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ABSTRACT

Multivariate assays using gene expression as their contributing factors, such as

the centroid-based PAM50 Breast Cancer Intrinsic Classifier, are becoming commonly

used in assisting treatment decisions in medicine, especially in oncology. Although

physicians may rely on these multivariate assays for planning treatment, little is

known about the effects on the results of an assay due to the intrinsic error in the

laboratory process and measuring its contributing factors. While we expect that clas-

sification of samples in proximity to one of the centroids defining the tumor classes will

be stable with respect to experimental errors in the gene expression measurements,

what happens to the samples not in proximity to a single centroid is unknown.

Results reported to the attending physician may be misleading because he or she

is receiving no information about the probability for sample misclassification. Given

the serious consequences due to ambiguous results in clinical classifications, methods

to measure the effects of a multivariate assay’s intrinsic errors need to be established

and communicated to attending physicians. In this study, a method to characterize

the technical uncertainty in the classification of centroid-based multivariate assays, is

developed and described, using the PAM50 Breast Cancer Intrinsic Classifier as the

model multivariate assay. Furthermore, the described method provides a general and

individual classification confidence measurement that advances multivariate assays

towards personalized healthcare by providing personalized confidence measurements

on the assay’s result. Finally, this study explores whether using parametric versus

nonparametric distance measurements is most effective when using a single gene

expression platform, such as microarray or Real-time, quantitative Polymerase Chain

Reaction.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Breast cancer has captured the attention of medical professionals, researchers,

women, and their loved ones around the world because the disease’s cure has been

elusive, due to its complexity. Breast cancer’s complexity largely stems from its

heterogeneity on the levels of molecular alterations, cellular composition, and clinical

outcome – making proper diagnosis and treatment difficult [1]. Breast cancer is

the most common cancer in women, amounting to nearly 1 in 3 cancer diagnoses,

and is the second leading cause of cancer deaths among women, according to the

American Cancer Society [2]. Furthermore, more than 230,000 new cases of invasive

breast cancer as well as more than 57,000 in situ cases were expected to be diagnosed

during 2011. Approximately 40,000 breast cancer deaths were also expected during

2011 [2]. Clearly, breast cancer dramatically changes the lives of millions of individuals

annually, in the United States alone, when also considering the friends and loved ones

for each newfound patient. However, researchers and physicians are making progress

in efforts to eradicate breast cancer. For example, the breast cancer mortality rate

decreased by approximately 24% to 37% between 1990 and 2007, which was attributed

to early detection by screening and adjuvant treatment [2,3]. Such a dramatic decrease

in breast cancer mortality is encouraging, but certainly not sufficient. Further efforts

to understand the biological nature of breast cancer will ameliorate treatment for all

cancers at any stage.

In an effort to better understand the biological nature of breast cancer, researchers

and physicians have worked together to develop several multivariate assays (MVA)

designed to elucidate the biological nature of breast tumors. MVAs are assays that

exploit multiple biological measurements, referred to as contributing factors, to as-

certain a clinical result. Example MVAs include the PAM50 Breast Cancer Intrinsic
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Classifier, Oncotype DX R©, BreastOncPx
TM

, and MammaPrint R© – each of which

are both prognostic and predictive of a tumor’s drug and chemotherapy sensitivity

[1, 4–13]. Although these MVAs have proven useful, little is known about the effects

of intrinsic technical uncertainty on the MVA’s results. Each of the aforementioned

MVAs measure expression of several genes, ranging from 14 to 70, making them

highly complex. In fact, each gene measured in the MVA, although necessary to

understand the biological nature of the tumor, is a separate dimension that introduces

its own natural variation, or error, which may make results more unpredictable. As

MVAs become more commonplace in medicine, a method to characterize the intrinsic

technical uncertainty of such complex tests generally, as well as how to measure the

confidence of individual results, will be essential.

Technical uncertainty may be separated into intrinsic error from measuring de-

vices and in vitro biological processes, as well as intrinsic and explicit classification

uncertainties, among others. There are also extrinsic factors such as local climate

and human interactions that will affect MVAs. Essentially, technical uncertainty

involves most aspects from the time a sample is received by the reference laboratory

until a clinical report is generated. To be widely applicable, a method capable of

characterizing intrinsic technical uncertainty must be scalable and generalizable. By

developing a scalable and generalizable method to characterize intrinsic technical

uncertainty, researchers will be able to assess and validate the technical aspect of

current and future MVAs, as well as minimize the effects of technical uncertainty on

the MVA’s final result – making patient diagnosis and treatment more accurate and

predictable.

1.2 Main Objectives

Several MVAs are already used in medicine and, in general, MVAs are likely be-

come a standard of care for many complex diseases; however, three main shortcomings

regarding MVAs to address, which are the primary objectives of this research, are as

follows:

1. There is currently no standard method to characterize the intrinsic technical

uncertainty of MVAs
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2. There is currently no method to measure the confidence of individual results

3. Little is known regarding the effectiveness of using a parametric measurement

within a single platform (e.g., microarray or RT-qPCR) versus using a nonpara-

metric measurement.

A standard method to assess and validate the technical aspect of MVAs is essential

because it will allow researchers to characterize and minimize the effects of intrinsic

technical uncertainty (error) on an MVA’s final result. Little is known about the

effects of intrinsic technical error in measuring an MVA’s contributing factors on

the MVA’s results. Likewise, little is known about how to measure the effects.

Given the complexity of MVAs, results may be unpredictable, or easily corrupted

by minor changes or mistakes in the process. For example, if a mistake is made

in the process that causes a single contributing factor to be mismeasured, there is

currently no method to assess the potential ramifications. Furthermore, there is no

method to assess how much variation, or error, can exist within the process without

compromising the results. Developing a generalizable method to characterize the

intrinsic technical uncertainty is the first objective of this research.

A method to measure the confidence of individual results will advance MVAs

toward personalized healthcare by providing personalized confidence measurements

on the MVA’s result. Clinical assays routinely report a general summary statistic

measuring how well the assay performed on an independent test set when compared

to the results of a reference standard method; however, such summary statistics do

not provide personalized information on the confidence that the result for a specific

sample was accurate. Since summary statistics, by nature, are meant to represent

an entire distribution of results, a physician has no choice but to assume that all

results provided by an MVA have equal confidence to the confidence portrayed in the

summary statistic. There will undoubtedly be samples whose confidence is poor, but

the physician will be uninformed that he or she should give special attention to the

situation. Developing a method to measure the confidence of individual results is the

second objective of this research.
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An essential aspect of developing and assessing centroid-based MVAs (cbMVA),

specifically, is identifying the best distance metric to determine classifications, how-

ever, little is known regarding when to use parametric versus nonparametric mea-

surements. Given the limitless variations possible when designing cbMVAs, defining

whether a parametric or nonparametric measurement is most appropriate is difficult

at best. Nevertheless, a specific situation of interest is which measurement type is

most appropriate when using a single gene-expression platform such as microarray or

Real-time, quantitative PCR (RT-qPCR). The PAM50 clinical assay uses RT-qPCR

exclusively and will be used to explore the potential ramifications. Since there

are several possible measurements within both the parametric and nonparametric

categories, two specific measurements of interest will be considered: euclidean, which

is parametric, and Spearman’s Rho (ρ), which is nonparametric. Exploring the effects

of using euclidean versus ρ as a distance metric when using RT-qPCR exclusively is

the third and final objective of this research.



CHAPTER 2

BACKGROUND

2.1 Uncertainty in Centroid-based
Multivariate Assays

MVAs using gene expression as their contributing factors are becoming common-

place in assisting treatment decisions in medicine, especially in oncology. Examples

of MVAs available for planning breast cancer treatment include the 55-gene subtype

classifier (PAM50 Breast Cancer Intrinsic Classifier) [1], the 21-gene prognosis assay

(Oncotype DX R©) [14], the 14-gene prognosis assay (BreastOncPx
TM

) [15] and the

70-gene prognosis assay (MammaPrint R©) [16]. Although physicians may rely on

these MVAs for planning treatment, little is known about the effects of intrinsic

technical error in measuring an MVA’s contributing factors on the MVA’s results – in

this case, all laboratory steps required for preparing a sample (post RNA extraction),

preparing the assay, and the instrumental errors for measuring gene expression. While

we expect that classification of samples in proximity to one of the centroids defining

the tumor classes, referred to as archetypal samples here, will be stable with respect to

experimental errors in the gene expression measurements, it is unknown what happens

to the samples not in proximity to a single centroid. For example, if a sample lies

in a “gray” area where the intrinsic errors in the gene expression measurements may

result in a change of its classification each time the sample is run, the results reported

to the attending physician may be misleading because he or she is getting the results

from only one measurement and no information about the probability for sample

misclassification. Given the serious consequences due to ambiguous results in clinical

classifications, methods to measure the effects of an MVA’s intrinsic errors need to

be established and communicated to attending physicians.

The complexity of MVAs demonstrates the challenge of identifying and under-

standing error sources from the moment a sample is received by the reference labora-
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tory until a clinical report is generated. In short, each contributing factor measured

within an MVA is a new dimension with its own associated measurement error.

Further error sources to be considered include heterogeneity (e.g., heterogeneity due

to molecular and cellular composition) and sample preparation, as well as technical

variability, which may be separated into error from measuring devices and in vitro bio-

logical processes, as well as intrinsic and explicit classification uncertainties. Potential

classification uncertainties include differing metrics to define class boundaries, such

as euclidean distance versus Spearman’s Rho (ρ), as well as differing algorithms to

determine the classification. The focus of this research was to characterize technical

uncertainty within MVAs, in general, and more specifically how to estimate and

measure the effect that intrinsic gene expression measurement errors, including those

associated with sample and assay preparation, have on final MVA results overall (i.e.,

across large data sets), as well as for individual samples.

2.2 PAM50 Breast Cancer
Intrinsic Classifier

In 2009 Parker et al. proposed a 50-gene expression signature, named the PAM50,

as a method to standardize breast cancer subtype classification through gene expres-

sion profiling – in contrast to the conventional immunohistochemistry (IHC) and

fluorescence in situ hybridization (FISH) methods. Both IHC and FISH have been

criticized as being subjective or insufficient, or both, due to differing techniques, visual

interpretation, and other inconsistencies [1, 17–24]. Conversely, quantitative values

allow for more objective analysis, such as those produced through gene expression

profiling techniques like microarray and RT-qPCR [1]. As such, the PAM50 is well

positioned to provide objective, reproducible subtype classification for breast cancer,

which is commonly classified into one of four recognized biological subtypes known

as Luminal A, Luminal B, HER2-enriched, and Basal-like [1, 25–28].

The PAM50, later released as a clinical assay in 2011 at ARUP Laboratories as the

PAM50 Breast Cancer Intrinsic Classifier (PAM50 assay), is a complex MVA based

on gene expression for several genes. PAM50 measures the expression level of 55 genes

(50 classifier genes and 5 housekeepers) creating a “signature” that is compared, using

Spearman’s Rho (ρ) as a distance metric, to each of five centroids [1,29] representing
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the Luminal A, Luminal B, HER2-enriched and Basal-like subtypes [1,26,27], as well

as Normal-like tissue. The tumor sample is then classified as the subtype to which it

is most similar by ρ.

Although the PAM50 is young, numerous studies have already shown the PAM50

subtype classification is both prognostic as well as predictive of a tumor’s drug and

chemotherapy sensitivity [1, 4–6]. Moreover, a recent study has also shown that the

PAM50 may better identify low-risk ER+ tumors, when compared to Oncotype DX R©,

demonstrating PAM50’s potential value in breast cancer treatment [30].

Despite all of the benefits the PAM50 and other prognostic MVAs provide, little

is known about how to assess the overall and individual reproducibility of an MVA’s

final result, given the intrinsic technical uncertainty within the MVA system (e.g., in-

strument measurement variability, RT-qPCR variability, etc.). As such, it is essential

to develop a method to characterize the uncertainty within a complex MVA and its

effects on the MVA’s final result.

2.3 Distance Metrics – Spearman’s
Rho (ρ) vs. Euclidean

Distance metrics are a key element of interest in the characterization of error

within cbMVAs, specifically. Numerous distance metrics could be used and were ex-

plored during development of the PAM50; however, Spearman’s Rho (ρ) was identified

as the ideal distance metric to maintain consistency across gene expression platforms

(e.g., RT-qPCR and microarray) [1]. Spearman’s nonparametric approach involving a

value’s rank, when compared to its sister values, rather than the raw value itself makes

the metric more robust across platforms because nonparametric statistics are more

capable of assessing data that do not belong to any particular distribution (or different

distributions) [31]. However, nonparametric statistics have several disadvantages such

as being less specific (i.e., more generalized) because information is lost by using ranks

instead of raw values, and nonparametric tests have less power to reject a false null

hypothesis [31, 32]. Given clinical MVAs are likely to use a single platform (e.g.,

RT-qPCR), the benefits of a nonparametric test like Spearman’s Rho (ρ) come into

question. Parametric measurements, on the other hand, such as Euclidean distance,

although not ideal across platforms, may be more accurate and consistent within a
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single platform, and thus be a better choice for the clinical assays like the clinical

PAM50 assay.

2.4 General and Individual
Classification Confidence

Perhaps the most important element of characterizing intrinsic technical uncer-

tainty in the classification of MVAs is to measure uncertainty’s effect on the MVA’s

final results – in other words, measuring the overall confidence of the MVA’s final

results. However, this research also seeks to take an MVA’s accountability one step

further and provide a confidence measurement on the results of individual patient

samples, based on the premise that knowing the overall reproducibility of an MVA

provides little information for the confidence of a given sample’s result. Essentially,

the overall confidence of any assay is an average confidence, which suggests there is

an unknown distribution of confidence values for individual samples. For example,

clinical assays commonly report sensitivity and specificity of the assay, which repre-

sents the assay’s overall ability to distinguish between classes; however, sensitivity

and specificity are merely an overall measurement of confidence from a test set where

truth is “known” (assumed) based on some reference standard. Such information

provides little information for a sample lacking knowledge of the reference standard,

except to say the assay “overall” provides sensitivity x and specificity y. A more

specific measurement is essential to providing personalized confidence measurements.

The PAM50 uses Spearman’s Rho (ρ) as a distance metric to determine the sub-

type of a tumor. Several statistical tests exist for determining statistical significance

of ρ [33–35], but each test is insufficient for one of two reasons: (1) the test is not

specific for individual samples; and (2) the test does not relate multiple ρ values.

Statistical tests, such as those in the first case, are generally tailored for sample means

rather than individual measurements and are not suited for calculating a statistical

measurement for an individual breast tumor sample classification. Regarding the

second case, Spearman’s Rho (ρ) is capable of determining whether any two variables

(e.g., tumors) are significantly correlated by ρ by testing whether ρ is significantly

different from 0; however, this test is incapable of relating multiple ρ values. In other

words, when the tumor is compared to each of the five centroids, the tumor may
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be significantly correlated to more than one centroid, especially since the expression

profiles for all centroids and the test sample are based on breast tissue. In fact,

preliminary analyses suggest that > 99% of all test samples are significantly correlated

with more than one centroid, and > 85% are significantly correlated to all five.

Currently, there is no way to determine whether one classification is statistically the

“best” classification. A new method to measure confidence of individual samples is

clearly needed, and if medicine is, indeed, to become personalized, then clinical assays

must provide personalized results, including personalized confidence measurements.

2.5 The Monte Carlo Method

A method that is capable of characterizing the technical uncertainty of MVAs

must be thorough, scalable, and generalizable because of the complexity of MVAs – an

ideal situation to employ the Monte Carlo method [36–39]. The Monte Carlo method

was developed by Stanislaw (Stan) Ulam, John von Neumann, Nicholas Metropolis,

and others at the Los Alamos Laboratory in the 1940’s while trying to characterize

neutron diffusion in fissionable materials, which is a complex, multidimensional prob-

lem [36–39] similar to characterizing technical uncertainty in MVAs. The Monte Carlo

method is particularly amenable to complex, multidimensional problems because it

uses random sampling from predefined statistical distributions for each dimension

(contributing factor) to perform what have become known as “mathematical ex-

periments” [38]. Furthermore, the upper limits on performing the “mathematical

experiments” are determined only by available time and computational resources –

both of which are readily available to researchers today. Allowing each contributing

factor to be randomly sampled from its own distribution makes the Monte Carlo

method highly scalable and generalizable, while being able to perform a large number

of “mathematical experiments” allows the method to be highly thorough.

Ulam’s Monte Carlo method has been used to solve numerous problems empiri-

cally. Ulam first conceived the idea in 1946 while playing the card game Solitaire, as

he later stated in 1983:

The first thoughts and attempts I made to practice [the Monte Carlo
method] were suggested by a question which occurred to me in 1946
as I was convalescing from an illness and playing solitaires [sic]. The
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question was what are the chances that a Canfield solitaire laid out with
52 cards will come out successfully? After spending a lot of time trying
to estimate them by pure combinatorial calculations, I wondered whether
a more practical method than “abstract thinking” might not be to lay it
out say one hundred times and simply observe and count the number of
successful plays. This was already possible to envisage with the beginning
of the new era of fast computers, and I immediately thought of problems
of neutron diffusion and other questions of mathematical physics, and
more generally how to change processes described by certain differential
equations into an equivalent form interpretable as a succession of random
operations. Later... [in 1946, I ] described the idea to John von Neumann
and we began to plan actual calculations [37].

As Ulam stated, he immediately applied the idea to understanding neutron diffusion,

and more generally how to apply the method to problems pertaining to differential

equations. In fact, the Monte Carlo method has since been shown to be useful in

problems where conventional analytics are not feasible [38,40,41]. After some lengthy

preparation, Ulam et al. later computed nine problems specific to material configu-

rations, neutron distributions, and running times [38]. The Monte Carlo method has

since been used to solve problems in fluids, thermodynamics, neuroscience, and other

disciplines, demonstrating how the method is amenable to complex, multidimensional

problems [38,42–45].



CHAPTER 3

METHODS

A comprehensive experimental study to estimate the effect that the intrinsic gene

expression measurement errors have on the classification of tumors and gene-score

classifications requires, in principle, repeated testing of a significant number of sam-

ples from each subtype and thorough analysis of the misclassifications observed. Such

a comprehensive approach is unfeasible in terms of cost and sample availability. Here

we have adopted a hybrid approach in which we perform repeated experimental

measurements on one sample from each subtype (i.e., Luminal A, Luminal B, HER2-

enriched and Basal-like) to determine the experimental variability of the measured

gene expression for each of the 50 genes included in the PAM50 assay. Using this

experimental information we proceed to generate a Gaussian error distribution that

can be used to generate multiple data sets by way of Monte Carlo simulations. These

simulations impose random errors, given by the Gaussian distribution, on the set

of experimental measured samples. Monte Carlo simulations are well suited for this

hybrid analysis because there is extensive literature for using this approach to estimate

errors in high-dimensional problems, such as fluids and thermodynamics [38, 42, 43],

where conventional analytics are not feasible [38,40,41]. The simulated data sets are

then classified by the standard PAM50 algorithm, and the misclassifications encoun-

tered in the synthetic data sets are used as a proxy for the PAM50’s misclassification

rate based on the assay’s intrinsic error.

Specifically, in this study we followed five major steps: (1) collect and prepare four

archetypal samples representative of each cancer subtype; (2) characterize the intrinsic

error for each gene’s expression values in the assay by making 12 measurements for

each gene’s expression on each archetypal sample and determine the distribution

type that best models the experimental errors; (3) using Monte Carlo simulations
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generate a sufficient number of simulated test samples, based on a defined confidence

interval width, by imposing the errors generated using the distribution from (2) onto

the archetypal samples; (4) determine the effect of the variability imposed in the

simulated samples on their classification; and (5) repeat steps (3) and (4) on an

independent set of samples from the GEICAM 9906 clinical trial (GEICAM) [46].

3.1 Archetypal Sample Collection
and Preparation

In order to characterize the error in gene expression measurements, four archetypal

samples representative of each cancer subtype with sufficient genetic material were

constructed – since most single samples do not have enough genetic material to be

tested more than twice. Cell lines representative of Basal-like (ME16C) and Luminal

B (MCF7) subtypes were grown in the Reagent Lab at ARUP Laboratories. Luminal

A and HER2-enriched subtypes were not readily available as a cell lines. As such, 20

patient tumor samples previously identified as archetypal Luminal A (10 samples) and

HER2-enriched (10 samples), based on PAM50 gene scores and classification, were

collected under IRB approved protocols at the University of Utah to be combined

and treated as single tumor samples.

RNA was extracted from tumor-enriched areas of formalin-fixed, paraffin-embed-

ded (FFPE) tissue blocks, containing more than 70% tumor cells, as determined

during review by a board-certified pathologist. Samples were deparaffinized us-

ing Citrus Clearing Solvent (Richard-Allen Scientific, Kalamazoo, MI, http://www.

thermofisher.com) followed by dehydration in absolute ethanol. RNA extraction

was completed on a Biomek NX Laboratory Automation Workstation (Beckman Coul-

ter, Beverly, MA, http://www.beckmancoulter.com) using the AgenCourt Forma-

Pure Kit (Beckman Coulter, Beverly, MA, http://www.beckmancoulter.com) ac-

cording to the manufacturer’s instructions and including a DNase I step. RNA

quantification was done on a Paradigm Detection Platform (Beckman Coulter, Bev-

erly, MA, http://www.beckmancoulter.com) using the Quant-iT RiboGreen As-

say Kit (Invitrogen, Carlsbad, CA, http://www.invitrogen.com). cDNA synthe-

sis was performed on the Biomek FX Laboratory Automation Workstation (Beck-

man Coulter, Beverly, MA, http://www.beckmancoulter.com) using 600 ng of RNA,



13

uracil containing dNTPs (Invitrogen, Carlsbad, CA, http://www.invitrogen.com),

random primers (Invitrogen, Carlsbad, CA, http://www.invitrogen.com), gene-

specific, downstream PCR primers (Idaho Technology, Salt Lake City, UT, http://

www.idahotech.com), and SuperScript III Reverse Transcriptase (Invitrogen, Carls-

bad, CA, http://www.invitrogen.com).

Each 5 µL reaction contained 1X LightCycler 480 SYBR Green I Master Mix

(Roche Applied Sciences, Indianapolis, IN, http://www.roche-applied-science.

com) and 1.67 ng cDNA were added to the experimental sample wells. Sample cDNA

was incubated with LightCycler Uracil-DNA Glycosylase (Roche Applied Sciences,

Indianapolis, IN, http://www.roche-applied-science.com) at 40 ◦C for 10 min

and inactivated at 95 ◦C for 10 min prior to performing RT-qPCR. RT-qPCR was

performed on the LightCycler (LC) 480 (Roche Applied Sciences, Indianapolis, IN,

http://www.roche-applied-science.com) as follows: 45 cycles at 95 ◦C for 4 sec,

58 ◦C for 6 sec and 72 ◦C for 6 sec. To assure target specificity, RT-qPCR was followed

by a melting curve analysis: 95 ◦C for 15 sec, 65 ◦C for 1 min followed by raising the

temperature to 99 ◦C while taking 10 fluorescence acquisitions/◦C. We then classified

the RT-qPCR data from each run. One run from the Luminal A sample failed quality

control and was not included in further analysis.

3.2 Error Characterization

In order to estimate the intrinsic experimental error in gene expression measure-

ments within our laboratory, we performed 12 measurements for each gene within each

archetypal sample. Specifically, each of the four archetypal samples was separated

into, and treated as 12 individual samples (after extraction), and measured by RT-

qPCR on the Roche LightCycler (LC) 480 (Roche Applied Sciences, Indianapolis, IN,

http://www.roche-applied-science.com). The error distribution function type

could not be estimated using only the 12 measurements for each gene within a given

sample subtype, therefore to determine the error distribution function type for each

gene, all four sample subtypes were median-centered by gene and combined, giving

47 data points per gene, since one of the archetypal Luminal A samples failed quality

control. As depicted in Figure 3.1, the resultant error distributions for each gene
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can be reasonably approximated by Gaussian distributions. Therefore 200 Gaussian

distributions were generated, one per gene within each archetypal sample, using

the mean and standard deviation of the 12 data points within the given gene and

archetypal sample. Note that only the 12 data points available for each gene were

used to determine the mean and standard deviation because the mean and standard

deviation must be specific to the gene and subtype, whereas all 47 data points per

gene were necessary to form a recognizable distribution. Gaussian distributions were

generated using the “rnorm” function within The R Statistical Package (R) [47].

3.3 Sample Size Justification for Archetypal
Sample Monte Carlo Simulation

Before performing the Monte Carlo simulations an analysis to justify sample size

was performed to ensure sufficient confidence for the analysis when using our target of

100,000 simulated samples. We calculated the 95% confidence interval width around

the percentage of correct classifications using 100,000 simulated samples for each

archetypal sample. For a dichotomous variable (i.e., misclassified or not), a confidence

interval width (W) can be calculated (Equation 3.1) given an alpha

W = ±Zα

√
p̂(1 − p̂)

n
(3.1)

level (Z0.05 = 1.96), expected proportion of misclassifications (p̂ = 0.02) and the

sample size, or in this case, the number of simulations (n = 100,000). The calculated

confidence interval width is ±0.00087 for each simulation of 100,000 samples, which

is an acceptable value.

3.4 Monte Carlo Simulation Using
Archetypal Samples

Monte Carlo simulations were performed using the mean (µ) value and standard

deviation (σ) for the expression of each gene within the archetypal samples, as

described above. This procedure created a total of 200 independent distributions, i.e.,

50 Gaussian distributions (one for each gene) for each of the four archetypal samples.

For example, the mean expression value (µ) for ACTR3B from the 12 Luminal B

values was 1.94 and the corresponding standard deviation (σ) was 0.085. Therefore
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the ACTR3B expression value for each of the 100,000 simulated Luminal B samples

was randomly selected from a Gaussian distribution centered on a mean (µ) of 1.94

with a standard deviation (σ) of 0.085. Randomly selecting a value from the Gaussian

distribution, as described, does not assume gene expression values are independent of

one another, rather the method assumes that the measurement error for each gene is

independent. Specifically, since each Gaussian distribution is centered on the gene’s

mean expression value for the given sample, any genes within the sample that are

generally upregulated will generally be upregulated in the simulated samples, while

allowing the error to deviate independently. The 100,000 simulated samples for each

archetypal sample were classified using the standard PAM50 process. The effect of

intrinsic gene expression measurement error on the tumor classification was assessed

by determining the percentage of simulated samples that were classified identically

to the original sample. This value provides an estimate of the reproducibility of the

results for archetypal samples.

3.5 Evaluation Using the GEICAM
Independent Test Set

Testing archetypal samples is valuable for determining how the PAM50 assay will

perform under ideal circumstances, but these results may not be informative when the

samples are not as well characterized as the archetypal samples. Thus, the method

described above for the archetypal samples was adapted and applied to the larger

and more diverse set of independent samples from the GEICAM 9906 clinical trial.

A total of 911 breast tumors collected by the GEICAM group for the GEICAM 9906

clinical trial were run and classified by the PAM50. Tumor samples were prepared

following the same methods described above for the archetypal samples and those

with insufficient tumor content to be classified were excluded from further analyses.

3.6 Monte Carlo Simulation using
GEICAM Samples

As depicted in Figure 3.2, the data from the multiple measurements in the archety-

pal samples show that standard deviation depends on the relative average gene

expression value and on the sample subtype. To understand the sample subtype
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dependence one should understand that the expression values of the genes defining

the expression pattern for each of the cancer subtype are quite different, e.g., the

Luminal A subtype expresses all 50 genes at a level that is more easily quantified,

producing a lower standard deviation; however, the HER2-enriched subtype expresses

some genes at lower levels such that they are less easily quantified, producing a

higher standard deviation. Therefore as depicted in Figure 3.2, the relative errors

in the gene expression measurements in a Luminal A sample are smaller than those

in a HER2-enriched sample. Accordingly our methods to produce simulated samples

have to be modified to take into account these dependencies when applied to a set

of nonarchetypal samples. Using locally weighted scatter plot smoothing (loess),

based on the PAM50’s characterized error functions depicted in Figure 3.2, we de-

veloped error distributions that can be used to impose the error on individual test

samples dynamically. The loess model was fit using the R function “loess” (span =

0.75, degree = 1, surface = “direct” and family = “symmetric”) and graphed using

“panel.smoother” from the R lattice graphics package. A 95% confidence interval for

the fitted line was also calculated to test “best-case” (lower limit of the 95% confidence

interval), “worst-case” (upper limit of the 95% confidence interval) and “average-case”

(the fitted line) scenarios for subtype reproducibility. The “worst-case” scenario is

considered as such because it uses the highest estimated standard deviations, or error.

Once the loess models were developed, we used these models to predict the standard

deviation (σ) to generate Gaussian distributions for the Monte Carlo simulation.

Specifically, given the test sample’s original subtype and the expression value for a

given gene, we used the loess model to predict the standard deviation (σ), or error, to

be used in the Gaussian distribution for said gene and sample. The expression value

was used as the mean of the Gaussian distribution. We repeated this process for all

genes within each sample.

The model described above was used to generate random variants of the 847

GEICAM samples remaining after excluding those that could not be classified. The

subtype classification reproducibility for each GEICAM sample was tested by gener-

ating 100,000 simulated samples using Monte Carlo simulations for each of the error

models considered above, i.e., “best-,” “average-” and “worst-case,” for a total of
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300,000 simulated samples per GEICAM sample. Based on the same sample justi-

fication analysis used for the archetypal samples, the calculated confidence interval

width is 0.00087 for each simulation of 100,000 samples, which is an acceptable value.

3.7 Error Effect on PAM50 Results
for GEICAM Samples

After simulating 300,000 samples for each GEICAM sample based on the error

models described above, subtype reproducibility for the individual samples was sum-

marized for each tumor subtype (based on the original sample’s subtype) using two

statistics: (1) the total percentage of simulated samples that did (or did not) change

subtypes with respect to their parent sample and (2) the proportion of simulated

samples, corresponding to a single original sample, that were classified (or misclassi-

fied) identically to the parent sample. These data serve as an estimate of PAM50’s

misclassification rate based on intrinsic error within the assay when samples are not in

proximity to the PAM50 centroids and represents the error effect on PAM50 results.

3.8 Spearman’s Rho (ρ) vs.
Euclidean Distance

Simulations using Spearman’s Rho (ρ) produced results to measure the effect of

technical uncertainty on the clinical PAM50 assay’s results, but does not address

whether the PAM50 would benefit by using a parametric measurement when using

only one gene expression platform, as is the case with the clinical PAM50 assay.

We compared Spearman’s Rho (ρ) to euclidean distance through two methods: (1)

comparing the continuity of PAM50 subtype classifications in hierarchical clusters

when using ρ as a distance metric versus using euclidean distance; and (2) comparing

overall subtype reproducibility (error effect on PAM50 results) between when ρ is

used versus euclidean distance, as described. In this case 1,000 simulated samples

were generated for each parent sample. Statistical significance between using ρ and

euclidean as the distance metric was tested for overall significance (not distinguishing

between subtypes) and for each subtype using the Wilcoxon signed-rank test. The R

function “wilcox.test” (paired=TRUE and alternative=“less”) was used.
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CHAPTER 4

RESULTS

4.1 Archetypal Samples

All simulated samples derived from the archetypal samples were classified as the

same subtype as the parent sample, indicating that the PAM50 subtype classification

for samples with characteristics close to the PAM50 centroids is highly reproducible

and resilient to experimental errors in gene expression measurements. Although this

positive result is encouraging for PAM50 classifications, it is not generalizable beyond

the four archetypal samples.

4.2 GEICAM 9906 Samples

Tables 4.1, 4.2, and 4.3 present the results for the classification of all samples

produced by Monte Carlo simulation using the “best-” (Table 4.1), “average-” (Table

4.2) and “worst-case” (Table 4.3) scenarios for the error models described above.

These scenarios correspond to using the lower values of the 95% confidence interval

for the predicted error-model line, the actual predicted line and the upper values of

the 95% confidence interval, respectively. The upper values of the 95% confidence

interval are representative of the “worst-case” scenario because a greater amount of

error is introduced into the simulation.

Results for the GEICAM sample simulations suggest that all subtype classes are

highly reproducible. When considering the three different error models, the most

reproducible subtype among all GEICAM samples was always the Basal-like for

which 98.47% (average-case) of the simulated samples did not change classification,

followed by Luminal B (96.63%, average-case), Luminal A (95.46%, average-case) and

HER2-enriched (90.07%, average-case). The differences in reproducibility between

“best-” and “worst-case” (“best-case” percentages minus “worst-case” percentages)

in percentage points are 0.89, 1.31, 1.31, and 4.35 for Basal-like, Luminal B, Luminal
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A, and HER2-enriched, respectively. Consequently, the selection of the error model

is not a determining factor in assessing the robustness of the classification due to

experimental errors in gene expression measurement.

Figure 4.1 presents the histogram depicting the percentage of simulated samples,

corresponding to a single parent sample, that change. Based on the “average-case”

simulations and analyzing the classification of the 100,000 simulated samples gener-

ated for each sample we found that 80% (68 of 85) of Basal-like samples never change

subtype during the Monte Carlo simulation, 69% (186 of 270) of Luminal B samples

never change, 59% (178 of 303) of Luminal A samples never change and 22% (42

of 189) of HER2-enriched samples never change subtype. These values correspond

approximately to the first “bucket” in the histogram. While the histograms confirm

the results from Tables 4.1, 4.2, and 4.3 on the general robustness of the PAM50

classification, they also reveal that there are a nonnegligible number of samples

for which a large number of simulated samples change classification. For instance

the most variable sample for Basal-like, Luminal B, Luminal A and HER2-enriched

changed in 42%, 86%, 67% and 75% of the simulated samples, respectively. As

an example, the sample named “GEICAM 09-02639 UU” was originally classified

as HER2-enriched, but 38.7% of its simulated samples were classified as something

else. Specifically, the simulated samples were classified as HER2-enriched 61.3% of

the time, Luminal A 21.4% of the time and Normal-like 17.3% of the time. These

percentages could be translated into probabilities that can be reported to clinicians

using a scorecard like the one depicted in Figure 4.2.

4.3 Distance Metrics

Figure 4.3 presents a hierarchical cluster of all samples from the GEICAM 9906

clinical trial comparing the continuity of PAM50 subtype classifications when using

Spearman’s Rho (ρ) as a distance metric versus using euclidean distance. Subtype

classifications are colored according to Luminal A (dark blue), Luminal B (light blue),

HER2-enriched (pink), Basal-like (red), and Normal-like (green); and are separated

by euclidean (top row) and Spearman’s Rho (denoted “Clinical”). The continuity

of the euclidean classifications is noticeably superior within the HER2-enriched and



22

Luminal B groups, and moderately better within the Basal and Luminal A groups.

Table 4.4 presents the results for the classification of all samples produced by

Monte Carlo simulation using the “average-case” scenario for the error models de-

scribed, with the exception of using of using euclidean as the distance metric. Results

suggest that euclidean provides a more reproducible classification for each PAM50

subtype when using data from within one gene expression platform (RT-qPCR in

this case), which may also be generalizable to other cbMVAs. As with Spearman’s

Rho (ρ), Basal-like was most reproducible with 98.81% of the simulated samples

not changing classification, followed by Luminal B (97.76%), Luminal A (97.45%),

and HER2-enriched (93.79%) – though the gap between Luminal A and Luminal B

is markedly smaller. The differences in reproducibility between the “average-case”

for euclidean and Spearman’s Rho (ρ) (euclidean percentages minus Spearman’s Rho

percentages) in percentage points are 0.34, 1.13, 1.99, and 3.72 for Basal-like, Luminal

B, Luminal A, and HER2-enriched, respectively.

Furthermore, Figure 4.4, in contrast to Figure 4.1, presents the histogram depict-

ing the percentage of simulated samples, corresponding to a single parent sample,

that change when using euclidean as the distance metric. There is a markedly strong

left-shift towards zero, including a dramatic decrease in the maximum value within

each subtype. Results from the Wilcoxon signed-rank test demonstrate a statistically

significant increase for the overall change (p < 6.87 × 10−8), i.e., treating all subtypes

together. Also, when treating subtypes independently, Luminal A (p < 0.002),

Luminal B (p < 2.90 × 10−6), and Basal-like (p < 0.049) were statistically significant,

however, HER2-enriched (p < 0.106) was not.
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Figure 4.1: Distribution of subtype reproducibility for replicas of individual GE-
ICAM samples. Each of the four histograms shows on the y-axis the percentage of
parent samples for which there are any number of replicas that changed classification.
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Clinical
Euclidean

Figure 4.3: Hierarchical clustering of RT-qPCR data for the PAM50 classifier genes
normalized to the 5 control genes using samples from the GEICAM 9906 clinical trial.
Continuity of PAM50 subtype classifications when using Spearman’s Rho (ρ) as a
distance metric versus using euclidean distance. Subtype classifications are colored
according to Luminal A (dark blue), Luminal B (light blue), HER2-enriched (pink),
Basal-like (red), and Normal-like (green).
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Figure 4.4: Distribution of subtype reproducibility for replicas of individual GE-
ICAM samples when using euclidean as the distance metric. Each of the four
histograms shows on the y-axis the percentage of parent samples for which there
are any number of replicas that changed classification.



CHAPTER 5

DISCUSSION

5.1 Major Contributions

MVAs are becoming commonplace, particularly in oncology, to assist treatment

decisions; however, in combination with the advantages of MVAs, there are issues that

must be addressed to ensure MVAs are reliable and personalized. As secrets of the

human genome continue to be unlocked, MVAs are likely to become more common,

still. Thus, measures must be taken to assess the intrinsic technical uncertainty of

MVAs, yet there is currently no standard method for this purpose. The research pre-

sented has made valuable contributions to fill some of the aforementioned knowledge

gaps; specifically, contributions made are as follows:

1. A method to characterize the intrinsic technical uncertainty of MVAs and its

effects on the final result

2. A method that advances MVAs towards personalized healthcare by providing

personalized confidence measurements on the MVA’s result.

3. Explored effectiveness of using a parametric measurement within platform ver-

sus using a nonparametric measurement.

Perhaps the paramount issue to address with MVAs is how to characterize the

effects of intrinsic technical uncertainty on an MVA’s final result; or, in other words,

to have a method capable of grasping how variation (error), no matter the size, affects

the MVA’s final result given the complexity of the MVA. In the PAM50, for example,

the expression of 50 classifier genes are measured in 50 separate RT-qPCR reactions

(in addition to the five housekeeper genes), essentially creating a 50 dimensional

space with each dimension bringing its own associated error, with added potential to

make results unpredictable. The method described in this research can be applied in
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at least two ways, to characterize the reproducibility of PAM50 classifications: (1)

the method can be used to measure the effect of error on the final results, given

a known error; and (2) error limits can be defined, given an acceptable amount of

classification reproducibility. Additionally, this method is believed to be generalizable

to any problem that is based on continuous data values, which provides immediate

relevance to numerous disciplines.

In addition to providing a generalizable method to assess the effects of technical

uncertainty, another consequential issue was to develop a method to provide person-

alized confidence measurements on the assay result. At present, there is a strong

effort by worldwide government agencies, hospitals, physicians, and researchers to

bring personalized medicine to fruition. If medicine is indeed to become personalized,

there must also be a method to describe a result’s confidence for a single patient

sample rather than a summarizing statistic of the overall accuracy of an assay. This

research broached the barrier to provide a personalized confidence measurement and

will promote improved patient care by informing physicians of the MVA’s confidence

in the final result.

Similarly, defining under what circumstances a parametric or nonparametric mea-

surement, and which specific measurement, should be employed is critical to designing

cbMVAs. Which measurement to use will undoubtedly depend on the cbMVA design;

however, based on the research presented, there is evidence that parametric may be

the best choice within a single platform. Although the research presented needs to be

expanded, it laid ground work to better understand the effects of parametric versus

nonparametric statistical measurements within single gene expression platforms.

5.2 Limitations

The methods presented in this research are thorough, necessary, and well-founded;

however, there are inherent limitations that must either be taken into consideration

or may necessitate further research. Known limitations are as follows:

1. The general method to characterize technical uncertainty in MVAs requires

generating a model to generalize variation. Models cannot perfectly represent

the true nature of a system.
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(a) The repeated measures experiment is an estimate of the error

(b) It is assumed that error varies independently (Note: it is not assumed that

genes vary independently)

2. The method does not account for uncertainty beyond what is technical (e.g.,

tumor heterogeneity)

3. The confidence measurement only measures the confidence that a sample is

properly classified according to the defined classes (i.e., assumes the class defi-

nitions accurately represent the biology)

4. Euclidean distance shows greater reproducibility, however, the work presented

does not quantify accuracy

Despite meticulous efforts researchers may make to develop a model, no model

can fully represent the intricate details of a system or process. According to the New

Oxford American Dictionary, a model is “a simplified description. . . of a system or

process, to assist calculations and predictions” [48]. In the case of the model described

in this research, there are two specific limitations: (1) the repeated measures experi-

ment is only an estimate of the error; and (2) error is assumed to vary independently

between genes. Both of the aforementioned limitations have minimal implications

when addressed appropriately. In the first case, performing a sufficient number

of repeated measures will produce an accurate estimate within a small confidence

interval. In the second case, a correlation test can be performed using the repeated

measures data to determine if there is any significant correlation of the error between

genes. If significant correlation is discovered, error could then be varied dependently,

according to the associations discovered.

Perhaps the most apparent limitation of the method presented is that it only

pertains to technical uncertainty and it does not account for outside factors such as,

in the case of the PAM50, tumor heterogeneity, tumor isolation (i.e., directed punch

versus full-face cut), and RNA extraction, among others. Accounting for the factors

specified will require an entirely different study design and cannot be addressed with

the data prepared for this research.
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A perhaps more obscure limitation is that the confidence measurement developed

only measures the confidence that a sample is properly classified according to the

defined classes – meaning the measure assumes class definitions accurately represent

the biology. While knowing the confidence of the classification according to the

defined classes is important, it should be clear to anyone interpreting the results

that the defined classes have limitations of their own. Specifically, anytime classes are

imposed on continuous data values, there will be boundaries that engenders ambiguity,

by definition.

A final limitation worth mentioning is that the research contrasting euclidean

and Spearman’s Rho (ρ) as distance metrics does not quantify accuracy, though

euclidean distance is demonstrated to have superior reproducibility. Reproducibility

is essential to any MVA, at which euclidean distance is clearly superior to ρ, but

without a comprehensive comparison of accuracy, judgement cannot be fully exe-

cuted. On the other hand, there is preliminary evidence that euclidean distance may

also have superior accuracy because of the superior classification continuity within

the hierarchical cluster – though that is assuming class definitions and hierarchical

clustering accurately represent the biology. Further research is necessary to determine

whether euclidean, and parametric measurements alike, are more accurate than ρ and

other nonparametric measurements within a single gene expression platform.

5.3 Opportunities for Future Work

Scientific research is a complex, never-ending process that often rouses more

questions to be explored than were answered to begin with. The complexity of

individual disciplines such as biology, medicine, and informatics as separate entities

(or silos) is enough to occupy a researcher for the duration of his or her career. Yet,

trying to utilize biology, medicine, and informatics together, such as is the case with

biomedical informatics, seems to increase the complexity in a nonlinear fashion. Given

the methods presented in this research traverse all of the specified disciplines, there are

diverse opportunities for future work to clarify and ameliorate the characterization of

intrinsic technical uncertainty in MVAs. Two general areas, with broad implications,

that need further work are to : (1) explore nontechnical uncertainty; and (2) explore
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the implications of parametric versus nonparametric measures.

Exploring nontechnical uncertainty alone requires extensive knowledge and ex-

perimentation within biology, medicine, and informatics. Within biology there are

questions regarding genetics, heritability, genomics, and proteomics. For example, it

is possible the disease was genetic (directly predisposed), or on the other hand there

may have been a genetic weakness that made the patient more susceptible to the

disease (indirectly predisposed); there are important treatment implications based on

the genetics. Likewise, heritability, which accounts for relative contributions of genetic

and nongenetic (e.g., environmental) differences, has important implications. Further-

more, deeper knowledge of genomics and proteomics will provide direct insight for

drug development. Combining the biology with medicinal expertise (e.g., pathology,

internal medicine, etc.) and informatics (computer science, statistics, data storage,

data mining, etc.) presents numerous paths to not only improve treatment, but

the MVAs used to help determine the ideal treatment. Areas of immediate interest,

specific to the PAM50, are understanding the effects of tumor heterogeneity, tumor

isolation (i.e., directed punch versus full-face cut), and RNA extraction methods.

There are many opportunities to improve this work.

Exploring the implications of parametric versus nonparametric measures, though

perhaps less complex, is a formidable challenge. Not only exploring parametric

versus nonparametric measures, but there are numerous measures within each class.

Additionally, the results are likely to change based on the MVA design, whether

there are one or multiple platforms employed, and the underlying natural value

distributions. It may, in fact, be that there are few generalizations to be made,

and that the various options available will need to be tested individually for each

MVA.

5.4 Relevance to Biomedical Informatics

Biomedical informatics is a multidisciplinary field and, as defined by Shortliffe

and Blois, is “the scientific field that deals with biomedical information, data, and

knowledge – their storage, retrieval, and optimal use for problem solving and decision

making” [49]. Essentially, biomedical informatics will play a critical role in improving
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patient care by improving physician access to, and understanding of biomedical

information. Among the many topics within the realm of biomedical informatics,

improving MVAs is a critical piece to realize improved patient care, since physicians

will be able to make more informed decisions. This research has improved MVAs in

the following fashions: (1) developed a generalizable method to characterize intrinsic

technical uncertainty in MVAs; (2) developed a method to provide personalized confi-

dence measurements for individual patient samples; and (3) laid ground work to better

understand the effects of parametric versus nonparametric statistical measurements

within single gene expression platforms.

A generalizable method to characterize intrinsic technical uncertainty in MVAs

will become increasingly important as scientific and medical breakthroughs allow

for more complex MVAs to provide personalized treatment guidance. Moreover,

MVAs will likely become more complex over time and there must be methods to

characterize the intrinsic technical uncertainty within the MVA to ensure the MVAs

are reproducible and accurate. The method described was developed for and tested

on the PAM50, but the principles employed are generalizable to any assay based

on continuous data values; and training in biomedical informatics facilitated the

method’s development.

At present, there is a strong effort by worldwide government agencies, hospitals,

physicians, and researchers to bring personalized medicine to fruition. If medicine is

indeed to become personalized, there must also be a method to describe a result’s

confidence for a single patient sample rather than a summarizing statistic of the

overall accuracy of an assay. This research broached the barrier to provide a person-

alized confidence measurement and will promote improved patient care by informing

physicians of the MVA’s confidence in the final result.

Although there is much work to be done to understand when parametric and

nonparametric statistical measurements should be employed, not to mention which of

the many available measurements within either class, there is evidence that parametric

may be the best choice within a single platform. A deeper understanding of the

intricacies of statistical measurements for use in MVAs will allow for more reliable

and accurate MVAs – an important task within biomedical informatics.
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Each contribution from this research was facilitated by training in biomedical

informatics. Many researchers have spoken of, and endeavored to overcome, the

silo-like nature of historical disciplines [50–53] such as biology, medicine, and statistics

– and the biomedical informatics discipline is a direct result of their efforts. By seeking

to bring together the knowledge from several “silos,” this research achieved tasks that

otherwise may have been overlooked.



CHAPTER 6

CONCLUSION

A method was developed based on Monte Carlo simulations and limited exper-

imental measurements to estimate the effect of the intrinsic experimental errors

in the measured factors contributing to MVAs. While the specifics of the error

distribution functions given are not universal functions, and recalculation for each

lab or experimental setting must be considered, the proposed method is generalizable

and adaptable to any MVA.

Furthermore, the method presented advances MVAs towards personalized health-

care by providing personalized confidence measurements on the assay result. Provid-

ing personalized confidence measurements on the assay result will allow physicians

to make better treatment decisions, although the confidence measure assumes that

classes accurately represent the disease’s biology.

While the effectiveness of using a parametric measurement within platform versus

using a nonparametric measurement is inconclusive, the data presented suggest that

parametric measurements may be better suited for use within a single platform.

Further understanding of the effects of parametric versus nonparametric under various

circumstances will be invaluable for the design of future MVAs.

Finally, using the proposed method based on Monte Carlo simulations and the

error model described here, we have presented data that suggests PAM50’s subtype

classifications are highly reproducible on a large, independent sample set from the

GEICAM 9906 clinical trial. We also show that there are a nonnegligible number of

samples for which a significant number of the Monte Carlo simulated samples classify

differently than the parent sample, indicating that the classification of the original

sample may not be reliable – thus highlighting the need for the new score card that

can inform clinicians on the probability that a particular sample could be classified

as a different tumor subtype.
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