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ABSTRACT

Ubiquitin is a small protein which interacts with other proteins as a post-translational

modification and as a binding partner for proteins which contain a ubiquitin binding domain

(UBD). Proteins modified with ubiquitin are often targeted for degradation. Ubiquitin

regulates both soluble and membrane-bound proteins in cells of nearly all tissues. Here we

use mathematical models to study three distinct regulatory systems involving ubiquitin:

regulation of the yeast uracil transporter, Fur4, protein sorting mediated by the endosomal

sorting complexes required for transport (ESCRTs), and regulation of Rad18 in the DNA

damage tolerance pathway. Using a differential equation model of Fur4 regulation, we

demonstrate that deubiquitination and retention are essential roles of the Rsp5/Ubp2 com-

plex localized to the endosome. We also predict a nearly constant pool of endosomal Fur4

independent of extracellular conditions. ESCRTs are responsible for sorting ubiquitinated

proteins (cargo) on the endosomal membrane prior to formation of intralumenal vesicles.

However, the mechanisms of sorting remain unclear. Motivated by recent experimental

data, we present a cellular automata model of ESCRT sorting which demonstrates that

a flexible network of ESCRTs and cargoes is sufficient for high efficiency sorting under

specified rules. ESCRT-cargo networks exist on membranes while all ESCRT binding studies

consider ESCRT interactions in solution. We present novel results on the dimensional

dependence of dissociation constants for general protein-protein interactions using stochastic

methods. We present a conversion for transforming three-dimensional dissociation constants

to two-dimensional dissociation constants and demonstrate that ESCRT-cargo interactions

are more stable on membranes than in solution. Using our computed two-dimensional

reaction rates, we present an ODE model for the evolution of the size of ESCRT-cargo

networks. Our results suggest that ESCRT-mediated sorting can be achieved on the order

of seconds. Lastly, we examine ubiquitin-dependent regulation of Rad18 in the DNA

damage tolerance pathway, a system of strictly soluble proteins which does not rely on

ubiquitin-dependent degradation. Results of ODE models suggest that the dissociation

constants for Rad18 binding events must be measured in order to better understand the

mechanisms behind damage-specific responses.
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CHAPTER 1

INTRODUCTION

Since first being discovered in 1975 by Goldstein et al. in the thymus [15], ubiquitin

is now known to be present in nearly all tissues and crucial in cellular protein regulation.

Ubiquitin is a small protein composed of 76 amino acid residues [47]. Ubiquitin interacts

with both soluble and membrane-bound proteins as a post-translational modification and

through weaker bonds mediated by ubiquitin binding domains. In 2004, Aaron Ciechaover,

Avram Hershko, and Irwin Rose were awarded the Nobel Prize in chemistry for their

identification of ubiquitin as a protein degradation signal [13]. The process of ubiquitin

tagging, known as ubiquitination, is carried out by three types of enzymes: ubiquitin

activating enzymes, ubiquitin-conugating enzymes, and ubiquitin ligases named E1, E2,

and E3 enzymes, respectively. These enzymes are responsible for the covalent attachment

of the c-terminal glycine residue of ubiquitin to a lysine residue on a substrate protein.

This process is reviewed in [35]. Deubiquitinating enzymes (DUBs) are required to cleave

the ubiquitin from the ubiquitin-tagged proteins. While it is important to understand the

ubiquitin tagging process, the aim of this work is to understand the larger scale effects

of ubiquitination and deubiquitination in different settings. Ubiquitin also interacts with

proteins via ubiquitin binding domains. More than 16 different ubiquitin binding domains

have been identified, most with very low affinities for ubiquitin (Kd ∼ 100µM). (Reviewed

in [18]). Through its interactions with various proteins, ubiquitin plays a critical role in a

vast number of cellular regulatory systems, including DNA damage response, DNA repair,

cell cycle regulation, and protein degradation. This work focuses on modeling three systems

with specific regulatory roles for ubiquitin.

• Ubiquitin-dependent regulation of the yeast uracil transporter, Fur4 (Chapter 2)

• Ubiquitin-dependent endosomal protein sorting mediated by ESCRTs (Chapters 3 and

5)
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• Ubiquitin-depedent regulation of Rad18 in the DNA damage tolerance pathway (Chap-

ter 6)

The first two systems involve both cytosolic and membrane-bound proteins. Our work

on ESCRT protein sorting revealed a need for improved mathematical understanding of

how protein interactions depend on dimensionality. Others have similarly noticed this need

[50, 46]. Chapter 4 presents our work on understanding the role dimensionality plays in

protein-protein interactions. This mathematical theory is employed in Chapter 5 to better

understand ESCRT-mediated protein sorting. As a whole, this dissertation provides insight

into three distinct regulatory roles for ubiquitin and suggests that dimensionality has a

significant effect on protein interactions and, therefore, protein regulation.



CHAPTER 2

FUR4 REGULATION

2.1 MVB Pathway Overview

Transmembrane proteins, including signaling receptors and transporters, often need to

be deleted due to overproduction, damage, or in response to current cellular conditions.

A ubiquitin tag acts as a deletion signal for a wide number of transmembrane proteins

targeting them for degradation via the lysosome. The uracil permease, Fur4, is one example

of a protein which is degraded in this ubiquitin-dependent manner [11, 22]. Vesicles

containing ubiquitinated proteins are endocytosed and targeted to early endosomes. Early

endosomes are heavily involved in protein trafficking. While ubiquitin is a necessary tag for

proteins to be degraded in this pathway, proteins lacking ubiquitin tags are also trafficked

through early endosomes and may be recycled to the plasma membrane, transported to the

golgi, or targeted to the membrane of the lysosome. GLUT4 is an example of a protein

which is trafficked through endosomes while lacking a ubiquitin tag [17]. As the endosome

matures, ubiquitin-tagged proteins are packaged into intraluminal vesicles (ILVs) forming

mature endosomes or multivesicular bodies (MVBs). As part of the packaging process, a

deubiquitinating enzyme, Doa4, removes ubiquitin tags so that ubiquitin is recycled back

to the cytoplasm rather than degraded. The endosomal sorting complexes required for

transport (ESCRTs) are implicated in the sorting and packaging of cargoes into ILVs. We

discuss their role in this system in Chapter 3. MVBs ultimately fuse with the lysosome,

emptying the ILVs into the lumen of the lysosome where they are degraded. A simple

overview of this system is shown in Figure 2.1.

The ubiquitin-tagged state of endosomal transmembrane proteins is dynamic as both

ubiquitinating and deubiquitinating enzymes are localized to early endosomes. Since ubiq-

uitin tagging is necessary for protein degradation, the interplay between these enzymes is

important for regulation. A protein complex has been described on the early endosome

which includes both the E3 ubiquitin ligase, Rsp5, and the deubiquitinating enzyme, Ubp2

[21, 36, 25]. Naturally, questions have arisen as to why a complex exists with two enzymes
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Figure 2.1: Overview of the MVB pathway. Reprinted with permission from [34].

performing opposing functions. Experimental observations suggest a more complex role

for the Rsp5/Ubp2 complex than that of merely ubiquitin tagging and untagging. It has

been observed that deletion of Ubp2 leads to increased protein recycling to the plasma

membrane [25]. This opposes intuition which suggests that deleting the deubiquitinating

enzyme would increase the amount of ubiquitinated cargo, leading to increased protein

degradation. In contrast to these observations, our collaborators have recently observed that

mutating only the active site of Ubp2, rather than deleting Ubp2 entirely, led to increased

protein degradation (unpublished data). This suggests a further regulatory role for Ubp2.

We hypothesize that the Rsp5/Ubp2 complex serves also as a retention complex, binding

to ubiquitin of tagged proteins and retaining them on the endosome, leading to inclusion in

ILVs. Under this hypothesis, deubiquitination is impaired under both deletion and mutation

of Ubp2. However, deletion of Ubp2 also disrupts the function of the entire Rsp5/Ubp2

complex, leading to less retention of cargo on the endosome and more recycling to the

plasma membrane while mutation of only the Ubp2 active site allows for the complex to

remain intact thereby preserving its ability to retain cargo, leading to an increase in protein

degradation. This hypothesis also suggests that recycling to the plasma membrane is the

default pathway for all proteins on the early endosome and it is only through interaction

with the Rsp5/Ubp2 complex that proteins are retained during endosomal maturation.

This complex includes more players that could help facilitate endosomal retention. Rup1

interacts with both Rsp5 and Ubp2 in this complex and contains a ubiquitin associating
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domain (UBA) which may facilitate the retention of cargo [21]. Rsp5 and Ubp2 also possess

the ability to interact with ubiquitin which is unsurprising given their enzymatic roles.

Hua1 also associates with this complex and has the ability to bind Hse1, a domain in

ESCRT-0. [36] This gives the Rsp5/Ubp2 complex the ability to interact with the ESCRTs

upon endosomal maturation. ESCRT interaction with cargo is necessary to achieve proper

degradation of cargo.

Another potential function of the Rsp5/Ubp2 complex is quality control of transmem-

brane proteins. It is of upmost importance that cells maintain the integrity of their

receptors and transporters at the plasma membrane. Further, the quantity of receptors and

transporters at the plasma membrane must be tightly controlled. The plasma membrane

appears to be deficient of deubiquitinating enzymes but rich in ubiquitinating enzymes.

Therefore, once a protein is tagged with ubiquitin it will certainly be internalized and

targeted to endosomes. This seems appropriate in order to efficiently remove any protein

from the plasma membrane which is incorrectly folded or not needed. Upon arrival at the

endosomme, a tagged protein is able to interact with the Rsp5/Ubp2 complex. There is then

a competition between ubiquitination and deubiqutination at the endosome. As ubiquitin

tags are removed by Ubp2, the cell is provided with a chance to ”double check” whether or

not a protein should be degraded. Misfolded proteins will quickly be tagged again by Rsp5

while proteins that may have been improperly tagged will not receive another tag and will be

recycled back to the plasma membrane. In this way, cells are able to avoid over-degradation

and expending unnecessary energy to produce unneeded proteins. In this functional model

of the Rsp5/Ubp2 complex, the relative rates of ubiquitination and deubiquitination become

important as do the mechanisms by which individual proteins are able to be tagged. While

not considered in our present model, polyubiquitination is likely to prove important in this

process. With the proposed roles of the Rsp5/Ubp2 complex in mind, we now refer to

the Rsp5/Ubp2 complex as the endosomal quality control and retention system (EQRS). A

schematic of the proposed functional model of the EQRS is shown in Figure 2.2. We now

explore the consequences of this complex further in the context of Fur4 regulation.

2.2 Fur4 Specific Regulation

The yeast uracil permease, Fur4, is one of many proteins which is degraded via the MVB

pathway in a ubiquitin-dependent manner. Here we seek a better understanding of the

mechanisms underlying Fur4 regulation and the function of the EQRS in relation to Fur4.

Fur4 is a bidirectional cotransporter of both uracil and protons on the plasma membrane.
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Figure 2.2: Endosomal Quality Control and Retention System (EQRS). Figure courtesy
of Markus Babst.

The difference in intracellular pH and extracellular pH account for an approximately 32-fold

increase in internal uracil uptake over external uracil excretion. As uracil is an RNA nucle-

obase crucial for cell function, it is important that the cell uptakes available uracil without

reaching toxic levels. Uracil is fairly scarce in typical cellular environments; however, it

is very beneficial for a cell to be able to use available uracil from its surroundings when

possible. When extracellular uracil is not available, cells possess pathways for synthesizing

uridine monophosphate (UMP) without uracil uptake [39]. It has been shown that Fur4

is downregulated due to increases in both extracellular and intracellular uracil [6], thereby

keeping the intracellular uracil in check even in an excess of uracil in the environment.

Similarly, increasing amounts of environmental stress also downregulates Fur4 in the cell [8].

We seek to further understand the mechanisms underlying this regulation. Our collaborators

recently elucidated the mechanism by which Fur4 is able to be ubiquitinated [22]. A LID

(loop-interacting-domain) was shown to be present on the cytosolic side of Fur4. Upon

damage or binding to uracil, the LID undergoes a conformational change exposing a lysine

residue whereby Fur4 may be ubiquitinated at the plasma membrane by Rsp5. This process

is depicted in Figure 2.3. Ubiquitin tagged Fur4 in the plasma membrane is then transported

to the endosome as previously described.

Once ubiquitinated Fur4 reaches the endosome, it is able to interact with the EQRS

likely leading to deubiquitination by Ubp2. If intracellular uracil levels are high, the LID

will remain open as uracil readily binds to Fur4. Due to the internal pH of endosomes, it is
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Figure 2.3: Mechanism of Fur4 uracil induced ubiquitination. Adapted from [22].

highly unlikely that any uracil will be transported into the endosome. The pH discrepancy

does not prevent uracil from binding to the cytoplasmic side of Fur4 which leads to the

opening of the LID. With the LID open, Fur4 is able to be ubiquitinated by Rsp5. On the

other hand, if intracellular uracil is low, Fur4 on the endosome will have less uracil to bind

to leading to the LID being closed more often. This will prevent ubiquitination of Fur4 by

Rsp5. As a feature of the proposed EQRS, a ubiquitin tag is necessary for retention on the

endosome. Therefore, if there is less ubiquitinated Fur4 on the endosome, there will be less

retention, leading to more recycling and less degradation. We propose that the EQRS plays

a vital role in Fur4 regulation by allowing the cell to respond to intracellular levels of uracil

and prevent over-degradation of Fur4. To better understand the effects of the EQRS and

the general behavior of this system, we analyze the following ODE model.

2.3 ODE Model

We model the regulation of Fur4 using a system of 15 differential equations. Our model

includes 14 different states for Fur4. We need to keep track of where Fur4 is located in the

cell, whether or not it is bound to uracil, and if it is tagged with ubiquitin. We refer to the

uracil binding state of Fur4 as bound or unbound while we call the ubiquitination state of

Fur4 tagged or untagged. For the plasma membrane states, we also specify the orientation

of Fur4, opened inward (toward the cytoplasm) or outward. The endosomal Fur4 states

do not include orientation as Fur4 is highly unlikely to be opened toward the lumen of the
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endosome due to pH differences. The states for Fur4 are given in Table 2.1. The final

variable in our model is intracellular uracil, S. We assume a fixed amount of extracellular

uracil, Se.

In yeast cells, there are approximately 5-10 early endosomes at one time. We model the

endosome as one compartment, rather than modeling individual endosomes.

2.3.1 Fur4 State Transitions

We now discuss the different events that determine the transitions between Fur4 states

in our model.

• Uracil transport

In the plasma membrane, Fur4 exists in two orientations either facing the cytoplasm or

facing the extracellular matrix. We assume that regardless of binding or tagging states,

Fur4 flips between these two positions at a constant rate, r. Uracil is cotransported

with protons and the transport is bidirectional. However, the pH difference between

the inside and the outside of the cell account for a 32-fold difference in proton

concentration. We account for this using an orientation-dependent scaling of the

on-rate of uracil binding to Fur4, w. Therefore, in our model, uracil is 32 times as

likely to bind to Fur4 from the outside of the cell than it is to bind from the inside

of the cell. This results in an on-rate of k for extracellular uracil binding and k
w for

intracellular binding. We assume a constant off-rate of bound Fur4, j, regardless of

orientation. Experimental measurements suggest the Kd for Fur4 is ∼ .74µM and the

Table 2.1: Fur4 states

P e plasma membrane, unbound, untagged, outward-facing
Pbe plasma membrane, bound, untagged, outward-facing
P i plasma membrane, unbound, untagged, inward-facing
Pbi plasma membrane, bound, untagged, inward-facing
Pbeu plasma membrane, bound, tagged, outward-facing
Pue plasma membrane, unbound, tagged, outward-facing
Pbiu plasma membrane, bound, tagged, inward-facing
Pui plasma membrane, unbound, tagged, inward-facing
E endosomal membrane, unbound, untagged
Eb endosomal membrane, bound, untagged
Ebu endosomal membrane, bound, tagged
Eu endosomal membrane, unbound, tagged
X endosomal membrane, unbound, tagged, retained by EQRS
Xb endosomal membrane, bound, tagged, retained by EQRS
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Vmax for uracil uptake is ∼ 8.8(nmol ·min−1107cells−1) [45]. We therefore take k = j
Kd

and compute the fliprate r from the observed Vmax as shown in Appendix A.

• Ubiquitination and Deubiquitination

As depicted in Figure 2.3, ubiquitination of Fur4 by Rsp5 is possible if the LID is open.

This happens when Fur4 is bound to uracil. Therefore, bound Fur4 is ubiquitinated

at a rate, a. We allow for a small amount of uracil-independent ubiquitination with

rate, q. This accounts for a small amount of damaged transporters or for thermal

fluctuations in Fur4 leading to faulty opening of the LID. Deubiquitination by Ubp2

occurs at the endosome at a rate, b.

• Transport

Vesicle transport is responsible for transitions between plasma membrane and endo-

somal membrane states. The rate g represents the rate of transport from the plasma

membrane to the endosome and the rate f accounts for the rate of recycling. As

the plasma membrane and the endosomal membrane have different surface areas, we

must scale the transport terms appropriately in our equations to obtain appropriate

concentrations. The yeast cells studied by our collaborators have an approximate

diameter of 5µm leading to a surface area Ap = 314µm2. Early endosomes have an

approximate average diameter of 0.5µm. With approximately 10-20 early endosomes

per cell, we estimate the total surface area of early endosomes to be Ae = 47µm2.

• Retention

We model the retention mediated by interaction with the EQRS as two separate Fur4

states, X and Xb. We do not track the amount of EQRS components in our model

as presumably there is an abundance of Rsp5, Ubp2, Rup1, and Hua1 to form the

EQRS. We assume that ubiquitinated Fur4 on the endosome bind to the EQRS at a

rate, c, and unbind at a rate, d.

• Production and Degradation

We assume that Fur4 is constitutively produced at a rate, y. Our collaborators have

estimated that the rate of production of Fur4 is ∼ 5 Fur4 per minute. As early

endosomes are constantly maturing into MVBs leading to degradation, we include a

constant rate of matruation/degradation, z.

The above transitions in our model are depicted in Figure 2.4.
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Figure 2.4: Fur4 state diagram

2.3.2 Equations

We now provide the equations corresponding the above descriptions and Figure 2.4. The

equations modeling Fur4 at the plasma membrane are

dP e

dt
= y − kSeP e + jPbe − fP e − rP e + rP i − qP e, (2.1)

dPbe

dt
= kSeP

e − jPbe − rPbe + rPbi − qPbe, (2.2)

dP i

dt
= − k

w
SP i + jPbi − rP i + rP e +

Ae
Ap
gE − qP i, (2.3)

dPbi

dt
=

k

w
SP i − jPbi − rPbi + rPbe +

Ae
Ap
gEb− qPbi − aPbi, (2.4)

dPbeu
dt

= kSeP
e
u − jPbeu − rPbeu + rPbiu + qPbe − fPbeu, (2.5)

dPue

dt
= −kSePue + jPbeu − rPue + rPui + qP e − fPue, (2.6)

dPbiu
dt

=
k

w
SP iu − jPbiu − rPbiu + rPbeu + qPbi (2.7)

+aPbi − fPbiu +
Ae
Ap
gEbu,

dP iu
dt

= − k
w
SP iu + jPbiu − rP iu + rP eu + qP i − fP iu +

Ae
Ap
gEu. (2.8)

The equations modeling Fur4 at the endosomal membrane are

dE

dt
= − k

w
SE + jEb− gE − qE + bEu, (2.9)

dEb

dt
=

k

w
SE − jEb− gEb− qEb− aEb+ bEbu, (2.10)

dEbu
dt

=
k

w
SEu − jEbu − gEbu +

Ap
Ae
fPbiu (2.11)
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+
Ap
Ae
fPbeu + qEb+ aEb− bEbu − cEbu + dXb,

dEu
dt

=
k

w
SEu + jEbu − gEu +

Ap
Ae
fP iu + qE − bEu − cEu + dX, (2.12)

dX

dt
= cEu − dX − zX, (2.13)

dXb

dt
= cEbu − dXb− zXb. (2.14)

The final equation in our system tracks the concentration of intracellular uracil. To

appropriately model uracil concentration, we must include surface area to cytoplasm ratios

to preserve correct units. Assuming the cell has a radius of 5µm, we take the cytoplasmic

volume to be V = 523µm3. Uracil is metabolized in the cell by enzymes such as Fur1 which

catalyzes its transformation into UMP [23]. We therefore model uracil metabolism using a

Mechaelis-Menten reaction rate. As the coefficients for this term are not known, we use the

reported values of Km ∼ 2.5µM and Vmax ∼ 8.8(nmol ·min−1107cells−1) for uracil uptake

by Fur4 [45]. The equation for intracellular uracil is

dS

dt
= − k

w
S
(Ap
V

(P i + P iu) +
Ae
V

(E + Eu)
)

+ j
(Ap
V

(Pbi + Pbiu) (2.15)

+
Ae
V

(Eb+ Ebu)
)

+ z
Ae
V
Xb− VmaxS

V (Km + S)
.

2.3.3 Parameters

For the parameters not explicitly mentioned in the above descriptions of state transitions,

we use order of magnitude estimates determined with the help of our collaborators. The

base set of parameters used is given in Table 2.2. We have scaled the parameters so that time

is in units of milliseconds, uracil concentrations are in units of µM, and Fur4 concentrations

are in areal concentrations (number per unit area).

2.3.4 Steady State Analysis

We wish to analyze this model at steady state and assess the affects of changing

extracellular uracil. We are able to analytically solve for the steady states of our 14 Fur4

variables as functions of S as they are each linear functions of S. This leaves us with a single

equation for the steady state of S which we are unable to solve analytically. We, therefore,

use a bisection method to numerically determine the positive steady state of S between

S = 0 and S = wSe. Given the parameters in Table 2.2, we compute the steady state of our

system for a range of Se values. In all the results that follow, we plot Fur4 as total number

of Fur4 in the cell rather than in units of areal concentration.



12

Table 2.2: Parameters

a 1 rate of ubiquitination

b 1 rate of deubiquitination

q .01 basal rate of ubiquitination

Kd .74 dissociation constant for uracil/Fur4

k j
Kd

binding rate of uracil/Fur4

w 32 scale factor for pH

j 102 unbinding rate of uracil/Fur4

r 17.915 flip rate of Fur4

f .25 transport rate of endocytosis

g .1 transport rate of recycling

c 1 binding rate of Fur4/EQRS

d .5 unbinding rate of Fur4/EQRS

y .000083 production rate of Fur4

z .002 degradation rate of Fur4

Ae 47 surface area of endosomes

Ap 314 surface area of plasma membrane

V 523 volume of cytoplasm

Vmax 8.8 · 103 maximal rate of uracil uptake

Km 2.5 Michaelis-Menten constant for uracil uptake

2.4 Results

2.4.1 Effects of Changing Extracellular Uracil

Importantly, our system reproduces the well-documented behavior that Fur4 is down-

regulated due to increasing amounts of extracellular uracil (Figure 2.5A) suggesting that

the inclusion of LID-mediated ubiquitin tagging and the EQRS is sufficient to reproduce

this behavior. Interestingly, our results suggest that most of the Fur4 downregulation

results from a decrease in plasma membrane Fur4. Our model predicts that the pool of

endosomal Fur4 remains almost constant as extracellular Se varies (Figure 2.5B). With a

nearly constant endosomal pool and plasma membrane Fur4 decreasing, we observe a switch

in the localization of Fur4 in the cell as Se increases. At low levels of Se, there is not only
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more Fur4 but the majority is located in the plasma membrane. As Se increases, more of

the total amount of Fur4 in the cell is located at the endosome. This behavior is observed

in Figure 2.5C. The severity of this switch appears to result from the ratio of the transport

parameters f and g. If recycling is far slower than endocytosis, one would expect far more

Fur4 to localize to the endosome under conditions with high extracellular uracil. In the

case where the rates are equal, this shift still occurs, however, it is slightly less dramatic.

As seen in Figure 2.6, our ODE model predicts that our functional model of Fur4

regulation as hypothesized here is indeed enough to prevent the cell from reaching toxic

levels of intracellular uracil. Even under extremely high extracellular conditions, the cell

maintains a much lower level of intracellular uracil despite having a 32-fold increase in

transport from outside to in driven by the pH discrepancy. This qualitative behavior is

seen over a wide range of parameter values. However, the quantitative levels change in

response to a changes in the parameters j, r, Vmax, and Km representing uracil transport

and metabolism. Obtaining better experimental measurements of these rates would prove

useful in predicting the actual amount of intracellular uracil present as Se increases.

2.4.2 Roles of the EQRS

One goal of our model is to better understand the role of the EQRS in Fur4 regulation.

We propose three functions for this complex in our system: ubiquitination, deubiquitination,

and retention. While the role of ubiquitination at the endosome seems intuitive to prevent

misfolded or unneeded Fur4 from recycling, the other two proposed roles of the EQRS are

not well understood. To address the role of deubiquitination, we compare the steady state

behavior shown in Figure 2.5 to the steady states observed with the deubiquitination rate,

b, set to 0 as shown in Figure 2.7.

Even without deubiquitination, we observe a decrease in total Fur4 as Se increases. We

again observe a near constant pool of Fur4 on the endosome. However, we do not observe a

switch in Fur4 localization as Se increases. Most of the total Fur4 is located at the endosome

for any given extracellular uracil concentration. The most drastic differences seen, however,

are with the total numbers of Fur4 in the cell and the amount of downregulation as Se

increases. Without deubiquitination, our model predicts that there are very low levels of

Fur4 in the cell, ∼ 31 Fur4. In addition, without deubiquitination, the model shows this

number is only decreased to∼ 28 Fur4 as Se varies from 0 to 5 µM which gives approximately

10% downregulation. With such a small amount of Fur4, it is not likely that a 10% change

will be easily observed experimentally. In contrast, when deubiquitination functions, we see
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Figure 2.5: Steady states of Fur4 as Se varies with parameters given in Table 2.2. (a) Total
number of Fur4 in the cell. (b) Number of Fur4 localized to the plasma membrane and the
endosomal membrane. (c) Proportion of total Fur4 localized to the plasma membrane and
the endosomal membrane.
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Figure 2.6: Steady state of intracellular uracil as Se varies with parameters given in Table
2.2.

an almost 90% downregulation with ∼ 850 Fur4 when no extracellular uracil is present to

∼ 100 Fur4 with Se = 5µM. The comparison of downregulation is shown in Figure 2.8A.

These results suggest that without deubiquitination, the cell degrades almost all of its Fur4

even with low extracellular uracil. Without deubiquitination, intracellular uracil levels

are kept extremely low over a wide range of extracellular uracil levels (data not shown),

but this is due to the lack of transporter in the plasma membrane. Figure 2.8B shows that

deubiquitination allows for a ten-fold increase in uracil uptake. From these data, we suggest

that deubiquitination of Fur4 at the endosome is indeed necessary in this system. Without

deubiquitination, the cell would essentially be producing Fur4 only to degrade it, which is

highly inefficient, leads to poor uracil uptake, and is energetically unfavorable.

The results presented in Figures 2.7 and 2.8 mimic mutating the active site of Ubp2.

Indeed we see much less Fur4 without deubiquitination, as was seen experimentally. The

other, seemingly contradictory, experimental result occurred from Ubp2 deletion. In this

case, experimental evidence suggests Fur4 is stabilized on the membrane. We hypothesize

that this is due to the retention function of the EQRS complex. Under this hypothesis,

deletion of Ubp2 would not only impair deubiquitination but would prevent ubiquitinated

cargo from remaining on the endosome until it is included in ILVs. We consider the effects

of Ubp2 deletion in our model by setting b = 0 and varying c, the rate of binding to the

EQRS, for a fixed extracellular uracil concentration. These results are shown in Figure 2.9.

We see that under the same extracellular uracil conditions, impairing the ability to bind

to the EQRS dramatically increased the amount of Fur4 in the cell. Our model with the

proposed functions of the EQRS is able to reproduce both experimental results.
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Figure 2.7: Steady states of Fur4 as Se varies with b = 0 and all other parameters given
in Table 2.2. (a) Total number of Fur4 in the cell. (b) Number of Fur4 localized to the
plasma membrane and the endosomal membrane. (c) Proportion of total Fur4 localized to
the plasma membrane and the endosomal membrane.
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Figure 2.8: Effects of deubiquitination. (a) Percent of downregulation with and without
deubiquitination, b = 1 and b = 0, respectively. (b) Uracil flux across the plasma membrane
with and without deubiquitination, b = 1 and b = 0, respectively.

2.4.3 Endosomal Membrane Fur4

To gain better insight into the function of the observed pool of endosomal Fur4, we use

our model to perform a time course experiment. We set the extracellular uracil to 2µM and

run the ODE to steady state. We then change the extracellular uracil to 0.5µM to observe

the transient behavior before reaching a new steady state. Figure 2.10 shows that upon a

sudden decrease in extracellular uracil, the cell quickly moves Fur4 from the endosomal pool

to the plasma membrane. Having a pool of extracellular uracil allows the cell to very quickly

respond to decreasing extracellular uracil. This seems reasonable as the cell would benefit

from having more Fur4 in the plasma membrane soon after the environmental change in

order to uptake as much uracil as it can under starvation conditions.
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Figure 2.10: Time course experiment for rapid change in extracellular uracil.

2.5 Discussion

The goal of our model was to gain insight into how ubiquitin-dependent regulation of

Fur4 is achieved. We suggest that ubiquitin is involved in three distinct events in this system.

First, Fur4 is able to be ubiquitin tagged by Rsp5 through the mechanisms elucidated by

Keener et al. in [22]. Second, Fur4 may lose its ubiquitin tag at the endosome by interaction

with Ubp2. Third, ubiquitinated Fur4 may interact with the EQRS and thereby be retained

at the endosome.

By including these three roles for ubiquitin (or lack thereof in the case of deubiquiti-

nation), we were able to create a model that reproduces the known experimental results

in situ. Our results show downregulation of Fur4 in response to increases in extracellular

uracil which is well-known experimentally. What has not been clear experimentally is the
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regulatory mechanisms of Fur4 at the early endosome. Our results suggest that deubiq-

uitination at the endosome is crucial for this regulatory system to function properly as

is retention. Without deubiquitination, we do not see marked downregulation of Fur4 in

response to increasing extracellular uracil in our model. Without deubiquitination on the

endosome, the cell is rapidly degrading Fur4 under all extracellular conditions which is both

energetically unfavorable and unlikely as it prevents efficient uracil uptake.

With our proposed roles for the EQRS, we are also able to make sense of the seemingly

contradictory experimental results that have been observed. We argue that deletion of

Ubp2 causes impaired retention function and impaired deubiquitination while mutating the

Ubp2 active site only causes impaired deubiquitination. Removing deubiquitination results

in very low levels of Fur4 while decreasing retention function and removing deubiquitination

results in increased levels of Fur4 in the cell mimicking the experimental results.

Surprisingly, our results predict an almost constant pool of endosomal Fur4 over a wide

range of extracellular conditions. Using a time course experiment, our model suggests that

upon a switch to starvation conditions, the cell will quickly move some of this endosomal

Fur4 pool to the plasma membrane giving the cell a better chance for maintaining uracil

uptake. It will be interesting to see if this prediction holds in the lab.

As a whole, our work suggests that the EQRS plays a very important role in ubiquitin-

dependent Fur4 regulation.



CHAPTER 3

ESCRT-MEDIATED PROTEIN SORTING

3.1 ESCRT Overview

In this chapter, we focus on the mechanism by which ubiquitinated proteins are packaged

for inclusion into ILVs in the MVB pathway. This process is downstream from the events

involving the early endosome we discussed in Chapter 3. Endosomal Sorting Complexes Re-

quired for Transport (ESCRTs) are responsible for sorting ubiquitinated proteins (cargoes)

from untagged proteins (non-cargoes) on the membrane of late endosomes and packaging

them for inclusion into ILVs. Since their discovery nearly 15 years ago, the ESCRT literature

has been quickly growing. In 2010, Hurley reviewed the current state of ESCRT knowledge

and asserted that this may be the last time such a review would be possible with the

knowledge base expanding so quickly [19]. While much has been discovered about the

structure and function of the individual ESCRT proteins, it still remains unclear as to how

they assemble on the endosomal membrane and facilitate protein sorting during the process

of ILV formation. In this work, we seek to better understand the process of ESCRT-mediated

protein sorting.

The ESCRT proteins assemble on the endosomal membrane through interactions with

each other, the lipid phosphatidylinositol 3-phosphate (PI(3)P), and cargo mediated by

ubiquitin [19, 49]. There are four distinct ESCRT proteins: ESCRT-0, ESCRT-I, ESCRT-II,

and ESCRT-III. At least 11 different ubiquitin binding domains have been discovered among

the ESCRT-0, -I, and -II, all of which have low binding affinities [42]. There is experimental

evidence that the ESCRT components bind in a linear fashion, i.e., ESCRT-0 binds to

ESCRT-I, ESCRT-I binds to ESCRT-II, and ESCRT-II binds to ESCRT-III (Figure 3.1).

This linear order of ESCRT binding does not, however, necessitate a linear geometry for

ESCRT complex structures on the endosomal membrane as individual ESCRTs are reported

to have stable cores while being flexibly connected [48]. Upon ILV formation, the ESCRTs

are released back into the cytoplasm while cargo is included in ILVs.

Questions remain as to how sorting and packaging of cargo are achieved. Various
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Figure 3.1: The ESCRT complexes. Reprinted with permission from [48]

hypotheses for functional models of sorting have previously been described. In 2002, Babst

et al. presented the first functional sorting model suggesting that ESCRT-I binds to cargo

leading to recruitment of ESCRT-II followed by ESCRT-III. ESCRT-III was then proposed

to be the main player in sorting and packaging cargo into ILVs [2]. Subsequent research has

shown that ESCRT-III does not contain ubiquitin binding domains and that ESCRT-0 plays

a crucial role in this process. In 2007, Nickerson et al. presented a concentric circle model

for ESCRT sorting with a strict arrangement of the ESCRT proteins centered around an

ESCRT-0 hub [34]. While this model meets known expermental data, it is not immediately

clear how cargo is concentrated into vesicles in this model. As cargo are packaged into

vesicles, a circular model is appealing. Without specifying the exact arrangements of the

ESCRTs, we previously hypothesized that the ESCRTs polymerize into a ring-like structure

with cargo initially outside the ring. Cargo would then need to move through the ESCRT

ring for inclusion into ILVs. We hypothesized that Doa4 may be localized to the interior of

this ring, thereby removing the ubiquitin tag preventing the cargo from leaving once inside.

A simple cellular automata model revealed that this model did not seem possible without

far-reaching assumptions not yet founded in experimental evidence. In 2009, Shields et

al. suggested yet another functional model for protein sorting with ESCRT-0, -I, and -II

each recognizing a different subset of ubiquitinated cargo in order to facilitate the sorting

of a wide variety of ubiquitinated transmembrane proteins [40]. Even more hypotheses for

ESCRT sorting have been proposed in addition to those already mentioned [7, 43, 30]. It is

clear from the wide range of hypotheses, from those considered experts in the ESCRT field,

that sorting and packaging into ILVs is not well understood.

Recent data from our collaborators provide new insight into ESCRT-mediated protein

sorting. In the remainder of this chapter, we present an overview of the experimental results

from our collaborators and our mathematical work which was published in Traffic in 2013,
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“Binding to Any ESCRT Can Mediate Ubiquitin-Independent Cargo Sorting” [28]. Figures

and text are reproduced in this dissertation with permission.

3.2 Binding to Any ESCRT Can Mediate
Ubiquitin-Independent Cargo Sorting

It has been shown that the ESCRT proteins themselves are ubiquitinated. This raises

the question as to why the ESCRTs are recycled to the cytoplasm and are not packaged into

ILVs if ubiquitin is the only necessary tag for a cargo protein to be sorted and packaged. To

better understand the rules that distinguish cargo from ESCRTs, the trafficking of artificial

ESCRT-like protein fusions (GFP-FYVE) was analyzed. Interestingly, these studies showed

that binding to any ESCRT can mediate cargo sorting. Even ESCRT-III, which lacks the

ability to interact with cargo under normal circumstances, was able to mediate inclusion

of ESCRT-like protein fusions in ILVs. Further, these protein fusions had the ability to

behave as cargo, leading to inclusion in ILVs, and to behave as ESCRTs, recycling back to

the cytoplasm. These studies revealed that ESCRT-like proteins with high affinity for the

endogenous ESCRT machinery behaved like ESCRTs while ESCRT-like proteins with lower

affinity for ESCRT behaved like cargo. These suggest that ESCRTs and their cargoes are

very similar. To explain these results, we hypothesize that a flexible network of ESCRT

and cargo is sufficient to achieve proper sorting.

We propose a model in which cargo triggers the polymerization of ESCRTs into flexible

and unstructured networks of both ESCRTs and cargoes on the endosomal membrane.

While the structure of individual ESCRTs and their interactions with each other is well

defined, we do not specify an ordered arrangement for ESCRTs within networks. A simpli-

fication of this functional model is 2D network polymerization with only two components:

ESCRTs and cargoes, where we do not account for the specific details of each ESCRT

complex. In order to be a valid hypothesis, this model must be able to efficiently sort cargo

while excluding non-cargo. To address this, we have developed a cellular automata model

for the polymerization of 2D ESCRT-cargo networks.

For this model we use a 2D hexagonal grid which mimics the endosomal membrane and

we allow proteins to move and interact randomly. Our model contains four types of proteins:

ESCRTs containing one cargo-binding site and up to five ESCRT-ESCRT interaction sites,

cargoes, non-cargoes, and GFP-FYVE (cargo mimics). The cargo-mimic in our model

represents the artificial fusions used in the lab and is able to interact with ESCRTs through

an ESCRT-ESCRT interaction site. The details of our model are as follows.
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3.2.1 Cellular Automata Model

MATLAB was used to run all computer simulations. A cellular automata model was

employed on a two-dimensional hexagonal grid. The grid size used in all simulations is 28 by

28. The simulation involves randomly selecting grid points and updating the grid according

to a given set of rules for assigning probabilities of updates according to the current state

of the grid. Inputs to the simulation include: 1) initial proportions of cargo, non-cargo,

and GFP-FYVE construct in the grid, 2) number of ESCRT - ESCRT binding sites, 3)

parameters specifying propensities for diffusion, ESCRT - ESCRT binding, ESCRT -cargo

binding, ESCRT - GFP-FYVE binding , ESCRT removal, unbinding, and critical vesicle

size. Every protein in the grid is associated with a network which includes all the proteins

it is connected to through bonds. An unbound protein is simply considered a network of

one protein. As proteins bind together, larger networks are formed. Updates may affect the

entire network of the grid point selected and not just the individual grid point selected to

update. Potential updates are determined by the following rules for each type of update.

3.2.1.1 Rules for ESCRT Complex Formation

1. Recruitment of ESCRTs

ESCRTs are recruited to an empty grid point if there is at least one cargo in an

adjacent grid point. The recruited ESCRT is bound to an adjacent cargo.

2. Removal of ESCRTs

Unbound ESCRTs may be removed from the grid. Upon removal, the current grid

point becomes empty. Due to our choice of parameters, it is almost certain that an

unbound ESCRT will be removed from the grid.

3. Binding

The hexagonal grid allows for up to six bindings per protein. However, cargo and

GFP-FYVE are limited to one binding. ESCRTs have one cargo binding site and up

to five ESCRT binding sites. The number of allowed ESCRT binding sites is specified

as an input. If GFP-FYVE is present in the simulation, it may occupy one of the

ESCRT binding sites of an ESCRT. Cargo may bind to one ESCRT. GFP-FYVE may

bind to one ESCRT. ESCRTs may bind to one cargo, one GFP-FYVE (if present),

and up to five other ESCRTS.

4. Unbinding

Cargo may only unbind if its network is an ESCRT cargo pair. If a cargo is part

of a network of three or more proteins, the cargo is prohibited from unbinding. An
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ESCRT may unbind if it has only a single bond with another ESCRT and no other

interactions. GFP-FYVE is prohibited from unbinding once it is bound to an ESCRT.

5. Diffusion

Networks of any size are allowed to move in any of six directions (up left, down right,

up right, down left, left, right) if all of the adjacent grid spaces to the network in that

direction are empty. If any adjacent space is occupied by a protein, including adjacent

spaces in the interior of the network, movement of the network is prohibited.

6. Rotation

Any protein bound to only one other protein is allowed to rotate clockwise if the

adjacent grid space in the clockwise direction is empty. Similarly, a protein bound to

only one other protein is allowed to rotate in the counter-clockwise direction.

7. Removal of networks and trapped non-cargoes

As networks grow they may be removed from the system mimicking vesicle formation.

An input to the simulation is critical vesicle size, which is defined as a sufficient

number of proteins included in a network in order to form a vesicle. We calculate the

value V (N) = 1
1+e−(N−C) where N is the size of the network defined by the number of

proteins in the network and C is the critical vesicle size. As a function of N, V is a

sigmoid function centered at C. If the computed value of V is greater than a randomly

generated number, the entire network is removed from the grid and every grid point

occupied by the network becomes empty. As a network grows it is more likely to

be removed from the grid as V is an increasing function. A network rarely grows

much larger than the critical vesicle size due to the nature of V(N). In addition, small

networks are almost never removed from the grid. It is possible that non-cargo may

be trapped in a network which is selected to be removed from the grid. A non-cargo is

considered trapped if 1) it is in an interior row of the current network and 2) in each

interior row of the network, it is in an interior column of that row. If a non-cargo is

trapped when a network is removed, it is also removed with the network and the grid

point occupied by that non-cargo becomes empty. This is the only way that non-cargo

can be removed from the grid.

3.2.1.2 Determination of Probabilities

The probability of each allowable update for a selected non-empty grid point is deter-

mined by the propensity for that update scaled by the sum of propensities for all allowable

updates. Therefore, the probabilities of all possible updates sum to one. Further, if only
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one update is allowable, that update will be selected with probability one. If an empty

grid point is selected, an ESCRT will be recruited with probability one if at least one cargo

occupies an adjacent grid point. Otherwise, the empty grid space remains empty.

3.2.1.3 Simulation

To begin each simulation, a random grid is generated based on the initial proportions of

cargo, non-cargo, and GFP-FYVE specified. Following the initial grid setup, the simulation

repeats as follows until a specified number of runs are completed. Updates to the grid are

selected based on the calculated probabilities.

1. Randomly select a grid point.

2. Determine the occupancy type of all the grid points adjacent to the current grid point.

3. Is the current grid point empty?

• Yes: Move to step 4.

• No: Move to step 5.

4. Recruit an ESCRT?

• Yes: Add an ESCRT to the current grid point, bind the ESCRT to an adjacent

cargo, and begin again with step 1.

• No: Begin again with step 1.

5. Remove network of current grid point?

• Yes: Remove network (along with any trapped non-cargo) and begin again with

step 1.

• No: Move to step 6.

6. Determine what updates are possible for the current grid point or the network of the

current grid point.

7. Is there at least one possible update?

• Yes: Randomly select one of the possible updates and update the grid. Begin

again with step 1.

• No: Begin again with step 1.
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3.2.1.4 Propensity parameters

While initial proportions and number of ESCRT - ESCRT bindings varied for the results

shown, the propensity parameters used for all simulations are as follows:

Diffusion (for all proteins): 1, ESCRT ESCRT binding: 10, ESCRT Cargo binding:

10, ESCRT GFP-Fyve binding: 10, ESCRT Removal: 1000, Unbinding: 1, and Critical

Vesicle Size: 20.

We set the propensity parameters for binding to be equal, independent of protein type.

However, since the updates are determined by the calculated probabilities, an ESCRT (with

5 ESCRT ESCRT interaction sites) is usually more likely to associate with another ESCRT

than a cargo since it has 5 ESCRT interaction sites and only one cargo interaction site. In

this type of probability driven model, binding affinities are not explicitly specified, rather,

the qualitative behavior of the protein interactions were accounted for.

For each set of initial proportions of proteins 20 simulations were completed. The

amounts of each type of protein (cargo, non-cargo, ESCRT, and GFP-FYVE) were recorded

at 100 intervals of 2500 steps of each simulation. The data from each simulation were

normalized by dividing by the total number of grid spaces (in this case 282) giving a

grid concentration of each protein type. The average and standard deviation of the 20

simulations were calculated. Movie frames were captured every 250 runs of a simulation

and include 700 frames. Still images of the same simulation were recorded every 25,000

runs of the simulation.

3.2.2 Results

We ran our cellular automata model for different starting conditions and found that

sorting efficiency and fidelity was high. Sample snapshots from a run of our simulation

and our results are given in Figure 3.2. Figure 3.3 gives results of the model under

specified conditions. Our model is indeed able to sort cargo while excluding non-cargo

in each case. This suggests that a flexible network of ESCRT-cargo is sufficient for proper

sorting contrasting the previously proposed highly ordered models of ESCRT-cargo network

formation. In addition, the inclusion of a cargo-mimic (GFP-FYVE) did not disrupt the

sorting efficiency and both cargoes and GFP-FYVE were efficiently sorted. We ran the

model for different number of possible ESCRT-ESCRT interactions and the sorting efficiency

was maintained with 3, 4, or 5 ESCRT-ESCRT interactions.
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Figure 3.2: Snapshots of a simulation with five 5 ESCRT-ESCRT interaction sites. Cargoes
are in red, non-cargoes in green, and ESCRTs in black. Black lines indicate interactions
between components. A movie of this simulation can be found in Supporting Information
of [28].

3.3 Discussion

In order to achieve proper sorting the specified rules for updates were found to be

essential. Of particular importance is the rule that ESCRTs are recruited and stabilized

on the membrane through interactions to cargo. Without this rule, ESCRTs are able to

polymerize into large networks without any cargo present. This rule is consistent with

data demonstrating the necessity of ubiquitinated cargo for ESCRT function [27]. In our

current model, we also make the assumption that ESCRT interactions with cargo are stable

in networks of more than three proteins although it is well known that UBDs have very

low affinity. Recent evidence suggests the possibility of more stable interactions with cargo

by showing that two domains of ESCRT-0 function together in binding cargo [42]. This

provides some justification for this proposed rule, at least in the case of ESCRT-0.

With the proper rules for sorting as specified, we observe that a flexible network of

ESCRTs is enough to achieve efficient sorting with the exclusion of non-cargo. The number

of ESCRT-ESCRT interactions also does not appear to have an impact on sorting. This

result is promising as no individual ESCRT has been shown to have 5 ESCRT-ESCRT

interactions sites. Further, inclusion of a cargo-mimic did not interupt the sorting efficiency.

While these are important qualitative results, we recognize drawbacks to our current
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(a)

(b)

(c)

Figure 3.3: Average % of grid area occupied by different components under the specified
conditions for 20 simulations. (a) 5 ESCRT-ESCRT interaction sites. (b) 3 ESCRT-ESCRT
interaction sites. (c) Inclusion of GFP-FYVE with 5 ESCRT-ESCRT interaction sites
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cellular automata model. Our model only allows each ESCRT to bind to one cargo at a

time. While this may be likely for ESCRT-I and ESCRT-II, it has been shown that ESCRT-0

is able to simultaneously bind multiple ubiquitinated cargoes [30]. In order to assess the

effects of this binding we would need to specify different ESCRT components in our model.

While the concept of a cellular automata model is quite simple, appropriate coding of the

specified rules is not trivial. Including more ESCRTs with different rules would likely not

be worth the effort as our results would still be purely qualitative and we believe we will

still be able to achieve high fidelity sorting. Further, it is not clear how to appropriately

include true reaction rates in our cellular automata model as there is no true time. For

example, diffusion and binding rates are not accurately modeled in this system but are

rather specified by propensities. The probability of a certain update is highly dependent on

the number and nature of allowable updates rather than on true kinetic rate parameters.

We began to explore ways to parameterize our model more appropriately and real-

ized that there is little known about how to appropriately model protein interactions on

membranes. Binding affinities, such as those reported for UBDs, are typically reported as

dissociation constants (Kds) which have units of concentration. These units to not apply to

binding affinities on membranes. We, likewise, realized that there is no well accepted way to

transform a three dimensional dissociation constant, with units of concentration, to a two

dimensional dissociation constant. Not only do we not know how to include proper rates

into our model, we also do not have proper experimental rates for interactions of proteins

on membranes.

As a conclusion to this chapter, we propose that a flexible ESCRT-cargo network is

sufficient to achieve efficient sorting. We further explore ESCRT mediated protein sorting in

Chapter 5 after exploring the general consequences of dimensionality in protein interactions

in the next chapter.



CHAPTER 4

DIMENSIONAL DEPENDENCE OF

BINDING KINETICS

4.1 The Dissociation Constant, Kd

Binding affinities of proteins which interact with one another are usually expressed in

terms of Kd, the dissociation constant. As a simple mathematical example, consider the

following binding reaction between two proteins, A and B, which are able to reversibly bind

forming complex C,

A+B
k+
�
k−

C. (4.1)

Using the law of mass action, we model the change in concentration of complex C,

dC

dt
= k+AB − k−C. (4.2)

If the proteins are in a three-dimensional space measured in units of volume concentration,

k+ has units of (concentration · time)−1 and k− has units of (time)−1. At steady state, it

follows that

k−
k+

=
AB

C
. (4.3)

The above value is defined as the Kd for this reaction and has units of volume con-

centration in three-dimensional space. This is the traditional definition of Kd. However,

if the proteins are membrane-bound, their concentrations are measured in units of areal

concentration which leads to a Kd with units of areal concentration not volume concentra-

tion. Most experimentally measured Kds are measured in solution and given in units of

volume concentration. This is especially true in the case of soluble proteins which can also

be membrane bound. This begs the question, what does Kd mean in two dimensions and

is there a way to convert a traditional three-dimensional Kd into a two-dimensional Kd in

order to appropriately model protein interactions on membranes? Others have also noticed

this problem of understanding dissociation constants in two dimensions. The first attempt
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we are aware of to address this issue were presented by Bell et al. as described in [3, 50].

They suggest a very simple conversion of between two- and three-dimensional Kds in the

context of bonds between cell-cell adhesion receptors,

K
(2)
d = ξK

(3)
d . (4.4)

This conversion relies on what is termed the confinement length, ξ. If we think of

traditional x, y, and z coordinates with the x-y plane being the membrane of interest, ξ

represents the z length of the molecule confined to the membrane during cell-cell adhesion.

Indeed this conversion produces the correct units for Kds in both dimensions and is appeal-

ing in its simplicity. In 2011, Wu et al. addressed the transformation of three-dimensional

binding affinities to two-dimensional binding affinities in the context of cadherin clustering.

[50] They recognize that while experimental studies have been performed to determine

the confinement length, ξ, for different proteins [10] there is much variation among these

measurements. They use very specific properties of cadherin molecules to formulate more

complex transformations between 3D and 2D Kds for this specific case. They specify two

types of cadherin interactions termed trans and cis interactions. Trans interactions are

interactions between cadherin molecules on different cell membranes during adhesion and

cis interactions are interactions between cadhering molecules on the same membrane. Cis

interactions are the type of interactions we are currently interested in. Wu et al. use very

specific properties of caherin molecules to formulate more complex transformations between

3D and 2D Kds than a simple confinement length for both trans and cis interactions. Dustin

et al. also suggest that relationships between Kds in two and three dimensions for cell-cell

adhesion molecules are much more involved than the previous simple transformation.

As opposed to trying to better determine a confinement length for the specific proteins

we are interested in, we have chosen to address the problem from an entirely different

viewpoint beginning with the essential features of protein interactions. In the remainder of

this chapter, we consider the essential features of protein interactions and how to calculate

binding rates and dissociation constants of protein interactions in one, two, and three

dimensions using stochastic methods. Many have worked to determine protein interaction

rates in three dimensions. Less work has been done to determine binding rates in lower

dimensions. In the 1980s, diffusion limited interaction rates in membranes were studied

by considering the probability of first return for a random walk on a lattice [44]. Here we

present a novel approach to determining interaction rates by considering the general problem

of two particle interaction in one, two, and three dimensions. Our calculations do not rely

on the interaction being either diffusion limited or reaction limited. Further, we explore
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protein associations in domains with both periodic boundaries and no flux boundaries. We

also calculate dissociation constants for reversible binding reactions and provide a general

transformation between dissociation constants in two and three dimensions. Our work

suggests that transformations of dissociation constants between dimensions is, in general,

much more complex than previously suggested.

4.2 Essential Features of Protein Interactions

At its most basic description, protein-protein interaction is defined by interactions

between a region of one protein and a region of another. These regions that interact are

termed binding sites. With these simple definitions in mind, there are essentially only two

necessary conditions for protein protein interaction.

1. Proteins must be in sufficient proximity to allow for binding.

2. Binding sites must be properly oriented in order to interact.

These are the two features at the core of our binding models. We argue that dimen-

sionality affects both features. Diffusion coefficients for proteins are indeed different on

membranes than in solution [38]. In addition, proteins associated with membranes are fixed

in a particular orientation as directed by their membrane associations.

4.3 Orientational Constraints

To better understand the effects of orientational constraints, we introduce a highly

simplified model with two cubical proteins, each of which contain one binding site on one

of their faces. Assuming that proteins are in sufficient proximity to bind, we calculate the

probabilities that they are oriented correctly to facilitate binding under the assumption

that all orientations are equally likely. In our model, we allow for 6 different orientations in

three dimensions and 4 different orientations in 2 dimensions. One can think of this highly

simplified model as two dice on a table that are close together which may only interact if the

adjacent surfaces are both showing the number 3. In three dimensions, each die has a 1 in 6

chance of being oriented correctly. As the dice are independent, this leads to a probability

of 1
36 that they are able to interact. Now suppose that to change between orientations the

dice must remain on the table at all times. This leads to only 4 possible configurations for

each die and the probability of interaction depends on where the face showing the number

3 is positioned relative to the surface of the table. If both die have the face with number

3 as a possible interaction face, there is a 1 in 4 chance of each protein being oriented



33

correctly leading to an interaction probability of 1
16 , over double the probability calculated

in three dimensions. On the other hand, if the face showing the number 3 is not in the

plane of interaction, the probability of interaction is 0 as the binding sites will never come

in contact with one another. This simple example is depicted in Figure 4.1 and illustrates

the point that orientational constraints greatly affect proteins’ abilities to interact with one

another. We, therefore, argue that having an understanding of location of binding sites

in two and three dimensions is essential for understanding Kds and how to convert them

between dimensions.

4.4 Discrete Space Binding Model

We now present a discrete space model for two particle interactions in one, two, and

three dimensions. With the two essential features of protein interaction in mind, we seek

to calculate the expected time of interaction between two particles. As opposed to tracking

the two particles independently, we instead track the distance between the two particles

thereby decreasing our state space. We begin by outlining this model in one dimension.

We discretize our state space using the interaction radius of the two particles which we call

h. We define h as the distance of sufficient proximity between two particles that allows for

interaction. For a one-dimensional domain of length L, we define N to be L
h , the number

of grid points on which the proteins move. To track the distance between the particles, we

need to determine the state space for our distance model. In one dimension, the distance

state space is the number of grid spaces between the proteins. If the proteins occupy the

same grid point, we call this state 0 as they are considered to be ”zero distance” apart on

Figure 4.1: Example of orientational constraints in 3D vs. 2D.
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the grid. If the proteins occupy adjacent grid spaces, they are in state 1, and so on. The

maximal possible distance between the particles depends on the boundary conditions of the

grid on which the proteins move. If the particles move on a periodic domain, the maximal

possible distance, Mp, is N
2 . If the particles move on a domain with no flux boundaries, the

maximal possible distance, Mnf , is N − 1.

We assume that both particles diffuse at a rate δ and if they occupy the same grid

space will bind at rate k. Taking into consideration the orientational constraints, we define

k = k̂ρ where ρ represents the probability to bind given the two particles occupy the same

grid space and have ”zero distance”. In general ρ = ρ(d) as it is dimensionally dependent

as it depends on orientational constraints. The rate k̂ represents the true rate of binding,

i.e., the rate at which two binding sites interact when they are oriented correctly and in

sufficient proximity. We argue that k̂ is a feature of the binding regions themselves and

is independent of dimension. This model setup leads to the following state diagram where

the state I represents interaction of the particles and state M is the maximal distance,

dependent on boundary conditions:

I
k←0 � 1 � 2 � · · ·�M. (4.5)

Given random starting positions for both proteins, we seek to determine the time it takes

for them to interact, a stochastic exit time problem. The rates at which proteins transition

between states in this distance space are dependent on the boundary conditions we impose

on the particles. If the particles move in a domain with periodic boundaries, we are able

to compute the transitions exactly. In the case of no flux boundaries, we can compute

approximate transitions assuming that all possible ways to be in a given difference state

are equally likely. To compute these rates, we calculate the number of possible ways to

transition from state i to state j and divide by the number of possible ways to be in state i

given that each particle moves at rate δ. In one dimension, we now have two state diagrams

depending on boundary conditions.

In the case of periodic boundaries, we take M = Mp and use the following transition

diagram:

I
k←0

4δ
�
2δ

1
2δ
�
2δ

2
2δ
�
2δ
· · · (M − 2)

2δ
�
2δ

(M − 1)
2δ
�
4δ
M. (4.6)

In the case of no flux boundaries, we take M = Mnf and use the following transition

diagram:

I
k←0

4(N−1)δ
N

�
2δ

1

2(N−2)δ
(N−1)

�
2δ

2

2(N−3)δ
(N−2)

�
2δ

· · · (M − 2)

2(N−(M−1))δ
(N−(M−2))

�
2δ

(M − 1)

2(N−M)δ
(N−(M−1))

�
2δ

M. (4.7)
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For the remainder of our computations, we use the case where the particles move in

a domain with periodic boundaries and note that the calculations are similar in the no

flux case. We now write down the differential equation of this process with Pj being the

probability of being in state j,

d

dt



PI
P0

P1
...
...
PM


=



k
−(k + 4δ) 2δ

2δ −4δ 2δ
. . .

. . .
. . .

2δ −4δ 4δ
2δ −4δ





PI
P0

P1
...
...
PM


. (4.8)

We now wish to calculate the expected time for the two particles to interact given that

they have random starting positions on the grid. Alternatively, this is the time it takes to

leave the system through state I. We call the expected interaction time, T , and calculate

it as follows with details included in Appendix B for calculating general discrete space

stochastic exit times:

T = −1TW−1Po (4.9)

where

W =


−(k + 4δ) 2δ

4δ −4δ 2δ
. . .

. . .
. . .

2δ −4δ 4δ
2δ −4δ

 (4.10)

and 1 is the (M + 1) by 1 vector of all ones. Po is the (M + 1) by 1 vector of initial

probabilities in our difference states assuming random starting positions for both particles

on a periodic grid,

Po =



1
N

2
N

2
N
...

2
N

2
N

1
N


. (4.11)

This initial vector, Po is different for the case of no flux boundaries. We now must compute

W−1. We can rewrite the matrix W as W = δL− kE where
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L =


−4 2
4 −4 2

. . .
. . .

. . .

2 −4 4
2 −4

 , (4.12)

and

E =


1 0 0 · · · 0
0 0 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0 0 0
0 0 0 0 0

 . (4.13)

In this case and for any L with zero column sum, we can prove that W−1 is of the form

W−1 =
A

δ
− Π

k
, (4.14)

where A and Π are independent of both δ and k, and Π = φ1T where φ is an element of

the null space of L normalized such that φ(1) = 1. This proof is included in Appendix B.

We now find that the expected time for the particles to interact is

T = −1T
(
A

δ
− Π

k

)
Po (4.15)

=
−1TAPo

δ
+

1Tφ1TPo
k

. (4.16)

In one dimension, 1Tφ1TPo = N . In general, this quantity is Nd where d specifies the

dimension. We now need to determine the value of −1TAPo which we call R. We are

not able to solve for R analytically so we turn to numerical methods. We use Matlab to

calculate T using a linear solve to compute W−1Po. We then can calculate R,

R =

(
T − N

k

)
δ. (4.17)

We do this calculation for a range of N values as we know R is a function of N only and

use Matlab to fit R as a function of N .

In one dimension, we are able to fit R exactly. In the case of periodic boundaries we

calculate

R =
N2 − 1

24
. (4.18)

In the case of no flux boundaries, we calculate

R =
N2

16
+
N

24
− 1

15
. (4.19)

.
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While the coefficients differ, we see that, with either choice of boundary conditions, R is

a quadratic function of N . We now can express our expected interaction time, T , in one

dimension, as follows. For periodic boundaries,

T =
N2−1

24

δ
+
N

k
. (4.20)

For no flux boundaries,

T =
N2

16 + N
24 −

1
15

δ
+
N

k
. (4.21)

The above calculations can be extended to both two and three dimensions. In two

dimensions, we allow the particles to diffuse on an N by N grid and we track the difference

between them in both dimensions. The state transitions in two dimensions are as follows:

I ← (0, 0) � (0, 1) � · · · � (0,M)
↑↓ ↑↓ ↑↓

(1, 0) � (1, 1) � · · · � (1,M)
↑↓ ↑↓ ↑↓ ↑↓
... · · ·

... · · ·
... · · ·

...
↑↓ ↑↓ ↑↓ ↑↓

(M, 0) � (M, 1) � · · · � (M,M)

. (4.22)

We assume that the directions of movement are independent and can therefore use the

one-dimensional rates to determine the appropriate rates in higher dimensions. The matrix

W in two dimensions is M2 by M2 and in three dimensions W is M3 by M3. The W

matrices in both cases are block diagonal and the form of W−1 as given in (4.14) still holds

as the matrices again may be written as W = δL − kE with L having zero column sum.

Therefore, we can calculate the value of R in higher dimensions as we have above. However,

computing W−1Po becomes increasingly computationally intensive as N increases in two

and three dimensions. Due to this issue, we are limited in the range of N values we can use

to fit R in higher dimensions. Regardless, we are still able to obtain the following forms of

R.

For particles in 2D with periodic boundaries,

R =

(
1

12
N2 + 0.1758N − 2.112

)
ln(N). (4.23)

For particles in 2D with no flux boundaries,

R =

(
12

125
N2 + 0.4413N − 1.5443

)
ln(N). (4.24)

For particles in 3D with periodic boundaries,

R = 0.1264N3 − 0.1128N2 − 0.0023N + 0.0437. (4.25)
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For particles 2D with periodic boundaries,

R = 0.1277N3 + 0.2001N2 − 0.6116N + 0.8163. (4.26)

If we assume that L >> h, which is reasonable for most protein protein interactions,

then N >> 1 and we only consider the leading order behavior. As such, we can summarize

the expected interaction times as follows. We use subscripts to denote boundary conditions

and superscripts to denote dimension. We find

T (1)
p =

1
24N

2

δ
+
N

k
, (4.27)

T
(1)
nf =

1
16N

2

δ
+
N

k
, (4.28)

T (2)
p =

1
12N

2 lnN

δ
+
N2

k
, (4.29)

T
(2)
nf =

12
125N

2 lnN

δ
+
N2

k
, (4.30)

T (3)
p =

0.1264N3

δ
+
N3

k
, (4.31)

T
(3)
nf =

0.1277N3

δ
+
N3

k
. (4.32)

To validate these results, we perform Gillespie simulations of this process in each case and

calculate the average interaction time over many simulations. We observe good agreement

between the interaction times reported above and the average interaction times of our

Gillespie simulations. The agreement is better for periodic boundary conditions than it is

for no flux boundary conditions which is expected as the no flux transition rates in our model

are only approximate. For example, consider a 1D grid with N = 10. Let δ = 1 and k = .1

both with units of inverse seconds. For periodic boundaries T
(1)
p = 1

24102 + 10
.1 ≈ 104.1667sec

and the mean interaction time of 50,000 Gillespie simulations is 104.2193sec. For no flux

boundaries T
(1)
nf = 1

16102 + 10
.1 = 106.25sec and the mean interaction time of 50,000 Gillespie

simulations is 108.611sec.

Our calculations in this section suggest that the expected interaction times for two

diffusing particles are dependent on diffusion, true binding rate, probability of correct

orientation, size of the domain, interaction radius of the particles, and dimension. We

explore this interaction time problem further in the next three sections and then employ

our results to discuss dissociation constants in one, two, and three dimensions.

4.5 Result of Periodic Boundaries

If we assume the particles move on a grid with periodic boundaries we find that tracking

the distance between the two particles, each moving with diffusion rate δ, is the same
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as tracking the position of one particle with diffusion rate 2δ. We can easily see this by

comparing the transition matrices in both cases. Suppose we have one particle moving on

a 1D grid of size N . This particle may interact at a rate k if it is at position 0. The W

matrix (N by N) for this problem is

W =


−(k + 2δ) δ δ

δ −2δ δ
. . .

. . .
. . .

δ −2δ δ
δ δ −δ

 . (4.33)

Now consider that instead of tracking the position of the particle, we track its distance

from position 0. This results in the following matrix where the periodic terms are collapsed

onto the off diagonals. This new W matrix has size (M + 1) by (M + 1),

W =


−(k + 2δ) δ

2δ −2δ δ
. . .

. . .
. . .

δ −2δ 2δ
δ −δ

 . (4.34)

This matrix is the same as the original W matrix (4.10) scaled by 2. Therefore, we

observe that the interaction time problem of two particles, both moving at rate δ, on a

periodic domain of size N is the same as the interaction time problems for one particle,

moving at rate 2δ on a periodic domain of size N . We employ this fact in the next two

sections.

4.6 Eigenvalue Decomposition

The computations in Section 5.4 rely on numerical computation of W−1. As previously

explained, this computation becomes very computationally intensive for higher dimensions.

We are limited for the N values for which we can compute R. We address this here by

computing R in a different way. Recall that R = −1TAPo. Suppose we guess that APo =

αPo+Φβ where α is a scalar, β is a matrix, and Φ is the matrix of eigenvectors corresponding

to non-zero eigenvectors Λ of L, LΦ = ΦΛ.

With the given forms of W = δL − kE and W−1 = A
δ −

Π
k , we have the following two

conditions which we use to solve for α and β:

LAPo = Po − e, (4.35)

EAPo = 0. (4.36)
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With our guess of APo = αPo + Φβ, (4.35) yields,

LAPo = αLPo + LΦβ = Po − e. (4.37)

Since Po is in the nullspace of L, it follows that

LΦβ = Po − e. (4.38)

Using the fact that LΦ = ΦΛ, we see that

ΦΛβ = Po − e. (4.39)

Let Ψ represent the matrix of left eigenvectors of L, ΨL = ΛΨ. If we choose the

eigenvectors such that they form a biorthogonal set, then ΨΦ = I. In fact, for our case, it

turns out that Ψ = Φ∗ as L is a self adjoint matrix. Therefore,

Λβ = Φ∗(Po − e). (4.40)

Inverting Λ and applying to both sides yields,

β = Λ−1Φ∗(Po − e). (4.41)

We now know β and from (4.36) we see that

EAPo = αEPo − EΦΛ−1Φ∗(Po − e) = 0. (4.42)

Therefore,

α =
[EΦΛ−1Φ∗(Po − e)](1)

Po(1)
. (4.43)

where Po(1) represents the first element of the vector Po and [EΦΛ−1Φ∗(Po − e)](1) repre-

sents the first element of the vector [EΦΛ−1Φ∗(Po − e)]. Recall that we wish to calculate

R which is −1TAPo. With our guess of APo = αPo + Φβ we see that,

−1TAPo = −1TαPo − 1TΦβ (4.44)

= −α1TPo (4.45)

= −α. (4.46)

Therefore, R = −α which may be calculated from (4.43). We now can determine R using

the eigenvalues and eigenvectors of L. As mentioned in the previous section, to solve our

problem on a periodic domain, it suffices to solve the problem of one particle moving on a
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periodic domain of size N . Therefore, we compute the eigenvalues and eigenvectors for the

L matrix below of size N by N ,

L =


−4 2 2
2 −4 2

. . .
. . .

. . .

2 −4 2
2 2 −4

 . (4.47)

The non-zero eigenvalues and corresponding eigenvectors for this matrix can be written

as follows with j corresponding to the component of the kth eigenvector. In this case, we

have N−1 eigenvectors each with N components since we are only considering the non-zero

eigenvalues and their corresponding eigenvectors. The eigenvalues and eigenvectors are

λk = −8 sin2

(
πk

N

)
, (4.48)

φ(k,j) =
1√
N
e(

2πijk
N ), (4.49)

φ∗j(k,j) =
1√
N
e(

−2πijk
N ). (4.50)

We can now compute R with the following sum:

R =
1

Po(1)

N∑
m=1

N−1∑
n=1

φ(n,1)φ
∗

(n,m)

λn
(Po − e)(m). (4.51)

For the 1D periodic case, we again see that R = N2−1
24 . This eigenvalue decomposition

provides an alternative way to solve for R that is computationally less intensive and the

exit time results hold.

4.7 Continuous Space Binding Model

We wish to solve this problem in continuous space as well as discrete space. To do this,

we must solve the continuous exit time problem associated with the following stochastic

differential equations. We again employ the fact that solving for the interaction time of two

particles on a periodic domain is identical to solving for the interaction time of 1 particle

on a periodic domain with twice the rate of diffusion. D in this case is a true diffusion

coefficient not a diffusion rate. We take D = δh2. The spatial variable, x, is written as a

vector and the size of x depends on the dimension we are considering.

∂

∂t
P (0,x, t|0,y, s) = 2D

∂2

∂x2
P (0,x, t|0,y, s)− k(x)P (0,x, t|0,y, s) (4.52)

∂

∂t
P (1, t|0,y, s) = k(x)P (0,x, t|0,y, s) (4.53)
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with

k(x) =

{
k, if x < h

0, otherwise
(4.54)

P , in this case, represents the probability of being in a particular state in our state space

which is continuous in time and space but discrete in the binding state, bound or unbound.

Hence, the first independent variable represents bound (0) or unbound (1), the second

independent variable represents the location of the particle, and the third independent

variable represents time. Therefore, P (0,x, t|0,y, s) is the probability of being unbound at

position x at time t given that the particle started at position y at time s and P (1, t|0,y, s)

represents the probability that the particle is bound at time t given that the particle

was unbound at time s at position y. The above equations are the forward Chapman

Kolmogorov equations for our problem as they describe how the probabilities change as

ending time changes, not starting time.

Given that the particle may bind in a specified region of length h at rate k, we seek to

determine the expected time of binding of an initially unbound particle at a random position

in the domain. The exit time for an initially unbound particle starting at position y at time

0 is calculated by solving the following ODE where E(y) is the expected interaction time,

−1 = 2DEyy − k(y)E. (4.55)

This exit time equation can be formally derived using the methods presented by Gardiner

in [12]. We calculate the expected exit time of a protein at a random starting position in the

domain as follows. We call this quantity T (d) to match the notation of exit times calculated

in discrete space. We note, again, that in continuous space we can only calculate T (d) for

periodic boundary conditions,

T (d) =

∫ L

0

1

Ld
E(y)dy. (4.56)

To obtain the desired exit time, T (d), it remains to solve (4.55). In one dimension, we

are able to solve for (4.55) analytically by splitting it into two differential equations,

−1 = 2DE1yy if h ≤ y ≤ L, (4.57)

−1 = 2DE2yy − kE2 if 0 ≤ y ≤ h. (4.58)

The solution of the first equation is

E1(y) =
−y2

4D
+ c1y + c2, (4.59)

where c1 and c2 are constants.



43

To solve the second equation, we observe that a particular solution is given by E2p = 1
k .

We then approximate the solution of the homogeneous differential equation, 0 = 2DE2yy−

kE2, using a power series approximation which gives E2h = c3 + c4y + kc3y2

4D + kc4y3

12D with

c3 and c4 being constants. We now have an approximate full solution to (4.58),

E2(y) = E2p + E2h (4.60)

=
1

k
+ c3 + c4y +

kc3y
2

4D
+
kc4y

3

12D
. (4.61)

We determine the constants by requiring that the solution and its derivative be contin-

uous at h and at the boundary as the domain is periodic. We now have a full solution for

our exit time problem,

E(y) =

{
E1(y), if h ≤ y ≤ L
E2(y), if 0 ≤ y ≤ h

(4.62)

Using this solution for E and (4.56), we can calculate T (1). Using the facts that D = δh2

and L = hN , we obtain the following form which may be compared to (4.27).

T (1) =
k2 − 48δNk − 3k2N + 2k2N2 + 576δ2N2 + 24kN3δ

24δk(−k + 24δN)
(4.63)

To compare this with our discrete periodic result given in (4.27), we plot them both for

δ = 1 and k = .1 for a range of N as shown in Figure 4.2. This demonstrates that, while

(4.27) and (4.63) are not identical, the behavior of the exit times as a function of N match

using both the discrete and continuous formulation of the problem. In addition, we see that

in both cases the leading order behavior in N is identical,

lim
N→∞

T (1) =
N2

24δ
. (4.64)

In order to solve for the expected interaction time using (4.55) in two and three dimen-

sions, we solve the differential equations numerically using finite differences. This yields the

following block diagonal matrix equation in two dimensions,

−1
−1
...
...
−1
−1


=

1

h2



A1 B B
B A B

B A B
. . .

. . .
. . .

B A B
B B A





E(1,1)

E(1,2)
...
...

E(N,N−1)

E(N,N)


, (4.65)
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Figure 4.2: Comparison of exit times computed in discrete and continuous space with
δ = 1 and k = .1.

with

A1 =



−8D − k 4D 4D
4D −8D 4D

4D −8D 4D
. . .

. . .
. . .

4D −8D 4D
4D 4D −8D


, (4.66)

A =



−8D 4D 4D
4D −8D 4D

4D −8D 4D
. . .

. . .
. . .

4D −8D 4D
4D 4D −8D


, (4.67)

and

B =



4D
4D

4D
. . .

4D
4D


(4.68)

.

Recalling that D = δh2 and using the discrete sum, 1T
(

1
N2E

)
, in place of the integral

in (4.56), we observe that the continuous space problem solved with finite differences is
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identical to the discrete problem solved in Section 4.4. The same behavior holds in three

dimensions as well. However, the continuous formulation of our problem solved with finite

differences does not require, h, to be the space step. The radius of interaction, h, is easily

discretized over any choice of space step. As a conclusion of our continuous space results,

we observe the same behavior for expected interaction times as calculated using discrete

space.

4.8 Summary of Exit Time Results
and Reaction Rates

In the previous four sections, we have outlined our work on calculating the expected

interaction times for two particles, both with diffusion rate δ, which interact at rate k

if they are in sufficient proximity to one another. We have seen that approaching this

problem in discrete space as well as continuous space led us to the same forms for our

results. Importantly, our discrete model demonstrates that these forms hold in the cases

of both periodic boundaries and no flux boundaries. The exit time results are as follows

with α(1), α(2), and α(3) representing the coefficients reported in Section 5.4 which are also

dependent on boundary conditions:

T (1) =
α(1)N2

δ
+
N

k
, (4.69)

T (2) =
α(2)N2 ln(N)

δ
+
N2

k
, (4.70)

T (3) =
α(3)N3

δ
+
N3

k
. (4.71)

Interestingly, the form of the diffusive piece of these exit times is similar to those calculated

for the expected diffusion time for a particle to reach a small region in the center of

one-, two-, and three-dimensional domains [5]. However, our interaction times are for two

particle interactions and also include the addition of a reaction term which also depends on

dimension.

To turn these into reaction rates, we simply need invert them. Recalling that N = L/h

and letting δ = D
h2

, where D is the diffusion coefficient of both particles, we obtain reaction

rates dependent on dimension,

r(1) =
k
(
h
L

)
1 + α(1)

(
kh2

D

) (
L
h

) , (4.72)

r(2) =
k
(
h
L

)2
1 + α(2)

(
kh2

D

)
ln
(
L
h

) , (4.73)
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r(3) =
k
(
h
L

)3
1 + α(3)

(
kh2

D

) . (4.74)

While not explicitly specified in the above reaction rates, we note that for the problem

of protein dimerization, D and k are also dimensionally dependent. Recall that the rate k is

k̂ρ(d) where k̂ is the true binding rate independent of dimension and ρ(d) is the probability of

correct orientation which is dependent on dimension. Presumably, diffusion coefficients are

also dimensionally dependent and depend on the viscosity of the medium the proteins are in

[38]. These reaction rates are simply rates with units of inverse time unlike the traditional

k+ of a binding event.

4.9 Mass Action Kinetics and Kds

In order to compare the computed reaction rates to what is typically considered the k+

of a binding event and to calculate Kds, we consider these rates in mass action kinetics.

Consider the dimerization reaction of a n identical particles. With n particles in a given

domain, there are
(
n
2

)
possible reactions. We assume the particles bind at rate r(d),

depending on the dimension of the domain (d), and track the number of monomers with

the following differential equation:

dn

dt
= −2

(
n

2

)
r(d), (4.75)

= −2
n(n− 1)

2
r(d). (4.76)

If we assume that n is large, we can approximate this with,

dn

dt
= −n2r(d). (4.77)

(4.78)

Now let us assume that the size of our domain is Ld. The concentration of monomers is

then c = n
Ld

which gives

dc

dt
= −c2r(d)Ld. (4.79)

(4.80)

This gives reaction rate equations in one, two, and three dimensions.
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In 1D,

dc

dt
= −c2

 k
(
h
L

)
1 + α(1)

(
kh2

D

) (
L
h

)
L (4.81)

= −c2

 kh

1 + α(1)
(
kh2

D

) (
L
h

)
 . (4.82)

In 2D,

dc

dt
= −c2

 k
(
h
L

)2
1 + α(2)

(
kh2

D

)
ln
(
L
h

)
L2 (4.83)

= −c2

 kh2

1 + α(2)
(
kh2

D

)
ln
(
L
h

)
 . (4.84)

In 3D,

dc

dt
= −c2

 k
(
h
L

)3
1 + α(3)

(
kh2

D

)
L3 (4.85)

= −c2

 kh3

1 + α(3)
(
kh2

D

)
 . (4.86)

The above reaction rates have units of (concentration·time)−1 consistent with traditional

k+ reaction rates as described in Section 5.1. We call these reaction rates k
(d)
+ . Now, to

determine dissociation constants, we must allow this reaction to be reversible. Let b be

the concentration of dimers and k− be the unbinding rate of dimers. We assume that

the unbinding rate is simply a property of the proteins and is, therefore, independent of

dimension. This is consistent with experimental results [9]. The reversible dimerization

reaction is

c+ c
k
(d)
+

�
k−

b. (4.87)

In the case of reversible dimerization, we can now calculate the Kds in each dimension

as defined by K
(d)
d = k−

k
(d)
+

. We obtain the following Kds for dimerization reactions in one,

two, and three dimensions.
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In 1D,

K
(1)
d =

k−

(
1 + α(1)

(
kh2

D

) (
L
h

))
kh

. (4.88)

In 2D,

K
(2)
d =

k−

(
1 + α(2)

(
kh2

D

)
ln
(
L
h

))
kh2

. (4.89)

In 3D,

K
(3)
d =

k−

(
1 + α(3)

(
kh2

D

))
kh3

. (4.90)

The above results can easily be applied to nonidentical particle interactions. If we

consider two distinct spherical proteins with diffusion coefficients D1 and D2 and radii h1

and h2, respectively, we can use the following values for D and h in the equations above:

D =
D1 +D2

2
, (4.91)

h = h1 + h2. (4.92)

Note that the probability of correct orientation, ρ(d), which is built into k, is also

dependent on the location of binding sites on each particle. With these assumptions, we

can apply (4.88), (4.89), and (4.90) to interactions between any two proteins.

We now argue that the dissociation constant, Kd, is highly dependent on dimension.

In order to accurately model Kd, there are many necessary pieces of information including

the size of the proteins, location of binding sites, orientational constraints in 1D and 2D,

diffusion coefficients in all dimensions, and, interestingly, length of the domain in 1D and

2D. Our model suggests that one- and two-dimensional Kds depend on the length of the

domain in which the proteins interact. We are interested to see if this observation holds

experimentally. For well-mixed systems, we observe that diffusion and dimensionality play

a role in determining dissociation constants.

4.10 Limiting Cases of Reaction Rates

We now examine our reported k
(d)
+ values in the diffusion limited case and the reaction

limited case. In the diffusion limited case, we assume that k >> D
h2

; therefore, we evaluate

our reaction rates in the limit as k goes to infinity.

lim
k→∞

k
(1)
+ =

D

α(1)L
(4.93)
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lim
k→∞

k
(2)
+ =

D

α(2) ln
(
L
h

) (4.94)

lim
k→∞

k
(3)
+ =

Dh

α(3)
(4.95)

We note that k
(3)
+ is of the same form as the well-known Smoluchowski result for diffusion

limited protein interactions as reported in [5].

In the reaction limited case, we assume D
h2
>> k and evaluate our reaction rates in the

limit as D
h2

goes to infinity.

lim
D
h2
→∞

r(1) = kh (4.96)

lim
D
h2
→∞

r(2) = kh2 (4.97)

lim
D
h2
→∞

r(3) = kh3 (4.98)

In the reaction limited case, we only need consider the true binding rate, orientational

constraints, and the size of the interaction radius.

4.11 Dimerization in 2D vs. 3D

To demonstrate the differences between Kds in two and three dimensions, we again

consider a simple reversible dimerization reaction.

dn

dt
= −2r(d)n2 + 2k−n2, (4.99)

dn2

dt
= r(d)n2 − k−n2. (4.100)

We include the conservation equation below for the total number of monomers, nt,

nt = n+ 2n2. (4.101)

If we assume that the parameters in three dimensions are identical to the parameters

in two dimensions, we observe that proteins are more likely to dimerize in 2D than they

are in 3D. We solve the above system of equations at steady state. Figure 4.3 presents a

plot of the number of dimers at steady state in both 3D and 2D with domain sizes L3 and

L2, respectively. This simple example demonstrates the pure dimensional dependence of

binding without taking into account orientational constraints and dimensional dependence

of diffusion.
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Figure 4.3: Dimerization in 2D vs. 3D. (a) Number of dimers in 2D vs. 3D as the size of
the domain varies. Parameters: nt = 10000, h = .001, s = 1, D = 100, k = 100. We use
the following coefficients for this model from section 4.4, α(2) = 1

12 , α(3) = .1264. (b) Same
plot as in (a) on a log scale.

4.12 Transforming Kds from 3D to 2D

We now propose a new method of transforming Kds between two and three dimensions.

Assuming the three-dimensional Kd, K
(3)
d , is known, we present the following conversion to

the two-dimensional Kd, K
(2)
d , for a binding reaction.

K
(2)
d = K

(3)
d

Lρ(3)
(

1 + α(2)
(
k(2)h2

D(2)

))
ln
(
L
h

)
ρ(2)

(
L
h

) (
1 + α(3)

(
k(3)h2

D(3)

)) (4.102)

It is clear that much is involved in Kd conversions. There is a length scaling by L but this

is merely part of the conversion. Recalling k = k̂Pρ(d) where ρ(d), the probability of correct
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orientation is dimensionally dependent, k(2) = ak(3) where a is a constant determined by

the orientational constraints in two dimensions. The true binding rate, k̂, is unknown and it

is unlikely that it can be measured experimentally. However, if the K
(3)
d is known as are the

other parameters, we can solve for the true binding rate, k̂. To convert between dimensions,

we also must understand how diffusion is affected by dimension for the particular proteins

of interest. Further, we need to know something about the structure of the interacting

molecules. The size of the proteins determines the value for h. In addition to overall size

of the protein, we need to know the position and size of the binding sites to calculate the

probability of correct orientation. Lastly, we need to know the size of the domain on which

the proteins interact. We conclude that conversions are anything but simple and many pieces

of information about the proteins involved must be known to accurately convert between

dimensions. We employ this conversion in the next chapter to better model ESCRT binding

events.

4.13 Discussion

In this chapter, we have taken an interlude from exploring the roles of ubiquitin in order

to better understand the dimensional dependence of protein interactions. We highlighted

the essential features of any protein-protein interaction which are the ideas behind all the

work in this chapter.

1. Proteins must be in sufficient proximity to allow for binding.

2. Binding sites must be properly oriented in order to interact.

Using a very simple model, we demonstrated that orientational constraints can have a

great effect on binding affinities in one, two, and three dimensions. With these ideas in

mind, we calculated the expected interaction times for two proteins using both discrete and

continuous space models which showed consistent results. In our discrete model, we are

able to calculate expected interaction times for proteins diffusing in both periodic and no

flux domains. We argue that the overall behavior of interaction times are dimensionally

consistent regardless of boundary conditions. Importantly, we observe that in the case of

periodic boundaries we can reduce a two particle problem to a one particle problem with

twice the rate of diffusion. This observation allows for further analysis for our continuous

space model. We invert our calculated expected interaction times to obtain reaction rates

and use mass action kinetics to determine values for k+ which are dimensionally dependent.

Importantly, in the diffusion limited case, the form of our result in 3D is consistent with that
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of Smoluchowski as presented in [5]. To our knowledge, most binding models assume either

the diffusion limited case or the reaction limited case. As opposed to being strictly diffusion

limited or strictly reaction limited, our calculated rates include contributions from both

diffusion and reaction. We argue that k− is simply a property of the interacting proteins

which has also been observed experimentally [9]. Using the dimensionally dependent values

for k+ and dimensionally independent value of k− we are able to define dimensionally

dependent values of Kd. We observe that Kds are highly dimensionally dependent. Even if

all rates are identical in two and three dimensions, the difference in dimension alone leads

to different Kds. Importantly, our results suggest that one- and two-dimensional Kds are

dependent on the length of the domain in which the proteins interact. This means that the

size of the domain on which experimentalists measure a two dimensional Kd will affect the

reported Kd.

A main goal of this chapter was to better understand how to convert between Kds in

two and three dimensions. For proteins that can be both soluble and membrane bound,

Kds are often reported as traditional 3D Kds. It would, therefore, be extremely useful to

be able to transform these reported results into two-dimensional Kds in order to model

protein binding on membranes. Here we suggest that this transformation can be achieved

but is very involved. In particular, much needs to be known about the proteins involved to

appropriately transform Kds between two and three dimensions, including the size and

structure of the proteins, the size and position of the binding sites, the orientational

constraints in two dimensions, and the difference in diffusion coefficients. We give examples

of such transformations in the next chapter for ESCRT bonds.

Taken together, the results in this chapter demonstrate that dimension must be consid-

ered when modeling binding events. The k+ rates of binding events are heavily influenced by

dimension. As such, transforming dissociation constants between dimensions is not simple

and requires much information about the proteins involved.



CHAPTER 5

ESCRT SORTING REVISITED

In this chapter, we employ our results on the dimensional dependence of protein inter-

actions to again consider the mechanisms behind ESCRT-mediated sorting of ubiquitinated

proteins. We, first, use reported rates to determine an approximate two-dimensional Kd

for ESCRT-cargo interactions mediated by ubiquitin. The reported three-dimensional

Kds for UBDs to ubiquitin imply very weak binding of ESCRTs to cargoes. However,

cargoes and ESCRTs interact on the endosomal membrane, not in solution. As such, we

ask, what is the two-dimensional Kd of UBDs and does being membrane-bound enhance

their affinity thereby making these interactions more stable? Next, we present a new

differential equation model of ESCRT-cargo network polymerization using our computed

two-dimensional interaction rate, r(2). We simulate this model using a Gillespie algorithm

in order to gain insights into time it takes to sort a given amount of ubiquitinated proteins

on the endosome with flexible ESCRT-cargo protein networks.

5.1 Transforming ESCRT Kds

The three-dimensional dissociation constants have been measured for ESCRT UBDs and

range from∼ 100−600µM as reported in [42]. Most of these measurements are for the UBDs

and ubiquitin only, not ubiquitinated cargo. Recall that we define cargo as ubiquitinated

transmembrane proteins which are not soluble. As such there is not a way to measure

three dimensional Kds of cargo ESCRT interactions. However, the weak binding affinities

of UBDs is often presented as a quandary in understanding the mechanisms of protein

sorting. We hypothesize that the affinity of ESCRT UBDs is much different on membranes

than in solution. To demonstrate the effects of dimensionality on the Kds of ESCRT, UBDs

we assume that our ESCRT-cargo interaction has a three-dimensional Kd of 100µM, similar

to the Kd of the UBD itself, and compute the corresponding two dimensional Kd. We wish

to employ the following transformation, given in Section 4.12, to better understand ESCRT

binding events on membranes.
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K
(2)
d = K

(3)
d

ρ(3)L
(

1 + α(2)
(
k(2)h2

D(2)

))
ln
(
L
h

)
ρ(2)

(
L
h

) (
1 + α(3)

(
k(3)h2

D(3)

)) (5.1)

In order to perform this transformation for a specific three-dimensional Kd, we need

many pieces of information about the specific binding event. For example, to determine the

dissociation constant for ESCRT-cargo binding on membranes mediated by UBDs, we need

to know the following information,

• size of the ESCRT,

• size of the cargo,

• size of UBDs,

• location of UBDs,

• number of UBDs on the ESCRT,

• three dimensional Kd for UBD,

• length of domain in two dimensions,

• true binding rate, k̂, and

• diffusional differences in 3D and 2D.

It is immediately obvious that this transformation is anything but simple. However,

we are able to obtain or estimate most of this information from the literature. As we do

not wish to distinguish between ESCRTs at this point, we model a generic ESCRT with

one UBD. This may be a sufficient model for ESCRT-I or ESCRT-II. However, ESCRT-0

has at least 8 UBDs that are able to bind to multiple cargoes simultaneously [30]. As a

first model, however, we wish to understand the effects of membrane association on single

ESCRT-cargo interactions. We therefore consider the case where ESCRTs have only one

UBD.

Each individual ESCRT component has a different size. ESCRT-0 is reported to have a

hydrodynamic radius of 7.9nm [37]. ESCRT-I has been shown to span approximately 25nm

on endosomal membranes [24]. With these measurements in mind, for our generic ESCRT

protein model we assume a radius of 10nm. As the ESCRTs interact with a wide variety of

cargo, we simply pick our model ubiquitinated cargo to also have a radius of 10nm. These

measurements lead to a computed value for the interaction radius of h = 10 + 10 = 20nm.
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As approximated in Chapter 2, we estimate the endosome having an approximate radius

of 0.5µm. This measurement is supported by [29]. If we assume a spherical endosome, this

leads to a surface area of π(µm)2. As our calculations involve a rectangular domain of size

L2, we then compute that L =
√
πµm in our model.

5.1.1 Spherical Approximation

We use a spherical approximation for both ESCRTs and cargo. We assume, since the

ESCRTs are able to interact when membrane-associated, the binding sites are along the

equator parallel to the membrane as shown in Figure 5.1. Under this assumption, all

binding sites are ”reachable” in both two and three dimensions.

As ESCRT-0 is known to have at least 8 distinct UBDs as well as multiple ESCRT

interaction sites, we assume that each UBD and ESCRT interaction site is small relative

the circumference of the equator. We assume that each binding site of the ESCRTs is 1
15 of

the total circumference. This allows for 8 UBDs and up to 7 ESCRT-ESCRT interactions

which is sufficient for known data. We estimate that the radii of our generic ESCRT

protein and our cargo protein are both 10nm. This leads to an equator circumference of

CE = 20πnm and an approximate binding site radius of rb = 2π
3 nm. For protein interactions

in three dimensions, we assume these binding sites are circular leading to a binding area of

Ab = π
(

2π
3

)2
nm2. The surface area of the proteins in our model is SA = 4000π

3 nm3. To

calculate the probability of being correctly oriented to bind, we must know the ratio of the

binding region to total interaction region of the proteins in both dimensions. We calculate

that in three dimensions

σ(3) =
NbAb

SA
, (5.2)

where Nb is the number of binding sites on the protein. We calculate that in two dimensions,

Figure 5.1: Spherical approximation of generic ESCRT proteins with binding sites around
the equator.
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σ(2) =
2Nbrb

CE
. (5.3)

As both interacting proteins need not have the same number of active sites, we specify

σ
(d)
1 and σ

(d)
2 in the calculation below. This becomes necessary if one wished to consider the

case of multiple UBDs on ESCRTs while monoubiquitinated cargo only has one ubiquitin

bound. We can now calculate the probability of correct orientation in both two and three

dimensions, ρ(2) and ρ(3) to be

ρ(d) = σ
(d)
1 σ

(d)
2 . (5.4)

In the case of ESCRT-cargo binding with only one UBD on the ESCRT we calculate,

ρ(2) =

(
2
(

2π
3

)
20π

)2

(5.5)

≈ .0044 (5.6)

ρ(3) =

(
π
(

2π
3

)2
4000π

3

)2

(5.7)

≈ .000010823. (5.8)

It is clear from these calculations that the probability of correct orientation is much greater

in two dimensions than in three.

It is well accepted that orientational constraints are important in protein-protein in-

teractions. We are not the first to propose a simplistic model to deal with dimensionally

dependent orientational constraints [20, 4, 16]. Another approach to this problem is to

consider rotational diffusion as in [41]. We could indeed use another exit time calculation to

compute the time it would take for a particles starting in random orientations to rotationally

diffuse until they are in a configuration capable of binding. At the present, we argue that

our simple probabilistic model suffices to understand general affects of protein interactions

on membranes. More detailed orientational models could be used to determine ρ(d) for a

particular problem of interest.

5.1.2 Diffusion in Membranes

We now apply the results of Saffman and Delbrück in [38] to explore 2D and 3D diffusion.

Recall that in our model, the diffusion coefficient is given by D1+D2
2 where D1 and D2 are
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the diffusion coefficients of each protein. One can use the Stokes Einstein relation to model

diffusion in three dimensions giving,

D(3) =
kBT

6πµr
, (5.9)

where kB is Boltzmann’s constant, T is absolute temperature, µ is viscosity of the cytoplasm,

and r is the radius of the protein. Saffman and Delbrück present the following result for

cylindrical proteins imbedded in a membrane,

D(2) =
kBT

πµ2η

(
log

µ2η

µa
− γ
)
. (5.10)

This formula includes the additional parameters µ2, η, and γ which represent viscosity of

the membrane, thickness of the membrane, and Euler’s constant, respectively.

Using the parameters given in [38] which are typical of biological membranes, we calcu-

late the following diffusion coefficients in 3D and 2D which now only depend on the radius

of the protein and the thickness of the membrane,

D(3) =
4(10−14)

6(10−2)πr

cm2

sec
, (5.11)

D(2) =
·4(10−14)

πη

(
log

η

(10−2)r
− .5772

)
cm2

sec
. (5.12)

It has been reported that biological membranes of lipid bilayers are between 3 and 4nm

[31, 1]. For cargo, which span the membrane, we use η = 3.5(10−7)cm. ESCRTs bind

to lipids in the bilayer and do not span the membrane. Therefore, for ESCRTs which

are not bound to cargo, we use η = 1.25(10−7)cm as ESCRTs interact with only one

layer of the lipid bilayer. We calculate that for the generic ESCRT in our model, D(2) =

5.145(10−8)
(

cm2

sec

)
and D(3) = 2.122(10−7)

(
cm2

sec

)
. For the cargo in our model, we calculate

D(2) = 3.2183(10−8)
(

cm2

sec

)
and D(3) = 2.122(10−7)

(
cm2

sec

)
. Figure 5.2 illustrates how the

diffusion coefficients depend on the size of the protein. It is clear that proteins move faster

in three dimensions than two for protein radii relevant to our model.

5.1.3 Kds of UBDs in Membranes

We are now ready to convert the Kd for ESCRT binding to ubiquitinated cargo from

three dimensions to two dimensions. We do not know the value of k̂ nor is it likely to be

experimentally measured. As such, we present our Kds as functions of the true binding

rate, k̂.
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Figure 5.2: (a) Diffusion coefficients in 2D vs. 3D. (b) Same plot as in (a) on a log scale.

We would like to understand what a low affinity three-dimensional Kd such as those

reported for ESCRT-cargo binding means in two dimensions. We will therefore transform

K
(3)
d = 100µM to determine its corresponding K

(2)
d .

Recall again the transformation derived in the previous chapter,

K
(2)
d = K

(3)
d

ρ(3)L
(

1 + α(2)
(
k(2)h2

D(2)

))
ln
(
L
h

)
ρ(2)

(
L
h

) (
1 + α(3)

(
k(3)h2

D(3)

)) . (5.13)

We summarize the values used for this conversion in Table 5.1. We use the coefficients for

α corresponding to periodic boundaries as reported in Section 4.4. Figure 5.3 illustrates the

computed two-dimensional Kds of ESCRT-cargo binding as a function of the true binding

rate k̂.
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Table 5.1: ESCRT UBD Kd Conversion Parameters

K
(3)
d

100µM

L
√
πµm

h 20nm

α(2) 1
12

α(3) .1264

k k̂ρ(d)(sec−1)

ρ(2) 0.0044

ρ(3) 0.000010823

D(2) 4.1815(10−8)
(
cm2

sec

)
D(3) 2.122(10−7)

(
cm2

sec

)
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Figure 5.3: K
(2)
d corresponding to K

(3)
d = 100µM as a function of true binding rate, k̂.

To better understand what these two- and three-dimensional Kds mean, we employ the

following simple dimerization model with n being the number of monomers and n2 the

number of dimers,

dn

dt
= −2r(d)n2 + 2k−n2, (5.14)

dn2

dt
= r(d)n2 − k−n2. (5.15)

We include the following conservation equation for the total number of monomers, nt,

nt = n+ 2n2. (5.16)
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In this equation, we are interested in total numbers as opposed to concentrations. As

such, the ”dissociation constant” for this dimerization model is the dimensionless parameter,

s
r(d)

. We call this value KD(d) and define it as,

KD(d) = K
(d)
d Ld, (5.17)

where L represents the characteristic length of the endosome as defined in Table 5.1. Figure

5.3 demonstrates that the two-dimensional Kd is a saturating function of the true binding

rate, k̂. As such, for this dimerization model, we choose k̂ = 1012, as this leads to a

two-dimensional dissociation constant that is in the saturating region. Note that the

following dimerization results will be amplified for smaller values of k̂ as the converted

two-dimensional Kd decreases as a function of k̂.

We compute the number of dimers at steady state in both dimensions. The two-

dimensional domain of this model is a square approximation of the endosome while the

three-dimensional domain is a cube of size L3. Figure 5.4 shows a plot of the steady state

of n2 as a function of L in both two and three dimensions. It demonstrates that dimers

form much more readily in two dimensions than in three dimensions. A log scale is used

to plot the steady state of n2 as a function of L in Figure 5.4(b). This illustrates that

there are approximately 10-fold more dimers on membranes than in solution. This suggests

that ESCRT-cargo bonds are more stable than previously thought. It is clear from our

model that using a three-dimensional Kd to describe binding events in two dimensions is

not appropriate. Simply because ESCRT UBDs have weak affinity in solution does not

automatically mean their bonds are weak on membranes. This result supports the use of

stable bonds between ESCRT and cargo in our cellular automata model in Chapter 3.

A similar calculation could be performed to approximate the binding affinities of ESCRT-

ESCRT interactions. It has been reported that ESCRT-ESCRT interactions are much

stronger than that of ESCRT-cargo interactions mediated by ubiquitin. For example,

experiments show that ESCRT-I and ESCRT-II interact with a Kd of 27nM [14]. We

argue that a similar enhancement of affinity will be observed for ESCRT-ESCRT bonds on

membranes and that the two-dimensional Kd will again be less than that of ESCRT-cargo

bonds. We make this argument as K
(3)
d appears linearly in the numerator of our conversion

equation (5.13). Therefore, our model suggests that on membranes, ESCRT-ESCRT affinity

is greater than that of ESCRT-cargo interactions which appears necessary for proper sorting

of cargo and recycling of ESCRTs. [28]. While reported three-dimensional Kds are not

sufficient, on their own, to make claims about binding affinity on membranes, they likely

suggest the hierarchy of affinities for ESCRT binding events on membranes. In summary,
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Figure 5.4: (a) Comparison of dimerization in 2D and 3D with reportedK
(3)
d and computed

K
(2)
d . (b) Same plot as in (a) on a log scale.

we predict that constraining ESCRT proteins to two dimensions enhances their binding

affinities from what is observed in solution.

5.2 ESCRT-cargo Network Formation Model

We now present a new model for ESCRT-mediated ubiquitin-dependent protein sorting

using the rate of two-dimensional protein interaction determined in Chapter 4,

r(2) =
k
(
h
L

)2
1 + α(2)

(
kh2

D

)
ln
(
L
h

) . (5.18)

The results from our cellular automata model of cargo sorting in Chapter 3 suggest that a
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flexible ESCRT-cargo network with given rules is sufficient to efficiently sort cargo. As such,

we now aim to better understand the evolution of ESCRT-cargo networks in a continuous

time model using rates of diffusion and binding instead of the propensity parameters used in

our cellular automata model. We make the assumption that a single ESCRT is recruited to

the endosomal membrane by a single cargo. As such, we define a monomer as one ESCRT-

cargo pair. In our cellular automata model, we do not allow for ESCRT-cargo interactions to

break once in networks of more than three proteins. The calculation of the two-dimensional

Kd for ESCRT-cargo binding presented in the previous section suggests that the stability

of the ESCRT-cargo interactions on membranes is much greater than previously thought.

Under the assumption that networks of more than three proteins are, indeed, stable, we

do not include unbinding in the current model. Our model considers the polymerization

reaction of ESCRT-cargo monomers into ESCRT-cargo networks. We assume that each

monomer has 5 ESCRT-ESCRT interaction sites to mimic our cellular automata model.

Let ni be the number of networks of exactly i monomers. Our ESCRT-cargo network

polymerization model is

dni
dt

=
∑

j+m=i,j 6=m
rjmnjnm +

∑
2j=i

rjj

(
nj
2

)
−
∑
j 6=i

rjinjni − rii
(
ni
2

)
. (5.19)

Using (5.18), the binding rates, rjm, can be written as

rjm =
k̂ρjm

(
hjm
L

)2

1 + α(2)

(
k̂ρjmh2jm
Djm

)
ln
(

L
hjm

) , (5.20)

where, hjm = hj + hm, Djm =
Dj+Dm

2 , and ρjm = σjσm. L =
√
π as in the previous

section. It remains to determine the radius of networks, diffusion coefficient, and binding

ratio as functions of the size of the network. We do this as follows with ESCRTs and cargoes

modeled as in the previous section.

• Radius

In our model, both ESCRTs and cargoes have radii of 10nm. We make the assumption

that all networks are circular. This assumption seems reasonable as our cellular

automata model showed condensed structures rather than branched linear structures

and since networks are invaginated to form ILVs. With this circular assumption, we

approximate an ESCRT-cargo monomer occupies an area of 200π nm2 on a membrane.

Similarly we approximate that a dimer occupies 400πnm2. In general, a network of

size i occupies 200iπnm2. We therefore calculate

hi =
√

200iπnm. (5.21)
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• Diffusion Coefficients

We employ (5.12) with η = 3.5nm as cargo spans the entire membrane. We, therefore,

use the following two-dimensional diffusion coefficient which only depends on the size

of the network.

Di =
·4(10−14)

3.5(10−7)π

(
log

3.5(10−7)

(10−2)hi
− .5772

)
cm2

sec
. (5.22)

• Binding Ratio

We again assume that each binding site of the ESCRT represents 1
15 of the circumfer-

ence of the equator of the ESCRT. This gives the radius of each binding site rb = 2π
3 .

The circumference of a network is given by, CE = 2πhi. We must know the number

of free binding sites for a network of a given size. We employ our cellular automata

model to estimate this number. We alter the model presented in Chapter 3 to include

only ESCRT-cargo pairs in aggregates. There was a slight chance in the previous

model of a single ESCRT being incorporated into an aggregate. Figure 5.5 shows the

average number of free binding sites for networks of a given size for 100 simulations.

We observe that the number of free binding sites varies linearly with network size

according to the following equation,

Nb(i) = 1.2621i+ 4.9450. (5.23)

We now compute the binding ratio as,

σi =
Nbirb

πhi
. (5.24)

We have now represented all the parameters in the model as functions of network size.

To analyze this system of differential equations, we use a Gillespie algorithm to compute

the expected sorting time. We define the sorting time as the time it takes for the average

network size to reach what is considered a critical vesicle size, C. We defined C = 20 in our

cellular automata model which corresponds to C = 10 in this model. Therefore, we define

sorting time to be the expected time it takes for the average network size to be C.

5.2.1 Results

We specify the total number of monomers in our system to be, Ct = 100, and simulate

(5.19) by calculating the possible rates at each Gillespie time step. Figure 5.6 depicts a

sample of our Gillespie simulation. As we do not know the value of the true binding rate, we

compute the expected sorting time for different values of k̂. We fit a lognormal distribution
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Figure 5.5: Average number of free binding sites for networks of different sizes computed
from 100 simulations of the cellular automata model.

to the histogram of 5000 simulated sorting times and compute the average sorting time for

each value of k̂. Figure 5.7 provides the histogram for k̂ = 1012sec−1. Figure 5.8 illustrates

how sorting time is affected by the true binding rate. We observe a change in behavior

around k̂ = 10−8sec−1. For k̂ values less than 10−8sec−1, the actual binding of the ESCRTs

is the rate limiting step. For k̂ greater than 10−8sec−1, diffusion is the rate limiting step

and the true binding rate does not affect the sort times in the region. We anticipate that

these reactions are diffusion limited as proteins with an affinity for one another are very

likely to bind if their binding sites are in sufficient proximity and oriented together. There

are no data to suggest that this is not the case in this system. If, indeed, k̂ is such that this

polymerization reaction is diffusion limited, sorting is very fast. With a total number of

100 cargo on the endosome, our calculations suggest that the average network size reaches

the critical size of 20 proteins in approximately 0.27 seconds. We anticipate this sorting

time is less than what should be observed experimentally. It seems plausible that including

all of the ESCRTs and their specific interactions with one another will slow the sorting

process down. Conversely, we predict that considering the process of vesicle formation will

speed up sorting of the remaining cargo as membrane is being removed from the endosome.

Our two-dimensional reaction rates are dependent on the length of the domain. As length

decreases, the reaction rates increase which would lead to increased sorting speeds as ILVs

form. As more experimental data come available, it will be possible to include more detail

in our network polymerization model and better predict sorting time.
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Figure 5.6: Sample Gillespie simulation of ESCRT-cargo network polymerization with
time plotted against average vesicle size.
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5.3 Discussion

In this chapter, we applied our results of dimensional dependence of protein interactions

to further understand ESCRT-mediated protein sorting. We first applied our 3D to 2D

transformation of dissociation constants to a model system of ESCRT-cargo interaction

mediated by a single UBD. The results from this section are two fold. First, correct trans-

formations of Kds are very involved. Second, correct transformations are very important.

Our transformation suggests that what is considered a weak bond in three dimensions can

be greatly enhanced when the proteins interact on membranes. Our model transformation

suggests that ESCRT UBDs may have higher affinities than previously thought, suggesting

the possibility of stable ESCRT-cargo interactions on membranes. Our work suggests

again that dimension is very important in binding reactions. For any soluble proteins

that are able to associate with membranes and interact with other proteins, more than

the three-dimensional dissociation constants must be known in order to understand protein

interactions on membranes. We predict that coat proteins, such as COP and clathrin, which

readily polymerize on membranes but not in cytosol will similarly show enhanced binding

affinities on membranes.

In this chapter, we also applied our computed two-dimensional reaction rates to a

differential equation model of ESCRT-cargo network polymerization. Using a Gillespie

algorithm, we compute the expected average sorting time. We suggest that ESCRT-cargo

network formation is diffusion limited. As such, it appears that sorting is a very quick

process on endosomes, on the order of seconds. Understanding ESCRT polymerization

is important not only for protein sorting but also for understanding the process of HIV

budding. It is possible that similar models could be used to address ESCRT interactions in

other settings.



CHAPTER 6

RAD18 REGULATION IN DNA DAMAGE

TOLERANCE

6.1 DNA Damage Tolerance by Translesion Synthesis
Polymerases

As cells frequently experience damage to their DNA due to environmental influences,

it is necessary that they be employed with pathways that are able to prevent problems in

DNA replication and mutagenesis. DNA lesions are one type of damage cells must address.

The DNA damage tolerance (DDT) pathways function as a way for cells to bypass DNA

lesions during replication. The specific type of DDT pathway we are presently interested

in is bypass accomplished by translesion synthesis (TLS) polymerases. We now provide an

overview of this pathway which is described in more detail by Zeman et al. in [51]. DDT is

controlled by the ubiquitination of the replicative clamp proliferating cell nuclear antigen

(PCNA). The primary E3 ligase responsible for this ubiquitination is Rad18. Rad18 is also

involved in recruiting the correct TLS polymerase for a specific type of damage. It is clear

that Rad18 requires tight control. Over-expression leads to inappropriate recruitment of

TLS polymerases leading to potential errors in DNA replication. As such, it is not surprising

that Rad18 has been found to be upregulated in some cancers. In addition, under-expression

of Rad18 increases sensitivity to DNA damage.

DDT pathways involving TLS polymerases are tailored to respond appropriately to

different types of lesions but how specificity is achieved has been poorly understood. It

is known that part of this specificity involves recruitment of the correct TLS polymerase.

However, not only is the recruitment mechanism unclear, it also appears there are other

events involved in the responses to specific types of damage. One such event is replication

fork reversal. Data suggest that two additional E3 ligases are involved in these damage

specific events: helicase-like trancreption factor (HLTF) and SNF2 histone linker plant

homeodomain RING helicase (SHPRH). Both HLTF and SHPRH are thought to be able

to induce replication fork reversal. In addition, HLTF and SHPRH are competitive binding
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partners for Rad18. It is thought that HLTF/Rad18 and SHPRH/Rad18 complexes are

important for proper PCNA ubiquitination and accurate TLS polymerase recruitment under

different circumstances.

Multiple studies have revealed that HLTF constitutively binds to Rad18 whereas SH-

PRH/Rad18 complexes are strongly induced when cells are treated with methyl methane-

sulfonate (MMS) [26, 33]. It is also known that SHPRH exists in much lower concentrations

in the cell than does HLTF. It is the switch from HLTF/Rad18 to SHPRH/Rad18 that we

address in this work.

6.2 Specific DDT Response to MMS

Experimental evidence shows that HLTF is degraded upon MMS treatment. As HLTF

and SHPRH compete to bind to Rad18, it would seem that this degradation should induce

SHPRH/Rad18 complexes. However, this is not the case. While necessary, HLTF degrada-

tion is not sufficient to induce SHPRH/Rad18 complex formation. Zeman et al. recently

introduced an additional MMS damage inducible step, deubiquitination of Rad18 [51].

Rad18 is shown to exist in two forms in the cell: Rad18 and ubiquitinated Rad18, Rad18u.

Rad18u is unable to form complexes with HLTF and SHPRH and perform other roles in the

DDT pathway. Therefore, Rad18 is active while Rad18u is inactive. Additionally, it was

observed that Rad18 is able to form a stable complex with Rad18u therefore introducing

another competitive binding partner for Rad18. It appears that the ubiquitin binding ZnF

(UBZ) domain of Rad18 is required for interaction of Rad18 with HLTF, SHPRH, and

Rad18u. The proposed functional model for MMS-specific DDT is depicted in Figure 6.1.

Figure 6.1: MMS-specific DNA damage response. Adapted from [51].
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As a further level of ubiquitin-dependent control of Rad18, Rad18 is capable of autoubiq-

uitination in complex with the E2 conjugating enzyme, Rad6 [32]. Miyase et al. suggest

that two Rad18 molecules, in complex with Rad6, interact via their ZnF domain and

monoubiquitinate each other as shown in Figure 6.2. It is of importance to note that

autoubiquitination introduces a fourth competitive binding parter for the ZnF domain of

Rad18.

Our primary question of interest is how MMS induces SHPRH/Rad18 complexes. We

know that both HLTF degradation and increased deubiquitination are necessary but niether

is sufficient. Zeman et al. suggest a few hypotheses for how deubiquitination is acheived in

the system. They show that the apparent reduction of Rad18u is not caused by degradation

of Rad18u suggesting that less of the total Rad18 in the cell is ubiquitinated after MMS

treatment. This leads to two hypotheses for how MMS may induce the perceived increase

in deubiquitination. First, Rad18’s autoubiqutinating function may be reduced after MMS

treatment leading to less Rad18u in the cell. Second, MMS may cause Rad18 to be actively

targeted by DUBs thereby decreasing Rad18u. We seek to understand the general behavior

of this system as well as the roles of autoubiquitination, the Rad18/Rad18u complex, and

to determine any other necessary conditions to induce SHPRH/Rad18 complexes.

6.3 ODE Models

In our mathematical models, we assume that the total concentration of SHPRH and

Rad18, St and Rt, respectively, are held fixed as neither upregulation nor degradation are

presumed to play a role in the response to MMS. As we do not wish to specifically model the

mechanism by which HLTF is degraded upon MMS treatment we also assume a constant

Figure 6.2: Proposed model for Rad18 autoubiquitination. Reused with permission from
[32].
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total concentration of HLTF, Ht, and vary this concentration as a parameter in our system

to mimic MMS induced degradation.

As we wish to consider the effects of the Rad18/Rad18u complex and the effects of

autoubiquitination we present three different ODE systems of increasing complexity. Model

1 includes only competitive binding of SHPRH and HLTF for Rad18. Model 2 adds the

additional competitive binding partner of the Rad18/Rad18u complexes. Model 3 also

includes the feature of Rad18 autoubiquitination.

The variables in our models include the following concentrations: Rad18 (R), ubiqui-

tinated Rad18 (Ru), Rad18/Rad18u complex (RuR), Rad18/Rad18 complex (R2), HLTF

(H), SHPRH (S), HLTF/Rad18 complex (HR), and SHPRH/Rad18 complex (SR). De-

scriptions of the rates included in our models are given in Table 6.1. Unless specified, the

rates are pertinent to all three models.

In all of our models, the following conservation equations hold:

Ht = H +HR, (6.1)

St = S + SR. (6.2)

We also use a conservation equation for the total amount of Rad18; however, this is specified

for each model as it is different in every case. We now outline our ODE models.

6.3.1 Model 1

Model 1 is considered the base model for this system. It includes modeling ubiquitination

of Rad18 as well as competitive binding of HLTF and SHPRH to Rad18. The system is

Table 6.1: Description of parameters

a rate of Rad18 ubiquitination (Models 1&2)

a1 binding rate of Rad18/Rad18 (Model 3)

a2 unbinding rate of Rad18/Rad18

a3 rate of autoubiquitination of Rad18

b rate of Rad18u deubiquitination

c binding rate of Rad18/Rad18u

d unbinding rate of Rad18/Rad18u

e binding rate of HLTF/Rad18

f unbinding rate of HLTF/Rad18

g binding rate of SHPRH/Rad18

h unbinding rate of SHPRH/Rad18

Rt total Rad18

Ht total HLTF

St total SHPRH
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dR

dt
= −aR+ bRu− eRH + fHR − gRS + hSR, (6.3)

dRu

dt
= aR− bRu, (6.4)

dH

dt
= −eRH + fHR, (6.5)

dHR

dt
= eRH − fHR, (6.6)

dS

dt
= −gRS + hSR, (6.7)

dSR
dt

= gRS − hSR. (6.8)

In this model, the conservation equations for R is

Rt = R+Ru+HR + SR. (6.9)

We determine S and H using the conservation equations and can readily solve for the

steady state values of Ru, SR, and HR:

Ru =
a

b
R, (6.10)

HR =
RHt

R+ f
e

, (6.11)

SR =
RSt

R+ h
g

. (6.12)

It is conventient to define the following new parameters:

B =
b

a
, (6.13)

K2 =
f

e
, (6.14)

K3 =
h

g
. (6.15)

B is a ratio of deubiquitination to ubiquitination while K2 and K3 represent the dissociation

constants for SHPRH/Rad18 binding and HLTF/Rad18 binding, respectively.

It remains to solve for the steady state of R using the conservation equation which can

now be expressed as a function of R alone,

Rt = R+
R

B
+

RHt

R+K2
+

RSt
R+K3

. (6.16)

We explain our method for solving this equation following the descriptions of Models 2

and 3.
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6.3.2 Model 2

Model 2 contains all the features of Model 1 with the addition of Rad18/Rad18u

complexes. This introduces a third competitive binding event into the model. The equations

are

dR

dt
= −aR+ bRu− cR ·Ru+ dRuR− eRH + fHR − gRS + hSR, (6.17)

dRu

dt
= aR− bRu− cR ·Ru+ dRuR, (6.18)

dRuR

dt
= cR ·Ru− dRuR, (6.19)

dH

dt
= −eRH + fHR, (6.20)

dHR

dt
= eRH − fHR, (6.21)

dS

dt
= −gRS + hSR, (6.22)

dSR
dt

= gRS − hSR. (6.23)

In this model, the conservation equation for R is

Rt = R+Ru+ 2RuR+HR + SR. (6.24)

At steady state we find

Ru =
a

b
R, (6.25)

RuR =
a

b

c

d
R2, (6.26)

HR =
HtR

R+ f
e

, (6.27)

SR =
StR

R+ h
g

. (6.28)

Model 2 introduces a fourth parameter K1 representing the dissociation constant of

Rad18/Rad18u binding which we define

K1 =
d

c
. (6.29)

With the above steady state values, it remains to solve the following equation for R:

Rt = R+
R

B
+ 2

R2

BK1
+

RHt

R+K2
+

RSt
R+K3

. (6.30)
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6.3.3 Model 3

Model 3 includes all the features of Models 1 and 2 with the addition of autoubiqui-

tination which is modeled after the hypothesis of Miyase et al. in [32]. The equations

are

dR

dt
= −2a1R

2 + 2a2R2 + bRu− cR ·Ru+ dRuR (6.31)

−eRH + fHR − gRS + hSR,

dR2

dt
= a1R

2 − a2R2 − a3R2, (6.32)

dRu

dt
= 2a3R2 − bRu− cR ·Ru+ dRuR, (6.33)

dRuR

dt
= cR ·Ru− dRuR, (6.34)

dH

dt
= −eRH + fHR, (6.35)

dHR

dt
= eRH − fHR, (6.36)

dS

dt
= −gRS + hSR, (6.37)

dSR
dt

= gRS − hSR. (6.38)

The conservation equation for R in Model 3 is

Rt = R+ 2R2 +Ru+ 2RuR+HR + SR. (6.39)

At steady state, we find

R2 =
a1

a2 + a3
R2, (6.40)

Ru = 2
a3

b

a1

a2 + a3
R2, (6.41)

RuR = 2
c

d

a3

b

a1

a2 + a3
R3, (6.42)

HR =
HtR

R+ f
e

, (6.43)

SR =
StR

R+ h
g

. (6.44)

Model 3 involves a new ratio of deubiquitination to ubiqutination, B2, as well as a new

parameter, with units of a dissociation constant, which we will call K4. We define

B2 =
b

a3
, (6.45)

K4 =
a2 + a3

a1
. (6.46)
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With the above steady state values, it remains to solve the following equation for R:

Rt = R+ 2
R2

K4
+ 2

R2

B2K4
+ 4

R3

B2K1K4
+

RHt

R+K2
+

RSt
R+K3

. (6.47)

6.3.4 Solving for R

In each of our models, we need to solve a nonlinear conservation equation for R and a

function of Ht. However, since Ht appears linearly in every case, we are able to solve for

Ht as a function of R.

For Model 1, we find

Ht =

(
Rt −R−

R

B
− RSt
R+K3

)(
R+K2

R

)
. (6.48)

For Model 2, we find

Ht =

(
Rt −R−

R

B
− 2R2

BK1
− RSt
R+K3

)(
R+K2

R

)
. (6.49)

For Model 3, we find

Ht =

(
Rt −R−

2R2

K4
− 2R2

B2K4
− 4R3

B2K1K4
− RSt
R+K3

)(
R+K2

R

)
. (6.50)

For a given parameter set, we calculate Ht for a range of R values from 0 to Rt. Since

Ht is a monotone decreasing function of R, it follows that there is unique solution R for

each value of Ht.

6.3.5 Method of Analysis

We do not know any of the parameters or concentrations in this system. However, for a

model to be acceptable, it must be that increasing deubiquitination and decreasing HLTF

leads to formation of the SHPRH/Rad18 complex while neither of these actions on their

own do. Therefore, we compute the steady states of our models for a range of Ht and a

range of B (or B2 in Model 3) and plot the proportion of St that is in complex with Rad18.

In our plots, we wish to see the behavior shown in Figure 6.3. That is, decreasing Ht while

holding B fixed should leave SR unchanged and increasing B while holding Ht fixed should

also leave SR unchanged. However, decreasing Ht and increasing B should result in an

increase in SR.

As previously mentioned, the parameters for this system are unknown. It is known

that SHPRH exists in much lower quantities in the cell than does HLTF [26]. Under this

assumption, we pick a value for total SHPRH concentration, St, and vary Ht to values much

greater than St. The main parameters for this system are the dissociation constants for the
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Figure 6.3: Method of analysis.

different competitive binding events. We search over a range of dissociation constants for

the desired behavior of the system. All parameters used in the results presented are listed

with the figures.

As one final consideration, Zeman et al. report that under normal conditions they

observe 25% of Rad18 is ubiquitinated [51]. Therefore, 0.25Rt = Ru + RuR. Using this

fact, we can calculate possible starting positions in our parameter space for the B and Ht

values before MMS treatment. This gives us starting positions from which to look for the

behavior depicted in Figure 6.3.

We calculate the B value necessary to meet this condition for each model.

In Model 1, we compute

B =
R

0.25Rt
. (6.51)

In Model 2, we compute

B =
K1R+R2

0.25dRtK1
. (6.52)

In Model 3, we compute

B2 =
2K1R

2 + 2R3

0.25RtK1K4
. (6.53)

We use these values of B in the equations for Ht in order to compute the steady state

of the system. The possible starting positions are shown in black on each plot of SHPRH

in our results.
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6.4 Results

6.4.1 Necessity of Kd Measurements

Figure 6.4 gives plots of SR as functions of Ht and B with all other parameters fixed

as specified. In each model, we observe the desired behavior that both HLTF degradation

and increasing deubiquitination are necessary but neither is sufficient on its own to induce

formation of SHPRH/Rad18 complexes as shown in Figure 6.4. However, in each model,

there are different sets of dissociation constants for which we observe these experimental

results. The calculated possible starting positions are shown in black on each plot.

Our results suggest that measurements of the dissociation constants are necessary in

order to assess the validity of the current proposed models. As we observe the desired

behavior in all three models, we cannot yet discuss the importance of the Rad18/Rad18u

complex or autoubiquitination in this system. Knowing the true dissociation constants for

this system would allow us to define one parameter space for each model which may or may

not exhibit the desired behavior.

Further, our results suggest that it is not enough to simply consider the comparative

strengths of each binding event. Figure 6.5 shows plots with equal dissociation constants for

SHPRH/Rad18 complexes and HLTF/Rad18 complexes in Model 1. For K2 = K3 = 150 we

observe the desired behavior while for K2 = K3 = 1 we do not. In the latter case, there is no

possible starting position which demonstrates the desired behavior. These results further

argue for the necessity of measuring the dissociation constants for each Rad18 binding event

in the system.

6.4.2 Deubiquitination Rate Prediction

To observe the desired behavior in all three models, the starting condition suggests

almost no deubiquitination, B ∼ 0, under normal circumstances. As this result is consistent

among all three models and all parameter ranges we considered, it suggests that prior to

MMS treatment essentially no DUBs are functioning in this system. This can be seen from

the possible starting positions shown in Figures 6.4 and 6.5.

6.5 Discussion

The goal of these models was to gain insight into the function of the Rad18/Rad18u

complex as well as to better understand the role of autoubiquitination. Unfortunately, we

are not able to address these issues with our current model. In order to decide on the validity

of the current functional models, our results suggest that experimental measurements of the

dissociation constants for Rad18 binding events are necessary. With a given set of measured



77

 

 

T
O

T
A

L 
H

LT
F

DEUBIQUITINATION RATE
.5 1 1.5 2

3000

2500

2000

1500

1000

500

0 0

0.2

0.4

0.6

0.8

1

(a)

 

 

DEUBIQUITINATION RATE

T
O

T
A

L 
H

LT
F

2 4 6 8 10

3000

2500

2000

1500

1000

500

0 0

0.2

0.4

0.6

0.8

1

(b)

 

 

T
O

T
A

L 
H

LT
F

DEUBIQUITINATION RATE
.5 1 1.5 2

2500

2000

1,500

1000

500

0 0

0.2

0.4

0.6

0.8

1

(c)

Figure 6.4: Proportions of total SHPRH in complex with Rad18. (a) Model 1 with
St = 100, Rt = 1000, K2 = K3 = 150. (b) Model 2 with St = 100, Rt = 1000, K1 = K2 =
K3 = 100. (c) Model 3 with St = 100, Rt = 1000, K1 = 10, K2 = 25, K3 = 30, K4 = 100.
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Figure 6.5: Proportions of total SHPRH in complex with Rad18 in Model 1 with equal
dissociation constants. (a) Model 1 with St = 100, Rt = 1000, K2 = K3 = 150. (b) Model
1 with St = 100, Rt = 1000, K2 = K3 = 1.

dissociation constants, we will be able to better distinguish between our three models and

make claims about the importance of Rad18/Rad18u complex and autoubiquitination. Our

results suggest that knowing the dissociation constants is crucial to understanding the

system. Our results also suggest that under normal circumstances there are essentially no

DUBs acting on Rad18u. It is of note that in this system ubiquitin is regulating Rad18

without relying on degradation, unlike the regulation of Fur4 which relies on ubiquitin

dependent degradation. This system is also demonstrates ubiquitin dependent regulation

of soluble proteins which is necessary for a specific response to MMS treatment.



CHAPTER 7

CONCLUSION

Proper regulation of proteins is at the core of cellular physiology. As such, lack of

regulation leads to pathophysiology and, therefore, disease. Ubiquitin is one of the key

players in protein regulation in most tissues and acts as both a post-translational protein

modification and as a binding partner to achieve regulation. In this dissertation, the

primary goal is to better understand some of ubiquitin’s roles. Specifically, we considered

ubiquitin-dependent regulation of Fur4, ubiquitin-dependent protein sorting by ESCRTs,

and ubiquitin-dependent regulation of Rad18 in the DNA damage tolerance pathway.

We first explored the regulation of the yeast uracil permease, Fur4. We modeled the

mechanism by which Fur4 is tagged with ubiquitin, Fur4 trafficking between the plasma

membrane and the early endosome, and endosome maturation leading to deletion of Fur4.

We wanted to understand the role of the Rsp5/Ubp2 complex which is localized to the

endosome. Our results suggest that the Rsp5/Ubp2 complex, which we refer to as the

Endosomal Quality Control and Retention System (EQRS), is crucial for proper regulation

of Fur4. Without the deubiquitination and retention functions of the EQRS, we do not

observe the marked downregulation of Fur4 upon increasing extracellular uracil. Further,

our results suggest that the pool of endosomal Fur4 remains nearly constant over a range of

extracellular uracil concentrations. We believe this should also be observed experimentally.

This pool allows for rapid localization of Fur4 to the plasma membrane upon a shift to

starvation conditions. In general, our results suggest that ubiquitination and deubiquiti-

nation are equally important. In this specific system, we observe that the localization of

ubiquitinating enzymes and deficiency of deubiquitinating enzymes at the plasma membrane

allow for quick removal of proteins which are misfolded or not needed. Subsequently, the

EQRS, with both ubiquitinating enzymes and deubiquitinating enzymes, provides a method

by which the cell can ”double check” whether or not it should degrade a given protein. As

ubiquitin is the degradation signal in this pathway, it is through its ubiquitin tag that Fur4

is retained on the endosome by interacting with the EQRS. This leads to its inclusion in
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ILVs and subsequent degradation. In this system, we observe that ubiquitin acts as both

a post-translational modification and a binding partner to acheive regulation. This is a

common theme from our work.

We next explored the mechanism by which ubiquitinated proteins (cargoes) are sorted

from protein lacking a ubiquitin tag on the endosome. This sorting process results in the

inclusion of cargo into ILVs leading to their degradation. This sorting is achieved with the

help of the ESCRT proteins. ESCRTs interact with protein through their UBDs and also

interact with other ESCRTs. Recent experimental results led to our current hypothesis

that ESCRTs and cargo form flexible networks prior to ILV formation. We first developed

a cellular automata model which suggests that a flexible network of ESCRT and cargo

is enough to achieve high efficiency sorting. In addition, this cellular automata model

importantly led us to realize the need for a better understanding of how dimensionality

changes protein interactions. All of the reported ESCRT dissociation constants are mea-

sured in solution as ESCRTs are soluble proteins. It was initially unclear how to transform

a three-dimensional dissociation constant into a two-dimensional dissociation constant in

order to model ESCRT-cargo networks on membranes.

To address the role of dimensionality in protein interactions, we took a stochastic

approach to solving this problem with the simple assertions that in order to bind two

proteins must find one another and then be oriented correctly to bind. Using exit time

calculations in both discrete and continuous space, we derived reaction rates for protein

interactions in one, two, and three dimensions. Our results suggest that dimensionality has

a great affect on protein interactions. Surprisingly, we observe that dissociation constants

in one and two dimension are dependent on the size of the domain on which they are

measured. This differs from the traditional three-dimensional dissociation constants which

does not depend on the size of the domain. Using our results, we are able to formulate a

transformation equation to transform a dissociation constant from three dimensions to two

dimensions. This transformation is very involved and requires much to be known about the

structure of the proteins.

Using our general results on dimensional dependence of protein interactions, we again

turned to ESCRT sorting. We transformed a three-dimensional dissociation constant to

a two-dimensional dissociation constant and our results illustrated that being membrane

bound is enough to enhance the affinity of the ESCRT UBDs. Therefore, ESCRT cargo

interactions are likely more stable than previously thought. With this result and using our

derived two-dimensional reaction rates, we explored the time it takes to sort cargo into
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networks of a critical size prior to ILV formation. Our results suggest that sorting can be

achieved on the order of seconds. As more is understood about how ESCRT-III interacts

with the early ESCRTs to form vesicles, it will be interesting to include this in our model

to assess the time it takes to form MVBs. As two-dimensional reaction rates depend on the

size of the domain, we predict that sorting will speed up as vesicles form since the amount

of endosomal membrane decreases. This work again shows that both functions of ubiquitin

are important. Cargoes are ubiquitin tagged and cargoes also interact with ESCRT through

ubiquitin interaction mediated by UBDs.

The final model in this dissertation aims to better understand ubiquitin-dependent

regulation of Rad18 in the DNA damage tolerance pathway. In order to respond ap-

propriately to DNA damage caused by MMS, Rad18 must interact with SHPRH. Under

normal conditions, this interaction does not take place; rather, Rad18 forms complexes

with HLTF. Upon MMS treatment, HLTF is degraded and an increase in deubiquitination

is observed. Both HLTF degradation and deubiquitination appear to be necessary while

neither is sufficient to induce Rad18/SHPRH complexes. As SHPRH, HLTF, and ubiquitin

interact with the Znf domain of Rad18, this becomes a competitive binding problem.

With differential equation models, we sought to address the importance of Rad18/Rad18u

complexes and Rad18 autoubiquitination in this regulation. Unfortunately, we were not

able to do so. However, our results suggest that a simple measurement of dissociation

constants for Rad18 binding events will allow us to distinguish between these models and

assess the importance of Rad18/Rad18u complexes and Rad18 autoubiquitination. While

these results are somewhat preliminary without the necessary experimental measurements,

we include them in this dissertation as an example of ubiquitin dependent regulation which

does not rely on degradation. This is also an example of ubiquitin-dependent regulation of

a strictly soluble protein. We again observe that ubiquitin acts in this system as both a

post-translational modification and as a binding partner to achieve regulation.

As a whole, this dissertation gives three examples of ubiquitin-dependent regulatory

systems and makes predictions about the mechanisms involved in each system. In all

three examples, ubiquitin functions in a regulatory role through not only being added

to proteins by enzymes but also binding to proteins through UBDs. Importantly, this

dissertation suggests that dimensionality plays a significant role in protein regulation as

protein interaction affinities, including UBD affinities, are affected by the dimension in

which the interactions take place.



APPENDIX A

SUPPLEMENT TO CHAPTER 2

In order to compute the flip rate, r, from the reported Vmax for uracil uptake in [45] we

use the following simplified model for flux of uracil across the plasma membrane for a fixed

amount of Fur4, Ptot:

dP e

dt
= −kSeP e + jPbe − rP e + rP i, (A.1)

dPbe

dt
= kSeP

e − jPbe − rPbe + rPbi, (A.2)

dP i

dt
= − k

w
SP i + jPbi − rP i + rP e, (A.3)

dPbi

dt
=

k

w
SP i − jPbi − rPbi + rPbe. (A.4)

(A.5)

We calculate the inward flux across the plasma membrane at steady state as

Fmem = jPbi − k

w
SP i. (A.6)

(A.7)

The maximal flux is given by

Vmax = lim
Se→∞

Fmem(S = 0) (A.8)

=
jrPtot

2(j + r)
. (A.9)

We can then solve for r:

r =
2Vmaxj

−2Vmax + jPtot
. (A.10)

The reported Vmax is ∼ 8.8(nmol ·min−1107cells−1). For our model, we change the units

and use Vmax = 8.8 · 103(molecules/cell/ms). This Vmax is reported with enriched plasma

membrane Fur4 so we assume a high amount of Fur4, Ptot = 1000. We estimate j to be 103

in our model giving r = 17.915 for the flip rate.



APPENDIX B

SUPPLEMENTS TO CHAPTER 4

B.1 Discrete Space Exit Time

We now present the general exit time calculation for a discrete state space following the

matrix differential equation, dq
dt

dp
dt

 =

 Z1 B

Z2 W

 q

p

 , (B.1)

with q being the vector of probabilities of being in the absorbing states and p being the

vector of probabilities of being in the nonabsorbing states. Z1, Z2, B, and W are matrices

of the appropriate size depending on the sizes of q and p. Note that since q represents the

probabilities of being in absorbing states, Z1 and Z2 are matrices of all zeros. The above

matrix differential equation can be split into two differential equations as follows:

dq

dt
= Bp, (B.2)

dp

dt
= Wp. (B.3)

As q represents the probabilities of being in the absorbing states it follows that the CDF

for exit time is 1Tq(t), the sum of the absorbing states at any given time. Therefore, the

expected time of exit is given by

T =

∫ ∞
0

t(1T
dq

dt
)dt. (B.4)

Using (B.2) and (B.3), we can compute this exit time as

T =

∫ ∞
0

t(1T
dq

dt
)dt (B.5)

= 1TB

∫ ∞
0

tpdt

= 1TBW−1

∫ ∞
0

t
dp

dt
dt. (B.6)
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Integrating by parts,

= 1TBW−1

[
p(t)|∞0 −

∫ ∞
0

pdt

]
(B.7)

= −1TBW−1

∫ ∞
0

pdt (B.8)

= −1TBW−2

∫ ∞
0

dp

dt
dt (B.9)

= −1TBW−2 [p(∞)− p(0)] (B.10)

= 1TBW−2p(0). (B.11)

In the specific case of interest in Chapter 4, this reduces to

T = −1TW−1p(0). (B.12)

We see this from computing the splitting probability, q(∞). Assuming that q(0) = 0, i.e.,

nothing is initially in an absorbing state, we see that∫ ∞
0

dq

dt
dt = q(∞). (B.13)

We can now compute the splitting probability to be∫ ∞
0

dq

dt
dt = B

∫ ∞
0

pdt (B.14)

= BW−1

∫ ∞
0

dp

dt
dt (B.15)

= BW−1 [p(∞)− p(0)] . (B.16)

(B.17)

Since p(0) = 0 the splitting probability is given by

q(∞) = −BW−1p(0). (B.18)

In the case of only one absorbing state, −BW−1p(0) = 1. Assuming that nothing is

initially in the absorbing state, we also know that 1Tp(0) = 1. Therefore, in this case,

−BW−1p(0) = 1Tp(0) and −BW−1 = 1T . It follows that in the case of only one absorbing

state, the exit time is given by

T = −1TW−1p(0). (B.19)

The problem in Chapter 4 is a case in which there is only one absorbing state.
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B.2 Proof of W−1 = A
δ −

Π
k

For a matrix W which can be written as W = δL − kE where L is a matrix with zero

column sum and

E =


1 0 0 · · · 0
0 0 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0 0 0
0 0 0 0 0

 (B.20)

we can prove that W−1A
δ −

Π
k where A and Π are independent of both δ and k, and Π = φ1T

where φ is an element of the null space of L normalized such that φ(1) = 1. The proof is as

follows. Let E = eeT where

e =


1
0
0
...
0

 (B.21)

It follows that

dW

dk
= −E (B.22)

dW

dδ
= L. (B.23)

We observe

0 =
d

dk
(WW−1) (B.24)

=
dW

dk
W−1 +W

dW−1

dk
(B.25)

= −Ew−1 +W
dW−1

dk
. (B.26)

Therefore,

W
dW−1

dk
= EW−1. (B.27)

Now consider the matrix W (dW−1

dk −
Π
k2

)W .

W (
dW−1

dk
− Π

k2
)W = W

dW−1

dk
W − WΠW

k2
(B.28)

= EW−1W − WΠW

k2
(B.29)

= E − (δL− kE)φ1T (δL− kE)

k2
. (B.30)
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Remember that Lφ = 0 and that 1TL = 0. Therefore,

E − (δL− kE)φ1T (δL− kE)

k2
= E − k2Eφ1TE

k2
(B.31)

= E − eeTφ1T eeT (B.32)

= E − E (B.33)

= 0. (B.34)

Therefore,

W (
dW−1

dk
− Π

k2
)W = 0 (B.35)

and since W is nonsingular

dW−1

dk
− Π

k2
= 0 (B.36)

This can be rewritten as

d

dk

(
W−1 +

Π

k

)
= 0. (B.37)

which leads to the conclusion that W−1 + Π
k is independent of k. Therefore,

W−1 +
Π

k
= f(δ). (B.38)

It now remains to prove that A is independent of δ. To do this, we first show that EA =

AE = 0.

Assume that W−1 = A
δ −

Π
k . Since WW−1 = I, it follows that

I = (δL− kE)

(
A

δ
− Π

k

)
(B.39)

=
δLA

δ
− δLΠ

k
− kEA

δ
+
kEΠ

k
(B.40)

=
WA

δ
+ EΠ. (B.41)

Rearranging we get,

WA

δ
= I − EΠ. (B.42)

Notice that I − EΠ has the following structure
0 −1 −1 · · · −1

1
1

. . .

1

 (B.43)
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We now observe that (I − EΠ)E is a matrix of all zeros.
0 −1 −1 · · · −1

1
1

. . .

1




1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (B.44)

Therefore, WAE
δ = (I − EΠ)E = 0. Since W is nonsingular, AE = 0. We can similarly

show that EA = 0. We now show that A is independent of δ.

0 =
d

dδ
(WW−1) (B.45)

=
dW

dδ
W−1 + w

dW−1

dδ
(B.46)

= L

(
A

δ
− Π

k

)
+ (δL− kE)

(
dA

δ

1

δ
− A

δ2

)
(B.47)

=
LA

δ
− LΠ

k
+
W

δ

dA

dδ
− δLA

δ2
+
kEA

δ2
(B.48)

=
W

δ

dA

dδ
. (B.49)

Therefore, dA
dδ = 0 and A is indeed independent of δ which proves that W−1 = A

δ −
Π
k

with A independent of δ and k.



REFERENCES

[1] O. S. Andersen and R. E. Koeppe, Bilayer thickness and membrane protein
function: an energetic perspective, Annu. Rev. Biophys. Biomol. Struct., 36 (2007),
pp. 107–130.

[2] M. Babst, D. J. Katzmann, E. J. Estepa-Sabal, T. Meerloo, and S. D. Emr,
ESCRT-III: an endosome-associated heterooligomeric protein complex required forMVB
sorting, Developmental Cell, 3 (2002), pp. 271–282.

[3] G. I. Bell, M. Dembo, and P. Bongrand, Cell adhesion. competition between
nonspecific repulsion and specific bonding., Biophysical Journal, 45 (1984), p. 1051.

[4] O. Berg, Orientation constraints in diffusion-limited macromolecular association. the
role of surface diffusion as a rate-enhancing mechanism., Biophysical Journal, 47
(1985), p. 1.

[5] O. G. Berg and P. H. von Hippel, Diffusion-controlled macromolecular interac-
tions, Annual Review of Biophysics and Biophysical Chemistry, 14 (1985), pp. 131–158.

[6] M.-O. Blondel, J. Morvan, S. Dupré, D. Urban-Grimal, R. Haguenauer-
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1.8 åresolution, Journal of Molecular Biology, 194 (1987), pp. 531–544.
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