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ABSTRACT

Nearshore fluvial to tidal transitional depositional systems are becoming increasingly 

important due to the large number of global hydrocarbon reserves held in such deposits. These 

deposits are inherently complex due to their heterolithic nature and therefore, interpreting facies 

and facies relationships in seismic reflection profiles is problematic. The fluvial and tidally 

influenced nearshore deposits of the late Cretaceous John Henry Member (JHM) of the Straight 

Cliffs Formation, located in the Kaiparowits Plateau of southern Utah, offers an excellent 

opportunity to improve our understanding of how the fluvial to tidal transition impacts 

subsurface petroleum reservoirs and their expression in seismic reflection profiles.

The focus of the first chapter is to investigate the impact of heterogeneous depositional 

environments and their rock properties to model amplitude versus offset (AVO) using a single 

core. Core EP-25 exhibits lithofacies from a progradational succession, from shoreface through 

tidal to fluvial. In order to model the most likely lithofacies stacking patterns present in the core, 

Markov Chain analysis was conducted. Benchtop measurements performed on 1 inch core plugs 

obtained rock properties (Vp, Vs, density, permeability, and porosity) for each lithofacies. 

Average rock properties for each lithofacies were used to generate synthetic seismic reflection 

models of the different upward fining facies associations documented directly from the core, in 

order to model variations in amplitude versus offset responses as a function of variable tidal 

influence.

The focus of the second chapter is to capture probable 3-dimensional geobody 

distributions with a particular focus on coal geobody distribution using previously studied cores 

and outcrops on the plateau. Three different seismic forward models were created ranging in



complexity, using cores EP-25, EP-07, density logs, and the nearby outcrop study Left Hand 

Collet. The rock properties obtained from the benchtop measurements were used to populate the 

three models based on different depositional environments at the separate depth slices capturing 

multiple geomorphic rather than stratigraphic models. A seismic survey was acquired on the 

plateau using 80 Hz frequency; this produced a high-resolution seismic profile. Comparing the 

forward seismic model to the acquired seismic profile allows for a conceptual understanding 

between predictive models of what is expected and what is captured in seismic reflection profiles.
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CORE DESCRIPTION, MARKOV CHAIN ANALYSIS AND 

AVO MODELING OF A TIDAL TO FLUVIAL 

TRANSITION ZONE IN THE CRETACEOUS 

STRAIGHT CLIFFS FORMATION,

SOUTHERN UTAH, USA

Abstract

Deposits within tidal successions are generated by a complex mixture of 

processes from fluvial input to tidal reworking, both impacted by shoreline transgressions 

and regressions. The resulting subtle changes at the bed scale in the transition from tidal 

to fluvial deposits make lithofacies differentiation from subsurface wireline log and 

seismic reflection data problematic. Because reservoirs comprised of tidally influenced 

deposits account for a significant portion of petroleum reserves, forward seismic 

reflection modeling coupled with a predictive facies model framework derived from core 

and outcrops can lead to invaluable insights for interpreting subsurface data. The goal of 

this research is to assess to what extent the fluvial and tidal facies associations can be 

distinguished in amplitude versus offset (AVO) forward models using lithofacies stacking 

patterns, depositional interpretations, and direct rock properties.

The Cretaceous John Henry Member (JHM) is exposed along the edges of the 

Kaiparowits Plateau in southern Utah, revealing excellent outcrop exposures o f fluvial 

and tidally influenced deposits. These exposures, coupled with core and wireline log data
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in the center of the plateau, present an exceptional opportunity to improve our 

understanding of wireline log interpretation and seismic imaging in similar subsurface 

petroleum reservoirs. The focus of this study is centered on core EP-25 (240 m), located 

in the north-central Kaiparowits Plateau. The core captures a progradational succession 

from shoreface through tidally influenced lagoon to fluvial. Transition probabilities 

between lithofacies observed in the core were quantified with a Markov Chain analysis, 

resulting in seven complete upward fining packages (facies associations), and 34 

incomplete packages. These facies associations represent end members from tidally 

influenced to fluvially influenced deposits and transitional packages between the two end 

members. Benchtop measurements were performed on 1 inch core plugs to obtain rock 

properties (Vp, Vs, density, permeability, and porosity) for each lithofacies. The resulting 

rock property exhibits a wide range of values as a direct result of the highly heterolithic 

nature of these deposits. As expected, significant overlap between fluvial and tidal rock 

properties is observed due to the transitional nature of the depositional environments. 

However, there is a distinguishable difference between clusters of the tidal and fluvial 

groups. Average rock properties were assigned to lithofacies comprising the seven facies 

associations and 1-dimensional amplitude versus offset (AVO) predictions were 

generated to elucidate near- to far-offset amplitude changes as a function of variable tidal 

influence. A near-offset amplitude decrease is observed in the transition from more 

fluvial- to tidally influenced depositional environments. 1-dimensional AVO model was 

then performed on the full length of the core using velocities and densities from the core 

plug measurements. Not only does the core also distinguish between reflectors in tidal 

and fluvial in the offset plot, but exhibits offset in the far angle based on increasing
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marine influence with depth.

Introduction

A number of studies have recognized the importance of understanding the impact 

of the fluvial-marine depsitional processes and their intricate link to reservoir quality 

amidst increasing tidal influence (Shanmugam et al., 1993; Nordahl et al., 2005; 

Longhitano et al., 2012). Core studies can not only be used to capture vertical stacking 

patterns (Powers and Easterling, 1982; Ahmad et al., 2012), but they also aid in the 

recognition of heterolithic lithofacies as a key indicator for interpreting depositional 

environment and stratigraphic architecture (Yoshida et al., 1999; Martinius et al., 2001). 

A significant amount of work has been done on describing tidal depositional 

environments and the direct link between repeating stacking patterns of lithofacies 

(termed parasequence by some authors) and their seismic-reflectivity character in both 

modern (Fenies et al., 1998; Yoshida et al., 2001; Chakrabarti, 2005) and ancient 

environments (Tanavsuu-Milkeviciene and Plink-Bjorklund, 2009; Feldman et al., 2014). 

These studies have focused primarily on the 1- and 2-dimensional seismic expression of 

geobodies. Although these studies are useful in interpreting geobody distribution, what 

they lack is the ability to identify the impact of depositional processes on the deposits 

within the fluvial to tidal transition zone, and their effect on seismic reflectivity, and 

more specifically, amplitude response with offset (AVO).

Forward seismic-reflectivity modeling is a valuable tool, particularly when used 

to predict seismic-reflectivity responses as a function of lithofacies changes in varying 

depositional environments. There have been a number of forward seismic-reflectivity



modeling studies that focus on offshore sedimentary rocks (Christensen and Szymanski,

1991; Vernik and Nur, 1992; Falivene et al., 2010; Tetyukhina et al., 2010; Howell et al ., 

2014; Stright et al., 2014), as well as tidal sedimentary rocks (Wen et al., 1998; Yoshida 

et al., 1999; Hodgetts and Howell, 2000; Yoshida et al., 2001; Tetyukhina et al., 2014), 

although very few have concentrated on the fluvial to tidal transition zone (Martinius and 

Gowland, 2011). A majority of these studies have used seismic rock properties either 

from analog core plug measurements, wireline logs from analogs, or theoretical rock 

property modeling.

The first rock property models were derived from empirical relationships between 

acoustic and elastic wave velocities as a function of pressure, clay content, and porosity, 

and calibrated to benchtop measurements (Han, 1986; Eberhart-Phillips et al., 1989). 

Following the anaysis of empirical rock property relationships, a number of studies 

investigated the rock properties from specific environments of deposition using either 

direct or modeled rock properties (Biddle et al., 1992; Falivene et al., 2010). Although 

these studies have characterized and modeled rock properties based on instrinsic 

properties (pressure, clay content, porosity, and acoustic and elastic wave velocities), 

there are few studies that couple the rock properties tightly with bed-scale depositional 

processes and none specifically in the fluvial to tidal transition zone.

The goal of this research is to assess to what extent the fluvial and tidal facies 

associations can be distinguished in bed- to log-scale AVO forward models using rock 

properties measured directly from core, lithofacies stacking patterns, and depositional 

environment interpretations. In order to accomplish this, core description within the John 

Henry Member of the Straight Cliffs, Utah is presented within a hierarchical framework.
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Stacking patterns of fundamental bed-scale observations (lithofacies) are quantified using 

Markov Chain Analysis to calculate transition probabilities and characterize lithofaci e s 

stacking patterns (facies associations) to aid in characterization of depositional 

environments. The resulting facies associations represent deposits from tidal and fluvial 

end members and the intermediate transitional packages. AVO forward modeling was 

generated to reveal near- to far-offset amplitude changes as a function of variable tidal 

influence by employing direct rock property measurements. Coupling geological 

observations from core to their seismic response, by placing them within a hierarchical 

framework, enables core plug rock property measurements to be tied to depositional 

processes and upscaled in order to analyze the seismic amplitude in fluvial to tidal 

transition zones.

Geologic Background 

Regional Geology

Sediments preserved in the Upper Cretaceous Straight Cliffs Formation of the 

Kaiparowits Plateau were deposited in an asymmetrical foreland basin formed by loading 

from the Sevier fold and thrust belt to the west (Kauffman and Caldwell, 1993; Allen and 

Johnson, 2010a) (Fig. 1.1). The siliciclastic sediments that form the Kaiparowits Plateau 

were sourced from three locations: the Sevier fold and thrust belt to the west, the 

Mongollon Highlands to the south, and the Cordilleran Volcanic Arc to the southwest 

(Peterson, 1969a; Eaton and Nations, 1991; Hettinger, 1995a; Szwarc et al., 2014). 

Paleoshorelines were oriented northwest-southeast (Peterson, 1969a; Shanley and 

McCabe, 1991; Shanley et al., 1992; Hettinger, 1995a; Allen and Johnson, 2010a). The

5
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easternmost outcrop exposures along the plateau comprise offshore through intertidal 

facies and represent the paleoshoreline of the Western Interior Seaway in southern Utah 

(Shanley and McCabe, 1991).

Stratigraphy

Peterson (1969) divided the Straight Cliffs Formation in the Kaiparowits Plateau 

into four members: the lower cliff-forming Tibbet Canyon Member, the slope and ledge 

forming Smoky Hollow Member and John Henry Member (JHM), and the upper cliff- 

forming Drip Tank Member. The JHM, the focus of this study, is the thickest (200-500 

meters) and early Coniacian to late Santonian in age (~88 to 83.5 Ma) (Fig. 1.2) 

(Peterson, 1969a; Eaton, 1991; Hettinger et al., 1993; Szwarc, 2014). The base of the 

JHM is marked by a landward shift in facies recording a transgression that occurred after 

deposition of the Smoky Hollow Member (Shanley and McCabe, 1991). In the southern, 

western, and northeastern Kaiparowits Plateau, the upper JHM consists primarily of 

multi-story and single-story fluvial channel belts interbedded with carbonaceous 

floodplain mudstones and coal (Gooley, 2010; Pettinga, 2012). The center of the plateau 

contains paludal deposits with thick coal beds and are interstratified with tidal deposits 

(Vaninetti, 1979). Seven shoreface sandstone packages were identified at Left Hand 

Collet in the central part of the plateau along the paleoshoreline, ranging from wave 

dominated lagoon to tide dominated barrier island system (Peterson, 1969a; Dooling, 

2012). There are three coal zones present in the JHM: Lower Christensen, Rees, and 

Alvey coal zones (Fig. 1.2). These zones were interpreted by Shanley and McCabe 

(1992) as being deposited in steep raised mires. The preservation of transgressive lagoon
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and complete progradation (regressive) shoreface successions indicate that 

accommodation and sedimentation rates were moderately high throughout depositi on of 

the entire JHM (Allen and Johnson, 2010b).

The northeastern part of the plateau has been examined to a lesser degree than the 

southern part of the plateau. Left Hand Collet and highway 12 outcrops are the only 

outcrop exposures that have been studied thus far (Shanley et al., 1992; Dooling, 2012; 

Chentnik et al., 2014). In the northern-central section of the plateau, data are limited to 23 

core that were extracted by Utah Power and Light (UP&L) in the early 1970s in order to 

investigate coal in the region. One particular core intersects the entire JHM, core EP-25. 

Gallin (2010) logged and interpreted this core to provide valuable information regarding 

the extent of depositional environments across the central Kaiparowits Plateau. Gallin’s 

(2010) core analysis offered a benchmark on which to support further work in the 

northeastern part of the plateau.

Core Description

Core EP-25 is a 240 m thick cored interval, logged in the northeastern 

Kaiparowits Plateau, Utah that intersects the entire John Henry Member (Table 1.1). The 

smallest scale of observation, lithofacies, was subsequently used to interpret the different 

depositional environments and their associated architectural elements. Within core EP- 

25, eight different lithofacies were identified and described at a core plug scale (1-20 cm) 

(Gallin, 2010) (Fig. 1.3). The lithofacies are defined by grainsize, bed features, 

bioturbation, laminations, and organic content. Gallin also noted an overall trend that 

reveals a transition from marine to fluvial influence moving up in the core. Based on
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fossils assemblages, coal, amount of bioturbation, and lithofacies distribution, three 

depositional environments were identified: coastal plain (fluvial), tidal, and shoreface 

(Hettinger, 1995a; Gallin, 2010). The lithofacies are described below by Gallin’s 

observation, categorized into their interpreted architectural elements, and then grouped 

into depositional environments (Fig. 1.4).

Core Description: Lithofacies, Architectural Elements, and Depositional

Environments

Carbonaceous Shale

This lithofacies is dark gray to black colored shale. It is often laminated but can 

be structureless. Abundance of organic material is present, comprised primarily of plant 

fragments; however, brackish water corbulids and other small gastropods are also 

present. Vertically, carbonaceous shale often grades into coal. This lithofacies is 

interpreted as being low energy lagoonal mudstone within a tidal depositional 

environment.

Bioturbated Mudstone

This lithofacies consists of horizontally laminated mud or mud with no 

laminations and varying degrees of bioturbation. The bioturbation index used to quantify 

the amount of bioturbation uses a scale which ranges in amount of disturbance to original 

bedding structures from 0-100%, with 100% being complete obliteration of original 

sedimentary structures (Droser and Bottjer, 1988). The bioturbation in the tidal mudstone 

tends to be filled with very fine to fine grained sandstone. Organic material in this
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lithofacies consists of plant fragments, leaf imprints, bivalve, and gastropod shells. 

Vertically, this lithofacies often grades into carbonaceous shale and coal. This l ithofacies 

is interpreted as being low energy, represented in both the tidal and coastal plain 

depositional environments. In the tidal depositional environment, bioturbation is heaviest 

and there is an abundance of tidal environment trace fossils (Teichichnus, Thalassinoides, 

Ophiomorpha, Asterosoma). This lithofacies represents the architectural elements tidal 

mudstone and overbank fines in the respective depositional environments.

Flaser/W avy/Lenticular Bedded Sandstone

This lithofacies reveals alternating laminations of sandstone and mudstone. 

Grainsize ranges from very fine to medium, while the mud fraction consists of siltstone, 

shale, or carbonaceous shale. Flaser mud drapes sometimes occur as accumulations of 

carbonaceous material. This bedding style is indicative of bi-directional flow and tidal 

influence (Finzel et al., 2009). Intervals comprised of flaser/wavy/lenticular bedforms are 

interpreted as deposits from tidal and coastal plain depositional environments. Although 

this lithofacies is associated mainly with tidal influence, it can be found seen in the 

fluvial environment as likely being located on the edge of the transition zone between 

fluvial and tidal environments. The architectural elements include tidal mudstone and 

overbank fines.

Planar Bedded Sandstone

This lithofacies is composed of fine to medium grained sandstone. Laminations 

observed in the sandstone dip < 5°. This lithofacies is associated with high-energy flow
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regimes and is present in all three depositional environments. In the fluvial depositional 

environment, this lithofacies represents part o f upward fining, fluvial channel 

architectural element. In the tidal depositional environment, this lithofacies represents 

highly sinuous distributary tidal channel architectural elements. In the shoreface 

depositional environment, this lithofacies represents well-sorted shoreface sheet 

sandstone clean on mud draping and may constitute hummocks or swales. In this 

environment, large robust bivalve fragments are preserved including Granocardium.

Trough Cross-bedded Sandstone

This lithofacies is comprised of fine to coarse grained sandstone. The trough and 

planar tabular sets range between 1- 5 mm thickness and the foresets dip between ~5- 

40°. This lithofacies represents unidirectional flow and is present in all three depositional 

environments. In the fluvial depositional environment, this lithofacies represents part of 

upward fining, low sinuosity fluvial channel architectural element. In the tidal 

depositional environment, this lithofacies represents the landward end o f a highly sinuous 

distributary tidal channel architectural element. In the shoreface depositional 

environment, this lithofacies represents well-sorted shoreface clean sheet sandstone 

ripples and hummocks with no mud draping as the shoreface architectural element. The 

trough cross-stratification may constitute hummocks and swales in the shoreface 

environment.
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Structureless Sandstone

This lithofacies is composed of very fine to coarse grained sandstone.

Sedimentary structures are not apparent. Occasional bivalve shell fragments are present. 

This lithofacies is present in all three depositional environments. In the fluvial 

depositional environment, this lithofacies represents part of the fluvial channel 

architectural element. In the tidal depositional environment, this lithofacies represents the 

tidal channel architectural elements. In the shoreface depositional environment, this 

lithofacies represents well sorted clean shoreface architectural element.

Mud Rip-up Sandstone

This lithofacies reveals grainsizes that range from very fine to coarse. Within the 

sandstone matrix, angular to subangular, flat to moderately rounded mud rip-up clasts are 

present. The clasts are thin (< 1 cm) flakes. Vertically, the grainsize in this lithofacies 

coarsens upward over 10’s of cm. This lithofacies is interpreted as high energy channel 

lag deposits within a fluvial depositional environment. More specifically, mud rip-up 

clasts are interpreted as being located at the base of the fluvial channel architectural 

element that cut through the overbank fines and tidal mudstone.

Coal

This lithofacies is black with dull vitreous reflectance and lacking distinct 

laminations. It is often accompanied by surficial and interstitial sulfur precipitates. 

Typically, this lithofacies is underlain by bioturbated mudstone or carbonaceous shale. 

The coal seams are < 1 m thick. This lithofacies is interpreted as being present
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exclusively in the tidal depositional environment. Although the coal is associated with the 

tidal depositional environment, it is believed to have formed in raised coal mire s that 

persisted for long periods of time with limited input from either fluvial or marine realms 

(Hettinger, 1995). Vertically, the coal tends to become thinner and less frequent upward. 

This decreasing frequency of the coal and increase in grainsize of sandstone lithofacies 

upward in the core is tied to an overall decrease in marine influence from the base of the 

core to the top.

Detailed core description and observations at the lithofacies core plug scale 

provide a hierarchical framework which can be subsequently upscaled and tied to 

depositional processes. The upscaled lithofacies and their rock property measurements 

are analyzed in order to gain a better understanding of the seismic amplitude in fluvial to 

tidal transition zones.

Methods

Prediction between scales, from lithofacies to stacked geobodies (core to reservoir 

scale), is accomplished by placing the observations within a hierarchical framework. A 

Markov Chain Analysis (MCA) is used to determine the 1-dimensional transition 

probabilities of lithofacies to quantify larger scale stacking patterns as facies associations. 

Rock property measurements from core plugs are used to generate AVO forward models 

of the facies associations to test if there is a near- to far-offset amplitude signature that 

can aid in predicting the amount of tidal influence, and therefore, reservoir quality from 

seismic reflectivity.
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Facies Associations Stacking Patterns

In order to determine whether the lithofacies making up the facies associ ation 

show a preferred stacking or regular vertical arrangement, a MCA was performed on the 

core observations. The MCA quantified the probability of transitioning from one 

lithofacies into another and therefore captures probable stacking patterns (Ahmad et al., 

2012). The rationale of calculating transition probabilities is that an unbiased analysis of 

the repeatable stacking patterns can be captured from the core. The MCA was performed 

over the entire core with a transition count matrix where all possible vertical lithological 

transitions were tabulated at a 0.1 ft. sample rate (Table 1.2). These were converted to 

transition probabilities by normalizing the counts for each of the lithofacies by the total 

counts.

To characterize fully preserved depositional packages, only complete facies 

associations were extracted from the core based on three criteria. The three criteria of a 

full facies package were:

1) The facies associations had to include at least three consecutive, statistically 

related lithofacies. No facies association was selected if it contained only two 

lithofacies, for example, only carbonaceous shale and coal. The rejection of 

packages that did not have at least three stacked lithofacies takes into account 

the fact that the association may not be directly penetrating full architectural 

elements. This eliminates the packages that occur in the marginal position of 

the architectural elements and therefore do not represent a full depositional 

sequence.

2) Each of the lithofacies had to be at least as thick as the average bed thickness



for each lithofacies. For example, if a facies association was comprised of 

trough cross-bedded sandstone, planar bedded sandstone, bioturbated 

mudstone, carbonaceous shale, and coal, but all or one of the thicknesses was 

less than the lowest standard deviation, the association was disregarded.

3) The bases of each facies association were assumed to be comprised of either 

mud rip-up sandstone or trough cross-bedded sandstone.

Using the three criteria for building the facies association, in conjunction with 

the MCA results, seven facies associations were ultimately selected to conduct 

AVO modeling.

Rock Properties

To investigate the rock properties o f the eight lithofacies 60, 1 inch diameter by 1 

inch vertical, perpendicular to bedding core plugs were collected from the EP-25 core.

The only lithofacies not represented by core plugs was the coal. Measurements for rock 

properties o f coal were not attempted due to its friability and many of the coal intervals 

were missing from the core as a result of sampling from historical coal exploration work.

Core plug benchtop measurements (at room temperature (68°F) and atmospheric 

pressure) were conducted for porosity, density, compressional wave (Vp), and shear wave 

velocities (Vs). The samples were prepared by first sanding the top and base to get a flat 

surface to ensure 1) good contact with the electrodes, which uses piezoelectric crystals to 

generate a high voltage electric pulse into the core plug to measure velocity and 2) 

accurate length measurements for bulk volume calculations. Prior to testing the samples 

were dried for 72 hours to remove all moisture. Dry rock density was calculated from

14
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bulk volume and mass measurements. Porosity was measured using a porosimeter. Vp 

and Vs velocities were measured using an ultrasonic velocimeter.

Laboratory-derived measurements of Vp, Vs, and density were used to generate 

average P-impedance (Ip) and S-impedance (Is) for each lithofacies. These relationships 

were interrogated to elucidate the relationship between lithofacies and the measured rock 

properties. Clay content was calculated by estimating a percentage of shale (VShale) 

from the preexisting gamma ray log. Average values for each lithofacies within each 

depositional environment were used for the forward modeling to compare the impact of 

packaging of the lithofacies (facies associations) without introducing variability (noise) 

from rock property measurements. Cross plots of Ip versus Vp/Vs colored by lithofacies, 

architectural elements, and depositional environments were used to elucidate the impact 

of depositional processes and environment controls on the seismic response. In order to 

analyze net-to-gross (NTG) and grainsize, the core plugs were visually examined with a 

hand lens. The core plug values were then plotted on the Ip versus Vp/Vs cross plot to 

identify possible patterns and ties to lithofacies, architectural elements, and depositional 

environments.

1-Dimensional Synthetic Seismic Modeling

1-dimensional synthetic seismic models were generated using the seven facies 

association columns obtained from the MCA and populated with the average rock 

property values of lithofacies from the different environments of deposition (Table 1.2). 

The background rock property used was the overall average values for the bioturbated 

mudstone in the respective depositional environments (7022 Ns/m for coastal plain and
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7600 Ns/m for tidal). Angle-dependent reflectivities were then calculated for each facies 

association column using the Zoeppritz equation (Zoeppritz, 1919) to capture sei sm ic 

reflectivity as a function of incidence angle (Castanga, 1992). The reflectivity series was 

subsequently convolved with a 25-Hz, zero phase, + 90° rotated, Ricker wavelet with an 

offset range from 0 to 30 degrees.

To better understand the imaging of the stacked facies association packages at the 

well log to seismic scale, a 1-dimensional synthetic trace was generated of the full core 

EP-25. All 60 measurements of Vp and Vs were used for this modeling instead of the 

average values. The only logs associated with core EP-25 available were gamma gamma 

density and gamma ray logs. Vp and Vs logs were generated using sequential Gaussian 

simulation (sGs) for each lithofacies leveraging values measured from core plugs as hard 

data. The coal lithofacies used a single value for the Vp (2000 m/s) and Vs (1200 m/s) 

rather than a simulation (Morcote et al., 2010). Once the seven different lithofacies logs 

were combined using values extracted from each lithofacies simulation at their exact 

locations in the core at 0.5 ft. steps. The logs were spliced together to create full 1D logs 

that represents the eight different lithofacies throughout the core. A pre-existing density 

log from when the core was originally drilled was corrected to match the density values 

of sandstone bodies from the rock property measurements because the logs were initially 

calibrated to the coal values when originally cored; however, since the rock property 

measurements demonstrate the accurate density values, the log was recalibrated to the 

sandstone bodies. Using the velocities (Vp and Vs), and density log, Ip, and Is were 

calculated. The reflectivity series was convolved with a 25-Hz zero phase +90 rotated 

Ricker wavelet with an offset range from 0 to 30 degrees.
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Results

Facies Association Stacking Pattern

The combination of the MCA with the cutoff criteria produces seven complete 

facies associations based on the three criteria of containing at least three lithofacies, 

lithofacies thickness that falls within the standard deviation and underlain by mud rip-up 

and trough cross bedded sandstone. These facies associations were subsequently 

categorized as either tidal or fluvial. One key indicator of depositional environment was 

the capping lithofacies of the packages. The facies associations that are capped by 

carbonaceous shale and coal are typical of tidal depositional environment, whereas facies 

associations that are capped by bioturbated mudstone exclusively, without carbonaceous 

shale or coal present, is indicative of the overbank fine architectural element, pointing to 

a fluvial depositional environment. Another indicator of depositional environment is the 

base lithofacies of each package, where, when present, mud rip-up sandstone is 

interpreted to be associated with fluvial channels (Table 1.2). These interpretations 

corroborate Gallin’s (2010) interpreted depositional environments.

The lithofacies stacking patterns observed within the facies associations indicate 

that there is a range of distinct stacking patterns in both the fluvial and tidal environments 

of deposition (Fig. 1.5). The MCA results illustrate which lithofacies are most likely to 

stack on top of one another in a statistically significant pattern. These stacking patterns 

and their measured bed thicknesses (Fig. 1.6) comprise the facies associations that were 

observed within interpreted environments of deposition both of complete and incomplete 

packages (Fig. 1.7).

The results for one of the fluvial facies association (fluvial 1) is comprised of a
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base of mud rip-up sandstone to trough cross-bedded sandstone (55 %), capped by 

bioturbated mudstone (14%). The most likely fluvial facies association based on (fluvial

2) stacking pattern that was extracted from the core is a mud rip-up base followed by 

trough cross-bedded sandstone (55%) followed by planar bedded sandstone (50%), 

flaser/wavy/lenticular bedded sandstone (52 %), capped by bioturbated mudstone (84 %).

There are five MCA results for the tidal facies association likely due to the fact 

that it is a much thicker depositional environment in the core. The tidal facies 

associations do not exhibit mud rip-up sandstone in this environment; the base in each of 

the five facies associations is trough cross-bedded. Tidal 1 has a base of trough cross­

bedded sandstone transitioning to planar bedded sandstone (45 %), carbonaceous shale 

(12 %), and capped by coal (100 %). Tidal 2 has a base of trough cross-bedded sandstone 

transitioning to planar bedded sandstone, bioturbated mudstone (42 %), and capped by 

coal (22 %). Tidal 3 has a base o f trough cross-bedded sandstone transitioning to 

flaser/wavy/lenticular bedded sandstone (36 %), bioturbated mudstone (84 %), 

carbonaceous shale (34 %), and capped by coal (100 %). Tidal 4 has a base of trough 

cross-bedded sandstone transitioning to planar bedded sandstone (50 %), 

flaser/wavy/lenticular bedded sandstone (46 %), carbonaceous shale (16 %), and capped 

by coal (100 %). Tidal 5 has a base o f trough cross-bedded sandstone transitioning to 

planar bedded sandstone (50 %), flaser/wavy/lenticular bedded sandstone (46 %), 

bioturbated mudstone (84 %), carbonaceous shale (38 %), and capped by coal (100 %). 

Tidal 5 facies association is comprised of lithofacies that represent the most likely 

stacking based on percentages. This association is assumed to represent the most 

representative end member in a tidal environment. Based on the most likely stacking
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pattern in the fluvial environment, the representative end member would be something in 

between fluvial 1 and fluvial 2.

The facies associations capture not only likely statistical transition between 

lithofacies, but also show distinct patterns linking each package to depositional processes. 

All of the facies associations contain the trough cross-bedded sandstone lithofacies, 

which indicates the presences of either fluvial or tidal channels. The planar bedded 

sandstone points to a high velocity flow, the flaser/wavy/lenticular bedded sandstone 

illustrates bi-directional flow which suggests tidal influence, bioturbated mudstone 

indicates a quiet environment with little disturbance from flow, and both coal and 

carbonaceous shale represent organic input and stagnant depositional conditions 

representative of paludal depositional environments.

Between all the facies association, the columns can be differentiated by the 

absence or inclusion of the following lithofacies; 1) facies associations containing planar 

bedded sandstone (in 5 of 7 facies associations, both in tidal and fluvial); 2) facies 

associations with flaser/wavy/lenticular bedded sandstone (in 4 of 7 facies associations, 

both in tidal and fluvial) and; 3) facies associations capped by carbonaceous shale and 

coal (in all tidal facies associations).

Rock Properties

The rock properties show a wide range of values as a direct result of the highly 

heterolithic nature of these deposits. The distribution of rock property data for each 

lithofacies sorted by depositional environment is presented in Table 1.3. The values 

derived from laboratory measurements including Vp, Vs, density, and porosity, are
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cataloged into the three depositional environments. Three samples with a Vp values less 

than 1500 m/s were removed from further calculations because they were believed to be 

bad samples due to these unrealistically low values. The error in the remainder of the 

measurements is less than 1% for all tests.

The standard deviation for Vp, Vs, and density is low for the mud rip-up clast 

sandstone. Although there are not enough data to calculate a standard deviation for the 

planar bedded sandstone, values for this lithofacies has the largest range the maximum 

and minimum values for Vp and Vs. The trough cross-bedded sandstone in both fluvial 

and tidal depositional environments exhibit similar values. In the tidal environment, the 

highest standard deviation for Vp and Vs is the planar bedded sandstone 940 m/s and 618 

m/s, respectively. The lowest standard deviation for Vp is flaser/wavy/lenticular bedded 

sandstone; however, it also has the highest standard deviation for porosity (275 m/s and

6.2 %, respectively). The lowest standard deviation for Vs and porosity is carbonaceous 

shale (185 m/s and 2.7 %, respectively). The other lithofacies all have similar standard 

deviations in the middle for both velocities. The wide range in values emphasizes the 

complexity in interpreting the seismic expression of these highly heterolithic depositional 

environments.

It is difficult to identify velocity and density as separate variables from seismic 

profiles; however, Ip and Is can be easily obtained. Therefore, a common way to identify 

velocity and density is to plot Ip and Is as a ratio to derive Vp/Vs. The general trends 

observed in the rock properties cross plot of Ip versus Vp/Vs is increasing Ip and 

decreasing Vp/Vs as a function of decreasing grainsize, decreasing net-to-gross, and 

decreasing porosity (Fig. 1.8D, 1.8E, and 1.8F, respectively). Although there is an inverse



relationship between grainsize and Ip, the siltstone, and mudstone are difficult to 

distinguish from one another (Fig. 1.8D). A general trend between decreasing n et-to - 

gross and increasing Ip is clear; however, there is a considerable amount of overlap in the 

high Ip with some higher net-to-gross exhibiting higher Ip (Fig.1.8E). In addition, there is 

a clear inverse relationship between porosity and Ip (Fig. 1.8F); however, where the 

porosity values have values of less than < 5 %, the porosity plots show a distinct positive 

slope. The inverse trend is also evident in the percentage of clay illustrating an increase in 

Ip with an increase in clay content (Fig. 1.8G). Poorly-sorted samples tended to have a 

high Ip, while the well-sorted tended to have a lower Ip (Fig. 1.8H). Furthermore, 

sandstone lithofacies in general are characterized as high net-to-gross, high porosity, 

large grainsize, and low Ip (Fig 1.8A). One lithofacies in particular that is an outlier to 

these general trends is planar bedded sandstone which exhibit larger grainsize and net-to- 

gross, but high Ip and low porosity. Bioturbated mudstone and carbonaceous shale have 

low net-to-gross, low porosity, small grainsize, and high Ip. Tidal and coastal plain 

environments are clearly differentiated with the tidal elements having higher average 

values of Vp/Vs and Ip (Fig. 1.8B).

There is a v-shape apparent in the plots showing low Ip from fluvial and tidal 

channels, demonstrating a poorly correlated negative slope, and high Ip architectural 

elements which correspond to the tidal and fluvial mudstones and exhibit a distinct 

positive slope (Fig. 1.8B). The positive slope, high Ip trend in the rock properties plot 

represents the tidal mudstone and overbank fines. Tidal mudstone and the fluvial 

overbank fines are distinguishable as shown by an offset in the averages which indicates 

that the tidal mudstone has a higher Vp/Vs and Ip compared to the overbank fines at, 0.08
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and 11100 (Ns/m ), respectively (Fig. 1.9). Although the tidal mudstone and overbank 

fine elements have low porosity, grainsize, and net-to-gross, the tidal mudstone in 

particular have varying amounts of bioturbation while the circled points (overbank fine), 

illustrate no bioturbation (Fig. 1.8C).

The plot colored by architectural elements illustrates a strong distinction between 

the different types of sandstone beds (interpreted as channels) in the Vp/Vs, where the 

tidal mudstone and overbank fines are more easily distinguished by the Ip spread (Fig.

1.9). In the channel sandstone, the tidal Vp/Vs is 0.04 and the Ip is 2000 (Ns/m ) which is 

greater than the fluvial sandstone which has a Vp/Vs of 0.35 and Ip of 5000.

In order to investigate different ways to distinguish the channel sandstone 

elements, the lithofacies that comprise the sandstone elements were plot as Ip versus 

porosity (Fig. 1.10). The lithofacies that comprise channel sandstone are planar bedded 

sandstone (D, Fig. 1.3), trough cross-bedded sandstone (E, Fig. 1.3), structureless 

sandstone (F, Fig. 1.3) and mud rip-up sandstone (G, Fig. 1.3). The core plugs are 

separated into two groups based on marine influence moving up in the core: tidally 

influenced channels, and fluvial channel sandstone at the top of the core. Employing tidal 

and fluvial channel sandstone lithofacies investigates the differences in the channels 

based on the channel architectural elements and core depth (Fig. 1.10). The end member, 

fluvial channel sandstone has high porosity values and low Ip while the tidally influenced 

channel sandstone demonstrates low porosity and high Ip values (Fig. 1.10a). Based on 

the depth plot, the tidal channel samples that are clustered in the low porosity zone 

correlate to the upper most section of the tidal environment (310-340 m). The mid-range 

porosity and Ip samples in the tidal environment correlate to the middle section of the

3
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tidal environment (340-370 m), while the base o f the tidal environment correlat es to high 

Ip and low porosity channels (370-400 m) (Fig. 1.10B). Recalling that core EP-25 

displays increasing marine influence moving down in depth the plot Ip versus porosity 

aids in highlighting the distinction between the more marine influenced channelized 

sandstone and the fluvial influenced channel sandstone (Fig. 1.10C).

Forward Seismic Modeling 

The maximum positive amplitude at zero-phase was used as the location across 

which to analyze offset amplitudes (Fig. 1.11). In the near-far amplitude versus offset 

plot, fluvial facies associations have higher amplitude for the full range of offsets in 

comparison to the tidal facies associations which have lower amplitudes. The key 

difference between the tidal and fluvial facies associations is the presence of coal and 

carbonaceous shale in the tidal facies association and the mud rip-up clast sandstone at 

the base of the fluvial.

In contrast to the modeling of single facies association packages with a mudstone 

background, AVO modeling of the full core EP-25 represents multiple facies associations 

stacked on top of one another with the measured and interpolated rock properties rather 

than averages (Fig. 1.12). The AVO model of the entire core illustrates some similarities 

and differences to the facies association AVO models. In the offset plot, the maximum 

amplitude fluvial coastal plain amplitude reflection is also larger than the tidal zone 

amplitude reflection. Facies associations containing planar bedded sandstone are 

observed in both fluvial and tidal facies associations, and have a large spread in values 

which is muted in the individual facies association modeling due to the use of average
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values. The impact is a large range of resulting AVO responses. The Drip Tank Member, 

at the top of the core, is a gravelly sheet comprised of high Ip sandstone. When 

juxtaposed against the low Ip overbank fines and fluvial channels in the upper JHM, an 

amplitude reflection is generated that is unique compared to the other wavelets in the 

core; this wavelet has a more significant decrease in amplitude in the far offset.

The second pattern that emerges from the AVO analysis of the facies associations 

is observed in the amplitude reflection coefficient versus offset plot (Fig. 1.12). The 

fluvial facies associations have higher amplitude reflections compared to the tidal facies 

association in the near and the far angles. However, there is more obvious distinction 

between the fluvial and tidal facies associations in the near angle; the distinction is much 

less apparent in the far angle. The difference between the tidal and fluvial is due to the 

fluvial associations having a base of low Ip and capped by bioturbated mudstone that has 

a lower Ip than the tidal association bioturbated mudstone. The inclusion of the high Ip 

carbonaceous shale and low Ip coal is also a significant distinguishing feature between 

the tidal and fluvial associations that is revealed in both the rock properties and 

subsequently the AVO analysis.

Discussion

Interpreting Degree of Tidal Influence from Lithofacies Stacking Patterns

Predictive, probabilistic stacking patterns at the lithofacies scale using MCA is an 

advantageous way of recognizing repeatable and statistically significant stacking patterns 

in vertical successions. Due to the complexity of tidally influenced deposits, stacking 

patterns predicted from a MCA indicate nuances which help better constrain



interpretations and place measured rock properties within an architectural framework.

The fluvial and tidal facies associations illustrate variable terrestrial versus mari ne 

influence evident in both the stacking patterns and patterns in the rock properties. These 

trends can be used as a basis to improve seismic interpretation in tidal environments.

All seven of the resulting facies association columns have a slightly different 

stacking pattern. These variations in stacking patterns signify small but important 

differences in the depositional processes. The most likely stacking pattern in the fluvial 

succession is a basal mud rip-up sandstone, trough cross bedded sandstone, planar bedded 

sandstone, and capped by bioturbated mudstone. This is interpreted as an erosional fluvial 

channel transitioning to overbank fines in a coastal plain depositional setting with no 

marine influence. However, the second facies association located within what has been 

interpreted as a fluvial package (fluvial facies association 2) includes 

flaser/wavy/lenticular bedded sandstone. This section is likely located within a coastal 

plain because of the lack of a carbonaceous shale and coal cap. However, this package 

sits above a tidal package and contains bedforms consistent with tidal influence 

(carbonaceous shale and coal). This section could be exhibiting some transitional 

properties associated with a conformable change from tidally influenced to coastal plain, 

more seaward than fluvial 1, but still more inward than the tidal facies associations.

The five different tidal facies associations show even more variation. The most 

likely stacking pattern for a tidal facies association is a basal trough cross-bedded 

sandstone, planar bedded sandstone, flaser/wavy/lenticular bedded sandstone, bioturbated 

mudstone, carbonaceous shale, capped by a coal. However, there is only one facies 

association column that represents these statistics and is interpreted as an end member
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representation of the furthest seaward tidal package (tidal 5). This full stacking pattern is 

characterized by a high flow regime tidal channel transitioning to low energy tidal 

mudstone and capped by coal. Tidal associations 1 and 2 do not contain 

flaser/wavy/lenticular bedded sandstone which points to a lack of direct tidal influence. 

However, the inclusion of coal indicates these two facies associations as being deposited 

in a more paludal setting transitioning from coal mires to channels more inland compared 

to the other tidal facies associations. Because tidal 2 contains bioturbated mudstone rather 

than carbonaceous shale, it is likely that this package was deposited the furthest from the 

coast line, possibly in the transition between paludal and coastal plain depositional 

environments. Tidal 1 and 2 may also correspond to a more lateral transition or 

deposition off axis from the tidal and fluvial channels. In tidal associations 3 through 5, 

flaser/wavy/lenticular bedded sandstone is present, thus placing them closer to the 

shoreline. The variations in AVO in these three associations are linked to the inclusion 

and exclusion of bioturbated mudstone and planar bedded sandstone. Those facies 

association that include bioturbated mudstone correlate to a longer period of quiescence 

with low energy and tied more closely with a paludal depositional environment. The 

facies associations with planar bedded sandstone are related to a high energy flow 

regime. This can be interpreted as tidal channels that have an increased flow compared to 

those tidal facies associations that lack the planar bedded sandstone lithofacies which 

represent a lower flow regime. While the stacking patterns reveal the type of processes 

and location within the depositional environments, the rock property characteristics 

indicate how the lithofacies properties are expressed collectively as a depositional 

package and revealed in AVO modeling.
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Interpreting Degree of Tidal Influence in Rock Properties

The relationship between Vp/Vs and Ip show the anticipated trend of an i ncrease 

in Ip with increasing mudstone and decreasing porosity (Fig. 1.8 C, D, E, G). Although 

the v-shape appears to correlate to clay content, when separating the trends by 

architectural elements, several additional patterns begin to emerge. For example, fluvial 

and tidal mudstone can be distinguished in the cross plot clusters; however, the acoustic 

responses within the tidal mudstone exhibit a much larger spread in properties (Fig. 1.8). 

This spread is possible due to a larger range of bioturbation, and a wider range of organic 

material. Fluvial overbank mudstone is often homogeneous and does not exhibit 

bioturbation compared to its fine-grained tidally influenced counterpart (Fig. 1.8C).

The second major trend that appears is the distinction between tidal and fluvial 

channel elements (Fig. 1.8 B). There is a significant amount of overlap in rock properties 

across these two channel sandstone types; however, the averages illustrate there is a small 

amount of offset between the two architectural elements (Fig. 1.9). When examining the 

relationship between Ip and porosity for the sandstone beds within these channelized 

architectural elements (Fig. 1.10). The fluvial end member channel sandstone exhibits the 

lowest Ip of all the channel sandstone. The tidal facies association end member is 

comprised of channel sandstone with the most marine influence which exhibits the 

highest Ip values. The low fluvial channel Ip juxtaposed against the mid-range overbank 

fines Ip should produce a high amplitude reflection. Although the tidal mudstone can be 

variable in Ip, it is generally high; the high Ip channel sandstone juxtaposed against high 

Ip tidal mudstone are expected to produce lower amplitude reflection.
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AVO Analysis

The AVO analysis clearly shows the impact of lithofacies associated with tidal 

influence, the consequence of averaging rock properties rather than using exact property 

results, and a discrete difference between the fluvial and tidal facies association. The 

individual facies associations reveal a distinction between the tidal and fluvial 

associations in the AVO plot. There is not a clear trend within the tidal associations but 

the implication of the offset between the fluvial and tidal in the amplitude versus offset 

plot is a useful predictor to distinguish between the better reservoir channel sandstone in 

the fluvial environment and tidal channel sandstone which exhibit lower quality reservoir 

sands.

The full EP-25 core AVO illustrates, on a much larger scale, the increase in 

marine influence with increasing depth of the core and the ability to discern the tidal 

fluvial packages from tidal in the AVO response (Fig. 1.12). There are two trends when 

examining the full EP-25 core AVO modeling results. The first trend is based on the 

rock properties within the JHM, and the link to overall increase in rock properties values 

of both channels and mudstone with increasing marine influence (Fig. 1.10). Similar to 

the individual facies association models, the amplitude of reflectivity in the near and far 

angles decreases with increasing marine influence (Fig. 1.12). This decrease is caused by 

the increase in Ip with increasing marine influence in the channel sandstone, but also the 

increase in coal with increasing marine influence. The AVO modeling suggests that the 

relatively high Ip channel sandstone contrasting with the frequent alternation between 

coal and carbonaceous shales produces lower amplitude than the facies associations with 

more fluvial input. The fluvial and tidal channel sandstone with little marine influence



29

has much lower relative Is in contrast to the overbank fines and the tidal mudstone. The 

decrease in the amplitude reflection coefficient steadily downward in the core is 

inextricably linked to increase in marine influence. In addition, it is more difficult to 

distinguish between the tidal and shoreface reflectors in the near angle as they are 

clustered around the 0.2 amplitude reflection coefficient; however, with increasing 

marine influence moving downward in the core the reflectors appear to separate in the far 

angles, with the far offset amplitude of the shoreface approaching zero. Although there is 

a more noteworthy offset between the fluvial and tidal amplitude reflections in the near 

angle, the offset decreases in the far angles, making it more difficult to distinguish 

between the fluvial and tidal amplitude reflections. This indicates that the AVO modeling 

of the Ip and Is does not significantly improve interpretation between fluvial and tidal, 

and in order to distinguish the tidal and fluvial reflectors, only Ip is necessary; however, 

it can be used to potentially differentiate tidal and shoreface.

One caveat is the first fluvial package shows a dramatically different AVO 

character than the other packages, with a much higher amplitude reflection coefficient in 

the near offset angle and lower in the far offset angle. This variation is tied to the 

difference between using average rock property values and true rock property values for 

the lithofacies. Those lithofacies that exhibit a large standard deviation in the rock 

properties have a much more significant impact on the full model. The gradient 

difference between the fluvial 1 facies association and the fluvial 2 facies association in 

the AVO plot may be tied to the difference between the high Ip Drip Tank Member 

juxtaposed against the JHM (Fig. 1.12). This gradient difference between fluvial 1 and 

fluvial 2 illustrates the difference between the sheet gravel Drip Tank Member and the
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paralic JHM.

Therefore, the AVO modeling appears to be useful not only when distingui shing 

between tidal and shoreface environments and the association with increasing marine 

influence, it may also be useful when detecting sharp changes due to unconformities. 

Similar to the AVO modeling of the individual facies associations, the full EP-25 core 

forward model highlights in a more comprehensive way the importance of location in the 

depositional system by the variations in the near- to far- offsets in the AVO plot by the 

distinction in the fluvial and tidal amplitude reflections.

Interpreting the Proximity to Shoreline from Seismic Reflectivity

Based on the MCA and rock properties results, a landward shift upward in the 

core is corroborated. Marine influence in the lower portion of the core is shown in the 

lithofacies stacking patterns by the inclusion of different lithofacies that represent tidal 

influence (flaser/wavy/lenticular bedded sandstone, carbonaceous shale, and coal) (Fig.

1.9). A decreasing marine influence upward in the core is shown by higher Ip and lower 

porosity in more marine influenced channels and lower Ip and higher porosity with less 

marine influence (Fig. 1.10). The overlap in the high Ip as a function of net-to-gross 

supports the interpretation of high impedance tidally influenced channel sandstone 

(Fig.1.8E).

Stacking patterns predicted from a MCA help better constrain interpretations and 

illustrate the impact of variable terrestrial and marine influence. The implication of 

variable marine influence and proximity to shoreline is inherently linked to reservoir 

quality. Based on the results from the rock properties, the high porosity channel



sandstone is located in the environments with the least amount of marine influence, while 

the channel sandstone that are located in the tidal depositional environment and m ore 

seaward have much lower porosity. Consequently, the channel sandstone that has the 

least amount of tidal influence correlates to the highest reservoir quality. The impedance 

contrasts between the different channels and the overbank fines and tidal mudstone 

facilitate in distinguishing the high quality reservoir sandstones from the poor quality 

reservoir sandstone. The facies associations that contain little to no tidal influence exhibit 

a stronger Ip contrast and therefore likely a higher amplitude reflection. The effect of 

reservoir quality due to the variability of marine influence is best understood by modeling 

how these variations in seismic reflection.

Not only do the rock properties show a wide range of values as a direct result of 

the highly heterolithic nature of the deposits, the overlap and the fluctuating marine 

influence demonstrates the heterogeneity of tidal zones. Although AVO modeling did 

not show a strong impact on differentiating the tidal influence, it did show a strong 

difference between tidal and shoreface deposits. The forward seismic modeling did, 

however, show a strong difference in the zero-incidence amplitudes that would help to 

differentiate coastal plain from tidal, and a clear gradational change between the two end 

members.

Conclusion

Tidally influenced reservoirs are significant global sources of petroleum reserves.

The complex nature of coastal depositional processes results in highly heterolithic 

deposits which make reservoir prediction difficult. A Markov Chain Analysis performed
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on lithofacies observations, based on bedforms generated by different depositional 

processes, from core revealed statistically significant stacking patterns which were 

interpreted as either tidally influenced or fluvial packages. These stacking patterns 

corroborate previous depositional environment interpretations and help to clarify where 

there was ambiguity by simple core observation alone. In particular, the MCA analysis 

assisted in interpreting facies associations located in the system based on the depositional 

processes that the stacking patterns signified. Stacking patterns and the inclusion of 

tidally influenced lithofacies such as flaser/wavy/lenticular bedded sandstone, 

carbonaceous shale, and coal enables an interpretation of where the package was 

deposited relative to the shoreline.

Analysis of rock properties measured from core further aided in distinguishing 

tidal and coastal plain depositional environments as well as their related architectural 

elements. By examining rock properties cross plots, channel sandstone lithofacies show 

an increase in Ip for both tidal channel sandstone and mudstone which made these 

deposits distinguishable from coastal plain overbank fines and fluvial channels. In 

particular, the two resulting patterns emerged from the MCA and rock property analyses. 

These were clear indications of proximity to shoreline from the MCA stacking pattern 

results including flaser/wavy/lenticular bedded sandstone, carbonaceous shale, and coal 

which point to a more seaward depositional environment. The impact that proximity to 

the shoreline has on the resulting tidal channel sandstone is a decrease in porosity with 

increasing tidal influence. Using the MCA facies association results and the rock 

properties, the tidal and fluvial facies associations were differentiated in the AVO plot. 

The AVO, however, did not add any additional information. The zero-incidence
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reflectivities are enough to differentiate fluvial and tidal end member. The implication of 

this discovery is the ability to denote high porosity fluvial packages from low poro sity 

tidal packages in seismic reflection profiles for improved understanding of reservoirs.

The full EP-25 core AVO and rock property results also indicate that the increase 

in marine influence o f being closer to shoreline results in a higher the Ip in the tidally 

influenced channel sandstone lithofacies. The direct impact on the seismic response is a 

lower amplitude reflection than the low Ip fluvial channels and overbank fines. Higher 

fluvial input suggests high porosity and low Ip in both the mudstone and the channels 

compared to the tidal environments. The information from the rock properties and AVO 

modeling demonstrates the extent that the depositional environment geology impacts the 

seismic expression. Small seaward or landward shifts o f the tidal environment have 

significant effects of the rock properties including porosity of the channel sandstone 

porosity.
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Figure 1.1. Map o f Kaiparowits Plateau and previous studies modified from Chentnik 
(2014). The black dots indicate the location o f previous studies throughout the plateau. 
The main focus o f this study is on core EP-25 located in the north central portion o f the 
plateau. The western edge o f  the plateau is dominated by fluvial deposits, the arrows are 
indicative o f fluvial paleocurrent flow direction. The center o f the plateau is tidally 
influenced deposits, and the western edge along Fifty M ile Mountain is the 
paleoshoreline extent o f  the western Cretaceous seaway.
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Figure 1.2. Regional stratigraphy and stratigraphic columns o f study area. (A) 
Stratigraphic column of the Coniacian to Santorian deposits throughout Kaiparowits 
Plateau, and (B) the study area. Kelly Grade to Left Hand Collet to EP-25 represents the 
south to north deposits o f the John Henry Member. Seven marine sandstone packages 
were named “A-G” by Peterson (1969a). The packages pinch out landward into coal 
zones and coastal plain facies. Core EP-25 intersects the three coal zones through the B 
sandstone. The coastal onlap curve is derived from the Rogers canyon study on the 
southwestern part o f the plateau (Allen and Johnson, 2011).



36

Core EP-25
Depth Sample 

(m) locations

Lithofacies Description
Number of 
samples Interpretation Core plugs

A Carbonaceous shale
Dark gray to black colored shale, often 
laminated but sometimes structureless; 
abundant organic material; often grades in 
and out of coal facies

10 Low energy paludal 
and lagoonal deposits ■

B
Bioturbated
mudstone

Horizontally laminated mud or mud with no 
apparent laminations, heavy bioturbation 12

Low energy 
lagoonal and fluvial 
overbank muds ■

C
Flaser/wavy/lenticular 
bedded sandstone

Alternating laminations of sandstone and 
mudstone; sand grain size ranges from very 
fine to medium sandstone

12
Bi-directional flow 
associated with tidal 
deposits ■

D
Planar bedded 
sandstone

Laminations dip at < 5*; grain size ranges 
from fine to medium sandstone

4 High flow regime, 
proximal shoreface, 
tidal and fluvial channels

■
E Trough cross-bedded 

sandstone

Trough and planar foresets dip between 
5-40'; grain size ranges from fine to coarse 
sandstone

11
Unidirectional flow 
associated with fluvial 
and tidal channels

F Structureless
sandstone

Sedimentary structures are apparent; grain 
size ranges from very fine to coarse 
sandstone

4
Rapid deposition 
from high energy 
suspension in proximal 
shoreface deposits

■
G Mud rip-up clast 

sandstone

Angular to subangular mud rip-up clasts in 
a sandstone matrix; matrix grain size 
ranges from very fine to coarse sandstone

4 High energy fluvial 
channel lag deposits ■

H Coal
Black with dull vitreous reflectance and 
lacking distinct laminations; coal beds 
are < 1 m thick

0 Low energy paludal and 
lagoonal deposits

Figure 1.3. Lithofacies and core plugs. Lithofacies observed in core EP-25 with a 
representative core plug photograph. The number of core plug samples from each 
lithofacies is a statistical representation of the proportion of that lithofacies present in the 
core.
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Figure 1.4. Core EP-25 logs including depositional environments, architectural elements, 
and lithofacies. Gallin (2010) logged core EP-25 producing a grainsize log, identifying 
the three different environments o f deposition and eight lithofacies. The environment of 
deposition was further broken down into architectural elements.
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Figure 1.5. Markov Chain transitional statistics. Transition probability tree showing 
frequency and probability (%) with which lithofacies are overlain by other lithofacies. 
Arrows point towards the lithofacies, and boxed numbers indicate the probability of 
occurrences o f the lithofacies that are succeeded directly by another lithofacies. The blue 
arrows indicate the most likely stacking.
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Figure 1.6. Lithofacies thickness box and whiskers plot. The graph illustrates the average 
thickness in meters o f each o f the lithofacies. The bar shows the standard deviation in 
thickness. The number on top o f each bar represents the number o f beds o f each o f the 
lithofacies.
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Figure 1.7. Facies associations columns. Facies associations extracted directly from core 
EP-25. There are two fluvial facies associations and five tidal facies associations. Each of 
the facies associations represents different lithofacies stacking patterns. The facies 
associations also exemplify different thickness present in the core.
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Figure 1.8. Rock plots. Vp/Vs versus Ip cross plots showing the relationship between 
measured rock properties and core plug attributes: A) lithofacies, B ) architectural 
elements, C) bioturbation index o f tidal mudstone and overbank fines, D) grainsize, E) 
net-to-gross, and F) porosity. The black circle in the bioturbation plot corresponds to the 
overbank fines. The remaining points in the bioturbation plot correspond to the tidal 
mudstone.
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Figure 1.9. Architectural element plot with averages. Plots o f Vp/Vs versus Ip directly 
from core plug measurements and colored by architectural elements. The stars represent 
the averages for each o f the architectural elements, highlighting the distinction between 
the sandier elements and the finer grained elements. Both the tidal elements have higher 
Vp/Vs and Ip compared to the fluvial elements.
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Figure 1.10. Channel sandstone porosity versus Ip plot and the relationship to marine 
influence. Ip versus porosity o f channel sandstone only from the core plugs to illustrate 
the effect o f reservoir quality (e.g., porosity) as a function o f either fluvial to tidal 
processes on impedance. A) Ip versus porosity divides the plugs into tidally influenced 
channels and fluvial channels. B ) Ip versus porosity plots the plugs based on core depth, 
illustrating the lower channels in the core have higher Ip and lower porosity. C) Core EP- 
25 shows the core plug with depth correlating to the colored points in plot B.
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Figure 1.11. Facies associations AVO modeling. Modeled AVO responses for tidal and 
fluvial facies associations using Zoeppritz equation and a 25 Hz rotated + 90° Ricker 
wavelet from 0 to 30 degrees. Each lithofacies Ip average was used as the input for the 
AVO modeling. The background lithofacies used is the average Ip o f bioturbated 
mudstone. The AVO plot is analyzed at the maximum amplitude of the full stack. The 
reflection coefficient along the line at the maximum amplitude in the full stack at zero 
degrees is plotted at the 0, 5, 10, 15, 20, 25, and 30 degree.
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Figure 1.12. 1-dimensional AVO modeling o f core EP-25. The full core EP-25 is 
presented by the grainsize log which shows the location o f the seven facies association 
and the environment o f deposition log. Vp and Vs logs were calculated from a sequential 
Gaussian simulation based on core plug values and combined with a density log to obtain 
Ip and Is. The wavelet used for AVO modeling was a 25 Hz +90 rotated Ricker wavelet.
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Table 1.1

Facies associations, environmental description, architectural elements and lithofacies

T TEnvironment 
o f deposition Description Architectural

elements Lithofacies
Facies Association 1 - Coastal Plain

1.1 -

Laterally extensive 
channel belts

Fine to coarse grained sandstone. Channel 
sandstone fines upward. Vertical increase 
o f channel belt amalgamation. Low 
sinuosity fluvial channels. Individual 
channels 0.5 - 3 m  thick. Channel 
complexes 10 m thick. Overall lack o f 
fossils present.

Fluvial
channels D, E, F, G

1.2 -
Mudstone floodplain 
and overbank fines

Floodplain mudstone are silt and shale rich 
with lack o f carbonaceous shale and coal, 
weakly bioturbatcd with some visible 
laminations.

Facies Association 2 - Tidal

2.1 -

Highly sinuous tidal 
channels, isolated 
distributary channels

2.2 -
Lagoonal and estuarine 
mires with heavy 
bioturbation

Very fine to medium grained sandstone. 
Grain size coarsens upward in the core 
along with an increase in marine influence. 
Tidal rythmites present. Individual 
channels I - 5 m thick. Channel complexes 
15 m thick. Prevalence o f brackish water 
and marine bivalves.

Grainsize ranging from silt to mudstone. 
Bioturbatcd mudstone often grades into 
carbonaceous shale and terrestrial coals. 
Heavy bioturbation with some orginal 
sedimentary structures completely obliterat­
ed. Abundance o f tidal environment trace 
fossils.

Facies Association 3 - Shoreface

3 .1  -
Shoreface sheet 
sandstone

Fluvial
overbank
fines

B, C

T idal
channels

C, D, E

T idal
m udstone

A, B .H

Proxim al
shoreface D, E, F

Fine- to coarse grained well-sorted 
sandstone. Hummocky cross-stratified 
sandstone. Large robust marine bivalves 
are present.

Lithofacies rock properties averages in the three depositional environments. The 
descriptions are by grainsize, stacking patterns, bedform, geometry, and fossils. The 
descriptions represent the smallest scale o f observation o f lithofacies. Each o f the 
architectural elements exhibits multiple different lithofacies. Within each environment of 
deposition are architectural elements. There are three different environment o f deposition 
interpreted in core EP-25.
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Table 1.2 

Markov chain analysis o f lithofacies

upper lithofacies

1/1<D
"w
0JZ
<D

1

Coal
Carbonaceous

shale
Bioturbated
mudstone

Flaser/wavy/
lenticular
bedded

sandstone

Planar
bedded

sandstone

Trough cross­
bedded 

sandstone

Mud rip-up 
sandstone

Coal X 0.41 0.09 0.04 0.03 0.43

Carbonaceous
shale

0.72 X 0.08 0.01 0.04 0.05

Bioturbated
mudstone 0.18 0.30 X 0.02 0.06 0.32 0.12

Flaser/wavy/
lenticular
bedded

sandstone

0.15 0.78 X 0.05 0.02

Planar
bedded

sandstone
0.12 0.39 0.44 X 0.04 0.01

Trough cross­
bedded 

sandstone
0.35 0.13 0.5 X 0.02

Mud rip-up 
sandstone 0.45 0.55 X



EOD Lithofacies
core
plugs

( # )

Vp (m/s) Vs (m/s) Density (g/cm3) Porosity

max min average std. dev. max min average std. dev. max min average std. dev. max min average std. dev.

z
Bioturbated
mudstone

3 3531 2738 3053 296.7 2425 2022 21% 149.6 2.429 2.16 2.308 0.099 11.71 7.003 9.005 1.752

<_ i
cl

Flaser/wavy/ 
lenticular ss

2 2926 2917 2921 n/a 2119 2063 2091 n/a 2.314 2.230 2212 n/a 15.06 11.91 13.49 n/a

S Planar bedded ss 2 4042 1909 3110 n/a 2874 1318 2223 n/a 2.428 1.840 2.171 n/a 30.33 9.381 18.70 n/a

<o Trough cross­
bedded ss

5 2521 1533 1963 393.34 1785 1045 1386 297.9 2.184 1.656 1.931 0.201 37.22 16.04 27.03 7.418

Mud rip-up 
clasts ss

4 1747 1685 1716 31.80 1275 1136 1206 69.47 2.057 1.946 2.002 0.055 25.98 21.13 23.56 2.435

Coal n/a 2400 1800 2000 200 1200 1200 1200 0 1.2 1.2 1.2 0 n/a n/a n/a n/a

Carbonaceous
shale

9 3985 2667 3117 401.5 2575 2083 2204 183.7 2.925 2.207 2.404 0.217 13.54 3.019 8.061 2.721

_ l
<4
Q

Bioturbated
mudstone

8 3709 1929 3235 455.1 2556 2148 2353 318.1 2.445 2.035 2.325 0.103 20.07 6.16 10.13 3.966

( - Flaser/wavy/ 
lenticular ss

9 3147 2320 2645 272.4 1887 1515 1739 243.0 2.318 1.975 2.163 0.126 25.93 10.73 17.79 6.206

Planar bedded ss S 4236 1836 2699 940.2 2861 1250 1859 618.4 2.220 1.848 2.049 0.141 30.04 18.02 23.48 4.529

Trough cross­
bedded ss

8 2699 2031 2255 474.4 1929 1178 1546 355.3 2.128 1.765 1.982 0.146 33.17 18.97 26.36 5.347

1LU
o H

Trough cross­
bedded ss

1 2150 2150 2150 n/a 1519 1519 1519 n/a 1.931 1.931 1.931 n/a 27.04 27.04 27.04 n/a

i  <
{/)  LL. Structureless ss 1 2031 2031 2031 n/a 1399 1399 1399 n/a 1.892 1.892 1.892 n/a 28.66 28.66 28.66 n/a

-P5>
00

Rock 
properties 

table
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R EFLEC T IV ITY  IN THE KAIPAROW ITS 

PLATEAU, UT, USA

Abstract

Fluvial-shoreline transitional deposits are becoming increasingly important to 

understand due to the large number of global hydrocarbon reserves held in such deposits. 

As the resolution o f seismic reflectivity profiles increases, concepts o f sequence 

stratigraphy offer insight into reservoir quality through interpretation of seismic reflection 

profiles in these transitional successions. The Cretaceous John Henry Member (JHM), 

located in the Kaiparowits Plateau o f southern Utah, reveals numerous exposures o f a 

transition zone which captures fluvial and tidally influenced paralic deposits capped by 

prograding fluvial deposits, and offers an excellent opportunity to improve our 

understanding o f imaging similar deposits in the subsurface. Previous work along the 

plateau has been focused on outcrops along the edge, as well as 4 dispersed cores.

Fluvial-shoreline transitional deposits are typically associated with coal; however, 

coal geobody mapping can be particularly problematic in these depositional environments 

due to its exiguous nature. Four supplementary density logs from cores in the JHM  were 

utilized to map coal and gain a more accurate understanding of the coal thickness, 

distribution, and frequency, as well as their impact on the seismic reflectivity responses.

In this study, we link a newly acquired seismic line to laboratory derived rock
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properties from a core (~ 500 meters from the line) and outcrop exposures (~ 1500 m 

from the line). The goal o f this study was to use these new data combined with previou s 

studies to provide insight into reservoir quality interpretation from seismic reflection data 

in fluvial-shoreline transitional deposits, with particular focus on the interpretation and 

imaging o f coal beds within the tidal sequence.

In order to accurately correlate rock properties to seismic, 60 core plugs were 

extracted representative o f the eight lithofacies exhibited in a single core (EP-25). Bench- 

top measurements were conducted on the core plugs to obtain compressional-wave 

velocity, shear-wave velocity, density, permeability, and porosity. Three forward 

reflectivity models were generated and analyzed using these rock properties derived from 

the core plugs combined with a detailed core description, 1) simple zone-average 

properties, 2) simple zone-average properties with coal beds, and 3) complex model 

capturing representative geobody shapes and sizes. These models provide a template for 

interpretation o f a high resolution seismic line (7 km in the north-south direction, 80 Hz 

frequency source). Interpreting the difference between environments o f deposition 

between the models and seismic profile were clear due to the difference in averaged 

impedance contrasts. However, individual architectural elements distinguishing reservoir 

quality when including architectural elements were not clear due to the overlap in rock 

properties between these zones.

Introduction

As cheap and easy sources of oil have been exploited, new exploration plays 

increasingly target more complex reservoirs such as those contained in fluvial-shoreline



transitional environments o f deposition. Due to the considerable amount o f oil reserves 

held in transitional deposits and the recognition of their inherent complexity, signi ficant 

effort has been put into the study of analog outcrops for improved subsurface prediction 

(O'Bryne and Flint, 1993; Weimar and Posamentier, 1993; Ainsworth and Pattinson,

1994; Tetyukhina et al., 2014). The resulting observations have been used to develop 

predictive models based on lithofacies and architectural elements at a subseismic scale 

(Martinius et al., 2001; Essam et al., 2013). Advances in seismic acquisition and 

processing have also yielded higher quality and better resolution seismic data (Thomas 

and Anderson, 1994; Kendall, 2006; Duarte, 2014). However, even given higher quality 

data, informed interpretation of reservoir quality from seismic-reflectivity is a function of 

the seismic rock properties o f the reservoir and non-reservoir facies. Insights into the 

interpretation of these heterolithic depositional environments can be garnered from 

forward seismic models o f 3-dimensional deterministic interpolations derived from core 

and log observations coupled tightly with nearby outcrop studies.

Early rock property measurements in the laboratory focused on effects of clay 

content and porosity on compressional-wave velocity (Vp) and shear-wave velocity (Vs) 

as a function of pressure and found a decrease in velocity with an increase in porosity and 

a decrease in pressure and clay content (Han, 1986; Eberhart-Phillips et al., 1989). These 

types of laboratory-derived empirical relationships can be used as models to aid in 

reservoir quality predictions from subsurface seismic reflectivity data.

Before acquiring subsurface data, forward model studies of outcrop exposures can 

lend insight into the anticipated subsurface seismic expression of geobodies. One of the 

first seismic forward models used large-scale carbonate basin profiles with acoustic
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measurements from a single core plug in each depositional environment (Biddle et al.,

1992). Seismic forward modeling studies o f outcrops have been conducted in deep wate r 

channel systems (Campion et al., 2000; Sullivan et al., 2004; Schwab et al., 2007;

Falivene et al., 2010; Stright et al., 2014), and large-scale shallow marine nearshore and 

shallow marine depositional environments (Hodgetts and Howell, 2000; Tetyukhina et 

al., 2010; Tetyukhina et al., 2014). Many o f these studies have relied on rock properties 

from local wireline log data or laboratory measurements o f core plugs from areas of 

similar depositional environment to populate seismic properties in models. However, few 

studies have focused on direct rock property measurements applied to small scale (m) 

architectural element geobody distribution in a coal-rich transition zone to generate 

forward synthetic seismic models (Christensen and Szymanski, 1991; Marion et al., 1992; 

Vernik and Nur, 1992; Hodgetts and Howell, 2000; Schwab et al., 2007; Falivene et al.,

2010; Tetyukhina et al., 2010; Stright et al., 2014).

The fluvial-shoreline transition zone is particularly problematic to forward model 

because the seismic rock properties are not only poorly understood, but they are highly 

variable. In particular coal deposits, which are prolific in these depositional 

environments, vary significantly in both rank and distribution. Coal characterization is a 

key indicator o f depositional environment, and therefore, a critical component to 

predicting and interpreting the seismic expression o f nearshore successions (Van Riel,

1965; Ruter and Schepers, 1978; Gochioco, 1992, 2000; Morcote et al., 2010).

The focus o f this study is in modeling the geobody distribution in a prograding 

shoreline succession, from shoreface to lagoonal to fluvial depositional environment in 

the Cretaceous JHM  of the Kaiparowits Plateau (Fig. 2.1). Due to the complicated
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depositional setting o f coal, their geobody distribution are still not well understood. 

Because the center o f the plateau has the thickest coal deposits, it is an ideal setting to 

gain a more in-depth understanding o f coal distribution in a nearshore fluvial-tidal 

transition zone. Two cores in the center o f the plateau, a data-poor region, are leveraged 

to document the transition from observed outcrop at Left Hand Collet to the highly 

heterogeneous, coal-rich transition zone. A high resolution seismic reflection survey (7 

km), acquired in order to further fill the data gap in the center o f the plateau and coupled 

with 3-dimensional models generated from a few core and laboratory-derived rock 

properties, is interrogated to better understand reservoir prediction from seismic 

reflectivity in a highly complex coal-rich depositional setting. The two key questions this 

research aims to answer are 1) are coal deposits in the fluvial-tidal transition zone 

mapable geobodies in seismic reflection profiles and 2) what insights into subsurface 

seismic interpretation can be garnered from a 3-dimensional model o f a highly complex 

depositional system. Three 3-dimensional models are presented varying in complexity, 

populated by laboratory derived rock properties from core plugs, and compare the results 

to the field acquired seismic reflection profile.

Geologic Setting 

Regional Geology

The Kaiparowits Plateau is located in the southwestern part o f the Colorado 

Plateau province in southern Utah (Fig. 2.1). The Kaiparowits Plateau is an uplifted 

plateau comprised o f upper Cretaceous foreland basin sediments (Peterson, 1969a; 

Shanley et al., 1992; Hettinger, 1995a). Paleoshorelines were oriented northwest-
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southeast (Peterson, 1969a; Shanley and McCabe, 1991; Hettinger, 1995a). Recent 

detrital zircon analysis reveals sediment transport to the shoreline via an axial c hannel 

system sourced from Mongollan Highlands, Sevier fold and thrust belt (STFB ), and 

Cordilleran volcanic arc, as well as sediment transport via longshore drift from the SFTB 

(Szwarc et al., 2014). Peterson (1969) divided the Straight Cliffs Formation on the 

plateau into four members: the lower cliff-forming Tibbet Canyon Member, the slope- 

and ledge-forming Smoky Hollow and JHM, and the upper cliff-forming Drip Tank 

Member. This study focuses on the Coniacian to Turonian in age (~88 to 83.5 Ma) JHM 

in the northeastern central plateau where facies preserved are within a fluvial-tidal 

transition zone (Gallin, 2010) (Fig. 2.2).

Stratigraphy

The northeast-central section of the plateau is comprised of fluvial channels and 

overbank fines, tidal channels, tidal mudstone, interspersed coal, and shoreface deposits 

(Shanley et al., 1992; Gallin, 2010; Dooling, 2012). In the southwestern part o f the 

plateau near Kelly Grade, the strata consist primarily of multistory-multilateral, 

meandering channel belts enclosed in thick intervals of rooted mudstone overbank 

deposits and limited coal that increase with tidal deposition and depth (Shanley et al., 

1992; Gooley, 2010; Pettinga, 2012) (Fig. 2.2). Paleocurrent data show that the rivers 

generally flowed from the southwest to the northeast (Shanley et al., 1992). The 

southeastern part o f the plateau near Rodger’s Canyon exhibits seven shoreface packages 

interspersed with four major coal zones which tend to thin in the southwesterly direction 

(Vaninetti, 1979; Hettinger, 1995b; Allen and Johnson, 2010a) (Fig. 2.2). The northern
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part o f the plateau reflects a compound incised valley that formed through fluvi al incision 

and backfilling by estuarine and tidal deposits (Chentnik, in press). The center o f the 

plateau contains the thickest coal deposits in the JHM (Hettinger, 1995b). These thick 

deposits o f coal accumulated on a coastal plain dissected by tidal creeks and estuaries and 

are in close proximity to the strand plain (Hettinger, 1995a). The clean low-ash nature of 

the thicker coal deposits indicate that they accumulated in raised mires similar to those 

described elsewhere in the Straight Cliffs Formation (Shanley et al., 1992).

Outcrop Study

Outcropping deposits at Left Hand Collet (LHC) provides insight into the 

geobody architecture distribution, thickness, and vertical stacking patterns (Shanley et al., 

1992; Dooling, 2012) (Table 2.1). The JHM  at LHC is composed o f four main 

depositional environments: wave-dominated and coastal plain deposits o f a regressive 

shoreface, and tide-dominated and lagoonal deposits in a transgressive barrier island 

setting (Dooling, 2012) (Fig. 2.2). LHC exposes tidal depositional facies o f a tidal barrier 

island system with frequent migratory inlets and multiple shoreface deposits with some 

tidal ravinement (Dooling, 2012). Geobody geometries observed in outcrop at LHC were 

coupled with core observations to better map 3-dimensional rock body distributions 

(Table 2.1).

Core Study

In the 1970s, approximately 23 Utah Power and Light (UP&L) cores were drilled 

across the northern Kaiparowits Plateau for coal exploration purposes. Six o f these cores 

intersect at least part to all o f the JHM. Gallin (2010) logged two o f these cores (EP-07



56

and EP-25) (Fig. 2.1). The cores intersect the JHM, and each is greater than 210 m thick. 

The cores correlate through a unique shared fossil assemblage and are located in the 

transition zone between marine and fluvial depositional environments. Eight different 

lithofacies, defined by grainsize, sedimentary structures, bioturbation, and laminations, 

were classified and described at 0.5 ft. scale in the core (Gallin, 2010) (Fig. 2.3). Three 

depositional environments comprised of five architectural elements were identified in the 

JHM and Drip Tank Member: 1) coastal plain consisting of fluvial channels and 

overbank fine, 2) tidally influenced deposits consisting o f tidal channels and tidal muds, 

and 3) shoreface deposits consists o f shoreface architectural element (Gallin, 2010) (Fig. 

2.4).

Coastal Plain: Fluvial Channels

This architectural element consists o f lithofacies mud rip-up sandstone, trough 

cross-bedded sandstone, planar bedded sandstone, and flaser/wavy/lenticular bedded 

sandstone. The channels are comprised o f fine- to coarse-grained sandstone. The 

channels are represented by fining upward packages. Trace fossils are absent from this 

element. The channel belts are laterally extensive, and reflect low sinuosity channel belts. 

The channels vertically amalgamate to form channel belt complexes up to 10 m thick 

with a vertical increase in channel amalgamation.

Coastal Plain: Overbank Fines

This architectural element consists o f the lithofacies bioturbated mudstone. The 

floodplain mudstone is mud to silt in grainsize and lacks both carbonaceous shale and
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coal. They contain some visible laminations and are weakly bioturbated. These beds 

occur in thin (< 2 m) intervals between fluvial channels. The upper coastal plain o f the 

JHM  which includes the fluvial channels and overbank fines constitutes a sheet-like 

environment between cores EP-25, EP-07 and LHC.

Tidally Influenced Deposits: Tidal Channels

This architectural element consists o f lithofacies trough cross-bedded sandstone, 

planar bedded sandstone, and flaser/wavy/lenticular bedded sandstone. The channels are 

comprised o f very fine- to medium-grained sandstone that often fine upwards. The 

channels are comprised o f finer grained sediment at the base o f the depositional 

environment and coarser grained sediment near the top. The occurrence o f the channels 

also tends to increases upward in the core. Brackish water bivalves and trace fossils 

indicate tidal conditions are prevalent including Teredolites, Ophiomorpha, 

Thalassinoides, Asterosoma, Taenidium, Planolites, and Teichichnus. The channel belts 

are laterally restricted and highly sinuous. Channel deposition is represented by 

relatively thick sandstone beds up to 5 m thick and stack to form sheets up to 20 m thick. 

Scour surfaces up to 9 m thick separate individual channels. The overall trend in this 

environment exhibits a transition from marine influence with increasing fluvial influence 

moving up in the core based on the sedimentation and paleontological observations.

Tidally Influenced Deposits: Tidal Mudstone

This architectural element consists o f lithofacies bioturbated mudstone, 

carbonaceous shale, and coal. Grainsizes range from silt to mudstone. The bioturbated
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mudstone lithofacies often grades into carbonaceous shale and terrestrial coal. The base 

o f the tidal environment is characterized by more tidal mudstone, while the top o f the 

environment decreases in mudstone frequency. Heavy bioturbation is present with some 

original sedimentary structures completely obliterated. There is an abundance o f tidal 

environment trace fossils including Thalassinods and Planolites. These lagoonal and 

paludal deposits vary in thickness and lateral frequency. The beds range from 5-90 cm 

and stack to form bedsets between 8-10 m thick. There is a lack o f general information 

about coal body geometries in the Kaiparowits Plateau. This is due to the fact the coal 

does not exhibit wide sheet-like distribution. The tidal depositional environment, which 

contains both tidal channels and tidal mudstone in the middle o f cores EP-25 and EP-07, 

pinches out at LHC into multiple shoreface intervals.

Shoreface

This architectural element consists o f lithofacies trough cross-bedded sandstone, 

planar bedded sandstone, and structureless sandstone. The sandstone in this element is 

fine to coarse grained, well sorted and clean o f mud-draping. The sandstone also tends to 

coarsen upwards. Marine bivalves and hummocky sedimentary structures indicate 

shoreface succession. The sandstone forms tabular sheets between 5-25 m thick. The 

shoreface is a single deposit at the bottom of core EP-25 and EP-07 and correlates to the 

B  sandstone in LHC.
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Methods

Benchtop Core Plug Measurements 

Sixty core plugs were selected from both the JHM and Drip Tank Member of the 

EP-25 core to statistically represent rock properties for each lithofacies from the three 

different depositional environments (Fig. 2.4). Due to the friability and absence due to 

previous sampling of coal, no core plug samples were extracted from this lithofacies.

Core plug measurements were conducted for porosity, permeability, density, (Vp), and 

(Vs). The core plugs were categorized into a hierarchical framework from lithofacies into 

architectural elements within the three different depositional environments.

2-Dimensional Correlation Sections 

Two 2-dimensional cross-sections were created between cores EP-25 to EP-07, 

which was based roughly on strike with the paleoshoreline, and from core EP-25 to the 

outcrop study at LHC, in the approximate dip direction o f the shoreline (see Fig. 2.1 for 

locations). The 2-dimensional depositional cross-sections were used as a foundation for 

the 3-dimensional model by tying together established data points to create accurate 

stratigraphic intervals.

3-Dimensional Models 

Three different 3-dimensional models were created ranging in detail and 

complexity from: 1) average rock properties for each environment of deposition, 2) 

average rock properties for each environment o f deposition with explicit representation of 

coal, and 3) environment o f deposition with mapping o f geobodies at the architectural
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element scale. Correlations from density logs associated with the UP&L boreholes, 

interpretations from core EP-25, core EP-07, and geometries o f geobodies extracted from 

the LHC outcrop study were used to generate these three interpretive geocellular models.

The area o f interest (AOI) for the 3-dimensional models is 16 km x 13 km rotated 

40.5° NW (Fig. 2.1). There are seven stratigraphic zones in each model for a total 

thickness o f 250 m. The zones correspond to the EODs in core EP-25 (Fig. 2.4). For 

model 1, each EOD is represented as a single layer with average rock properties. In 

model 2, a single layer was used for each EOD with the exception o f the dominant tidal 

deposits in zone 5 whose grid size was 2 m thick. This grid size was selected to capture 

the average coal bed thickness observed from wireline logs in that section. The UP&L 

cores and core EP-25 and EP-07 were upscaled to the grid in zone 5 and employed to 

map the coal geobody distribution by hand contouring. In model 3, the same 

stratigraphic base as model 1 was used; however, the vertical grid cell sizes were defined 

differently for zone 2 and zone 5 as a function o f the average size o f the architectural 

element in each zone. The interpreted architectural elements in cores EP-25 and EP-07 

(Fig. 2.4) were upscaled to the grid and used to guide the interpretation o f geobodies 

away from the well locations. On each grid layer, a deterministic and interpretive model 

o f architectural elements (geobodies) was created constrained by the two cores (Fig. 2.4), 

architectural element geometries from LHC (Table 2.1), and constrained to interpolated 

coal layers from model 2. The geobody shapes and sizes were loosely based using 

modern analog from the Ogeechee River, Georgia, U SA  (Fig. 2.5).
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Coal Distribution and Rock Properties 

Coal beds were interpolated using indicator kriging between four UP&L wel l s 

with density logs (Fig. 2.1 for locations) based on the low density o f coal (< 1.2 g/cm ) 

relative to the surrounding rocks. The velocity value employed for coal was 2000 m/s 

based on laboratory measurements o f coal with similar ranking, age, and location 

(Morcote et al., 2010).

Synthetic Seismic Model 

Vp and density were assigned to each model at either the architectural element 

(geobody) scale or as averages for each depositional environment. In model 1, average 

Vp and density were assigned for coastal plain, tidal, and shoreface depositional 

environments. Model 2 rock properties are identical to model 1 with the addition o f coal 

Vp and density in zone 5. Model 3 employed the same values as model 2 with the 

exception o f zone 2 and zone 5. In the coastal plain zone, there are two values for fluvial 

channels and overbank fines, and in the tidal zone, there are two values for tidal 

mudstone and tidal channels. The resulting 3-dimensional Ip model was convolved with 

80 Hz Ricker wavelet using 1-D convolution. This wavelet was selected to not only 

capture the most realistic amount o f heterogeneity in the section, but is a comparable 

wavelet that was also used for the seismic acquisition profile.

Seismic Acquisition, Processing, and Interpretation 

The seismic profile is approximately 7 km in length, oriented oblique to the 

shoreline. The profile was shot in between core EP-25 and EP-07. The profile captures up



62

to 500 m depth incorporating the entirety o f the JHM. The high resolution reflection 

seismic data were acquired using dense wide aperture geometry with 5 m spacing (Bruno, 

2009; Bruno et al., 2010) (Fig. 2.6). The acquisition was carried out over 2-dimensional 

profiles using a geophonic array o f 12 geodes, 240 vertical 40 Hz geophones, and a high 

resolution vibrating source (IV I Minivib). The acquisition used three sweeps o f 40-250 

Hz for 15 seconds. The CDP fold has a maximum of ~200 traces with an average fold of 

120-130. The refractor depth model statics were corrected and smoothed to a final datum 

of 2130 m above sea level. The profile was interpreted by projecting cores EP-25 and EP- 

07 and following the reflectors to correlate between the cores at the different 

environments of depositions.

Results 

Rock Properties

Based on the core plug measurements, the resulting range o f porosity values from 

the porosimeter was 3-37% . The ultrasonic acoustic velocimeter measured velocity with 

resulting Vp ranges from 2500-4500 m/s and Vs from 1200-2800 m/s. The measured 

densities ranged from 1.8-3.2 g/cm (Fig. 2.3).

To visualize the relationship between the rock properties in seismic reflectivity 

profiles and lithofacies, architectural elements and EODs, values o f Vp/Vs are cross 

plotted against Ip (Fig. 2.7). The lithofacies plot points to a separation between sandier 

lithofacies and finer grained ones. The lithofacies were divided into architectural 

elements; the sandstone lithofacies comprise the channels (both fluvial and tidal) and 

shoreface elements, while the finer grained lithofacies comprise the overbank fines and
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tidal mudstone. Although there is significant overlap, the architectural elements plot 

demonstrates a slight offset between low Ip fluvial channels, tidal channels, and 

shoreface and a slight offset between the high Ip overbank fines and tidal mudstone. 

However, there is a significant contrast between the sandstone elements and the tidal 

mudstone and overbank fines. The plots are also differentiated by environment of 

deposition. The tidal environment tends to have higher Ip overall as well as higher Vp/Vs, 

whereas shoreface and coastal plain have relatively lower Ip and Vp/Vs.

The resulting seismic rock properties were used to populate the three forward 

models (Table 2.2). Model 1 Ip from the rock properties in all depositional zones were

3 3averaged; coastal plain Ip was 3880 Ns/m , the tidal 6530 Ns/m , and shoreface 4125 

Ns/m . These values are the represent the differences in properties in the environment of 

deposition rock plot. In model 2, the same rock properties were employed as model 1 

with the addition o f the coal which was populated using Ip o f 2400 Ns/m . Model 3 used 

the rock properties averages in each individual depositional zone with the exception of 

zone 2 and zone 5. Zone 2 used impedance from overbank fines: 7475 Ns/m and fluvial 

channels: 5035 Ns/m . In zone 5, the impedance values employed were from tidal 

mudstone: 8100 Ns/m3 tidal channels: 5000 Ns/m3and coal: 2400 Ns/m3.

3-Dimensional Model Construction 

The 1-dimensional cores utilized the lithofacies, architectural elements, and 

environments o f deposition o f both cores EP-07 and EP-25 (Fig. 2.4). The cores were 

used to build the 3-dimensional models through the 2-dimensional cross-section 

correlations based on the correlated environments o f deposition (Fig. 2.8). The cross-
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section between cores EP-25 to EP-07 consists o f an upper coastal plain package, a thick 

dominant tidal environment with a small coastal plain channel in the middle and 

shoreface at the base o f EP-07. EP-25 is approximately 25 m deeper than EP-07 and 

exhibits a second small tidal package at the base below the shoreface environment. The 

cross-section between core EP-25 and outcrop at LHC reveals an upper coastal plain 

package and the transition between tidal and proximal shoreface in the middle JHM. The 

B  sandstone shoreface package at the bottom of core EP-25 correlates to the B  sandstone 

at LHC. The coal cross-section is in the N-S direction along strike with the shoreline. The 

density logs are known points o f coal locations at specific depths in the JHM  (Fig. 2.8). 

Using the low density assumption, the logs reveal the coal vertical frequency and 

thickness along strike with the coastline. The architectural elements 3-dimensional model 

was built using LHC geometries, pertinent analogies, sinuosity, and fluvial paleocurrent 

direction from southern Kaiparowits Plateau (Gallin, 2010) (Fig. 2.9).

3-Dimensional Synthetic Forward Model 

The forward models were used to understand and interpret the acquired seismic 

profile based on information from the rocks property trends, depositional environments, 

geobody geometries, and fluvial sinuosity based on Fig. 2.4, 2.8, 2.9, and Table 2.1. The 

2-dimensional forward models were extracted from the 3-dimensional models at the 

location in the northeastern section o f that plateau between EP-25 and EP-07 oblique to 

the paleoshoreline at the same location o f the acquired seismic profile (Fig. 2.6). The 

location o f the three 3-dimensional models extracted as a 2-dimensional trace is 

illustrated in Fig. 2.9. The three 2-dimensional models are ordered by increasing detail



(Fig. 2.10). Table 2.3 catalogues the impedance contrast and seismic response o f the three 

different models. Model 1, the basic environment of deposition, shows a positive 

reflector in high Ip coastal plain and shoreface, and a negative reflector in the tidal zone. 

Model 2, the EOD forward model with coal, has relatively dim reflectors in areas with 

thin coal beds and more distinct negative reflector in the thicker coal zones. In the 

depositional environment with coal, the reflectors do not exhibit definitively clear 

locations and dimensions o f the coal bodies. Model 3, the environment o f deposition with 

architectural elements, demonstrates the same reflectors as model 2 with the addition of 

architectural elements (Fig. 2.11). In zone 2 between the overbank fines and fluvial 

channels is a large impedance contrast that is characterized as bright flat reflectors. In 

zone 5, where the channels are thicker and there are fewer tidal mudstone, the reflectors 

are dimmer and less distinctive. However, at the base of the tidal zone, the channels are 

thin and there is a high degree of frequency between thick packages of tidal mudstone 

and coal; the larger impedance contrast is characterized with bright reflectors.

The result o f the seismic responses listed in Table 2.3 is employed as a template 

for interpretation o f the acquired seismic profile. The rock properties assist in recognizing 

the Ip contrasts that are expected between the environments o f deposition as well as 

between the architectural elements in the seismic profile. The LHC geometries in Table 

2.1 aid in identifying the geobodies that are expected in the profile. The resulting 

acquired seismic profile depicts several interesting features (Fig. 2.12). The first is that 

channels can be mapped in the coastal plain and tidal depositional environments. Second 

is the washed out zone in the middle of the profile. The third feature is the negative 

reflector on the right-hand side of the profile that trends upward. Lastly, the profile does
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not appear to illustrate any particular area where coal bodies can be easily mapped.

Discussion 

Rock Properties

The clustering o f the rock properties in the plots helps to visualize the relationship 

from the lithofacies based core plug measurements to the upscaled environments o f 

deposition and architectural elements. The trends in the plots substantiate the usage of 

average seismic rock property values to populate the 3-dimensional models (Table 2.2). 

The trends can be further employed to understand the reflection behavior in both the 

forward models and the acquired seismic profile (Table 2.3). In the lithofacies plot, the 

distinction between the sandstone elements or between the tidal mudstone and overbank 

fines is not clear; however, the distinction between the high Ip fine grained elements and 

the low Ip sandstone elements is unmistakably discernable and can be linked to the 

architectural elements plot. The distinction allows for the juxtaposed architectural 

elements to be distinguished in their respective environments o f deposition.

In model 1, the rock properties were averaged over each depositional 

environment. The averages are effectively the average o f each environment as seen in the 

EOD plot. The averages revealed the highest Ip in the tidal environment and the lowest in 

the coastal plain. This is due to the exceptionally low impedance values exhibited in the 

coastal plain channels and the relatively low impedance values o f the overbank fines (Fig. 

2.13). The coastal plain is a strong peak, the tidal a strong trough, and shoreface a weak 

peak. Model 2 has the same average impedance values in each depositional zone as 

model 1 with the addition o f coals. The coals are relatively weak reflectors in the tidal
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zone 5. The implication o f the forward models is that they illustrate the key reflections 

that are distinguishable are between the coastal plain environment and the tidal 

environment, while the coal reflections are relatively dim.

Model 3 reveals the closest alignment with the architectural element plot and the 

most accurate portrayal o f detailed Ip. As depicted in the architectural element plot, the 

fine grained elements such as the tidal mudstone and overbank fines have significantly 

higher Ip values than the sandier channel elements. In the tidal zone, the coal impedance 

is fairly close to the tidal channel impedance and thus is not very distinguished. The tidal 

mudstone is the main impedance contrast to both the tidal channels and coal bodies, 

producing strong peaks and troughs where they are juxtaposed. The ability to 

differentiate architectural elements within the depositional environments offers a notably 

improved ability to interpret seismic profiles in fluvial-shoreline transitional zones.

The role the coal plays in the interpretation is relatively low. The coal is evident 

when placed in the high Ip tidal environment o f model 2; however, when the architectural 

elements are separated out in model 3, the coal become increasingly difficult to 

distinguish. Table 2.3 aids in possibly differentiating the elements. The tidal mudstone 

has the highest impedance and the coal is the lowest impedance with tidal channels 

exhibiting only slightly higher impedance than coal. Therefore, the brightest reflectors 

are associated with the juxtaposition o f the tidal mudstone and coal, slightly less bright 

reflectors associated with the juxtaposition o f the tidal mudstone and tidal channels, 

while the juxtaposition of the tidal channels and coal would display a very weak reflector 

i f  any.

The variability o f the impedance value is based on how the core plugs are
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averaged, either by EOD, EOD by zone, or by architectural element, highlights to 

difficulty in interpreting the seismic behavior in transitional deposits. Although t h e 

architectural element scale produces the most accurate representation of the three models, 

the importance of being able to separate out at least individual depositional environments 

with the Ip information is essential to being able to correctly characterize the seismic 

response in transitional depositional environments.

Seismic Acquisition Challenges 

The seismic profile was acquired in a relatively remote location; therefore, some 

issues occurred that would have been difficult to predict and may have affected the 

resulting profile. The twelve-day acquisition itself also took place during an unfortunate 

weather pattern that ranged from hail to constant drizzle for the entirety o f the 

acquisition. Although the direct link between the noise created on the geophones is not 

clear, there are likely some repercussions from the noise in the resulting profile. There 

were also multiple cattle guards and a sharp bend in the road in the middle o f  the profile 

that resulted in the minivib skipping large stretches o f road in between sweeps. In terms 

o f  the processing, the water table depth was also unknown and therefore could not be 

taken into consideration. However, it is likely that this also may have affected the 

resulting profile. Although problematic, the profile does lend itself to some 

interpretations using the three forward models.
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Seismic Profile

The acquired seismic profile captured several noteworthy features (Fig. 2 . 12) . 

Firstly, there are several mapable channels in both the coastal plain and tidal depositional 

environments. The main geometries observed in outcrop that can be seen in the profile 

are the channel complexes based on the size o f complexes from LHC (Table 2.2). The 

individual channels and the individual overbank fine beds as seen at LHC are not 

discernable due to the thickness that the seismic resolution captures.

Secondly, the coal geometries are also difficult to distinguish. Possible 

explanations are because the beds are too thin to be captured by the resolution or the 

discontinuous nature o f the coal geobodies. Although the profile has a washed out zone in 

the tidal environment that may be associated with coal deposits, it is not obvious if that is 

the case. A few possible causes of the washed out zone are geophysical illumination from 

the processing or a geological attribute, such as a thick homogenous package of high Ip 

tidal mudstone which points to a long period o f lagoonal setting or low Ip packages such 

as tidal channels juxtaposed with coal.

Thirdly, there is a distinguishable trough reflector on the right-hand side of the 

profile that trends at a depth o f 300 m and 5200 m upward. On the right-side o f this 

particular reflector, the profile is again washed out. Some possible explanations for this 

reflector are the transition to the shoreface deposit or it could be related to the incised 

valleys that are observed in the northern part o f the plateau. Fourthly, the profile 

highlights some small structural features that are not evident from outcrop. Although the 

structural features are relatively small, they could have a significant impact on processing 

and interpretation o f the seismic profile in the highly heterogeneous tidal transition zone.



Comparison o f the Forward Model and the Seismic Acquisition Profile 

Comparing the forward model results to the seismic acquisition survey i lluminat e s 

some interesting similarities and highlights the difficulty in creating an accurate model in 

a highly heterogeneous depositional environment (Fig. 2.13). Model 1 illustrates that the 

overall Ip contrast between the different depositional environments is the same between 

the forward model and acquired profile. The impedance difference is largest between the 

tidal and coastal plain environments. The reflector between these two environments is 

brighter than between the shoreface and tidal which has less impedance contrast. Similar 

reflector intensities are also seen in the acquired profile. Model 2 illustrates that the low 

Ip coal is illuminated in the relatively high Ip tidal zone 5 which is not clearly similar to 

the acquired profile. However, the weak trough reflector character o f the shoreface is 

similar to the shoreface reflector in the acquired profile.

Model 3 with architectural elements is the most realistic comparison to the 

acquired seismic data. The forward model displays the reflections o f channels in both the 

tidal and fluvial zones due to the low Ip contrast against the high Ip contrast o f the tidal 

mudstone which is also visible in the acquired seismic profile. In the coastal plain 

depositional zone 2, the acquired profile has flat bright reflectors that likely indicate 

differentiation between the high Ip overbank fines and the low Ip fluvial channels which 

are evident in the models and acquired profile. In both the forward models and the 

acquired profile, the coal geobodies are not very distinguishable. Because the coal and 

tidal channels have relatively similar low impedance elements, it is the juxtaposition o f 

the tidal mudstone that may predict the coal and/or channels. One striking difference 

between the models and the acquired profile is the negative reflector on the right-hand
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side o f the acquired profile, and a similar shape peak reflector on the forward model that 

indicated the Ip contrast between the tidal and the shoreface environments.

The most notable difference between the acquired profile and the forward model 

is that the forward model does not capture the same amount o f detail. Although 

heterogeneity is captured in both the acquired profile and the forward models o f the tidal 

zone, the models do not appear to be straightforward interpretation of the acquired 

profile. There are two possible causes for the dissimilarities between the models and the 

acquired seismic profile: model error and data error.

The difficulty in tying the seismic to field data in the transitional zone is 

inextricably linked to the fact that this depositional environment is highly heterogeneous 

and the field data which are being applied to the interpretation are from data points that 

are far from the acquired seismic profile. The closest information, both seismic rock 

properties and geological, is derived from core EP-25 which is 500 m from the profile 

and the outcrop data being used at LHC is approximately 10 km away. This study 

highlights the complexity o f interpreting fluvial-shoreline transitional deposits. The use 

o f multiple cores and outcrop studies (a robust dataset by industry standards) still does a 

poor job o f capturing the amount o f detail that is necessary in order to fully model the 

complex transition zone. As for the possible errors in data, the culmination o f misfortunes 

including acquisition taking place during poor weather, winding roads with cliffs, lack of 

information about the water table all could have contributed to a flawed data profile.
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Implications for Interpretation o f  Reservoir in a Tidal Transition Zone 

Table 2.3 can be used as a guideline on how to interpret environments of 

deposition and architectural elements in seismic profiles. Between environments o f  

deposition, the strongest reflection is between the high impedance tidal and low 

impedance coastal plain environments, while the weakest is between the tidal and 

shoreface. When the environments o f deposition are segmented into individual 

depositional zones, the brightest reflector is still between the coastal plain environments 

and the tidal environments. The reflector between the tidal and shoreface remains a dim 

reflector in comparison. The addition o f  ancillary architectural elements to the 

depositional models illustrates the distinctive reflector characteristics in the tidal and 

coastal plain environments. In the coastal plain environment, the impedance contrast 

between the overbank fines and the fluvial channels produces bright flat reflectors. In the 

tidal environment, the high Ip tidal mudstone juxtaposed against the exceptionally low Ip 

produces bright discontinuous reflectors, while the impedance contrast between tidal 

mudstone and tidal channels is slightly lower and thus generates slightly dimmer 

reflectors. Although it is not captured in the models, the gradational changes and sharp 

contacts o f  the coal o f  the facies association in the tidal environment (Chapter 1) are 

likely distinguishing features that would be present in seismic profiles. The shoreface 

reflector continues to be a moderately bright peak, however not as strong as the 

architectural elements in the coastal plain and tidal environments.

Although the Ip and the seismic expression derived from the core plugs and 

models provides a template for future interpretation in transitional depositional 

environments, there is risk o f misinterpretation. The risk o f misinterpretation significantly
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depends on the wavelet used; the risk increases with lower frequency. In model 1 and 2, 

the reflectors are clear-cut between the environments: strong contrasts between coastal 

plain and tidal, lower contrast between tidal and shoreface. Model 3 illustrates the 

complexity of differentiating environments when the architectural elements are 

incorporated at a smaller scale. The characteristics that separate the elements’ reflection 

characteristics inside the tidal environment and coastal plain are particularly subtle. 

Parameters that would be useful to know in transitional deposits include bed geometries 

and bed thickness. Bed geometries would provide an accurate differentiator between the 

coal, tidal mudstone, and overbank fine architectural elements in the tidal and coastal 

plain environment. By knowing whether beds are laterally discontinuous or widespread, 

the ability to distinguish the reflectors in conjunction with bed thickness would be a more 

straightforward task. Bed thickness combined with bed geometries would also provide 

the means to understand the differences between tidal and fluvial channels in the 

depositional environments.

Conclusion

In summary, the rock properties identified differentiation not only between 

depositional environments, but can be divided even further into the channel and 

mudstone architectural elements. When the rock properties populated the three models 

that derived information from core and outcrop studies, a few key features were 

discerned. The first is that the coal does not have as great of an impact as thin ephemeral 

beds. Although, overall, there is a significant amount of coal, the fact that they do not 

appear as thick continuous sheets makes them difficult to distinguish in both the forward
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model and the acquired seismic profile. The forward models are useful tools and can 

accurately predict reflection between depositional environments; however, they do a poor 

job o f distinguishing architectural element geobodies in the seismic profile. Even with the 

utilization o f multiple cores and outcrop studies, the forward model was unable to capture 

the amount o f detail that is necessary in order to fully model the complex transition zone. 

The architectural element forward model does, however, aid in interpreting the reflection 

characteristics o f juxtaposed elements within the depositional environments. The tidal 

mudstone is the main impedance contrast to both the tidal channels and coal bodies, 

producing strong peaks and troughs where they are juxtaposed, and bright reflectors in 

the coastal plain indicating juxtaposition o f overbank fines and fluvial channels.

Forward seismic reflection modeling coupled with direct rock property 

measurements and predictive facies model framework derived from the core and outcrops 

leads to invaluable insights for interpreting subsurface data. Integrating core and outcrop 

data improves multiscale synthesis o f heterogeneous deposits, and contributes to a better 

understanding of how to interpret and map architectural element geobodies in paludal 

nearshore environments. Rock property analysis is essential for optimizing the value of 

seismic reservoir characterization results to enable advanced quantitative interpretation. 

The ability to relate specific rock properties such as Ip in precise depositional 

environments to seismic responses using a calibrated model is invaluable for enhancing 

the understanding o f the hydrocarbon reservoirs.
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Figure 2.1. Map o f Kaiparowits Plateau including study area (modified from Hettinger 
1995). The red dots indicate the location o f known cores in the northeastern section o f the 
plateau. The green dots represent locations o f previously studied core by Gallin (2010). 
The closest outcrop study to this core is Left Hand Collet (Dooling, 2012). The purple 
line illustrates the location o f the acquired seismic line. For coal cross-section see Figure 
2.8; for acquired seismic profile see Figure 2.12.
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Fig. 2.2 Regional stratigraphy and stratigraphic column of study area (A) Stratigraphic 
column of the Coniacian to Santonian age deposits throughout the Kaiparowits plateau, 
and (B) Lithostratigraphy o f the John Henry Member for selected locations along the 
plateau, including the study area. Kelly Grade to Left Hand Collet to EP-25 represents 
the south to north deposits o f the John Henry Member. Seven marine sandstone packages 
were named “A-G” by Peterson (1969a). The packages pinch out landward into coal 
zones and coastal plain facies. Core EP-25 intersects the R ee’s and Christensen coal 
zones through the B  sandstone. The coastal onlap curve is derived from the Rogers 
Canyon study on the southwestern part o f the plateau (Allen and Johnson, 2011).
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Core EP-25
Depth Sample 

(m) locations

Lithofacies Description
Number of 
samples Interpretation Core plugs

*

Carbonaceous shale
Dark gray to black colored shale, often 
laminated but sometimes structureless; 
abundant organic material; often grades in

8 Low energy paludal 
and lagoonal deposits ■

and out of coal facies

Bioturbated
m udstone

Horizontally laminated mud or mud with no 
apparent laminations, heavy bioturbation 11

Low energy 
lagoonal and fluvial 
overbank muds ■

Flaser/wavy/lenticular 
bedded sandstone

Alternating laminations of sandstone and 
mudstone; sand grain size ranges from very 
fine to medium sandstone

12
Bi-directional flow 
associated with tidal 
deposits ■

D
Planar bedded  
sandstone

Laminations dip at < S’; grain size ranges 
from fine to medium sandstone

3
High flow regime, 
proximal shoreface, 
tidal and fluvial channels ■

E
Trough cross-bedded 
sandstone

Trough and planar foresets dip between 
5-40’; grain size ranges from fine to coarse 
sandstone

11
Unidirectional flow 
associated with fluvial 
and tidal channels ■

F Structureless
sandstone

Sedimentary structures are apparent- grain 
size ranges from very fine to coarse 
sandstone

7

Rapid deposition 
from high energy 
suspension in proximal 
shoreface deposits ■

G Mud rip-up clast 
sandstone

Angular to subangular mud rip-up clasts in 
a sandstone matrix; matrix grain size 
ranges from very fine to coarse sandstone

4 High energy fluvial 
channel lag deposits ■

H Coal
Black with dull vitreous reflectance and 
lacking distinct laminations; coal beds 
are < 1 m thick

0 Low energy paludal and 
lagoonal deposits

Figure 2.3. Lithofacies with core plug photographs and locations. Lithofacies observed 
in core EP-25 with a representative core plug photograph. The number of core plug 
samples from each lithofacies is a statistical representation of the proportion of that 
lithofacies present in the core.
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Figure 2.4. Core EP-25 and EP-07 depositional environment, architectural element, and 
lithofacies logs. Gallin (2010) logged cores EP-25 and EP-07 producing a grainsize log, 
identifying the three different environments o f deposition the architectural elements 
within each depositional environment and lithofacies. See Fig. 2.1 for location of cores.
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Figure 2.5. Modern analogs for building the architectural element 3-dimensional model. 
Modern analog aerial photo of the Ogeechee River, Georgia. Google maps images 
(www.google.com/maps).

http://www.google.com/maps
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Figure 2.6. Seismic acquisition profile and core locations. The Kaiparowits Plateau 
highlights the location of seismic acquisition survey. The google image shows original 
location of cores EP-25 and EP-07 as well as the projection onto the seismic reflection 
survey. The lower image shows an elevation profile of the seismic survey from north to 
south as well as the John Henry member elevation and the elevation that the seismic 
datum was corrected.
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Figure 2.7. Rock plots of depositional environments, architectural elements, and 
lithofacies. Vp/Vs versus Ip cross plots showing the relationship between measured rock 
properties and core plug attributes: A) lithofacies, B ) architectural elements, C) EOD’s.
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Figure 2.8. 2-dimensional cross-sections between EP-25, EP-07, and Left Hand Collet. In 
the 3-dimensional model grid, four supplementary density logs from cores were utilized 
to understand coal distribution. The coal here was located using the assumption that coal 
has a lower density that the surrounding rocks. The density logs were used as hard data 
in the 3-dimensional models and assisted in mapping out coal geobodies distribution.
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Figure 2.9. Coal geobody cross-section. Correlation of depositional environment between 
EP-25 and EP-07 (NE to SW; section A-A’ on insert map). This cross-section is roughly 
parallel to the paleoshoreline. The correlation from core EP-25 to Left Hand Collet, 
indicated on the map from A’-B ’ . Left Hand Collet information is derived from Dooling 
(2012). Two main coal zones are identified; Ree’s coal zone in the Upper John Henry 
Member and the Christensen coal zone which is located in the Lower John Henry 
Member.
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Architectual
Elements

Ombankfirwj

Huvul channel

1
2

Tidal (luniKl

3
4

Tidal mudstone

7000 m
Coal

Figure 2.10. Three 3-dimensional models. Analogs from Google maps images were 
employed to model the geobody distribution of architectural elements in the tidal 
depositional environment. Each vertical grid the elements were hand contoured using 
UP&L well logs, core EP-25, EP-07, and LHC geometries
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3D M odels and 2D cross-section

Model 1 - EOD

900 m

- ™  -

________ ______
450

u /uuum

Model 2 - EOD with coals

Figure 2.11. Architectural element 3-dimensional model modern analogs. The three 3­
dimensional models: model 1-depositional environments, model 2-depositional 
environments with coal bodies, and model 3-architectural elements. For model 3, each 
vertical grid slice used the geobody geometry information from LHC and input with the 
average rock properties from each architectural element in the specific depositional 
environment zone
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Coastal
Plain

— Tidal

— Shoreface

Figure 2.12. Seismic profile and interpreted depositional environments and seismic 
features. The upper profile is the seismic acquisition profile with the projected 
architectural element logs from cores EP-25 and EP-07. The black lines indicate the 
upper and lower portion of the JHM. The lower seismic profile is the interpreted 
environments of deposition as well as notable seismic features.
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2D Forward m odel 2D Synthetic seism ic

Model 1 - Environment of deposition

Model 2 - Environment of deposition-with coals

Model 3 - Environment of deposition-with architectural elements

Figure 2.13. Three 2-dimensional seismic forward models at seismic acquisition profile. 
The 2-dimensional models ranging from model 1 -EOD, model 2 EOD with coal, and 
model 3- architectural elements and the extracted 2-dimensional slice from each model. 
The 2-dimensional slice was extracted at the closest location the acquired seismic line.
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Table 2.1

Geometries from Left Hand Collet

Depositional
environment Geometries observed from outcrop

Coastal plain
Individual channels: 0.5 to 3 m thick 

Channel complexes: 10 m thick

Tide-dominated
fluvial

Individual channels: 1-5 m 
Channel complexes: 20 m thick

Non-channelized sands: 10-16 m thick

Shoreface Sheet-like sandstone 5-25 m thick
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Table 2.2

Acoustic impedance o f EOD and architectural elements

Depositional
environment

Vertical 
grid size

Average zone 
thickness

Architectural
elements

Acoustic impedance (Ns/m3)

Model 3 Model 2 Model 1

DripTank
Member

1 10m
Fluvial

channel 8700 8700 3880

JHM - coastal 
plain 1

1 20 m
Fluvial channel 3130

4675 3880

Overbank fines 6525

JHM - tidally 
influenced 1 1 40 m Tidal mudstone 7480 7480 6530

JHM - coastal 
plain 2

1 10 m Fluvial channel 3090 3090 3880

JHM-tidally 
influenced 2 50 2 m

Tidal channel 5000

6500
6530Tidal mudstone 8100

Coal 2400 2400

JHM - shoreface 1 20 m Shoreface 4125 4125 4125

JHM - tidally 
influenced 3

1 20 m Tidal mudstone 5625 5625 6530



90

Table 2.3

Impedance contrast and seismic expression of EOD and architectural elem ents

Model 1-EOD Impedance
contrast

Seismic
Upper Lower expression

Background Coastal plain Lowest Strong peak

Coastal plain Tidally-influenced Highest Strong trough

Tidally-influenced Shoreface Medium peak

Model 2- EOD with coal Impedance Seismic

Upper Lower contrast expression

Zo
ne

 
5

Coal Tidal EOD High Trough

Model 3-Architectural elements Impedance Seismic

Upper Lower contrast expression

fN
Zone 1 Fluvial channel Low Weak peak

CD
C
o

N
Overbank fines Fluvial channel High Strong peak

Fluvial channel Zone 3 High Strong trough

Zone 4 Tidal mudstone High Strong trough

Zone 4 Tidal channel Low Weak trough

Zo
ne

 
5

Coal Tidal mudstone Highest Strongest trough

Coal Tidal channel Lowest Weak trough

Tidal mudstone Tidal channel Medium Strong peak

Tidal channel Zone 6 Low Weakest peak

Tidal mudstone Zone 6 High Strong peak



FUTURE WORK

This project served as a more in-depth understanding of the transition tidal zone 

in the Kaiparowits Plateau. In particular, the project produced the first direct 

measurements of rock properties in the Kaiparowits. Now that the measurements have 

been taken, the seismic acquisition survey completed, and the 3-dimensional model 

created, many more opportunities are available to explore with this dataset. Although 

research opportunities are endless, there are three key areas in which the dataset can be 

extended for more in-depth research.

The first area involves the rock properties dataset. Although the rock properties 

have been thoroughly studied in this paper, there are still some explanations that may rely 

on contributions from mineralogy and clay content. A detailed microscopic study on the 

mineralogical composition and clay type and content would be an exciting addition to the 

laboratory measurements in order to more accurately understand the rock plots and 

seismic reflection in the tidal transition zones.

The second area in which the study could benefit from further research is logging 

the cores surrounding core EP-25. This would provide a better handle on the 3­

dimensional forward model as well as the seismic profile which is directly overlain by 

core EP-08. Because the tidal transition zone which is the location of this study is highly 

heterolithic, multiple core logged in a small vicinity would provide invaluable 

information about the tidal maximum, tidal deposition, paludal sedimentation in an



estuarine environment, and coal geobody distribution. Information from additional 

logged UP&L cores could be fed into the 3-dimensional model creating a more re al istic 

depositional model that can be used for forward seismic modeling and flow simulations.

Lastly, the third area which this study could be extended is with the AVO 

modeling. In this study, the AVO modeling does not take into account any types of fluids 

present in the pore spaces. A more realistic, and industry-related method to make the 

AVO work more pertinent is to do fluid substitutions using oil, gas, and water.
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APPENDIX A

CORE EP-25

This appendix shows the logged core EP-25 and the location and photograph of the core 
plugs extracted. The information next to the core plugs includes the grainsize, 

lithofacies, porosity, Vp, Vs, and density.
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Sat
#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
28
29
30
31

APPENDIX B

RAW CORE PLUG LABORATORY DATA

depth(m) Facies
type

Grain
rho
(g/cm3)

Porosity Bulk rho 
(g/cm3)

Vp (m/s) Vs (m/s) Ip
(Ns/m3)

208.788 9 2.687 16.41 2.246 3377.67 2476.1 7586.247
215.1888 10 2.679 9.381 2.428 4042.59 2874.73 9815.409
222.6564 2.602 16.043 2.184 2011.48 1452.98 4393.072
226.1616 10 2.62 32.155 1.777 1723.04 1212.64 3061.842
229.5144 2.6 9.242 2.359 3531.98 2425.59 8331.941
233.4768 10 2.627 31.511 1.799 1533.1 1045.76 2758.047
236.8296 10 2.637 37.219 1.656 1566.5 1078.78 2594.124
240.3348 10 2.609 21.128 2.057 1747.93 1275.51 3595.492
244.602 2.586 11.712 2.283 2898.86 2117.06 6618.097
247.4976 2.626 11.913 2.314 2926.39 2119.05 6771.666
250.8504 2.625 15.064 2.23 2917.11 2063.91 6505.155
254.2032 2.642 30.332 1.84 1909.88 1318.32 3514.179
255.4224 11 2.629 25.998 1.946 1684.32 1136.58 3277.687
261.8232 2.602 9.973 2.343 3349.78 2278.52 7848.535
263.1948 2.632 21.09 2.077 2568.94 1753.75 5335.688
267.462 2.608 12.74 2.275 2830.39 2062.99 6439.137
272.6436 2.57 7.978 2.365 3249.3 2304.64 7684.595
273.7104 2.414 8.608 2.207 2697.7 1945.22 5953.824
279.8064 2.571 6.448 2.405 3231.86 2285.59 7772.623
283.7688 2.603 12.626 2.274 3147.35 2264.15 7157.074
285.75 3.016 3.019 2.925 3985.28 2575.56 11656.94
290.1696 2.641 30.041 1.848 1836.04 1250.48 3393.002
294.132 10 2.654 30.837 1.848 1833.46 1237.28 3388.234
299.3136 2.642 33.173 1.765 1530 988.15 2700.45
302.0568 10 2.64 32.355 1.786 1406.19 971.42 2511.455
307.2384 2.633 31.352 1.807 1920.81 1255.35 3470.904
312.7248 2.612 12.115 2.295 3709.34 2556.94 8512.935
315.7728 11 2.717 20.489 2.16 4236.03 2861.45 9149.825
317.6016 10 2.708 18.026 2.22 3323.73 2259.97 7378.681
322.4784 10 2.64 30.484 1.835 1768.96 1178.5 3246.042

4

3

3
6
5
9

4
5
4
4
2
4
5
3
9

9

9
4



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

112

324.612 2.531 26.619 1.858 2565.05 1879.14 4765.863
330.0984 2.53 7.861 2.331 3310.48 2083.2 7716.729
333.4512 2.71 14.389 2.319 3471.77 2351.1 8051.035
335.28 2.597 10.733 2.318 2629.64 1887.91 6095.506
337.4136 11 2.687 20.806 2.128 2699.08 1929.26 5743.642
340.3092 2.695 7.698 2.487 3262.36 2089.23 8113.489
342.9 2.492 7.911 2.295 3075.6 2148.66 7058.502
345.6432 10 2.612 18.972 2.116 2668.93 1842.82 5647.456
351.4344 2.572 13.537 2.224 3090.68 2156.2 6873.672
355.2444 2.662 25.931 1.972 2320.25 1515.51 4575.533
359.0544 2.645 27.91 1.907 1753.94 1237.23 3344.764
362.1024 2.654 27.516 1.924 1846.82 1287.39 3553.282
365.1504 2.632 10.079 2.367 3495.34 2397.31 8273.47
371.094 2.613 7.384 2.42 3536.92 2475.22 8559.346
377.0376 2.532 7.287 2.348 3118.7 2257.05 7322.708
382.8288 2.606 6.16 2.445 3585.74 2434.49 8767.134
388.62 2.501 9.403 2.265 2803.65 2118.6 6350.267
398.9832 2.554 6.299 2.393 3358.79 2357.64 8037.584
401.7264 2.676 18.608 2.178 2560.28 1815.41 5576.29
403.86 2.66 21.349 2.092 2255.94 1636.36 4719.426
405.9936 11 2.696 19.422 2.172 2521.92 1785.9 5477.61
410.8704 2.349 8.065 2.16 2738.47 2022.56 5915.095
417.2712 10 2.646 27.042 1.931 2150.94 1519.71 4153.465
423.9768 11 2.652 28.66 1.892 2031.94 1398 3844.43
429.6156 2.664 25.257 1.991 2197.064 1546.15 4374.355
434.0352 2.685 21.357 2.112 2579.67 1792.42 5448.263
437.6928 2.546 20.069 2.035 1929.46 1279.52 3926.451
443.7888 2.633 7.082 2.447 2667.43 1987.21 6527.201
445.3128 2.612 7.003 2.429 3044.4 2219.65 7394.848

9
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2
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APPENDIX C

ROCK PROPERTIES LABORATORY MEASUREMENTS METHODOLOGY

All laboratory work was done courtesy of the Stanford Rock Physics Laboratory 

and the coring done by the Utah Geological Society. The core samples were drilled 

vertically, perpendicular to the bedding. Once extracted, the end faces were ground flat 

and parallel to ensure precise measurement and good contact with laboratory equipment. 

A caliper tool (0.001 mm accuracy) was used to measure length and diameter of each 

sample. The average diameter and length of the samples is 25.4 mm and 26.9 mm, 

respectively. The plugs were stored for one month at 70° and dried in an oven at 80° for 

24 hours before taking measurements. The mass of the plugs was measured using a 

balance with 0.1% accuracy. As a result, we were able to calculate bulk density with the 

following equation.

Massdry (1)
Pbuik y 0ium6bulk

The laboratory tests were conducted as followed: porosity, permeability, acoustic 

measurement (Vp and Vs). Porosity was calculated using a porosimeter which measures 

porosity based on Boyle’s Law with Helium.

P0f B Pos B (2)
V = V°lumesample — B + —— * -p p — * -p pPf r ob — r ob t’g r ob — r ob 

pb pf  pb pf  

B is the size of billets removed to accommodate the sample size. P0f  is the recorded
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initial equilibrated pressure with all the billets. Pf is the recoded reference pressure with 

the billets. Pob and Pb are pressure value used for calibration. These measurements are 

taken and recalibrated based on the length of the sample and how many billets were 

removed to accommodate the sample size. Pos and Ps record the initial and subsequent 

pressure of each sample when the He is charged and discharged. The range of porosity 

values is 3-37%. The permeameter measures permeability using Darcy’s law with 

Nitrogen. The equation takes into account the Klinkenberg effect, which is the gas 

slippage between the sample and the equipment.

k =  i ± * L n * ^  (3)
A*t ht

K is the permeability coefficient, a is area of tube, L length of sample, A is area of 

sample, t is time, h0 is head at beginning, and ht is head at end of time. Resulting 

permeability ranges are 1.3-1134 mD. Ultrasonic acoustic velocimeter uses a high 

voltage electric pulse into the core plug to measure velocity. Two sets of piezoelectric 

crystals are used to generate either P- or S-waves. After initial calibration, molasses is 

applied to each sample for suitable coupling and transducers are positioned in direct 

contact on both sides on the core plug. The P-wave is picked at the first arrival of the 

resulting waveform, and the S-wave is picked at the first peak. Vp ranges from 2500­

4500 m/s and Vs is 1200-2800 m/s.
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