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ABSTRACT

Marine boundary layer clouds are an important component of Earth’s climate 

system due to their vast spatial and temporal coverage. Representation of these clouds in 

climate models remains challenging and continues to result in the largest feedback 

uncertainties. It is essential to increase understanding of cloud physical processes in 

order to improve climate models. In this study, we investigate possible conditions 

influencing albedo and precipitation susceptibility of marine boundary layer clouds, 

which gauge the clouds’ sensitivity to perturbations in aerosol concentration. To do so, 

we employ a recently developed retrieval algorithm that uses A-Train satellite data to 

infer cloud properties. This unique algorithm assumes a bimodal particle size 

distribution, and then uses information from CloudSat and MODIS to simultaneously 

retrieve cloud mode and precipitation mode properties. Additionally, a new 

parameterization for the single scattering properties of clouds is developed to account for 

the bimodal size distribution, and is used to help provide constraints for the cloud 

retrieval. An equivalent retrieval has been developed to use ground-based ARM data. To 

study marine boundary layer cloud susceptibility, we focus our attention on the region 

spanning the stratocumulus cloud regime near California and the trade cumulus cloud 

regime near Hawaii. We compare albedo and precipitation susceptibility between winter 

and summer months and also between high and low surface wind conditions. It is found 

that cloud droplet number concentrations vary between seasons and surface wind



conditions. Albedo susceptibility tends to increase monotonically with liquid water path 

(LWP). Precipitation susceptibility, on the other hand, shows non-monotonic behavior 

characterized by an autoconversion regime at low LWP and a transition to an accretion 

regime at higher LWP.
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CHAPTER 1

INTRODUCTION

1.1 Importance of Marine Boundary Layer Clouds 

Marine boundary layer clouds form an important component of Earth’s climate 

system (Paluch and Lenschow 1991, Klein and Hartmann 1993, Norris 1998, Stevens et 

al. 2003, Lin et al. 2009, Wood 2012). Specifically, their large spatial coverage, 

persistence, and high albedo reduce the amount of incoming solar radiation received at 

the surface, exerting a cooling effect on the Earth (Hartmann et al. 1992, Bretherton et al. 

2004, Xu et al. 2005, Lin et al. 2009, Myers and Norris 2013). In the current climate, the 

net global mean cloud radiative effect (includes all cloud types) is approximately -20 W 

m"2 (Boucher et al. 2013). This net negative radiative effect due to clouds can be 

attributed mainly to the extensive marine stratus and stratocumulus cloud decks which 

persist over eastern subtropical oceans (Hartmann et al. 1992, Bretherton and Hartmann 

2009, Boucher et al. 2013). Because of this, the sensitivity of these clouds to small 

perturbations in environmental conditions has the potential to substantially influence 

climate (Lohmann 2009, Stevens et al. 2003, Mauger and Norris 2010). Consequently, it 

is important to understand the physical processes that govern these clouds in order to 

determine cloud responses to a changing climate.

Yet marine boundary layer clouds seem to dominate tropical cloud feedback 

uncertainties in climate models (Bony and Dufresne 2005, Soden and Vecchi 2011,



Brient and Bony 2012). According to the Intergovernmental Panel on Climate Change 

Fifth Assessment Report (IPCC AR5), low-cloud feedback ranges from -0.09 to +0.63 W 

m-2 °C-1 among Cloud Feedback Model Intercomparison Project (CFMIP) global 

circulation models, and positive values are largely associated with a reduction in low- 

cloud amount in a warming in climate (Boucher et al. 2013). Along those lines, Soden 

and Vecchi (2011) suggest that changes in low-cloud amount are the primary driver for 

intermodel spread in cloud feedback. Furthermore, Bony and Dufresne (2005) advocate 

that the simulation of the sensitivity of these clouds to changing environmental conditions 

constitutes further uncertainty.

With that in mind, marine boundary layer clouds are difficult to accurately represent 

in climate models (Randall et al. 2003, Stevens et al. 2005). First, the complex 

interaction of these clouds with the marine boundary layer, coupled by radiative, 

microphysical, and dynamical processes, complicates their representation in numerical 

models (Kollias et al. 2004, Lin et al. 2009, Lohmann 2009, Boucher et al. 2013). Such 

processes range from cloud droplet growth to large-scale atmospheric dynamics such as 

subsidence. In addition, the fundamental details governing marine boundary layer clouds 

are not completely understood (Bony et al. 2006, Boucher et al. 2013).

Second, because general circulation models (GCMs) operate at large grid sizes, the 

smaller scale cloud processes must be parameterized (Randall et al. 2003, Boucher et al. 

2013). By definition, a parameterization represents the effects of the small-scale 

processes in terms of the large-scale state (Randall et al. 2003). Parameterizations of 

boundary layer turbulence, convection, cloud microphysical processes, radiative transfer, 

and the resulting cloud amount must work in unison to simulate clouds in climate models
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(Wyant et al. 2009, Boucher et al. 2013, Flato et al. 2013). However, Stephens (2005) 

states that aspects of these parameterizations remain worrisome, containing levels of 

empiricism and assumptions that are hard to evaluate with current global observations. 

Thus, uncertainties in cloud parameterizations are a major factor in the overall 

uncertainty in climate model projections (Wyant et al. 2009).

1.2 Marine Stratocumulus 

The environment of marine stratocumulus clouds is typically characterized by a 

shallow, well-mixed marine boundary layer, cool sea surface temperatures (SST), and 

strong lower tropospheric stability and temperature inversion associated with large-scale 

subsidence of the descending branch of the Hadley circulation (Albrecht et al. 1988, 

Paluch and Lenschow 1991, Kollias et al. 2004, Myers and Norris 2013). Lower 

tropospheric stability (LTS) is defined as the difference between the potential 

temperature d of the free troposphere (700 hPa) and the surface (Wood and Bretherton 

2006),

LTS = 67oo - 60. (1)

Klein and Hartmann (1993) found that seasonal variations of marine low-cloud amount 

are well correlated with seasonal mean LTS, with summer months exhibiting higher LTS 

and hence greater cloud amount. Indeed, high LTS and a strong low-lying temperature 

inversion both promote a well-mixed boundary layer by coupling the stratocumulus cloud 

layer to the surface moisture supply and limiting cloud top entrainment (Bretherton and 

Wyant 1997, Wyant et al. 1997, Wood and Bretherton 2006, Bretherton and Hartmann

2009).
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With that in mind, LTS is strongly correlated to SST and the free-tropospheric 

temperature (Wood 2012). Therefore, cooler SSTs combined with large-scale subsidence 

of warm, dry air aloft generates an environment of strong LTS. This creates conditions 

for a temperature inversion above the boundary layer, which is essential for the formation 

of marine stratiform cloud decks (Paluch and Lenschow 1991). As a result, the cloud 

layer is confined to the boundary layer and is more easily coupled to the ocean moisture 

source, which helps maintain the cloud.

Once the cloud has formed, strong longwave cooling at cloud top drives convective 

instability which helps to 1) promote the temperature inversion immediately above the 

cloud top, 2) maintain a well-mixed boundary layer via the production of large buoyancy 

fluxes, and 3) couple the cloud layer to the ocean surface moisture supply (Wood 2012). 

As the cloud top cools, the affected parcels of air become negatively buoyant, resulting in 

downdrafts within the cloud, which penetrate to the surface in a mixed layer. In the 

meantime, latent heat release at cloud base via condensation results in the updraft of 

warm, moist air. This differential heating drives convection (Wallace and Hobbs 2006), 

which is necessary for the preservation of the marine stratocumulus clouds (Wood 2012).

Large eddies within the cloud topped boundary layer can drive and enhance the 

entrainment of warm, dry free tropospheric air into the cloud layer (Wood 2012).

Stronger turbulence associated with more energetic buoyancy fluxes will increase the rate 

of entrainment (Wallace and Hobbs 2006). Entrained air acts to evaporate cloud water, 

resulting in a parcel of air that is cooled and dried, which can be negatively buoyant 

(Wallace and Hobbs 2006). With that in mind, entrainment tends to deepen the boundary 

layer (Bretherton and Hartmann 2009) and thin the stratocumulus cloud layer by raising
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the lifting condensation level faster than it raises the top of the boundary layer, processes 

which may lead to cloud dissipations (Wood 2012).

1.3 Stratocumulus-to-Cumulus Transition 

Marine stratocumuli tend to exist in vast semipermanent cloud sheets over eastern 

subtropical ocean basins near the west coasts of North and South America and the 

Southern part of the African continent (Klein and Hartmann 1993, Martin et al. 1995, 

Wood 2012). Moving westward and equatorward, the cloud regime changes from 

stratocumulus to trade wind cumulus. As an example, Figure 1 shows a MODIS satellite 

image of the stratocumulus cloud regime near California, and the trade cumulus regime 

near Hawaii. This transition is climatologically important to consider (Albrecht et al. 

1995, Xiao et al. 2010) since there is a substantial contrast in cloud radiative forcing 

between these two cloud regimes due to differences in cloud cover (Karlsson et al. 2010). 

Hence, it is important to understand the factors regulating this transition in order to 

provide proper parameterizations of marine boundary layer clouds in climate models 

(Wang and Lenschow 1995).

Decoupling of the boundary layer (i.e., a separation of the cloud layer from the 

surface moisture supply) is a crucial step in the stratocumulus-to-cumulus transition 

(Bretherton and Wyant 1997). Recall that cool sea surface temperatures and high LTS 

characterize the stratocumulus regime. When the air mass associated with this regime is 

advected equatorward with the trade winds, it is exposed to warmer sea surface 

temperatures as well as weakening subsidence (Karlsson et al. 2010), resulting in 

decreased LTS and dramatically increased surface latent heat fluxes (Wyant et al. 1997, 

Wood 2012). Consequently, the boundary layer begins to deepen due to increased
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Figure 1. MODIS image of the eastern subtropical Pacific Ocean with vast stratocumulus 
cloud sheets near the California coast and patchy trade cumulus near Hawaii. Notice the 
difference in cloud cover between the two cloud regimes. (Image courtesy of NASA).
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surface buoyancy fluxes (Krueger et al. 1995), which increases buoyancy fluxes and 

turbulence levels within the cloud and enhances entrainment at cloud top (Wyant et al. 

1997, Sandu et al. 2010). When the boundary layer deepens beyond 1 km, it becomes 

increasingly difficult for longwave cooling at cloud top to sustain mixing of the 

positively buoyant entrained air over the entire depth of the boundary layer (Bretherton 

and Wyant 1997, Wood 2012). As a result, a weakly stable transition layer begins to 

form below cloud base due to increased negative buoyancy fluxes below cloud base 

associated with the downward flux of warm entrained air (Wyant et al. 1997). 

Accordingly, the stable layer separates the surface mixed layer from the cloud layer 

(Wang and Lenschow 1995, Wyant et al. 1997, Karlsson et al. 2010), cutting off the 

surface moisture supply to the cloud and preventing negatively buoyant eddies generated 

by cloud top longwave cooling from mixing through the subcloud layer (Wood 2012). 

Eventually, the stratocumulus cloud layer begins to decouple from the surface mixed 

layer and may begin to thin and dissipate (Wood 2012).

In the meantime, surface fluxes of heat and moisture cause the relative humidity 

in the surface mixed layer to increase, and cumulus clouds begin to form when the 

surface mixed layer becomes conditionally unstable (Martin et al. 1995). Strong 

convective updrafts allow the cumuli to locally penetrate the weakly stable transition 

layer, which may initially help maintain the stratocumulus layer by venting in moisture 

from the surface (Johnson et al. 1994, Wang and Lenschow 1995, Wyant et al. 1997). 

However, as the cumuli become more vigorous, they increase the entrainment of dry air 

at cloud top, eventually leading to the thinning and dissipation of the stratocumulus cloud



layer, thus exposing the underlying cumulus (Sandu et al. 2010, Wood 2012). In 

summary, Figure 2 depicts this cloud transition process (Albrecht et al. 1995).

Other processes that may affect the marine boundary layer cloud transition 

include precipitation (Bretherton and Wyant 1997, Sandu and Stevens 2011, Wood 2012) 

and cloud absorption of solar radiation (Paluch et al. 1994, Bretherton and Wyant 1997, 

Wood 2012). Marine stratocumulus clouds often precipitate in the form of drizzle (Wood 

2012). This has the effect of warming the cloud layer via latent heat release by the 

condensation of water vapor (Wallace and Hobbs 2006). As a result, turbulent mixing 

within the cloud decreases due to stabilization (Wood 2012). In addition, evaporation of 

drizzle below cloud base absorbs latent heat, and moistens and cools the subcloud layer, 

causing further stabilization and suppressing turbulence within the boundary layer 

(Paluch et al. 1994, Wallace and Hobbs 2006, Sandu and Stevens 2011). Consequently, 

cloud growth is inhibited (Wood 2012), cloud liquid water is depleted, and decoupling of 

the boundary layer may occur (Nicholls 1984, Albrecht 1989). However, Stevens et al. 

(1998) caution that drizzle should not necessarily be taken as a sign of decoupling. 

Furthermore, the cooling and moistening of the subcloud layer favors the formation of 

cumuli by promoting enhanced surface sensible heat fluxes (Feingold et al. 1996, Stevens 

et al. 1998, Sandu and Stevens 2011).

Similarly, cloud absorption of solar radiation acts to stabilize the boundary layer 

and suppress turbulence (Paluch et al. 1994). A diurnal decoupling of the boundary layer 

ensues and the cloud layer thins during the day (Bretherton and Wyant 1997). At night, 

the absence of the shortwave heating allows the cloud layer to revitalize (Wyant et al. 

1997). However, if  precipitation is present, it limits cloud reformation at night (Sandu
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Figure 2. Depiction of marine stratocumulus-to-trade wind cumulus transition (reprinted 
from Albrecht et al. 1995, ©American Meteorological Society, used with permission).



and Stevens 2011).

Although precipitation and solar radiation influence the cloud-topped marine 

boundary layer, they do not regulate or control the stratocumulus-to-cumulus transition 

(Wyant et al. 1997, Stevens et al. 1998, Sandu and Stevens 2011). In fact, eddy-resolving 

simulations show that the transition occurs mainly as a function of increased latent heat 

fluxes as the air advects over progressively warmer sea surface temperatures (Albrecht et 

al. 1995, Wyant et al. 1997, Sandu and Stevens 2011). Precipitation and absorption of 

solar radiation may accelerate the transition in cloud fraction, but do not play a 

qualitative role in the cloud transition itself (Wyant et al. 1997, Sandu and Stevens 2011).

General circulation models (GCMs) continue to have difficulty in successfully 

representing the stratocumulus and trade cumulus marine boundary layer regimes and the 

transition between them (Siebesma et al. 2004, Xiao et al. 2010, Teixeira et al. 2011). As 

an example, Teixeira et al. (2011) analyzed a number of different weather and climate 

models along the stratocumulus-to-cumulus transition from California to the Intertropical 

Convergence Zone (ITCZ) (called the GPCI transect) and compared the results to the 

International Satellite Cloud Climatology Project (ISCCP) observations. They found that 

most of these models underestimated cloud amount in the stratocumulus regime, 

overestimated cloud amount in the cumulus regime, and produced a too early occurrence 

in the transition between the two cloud regimes. A similar study conducted by Siebesma 

et al. (2004) showed like results.

The problematic model results are largely due to an incomplete understanding of 

marine boundary layer processes involved in the transition, which frustrates 

advancements toward improved parameterizations (Xiao et al. 2010). Also, intermodel
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differences arise as a result of various parameterizations used to represent marine 

boundary layer clouds in models (Siebesma et al. 2004, Teixeira et al. 2011).

Furthermore, a lack of observational data to constrain and evaluate models limits further 

progress (Paluch et al. 1994, Lewis and Wiscombe 2012). Thus, efforts are continually 

being made to acquire observational data and to improve cloud parameterizations in 

models (Lewis and Wiscombe 2012).

With this purpose in mind, a recently completed field campaign funded by the US 

Department of Energy’s Atmospheric Radiation Measurement (ARM) program deployed 

a mobile facility aboard the Horizon Lines cargo container ship merchant vessel (M/V) 

Spirit for the Marine ARM GPCI Investigation of Clouds (MAGIC) 

(http://www.arm.gov/sites/amf/mag/). The cargo ship regularly traverses the Pacific 

Ocean along a route from Los Angeles, CA, (33.7°N , 118.3°W) to Honolulu, HI 

(21.3°N , \51.9°W ) as shown in Figure 3, making a complete round trip every two weeks. 

Specifically, the deployment ran from October 2012 to October 2013. One of the main 

objectives of the MAGIC field campaign is to produce high-resolution, intraseasonal 

observational data sets of marine boundary layer clouds in order to improve the 

representation of the stratocumulus-to-cumulus transition in climate models (Lewis and 

Wiscombe 2012). In our study, we will focus on the MAGIC transect region to 

investigate albedo and precipitation susceptibility of marine boundary layer clouds.
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Pacific Ocean

Honolulu,
Hawaii

Los Angeles, 
California

Figure 3. MAGIC transect. This route traverses the stratocumulus regime near California 
and the trade cumulus regime near Hawaii, making it an ideal location to study marine 
boundary layer clouds and the stratocumulus to cumulus transition. Note, the Hawaiian 
Islands are not to scale in either distance or size. (Image courtesy of ARM).



1.4 Cloud Droplet Growth

Clouds form when air becomes supersaturated with respect to liquid water 

(Twomey 1977, Wallace and Hobbs 2006). Supersaturation is a condition in which the 

relative humidity exceeds 100%. In the atmosphere, this condition most commonly 

occurs as a moist parcel of air rises, expands, and adiabatically cools (Wallace and Hobbs

2006). As it does so, the relative humidity increases and once supersaturation is reached, 

water vapor condenses onto some of the particles in the air to form a cloud of small water 

droplets.

Essential for cloud droplet formation is the presence of cloud condensation nuclei 

(CCN), which act to decrease the supersaturation needed for a cloud droplet to form 

(Houze 1993, Wallace and Hobbs 2006). Otherwise, in perfectly clean air without CCN, 

water droplets begin to condense only when the relative humidity reaches several 

hundred percent (Rogers and Yau 1989, Hobbs 1993). Fortunately, the atmosphere 

contains aerosols that act as CCN to nucleate cloud droplets and form clouds.

Once the cloud droplet has formed, it may begin to grow depending on whether 

there is sufficient ambient water vapor, otherwise it will evaporate (Rogers and Yau 

1989). However, as long as the ambient vapor density is greater than the vapor density at 

the droplet’s surface, the cloud droplet will grow (Rogers and Yau 1989). With that in 

mind, droplets can grow by condensation in a supersaturated environment and by 

colliding and coalescing with other cloud droplets (Wallace and Hobbs 2006). In the 

early development of a cloud, the droplets are too small for collision-coalescence to take 

effect (Rogers and Yau 1989). Therefore, growth by condensation initially dominates the 

cloud droplet development (Wallace and Hobbs 2006).
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Droplet growth by condensation occurs through the diffusion of ambient water 

vapor onto the cloud droplet (Rogers and Yau 1989). During this process, the rate of the 

growth of the droplet radius is inversely proportional to the cloud droplet size (Rogers 

and Yau 1989, Wallace and Hobbs 2006). Accordingly, small droplets grow very 

rapidly. However, as the droplet increases in size, the growth rate eventually decreases. 

Once the droplet reaches about 20 |im to 30 |im in radius, collision-coalescence is likely 

to be the dominant growth process (Rogers and Yau 1989), in which large collector drops 

capture smaller cloud droplets. The number of collisions a collector drop experiences 

increases rapidly as the drop gets bigger in size, proportionate to the fourth power of the 

drop radius, so that coalescence proceeds at an accelerating pace once it begins (Rogers 

and Yau 1989). As the cloud drop grows, it becomes subject to gravitational forces and 

may leave the cloud and fall as precipitation.

1.5 Precipitation

The mechanism responsible for precipitation in marine boundary layer clouds is 

primarily coalescence among cloud droplets because growth by condensation alone to 

sizes larger than 20 |im takes too long to explain the observed precipitation growth in 

these clouds (Rogers and Yau 1989, Hobbs 1993, Jonas 1996, Wallace and Hobbs 2006, 

Wood 2012). As mentioned previously, marine boundary layer clouds often precipitate 

in the form of drizzle (Wood 2012), which by definition is a drop of water with a radius 

between 0.1 to 0.25 mm as opposed to a rain drop which has a typical radius of about 0.5 

mm (Houze 1993). Leon et al. (2008) researched the climatology of drizzle in marine 

boundary layer clouds based on one year of data from the CloudSat and CALPISO



satellites and found drizzle to occur 19%-34% of the time in regions of persistent 

subtropical marine stratocumulus.

Drizzle in marine boundary layer clouds can greatly influence cloud albedo, 

lifetime, fractional coverage, and marine boundary layer structure (Albrecht 1989, 

Kostinski 2008, Savic-Jovcic and Stevens 2008, Suzuki and Stephens 2009). More 

specifically, by limiting cloud lifetime, drizzle can decrease average cloud fraction and, 

thus, cloud albedo (Albrecht 1989, Baker 1997, Kostinski 2008). This is because drizzle 

is the primary means of removing liquid water from the marine boundary layer that could 

otherwise condense into a cloud (Comstock et al. 2004, Lenderink and Siebesma 2004, 

Leon et al. 2008).

In the case of a weakly precipitating boundary layer when only small amounts of 

drizzle are produced, the evaporation of drizzle just below cloud base can destabilize the 

subcloud layer and enhance the mixing of moisture into the cloud, thus increasing 

cloudiness (Feingold et al. 2006, Ackerman et al. 2009, Stevens and Feingold 2009). On 

the other hand, stabilization of the subcloud layer results from evaporation of heavy 

drizzle throughout the subcloud layer, which leads to moisture accumulating in the 

surface layer (Paluch and Lenschow 1991, Ackerman et al. 2009). As a result, mixing 

between the cloud and subcloud layers is inhibited and a potential decoupling of the 

cloud layer from the surface may occur (Austin et al. 1995, Feingold et al. 1996, Stevens 

et al. 1998, Comstock et al. 2004, Leon et al. 2008), which can promote cloud breakup 

(Stevens et al. 1998, Comstock et al. 2005, Wood 2012).

Because of the mentioned influences drizzle has on marine boundary layer clouds, 

the processes by which cloud droplets grow and transition to precipitation, and their
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representation in climate models, are fundamental in understanding cloud feedbacks in 

response to a changing climate (Bony and Dufresne 2005, Nakajima et al. 2010). With 

that in mind, numerical models represent the conversion of cloud water droplets to 

precipitation using parameterizations of two specific processes (Stephens and Haynes

2007). The first, called autoconversion, is the process whereby cloud droplets collide and 

coalesce to from drizzle drops (AMS Glossary of Meteorology). The second process is 

termed accretion and refers to the collection of cloud drops by colliding drizzle drops 

(AMS Glossary of Meteorology). Cloud amount and lifetime effects manifest themselves 

in GCMs by means of their representation of autoconversion and accretion (Boucher et 

al. 2013). Therefore, the manner in which parameterizations of these two processes are 

implemented in climate models can affect resulting cloud feedbacks.
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CHAPTER 2

CLOUD-AEROSOL-PRECIPITATION-INTERACTION

2.1 Aerosol Indirect Effects 

Previously mentioned was the importance of aerosols that act as CCN to activate 

cloud droplet growth. This has important implications on cloud properties as the 

background aerosol concentration, along with cloud-base vertical velocity, determines the 

cloud droplet number concentration. Then, for a given cloud liquid water content, the 

cloud droplet radius is regulated primarily by the cloud droplet number concentration 

(Abdul-Razzak and Ghan 2000, Wood 2012). Much of a cloud’s radiative properties are 

dependent on the cloud droplet size, influencing the scattering and absorption of radiation 

(Wood 2012). Furthermore, precipitation development depends on cloud droplet size as 

discussed earlier. Thus, aerosol interaction with clouds and precipitation indirectly 

influence Earth’s climate and will be reviewed in this section.

It was proposed by Twomey (1977) that at a fixed cloud liquid water content, an 

increase in CCN would act to increase cloud droplet number concentration and reduce the 

cloud droplet size. Consequently, the cloud would have a higher albedo. This is 

commonly known as the first aerosol indirect effect or the Twomey Effect. Guibert et al. 

(2003) performed an observational study of the aerosol indirect effect in marine 

stratocumulus clouds using data collected in 1997 from the second Aerosol 

Characterization Experiment (ACE-2) conducted over the Atlantic Ocean near the Canary



Islands. They mention that cloud droplet number concentration varies with the origin of 

the air mass, from approximately 30 cm-3 in pristine marine air, to more than 1000 cm-3 in 

polluted regions. Also, when anthropogenic aerosol is added to the natural aerosol 

background, generally both the CCN and cloud droplet concentration increase (Guibert et 

al. 2003). Brenguier et al. (2000) also provide observational evidence that polluted 

clouds exhibit higher reflectance of radiation than in pristine marine clouds.

In addition to increasing cloud albedo, it has been suggested that changes in 

aerosol concentrations over the oceans may alter the amount of low-level cloudiness 

through a reduction in drizzle and a subsequent increase in cloud lifetime (Albrecht et al. 

1989, Stevens and Feingold 2009). In essence, smaller cloud droplets in polluted clouds 

are less apt to initiate the collision-coalescence process and generate drizzle, thus 

reducing the cloud’s ability to produce precipitation (Lohmann and Feichter 2005, 

Rotstayn and Liu 2005, Wang and Feingold 2009). Drizzle suppression, then, prevents 

the removal of cloud liquid water and prolongs cloud lifetime (Albrecht et al. 1989).

This phenomenon is commonly referred to as the second aerosol indirect effect or the 

cloud lifetime effect. The distinguishing quality of this hypothesis is the idea that the 

macrostructure of the cloud (such as its liquid water content) is determined by the 

efficiency with which precipitation develops, which in turn is regulated in part by the 

aerosol (Stevens and Feingold 2009). Observations from the Tropical Rainfall Measuring 

Mission (TRMM) satellite validate this effect by demonstrating that smoke from burning 

vegetation can essentially shut off warm rain formation in tropical clouds (Rosenfeld 

1999, Khain et al. 2000).
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Recall that autoconversion is the dominant process determining cloud lifetime 

effects of aerosols in global climate models (Wang et al. 2012, Boucher et al. 2013). 

Autoconversion is sensitive to and inversely dependent on the cloud droplet number 

concentration (Feingold et al. 2013), and must be sufficiently active in order for warm 

clouds to precipitate (Wang et al. 2012). On the other hand, accretion is insensitive to the 

cloud droplet number concentration (Feingold et al. 2013), and the resulting precipitation 

rate is strongly dependent upon the accretion process (Wood 2005). Therefore, as Wang 

et al. (2012) state, the relative balance of autoconversion and accretion is critical for 

cloud lifetime effects of aerosols. With that in mind, the IPCC AR5 notes that GCMs 

tend to overestimate the magnitude of the aerosol effect on cloud properties because of a 

heavy reliance on the autoconversion rate, suggesting a too direct connection between the 

aerosol amount and cloud properties (Boucher et al. 2013). Indeed, cloud radiative 

forcings in GCMs have been found to be very sensitive to the autoconversion 

parameterization (Boucher et al. 2013).

2.2 Albedo Susceptibility 

Albedo susceptibility is a concept used to better understand the first aerosol 

indirect effect on clouds. Specifically, it gauges the sensitivity of cloud albedo to 

perturbations in aerosol concentration. Platnick and Twomey (1994) define albedo 

susceptibility as

S = —  (2)
dNd

which represents the change in albedo A to the change in cloud droplet number 

concentration Nd assuming a constant liquid water path. It is important to recall that Nd
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is a function of the aerosol concentration. In their study, Platnick and Twomey (1994) 

used satellite cloud retrievals to compare the albedo susceptibility of ship track regions to 

out-of-track regions. In general, they found that clouds in the ship track regions had 

lower albedo susceptibility associated with higher cloud droplet number concentrations 

and smaller cloud droplet sizes. This would imply that the susceptibility has been 

realized, meaning that the clouds have already been perturbed and cannot be perturbed 

any further, thus the low susceptibility. Conversely, the out-of-track cloud regions 

contained more pristine air and hence smaller cloud droplet number concentrations, larger 

cloud droplet sizes, and resulting larger albedo susceptibility. In other words, clouds with 

high Nd are less sensitive to further perturbations in aerosol concentration whereas

clouds in pristine environments characterized with low Nd are much more susceptible to

changes in aerosol concentration.

Painemal and Minnis (2012) developed an alternative albedo susceptibility 

definition called the relative albedo susceptibility defined as

_ _ dA _ dA (3)
^  ~ ~d\nN~d ' U

Nd

This is a useful metric as it takes into account the spatial variability and fractional 

changes in N d. Furthermore, the authors point out that this definition ameliorates biases

in N d. For these reasons, we employ equation (3) in our study. All other references to

albedo susceptibility throughout the remainder of this paper are in reference to this 

definition.
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Taking the linear regression of A  to ln N d at a given liquid water path (LWP) gives 

the albedo susceptibility. From Painemal and Minnis (2012), the dependence of the 

cloud albedo A  on Nd is expressed as

A = a LWP ' N d ) + @LWP (4)

where a LWP is the slope and (iLWP the intercept of the linear regression within a given

LWP increment. Thus, the albedo susceptibility as defined in equation (3) can be 

rewritten as

SR = a LWP• (5)

Using this method, Painemal and Minnis show that the linear relation between A  and 

ln N d yields correlation coefficients higher than 0.75.

With that in mind, Painemal and Minnis (2012) investigated the albedo 

susceptibility of offshore and coastal marine stratocumulus clouds for the 

climatologically significant stratocumulus regions near the SE Pacific, California, and 

Africa. Figure 4 shows the results from their study, with SR values on the y-axis and 

LWP bins on the x-axis. For the coastal clouds, the albedo susceptibility initially 

increases linearly with LWP in all three regions. After reaching a maximum at a LWP 

near 50 g m-2, the albedo susceptibility remains constant or slightly decreases. The 

offshore clouds, on the other hand, exhibit albedo susceptibility that linearly increases at 

all LWP values. To explain this, the authors suggest that the albedo susceptibility is 

modulated by changes in cloud optical thickness. Because of their proximity to abundant 

continental aerosol, the coastal clouds reach a greater optical thickness (and hence 

albedo) such that a peak in the albedo susceptibility is reached. Conversely, the offshore 

clouds reside in cleaner air such that the cloud optical depth remains smaller, and hence
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Figure 4. Relative albedo susceptibility SR (black symbols) for coastal and offshore 
marine stratocumulus clouds (reprinted from Painemal and Minnis 2012, © 2012 by the 
American Geophysical Union, used with permission).



the albedo susceptibility continues to linearly increase with LWP. Naturally, clouds in a 

pristine environment remain more susceptible to changes in cloud droplet number 

concentration.

2.3 Precipitation Susceptibility 

An analogous concept is precipitation susceptibility, which gauges the sensitivity 

of precipitation to changes in cloud droplet number concentration (second aerosol 

indirect effect). It can be used to identify which cloud types are most susceptible to 

aerosol influences (Sorooshian et al. 2009). It is mathematically defined as

So - (6) 
d  In Nd

whereR  is the precipitation rate (Sorooshian et al. 2009). The minus sign is indicative of 

the fact that precipitation rate is inversely proportional to the cloud droplet number 

concentration. For instance, a small cloud droplet number concentration would entail a 

higher sensitivity of precipitation to changes in aerosol concentration at a given 

precipitation rate.

Similar to albedo susceptibility, precipitation susceptibility is calculated by taking 

the linear regression of the two variables of interest, in this case lnR to ln N d, at fixed

LWP intervals. Figure 5 gives an example of So at various LWP values (Sorooshian et

al. 2009). Based upon this figure, the authors suggest three different susceptibility 

regimes. The first occurs at low LWP wherein the precipitation susceptibility of the 

cloud is small due to the fact that there is not enough liquid water to generate 

precipitation. The second regime occurs at intermediate values of LWP where the cloud 

is most susceptible to aerosol perturbations. The third regime occurs at high LWP values
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Figure 5. Precipitation susceptibility (reprinted from Sorooshian et al. 2009, © 2009 by 
the American Geophysical Union, used with permission).



in which the precipitation process is already sufficient, thus rendering any additional 

aerosol perturbation to have no effect on the precipitation process.

Recent observational and modeling studies have been performed to determine the 

controlling factors of precipitation susceptibility of warm clouds to changes in aerosol 

concentration (Sorooshian et al. 2009, Jiang et al. 2010, Feingold et al. 2013). It has been 

suggested that there exists a transition from an autoconversion regime to an accretion 

regime (Jiang et al. 2010, Feingold et al. 2013). Environments dominated by 

autoconversion are very susceptible to aerosol perturbations while environments 

dominated by accretion exhibit lower sensitivity to these perturbations. This is 

manifested by the non-monotonic nature of the precipitation susceptibility as shown in 

Figure 5. Where this transition occurs between autoconversion and accretion (the 

inflection point in the graph) may be a factor of environmental conditions. For example, 

Feingold et al. (2013) suggest that the time available for collision-coalescence (tc) plays

an important role in determining whether rain production is dominated by accretion or 

autoconversion, and therefore the extent to which the clouds are likely to be susceptible 

to aerosol perturbations. Factors affecting tc include aerosol concentration, cloud depth,

and updraft velocity. Indeed, in their study, Feingold et al. (2013) show that the 

transition between autoconversion and accretion occurs at higher LWP given a greater 

aerosol concentration. In addition, they show that decreasing updraft velocity, which 

decreases the cloud droplet number concentration and allows precipitation formation at 

smaller LWP, shifts the inflection point to smaller LWP.

An additional study by Terai et al. (2012) investigated the precipitation 

susceptibility of marine stratocumulus as a function of cloud thickness. In particular,
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they examine the precipitation susceptibility of all clouds, precipitating or not. By so 

doing they attempt to quantify the effects of aerosols on the mean precipitation rates of 

all clouds of a given thickness. As a result, they found that the precipitation 

susceptibility of marine stratocumulus clouds decreases with increasing cloud thickness. 

With that in mind, the study points out that precipitation rate increases strongly with 

cloud thickness, and that the ability of aerosols to suppress precipitation is stronger in 

clouds that produces only weak precipitation. Thus, they conclude that aerosols appear to 

have a larger effect on thinner clouds than they do on thicker clouds. Similar results were 

found when they examined precipitation susceptibility as a function of LWP, with 

susceptibility decreasing as LWP increased. In contrast, Sorooshian et al. (2009) found 

little change in the precipitation susceptibility at LWP values (0 to 250 g m-2) compared 

to Terai et al. (2012), who suggested that this difference is attributable to whether or not 

nonprecipitating clouds are included in the susceptibility calculation. Lastly, Terai et al. 

(2012) suggest that for thinner clouds, the reduction in precipitation susceptibility with 

increasing cloud thickness can be understood as a transition from autoconversion- 

dominated precipitation to accretion-dominated precipitation.

Also important to consider is the susceptibility of aerosol concentrations to 

precipitation through wet scavenging (Wood 2006, Grandey et al. 2014). As stated by 

Wood (2006), the main loss mechanism of CCN in the marine boundary layer is through 

the process of cloud and drizzle drops coalescing with each other, wherein each 

coalescence event effectively removes a single CCN from the marine boundary layer. 

Thus, aerosol concentration can be regulated by precipitation variability, which in turn 

may influence the precipitation susceptibility of the cloud. Indeed, Wood (2006) found
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that a precipitation rate as little as 1 mm d-1 is sufficient to drive down the CCN 

concentration by a factor of three over the remote ocean. In addition, Grandey et al. 

(2014) observed that wet scavenging of aerosols by precipitation leads to a negative 

relationship between precipitation rate and aerosol concentration (i.e., as precipitation 

rate increases, aerosol concentration decreases as a result of scavenging). Determining 

the causality of whether precipitation susceptibility is driven by aerosol susceptibility to 

precipitation or to environmental or meteorological conditions is a difficult task and 

needs further study.
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CHAPTER 3

DATA AND METHODS

3.1 A-Train

To reiterate, the objective of this study is to learn about the processes marine 

boundary layer clouds go through in their lifecycles as well as what controls the rate at 

which these processes happen. The albedo and precipitation susceptibility, then, are 

concepts to help us gain this understanding. To do this, we employ satellite data from 

NASA’s A-Train, which is a constellation of satellites in close formation. The A-Train 

stands for “afternoon train” since the satellites cross the equator around 1:30 PM local 

time each day. This unique suite of instrumentation provides a synergistic view of 

clouds. Specifically, data from the A-Train’s CloudSat and Aqua are used in this study.

CloudSat was launched 28 April 2006 with the objective to provide the necessary 

observations to advance understanding of cloud abundance, distribution, structure, and 

radiative properties (Stephens et al. 2008). Onboard CloudSat is the Cloud Profiling 

Radar (CPR), which operates at 94 GHz (~3 mm wavelength). It is a nadir pointing radar 

with an along-track resolution of 1.7 km and a cross-track resolution of 1.4 km. The 

minimum detectible signal is around -29 dBZ with a vertical range gate resolution of 480 

m, which is determined by the pulse width. However, the data are oversampled to 

produce 240 m range gate spacing. The CPR identifies significant radar echoes from



hydrometeors in order to provide radar reflectivity estimates, which are used for our 

study.

Aqua was launched 4 May 2002, making it the first satellite comprising the 

current A-Train constellation. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument onboard Aqua acquires data in thirty-six spectral bands ranging 

from 0.4 |im to 14.4 |im. In this study, we utilize measurements from the MODIS-AUX 

data product, which contains a subset of ancillary MODIS radiance and cloud mask data 

that overlaps and surrounds each CloudSat CPR footprint (Partain 2007). Specifically 

used are the 0.55 |im and 2.1 |im channel reflectances in order to constrain the retrieval 

algorithm, which will be discussed in the next section.

3.2 Retrieval Algorithm

A new cloud retrieval algorithm has been in development that exploits the 

synergy of MODIS and CloudSat measurements. Our baseline assumption is that any 

detected liquid phase cloudy volume is potentially composed of two modes of 

hydrometeors -  clouds (small hydrometeors) and precipitation (large hydrometeors).

Since accurate retrievals depend on a correct particle size distribution (PSD) shape (Mace

2010), we assume a bimodal PSD in our retrieval to simultaneously characterize the 

cloud and precipitation modes.

The satellite measurements contain independent but tangled information about the 

cloud and precipitation hydrometeors that may coexist within a cloudy profile. For 

example, the CloudSat CPR is most sensitive to the largest hydrometeors because the 

radar reflectivity is dependent on the sixth power of the particle size. Therefore, when 

precipitation is present, CloudSat will respond primarily to the precipitation sized
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hydrometeors. Otherwise, in the absence of precipitation, the radar will interact primarily 

with the cloud droplets that characterize the cloud mode. Additionally, the MODIS 

visible reflectance is sensitive to and provides information primarily about cloud 

properties, while the MODIS near-infrared reflectance supplies some information about 

precipitation properties. Further still, a new measurement developed by Simone Tanelli 

from NASA Jet Propulsion Laboratory gives 94 GHz brightness temperature derived 

from CloudSat’s CPR noise variations (see West 2014 for a detailed description of this 

product). Analogous to a passive microwave measurement, which responds to a cloud’s 

water path, the brightness temperature is primarily sensitive to the cloud mode when 

cloud water dominates precipitation water, but provides a small contribution from the 

precipitation mode when precipitation is present. It is well known that microwave 

radiometry is a critical passive constraint for retrievals of liquid cloud properties (Frisch 

et al. 1998). In summary, this array of measurements allows us to simultaneously extract 

information for both cloud and precipitation sized hydrometeors.

The retrieval algorithm utilizes an optimal estimation framework (Rodgers 2000) 

to calculate an estimated state of the atmosphere that matches the actual state of the 

atmosphere as inferred from the mentioned measurements using a suite of forward 

models that link measurements and atmospheric state. Doing so allows us to depict and 

understand cloud properties as accurately as possible. However, by assuming that each 

volume within the column can have cloud and precipitation droplet modes, there are 

typically many degrees of freedom to the solution. With that in mind, distinctly different 

but physically reasonable atmospheric states can often be found that reproduce the 

measurements. Because the optimal estimation algorithm is not capable of choosing
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among multiple solutions, it is critical that the initial or first guess state be reasonably 

close to what is considered to be the most physically reasonable and nearly final solution.

A first guess algorithm within the retrieval is responsible for generating a set of 

PSD parameters used to ultimately calculate cloud properties in the optimal estimation 

algorithm. We assume a modified gamma particle size distribution (a three-parameter 

gamma distribution) given by

N  D a DN  (D) = - l _  exp(- — ) (7)
x  x

where N (D) has units of cm-3 cm-1 and represents the number of droplets per unit 

volume per unit interval of droplet size. The parameters Nx (cm-3 cm-1) and Lx (cm) are 

often known as the intercept and slope, respectively, and a(unitless) is often referred to 

as the shape parameter of the distribution (Petty and Huang 2011). It is these parameters 

that are calculated within the first guess framework. The variable D has units of length, 

as it represents the droplet size. Note that equation (7) is a general representation of the 

PSD we use. For our bimodal assumption, we add the small mode and large mode 

representations of equation (7) to get the combined mode PSD such that 

N  (D) = N s (D) + N  (D ).

In order to solve for Nx and Lx, we need an estimated liquid water content

(LWC) and cloud droplet number concentration. We start by using a method by Lebsock 

et al. (2011), wherein we assume that two-thirds of the LWP fraction is due to cloud and 

one-third due to precipitation. Next, we estimate a column-averaged modified gamma 

PSD that is consistent with an estimated column visible optical depth and liquid water 

path. Using the estimated PSD parameters from the column-averaged PSD and by taking
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the first moment of the PSD, we calculate a column Nd, which is assumed to remain

constant throughout the cloud layer (Miles et al. 2000). Then, using an approach by 

Frisch et al. (1998), we derive an initial estimate of the LWC profile, denoted as LWCF. 

We then assume that the actual estimated LWC follows an adiabatic shape within the 

cloud layer, which we call LWCE. Finally, we have an estimated Nd and LWC to

calculate the parameters of the PSD.

Using the PSD parameters, we first calculate the cloud mode radar reflectivity Zest 

and compare it to the measured CloudSat value Zobs using a forward model described by 

Posselt and Mace (2014). Then, we redistribute our estimated LWC by taking water from 

LWCe where Zest > Zobs to where LWCE is less than LWCF until Zest < Zobs. Next, we 

take the remaining radar reflectivity values, if  present, along with the one-third LWP 

fraction following Lebsock et al. (2011) and calculate a second modified gamma 

distribution indicative of the precipitation mode of the bimodal PSD. Following this 

procedure, we produce an estimated state to describe the cloud and precipitation 

properties.

Radiative transfer forward models link our estimated measurements to the actual 

measurements from the satellites. For instance, the resulting PSD parameters from the 

first guess algorithm are input into a radiative model to derive reflectances at the MODIS 

channels (Christi and Gabriel 2003), which operates on the single scattering properties of 

the hydrometeors using Mie theory (Bohren and Huffman 1998). These calculated 

reflectances based upon the first guess can then be compared to the measured reflectance 

values from MODIS. Similarly, a microwave model (Kummerow et al. 1996 with 

modification and improvements described by Lebsock et al. 2011) is used to calculate the
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94 GHz brightness temperature, which can be compared to the measured CloudSat value. 

If the calculated values do not match the measured values to within a 10% fractional 

difference, then inputs (LWP and optical depth) to the first guess are adjusted. For 

example, if  the calculated reflectance is higher than the measured reflectance, then the 

optical depth will be decreased by 10%. Once the fractional difference between our 

calculations and the observed measurements is less than or equal to 10%, or until the 

number of iterations reaches 10, the calculations that are closest to the measurements are 

stored and used.

An equivalent retrieval algorithm has also been developed to employ data from 

ARM instruments, which are ground based. We implemented this version of the retrieval 

using data from the MAGIC field campaign. Analogous measurements used to constrain 

this retrieval come from the following instruments. First, the Marine W-band (95 GHz) 

ARM Cloud Radar (MWACR) is a zenith pointing radar that provides radar reflectivity 

estimates. The MWACR is placed on a stabilizing table on the ship in order to ensure 

that the radar consistently remains vertically pointed, thus counteracting the rolling and 

pitching movements of the ship. In order to mitigate the effects of the ship’s heave 

motion on the radar Doppler velocity measurements, we only use profiles in which the 

ship’s heave velocity is zero. Second, the microwave radiometer (MWR), detects the 

microwave emissions of vapor and liquid water, providing brightness temperatures at 

23.8 and 31.4 GHz. Third, the portable radiation package (PRP), provides shortwave 

broadband total downwelling irradiance.
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3.3 Radiative Parameterization

An important component of the forward models used to compute the reflectances 

and shortwave fluxes is the calculation of the radiative properties of the cloud profile. 

There are three specific variables needed. They are the cloud optical depth t , the 

asymmetry parameter g, and the single scatter albedo o . Each of these variables will be 

described in the subsequent paragraphs, as well as the need for a radiative 

parameterization.

To begin, the basic interaction of radiation with clouds is determined by the 

wavelength of radiation and the size of the particle with which the radiation interacts 

(Stephens 1994, Bohren and Clothiaux 2006, Pretty 2006, Wallace and Hobbs 2006).

This relationship, described as the particle size parameter, is defined as

nD / q \

x =T "  <8)

where D is the diameter of a spherical particle, and A is the wavelength of radiation. This 

is a useful metric as it helps to distinguish which radiative transfer theory to use (Petty 

2006). For instance, given a particle size that is much smaller than the wavelength of 

radiation, Rayleigh theory will be used to describe radiative transfer in the atmosphere.

In the case of sunlight interacting with cloud droplets, Mie scattering theory is used. For 

more examples, see Figure 6, which displays various particle-to-wavelength relationships 

along with the respective theories used to describe their interactions (Petty 2006).

Cloud optical thickness is a measurement that describes the attenuation of 

radiation through a cloud layer. It is expressed as

top

(9)
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where ztop is cloud top, zbot is cloud base, Pe is the extinction coefficient, and dz is an

increment of vertical depth (Petty 2006). The extinction coefficient represents the 

amount of radiation that is attenuated due to absorption, scattering, or both as it travels 

through the cloud. It can be calculated by taking the second moment of the PSD, shown 

here with the solution using equation (7) as the PSD

fa = f  N (D)Qe( D )n ( - )2dD = N xL 3x - T (a  + 3). (10)
0 2 2

The extinction efficiency, Qe, is the ratio of a particle’s extinction cross-section (the area

a single particle attenuates radiation) to its geometric cross-section (Petty 2006). The 

value of the extinction efficiency depends on the refractive index of the particle, the 

wavelength of radiation, and the size and shape of the particle (Stephens 1994). For 

spherical cloud droplets interacting with visible radiation (i.e., sunlight)Qe » 2 (Petty

2006), which is an important assumption we make in our parameterization.

The single scatter albedo characterizes the relative importance of scattering and 

absorption of radiation through a cloud layer (Petty 2006, Wallace and Hobbs 2006). It is 

given by

w = = &  (11)
A. Ps + Pa

where f)s is the scattering coefficient and (5a is the absorption coefficient (Petty 2006), both

of which have similar definitions to the extinction coefficient. The single scatter albedo 

ranges from 0 to 1, where 0 indicates complete absorption of radiation and 1 indicates 

complete scattering of radiation. However, as Bohren (1987) states, these limits in the 

single scatter albedo are idealizations never realized in practice. In the case of cloud
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droplets interacting with sunlight, we can ignore absorption and set the single scatter 

albedo to unity without making great errors (Bohren 1987). Implicit in the single scatter 

albedo for clouds is the refractive index of water. The imaginary component of the 

refractive index indicates the degree to which clouds absorb radiation and is dependent 

on the wavelength of radiation. At near-IR and IR wavelengths, liquid water is more 

absorbing, implying an increase in the imaginary component of the refractive index, 

which will ultimately result in a single scatter albedo less than unity because more 

radiation is being absorbed by the cloud water droplets. Refractive index values used in 

this study with their accompanying references are shown in Table 1.

The asymmetry parameter gauges the direction of scattered radiation. It ranges 

from -1 indicating complete back-scattered radiation to 1 for complete forward scattered 

radiation. We calculate the asymmetry parameter using the following equation

where Qs is the scattering coefficient and g(D) gives the average cos0 scattering direction

for a large number of scatter photons (Petty 2006). For solar wavelengths and cloud 

droplets, the asymmetry parameter is quasi-constant with an approximate value of 0.85 

(Stephens 1994), which implies that cloud droplets are strongly forward scattering. 

Physically, this means a photon interacting with a cloud droplet is more likely to be 

scattered into a direction that is not too different from its previous direction of travel, 

more likely reaching the cloud base than leaving at cloud top (Petty 2006).

Mie scattering theory is used to calculate the radiative parameters above for cloud 

droplets at the 0.55 |im and 2.1 |im MODIS reflectance channels (see Figure 6 for the 

scattering regime at these wavelengths for cloud droplets). Plots of the extinction
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Table 1. Refractive indices of water used in the calculation of the single scattering 
properties of the cloud droplets for the single wavelengths 0.55 and 2.1 |im. Note, in 
order to avoid the potential peaks in energy described by Mie theory, it is better to 
consider a wavelength bandwidth to calculate the radiative properties of cloud droplets.

Wavelength (fim ) Refractive Index Reference

0.55 1.333 + i1.96e -  9 Hale and Querry (1973)

2.1 1.291 + i4.403e -  4 Segelstein (1981)
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efficiency, co-albedo (1 - a ) ,  and asymmetry parameter as calculated by Mie theory at the 

0.55 |im and 2.1 |im wavelengths are shown in Figure 7 and Figure 8, respectively, as a 

function of the particle size parameter. Immediately noticeable is the difference in the 

co-abledo between the wavelengths for size parameters in excess of about 50. As 

mentioned earlier, this is due to the fact that liquid water is more absorbing of radiation at 

near-IR wavelengths such as the 2.1 |im channel. On the other hand, the extinction 

efficiency and asymmetry parameter exhibit little change between the two wavelengths.

Since Mie scattering is computationally expensive to calculate, it is necessary and 

convenient to produce a parameterization (Slingo 1989). Parameterizations for the 

shortwave radiative properties of clouds have long been developed and implemented 

(Slingo 1989, Hu and Stamnes 1993). However, most of these parameterizations assume 

a single mode particle size distribution and are valid for only a small range of cloud 

droplet sizes and spectral ranges.

Because we assume a bimodal PSD in our retrieval algorithm, we need to create a 

new radiative parameterization to account for that. As Slingo (1989) demonstrated, the 

radiative properties of water clouds can be parameterized as a function of liquid water 

path and effective radius. The effective radius is defined by taking the third moment of 

the PSD to the second moment as follows

The effective radius is a cross-sectional area-weighted mean size, which makes it 

applicable for radiative applications. With that in mind, Slingo (1989) developed linear

re
Lx r ( a  + 4) 
2T(a + 3)

(13)
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Figure 7. The extinction efficiency (top), co-albedo (middle), and asymmetry parameter 
(bottom) plotted as a function of the particle size parameter at the 0.55 |im wavelength.
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parameterizations for t , m, and g  for a narrow effective radius range from 4.2 to 16.6 |im 

and at a spectral range from 0.25 to 4.0 |im. Though these parameterizations are for 

single mode distributions, they serve as a validation tool to compare against the small 

mode parameterization we develop.

Hu and Stamnes (1993), on the other hand, point out that for larger drop radius 

sizes (> 12  |im), a linear parameterization will no longer be successful for the single 

scatter albedo and asymmetry parameter. For this reason, they use a nonlinear least- 

square regression for their parameterizations. For our radiative parameterization, we use 

a linear regression for the extinction coefficient after Slingo (1989) and a nonlinear 

regression for the single scatter albedo and asymmetry parameter following Hu and 

Stamnes (1993).

The basis for the parameterization we have developed is as follows. First, we 

make a parameterization forr ,a ,  and g for each size mode, one for the cloud mode and 

one for precipitation. Second, we combine the two parameterizations to create a single 

parameterization to simultaneously represent the radiative properties of both modes as a 

combined effect. Because of the linear nature of the extinction coefficient, the small 

mode and large mode parameterizations can simply be added to form the combined mode 

parameterization. However, for the asymmetry parameter and the single scatter albedo, 

we weight the small and large mode parameterizations with their respective extinction 

coefficients and then add the two parameterizations for the combined mode. The 

mathematical representation of the parameterizations is shown in Table 2.

In order to create the parameterizations, it is first necessary to make the 

calculations of r ,a ,  and g at the wavelength channels mentioned earlier. This is done
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Table 2. Mathematical representation of the small (cloud), large (precipitation), and 
combined mode (both) of the radiative parameterizations. Note, the subscripts s, l, and b 
refer to the respective modes.

Small Mode Large Mode Combined Mode

b
Pe,s = lwcs (as + — ) + const s

re,s

b
f5e l = lwcl (al + — ) + constl

re,l
Pe.b = Pe.s + Pe,l

gs = gsore f !l + gs 2 = g o g + 2

fie,s . fte,l 
gb = r, gs + r gl

Pe,b Pe,b

= 1 -  (®So C  + 2) T  = 1 -  T T  + T  2)
ffie,s , fte,la h = —-  +— -  a l

' Pe,b S Pe,b ‘



using the bhmie code developed by Bohren and Huffman (1998), which uses Mie 

scattering theory to compute Qe(D), Qs(D), and g(D) inherent in equations (10), (11), and

(12). The same equations are then numerically integrated with an IDL routine that 

utilizes a modified Romberg quadrature method.

This process is done for each individual mode as well as for the combined mode. 

The results are then used to create the radiative parameterizations as a function of radius 

and LWC. The linear regression for the extinction coefficient was performed in IDL 

using the regress function, which implements a multiple linear regression fit. The 

nonlinear regression for the single scatter albedo and asymmetry parameter was 

performed using IDL’s comfit function, which utilizes a gradient-expansion least-squares 

method to return a nonlinear fit of the form y = aoxai + a2. At the 0.55 |im wavelength,

the absorption of radiation by a cloud droplet is negligible, and so scattering is the 

dominant process (Slingo 1989, Petty 2006). Therefore, the single scatter albedo at this 

wavelength is set to unity. Table 3 lists the coefficients for the resulting 

parameterizations. Note, all units are in cgs.

Scatter plots comparing our parameterization (y-axis) vs. the calculated values 

from the bhmie code (x-axis) are shown in Figures 9 and 10. As expected, the extinction 

does not vary much between the two different wavelengths. This is because the 

extinction coefficient is only weakly dependent on the wavelength within the calculated 

spectral band (Slingo and Schrecker 1982). The co-albedo (coa) is shown in the plots 

instead of the single scatter albedo. At wavelengths shorter than 1 |im, absorption is 

negligible, whereas beyond this wavelength, there are distinct absorption bands correlated 

to the bands of water vapor (Slingo and Schrecker 1982). Thus only the near-IR bands
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Table 3. Values of the coefficients from Table 2 of the radiative parameterizations for the 
small and large modes at the MODIS channel wavelengths. Note that the optical depth is 
obtained by multiplying extinction by the cloud thickness as shown in equation (9)

Extinction Parameterization

Channel Wavelength
( /im ) Small Mode Large Mode

as = -8.903e -  6 at = 5.575e -  6

0.55 bs = 1.500

oo
.5=

const s = 1.714 e -1 2 constt = 8.579 -1 0
as = -9.005e -  6 al = 5.571e -  6

2.1 bs = 1.500

oo
.51=

-o'

const s = 1.559e -1 2 constt = 8.595e -1 0
Asymmetry Parameter Parameterization

gso = 0.769 &  = 0.471
0.55

inm
.00.II g ii 0. 0 to to
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Asym m etry Param eter: P aram eteriza tion  vs Calculated Values a t 0 .55  um wavelength
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Extinction ( k m -1 ) :  Param eteriza tion  vs Calculated Values a t 0 .55  um wavelength
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C o m b ined  M ode
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Figure 9. Scatter plots comparing our new parameterization at each mode to the 
calculated values for the asymmetry parameter (top) and extinction (bottom) at the 0.55 
|im wavelength.
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C o-A lbedo : P aram eterization vs Calculated Values a t 2.1 um  wavelength
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Figure 10. Same as in Figure 9 except for the 2.1 |im wavelength.



for the co-albedo are shown in the mentioned figures. Note the nonlinear nature of the 

co-albedo as well as the asymmetry parameter.

Comparisons of our small mode parameterization to Slingo’s parameterization are 

shown in Figures 11 and 12. In order to make this comparison, it was necessary to use 

only the effective radius range for which Slingo’s parameterization is valid. Notice that 

the optical depth matches well at each wavelength. This is because the optical depth is 

well represented by a linear parameterization. On the other hand, there are noticeable 

differences in the plots comparing the single scatter albedo and asymmetry parameter. 

Perhaps the reason for this is due to the fact that our parameterization is nonlinear and 

Slingo’s parameterization is linear.
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Small Mode vs Slingo Param eteriza tion  at 0 .5 5  um Wavelength

1 re v o r

Optical Depth

T re vo r

Figure 11. Scatter plot comparing our small mode parameterization to Slingo’s 
parameterization at the 0.55 |im wavelength.



50

Small Mode vs Slingo Param eterization  at 2.1 um Wavelength

I re vo r

T revor

Optical Depth

T revo r

Figure 12. Same as in Figure 11 except for the 2.1 |im wavelength.



CHAPTER 4

RESULTS

4.1 MAGIC Transect Region Using A-Train Data 

Once the PSD parameters have been generated, cloud albedo can be determined 

by using a two-stream approximation based upon Bohren (1987)

A = J ^ T . (14)
1 + (1 -  g)T

According to Bohren, this equation is reasonable for diffuse radiation such as that 

scattered by clouds. However, for a direct source of radiation, there is a factor ofV3 that 

should be included in the equation as explained by Meador and Weaver (1980). For our 

research, we used equation (14) since previous studies of albedo susceptibility (i.e., 

Platnick and Twomey 1994, Painemal and Minnis 2012) reference the same equation.

We calculate the albedo values at the 0.55 |im wavelength. The variables t  and g  are 

calculated based upon the radiative parameterization as explained in the previous section.

The calculated albedo, precipitation rates, and cloud droplet number 

concentrations were binned at every 40 g m-2 from 0 to 400 g m-2 LWP. Figure 13 shows 

the linear regressions of A to ln Nd at each LWP bin for the MAGIC region using A-Train

data during June, July, and August (JJA) for the year 2008. Recall that the slope of the 

linear regression represents the albedo susceptibility, which is shown in Figure 14 using 

the results from Figure 13. Error bars for the susceptibilities are obtained by taking the 1-
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In Nd vs A lb e d o  ( 4 0 g / m 2  LWP b in s )  f o r  MAGIC R e g io n  2 0 0 8 J J A  N u m  P r o f i le s =  12 2 6 7
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Figure 13. Linear regression of A to ln Nd at 40 g m-2 LWP bins for the MAGIC region on 
JJA 2008 using A-Train data.
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2008JJA  MAGIC Region 

num ber of profiles =  1 2 26 7

LWP (g/m 2)

Figure 14. The resulting albedo susceptibility plot from Figure 13. Each data point 
represents the slope from the linear regression of A to ln Nd at the respective LWP bins.



sigma uncertainty estimates of the slopes of the linear regression, which is determined 

using the linfit function in IDL. Notice from Figure 14 that the lowest LWP bin exhibits 

the lowest susceptibility, and that as LWP increases to 360 g m-2, the susceptibility values 

level off. The study from Painemal and Minnis (2012) shows similar behavior for the 

albedo susceptibility of clouds near the coast, which are regions characterized by higher 

aerosol concentrations (see Figure 4). According to equation (14), the albedo 

susceptibility peaks at an optical depth around 13.33 for a constant asymmetry parameter 

0.85, with a corresponding LWP path that depends on the cloud droplet effective radius 

(Painemal and Minnis 2012). This suggests that an inflection point has been reached 

with the cloud optical depth and the susceptibility remains constant or slightly decreases 

beyond this point.

Similarly, Figures 15 and 16 show the linear regressions at each LWP bin for the 

precipitation rate in the MAGIC region during JJA 2008 and the resulting precipitation 

susceptibility, respectively. Notice in Figure 16 that at low LWP (0-80 g m-2), the slopes 

of the linear regression are small. Then, as the LWP increases, the precipitation 

susceptibility also increases until reaching a maximum and then decreases again. This 

pattern is similar to that produced by Sorooshian et al. (2009), wherein they suggested 

three different precipitation susceptibility regimes.

The next plots are unique. They show the correlation between the albedo and 

precipitation susceptibilities between two different seasons. Figure 17 displays the 

susceptibilities for the winter months (JFM), and Figure 18 for the summer months (JJA). 

What is immediately noticeable in the two figures is the difference in the precipitation 

susceptibility between the two seasons. There is an obvious inflection point in the
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In Nd vs In P rec ip  Rate ( 4 0 g /m 2  LWP b in s ) fo r  MAGIC Region 2008JJA  Num  P ro file s  =  12 2 6 7
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Figure 15. Linear regression of In 7? (precipitation rate or prate) to In Nd at 40 g m'2 LWP 
bins for the MAGIC region on JJA 2008 using A-Train data.
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2 0 0 8 J J A  MAGIC Region  
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LWP (g /m Z)
Figure 16. The resulting precipitation susceptibility plot from Figure 15. Each data point 
represents the slope from the linear regression of ln R to ln Nd at the respective LWP bins.
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Figure 17. Relationship between albedo and precipitation susceptibility for the MAGIC 
region during JFM 2008 using A-Train data.
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Figure 18. Same as in Figure 17 except for JJA 2008.



precipitation susceptibility in winter. The histograms show that in the winter, the mean 

cloud droplet number concentration is about 35 cm-3, whereas for the summer months, 

the mean is much higher at roughly 190 cm-3. It was mentioned earlier that clouds with 

higher cloud droplet number concentrations are more susceptible to precipitation 

suppression (2nd aerosol indirect effect). Therefore, it may be that in the winter months, 

the precipitation processes are more efficient due to the lower cloud droplet number 

concentration. This may explain why we see the inflection point in the precipitation 

susceptibility in the winter as the precipitation changes from an autoconversion regime at 

low LWP to an accretion regime at high LWP (Feingold et al. 2013). For the summer 

months, the higher droplet concentration may have suppressed the precipitation process 

such that the autoconversion regime is predominant. The albedo susceptibility, on the 

other hand, tends to exhibit more of a monotonic behavior, and does not change much 

between seasons.

Another approach to investigate the possible controls on the cloud albedo and 

precipitation susceptibility is to explore large-scale meteorological effects that may 

influence marine boundary layer cloud properties such as cloud droplet number 

concentration. To do this, we use the surface wind speeds provided by the ECMWF 

CloudSat data product, and separate the wind speeds into terciles. We plot the 

susceptibilities for all of the data points in the low surface wind speed tercile and 

compare the results to the susceptibilities in the high wind speed tercile, as shown in 

Figure 19 for the winter months and in Figure 20 for the summer months. Both seasons 

show large droplet concentrations in the high wind tercile, most noticeable in the summer 

months. This suggests a possible control of the surface winds on the aerosol
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Figure 19. Susceptibility correlation divided into low surface wind conditions (left) and high surface wind conditions (right) for the 
MAGIC region during JFM 2008 using A-Train data. o
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Figure 20. Same as in Figure 19 except for JJA 2008.
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concentration that act as CCN (O’Dowd et al. 1997).

The albedo susceptibility shows little sensitivity within the two wind terciles 

shown. However, during the winter months when the droplet concentration is smaller, 

the albedo susceptibility increases with increasing LWP. On the other hand, during the 

summer months when the droplet concentration is higher, the albedo seems to level off 

with increasing LWP. Additionally, the winter months exhibit a higher susceptibility at 

larger LWP values than do the summer months. Figure 21 displays this phenomenon for 

the low wind tercile on the left and the high wind tercile on the right. Again, this is 

consistent with Painemal and Minnis (2012).

In the JJA low wind tercile, the precipitation susceptibility seems to reach a 

maximum at intermediate LWP values and then level off at high LWP. Interestingly, in 

the JJA high wind tercile where the droplet number concentration is higher, the 

precipitation susceptibility reaches a maximum at high LWP where it appears to have 

reached an inflection point. This may signify the beginning of the transition from 

autoconversion to accretion, where the precipitation process is sufficient enough that the 

precipitation is less sensitive to changes in droplet concentration, leading to a decrease in 

precipitation susceptibility beyond the inflection point. It may be, in this particular case, 

that in the low wind tercile, the autoconversion mechanism dominates the precipitation 

process whereas the high wind tercile exhibits a possible transition from autoconversion 

to accretion.

However, in the winter months, the roll-over in precipitation susceptibility is 

apparent in both the low and high surface wind terciles. In this case, the mean cloud 

droplet number concentration is much lower than during the summer, which may imply a
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Figure 21. Albedo susceptibility for JFM (top) and JJA (bottom) for the low surface wind 
tercile (left) and the high surface wind tercile (right) for the MAGIC region using A- 
Train data.



more effective precipitation development because of the small number concentration. In 

addition, the difference in the mean number concentration between the low and high wind 

tercile in the winter is small, which may be why we see the roll-over in both surface wind 

conditions. It is possible that we do not see a roll-over in the summer low wind tercile 

precipitation susceptibility because it still has a higher mean droplet number 

concentration than what we see in the winter case, which may suppress efficient 

precipitation.

4.2 Southern Oceans Region Using A-Train Data 

Taking the study further, we investigated albedo and precipitation susceptibility 

of marine boundary layer clouds in the southern oceans, a region dominated by a 

background state of boundary layer clouds (Mace 2010). The seasonal comparison of the 

co-dependence of albedo and precipitation susceptibility between summer and winter 

months, displayed in Figures 22 and 23, respectively, produced similar results to the 

MAGIC transect region. In the winter months (JJA), the precipitation susceptibility 

exhibited the same roll-over at intermediate and high LWP values, indicating a transition 

from autoconversion to accretion. On the other hand, the summer months (JFM) 

precipitation susceptibility was monotonic, characteristic of an autoconversion-dominated 

regime. The albedo susceptibility remained fairly consistent between the two seasons.

Furthermore, the cloud microphysical properties remained consistent with the 

results in the MAGIC region. The winter months were characterized by a mean droplet 

concentration of 9.3 cm-3 whereas the summer months had a mean value of 95 cm-3. A 

study by Boers et al. (1998) compared the microphysical properties of stratocumulus 

clouds over the southern ocean between winter and summer using observations from the
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Figure 22. Relationship between albedo and precipitation susceptibility for the Southern 
Ocean region during JFM 2008 using A-Train data.
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Figure 23. Same as in Figure 22 except for JJA 2008.



Southern Ocean Cloud Experiment (SOCEX). Similarly, they found the cloud droplet 

concentration to be higher in the summer than in the winter ranging from 35 cm-3 in the 

winter to 94 cm-3 in the summer.

The susceptibilities divided into low wind and high wind terciles are shown in 

Figure 24 for JFM and Figure 25 for JJA. Again, the high wind tercile has a larger mean 

droplet number concentration than the low wind tercile, and the precipitation and albedo 

susceptibilities followed similar patterns as in the MAGIC case. Most noticeably in the 

southern ocean winter high wind tercile is the roll-over in the precipitation susceptibility. 

This reaffirms the suggestion of an autoconversion to accretion transition occurring in the 

presence of higher surface winds.

4.3 ARM Retrieval Case Studies Using MAGIC Data 

We used the ARM retrieval algorithm using data from the MAGIC field campaign 

to consider two case studies, one from the trade cumulus cloud regime and the other from 

the stratocumulus cloud regime. The first case study, presented in Figure 26, occurred on

11 July 2013 at 20-21 UTC in the trade cumulus regime of the MAGIC transect near 

Hawaii. As Figure 26 shows, these clouds were characterized by a LWP ~ 100 g m-2, 

rain rates as high as 0.5 mm hr-1, cloud mode effective radius around 20 |im, and cloud 

mode droplet concentrations reaching 350 cm-3.

The second case study looked at the stratocumulus cloud regime near California 

on 21 July 2013 at 19-20 UTC, as displayed in Figure 27. In this case, the clouds were 

characterized by a LWP ~ 30 g m-2, slight rain rates at about 0.01 mm hr-1, cloud mode 

effective radius 10 |im or less, and cloud mode droplet concentrations greater than 1000 

cm-3. These two cases represent the extremes along the MAGIC transect where the
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stratocumulus clouds evolve into shallow trade cumulus. Interestingly, it may also 

indicate a transition from an autoconversion regime associated with the stratocumulus 

region to an accretion regime associated with the trade cumulus region.

We do not show susceptibility results using MAGIC data for a couple of reasons. 

First, the MAGIC data are still preliminary, and there may be calibration issues with the 

radar data because the heave motions of the ship may have interfered with radar 

measurements. Second, the computational time required to produce enough retrievals for 

a sufficient statistical sampling of cloud properties using the MAGIC data would take an 

unreasonable amount of time. Therefore, the two MAGIC case studies presented in this 

section are shown primarily to illustrate the differences in cloud properties between the 

stratocumulus and trade cumulus marine boundary layer cloud regions.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In summary, we have reviewed the importance of marine boundary layer clouds 

as they are ubiquitous and affect Earth’s climate. Because of the complex nature and 

range of physical processes that govern these clouds, it remains a challenge to accurately 

represent them in climate models. Thus, there is a constant need to improve 

understanding of marine boundary layer cloud processes.

In this study, we have investigated the albedo and precipitation susceptibilities of 

these clouds using A-Train satellite data. Through a recently developed cloud retrieval 

algorithm, we can infer cloud properties from the satellite measurements. Consistent 

with previous studies, we have found that precipitation susceptibility is non-monotonic 

with respect to LWP, and that albedo susceptibility increases or levels off with increasing 

LWP (Sorooshian et al. 2009, Painemal and Minnis 2012).

In an attempt to further distinguish physical controls on the cloud susceptibilities, 

we compared results from summer months and winter months. It was found that the 

summer months are characterized by larger cloud droplet number concentrations than 

during the winter. This seasonal variation in droplet number concentration could be due 

to seasonal cycles in dimethyl sulfide (DMS) production, which is emitted over the 

oceans by phytoplankton, and act as CCN. Indeed, DMS concentrations are higher



during the summer months (Boers et al. 1998), which may explain the increased cloud 

droplet number concentration during that time.

In addition, we compared the susceptibilities under high surface and low surface 

wind conditions. In general, cloud droplet number concentrations were larger under high 

surface winds, and smaller in low surface winds. It may be that more sea salt is being 

lofted and thus available for cloud droplet activation in higher surface winds, contributing 

to the larger cloud droplet number concentration under these conditions (O’Dowd et al. 

1997, Feingold et al. 1999). Moreover, sea salt may be considered giant CCN (GCCN) if 

their radii are greater than 5 |im (Feingold et al. 1999). In their study, Feingold et al. 

(1999) found that at higher CCN concentrations, the addition of GCCN have the greatest 

potential (compared to GCCN added to low CCN concentration) for enhancing the 

collection process within a cloud, enabling a nonprecipitating stratocumulus into a 

precipitating state. Thus, it may be that the roll-over seen in the precipitation 

susceptibility under high wind conditions is due to an enhancement of precipitation 

because of the GCCN, allowing for a transition from autoconversion to accretion.

Furthermore, regarding precipitation susceptibility, cloud environments 

dominated by autoconversion are sensitive to Nd. The susceptibility values are higher, 

and there is no obvious transition into an accretion regime. Conversely, cloud 

environments dominated by accretion are less sensitive to Nd , and transition rapidly to 

lower susceptibility, indicating that the precipitation process is already efficient.

In conclusion, we have identified at least three conditions that may be potential 

drivers of precipitation susceptibility, and thus affect the autoconversion and accretion 

processes. First is the seasonal variation of cloud droplet number concentration, possibly
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due to the seasonal cycle of DMS aerosol production. Second is the difference in droplet 

number concentration brought on by varying surface wind conditions. Third, as 

portrayed from the MAGIC case studies using the ARM retrieval, is an apparent 

transition from an autoconversion to an accretion regime associated with the 

stratocumulus-to-cumulus transition.

Albedo susceptibility, on the other hand, exhibited less variation than the 

precipitation susceptibility. Our results follow Painemal and Minnis (2012) in that 

albedo susceptibility under high droplet concentration conditions levels off with 

increasing LWP, whereas under low droplet concentrations, albedo susceptibility 

continues to monotonically increase. In the future, it would be interesting to investigate 

other meteorological controls that may affect cloud albedo and precipitation 

susceptibility.
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