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ABSTRACT
The organization of learning materials is often limited by the systems available for 

delivery of such material. Currently, the learning management system (LMS) is widely used 
to  distribute course materials. These systems deliver the material in a text-based, linear way. 
As online education continues to  expand and educators seek to  increase their effectiveness by 
adding more effective active learning strategies, these delivery methods become a limitation. 
This work demonstrates the possibility of presenting course materials in a graphical way 
th a t expresses im portant relations and provides support for m anipulating the order of those 
materials. The E N A B L E  system gathers da ta  from an existing course, uses text analysis 
techniques, graph theory, graph transform ation, and a user interface to  create and present 
graphical course maps. These course maps are able to  express information not currently 
available in the LMS. Student agents have been developed to  traverse these course maps to 
identify the variety of possible paths through the material. The tem poral relations imposed 
by the current course delivery methods have been replaced by prerequisite relations tha t 
express ordering th a t provides educational value. Reducing the connections to these more 
meaningful relations allows more possibilities for change. Technical methods are used to 
explore and calibrate linear and nonlinear models of learning. These methods are used to 
track mastery of learning material and identify relative difficulty values. Several probability 
models are developed and used to  dem onstrate th a t data  from existing, temporally based 
courses can be used to make predictions about student success in courses using the same 
material but organized w ithout the tem poral limitations. Combined, these dem onstrate 
the possibility of tools and techniques th a t can support the implementation of a graphical 
course map th a t allows varied paths and provides an enriched, more informative interface 
between the educator, the student, and the learning material. This fundamental change 
in how course materials are presented and interfaced w ith has the potential to  make 
educational opportunities available to  a broader spectrum  of people with diverse abilities 
and circumstances. The graphical course map can be pivotal in attaining this transition.
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CHAPTER 1
INTRODUCTION AND OVERVIEW 

1.1 Introduction
In an effort to meet the changing landscape of education, many departm ents and uni­

versities are offering more online courses -  a move th a t is likely to impact every departm ent 
in some way [4]. This will require more instructors to create online courses. Other 
innovations in instructional strategies are also widely impacting educators [5], including 
peer instruction, flipped classrooms, problem-based learning, just-in-tim e teaching, and a 
variety of active learning strategies. Implementing any of these strategies requires changes 
to  existing courses.

As the demand for online and hybrid courses increases [6], teachers who are experienced 
and talented at designing and presenting synchronous, face-to-face courses are being asked 
to  adapt their material and presentation to an asynchronous, online format. To many this 
is an unfamiliar approach and the process of making the transition is unclear. Since there 
is already an investment in existing material and methods, it is not desirable to  abandon 
them  entirely. At the same time, this new approach provides opportunities for new methods 
and material to  be of benefit.

Sometimes an educator is so familiar w ith the current course organization th a t it becomes 
a stumbling block for visualizing alternative options. W hen anticipating change it is valuable 
to  see how existing learning materials can be organized and used in new ways. ENABLE 
is a system of tools and algorithms developed to explore the possibilities of organizing and 
presenting learning materials in new ways. ENABLE is not an acronym but rather a name 
th a t reflects the purpose to  enable the implementation of quality educational strategies. One 
of the purposes of ENABLE is to  provide assistance in making informed change. Educators 
seeking to  transition to an online course or implement innovative changes in the classroom 
could benefit from a deeper analysis of the contents and structure of the course material. 
The overall objectives of this project are as follows.

1. to create a set of methods to  analyze the content and structure of existing learning 
materials th a t have been used in a synchronous, linearly structured course and provide
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insight into the nature and relations of the course material and provide alternative 
ways to organize them,

2. to provide a Bayesian framework to  assist in the discovery of causal relations between 
course learning items and student performance, and

3. to develop some simple student behavior models to  probe the m ethods' efficacy and 
accuracy.

This set of methods is called ENABLE, which is not an acronym, but rather a name 
th a t reflects the purpose to enable the implementation of quality educational strategies. 
W ith ENABLE, educators are able to see the relations of the existing learning items using 
a visual, nonlinear presentation, to predict the impact of the organization of learning items, 
and to  discover poorly organized or presented material.

As an example, consider the variation in the graphs shown in Figure 1.1. Information 
about the learning items for three sample courses was gathered from Canvas (a standard 
learning management system), and graphs were produced representing the current organiza­
tion of each course. Figure 1.1 shows three graphs from one of those courses, a CS0 course, 
Foundations of Computer Science, taught at U tah State University. Figure 1.1(upper) 
shows all the learning items for this course laid out in order across the days of the semester. 
Figure 1.1 (middle) shows the initial course graph constructed directly from the learning 
material, and visually exhibiting the relations of interest: precedes, occurs in, and includes. 
The orange nodes (small, no fill color) represent the learning items. The orange edges 
between the learning item nodes are the precedes relations. The green nodes (larger with 
solid fill color) represent the topics. The green edges go between the topic nodes and 
the learning item nodes and represent the occurs in relations. The unit relations are 
expressed visually by locating nodes included in a unit near the same vertical location. 
Figure 1.1 (lower) shows the class material after text analysis and graph transform ation by 
the ENABLE system. Note th a t this is one possible reorganization of the course. In this 
transform ation the learning items are organized by topic. Only the topically related precedes 
relations are included, which allows a clearer separation of learning items by topic. The 
occurs in  relations are all represented. In this particular transform ation, includes relations 
are not expressed.

Due to  the size of these graphs it is difficult to  see the details clearly in this small of 
an image, but the changes are significant enough th a t you get a sense of the differences 
the transformations make. Figure 1.2 shows a small section of the graph and allows the
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F ig u re  1.1. CS0, Foundations of Computer Science Original Course Organization (upper). 
CS0, Initial Course Graph Relations (middle). CS0, Transformed Course Organization 
(lower).

details to  be more visible. This image shows a single topic node (solid circle) and three 
learning items (circles with no fill color). The learning item to  the far right is an exam and 
the relations coming into this exam consist of four occurs in relations and three precedes 
relations. This is an ideal situation to  apply the split exams transform  th a t is discussed in 
chapter 4, The Course Map.

Current learning management systems display materials in a textual, linear format 
primarily based on chronology. This presentation of material provides a limited view of 
the course. An asynchronous course is not limited to  a linear, chronological organization 
and can be enhanced by different arrangements of the learning material. ENABLE provides 
various organizational options of the course materials. This supports the identification of 
new ways to organize the materials and restructure the delivery to  exploit the flexibility of 
the online setting, possibly including real-time, context-dependent reorganization.
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F ig u re  1.2. Close Up of Small Section of Graph From Figure 1.1 (middle).

Identifying relationships between learning opportunities has been done at the curricular 
level. There is a body of research th a t looks at using curriculum maps to  represent the 
relations between courses and program learning objectives. The use of curriculum maps 
has been adopted in a variety of educational settings. The process of creating these maps is 
time- and resource-consuming, forestalling their implementation by many [7]. These maps 
are largely textual and often presented in tables. Some universities have presented the 
curriculum maps in a more visual way by using a diagram or textual web [8, 9]. Some list 
the learning resources and learning objectives w ithout identifying how they are connected, 
while others identify the level of m astery expected of a course for each program objective.

Curriculum maps are designed to provide information about the curriculum and the 
connections between learning opportunities to  teachers, students, curriculum designers, 
adm inistrators, and managers [7,10], but the most often reported benefits are related to the 
development of the maps. The first step in developing a curriculum map is for individual 
teachers to develop maps of their course as it is being taught, and then working in groups 
to  combine and revise the individual maps of courses in the curriculum [11], ultimately 
mapping the courses to  program outcomes [12]. The process of looking carefully at a course 
by the teacher and then sharing and discussing the insights with others involved in the 
process, produces improved communication and greater attention to  teaching [10,12]. It is 
also reported th a t it improves collegiality between faculty [11].

This work was built on some of the principles used in curriculum mapping, such as 
teacher course analysis and identifying connections. However, the use of concepts from 
curriculum mapping has been extended to  use with an individual course. Currently the 
connections identified during the mapping process are between courses and program out­
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comes. A broader analysis of the course will be undertaken using additional connections, 
such as tem poral and topical relations between individual learning items. The focus of this 
analysis is to enable the transform ation of an existing face-to-face synchronous course to  an 
online asynchronous course. The contribution of this work is to  create algorithms embedded 
in an interactive tool th a t will

•  support the instructor during the analysis phase by providing information about the 
existing course through autom ated analysis and receiving and incorporating additional 
input from the instructor,

•  generate a graphical representation of the learning items and the relations between 
them, and

• allow transform ation of the learning item graph to facilitate consideration of new 
organizations.

Figure 1.3 shows an overview of the ENABLE system.
These features of the system provide previously unavailable assistance during the process 

of transforming a course for new delivery methods. This support goes beyond what is 
currently available using curriculum maps, both by autom ated assistance during the analysis 
phase and by the graphical display of the learning items and their relations.

Providing the ability for the instructor to see and interact with a visual, graphical 
representation of the course requires the system to  enforce limitations th a t protect the 
integrity of the representation. For example, a prerequisite will not be added if it creates 
a cycle. Such a cycle would represent an impossible prerequisite grouping (see Figure 1.4). 
Similar problems can occur with the addition of precedes relations. O ther correctness 
violations can occur when nodes or edges are removed. ENABLE maintains the integrity 
of the course map.

Analyzing the exposed alternatives using student agents and a Bayesian inference net­
work have been investigated to  see if such tools can be applied to  identify preferences 
between the resultant organizations. The results of this examination are reported.

1.2 Course Content Analysis
The first step of the content and presentation analysis is to  identify the course materials 

and organization th a t are currently being used (for our first results in this domain, see [13]). 
We conduct this study using Canvas, where much of this information can be acquired
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F ig u re  1.3. ENABLE System Architecture.

F ig u re  1.4. Addition of Prerequisite Relation Not Allowed.

directly through the Canvas application program interface (API). The learning materials 
for a course come in many varieties, such as assignments, quizzes, videos, lecture slides, 
reading material, etc. We refer to these various materials as learning items (see Figure 1.5).

Some distinction between types of learning items can be made. For example, some 
learning items require a submission of some type from the student, have a due date, and 
result in points th a t apply to the student’s grade for the course. Examples of these are 
homework assignments, quizzes, online discussions, and class activities. These are referred 
to as assignments. Others have no due date and no points are associated with them. 
Examples of these learning items are videos, frequently asked questions, readings, and 
lecture slides. These are categorized as learning resources. One more distinction is made
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F ig u re  1.5. Sample of Learning Items Available in Canvas.

for exams. Exams have many of the characteristics of the assignment, such as a due date 
and points, but the exam is a special case in th a t it can be used to  assess learning items 
th a t are not otherwise related. Identifying the exam as a distinct category increases the 
options available when considering new organizations.

From Canvas the system gathers textual information about the learning items, such as 
a problem statem ent for an assignment, questions for a quiz, or text from slides. Additional 
details about learning items are also gathered, such as due date, points possible, which 
module the item is in, and files associated with the learning item.

Some materials associated with learning items may not be available in the learning 
management system. For example, an exam th a t is distributed during class will have an 
item in Canvas associated with the exam. This item has a title, due date, and points 
possible, but the actual text of the exam is not included. The text of an exam can be 
meaningful during the analysis phase. To accommodate such circumstances, the system 
allows additional materials to  be uploaded so they can be included in the analysis.

ENABLE also gathers information from Canvas to establish the current organization 
of the course materials. In Canvas as well as other learning management systems, the
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organization of material is presented in a linear fashion based on dates. This arrangement 
identifies tem poral relations in the existing organization.

Some courses use the Modules tool available in Canvas. This tool allows an instructor 
to  group learning items into groups or units. Many different groupings are used. Some 
instructors group the material based on a textbook, such as a unit for each chapter. Others 
use it to  organize temporally, such as one unit for each week in the course. Another 
approach is to  organize by specific topic coverage. Current grouping in these modules 
reflects groupings th a t are in some way meaningful to the instructor and represent the 
current organization of the course.

The next step is to  analyze the material to  establish relations between learning items. 
One of the primary purposes of ENABLE is to  identify and present a variety of relations 
between learning items. A review of the relations between learning items in a sample course 
revealed distinct differences in their types. The most readily available relation is the precedes 
relation. This tem poral relation expresses the relation in time between learning items. A 
learning item (Item A) precedes another learning item (Item B) when the due date of Item  A 
is before the due date of Item  B. These relations are transitive such th a t if Item  A precedes 
Item  B, and Item  B precedes Item  C, then Item  A precedes Item  C. Many of these relations 
are trivial and can be removed without loss of meaning.

A stronger relation is the prerequisite relation, such as a HW (homework) th a t is a 
prerequisite to  an exam or a video tha t is prerequisite to  a class activity. This type of 
relation indicates tha t one learning item comes before another and successful completion of 
the activity in some way increases the likelihood of success on the following item.

Another relation is the topical relation occurs in. This relation expresses th a t a topic 
occurs in a learning item. Connecting topics to  specific learning items shows how learning 
items are topically related to other learning items.

The final relation is the unit relation includes. This relation expresses th a t a specific 
unit includes a learning item. A unit is a group of learning items. These learning items are 
grouped into units in the existing course using the Modules tool in Canvas.

This phase of the project involves both the analysis of the course da ta  gathered from the 
LMS and input from the instructor. One of the primary benefits of the curriculum-mapping 
process is the insights the teacher acquires about their own course as they analyze the course 
as it is currently delivered. The ENABLE system is designed to involve the instructor during 
the analysis phase to  facilitate this increase of awareness from examination. The interactive 
interface of ENABLE is designed to  gather and incorporate information from the instructor 
and to  display the analysis as it develops.
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The final step of this phase is to  display the current course organization in a graphical 
way. To do this the system uses a graph structure th a t includes nodes representing indi­
vidual learning items and edges th a t express the relations between learning items. This 
view includes the relations as they exist in the current organization, including the temporal 
relations as they exist in the synchronous face-to-face course. This graphical representation 
of the course is one of the contributions of this project.

Course materials are often presented in a textual, linear way, with one item coming 
directly after another item with little distinction of importance or relations between items. 
Initial evaluation of Canvas found the presentation of material is largely based on precedes 
relations. Of the relations being analyzed by ENABLE, the precedes relation is the most 
trivial. By adding more meaningful relations like occurs in and prerequisite relations to  the 
presentation of learning items, the amount of information delivered is increased. To deliver 
this richer set of information, a visual representation of the course has been developed.

This step requires finding and using graph visualization techniques th a t present the 
learning items and course structure in a way th a t expresses this greater collection of 
information. ENABLE uses nodes to represent learning items and edges to  represent 
relations. Visual properties such as color, size, and spatial location are used to  deliver 
information about the learning items and relations between them.

To better understand the size of these graphs, three actual courses were reviewed, 
Foundations of CS, CS1 Lab, and a Web Development course, all from U tah State University. 
There were 52, 90, and 87 learning items in these courses (see Figure 1.6 (a)). Graphs 
with this many nodes are considered small graphs. However, it is im portant to  create 
a visualization th a t expresses the learning items, how they are related, and how their 
organization can be rearranged.

There will be times when a simplified version of the structure may be useful. One way 
to  simplify the presentation is to  group learning materials into units. In Canvas an educator 
can group learning items together to  create a unit of learning. Items are grouped together 
in different ways. Some instructors group the material based on a textbook, such as a unit 
for each chapter. Others use it to  organize temporally, such as one unit for each week in 
the course. Another approach is to  organize by specific topic coverage. The way items are 
organized into units in the current course reflects groupings th a t are in some way meaningful 
to  the instructor.

Using the unit grouping with the three courses mentioned previously, there were 12, 11, 
and 14 units, respectively (see Figure 1.6 (b)). Using this grouping method, the visualization
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(a) (b) (c)

F ig u re  1.6. Sample Course with 52 Learning Items. (a) Detailed View (b) Detailed View 
with Units (c) Simplified View

can be significantly simpler and still expressive (see Figure 1.6 (c)). In some instances the 
information available in the LMS defines what learning items belong in a particular unit. 
In other cases other techniques, such as community detection in graphs may be needed to 
identify these units [14].

Illustrations are a powerful explanatory tool [15]. For example, when creating the 
graphical images of the sample course, the units with a single node stood out (see Figure 1.6). 
W hat is the point of a unit with only one learning item? This initiated a closer look. These 
single-item units were the exams for the course. This made sense, but seeing it visually 
fostered new insights. Seeing th a t multiple units fed into the exam unit w ithout being 
connected to each other caused us to look more closely. We discovered th a t these units 
were not topically related to each other, and the idea th a t exams could be subdivided was 
born. This led to the Topic-based Exam Splitting Rule described in Section 3. Although 
this information was available in the linear, textual presentation of the course, these new 
ideas were generated by seeing the visual, graphical representation of the same learning 
items. Graphically representing the course provides a fresh view.

Just as we gained new insights while transforming a sample course, an instructor who 
is familiar with the current representation will see new things when it is presented in an
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innovative, visual way. Participating in the process of transform ation generates insights 
into how learning items are related and how course materials can be delivered. ENABLE 
provides an interactive interface, making the instructor an integral part of the transform a­
tion process. Much of the benefit of the process derives from the insights the instructor 
gains as they participate in this process.

1.3 Graph Transformations
Once the initial course graph is available, it becomes possible to  begin a conversion 

process from a linear (chronological) style class organization to  a more nondeterministic, 
m ultipath organization of the learning items more suitable to  online delivery.

Because ENABLE identifies alternative course structures, it is necessary to  transform  the 
graph while still keeping the relations intact. Graph grammars and graph transform ation 
systems provide a means for doing this. There is much research and many successful 
applications based on the research in this area [16]. One of the application areas of graph 
transform ation systems is model transformations. This area of model transform ation has 
become im portant to  the field of software engineering [17]. The models used in software 
engineering have enough similarities to  the graphical representation of learning materials to 
motivate the consideration of model transform ation as the graph transform ation technique 
to  be used for ENABLE. Those similarities include typed nodes, node attributes, and edges 
th a t represent different types of relations.

To further investigate the possibility of using model transform ation tools, a compari­
son of some currently available tools, namely AGG, AToM3, VIATRA, and VMTS, was 
conducted [18-22]. These model transform ation tools are based on approaches th a t draw 
from the theoretical work on graph transform ations [23]. These four approaches to  the 
model transform ation problem are in many ways similar and are built upon the solid 
practices developed through research of graph grammars and graph transform ation systems. 
ENABLE incorporates algorithms th a t enforce m athem atically sound graph transform ation 
techniques.

We now consider some desirable transforms and their meanings. We begin w ith the 
consideration of how to eliminate unnecessary precedes relations. We define a restraint as 
an unnecessary constraint between two items. Thus, restraints are removed in order to open 
up more possibilities for the relations between learning items. W hen removing restraints it 
is im portant to m aintain the integrity of the course representation.
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1.3.1 T l:  T opic-based  P reced es E lim in ation  R ule
A m ajor restraint is the precedes relation. It restricts any change in the order of learning 

items. However, many of the precedes relations are not necessary and can be removed 
w ithout changing the necessary relations. The first step is to  remove unnecessary precedes 
relations. The fact th a t one learning item comes before another provides only limited 
information. Once ENABLE has identified the tem poral and topical relations, the system 
can identify precedes relations th a t have no topical connections. The precedes relations 
between these topically unrelated learning items can be removed. This reduces the number 
of precedes relations to those th a t have common topics.

1.3.2 T2: T opic-based  E xam  S p littin g  R u le
One result of building course organization based on tem poral relations is illustrated by 

exams. Commonly, an exam is w ritten to  assess the material th a t has been covered over a 
specific period of time, such as since the last exam or since the beginning of the semester. 
This time-based connection is not required for assessment. Therefore it is possible to divide 
the material assessed in an exam by topic. Separating the tem poral grouping inherent in 
exams provides additional possibilities for change.

The split exams rule separates a single exam into multiple exams when there are learning 
items th a t precede the exam but are not topically related to  each other. It is applied after 
the remove precedes rule has been applied. Enforcing this rule application order prevents 
any exams being split when preceding learning items are topically related. This, then, is 
another example of a restraint: when exams tie learning items together th a t are not related 
in any way other than  temporally.

1.3.3  T3: R ep lacin g  P reced es R ela tion s w ith  P rereq u isite  R ela tion s
Even after the precedes relations have been restricted to  those th a t have common 

topic relations, they still express limited information. A more informative relation is the 
prerequisite relation th a t expresses a recommendation th a t one learning item be completed 
before another learning item. The precedes relation has one learning item directly following 
another learning item. This limits the way learning items can be connected and does not 
allow flexibility in ordering. Eliminating precedes relations in favor of prerequisite relations 
provides a more accurate representation of the course material. This transform ation step 
requires more input from the instructor. Once the previous transforms have been applied, 
the resulting graph is presented to  the instructor and ways to  gather information about 
prerequisite relations are provided.
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The application of these three transform ations removes the tem poral restraints imposed 
by a linear, time-based presentation of learning material. This removal of tem poral re­
straints facilitates more flexible organizations th a t become particularly valuable in asyn­
chronous settings such as online courses, technical training, or competency-based learning.

1.3.4  T4: Instructor D irected  T ransform ation
Once the tem poral restraints of a synchronous course have been removed, the oppor­

tunities for restructuring the course are greater. The ENABLE system can now display a 
graph based on the topical and prerequisite relations w ithout the time-based restraints.

There are many ways to arrange learning items based on these remaining relations. The 
ENABLE system displays the learning items and relations as a graph in a variety of ways, 
such as topic-based or unit-based. These views allow the instructor to see new options 
for restructuring the course. There are, however, additional ways to  organize the learning 
items. ENABLE provides an interactive display of the learning items and relations tha t 
allows the instructor to  move learning items around while keeping the relations connected. 
This freedom to change and see the different ways the items can be laid out helps the 
instructor envision possibilities.

Although time-based relations have been removed from this graphical representation of 
a course, the reality is th a t the student actually moves through the learning items one after 
another in time. W hat is gained is a variety of ways th a t learning items can be traversed. 
The actual movement through the learning materials is displayed. The system can also 
provide a variety of organizations th a t m aintain the relations.

1.4 Artificial Student Agents
A major goal of the ENABLE framework is to  allow the building of models during 

system usage that

•  provide student outcome projections (e.g., exam scores, grades),

•  provide advice to  students on how to  improve their performance (e.g., where to  spend 
more time, how to  order the material, etc.), and

• provide instructors with insight into performance causality relations (e.g., linking poor 
results w ith the required material).

In order to  achieve this, it is necessary to study student traversals of the course graph and 
the subsequent outcomes. This must be done in a controlled manner in order to ensure
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th a t the correct conclusions are drawn. To this end, we propose to develop artificial student 
agents to go through the course material, take exams, etc., and produce example outcomes.

Artificial agents are defined as software agents with a variety of factors informing their 
makeup (see [1] for an overview of agent decision-making architectures). The factors making 
up a student agent include

• Native Intelligence
• Work Ethic

•  D istractability

•  Background Preparation.
Each of these factors has a range of values with a probability distribution over those values. 
These are taken into account when deciding upon an action within the course graph traversal 
context.

Artificial student agents are created to  represent students of varied abilities and learning 
styles. A review was done of previous students to identify rates of successful completion of 
the learning items. This information is used to  inform the design of the student agents in 
this study (see Figure 1.7). ENABLE allows the application of these agents to  the course 
graphs produced as described previously.

1.5 Behavior Modeling and Bayesian Analysis
The next area of study is the modeling of how students traverse the course material as 

organized in the various transform ations and to  identify course content and organization 
modifications which will most likely improve performance. We trea t the graph nodes as 
a set of random variables where the value of a node represents the probability th a t the 
student understands the material at th a t node. Given this set of random variables, a 
Bayesian network provides an efficient mechanism to express knowledge about the full joint 
probability distribution. Using Bayes’ theorem, conditional probabilities may be determined 
if priors and conditional relations between variables are known. A priori probabilities and 
conditional relations have been drawn from the da ta  available in the existing course. In this 
way, conditional probabilities may be expressed, say p(B  | A); i.e., the probability th a t a 
student knows B given th a t they know A. Information of this sort can be used to  report on 
the relative success of the student agents traversing the learning item graphs.

W hen a Bayesian network is drawn, the links represent interdependencies th a t are 
expressed by conditional probability tables of a child th a t are based on its parents [24].
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F ig u re  1.7. Student Agent Architecture (modified from [1]).

The size of these tables varies, depending on how many parents and whether the values are 
Boolean, discrete, or continuous. For an example see Figure 1.8. This shows a portion of 
a possible network for the sample course. The lecture, video, and activity learning items 
are Boolean values representing attended, watched, and participated, respectively. The 
homework learning item has four discrete values showing grade results of A, B, C, or D /F .

Bayesian network analysis has been used for a variety of educational purposes, such as 
individualization in intelligent tutoring systems [25], student modeling [26,27], and detecting 
learning styles [28]. In [29] a Bayesian network is used to  analyze student grades in course 
prerequisite structure and make recommendations for interventions to  improve student 
retention. They have not been used to support course organization, and thus ENABLE 
uses Bayesian networks in a novel way.

A Bayesian inference network has been created using existing data  related to  the learning 
items. Student agents traverse the learning network and the Bayesian network provides 
feedback data.

1.6 Tracking Mastery of Learning Items
The final area of study is the tracking of the mastery of learning items. As students work 

through individual learning items, their mastery of the learning item is impacted by the 
efforts applied to the current learning item as well as the efforts they have made on previous 
learning items. To track the mastery of learning items a Kalm an Filter, also known as a
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F ig u re  1.8. Hypothetical Section of ENABLE Bayesian Inference Network.

dynamic Bayesian network, is used. The technical details of this approach are described in 
Chapter 7.

1.7 Evaluation Criteria
The evaluation criteria of the research project are divided into four sections, w ith each 

section identifying the (1) capabilities, (2) correctness requirements, and (3) performance 
measures of a specific component of the project.

1.7.1 C ourse C on ten t A n alysis
1. M etadata about the learning materials are gathered from Canvas. The data  gath­

ered are analyzed and used to  create a graph representation of the existing course, 
representing learning items as nodes and relations as edges. The system provides an 
interface th a t allows the instructor or other expert to  add data  th a t are not available 
from the learning management system (LMS).

2. Using the data  gathered from the LMS and the user, the analysis will correctly identify 
the type of each learning item and the existing relations between those learning items.

3. The course content and analysis phase has been run on three existing courses tha t 
have been taught in previous semesters. The resulting graphical representation of the 
course has been directly compared to the linear, textual representation of the course 
in the LMS. Correctness is quantified on a scale of 1-5, which measures whether the
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course map correctly represents the following details of the course as outlined in the 
LMS (since many of the details expressed in the course map are not apparent in the 
textual information available in the LMS, this comparison is limited to  the information 
th a t can be determined using the standard interface available in the LMS):

•  Learning items are of the correct type.
•  Temporal ordering of learning items is the same.
•  Topical relations in the course map correctly represent the topical relations 

identified in the LMS.

The results of these analyses must average to  4 or be tter in order to  be considered 
correct.

1.7.2 G raph T ransform ations
1. After a course map has been developed in the form of a graph with learning items 

as the nodes and relations as the edges, graph transform ations can be made. These 
transformations consist of system-generated and user-directed transformations.

2. Transformations are restricted to valid organizations th a t conform to  the rules of 
directed acyclic graphs and the semantic rules imposed by the relations.

3. The system produces the following transforms.

•  T1: Topic-based Precedes Elimination Rule.
•  T2: Topic-based Exam Splitting Rule.
•  T3: Replacing Precedes Relations with Prerequisite Relations.
•  T4: Instructor-directed Transformation.

1.7 .3  A rtificia l S tu d en t A gen ts
1. Five student agents are included each with its own variation of properties. These 

student agents are able to  perform multiple and varied traversals.

2. The paths traversed by the student agents are correct based on constraints specified 
by the relations between learning items.

3. Each student agent is able to traverse the course map, following a variety of paths 
through the learning material, and report the relative value of the traversal. Each
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path traversed represents a valid path based on the existing relations of the course 
map.

1.7.4  B ehavior M od elin g  and B ayesian  A n alysis
1. A Bayesian inference network is created th a t provides probability estimates tha t 

represent a model of the interdependencies of learning materials for a sample course. 
These estimates are based on a combination of da ta  from the actual course and expert 
knowledge sources.

2. The Bayesian network will use the relations in the course map to  connect parents of 
each node for the CPT tables.

3. Performance is measured by using sampling from the Bayesian network to produce a 
statistically meaningful number of sample sets. Each sample set includes a score for 
each learning item. Using these individual score sets, a final score is computed. These 
final scores are compared to the final scores of the existing course using a variety of 
measures, including L1 errors, L2 errors, log-likelihood, and final grade distribution.

1.8 Summary of Contributions
The contributions of this work will consist of the following items.

1.8.1 T h e Im p lem en tation  o f a G raphical, C ourse M ap (or G raph)
To date, learning items for a course are presented in a linear, textual way. Although 

familiar, this linear approach of presenting course materials has limited capacity to represent 
the real organization and relations between learning items. Its prim ary focus is on the 
precedes relation keeping teachers and students informed of which learning item comes 
before another learning item. But there are much richer relations th a t can be expressed 
in a visual, graphical representation of a course, such as topical and prerequisite relations. 
This research provides a method for representing the course learning items in a nonlinear, 
visual way. It also provides the functionality to  m anipulate th a t representation.

1.8.2 T h e C apab ility  to  See and C hange H ow  L earning Item s A re
O rganized  in Term s o f th e  C ourse G raph

This facilitates the consideration by an instructor of new ways to organize and deliver 
the material. Using visual representations to  increase the amount of information th a t can be 
delivered and enhance the meaning of th a t information is not new. This technique is used in 
many applications across many different fields. It is not yet available for the representation
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of course organization. Course mapping has the potential to  change how teachers and 
students see a course, giving teachers new insights and students a better understanding of 
how to negotiate the course materials.

1.8.3  A n A u to m a ted  W ay to  G ather D a ta  ab ou t C ourse M ateria ls  
and A n alyze  T h at D a ta  to  P rov id e  a R ea listic  R ep resen ta tion  

o f th e  C ourse O rganization  and T h en  A llow  C hanges 
to  b e  M ade in T h at O rganization

W hen making changes, there is value in looking at the course from many different 
perspectives. An instructor who has developed and taught a course in a certain way for some 
time may have difficulty seeing alternative organizations. This method of extracting current 
organization from the LMS and supplying the resources to transform  th a t organization 
provides an instructor with a different view of the existing course and the means to see the 
course from different perspectives. This facilitates change.

1.8.4  T h e D esign  and U se  o f S tu d en t A gen ts to  Traverse
C ourse G raphs

Since the work is being done on existing courses, information about the students who 
actually took the course can be used to  inform the characteristics and actions of these 
artificial student agents. Using these agents with the model provided by the course map and 
the Bayesian network provides a means for comparing traversals of the learning materials. 
This comparison can be used to  inform the instructor of which organizations will more likely 
promote student success.

1.8.5 T h e  N ovel A p p lica tion  o f B ayesian  Inference N etw orks to  
C om p u te  th e  In terd ep en d en cies B etw een  L earning Item s

Bayesian inference networks have been used in a variety of ways in education. They are 
extensively used in autom ated tutoring systems. This project delivers a new way to  use 
this established approach to  probabilistic reasoning.

1.8.6  T h e C apab ility  o f  C om bin ing C om p lem en tary  T echniques to  
Increase th e  E ffectiveness o f C ourse T ransform ation

Both innovative and established methods have been combined to analyze current course 
organization and inform course transformation. A utom ated analysis and instructor engage­
ment are combined to  augment broader solutions. Teacher experience, existing structure, 
and new views are assembled to generate new insights. This connecting of novel and
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well-known provides a solid foundation for the introduction of nonlinear, graphical course 
mapping.



CHAPTER 2
REVIEW OF LITERATURE

The ENABLE system incorporates concepts and methods from many areas of research. 
There is currently not a system th a t functions as ENABLE does, so the background research 
comes from a variety of arenas, including research th a t defines the problem, existing research 
from which ideas were gleamed, and research th a t focuses on some of the technical aspects 
of the project.

2.1 Forces of Change
Some educators call for significant educational changes based on generational changes 

among students. A term  coined for these differences is digital natives, and the assertion is 
th a t teachers are digital immigrants and need to  adapt their teaching to  fit a different kind 
of learner [30]. This cry has resounded among instructors until it has become a familiar 
term  and an accepted premise. Some question the validity of the argument and challenge its 
wide acceptance as a reason for changing educational practices. They dem onstrate th a t the 
need for such educational changes is not founded on solid research or empirical da ta  [31]. 
Although the quality of research may be lacking, the demand for change is considerable [30]. 
Even those who challenge the validity of the digital native claims still call for the need to 
consider change based on the increased presence of technology [31,32]. Two significant areas 
of change are online education and active learning strategies.

This section addresses some of the research surrounding changes currently being imple­
mented in educational circles. For the work in this dissertation it is the existence and value 
of change in education th a t motivate the research into practices and methods th a t support 
educators in the process of making changes. ENABLE provides tools to  see existing courses 
as they currently are, exposing details th a t are not currently apparent in the presentation of 
those courses in an LMS. It also provides an interface for the educator to consider a variety 
of possible changes.
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2.1.1  O nline E du cation
The number of higher education students taking online courses continues to rise (see 

Figure 2.1). The number of students enrolled in at least one online course has risen steadily 
since Allen (2014) began keeping track in Fall 2002. The numbers have grown from 1.6 
million students in the Fall of 2002 to 7.1 million for Fall 2012. This represents an annual 
growth rate of 16.1%. This is a significantly higher growth rate than the overall growth 
rate for higher education (2.5%) during the same time period. The proportion of students 
taking at least one online course is at an all-time high of 33.5% (see Figure 2.2 [2]).

In an effort to meet the changing landscape of education many departm ents and univer­
sities are offering more online courses -  a move th a t is likely to  impact every departm ent 
in some way [4]. This will require th a t more instructors create online courses [13].

The increase in online education impacts both faculty who teach these classes and those 
who are using web-based elements in their traditional face-to-face classes. Eventually it is 
expected th a t Internet use in courses will involve all faculty as blended approaches become 
the norm on college campuses [33].

A m ajor area of concern is the quality of education in these online courses. [34] reviewed 
meta-studies of distance education (some going back as far as 1928) to compare the quality 
of education in online courses to  those in a face-to-face classes. W hen these studies were 
looked at as a whole the results showed no significant difference between the two. However, 
there was considerable variation between individual studies. Individual factors considered 
included publication year, whether the instructor is the author, type of interaction, level 
of instruction, and instructor involvement. In addition, there were differences within these 
individual characteristics. Overall it was concluded th a t there was a great variance in 
distance education - about the same variation th a t there is in face-to-face education.

Some studies have very specific recommendations about how to make an online course 
successful. These often include both student and faculty requirements. In [35] several 
variables are considered, including student self-discipline and motivation, faculty member 
training, simple course design, and instructor involvement. One consistent finding is tha t 
the quality of the course is related to the amount of instructor involvement [35,36].

The transition from face-to-face to online teaching is being supported in a variety of ways. 
Innovative web-based e-learning authoring tools have been created to  enhance learning 
object creation [37]. Additionally, there is a tool to  help those already teaching distance 
education to  have increased online presence [38].
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2.1 .2  A ctiv e  L earning
Active learning is a term  th a t encompasses several alternative approaches to the tra ­

ditional lecture. Active learning has been a topic of discussion in education for a long 
time. It is listed as one of the seven principles for good practice in undergraduate education 
by Chickering & Gamson, which was originally published in 1987 and still widely quoted 
today [39]. In the early 1900s, teachers of medical students reduced the amount of didactic 
learning and brought instruction into the laboratory to  better prepare them  for medicine 
[40]. Long before either of these pivotal movements, Lauo-tse, a fifth-century B.C. Chinese 
philosopher, is quoted as saying “If you tell me, I will listen. If you show me, I will see. 
But if you let me experience, I will learn” [41]. As educators have long considered active 
learning practices, it makes sense for an educator to consider the value it could add to their

^ ^ O v e r a l l
O n lin e
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classroom.
The current literature typically consists of individual studies examining how a specific 

implementation of active learning is tested in a particular setting. These very specific 
observations illuminate how active learning is affecting the learning process. Articles about 
this practice are scattered across the literature of many different fields. It seems there is 
even active learning for machines [42].

One of the problems is defining exactly what active learning is [43-45]. Definitions vary 
dram atically in the literature, ranging from interaction between fellow students and between 
student and teacher [46] to  the responsibility of learning being placed on the student [47]. 
Some definitions are so broad, one author argues th a t active learning can include homework 
problems, online discussion boards, or w ritten assignments all done outside of the classroom 
[47].

Other definitions include the specification th a t activities occur in the classroom [48]. 
Additional definitions hold a high standard for what is considered active learning. For 
example, the instruction must allow the students to “create authentic, hands-on learning 
experiences in order to learn new information” [41]. Some argue th a t learning by its very 
definition is active [44]. Considering the breadth of papers available on this topic requires 
liberally allowing a wide range of definitions. To better understand a specific study, it is 
im portant to consider how it is defining active learning.

The use of active learning techniques vary almost as much as its definition. Approaches 
range from polling systems used to inject one or two questions for audience response into a 
traditional lecture to  problem solving activities th a t span the entire class period. The list 
of examples is long and includes audience response systems [46], in-class discussion, case 
study discussion, short w ritten exercises, role-playing, games, hands-on activities, debate, 
academic service learning, experimental learning, discovery learning [47], peer instruction 
[49], thinkpairshare discussion, case study problem solving, round-robin discussion [50], 
problem solving, collaboration and discussion, animations, technology-enhanced activities 
[51], process-oriented guided inquiry learning [52], concept maps, collaborative writing, 
brainstorming, collaborative learning, one minute paper/free write, scenarios/case studies, 
problem-based learning, team-based learning, case-based instruction, panel discussions, 
teaching to learn/peer teaching, role playing, drama, and simulations [53].

In contrast, the list of approaches th a t fall into the passive learning category is much 
shorter. They include lectures, reading textbooks, traditional homework [47], PowerPoint 
presentations [54], and instructor-centric learning [41].
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W ith so many techniques considered active learning and so few as passive learning, it is 
surprising th a t teachers are not including more active learning events. Meanwhile, it seems 
th a t passive learning approaches are still predominant [48]. The student rating da ta  from 
the IDEA Center (an organization th a t promotes teacher assessment tools) shows traditional 
lecture is still the primary approach to teaching [55]. Despite the wide acceptance of the 
effectiveness of active learning techniques, many educators are reluctant to  adopt them. 
Concerns include the perception th a t time to  cover material will decrease, difficulty in 
developing new material, and a general reluctance to  change established teaching methods 
[49]. This study also dem onstrated th a t an instructor can implement material developed 
by another author and realize similar and even better results than the developer. W ith this 
in mind, availability of teaching materials based on the principles of active learning could 
reduce some of the concerns of adoption and increase the likelihood th a t more educators 
will incorporate these types of activities. Some groups are making such materials readily 
available. For example, the organization th a t promotes process-oriented guided inquiry 
learning (POGIL) has a webpage with links to  several publications th a t between them  
contain hundreds of activities [56].

Many studies report improved outcomes with the addition of active learning practices. 
Specific improvements and how to  measure them  vary widely. For example, [50] compared 
first-year students taught using active learning techniques to expected outcomes of more 
advanced students in the program. O ther studies used the same group of students and 
presented some material using active learning methods and other material using traditional 
lecture. Then the students were tested on the material to  identify how effectively the 
student had learned the material based on the teaching method used [54,57,58]. Many 
studies included surveys to  gather student responses about their view of learning experiences 
[41 ,46 ,49,50,54,59 ,60]. These studies show th a t student responses to  active learning 
is strongly positive. Many of these studies included interventions th a t controlled how the 
teaching was done, while others surveyed existing instruction w ithout adaptation [43]. Many 
used pre- and post- testing [43,58,61], another used free student recall at the end of the 
semester [57].

In an effort to  identify more accurately areas of improvement using active learning 
techniques, some have employed Bloom’s taxonomy to add specificity [62]. Two studies 
used pre- and post-tests to analyze knowledge gain. Both used the same group of students 
for the entire study. One compared the difference between topics taught using active learning 
formats and those taught using direct instruction [58]. The results of this study showed
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slight knowledge gains in the lower level questions when active learning was added and 
significant knowledge gains in the higher level questions. The other compared lab sections 
where the lab activities were done individually to  sections th a t worked in cooperative groups 
to  complete the same activities [61]. This study saw similar small gains in the lower level 
questions and high knowledge gains in the higher level questions. Although these studies 
were comparing different things -  addition of active learning practices and the impact of 
cooperative groups -  both dem onstrate th a t the impact of the intervention was greater 
on higher level thinking. This provides insight into the quality of the value added by the 
choices educators make in how material is presented.

Despite such positive support for active learning, there are some who challenge its 
effectiveness. One author compares traditional lecture, active learning, and assimilation 
learning theory [47]. He provides an example of each method used to  teach a module on 
decision support systems in an introductory information systems course. He then compares 
them  for consistency with epistemological, psychological, and pedagogical research. The 
author concludes th a t active learning techniques are better than  the traditional lecture, but 
th a t higher principles should be applied th a t offer increased value over active learning [63]. 
Another study gathered da ta  from introductory biology courses about teaching natural 
selection [43]. This study used pre- and post-tests to  measure knowledge gain. It then 
analyzed the results of these tests and found no association between the frequency of active 
learning exercises reported and how much students learned about natural selection. These 
authors conclude th a t many of the improvements reported by incorporating active learning 
techniques may largely depend on the educator being knowledgeable in education research, 
and th a t the same results may not be realized by instructors who have less understanding 
of the learning process and may be implementing these techniques ineffectively.

The research about active learning is broad and diverse. The overall consensus is tha t 
much can be gained by incorporating active learning in the college classroom. W ith the 
wide range of approaches to active learning, it seems likely th a t some form would benefit 
any course. Adding active learning experiences to  an existing course is one of the key ways 
to  make changes to  and innovate the classroom.

2.2 Existing Systems and Strategies
The existing systems and strategies looked at in this section are related to connecting 

learning items and the presentation of learning material in a graphical way. These focus on 
two of the hurdles to be overcome in the current method of presenting learning materials.
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The first is the lim itation of presenting materials in a linear, sequential order. Although 
this approach is easy to  incorporate, it does not express many of the ways learning items are 
connected. Curriculum mapping attem pts to  identify connections between courses beyond 
the sequential prerequisite listing. There are lessons in this research th a t provided both 
ideas to  replicate, such as engaging the educator in the process, and things to  avoid, like 
making the process so involved and time consuming th a t it is often not finished.

The second hurdle is the incorporation of a graphical presentation of learning materials. 
Displaying things graphically is widely used in many other domains but is still very limited 
in the presentation of learning materials. Text-based presentations are the standard in 
the current LMS. In section 2.2.2 we see the use of graphical approaches in the learning 
environment and studies th a t analyze the impact of this different way to  interact with 
educational materials.

2.2.1  C urriculum  M apping
A curriculum map is like a roadmap through a curriculum, connecting the different 

components of the curriculum. For example, it connects learning outcomes to  individual 
courses. Curriculum mapping provides users with an overview of the curriculum th a t they 
might not otherwise have [10]. Users are students, faculty members, teachers, curriculum 
planners, evaluators, and adm inistrators [7].

Curriculum mapping is about representing the different components of the curriculum 
and identifying how they are connected. These maps serve two key functions. F irst, they 
make the curriculum more transparent to  users of the curriculum. Secondly, the maps 
dem onstrate links between learning outcomes and learning opportunities [10]. These maps 
are typically stored in relational databases th a t contain information about the curriculum, 
the people using them, and the links between various elements of the curriculum [7].

The process of developing curriculum maps requires the cooperation of faculty members, 
staff members, and adm inistration. There are significant time demands in preparing and 
building such maps. The process begins by analyzing what is currently being taught 
throughout the semester as a course is being delivered. The purpose of this stage is to 
record what is actually being taught as it relates to  the program outcomes. Several courses 
can be analyzed during the same semester. After the courses are analyzed, a group of faculty 
members gather to  aggregate their maps. This may take a significant amount of tim e and 
is often conducted through regular meetings over the course of another semester. This part 
of the process provided the greatest benefit of creating curriculum maps: an increase in 
collegiality and collaboration among the faculty members involved in the process [11].
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The product of this process is a document th a t identifies the anticipated learning 
outcomes and the connection between the outcomes and the individual courses in the 
curriculum. Most of these documents are charts or tables. They list the courses on one 
dimension and learning outcomes on the other dimension.

The development of curriculum maps comes with a great deal of challenges. Perhaps 
the greatest challenge is the high demand for time in human resources to complete the 
maps. Another problem is getting faculty participation. Once a faculty member has been 
convinced of the value of curriculum maps, they may become strong advocates of them, but 
there can be some initial difficulty convincing them  of their importance [7].

The amount of time and resources required to  create and m aintain curriculum maps 
remains a roadblock for many schools [7]. It is not an easy task [10]. The process takes an 
extended period of time from beginning to end and requires the commitment of time and 
effort of several faculty members. This high cost of implementation leaves many departm ents 
with curriculum maps in process but not complete [7].

The curriculum map provides several benefits. They provide information for adminis­
trators and accrediting bodies by providing an overview of the curriculum and how each 
course is related to  specific learning outcomes for students and faculty. Curriculum maps 
provide an opportunity to  improve the alignment between content taught in the classroom 
and the expected outcomes of the program.

A surprising outcome is the benefit realized from individual analysis and the collabora­
tion among the faculty during the development of the curriculum map. Faculty reported 
benefits from looking closely at their own courses. The process of faculty members collab­
orating to discuss the issues with an eye for improving the program increased the feeling of 
collegiality and cooperation among the faculty. It was this process th a t provided the most 
benefit from curriculum map development. [11,12,64].

2.2 .2  S eeing  L earning G raphically
Much of what is presented in education is text-based, but there are several areas of 

research proposing the power of visualization. These tools build on the idea th a t knowledge 
can be represented in a graphical way to dem onstrate the interconnectedness of concepts 
and th a t these connections are not necessarily linear.

Concept maps are visual, semantic, node-link representations of knowledge th a t allow 
students to formulate and present information from a personal perspective [65]. Concept 
maps provide a graphical way for both the learner and the educator to  describe concepts and
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the connections between them. This form of spatial-semantic display provides an alternative 
to  traditional linear presentations of information.

Concept maps can be used as a basis for effective studying and learning strategies. 
For example, they are effective in cooperative interactions, as study aids, as a substitu te for 
traditional text, and for the updating of knowledge [65]. They provide a method for learners 
to  visually review the knowledge they have and capture the connections between what they 
have learned. Concept maps teach concepts, provide an overview of w hat is currently being 
learned, and how it relates to  things th a t have already been learned or will be learned in 
the future [66].

Hay [67] demonstrates th a t concept maps can be effective tools in higher education. 
Specifically, using concept maps can support teachers and learners in engaging in the process 
of discovery. [68] identifies three benefits of mapping. F irst, students who can represent and 
m anipulate complex relations in a diagram are more likely to  remember and understand 
those relationships. They are also better able to  analyze the individual parts. Secondly, 
for most people, graphical maps are easier to  follow than w ritten or spoken instructions. 
Thirdly, the work involved in creating the map itself requires active engagement on the part 
of the learner, which leads to  greater learning.

Making and using concept maps has become easier with the availability of digital 
concept-mapping software. Several tools are now available th a t make concept mapping 
as an individual or with a group easier to create and manipulate. These software tools 
produce high-quality visual representations of knowledge [69].

[70] did a meta-analysis of studies th a t have been conducted about concept maps in the 
learning domains of science, psychology, statistics, and nursing. Analysis of these studies 
showed concept mapping was better at producing knowledge retention and transfer than 
other forms of knowledge delivery, such as reading texts, attending lectures, or participating 
in class discussions. Concept maps make learning visible [67].

Another way to  get a visual perspective on education is the graphical syllabus. [71] 
used a graphical syllabus in an introductory finance course and found several advantages. 
First, it communicated knowledge to  students who preferred the nonverbal learning style. 
Secondly, it acquainted students with visual learning and study tools. Thirdly, it was easier 
to  retain than verbally presented material. The graphic syllabus was better at conveying 
the big picture and the underlying structure of the course.

Nilson [72] presents many ways tha t a course can be outlined using visual methods. 
Though we often think of syllabi as being text-based, contract-like documents, this is an 
unnecessary limitation. Much information can be presented in a single diagram.
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2.3 Technical Components of Work
This section is a review of several technical research areas related to  the work of this 

dissertation. These techniques provide the background and serve as a springboard for many 
of the technical components of the ENABLE system. Drawing on these practices, ENABLE 
uses new approaches and combines techniques from a variety of research areas.

2.3.1  T ext A n a lysis M eth od s
One of the impediments to concise analysis when doing text analysis is the existence 

of polysemy: term s th a t are the same but have different meanings. There are many such 
words. For example: fly (travel), fly (insect), fly (term  in the game of baseball); down 
(a lower position), down (furry feathers); proceeds (continues), proceeds (profits gained). 
Some are pronounced differently, such as minute (60 seconds), minute (very small); refuse 
(reject), refuse (garbage); tear (rip), tear (drop of water from eye); wind (moving air), wind 
(to turn). However, when analyzing just the text, the pronunciation is not considered.

W hen analyzing a large corpus of unrestricted, domain-independent text for similarity, 
this type of overlap can skew the interpretation. Consider the polysemy of chicken (bird) and 
chicken (attitude). It is likely th a t an article discussing coercion preceding group violence 
would be identified as related to  an article discussing the protection of small farm animals.

This kind of mistaken grouping becomes more problematic when professional fields use 
common words as technical term s to  express a specific meaning th a t is different than the 
common usage. In computer architecture a bus is a connection th a t transfers data. In 
common usage a bus is a vehicle th a t carries many passengers. In an unrestricted corpus 
an article about the recent improvements in a com puter’s m otherboard bus system may be 
highly correlated with a document about the improvements in M aryland’s mass transit bus 
system.

Instead of comparing single words, it would be more robust to  use co-occurrence strate­
gies th a t search for documents th a t have multiple words in common. Consider the example 
of the word tree. In common usage this refers to a category of plants. In the field of genealogy 
it is a technical term  th a t describes an organizational chart of family relations. In computer 
science it refers to  a specific type of da ta  structure. Even looking at multiple word overlaps, 
one would likely find several common words in documents th a t were entirely unrelated. For 
example: tree, parent, child, ancestor, branch, root, and leaf. In this particular case it may 
be impossible to  distinguish separate topics, even using word order or language patterns, 
as these would be common between these disparate fields.
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Once the corpus is limited to a specific domain, many of these word overlap problems 
no longer exist. In a corpus of text related to computer science you would no longer have 
documents related to  genealogy or public mass transit. The problem is not entirely limited 
by restricting the corpus. Consider the word if. This word is a conjunction used in both 
common and technical text. It is also a selection control structure. This word would exist 
in com puter science documents with both these meanings. Many text analysis algorithms 
would eliminate it as too common to provide meaning, but in an introductory computer 
science course it is one of the required topics.

One way to  identify th a t documents are topically related is to  count the occurrences of 
individual words or groups of words (n-grams) within a document. W ith these counts a word 
frequency m atrix can be created th a t has words on one axis and documents on the other. 
The value in each element of the m atrix is the count of a word or word group in a single 
document. This will produce a vector of term  counts for each document. These vectors 
can then be compared for similarity. There are several means to  identify similarity and 
create clusters with these term  vectors, including Pearson correlation, K-means clustering, 
and spectral graph clustering. This process of counting word occurrences has no way to 
distinguish word meaning and the word ‘bus’ would be counted the same whether it was a 
vehicle or a computer component.

This approach will produce a large number of word counts th a t are not significant. 
Words like the, and, a, etc. will have large frequency counts and have significant weight 
during the clustering phase. There are ways to avoid this problem. One is to  use a stop-word 
list -  a list of commonly occurring words -  to  eliminate these frequently occurring words. 
Another approach is to  use a com putation called tf-idf [73] to  weight the counts, giving less 
weight to  terms th a t occur in more of the documents and greater weight to  term s th a t only 
occur in a few documents.

Another problem with using co-occurrence counts is th a t different versions of a word 
such as code, codes, coding, and coded are counted as different words. There are stemming 
algorithms th a t can be applied to  the text to reduce all the words in the text to  the stem 
word. The words code, codes, coding, and coded would be replaced with the stem word code 
and they would all be counted as the same word. A more difficult problem is synonymy, 
when different words have the same meaning. Word frequency occurrence counts will count 
synonyms separately and not consider them  the same topic even though these words are 
accurately describing the same topic.

A process th a t overcomes many of the problems associated with simple co-occurrence
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counting is probabilistic latent semantic analysis (PLSA) [74]. PLSA is a statistical tech­
nique for the analysis of co-occurrence data. It can use word frequency counts, tf-idf 
values, or other computed values. These values are stored in a m atrix with words in one 
dimension and documents or portions of documents on the other dimension. As with the 
basic co-occurrence approach described above, this produces a sparse matrix. From this 
sparse m atrix PSLT derives a low-dimensional representation of these observed words in 
term s of their affinity to hidden variables. It then uses a generative latent class model to 
perform a probabilistic m ixture decomposition [75].

This process produces results th a t reflect the semantic meaning of words based on where 
they occur in the passage [76]. It is able to overcome the polysemy problem by rejecting 
associations between documents th a t contain the same words but have different meanings. 
PLSA associates a latent context variable with each occurrence of a word, which explicitly 
handles words with multiple meanings. How a word is used in a document varies based on 
the topic mixture. The probability of using a specific word depends on the topic [77].

This process of associating a latent variable with each occurrence of a word also handles 
synonymy. The use of the words in the document will reflect th a t they have the same 
meaning. PLSA also computes meaningful associations between pairs of documents, even 
when they do not have any common words [75,78].

PSLA can work on a small set of documents but shows marked improvement as the 
training set moves out of the very small size [79]. This provides motivation to include a 
training corpus when possible. Many forms of text classification fail when applied to  this 
kind of short and sparse text [80].

2.3 .2  G raph T ransform ation
W hen making changes to the nodes and edges in a graph, it is im portant to  transform  the 

graph while still keeping the relations intact. G raph grammars and graph transform ation 
systems provide a means for doing this. There is much research and many successful 
applications based on the research in this area [16]. One of the application areas of graph 
transform ation systems is model transformations. This area of model transform ation has 
become im portant to  the field of software engineering [17]. The models used in software 
engineering have enough similarities to  the graphical representation of learning materials. 
Those similarities include typed nodes, node attributes, and edges th a t represent different 
types of relations.

A comparison of some currently available tools is below. Specifically, this review is 
limited to  model transform ation tools th a t are based on approaches th a t draw from the
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theoretical work on graph transform ations [23]. The four tools compared are AGG, AToM3, 
VIATRA, and VMTS. [20] used and compared these four tools to dem onstrate how they each 
solved the problem of transforming class diagrams to  relational database models. In [20] 
the strengths and weaknesses of these tools are compared. Below, the tools are compared 
as they relate to  the work of developing the ENABLE system. The following information 
was gleaned from [20,23] and the current website for each individual tool.

2 .3 .2 .1  A G G
AGG is a development environment for a ttributed  graph transform ation systems, and 

can be downloaded [81]. It is based on an algebraic approach to graph transformations. 
The implementation of this approach closely follows the formal, theoretical foundation of 
algebraic graph transform ation and so provides validation support [19] and sound behavior 
concerning graph transform ation [20]. This clear and consistent adherence to the formal 
rules of algebraic graph transform ation is this tool’s strength. It uses a ttributed  graphs. 
It has some additional capabilities, such as allowing deletions from the source model and 
helper structure. AGG has a nondeterministic rule and match selection but provides control 
of this with rule layers.

Another strength of AGG is th a t rule applications can be applied in either interactive 
mode or interpreter mode. After choosing a rule in the interactive mode, a match can be 
given element-wise by the user or autom atically computed. In the interpreter mode, rules 
are applied as long as possible.

AGG aims to provide rapid prototyping of applications with complex, graph-structured 
data. Transformations can be applied at different levels of abstraction. A ttributes can vary 
significantly from none to complex processes. AGG supports typed graph transformations, 
type inheritance, and allows the multiplicity of relations.

The disadvantage of AGG is th a t the interface and output are very simplistic. It appears 
to  be in maintenance mode, with only minor revisions taking place. Another disadvantage 
is the user has to  specify similar rules individually for both attributes and associations.

2 .3 .2 .2  A T oM 3
AToM3 (A Tool for Multi-formalism and Meta-Modeling) is a tool for multiparadigm 

modeling, and can be downloaded [82]. It was developed as a tool to  design domain specific 
visual languages. The user can define the syntax of the meta-model by using abstract or 
concrete syntax. The meta-model generates a customized modeling environment for the 
described language. It can generate environments for multiview visual languages like UML.
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Source elements cannot be deleted. The tool allows incremental transformations. Rule 
scheduling includes both interactive rule selection and priorities.

AToM3 uses an algebraic approach to  graph transform ations th a t allows both the double- 
pushout (DPO) approach and the single-pushout (SPO) approach. This is a strength since 
it allows the user to choose whether to  use the more conservative DPO approach or not. 
This tool also uses triple graph grammars, which means it has three separate graphs: the 
source, target, and correspondence graphs.

Another advantage is th a t it keeps source and target models separate, keeping the 
intermediate model hidden for internal use only. This is a cleaner approach because interim 
states are in the correspondence graph, so there is nothing left to  clean up in the target 
graph.

The significant disadvantage of AToM3 is th a t it is no longer being developed or main­
tained. Another disadvantage is you have to specify similar rules for both attributes and 
associations.

2 .3 .2 .3  V IA T R A
VIATRA (VIsual Autom ated model TRAnsformations) is a framework whose main 

objective is to  provide general purpose support for the entire lifecycle of engineering model 
transformations, and can be freely downloaded. This tool has been added as a subproject 
to  the open source IDE, Eclipse, and currently has an active development team. It is 
in the Eclipse incubation phase -  a phase new projects are in for one to  two years after 
being added to  Eclipse. This incubation period allows the Eclipse community to help a 
project learn the ropes of creating open source developer, adopter, and user communities, 
and is not a reflection of the state of the project code base. W ith the precondition 
VIATRA supports recursive graph patterns and a ttribu te  conditions. Actions and control 
are accomplished using abstract state machine (ASM) rules. The use of ASM rules is one 
of this tool’s strengths. It provides complex model transform ations with many powerful 
control structures, including a sequencing operator, rule calls to  other rules, if-then-else 
structures, nondeterministic selected and executed rules, and iterative execution. This 
gives users the ability to build state machines to  schedule transform ation rules. VIATRA 
combines the rule- and pattern-based standard of graph transform ation and the general, 
high-level standard of ASM into a single framework.

Another strength of VIATRA is the features it employs to improve performance. The 
application of elementary algebraic graph transform ation rules is frequently driven by com­
plex control structures, which reduces nondeterminism and improves run-tim e performance.
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Additionally, input and output parameters may be passed to  a rule or a pattern  to  improve 
performance. The forall ASM control structure provides a more efficient solution, which 
handles all the matches of the rule in parallel.

VIATRA uses triple graph grammars, which means it has three separate graphs: the 
source, target, and correspondence graphs. It also uses the VPM metamodeling approach 
[22], which supports arbitrary meta-levels making models from very different domains easily 
integrated into the model space. Model queries are captured intuitively w ith recursive graph 
patterns. The disadvantage of VIATRA is it does not have a graphical interface to create 
and modify patterns.

2 .3 .2 .4  V M T S
The Visual Modeling and Transformation System (VMTS) is a graph-based, domain- 

specific (meta)modeling and model processing framework th a t can be downloaded. One of 
the major strengths of this tool is th a t it is still actively under development. It was created 
in 2003 and its current team  is actively engaged in ongoing development. The current 
version is VMTS4, and the team  is working toward a fully configured workbench [18]. In 
its current state it is very useful and well designed. The meta-model is defined in a visual 
editor and the interface and output are nicely done.

A noteworthy feature is th a t it can actually generate code in either JavaScript or C. 
Code generation is one of the m ajor motivations of model transform ation research [83,84].

VMTS allows entity and data  types, typed references to  other elements, both abstract 
and built-in attributes. It also allows custom types and derived attributes. It uses the 
object constraint language (OCL) for adding constraints. It follows the DPO rules, and the 
DPO gluing conditions are enforced by the tool.

The downside of this tool is th a t it is specifically designed to  work w ith the Unified 
Modeling (UML) models. The VMTS Control Flow Language (VCFL) is a stereotyped 
UML activity diagram. It uses OCL to  specify pre- and post-conditions, constraints, and to 
validate correctness. Although it allows flexibility and definitions within the UML model, 
it appears to be less able to  work w ith other types of models.

In [20] there is a table comparing the above four tools with Query/View/Transform ation 
(QVT), a standard set of languages for model transform ation defined by the Object Manage­
ment Group. W hen comparing the model transform ation approaches, solutions, and tools 
with QVT, the four tools are far more alike than  they are different. None of them  match 
QTV completely and all add tools and solutions th a t the QVT standard does not include. 
These four approaches to  the model transform ation problem are in many ways similar and
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are built upon the solid practices developed through research of graph grammars and graph 
transform ation systems.

2.3 .3  A u to m a ted  A gen ts
An autom ated agent is a computer system th a t exists in some environment and is capable 

of flexible autonomous action within th a t environment in order to meet its design objectives. 
These agents are used in many applications covering a wide range of systems th a t vary from 
small email delivery systems to  large, complex, mission critical systems, such as air traffic 
control [85].

Agents are defined by the way they perceive their environment and how they act on 
th a t environment. Perceiving the environment is done through sensors. Sensors range from 
cameras and infrared range finders to  keystrokes and data. Acting on the environment is 
accomplished with actuators th a t might be mechanical devices operated with motors or 
output displayed to  a screen [1]. Both the way an agent perceives its world and how it acts 
on its environment are very different based on the purpose of the agents. This promotes the 
use of agents in a broad range of activities. The research presented here focuses on their 
use in educational applications.

Autom ated agents are used in a variety of educational applications. Intelligent tutoring 
systems have been in development and use for decades. An intelligent tutoring system is 
a system in which a computer simulates a tu to r [86]. [87] describes the m ajor intelligent 
tutoring systems th a t were implemented prior to  1981. These covered a range of subject 
areas, including arithm etic, informal gaming, electronics, and medicine. Later, many 
intelligent tutoring systems incorporated the use of autom ated agents [88-92].

A form of autom ated learning companion is the pedagogical agent. [93] defines a peda­
gogical agent as an animated character th a t facilitates learning in computer-based learning 
environments. Pedagogical agents are built on the research of intelligent tutoring systems, 
adding both a different interface as well as the objective to  not only be a tu to r but also a 
companion in learning [86]. This addition of lifelike characteristics may improve engagement 
and increase the enjoyment of learning. Pedagogical agents use nonverbal communication 
techniques to aid learning and provide feedback to  the student [94]. They use voice and 
gestures to  focus student attention on im portant information. The addition of an interactive, 
lifelike presence in computer-based learning may add elements of social interaction th a t have 
been shown as beneficial to the learning process [95]. This feature may have significant 
impact in educational settings where learners are remote and lack physical contact with 
fellow learners and instructors [96].
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Adding a pedagogical agent to a computer-based learning system has mixed results. 
In [97], the authors reviewed five studies. Only two of the studies used control groups 
for comparison. Of those two, only one found improvements in transfer, motivation, and 
interest, but no improvement in retention [98]; while the other found no difference between 
the two groups [99]. [92] found th a t student enjoyment was increased and their perception 
of the level of difficulty was decreased when there was a pedagogical agent. However, the 
presence of the agent did not improve the short-term  learning outcomes.

A study th a t included comparing pedagogical agents with differing levels of appeal found 
th a t while the addition of a pedagogical agent had little impact on learning or motivation, 
the use of an unappealing agent can actually hinder learning. The author recommends 
careful consideration of the design of the character itself [100]. Another study compared a 
pedagogical agent th a t gave adaptive advice based on student behavior as they navigated 
the learning environment, the same pedagogical agent tha t gave general advice at regular 
time intervals, and no pedagogical agent at all. This study found th a t students performed 
better when a pedagogical agent was present and th a t those who were given regular interval, 
general advice outperformed those who were given the more specific, adaptive advice [101].

There have been several more recent studies on the use of pedagogical agents. These 
studies focus more on comparing different pedagogical agents rather than  whether there is 
a benefit to  using pedagogical agents at all [102].

Often, educational agents are designed to  replicate the way interactions are currently 
done in educational settings. In [103] the authors question the validity of this, based on 
the increasingly accepted tenet th a t much of what is currently done in education is less 
than  effective. They a ttem pt to  use agents in new and different ways to  promote improved 
learning opportunities. Building on the premise th a t teaching is an effective way to  learn, 
they have developed a teachable agent tha t provides students the opportunity to  teach and, 
in the process, learn themselves.

V irtual worlds are finding a place in education, and intelligent agents are finding a 
place in those virtual worlds. Open W onderland is an open source toolkit for creating 3D 
virtual worlds [104]. This toolkit has been used to create virtual worlds for teaching foreign 
language [105,106], creating simulators for a computer science lab [107], learning about 
agile software development [108], and conducting a natural science experiment [96]. Using 
intelligent agents in this new educational format has been explored by [96,109].

Intelligent agents have found a variety of applications in the field of education. The 
use of these agents has been the basis of many research projects. However, there are many
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remaining research questions about the use of intelligent agents and how they improve 
education [95,102].

2.3 .4  S tu d en t M od elin g  and Tracing
User modeling is used by a wide range of systems. Specifically, student models have 

been created and used in educational systems. Most of the work involving student agents 
has been done in the field of intelligent tutoring systems. These learner models developed in 
the research laboratory are now used in advanced commercial learning environments. These 
intelligent learning systems have successfully integrated learner models and have achieved 
widespread usage [24]. The study of student modeling and its potential usage continues to 
be an active area of research.

2 .3 .4 .1  V ariety  o f M odels
Centralized modeling can be represented by user modeling servers or user modeling 

shells [110]. A central user modeling system gathers and stores a variety of information 
about the students from multiple components of the system. This information is stored by 
the central user modeling server. This approach allows a lot of flexibility in how information 
is produced by the different components of the system [111].

Decentralized modeling is widely used in agent-based architectures. R ather than  in­
formation being gathered and stored on one server, it is stored among the individual 
components of the system [111].

Constraint-Based Modeling (CBM) represents the domain knowledge as a set of con­
straints. These constraints are used to  analyze student solutions and provide feedback on 
errors [112]. This is a form of problem solving using solution analysis tutors. Another type 
of model th a t falls in this category are Cognitive Tutors (CT). Both CBM and CT are 
distributed commercially and have hundreds of thousands of users [24].

Another approach to  tutoring systems is curriculum sequencing. Curriculum sequencing 
consists of defining learning paths through a set of learning objectives and didactic content. 
These systems have to  build a path  through a large number of items when little evidence 
is available. This ratio of the amount of evidence to the breadth of the assessment can be 
critical for systems th a t cover a large set of skills. This requires a model th a t can build 
links between learning items. This relies on a transfer model -  a model th a t can transfer 
evidence between items and skills th a t are not directly linked [24].
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2 .3 .4 .2  R ep resen tin g  th e  S tu d en t
A student model identifies particular tra its or features of the student th a t it will rep­

resent. These features vary and may include the user’s knowledge, interests, goals, back­
ground, and individual tra its  [113]. A ttitudinal factors can also be considered, such as 
student motivation or level of boredom or frustration [24]. In addition, some models 
represent a context of the user’s work [113].

The scalar model is the simplest of models and estimates the level of the user’s domain 
knowledge by a single value. This value can be represented by a numeric range such 
as 0 to 5 or use a qualitative scale such as good, average, poor, etc. Simple as they 
are, these models can be effective in supporting simple adaptation techniques. The scalar 
model averages the users’ knowledge over the entire domain. W hen more specific detail is 
needed, structural models consider th a t domain knowledge can be divided into independent 
fragments or concepts [113].

Another approach is to use a stereotype model. In this model the user is represented 
by a collection of attributes. These models can provide an im portant role in modeling 
because they allow the system to make plausible inferences based on a limited amount of 
observations. These inferences are then overridden and the individual student model is 
updated when observations contradict them. The inferred values are abandoned in favor of 
learned facts [113,114].

These student models can be constructed based on the use of rational analysis, user 
self-evaluation, objective testing, and other manual analysis techniques. These manual 
techniques for constructing models are often time consuming and require expert input. 
In [115] the authors dem onstrate the effectiveness of constructing student models using 
machine learning techniques. O ther da ta  mining and machine learning techniques are 
presented in [116] and can be effectively used in systems th a t have large amounts of data.

These student models are adaptive models in th a t they update the representation of 
the student as more evidence becomes available. For example, when a correct or incorrect 
answer occurs, the state of th a t student’s knowledge can be updated based on this new 
evidence. This update process is made more complex by the existence of slips and guesses. 
A slip is when someone gets an incorrect answer even when they have the knowledge, while 
a guess is when a correct answer occurs even when the knowledge does not. [117] presents an 
approach where machine learning is used to estim ate the probability th a t a correct answer 
is a guess rather than  evidence of knowledge, and the probability th a t an incorrect answer 
is a slip rather than evidence of lack of knowledge.
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2.3 .5  B ayesian  A nalysis
Bayesian inference is used broadly in a wide range of applications, including science, 

engineering, medicine, and education. The area of application th a t is most closely aligned 
with the current research work is education. Even within education it is used in a variety 
of ways. [113] states th a t Bayesian networks are the most im portant approach to  knowledge 
modeling.

A Bayesian network (BN) can be used to  represent uncertain relationships between 
items in a domain. A BN is a directed acyclic graph (DAG). The nodes in this graph 
represent random variables and edges between the nodes are a probabilistic correlation 
between those variables. The full joint probability distribution can be represented by 
a set of conditional probability tables (CPT). Although probabilistic inference can be 
computationally intractable in some cases, it can be done efficiently in many practical 
situations [1,28].

The C PT can be set using a combination of expert-derived estimates and data-driven 
approaches [118]. However, requiring experts to assess content m astery is often impractical. 
[24] outlines some of the key simplifying approaches th a t are used to determine conditional 
probabilities. O ther projects used data-centric methodologies in which the structure of the 
BN was developed from actual student data  [112].

In [29] a Bayesian network (BN) was used to identify probabilistic relations between 
courses in a prerequisite course structure. This project used the predictive capability of the 
BN to consider ways to  improve student retention and assist student success. They were 
able to identify courses th a t were critical in the overall program and would be responsive 
to  tutoring support.

Educational testing can be enhanced by the use of BNs. In [118] the authors use the 
BN to increase the amount of details th a t were extracted from student testing. They were 
able to  identify gaps of knowledge, student abilities, and weak points at the beginning of 
the course. O ther research projects used a BN to identify student learning styles [26,28].

A large area of BN use is in the intelligent tutoring field. The modeling tasks in an 
interactive intelligent tu to r involve a high level of uncertainty. These systems infer student 
knowledge of specific concepts from the interactions they record and provide knowledge 
assessment, plan recognition, and prediction of student actions during problem solving 
tasks [27]. In [25] researchers used a BN to add individualization to  the standard knowledge 
tracing capabilities of previous tu to r systems.

A BN was used to  develop a probabilistic model for an SQL-Tutor used to  make decisions 
about which problem to give the student next. The BN was used to  make predictions on
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specific constraints relevant to  th a t problem. The system was a constraint-based system 
[112].

There are a variety of ways to  analyze the effectiveness of the BN. Actual data  can be 
separated into a test set and a learning set. The BN can be trained on the learning set and 
used to  predict the values of the test set [29]. K-fold cross-validation, Bayesian Information 
Criterion, and validating assessments with external measures are ways to  control for over­
fitting [24]. [117] tests for model degeneracy, empirical degeneracy, and limited degeneracy 
on a newly developed guess and slip model.



CHAPTER 3
COURSE CONTENT ANALYSIS

A beginning point for initiating change is to discover where one currently is. The 
first stage of this work is to discover what da ta  are currently available from the existing 
course and identify if information can be extracted from th a t da ta  to inform the process 
of change. An enhanced representation of the course will benefit from both syntactic and 
semantic analysis. Is th a t information available? Is it directly available or will it require 
manipulation to  attain? Can the da ta  available through the learning management system 
(LMS) be enhanced by expert knowledge? These questions provide the direction for the 
course content analysis stage of this work.

ENABLE is able to  extract syntactic information about the content and structure of the 
course from the da ta  available in Canvas. Some information is directly available, such as 
due dates and unit associations. Analysis of the da ta  provides additional information, such 
as topical connections and learning item type. Much of the semantic information required 
expert knowledge. W hen acquiring information from an expert, ENABLE provides an 
interface th a t leverages the information extracted from the data  in the LMS to aid the 
expert. This process engages the instructor in the analysis phase and provides them  a 
different view of the existing course.

3.1 Gather Data from Learning Management System
This study is about course transform ation. This implies th a t there is an already existing 

course. The first step is to  acquire the details available in th a t existing course. The courses 
we will analyze use Canvas, a commercially available learning management system (LMS). 
D ata about the course and the learning items in the course are available through this LMS.

3.1.1  U sin g  th e  A P I
Canvas has a well-documented application program interface (API). This API allows 

programmatic access to  much of the da ta  th a t resides in Canvas. The Canvas API uses the 
REST architecture and can be accessed using HTTPS.
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The canvas LMS API documentation is available at h t t p s : / / c a n v a s . i n s t r u c t u r e . 
co m /d o c /ap i/in d ex .h tm l. This documentation specifies how to  request data  from canvas. 
Access to  the data  requires authentication, which is done with OAuth2, a protocol for 
authentication and authorization. This requires th a t an access token be included in the 
header or sent in the query string.

An access token can be acquired through standard login access to canvas. These tokens 
are available to those who have adm inistrative or teacher accounts on canvas. To get an 
access token, go to settings in Canvas and select the New Access Token button. This 
provides an interface to  generate a token. You can put an expiration date on the token or 
leave it blank, which will leave the token w ithout an expiration date. Once you generate 
the token, it is no longer available from the system. It is up to  you to  keep track of it.

Param eters for PO ST and PU T  requests are sent using standard HTML form encoding. 
ENABLE uses the PH P client URL library (cURL) to make these requests. This library 
provides many functions th a t allow connection and communication with many different 
types of servers using a variety of protocols.

3.1 .2  D eta ils  ab ou t L earning Item s
3 .1 .2 .1  G ettin g  D a ta  from  Canvas

The API is used to  acquire details about individual learning items. A course may 
contain many different materials th a t are used for instruction. For this work, these various 
materials are referred to  as learning items. Each learning item has its own characteristics, 
such as title, due date, delivery method, and whether it is graded or not. ENABLE uses 
four general categories to  classify learning items: exam, assignment, resource, and quiz.

In Canvas the learning items can be found as assignments, pages, and files. These are 
term s used in the Canvas system. In Canvas an assignment has points associated with it and 
a specific due date. Pages are a way for instructors to build content and can contain text 
information, links, videos, and other media. Files can be of many types and are uploaded 
from an external source and stored in Canvas.

ENABLE accesses the following details about assignments:

•  id

•  name

• description

• quizJd, this is available for assignments tha t have an associated quiz

https://canvas.instructure
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•  due_at

•  assignm ent-groupJd

• points_possible

•  published

For pages it acquires the following:

•  title

•  body

• published

For files it acquires the following:

•  display _name

3 .1 .2 .2  B u ild in g  L earning Item s in E N A B L E
To build learning items in ENABLE we begin with the da ta  th a t come from Canvas. The 

id, name, quizJd, due_at, assignment_group_id, quizJd, and points_possible are added to 
the learning item without change. The published status is used as a filter. Only assignments 
th a t are published are built into learning items.

The type of the learning item is determined. This type will be used in the user interface 
to  provide information to  the instructor. There are three types: assignment, exam, and 
resource. If the da ta  do not have points_possible, the type is set to resource. This happens 
in the case of a page or a file. For the remaining items it needs to be determined whether 
they are assignments or exams. To make this determ ination the name is parsed to identify 
if it contains the word exam or test. If either of these words are contained in the title, type 
is set to exam. For all other items the type is set to  assignment.

The description th a t comes from Canvas contains the body of the material. The 
description will be used when determining relations. For those purposes, it is helpful for 
the description to  be as complete as possible. To the description ENABLE adds the text of 
the title. In the case of a quiz, the text of the quiz questions are added to the description. 
String parsing is used on the description to determine if there are any references to  files. If 
there is a reference to  a file, a request is sent to  the canvas API to  get the name of tha t 
file. The file itself is not directly available from Canvas. The actual file can be added to 
the files folder. The system looks in this files folder for a file with the specified name. If the
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file is a plain text file, th a t text is added directly to  the description. If the file is a .pdf, a 
conversion process is executed and the text extracted. This extracted text is added to the 
description. This process provides a more complete description of the learning item.

The name as it comes from Canvas is useful in some situations, but for the course map 
a shorter name is needed for labeling purposes. Since the purpose of the labeling is for the 
understanding of the instructor, it is im portant th a t the labels are meaningful to  them. To 
accomplish this, an interface is provided th a t allows the instructor to  edit the labels. The 
interface provides the full name of the learning item and the first four characters. These 
four characters may or may not be meaningful. The instructor is able to edit these labels to 
their liking. The left side of Figure 3.1 shows the labels th a t were extracted directly from 
the names of the learning items in Canvas. The right side of Figure 3.1 shows the labels 
after editing by the instructor.

3 .1 .2 .3  G ettin g  Inform ation  from  th e  Instructor
Additional information about the learning items is gathered from the instructor. EN­

ABLE provides an interface th a t allows the user to upload files (see Figure 3.2). The 
textual da ta  from these files is added to the description of the learning item. This allows an 
instructor to  add whatever textual da ta  they consider im portant to  the learning item. In 
some cases a learning item may have very little textual information available in Canvas. For 
example, an exam th a t is given on paper to the students has very little textual information 
available in Canvas. In this situation Canvas would have the title  and the due date. This 
user interface provides a way for the body of the exam to be included in the description 
of the learning item. Files can be uploaded for learning items, like exams, th a t have no 
textual description, as well as for items th a t already have textual data. The text th a t is 
uploaded is simply added on to whatever description was extracted from Canvas.

ENABLE also provides an interface th a t allows the instructor to add learning items tha t 
did not exist in Canvas (see Figure 3.3). This allows the instructor to broaden the scope 
of what is included as a learning item. For example, a lecture may not appear at all in 
Canvas and yet the instructor may be interested to  include the lecture material in the course 
analysis. The interface allows the user to enter a name, a date, points possible, and topics 
included. Additional description can be added through the file interface just described.

3.1 .3  D eta ils  ab ou t C ourse O rganization
Another thing th a t needs to  be established is the current organization of the course. The 

due date is used to  establish the tem poral ordering of the graded learning items. There is
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Edit Sliort Names and Click Submit Button

FAQ FAQ - HW5
Vide Video - Publishing a Webpage
Vide Video - Organizing Web Files
webS \vebStruct\ireNotes.pdf
CA1 CA1 - Begin HTML
HW1 HW1 - Brief Reports
CA2 CA2 - More HTML
HW2 HW2 - The Content

Edit Slioi t Names and Click Submit Button

FAQ5 FAQ - HW5
Vpub Video - Publishing a Webpage
Vorg Video - Organizing Web Files
webS webStructureNotes.pdf
CA1 CA1 - Begin HTML
HW1 HW1 - Brief Reports
CA2 CA2 - More HTML
HW2 HW2 - The Content

Figure 3.1. The Left Side has Labels as Extracted From Titles. The Right Side Shows 
Labels After Editing.

Enter filenames by the learmng item it goes with and click the 'Submit Files' button.

Video - Creating a New Project in Visual Studio
Video - Running Your First Program in Visual Studio
Video - Creating a New Project in Xcode
Video - Creating a New Project in Code::Blocks
Video - Runmng Your First Program in Xcode
Video - Getting Visual Studio
Video - Runmng Your First Program in Code::Blocks
Lab 1 Getting Started
Worksheet 1
Video - Using cout
Video - Output Labels
Video - Variables, type int

Figure 3.2. Interface to Add Additional Text For Learning Items.

no date information for the ungraded items. Their order is assigned based on which module 

they are contained in. They are added in order before any assignments, exams, or quizzes 

in the module they are in and after items in preceding modules.

Modules are a way to organize learning items in Canvas. Canvas allows the instructor 

to create a module and populate it with any of the types of learning items. This grouping 
of learning items is another form of organization that can be gathered from Canvas. The 

learning items contained in a single module are identified to be in the same unit. The 
unit is simply a set of learning items that have been grouped together for some purpose. 

Canvas instructors use the module grouping in a variety of ways. Some group them based 
on a textbook. For example, putting all the learning items related to a single chapter or 

section in a module. Others use it as a form of temporal ordering and group items together
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Enter Information Below and Click Add Item Button

Enter points for the learning item, enter "none" if  ungraded.

Check the box for each topic that occurs iu this learning item

Figure 3.3. Interface to Add Additional Learning Item.

based on some date relation, such as all the items to be covered in a week. Another way 

to organize these groups is by topic, having a module group items covering a single topic 
together.

The information available from Canvas is a module ID for each module. Each learning 

item contains the module ID for the any module it is a member of. It also contains a value 

that identifies its order in the module.

3.2 Discover Relations
ENABLE not only wants to establish information about individual learning items, it 

also wants to discover the relations between those items — e.g., whether one item must 
be covered in order to prepare the student for another item, whether items cover a similar 

topic, etc. Some information about relations can be extracted from the data in Canvas. 
Other relational information can be gathered from the instructor.

3.2.1 Temporal Relations
Temporal relations have to do with how learning items are related over time. The 

due date data extracted from Canvas are used to establish this temporal ordering. Using 
this date information, ENABLE organizes the learning items using the precedes relation. 

The precedes relation expresses that one learning item comes before another in time. For
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example, Activity 5 precedes Homework 3.
Using this temporal ordering, the first learning item is preceded by nothing. The second 

learning item is preceded by the first. The third learning item is preceded by the second 
and the first learning item. The fourth learning item is preceded by the third, second, and 

first learning item. This pattern continues until you get to the final learning item, which 

is preceded by all other learning items. The precedes relation connects one dated learning 

item to all other dated learning items. An exception would occur when two learning items 

had exactly the same due date and time.
When each learning item is included as a node in a directed graph, these precedes 

relations become the edges between the nodes. This produces both in-edges and out-edges 

for each node. A learning item at location k in the sequence of this graph has k — 1 in-edges 

and N  — k out-edges, where N is the number of learning items. This produces far too many 

edges in the directed graph to be informative (see Figure 3.4, upper).

To manage the excessive number of edges this produces in the graph, the transitive 

nature of the precedes relation is exploited. The transitive rule for the precedes relation 
can be expressed this way. If Item A precedes Item B and Item B precedes item C then 

Item A precedes Item C. Using this rule, the edges expressing the precedes relation can 

be reduced to the edges connecting adjacent nodes (see Figure 3.4, lower). Each of these 

edges expresses the immediately precedes relation, which can be stated Item A immediately 

precedes Item B. This means that Item A comes directly before Item B such that when all 

items are temporally ordered, there is no item that comes after Item A and before Item B.

This graph is easier to read as every item except the first item has exactly one in-edge, 

and every item except the last item in the graph has exactly one out-edge. This produces a 
graph with N  — 1 edges, where N  is the number of learning items. Because of the transitive 

nature of the precedes relation, the immediately precedes relation captures all the precedes 

relations in the previous graph. This property allows us to continue to refer to these more 

specific immediately precedes relations as precedes relations without loss of accuracy. It 

also continues to be correct to state that Item A precedes Item G whenever Item A comes 
before Item G temporally, even if there is not a precedes relation edge directly connecting 

Item A to Item G.

The meaning of the precedes relation is limited to a temporal relation only. Learning 

items connected in this way are not necessarily related by topic or grouped in the same 
unit. The precedes relation does not infer any other relation between adjacent, temporally 

ordered nodes. There is no assumption of a prerequisite relation. A prerequisite relation
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precedes Relation

0 i-----------------1-----------------1-----------------1-----------------1-----------------1-----------------
0 20 40 60 80 100 120

Chronolgicel Date (days)

immediately-precedes Relation

0 i-----------------1-----------------1-----------------1-----------------1-----------------1-----------------
0 20 40 60 80 100 120

Chronolgica! Date (days)

Figure 3.4. Detailed Graph of Precedes Relations (upper). Graph of Immediately Precedes 
Relation (lower).

expresses that there is benefit in completing one learning item prior to working on another 

learning item.

The temporal relations between learning items are the most predominant relations 

presented to both students and educators in an LMS. An educator who has designed and 
implemented a course is aware of other relations between the learning items, such as how 

they are grouped together to create a unit of learning, how they are related by a single 

topic or a group of topics, and prerequisite recommendations. Although the educator may 
consider these other relations more significant, the learning management systems currently 

available use the temporal relation as the dominant organizational aspect when presenting 

learning materials. In Canvas, learning items are presented in this temporally based order 

in the syllabus, the assignments page, the grades page, and the calendar.

When combined with topical and unit relations, the temporal relations add some in­
formation. For example, if there are two assignments that cover the same topic and one
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precedes the other, it is likely that there is a noncommutative relation between the two 
learning items, and it is important that the first is completed before the other.

Not all items in Canvas have due dates. In the sample CS0 course, 8 out of 49 

learning items do not have due dates associated with them. These undated learning items 

include lecture notes, videos, and frequently asked questions. It is likely these items are 
informational materials that are most beneficial when preceding other items in the same 

unit or other items of the same topic. As topics extend across a larger time period than 

units, associating the undated learning items with other items in the unit is preferred. These 
learning items are dated two days before the first dated item in their unit.

3.2.2 Topical Relations
To identify the topical relations, the text of each learning item is gathered. Canvas 

stores a title or name and a text description of each learning item. This information can 

be acquired through the canvas API. The title and text description become the basis of 

the text. This text is analyzed to see if there is a link to a file. Canvas has a specific 

way of referencing files that have been uploaded, making it possible to use text parsing 
and regular expressions to identify these references. Once a filename is identified, the file 

extension is considered to see if it is one of the file types that can be used. Currently 
ENABLE is able to add .txt and .pdf files to the text description. Pdf files first need to 

be converted to text before being added. This conversion process is handled in ENABLE, 

and the plaintext added to the description. One type of learning item is a quiz. These 

quizzes contain individual questions in addition to the text description. For these types of 

learning items, the text of the questions and answers are gathered through the canvas API 

and added to the text description.
ENABLE uses a .txt file to store a series of topic lists. These lists contain topic words, 

word groups, and variations. Each line in the file represents a single topic. Individual topic 

variations are separated by a comma. The original list of topics for the sample CS0 course 

includes

1. <content>

2. <html, structure>

3. <attribute, attributes>

4. <tag, tags>

5. <element, elements >
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6. <publishing, host, publish, published>

7. <careers, career, careers in cs, cs careers>

8. <darpa>

9. <history, cs history>

10. <css, style>

11. <hardware, system>

12. <javascript, script>

13. <functions, function>

14. <textboxes, textbox>

15. <using the web, use the web>.

The use of a list of topic variations allows different versions of the same word such as 

publishing, publish, and published to be counted as a single topic. Stemming algorithms 
[119] can be used to accomplish this same grouping, but these algorithms do not allow the 

inclusion of additional words that are not from the same base word. For example, the word 

host is included in the list with publishing. The list is not restricted to words that share 

the base word. Any combination of words can be included in a single list. This allows the 

instructor a great deal of flexibility in associating a variety of words or word phrases with 

a single topic.

Using these lists of topic words, a term frequency vector is created for each learning 
item document. Term frequency (tf) is a count of how many times a term occurs in the 

learning item document [120]. The document in this case is the description of the learning 

item. This description includes any text available in Canvas or uploaded by the instructor. 

The frequency count of terms found in a topic list is combined to produce a single tf count 

for each topic.

When computing t f  for all the terms in a corpus of documents, this process produces 

high-dimensional, sparse vectors [80]. Techniques such as the application of singular value 
decomposition (SVD) to a topic similarity matrix (i.e., spectral graph analysis) may allow 
the reduction of dimension to make computationally intensive text analysis more efficient 

[121]. In the CS0 example here, the limited number of specific terms found in the topic lists 

produced tf vectors for which no dimensional reduction was possible.
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In ENABLE, the corpus of documents consists of the description for each learning item. 

Singular value decomposition (SVD), spectral graph analysis, and K-means were all applied 

to the frequency matrix that was produced by combining the individual frequency vectors of 

each learning item. In the sample courses, no dimensional reduction was possible. This is a 

very small corpus and the sparseness of the resulting matrix was not excessive (see Table 3.1, 

which shows the frequency matrix after topic reduction). This small size is exaggerated by 

the fact that only the topic words are included in this analysis. Often all words found in 

the corpus are included in the frequency counts, resulting in a much larger and more sparse 
frequency matrix.

This raw count of how many times a term occurs in a document can be more informative 

if it is weighted. The weighting approach used by ENABLE is tf-idf. tf-idf starts with the tf 

and then multiplies it by the inverse of the document frequency. The document frequency 

(df) of a term is the count of how many of the documents in the corpus contain that specific 
term. If the df is high, the term is very common, so the fact that it shows up in a document 

is not as significant as a term that is less common. When the df is low, the occurrence of the 

term in a document is more significant. By multiplying tf by the inverse document frequency 

( idf), the consequent value results from a weighting based on the relative frequency of the 

term in the corpus. The ENABLE system computes tf-idf using log weighting of the tf count 

and log inverse frequency weighting on the document counts.
N

tfidft,d =  (1 +  log(tft,d)))log( f ) (3.1)

A Pearson correlation was done between the tf-idf values of the topics. For each correlation 

that was greater than 0.8, the topics were considered for combining. In the sample CS0 

course there was a correlation between the HTML, attribute, element, and tag topic lists. 

Combining these was obvious once the correlation pointed them out. These are all parts 

of the HTML language. The other topics that were highly correlated were JavaScript, 

functions, and textboxes. Although functions is a topic that exists outside of JavaScript, 
in the context of this course, functions are only discussed or used in JavaScript. This 
correlation made the instructor aware that their broader view of the computer science 

curriculum was reflected in this separation of topics and would best be adapted to fit the 

content of this specific course. This provided the instructor a fresh perspective informed 
by feedback from ENABLE. This illustrates one of the many benefits of gaining another 

perspective when considering changes to current courses.
This process of identifying correlations between topics provided new insights into possible 

changes to the topic lists. These insights were not recognized when the original topic lists
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Table 3.1: Topic Frequency M atrix. There is a 
colum n for each o f  the ten topics and a row for each 
learning item. Each value is a count o f  how many 
times that topic occurs in the learning item.

Topics
1 2 3 4 5 6 7 8 9 10

FAQ 0 5 0 0 0 0 0 0 0 0
Video 0 0 0 0 0 0 0 0 0 0
Video 0 0 3 0 0 0 0 0 0 0
Note 7 57 7 0 0 0 2 0 0 0
CA1 6 77 0 0 0 0 3 0 0 0
HW1 2 1 0 0 0 0 0 0 0 0
CA2 3 56 0 0 0 0 1 0 0 0
HW2 4 7 0 0 0 0 0 0 0 0
Note 0 0 0 1 0 0 0 0 0 0
CA3 0 0 0 5 0 0 0 0 0 0
HW3 0 0 5 0 0 0 0 0 0 0
CA4 0 0 0 3 0 0 0 0 0 0
Ex1 0 0 0 3 0 0 0 0 0 0
CA5 0 0 0 6 0 0 0 0 0 0
HW4 0 0 0 2 0 0 0 0 0 0
CA6 0 29 9 0 0 0 0 0 0 0
CA7 0 4 2 0 0 0 0 0 0 0
HW5 1 11 1 0 0 0 2 0 0 0
HW6 0 0 0 0 0 0 0 0 0 0
Notes 0 0 0 0 1 0 0 0 0 0
Exam1 3 15 0 0 1 0 0 0 0 0
Notes 1 40 0 0 0 0 33 0 0 0
CA8 0 28 0 0 0 0 47 0 0 0
Note 0 0 0 0 0 1 0 12 0 0
Ex2jv 0 0 0 0 0 2 0 0 0 0
CA9 0 21 0 0 0 0 62 0 0 0
HW7 0 0 0 0 0 1 0 0 0 0
CA10 10 69 0 0 0 0 77 0 0 0
CA11 0 4 2 0 0 0 3 0 0 0
Ex2v 0 0 0 0 0 0 0 0 0 0
HW8 3 12 2 0 0 0 20 0 1 0
CA12 0 2 2 0 0 0 1 5 0 0
Ex3jv 0 0 0 0 0 0 0 1 0 0
Exam2 0 14 0 0 0 0 19 0 0 0
CA13 1 69 0 0 0 0 2 0 99 0
CA14 1 112 0 0 0 0 12 0 58 0
CA15 0 2 2 0 0 0 1 0 0 0
Ex3v 0 14 2 0 0 0 7 0 3 0

Continued on next page
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Table 3.1 -  continued
Topics

1 2 3 4 5 6 7 8 9 10
HW9 1 17 2 0 0 0 11 0 5 0
CA16 0 215 0 0 0 0 16 0 145 0
CA17 0 145 0 0 0 0 4 0 109 0
CA18 0 0 2 0 0 0 0 0 1 0
Ex4v 0 0 0 0 0 0 0 0 1 0
HW10 0 6 2 0 0 0 4 0 7 0
CA19 0 0 1 0 0 0 0 0 0 0
CA20 0 0 0 0 0 0 0 0 0 0
Ex4jv 0 1 0 0 0 0 0 0 0 0
Teval 0 0 0 0 0 0 0 0 0 0
Exam3 0 28 0 0 0 0 0 0 24 0
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were made. This process led to the reduction of topics from the original fifteen to the 
following ten:

1. <content>

2. <html, structure, attribute, attributes, element, elements, tag, tags>

3. <publishing, host, publish, published>

4. <careers, career, careers in cs,cs careers>

5. <darpa>

6. <history, cs history>

7. <css, style>

8. <hardware, system>

9. <javascript, script, functions, function, textboxes, textbox>

10. <using the web, use the web>.

Each item has its own frequency vector. Whenever there is a count greater than zero in 

the frequency vector, that item has an occurs-in relation with that topic. When combined, 
these vectors produce a frequency matrix that includes a row for each learning item with an 

entry for each topic (see Table 3.1). These vectors are also used when necessary to identify 

if two items are topically related.

3.2.3 Unit Relations
Units are a way of grouping learning items. This grouping may be based on a temporal 

factor, such as a group of items that all happen in a given week. It may be based on topics 
if all the items in a unit cover the same topic. It may be based on an external resource, 

as when all items included in the unit are about a chapter in a textbook. These units are 

identified by the module tool in Canvas. This tool allows instructors to group items. The 

variation in how they are grouped is not questioned. The assumption is that the instructor 

has a specific reason for grouping items into a single module. These modules in canvas 
provide information about the existing organization of the course. Each learning item has 

the module ID for any module it is included in. This is one of the details gathered when 

ENABLE is gathering data through the canvas API. This module ID becomes one of the 

properties of the item.
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The relation between a unit and a learning item is the includes relation. A unit includes 
a learning item. This relation is easy to extract from the data and store. No manipulation 

is required.

3.2.4 Prerequisite Relations
The prerequisite relation expresses that there is value in doing one learning item before 

another. It may be that the following learning material is difficult to understand if the 
previous learning item has not been completed. It is stated that one learning item is a 

prerequisite to another learning item. This is a directed relation that is not reversible. It 

can be but is not necessarily transitive. The transitive rule would say that if item A is a 
prerequisite to item B and item B is a prerequisite to item C, then item A is a prerequisite 

to item C. Because each of these items could have different topics, it is possible to have 
the topical relation between item A and item B be based on a different topic than the one 

that is common between item B and item C. In this case it is possible that the prerequisite 
relation between item A and item B is related to a different topic than the prerequisite 

relation between item B and item C. In ENABLE a prerequisite relation is considered 

transitive only in the case when all the topics that are common to item A and item C are 

also included in item B.
The prerequisite relation is not identifiable from the data available in Canvas. There 

are two relations that can be used to inform the prerequisite relation but not determine it. 
Those relations are the precedes relation and the occurs-in relation. The precedes relation 

must exist for a prerequisite relation to exist. By definition the item that is a prerequisite 

to another item must precede it. But there are many cases when the precedes relation exists 
and there is no prerequisite relation. The occurs-in relation informs about the topics that 
occur in the learning item. When two items have common topic associations it is more 

likely there is a prerequisite relation between them. Although more likely, it is not always 

the case. Common topics are just an indicator of the greater possibility of the prerequisite 

relation.
Determining the prerequisite relations requires expert knowledge. ENABLE provides an 

interface that allows the instructor or another expert to identify the prerequisite relations 

(see Figure 3.5). This interface provides information from the precedes relation and the 

topical occurs-in relation. On the interface each learning item is listed. Next to the item are 

listed all the items that precede it. These preceding items are displayed in two categories: 
those with common topical relations and those with no common topical relations. The 

expert simply checks the box by each learning item that is a prerequisite to the current
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No Common Topics
Check the box for each item that is a prerequisite to 

CA6 - Publishing HTML

Q HW1 - Brief Reports 
Q HW2 - The Content 

acmWorkforceStats. pdf 
CA3 - Technology in Careers, Prep 
Presentations
CA4 - Technology in Careers, Group 
Presentations 

Q Exercise 1 - Careers in CS
CA5 - Technology in Careers - Group
Presentation
HW4 - Careers

Figure 3.5. Interface to Add Prerequisites.

item. This information is stored as a property of the learning item object. It is a list of all 

the items that are prerequisite to it. This prerequisite relation is used when creating the 
course map and when building the probability models.

3.3 Summary
There is much data available in Canvas that can be accessed through the API. Other 

information is determined through text analysis and by gathering expert knowledge. This 

gathering and analysis of data is used to identify the relations and structure of an existing 
course. This phase of the system establishes the basis of the future phases by providing 
them with the data and information needed for creating and transforming course maps, 

designing and running student agents, and generating probability models.
The evaluation criteria of the content analysis phase include the representation of the 

analysis in a graph. This is accomplished in Chapter 4. A discussion of how the evaluation 

criteria are met is found in the summary of that chapter.



CHAPTER 4

THE COURSE MAP

ENABLE has gathered, extracted, analyzed, and produced a representation of the 

existing course. This representation consists of learning items and the relations between 

them. This information can be represented as a directed acyclic graph (DAG). In the 

learning management support system (LMS), learning items are presented in a linear, 

textual way. Using a graph representation increases the opportunity to express the nonlinear 
relations between the items. Presenting it in this visually rich method provides a way to 
express more information.

A course map is a graph, M  =  (N , E), where N  is the set of learning item, topic and unit 

nodes, and E is the set of precedes, topically precedes, prerequisite, occurs in and includes 

edges (relations). Then the class map is C =  (O, S ), where O C N  is a set of nodes that 

includes the learning item nodes and S C E is a set of edges that includes all of the precedes, 

topically precedes, prerequisite, occurs in or includes edges.

The course mapping capability was developed and used on the three sample courses 
previously mentioned. To provide continuity, the figures included in this chapter are of only 

a single sample course. The course used in the figures is a CS0 course, The Foundations of 

Computer Science.

4.1 Choosing the Structure
The purpose of the ENABLE system is to support educators when making changes 

to existing course structure. To support effective change it is important to identify the 
current course structure. Current organization of learning items is often limited by the 

tools used to deliver them. Today many educators use some form of LMS to deliver course 

materials to students, communicate electronically, receive work from students, and publish 

scores. These management systems present learning items in a textual, linear way. This 
linear representation is not representative of how learning items are actually related. The 

first phase of ENABLE development extracted the details of learning items and identified
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relations between them. Multiple relations were used to more closely represent how the 
learning items are actually related.

To clearly represent current course organization it is necessary to select a data structure 

that is well suited to the complexity of the varied relations between learning items in a 

course. An array or a list could be used to illustrate the representation of the course 
structure as it is delivered in the learning management system. This representation has one 

learning item directly following another learning item. This limits the connections between 

learning items and does not allow flexibility in ordering. It is easy to identify cases when 
this representation is too limited to express how the learning items are actually related. 
For example, there may be several learning items that are designed to prepare a student 

to complete a particular homework assignment such as a lecture, a class activity, a video, 

and a reading assignment. Represented as a list it would look something like that shown 

in Figure 4.1(a). Representing it this way indicates prerequisite relations between the other 

learning items, when, in fact, these prerequisite relations do not exist. The lecture, video, 

activity, and reading can be done independently of each other, and it is not necessary to 
complete them in any particular order. A nonlinear structure would better represent this 
relation, as shown in Figure 4.1(b).

Another consideration is the tree data structure. As shown in Figure 4.1(b), the four 

prerequisites are parents of the homework node. This breaks a basic rule of trees -  a node 
has exactly one parent, except the root node, which has none. We could invert the relation 

and list the prerequisites as child nodes of the homework node, as shown in Figure 4.2. 

This solves the problem of multiple parents but introduces another problem, nodes without 

parents, as there may be items that are not a prerequisite to anything. For example, an 
exam would have several learning item prerequisites. Although another exam may follow 
this exam, the two may not be related, in which case, the first exam is not a prerequisite for 
the second exam. This leaves the first exam without parents effectively creating a nonroot 

node without parents, as shown in Figure 4.3.

Another data structure to consider is a directed graph. Directed graphs allow multiple 

incoming or outgoing edges. A standard component of moving through a course is the 
common practice of moving through each learning item only one time. Although this is not 

the only approach, it is the approach widely used in practice and is used in this project. 

To enforce this, single coverage of the material cycles is not allowed. These characteristics 
can all be represented with a directed acyclic graph (DAG). A DAG allows us to represent 
a learning item with multiple prerequisites without a restriction on the direction of those
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ts) Precedes Relations (b) Preneq u i site Re lati o ns

Figure 4.1. Precedes vs. Prerequisite Structure.

Figure 4.2. A Tree Representation of Learning Item Relations.

Figure 4.3. Inverted Representation of Learning Items Extended to Demonstrate Resulting 
Structure Does Not Produce a Tree.

relations, allowing the representation shown in Figure 4.1(b), and it also has no concept of 

root or parent nodes, so there are no limitations based on hierarchy. With this structure we 

can also represent the exam that has multiple prerequisites and which is not a prerequisite 

to any other learning item, as shown in Figure 4.4. Without the narrow options of a list or 

the hierarchal rules of a tree, the DAG is an ideal data structure to represent the existing 
course organization and provide flexibility to represent many alternative course structures.
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Figure 4.4. DAG Representation of Learning Items.

4.2 Building the Map
4.2.1 Adding Precedes 

We start with the relations that are predominantly expressed in the existing course 

through the LMS, the temporal relations. The precedes relation indicates that one learning 

item precedes another in time. Applying the transitive nature of this relation, a graph can 

be produced that expresses all these relations. In this graph the nodes represent the learning 

items and the edges represent the precedes relation. These are directed edges that go from 
a learning item that occurred earlier in time to a learning item that occurred later in time. 

This graph has N nodes and N  — 1 edges. Every node except the first and the last one have 
one in edge and one out edge.

This simple graph is linear in nature. It can be laid out in either a horizontal or vertical 
direction with each node equidistant from the next. Displaying the graph in this manner is
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very reflective of how the learning items are presented in the LMS. This expresses the very 
minimal amount of information about how the learning items are connected, showing only 

which learning item comes before another learning item. The graph can be enhanced by 

adding relative temporal information. The learning items are related in time but the time 

between each learning item varies. This can be expressed visually in the graph by separating 

the nodes by a distance that relates to the difference in time between each learning item. 
This quantifies the temporal relation. Using the date information of the learning item, the 

X value can be computed to reflect this relative distance.

x  =  (di — ds)df (4.1)

where x is the x-coordinate on a two-dimensional Cartesian plane, di is the item date, ds is 

the course start date, and df  is a factor determined to allocate the nodes across the map 

in a way that separates them within the horizontal space available.
This adds a visual component that not only expresses the order of the learning items 

but also how temporally distant they are one from another. This information exists in the 

linear list available in the LMS as the item dates are listed. But displaying these relative 

dates in a visual way makes it easy to identify how the items are related temporally.
Additional information can be added to the graph by using color to represent the different 

types of learning items. There are three distinct learning item types: assignments, exams, 

resources. Each of these types is given a distinct color. The background of each item node 

is made up of this color. Each node is labeled with the short label identified during the 

analysis phase.

4.2.2 Adding Units
The includes relation expresses that a unit includes a learning item. Units are a way 

to group learning items. The separation into units can be based on a variety of factors. 

For example, it may be based on temporal details such as learning items to be covered in a 

given week. The separation into units may be topically based, as in the case when the unit 

includes learning items that cover a specific topic. It may also be based on some external 
element, for example, when a unit contains the learning items related to a chapter of the 

textbook.
This includes relation can be represented as a bipartite graph with edges connecting the 

set of units to the set of learning items. This adds N additional edges in the case where 
each learning item is included in exactly one unit. This bipartite graph is directed from 

the set of units to the set of learning items. This maintains the status of the graph as a
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DAG. This approach was considered but never implemented in the ENABLE system. Each 
time the number of edges is increased, the complexity of the graph is increased and the 

visual representation becomes less clear. It was determined that the unit relations were less 

significant than the topical relations and therefore edgeless approaches to representing the 
unit relations are implemented.

An edgeless way to express the includes relations in the graph is to use the unit number 

when computing the y value of the learning item node. This approach does not add any 
additional nodes or edges for the includes relation. This can be done with the following 
formula.

y =  n ady (4.2)

where y is the y-coordinate on a two-dimensional Cartesian plane, na is the unit number 

of the learning item represented by the node, and dy is a factor determined to allocate the 
nodes across the map in a way that separates them within the vertical space available.

Learning items within a single unit often come close to each other temporally. This 

produces a series of learning items with the same y value. To increase the visual diversity, 

a random number is added to the formula. This produces variation in the vertical location 
of each node and creates more movement in the graph. The variation that is added by 

this random value allows nodes in the same unit to have slightly different y values. This 

variation is sufficiently smaller than the multiplicative factor, dy, that it keeps the y value 
of all the nodes in a specific unit within an identifiable range. Formula 4.3 includes noise.

y =  nady +  e (4.3)

where N (0 , 12).
The edges of the precedes relations are included in this graph as well as the horizontal 

spacing used to express the relative temporal relations (see Figure 4.5).
ENABLE provides one additional way to represent the includes relation. In this ap­

proach both the x and y coordinates are used to locate item nodes included in a specific 

unit in a circular pattern. The pattern for each unit takes up a specific section of the 

available space. This gives distinct unit patterns, making it easy to identify the learning 

items within a given unit. Using this approach removes the relative temporal spacing added 

previously. Since both the y and the x values are used to express the includes relation, the 
location of the node on the graph is limited to this one relation. The edges expressing the 

precedes relation are still included in the graph (see Figure 4.6).
Identifying a more effective way to represent the unit nodes in a meaningful visual way 

is a matter of research in the human computer field and is left for future work.
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Figure 4.5. Section of Course Map Showing Precedes Relations.

Figure 4.6. Section of Course Map Showing Grouped Includes Relations
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4.2.3 Adding Topics
Using text analysis and expert knowledge, topical relations of the existing course are 

established. The topical relation is the occurs-in relation. It expresses that a topic occurs in 
a learning item. These relations can also be included in the graph. ENABLE incorporates 

the occurs-in relations in two distinct ways. The first approach represents the topics as 
nodes in the graph. These nodes have a unique color to distinguish them from the learning 

item nodes. Then a bipartite graph is created with directed edges from the set of topic 

nodes to the set of learning item nodes. Because of the directed nature of these additional 
relations, the graph remains a DAG.

As it is possible for each learning item to have an occurs-in relation with multiple topics, 
this adds more than N edges, where N is the number of learning items in the course. To 

reduce the number of edge crossings introduced by the addition of this large number of 

edges, the topic nodes are located above and below the learning item nodes. This allows 

the edges representing the precedes relations to be clearly visible. It also maintains the 

relative temporal spacing between the learning items (see Figure 4.7).

It is possible to represent the topical relations without adding edges. This is done by 
adding colored rings to the learning item nodes. Each topic is assigned a specific color. A 
legend is added to the course map that shows which color goes with which topic. Whenever 
there is an occurs-in relation between a topic and a learning item, a ring of the specific 

color associated with the topic is added to the learning item. Multiple rings can be added 
to a single learning item node. Adding multiple rings increases the size of the learning item 

node. This visually expresses the quantity of topics occurring in a single learning item. 

These colored rings can be included with any of the previous versions of the course map 

(see Figure 4.8).
Occasionally there are learning items that have no occurs-in relations. In this sample CS 

course there were two. One was a sign up to determine team assignments and the other was 

the teacher evaluation assignment. When the occurs-in relations are added to the graph, 

these learning items without topics become very apparent. In either version of the course 

map that includes topics, it is easy to identify learning item nodes that are not associated 

with topics. When the occurs-in relation is expressed by edges, these learning items have 

no in-edges coming from topic nodes. In the colored ring version, these learning item nodes 
have no colored ring, making them visually distinct.
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Figure 4.7. Section of Course Map Showing Topical Relations in Bipartite Graph.

Figure 4.8. Section of Course Map Showing Occurs In Relations Drawn as Colored Rings.
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4.2.4 Comparing Graph Representation to Presentation in LMS
Once the course graph is created, the presentation of the learning items in the graph 

can be compared to the presentation of the learning items in the LMS. A comparison was 

done to identify if this graphical representation was a correct representation of the existing 

course. The following three things were compared.

• Learning items are of the correct type.

• Temporal ordering of learning items is the same.

• Topical relations in the course map correctly represent the topical relations identified 

in the LMS.

ENABLE assigns each learning item one of three types: assignment, exam, and resource. 
In each of the three sample courses, all of the learning items were correctly categorized.

Temporal ordering is limited to learning items that have a due date. For these dated 

items the order was the same in both ENABLE and the LMS. There are differences in the 

ordering of the ungraded learning items within units in Canvas and the order in which they 
are in the graph. Since these items do not have due dates, there is no temporal information 

to compare.

Comparing topical relations presented some difficulty since the LMS does not represent 

topic relations. To do this comparison, the title of each learning item as it is presented in 

the LMS was scanned for words from the topic list. A count was taken of how many topics 
were represented in these titles. For the three sample courses the counts were 31, 57, and 70. 
All of these topical associations were present in the graphical representation in ENABLE. 

In addition, ENABLE included many topical relations that were not apparent in the LMS. 

For these same sample courses, the graph had 83, 136, and 116 topical relations presented, 

respectively. The graphical representation was able to display many more topical relations 
than the LMS.

There are two learning items that are in the LMS that are not represented in the graph, 

one in the first sample course and one in the second. These learning items were .zip files. 
Currently ENABLE does not have the capacity to analyze .zip files, so they are not included 
in the graph.

Each of the comparison features was rated from 1 to 5, with 5 being the highest quality. 

All three items compared for all three sample courses were rated at a 5. These were correctly 

represented in the graph.
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4.3 Transforming the Graph
Now an initial course graph has been developed that represents the existing course. This 

basic graph can be used as a basis from which to transform the course map in a variety 

of ways. The phase provides insight into alternative organizations. This can be done 

using graph transformations. Graph grammars and graph transformation systems provide 
a means for doing this. One of the research application areas in graph transformation is 

model transformations. This area of model transformation is applied in the field of software 
engineering. The models used in software engineering have many similarities to the graphical 

representation of learning materials in ENABLE. The similarities include typed nodes, node 

attributes, and edges that represent different types of relations.
For graph transformation, initially ENABLE used AGG, a development environment for 

attributed graph transformation [20]. It is based on an algebraic approach to graph trans­

formations [23]. The implementation of this approach closely follows the formal theoretical 

foundation of algebraic graph transformation and so provides validation support and sound 
behavior concerning graph transformation. However, this tool did not provide support for 

the extended analysis needed for some of the transformations used. For example, it could 

perform a localized version of the topic-based precedes elimination transformation, but was 
unable to consider the topical relations that needed to be considered from earlier precedes 

relations. Alternatively, the graph transformations were encoded directly in ENABLE.
We now consider some desirable transforms and their meanings. We define a restraint as 

an unnecessary constraint between two items. Thus, restraints are removed in order to open 
up more possibilities for the relations between learning items. When removing restraints it 
is important to maintain both the semantics of the course representation and the integrity 

of the DAG structure.

4.3.1 T1: Topic-based Precedes Elimination Rule
The precedes relation enforces the current organization by requiring that the learning 

items occur in the order they came in the original course. This is an unnecessary limitation, 

a restraint. To increase the opportunity for new organizations, this restraint needs to be 
removed when possible. Many of the learning items that are connected by the precedes 

relations are not related topically. They do not have any topics in common. This is 

an indication that the order of these nodes could be manipulated without reducing the 

effectiveness of the ordering.
When learning items are connected with the precedes relation and they have common 

topics, there is the possibility that the precedes relation is required for the topic to be covered
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effectively. A portion of the topic covered in an earlier learning item may be necessary for 

understanding the coverage of that topic in a later item. This topical connection indicates 

that the precedes relation may have significance and should not be removed. On the other 
hand, when two learning items are related by precedes relations and have no topics in 

common, the precedes relation can be removed without the same disruptive consequences 
for the learner.

The topic-based precedes elimination rule uses the distinction between topically related 
precedes relations and precedes relations with no common topics to remove some of the 

restraints. If A precedes B and B precedes C and there are no common topics that occurs-in 

both A and B, the precedes relation from A to B can be removed. When removing this 

relation it is important to keep the relation that A precedes C and B precedes C. Note, 

however, that the net number of precedes relations is reduced by 1, as there was an implied 

P (A , C ) before the application of T1 (see Figure 4.9). The notation P (x, y) means x precedes 

y.
More formally, this can be stated as follows:

if P(A, B ) A P (B, C ) A flT  3 (OI(T, A) A OI(T , B )) (4.4)

then remove P(A, B) and add P(A, C ) (4.5)

where P  means precedes, O I  means occurs-in, A , B , and C  are learning items, and T  is 

a topic. We call this the Topic-based precedes Breaking rule (T1). The notation O I(x,y) 
means x occurs-in y; Figure 4.10 shows a graphical representation of this transform.

When applying this transformation, it is not sufficient to look locally at only three nodes. 

It is possible that a preceding node has topical relations with future nodes. Removing a 
local precedes relation between two nodes that have no topics in common may inadvertently 

remove a topically related precedes connection that was expressed in a transitive way.
When looking at the nodes C, D, and E in Figure 4.11(a), it is not sufficient to only look 

at the topic connections between these three nodes. Figure 4.11(b) shows three negative 

application conditions that must be considered to identify which precedes relations can be 

removed and which cannot. Before removing the relation between C and D, the topical 

relations between A and D, B and D, and C and D must all be considered. Figure 4.11(c) 
shows the transformation of the graph when there is no topical relation between D and any 

of A, B, or C. Figure 4.12 shows two of the transformations that allow the precedes relation 

between C and D to be removed when there are topical relations between D and previous 
nodes. Each of these transformations allows the removal of the precedes relation between C 

and D while maintaining the topically related precedes of the previous nodes.
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Figure 4.9. T1: Topic-based Precedes Elimination Rule.

Positive Condition Negative Application Condition (NAC) Transformed Graph

Figure 4.10. Graph Transformation to Eliminate Unnecessary Precedes.

This demonstrates in detail how a simple precedes relation can be eliminated when there 
are no topics in common between adjacent learning items. Although this demonstration 

only includes the case of five nodes, it is important that the process is extended to include 
any number of learning items.

The application of this rule will reduce the number of precedes relations in the complete 

precedes graph. It is likely to increase the total number of edges in the graph that uses 
transitive reduction to simplify the complete precedes graph. Before the application of this 

rule, each node in the simplified graph had a single incoming edge and a single outgoing 
edge. Now a learning item that occurs in multiple topics may have an outgoing edge for 

each of those topics. This same node may have multiple incoming edges as well.

Figure 4.9 shows a section of the course map. This version of the course map incorporates 

the topic-based precede relations. It also expresses the occurs-in relation using colored rings, 

and the includes relation.

After the topic-based precedes elimination rule was first applied to the sample CS0
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Figure 4.11. When Transforming the Precedes Relations Alternatives Exist.

Figure 4.12. When Transforming the Precedes Relations Care Must be Taken to Consider 
Maintain the Transitive Relations From Previous Nodes.
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course, the instructor reviewed the resulting graph. Several unexpected findings were 
encountered.

4.3.1.1 Learning Items with No Topical Relations
There were five learning items that had no topic relations. Upon examination, two of 

the items were truly not related to any topic, an assignment in which students were to 
submit which team they wanted to be on, and the teacher evaluation. Both items were left 

unchanged, with no topical relations.
The other three clearly were related to a specific topic, but none of the terms in the 

topic list were found in the description. This could be remedied by using ENABLE’s file 

upload tool that provides a way to add additional text to the description of a learning item, 

or by using the user interface to edit the topic relations. This also caused the instructor 
to consider the value of more frequently using the topic terms explicitly in the textual 
presentation of the learning items.

4.3.1.2 Learning Items with Meaningless Topical Relations
There were six topical relations that connected learning items to topics mistakenly. In 

five of these learning items, the topic words occurred but were being used in a more general 

way. For example, one of the topics is content. This is specifically related to selecting 
content when creating a web site. However, the word content was used in its more general 

way in three of the learning items. In the other case the instructions included a restriction 

to not use JavaScript, which was a future topic. These relations were removed through the 
graphical interface.

4.3.2 T2 Topic-based Exam Splitting Rule
Exams are another limitation to course restructuring. Exams can cover multiple topics. 

This connects many learning items with varied topics to a single exam. Sometimes these 
connections are arbitrary, often occurring because of the temporal relation between the 

learning items. Commonly, an exam is written to assess the material that has been covered 
over a specific period of time, such as since the last exam or since the beginning of the 

semester, even though many of these learning items may not be related topically. When 

exams tie learning items together that are not related in any topical way, restraints are 

produced. These restraints are imposed by the temporal ordering of the existing course.

This time-based connection is not required for assessment. Therefore it is possible to 

divide the material assessed in an exam by topic. Separating the temporal grouping inherent
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in exams provides additional possibilities for change. This allows learning items to only be 
connected to the portion of the exam that covers the topics in that specific learning item. 

This disconnects learning items that are not related topically, allowing for more flexibility 

in organizing the learning items in different orders.

The topic-based exam splitting rule allows for the removal of these restraints. This 

rule cannot be applied until after the topic-based precedes elimination rule (T1) has been 
applied. Before the application of T1, there is only one incoming edge to an exam. There 

is nothing to split. After the application of the T1 rule, there may be multiple incoming 
edges to an exam. It is at this point that the learning items connected to the exam by these 

incoming edges can be considered as associated with only a portion of the exam.
If A precedes Exam 1 and B precedes Exam 1 and there are no common topics that occur 

in both A and B, then Exam 1 can be split into two exams, Exam 1A and Exam 1B, such 

that A precedes Exam 1A and B precedes Exam 1B, and A and B are independent of Exam 

1B and Exam 1A, respectively (see Figure 4.13). This transform must be applied after T1.

After the application of this exam splitting rule, the course map shows the separateness 
of the items coming into each split portion of the exam. This increases the amount of 

movement available in the course map (see Figure 4.14).

The first time the topic-based exam splitting rule was applied, there were fewer exam 

splits than expected. Upon closer review it was discovered that the exam asked questions 

about a topic without using a topic word explicitly. This seemed pedagogically sound. For 

example, one question about computer science history was “Why was the invention of the 

integrated circuit important?” Although this question does not use the term history, it is 

clearly assessing the student's familiarity with the computer science history covered in the 

course. These missing meaningful relations can be included by adding text that includes 
the missing topic words to the description using ENABLE's file upload tool or by editing 

the topical relations using the user interface. This adds the text to the ENABLE system 
without altering the exam itself.

There was one case where the review of the exam exposed the possibility of adding a 

word to the topic list. The word occupation was used in the exam that covered careers in 

computer science. This word was also used in other learning items about the topic. It was 

determined that adding this word to the topic list would add clarity. Adding the term to 

the topic list resolved this missing relation.
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Figure 4.13. T2 Topic-based Exam Splitting Rule.

Figure 4.14. Section of Course Map Showing Exam Split Transformation.

4.3.3 T3: Replacing precedes Relations with prerequisite Relations 
The precedes relation is the predominant relation expressed in the LMS. It is a weak 

relation tying learning items together only by the order in which they came in the original 

course.

In some cases this order is critical. And it is important to do one learning item before 

the other, as the second item is dependent on knowledge acquired from the previous item. 

In other cases the items are unrelated and the temporal relation is a restraint. A way 

to capture the difference between a critical precedes relation and an unnecessary precedes 

relation is by introducing the prerequisite relation. The prerequisite relation expresses a 

precedes relation that has specific benefit. This prerequisite relation identifies that there is
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educational value in doing one learning item before another.
The precedes relation has one learning item directly following another learning item. This 

limits the connections between learning items and does not allow flexibility in ordering. It 
is easy to identify cases when this representation is too limited to express how the learning 

items are actually related. As described earlier, there may be several learning items that 

are designed to prepare a student to complete a particular homework assignment, such as 
a lecture, a class activity, a video, and a reading assignment. Using precedes relations, a 
graphical representation would look similar to that shown in Figure 4.1. Representing it 

this way indicates a specific ordering between the learning items when, in fact, this ordering 

is not required. The lecture, video, activity, and reading can be done independently of each 
other, and it is not necessary to complete them in any particular order. A prerequisite order 
would better represent the meaningful relations. Eliminating precedes relations in favor of 

prerequisite relations provides a more accurate representation of the interconnectedness of 
the course material.

The topically related precedes relation removes precedes relations whenever there is no 

topical relation in common. This is a good first attempt at establishing prerequisites. 

Prerequisite relations are not explicit in the data gathered from canvas, and require expert 

knowledge to be accurately identified. Using the topically related precedes relations, an 
interface for the instructor or other expert is created so that this expert knowledge can be 

gathered. This interface uses the topically related precedes relations to present the learning 
items in a way to reduce the cognitive load for the expert. For each learning item the 

interface displays all learning items that precede it. These preceding items are separated 

into two categories, those with topics in common and those with no common topics. Each 
preceding learning item has an associated checkbox. The expert simply checks the box by 

those items that are prerequisites. They can choose items from either category.
Once the prerequisites have been identified, the course map is redrawn using these 

prerequisite relations to connect the learning items. Topically based occurs-in relations 

and unit-based includes relations are both included in this updated course map. No 

precedes relations are included. They have been replaced by the prerequisite relations (see 

Figure 4.15).

4.3.4 T4: Instructor Directed Transformation
Now that the temporal restraints of a synchronous course have been removed, the 

opportunities for restructuring the course are greater. The ENABLE system can now 

display a graph based on the occurs-in, includes, and prerequisite relations without the
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—► prerequisite

O  assignment 

O  resource 

O  exam

Figure 4.15. Section of Course Map Showing Prerequisite Relations.

time-based restraints. The final transformation is the instructor-directed transformation. 
The instructor can transform the course in two distinct ways: editing the course information 

and manipulating the course map.
ENABLE provides an interface that allows the instructor to edit many of the details 

about the course. They can add additional learning items. Additional content can be added 

to existing learning items. The short names used for labeling can be edited. Topical and 

prerequisite relations can be added or removed. Some details are not available in Canvas. 
This ability to add and edit details helps get the existing course represented more correctly. 

It also allows the instructor to make changes to the representation of the existing course. 

Once the changes have been entered, the system incorporates the new data to create updated 

course maps.
The other transformation that an instructor can do is manipulate the actual course map. 

The course map display is designed in such a way that the nodes can be moved about. As a 

node is moved, any connecting edges move with it. Keeping these connections intact during 

moving maintains the integrity of the graph structure. This manual manipulation of the 
course map provides a way to see the course with many different layouts. The learning 

items can be organized by topic, by exam, by learning item type, by prerequisite chains, 

etc. This provides the instructor the opportunity for exploration and discovery.
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When thinking about course change, it is difficult to stay aware of all the details as 
you make changes. It is easy to move learning items around and lose track of some of the 
ordering details. For example, it might look like a good idea to move activity seven earlier 

and forget that there is a prerequisite relationship between activity five and activity seven. 

If this error is not caught, students will have difficulty completing activity seven in this new 

order. This creates an unnecessary crisis during the delivery of the course. Being able to 

manipulate the course graph in this way that maintains the integrity of the structure, helps 

an educator be able to see the course in a variety of ways that are potentially successful 
options. In the same scenario, when the instructor drags activity seven to somewhere before 

activity five, they will visually see that prerequisite relation and schedule accordingly. This 

is a powerful tool.

4.4 Summary
The application of these four transformations removes the temporal restraints imposed 

by a linear, time-based presentation of learning material. This removal of temporal re­

straints facilitates more flexible organizations that become particularly valuable in asyn­

chronous settings such as online courses, technical training, or competency-based learning. 

The ability to manipulate this less restrictive structure becomes a valuable tool for explo­
ration.

Figure 4.16 shows the result of the application of the transforms T1 and T2. The revised 
graph affords much greater leeway in the organization, presentation, and order of selection 

of material for the instructor and the student.
Once the T1 and T2 transforms have been applied, many of the original organizational 

limitations have been removed. This opens the way for alternative arrangements of the 
learning items.

The graph in Figure 4.17 shows the learning items organized by topic. This arrangement 

separates the learning items in several distinct topic groups. The large group in the middle 

reflects the interrelated nature of several topics. This provides a visualization of how topics 

are related and how they might be rearranged. There is no visualization of includes relations.

The graph in Figure 4.18 is clustered by units. The similarity between the graph 
arranged by topic and this one indicates that the units in the original course organization 

grouped learning items into units by topic. Order of the units is not restricted by either 
temporal or topical relations. There are precedes relations between individual learning 

items in the five units in the center of the graph. In the first and second grouping there
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Figure 4.18. Course Graph Arranging Learning Items with Clustering by Units.
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are precedes edges going from one item in unit one to a learning item in unit two, and also 
precedes relations from learning items in unit two to learning items in unit one.

There is information in these graphs that can be visually retrieved. Consider the 

following:

• How many topics occur in a specific assignment? This question can be answered by 

looking at how many topic edges come into an assignment. In the sample course, only 

one topic occurs-in each of HW3, HW4, and HW7 while four topics occur-in each of 

HW5, HW8, HW9, and HW10.

• What units can be rearranged without interfering with precedes relations? The answer 

to this question can be found by looking at the precedes edges between unit clusters. 

For those units with no precedes edges between them the order can be changed without 

disrupting the temporal order restrictions expressed by these edges.

As the educator manipulates and considers, possibilities become more concrete and 
manageable. Having access to this kind of visual information has the potential to provide 

meaningful insights very quickly. This facilitates change.

4.4.1 Evaluation
At this point the evaluation criteria for Section 1.7.1, Course Content Analysis, and 

Section 1.7.2, Graph Transformations, has been met. Below is an analysis of the evaluations.

4.4.1.1 Evaluation Course Content Analysis
ENABLE is able to extract metadata about the learning materials from the LMS using 

the Canvas API. This data is analyzed to identify information about individual learning 

items as well as the structure of the existing course. This information is incomplete, so 
additional information is gathered from the user through a graphical user interface. If date 

information for a learning item does not exist, ENABLE assigns a date related to the unit 

the learning item is included in. For missing topical information, the user interface presents 

the learning items to the user and provides a means for the user to add additional content 

or directly add or remove topical relations. The data gathered from the LMS and the 
information entered by the user are analyzed to identify relations between learning items. 

This extracted information is used to create a graph representation of the existing course 

that represents learning items and topics as nodes and relations as edges within the graph. 

This graph shows the type of each learning item and the precedes, occurs in, and includes 

relations.
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The course content and analysis phase has been run on three existing courses, cs1030, 
a general education CS0 course, cs2610, a sophomore-level web applications course, and 

cs1405 - a CS1 lab course. All three courses were taught at Utah State University. The 

courses are referred to as course 1, course 2, and course 3, respectively, in the following 

reports.

ENABLE associates each learning item with a specific type. There are three types of 
learning items. The learning items of the resource type have no points associated with them 

and no due date. The learning items of the assignment type have a due date and points 
possible. The learning items of the exam type are a special case of an assignment. This 

type has a due date and points possible and is associated with an exam in the course. In all 
three courses ENABLE was able to identify the correct type of all learning items gathered 

from the LMS.

There were five learning items that were not gathered from the LMS, one from course 

1 and four from course 2. These learning items consisted of two .zip files and three links 

to external sources. Currently ENABLE does not process .zip files or links to external 

sources, so these items were not included in the work. The capability to handle these types 
of learning items could be added in the future.

Temporal ordering is determined by the due dates. These data are available from the 
LMS for both assignment and exam learning items. Resource learning items have no date 

associated with them in the LMS, so they are not considered in this comparison. The 

temporal ordering of the 28, 47, and 38 dated learning items from course 1, course 2, and 

course 3, respectively, was accurately identified. The temporal ordering of the graph was 

accurate in all cases.

Topics are not directly represented in the LMS, so to do this comparison the title of the 
module the learning item was in and the title of the learning item itself were considered. 

If a topic word or word phrase showed up in either of these, the topic was counted. Each 
learning item then had a count of how many topics occurred in it in the LMS. A count was 

also done of the number of topic relations for each learning item in ENABLE. These topic 

counts were compared.
For course 1 there were 24 learning items that had the same topic count in both the LMS 

and ENABLE. There were 22 learning items that had a higher topic count in ENABLE. 

There were five learning items that had a larger topic count in the LMS. For all five of these 
learning items the additional topic was an error in the LMS that resulted from a topic word 

in the module title that was not actually in a learning item. In all cases the number of
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correct topic relations was either the same or better in ENABLE (see Figure 4.19).
For course 2 there were 45 learning items that had the same topic count in both the LMS 

and ENABLE. There were 22 learning items that had a higher topic count in ENABLE. 
There were five learning items that had a larger topic count in the LMS. For four of these 

learning items the additional topic was an error in the LMS that resulted from a topic word 

in the module title that was not actually in a learning item. In the remaining one, it was an 

error in ENABLE where the topic relation was left out. In all cases the number of correct 

topic relations was either the same or better in ENABLE. See Figure 4.20.
For course 3 there were 59 learning items that had the same topic count in both the LMS 

and ENABLE. There were 28 learning items that had a higher topic count in ENABLE. 
There were no learning items that had a larger topic count in the LMS. See Figure 4.21.

In all three performance areas for the course content analysis section of the work, 

ENABLE's performance was high. That performance is rated in Table 4.1.

4.4.1.2 Evaluation Graph Transformations

Using the course map developed for each course, graph transformations can be made. 

Some of these transformations are system generated, some are user directed, and some use 
a combination of system-generated and user-directed information to perform the transfor­

mations. All transformations are restricted to valid organizations that conform to the rules 

of directed acyclic graphs and the semantic rules imposed by the relations.
ENABLE is able to produce the following transforms.

• T1: Topic-based Precedes Elimination Rule.

• T2: Topic-based Exam Splitting Rule.

• T3: Replacing Precedes Relations with Prerequisite Relations.

• T4: Instructor-directed Transformation.

4.4.2 Additional Courses Produce Course Maps
In addition to the three sample CS courses analyzed and reported in the previous 

sections, ENABLE was used with seven other courses. These courses included the subject 

areas of Instructional Technology, Chemistry, English, Languages, and History. Each course 
had a different teacher. As with the three CS courses, ENABLE was able to gather learning 

item data using the Canvas API and generate course maps. The instructors of the two 

Instructional Technology courses were available to provide expert knowledge about those
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Learning Items

---- ENABLE topic count — -LMS topic count

Figure 4.19. Comparison of Topic Counts in LMS to Topic Counts in ENABLE for Sample 
Course 1.

Learning Items

ENABLE topic count — LMS topic count

Figure 4.20. Comparison of Topic Counts in LMS to Topic Counts in ENABLE for Sample 
Course 2.
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Learning Items
ENABLE topic count ----LMS topic count

Figure 4.21. Comparison of Topic Counts in LMS to Topic Counts in ENABLE for Sample 
Course 3.
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Table 4.1. Performance of ENABLE on Performance Measures in Course Content Analysis 
Section.

Course 1 Course 2 Course 3
Learning Items of Cor­
rect Type 5 5 5

Temporal Ordering of 
Learning Items is the 
Same

5 5 5

Topical Relations Cor­
rectly Represented in 
Course Map

5 5 5

two courses. This allowed the course maps for these courses to include details about topically 

based occurs in and prerequisite relations. For all the courses the temporally based precedes 

relations were extracted from the data available from Canvas.

Each of the additional courses used the Modules tool in Canvas. This allowed the 
inclusion of the unit-based includes relations. However, some of the learning items were not 

included in the modules tool. This left these learning items with no includes relations. After 

discussion with the available instructors, it was noted that an interface that facilitated the 

editing of includes relations, similar to the interface that provides editing of the occurs in 

and prerequisite relations, would be beneficial.

The graph transformations T1, T3, and T4 were produced in the cases where an 

instructor was available. None of these courses contained exams, so the T2 transform 

was ineffectual.
This demonstrates the ENABLE system can be used in a variety of subject areas and 

with courses developed by different instructors. The system was able to produce all the 

course maps on all the additional courses. Each of the course maps was able to be 

manipulated. When expert knowledge was available, additional information was represented 

in the course maps.



CHAPTER 5

ARTIFICIAL STUDENT AGENTS

One of the differences between face-to-face courses and online courses is the possibility 
of individual students moving through the learning items in different orders. In a classroom 

setting it is not likely that students could be working on different learning items. However, 
in an online course each student could be on a different learning item at any given time. 

This introduces an entirely different component to a course. Is it possible to allow students 
to choose for themselves what order to complete the learning items? Can such flexibility 

be supported by the ENABLE system? Is it important to establish some limitations to the 

ordering? Can those limitations be enforced?

To explore these questions, artificial student agents were created. These agents are able 

to traverse the course map in a variety of node sequences. The agents are limited only by 

prerequisite relations. A learning item cannot be attempted until the agent has visited all 

the prerequisite learning items. When the agent visits a node, it can choose to work on 

the learning item or not. A trace of the order the learning items are visited is recorded 
as each agent moves through the learning items, also referred to as traversing the graph. 

These agents can be used to traverse the graph over and over, producing a new trace for 
each traversal. The traces from these traversals demonstrate a large variety in the order in 

which the learning items can be attempted. This demonstrates the possibility of allowing 
students to choose the order in which they move through the learning items. This increases 

the variety of changes that are possible.
Each automated agent has a set of characteristics and implements decision-making. Each 

agent can perform multiple and varied traversals through the course map. These traversals 

are quantified by two values, the final overall score and a rating for topic cohesion. The 

final overall score is a percentage computed from the individual scores and weights of the 

learning items (see Equation 5.11). The topic cohesion is a value that indicates how topically 

related the order of the traversal is. A high number for topic cohesion means the traversal 
ordered the learning items closely by topic. A lower number indicates there was more topic 

deviation between the learning items during the traversal. Topic deviation is when there
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are no common topics between adjacent learning items.

5.1 Student Agent Decision Making
In an effort to more closely simulate real students, each agent has four characteristics. 

These characteristics impact how often an agent decides to not complete a learning item, 

how well they do on a learning item, and how they choose which learning item to do next:

• Intelligence

• Work Ethic

• Background

• Distractibility

They are abbreviated in the formulas as I, W, B, and D. Each of these characteristics can 

have a value of 1, 2, or 3 (integers).
The value 1 represents the least favorable and 3 the most favorable value for each 

characteristic:

• Intelligence: 3-high 2-medium 1-low

• Work Ethic: 3-high 2-medium 1-low

• Background: 3-high 2-medium 1-low

• Distractibility: 3-low 2-medium 1-high

These numbers can be used directly in the formulas described below.
An agent first decides which learning item to consider next. The ones that are allowed are 

any learning item which has no remaining prerequisites. But there is a bias about working 

on learning items in the same unit. This bias is based on the agent values for background 

and distractibility. The assumptions are that students with greater background are more 
comfortable moving between multiple units, and the higher the agent's distractibility the 

more likely they are to move from unit to unit. The number of units to consider is 

determined using a table look-up. The key to the table is computed using the following 
formula:

k =  B +  (4 -  D) (5.1)

where B is the agent’s rating for background and D their rating of distractibility. Table 5.1 
shows the maximum number of units to consider at any given time based on the key.
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Table 5.1. Number of Units to Consider When Choosing Next Learning Item.

Key Number of Units to Consider
6 All remaining
5 3
4 2
3 1
2 1

A course map is a graph, M  =  (N , E), where N  is the set of learning item, topic and 

unit nodes, and E is the set of precedes, topically precedes, prerequisite, occurs in, and 
includes edges (relations). Then the course map is C =  (L, R), where £ c N  is the set of 

learning item nodes and R c E  is the set of prerequisite edges. A path of length k is any 

legal sequence P  =  {n 1,n 2,...,n k+ 1}, where Ui e L and - 3 i, j  3 nj prerequisite Ui and 
i <  j .  Let P S be the set of nodes in the path P . Then a traversal of C is a sequence of 

paths T =  (P1,P 2, ..., Pq) 3 ViPi is a path and V ijP S n P j  =  0.

Each learning item, ni, has a list of prerequisites Qi =  n 1,n 2, ...,ni where Uj e L and 

3i, jn j prerequisite ni. Each learning item also has a remaining prerequisite list, Si, where 

Si e  Qi is the set of prerequisite items that have not yet been visited. T s is the set of 
all remaining prerequisite lists. A learning item ni cannot be visited until its remaining 

prerequisite list Ti =  0.
The selection of which learning item to work on next is implemented by selecting the 

first N  units that have remaining items to consider, where N  is the maximum number of 
units the agent will consider. If there are fewer than N units remaining, all the remaining 

units are considered. Within each of these units any learning item ni where Ti =  0 is added 
to the consideration list.

The agent randomly selects one item from the consideration list. This item is then 

visited. Once an agent visits a learning item, it will determine whether to work on the item 

or not. When an agent decides not to work on a learning item, they receive a zero score for 

that item. When an agent decides to work on a learning item, a nonzero score is generated 
for that item. When a student agent visits a learning item node, that node is removed from 

all remaining prerequisite lists.
In the real data the zeros are significant. Although they have low probability, they have 

significant impact on the final score. Consider Table 5.2. The first value in each pair shows 
the final scores from the score data from the existing course. The second value in each
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Table 5.2: Com pare Final Scores Com puted W ith  
and W ithout Zero Scores. Each Pair Consists o f  Final 
Score Com puted with Z eros / Final Score Com puted 
without Zeros.

Final Score Pairs
7.89 87.44
11.71 97.43
18.44 77.09
20.63 51.44
27.06 84.63
30.12 63.93
30.84 79.41
41.68 69.92
43.3 63.5
53.86 90.36
59.06 74.24
61.09 75.73
61.83 81.3
64.19 76.76
66 68.52
67.23 78.62
68.39 76.1
68.64 76.21
68.77 77.83
68.79 73.35
69.77 76.52
69.95 74.4
70.23 87.5
70.24 73.64
70.3 75.09
71.01 71.95
71.16 81.4
71.21 84.97
72.34 80.76
72.75 76.79
73.04 78.18
73.22 74.56
73.38 76.5
74.54 84.94
74.68 80.35
74.86 74.38
74.96 82.4
75.46 84.37
77.42 85.9
77.47 91.49
77.59 81.14

82.14 85.81
82.49 93
82.95 84.77
83 90.83
83.13 86
83.32 83.4
83.93 93.05
84.21 83.86
84.25 88.98
84.28 91.44
84.86 89.35
84.87 84.16
84.9 84.71
85.01 86.58
85.21 88.99
85.34 85.24
85.34 88.93
85.64 87.63
86.11 85.91
86.26 86.48
86.35 96.92
86.67 91.05
87.33 89.16
87.5 87.29
87.76 92.12
87.91 87.61
88.07 87.9
88.08 87.67
88.28 90.4
88.51 90.78
88.77 95.07
88.88 92.15
89.04 88.93
89.23 90.65
89.28 88.4
89.69 89.24
90.17 90.17
90.23 90.18
90.43 90.78
90.78 92.9
90.8 90.61

92.25 94.18
92.32 94.69
92.63 94.9
92.81 94.83
93.02 96.34
93.16 92.61
93.17 93.05
93.23 94.65
93.58 93.38
93.6 93.55
93.68 95.52
93.88 93.88
93.98 93.44
94.22 93.77
94.25 94.1
94.36 96.74
94.5 96.89
94.55 95.53
94.6 94.6
94.7 93.87
94.71 94.66
94.73 96.9
94.81 94.36
94.91 94.8
94.94 94.33
95.04 94.7
95.25 95.05
95.36 95.11
95.69 95.69
95.89 95.29
95.94 96.33
96.04 96
96.13 96.12
96.24 96.24
96.29 95.7
96.45 96.36
96.46 96.46
96.55 98.92
96.7 96.65
96.87 96.82
96.93 96.7

Continued on next page
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Table 5.2 -  continued 
Final Score Pairs

78.61 80.17 90.8 90.62 97.15 97.12
79.72 79.36 91.36 93.39 97.37 97.86
80.15 79.42 91.38 90.74 97.95 97.91
81.12 85.67 91.42 90.72 98.67 98.67
81.34 84.14 91.73 96.65 98.77 98.77
81.92 88.64 91.79 94.14 98.86 98.84
81.99 84.9 91.95 93.97
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pair shows the final score when zeros are not included in the computation. This number 
expresses how well the students did when they choose to do a learning item.

For the students who are at the top 20% of the class, the difference is not significant. 

Here we see where very few learning items are skipped. The difference when the average 

total score is computed with zeros and without zeros is .0002862. This number could be 

overlooked without making much difference on how a student agent works. However, for 

the bottom 20% of the student population the difference between the total average score 
computed with zeros and without zeros is .230675. This number is important.

To see the significance of this issue, let us consider a few specific students. The first 

student we consider received 27.06% as their final grade. Simply looking at this final score 

would indicate that the student did very poorly, and if we created an agent to represent 
them, we might choose to give them low scores on all the learning items they attempted. 

But looking closer we see that this student received an overall average of 84.63% on the 
learning items that they completed. This student participated actively for the first third of 

the class, including exam one. The scores they received on the work they did indicate this 

student could have successfully completed the course.
The next student looked at had an overall final score of 59.06%. This student did 18 

of the 38 graded learning items. For the learning items they completed they scored an 

average of 90.36%. This student participated through to the end of the semester and could 
obviously do the material. Somehow this student missed the first exam.

The last student we will look at received a final score of 77.47%. This is certainly a 

passing grade. This student did 34 of the 38 graded learning items. He took all three 

exams, missing just two homework assignments and two quizzes. The score he received on 

the learning items he completed was 91.49%, a solid A-. In many different scenarios, it is 
the learning items that are not attempted which have the most impact on the final grade.

The zero score is an anomaly, not covered by the normal Gaussian curve. But to reflect 

more closely the actual data, it is an important detail that should not be overlooked. 

Therefore zeros are handled in a distinct way. Zeros are handled differently for graded 
learning items and ungraded learning items. We begin with an explanation of the graded 

items

5.1.1 Determining Whether to Do a Graded Learning Item
The number of zeros to include in any agent traversal of the learning items is computed 

from the actual data. Canvas allows the instructor to categorize learning items into different 

groups. Analysis of the data shows that there is a significant difference in the number of
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zeros, depending on the assignment group. Table 5.3 shows the percentage of zeros for each 
assignment group in one of the sample courses. The first row lists the percentage of zeros for 

all students in the data set. The following rows only include a cross section of the students. 

The students are separated by percentile rankings.
The decision of whether to do a graded learning item or not is made based on the 

characteristics of work ethic and distractibility. The assumptions are that those who rate 
high on work ethic are more likely to complete a learning item while those with high 

distractibility are more likely to skip them.
The percentage of how often a student agent will choose not to work on a graded learning 

item is computed from the existing score data. The percentage of zeros is determined for 

each assignment group and three groups of students. Assignment groups are identified 

during the course analysis phase and a group number is associated with each learning item. 

The groups of students used in this analysis are determined using percentiles and the final 

course score. The high student group are those with a final score between 90-94 percentiles, 

inclusive. The middle group are those students with a final score between 45-54 percentiles, 

inclusive. The low student group are the students with a final score between 5-9 percentiles, 
inclusive.

For each group of students and each assignment group the percentage of zeros is com­

puted with the following formula:
P  =  N z/N  (5.2)

where P  is the percentage of zeros, Nz is the number of zero scores, and N is the number 

of scores.

Each percentage is evenly split between work ethic and distractibility.

Wi =  .5 * Pi for i =  1 to 3 (5.3)

Di =  .5 * Pi for i =  1 to 3 (5.4)

where Wi is the work ethic component of the percentage rate of zeros for student agents, 
with work ethic =  i, and D i is the distractibility component of the percentage rate of zeros 

for student agents, with distractibility =  i. Pi is the computed percentage for the high (3), 

middle (2), or low (1) student group. The work ethic component and the distractibility 

component are added together to get the students’ overall rate of zeros, Zi, for each 

assignment group.

Zi =  Wi +  Di (5.5)
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Table 5.3. Percentages of Zeros for Assignment Types and Student Percentile Categories.

Overall Assignments Quizzes Activities Exams
All 11.8% 9.7% 18.7% 12.7% 4.0%
90-94 1.1% 0.0% 3.5% 1.4% 0 .0%
45-54 5.6% 4.9% 10.0% 6 .0% 0 .0%
5-9 33.8% 32.5% 50.0% 34.3% 14.3%

A random number is generated in the range of 0-1. If the number falls below the zero 
frequency rate for that agent and learning item type, the agent does not work on the learning 

item. If the number is equal to or greater than the frequency rate, the agent works on the 

learning item.
If the agent decides not to work on the current graded learning item, they receive a score 

of zero and the item is removed from the consideration list and all remaining prerequisite 

lists.

If the agent decides to work on a graded learning item, the next step is to compute the 
score for that learning item. The computation of the score is different based on whether 

the learning item is an exam or not.

5.1.2 Determining Whether to Do an Ungraded Learning Item
To determine whether a student agent works on an ungraded learning item, work, dis- 

tractibility, and background are considered. As with graded learning items, the assumptions 
are that those with a high work ethic rating are more likely to complete a learning item, while 

those with high distractibility are less likely to complete an item. In addition, background 

is considered for ungraded items. The assumption is that those with more background are 

less likely to engage with the supplemental material. The following formula computes a 
percentage of how often an agent chooses to not work on an ungraded learning item.

P =  a0(2 — Wa\ +  B a 2 — D a 3) (5.6)

where W is the agent’s value of work ethic, B is the agent’s value of background, D is the 

agent’s value of distractibility, and a  are coefficients determined from analysis of previous 

classes.
The result of this computation becomes the zero threshold for this particular agent on 

ungraded learning items. A random number is generated in the range of 0-1. If the number 

falls below the computed percentage, the agent does not work on the learning item. If
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the number is equal to or greater than the computed percentage, the agent works on the 
learning item.

The value for an ungraded item is either true or false, depending on whether the agent 

decided to work on that item or not. If the agent decides not to work on the current 

ungraded item, the value is set to false. When the agent decides to work on an item, the 

value is set to true. In either case, the item is removed from the consideration list and all 

remaining prerequisite lists.

5.1.3 Scoring Non-Exam, Graded Learning Items
The grade computation depends on the value of all four agent characteristics. The 

greatest weight is on work ethic and intelligence. The max of these two values is used. 

The assumption is that either hard work or intelligence will produce a good result on these 

learning items. A smaller weight is put on the sum of background and distractibility. 

The assumption is that increased background and better focus will help with satisfactory 
completion of the item.

Each learning item has a different maximum points possible, and the distribution of 

scores from the existing course varies significantly from item to item. There were assign­

ments that resulted in a nice Gaussian score distribution and others that had a more uniform 

distribution. To accommodate such variation in the possible scores, the first formula for 
determining the score computes a percentile.

P  =  max(0, min(0.99, m ax(I, W)a\ +  sum(B, D )a 2 — a 3+  e)) (5.7)

where I  is the agent’s value of intelligence, W is the agent’s value of work ethic, B is the 

agent’s value of background, D is the agent’s value of distractibility, a  are coefficients 

determined from analysis of previous classes, and e is the amount of noise computed with 

e ~  N (0 ,a2). This noise adds random variation to the scores produced by the agent. The 

maximum amount of noise can be set at run time. The default value when not specified is 
a =  .15.

The score associated with this percentile is computed using the following process. First, 
remove all zero scores. Zero scores have already been accounted for when the agent 

determined whether to complete a learning item or not. To include them here as well 

would give greater weight to zeros than is justified by the data. The remaining scores are 

then sorted in ascending order.
Using this sorted list of scores, the rank is determined using the following formula:

R =  P  (N +  1) (5.8)
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where P  is the desired percentile and N is the total number of scores.
If R is an integer, the Pth  percentile is the score with rank R. When R is not an integer, 

the Pth percentile is computed by interpolation. Define Rj as the integer portion of R. 

Define R f as the fractional portion of R. Find the scores with Rank Rj and with Rank 

Rj  +  1. Interpolate by multiplying the difference between the scores by RF and add the 

result to the lower score. Round this result to the nearest integer.

5.1.4 Scoring Exams
This grade computation depends on the value of all four agent characteristics. The 

greatest weight is on intelligence. The assumption is that intelligence will be the most 
likely indicator of success on an exam. The next greatest weight is on the value of work 

ethic. The assumption is that hard work on previous learning items will result in a better 

exam score. A smaller weight is put on background and distractibility. The assumption is 

that increased background and better focus will help with satisfactory completion of the 
exam.

The following formula is used to compute the percentile for this exam:

P =  Ia\ +  W a2 +  sum(B, D )a 3 — a4+  e (5.9)

where I  is the agent’s value of intelligence, W is the agent’s value of work ethic, B is the 

agent’s value of background, D is the agent’s value of distractibility, a i are coefficients 

determined from analysis of previous classes, and awhere N (0 , 12) is the amount of 

noise.
The resulting score is recorded by the agent. The item is then removed from the 

consideration list and all remaining prerequisite lists.

5.1.5 Computing the Final Score
After the agent has visited each node in the graph, a final score is computed. This 

final score it computed from the individual scores of each learning item and the weight of 

that item. Canvas allows instructors to set weighted percentages on each assignment group. 

These weights specify how much of the final grade is based on the specific assignment 

group. The assignment groups and the weights are shown for each of the sample courses in 

Table 5.4, Table 5.5, and Table 5.6.
ENABLE uses these weights to compute an individual weight for each learning item, 

using the following formula:

Wi =  WG( -PG) (5.10)
Pj
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Table 5.4. Weights of Individual Assignment Groups in Sample Course One.

Assignment Group Weight
Homework 30%
Exercises 10%
Class Activities 20%
Exams 40%

Table 5.5. Weights of Individual Assignment Groups in Sample Course Two.

Assignment Group Weight
Assignments 40%
Class Activities 20%
Exams 40%

Table 5.6. Weights of Individual Assignment Groups in Sample Course Three.

Assignment Group Weight
Worksheets 50%
Labs 50%

where W j is the weight of the assignment group, Pi is the points possible for this learning 

item, and P j  is the points possible for the entire assginment group.
The final score can then be computed using the following formula:

N
F =  £ (W iS i)  (5.11)

i= 1
where Wi is the weight of the learning item, Si is the score for the learning item, and N is 
the number of learning items.

5.2 Agents at Work
At this point the agents have been created and their decision-making has been encoded. 

The system can now use the agents to generate data. Each agent has four characteristics: 
Intelligence, Work Ethic, Background, and Distractibility. Each of those characteristics 
can have three values: high, medium, and low. There are a total of 81 unique character 

combinations. Information about seven agents with the characteristics shown in Table 5.7 

is presented here.
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Table 5.7. Characteristics of Student Agents.

t1negA Agent2 Agent 3 Agent4 5tnegA totnegA Agent7
Background 3 2 1 3 3 3 1
Intelligence 3 2 1 1 2 3 3
Work ethic 3 2 1 3 2 1 3
Distractibility 3 2 1 2 3 1 1

Using the computation for zero frequency, each agent is assigned a threshold for zeros 
in each category, as shown in Table 5.8.

Now each agent traverses the course a certain number of times. For each run, a trace is 

produced that identifies the order the agent traversed the learning items. A score is kept 
of each learning item. At the completion of the run a final score is calculated. This final 

score is used to compare one run to another.

As a student agent traverses the course map, it keeps track of each learning item as it 

encounters it. This trace can be displayed. The printed trace includes a list of the labels 
for each learning item. For the learning items that the agent did not complete, the label is 

in parentheses. Following are three traces of one of the student agents with characteristics 

of background: 2, intelligence: 2 , work ethic: 2 , and distractibility: 2

[Nweb HW6 HW1 CA1 CA2 HW3 Vpub faq5 (Vorg) CA6 CA7 HW2 HW5 Ndarp 
CA3 Exer2 CA5 Nhist CA4 HW7 Nacm (CA8) Exerl Nsty HW4 CA9 CA10 HW8 CA11 

Exer3 Exam1 CA15 CA12 CA13 Exam2 CA18 CA19 CA14 Exer4 HW9 (CA20) CA16 Idea 

(CA17) HW10 Exam3]

[HW1 CA1 HW6 (Vpub) (faq5) Nweb Vorg CA2 HW2 HW4 HW3 CA6 HW5 CA7 
Nacm CA3 CA5 Ndarp Exer2 CA4 Exer1 Exam1 CA8 Nhist Nsty CA9 CA11 HW7 Exer3 

CA12 CA10 HW8 CA13 CA14 CA15 HW9 CA16 Exam2 CA19 Exer4 CA20 CA18 CA17 

Idea HW10 Exam3]
[(Vpub) HW1 Vorg (CA1) HW3 (faq5) HW6 HW2 Nacm HW4 CA3 CA2 CA6 (Nweb) 

CA4 HW5 CA5 CA7 Exer1 (Ndarp) Exam1 Nsty Exer2 Nhist CA8 CA9 CA11 HW7 CA10 

CA12 HW8 Exer3 CA13 CA14 HW9 Exam2 (CA18) CA15 CA20 Exer4 CA16 CA17 CA19 

Idea HW10 Exam3]

These traversals demonstrate the variety of ways the course map can be traversed by 

a single agent. At the end of a series of traversals, the mean, max, min, and standard 

deviation of the final scores are computed. We can compare these values to agents with 

different characteristics. When comparing these we see that running the agent 1000 times
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Table 5.8. Percentage of Zeros for Each Student Agent.

t1negA Agent 2 Agent3 Agent4 iOtnegA totnegA Agent 7
Homework .0000 .0485 .3247 .0242 .0242 .3247 .1623
Quizzes .0357 .1000 .5000 .0679. .0679 .5000 .2679
Activities .0143 .0867 .3429 .0505 .0505 .3429 .1786
Exams .0000 .0000 .1429 .0000 .0000 .1429 .0714
Resources .1860 .3240 .4620 .2760 .2640 .5220 .3060

produces steady mean values (see Table 5.9 and Figure 5.1). The variation is still apparent 

in the max and min scores. This number of traversals allows extreme highs and lows. The 

topical cohesion also stabilizes with many traversals. It varies only by a single point between 

large traversals for any given agent.

5.2.1 Evaluation of Artificial Student Agents

In this section the evaluation criteria for Section 1.7.3 are considered. Seven student 

agents were created and many varied traversals were run. The traversals followed the 

constraints of the prerequisite relation and did not allow a learning item to be considered 
until any prerequisite learning items had been visited. The agent reported a final score 

which is a value between 0-1 and is representative of the a final weighted percentage that a 

grade would be based on in the example course. It also reported a topic cohesion value. A 

high topic cohesion value indicates the adjacent learning items in the traversal were often 

topically related. A lower topic cohesion value identifies that there were fewer adjacent 
learning items that were topically related.
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Table 5.9. The Cumulative Results of Each Student Agent for Traversals of 1000 Paths.

B I W D

topic
cohe­
sion

95%
confidence
interval max min a

3 3 3 3 22 [97.9-98.06] 100.00 91.24 1.37
2 2 2 2 22 [87.22-87.64] 95.24 74.54 3.43
1 1 1 1 22 [43.35-44.31] 74.94 17.58 7.80
3 1 3 2 19 [89.06-89.44] 96.83 74.10 3.12
3 2 2 3 22 [91.81-92.15] 98.39 80.48 2.72
3 3 1 1 19 [68.75-69.93] 88.78 36.64 9.51
1 3 3 1 22 [81.7-82.56] 95.94 57.22 6.96

Figure 5.1. Chart of Mean and Confidence Rating for Seven Agents with 10, 100, and 
1000 Traversals.



CHAPTER 6

BEHAVIOR MODELING

A probability model gives us a way to make predictions. Predictions can be used to 

inform students and educators about possible outcomes. With the data available in the 

existing course, can probability models be generated? If so, how accurate are they?
To answer these questions, several probability models to predict grades on learning items 

were created. These models are trained using the existing score data. What was discovered 

is that, indeed, probability models can be generated from existing data. Many of those 

models are able to predict individual scores with over 70% accuracy. These models can be 

sampled to produce data that have a distribution similar to the original data.
This predictive capability can be used to inform students about the likely results of 

choices they make. One of the clear messages from this work is that zeros have a significant 

impact on the overall success of a student. If a student was informed of the probable 

outcome of skipping an assignment, they may reconsider. If a situation required a large set 

of data that is representative of this specific course, these predictive models could produce 

those data.

6.1 Bayesian Network
The course map described in Chapter 3 represents the learning items and relations 

between those items using a graph. Chapter 4 discusses how these graphs are then trans­

formed to provide better representations of the actual course and alternative organizations. 

In all these cases the graph that is produced is a directed acyclic graph (DAG). A Bayesian 

network is a DAG that represents a full joint distribution over a set of random variables, 
where each random variable represents the probability of a grade.

6.1.1 Building a Bayesian Network
ENABLE produces a representation of a course that includes learning items and a variety 

of relations between those items. Using this information a Bayesian network can be created. 

This network has nodes that represent the learning items and edges corresponding to the 
relations. Anonymized score data were provided by the Center for Innovative Design and
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Instruction, the department at Utah State University that supports Canvas on that campus. 
These data are used to create the Bayesian network.

To build the conditional probability tables (CPTs), several possibilities must be consid­

ered. First, how to allocate individual values for each item must be decided. The scores 

themselves are discrete values. The number of possible values varies, depending on the 

points possible. Creating a column in the table for each possible value is problematic 

because of the size of the table and how sparse it would be. The effect is compounded by 

the fact that these values become inputs into other CPTs. For example, an assignment 
in one of the courses is worth 88 points. Creating a column in the table for each possible 

score from 0-88 requires 89 columns. This particular assignment has five prerequisites with 

possible points of 20, 20, 70, 10, and 20. Using each discrete value for all of these parents 

will produce 7,232,841 possible input combinations, creating a table with 643,722,849 cells. 

The actual data contains one score for each of the students for a total of 143 values for this 
learning item. This produces a table that consumes too much memory and is far too sparse. 

This problem can be resolved by separating the values into fewer possible choices.

To address this problem, the scores are separated into a specified number of buckets. Two 
different processes for defining the bucket allocation are considered. The first separation is 

determined using percentiles. In this approach variance is allowed for how many buckets 

to include. The percentile range is determined by dividing 100 by the number of buckets. 

Once the percentile range is determined, the actual percentile scores are computed. There 
are times when the example scores fall evenly into the nonzero buckets. This happens when 

the percentile breaks happen between different scores. However, it is often the case that 

there are many scores with the computed percentile score. When this occurs, all the scores 

equal to the computed percentile score are allocated to the same bucket.
The second approach for allocating scores is to define buckets by grades A, B, C, and 

D/F. This results in four buckets when zeros are included in the D /F bucket and five buckets 

when a separate zero bucket is included.
When analyzing scores for learning items, the score of zero has special significance. It is 

a score that shows up on most learning items but it regularly falls outside the normal curve. 
The zero score most often reflects that the student did not participate in the learning item. 

This reflects something very different than a low score. A low score indicates that a student 

participated but did poorly. The existence of the zero score is an anomaly in data that is 
often considered a Gaussian distribution. To increase the accuracy of the predictive model, 

this score will be considered in a distinctive way.
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The other anomaly occurs at the maximum points possible. Many learning items have 

a higher than expected value at this point. This arises from the fact that higher scores are 

not possible. This upper limit will disrupt the normal extension of a Gaussian distribution 
and congregate an increased number of scores at this maximum attainable score.

To create the CPTs, the parent nodes must be clearly specified. ENABLE provides a 

variety of representations of the course map. This allows us to produce several variations 
of the Bayesian Network. The relations that will provide parent node connections in the 

CPTs will come from the course maps. Both the immediately precedes and the prerequisite 
relations will be represented.

The immediately precedes relation produces exactly one parent for each node except the 

first node, which will have no parent. This will produce a consistent size throughout the 

CPTs. The first learning item will have a 1xB  table where B is the number of buckets. For 

all the learning items after the first, each table will be BxB in size. This limited dimension 

allows us to increase the number of buckets without running out of resources.

The prerequisite relations produce tables with varying dimensions. The width of each 

table will still be determined by the number of buckets specified and will be B wide. It is 
the number of inputs that will vary. As the number of parents increase, the size of the table 

increases exponentially. The table will have B P rows, where B is the number of buckets 

and P is the number of parents. This table will have B (P+1) entries.
There are cases where a learning item has several prerequisites. For example, in three 

of the sample courses the maximum number of prerequisites was 8 , 16, and 4. In the case 
where the item has this maximum number of prerequisites and there are four buckets, the 

table will have 262,144, 17,179,869,184, and 1,024 entries, respectively. These same courses 

have 143, 57, and 216 actual scores for this item. This leaves most of the entries empty. 
These empty entries are regularized, so they are considered to have some small probability, 

but the ratio between actual data points and entries is so small as to reduce the accuracy 

of the predictions.

One variation that can be used to reduce the number of parents and accordingly the 

number of entries is to prune the prerequisites. In some cases a prerequisite list contains 

a prerequisite that has as its prerequisite an item that is in the original prerequisite list. 

This could be considered redundant. It is possible to consider the prerequisite relations 

as transitive. This would mean that if A prerequisite B and B prerequisite C, then A 
prerequisite C. If this transitive rule holds, then it is sufficient to list A prerequisite B and B 

prerequisite C without including A prerequisite C. This transitive property will hold when
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all the topics that are common in A and C are also included in B. This pruned prerequisite 
list is significantly smaller. In the three sample courses the maximum pruned prerequisite 

list is 5, 4, and 3. This reduces the number of entries when 4 buckets are used to 4,196, 

1,024, and 256. This significantly increases the ratio of data points to entries.

6.1.2 Variations of the Bayesian Network
There are several factors that can be manipulated to produce different versions of the 

Bayesian network. Following is a list of the variations that were considered.

• Number of Buckets

-  This is a value that can be entered as a parameter. This number directly 

influences the number of entries in each table.

• Parent relations - How the parents are determined can be specified in the following 

ways:

-  no parents

-  immediately precedes

-  prerequisites

-  pruned prerequisites

• Buckets determined by

-  percentiles

-  grades

• Zero bucket

-  zero bucket used: one of the buckets is reserved exclusively for zero scores

-  zero bucket not used: zero scores are entered in the grade or percentile bucket 

they fit

The number of buckets changes the model in two significant ways. First, increasing the 
number of buckets increases the number of input combinations that need to be considered. 

This increases the number of entries in each table. For example, consider a node that has 
three parents. If there are two possible values for each parent and the current item, there 

will be 8 possible input combinations and 16 entries in the table. If the number of buckets



102

is changed to seven, there are 343 inputs into the table and 2041 entries (see Figure 6.1). As 
the CPT tables grow in size, the cost of processing, memory usage, and sparseness increase. 
By restricting the number of parents to four, we are able to increase the number of buckets 

to 10 and still be able to produce results. Any larger than that and it increased the demand 
for memory beyond capacity.

The second issue with increasing the bucket size is reducing the size of the target. 

Because each bucket contains fewer possible values, projections are less likely to hit the 

correct one. This increases the error rate of the model. For most of the analysis, the bucket 
size was set at three to five buckets.

Even more than the number of buckets, the number of parents impacts the number of 

entries in any given CPT table. Keeping the bucket size at four and changing the number 

of parents, we see an exponential increase in the entries in the CPT (see Figure 6.2). This 

significantly increases the cost of processing, memory usage, and sparseness of the data as 
the number of parents increases.

There are several ways to impact the number of parents in the Bayesian network. As 

listed, four options were considered. The first option was to have no parents. This is to 
consider the learning item in isolation without exposing any influence from other learning 

items. This keeps the size of each CPT table to the number of buckets. This option has 

the advantage of small CPTs but the disadvantage of not exploiting the relations between 

learning items. It also represents a common way to analyze a learning item. Using no 

parents restricts the data to the scores for that individual learning item. Contained in 
those scores are the mean, the min, the max, and the standard deviation. These are the 

statistics that educators often look at when analyzing a learning item.

The immediately precedes relation connects a learning item with the learning item that 

came just before it in time. Using this relation to identify parents keeps the number of 
parents for each node at one, making the size of the tables B x B, where B is the number 

of buckets. This option both gives us information about a related learning item and limits 
the size of the CPT.

The next variation based on parents considers the prerequisite relation. ENABLE ex­

tracts information about prerequisite relations using expert knowledge. These prerequisite 
relations become part of the course map and are used here in the modeling. The number of 

prerequisites varies from course to course and from item to item. Incorporating prerequisites 
into the model results in one parent per prerequisite. This can cause the problems associated 

with a higher number of parents as described above.
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6.1. Chart Showing the Increase in CPT Table Elements as Number of Buckets 
;s.

Figure 6.2. Chart Showing the Increase in CPT Table Elements as Number of Parents 
Increases.
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Pruned prerequisite lists take advantage of the transitive nature of this relation and 
reduces the number of parents. This reduces the problem of the CPT sizes by reducing the 
number of prerequisites and therefore the number of parents for any given learning item.

There are two distinct ways to consider separation of data into buckets. They can be 

separated into grade buckets that have one bucket for each grade, A, B, C, and D/F. The 

other way is to separate scores by percentiles. To have the same number of buckets as 

grades, the buckets would be divided into 0-24, 25-49, 50-74, and 75-99 percentiles. These 

produce variations in the spread of scores between buckets. The percentile buckets tend to 
have more even numbers of items in each bucket. This is the case except when there are a 

large number of identical scores. There are some learning items that, if you do them, you 

almost always get full points; these learning items have two groups of scores, the full mark 

score and the zero score. These items do not spread evenly across buckets no matter which 

bucket classification strategy is used.

Finally, the issue of how to categorize learning items that were not worked on is ad­

dressed. When a learning item is not worked on, the student receives a score of zero. Zeros 

can have their own distinct bucket or can be included in the classification they would fit 
naturally. In the grade buckets they would fall in the D /F category. In the percentile 

buckets they would fall in the 0-24 percentile bucket. Separating the zeros into their own 

distinct bucket requires one more bucket, which increases the size of each CPT. As a score 

of zero identifies a distinct situation, namely, that a student did not attempt a learning 

item, it is more representative of the structure of the data to represent it in the model as a 

distinct category.

6.2 Linear Probability Model
Another approach to creating a probability model is to use linear functions. These 

models are also based on the actual course data. The linear model is able to scale because 

the amount of memory and computational resources needed increases at a linear rate. This 

produces a model that does not need to restrict the number of parents that each learning 
item has.

The linear probability model is created using the linear function and a variance based 
on the error model. The error model considers the difference between the actual values and 

the result computed by the linear function. These differences are used as the variance. The 
linear function, combined with this variance, is used for both prediction and sampling.
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6.2.1 Building a Linear Model
The linear model in ENABLE uses linear regression. Linear regression works as follows: 

Given a random sample

(Y i,X ii,X i2 ,...,X iP) (6.1)

where i =  1 ,... , n and p is the number of features, the relation between the observations 

Y  and the independent variables X j  is formulated as

Yi =  W0 +  W 1 X i1 +  ' ' ' +  WpX ip +  Si i =  ^ . . . , n (6.2)

In the above, the Wjs are the regression coefficients and s  =  N (0, a) is the standard error.

The predicted values corresponding to the above model are linear functions of W j. One 
function is produced for each learning item and may consider the scores of the preceding 

learning items. The formula includes an initial value, Wo, and a term for each feature, 
W j(X ij ). Although there may be dependencies between the learning items, this is not 

considered when doing the linear model.

6.2.2 Feature Selection
The linear model can be varied by changing the features that are considered in the 

functions. Several options are considered. Except for the first item, any given learning 

item is preceded by other learning items. Each of those preceding learning items can be 

considered as a feature. The following list identifies ways the preceding learning items are 

considered.

• No other learning items are considered in the feature list.

• The immediately preceding item makes up the entire feature list.

• Differing numbers of immediately preceding learning items are included in the feature 

list.

• All the learning items listed as prerequisites to the current item are included as 

features.

• All the pruned prerequisites are considered as features.

Increasing the number of items included as features is not restricted by this model. This 

provides a great deal of flexibility in selecting what features to include in the model. The first 

linear model is one that does not include any other learning items in the feature list. This
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model uses the information that is available exclusively from the scores of the learning item 

currently being considered. This provides a good baseline. This information is commonly 

used to analyze the results of a learning activity and provides statistics like mean, max, 

min, and standard deviation.
The three relations considered in the remaining models are the precedes relation, the 

prerequisite relation, and the pruned prerequisite relation. The first one that uses the 

precedes relation is the immediately precedes model. This model uses the one learning 
item that comes immediately before the current learning item in time. We also considered 

two, three, five, nine, and 13 immediately preceding items. This is possible because the 

increased number of features can be incorporated in the functions without adding significant 

computation or memory expenditure. The final case that uses the precedes relation is the 
all precedes model. This model uses all the learning items that come before the current 

item.

There are two linear models that are based on prerequisite relations. The basic pre­

requisite model uses all the prerequisites for the current learning item in the feature list. 

The other model uses pruned prerequisites. This model uses the transitive property of 
prerequisites where some of the prerequisites can be removed from the list because they 

are already included as a prerequisite to an existing prerequisite. This reduced list of 

prerequisites, referred to as pruned prerequisites, is used to establish the feature list for this 

model.
The linear model does not consider zeros in any distinct way. To identify if there is an 

effective way to handle the special case of the zero score, a variety of methods were tried. 

In all the approaches discussed previously, zero is considered as nondistinct and handled 

like any other value.
One approach was to remove the data for any student with a zero score in the current 

item. This allowed the comparison of scores for students who had completed the learning 
item. Another approach removed the data for any student with a zero score in the current 

item and the data for students with zeros in any preceding learning items. This approach 

removed so many data points that the model ran into overfitting problems. Overfitting 

is when there are too few data points to support the number of features. To solve this 

problem, instead of eliminating the data of students with zeros, the zero was replaced using 

the function that had been created for that learning item. This produced a set of data 
that excluded zeros. None of these approaches yielded informative results and they are not 
included in the final analysis.
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6.2.3 Mixed Distribution
The simple linear model does not represent zero scores very well and sometimes gives 

near zero probabilities for possible scores that simply have not been observed. For this 

reason the grade probability model is built using a mixture of three distributions:

1. Gaussian model that predicts the score, assuming the student completed the item. 

This is the same model as described in the previous section.

2. A model that predicts an incomplete (i.e., zero) grade. This distribution assigns a 

likelihood of 1 to a score of 0 and gives all other scores a likelihood of 0.

3. A uniform model that predicts the same probability for each score. The likelihood of 

each score is simply 1/num ber-of-possiblescores.

The likelihood of a given score is simply the weighted sum of the three component 

distributions.

l(s) =  Wg * lg (s) +  wz * lz(s) +  Wu * lu(s) (6.3)

wz and wg are determined by a logistic regression model that estimates the probability a 

given student will complete an assignment. wu is determined by hand and is set to 0.02 

for all reported experiments. This value can be adjusted to give greater or less weight to 

the uniform distribution. The logistic regression model uses the same features as the linear 

model described in the previous section.

Logistic regression uses the logistic function, which can take an input with any value 
from negative infinity to infinity and produce a value between zero and one that can be 

interpreted as a probability. The logistic function is defined as follows:

e* 1
a(t) =  ^ ~  =  ---------* (6.4)w  e* +  1 1  +  e- t  v 7

where t is a function of a linear combination of explanatory variables and expressed as

t =  fo +  f  1X1 +  ... +  PnXn (6.5)

Now the logistic function can be written as

F  (X) =  1 +  e-(/3o+/3ixi+...+l3nxn) (6.6)

F (x ) is the probability of the dependent variable, given a linear combination of explanatory 

variables, x. f j  are the regression coefficients.
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This approach of combining distributions is applied to sensor measurements in proba­
bilistic robotics [3]. Its use here is a novel application of that process. This combined model 

is included in the analysis. See Figures 6.3 through 6.6 for an example of the component 

distributions and the resulting mixed distribution.

6.3 Comparing Models
After the Bayesian networks, linear models, and mixed models are created, the next step 

is to compare them. A variety of comparisons have been measured. These comparisons were 

done on a sample CS0 course. This course is a foundations of computer science course for 

non-CS majors. Each model generated 1,430 sample sets of data. Every sample set included 
a score for each learning item. This sampling was done by taking each learning item in the 

order it was presented in the original course. A score was generated for the learning item by 

sampling from the score probability distribution created by the individual model for that 

item.

The individual scores produced by this sampling were used to compute a final score. For 

a listing of the individual scores generated by each model and the computed final score, see 
Appendix D.

Some of the models being compared are built using a combination of the models. For 

example, the PrecedesThree/PrunedPrereqs uses a combination of the precedes three model 
which includes the three learning items immediately preceding the current item and the 

pruned prerequisite model.

6.3.1 Comparing Final Scores

Using the computed final scores, histograms were made to show the frequency of the 

scores. This first histogram, Figure 6.7, is the 143 scores that came from the actual course. 

There are fewer data points in this chart than the others. This histogram has 143 scores 
compared to 1430 in the other three final score histograms, so the scale is different. Each 
of the marks below the 67 score represent a single final score.

The next histogram is of a CPT model. This particular CPT model uses both the 

immediately precedes and the pruned prerequisite relations. It combines both the very 
current information by including the immediately preceding item as well as a more extended 

view of the preceding scores by including the pruned prerequisite information.

This histogram reflects some of the features of the original data, Figure 6.8. It has a 
tighter curve on the right side than the left. It does a nice job of showing the extended tail
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Figure 6.6. Histogram of Mixed Probability Distribution.

Figure 6.7. Histogram of Original Final Score Data.

on the left. It fails, however, to get the range of upper scores correct. It has only one score 

above 85. In the original data 56.6% of the scores were above 85.

The linear model histogram uses all the preceding learning items in the feature list, 

Figure 6.9. This model does a better job at producing the higher scores. It has a slightly 

steeper curve on the right side than the left, which also occurs in the original data. It does 

not produce any scores below 32. In the current data 5% of the scores are below 32.

The mixed linear model produces a histogram that most closely resembles the original 

data, Figure 6.10. It has the steep curve on the right side and a long tail on the left. The 

peak of this curve, however, is lower than the peak of the original data. In the original data,
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Figure 6.8. Histogram of CPT Final Score Data.

Figure 6.9. Histogram of Linear Final Score Data.

94 is the most frequent score. In this mixed linear sample the most frequently occurring 

score is 87. This is significantly closer than the other linear model or the CPT model. The 

linear model has a most frequently occurring score of 77. The CPT model has the most 

frequently occurring score at 64.

Table 6.1 shows the mean, max, min, and standard deviation of the original final score 

data and the final score data of each of these three models. Using the histogram and these
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Figure 6.10. Histogram of Mixed Linear Final Score Data.

Table 6.1. Compare Final Scores of Original, CPT, Linear, and Mixed Model Data.

mean max min stdDev
Original 80.80 98.77 7.59 17.84
CPT 62.36 88.42 22.21 11.78
Linear 70.26 95.62 31.04 11.42
Mixed linear 76.17 97.92 12.82 17.97

score statistics, the mixed linear model produces the closest representation of the original 

data.

6.3.2 Common Representation

Each model is converted to a discrete histogram. This allows us to sample, predict and 

compute likelihoods in comparable ways across all models. For example, see Figures 6.11 

through 6.13 of computed histograms for a CPT, linear, and mixed model.

6.3.3 Comparing Score Prediction

A valuable piece of functionality that is produced by these models is the ability to 
predict scores. This ability can be used to make regular recommendations to students 

and projections for educators. The process for generating these scores is to use leave out 

one cross validation. This process uses the original actual data and separates them into a
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Figure 6.11. Histogram of Probabilities for One Student Score as Sampled by the CPT 
Model.
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Model.
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Figure 6.13. Histogram of Probabilities for One Student Score as Sampled by the Mixed 
Linear Model.
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training set and a test set. The training set consists of the scores for all the learning items 
except the one that is currently being predicted. The test set are the scores that will be 

generated by the models for the learning item that is being predicted. In this case it is the 

single score left out of the training set. This is called “leave one out” cross validation. The 
scores in the training set are used to train the model. Then the trained model generates a 

set of scores for the single learning item being predicted.
These generated scores are compared to the original scores to identify how accurately 

the model predicted the score. The accuracy comparison is reported as a percentage. This is 

the percentage of times the score generated by the model is correct. Correctness is identified 

by identifying the grade category of the generated score. If the generated score belongs in 

the same grade category as the actual score, it is correct.
The scores are generated using the sampling process that minimizes the LI error. Each 

score in the model’s probability distribution is considered and the LI error for it is computed. 

These computed LI errors are compared and the score with the smallest LI error is selected.
Table 6.2 shows a varying degree of accuracy in making these score predictions. The 

mixed linear model is clearly the winner, with grade buckets CPTs shortly behind. The 
CPTs with percentile buckets performs very poorly.

6.3.4 Comparing L1 Errors
LI errors are used to compare these models. The LI error is the mean of the absolute 

value of the errors and is computed using the following formula:

where yi is the actual value and f  (xi) is the result of the function. In our case x i is the

models. It is the vector of the actual values of the parents that are inputs to the CPT table 
for the CPT models. N is the number of scores being generated for this learning item.

Table 6.3 shows the LI error for each of the models. This table is sorted in order by the 
value of the LI error.

6.3.5 Comparing L2 Errors
L2 errors are used to compare these models. The L2 error is the square root of the mean 

of the square of the errors and is computed using the following formula:

E =  N  It, |Vi -  f  (xi) 1 (6.7)
i=1

vector of actual values associated with the features in the linear equation for the linear

(6.8)
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Table 6.2. Compare Grade Accuracy Between Models.

M odel Type Dependencies .Accuracy

Mixed linear Precedes Three 77%
Mixed linear Precedes Three /  Pruned Prereqs 77%
Mixed linear Precedes Five 76%
Mixed linear Precedes Two 76%
Mixed linear Precedes Nine 76%
Mixed linear Precedes One 75%
Mixed linear Precedes One /  Pruned Prereqs 75%
Mixed linear Precedes Thirteen 75%
CPT Grade Buckets Precedes One 75%
CPT Grade Buckets Precedes One /  Pruned Prereqs 75%
CPT Grade Buckets Precedes Two 75%
Mixed linear Precedes 73%
CPT Grade Buckets Empty 73%
CPT Grade Buckets Pruned Prereqs 73%
CPT Grade Buckets Prereqs 73%
CPT Grade Buckets Precedes Three 73%
Mixed linear Pruned Prereqs 72%
Mixed linear Prereqs 72%
Mixed linear Empty 72%
Linear Precedes Three 72%
Linear Precedes Three /  Pruned Prereqs 72%
Linear Precedes Five 72%
Linear Precedes Two 72%
Linear Precedes One 72%
Linear Precedes One /  Pruned Prereqs 72%
Linear Precedes Nine 72%
Linear Precedes Thirteen 72%
Linear Precedes 70%
Linear Empty 67%
Linear Prereqs 67%
Linear Pruned Prereqs 67%
CPT Percentile Buckets Precedes Three 32%
CPT Percentile Buckets Precedes One 32%
CPT Percentile Buckets Precedes One /  Pruned Prereqs 32%
CPT Percentile Buckets Precedes Two 31%
CPT Percentile Buckets Empty 31%
CPT Percentile Buckets Pruned Prereqs 31%
CPT Percentile Buckets Prereqs 31%
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Table 6.3. Compare L1 Errors Between Models.

M odel Type Dependencies L1 Error

Mixed linear PrecedesFive 4.8
Mixed linear PrecedesThree 4.9
Mixed linear PrecedesThreePrunedPrereqs 4.9
Mixed linear PrecedesNine 5
Mixed linear PrecedesTwo 5
Mixed linear PrecedesThirteen 5.1
CPT Grade Buckets PrecedesTwo 5.4
CPT Grade Buckets PrecedesThree 5.5
Linear PrecedesThirteen 5.6
Mixed linear Precedes 5.6
Linear PrecedesNine 5.6
Linear PrecedesFive 5.6
Linear Precedes 5.8
Mixed linear PrecedesOne 5.8
Mixed linear PrecedesOnePrunedPrereqs 5.8
Linear PrecedesThree 5.9
Linear PrecedesThreePrunedPrereqs 5.9
CPT Grade Buckets PrecedesOne 6.1
CPT Grade Buckets PrecedesOnePrunedPrereqs 6.1
Linear PrecedesTwo 6.2
Mixed linear PrunedPrereqs 6.2
Mixed linear Prereqs 6.2
Mixed linear Empty 6.2
CPT Grade Buckets Empty 6.3
CPT Grade Buckets PrunedPrereqs 6.3
CPT Grade Buckets Prereqs 6.3
Linear PrecedesOne 6.7
Linear PrecedesOnePrunedPrereqs 6.7
Linear Empty 7.6
Linear Prereqs 7.6
Linear PrunedPrereqs 7.6
CPT Percentile Buckets PrecedesTwo 9.5
CPT Percentile Buckets PrecedesThree 9.5
CPT Percentile Buckets PrecedesOne 10
CPT Percentile Buckets PrecedesOnePrunedPrereqs 10
CPT Percentile Buckets Empty 10.2
CPT Percentile Buckets PrunedPrereqs 10.2
CPT Percentile Buckets Prereqs 10.2
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where yi is the actual value and fx% is the result of the function. In our case xi is the vector 
of actual values associated with the features in the linear equation for the linear models. It 

is the vector of the actual values of the parents that are inputs to the CPT table for the 

CPT models. N is the number of scores being generated for this learning item.
Table 6.4 shows each of the models and their L2 error. This table is sorted in order by 

the value of the L2 error.

6.3.6 Comparing the Log-Likelihood
The log-likelihood of each model is compared in the table below Table 6.5. The 

likelihood of a set of values, 6, given the outcome x is the probability of that observed 

outcome given the parameter values. That can be written as

L(6 |x) =  P  (x| 6) (6.9)

The likelihood function is defined differently for discrete probability distributions and 

continuous probability distributions. The CPT models are discrete probability distributions. 

Linear models are continuous probability distributions; however they are converted to a 

discrete representation for comparison purposes and use the discrete likelihood function 
that can be written in the following ways:

Pe(X  =  x) or P (X  =  x|6) or P (X  =  x; 6) (6.10)

where x is the outcome of the probability model and 6 is the set of observed values, in our 

case the actual values of the parents that are inputs to the CPT table for the CPT models 

or associated with the features in the linear equation for the linear models.
The natural logarithm of this likelihood function (see Equation 6.10) is used as the 

reported measure. This is used because it is more convenient to work with. The logarithm 
is a monotonically increasing function and therefore achieves its maximum value at the 

same points as the function itself. Therefore, the log-likelihood can be used in place of the 
likelihood when estimating maximum likelihood.

6.3.7 Comparing Probability Histograms

The system can generate histograms of the probability distribution for a specific student 
on a specific learning item. Figure 6.14 contains the probability distributions for two 

different students on a class activity. The two students are distinguished by their final 

grade. There is one each for grades A and B. There are three different models for each 
student: CPT, linear, and mixed linear.



119

Table 6.4. Compare L2 Errors Between Models.

M odel Type Dependencies L2 Error

Linear PrecedesFive 0.1411
Linear PrecedesThirteen 0.1419
Linear PrecedesNine 0.1423
Linear Precedes 0.1466
Mixed linear PrecedesFive 0.1468
Linear PrecedesThree 0.1478
Linear PrecedesThreePrunedPrereqs 0.1478
Mixed linear PrecedesThree 0.1492
Mixed linear PrecedesThreePrunedPrereqs 0.1492
Mixed linear PrecedesNine 0.1523
Linear PrecedesTwo 0.1536
Mixed linear PrecedesTwo 0.1549
Mixed linear PrecedesThirteen 0.1569
CPT Grade Buckets PrecedesThree 0.1572
CPT Grade Buckets PrecedesTwo 0.1583
Linear PrecedesOne 0.1638
Linear PrecedesOnePrunedPrereqs 0.1638
Mixed linear Precedes 0.1675
Mixed linear PrecedesOne 0.1711
Mixed linear PrecedesOnePrunedPrereqs 0.1711
CPT Grade Buckets PrecedesOne 0.1767
CPT Grade Buckets PrecedesOnePrunedPrereqs 0.1767
Linear Empty 0.1798
Linear Prereqs 0.1798
Linear PrunedPrereqs 0.1798
CPT Percentile Buckets PrecedesThree 0.1814
CPT Percentile Buckets PrecedesTwo 0.1816
Mixed linear PrunedPrereqs 0.1836
Mixed linear Prereqs 0.1836
Mixed linear Empty 0.1836
CPT Grade Buckets Empty 0.1878
CPT Grade Buckets PrunedPrereqs 0.1878
CPT Grade Buckets Prereqs 0.1878
CPT Percentile Buckets PrecedesOne 0.1947
CPT Percentile Buckets PrecedesOnePrunedPrereqs 0.1947
CPT Percentile Buckets Empty 0.2058
CPT Percentile Buckets PrunedPrereqs 0.2058
CPT Percentile Buckets Prereqs 0.2058
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Table 6.5. Compare Log-likelihood Between Models.

M odel Type Dependencies Log
Likelihood

Mixed linear PrecedesThree -8663
Mixed linear PrecedesThreePrunedPrereqs -8663
Mixed linear PrecedesFive -8685
Mixed linear PrecedesTwo -8711
Mixed linear PrecedesOne -8813
Mixed linear PrecedesOnePrunedPrereqs -8813
Mixed linear PrecedesNine -8894
Mixed linear PrecedesThirteen -9083
Mixed linear PrunedPrereqs -9093
Mixed linear Prereqs -9093
Mixed linear Empty -9093
Mixed linear Precedes -9960
CPT Grade Buckets PrecedesOne -11109
CPT Grade Buckets PrecedesOnePrunedPrereqs -11109
CPT Grade Buckets PrecedesTwo -11191
CPT Grade Buckets Empty -11261
CPT Grade Buckets PrunedPrereqs -11261
CPT Grade Buckets Prereqs -11261
CPT Grade Buckets PrecedesThree -11408
Linear PrecedesThree -11888
Linear PrecedesThreePrunedPrereqs -11888
Linear PrecedesFive -11910
Linear PrecedesTwo -11931
Linear PrecedesOne -12006
Linear PrecedesOnePrunedPrereqs -12006
Linear PrecedesNine -12100
Linear Empty -12233
Linear Prereqs -12233
Linear PrunedPrereqs -12233
Linear PrecedesThirteen -12258
Linear Precedes -13061
CPT Percentile Buckets PrecedesTwo -16093
CPT Percentile Buckets PrecedesThree -16108
CPT Percentile Buckets PrecedesOne -16147
CPT Percentile Buckets PrecedesOnePrunedPrereqs -16147
CPT Percentile Buckets Empty -16405
CPT Percentile Buckets PrunedPrereqs -16405
CPT Percentile Buckets Prereqs -16405
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Figure 6.14. Probability Distributions of Sample Students on a Class Activity.
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The CPT model has five grade buckets, including a zero bucket. It uses the immediately 
precedes/pruned prerequisites combination model. The linear and mixed linear models use 

all the preceding items in the feature list. Comparing these histograms allows us to see 

how the distributions vary based on the individual student and which model is building the 

distribution.

6.3.8 Summary
To do comparisons, 38 variations of the Bayesian network and linear models were created. 

These variations were then compared in a variety of ways. Although there were some 
differences in the ordering of the models, depending on which comparison was being used, 

several of the same models were frequently ranked at the top.
When comparing the histograms of the final score data to the histogram of the original 

data, the mixed linear model was clearly more representative of the original data then either 

of the other versions. This mixed linear model produced a mean that is within 4.63% of 

the original data and a standard deviation only .13% different than the original data.
When comparing models for accuracy in predicting scores, 28 of the 38 models got 70% 

or higher. Again, several of the mixed linear models were at the very top, with a grade 

accuracy of 77%. Right behind the mixed linear models are the CPT models that used 

grade buckets. Three of these versions had a grade accuracy of 75%. There was only an 
11% variance in the top 21 models, with all the variations of the mixed linear, CPT using 

grade buckets, and linear models having a grade accuracy from 67% to 77%. There was 

a distinct separation between these models and the CPT models using percentile buckets. 
The CPT models using percentile buckets had a score accuracy of 31% to 32%, significantly 
lower than the other models.

The comparisons of L1 errors, L2 errors, and highest likelihood values produced different 

orderings of the models. The L1 errors ranked half of the mixed linear models at the top, 

followed by a couple of the CPTs with grade buckets. The L2 errors put the linear models at 
the top. This is the only comparison that ranked the linear models at the top. The likelihood 

comparison is the only one that separated the models exactly into their basic types. The 
comparison of the likelihood scores put all the variations of the mixed linear model at the 

top, followed by all the variations of the CPT with grade buckets models. These two were 
followed by all the variations of the linear models and then all the variations of the CPT 

with percentile buckets models.
For the L1 errors, L2 errors, highest likelihood, and score accuracy values, an analysis 

was done of the different ratings for individual assignment groups. The sample CS0 course
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has four categories of assignment groups: exams, class activities, exercises, and homework. 
These are based on the assignment groups in Canvas. All three of the rankings found the 

exams ranked the lowest, followed by homework. The class activities and exercises ranked 

first or second, depending on what was being compared. These rankings were a direct 

correlation of the points possible and standard deviations of these categories. The exams 

were 100 points possible each and had a standard deviation of 22.7. Homework varied in 

the points possible, with an average of 55 points possible and a standard deviation of 10.4. 

Exercises and class activities were each worth 20 points, with standard deviations of 7.7 and 
6.8, respectively. L1 errors, L2 errors, log likelihood, and score accuracy all measure how 

close to the actual score the predicted score is. It is certainly more difficult to get close to the 
correct score when there is a significantly larger range of values possible. The comparisons 

of these rankings based on assignment group categories can be found in Appendix G.
By doing several variations of each general model, a comparison can be done between the 

different variations. The general models are CPT with grade buckets, CPT with percentile 
buckets, linear, and mixed linear. For both the CPT models there were seven variations. 

The linear and mixed linear each had 12 variations. For the CPTs with grade buckets, 
identifying which variations are preferred is unclear as the precedes two and precedes three 
ranked first and second in this general model for the L1 and L2 errors but ranked last for log 

likelihood and grade accuracy. While the precedes one and precedes one/pruned prerequisite 
variations were ranked lowest on L1 and L2 errors and highest for log likelihood and grade 

accuracy. For the linear model there was no consistent pattern between the variations. 
There was only one variation that ranked in the top three of each comparison, the precedes 

five. It ranked third in all the comparisons except L2 errors, in which it was ranked first. 

For the mixed linear general model, three variations were at the top of all the rankings, 

precedes five, precedes three, and precedes three/pruned prerequisites. Although which of 
these were ranked the highest varied, these were the top three of the mixed linear models in 

every ranking. For the CPT with percentile buckets model the precedes three was ranked 

either first or second in all the comparisons. Precedes two was top ranked in L1 errors 

and log likelihood, it was second in L2 errors, but dropped to fourth in grade prediction 

accuracy. The precedes one variation was consistently ranked third, except in the grade 

accuracy it was ranked second.

Comparing the probability histograms is a way to visually see how each of the models is 
able to create very different probability distributions based on the student and the learning 

item. Since these variations exist in the student population and show up in the actual data,
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this provided some validation that the underlying models are well designed.
Considering all the comparisons, the mixed linear model ranks the highest, followed 

by the CPT with grade buckets model. The differences in the scores for many of the 

comparisons were very small between these two models, while the difference between these 

two and the lowest ranked model, CPT with percentile buckets, was large.

6.3.9 Evaluation of Behavior Modeling and Bayesian Analysis
In this section the evaluation criteria for Section 1.7.4 is considered. Several Bayesian 

inference networks have been created based on combinations of the precedes and prerequisite 

relations from the course maps. These relations are used to determine parents of each node 

in the CPT tables. The values in the Bayesian networks are based on the actual data from 

the sample courses. In addition, several linear probability models were created.
Sampling of each of the Bayesian networks and linear probability models was used to 

produce 1430 sample sets of data for each model. Final scores were computed for each 

sample set. These final scores were compared to the final scores of the existing course 

using a variety of measures, including score prediction (see Section 6.3.3), L1 errors (see 

Section 6.3.4), L2 errors (see Section 6.3.5), log-likelihood (see Section 6.3.6), and final 

grade distribution (see Section 6.3.1).



CHAPTER 7

TRACKING MASTERY OF LEARNING 
ITEMS

Given a course map and a method to accurately assess a student's mastery level of 

a specific learning item (e.g., assign grades to graded learning items), we now describe 
a technical approach to model and track student mastery of the learning items during a 

traversal of the course map. That is, at each step in the traversal a mastery level can 

be determined for each learning item for the particular student. First, we define a linear 

learning model, which provides a straightforward way to estimate the student's mastery of 
each learning item. Then, we demonstrate how to estimate learning coefficients (variables 

related to the student's abilities and the difficulty of the material) using a nonlinear model. 
Such information is crucial in defining an interactive strategy to facilitate student learning.

7.1 Linear Learning Model with Mastery
Let M  =  (N , E) be a course map with nodes N  and edges E. Let C =  (L, R) be the 

corresponding class map for M , where L is the set of learning items and R  is the set of 

relations on L. Construct a vector, x =  [xi, x2, ..., xn]T, where xi represents the mastery 

level of the student for learning item L»; we have xi is in the range [0,1], where xi =  0 

means no mastery and xi =  1 means full mastery.
Furthermore, let x* represent the mastery state at step t. If the student knows nothing 

at all at the start, then x0 =  0; however, if the student has some background knowledge 

concerning a learning item Li, then x0 can be set to the appropriate amount.

We assume that the prerequisite relation entails some amount of causal relation between 

the mastery of the respective learning items. I.e., if A prerequisite B, then the probability 
that the student masters learning item B depends on the mastery of learning item A. We 

further propose as a starting point a linear function to describe the dynamic learning process 

(also called the transition model):

x*+1 =  Ax* +  But +  e
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where the matrix A describes the relation between learning item mastery and the matrix 

B describes the impact of the control variable, ut, at time t. The control variable describes 

what learning items the student works on at time t as well as the amount of work, while 

the first term in the transition model (i.e., Ax*) characterizes the learning impact of the 
mastery of the previous learning items.

The transition model also includes a characterization of the noise of the learning process 

by means of the random variable e ~  N (0 , aPi)), where aPi is the variance in the learning 
process for each individual learning item, Li. The covariance matrix for the full vector, x, 

is called R.

It is also necessary to have a model of the observation process. Mastery will be measured 

by means of graded learning items, and the measurement model is

z* =  C xt +  5

where C is a k x n matrix providing observations of the graded learning items. Furthermore, 

5 ~  N (0, az) where az characterizes the noise in the measurement (testing) method. For 

the full z vector, this is given by the covariance matrix Q.
Given these transition and measurement models, it is appropriate to use a Kalman Filter

[3] to track the mastery level during a traversal. Given such a model, control vectors can 
be selected to maximize mastery of the learning items while minimizing needless repetition 

and effort. The Kalman Filter algorithm is shown in Figure 7.1.

In order to exploit this dynamic Bayesian network approach, it is necessary to specify 

the matrices A, B, and C ; the covariance matrices can be set based on actual class data or 

based on data generated by the artificial agents previously described. As a first cut at a 
learning material mastery model, let

x =

1 1 0 0
1

x i

1 1 0 0
1

ui
a2i a22 0 . .. x2 + 0 1 . . .  0 U2

an 1 an2 . . . ann xn 1 0 0 1 1 un

(7.1)

where we assume ut has one element set to 1 (or some amount of effort between 0 and 1), 
meaning that only one learning item is worked on at a time. For A, ai,j =  0 for j  >  i; for 

j  < i, ai,j is set to 0 if - ( x i prerequisite x j ); otherwise, ai,j =  , where nij is one plus the 
number of learning items that are prerequisites for xj .

Consider the simple class map, C, shown in Figure 7.2.
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1: Algorithm Kalman_filtfi'0^ 1, Ef_ i ,  ut , z t):
2: fit =  At fit-i + Bt ut
3: Et =  At Et_i  A j +  Rt
4: Kt =  2 t Cj'(Ct j:t Cf[ +  Qt)~1
5: fit =  fit +  K t (zt — Ci  fit)
6: E t =  ( I - K t Ct)Zt
7: retiun fit, Et

Figure 7.1. Kalman Filter Algorithm as shown in [3].

Figure 7.2. Class Map for Simple 5-Learning Item Class.

Then

and

A  =

1 0 0 0
0 1 0 0
1 1 1 03 3 31 1 1 1
4 4 4 41 1 1 1
5 5 5 5

x0 =

0 
1

5 5

Then a simple traversal such as [1, 2, 3, 4, 5] yields the mastery level estimates shown in 
Figure 7.3. This allows us to track in more detail how a student is moving through the
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CD1TO

Figure 7.3. Mastery Estimates for Five Learning Item Traversal.

learning material. By including the concept of mastery, we introduce a more in-depth view 

of how well the student is mastering the learning items. Currently students move through 

learning items based on which day it is. Mastery could provide a different gauge by which 

to determine when and in what order a student moves through the material. Also, because 

this process can include ungraded learning items, we are able to get some perspective on 

items without scores.

7.2 Non-Linear Learning Model with Mastery
We now introduce a more complex learning framework which utilizes the direct interac­

tion of an artificial student agent. A learning item, l e L, also has an associated difficulty 

level, d(l) e K-0 , where K-0 is the non-negative real numbers. The class graph imposes 

traversal constraints on a student; namely, every prerequisite of a node l must be mastered 
to an acceptable level before node l can be mastered.

At each time step, the agent specifies how much time of the total alloted is to be spent 

on each accessible learning item; this constitutes an action. Agents may implement different 

learning tactics and their respective learning performance traces may then be compared.
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For example, an agent that spends equal time on newly available nodes or equal time on all 
previous nodes if there are no new nodes, is specified as:

On input: open (a ccessib le ) nodes 
Local: v is ite d  nodes

On output: re la tiv e  percent of time on a ll  nodes

new_nodes <— open and not v is ite d

i f  no new_nodes

i f  open_nodes not empty 
action  <— open/|open| 

end 

else

action <— new_nodes/|new_nodes| 

end

To demonstrate the performance of an artificial student agent on the class map, C (shown 

in Figure 7.4), suppose the agent has characteristics W =  3, I  =  3, B =  0, and D =  1. 

Then, a learning curve plot for Agent1 on the 10-node class graph is shown in Figure 7.5 

(left), while an Agent2 with W =  1, I  =  1, B =  0 and D =  3 is shown on the right side of 

Figure 7.5 (right). Note that Agent1 has achieved almost perfect mastery of all ten learning 

items by step 80, whereas Agent2 has only mastered a few items in the same time.
Note that learning curves are also a function of the learning tactics of the agent. Suppose 

that Agent1 modifies its approach so as to focus on individual items until they are mastered 
before moving on to the next available item. The resulting learning curve is shown in 

Figure 7.6, which illustrates that items are mastered sequentially, and that it takes longer 

to learn all ten items than the equal time strategy. [Note that this may also provide evidence 
that a linear organization of the course material slows learning!]

7.2.1 A  Learning Model
In 7.1, we defined the notion of mastery of a learning item as a random variable 

ranging from 0 to 1 and demonstrated the use of a linear learning model combined with a 

Kalman Filter to obtain an optimal estimate of student mastery of the learning items in a 

course graph based on combining the model prediction with a measurement (i.e., a grade) 
correction.
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Figure 7.4. Example of Converting a Standard Synchronous Class to an On-line Class 
With Computed Values For Difficulty Level (the first number is the Learning Item number, 
the second is the Difficulty).

In this section we propose a more refined nonlinear student learning model which includes 

a parameter -  the learning coefficient -  and compare three ways to estimate it: (1) direct 

inverse, (2) iterative least squares, and (3) the Extended Kalman Filter. This is called 
either model parameter calibration or parameter estimation.

The estimation method is based on the use of a class graph that describes the organiza­
tion of the learning material, a set of artificial student agents with an associated learning 

model, and a mechanism for the class graph traversal. A wide variety of user models have 

been proposed for interactive learning environments, e.g., see [26,111,122,123]. We have 

opted to use a more basic and general model of learning as described in [124]:

x*+1 =  M  -  (M  -  x*)e-kist +  e (7.2)

where x* is the mastery level of learning item i at time t, M  is the maximal mastery level



131

Figure 7.5. Learning Curves for Agents with Different Abilities.

(which we set to 3 in these experiments), ki is the learning coefficient for the student on 

learning item i, sti is the cumulative time spent on learning item i, and e ~  N (0, a2), where 

a2 is the variance in the learning model process. The learning coefficient kt is a function of 
the agent and the learning item:

W+I+B
kt =  —  (7.3)

a i
where at is the difficulty of learning item i (and is in the range [0,100] in these experiments).

The learning coefficient provides a way to compute the relative difficulty of each learning 

item. This can provide insight to help the instructor better balance the student work load.

In our initial use the formula, 7.2 is linear. However, using this formula allows us to work 

with situations that will produce a nonlinear function, such as if the learning coefficient is 

itself included in the state or if learning item mastery levels are multiplied by each other.
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Figure 7.6. Learning Curves for Agent with Two Different Learning Tactics.

7.2.1.1 Learning Model Parameter Calibration
Given the ENABLE framework, it is possible to use the information from a student’s 

interaction with the class map to estimate the particular learning coefficient for each learning 

item. This allows active modification of the graph traversal in order to facilitate learning 
by the student. It also makes it possible to estimate the difficulty of each learning item 

(by using ratios of learning coefficients) so that the instructor is better informed about the 

nature of the presentation of the learning items (see Figure 7.4).

7.2.1.2 Direct Inverse Method
Given the learning model in Equation 7.2, then for every step at a learning item in 

which learning takes place (i.e ., x̂  ]> x *), and which had time allocated to the item (i.e.,
then ki can be found as:

ki =
- ln ( — (xi —M) 

(M—xt) (7.4)

s

)
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Since there is noise in the learning process, the following algorithm is applied:

fo r  every learning item i

fo r  every step t that meets conditions 

calcu late k _ i ,t  

end
k_i estimate is  median of k _ i ,t  

end

For a2 =  0.001, with Agenti and class map C, the learning curves for one trial are shown 

in Figure 7.7. The actual learning coefficients are [0.1250, 0.0204, 0.0208, 0.0408, 0.0247,
0.1333, 0.0465, 0.0217, 0.0250, 0.0208] the estimates found using the inverse method are 

[0.1257, 0.0205, 0.0210, 0.0409, 0.0252, 0.1340, 0.0466, 0.0217, 0.0249, 0.0208], and the 

RMSE is 0.0123. Figure 7.8 shows the RMSE on this for a2 ranging from 10—5 to 1, with

10 trial samples per variance value.

7.2.1.3 Least Squares Method

Least squares is a standard method for the determination of a best solution to an over­
constrained problem (see [125] for an introduction). We follow here the method described 

in [126]. The least squares estimate is arrived at by iterating:

k*+i =  k* +  (JTJ)—i JT(Y -  V |fct) (7.5)

where kit is the estimate of the actual learning coefficient k* at step t , J is the Jacobian of 

the learning process model, Y  is the observed mastery values from the trace of a student 

traversal of the class graph, and V| kt is the predicted mastery values for a student traversal 
of the class graph using the current learning coefficient estimate. Note that for the full 

graph, k* is a vector, and |k*| =  n, where n is the number of nodes in the class graph. 

Since the process model is

f  (k, s, x) =  M  -  (M  -  x ) e—ks (7.6)

the Jacobian is

J =  d f  =  s ( M -  x)e—ks (7.7)

The least squares iteration is continued until convergence criteria are satisfied. Figure 7.8 

shows the RMSE values achieved by the least squares method.
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Figure 7.7. Learning Curves for Trial (with noise).

7.2.1.4 Extended Kalman Filter Method
The Kalman Filter is a state estimation technique that seeks to optimally combine a 

process model prediction of the state with a measurement of the state, where both have 

an associated uncertainty. Here we use the Extended Kalman Filter since it applies to 

nonlinear models (see [3] for a detailed introduction to Kalman Filter methods). We apply 

the algorithm to each nonzero mastery level update in the student’s traversal of the class 
graph, as described earlier. The algorithm is then repeated until convergence:

1. kt =  a(kt-1)
2. S* =  A*Et-1AT +  Qt

3. Kt =  k tB*T(B*k tB*T +  R t)-1

4. kt =  k  +  Kt(Zt -  b(h))

5. St =  (I -  K*Bt)k *
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Figure 7.8. RMSE Values for Learning Coefficient Estimate for the Three Methods.

where kt is the learning coefficient estimate at time t, a is the process model for how k 
evolves, At is the Jacobian of the process model for k, Qt is the covariance for the process 

model for k, b is the measurement model (in our case, this is the learning update function), 

Bt is the Jacobian of the measurement model, Kt is the Kalman Filter gain, Rt is the 
covariance of the measurement model, and Zt is the observed student performance. In 

particular, these variables are

a(k ) =  k 

At(k) =  1

b(k, s ,x)  =  M  — (M — x ) e -ks 

B (k, s, x) =  s(M  — x)e-ks

and Qt and Rt are assigned specific variances. Applying this method to the student learning 

traces yields the learning coefficient estimates shown in Figure 7.8. Figure 7.8 compares
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the three methods directly. As can be seen, the inverse method works best over all and 
the least squares method performs the worst, while the EKF works slightly better in lower 

noise than the inverse method.

7.3 Conclusion
These algorithms apply known techniques in a novel way. They add the concept of 

mastery to the learning models. These models are then calibrated with three different 

approaches. This ability to track student mastery allows the educator to regulate movement 
through the learning material based on mastery of the material. It also provides relative 

difficulty values that can provide insight to help the instructor better balance the student 

work load.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK  

8.1 Conclusions
8.1.1 Implementing a Graphical Course Map

Currently, learning items are presented to both faculty and students through a learning 
management system (LMS) in a linear, textual way. This presentation method has limited 

capacity to convey information about the organization of the learning material and the 

relations between learning items. Its primary focus is on the precedes relation, which 
identifies which learning item comes directly before another learning item. But there 

are much richer relations that can be expressed in a visual, graphical representation of 

a course like topical and prerequisite relations. Presenting information graphically provides 

an opportunity to convey a greater amount of information in a concise way. Using visual 
representations to increase the amount of information delivered and enhance the meaning of 

that information is not new. This technique is used in a variety of applications across many 

different fields; however, it is not yet available for the representation of course organization.

An automated system that constructs an initial course organization graph based on 

information provided by Canvas, a standard LMS, has been developed. It was found that 
the data in the LMS contained much information that could be used to create a graphical 

course map. A variety of types of material are represented in the nodes of the graph 

and initially only their chronology is known. A detailed analysis of the materials based 
on the text contained within each learning item allows a more informed representation 

which captures the topic relations among the items. A set of graph transformations is then 

defined which convert the (basically) linear structure of the course to a graph structure, 
which makes evident the dependencies and independencies of the learning items. Three 

specific test courses were transformed in this way to demonstrate the power of the method.

The system is able to exactly reproduce the temporal precedes relations of all dated 

learning items. For those learning items that do not have a due date, a date is used that 
is related to the earliest date in the unit in which the undated item is included. It is also 

possible to extract and identify the Unit or includes relations in all cases where the modules
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tool in Canvas is used. No testing was done with courses that did not use the modules tool. 
It is anticipated that input from the instructor would be required to identify unit relations 
if they are not identified in the LMS. Topical occurs in relations are produced from the text. 

In one of the example courses the automated assignment of occurs in relations was correct 
in 472 of the 490 topic to learning item combinations. In eight cases none of the topic word 

variations were found in the learning item, but they were, in fact, related to the topic. For 

nine combinations a topic word was encountered in the description but the learning item 

was not related to the topic. In one case the topic word was used to instruct the students 
to not use the topic on this specific assignment. These discrepancies were corrected with 
input from the instructor.

Using the topic relations determined by the detailed analysis, the precedes relations 
are combined with the topic relations to identify the relations between learning items that 

include both the precedes relation and the topic relation. Combining these two relations 
identifies a stronger relation between learning items. Another informative relation is the 

prerequisite relation that expresses a recommendation that one learning item be completed 
before another learning item. This relations is not available in the LMS but is derived 
through the combination of text analysis and input from the instructor.

Involving the instructor in the analysis process is one of the strengths of the ENABLE 

system. It not only improves the validity of the results but also improves the possibility of 

increasing the instructor’s potential for understanding the possibilities for change. To facil­

itate this involvement an interface is provided that allows the addition of expert knowledge. 

This combination of data and expert knowledge is used to create a variety of course maps 
that display information about the learning material and the relations between learning 

items in a visual, graphical way. Currently, ENABLE produces eleven different course 
maps for each course, based on the relations between learning items. Each of these graphs 
can be rearranged by the instructor to produce many organizations. The course maps are 

designed to minimize the congestion of learning items and relations. The system does not, 

however, guarantee a minimum number of edge crossings. There is congestion of undated 

learning items as they are all positioned temporally at the beginning of a unit. Another 

congested area is produced when exams are split. The due date and unit assignments are the 

same for each of the split exams. This locates them close together. These congested areas 

are easy to resolve by dragging the nodes to new locations. When the nodes are moved, 
the connecting edges automatically move with them, keeping the visual representation of 
relations intact.
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Course mapping has the potential to change how teachers and students see a course, 
giving teachers new insights and students a better understanding of how to negotiate the 

course materials.

8.1.2 Extending Accessibility

The availability and accessibility of education over the Web has increased, but barriers 

remain [2,4,127,128]. The current presentation of material in a textual, linear format 
primarily based on chronology provides a limited view of the course and reaches only some 

of the potential users of online educational tools. Expanding the delivery of learning material 
to include a graphical course map can increase the information that is available and make 

that information accessible to a larger number of diverse consumers. Making educational 

information available to a broader spectrum of users has the potential to include more 

people in the educational process and improve their opportunities for inclusion and success.
As more and more educational opportunities are being made available on the Web, there 

is a greater need for tools that can present those materials in a more accessible way. An 

online course is not limited to a linear, chronological organization that has been the preferred 

presentation of the traditional classroom. This research demonstrates the possibilities of 

presenting learning materials in a graphical course map. This has led to many discoveries 

about the opportunities for enhancing the information available to students and educators. 

The development of a variety of course maps has identified new ways to organize and 
present learning materials and restructure their delivery to exploit the flexibility of the 
online setting.

Improving accommodation for people with different abilities and a wide range of cir­

cumstances can be augmented by removing the temporal limitations of the traditional 

text-based, linear presentation of course materials. To facilitate a different presentation 

of the learning material, there is a need to focus on more functional relations between 

learning items and presenting those relations in a graphical way. The ENABLE system 

provides interactive tools that allow an instructor to discover important relations between 
the learning items and manipulate a variety of graphical course maps that maintain those 

relations.

8.1.3 Facilitating Change

Presenting the course materials in a new way facilitates the consideration by an in­
structor of different ways to organize and deliver the material. Many instructors have 

been teaching a course for multiple semesters. When a change is needed or desirable, it is
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sometimes difficult to see new possibilities. Seeing the course materials in a graphical way 
provides a view of the course from a different perspective. This novel view can inspire the 

educator to consider new possibilities.
The functionality is provided to manipulate the graphical course maps produced by 

this process. This ability to move learning items around and make different connections 
between them allows the instructor to see the relations between learning items and how the 

organization of the learning items can be changed, while maintaining these relations. This 
process of analysis and transformation provides insight for the instructor about a variety of 

ways the course materials can be organized. As the instructor sees existing course materials 

presented in a variety of ways, their perception of the possibilities for making innovative 

changes is increased. This increase in possibilities facilitates change.
Information about the existing course is provided by each step in this process. The 

ENABLE system gathers existing information from what is available about the course in 

the LMS and represents it in a visual way. This sheds light on what students currently 
have available through their access to the learning materials in the LMS. A significant 

finding is how entrenched the precedes relation is in the presentation of course material. 

This relation often adds little meaning to how learning items are related, and yet it is the 

predominant organization strategy used when displaying information to students. When 
comparing the visual representation of that organization to the alternative organizations 

produced by ENABLE, it is clear that there is significant room for improvement in how the 

educational community presents learning material to students (see Figure 1.2). Although 
this research is designed to inform instructors about the many organization options available 

when making changes, the perception of the authors is that the effort to develop a graphical, 

nonlinear representation of a course could have significant impact on how students perceive 

and interact with course materials.

8.1.4 Student Agents
Artificial student agents have been developed that traverse the course map and im­

plement decision-making. These agents have four characteristics: intelligence, work ethic, 

background, and distractibility. Each agent is assigned a value for each of these characteris­

tics. The agent makes decisions about what learning item to consider and how much effort 
to exert on each learning item based on the values of theses characteristics. The agents are 

able to traverse the course maps in a variety of node sequences. They are limited only by 

prerequisite relations. A learning item cannot be attempted until the agent has visited all 

the prerequisite learning items.
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A trace of the order the learning items are visited is recorded as each agent moves through 

the learning items, also referred to as traversing the graph. These agents can be used to 

traverse the graph over and over, producing a new trace for each traversal. These traces 
demonstrate a broad variety in the order in which the learning items can be attempted. 

This demonstrates the possibility of creating many different organizations and the potential 
of allowing students to choose the order in which they move through the learning items. 

This shows a variety of changes that are possible.

The score data from the sample courses is used to inform the characteristics and actions 
of these artificial student agents. Using these agents with the model provided by the course 
map provides a means for comparing traversals of the learning materials. The student 

agents can also be used to produce large sets of score data.

8.1.5 Probability Models

A probability model gives us a way to make predictions. These predictions can be used 

to inform students and educators about possible outcomes. Several probability models that 

predict grades on learning items were created. These models are trained using the existing 

score data. What was discovered is that probability models can indeed be generated from 

existing data. Many of those models are able to predict individual scores with over 70% 

accuracy. These models can be sampled to produce data that has a distribution similar to 
the original data.

This predictive capability can be used to inform educators and students about the likely 

results of a variety of choices. One of the clear messages from this work is the significant 
impact of zeros. The occurrence of a zero reflects that the student failed to work on a 

learning item. This choice has real implications for the overall success of the student. If 

a student is better informed of the effect of skipping an assignment, they may choose to 
engage rather than skip a learning item.

Several Bayesian inference networks were developed that incorporate the interdepen­
dencies between learning items. The score data from the sample courses and the course 

maps produced were used to create the conditional probability tables (CPTs). In addition, 

a variety of linear probability models were created. These models use a linear function and 

a variance based on the error model. The error model considers the difference between the 

actual values and the values computed by the linear function. These differences are used as 
the variance. Both that Bayesian models and the linear models are used for both prediction 

and sampling.
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These predictive models were tested and compared to the actual data from the sample 
courses. Several measures were used to identify the validity of the resulting predictions. 

This comparison identified the models that produced the highest quality predictions.

8.1.6 Tracking Mastery of Learning Items
Both linear and nonlinear learning models were used to identify the mastery level of 

specific learning items. This technical approach is used to model student mastery of the 

learning items during a traversal of the course map. Calibration techniques were used to 

calibrate the learning coefficients of the individual student agent. Using this approach, 
relative difficulty for each learning item can also be determined. This provides more 

information to the instructor about the nature of the course and its organization.

8.1.7 Combining Complementary Techniques
Both innovative and established methods have been combined to analyze current course 

organization and inform course transformation. Automated analysis and instructor engage­

ment are combined to augment broader solutions. Teacher experience, existing structure, 
and new views are assembled to generate new insights. This connecting of novel and 
well-known provides a solid foundation for the introduction of nonlinear, graphical course 

mapping.

8.2 Future Work
8.2.1 Enhancing the User Interface

This work has provided a solid foundation for the creation of graphical course mapping 
systems. For such a system to become widely useful an interface is needed that incorporates 

the relations discovered and the recommendations available through the predictive models. 
A meaningful next step would be to create a rich graphical user interface that improves 

both the quality and quantity of student and teacher interaction with the learning material. 

Conducting user testing at all stages of the system design, development, and testing would 

be used to identify the usability of the interface and make revisions based on the results. 

Such an interface could then be embedded in the LMS for student and faculty use on the 

web or mobile devices.

8.2.2 Implementation in Ongoing Courses
In the future, we intend to study the exploitation of ENABLE in actual on-line versions 

of computer science courses in order to validate the approach by using it with human
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instructors and students; in the present work, we have developed new algorithms and showed 
their correctness in simulation experiments based on data from actual classes. Future work 

will be undertaken both from the instructor’s perspective; e.g., using the system to detect 

content or structural weaknesses in the course as well as the student’s perspective; e.g., 

projected grades on future items as well as advice on what to do to improve mastery of the 

learning material -  this would be accomplished through the control vector in the Kalman 
Filter approach.

8.2.3 Making Recommendations

In the future we hope to transform learning outcomes by (1) facilitating deep student 
learning in science and engineering by providing the student feedback resulting from behav­

ior models based on monitoring paths taken through the online course graph and linking 

that to performance in the class, and (2) providing effective tools for the instructor to 
monitor the effectiveness of the course material and its organization. Using the predictive 

computational models for individual learner’s and educator’s recommendations can be added 

to the LMS. These recommendations can be used to guide the student as they navigate the 

learning materials in a course. They can also be used to inform educators as they engage 

in activities to support student success in the course.

By identifying operational student learning processes it may be possible to detect how 

knowledge gaps are a consequence of less successful learning strategies and tactics. De­
veloping learning strategies can be challenging, thus an effective learning environment to 

support this must be designed and developed.



APPENDIX A

ENABLE USER MANUAL

ENABLE includes a graphical user interface. The instructions for using the interface are 

contained in the ENABLE User Manual. This manual contains instructions and images that 

explain how to interface with the ENABLE system. The user manual can be found in the 

repository at http://enableThinking.com /CourseTransform ation/repository.htm l.

http://enableThinking.com/CourseTransformation/repository.html


APPENDIX B

TRACES OF STUDENT AGENT 
TRAVERSALS OF THE 

COURSE MAP

As a student agent traverses the course map, it keeps track of each learning item as 

it encounters it. This trace can be displayed. The printed trace includes a list of the 
labels for each learning item. For the learning items that the agent did not complete, 

the label is in parentheses. Traces of 10 traversals for each of the seven student agents 

have been recorded. These traversal streams demonstrate the variety of ways the course 

map can be traversed. Although an agent has a set of characteristics and a specified 

approach to learning, they traverse the course map in a variety of ways. This variation 

is apparent in these traces. The traversal data can be found in the repository at http: 
//enableThinking.com/CourseTransformation/repository.html.



APPENDIX C

COMPARISONS OF MULTIPLE STUDENT 
AGENT TRAVERSALS

At the end of a series of runs, the mean, max, min, and standard deviation of the final 

scores are computed. We can compare these values to agents with different characteristics. 
When the agent does only one traversal per run it is easy to see the variation from one 

traversal to another. When comparing the mean, max, min, and standard deviation of 

these runs, we see that running the agent 1000 times produces steady mean values. This is 

just the result of averaging together 1000 different final scores. The variation is still apparent 
in the max and min scores. With this many traversals you see the highest highs and lowest 

lows. The topical cohesion also becomes steady when many traversals are averaged. It is 
varying only by a single point from run to run for any given agent.

Data has been compiled that includes the following tables:

• Table 1 shows the results of doing 10 runs for each agent. The agent does only one 
traversal per run.

• Table 2 shows the results of doing 10 runs for each agent. The agent does 10 traversals 
per run.

• Table 3 shows the results of doing 10 runs for each agent. The agent does 100 traversals 
per run.

• Table 4 shows the results of doing 10 runs for each agent. The agent does 1000 
traversals per run.

These tables of data can be found in the repository at http://enableThinking.com / 

CourseTransformation/repository.html.

http://enableThinking.com/


APPENDIX D

Four sample sets of data have been compiled that contain the individual score data for 

the first 143 sample runs for the CPT model. Every sample set includes a score for each 
learning item. This sampling was done by taking each learning item in the order it was 

presented in the original course. A score was generated for the learning item by sampling 

from the score probability distribution created by the individual model for that item. The 

individual scores produced by this sampling were used to compute a final score.

The first model presented is a CPT model with five buckets, four grade buckets, one 

each for A, B, C, and DF. The fifth bucket is for zero scores. This particular CPT model 

uses both the immediately precedes and the pruned prerequisite relations. It combines both 
the very current information by including the immediately preceding item, as well as a more 

extended view of the preceding scores by including the pruned prerequisite information.

The data is broken up into assignment groups. First are the columns that contain the 
exercises, exams, and the final score. Right after these scores are the homework scores. 

Finally, the activity scores. There are too many activity scores to fit across one page, so 

first come activities 1 to 10 followed by activities 11 to 20. This data can be found in the 
repository at http://enableThinking.com /CourseTransform ation/repository.htm l.

INDIVIDUAL SCORE REPORTS CPT
MODEL

http://enableThinking.com/CourseTransformation/repository.html


APPENDIX E

Four sample sets of data have been compiled that contain the individual score data for 

the first 143 sample runs for the linear model. Every sample set included a score for each 
learning item. This sampling was done by taking each learning item in the order it was 

presented in the original course. A score was generated for the learning item by sampling 

from the score probability distribution created by the individual model for that item. The 

individual scores produced by this sampling were used to compute a final score. The model 
is a linear model. This particular linear model uses all the preceding learning items in the 

feature list.

The data is broken up into assignment groups. First are the columns that contain the 

exercises, exams, and the final score. Right after these scores are the homework scores. 
Finally, the activity scores. There are too many activity scores to fit across one page, so 
first come activities 1 to 10 followed by activities 11 to 20. This data can be found in the 
repository at http://enableThinking.com /CourseTransform ation/repository.htm l.

INDIVIDUAL SCORE REPORTS LINEAR
MODEL

http://enableThinking.com/CourseTransformation/repository.html


APPENDIX F

Four sample sets of data have been compiled that contain the individual score data for 

the first 143 sample runs for the linear model. Every sample set included a score for each 
learning item. This sampling was done by taking each learning item in the order it was 

presented in the original course. A score was generated for the learning item by sampling 

from the score probability distribution created by the individual model for that item. The 

individual scores produced by this sampling were used to compute a final score. The mixed 

linear model uses all the preceding learning items in the feature list.

The data are broken up into assignment groups. First are the columns that contain the 

exercises, exams, and the final score. Right after these scores are the homework scores. 

Finally, the activity scores. There are too many activity scores to fit across one page so 
first come activities 1 to 10 followed by activities 11 to 20. These data can be found in the 
repository at http://enableThinking.com /CourseTransform ation/repository.htm l.

INDIVIDUAL SCORE REPORTS MIXED
MODEL

http://enableThinking.com/CourseTransformation/repository.html


APPENDIX G

COMPARING MODELS BY ASSIGNMENT 
GROUP

The following four tables compare 38 different models. Each table uses a different value 
for the comparison. The comparisons are also broken down based on learning item type. 

ENABLE identifies four distinct types of learning items: exercises, exams, homework, and 

activities. The first value in each table is the overall value. This column is followed by a 
column for each learning item type.

Table G.1 compares grade accuracy. Table G.2 compares L1 errors. Table G.3 compares 

L2 errors. Table G.4 compares log-likelihood scores.
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Table G .1. Comparison of Grade Accuracy Between Models and Learning Activity Types.

M odel Type Dependencies Grade
Accurac Exercise

y
Exam HW Activity

Mixed Linear PrecedesThree 77% 72% 49% 71% 85%
Mixed Linear P_3/PrunedPrereqs 77% 72% 49% 71% 85%
Mixed Linear PrecedesFive 76% 71% 49% 69% 85%
Mixed Linear PrecedesTwo 76% 72% 45% 70% 84%
Mixed Linear PrecedesNine 76% 70% 46% 70% 84%
Mixed Linear PrecedesOne 75% 68% 42% 71% 83%
Mixed Linear P_1/PrunedPrereqs 75% 68% 42% 71% 83%
Mixed Linear PrecedesThirteen 75% 69% 49% 69% 84%
CPT Grades PrecedesOne 75% 69% 39% 71% 83%
CPT Grades P_1/PrunedPrereqs 75% 69% 39% 71% 83%
CPT Grades PrecedesTwo 75% 72% 46% 69% 84%
Mixed Linear Precedes 73% 67% 46% 68% 81%
CPT Grades Empty 73% 68% 39% 69% 82%
CPT Grades PrunedPrereqs 73% 68% 39% 69% 82%
CPT Grades Prereqs 73% 68% 39% 69% 82%
CPT Grades PrecedesThree 73% 68% 46% 68% 81%
Mixed Linear PrunedPrereqs 72% 68% 26% 69% 82%
Mixed Linear Prereqs 72% 68% 26% 69% 82%
Mixed Linear Empty 72% 68% 26% 69% 82%
Linear PrecedesThree 72% 62% 47% 68% 81%
Linear P_3/PrunedPrereqs 72% 62% 47% 68% 81%
Linear PrecedesFive 72% 60% 47% 68% 81%
Linear PrecedesTwo 72% 61% 45% 68% 81%
Linear PrecedesOne 72% 61% 42% 67% 82%
Linear P_1/PrunedPrereqs 72% 61% 42% 67% 82%
Linear PrecedesNine 72% 61% 47% 68% 80%
Linear PrecedesThirteen 72% 60% 49% 67% 80%
Linear Precedes 70% 59% 47% 67% 78%
Linear Empty 67% 60% 29% 66% 74%
Linear Prereqs 67% 60% 29% 66% 74%
Linear PrunedPrereqs 67% 60% 29% 66% 74%
CPT Percentiles PrecedesThree 32% 34% 48% 50% 19%
CPT Percentiles PrecedesOne 32% 34% 38% 52% 19%
CPT Percentiles P_1/PrunedPrereqs 32% 34% 38% 52% 19%
CPT Percentiles PrecedesTwo 31% 34% 36% 52% 19%
CPT Percentiles Empty 31% 33% 36% 50% 19%
CPT Percentiles PrunedPrereqs 31% 33% 36% 50% 19%
CPT Percentiles Prereqs 31% 33% 36% 50% 19%
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Table G .2. Comparison of L1 Errors Between Models and Learning Activity Types.

M odel Type Dependencies L1
Errors Exercise Exam HW Activity

Mixed Linear PrecedesFive 4.8 4.2 11.6 7.26 2.54
Mixed Linear PrecedesThree 4.9 4.0 12.3 7.34 2.62
Mixed Linear P_3/PrunedPrereqs 4.9 4.0 12.3 7.34 2.62
Mixed Linear PrecedesNine 5.0 4.3 12.1 7.48 2.73
Mixed Linear PrecedesTwo 5.0 4.2 13.2 7.37 2.68
Mixed Linear PrecedesThirteen 5.1 4.4 11.7 7.81 2.77
CPT Grades PrecedesTwo 5.4 4.6 13.2 7.77 3.17
CPT Grades PrecedesThree 5.5 4.6 12.5 8.00 3.32
Linear PrecedesThirteen 5.6 4.8 11.0 8.21 3.43
Mixed Linear Precedes 5.6 4.6 12.9 8.08 3.30
Linear PrecedesNine 5.6 4.8 12.5 7.99 3.41
Linear PrecedesFive 5.6 4.8 12.6 8.08 3.43
Linear Precedes 5.8 4.9 12.2 8.42 3.57
Mixed Linear PrecedesOne 5.8 4.9 15.5 8.72 2.92
Mixed Linear P_1/PrunedPrereqs 5.8 4.9 15.5 8.72 2.92
Linear PrecedesThree 5.9 4.9 13.0 8.64 3.48
Linear P_3/PrunedPrereqs 5.9 4.9 13.0 8.64 3.48
CPT Grades PrecedesOne 6.1 5.1 15.4 8.95 3.40
CPT Grades P_1/PrunedPrereqs 6.1 5.1 15.4 8.95 3.40
Linear PrecedesTwo 6.2 5.2 14.1 8.84 3.67
Mixed Linear PrunedPrereqs 6.2 5.1 15.9 9.51 3.20
Mixed Linear Prereqs 6.2 5.1 15.9 9.51 3.20
Mixed Linear Empty 6.2 5.1 15.9 9.51 3.20
CPT Grades Empty 6.3 5.0 15.0 9.31 3.62
CPT Grades PrunedPrereqs 6.3 5.0 15.0 9.31 3.62
CPT Grades Prereqs 6.3 5.0 15.0 9.31 3.62
Linear PrecedesOne 6.7 5.7 15.9 9.57 3.96
Linear P_1/PrunedPrereqs 6.7 5.7 15.9 9.57 3.96
Linear Empty 7.6 6.2 15.8 11.19 4.61
Linear Prereqs 7.6 6.2 15.8 11.19 4.61
Linear PrunedPrereqs 7.6 6.2 15.8 11.19 4.61
CPT Percentiles PrecedesTwo 9.5 8.4 13.4 8.92 9.42
CPT Percentiles PrecedesThree 9.5 8.4 13.7 8.94 9.40
CPT Percentiles PrecedesOne 10.0 8.7 15.8 9.75 9.46
CPT Percentiles P_1/PrunedPrereqs 10.0 8.7 15.8 9.75 9.46
CPT Percentiles Empty 10.2 9.0 15.2 10.02 9.88
CPT Percentiles PrunedPrereqs 10.2 9.0 15.2 10.02 9.88
CPT Percentiles Prereqs 10.2 9.0 15.2 10.02 9.88
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Table G .3. Comparison of l2 Errors Between Models and Learning Activity Types.

M odel Type Dependencies L2
Errors Exercise Exam HW Activity

Linear PrecedesFive 0.1411 0.2833 0.8372 0.3690 0.1082
Linear PrecedesThirteen 0.1419 0.2867 0.7777 0.3801 0.1097
Linear PrecedesNine 0.1423 0.2855 0.8504 0.3707 0.1093
Linear Precedes 0.1466 0.2906 0.8580 0.3839 0.1141
Mixed Linear PrecedesFive 0.1468 0.3115 0.8056 0.3899 0.1155
Linear PrecedesThree 0.1478 0.2820 0.8723 0.3928 0.1090
Linear P_3/PrunedPrereqs 0.1478 0.2820 0.8723 0.3928 0.1090
Mixed Linear PrecedesThree 0.1492 0.2997 0.8766 0.3893 0.1170
Mixed Linear P_3/PrunedPrereqs 0.1492 0.2997 0.8766 0.3893 0.1170
Mixed Linear PrecedesNine 0.1523 0.3219 0.8634 0.3990 0.1210
Linear PrecedesTwo 0.1536 0.2931 0.9348 0.4052 0.1116
Mixed Linear PrecedesTwo 0.1549 0.3086 0.9349 0.4024 0.1188
Mixed Linear PrecedesThirteen 0.1569 0.3229 0.8909 0.4146 0.1219
CPT Grades PrecedesThree 0.1572 0.3247 0.9093 0.4186 0.1157
CPT Grades PrecedesTwo 0.1583 0.3225 0.9656 0.4133 0.1170
Linear PrecedesOne 0.1638 0.3057 1.0402 0.4281 0.1155
Linear P_1/PrunedPrereqs 0.1638 0.3057 1.0402 0.4281 0.1155
Mixed Linear Precedes 0.1675 0.3330 0.9671 0.4340 0.1372
Mixed Linear PrecedesOne 0.1711 0.3435 1.0473 0.4475 0.1252
Mixed Linear P_1/PrunedPrereqs 0.1711 0.3435 1.0473 0.4475 0.1252
CPT Grades PrecedesOne 0.1767 0.3553 1.1189 0.4599 0.1245
CPT Grades P_1/PrunedPrereqs 0.1767 0.3553 1.1189 0.4599 0.1245
Linear Empty 0.1798 0.3238 1.0955 0.4803 0.1252
Linear Prereqs 0.1798 0.3238 1.0955 0.4803 0.1252
Linear PrunedPrereqs 0.1798 0.3238 1.0955 0.4803 0.1252
CPT Percentiles PrecedesThree 0.1814 0.4051 0.9440 0.4320 0.1890
CPT Percentiles PrecedesTwo 0.1816 0.4066 0.9659 0.4304 0.1882
Mixed Linear PrunedPrereqs 0.1836 0.3391 1.1089 0.4888 0.1310
Mixed Linear Prereqs 0.1836 0.3391 1.1089 0.4888 0.1310
Mixed Linear Empty 0.1836 0.3391 1.1089 0.4888 0.1310
CPT Grades Empty 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Grades PrunedPrereqs 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Grades Prereqs 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Percentiles PrecedesOne 0.1947 0.4256 1.0852 0.4707 0.1898
CPT Percentiles P_1/PrunedPrereqs 0.1947 0.4256 1.0852 0.4707 0.1898
CPT Percentiles Empty 0.2058 0.4217 1.1273 0.5143 0.1928
CPT Percentiles PrunedPrereqs 0.2058 0.4217 1.1273 0.5143 0.1928
CPT Percentiles Prereqs 0.2058 0.4217 1.1273 0.5143 0.1928
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Table G.4. Comparison of Log-likelihood Scores Between Models and Learning Activity 
Types.

M odel Type Dependencies Log
Likeliho ^dpxercise Exam HW Activity

Linear PrecedesFive 0.1411 0.2833 0.8372 0.3690 0.1082
Linear PrecedesThirteen 0.1419 0.2867 0.7777 0.3801 0.1097
Linear PrecedesNine 0.1423 0.2855 0.8504 0.3707 0.1093
Linear Precedes 0.1466 0.2906 0.8580 0.3839 0.1141
Mixed Linear PrecedesFive 0.1468 0.3115 0.8056 0.3899 0.1155
Linear PrecedesThree 0.1478 0.2820 0.8723 0.3928 0.1090
Linear P_3/PrunedPrereqs 0.1478 0.2820 0.8723 0.3928 0.1090
Mixed Linear PrecedesThree 0.1492 0.2997 0.8766 0.3893 0.1170
Mixed Linear P_3/PrunedPrereqs 0.1492 0.2997 0.8766 0.3893 0.1170
Mixed Linear PrecedesNine 0.1523 0.3219 0.8634 0.3990 0.1210
Linear PrecedesTwo 0.1536 0.2931 0.9348 0.4052 0.1116
Mixed Linear PrecedesTwo 0.1549 0.3086 0.9349 0.4024 0.1188
Mixed Linear PrecedesThirteen 0.1569 0.3229 0.8909 0.4146 0.1219
CPT Grades PrecedesThree 0.1572 0.3247 0.9093 0.4186 0.1157
CPT Grades PrecedesTwo 0.1583 0.3225 0.9656 0.4133 0.1170
Linear PrecedesOne 0.1638 0.3057 1.0402 0.4281 0.1155
Linear P_1/PrunedPrereqs 0.1638 0.3057 1.0402 0.4281 0.1155
Mixed Linear Precedes 0.1675 0.3330 0.9671 0.4340 0.1372
Mixed Linear PrecedesOne 0.1711 0.3435 1.0473 0.4475 0.1252
Mixed Linear P_1/PrunedPrereqs 0.1711 0.3435 1.0473 0.4475 0.1252
CPT Grades PrecedesOne 0.1767 0.3553 1.1189 0.4599 0.1245
CPT Grades P_1/PrunedPrereqs 0.1767 0.3553 1.1189 0.4599 0.1245
Linear Empty 0.1798 0.3238 1.0955 0.4803 0.1252
Linear Prereqs 0.1798 0.3238 1.0955 0.4803 0.1252
Linear PrunedPrereqs 0.1798 0.3238 1.0955 0.4803 0.1252
CPT Percentiles PrecedesThree 0.1814 0.4051 0.9440 0.4320 0.1890
CPT Percentiles PrecedesTwo 0.1816 0.4066 0.9659 0.4304 0.1882
Mixed Linear PrunedPrereqs 0.1836 0.3391 1.1089 0.4888 0.1310
Mixed Linear Prereqs 0.1836 0.3391 1.1089 0.4888 0.1310
Mixed Linear Empty 0.1836 0.3391 1.1089 0.4888 0.1310
CPT Grades Empty 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Grades PrunedPrereqs 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Grades Prereqs 0.1878 0.3413 1.1438 0.5028 0.1293
CPT Percentiles PrecedesOne 0.1947 0.4256 1.0852 0.4707 0.1898
CPT Percentiles P_1/PrunedPrereqs 0.1947 0.4256 1.0852 0.4707 0.1898
CPT Percentiles Empty 0.2058 0.4217 1.1273 0.5143 0.1928
CPT Percentiles PrunedPrereqs 0.2058 0.4217 1.1273 0.5143 0.1928
CPT Percentiles Prereqs 0.2058 0.4217 1.1273 0.5143 0.1928
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