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ABSTRACT

The goal of this work is to construct integral Chern classes and higher cycle

classes for a smooth variety over a perfect field of characteristic p > 0 that are

compatible with the rigid Chern classes defined by Petrequin. The Chern classes

we define have coefficients in the overconvergent de Rham–Witt complex of Davis,

Langer and Zink, and the construction is based on the theory of cycle modules

discussed by Rost. We prove a comparison theorem in the case of a quasi-projective

variety.



RESUME

Le but de ce travail est de construir des classes de Chern entières et des classes

de cycles pour une variété lisse sur un corps parfait de caractéristique p > 0

compatible aux classes de Chern rigides définies par Petrequin. Les classes de

Chern que l’on définit sont à coéfficientes dans le complexe de de Rham–Witt

surconvergent de Davis, Langer et Zink et la construction repose sur la théorie de

modules de cycles discutée par Rost. On démontre un théorème de comparaison

dans le cas d’une variété quasi-projective.



In memoriam Jochen Riedel.
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CHAPTER 1

INTRODUCTION

It is well known that crystalline cohomology is a good integral model for Berth-

elot’s rigid cohomology in the case of a proper variety. The overconvergent de

Rham–Witt cohomology introduced by Davis, Langer and Zink [DLZ11] is an

integral p-adic cohomology theory for smooth varieties designed to be compatible

with Monsky–Washnitzer cohomology in the affine case and with rigid cohomol-

ogy in the quasi-projective case.

In view of the fact that for proper smooth varieties over a field of characteristic

p > 0 crystalline Chern classes are integral Chern classes, which are according to

Petrequin compatible with the rigid ones [Pet03], the following question is reason-

able:

Question: Can we define integral Chern classes for (open) smooth varieties

that are compatible with the rigid ones?

We use the above mentioned overconvergent de Rham–Witt complex as an

obvious choice for coefficients for integral Chern classes on smooth varieties.

Let X be a smooth variety over a perfect field k of positive characteristic p > 0.

Denote by W†ΩX the étale sheaf of overconvergent Witt differentials over X. We

construct a theory of higher Chern classes with coefficients in the overconvergent

complex

csc
ij : Kj(X)→H2i−j(X, W†ΩX).

If X is quasi-projective we prove the following comparison:

Proposition. The overconvergent Chern classes csc
ij : Kj(X) → H2i−j(X, W†ΩX)

are compatible with the rigid Chern classes crig
ij : Kj(X)→ H2i−j

rig (X/K) defined by

Petrequin [Pet03] via the comparison morphism of [DLZ11].
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Or more explicitly, the following diagram commutes for all i,j:

H2i−j(X, W†ΩX)⊗Q

Kj(X)

csc
ij

44jjjjjjjjjjjjjjjjjj

crig
ij

))TTTTTTTTTTTTTTTTT

H2i−j
rig (X/K)

∼=

OO
(1.1)

where the vertical map is the comparison isomorphism.

Let us now present the different parts of the article.

We begin by recalling facts about Milnor K-theory for local rings, including the

Gersten conjecture for the associated sheaf on a scheme X where all residue fields

have “enough” elements due to Kerz [Ker08]. We note that the Gersten conjecture

implies that the “naı̈ve” definition of the Milnor K-sheaf as the sheaf associated to

the presheaf given for a ring A by

KM
∗ (A) = T∗(A)/ Steinberg relations

coincides with the definition used by Rost [Ros96] denoted by K M
∗ .

In order to be able to apply our results to a more general case, we describe

Kerz’s “improved” Milnor K-theory. Kerz points out that the usual Milnor K-sheaf

K
M
∗ is continuous and disposes of a natural transfer map if restricted to schemes

with infinite residue fields. The improved Milnor K-sheaf K̂
M
∗ is the universal

sheaf which is continuous, has a transfer regardless of the residue field and allows

a natural transformation

K
M
∗ 7→ K̂

M
∗

such that for any continuous sheaf G with a transfer together with a natural trans-

formation K
M
n → G there is a unique natural transformation K̂

M
n → G making

the diagram

K
M
n

//

  BBBBBBBB
K̂

M
n

∃!~~}
}

}
}

G
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commute. The sheaf K̂
M
∗ also satisfies the Gersten conjecture and consequently

this definition of the Milnor K-sheaf coincides with the definition used by Rost

[Ros96].

In Chapter 3 we state Rost’s axiomatic approach to Chow groups in terms

of cycle modules. We will later use the fact that the Milnor K-ring is a cycle

module. An important result is Corollary 3.16, which makes it possible to calculate

the cohomology of a cycle module in terms of the associated Chow groups. In

particular, we can calculate the Zariski cohomology of the Milnor K-sheaf in terms

of the cohomology of the associated cycle complex. We make use of this in the

proof of the Projective Bundle Formula (Proposition 3.19), sketched by Gillet in

his survey [Gil05]. The statement is proved for Chow groups in general, but is in

particular applied to the Milnor K-sheaf in the next chapter in order to show that

it provides a duality theory.

In Chapter 4 we start out by giving the axioms of Gillet’s generalised duality

theories. In Theorem 4.8 and Theorem 4.9 we recall his result that for a duality

theory Γ(∗) satisfying such axioms there exists a theory of higher Chern classes

cij : Kj(X)→ Hdi−j(X, Γ(i)).

We now define a duality theory by setting

Γ∗X(j) = K M
j .

As we show that it satisfies Gillet’s axioms, we can finally conclude in Theorem

4.10 that there is a theory of Chern classes with coefficients in the Milnor K-sheaf

cij : Kj(X)→ Hi−j(X, K M
n ).

Assume now that k is a perfect field of characteristic p > 0 and X a smooth

k-scheme. The results of the last two Chapters are for étale topology only.

In Chapter 5 we recall the definition of the overconvergent de Rham–Witt com-

plex W†ΩX introduced by Davis, Langer and Zink in [DLZ11]. It is easy to see that
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logarithmic Witt differentials are in fact overconvergent. This leads us to define for

every i > 0 a morphism

d logi : O∗X ⊗ · · ·O∗X → WΩi
X,log →W†ΩX [i]

x1 ⊗ · · · ⊗ xi 7→ d log(x1) · · · d log(xi).

In Proposition 5.5 we prove that the symbols d log(x1) · · · d log(xi) satisfy the Stein-

berg relation. Therefore the morphism d logi factors through the naı̈ve Milnor

K-sheaf

d logi : K
M
i →W†Ω [i] .

We show that the overconvergent de Rham–Witt complex has a transfer map or

norm that satisfies the conditions given in [Ker10]. Moreover, it is continuous. As

a consequence we obtain for each i a unique natural transformation

d̂ logi : K̂
M
i →W†Ω [i] ,

and we do not have to distinguish any more between the different definitions of

Milnor K-theory.

This enables us by functoriality of sheaf cohomology to define in Chapter 6

Chern classes with coefficients in the overconvergent complex induced by the ones

for Milnor K-theory

Theorem. There is a theory of Chern classes for vector bundles and higher algebraic K-

theory of regular varieties over k with infinite residue fields, with values with coefficients

in the overconvergent de Rham–Witt complex:

csc
ij : Kj(X)→H2i−j(X, W†ΩX).

As a preparation for our comparison theorem in Chapter 7 we go over Pe-

trequin’s definition of rigid Chern classes and how to calculate them with Čech

cocycles. We show that they factor through Milnor K-theory. From now on we

assume that X/k is smooth and quasi-projective. In this case Davis, Langer and
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Zink construct a rigid-overconvergent comparison morphism. In fact, they show

that there is a natural quasi-isomorphism

RΓrig(X)→ RΓ(X, W†ΩX/k)⊗Q .

In the last part of this chapter, we show that the overconvergent Chern classes

that we constructed are compatible with Petrequin’s rigid Chern classes via this

comparison map. This relies on the fact that they both factor through Milnor K-

theory, and we have a commutative diagram

H2j−i
rig (X/K)

Kj(X)

crig
ij

22ffffffffffffffffffffffffffffffffff cM
ij
//

csc
ij ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Hi−j(X, K M

i )

66mmmmmmmmmmmm

((RRRRRRRRRRRRR

H2i−j(X, W†Ω)

OO

where the outer triangle leads to the desired diagram (1.1).

In Chapter 8 we construct higher cycle classes using the method of Bloch [Blo86b].

For this we first recall the definition of Bloch’s higher Chow groups CHb(X, n),

which under certain conditions calculates Voevodsky’s motivic cohomology. They

form together the higher Chow ring CH∗(X, ·) of X, and Bloch establishes further

properties useful for a cohomology theory, among other things there is a rational

relation with algebraic K-theory, which motivates the construction of higher cycle

class maps. Similar to the method used for the Chern classes, we construct first

cycle maps for the Milnor K-sheaf

ηbn
M : CHb(X, n)→ Hb−n(X, K M

b ),

which satisfy a normalisation property, allow flat pull-backs and are compatible

with addition and multiplication, thus giving a homomorphism of rings. This

can be done because the target cohomology theory Hn(X, K M
b ) satisfies certain

properties such as weak purity. We use again the map

d logi : K M
i →W†Ω[i]
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to obtain morphisms of higher cycle classes

ηbn
sc : CHb(X, n)→H2b−n(X, W†Ω>b).



CHAPTER 2

MILNOR K-THEORY

In this section we recall the definition and basic properties of Milnor K-theory

for fields and rings. Following [Ker09] we give a definition for the Milnor K-

sheaves and state the Gersten conjecture in equicharacteristic.

2.1 Milnor K-theory for fields
We start by recalling the definition of the Milnor K-groups for fields in genera-

tors and relations along with some properties.

Let F be a field and T∗(F) the tensor algebra of F. Let I be the two-sided homo-

geneous ideal in T∗(F) generated by the elements a⊗ (1− a) with a, 1− a ∈ F∗.

Definition 2.1. The Milnor K-groups of the field F are defined to be

KM
n (F) := Tn(F)/I.

They form a graded ring KM
∗ (F) = T∗(F)/I. The class of a1 ⊗ · · · ⊗ an in KM

n (F) is

denoted by {a1, . . . , an}. Elements of I are usually called Steinberg relations.

The following basic properties are standard.

Lemma 2.2. The map KM
∗ (−) is functorial in the sense that for a field extension

F ↪→ E there is a natural homomorphism of graded rings

KM
∗ (F)→ KM

∗ (E).

Lemma 2.3. The following relations hold:

– For x ∈ KM
n (F) and y ∈ KM

m (F) we have xy = (−1)nmyx.

– For a ∈ F∗: {a,−a} = {a,−1}.
– For a1, . . . , an ∈ F∗ such that a1 + · · ·+ an is either 0 or 1: {a1, . . . , an} = 0.
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For a discretely valued field (F, ν) with ring of integers A and prime element

π, there exists for each n a unique group homomorphism

KM
n (F) ∂−→ KM

n−1(A/π)

such that for u1, . . . , un ∈ A∗

∂{π, u2, . . . , un} = {u2, . . . , un}

∂{u1, . . . , un} = 0.

By multilinearity of the symbols this is enough to define ∂. The following result is

due to Milnor [Mil70].

Proposition 2.4. For a field F there is a split exact sequence

0→ KM
n (F)→ KM

n (F(t)) ∂−→ ⊕πKM
n−1(F[t]/π)→ 0

where the sum is over all monic irreducible elements π ∈ F[t].

2.2 The theory for local rings with
infinite residue fields

We briefly recall Kerz’s discussion of Milnor K-theory in the case when the

residue fields have “enough” elements (see [Ker09]).

Definition 2.5. For a regular semilocal ring R over a field k the Milnor K-groups

are given by

KM
n (R) = Ker

 ⊕
x∈R(0)

KM
n (k(x)) ∂−→

⊕
y∈R(1)

KM
n (k(y))

 .

In an attempt to generalise the definition of the Milnor K-ring for fields to

arbitrary unital rings, one can define a graded ring in the following way:

Definition 2.6. For a unital ring R let

KM
∗ (R) = T∗(R)/J,

where J is the two-sided homogeneous ideal generated by the Steinberg relations

and elements of the form a⊗ (−a).
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If R is a regular semilocal ring over a field, there is a canonical homomorphism

of groups

KM
i (R)→ KM

i (R),

which is surjective if the base field is infinite (or sufficiently large, as in [Ker09]).

Kerz proves that in this case the additional relation {a,−a} = 0 in the definition is

obsolete and that the usual relations hold.

Remark 2.6.1. As pointed out by Kerz, the notion of “sufficiently many elements in

the residue fields” of R depends on the context. To be safe one might assume the

base field k is algebraically closed or more generally has infinitely many elements.

However, many results that are of interest for us hold with the weaker assumption

that the number of elements in the residue fields is bounded below by a certain

constant.

We want to globalise this to schemes.

Definition 2.7. Define K
M
∗ to be the Zariski sheaf associated to the presheaf

U 7→ KM
∗ (Γ(U, OU))

on the category of schemes.

Inspired by Definition 2.5 one defines the following.

Definition 2.8. Let K M
n be the sheaf

U 7→ Ker

 ⊕
x∈U(0)

ix∗KM
n (k(x)) ∂−→

⊕
y∈U(1)

iy∗KM
n (k(y))


on the big Zariski site of regular varieties (schemes of finite type) over a field k,

where ix is the embedding of a point x in U.

One part of the Gersten conjecture for Milnor K-theory is to show that these

two definitions coincide. Kato constructed a Gersten complex of Zariski sheaves

for Milnor K-theory of a scheme X

0→ K
M
n →

⊕
x∈X(0)

ix∗KM
n (k(x))→

⊕
y∈X(1)

iy∗KM
n (k(y))→ · · · (2.1)

In [Ros96] Rost gives a proof that this sequence is exact if X is regular and

of algebraic type over an arbitrary field k except possibly at the first two places.
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Exactness at the second place was shown independently by Gabber and Elbaz-

Vincent/Müller-Stach. Finally Kerz proved that the Gersten complex is exact at the

first place for X a regular scheme over a field, such that all residue fields contain

more than Mn elements. The constant Mn is a natural number that depends on the

degree n and can be determined via the construction of a transfer homomorphism

(or norm) for Milnor K-theory of rings (see [Ker09, Remark 3.5.8]).

Hence the Gersten conjecture holds for Milnor K-theory in this case.

Theorem 2.9. The Gersten complex (2.1) for Milnor K-theory is exact if X is a regular

scheme over a field where all residue fields contain at least Mn elements.

In particular, this shows

Corollary 2.10. Let X be a regular scheme of dimension n over a field with at least

M elements, where M is max{Mi
∣∣ 0 6 i 6 n}. Then

K M
∗ = K

M
∗ .

2.3 The theory for local rings with finite residue fields
As Kerz points out in [Ker10], the Gersten conjecture does not hold in general if

we use the same construction of Milnor K-theory for local rings with finite residue

fields.

Let S be the category of abelian sheaves on the big Zariski site of schemes

and ST the full subcategory of sheaves that admit a transfer map in the sense of

Kerz [Ker10]. That is to say for an abelian sheaf F there exist for every finite étale

extension of local rings i : A→ B a system of norms

[
NB′/A′ : F(B′)→ F(A′)

]
A′

where A′ runs over all local A-algebras for which B′ = B ⊗A A′ is also local. It

satisfies the following properties:

1. Compatibility: If A′ → A′′ is a morphism of local A-algebras such that B′ =

B⊗A A′ and B′′ = B⊗A A′′ are local as well, the diagram
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F(B′)

NB′/A′
��

// F(B′′)

NB′′/A′′
��

F(A′) // F(A′′)

commutes.

2. Restriction to base ring: If i′ : A′ → B′ is the induced inclusion, the norm

NB′/A′ satisfies

NB′/A′ ◦ i′∗ = deg(B/A) idF(A′) .

Furthermore, let ST∞ be the full subcategory of sheaves in S which admit norms

as described if we restrict the system to local A-algebras A′ with infinite (or “big

enough,” cf. [Ker09]) residue fields.

Example 2.11. The Milnor K-sheaf K
M
n for every n as defined in [Ker09] is an

element of ST∞ (cf. [Ker10, Proposition 4]).

Definition 2.12. A functor on a category of rings is continuous if it commutes with

direct limits. More precisely, it is continuous if for every filtering direct limit of

rings

A = lim−→ Ai

the natural homomorphism

lim−→ F(Ai)→ F(A)

is an isomorphism.

Example 2.13. Kerz shows that the Milnor K-sheaf K
M
∗ is continuous since this is

true for the presheaf.

A main result in Kerz’s article [Ker10] is that for a continuous functor F ∈ ST∞

there exists a continuous functor F̂ ∈ ST and a natural transformation satisfying a

universal property. Namely, for an arbitrary continuous functor G ∈ ST together

with a natural transformation F → G there is a unique natural transformation

F̂ → G making the diagram

F //

��>>>>>>>> F̂

∃!���
�

�
�

G
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commutative. Moreover, for a local ring with infinite residue field, the two functors

coincide. It is constructed using rational function rings.

For a commutative ring A let A(t1, . . . , tn) be the rational function ring in n

variables; that is the ring A[t1, . . . , tn]S, where we localise at the multiplicative

set S consisting of all polynomials ∑I aItI such that the ideal generated by the

coefficients ai ∈ A is the unit ideal. Some useful properties of this ring are

– If A is local with maximal ideal m, the ring A(t1, . . . , tn) is local, too, and

S = A[t1, . . . , tn]−mt, where mt = m A[t1, . . . , tn].

– If A ⊂ B is a finite étale extension of local rings, there is a canonical isomor-

phism

B⊗A A(t1, . . . , tn)
∼−→ B(t1, . . . tn).

Denote by i : A → A(t) the natural homomorphism and by i1, i2 : A(t) →
A(t1, t2) the natural homomorphisms sending t to t1 or t2, respectively. Now we

set F̂ to be the Zariski sheafification of the presheaf

A 7→ ker
[

F (A(t))
i1∗−i2∗−−−→ F (A(t1, t2))

]
.

If F is in ST∞, this is indeed in ST (cf. [Ker10, Proof of Theorem 7]), and it is clear

that continuity is preserved.

As a corollary, we obtain an “improved” Milnor K-theory, taking into account

that K
M
n is in ST∞ and continuous.

Corollary 2.14. For every n ∈N there exists a universal continuous functor K̂
M
n ∈

ST and a natural transformation

K
M
n 7→ K̂

M
n

such that for any continuous G ∈ ST together with a natural transformation

K
M
n → G there is a unique natural transformation K̂

M
n → G such that the

diagram

K
M
n

//

  BBBBBBBB
K̂

M
n

∃!~~}
}

}
}

G
commutes.
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In the affine case this is denoted by

KM
∗ 7→ K̂M

∗

We list some of the important properties, proved in [Ker10, Proposition 10].

1. Let (A,m) be a local ring. Then K̂M
1 (A) = A×.

2. K̂M
∗ (A) has a natural structure as graded commutative ring.

3. For a finite étale extension of local rings A → B there is a canonical transfer

map

NB/A : K̂M
n (B)→ K̂M

n (A).

4. The natural map K̂M
2 (A)→ K2(A) to Quillen K-theory is an isomorphism.

5. The ring K̂M
∗ (A) is skew symmetric.

6. For a1, . . . , an ∈ A× with a1 + · · · + an = 1, the image {a1, . . . , an} of a1 ⊗
· · · ⊗ an in K̂M

n (A) is trivial.

7. For any field F we have KM
∗ (F) = K̂M

∗ (F).

8. The natural map KM
n (A) → K̂M

n (A) is an isomorphism if the residue field of

A has “enough” elements (compare [Ker09, Remark 5.8]).

9. There exists a homomorphism from Quillen’s K-theory

Kn(A)→ K̂M
n (A)

such that the composition

K̂M
n (A)→ Kn(A)→ K̂M

n (A)

is multiplication by (n− 1)!, and the composition

Kn(A)→ K̂M
n (A)→ Kn(A)

is the Chern class cn,n.

10. If (A, I) is a Henselian pair, and s ∈ N invertible in A/I, then the map

induced by the projection

K̂M
n (A)/s→ K̂M

n (A/I)/s

is an isomorphism.
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11. Let A be regular, equicharacteristic, F its quotient field and X = Spec A. Then

the Gersten conjecture holds, i.e., the Gersten complex

0→ K̂M
n (A)→ KM

n (F)→ ⊕x∈X(1)KM
n−1(k(x))→ · · ·

12. Let X be a regular scheme containing a field. There is a natural isomorphism

Hn(X, K̂M
n ) ∼= CHn(X).

13. If A is equicharacteristic of characteristic prime to 2, then the map

iA : K̂M
3 (A)→ K3(A)

is injective.

14. If A is regular and equicharacteristic, there is a natural isomorphism

K̂M
n (A)

∼−→ Hmot(Spec(A), Z(n))

onto motivic cohomology.

In general, the natural map

K
M
∗ (X)→ K̂

M
∗ (X)

is not an isomorphism. For example, we mentioned in property (4) that the im-

proved Milnor K-theory is equal to the Quillen K-theory for any local ring A,

K̂M
2 (A) = K2(A), which is not true in this generality for the usual Milnor K-theory.

An example for this was given by Bruno Kahn in the Appendix to [Kah93]. How-

ever, from the fact that K̂
M
∗ satisfies the Gersten conjecture, we can deduce a useful

corollary.

Corollary 2.15. Let X be a smooth scheme with finite residue fields. Then

K M
∗ = K̂

M
∗ ,

where K M
∗ is as in Definition 2.8.

Another important feature of the improved Milnor K-theory is that it is locally

generated by symbols. In other words, its elements satisfy the Steinberg relation.

In fact Kerz shows the following theorem.
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Theorem 2.16. Let A be a local ring. Then the map

KM
∗ (A)→ K̂M

∗ (A)

is surjective.

Proof. (IDEA) One can use the transfer map for extensions of local fields of degree

2 and 3 to reduce to the cases n = 2 and n = 1, whereof both are classical if one

takes into account (1) and (4) of the list of properties above.

2.4 Milnor K-theory on the étale site
Although the improved Milnor K-sheaf was constructed over the big Zariski

site of all schemes, we can consider it as a sheaf over the big étale site. In particular,

the theory makes sense on the small étale site Xét of a scheme X.

More precisely, we can define K
M
∗ over the big étale site as in Definition 2.7

étale locally instead of Zariski locally. In this case, let Sét be the category of abelian

sheaves on the big étale site of all schemes and STét the full subcategory of sheaves

that admit a transfer map in the sense of Kerz [Ker10] as described above. This

still makes sense as everything is only defined and described locally. Furthermore,

let ST∞
ét be the full subcategory of sheaves in Sét which admit a transfer if we

restrict the system to local A-algebras A′with infinite (or “big enough,” cf. [Ker09])

residue fields. On a similar note, continuity can be defined locally so that the

Milnor K-sheaf over the étale site is also continuous.

The theorem now reads

Theorem 2.17. For a continuous functor F ∈ ST∞
ét there exists a universal continuous

functor F̂ ∈ STét and a natural transformation F → F̂. That means, for an arbitrary

continuous functor G ∈ STét together with a natural transformation F → G there is a

unique natural transformation F̂ → G making the diagram

F //

��>>>>>>>> F̂

∃!���
�

�
�

G
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commutative. Moreover, for a local ring with infinite residue field, the two functors coin-

cide.

Proof. The proof of the Zariski case used in [Ker10, Theorem 7] is purely local.

Taking into account that the functors in question are sheafifications of presheaves

on the category of local rings and furthermore that the only condition that goes

beyond this is the existence of a transfer map for finite étale extensions of local

rings, we see that the arguments can be carried over verbatim to the case of the

étale site instead of the Zariski site. In fact, this is valid for any (Grothendieck)

topology in between the étale and Zariski topology.

The properties of the improved Milnor K-sheave from Theorem 2.16 and [Ker10,

Proposition 10] cited above hold in the case of the étale site equally. In particular,

the Gersten complex

0→ K̂M
n (A)→ KM

n (F)→ ⊕x∈X(1)KM
n−1(k(x))→ · · ·

is exact.

Naturally it follows from Theorem 2.16 that the improved Milnor K-sheaf over

the étale site is locally generated by symbols.



CHAPTER 3

CYCLE MODULES

The axiomatisation of cycle modules by Rost provides a powerful framework

for modules over the Milnor K-sheaf as it allows to reduce the local case. We recall

important definitions and properties and prove a projective bundle formula.

3.1 Definition and properties
Rost defines in [Ros96] first cycle premodules as functors from the category of

fields to the category of modules over Milnor K-theory, which have transfer mor-

phisms and residue maps for discrete valuations and satisfy the usual canonical

axioms.

Let B be a scheme over a field k. Let F (B) be the category of fields over B,

that means finitely generated fields F over k together with a morphism Spec F →
Spec B.

Definition 3.1. A cycle premodule M is a functor

M : F (B)→ A B

from the category F (B) to abelian groups together with a Z-grading (or a Z /2 Z-

grading) and the following list of data and rules:

(D1) For each field extension ϕ : F → E there is a restriction ϕ∗ : M(F) →
M(E) of degree 0.

(D2) For each finite extension ϕ : F → E, there is a corestriction ϕ∗ : M(E) →
M(F) of degree 0.

(D3) For each F the group M(F) is equipped with a left KM
∗ (F)-module struc-

ture respecting the grading.

(D4) For a valuation ν on F there is a boundary map ∂ν : M(F) → M(κ(ν)) of

degree −1.
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For a prime π of the valuation ν on F let

sπ
ν : M(F) → M(κ(ν)),

ρ 7→ ∂ν({−π} · ρ).

(R1) For ϕ : F → E, ψ : E→ L one has (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗. If ϕ and ψ are finite,

one has in addition (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗. If ϕ is finite, put R = L ⊗F E. For

p ∈ Spec R, let ϕp : L → R/p and ψp : E → R/p be the natural maps and let

lp be the length of the localised ring R(p). Then

ψ∗ ◦ ϕ∗ = ∑
p

lp · (ϕp)
∗ ◦ (ψp)∗.

(R2) For ϕ : F → E, x ∈ KM
∗ (F), y ∈ KM

∗ (E), ρ ∈ M(F), µ ∈ M(E) one has:

ϕ∗(xρ) = ϕ∗(x)ϕ∗(ρ),

and if ϕ is in addition finite:

ϕ∗(ϕ∗(x)y) = xϕ∗(µ)

ϕ∗(yϕ∗(ρ)) = ϕ∗(y)ρ.

(R3) Let ϕ : E→ F, ν a valuation on F, which restricts to a nontrivial valuation

w on E with ramification index e. Let ϕ : κ(w) → κ(ν) the induced map.

Then

∂ν ◦ ϕ∗ = eϕ∗ ◦ ∂w.

On the other hand if ϕ is finite and w a valuation on E consider for an

extension ν of w to F the induced map ϕν : κ(w)→ κ(ν). Then

∂w ◦ ϕ∗ = ∑
ν

ϕ∗ν ◦ ∂ν.

If ν is a valuation of F, which is trivial on E, then

∂ν ◦ ϕ∗ = 0.

Let ϕ : E→ κ(ν) be the induced map and π a prime of ν, then

sπ
ν ◦ ϕ∗ = ϕ∗.

If u is a ν-unit and ρ ∈ M(F), then

∂ν({u}ρ) = −{u}∂ν(ρ).
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Sometimes we use the notation ϕ∗ = rE|F and ϕ∗ = cE|F.

Lemma 3.2. For ϕ : F → E finite

ϕ∗ϕ∗ = (deg ϕ) id .

If ϕ is in addition totally inseparable, one also has

ϕ∗ϕ
∗ = (deg ϕ) id .

Proof. This follows from (R1) and (R2) (cf. [Ros96, Section 1]).

One can consider M(F) as a right KM
∗ (F)-module. The maps ∂ and s are called

residue homomorphism and specialisation.

Lemma 3.3. For a valuation ν on F, x ∈ KM
n (F), ρ ∈ M(F), π a prime of ν, one has

∂ν(xρ) = ∂ν(x)sπ
ν (ρ) + (−1)nsπ

ν ∂ν(ρ) + {−1}∂ν(x)∂ν(ρ)

sπ
ν (xρ) = sπ

ν (x)sπ
ν (ρ).

Proof. This follows from (R3) (cf. [Ros96, Section 1]).

Definition 3.4. A pairing M×M′ → M′′ of cycle premodules is a system of bilinear

maps for all F ∈ F (B)

M(F)×M′(F)→ M′′(F),

which respects the gradings and the above mentioned properties in the obvious

way. For more details see [Ros96, Definition 1.2]

A ring structure on a cycle premodule M is a pairing M × M → M, which

induces over each F an associative and anticommutative ring structure.

A homomorphism ω : M → M′ of cycle premodules of even respectively odd

type is given for each field F such that

(1) ϕ∗ωF = ωE ϕ∗

(2) ϕ∗ωE = ωF ϕ∗

(3) {a}ωF(ρ) = ±ωF({a}ρ)
(4) ∂νωF = ±ωκ(ν)∂ν
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Examples 3.5. 1. Milnor K-theory together with the data

ϕ∗ , ϕ∗ , multiplication , ∂

is a Z-graded cycle premodule over any field k with ring structure [Ros96,

Theorem 1.4].

2. Galois cohomology: Any torsion étale sheaf on B gives rise via Galois coho-

mology to a cycle premodule over B [Ros96, Remark 1.11].

3. Quillen’s K-theory over a field is a Z-graded cycle premodule over any field

k [Ros96, Remark 1.12]

To pass from cycle premodules to cycle modules additional data is needed. For

a scheme X we write M(x) for M(κ(x)). The generic point is denoted by ξ. If X is

normal, the local ring of X at x ∈ X(1) is a valuation ring; let ∂x : M(ξ)→ M(x) be

the corresponding residue homomorphism. For x, y ∈ X we set

∂x
y = ∑

z|y
cκ(z)|κ(y) ◦ ∂z : M(x)→ M(y),

if y ∈ Z(1), where Z = {x}, with z running through the finitely many points lying

over y in the normalisation Z̃. If y /∈ Z(1), then ∂x
y = 0.

Definition 3.6. A cycle module M over k is a cycle premodule which satisfies the

following conditions:

(FD) Finite support of divisors: Let X be a normal scheme and ρ ∈ M(ξX).

Then ∂x(ρ) = 0 for all but finitely many x ∈ X(1).

(C) Closedness: Let X be integral and local of dimension 2. Then

∑
x∈X(1)

∂x
x0

∂
ξ
x : M(ξ)→ M(x0),

where ξ is the generic and x0 is the closed point of X.

A morphism of cycle modules is a morphism of cycle premodules.

If X is integral and (FD) holds, we set

d = (∂ξ
x)x∈X(1) : M(ξ)→ ä

x∈X(1)

M(x).

Some properties of cycle modules are mentioned below:
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(H) Homotopy property for A1: The sequence

0→ M(F) r−→ M(F(u)) d−→ ä
x∈A1

F(u)

M(x)→ 0

is an exact complex where r = rF(u)|F.

(RC) Reciprocity for curves: Let X be a proper curve over F. Then

M(ξ)
d−→ ä

x∈X(0)

M(x) c−→ M(F)

is a complex, i.e., c ◦ d = 0 with c = ∑ cκ(x)|F.

The properties (FD), (C), (H) and (RC) are needed as Rost points out in the sense

that

– (FD) enables us to write down the differentials d of the cycle complexes

C∗(X; M).

– (C) guarantees that d ◦ d = 0.

– (H) yields the homotopy property of the Chow groups A∗(X; M).

– (RC) is needed for proper push forwards.

Moreover, for a cycle module M over a perfect field k we have the following

properties:

(FDL) Finite support of divisors on the line: Let ρ ∈ M(F(u)). Then ∂ν(ρ) = 0

for all but finitely many valuations ν of F(u) over F.

(WR) Weak reciprocity: Let ∂∞ be the residue map for the valuation of F(u)|F
at infinity. Then

∂∞(A0(A1
F; M)) = 0.

A cycle premodule over a perfect field k is a cycle module if and only if the last

two properties hold for all fields F over k. This is true for Milnor and Quillen

K-theory. Rost pointed out in [Ros96, Remark 2.4] that Milnor’s K-ring over any

field k is a basic example for a cycle module, which is the reason why I consider

cycle modules in this context.

We will now introduce cycle complexes and basic operations on them.
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3.2 Cycle complexes
Let M be a cycle module over X and N one over Y. For subsets U ⊂ X and

V ⊂ Y and a homomorphism

α : ä
x∈U

M(x)→ ä
y∈V

N(y)

we write α
y
x : M(x)→ N(y) for the components. If X = Y, U ⊂ X and ω : M→ N

a homomorphism of cycle modules, we define the associated change of coefficients

by

ω# : ä
x∈U

M(x) → ä
y∈U

N(y)

(ω#)
x
y =

{
ωκ(x) if x = y
0 if x 6= y

Definition 3.7. For a cycle module M over X we define a complex of graded mod-

ules with respect to dimension

Cp(X; M) = ä
x∈X(p)

M(x)

d = dX : Cp(X; M)→ Cp−1(X; M)

dx
y = ∂x

y as defined above.

In a similar way one defines a complex of graded modules with respect to codi-

mension

Cp(X; M) = ä
x∈X(p)

M(x)

d = dX : Cp(X; M)→ Cp+1(X; M)

dx
y = ∂x

y as defined above.

Remark 3.7.1. We can also define a version of the above with support in a closed

subscheme y→ X. Then define

CY
p (X; M) = ä

x∈X(p)
x∈Y

M(x)

and

Cp
Y(X; M) = ä

x∈X(p)

x∈Y

M(x).
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It is not hard to show that d ◦ d = 0 in both cases so that these are indeed

complexes. For morphisms f : X → Y we are now recalling four important classes

of induced maps

Cp(X; M)→ Cq(Y; M).

1. Push-forward. If f : X → Y is finite, we define

f∗ : Cp(X; M)→ Cp(Y; M)

( f∗)x
y =

{
cκ(x)|κ(y) if y = f (x) and [κ(x) : κ(y)] 6 ∞
0 otherwise.

2. Pull-back. For a morphism g : Y → X let s(g) = max{dim(y, Y)−dim(g(y), X)
∣∣ y ∈

Y}. If x ∈ X(p), y ∈ Y(q), g(y) = x and s(g) 6 q− p, then y ∈ Y(0)
x . Let A

be a coherent sheaf on Y. For x ∈ X and y ∈ Y(0)
x we define an integer

[A , g]xy ∈ Z: The localisation Yx,(y) = Spec(R) of Yx at y is the spectrum of an

artinian ring with residue class field κ(y). Let Ã be the pull-back of A along

Yx,(y) → Yx → Y, then

[A , g]xy := lR(Ã )

is the length of Ã over R. This induces a homomorphism in the following

manner. For s ∈ Z with s(g) 6 s

[A , g, s] : Cp(X; M)→ Cp+s(Y; M)

[A , g, s]xy =

{
[A , g]xy · rκ(x)|κ(y) if g(y) = x
0 otherwise.

If X = Spec F for a field F and

0→ A ′ → A → A ′′ → 0

an exact sequence of coherent sheaves over Y, then by the additivity of length

we have [
A ′, g, s

]
− [A , g, s] +

[
A ′′, g, s

]
= 0.

Let F → E a morphism of fields, X of finite type over F and g : Y = X×F E→
X the base change. Then we put

g∗ = [OY, , g, 0] . (3.1)
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A morphism g : Y → X of finite type over a field is said to have rela-

tive dimension s if all fibres are empty or equidimensional of dimension

dim(g) = s. (For example: open/closed immersions have s = 0.) Define

g∗ = [OY, g, dim(g)] .

3. Multiplication with unites. For global sections a1, . . . , an ∈ O∗X let

{a1, . . . , an} : Cp(X; M) → Cp(X; M)

{a1, . . . , an}x
y(ρ) =

{
{a1(x), . . . , an(x)} · ρ if x = y
0 otherwise.

This makes Cp(X; M) a module over the tensor algebra of O∗X. If X is defined

over a field F, then K∗ ⊂ O∗X and Cp(X; M) becomes a module over K∗F.

4. Boundary maps. Let X be of finite type over a field, i : Y → X a closed im-

mersion and j : U = X\Y → X the inclusion of the complement. We define

the boundary map associated to a so-called boundary triple (Y, i, X, j, U)

∂ = ∂U
Y : Cp(U; M)→ Cp−1(Y; M).

Although we just defined the four basic maps for the cycle complex with re-

spect to dimension, it is clear that there are similar maps for the codimension-cycle

complex (or cocycle complex). Sums of composites of maps of the four basic

types are called generalised correspondences. Rost shows in [Ros96, Section 4]

compatibilities of the four basic types of maps as desired for a reasonable cycle

theory. In particular, we have the following results at our disposal.

Proposition 3.8. 1. Let f : X → Y and f ′ : Y → Z be morphisms of schemes of

finite type over a field. Then one has

( f ′ ◦ f )∗ = f ′∗ ◦ f∗.

2. For two morphisms g : Y → X and g′ : Z → Y let s > s(g) and s′ > s(g′) and

let A and A ′ be coherent sheaves on Y and Z respectively, with A ′ flat over

Z. Then s + s′ > s(g) + s(g′) and[
g′∗A ⊗OZ A ′, g ◦ g′, s + s′

]
=
[
A ′, g′, s′

]
◦ [A , g, s] .
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In particular, for morphisms g and g′ as in the formula (3.1) where g′ is in

addition flat, we have

(g ◦ g′)∗ = g′∗ ◦ g∗.

3. For the diagram

U
g′
//

f ′
��

Z
f
��

Y g
// X

with f and f ′ morphisms of schemes of finite type over a field, let s >

s(g), s(g′) and A a coherent sheaf on Y. Then

[A , g, s] ◦ f∗ = f ′∗ ◦
[

f ′∗A , g′, s
]

.

In particular for g as in (3.1)

g∗ ◦ f∗ = f ′∗ ◦ g′∗.

Proof. This is [Ros96, Proposition 4.1].

Lemma 3.9. Let f : X → Y a morphism of schemes of finite type over a field.

1. If a is a unit on X, then

f∗ ◦ { f ∗(a)} = {a} ◦ f∗.

2. Let f be finite and flat and let a be a unit on Y. Then

f∗ ◦ {a} ◦ f ∗ =
{

f̃∗(a)
}

,

where f̃∗ : O∗Y → O∗X is the standard transfer map. This is often referred to

as the projection formula.

Proof. This is [Ros96, Lemma 4.2].

Lemma 3.10. Let a be a unit on X.
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1. For a morphism of schemes of finite type over a field g : Y → X of constant

codimension as explained above, one has

g∗ ◦ {a} = {g∗a} ◦ g∗.

2. For a boundary triple (Y, i, X, j, U) one has

∂U
Y ◦ {j∗(a)} = −{i∗(a)} ◦ ∂U

Y .

Proof. This is [Ros96, Lemma 4.3]

For a morphism h : x → X′ of schemes of finite type over a field, a closed im-

mersion Y′ ↪→ X′ and the complement U′ = X′\Y′ consider the pullback diagram

Y

h
��

� � // X
h
��

U

h
��

? _oo

Y′ �
� // X′ U′? _oo

Proposition 3.11. 1. If h is proper

h∗ ◦ ∂U
Y = ∂U′

Y′ ◦ h∗.

2. If h is flat (of constant relative dimension), then

h
∗ ◦ ∂U′

Y′ = ∂U
Y ◦ h

∗
.

Proof. This is [Ros96, Proposition 4.4]

Finally we have

Lemma 3.12. Let g : Y → X be a smooth morphism of schemes of finite type over a

field of constant dimension 1, let σ : X → Y be a section and let t ∈ OY be a global

parameter defining the subscheme σ(X) ⊂ Y. Denote by g̃ the restriction of g to

Y\σ(X), and ∂ the boundary map associated to σ. Then

∂ ◦ g̃∗ = 0 and ∂ ◦ {t} ◦ g̃∗ = (idX)∗.

Proof. This is [Ros96, Lemma 4.5]
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The grading on M induces a grading on the dimension and codimension com-

plex via

Cp(X; M, q) = ä
x∈X(p)

Mq+p(x)

Cp(X; M, q) = ä
x∈X(p)

Mq−p(x).

The maps to be considered will respect the grading.

3.3 The cohomology of cycle modules
The following results are useful if one is faced with the task to calculate the

cohomology of a cycle module explicitly.

Definition 3.13. The Chow group of p-dimensional cycles with coefficients in M is

defined as the pth homology group of the complex C∗(X; M)

Ap(X; M) := Hp(C∗(X; M)).

Similarly we define the Chow groups

Ap(X; M) := Hp(C∗(X; M))

Ap(X; M, n) := Hp(C∗(X; M, n))

Ap(X; M, n) := Hp(C∗(X; M, n)).

The morphisms induced by the four basic maps on the cycle complexes in-

duce maps on the homology and cohomology groups and commute, respectively

anticommute with the differentials. The compatibilities, for example the ones

mentioned in Propositions 3.8 and 3.11 and Lemmata 3.9, 3.10 and 3.12 carry over

from cycle modules to Chow groups (for proper f , f ′ and flat g). Moreover, a

boundary triple (Y, i, X, j, U) induces a long exact sequence for homology

· · · ∂−→ Ap(Y; M)
i∗−→ Ap(X; M)

j∗−→ Ap(U; M)
∂−→ Ap−1(Y; M)

i∗−→ · · · . (3.2)

Recall that the classical Chow groups of p-dimensional cycles may be defined

as the cokernel of the divisor map

CHp(X) := Coker

 ä
x∈X(p+1)

κ(x)∗ → ä
x∈X(p)

Z

 .
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Similarly for the codimension p cycles

CHp(X) := Coker

(
ä

x∈X(p−1)

κ(x)∗ → ä
x∈X(p)

Z

)
,

whereas the ungraded Chow group is

CH(X) := Coker

(
ä
x∈X

κ(x)∗ → ä
x∈X

Z

)
,

where the target is isomorphic to the group of all cycles on X. Thus one has the

following equalities

Ap(X; K∗,−p) = CHp(X)

Ap(X; K∗, p) = CHp(X)

Another interesting feature of the Chow groups as defined here, which brings

it closer to classical topology, is the homotopy invariance. Let π : V → X be an

affine bundle of dimension n. Then

π∗ : Ap(X; M)→ Ap+n(V; M) (3.3)

is bijective for all p. If X is equidimensional, then

π∗ : Ap(X; M)→ Ap(V; M) (3.4)

is bijective for all p. In particular this applies to fiberproducts with An. Rost proves

this in [Ros96, Proposition 8.6] using a spectral sequence argument.

We now come to one of the main results that we need from Rost’s discussion

for our purpose.

Let M be a cycle module over a field k.

Theorem 3.14. Let X be smooth, semilocal and a localisation of a separated scheme of

finite type over k. Then

Ap(X; M) = 0 for p > 0.

Proof. This is Theorem 6.1 in Rost’s paper. He notes that this result is known for

Quillen’s K-theory, étale cohomology as well as for Milnor’s K-theory (which is

really all we need for our purposes). The main step in the proofs is called Quillen’s

trick and can be modified with a method due to Panin to fit the general case.
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In other words, the complex C∗(X; M) is acyclic. It is clear that one deduces a

similar statement from this for the graded complexes.

When X is smooth, it is possible to sheafify the notion of cycle modules as

follows.

Definition 3.15. Let M X be the Zariski sheaf on X given by

U 7→ A0(U; M) ⊂ M(ξX),

and similarly let M q be the Zariski sheaf associated to

U 7→ A0(U; M, q) ⊂ Mq(ξX).

In the case, when M = KM
∗ is Milnor K-theory, this definition coincides with

the Milnor K-sheaf as defined in 2.8.

Corollary 3.16. For a smooth variety X over k there are natural isomorphisms

Ap(X; M) = Hp(X, M X).

Proof. Let C p be the Zariski sheaf on X associated to Cp(·; M). The complex

0→M X → C 0 → C 1 → · · ·

is a resolution of M X. Indeed, the complex is exact in the first and second spot by

definition of M X and C 0. Exactness at the remaining spots follow from Theorem

3.14. The sheaves C p are clearly flasque; thus the assertion follows.

A special case of this is that under the same conditions as in the corollary we

have

Ap(X; M, q) = Hp(X, M q).

This tells us that we can calculate the Zariski cohomology of the Milnor K-sheaf

K M
∗ in terms of the cohomology of the associated cycle complex, which will prove

to be a useful tool.

Rost mentions that the resolution of M X used in the proof of the corollary has

nice functorial properties, which are for example used to construct pull-back maps
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for complexes or to define pairings of complexes. Among these last, we want to

mention a particular case. Let M and N be cycle modules over k; more precisely we

consider the cases M = N or N = K∗. In later applications the case M = N = K∗

will be of particular interest. This is a significant simplification as the notion of a

tensor product for cycle modules does not seem to be obvious.

Definition 3.17. Let Y and Z be schemes of finite type over k. We define the cross

product

× : Cp(Y; N)× Cq(Z; M)→ Cp+q(Y× Z; M)

in the following way: For y ∈ Y let Zy be the fibre over y, let πy : Zy → Z be

the projection and iy : Zy → Y × Z the inclusion. For z ∈ Z we make similar

definitions with respect to Y. The following definitions are equivalent:

ρ× µ = ∑
y∈Y(p)

(iy)∗
(

ρy · π∗y(µ)
)

,

ρ× µ = ∑
z∈Z(q)

(iz)∗ (π
∗
z (ρ) · µz) .

This makes sense because by assumption we are given a pairing N ×M → M.

In particular, the product is understood after pointwise restriction. The map

(iy)∗ : Cq(Zy; M)→ Cp+q(Y× Z; M)

is induced by Zy(q) ⊂ (Y × Z)(p+q) and it is similar for iz. It is easy to see that

the two definitions coincide as it is symmetric in Z and Y. The following four

properties endow the definition with a “good” product structure for complexes.

1. ASSOCIATIVITY. If we have in addition to the data above a scheme X of finite

type over k, and η ∈ Cr(X; N), then

η × (ρ× µ) = (η × ρ)× µ.

2. COMMUTATIVITY. If M = N is a cycle module with ring structure over k,

let τ : Y × Z → Z × Y be the interchange of factors. Then one has for ρ ∈
Cp(Y; M, n) and µ ∈ Cq(Z; M, m)

τ∗(ρ× µ) = (−1)nmµ× ρ ∈ Cp+q(Z×Y; M, n + m).
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3. CHAIN RULE. For ρ ∈ Cp(Y; M, n) and µ ∈ Cq(Z; M, m) one has

d(ρ× µ) = d(ρ)× µ + (−1)nρ× d(µ).

4. COMPATIBILITY. The cross product is compatible with the four basic types

of maps: push-forward, pull-back, multiplication with units and boundary

maps as described earlier.

A special case that carries over to Chow groups is when Y and Z coincide. Thus

let X be smooth over k and τ a choice of coordinate for the tangent space TX. One

sets

IX : C∗(X; N)× C∗(X; M) → C∗(X; M)

IX(ρ, µ) = (ρ(τ) ◦ J(X× X, X))(ρ× µ),

where J is induced by the closed immersion X → X × X and can be thought of as

pull-back along a tubular neighbourhood. By 3 this is a pairing of complexes, and

it induces a pairing of Chow groups

∪ : A∗(X; N)× A∗(X; M)→ A∗(X; M).

Rost concludes with the following result [Ros96, Theorem 14.6].

Theorem 3.18. If M = N is a cycle module with ring structure over k, the pairing ∪
turns A∗(X; M) into an anticommutative associative ring. If N = KM

∗ , the pairing turns

A∗(X; M) into a module over A∗(X; KM
∗ ).

A special case of this is when M = KM
r and N = KM

s . In that case the above

discussion makes clear that for smooth schemes X and Y of dimension n over k the

natural product

A∗(X; KM
∗ )⊗ A∗(Y; KM

∗ )→ A∗(X×Y; KM
∗ )

is an external product. If X and Y are quasi-projective, we embed them into smooth

schemes over k, and the natural product in these smooth schemes descends to a

cross product in X and Y, as it is defined pointwise.
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3.4 Projective bundle formula for Chow groups
Following Gillet’s axiomatic framework to construct Chern classes, one of the

main steps is to establish a projective bundle formula. We give here a more detailed

proof of the sketch in [Gil05, Proposition 54]

Proposition 3.19. Let M be a cycle module, X a variety over k and π : E → X

a vector bundle of constant rank n. Let further ξ ∈ H1(P(E ), O∗) be the class of

O(1). Then there is an isomorphism

Ap(P(E ), M, q) ∼=
n−1⊕
i=0

Ap−i(X, M, q− i)ξ i.

Proof. This being a local question, we may assume without loss of generality that

X = Spec A is affine and that E = On
X. The first part of the proof establishes the

result for the case of a point X = Spec k. From there, the second part deduces the

general result.

Now let X = Spec k be a point. This implies in particular that P(E ) = Pn
k . The

formula we have to show in this case reads

Ap(Pn, M, q) = A0(X, M, q− p)ξ p

because obviously the higher Chow groups vanish for a point so that we are left

with only one term with i = p. Let j : Pn−1 ⊂ Pn be the hyperplane at infinity, An

its complement and i : An → Pn the inclusion of the open subset. Recalling the

definition of cycle complexes as

Cp−1(Pn−1; M, q− 1) = ∏
x∈(Pn)(p−1)

Mq−1−(p−1)(x) = ∏
x∈(Pn)(p−1)

Mq−p(x)

Cp(Pn; M, q) = ∏
x∈(Pn)(p)

Mq−p(x)

Cp(An; M, q) = ∏
x∈(An)(p)

Mq−p(x)

together with the fact that points of codimension p − 1 in Pn−1 correspond to

points of codimension p in Pn, we see that the maps i and j induce via push-

forward and pull-back respectively morphisms

j∗ : Cp−1(Pn−1; M, q− 1)→ Cp(Pn; M, q)
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and

i∗ : Cp(Pn; M, q)→ Cp(An; M, q).

By choice and definition of Pn−1 and An, these morphisms of groups for varying

p combine to a short exact sequence of complexes

0→ C∗(Pn−1; M, q− 1) [1]→ C∗(Pn; M, q)→ C∗(An; M, q)→ 0,

which gives rise to a long exact sequence of Chow groups by taking cohomology

· · · → Ap−1(Pn−1; M, q− 1)
j∗−→ Ap(Pn; M, q) i∗−→ Ap(An; M, q)→ · · · ,

where j∗ is the Gysin map. Let π : Pn → X = Spec k be the projection induced

from π : E → X. Consequently the map associated to π · i on Chow groups

(π · i)∗ : Ap(Spec(k), M, q)→ Ap(An, M, q)

is an isomorphism due to homotopy invariance (3.4). Since the Chow groups of

a point are trivial for p > 0, the same holds true for the Chow groups of An.

Therefore we can break up the long exact sequence. The first part reads

0→ A0(Pn; M, q) i∗−→ A0(Spec k, M, q)→ A0(Pn−1; M, q− 1)
j∗−→ A1(Pn, M, q)→ 0.

Per definitionem

A0(Spec k, M, q) = C0(Spec k; M, q) = Mq(k)

and

A0(Pn, M, q) = Ker
(

C0(Pn; M, q)→ C1(Pn; M, q)
)

= Ker

 ∏
x∈(Pn)0

Mq(x)→ ∏
x∈(Pn)1

Mq−1(x)

 ,

and the fact that (π · i)∗ = i∗ · π∗ is an isomorphism shows that π∗ splits the

sequence as i∗ is injective. Thus

A0(Pn, M, q) ∼= A0(An, M, q).
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The other parts of the long exact sequence become for every i > 1

0→ Ai−1(Pn−1, M, q− 1)
j∗−→ Ai(Pn, M, q)→ 0;

hence we have isomorphisms where the map j∗ is the same as cap product with ξ.

By induction it follows that the natural map

ξ p : A0(Spec k, M, q− p)→ Ap(Pn, M, q)

is an isomorphism.

Assume now that X = Spec A for a k-algebra A. The projective bundle P(E )

takes the form Pn
X = Pn

k ×X, and it is useful to keep the following commutative

diagram of the fibre product in mind

Pn
X

f ′
//

π′

��

Pn
k

π
��

X f
// Spec k

(3.5)

Let ξ be again the image of the twisting sheaf OPn(1). Cup product with ξ i for

0 6 i 6 n− 1 provides a natural morphism of cohomology

⊕n−1
i=0 ξ i :

n−1⊕
i=0

Ap−i(X, M, q− i)→ Ap(P(E ), M, q),

and the task is to show that this is an isomorphism. To this end we use the

fact that Ap(X; M, q) = Hp(X, M q). Note that Hp(PX, M q) = Rp ΓPn
X

M q and

Hp−i(X, M q−i) = Rp−i ΓX ◦ Ri π′∗(M q). Thus the morphism above given by suc-

cessive multiplication with ξ i’s induces a morphism

R ΓX R π′∗M q → R ΓPn
X

M q

in the derived category of abelian groups. Since ΓX = Γk ◦ f∗ where we write for

simplicity Γk = ΓSpec k, there is a spectral sequence

Ri Γk ◦ Rj f∗ ⇒ RnΓX,

which degenerates because Ri Γk = 0 if i 6= 0. Therefore there is an isomorphism

⊕i+j=p Ri ΓX ◦ Rj π′∗(M q) ∼= ⊕i+j=pΓk(R
i f∗ ◦ Rjπ′∗)(M q),
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which is in the derived category

R ΓX R π′∗(M q) ∼= Γk R f∗ R π′∗(M q).

For the derived functors of the compositions f∗ ◦ π′∗ and π∗ ◦ f ′∗, there are as usual

two spectral sequences

Ri f∗ Rj π′∗ ⇒ Rn( f∗ ◦ π′∗) and Ri π∗ Rj f ′∗ ⇒ Rn(π∗ ◦ f ′∗),

yet the commutativity of the diagram (3.5) implies that they converge in fact to the

same object. This in turn leads to an isomorphism in the derived category

Γk R f∗ R π′∗(M q) ∼= Γk R π∗ R f ′∗(M q).

If we recall that push-forward is well defined for cycle modules and compatible

with the structure and therefore transforms cycle modules into cycle modules, we

see that by the result of the first part of the proof the right-hand-side of this is

isomorphic to

R ΓPn
k

R f ′∗(M q).

Now similarly to above, the spectral sequence associated to the equality of functors

ΓPn
X
= ΓPn

k
◦ f ′∗ induces an isomorphism in the derived category

R ΓPn
k

R f ′∗(M q) ∼= R ΓPn
X

M q .

Putting everything together yields an isomorphism

R ΓX R π′∗(M q) ∼= R ΓPn
X

M q,

which corresponds by construction exactly the morphism of cohomology intro-

duced at the beginning by cap product with ξ i’s.



CHAPTER 4

CHERN CLASSES FOR HIGHER ALGEBRAIC

K-THEORY WITH COEFFICIENTS IN THE

MILNOR K-SHEAF

To generalise cohomology theories in algebraic geometry Gillet relies on analo-

gies with topology. In this chapter we recall the axioms necessary for a generalised

duality theory and apply this to the Milnor K-sheaf.

4.1 Chern classes with coefficients in a
generalised cohomology theory

We recall Gillet’s definitions and results [Gil81] for higher Chern classes with

coefficients in a generalised cohomology theory. In short, the idea is that a co-

homology theory with certain properties allows for the construction of universal

classes over the classifying space B. GLn., which in turn yield compatible universal

classes for GLn. Using the Dold–Puppe functor, one finally obtains the desired

characteristic classes. This is explained in more detail below.

Definition 4.1. A graded cohomology theory Γ∗ on a category of schemes V is a

graded complex of sheaves of abelian group

Γ∗(∗) =
⊕
i∈Z

Γ∗(i)

on the big Zariski site of V together with an associative and graded-commutative

pairing with unit in the derived category of graded complexes of abelian sheaves

Γ∗(∗)⊗L
Z Γ∗(∗)→ Γ∗(∗).

In that way one may think of it being endued with a ring structure as we will

discuss more closely later.
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Definition 4.2. Such a cohomology theory given, one may for a pair (Y, X), where

Y is a closed subscheme of X, define the cohomology of X with support in Y by

Hi
Y(X, Γ(j)) = Hi

Y(X, Γ∗(j)).

Here HY denotes hypercohomology with supports.

This construction yields contravariant functors on the set of pairs (Y, X). A

morphism f : Z → X induces natural maps for all i, j

f ! : Hi
Y(X, Γ(j))→ Hi

f−1(Y)(Z, Γ(j)).

The product on the graded complex Γ∗(∗) induces a commutative ring structure

on the associated cohomology H∗(X, Γ(∗)) and a H∗(X, Γ(∗))-module structure on

H∗Y(X, Γ(∗)). These structures are compatible with base changes via maps f !.

Definition 4.3. The definition is extended to simplicial objects in V : If X. is a

simplicial scheme, for each j > 0, the complex Γ∗(j) of sheaves on V ZAR restricts

to a complex on X., and Hi(X., Γ(j)) are its hypercohomology groups.

Examples 4.4. Almost all known cohomology theories qualify as examples for this,

although in many cases the grading does not play an important role or is constant.

It does play a role in the theory of Chow groups associated to cycle modules as

introduced in the previous section.

It is desirable for many applications to have additional data and structures.

This naturally leads to the definition of duality theories.

Definition 4.5. Let V be a category of schemes over a fixed base S. A twisted

duality theory on V with coefficients in a cohomology theory Γ(∗) consists of the

following data (the number d = 1, 2 that appears in several axioms depends on the

cohomology theory Γ(∗)):

1. Homology functor. A covariant functor from V with proper morphisms into

the category of bigraded abelian groups

X →
⊕
i>0
j∈Z

Hi(X, Γ(j)),
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which is a Zariski presheaf for each X such that a Cartesian diagram with f , g

proper and i, i′ open immersions

U i′ //

g
��

X
f
��

V i // Y

leads to a commutative diagram in the target category

Hi(U, Γ(j))

g!
��

Hi(X, Γ(j))i′∗oo

f!
��

Hi(V, Γ(j)) Hi(Y, Γ(j))i∗oo

2. Localisation sequence. Let (Y, i, X, j, U) be a boundary triple as mentioned

earlier. Then there is a long exact sequence of homology

· · · → Hi(Y, Γ(j))
i!−→ Hi(X, Γ(j))

j∗−→ Hi(U, Γ(j)) ∂−→ Hi−1(Y, Γ(j))→ · · ·

functorial in the way that for all proper morphisms f : X → X′ there is a

map of long exact sequences from the one associated with (Y, X) to the one

associated with ( f (Y), X′).

3. Cap product. For each pair (Y, X) as in (2) a cap product

⋂
: Hi(X, Γ(r))⊗Hj

Y(X, Γ(s))→ Hi−j(Y, Γ(r− s)),

which is a pairing of presheaves on each X in V and such that for a Cartesian

square

Y //

fY
��

X
fX
��

Y′ // X′

with f proper and Y′ a closed subscheme of X′, there is a projection formula

f!(j) ∩ z = f!(j ∩ f !(z))

for α ∈ Hi(X, Γ(r)) and z ∈ Hj
Y(X′, Γ(s)).
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4. Fundamental class. Let X ∈ V be flat over S of relative dimension 6 n.

There is a global section ηX ∈ Hdn(X, Γ(n)). Here d is one or two depending

on Γ.

5. Poincaré duality. Let X ∈ V be smooth over S of relative dimension n and

Y → X a closed immersion. Then

ηX∩ : Hdn−i
Y (X, Γ(n− r))→ Hi(Y, Γ(r))

is an isomorphism, and the class of ηX in Hd n(X, Γ(n)) ∼= H0(X, Γ(0)) cor-

responds to the unit in the ring structure of H∗(X, Γ(∗)). If Y ∈ V is a

subscheme of a smooth scheme X over S, then we can compute Hi(Y, Γ(r))

as Hdn−i
Y (X, Γ(n− r)).

6. Sections with support. If j : Y → X is a closed immersion of smooth schemes

over S, then the isomorphism

Hi(Y, Γ(r)) ∼= Hi+dp
Y (X, Γ(r + p))

induced by (5) is induced by a map

j! : Γ∗Y(r)→ Rj!Γ∗X(r + p) [dp] ,

where j! is the functor “sections with support in Y.”

7. Projection formula. Let j : Y → X be a closed immersion of codimension p,

smooth over S. Then the projection formula induced by the one from (3) via

the duality (5)

j!(z) ∪ a = j!(z ∪ j!(a)),

for z ∈ Hp(Y, Γ(r)) and a ∈ Hi(X, Γ(s)), is represented by a commutative

diagram in the derived category of complexes of sheaves of abelian groups

Rj!Γ∗Y(r)
⊗L

Z Γ∗X(s)
1⊗j!

//

j!⊗1 ∼
��

Rj!
(

Γ∗Y(r)
⊗L

Z Γ∗Y(s)
)

��
Rj!Γ∗X(r + p)[dp]

⊗L
Z Γ∗X(s)

++VVVVVVVVVVVVVVVVVVV
Rj! (Γ∗Y(r + s))

∼
��

Rj! (Γ∗X(s + r + p) [dp])
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8. Cross product. Let X, Y ∈ V be quasi-projective over S. There are external

products

� : Hi(X, Γ(r))⊗Hj(Y, Γ(s))→ Hi+j(X×Y, Γ(r + s))

coming from the natural product

H∗X(MΓ(∗))⊗Z H∗Y(N, Γ(∗))→ H∗X×Y(M× N, Γ(∗)),

where X → M, X → N are embeddings into smooth schemes.

9. Homotopy invariance. For any X ∈ V and p : A1
X → X the natural map, the

induced morphism

p∗ : Hi(X, Γ(r))→ Hi(A1
X, Γ(r))

is an isomorphism.

10. Projective bundle formula. For n ∈N, X ∈ V the natural product

H∗(Pn
S, Γ(∗))

⊗
Z

H∗(X, Γ(∗))→ H∗(Pn
X, Γ(∗))

is surjective and for the natural projection π : Pn
X → X and ξ ∈ Hd(Pn

X, Γ(1))

the inverse image of the hyperplane class at infinity by the map Pn
X → Pn

S,

there is an isomorphism

n

∑
p=0

π∗(·) ∩ ξ p :
n⊕

p=0
Hi−dp(X, Γ(rp)) ∼−→ Hi(P

n
X, Γ(r)).

11. Cycle class map. A natural transformation of contravariant functors

cycle : Pic(·)→ Hd(·, Γ(1)),

which extends to the cycle class map for effective Cartier divisors.

We will mention a few examples without going into details.

Examples 4.6. Many of the standard examples fall under this definition.

– De Rham cohomology of varieties over a field k of characteristic 0, which

have smooth embeddings. Set Γ∗X(j) = Ω•X/k for j ∈ N0 and = 0 otherwise.

Here d = 2.
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– The Chow ring for varieties of finite type over a field. Set Γ∗X(j) = K j, the

Quillen K-sheaf for j ∈ N0 and = 0 otherwise. Here d = 1. Note: this is

a special case of the generalised Chow groups for cycle modules defined by

Rost.

– Etale cohomology of schemes over Spec(Z
[

1
n

]
). Set Γ∗(i) = Ru∗µn(i), where

u is the functor from the étale to the Zariski site. Here d = 2.

Recall now the definition of a theory of Chern classes for a category of schemes

V and a cohomology theory Γ(∗).

Definition 4.7. A theory of Chern classes on V with coefficients in Γ for represen-

tations of sheaves of groups on V assigns for each X ∈ V to any representation

ρ : G → GL(F )

on a locally free OX-module F classes

Ci(ρ) ∈ Hdi(X, G , Γ(i)),

where d is the same constant as in the definition of duality theory. We have an

associated total class

C.(ρ) = ∏ Ci(ρ) ∈ ∏
i∈N0

Hdi(X, G , Γ(i)),

which is an element of the units of the cohomology ring H∗(X, G , Γ(∗)). These

classes satisfy the following axioms.

1. Functoriality. Let f : X → Y be a morphism in V and ρ : G → GL(F ) a rep-

resentation of sheaves of groups in Y and ϕ : H → f ∗ G a homomorphism

of sheaves of groups on X. Moreover, let

f ∗(ρ) ◦ ϕ : H → GL(F ⊗OY OX)

be the induced representation on X. Then

C.( f ∗(ρ) ◦ ϕ) = ϕ∗( f ∗(C.(ρ))),

where

ϕ∗ : H∗(X, f ∗ G , Γ(∗))→ H∗(X, H , Γ(∗))
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is the map induced by ϕ and

f ∗ : H∗(Y, G , Γ(i))→ H∗(X, f ∗ G , Γ(i))

is induced by the natural transformation of functors

f ∗ : {G -invariant sections of Γ∗Y(i)} → { f ∗ G -invariant sections of Γ∗X(i)} .

2. Whitney sum formula or additivity. Let

0→ (ρ′, F ′)→ (ρ, F )→ (ρ′′, F ′′)→ 0

be an exact sequence of representations of G , then

C.(ρ) = C.(ρ′) · C.(ρ′′).

3. Tensor products. Let (ρ1, F 1) and (ρ2, F 2) be representations of G and (ρ1⊗
ρ2, F 1⊗F 2) their tensor product, then

C̃.(ρ1 ⊗ ρ2) = C̃.(ρ1)~ C.(ρ2),

where~ is the product defined by the universal polynomials of Grothendieck

and C̃. is the augmented total Chern class

(rank(ρ), C.(ρ)) ∈ H̃
∗
(X, G , Γ(∗)) = Z×

(
∏

i∈N0

Hdi(X, G , Γ(i))

)∗
.

4. Stability. Let ε : {e} → GL(OX) ∼= O∗X be the trivial rank one representation.

Then

C.(ε) = 1

the identity element in the cohomology ring.

5. Normalisation. For any representation ρ : G → GL(F ) the zero class is

trivial

C0(ρ) = 1.

Gillet shows in [Gil81] that this definition is not void. We sketch his argumen-

tation.
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Theorem 4.8. Let V , S, Γ be as before, in particular, Γ satisfies the axioms of Definitions

4.1 and 4.5. Then there is a theory of Chern classes over V with coefficients in Γ satisfying

the axioms of Definition 4.7.

Proof. (Sketch) This is done in three steps.

The first step is to construct universal classes

Cin ∈ Hdi(B. GLn /S, Γ(i)),

for each n ∈ N0 where B. GLn is the simplicial classifying space of the groups

scheme GLn.

Let En
· be the standard universal rank n vector bundle over B. GLn and P(En

· )

the associated projective bundle. Let ξ ∈ H1(P(En
· ) be the tautological divisor

defined by a Čech cochain on a hypercover in the usual way. Via the cycle class

map, which was Axiom 4.5(11), ξ defines a class in Hd(P(En
· , Γ(1)), which by abuse

of notation is also denoted by ξ.

Using the projective bundle formula 4.5(10), one shows that for a rank n vector

bundle F. over a simplicial scheme X. in the category V , there is a natural isomor-

phism

Hr(P(F.), Γ(s)) ∼=
n−1⊕
i=0

Hr−di(X., Γ(s− i))

induced by multiplication with ξ. The proof uses the projective bundle formula

4.5 (10) required in the definition of a duality theory. In particular, this is true if

we take X. = B. GLn and F. = En
· . As a consequence of this decomposition it is

possible to define the universal rank n Chern classes by the equation

ξn + p∗(C1) ∪ ξn−1 + · · ·+ p∗(Cn) = 0

in H∗(P(En
· ), Γ(∗)), where p : P(En

· )→ B. GLn is the natural projection.

The second step is to pass from the classes

Ci ∈ Hdi(B. GLn /S, Γ(i))

to classes

Ci ∈ Hdi(X, GLn(OX), Γ(i))
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for every scheme X/S in V . Viewing Γ(i) as a complex of (injective) sheaves over

the big Zariski site of S, we can compute the cohomology of the simplicial scheme

B. GLn as the cohomology of the total complex associated to the double complex

⊕k,l Hom(S̃)ZAR
(Bk GLn, Γl(i)).

On SZAR we have pairings of sheaves

H om(X, Bk GLn)×H om(Bk GLn, Γl(i))→H om(X, Γl(i)),

which induces a morphism

Hom(S̃)ZAR
(Bk GLn, Γl(i)) → Hom(S̃)ZAR

(H om(X, Bk GLn), Γl(i))

∼= HomXZAR(Bk GLn(OX), Γl(i)),

where the second isomorphism is the canonical one. As this is a morphism of dou-

ble complexes, one can compute the cohomology of the associated total complex

on each side to obtain a map

Hdi(B. GLn, Γ(i))→ Hdi(X, GLn(OX), Γ(i)).

Hence the images of the Ci ∈ Hdi(B. GLn /S, Γ(i)) under this morphism yield

the desired universal classes, which by abuse of notation we denote by the same

symbol.

The third step is to define Chern classes for any representation ρ : G →
A ut(F ) of a sheaf of groups on a scheme X/S with F locally free of rank n.

For such a representation determines a map in the homotopy category associated

to the category of simplicial sheaves over X

[ρ] : B. G → B. GLn(OX)

and therefore by functoriality a morphism

[ρ]∗ : Hdi(X, GLn(OX), Γ(i))→ Hdi(X, G , Γ(i)),

we can define

Ci(ρ) = [ρ]∗(Ci),

where the Ci on the right-hand side was defined in the previous paragraph. One

checks now that this definition satisfies the properties of Chern classes given in
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Definition 4.7, i.e., Functoriality, Whitney Sum Formula, Tensor Product and Sta-

bility.

Let now Y ⊂ X be a closed subscheme and let KY
i (X) be K-theory with sup-

ports. We want to construct characteristic classes

CY
ij : KY

j (X)→ Hdi−j
Y (X, Γ(i)).

Later we will only need the case Y = X.

Applying the above theorem to the regular representation ιn : GLn(OX) →
Aut(On

X), one obtains for each n characteristic classes Ci(ιn) ∈ Hdi, GLn(OX), Γ(i)),

which are stable. Thus they have the property that for m > n, if we denote

inm : GLn(OX)→ GLm(OX) the natural injection, we have

i∗nm(Ci(ιm)) = Ci(ιn),

where the left-hand side is over GLm and the right-hand side over GLn. We note

as well that the cohomology of GLn(OX) is stable in the sense that for each k ∈N0

there is mk such that for all m > mk and for sheaves of abelian groups M on X on

which GLn(OX) and GL(OX) act trivially

Hk(X, GLm(OX), M ) ∼= Hk(X, GL(OX), M ).

Hence we obtain classes

Ci ∈ Hdi(X, GL(OX), Γ(i)).

By a theorem of Brown and Gersten that relates the cohomology with respect

to a group to the cohomology with respect to the associated classifying simpli-

cial group via the Dold–Puppe construction K , we have Hdi(X, GL(OX), Γ(i)) =

H0(X, B. GL(OX), K (di, Γ(i))). Therefore we can consider Ci as a map of simpli-

cial sheaves

Ci : B. GL(OX)→ K (di, Γ(i)).
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Now one uses Quillen’s trick. First apply Bousfield-Kan’s integral completion

functor to Ci, which yields a diagram

B. GL(OX)
Ci //

φ0
��

K (di, Γ(i))

φ1
��

Z∞ B. GL(OX)
Z∞ Ci// Z∞ K (di, Γ(i))

where φ1 and φ0 are induced by a natural transformation φ : id → Z∞. In

particular φ1 is a weak homotopy equivalence, so that we have an isomorphism

of cohomology groups Hk
Y (X, K (di, Γ(i))) ∼= Hk

Y (X, Z∞ K (di, Γ(i))). The left

hand side is related to the cohomology of Γ(i) via an isomorphism

H−j
Y (X, K (di, Γ(i))) ∼= Hdi−j

Y (X, Γ(i)) .

Moreover, we have a natural homomorphism for j ∈N0

KY
j (X)→ H−j

Y (X, Z×Z∞ (B. GL(OX))) .

As the Z-factor of Z×Z∞(B. GL(OX)) does not affect the Chern classes, we can

put these maps together

KY
j (X) //

cY
ij

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP H−j
Y (X, Z×Z∞ (B. GL(OX)))

// H−j
Y (X, Z∞ (B. GL(OX)))

H−j(Ci)
��

H−j
Y (X, Z∞ K (di, Γ(i)))

∼
��

H−j
Y (X, K (di, Γ(i)))

∼
��

Hdi−j
Y (X, Γ(i))

This shows the existence of the Chern classes claimed.

Theorem 4.9. Let V be a category of schemes over a fixed base S and Γ(∗) a duality theory

satisfying the axioms of Definitions 4.1 and 4.5. Then there exists a theory of Chern classes

for higher algebraic K-theory

cij : Kj(X)→ Hdi−j (X, Γ(i))

satisfying the axioms of Definition 4.7 for representations of sheaves of groups in V with

coefficients in Γ.
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They are compatible with base change: let f : X → Y be a morphism of schemes

in V and Z ∈ Y a closed subscheme, then the diagram

KZ
j (Y)

cZ
ij //

f ∗
��

Hdi−p(Y, Γ(i))

f !

��

K f−1(Z)
j (X)

c f−1(Z)
ij // Hdi−p

f−1(Z)(X, Γ(i))

commutes. This follows from the axiom 4.7(1) of functoriality for a theory of Chern

classes. They are also compatible with sums in the sense that for α, β ∈ KY
j (X) with

j > 0 the formula

cY
ij(α + β) = cY

ij(α) + cY
ij(β)

holds. This is a consequence of the Whitney sum formula 4.7(2). Moreover, for the

universal Chern classes Ci ∈ Hdi(X, GL(OX), Γ(i)) and Cj ∈ Hdj(X, GL(OX), Γ(j)),

the induced homomorphisms by their cup product

KY
p (X)→ Hd(i+j)−p

Y (X, Γ(i + j))

is trivial for p > 0. The proof of the last two properties uses homotopy invariance

4.5(9) of the duality theory Γ.

4.2 Higher Chern classes for the Milnor K-sheaf
It was mentioned earlier that the Chow ring associated to Quillen’s K-sheaves,

which is a generalised cohomology theory in the sense of Definition 4.5, is a special

case of Rost’s Chow rings [Ros96]. Therefore, it makes sense to investigate if other

cycle modules give rise to generalised cohomology theories as well. In particular

we want to do this for the Milnor K-sheaves.

Let X be smooth over a field k of dimension n. Now set

Γ∗X(j) = K M
j

for j > 0 and the zero sheaf otherwise, where this is seen as a complex with only

one spot nonzero, and further let S = k. By the Gersten Conjecture (Corollary 2.10)

K M
∗ =

{
K

M
∗ in the case of infinite residue fields

K̂
M
∗ in the case of finite residue fields.
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The associated generalised cohomology theory is

Hi(X, Γ(j)) = Hi(C∗(X; KM
∗ , j)) = Ai(X; KM

∗ , j).

Theorem 4.10. There is a theory of Chern classes for vector bundles and higher algebraic

K-theory of regular varieties over k with infinite residue fields, with values in Zariski

cohomology with coefficients in the Milnor K-sheaf:

cM
ij : Kj(X)→ Hi−j(X, K M

i ).

Proof. We have to verify that the duality theory associated with Γ∗X(j) = C∗(X; KM
∗ , j)

satisfies certain axioms of Definition 4.5, which are needed in the construction

according to Theorems 4.8 and 4.9. At this point we only check the necessary

axioms; for a discussion of the other ones see the appendix. Most of the properties

are general properties of cycle modules and the associated Chow groups.

1. Cap product. Recall that there is a pairing of cycle modules

KM
∗ × KM

∗ → KM
∗ ,

which respects grading. Using the map “multiplication with units” from

point 3 in Subsection 3.2, this induces a pairing of complexes

Cp(X, KM
∗ , j)× Cq(X

∣∣
Y, Km

∗ , i)→ Cp−q(Y, KM
∗ , j− i),

where we have used that Cq = Cn−q as X is of dimension n and where Cq
Y

means sections with support in Y. This map respects the grading on KM
∗

since the original pairing on KM
∗ does so. Moreover, it respects the grading

in dimension as it is a generalised correspondence map mentioned in [Ros96,

(3.9)]. Applying the (co)homology functor, we obtain a pairing

⋂
: Ap(X; KM

∗ , j)⊗ Aq
Y(X; KM

∗ , i)→ Ap−q(Y; KM
∗ , j− i).

2. Projective bundle formula. We proved this in Proposition 3.19



49

3. Cycle class map. This is clear from the definition of the first Milnor K-group.

Indeed, recall that by definition of the Milnor K-sheaf

K M
1 = O∗X,

and the well known isomorphism for a scheme X

Pic(X) ∼= H1(X, O∗X)

gives a natural transformation of contravariant functors on the big Zariski

site V .

Now we can apply Theorem 4.8 and Theorem 4.9 and go through the construction

sketched earlier to obtain the claim.

Remark 4.10.1. As we discuss in Section 2.4 this translates one-to-one to the étale

case, and we can replace in the theorem Zariski cohomology with étale cohomol-

ogy, with which we want to work.



CHAPTER 5

LOGARITHMIC WITT DIFFERENTIALS

Let k be a perfect field of characteristic p > 0. For a smooth k-scheme X let

W†ΩX be the overconvergent de Rham–Witt complex as defined by Davis, Langer

and Zink in [DLZ11] and WΩX the usual de Rham–Witt complex [Ill79]. The goal

of this section is to find a good notion of logarithmic overconvergent differentials

and prove that they factor through Milnor K-theory.

5.1 Definition
For n ∈N denote

d log : O∗X →WnΩ1
X

the morphism of abelian sheaves defined locally by x 7→ d[x]
[x] . This induces a

morphism of projective systems

d log : O∗X →W•Ω1
X.

Let WnΩi
X,log ⊂ WnΩi

X be the subsheaf generated étale-locally by sections of the

form d log [x1] . . . d log [xi] for xj ∈ O∗X. This construction is known to be functorial

in X, and the product structure of WnΩ•X carries over to WnΩ•X,log. For n variable,

W•Ω•X,log is an abelian subprosheaf of W•Ω•X, and we set WΩ•X,log := lim←−W•Ω•X,log.

For i ∈N0 there is a short exact sequence of prosystems for étale topology

0→W•Ωi
X,log →W•Ωi

X
F−1−−→W•Ωi

X → 0,

where F denotes a lift of the Frobenius endomorphism.

Taking the limit yields an exact sequence

0→WΩi
X,log →WΩi

X
F−1−−→WΩi

X.

This means that WΩ•X,log = Ker(F−1) ⊂ WΩ•X. It is not a priori clear that

exactness holds also on the right; that is, that F−1 is surjective.
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Let Rnm : WnΩ•X → WmΩ•X be the restriction map for n > m. We want to show

that for i fixed the projective system (WnΩi
X,log, Rnm satisfies the Mittag-Leffler

condition locally. Indeed, since étale locally WnΩi
X,log is generated by sections of

the form d log [x1]n . . . d log [xi]n, where the Teichmüller lifts are in truncated Witt

vectors of length n, and the restriction maps Rnm commute with multiplication,

addition and differential, we have for n > m > k

Rnk

(
d [x]n
[x]n

)
= Rmk

(
d [x]m
[x]m

)
,

and thus locally

Rnk

(
WnΩ•X,log

)
= Rmk

(
WmΩ•X,log

)
.

This induces exactness of the sequence

0→WΩi
X,log →WΩi

X
F−1−−→WΩi

X → 0

for étale topology (but not for global sections).

5.2 Basic Witt differentials
Assume now that X is the spectrum of a polynomial algebra A = k[X1, . . . , Xd].

Langer and Zink proved [LZ04, Theorem 2.8] that any element ω ∈ WΩ•A has a

unique expression as a convergent sum of basic Witt differentials

∑
k,P

e(ξk,P , k, P),

where k runs over all possible weight functions and P over all partitions of Supp k

and for any m ξk,P ∈Vm
W(k) for almost all weights k. The last condition is another

way of saying that the sum converges p-adically.

A weight function is a function k : [1, d]→N0

[
1
p

]
. The value of k at i is denoted

by ki. We call k integral if all values of k are integral. If k is integral, we set

Xk = Xk1
1 · · ·X

kd
d .

Let Supp k be the support of k, i.e., the elements of the domain, where k does not

vanish and fix for each k a total order on Supp k = {i1, . . . , ir} respecting the p-

divisibility

ordp ki1 6 · · · 6 ordp kir .
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To simplify notation, set t(k) = − ordp k and u(k) = max(0, t(k). Think of u(k)

as the denominator of k. Let I = {i`, i`+1, . . . , i`+m} be an interval of Supp k in the

given order. If kI is the restriction of k to I, set

t(kI) = t(ki`) = max{t(ki) | i ∈ I}

u(kI) = u(ki`) = max(0, t(kI)).

For fixed k, let P be a partition of Supp k = I0 t I1 t . . . t I` respecting the

order. The interval I0 may be empty, but the intervals I1, . . . , I` not. A basic Witt

differential e = e(ξ, k, P) ∈ WΩ`
A of degree ` with ξ =Vu(I)

η ∈Vu(I)
W(k) is

defined in the following way: Denote by r ∈ [0, `− 1] the first index such that kIr+1

is integral. Three cases occur.

1. I0 6= ∅, no condition on the integrality of k.

e = Vu(I0)
(

η [X]p
u(I0)kI0

) (
dVu(I1) [X]p

u(I1)kI1

)
· · ·
(

dVu(Ir)
[X]p

u(Ir)kIr
)
·(

F−t(Ir+1)d [X]p
t(Ir+1)kIr+1

)
· · ·
(

F−t(I`)d [X]p
t(I`)kI`

)
Here ξ =Vu(I0) η.

2. I0 = ∅ and k not integral.

e =
(

dVu(I1)
(

η [X]p
u(I1)kI1

))
· · ·
(

dVu(Ir)
[X]p

u(Ir)kIr
)
·(

F−t(Ir+1)d [X]p
t(Ir+1)kIr+1

)
· · ·
(

F−t(I`)d [X]p
t(I`)kI`

)
Similarly as before ξ =Vu(I0) η.

3. I0 = ∅ and k integral.

e = η
(

F−t(I1)d [X]p
t(I1)kI1

)
· · ·
(

F−t(I`)d [X]p
t(I`)kI`

)
.

Here ξ = η.

If in e(ξ, k, P) the element ξ is contained in Vm
W(R), then the image of the basic

Witt differential under the restriction map Rm is trivial.

Proposition 5.1. The action of F, V and α ∈W(k) on the basic Witt differentials are

given as follows:
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1. αe(ξ, k, P) = e(αξ, k, P).

2. If I0 6= ∅, or if k is integral (first and third case above),

Fe(ξ, k, P) = e(Fξ, pk, P).

3. If I0 = ∅ and k is not integral (second case above),

Fe(ξ, k, P) = e(V−1
ξ, pk, P).

4. If I0 6= ∅ or k is integral and divisible by p,

Ve(ξ, k, P) = e(Vξ,
1
p

k, P).

5. If I0 = ∅ and 1
p k is not integral,

Ve(ξ, k, P) = e(pVξ,
1
p

k, P).

This is Proposition 2.5 in [LZ04]. Note that if ω ∈ WΩA is given as a unique

decomposition in basic Witt differentials ∑ e, then its image under Frobenius has

the unique decomposition F ω = ∑ F e. In this sense one could say that the decom-

position remains “fixed” under Frobenius. The types of basic Witt differentials are

almost stable under the action of Frobenius, i.e., one could switch from type 2 to

type 3, since the weight is multiplied by p, but this is the only switch from one type

to another that can possibly occur. What is more, the Frobenius action is injective

on the set of basic Witt differentials.

5.3 The overconvergent de Rham–Witt complex
Let A be a polynomial algebra over k. We recall the definition of the overcon-

vergent de Rham–Witt complex [DLZ11]. Let ω = ∑k,P e(ξ, k, P) ∈ WΩA given

as its unique decomposition as a sum of basic Witt differentials. For ε > 0 the Gauß

norm is defined by

γε(ω) = inf
k,P
{ordV ξk,P − ε|k|} .

Definition 5.2. An element ω = ∑k,P e(ξ, k, P) ∈ WΩA is said to be overconver-

gent of radius ε, if γε(ω) > −∞.
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Note that the Teichmüller lift of an element in A is by default overconvergent.

Denote by WεΩA the overconvergent Witt differentials of radius ε. The over-

convergent de Rham–Witt complex is the union over all possible constants ε > 0

⋃
ε

WεΩA =: W†ΩA,

which is a subdifferential graded algebra of WΩA.

If A = k [t1, . . . , tr] is a smooth finitely generated k-algebra and S the polyno-

mial algebra k [X1, . . . , Xr], then the morphism S→ A, Xi 7→ ti induces a canonical

epimorphism

λ : WΩS →WΩA

of de Rham–Witt complexes.

Definition 5.3. We set W†ΩA = λ
(
W†ΩS

)
.

This does not depend on the presentation, although the radii of overconver-

gence do in general.

Davis, Langer and Zink show that this construction can be globalised to a

smooth scheme for étale and Zariski topology ([DLZ11, Cor. 1.7 and Thm. 1.8]).

Thus for a (smooth) scheme X we have a subcomplex of the classical de Rham–Witt

complex

W†ΩX ⊂WΩX.

Remark 5.3.1. Notice that by definition Witt differentials of finite length are over-

convergent for some constant ε. Hence the natural morphism

W†ΩX ⊗Z /pn Z→WnΩX

is an isomorphism in the derived category of Z /pn Z-modules. Indeed,

W†Ωi
X ⊗Z /pn Z→W i

nΩX

is evidently an isomorphism for all i > 0 of Z /pn Z-modules. On the other hand,

the Tor-functor,

Torj(Z /pn Z, W†Ωi
X) = 0
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for all j > 0 and all i > 0 as multiplication by p is injective in W†Ωi
X. Accordingly,

there is an isomorphism

WΩX
∼= lim←−W†ΩX ⊗Z /pn Z .

5.4 Log-differentials and the Steinberg relation
Let X be a smooth scheme over k. The map d log defined above induces a

morphism

d log : O∗X → WΩ1
X,log →WΩX [1]

x 7→ d [x]
[x]

defined étale locally. The aforementioned fact that Teichmüller lifts are overcon-

vergent along with the fact that the overconvergent complex is a subdifferential

graded algebra of the classical de Rham–Witt complex shows that the elements

d log [x1] . . . d log [xi] for xj ∈ O∗X are overconvergent. Therefore we have in fact a

natural map

d log : O∗X →WΩ1
X,log →W†ΩX [1] .

Moreover, extending this to higher degrees yields for every i > 0 a morphism

d log⊗i : O∗X ⊗ · · · ⊗O∗X → WΩi
X,log →W†ΩX [i]

x1 ⊗ · · · ⊗ xi 7→ d log(x1) · · · d log(xi).

Definition 5.4. We set W†ΩX,log to be the subcomplex of the overconvergent com-

plex generated étale locally by logarithmic Witt differentials.

Remark 5.4.1. In Section 6.4 we show the equality

W†ΩX,log = WΩX,log,

where the second complex is the logarithmic subcomplex of the normal de Rahm-

Witt complex WΩX, as both can be realised as the kernel of the map 1− F.
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Remark 5.4.2. As Gros points out in [Gro85, Théorème 1.3.3], there is a natural

isomorphism

W•ΩX,log ⊗Z /pn Z
∼−→WnΩX,log

in the derived category of Z /pn Z-promodules and therefore a natural isomor-

phism

WΩX,log ⊗Z /pn Z
∼−→WnΩX,log.

Moreover one has

WΩX,log
∼= lim←−WΩi

X,log ⊗Z /pn Z .

In order to relate this to the Milnor K-sheaf, we prove the following:

Proposition 5.5. The symbols d log(x1) · · · d log(xi) with x1, . . . xi ∈ O∗X satisfy the

Steinberg relation.

Proof. Let x ∈ O∗X be a local section and assume that 1− x ∈ O∗X. It is enough to

show locally that d log(x)d log(1− x) = 0, or even that d[x]d[1− x] = 0.

Thus let X = Spec B, where B is a quotient of a polynomial algebra over k. For

an element b ∈ B we calculate the expression d[b]d[1− b]. Consider the morphism

of k-algebras

ψ : k[z]→ B

sending z to b. This morphism induces by functoriality a morphism of differential

graded algebras between the associated de Rham–Witt complexes,

ψ : WΩk[z] →WΩB,

which by abuse of notation we also denote by ψ. Yet the de Rham–Witt complex of

k[z] is trivial in degree greater than 1,

WΩk[z] : 0→W Ok[z] →WΩ1
k[z] → 0,

thence it is clear that d[z]d[1− z] is zero. But as ψ is a morphism of differentially

graded algebras, this implies already that d[b]d[1− b] as the image in WΩB is zero

as well.
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From this it follows that in the general case for x ∈ O∗X

d log(x)d log(1− x) =
d[x]
[x]

d[1− x]
[1− x]

= 0.

Using basic properties of the de Rham–Witt complex as differentially graded

algebra, in particular anticommutativity, the claim follows.

Example 5.6. The argumentation above implies in particular that for X/k smooth

and a local section x ∈ OX, we have the equality

d[x]dV [x] = 0.

Indeed, one can calculate [1− x] using the Witt polynomials wn and summation

polynomials Si to be

[1− x] = [1]− [x]−
∞

∑
i=1

Vi[Si(1, 0, . . . ;−x, 0, . . .)],

where the Si(1, 0, . . . ;−x, 0, . . .) are sums of powers of x. Since we have seen in the

proposition that d[x]d[1− x] = 0 and it is obvious that d [1] = 0 and d[x]d[x] = 0,

it is clear that for any i, j ∈N

d[x]dVi
[xj] = 0

as well.

It is a good exercise to calculate this equality by hand. Consider for example

the simplest case where i = j = 1. One has

(V [x])d[x] = V
(
[x]Fd[x]

)
= V

(
[x][x]p−1d[x]

)
= V ([x]pd[x])

= V ([x]p) dV [x],
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where all equalities come from defining properties of F-V procomplexes as men-

tioned in [LZ04, Section 1.2]. With this, one gets

dV [x]d[x] = d
(

V [x]d[x]
)

= d
(

V ([x]p) dV [x]
)

= dV ([x]p) dV [x]

= V
(
[x]p−1

)
dV [x]dV [x] = 0,

where we used dV (ξ p) =V (ξ p−1) dVξ for ξ ∈W(X) from [LZ04, Lemma 1.5].

Corollary 5.7. Let X be a smooth scheme over k with infinite residue fields. For

each i the map

d log⊗i : O∗X ⊗ · · · ⊗O∗X →W†ΩX [i]

factor through K M
i on X and d log⊗i can be augmented to a morphism of sheaves

on X

d logi : K
M
i →W†Ω [i] .

The next step is to show that the overconvergent de Rham–Witt complex is an

object of STét.

5.5 The transfer map for the overconvergent complex
It makes sense to view W†Ω as an abelian sheaf on the big étale site of all

schemes.

We will now define a transfer for the overconvergent complex. Let i : A→ B be

a finite étale extension of local rings. Fix an explicit representation of the A-algebra

B ∼= A[T]/( f ) with f ∈ A[T] monic such that f ′ is a unit. Let GB/A = AutA(B)

be the automorphism group of B that fixes A. Since B/A is étale, in particular

unramified, and the extension is of finite degree, we know that

#GB/A = deg(B/A).

By functoriality of the overconvergent complex, each element g ∈ GB/A induces a

morphism of complexes

g : W†ΩB →W†ΩB.
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Lemma 5.8. Let g : B → B be an automorphism that fixes A. Then the induced

morphism of de Rham–Witt complexes is also an automorphism that fixes W†ΩA.

Proof. By functoriality of the (overconvergent) de Rham–Witt complex, the induced

morphism is an isomorphism. It fixes W†ΩA because this is true for the usual de

Rham–Witt complex by construction; thus the same holds true for the restriction

to the overconvergent subcomplex.

Lemma 5.9. Let ω ∈W†ΩB be fixed by all g ∈ GB/A. Then ω is in fact in W†ΩA.

Proof. Consider first the case when x ∈ W(B). In this case, the elements of GB/A

act componentwise, and the claim follows from the fact that A is exactly the fixed

ring of GB/A. This is of course also true if we restrict to the overconvergent Witt

vectors.

To extend this results to the (overconvergent) de Rham–Witt complex, recall

that there is an isomorphism

WΩB
∼= W(B)⊗W(A) WΩA.

Compare the remark after Proposition 1.9 in [DLZ11]. It is clear that WΩA is fixed

by the elements in GB/A, so it comes down to the coefficients in W(B), but for

this ring we just showed the claim. Without difficulty this transfers over to the

overconvergent subcomplex.

Define the following map

NB/A : W†ΩB → W†ΩB

ω 7→ ∑
g∈GB/A

gω.

Proposition 5.10. The map NB/A has image in W†ΩA, and the restriction to W†ΩA

is multiplication by deg(B/A):

NB/A ◦ i∗ = deg(B/A) idW†ΩA
.



60

Proof. Let h ∈ GB/A and ω ∈W†ΩB. Then

hNB/A(ω) = h ∑
g∈GB/A

gω

= ∑
g∈GB/A

hgω

= ∑
g′∈GB/A

g′ω = NB/A(ω).

Thus NB/A(ω) is fixed by all elements of GB/A and by the previous lemma this

means that NB/A(ω) ∈W†ΩA.

For the second part of the claim, let ω ∈ W†ΩA. Therefore, ω is fixed by GB/A,

and

NB/A(ω) = ∑
g∈GB/A

gω = (#GB/A)ω.

But we have seen that #GB/A = deg(B/A). This proves the claim.

This shows that it makes sense to call the defined map NB/A a norm for the

overconvergent complex for B over A.

Corollary 5.11. Let i : A → B as before and A′ a local A algebra such that B′ =

B ⊗A A′ is also local. Let i′ : A′ → B′ be the induced inclusion. Then the map

NB′/A′ is multiplicative with image in W†ΩA′ and

NB′/A′ ◦ i′∗ = deg(B/A) idW†ΩA′
.

Proof. This follows directly as deg(B′/A′) = deg(B/A).

Moreover we have the following compatibility.

Proposition 5.12. Let i : A → B be as before. Let f : A′ → A′′ be a morphism of

local A-algebras such that B′ = B⊗A A′ and B′′ = B⊗A A′′ are also local. Denote

by f B : B′ → B′′ the induced morphism. Then the diagram

W†ΩB′
//

NB′/A′
��

W†ΩB′′

NB′′/A′′
��

W†ΩA′
//W†ΩA′′

commutes.



61

Proof. The ring extensions B′/A′ and B′′/A′′ are both finite étale of degree deg(B/A)

since B/A is finite étale and all are local rings. What is more, the corresponding

automorphism groups are isomorphic

GB/A
∼= GB′/A′

∼= GB′′/A′′ .

Thus we see that for ω ∈W†ΩB′

f∗ ◦ NB′/A′(ω) = f∗ ∑
g′∈GB′/A′

g′ω

= ∑
g′∈GB′/A′

f∗g′ω

= ∑
g′′∈GB′′/A′′

g′′ f B
∗ ω

= NB′′/A′′ ◦ f B
∗ (ω).

Due to functoriality of W†Ω and by a similar statement for rings.

Comparing what we have just shown with the definition of the category STét

in Section 2.3 yields indeed the desired result.

Corollary 5.13. The sheaf W†Ω is an object of STét.

5.6 Continuity of the overconvergent complex
Continuity of a functor means that it commutes with filtering direct limits. The

de Rham–Witt complex does not commute with general direct limits and is thus

not continuous. Although the overconvergent one might be, we content ourselves

to show that it commutes with direct limits of finite k-algebras. Since in our context

only smooth schemes over k appear, which are in particular locally of finite type,

this is enough.

Lemma 5.14. Let

A = lim−→ Ai

be a filtering direct limit in the category of finite k-algebras. Then for the functor

of Witt vectors the natural homomorphism

lim−→W(Ai)→W(A)

is an isomorphism.
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Proof. Consider the ghost maps

wi : W(Ai)→ AN
i and w : W(A)→ A.

These are by definition ring homomorphisms. Because of the fact that the ring

structure on the image of the ghost map is defined componentwise, the natural

map

lim−→(AN
i )→

(
lim−→ Ai

)N

= AN

is a monomorphism. Since we have only finitely many generators it is in fact an

isomorphism. By definition of the Witt vectors the following diagram commutes

lim−→W(Ai) //

w
��

W(A)

��
lim−→

(
AN

i
) ∼ // AN

and the vertical maps are injective. Additionally, we have just seen that the bottom

line is an isomorphism. Thus it is clear that the top line is a monomorphism. Now

take an element a ∈ W(A). To see that it has a pre-image in lim−→W(Ai), project it

down to AN via the ghost map. The image w(a) has a pre-image w̃(a) ∈ lim−→
(

AN
i
)
.

However, as the element w(a) comes from a Witt vector given in Witt components,

it is possible by solving the corresponding equations recursively to recover an

element ã ∈ lim−→W(Ai) that maps to a.

Proposition 5.15. The de Rham–Witt complex is continuous on the category of

finite k-algebras.

Proof. We have to show that for a filtering direct limit of finite k-algebras

A = lim−→ Ai

the natural map

lim−→WΩAi →WΩlim−→ Ai

is an isomorphism. We will show that WΩA satisfies the universal property of

direct limits in the category of Witt complexes over A. Let M be a Witt complex
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over A. This means that it is a differentially graded W(A) algebra with morphisms

F and V that satisfy certain properties. Keeping in mind that by functoriality there

is a morphism W(Ai)→W(A), we see that M is also a Witt complex over each Ai.

Therefore it makes sense to consider maps

WΩAi → M.

In fact, for each i there is exactly one map of this form because the de Rham–Witt

complex is the initial object in the category of Witt complexes over Ai. The same is

true for the de Rham–Witt complex over A in the category of Witt complexes over

A. Thus there is exactly one map

WΩA → M.

What is more, this map is compatible with the ones over Ai, i.e., for each i the

diagram

WΩAi
//

��

M

��
WΩA // M

where the upper horizontal morphism consists of W(Ai)-algebras and the bottom

one of W(A)-algebras, commutes. This follows from the fact that we have an iso-

morphism lim−→W(Ai)
∼−→W(A) as shown in the last lemma. The claim follows.

Corollary 5.16. The overconvergent de Rham–Witt complex is continuous on the

category of finite k-algebras.

Proof. Let lim−→ Ai = A be a filtered direct system of finite k-algebras. The restriction

of the natural isomorphism

lim−→WΩAi →WΩA

to the overconvergent subcomplexes W†ΩAi has image in the overconvergent sub-

complex W†ΩA. In fact it is exactly the natural homomorphism

lim−→W†ΩAi →W†ΩA
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induced by functoriality from lim−→ Ai
∼−→ A and the diagram

lim−→W†ΩAi
//

��

W†ΩA

��
lim−→WΩAi

//WΩA

commutes.

The morphism on the overconvergent complex is injective as the original map

on the whole de Rham–Witt complex is injective. To check surjectivity, assume that

ω ∈ W†ΩA with radius ε > 0. By the previous proposition there is a unique pre-

image ω̃ ∈ lim−→WΩAi . In particular, for each i, there is a ωi ∈ WΩAi which maps

to ω, and it has to be overconvergent. Let εi > 0 be its radius of overconvergence.

Up to choosing different presentations, we may assume without loss of generality

that the radii εi are bounded below by ε. Hence, ω̃ can be considered as an element

of lim−→W†ΩAi .

5.7 The transformation map
Let us briefly collect the facts that we established throughout this section:

In the last two subsections we have shown that the complex W†Ω on the big

étale site of all schemes is an object of the category STét, continuous on finite k-

algebras. One should note that this is sufficient for our case, although it is a priori a

restriction of Kerz’s definition because we only wish to apply our functors to such

cases. In fact, the overconvergent complex as suggested in [DLZ11] is only defined

for finite k-algebras.

Moreover, we have seen that K
M
n is for every n a continuous object of in

ST∞
ét and that there exists a continuous K̂

M
n ∈ STét and a natural transforma-

tion K
M
n → K̂

M
n satisfying a universal property. This comprises all ingredients

needed to apply Theorem 2.17.

As mentioned earlier, there is for each n a morphism of continuous étale sheaves

d logn : K
M
n →W†Ω [n] .
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As a consequence of Theorem 2.17, which is based on Kerz’s result (cf. Corollary

2.14), we obtain a unique natural transformation of étale sheaves

d̂ log
n

: K̂
M
n →W†Ω [n] . (5.1)

For simplicity, we will use the notation

d logn : K M
n →W†Ω [n] (5.2)

for the general case, where K M
n is the sheaf K

M
n in the infinite residue field case

and K̂
M
n in the finite residue field case.



CHAPTER 6

CHERN CLASSES WITH COEFFICIENTS

IN THE OVERCONVERGENT

DE RHAM–WITT COMPLEX

In this chapter we relate the Milnor K-sheaf to the overconvergent de Rham–

Witt complex in order to obtain overconvergent Chern classes.

6.1 Definition
Let X/k be a smooth variety. The map d logn : K M

n → W†Ω[n] defined in the

previous section induces a morphism on cohomology

Hm(X, K M
i )→Hm+i(X, W†ΩX), (6.1)

which by abuse of notation we denote as well by d log.

It follows that the Chern classes cM
ij : Kj(X) → Hi−j(X, K M

i ) from Theorem

4.10 induce Chern classes with coefficients in the overconvergent complex.

Theorem 6.1. Let X be a smooth scheme over k. There is a theory of Chern classes for

vector bundles and higher algebraic K-theory of regular varieties over k, with values with

coefficients in the overconvergent de Rham–Witt complex:

csc
ij : Kj(X)→H2i−j(X, W†ΩX).

Remark 6.1.1. Note that the maps d logn respect the descending filtration of the de

Rham–Witt complex by the differential graded ideals. Thus we obtain in fact Chern

classes into the bigraded cohomology groups

csc
ij : Kj(X)→H2i−j(X, W†Ω>i

X ).

We will now look into some properties of the Chern classes just defined.
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6.2 Comparison to crystalline Chern classes
In this section assume that X/k is proper in addition to being smooth.

By construction the morphism d logi : K M
i →W†Ω [i] factors for each i through

W†Ωi
log = WΩi

log. (For said equality see Section 6.4.) In the same manner as above,

one may define logarithmic Chern classes

clog
ij : Kj(X)→Hi−j(X, WΩi

log),

which factor the overconvergent Chern classes. Thus it is natural to ask how these

Chern classes compare to the logarithmic Chern classes with finite coefficients of

Gros in [Gro85]

cGros
ij : Kj(X)→Hi−j(X, WnΩi

log).

Proposition 6.2. The diagram

Hi−j
(

X, WΩi
log

)

��

Kj(X)

clog
ij

77ooooooooooo

cGros
ij ''OOOOOOOOOOO

Hi−j
(

X, WnΩi
log

)
commutes.

Proof. Recall first Gros’ construction. Let π : E → X be a vector bundle of con-

stant rank r + 1 and P(E ) the associated projective bundle. Gros uses essen-

tially standard methods to build his logarithmic Chern classes by first constructing

cGros
1 (OP(E)) of the projective line bundle using differential logarithms in [Gro85,

Section I.2], and then showing that a projective bundle formula

Hr+1(P(E), WnΩr+1
P(E),log) =

r⊕
i=0

Hr+1−i(X, WnΩr+1−i
X,log ).c1(OP(E)(1))

i

holds. Then the classes ci(E) for 0 6 i 6 r + 1 are uniquely defined. We will take

advantage of this fact to show that Gros’ Chern classes factor through the Milnor

Chern classes.
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The differential logarithm map

d log : O∗X →WnΩ1
X,log

as described by Gros, induces a map on the Milnor K-sheaf

d logi : K M
i →WnΩi

X,log

in the same way as above, and we have a commutative diagram of sheaves

WΩi
log

⊗Z /pn Z

��

K M
i

;;wwwwwwwww

##GGGGGGGGG

WnΩi
log

(6.2)

This map induces also morphisms of cohomology groups

Hm(X, K M
i )→ Hm(X, WnΩi

log),

which is in particular compatible with multiplication in the cohomology ring.

The fact that in both cases—for the Milnor K-sheaf and for the logarithmic de

Rham–Witt complex with finite coefficients—we have at our disposal a projective

bundle formula limits the comparison problem to the first Chern class. Indeed, the

diagram

H1(X, K M
1 )

d log

��

H1(X, O∗X)

id
66nnnnnnnnnnnn

d log ''PPPPPPPPPPPP

H1(X, WnΩ1
log)

is commutative per definitionem and the upper morphism defines cM
1 , whereas

the lower one defines cGros
1 (cf. [Gro85, Section I.2]). Consequently, we obtain a

commutative diagram
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Hi−j(X, K M
i )

��

Kj(X)

cM
ij

77ppppppppppp

cGros
ij &&NNNNNNNNNNN

Hij(X, WnΩi
log)

which by using (6.2) extends to a commutative diagram

Hi−j(X, K M
i )

��

d log
// Hi−j(X, WΩi

log)

⊗Z /pn Z

||xxxxxxxxxxxxxxxxxxxxxx

Kj(X)

cM
ij

77oooooooooooo

cGros
ij ''OOOOOOOOOOO

Hi−j(X, WnΩi
log)

and this is exactly what we claimed.

If the projective system of logarithmic differentials
(

WnΩi
log, Rnm, Rn

)
, where

Rnm : WnΩi → WmΩi for n > m and Rn : WΩi → WnΩi are the restriction maps,

was strict, we could see that the natural morphism

Hm(X, WΩi
log)→ lim←−Hm(X, WnΩi

log)

was an isomorphism (see the argumentation of [Ill79, II, Prop. 2.1]). Then Gros’

logarithmic Chern classes would induce Chern classes with Zp coefficients, which

would lead to overconvergent Chern classes without having to use Milnor K-

sheaves and Gillet’s machinery of generalised duality theories.

Because of properness of X as assumed in the beginning of this section, we may

compare the overconvergent Chern classes to crystalline Chern classes. From the

discussion above and Gros’ results we see that the diagram

OX ⊗ · · · ⊗OX //

**UUUUUUUUUUUUUUUUUUUU K M
i

//WΩi
X,log

⊗Z /pn Z
��

//W†ΩX [i]

⊗Z /pn Z

��
WnΩi

X,log
//WnΩX [i]

commutes. Since Gros shows in [Gro85, Section 2.1] that the logarithmic Chern

classes he defines factor the crystalline Chern classes with mod pn coefficients,
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the commutativity of the above diagram shows that the overconvergent Chern

classes do the same, and one obtains a commutative diagram

H2i−j (X, W†Ω
)

��

Kj(X)

csc
ij

77ooooooooooo

ccris,n
ij ''OOOOOOOOOOOO

H2i−j (X, WnΩ)

that compares the overconvergent classes with finite level crystalline Chern classes.

By reason that this diagram holds for all levels and that Hi
cris(X/W) = Hi(X, WΩ),

which means in particular, that the cohomology functor and the inverse limit com-

mute, we have in fact a commutative diagram

H2i−j (X, W†Ω
)

��

Kj(X)

csc
ij

77ooooooooooo

ccris
ij ''OOOOOOOOOOO

H2i−j
cris (X/W)

6.3 Overconvergent Chern classes and the γ-filtration

6.3.1 The λ-structure on Quillen K-theory

It is well known that Quillen’s K-theory groups have a λ-structure—more pre-

cisely for a given scheme X K0(X) is a λ-ring and by Soulé the groups Km(X) can

be equipped with a K0(X)-λ algebra structure. We recall briefly the mechanism

[Sou85].

A λ-ring is a unitary commutative ring R together with maps λk : R → R for

k ∈N0 satisfying
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λ0(x) = 1

λ1(x) = x

λk(1) = 0 for k > 2

λk(x + y) =
k

∑
i=0

λi(x)λk−i(y)

λk(xy) = Pk(λ
1(x), . . . , λk(x); λ1(y), . . . , λk(y))

λk(λl(x)) = Pkl(λ
1(x), . . . , λkl(x)),

where Pk and Pkl are universal integral polynomials.

The Grothendieck group of representations of GLN over Z, which is denoted

by RZ(GLN), together with the exterior power operation is a λ-ring isomorphic to

the algebra Z[λ0(idN), λ0(idN)
−1, . . . , λN(idN), λN(idN)

−1, where λk(idN) is the

kth exterior power of the natural representation.

Let A be a unitary commutative ring. There is a natural morphism of abelian

groups

rN : RZ(GLN)→ [B·GLN(A), B·GLN(A)+],

where the right-hand side consists of homotopy classes of pointed maps between

the arguments. Taking limits on both sides and taking into account that

[B·GLN(A), B·GLN(A)+] ∼= [B·GLN(A)+, B·GLN(A)+]

by the universal property of the plus construction, we have in fact a canonical

morphism

rA : RZ(GL)→ [B·GL(A)+, B·GL(A)+].

We call natural operation of λ-rings the data for each λ-ring R of a map

τ : R→ R

such that it commutes with morphisms of λ-rings. In particular the λk are natural

operations of λ-rings. For an operation τ of λ-rings the elements τ(idN −N) ∈
RZ(GLN), for each N are compatible with the inclusions GLN → GLM for a
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natural number M > N, to the effect that they determine an element of RZ(GLN)

and therefore, an element

τA ∈ [B·GL(A)+, B·GL((A)+].

As the Quillen K-theory groups are the homotopy groups of B·GL(A)+ one ob-

tains by functoriality morphisms

τA : Km(A) = πm(B·GL(A)+)→ Km(A).

For m = 0 this gives back the definition of λ-structure for K0(A) given by Grothendieck.

Globally we also have morphisms τX : Km(X) → Km(X) because the construction

glues. Thus the operations λk induce in particular morphisms

λk : Km(X)→ Km(X)

and make the ring ⊕m∈N0Km(X) into a K0(X)-λ-algebra.

Moreover, we have additional structure. One defines the operation γk as a shift

of λk

γk(x) = λk(x + k− 1) for k > 0

and the Adams operations ψk recursively by

ψk − λ1ψk−1 + . . . + (−1)k−1λk−1ψ1 + (−1)kkλk = 0.

Let A be as above. Then K(A) = ⊕Km(A) admits an augmentation map

ε : K(A)→ Zπ0(Spec A)

projecting K(A) onto K0(A) and then associating to an A-module of finite type

its rank over each connected component of Spec A. This enable us to define a

decreasing filtration on K(A)

F0
γK(A) = K(A)

Fj
γK(A) = 〈γi1(x1) · · · γin(xn)

∣∣ ε(x1) = · · · = ε(xn) = 0, i1 + · · ·+ in > j〉.

We denote by gri
γK(A) = Fi

γK(A)/Fi+1
γ K(A) the corresponding grading. This

grading has nice properties, for example for K0(A) it gives back the Chow groups
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up to torsion. An operation of λ-rings τ respects this γ-filtration and is moreover

given on the graded pieces by a universal integral constant ωi(τ) ∈ Z. Some of

these are

ωi(ψ
k) = ki

ωi(λ
k) = (−1)k−1ki−1

ωi(γ
k) =


0 if k > i
(−1)i−1(i− 1)! if k = i
6= 0 if k 6 i.

From the definitions above we see that the operation γk can be defined as the image

of the element γk(idN −N) in RZ(GL).

6.3.2 Milnor Chern classes and the γ-filtration

Let X be smooth over k, no restrictions on the residue fields. Considering

the fact that the overconvergent Chern classes are defined via Milnor K-theory,

it suffices to study the behaviour of the classes

cM
ij : Kj(X)→ Hi−j(X, K M

i )

on the filtration.

As mentioned in Section 4.1 we know from [Gil81, Lemma 2.26] that the cM
ij for

j > 0 are group homomorphisms, which follows from the Whitney Sum Formula.

In order to study how the Chern classes act on the γ-filtration, we take a look at

the product structure on K-theory. The multiplication as described by Loday is

induced by a map

µ0 : B·GL(OX)
+ × B·GL(OX)

+ → B·GL(OX)
+.

Arguing as in [Gil81, Lemma 2.32] we see that there is a commutative diagram

B·GL(OX)
+ ∧ B·GL(OX)

+ µ0 //

CM
· ∧CM

·
��

B·GL(OX)
+

CM
·
��

∏i∈N K (di, K M
i ) ∧∏i∈N K (di, K M

i )
∗ //∏i∈N K (di, K M

i )

(6.3)

where ∗ is Grothendieck’s multiplication [G+71] and CM
· is the total Chern class.
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Lemma 6.3. If α ∈ Kl(X) and α′ ∈ Kq(X), then

cM
ij (αα′) = − ∑

r+s=i

(i− 1)!
(r− 1)!(s− 1)!

cM
rl (α)c

M
sq (α

′),

where l + q = j.

Proof. By property (3) of Definition 4.7 we know that for the tensor product of two

representations

C̃M
· (ρ1 ⊗ ρ2) = C̃M

· (ρ1) ∗ C·(ρ2),

where C̃M
· is the total augmented Chern class, and the product is as above in

the diagram the Grothendieck multiplication which after Shekhtman (see [Niz98,

Section 2]) is given by universal polynomials

(∑
i>1

xi) ∗ (∑
j>1

yi) = ∑
l>0

Pl(x1, . . . , xl, y1, . . . , yl)

with Pl(x1, . . . , yl))∑r+s=l arsxrys + Zr(x)Ts(y). Here

ars = −
(l − 1)!)

(r− 1)!(s− 1)!

and Zr and Ts are polynomials of weight r and s, respectively, and for r + s = l at

least one of them is decomposable. Explicitly, this means for the Loday multiplica-

tion µ0

µ∗0CM
· = ∑

l>0

(
∑

r+s=l

(
ars p∗1CM

r · p∗2CM
s + Zr(p∗1CM

· )Ts(p∗2CM
· )
))

,

where pi : GL(OX)×GL(OX) → GL(OX) are the natural projections. Thus we

have to show that the terms Zr(p∗1CM
· )Ts(p∗2CM

· ) disappear when evaluated on the

corresponding K-theory classes. The argumentation is analogue to the proof of

[Gil81, Lemma 2.25]. An element η ∈ Kj(X), j > 1 is represented by a map η :

S
j

X → B·GL(OX)
+ in the homotopy category, where S

j
X is the simplicial version

of the j-sphere. For any a, b ∈ N, the class (CM
a · CM

b )(η) is represented by the

commutative diagram
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S
j

X

∆
S

j
X //

η

��

S
j

X ∧S
j

X

η∧η

��
B·GL(OX)

+ ∆ //

CM
a ·CM

b
��

B·GL(OX)
+ ∧ B·GL(OX)

+

CM
a ∧CM

b
��

K (a + b, K M
a+b) K (a, K M

a ) ∧K (b, K M
b )

µa,boo

and as a consequence we have the equalities

(CM
a · CM

b )η = µa,b(CM
a ∧ CM

b )∆η = µa,b(CM
a ∧ CM

b )(η ∧ η)∆
S

j
X

.

Since the map ∆
S

j
X

is null-homotopic, this composition of maps is null-homotopic

as well. The decomposable part of the ZrTs is made up by terms of this form; hence

it disappears and with it the whole expression.

Lemma 6.4. The integral Chern class maps cM
ij restrict to zero on Fi+1

γ Kj(X) for

i > 1.

Proof. In light of the previous formula and the Whitney sum formula, it suffices to

show that cM
ij is trivial on elements of the form γk(x) for k > i + 1 and x ∈ Kj(X).

Recall from above that the operation γk on Kj(X) is defined to be the image of

γk(idN −N) under the natural map

r : RZ(GL)→ [B·GL(OX)
+, B·GL(OX)

+]→ Hom(Kj(X), Kj(X)).

Following [Gil81, Definition 2.27] we define the augmented cohomology ring

H̃
∗
(X, Z×B·GL(OX)

+, K M
i )

to be

H0(X, Z×B·GL(OX)
+, Z)× {1} ×Hi(X, Z×B·GL(OX)

+, K M
i ),

where Hi(X, Z×B·GL(OX)
+, K M

i ) = [Z×B·GL(OX)
+, K (i, K M

i )]. The ring

H̃
∗
(X, Z×B·GL(OX)

+, K M
i ) is a strict λ-ring [Gil81, 2.27], and the augmented

Chern class map

C̃M : RZ(GL) → H̃
∗
(X, Z×B·GL(OX)

+, K M
i )

ρ 7→
(

rank(ρ), CM
· (ρ)

)
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is a λ-ring homomorphism.

It suffices to show that the class of cM
i,N(γk(idN −N))) ∈ Hi(X, GLN(OX), K M

i )

is trivial for k > i + 1. By the previous paragraph, the Chern polynomial cM
t,N is

a λ-ring homomorphism as well, and hence commute with the γ-operation. With

the usual formulae we get

cM
t,N(γk(idN −N)) = γk(cM

t,N(idN −N))

= γk(1 + cM
1,N(idN −N)t + · · · )

= 1 + (−1)k−1(k− 1)!cM
k,N(idN −N)tk + · · ·

and therefore cM
i,N(idN −N)) = 0 for i < k.

Corollary 6.5. If α ∈ Fj
γKl(X), j 6= 0 and α′ ∈ Fk

γKq(X), then

cM
j+k,l+q(αα′) = − (j + k− 1)!

(j− 1)!(k− 1)!
cM

jl (α)c
M
kq(α

′).

6.3.3 Passage to overconvergent Chern classes

Because the map

Hm(X, K M
i )→Hm+i(X, W†Ω)

induced by the morphism of complexes K M
i →W†Ω[i] is a morphism of cohomol-

ogy rings and therefore respects the respective operations, the results from the pre-

vious section carry over to the overconvergent Chern classes. This is summarised

in the following proposition.

Proposition 6.6. Let X/k be smooth.

1. If α ∈ Kl(X) and α′ ∈ Kq(X), then

csc
ij (αα′) = − ∑

r+s=i

(i− 1)!
(r− 1)!(s− 1)!

csc
rl (α)c

sc
sq(α

′),

where l + q = j.

2. The integral Chern class maps csc
ij restrict to zero on Fi+1

γ Kj(X) for i > 1.

3. If α ∈ Fj
γKl(X), j 6= 0 and α′ ∈ Fk

γKq(X), then

csc
j+k,l+q(αα′) = − (j + k− 1)!

(j− 1)!(k− 1)!
csc

jl (α)c
sc
kq(α

′).
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6.4 The action of 1− F on the overconvergent de Rham–Witt
complex

In this section, we want to adapt some short exact sequences from [Ill79] to the

overconvergent context.

We generalise the notion of basic Witt differentials to the case when A is of

the form k
[

X1, X−1
1 , . . . , Xd, X−1

d

]
. See [Ill79] and the proof of Proposition 1.3 in

[DLZ11]. A basic Witt differential e ∈WΩA has one of the following shapes:

1. e is a classical basic Witt differential in variables [X1] , . . . , [Xd].

2. Let J ⊂ {1, . . . , d} be a subset and denote by e(ξ, k, P , J) a basic classical Witt

differential in {Xj | j ∈ J}.

(a) e = e(ξ, k, P , J)∏j/∈J d log
[
Xj
]
.

(b) e = ∏j/∈J
[
Xj
]−rj e(ξ, k, P , J) for some rj ∈N.

(c) e = ∏j/∈J
Fsj d

[
Xj
]−lj e(ξ, k, P , J) for some lj ∈N, p - lj, sj ∈N0.

3. e =Vu
(

ξ ∏j/∈J
[
Xj
]pukj [X]p

ukI0

)
dVu(I1) [X]p

u(I1)kI1 · · ·F−t(I`) d [X]p
t(I`)kI` . In par-

ticular, for each such e, there is a weight function on variables {Xj |j ∈ J}
with partition P , u > 0, k j/∈J ∈ Z<0

[
1
p

]
and u(k j) 6 u = max{u(I0), u(k j)}.

4. e = de′ where e′ as in (3).

6.4.1 The action of F, V and p on W†Ω

Proposition 6.7. The action of F on the generalised basic Witt differentials are given

as follows:

1. If e is a classical basic Witt differential in variables [X1] , . . . , [Xd], the action

is given as in Proposition 5.1.

2. Let J ⊂ {1, . . . , d} be a subset and denote by e(ξ, k, P , J) a basic classical Witt

differential in {Xj | j ∈ J}.

(a) If e = e(ξ, k, P , J)∏j/∈J d log
[
Xj
]
, then

Fe = (Fe(ξ, k, P , J))∏
j/∈J

d log
[
Xj
]

.
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(b) If e = ∏j/∈J
[
Xj
]−rj e(ξ, k, P , J) for some rj ∈N, then

Fe = ∏
j/∈J

[
Xj
]−prj (Fe(ξ, k, P , J)).

(c) If e = ∏j/∈J
Fsj d

[
Xj
]−lj e(ξ, k, P , J) for some lj ∈N, p - lj, sj ∈N0, then

Fe = ∏
j/∈J

Fsj+1
d
[
Xj
]−lj (Fe(ξ, k, P , J)).

3. If e =Vu
(

ξ ∏j/∈J
[
Xj
]pukj [X]p

ukI0

)
dVu(I1) [X]p

u(I1)kI1 · · ·F−t(I`) d [X]p
t(I`)kI` , then

Fe =Vu

(
Fξ ∏

j/∈J

[
Xj
]puk′j [X]

puk′I0

)
dVu(I1) [X]

pu(I1)k′I1 · · ·F
−t(I`) d [X]

pt(I`)k′I` ,

where k′ = pk.

4. If e = de′ where e′ as in (3), the expression changes similar to the previous

case, with the only difference that we get V−1
ξ instead of Fξ.

Proof. This is a straightforward calculation, using the definition of Frobenius and

Verschiebung.

In particular, F has the same stabilizing properties on the types of generalised

basic Witt differentials as mentioned at the end of Section 5.2 with respect to the

usual basic Witt differentials.

Remark 6.7.1. In this concrete case we can give a criterion when an element ω =

∑ e(ξ, k, P) of the de Rham–Witt complex given as its decomposition in basic

generalised Witt differentials is overconvergent based on the proof of Proposition

1.3 in [DLZ11]. Namely, ω is overconvergent if there exist constants C1 > 0 and

C2 ∈ R such that the basic Witt differentials e appearing in the decomposition

satisfy the following conditions:

– If e is of type (1) or of type (2.a),

|k| 6 C1 ordp ξk,P + C2.

– If e is of type (2.b),

|r|+ |k| 6 C1 ordp ξk,P + C2,

where |r| = ∑ rj.
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– If e is of type (2.c),

|l · ps|+ |k| 6 C1 ordp ξk,P + C2,

where |l · ps| = ∑ lj · psj .

– If e is of type (3) or (4),

∑ |k j|+ ∑ |kIi | 6 C1 ordp(
Vu

ξ) + C2,

where |k j| = −k j and |kIi | = ∑m∈Ii
km.

The multiplication of an element α ∈ W(k) on a generalised basic Witt differ-

ential is particularly easy to define.

Proposition 6.8. The action of α ∈ W(k) on a generalised basic Witt differential is

given by multiplying the coefficient ξ with α.

Proof. Analogues to the discussion in [LZ04, p.40], we see that the coefficients in

the generalised basic Witt differentials are elements of VU(I)
W(k), where I is the

partition of the support of the weight function in question and u is defined as in

Section 5.2. As for any α ∈ W(k) and ξ ∈VU(I)
W(k) the product αξ is again in

VU(I)
W(k), we see as in [LZ04, loc.sit.] that multiplying by α a general basic Witt

differential of one of the forms given at the begin of the section means to multiply

the coefficient ξ appearing there by α.

In particular, multiplication by an element in W(k) respects the types of general

basic Witt differentials, and this is the fact that we will use later for multiplication

by p.

Due to the fact that the Verschiebung map is only additive, but not a ring homo-

morphism, its action on the generalised basic Witt differentials is more complicated

to describe. We have recalled the action on the usual basic Witt differentials in

Proposition 5.1. We note further that

Vd log[Xi] = dV log[Xi]
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as the general formula V(ω0dω1 · · · dωi) =
V ω0dVω1 · · · dVωi holds. This formula

also tells us that for differentials of type (3), i.e., if

e =Vu

(
ξ ∏

j/∈J

[
Xj
]pukj [X]p

ukI0

)
dVu(I1) [X]p

u(I1)kI1 · · ·F
−t(I`) d [X]p

t(I`)kI` ,

then

Ve =Vu +1

(
ξ ∏

j/∈J

[
Xj
]pukj [X]p

ukI0

)
dVu(I1)+1

[X]p
u(I1)kI1 · · ·F

−t(I`)−1
d [X]p

t(I`)kI` .

Furthermore, it is possible to describe the action of V on elements of type (4) using

the same formula by multiplying with the factor 1, which allows us to write

Vde = V1dVe,

which changes the coefficient to pVξ (see [LZ04, p. 41]), and we obtain

Ve = dVu

(
pVξ ∏

j/∈J

[
Xj
]pukj [X]p

ukI0

)
dVu(I1) +1 [X]p

u(I1)kI1 · · ·F
−t(I`) −1 d [X]p

t(I`)kI` .

As for general basic differentials of type (2), this depends on the different cases

and also on the form of the basic Witt differentials e(ξ, k, P , J) involved.

6.4.2 The kernel and cokernel of 1− F for X = Gd
m

The logarithmic differentials are by definition of the de Rham–Witt complex

fixed by the Frobenius endomorphism. One would like to prove that these are

the only elements with this property. We start by making the assertion for the

special case, when X is a product of multiplicative groups, i.e., X = Spec A with

A = k
[

X1, X−1
1 , . . . , Xd, X−1

d

]
.

Proposition 6.9. The sections of W†ΩX,log on X = Gd
m are exactly the Frobenius

fixed elements of WΩX.

Proof. It is clear that W†ΩX,log ⊂ (WΩX)
F−1. For the converse, let ω ∈ (WΩX)

F−1,

with decomposition in generalised basic Witt differentials ω = ∑ e. However, we

know that the action of Frobenius preserves the types of basic Witt differentials and

that the decomposition is unique. We want to use this to argue that it is enough to

check the generalised basic Witt differentials.
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With the assumption F ω = ω there are two cases to consider: finite and infinite

sets of elements appearing in unique the sum decomposition of ω that form a

(finite respectively infinite) “cycle” under the action of F.

The finite case: assume that among the basic Witt differentials in the decomposi-

tion ω = ∑ e there is a finite set e1, . . . , en such that

F
n

∑
i=1

ei =
n

∑
i=1

ei,

which means after possibly reordering

F e1 = e2 , F e2 = e3 , . . . , F en = e1.

But according to Proposition 6.7 this is impossible unless n = 1.

The infinite case: assume that in the decomposition there is an infinite set e1, e2, . . .

such that

F
∞

∑
i=1

ei =
∞

∑
i=1

ei,

which means after reordering

F e1 = e2 , F e2 = e3 , . . .

However, this is not convergent p-adically and therefore not feasible.

Thus if the whole sum ω = ∑ e is fixed under Frobenius, every basic differential

appearing in this sum must be so.

According to Proposition 6.7, the sections fixed under Frobenius action are of

the form (2.a) with e(ξ, k, P , J) trivial. From this we conclude that (WΩX)
F−1 ⊂

W†ΩX,log.

It follows in particular that we have for all i ∈ N locally for étale topology a

commutative diagram where the rows are exact:

0 //WΩi
X,log

� � //WΩi
X

F−1 //WΩi
X

// 0

0 //W†Ωi
X,log

� � //
, �

::tttttttttt

W†Ωi
X

F−1 //
� ?

OO

W†Ωi
X

� ?

OO

Earlier we mentioned the condition for an element ω ∈ WΩX/k to be over-

convergent. On the other hand, this shows that an element ω ∈ WΩX/k is not
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overconvergent, if for all C1 > 0 and C2 ∈ R there is an elementary Witt differential

e in its decomposition violating one of the inequalities. More precisely,

– If e is of type (1) or of type (2.a),

|k| > C1 ordp ξk,P + C2.

– If e is of type (2.b),

|r|+ |k| > C1 ordp ξk,P + C2,

where |r| = ∑ rj.

– If e is of type (2.c),

|l · ps|+ |k| > C1 ordp ξk,P + C2,

where |l · ps| = ∑ lj · psj .

– If e is of type (3) or (4),

∑ |k j|+ ∑ |kIi | > C1 ordp(
Vu

ξ) + C2,

where |k j| = −k j and |kIi | = ∑m∈Ii
km.

We will study the action of Frobenius on elementary Witt differentials subject

to the inequalities indicating overconvergence or nonoverconvergence.

As mentioned before, any Witt differential over Gd
m can be written in a unique

way as a sum of basic Witt differentials. The basic Witt differentials appearing

in this sum are characterised by a coefficient, a weight function and a partition.

The action of Frobenius was described in Proposition 6.7. In essence Frobenius

action changes the weights and the coefficients of the basic differentials, creating a

new unique sum. One can see Frobenius as being injective on the set of basic Witt

differentials.

We want to argue that overconvergence is preserved by Frobenius if we modify

one of the constants in an obvious way.

Lemma 6.10. Let e be a basic Witt differential satisfying an inequality indicating

overconvergence for constants C1 and C2, then so does Fe for constants C1 and pC2.

Proof. This is shown for one type at a time.
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– If e is of type (1) or of type (2.a), then the inequality depends only on the basic

classical Witt differential appearing in the expression, namely

|k| 6 C1 ordp ξk,P + C2.

The action of F on a differential of this type changes the weight k to pk and

the coefficient ξk,P to Fξk,P if k is integral and V−1
ξk,P if k is fractional; the

partition is essentially unchanged. The inequality has to be modified to

|pk| = p|k| 6 C1 ordp(
Fξk,P) + pC2.

– If e is of type (2.b), the crucial inequality is

|r|+ |k| 6 C1 ordp ξk,P + C2,

where |r| = ∑ rj. The action of F changes rj to prj and therefore |r| to p|r|; k

and ξ change as in the previous case. As above, it becomes clear that the only

modification to the constants has to be pC2 instead of C2.

– If e is of type (2.c), the same argument is valid with |l| in the place of |r|.
– If e is of type (3) or (4), action of Frobenius means that the kI’s appearing are

multiplied by p and the coefficient changes to Fξ or V−1
ξ. Again we see that

the inequality still holds if we change C2 to pC2.

This shows the claim.

Lemma 6.11. Let e be a basic Witt differential satisfying an inequality indicating

nonoverconvergence for constants C1 and C2, then so does Fe for the same con-

stants.

Proof. This is essentially the same argument as before, with the difference that this

time we deal with strict inequalities in the other direction, so there is no need to

increase the second constant.

Proposition 6.12. The map 1− F over X = Gd
m is surjective for étale topology.
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Proof. Let ω ∈ W†ΩX/k. We have seen that up to étale localisation, there is η ∈
WΩX/k such that ω = (1− F)η. We have to show that η is in fact overconvergent.

Write η = ∑k,P ,J e(ξ, k, P , J) as a unique sum of elementary Witt differentials

and assume that it is not overconvergent. Then for all C1 > 0 and C2 ∈ R there is an

element e appearing in the sum that violates the inequalities for overconvergence,

or in other words satisfies the strict inequalities for nonoverconvergence and so do

the elements Fi
e, i ∈N0 for the same constants C1 and C2.

Since ω = (1− F)∑k,P ,J e(ξ, k, P , J) is overconvergent there must be C1, C2 for

which the corresponding elements that violate the overconvergence inequality in

the original sum cancel out after applying 1− F. Let e be one of these elements.

The image of e is e− Fe. Due to the nature of the basic Witt differentials and the

way Frobenius acts on the different types as pointed out in Remark 6.7.1, it is clear

that e (and similarly Fe) either remains and appears as a basic Witt differential in

the unique decomposition of ω or is cancelled out by some basic Witt differential
Fe′ where e′ is another basic Witt differential of the decomposition of η (similarly
Fe appears or is cancelled out by a basic Witt differential e′′ which appears in the

decomposition of η).

Since we assumed that e is cancelled out after applying 1− F, the same must

hold true for Fe which is subject to the same inequality. Hence e′′ = Fe has to

appear in the unique sum of η. By induction the basic Witt differentials Fi
e, i ∈ N0

all appear in the unique sum of η. But a sum containing all of these elements cannot

be convergent in the sense of Section 5.2. This is a contradiction to the uniqueness

of the sum and therefore, η must be overconvergent to begin with.

Corollary 6.13. The same is true for X = Spec A[Y, Y−1], where A = k[X1, . . . , Xd].

Proof. This is just a simplified version of the previous assertion.

We have now established the following exact sequence for X = Gd
m for étale

topology

0→W†Ωi
X,log →W†Ωi

X
F−1−−→W†Ωi

X → 0.

We want to extend this result to general smooth schemes over k.
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6.4.3 The map 1− F over a smooth k-scheme

First we note, that we can reduce the general case to the case of a localised

polynomial algebra. By a result of Kedlaya [Ked05] any smooth variety has a

cover by standard étale affines as defined in [Ray70]. What is more, this cover

can be chosen in a way that any finite intersection is again standard étale affine

(see [Dav09, Proposition 4.3.1]). Let A = k[X1, . . . , Xd] and f ∈ A. In the proof

of Theorem 1.8 in [DLZ11] the authors argue that it suffices to consider finite étale

monogenic algebras over rings of the form A f . In [DLZ11, Proposition 1.9] they

reduce this further by stating

Proposition 6.14. Let B be a finite étale and monogenic C-algebra, where C is

smooth over a perfect field of char p > 0. Let B = C[X]/( f (X)) for a monic

polynomial f (X) of degree m = [B : C] such that f ′(X) is invertible in B. Let [x]

be the Teichmüller of the element X mod f (X) in W(B). Then we have for each

d > 0 a direct sum decomposition of W†(C)-modules

W†Ωd
B/k = W†Ωd

C/k ⊕W†Ωd
C/k[x]⊕ · · · ⊕W†Ωd

C/k[x]
m−1.

Finally they prove that the overconvergent de Rham–Witt complex over a smooth

k-scheme X is a complex of étale (and Zariski) sheaves on X. Thus we see that for

our purposes as we seek a local result it is enough to consider the (overconvergent)

de Rham–Witt complex over a localised polynomial algebra of the form A f .

Now we proceed to calculate kernel and cokernel of the map 1− F.

Lemma 6.15. Let X = Spec A f . The map F−1 on W†ΩX/k is surjective for étale

topology.

Proof. Consider the k-algebra A[Y, Y−1]. There is a canonical surjection

A[Y, Y−1] → A f

Y 7→ f .

This induces by functoriality a surjection of the associated de Rham–Witt com-

plexes WΩA[Y,Y−1]/k →WΩA f /k. For quotients of polynomial algebras, an element

of the corresponding de Rham–Witt complex is said to be overconvergent if there
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exist a lift of this element to the polynomial algebra, which is overconvergent.

Therefore we have in fact a surjection of overconvergent de Rham–Witt complexes

W†ΩA[Y,Y−1]/k →W†ΩA f /k.

Moreover, there is a commutative diagram

W†ΩA[Y,Y−1]/k
//

F−1
��

W†ΩA f /k

F−1
��

W†ΩA[Y,Y−1]/k
//W†ΩA f /k

By Corollary 6.13 the vertical map on the left is surjective and thus, the same holds

true for the one on the right.

Lemma 6.16. The kernel of F−1 on W†ΩX/k for X = Spec A f is W†ΩX/k,log.

Proof. By definition of the complex W†ΩX/k,log and the discussion above, it is

contained in the kernel of F−1. On the other hand, W†ΩX/k,log = WΩX/k,log

and this is the kernel of F−1 on WΩX/k without the overconvergence condition.

Thence the restriction of F−1 to the overconvergent subcomplex W†ΩX/k must

have the same kernel.

Remark 6.16.1. This argument could have been applied to any smooth variety X

over k.

Combining the arguments of the last two sections yields

Corollary 6.17. Let X be a smooth scheme over a perfect field k of characteristic

p > 0. Then for all i ∈N there is locally for étale topology a short exact sequence

0→W†Ωi
X/ f ,log →W†Ωi

X/k
F−1−−→W†Ωi

X/k → 0.
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6.4.4 Chern classes into the Frobenius fixed part

Unfortunately the Frobenius morphism, and therefore also the morphism 1−F,

is only a ring homomorphism and not a morphism of complexes. The reason for

this is that F does not commute with the differential; in fact the formula

d F = p F d (6.4)

holds. Thus some modifications are required which are inspired by [Ill79, Corol-

laire I.3.29 and Théorème II.5.5].

Definition 6.18. For each m > 1 we define an endomorphism of complexes

Fm : WΩ>m →WΩ>m,

where we use the naı̈ve truncation, which is given in degree i > m by pi−m F.

Looking at the commuting formula (6.4) of d and F, it is clear now that this

definition gives indeed a morphism of complexes, and by extension the same holds

true for 1− Fm.

Illusie shows in [Ill79, Lemme I.3.30] that for all r > 1 and all i > 0, the

morphism 1− pr F is an automorphism of the proobject W•Ω
i
X; hence (for example

using the Mittag-Leffler condition) the induced map on WΩi
X is also an automor-

phism.

We consider now the restriction of theses morphisms to the overconvergent

subobjects. We have already seen that multiplication by p and the Frobenius F

map overconvergent elements to overconvergent elements. Thus for m > 1 there

is an endomorphism of complexes

1− Fm : W†Ω>m →W†Ω>m,

and for r > 1 and i > 0 the morphism 1− pr F : W†Ωi
X → W†Ωi

X as restriction

from the usual de Rham–Witt complex is injective.

Unfortunately, the argument from Proposition 6.12, where we show that 1−F is

surjective, does not work in this case as subsequent multiplication of a generalised

basic Witt differential by pr for a fixed r > 1 creates an overconvergent sequence.
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Together with the short exact sequence from Corollary 6.17 we obtain for a fixed

m > 1 the following exact sequence of complexes:

0→W†Ωm
X/k,log[−m]→W†Ω>m

X/k
1−Fm−−−→W†Ω>m

X/k. (6.5)

However, this is enough for our purposes.

The exact sequence (6.5) induces an exact sequence on cohomology.

Proposition 6.19. For X/k smooth and m ∈N0, i ∈N there is an exact sequence

0→ Hm(X, W†Ωi
log)→Hm+i(X, W†Ω>i)

1−Fi−−→Hm+i(X, W†Ω>i).

Proof. We start with the exact sequence (6.5) and replace the rightmost object by the

image of 1− Fm, which makes it into a short exact sequence. In the associated long

exact sequence of cohomology, the connecting morphisms are obviously trivial,

and after going back to the original complexes we obtain the above sequence for

each i and m.

In particular, we obtain the following result.

Corollary 6.20. Let X/k be smooth and m ∈N0, i ∈N. Then we have the identity

Hm+i(X, W†Ω>i)1−Fi = Hm(X, W†Ωi
log).

The submodule Hm+i(X, W†Ω>i)1−Fi ⊂Hm+i(X, W†Ω>i) can be thought of as

the Frobenius eigen module of eigenvalue 1
pm .

Recall that by construction the overconvergent Chern classes factor through

the logarithmic differentials. Therefore the stated identity entails the subsequent

corollary.

Corollary 6.21. Let X/k be smooth. Then the overconvergent Chern classes con-

structed earlier can be written as

csc
ij : Kj(X)→H2i−j(X, W†Ω>i)1−Fi .

Taking into account the γ-filtration, especially Proposition 6.6 (2), yields Chern

classes on the γ-graded pieces of the algebraic K-groups.

Corollary 6.22. Let X/k be smooth. There are overconvergent Chern classes

csc
ij : gri

γ Kj(X)→H2i−j(X, W†Ω>i)1−Fi .



CHAPTER 7

COMPARISON OF CHERN CLASSES

The purpose of this section is to show that in the case of a smooth and quasi-

projective variety the overconvergent Chern classes from the previous section are

compatible with the rigid Chern classes defined by Petrequin in [Pet03].

7.1 Rigid Chern classes
Let X be a proper variety over k and V a discrete valuation ring with residue

field k. We choose a closed immersion X ↪→ Y , where Y is a formal scheme over

Spf(V ) smooth in a neighbourhood of X. Let D = (L , Z, s) be a good pseudo-

divisor in the sense of Fulton:

Definition 7.1. Let X be a variety. A pseudo-divisor on X is a triple (L , Z, s),

where L is an invertible sheaf on X, Z ⊂ X closed and s a trivialisation of the

restriction L
∣∣
X−Z. The closed subset Z is called the support of the pseudo-divisor.

If the support is locally a zero-set of a section of OX, the pseudo-divisor (L , Z, s)

is called good.

Petrequin calculates the cohomology class associated to a pseudo-divisor using

Čech cohomology. He shows that there is an affine cover U = (Ui) of Y such that

the induced cover UX on X trivialises L . If this cover is given by Ui = Spf(A i),

the induced cover on X is given by Xi = Spec(Ai), where Ai = A i /Ii. Since D is

a good pseudo-divisor, one can moreover assume that Zi = Z ∩ Xi is given by an

equation hi ∈ Ai. Let U = X− Z and Ui = Xi − Zi, and j : U ↪→ X the inclusion.

If ϕ : OXi

∼−→ L
∣∣Xi is a trivialisation of L , one sets

φi = ϕi(1) ∈ L
∣∣
Xi

.

To this trivialisation we associate a cocycle (u) ∈ Z1(UX O∗X) consisting of the

transition maps
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φj = uijφi,

where uij ∈ (Aij)hihj . To these data Petrequin associates a class in the group

H2
(
UK, (Ω∗]X[ → j†

UΩ∗]X[)s

)
by constructing an element in C2

(
UK, (Ω∗]X[ → j†

UΩ∗]X[)s

)
,

which has the decomposition

C2(UK, O ]X[)⊕ C1(UK, Ω1
]X[ ⊕ j†

U O ]X[)⊕ C0(UK, Ω2
]X[ ⊕ j†

UΩ1
]X[),

in terms of liftings ũij of uij to A ij. Seen as a rigid analytic function on ]Xij[, ũij

restricts to an invertible element on X. In particular the middle (and in our case

the only relevant) part (µ) ∈ C1(UK, Ω1
]X[) of the expression sought is given by

µij =
dũij

ũij
.

A calculation shows that this defines indeed a cycle, whose class in the Čech coho-

mology group Ȟ
2
(
]X[, (Ω]X[ → j†

UΩ]X[)s

)
denoted by c1(L , Z, s) is independent

of both the choice of the trivialisation and the choice of the lifting of (u) (see [Pet03,

Proposition 3.10]). Its image in H2
Z,rig(X/K) is independent of the inclusion. This

defines a group morphism

c1 : DivZ(X)→ H2
Z,rig(X/K),

which is functorial in X and can be extended by scalars.

Functoriality allows this to be generalised for open varieties.

Consider a (smooth) k-variety X and a vector bundle E of rank r over X. We

denote by π : P = PE → X the associated projective bundle. Let

ξ = crig
1 (OP(1)) ∈ H2

rig(P /K)

be the class of the good pseudo-divisor (OP(1), X,−) defined above. As we have

pointed out this can be calculated by the Čech cocycle(
du
u

)
∈ Z2(UK, Ω∗]P[),

where U is a covering trivialising OP(1) over V . By [Pet03, Corollary 4.4] there is

a projective bundle formula

Hn
rig(P /K) ∼=

r−1⊕
i=0

Hn−2i
rig (X/K)ξ i.
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In much the same spirit as Gillet’s arguments, we then define Chern classes as the

coefficients of the decomposition of ξr under this isomorphism

ξr =
r

∑
i=1

(−1)i+1crig
i (E )ξr−i,

with crig
i (E ) ∈ H2i

rig(X/K). This is well defined if we require crig
0 (E ) = 1 ∈ H0

rig(X/

K).

As in the classical case this induces a theory of Chern classes for higher alge-

braic K-theory with coefficients in rigid cohomology

crig
ij : Kj(X)→ H2i−j

rig (X/K).

Proposition 7.2. Let X/k be a smooth variety. The rigid Chern classes defined by

Petrequin factor through Milnor K-theory via a morphism

Hi(X, K M
m )→ Hi+m

rig (X/K). (7.1)

Proof. We start with the case of infinite residue fields. If X is not proper let j : X ↪→
X be a suitable compactification, which exists by [Pet03, Lemme 3.19], otherwise

take X = X. Furthermore, let X ↪→ Y be a closed immersion into a formal scheme

over Spf(V ) as before, and ]X[ and ]X[ the tubes of X and X respectively in the

generic fibre of Y .

For a local section x of O∗X choose a lift x̃ over Y . This can be seen as a rigid

analytic function on ]X[ and ]X[ that restricts to an invertible element on X, which

is therefore itself invertible (as rigid analytic function). We thus set

µ =
dx̃
x̃

and thereby define a local section of Ω1
]X[

whose cocycle class is independent of

the choice of lift. In the same manner, it is possible to assign to a local section

x1 ⊗ · · · ⊗ xi ∈ O∗X ⊗ · · · ⊗O∗X a section

µ1 · · · µi =
dx̃1

x̃1
· · · dx̃i

x̃i

of Ωi
]X[

. It is clear that

dx̃
x̃

d(1̃− x̃)
(1̃− x̃)

= 0
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and therefore, as 1̃− x̃ is a lift of 1− x, the classes of the symbols µ1 · · · µi satisfy

the Steinberg relation. Consequently, there are induced morphisms of cohomology

groups

Hm(X, K M
i )→Hi+m

(
]X[, j†Ω]X[

)
= Hi+m

rig (X/K), (7.2)

and it is clear that it respects the multiplicative structure of the cohomology rings.

To see that this factors the rigid Chern classes, consider a vector bundle π : E →
X of constant rank n, and let P = P(E ) be the associated projective bundle. As we

mentioned, there is a cover U = (Ui) of Y such that the induced cover UX = (Ui)

of X trivialises the line bundle OP(1). To this trivialisation we can associate in the

classical manner a Čech cocycle

(u) ∈ Z1(UX, O∗X)

as uij on Ui ∩ Uj, which calculates the first Chern class of OP(1) in H1(P, K M
1 ).

On the other hand, Petrequin shows that the first rigid Chern class of OP(1) in

H2
rig(P /K) is given by the Čech cocycle(

dũ
ũ

)
∈ Z2(UK, Ω]P[),

and its class agrees with the image of the class of (u) under the morphism (7.2).

In both cases the Chern classes crig
i (E ) ∈ H2i

rig(X/K) and cM
i (E ) ∈ Hi(X, K M

i ) are

uniquely defined via a projective bundle formula using the same relations namely

c0(E ) = 0,

ci>r(E ) = 0,
r

∑
i=0

ci(E )c1 (OP(1))
r−i = 0.

Indeed, we have a commutative diagram of the form

Hj(P, KM
j ) // Hj

rig(P /K)

⊕n−1
i=0 Hj−i(X, K M

j−i) · cM
1 (OP(1))i //

∼
OO

⊕n−1
i=0 Hi−2j

rig (X/K) · crig
1 (OP(1))i

∼
OO

The fact that the morphism (7.1) is compatible with multiplication shows that the

rigid Chern classes crig
i factor through Milnor K-theory sheaves.
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The same then holds for the higher Chern classes, and the diagram

Kj(X)
crig

ij //

cM
ij

&&LLLLLLLLLLL
H2i−j

rig (X/K)

Hi−j(X, K M
i )

77ooooooooooo

is commutative.

Now we come to the case of finite residue fields. It is easy to see that the alge-

braic de Rham complex Ω is continuous abelian sheaf, which disposes of a transfer

on the big étale (as well as Zariski) site of schemes, in other words it is a continuous

object of the category STét. Thus by Corollary 2.14, the morphism above induces

a morphism of cohomology groups for the improved Milnor K-sheaf

Hm(X, K̂
M
i )→Hi+m

(
]X[, j†Ω]X[

)
= Hi+m

rig (X/K). (7.3)

Recall however that Rost’s results state among other things that the cohomology

of a cycle module can be calculated by using the associated complex, which means

in particular that we have to evaluate them solely on fields—and on fields Kerz’s

usual and improved Milnor K-theories coincide.

We have seen that the morphism (7.1) factors the rigid Chern classes of Petre-

quin in the case of a scheme with infinite residue fields. As a consequence of the

remark in the previous paragraph and of the uniqueness property in Corollary

2.14 used for the construction of the Milnor Chern classes in the case of finite

residue fields and also for the construction of morphism (7.3), we conclude that the

morphism (7.3) factors the rigid Chern classes in the case of finite residue fields,

i.e., the diagram

Kj(X)
crig

ij //

cM
ij

&&LLLLLLLLLLL
H2i−j

rig (X/K)

Hi−j(X, K̂
M
i )

77ooooooooooo

is commutative.
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7.2 The comparison theorem between rigid
and overconvergent cohomology

From now on, let X/k be smooth and quasi-projective and K the fraction field

of W(k). We will recall briefly the canonical comparison isomorphism

Hi
rig(X/K) ∼−→Hi

(
W†ΩX/k

)
⊗Q

between rigid and overconvergent de Rham cohomology constructed by Davis,

Langer and Zink [DLZ11].

Let X = Spec A/k be smooth. Assume that there is an embedding of X in

a formal scheme, more precisely, let F = Spec B be a smooth affine scheme over

W(k) such that X ⊂ F is a closed subscheme, and B→ A an epimorphism. Assume

moreover that there is a homomorphism κ : B → W(A) lifting B → A. The triple

(X, F,κ) is called a Witt frame; it is said to be overconvergent if the image of κ lies

in W†(A). Denote by F̂ the completion of F in the ideal (p), and let ]X[F̂ be the

tubular neighbourhood of X in F̂K as defined by Berthelot. There is a natural map

Γ(]X[F̂, Ω]X[F̂
)→WΩX/k ⊗Q

given in degree 0 as follows.

If I = ( f1, . . . , fm) is the kernel of B→ A and A the completion of B in I, let

An = A [T1, . . . , Tm]/( f n
1 − pT1, . . . , f n

m − pTm)

and ˆAn its p-adic completion. Then ˆAn ⊗Q is an affinoid algebra and

Γ
(
]X[F̂, O ]X[F̂

)
= lim
←

ˆAn ⊗Q .

Thus it is enough to define a compatible system of maps

An →W(A).

Note that κ maps I to VW(A) and that W(A) is complete in the ideal VW(A). In

particular, this means that κ( fi) ∈V W(A), and consequently for n > 2

κ( f n
i ) ∈ pn−1(VW(A)),

and we can map Ti 7→ 1
pκ( f n

i ) ∈ W(A). This is well-defined because p is not a

zero divisor in W(A) and one obtains the compatible system of maps desired. One

shows easily that this construction is functorial on the set of Witt frames.
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By the universal property of Kähler differentials this is enough to define a map

of de Rham complexes as described above. This is in fact an important fact that we

will use later in Lemma 7.4.

Let (X, F,κ) be as before. Choose an embedding

F ⊂ An
W(k) ⊂ Pn

W(k)

and let Y be the closure of X in Pn
W(k). The authors explain in [DLZ11] how to

construct a system of strict neighbourhoods of ]X[F̂ in ]Y[Q̂ where Q is the closure

of F in Pn
W(k). This is vital because

X → Y → Q̂

is a frame in the sense of rigid geometry, and the rigid cohomology of X can be

calculated by

RΓrig(X) = RΓ(V, j†ΩV , )

where V ⊂ Fan
K is a strict neighbourhood of ]X[F̂ and j : X → X is an open

immersion which exists according to Nagata. It is a result of Berthelot that this

definition is independent of the choice of V.

Assume now that κ is overconvergent. The next step is to define a map

Γ(V, j†ΩV)→W†ΩX/k ⊗Q

compatible with the map constructed above so that the diagram

Γ(V, j†ΩV) //

��

W†ΩX/k ⊗Q

��
Γ
(
]X[F̂, Ω]X[F̂

)
//WΩX/k ⊗Q

commutes.

The first case to consider is where F is the affine space over W(k). For λ < 1

and η = p−
1
r consider the strict neighbourhood Uλη of ]X[F̂ given by the affinoid

algebra

Tλη = K 〈λX1, . . . , λXn, T1, . . . , Tm〉 /( f r
1 − pT1, . . . , f r

m − pTm).



96

Above we have seen that there is a homomorphism Tλη → W(A)⊗Q. If we

denote by ξi the image of Xi under this morphism, then f j(ξ1, . . . , ξn) ∈V W(A);

therefore there is ρj such that

f j(ξ1, . . . , ξn) =
V ρj.

The relations show that for r > 3 the image of Tj is

(Vρj)
r

p
= pr−2(V(ρr

j)).

This defines the morphisms, as an element p = ∑ aI,JX IT J is mapped to

∑ aI J p(r−2)|J|ξ I
(

V(ρr)
)J

.

Davis, Langer and Zink show that this is indeed overconvergent, i.e., it is an

element of W†(A)⊗Q.

This can be extended to a general overconvergent Witt frame (X, F,κ). Show-

ing that the so defined morphism factors naturally through RΓ(V, j†ΩV) completes

the construction of a morphism

RΓrig(X)→W†ΩX/k ⊗Q

for an overconvergent Witt frame (X, F,κ). What is more, it can be shown that this

is a quasi-isomorphism.

In order to globalise this, it is necessary to use dagger spaces. This means that

locally Tλη = K 〈λX1, . . . , λXn, T1, . . . , Tm〉 /( f r
1 − pT1, . . . , f r

m − pTm) is replaced

over a suitable extension K̃/K by

T̃λη = K̃ 〈λX1, . . . , λXn, T1, . . . , Tm〉 /( f1 − p
1
r T1, . . . , fm − p

1
r Tm).

One can rewrite the above constructed morphism in terms of dagger spaces

Γ
(
]X[†F̂, Ω]X[†

F̂

)
→W†ΩX/k ⊗Q

and since RΓ
(
]X[†

F̂
, Ω]X[†

F̂

)
= RΓrig(X), this induces the same morphism

RΓrig(X)→W†ΩX/k ⊗Q .

Let X be a smooth and quasi-projective variety over k. Thus X has a covering by

standard smooth neighbourhoods. With an open embedding X → ProjS consider
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a finite cover X =
⋃

Xi, where Xi = D+(hi) = Spec Ai with hi ∈ S . For a multi-

index J = {i1, . . . , it} set

XJ = Xi1 ∩ . . . ∩ Xit = Spec AJ ,

where AJ is a suitable localisation of Ai1 . This is again standard smooth.

Let A be a standard smooth algebra over k represented as k[X1, . . . , Xn]/( f1, . . . , fm).

Choose arbitrary liftings f̃1, . . . , f̃m ∈ W(k)[X1, . . . , Xn], and let B be a localisa-

tion of W(k)[X1, . . . , Xn]/( f̃1, . . . , f̃m) with respect to det
(

∂ f̃i
∂Xj

)
, then B is standard

smooth over W(k) lifting A and therefore giving a special frame (Spec A, Spec B).

In this way we obtain special frames (Xi, Fi) for the cover of X. Using the simplicial

structure associated to this covering the authors show in [DLZ11]

Theorem 7.3. Let X be a smooth quasi-projective scheme over k. Then there is a natural

quasi-isomorphism

RΓrig(X)
∼−→ RΓ

(
X, W†ΩX/k

)
⊗Q . (7.4)

Lemma 7.4. The morphism (7.4) of Davis, Langer and Zink is compatible with the

multiplicative structure on both sides: there is a commutative diagram

RΓrig(X)
⊗L RΓrig(X) //

��

(
RΓ(X, W†ΩX/k)⊗Q

)⊗L (RΓ(X, W†ΩX/k)⊗Q
)

��
RΓrig(X) //

(
RΓ(X, W†ΩX/k)⊗Q

)
where the tensor is taken over W(k), the vertical maps represent the product and

the upper horizontal map is given by the tensor product of the morphism (7.4).

Proof. Recall that RΓrig(X) = RΓ(V, j†ΩV), where V is a strict neighbourhood

as above. Thus the left vertical map is given via the structure of ΩV as differ-

entially graded algebra. The same goes for the vertical map on the right hand

side. Moreover, the comparison morphism (7.4) is by construction a morphism of

differentially graded algebras, and consequently the diagram commutes.

The construction will become more explicit in the appendix, where we calculate

it for the projective space.
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7.3 Comparison with rigid Chern classes
Proposition 7.5. Let X be as above. The morphism (7.1) of cohomology groups

Hi(X, K M
m )→ Hi+m

rig (X/K) factors through Hi+m(X, W†Ω).

Proof. Assume at first that X has infinite residue fields. As X is quasi-projective,

we can choose an open embedding X → ProjS , where S is a finitely generated

graded algebra over k. Davis, Langer and Zink point out that this enables us to

consider finite coverings UX = {Ui} of X fine enough such that the Ui = Spec Ai

are standard smooth affines as well as their intersections. What is more, if we

are given a global section u ∈ O∗X, we can choose the covering in a way that it

represents a trivialisation for u given in local coordinates by

uij on Ui ∩Uj.

Further refinements allow us to consider m such sections u(1), . . . , u(m) of O∗X, each

of which are given in local coordinates u(k)
ij .

Thus we can consider a section of K
M
m locally given by

{u(1)
ij , . . . , u(m)

ij } on Ui ∩Uj.

Its image in W†Ω [1] under d log is

d[u(1)
ij ]

[u(1)
ij ]
· · ·

d[u(m)
ij ]

[u(m)
ij ]

on Ui ∩Uj.

As in [DLZ11] we can choose for each Ai a standard smooth lift Bi over W(k)

with a fixed Frobenius lift such that for the lift u(l)
ij of each u(l)

ij

F(u(l)
ij ) = (u(l)

ij )
p,

and a homomorphism κi : Bi → W(Ai), induced by F, which lifts Bi → Ai

such that the image is overconvergent, thereby giving an overconvergent frame

(Ui, Fi,κi) where Fi = Spec Bi. By choosing the covering fine enough, we ensure

that all intersections are again standard smooth affine and give rise to overconver-

gent frames. We denote the intersections by UI =
⋂

i∈I Ui and UI = AI , where I is

a multi-index.
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Let as before j : X ↪→ X be a suitable compactification and let X ↪→ Y be a

closed immersion into a formal scheme over Spf(W(k)). Denote by Ui = Spf Ai

the formal completion of Fi along Ui, which cover the image of X in Y . This can

be completed to a covering U of Y that induces the covering UX. Further denote

by UK the induced cover of the rigid generic fibre. Analogue to above we use the

notations UI , AI etc.

Again we choose liftings ũ(1)
ij , . . . , ũ(m)

ij ∈ Aij of the local sections u(1)
ij , . . . , u(m)

ij .

Then
dũ(1)

ij

ũ(1)
ij

· · ·
dũ(m)

ij

ũ(m)
ij

is a local section of Ω]X[ and the image of {u(1)
ij , . . . , u(m)

ij } ∈ K
M
m under the map

defined in Proposition 7.2. The way these local sections were obtained implies that

they glue to a global section dũ
ũ if we use dagger spaces.

The task now is to check that the image of
dũ(1)

ij

ũ(1)
ij

· · ·
dũ(m)

ij

ũ(m)
ij

under the comparison

morphism of Davis,Langer and Zink is compatible with
d[u(1)

ij ]

[u(1)
ij ]
· · ·

d[u(m)
ij ]

[u(m)
ij ]

.

Recalling that the u(l)
ij ∈ Aij and ũ(l)

ij ∈ Bij are local coordinates and that we

chose the Frobenius lift in a particular way, we see that the image of ũ(l)
ij under κij

is the Teichmüller lift
[
u(l)

ij

]
(cf. [Dav09, Proposition 2.2.2]). By the construction in

[DLZ11] it follows that the map

Γ
(
]Ui[Ui

, Ω]Ui[Ui

)
→WΩUi ⊗Q,

which is as a local map based upon the comparison map between the affine com-

parison morphism between Monsky–Washnitzer, and overconvergent cohomol-

ogy sends the class of
dũ(l)

ij

ũ(l)
ij

to the class of
d[u(l)

ij ]

[u(l)
ij ]

for all i, j, l. Although a priori this

depends on the choice of Frobenius lift, Davis shows in [Dav09, Corollary 4.1.13]

that the comparison map is in fact independent of it.

This morphism being the basis of the comparison morphism, we see that
dũ(l)

ij

ũ(l)
ij

is

still mapped to
d[u(l)

ij ]

[u(l)
ij ]

after passing to dagger spaces in order to glue. In particular,

the Čech cocycle of rigid cohomology
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(
dũ(l)

ũ(l)

)
∈ Z2(UK, Ω]X[))

is sent to the Čech cocycle of overconvergent cohomology(
d[u(l)]

[u(l)]

)
∈ Z2(U, W†ΩX),

for varying l. Thus, the same holds true for dũ(1)

ũ(1) · · · dũ(m)

ũ(m) , which accordingly is sent

to d[u(1)]

[u(1)]
· · · d[u(m)]

[u(m)]
.

This shows that the induced morphism Hi(X, K M
m ) → Hi+m

rig (X/K) factors

indeed through Hi+m(X, W†Ω), and the diagram

Hi(X, K M
m ) //

((QQQQQQQQQQQQ
Hi+m

rig (X/K) ∼ //Hi+m(X, W†Ω)⊗Q

Hi+m(X, W†Ω)

22ffffffffffffffffffffffffff

commutes.

A similar reasoning can be applied in the case of finite residue fields. The mor-

phisms Hi(X, K̂
M
m ) → Hi+m

rig (X/K) and Hi(X, K̂
M
m ) → Hi+m(X, W†Ω) are both

deduced from the corresponding morphisms for Kerz’s usual Milnor K-theory, and

they are both unique by the uniqueness property of Corollary 2.14. As in the

infinite case Hi(X, K M
m ) → Hi+m

rig (X/K) factors through Hi+m(X, W†Ω) via the

comparison isomorphism

Hn
rig(X/K)→Hn(X, W†Ω)⊗Q

of Davis, Langer and Zink, the same holds true for the finite case, and we obtain a

commutative diagrams above with K
M
m replaced by K̂

M
m .

Now we can conclude with a comparison of rigid and overconvergent Chern

classes.

Theorem 7.6. Let X be a smooth quasi-projective scheme over k. The overconvergent

Chern classes for X defined here are compatible with the rigid Chern classes defined in

[Pet03].
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Proof. We use the fact that the rigid and the overconvergent Chern classes factor

through the Milnor K-sheaf. Consider the following diagram

H2j−i
rig (X/K)

Kj(X)

crig
ij

22ffffffffffffffffffffffffffffffffff cM
ij
//

csc
ij ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Hi−j(X, K M

i )

66mmmmmmmmmmmm

((RRRRRRRRRRRRR

H2i−j(X, W†Ω)

OO

where all the triangles commute: the upper left one by Proposition 7.2, the lower

left one by construction and the right one by the previous lemma. Given that

all morphisms involved are compatible with products, this shows that the Chern

classes in question are indeed compatible.



CHAPTER 8

OVERCONVERGENT CYCLE CLASSES

Recall that one can interpret classical Chow groups in terms of Milnor K-sheaves

CHi(X) = Hi(X, K M
i ),

which is also known as Bloch’s formula. In this sense, the morphism of cohomol-

ogy groups (6.1) constitutes for i = m a cycle class on the classical Chow groups

ηi
sc : CHi(X)→H2i(X, W†Ω>i

X ).

Remark 8.0.1. As a consequence of our comparison in Proposition 7.6, one can

conclude that these overconvergent cycle classes are compatible with Petrequin’s

rigid Chern classes in [Pet03, Section 6].

Moreover, we can restrict the Chern classes csc
ij : Kj(X)→ H2i−j(X, W†Ω) to the

graded pieces gri
γKj(X) of algebraic K-theory induced by the γ-filtration (see the

Section 6.3 on this subject)

η
ij
sc : gri

γKj(X)→ H2i−j(X, W†Ω),

and it is well known that the gri
γKj(X) are rationally isomorphic to Bloch’s higher

Chow groups CHi(X, j). The goal of this section is to extend this morphism to an

integral morphism of higher cycle classes

η
ij
sc : CHi(X, j)→ H2i−j(X, W†Ω>i)

compatible with our overconvergent Chern classes.

8.1 Bloch’s higher Chow groups
Let k be a field. Bloch originally defined his higher Chow groups for equidi-

mensional schemes of finite type over k [Blo86b], but the definition can be made for
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general equidimensional schemes. In the case when X/k is smooth, separated and

k perfect, the definition is equivalent to Voevodsky’s motivic cohomology theory.

Denote by ∆N
k the standard algebraic N-simplex

∆N
k := Spec k[t0, . . . , tn]/(∑ ti − 1)

and by ∆∗X the cosimplicial scheme given by

N 7→ X×k ∆N
k .

The faces of ∆N
X are defined by equations of the form ti1 = · · · = tir = 0. Let

zr(X, i) be the subgroup of the cycles of dimension r + i generated by the set of

irreducible dimension r + i-subschemes of ∆i
X that intersect all faces properly (i.e.,

that intersect each dimension r-face in dimension6 r+ r). Bloch’s simplicial group

is then given by

i 7→ zr(X, i).

The Chow groups (with respect to dimension) are then the homology groups of

the associated complex

CHr(X, i) = Hi(zr(X, ∗)).

In the case when X is equidimensional it is more convenient to label the complexes

by codimension and define

CHr(X, i) = Hi(zr(X, ∗)),

where zr(X, i) = zn−r(X, i) if X is of dimension n. We may extend the definition of

zr(X, i) to arbitrary smooth schemes by taking the direct sum over the irreducible

components.

The relation to Voevodsky’s motivic theory in the case of smooth, separated

schemes over a perfect field is

Hi(X, Z(r)) = CHr(X, 2r− i)

CHr(X, i) = H2r−i(X, Z(r)).

The complexes zr(X, ∗) are covariant for proper morphisms and contravariant for

flat equidimensional morphisms so that it is possible to sheafify them (for étale



104

or Zariski topology) Zr(X, ∗). Similarly for the codimension complexes we get

Z r(X, ∗).
Bloch established the following list of properties for the groups CHr(X, i) [Blo86b,

¶2]:

1. Functoriality. As is apparent from the remark above, they are covariant (with

shift of codimension index) and contravariant for flat maps, or for all maps if

the target is smooth.

2. Homotopy. Let p : A1×X → X be the projection. Then

CHr(X, i) = CHr(A1×X, i).

3. Localisation. Let Y ⊂ X be a closed subscheme of pure codimension c and

U = X−Y. Then there is a long exact sequence

· · · → CH∗(U, i + 1)→ CH∗−c(Y, i)→ CH∗(X, i)→ CH∗(U, i)→ · · ·

4. Degree zero. The higher Chow groups coincide in degree zero with the

classical Chow groups

CHr(X, 0) = CHr(X).

5. Local to global spectral sequence. One has the equality

CHr(X, i) = H−i(X, Z r(X, ∗)).

In particular, there is a spectral sequence

Ep,q
2 = Hp(X, C H r(−q))⇒ CHr(X,−p− q),

where again C H r(i) is the Zariski sheaf associated to the presheaf

U 7→ CHr(U, i).

6. Multiplicativity. For schemes X and Y there is an exterior product

CHr(X, i)⊗CHs(Y, j)→ CHr+s(X×Y, i + j).

For smooth X and Y = X pulling back along the diagonal yields a product

structure

CHr(X, i)⊗CHs(X, j)→ CHr+s(X, i + j)

and makes CH∗(X, ∗) into a ring.
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7. Chern classes. For a rank n vector bundle E → X there are well defined

operators for 1 6 i 6 n

ci(E) : CHa(X, b)→ CHa+i(X, b)

that satisfy the usual functoriality properties, and one can define

ci(E) = ci(E)(X) ∈ CHi(X, 0).

8. Relationship with algebraic K-theory. There is a rational equivalence

CHr(X, i)⊗Q ∼= grr
γKi(X)⊗Q .

9. Codimension 1. For regular X there are the equalities

CH1(X, i) =


Pic(X) if i = 0
Γ(X, O∗X) if i = 1
0 otherwise.

10. Gersten conjecture. For X/k smooth there are flasque resolutions

0→ C H r
X(q)→

⊕
x∈X(0)

CHr(x, q)→
⊕

x∈X(1)

CHr−1(x, q− 1)→ · · · .

In particular

CHr(X) = Hr(X, C H r(r)).

11. Finite coefficients and the étale topology. Let Z ∗
ét(∗) be the complex of étale

sheaves associated to the codimension complex, n prime to the characteristic

of the ground field k and π : X → Spec k the structure map. Then

π∗(Z ∗
Spec k,ét(∗)⊗Z /n Z)→ Z ∗

X,ét(∗)⊗Z /n Z

is a quasi-isomorphism.
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8.2 Higher cycle classes with integral coefficients in
the Milnor K-sheaf

Let X be smooth over a perfect field k of characteristic p > 0.

In [Blo86b, ¶4] Bloch defines higher cycle classes from higher Chow groups into

reasonable bigraded cohomology theories

CHb(X, n)→ H2b−n(X, b).

Namely, the cohomology theory has to be the hypercohomology of a complex

which is contravariant. By replacing it with its Godement resolution, it can be

assumed to be built of acyclic sheaves. Moreover, Bloch assumes that for this

theory one can define cohomology groups with supports, such that it satisfies a

localisation sequence and that it satisfies homotopy invariance, the existence of a

cycle class for subschemes of pure codimension and weak purity.

In order to construct higher cycle classes into the overconvergent cohomology

groups, we take again the detour over Milnor K-theory using Rost’s axiomatic. In

particular we will not have to worry about the size of the residue fields of X.

Using Bloch’s method we define for a fixed integer b a cycle map

ηbn
M : CHb(X, n)→ Hb−n(X, K M

b ),

which in turn induces a cycle map ηbn
sc into the overconvergent integral coho-

mology groups. We start by recalling some facts of cycle modules that hold in

particular for the one associated to the Milnor K-groups.

Lemma 8.1. The cohomology groups of the Milnor K-sheaves satisfy the conditions

required by Bloch in his construction of cycle classes.

Proof. We check the properties one by one.

1. Calculated by a complex. As we have seen in Corollary 3.16 and the subse-

quent remarks that according to Rost [Ros96] the sheaf cohomology of K M
b

over X can be calculated by the cohomology of the associated cycle complex

C∗(X; KM
∗ , b)

Ap(X; KM
∗ , b) = Hp(X, K M

b ).
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2. Localisation Sequence. For a closed subscheme i : Y ↪→ X let C∗Y(X, KM
∗ , b)

be the “cycle complex with supports” defined by

Cp
Y(X; KM

∗ , b) = ä
x∈X(p)

x∈Y

KM
b−p(x),

and An
Y(X; KM

∗ , b) the associated cohomology with supports. Recall that there

is a long exact sequence (3.2) for a closed subscheme i : Y ↪→ X and the

associated immersion j : U = X\Y → X

∂−→ Ap(Y; KM
∗ , b) i∗−→ Ap(X; KM

∗ , b)
j∗−→ Ap(U; KM

∗ , b) ∂−→ .

This is in fact a localisation sequence: by definition we have Poincaré duality

style equalities (see also the Appendix Section B)

An−p(Y; KM
∗ , n− b) = Ap

Y(X; KM
∗ , b)

An−p(X; KM
∗ , n− b) = Ap(X; KM

∗ , b),

where n is the relative dimension of X over k. Thus the long exact sequence

of homology above induces along exact sequence of cohomology

∂−→ Ap
Y(X, KM

∗ , b) i∗−→ Ap(X; KM
∗ , b)

j∗−→ Ap(U; KM
∗ , b) ∂−→ Ap+1

Y (X; KM
∗ , b)→

and by the pointwise definition of cycle complexes, this sequence satisfies the

usual functorial properties.

3. Homotopy invariance. According to Rost (equation 3.4), the cohomology

groups Ap(X; KM
∗ , b) satisfy homotopy invariance

Ap(X; KM
∗ , b) ∼= Ap(X×A1; KM

∗ , b).

4. Cycle class. This point holds not for cycle modules in general but rather

for Milnor K-theory. Let Y ⊂ X be of pure codimension b. Similarly to the

discussion above there is an isomorphism

Ab
Y(X; KM

∗ , b) ∼= A0(Y; KM
∗ , 0),
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and the right hand sight is isomorphic to the zero cohomology group of K M
0

on Y. But for any ring KM
0 (A) = Z, and there is a well-defined class

[Y] ∈ Ab
Y(X; KM

∗ , b)

that corresponds to the identity, which by construction is contravariant func-

torial with respect to the pull-back of cycles.

5. Weak purity. Let Y ⊂ X be of pure codimension r. There is an isomorphism

Ap
Y(X; KM

∗ , b) ∼= An−p(Y; KM
∗ , b− n)),

where again n is the dimension of X. The right-hand side is zero of n− p is

greater than the dimension of Y. Consequently the left-hand side is zero if

p < r.

Now we can go step by step through the construction of cycle classes. Using

that the cohomology of the Milnor K-sheaf can be calculated by a complex, we see

that the usual diagram of simplices

X //
// X× ∆1

//
//
// X× ∆2

//... //
· · · (8.1)

yields a double complex

C(X× ∆•; KM
∗ , •).

The first sheet of the spectral sequence associated to this double complex is given

by

Epq
1 = Aq(X× ∆−p; KM

∗ , b).

Note the appearance of a sign at the index p on the right sight. This is due to the

fact that the functor Ap is contravariant in its first place and the introduction of a

sign aligns the induced morphisms by the natural maps of (8.1) with the required

structure of a spectral sequence. The sheet Epq
1 is therefore by construction only



109

nonzero for p 6 0. In order to calculate the second sheet, we fix q and look at the

associated bounded complex

· · · Aq(X× ∆−p; KM
∗ , b)

dpq
1−→ Aq(X× ∆−(p+1); KM

∗ , b)→ · · ·

→ Aq(X× ∆1; KM
∗ , b)

d1q
1−→ Aq(X; KM

∗ , b)→ 0,

where the boundary morphisms

dpq
1 : Epq

1 = Aq(X× ∆−p; KM
∗ , b)→ Ep+1,q

1 = Aq(X× ∆−p−1; KM
∗ , b)

are induced by the pull-backs of the maps in (8.1). By the homotopy invariance of

the cohomology Aq,

Aq(X× ∆−p; KM
∗ , b) ∼= Aq(X; KM

∗ , b)

for all p 6 0. However as the simplexes collapse ∆−p in the above complex, we

discern from the definition of the boundary maps dpq
1 that they are trivial if p is

odd and isomorphisms if p is even. Therefore we find the second sheet to be

Epq
2 =

{
Aq(X; KM

∗ , b) for p = 0
0 otherwise.

Hence the spectral sequence converges and we may write

Epq
1 ⇒ A∗(X; KM

∗ , b). (8.2)

We get the same result if we truncate the diagram (8.1) at X × ∆N for N even.

The right-hand side of (8.2) is the target of our desired cycle map. We will use an

auxiliary spectral sequence Ẽpq
r which maps into Epq

r .

Let Ãa(X×∆p; KM
∗ , b) = lim−→ Aa

|Z|(X×∆p; KM
∗ , b), where the limit is over zb(X, p)

as used in the definition of the Chow groups and |Z| denotes the support of Z. If

we truncate again at some large even N to avoid convergence problems, we get in

the same manner as above another spectral sequence with the first sheet

Ẽpq
1 =

{
Ãq(X× ∆−p; KM

∗ , b) for − p 6 N
0 otherwise.
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The natural morphism of cohomology groups from cohomology with supports to

the regular one induces a map of spectral sequences

Ẽpq
1 → Epq

1 .

Using Bloch’s notation let tNzb(X, ·) be the truncation of the complex zb(X, ·) in

degree N. Then the cycle class as described in the list above yields a morphism of

complexes

tNzb(X, ·)→ Ẽ·,b1 . (8.3)

Note that as the limit in the definition of Ãa(X×∆p; KM
∗ , b) runs over cycles of pure

codimension b the weak purity axiom implies that Ẽpa
1 = Ãa(X × ∆p; KM

∗ , b) = 0

for a < b. Consequently this holds even for all sheets, i.e., Ẽpa
r = 0 for a < b. In

particular, for r > 1 this implies that the boundary maps

dpb
r : Ẽp,b

r → Ẽp+r,b−r+1
r = 0

are zero as well. Taking cohomology on both sides of (8.3) and using the fact that

the Chow groups derived from the untruncated complex zb(X, ·) maps into the

truncated ones we get for any n

CHb(X, n)→ Ẽ−n,b
2 → Ẽ−n,b

∞ . (8.4)

Again by the weak purity axiom we see that Ẽp,a
∞ = 0 for a < b. Thus the morphism

(8.4) maps in fact into the limit of the Ẽ1 spectral sequence in degree b − n. The

morphism of spectral sequences Ẽpq
1 → Epq

1 induces then that (8.4) also maps into

the limit of the E1 spectral sequence in degree b − n, which is Ab−n(X; KM
∗ , b) as

shown above. This concludes the construction and we get

Corollary 8.2. For a smooth scheme X/k there is a family of cycle classes

ηbn
M : CHb(X, n)→ Ab−n(X; KM

∗ , b) = Hb−n(X, K M
b ). (8.5)

We list some properties of the cycle class map for the Milnor K-sheaf.

Normalisation. The class of X in the Chow ring CH∗(X, ∗) maps to the identity

in the ring H∗(X, K M
∗ ). Indeed, we see that the cycle [X] ∈ CH0(X, 0) is
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mapped via the cycle map to the class of X in H0
X(X, K M

0 ) = H0(X, K M
0 ),

which is isomorphic to Z and [X] corresponds to the identity as we have seen

above.

Functoriality with respect to flat pull-back and proper push-forward. Both the

Chow ring and the cohomology of the Milnor K-sheaf are contravariant func-

torial with respect to flat pull-backs. Let f : X′ → X be flat (a condition

that can be dropped in case X is smooth). Then Bloch shows in [Blo86a,

Prop.(1.3)] that the complex that calculates the Chow groups is contravariant

with respect to f , and consequently there is a well-defined pull-back map

f ∗ : CHb(X, n)→ CHb(X′, n).

Likewise Rost constructs in [Ros96, Section 12] a pull-back map

f ∗ : Ap(X; KM
∗ , q)→ Ap(X′; KM

∗ , q)

coming from the corresponding pull-back map on the complex Cp(X; KM
∗ , q).

The cycle class [Y] ∈ Hb(X, K M
b ) for subschemes Y ⊂ X of pure codimension

which plays an important role in the construction of the cycle class maps are

contravariant functorial for morphisms f : X′ → X which preserve the codi-

mension. Thus, if we assume that f is faithfully flat, we obtain functoriality

of the cycle class maps ηbn
M in the sense that the following diagram commutes

CHb(X, n)
ηbn

M //

f ∗
��

Hb−n(X, K M
b ))

f ∗
��

CHb(X′, n)
ηbn

M // Hb−n(X′, K M
b )

Even though we dispose in both cases of push-forwards for a proper mor-

phism f : X′ → X, it is not clear to us yet how to make use of it for the

cycle class map, as Bloch points out that in case of the Chow groups the

push-forward f∗ causes a shift in codimension by the degree of f ([Blo86a,

Prop. (1.3)]) which according to Rost [Ros96, 3.5] does not occur for his cycle

complexes.
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Ring homomorphism. It is clear that the cycle class map is additive by linear-

ity. In fact we have the following diagram

CHb(X, n)⊗CHb(X, n)
ηbn

M⊗ηbn
M//

��

Hb−n(X, K M
b )⊗Hb−n(X, K M

b )

��

CHb(X× X, n)
ηb,n

M //

∆∗
��

Hb−n(X× X, K M
b )

∆∗
��

CHb(X, n)
ηb,n

M // Hb−n(X, K M
b )

where the upper square commutes by linearity and the lower one by pulling

back along the diagonal. This extends of course linearly to addition of cycles

of different codimension and degree.

Multiplicativity requires more work. Multiplication in the higher Chow

ring is described by Bloch in [Blo86a, Section 5]. In order to do this, it is

sufficient to construct a map in the derived category for the correspond-

ing complexes. More precisely, let X and Y be quasi-projective algebraic

k-schemes. Then Bloch constructs a map

s
(

za(X, ·)⊗ zb(Y, ·)
)
→ za+b(X×Y, ·),

where on the left-hand side s denotes the simple complex associated with a

double complex. The idea is to fix a triangulation for ∆m × ∆N ∼= Am+n for

all m, n such that it induces a well-defined morphism on the complexes. A

triangulation is a family T = {Tm,n}m,n∈N with

Tm,n = sgn(θ)θ,

where θ is a face map ∆m+n → ∆m × ∆n. It is possible to fix a system of maps

T such that it induces a morphism of complexes

s (z∗(X, ·)⊗ z∗(Y, ·))→ z∗(X×Y, ·),

where it is defined. However, the problem hereby is that Tn,m (z∗(X, ·)⊗ z∗(Y, ·))
is not necessarily contained in z∗(X×Y, ·) as images of cycles might not meet

all faces properly. The solution is to take the subcomplex of s (z∗(X, ·)⊗ z∗(Y, ·))
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generated by products Z⊗W such that Z and W are irreducible subvarieties

of X × ∆m and Y × ∆n, respectively, and such that Z ×W ⊂ X × Y × ∆m ×
∆n meets all faces properly. We denote this subcomplex by z∗(X, Y, ·)′ ⊂
s (z∗(X, ·)⊗ z∗(Y, ·)). Bloch shows in [Blo86a, Theorem 5.1] that this inclu-

sion is in fact a quasi-isomorphism. As a consequence, one obtains a commu-

tative diagram

s(z∗(X, ·)⊗ z∗(Y, ·)) ∼ //

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX
z∗(X, Y, ·)′ T // z∗(X×Y, ·)

��
z∗(X, ·)

in the derived category and this induces an action of CH∗(Y, ·) on CH(X, ·).
In particular, if Y = X is smooth, one obtains a product on CH∗(X, ·) via

pull-back along the diagonal

CHa(X, n)⊗CHb(X, m)→ CHa+b(X× X, n + m)
∆∗−→ CHa+b(X, n + m),

which makes it into an anticommutative ring [Blo86b, Corollary 5.7].

By the above statements, it is sufficient, in order to see if the family of maps

ηbn
M is compatible with products, to consider the subcomplex z∗(X, X, ·)′ ⊂

s (z∗(X, ·)⊗ z∗(X, ·)). Thus let Z ∈ za(X, n) and W ∈ zb(X, m) be irre-

ducible subvarieties of X × ∆n and X × ∆m, respectively, such that Z×W ⊂
X × X × ∆n × ∆m meets all faces of ∆n × ∆m properly, which means that

Z⊗W is in the set of generators of z∗(X, X, ·)′. The cycle class of Milnor K-

theory mentioned above sends the class of Z to a unique class [Z] ∈ Aa
Z(X×

∆n, a) = A0(Z; KM
∗ , 0) ∼= Z and W to a unique class [W] ∈ Ab

W(X × ∆m, b) =

A0(W; KM
∗ , 0) ∼= Z, which in both cases represents the identity. Rost’s defini-

tion of (cross) products for cycle modules in [Ros96, Section 14]

Cp(Y; N, n)× Cq(X, M, m)→ Cp+q(Y× X; M)

holds in particular for the case of N = M = KM
∗ . In this case the product is

anticommutative as shown in [Ros96, Corollary 14.3]. Hence the product of

[Z] and [W] as evoked above can easily be given as
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A0(Z; KM
∗ , 0)× A0(W; KM

∗ , 0) → A0(Z×W; KM
∗ , 0)

[Z]× [W] 7→ [Z×W]

as all cycles involved represent the identity. Thus by means of the corre-

sponding inclusions we obtain a commutative diagram

za(X, n)⊗ zb(X, m) //

��

Ãa(X; KM
∗ , n)⊗ Ãb(X; KM

∗ , m)

��

za+b(X× X, n + m) // Ãa+b(X×; KM
∗ , n + m)

This shows that the morphism of complexes (8.3) is compatible with products

and since this is the core of Bloch’s construction of cycle class maps, they are

compatible with products as well and one has a diagram

CHa(X, n)⊗CHb(X, m)
ηan

M⊗ηbm
M//

��

Ha−n(X, K M
a )⊗Hb−m(X, K M

b )

��

CHa+b(X× X, n + m)
ηa+b,n+m

M //

∆∗
��

Ha+b−n−m(X× X, K M
a+b)

∆∗
��

CHa+b(X, n + m)
ηa+b,n+m

M // Ha+b−n−m(X, K M
a+b)

where the upper square commutes due to the discussed reasons and the

lower one again by pulling back along the diagonal.

8.3 Higher cycle classes with integral coefficients
in the overconvergent complex

We now use the map (5.2) of section 5.7

d logn : K M
n →W†Ω[n]

to define higher cycle classes with coefficients in the overconvergent cohomology

theory. Remember that it induces a morphism of cohomology groups

Hm(X, K M
i )→Hm+i(X, W†Ω).

Note that whereas the first cohomology theory is bigraded, the second one is not.

However, by definition the image of d log lies in the truncated complex W†Ω>n[n],
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which is a subcomplex of W†Ω[n]. As a consequence, d log factors and we can

write

d logn : K M
n →W†Ω[n],

and therefore on the cohomological level a morphism

Hm(X, K M
i )→Hm+i(X, W†Ω>i).

Then the cycle class map for the Milnor K-sheaf (8.5) induces the following result

Proposition 8.3. For b, n > 0 there exist cycle class maps

ηbn
sc : CHb(X, n)→H2b−n(X, W†Ω>b).

By functoriality of the morphism of cohomology rings

H∗(X, K M
∗ )→H∗(X, W†Ω>∗)

the cycle classes ηbn
sc satisfy similar properties as mentioned above for the cycle

classes ηbn
M .



APPENDIX A

COMPARISON OF THE FIRST RIGID AND

OVERCONVERGENT CHERN CLASSES

FOR PROJECTIVE SPACE

We consider the projective space P = Pn
k over k and compare the image of the

class of csc
1 (OP(1)) under the canonical injection Hi(P, W†Ω) → Hi(P, W†Ω) ⊗

Q ∼= Hi
rig(P /K) with the class of crig

1 (OP(1)).

Lemma A.1. The image of crig
1 (OP(1)) under the comparison isomorphism

H2
rig(P /K)→H2(P, W†ΩP)⊗Q

coincides with csc
1 (OP(1)).

Proof. The class of csc
1 (OP(1)) can be described in terms of Čech cocycles in a nat-

ural way. If we think of P as Proj(k[x0, . . . , xn], let Hi = {xi = 0} and Ui = P−Hi.

This open set is isomorphic to the affine Spec (Ai), where Ai = k[u0i, . . . , ûii, . . . , uni]

with uji =
xj
xi

(the hats in this context always means that the variable is omit-

ted). The open sets U = {Ui} form a Čech cover of P that trivialises the twisting

sheaf OP(1). According to [Gil81, Definition 2.3], the first Chern class of OP(1) in

H1(P, K M
1 ) is calculated via the Čech cochain given as

uij on Ui ∩Uj.

It is easily checked that this is a cocycle. The image of this under d log : K M
1 →

W†ΩP [1] is

d log uij =
d[uij]

[uij]
,

which defines a Čech cocycle in Z2(U, W†ΩP).
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This suffices on the overconvergent side. Now we have to give the class of the

twisting sheaf on the rigid side. Let Pn
W(k) be the associated formal scheme over

Spf(W(k)). The cover of Pn
W(k) that reduces to U on P is given by

Ui = Spf (Ai) ,

where Ai = W(k){u0i, . . . , ûii, . . . , uni}. Denote by UK the induced cover on the

rigid generic fibre, which consists of the affinoid subsets associated to the Tate

algebras K〈u0,i, . . . , ûii, . . . , uni〉. Following the construction of Petrequin in [Pet03,

Section 3.1], the first Chern class of OP(1) in H2
rig(P /K) is calculated by the Čech

cocycle in Z2(UK, Ω]P[) given by

duij

uij
on Ui ∩Uj.

The remaining step is to relate the two classes under the comparison morphism.

A Witt frame for Ui can be given by

(Ui, Fi,κ) = (Spec(Ai), Spec(Bi),κ) ,

where Bi = W(k)[u0i, . . . , ûii, . . . , uni] and κ : Bi → W (Ai) sends uji to its Te-

ichmüller lift. Indeed, let B†
i be the associated dagger algebra. In this case, Davis

has shown in [Dav09, Proposition 2.2.2] that if we choose the Frobenius lift to

be F(uij) = up
ij on the coordinates, the induced comparison map sends uij to its

Teichmüller lift. This descends to Bi, and it is clear that the diagram

W (Ai)

proj
��

Bi

κ
;;xxxxxxxxx
// Ai

commutes, so the given datum indeed is a Witt frame. By reason that the variables

map to their Teichmüller lifts, which we have seen to be overconvergent, it is

evident that the image of κ is contained in W†(Ai).
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Since we assumed that k is perfect, the kernel I of Bi → Ai is monogenic and

I = (p). Let Ri be as above the completion of Bi with respect to I. As we mentioned

in the previous section, to give a morphism

Γ
(
]Ui[F̂i

, O ]Ui[F̂i

)
→W(Ai)⊗Q

it is enough to give a compatible system of morphisms

Ri,n →W(Ai),

where

Ri,n = Ri[T]/(pn − pT).

Under κ the image uju is its Teichmüller lift. Furthermore, by the construction of

Davis, Langer and Zink mentioned above, T will be sent to 1
pκ(pn). This gives a

compatible system of maps and determines the desired morphism. In particular,

we see that the variables uji that appear in the formal algebra as well as in the

associated affinoid algebra are invariably sent to
[
uji
]
. By the universal property

of Kähler differentials, this extends to Γ
(
]Ui[F̂i

, Ω]Ui[F̂i

)
→ WΩUi ⊗ Q and in

particular it means that
duji

uji
7→

d[uji]

[uji]
,

up to multiplication by 1
p .

To extend this morphism to a morphism

RΓrig(X/K)→W†ΩX/k ⊗Q,

we need to take into account strict neighbourhoods of ]Ui[F̂i
in Fan

i,K. A system of

strict neighbourhoods is given by open subsets Uλ,η in the sense of rigid geometry

with λ = p−
1
v and η = p−

1
r given in terms of affinoid algebras as

Ti = K〈λuoi, . . . , ûii, . . . , λuni, T〉/(pr − pT).

It consists of all power series

∑ aI,juIT j , aI,j ∈ K,
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such that lim|I|+j→∞ |aI,j|
(

1
λ

)|I|
= 0. Thus clearly the single elements uji are

contained in this algebra. Moreover, since the morphism

Ti →W†(Ai)⊗Q

is constructed in a compatible way with the one described in the previous para-

graph, we see that uij is still mapped to the Teichmüller lift
[
uij
]
.

The procedure given here induces for each 0 6 i 6 n a natural morphism

RΓrig(Ui/K)→W†ΩUi/k ⊗Q .

In particular it sends the Čech cocycle given over Ui ∩Uj by
duij
uij

to its Teichmüller

lift.

In order to glue the pieces together one passes to dagger spaces. The space

]Ui[F̂i
is covered by affinoid opens Hηu , ηu = p−

1
u , with corresponding algebras

Cηu = K〈u0i, . . . , ûii, . . . , uni, S〉/(pu − pS).

To endow ]Ui[F̂i
with a dagger space structure as discussed in [GK00] we replace

the Cηu over a suitable extension K̃/K by

K̃〈u0i, . . . , ûii, . . . , uni, S〉/(p− p1−uS),

which is clearly isomorphic over K̃. Moreover, for t > u and arbitrary λ = p−
1
v

there is an open immersion

Hηu → Uλ,ηt

given by an algebra homomorphism over K̃

K̃〈λu0i, . . . , ûii, . . . , λuni, T〉/(p− p
1
t T)→ K̃〈u0i, . . . , ûii, . . . , uni, S〉/(p− p1−uS),

sending λuji to p
1
v uji and T to p

1
u−

1
t S. It maps Hηu to the interior Uλ,ηt , and in this

way one obtains a dagger space structure by letting λ and η vary.

It is possible to rewrite the morphisms Γrig(Ui/K)→ W†ΩUi/k ⊗Q in terms of

dagger spaces:

Γ
(
]Ui[

†
F̂i

, Ω]Ui[
†
F̂i

)
→W†ΩUi/k ⊗Q,

where it is to notice that uji is still mapped to [uji].
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Using the simplicial scheme associated to the covering P =
⋃

Ui the above

construction induces a natural quasi-isomorphism

RΓrig(X/K)→ RΓ(X, W†ΩX/k)⊗Q,

which sends the Čech cocycle of rigid cohomology(
du
u

)
∈ Z2(UK, Ω]P[))

to the Čech cocycle of overconvergent cohomology(
d[u]
[u]

)
∈ Z2(U, W†ΩP).

In particular this makes it evident that the first rigid and overconvergent Chern

classes of OP(1) are compatible.



APPENDIX B

IS HN(X, K M
I ) A TWISTED DUALITY

THEORY?

Let X/k be smooth and K M
∗ the Milnor K-sheaf (the usual or improved version

according to the context). In Theorem 4.10 we verified some of the properties

suggested by Gillet for the duality theory defined by Γ(i) = K M
i . We want to

check which of Gillet’s axioms apply to this theory additionally.

1. Homology functor. It is clear that by definition of the Chow groups for cycle

modules for dimension we dispose of a covariant functor

X →
⊕
i>0
j∈Z

Ai(X; KM
∗ , j)

into the category of bigraded abelian groups. Let f , g be proper, and i, i′ open

immersions such that the square

U i′ //

g
��

X
f
��

V i
// Y

commutes. As f and g are proper, the definition of push-forward makes

sense. Note also, that the open immersions have dimension s = 0, and the

pull-back maps are defined as i∗ = [OV , i, 0] and i′∗ = [OU, i′, 0]. Then point

(3) from Proposition 3.8 shows that the diagram

Ai(U; KM
∗ , j)

g∗
��

Ai(X; KM
∗ , j)i′∗oo

f∗
��

Ai(V; KM
∗ ) Ai(Y; KM

∗ , j)
i∗

oo

commutes.
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2. Localisation sequence. This is the long exact sequence of homology (3.2) for

Chow groups, where the boundary map is induced by the boundary map on

cycle complexes (Point 4. of the list of morphisms).

3. Cap product. Recall that there is a pairing of cycle modules

KM
∗ × KM

∗ → KM
∗ ,

which respects grading. Using the map “multiplication with units” from

point 3 in Subsection 3.2 this induces a pairing of complexes

Cp(X, KM
∗ , j)× Cq

Y(X, KM
∗ , i)→ Cp−q(Y, KM

∗ , j− i),

where we have used that Cq = Cn−q as X is of dimension n and where Cq
Y

means sections with support in Y. This map respects the grading on KM
∗

since the original pairing on KM
∗ does so. Moreover, it respects the grading

in dimension as it is a generalised correspondence map mentioned in [Ros96,

(3.9)]. Applying the (co)homology functor, we obtain a pairing

⋂
: Ap(X; KM

∗ , j)⊗ Aq
Y(X; KM

∗ , i)→ Ap−q(Y; KM
∗ , j− i).

Consider the Cartesian diagram

Y //

fY
��

X
fX
��

Y′ // X′

as in 3. If we assume in addition that fX is flat, Lemma 3.9 tells us that for an

element a on X

f∗ ◦ {a} ◦ f ∗ = { f̃∗(a)}.

This implies (still under the assumption that f is flat) that for α ∈ Hp(X K M
j )

and z ∈ Hq
Y(X′, K M

i ) we have

f∗α ∩ f !(z)) = f∗(α) ∩ z

i.e.,the projection formula, however in a less general setting than proposed

by Gillet.
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4. Fundamental class. Let X be of relative dimension 6 n over k. By definition

we have that

Hn(X, K M
n ) ∼= H0(X, K M

0 )

is a quotient of äx∈X(0) K0(x). Since K M
0 (X) = Z the fundamental class

corresponds to the class [1].

5. Poincaré duality. Assume that X is of relative dimension n and Y → X a

closed immersion. We see easily that

Cn−i
Y (X; KM

∗ , n + r) = ä
x∈X(n−i)

x∈Y

KM
r+i(x)

and

Ci(Y; KM
∗ , r) = ä

x∈Y(i)

KM
r+i(x)

coincide and as a consequence we get an isomorphism

An−i
Y (X; KM

∗ , n + r)→ Ai(Y; KM
∗ , r),

which represents a deviation in the second index from Gillet’s fifth axiom.

However, the formula

An(X; KM
∗ , n) ∼= A0(X; KM

∗ , 0)

still holds.

6. Sections with support. Let j : Y → X be a closed immersion of codimension

c = p. Analogue to the reasoning in the previous point, we have

Ci+p
Y (X; KM

∗ , r + p) = ä
x∈X(i+p)

x∈Y

KM
r−i(x)

= ä
x∈Y(i)

KM
r−i(x) = Ci(Y; KM

∗ , r),

which gives the desired formula—however, only if the codimension c coin-

cides with the shift in cohomology p.
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7. Projection formula. Recall that the Milnor K-sheaf is in view of the Gersten

conjecture (cf. Corollary 2.10) defined as a quotient of the tensor algebra.

Therefore it is clear that the projection formula from (3) can be captured in a

commutative diagram of the form

Rj! K M
r
∣∣
Y
⊗L

Z K M
s
∣∣
X

1⊗j!
//

j!⊗1 ∼
��

Rj!
(
K M

r
∣∣
Y
⊗L

Z K M
s
∣∣
Y

)
��

Rj! K M
r+p

∣∣
X[p]

⊗L
Z K M

s
∣∣
X

**UUUUUUUUUUUUUUUUUU
Rj!
(
K M

r+s
∣∣
Y

)
∼
��

Rj!
(
K M

s+r+p
∣∣
X [p]

)
8. Cross product. As we mentioned in 3.17, Rost defines a cross product for

cycle modules. The fact that it is defined pointwise implies that it can be

defined for quasi-projective schemes over k.

9. Homotopy invariance. This is a special case of the homotopy invariance

(3.4) for Chow groups that follows from Axiom (H) in the definition of cycle

modules.

10. Projective bundle formula. We proved this in Proposition 3.19

11. Cycle class map. This is clear from the definition of the first Milnor K-group.

Indeed, recall that by definition of the Milnor K-sheaf

K M
1 = O∗X,

and the well known isomorphism for a scheme X

Pic(X) ∼= H1(X, O∗X)

gives a natural transformation of contravariant functors on the big Zariski

site V .

In conclusion, one can say, that the duality theory defined by Γ(i) = K M
i is not

quite as general as Gillet’s twisted duality theory, but for many practical purposes

this is sufficient.
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Sup. (4) 31 (1998), no. 5, 659–681.

[Pet03] Denis Petrequin, Classes de Chern et classes de cycles en cohomologie rigide,
Bull. Soc. Math. France 131 (2003), 59–121.

[Ray70] Michel Raynaud, Anneaux locaux hensiéliens, Lecture Notes in Math., vol.
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