio 

between the control cells and ShB-IR cells at +30 mV from the previous experiment 

(larger sample sizes, Fig. 5.3).  This scaling enabled comparisons between the control cell 

data and the ShB-IR cell data before/after copper treatment.  Standard errors of the mean 
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were calculated for ShB-IR expressing oocytes at specified membrane potentials (-110 

mV, -100 mV, -90 mV, -80 mV, -70 mV, -60 mV, -50 mV, -40 mV, -30 mV, -20 mV, -

10 mV, 0 mV, 10 mV, 20 mV, 30 mV).  SEM was not calculated for control cells, due to 

the small (< 2) sample size.  

In exp1, data at each voltage for both the control and ShB-IR expressing cells 

were not normally distributed, due to differences in shunt path between cells and 

differences in exogenous protein expression level on the ShB-IR expressing oocytes.  As 

such, a Mann-Whitney nonparametric statistical test was used to compare control vs. 

ShB-IR expressing oocyte data (exp1) at each of the sampled voltage levels (the median 

of the sample values were slight lower than the averages shown in Fig. 5.3A, although the 

trends were similar).  The null hypothesis (H0) for this comparison was that the RF data 

for the ShB-IR cells before copper treatment are the same as the RF data for the ShB-IR 

expressing oocytes after copper treatment at a specified voltage level.  The linear 

correlation coefficient between ShB-IR conductance and the subtracted ShB-IR-only 

response was calculated both between -110 mV and 30 mV and between -45 and 2 mV 

(the regime where the RF ShB-IR-only response increased from 5-95% of its final value).  

In exp2, the sample size of the ShB-IR expressing oocytes (n=4) before/after Cu2+
 

treatment was too small to apply the Mann-Whitney test at every voltage level (requires a 

total sample size of 10).  Instead, all the normalized data sampled from cells above -60 

mV (where the channel begins to activate) were pooled, and these pooled samples were 

compared before/after copper treatment using the Mann-Whitney test (the pooled voltage 

levels for each group of cells was the same).  This allowed for a significance test between 

the two treatment groups of cells, with the null hypothesis (H0) that the RF data for the 
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ShB-IR cells before copper treatment are the same as the RF data for the ShB-IR 

expressing oocytes after copper treatment. 
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Fig. 5.1 –  Set-up and Circuit Model - A) Changes in RF membrane impedance (|ΔZRF|) 
during TEVC were measured by passing RF current from an electrode surrounding the 
meridian of the cell (black) to a ground electrode (media, above the cell). Contour lines 
and colors in the saggital cross-section of a cell in the recording chamber, shown here, 
illustrate the general spatial distribution of the RF electric potential expected based on the 
Maxwell equations for a passive cell under axisymmetric conditions (π/4 phase shown).  
B) A circuit model of the chamber including the shunt resistance (Rs,), membrane 
impedance (Zm), intracellular resistance (Ri) and electrode double layer (Zdl).  C) Using 
the circuit model, the frequency-dependent RF impedance would change (Δ|ZRF|) with an 
increase or decrease in membrane capacitance -- a change that would be most easily 
detectable at frequency ω* where the maxima of the |ΔZRF| occurs.  The present study 
reports changes in RF impedance |ΔZRF| evoked by TEVC step changes in membrane 
potential. 
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Fig. 5.2 –  Temporally Resolved RF Measurements - A) RF impedance changes (|ΔZRF|) 
measured during TEVC relative to the impedance at holding potential (-90 mV) in 
control oocytes, expressing endogenous proteins only (“Endo”, n=10, left column) and 
ShB-IR expressing oocytes (n=9, right column).  ShB-IR expressing oocytes (n=9, right 
column) elicited a membrane-potential-dependent (Vm

*) RF response different than 
control oocytes (n=10, left column, endogenous protein expression only).  RF impedance 
changes were analyzed in two regions;  the RF response during the onset of voltage-step 
(o, average |ΔZRF|o  0-1 ms after voltage step, dVm

*/dt  > 0) and the RF response after 
membrane potential achieved its command (steady-state) level (s, average |ΔZRF|s 5-35 ms 
after voltage step, dVm

*/dt  ≅ 0).  B) TEVC current measurements were used to verify ion 
channel expression and responses (leak current subtracted, capacitive transient 
unsubtracted) to C) whole-cell voltage-clamp. 
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Fig. 5.3 –  Steady-state RF Response for ShB-IR and Control Cells - A) Voltage-
dependent differences in |ΔZRF| s were observed between control oocytes, expressing 
endogenous proteins only (“Endo”, orange), and ShB-IR (brown) expressing oocytes (that 
express both endogenous and ShB-IR proteins, “ShB-IR + Endo”, Fig. 5.3A, xp=.1, 
*p=.05).   The “Endo” response was subtracted from the “ShB-IR + Endo” response to 
estimate the isolated RF response from the ShB-IR channels (blue line).  Error bars 
denote +/- standard errors of the mean (SEM). B) The SEM for the isolated ShB-IR 
proteins (blue) was also estimated by subtracting the SEM from the Endo oocytes (orange 
line) from those associated with the ShB-IR expressing oocytes (“ShB-IR + Endo” 
response, brown line).  The SEM for isolated ShB-IR expressing oocytes was largest near 
the half-activation potential for these ion channels.  C) ShB-IR channel expression and 
voltage-dependent whole-cell current was verified using TEVC, and this data was used to 
estimate ShB-IR conductance (G/Gmax, inset). 
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Fig. 5.4 – Copper Treatment and Steady-State ShB-IR RF Response - A) Shaker 
expressing oocytes (“ShB-IR + Endo”, green line) and to a lesser extent, control cells 
(“Endo”, green markers), showed voltage-dependent differences in |ΔZRF|s when 
compared with the same cells exposed to ~120 µM Cu2+ in the bath (purple).  Error bars 
denote +/- standard errors of the mean (SEM).  B) Even though RF charge displacements 
increased in Cu2+-exposed ShB-IR expressing oocytes, TEVC whole-cell current 
decreased showing that Cu2+ successfully blocked the channels (channel conductance 
shown as inset).
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Fig. 5.5 – Onset RF Response in ShB-IR Expressing Oocytes - Changes in RF impedance 
during the onset of voltage-clamp (|ΔZRF|o  0-1 ms after whole-cell depolarization) were 
slightly depressed in control oocytes with the addition of Cu2+ (Cu2+-free - green symbol, 
Cu2+ addition - purple symbols), but were significantly greater in ShB-IR expressing 
oocytes (Cu2+-free - green line, Cu2+ addition - purple line).  



 

 

 
 
 
 

CHAPTER 6 
 
 
 

CONCLUSION 
 
 
 

6.1 Summary 
 

Major contributions of this thesis include 1) a method to simultaneously estimate 

chamber and double-layer impedances in a linear regime of electrode voltage–current 

sensitivity, 2) a platform and algorithm to spatially resolve and visualize the dielectric 

properties around a single cell and 3) the design and implementation of a system to 

temporally resolve changes in RF impedance around a Xenopus oocyte during whole-cell 

voltage-clamp.  The latter system has been used to track excitable changes in integral 

membrane protein activity as well as monitor membrane-potential-dependent externally 

applied molecule–protein interactions.  These contributions will result in one patent, two 

peer-reviewed journal publications and one peer-reviewed conference proceeding.  

Furthermore, different facets of this work have been presented via poster- and podium- 

presentations at 18 conferences.  A brief overview, list of specific contributions and 

future work associated with each major contribution are summarized here.  
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6.1.1 The Three Current-Passing Electrode Method (TCPE) 

Chapter 2 introduced a new method, TCPE, which could be used to 

simultaneously estimate electrode–electrolyte interfacial impedances and interelectrode 

(chamber) impedances in a linear regime of electrode voltage–current sensitivity.  Three 

current-passing electrodes were selected for TCPE recordings.  Double-layer impedances 

were assigned to each individual electrode interface, while localized chamber impedances 

were assigned to the space between each pair of electrodes.  Localized chamber and double-

layer impedance parameters were estimated by minimizing error between six electrical 

lumped-parameter models, used to represent different electrode recording configurations 

using the three selected electrodes, and corresponding simulated noisy measurements.  

Parameter estimation accuracy was sensitive to measurement noise, error in the least-

squares parameter guess, and the average ratio of chamber to double-layer impedance.  

However, preliminary data revealed averaged parameter estimates from multiple 

applications of TCPE converged to within a conventionally acceptable range (within ~10%) 

of actual parameter values, and indicate the potential utility of this technique.   

While additional simulations and experiments are needed to ensure TCPE 

accuracy, this method might offer one of the only solutions to the double-layer estimation 

challenge that accounts for time and material dependencies associated with the electrode 

interface; other conventional double-layer estimation techniques, that utilize multiple 

calibration solutions or moveable electrode architectures, cannot do this.  Furthermore, 

TCPE could potentially also be used to estimate chamber impedances in cases where the 

four-electrode method is not feasible; this may be true, for example, in a size-constrained 

system, a system with material-based fabrication limitations or a system where high-input 
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impedance electrodes are difficult to achieve.  As such, TCPE could significantly contribute 

to many electrode-in-electrolyte recording techniques, including those based in electric 

impedance tomography and electric impedance spectroscopy.  

 

6.1.2 Monitoring Spatially Resolvable Differences in Membrane  

Dielectric 

Chapter 3 introduced a technique that used localized RF impedance measurements 

between adjacent electrodes around a single cell to map 1) the position of the cell in the 

recording chamber (correlated with the real portion of the complex-valued impedance) 

and 2) the relative RF dielectric of the cell membrane (corresponded to the imaginary 

portion of the complex-valued impedance).  The proof-of-concept of this technique was 

validated using Xenopus oocytes, and the current platform is best-suited to millimeter-

diameter cellular recordings.  As such, the current platform might be used to monitor RF 

impedance changes in the oocyte membrane during maturation or noninvasively identify 

success of oocyte protein transfection.  

However sce-Topo recordings are not limited to millimeter-sized cells, as the 

technique and associated algorithms are scalable; as such, the sce-Topo platform could be 

miniaturized using MEMS-based fabrication processes to produce spatially resolved 

dielectric images around micron-sized cells.  Spatial resolution increases with electrode 

number, and the use of electron-beam lithography for electrode fabrication on a 

miniaturized platform could enable effective dielectric feature-size detection of ~30 nm 

(Broers, 1995).  This might allow for visualization of localized liquid-ordered lipid 

domains (‘lipid rafts’, 25 nm – 700 nm diameters), and sce-Topo could potentially 
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elucidate lipid-raft distribution, movements and associated signal-transduction processes 

(McLaughlin & Aderem, 1995; Brown & London, 1998; Munro, 2003). 

 

6.1.3 Monitoring RF-Impedance Changes of ShakerB-IR Proteins  

Expressed in Xenopus Oocytes 

Chapter 4 and 5 introduced a new technique that enabled RF impedance 

measurement around Xenopus oocytes during two-microelectrode voltage-clamp.  It was 

hypothesized that a RF signal will vibrate charges on the membrane, and a change in 

membrane-potential-dependent ion-channel configuration would manifest as a change in 

measured RF impedance.  Simulations and preliminary recordings performed on the 

platform (Chapter 4) indicated that changes in oocyte membrane RF capacitance are 

detectable within a narrow 100 kHz – 1 MHz bandwidth.  As such, a 500 kHz 

interrogation frequency was used to temporally resolve (20 µs resolution) RF impedance 

changes associated with both native Xenopus oocytes and those expressing ShakerB-IR 

ion-channels during whole-cell voltage-clamp (Chapter 5).  Cu2+ was applied to a subset 

of the ShakerB-IR expressing oocytes, and data indicated that RF impedance 

measurement 1) correlated with ion-channel activity, 2) reflected more than ionic 

conduction, 3) were sensitive to Cu2+–ShakerB-IR–complex interactions and 4) could be 

used to temporally resolve excitable changes in Cu2+–ShakerB-IR vibration.   

While additional experiments on other Shaker channel variants should be done to 

identify the exact source of the RF-response measured here, the data generally suggest 

that this technology could be used to 1) to identify charge-based transitions associated 

with ion-channel conformation, 2) monitor changes in molecule-protein 
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charge:size:mobility ratio and 3) temporally resolve excitatory charge-based activity 

associated with a cell membrane. In this sense, the technology presented here could 

contribute to both basic membrane biophysics and the pharmaceutical industry.  

 

6.2 Final Conclusions 

Overall, the work presented in this dissertation uses RF impedance measurements, 

associated with membrane-bound charge vibration, to elucidate 1) charge movement 

associated with ion-channel conformational state transitions, 2) localized changes in 

membrane dielectric, 3) charged-cation–membrane binding processes and 4) 

size:charge:mobility ratio associated with specified proteins or molecules in the cell 

membrane.  Furthermore, this technology could potentially also be used monitor other 

charge-changing processes associated with the cell membrane including 1) phospholipid 

head group rotations, 2) signal transduction processes associated with membrane–charged-

biomolecule binding events (e.g. G-proteins, viruses etc.), 3) exo- or endo- cytotic activity 

around a cell and 4) charged-molecule (could be a cation, drug etc.)—membrane binding 

processes.  A new method, TCPE, also presented as part of this dissertation, might not only 

facilitate these RF recordings, but also those performed during any other electric impedance 

spectroscopic or electric impedance tomographic recording; unlike any other conventional 

method, TCPE enables simultaneous estimation of both absolute chamber and double-

layer impedance values in a linear regime of electrode voltage–current sensitivity.  As such, 

each technology presented in this dissertation could greatly increase our understanding of 

cellular biophysics and might eventually help identify pharmacological or clinical 

membrane pathologies.  
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