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ABSTRACT

Statistical analysis of time dependent imaging data is crucial for understanding normal 

anatomical development as well as disease progression. The most promising studies are 

of longitudinal design, where repeated observations are obtained from the same subjects. 

Analysis in this case is challenging due to the difficulty in modeling longitudinal changes, 

such as growth, and comparing changes across different populations. In any case, the study 

of anatomical change over time has the potential to further our understanding of many 

dynamic processes. W hat is needed are accurate computational models to capture, describe, 

and quantify anatomical change over time. Anatomical shape is encoded in a variety of 

representations, such as medical imaging data and derived geometric information extracted 

as points, curves, and/or surfaces. By considering various shape representations embedded 

into the same ambient space as a shape complex, either in 2D or 3D, we obtain a more 

comprehensive description of the anatomy than provided by an single isolated shape. In this 

dissertation, we develop spatiotemporal models of anatomical change designed to leverage 

multiple shape representations simultaneously. Rather than study directly the geometric 

changes to a shape itself, we instead consider how the ambient space deforms, which allows 

all embedded shapes to be included simultaneously in model estimation. Around this idea, 

we develop two complementary spatiotemporal models: a flexible nonparametric model 

designed to capture complex anatomical trajectories, and a generative model designed 

as a compact statistical representation of anatomical change. We present several ways 

spatiotemporal models can support the statistical analysis of scalar measurements, such as 

volume, extracted from shape. Finally, we cover the statistical analysis of higher dimensional 

shape features to take better advantage of the rich morphometric information provided by 

shape, as well as the trajectory of change captured by spatiotemporal models.
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CHAPTER 1

INTRODUCTION  

1.1 Motivation
The work of Bookstein pioneered the idea of landmark based morphometric analy

sis [10, 21]. Shapes in this work are represented by landmark points distributed across 

the shape, which are in correspondence across all shapes in a population. The landmark 

positions often have meaningful geometric locations, such as the corners of the eyes of a 

human face, which generate biological correspondence across shapes. The representation 

and corresponding statistical analysis of shapes represented by landmark points proved very 

influential, inspiring numerous other researchers. Kendall defined shape as the geometric 

information left after correcting for translation, rotation, and scaling. This definition of 

shape introduced by Kendall has since been widely adopted.

The point distribution model (PDM) of Cootes and Taylor is one such example of a sta

tistical framework designed around landmark points [17]. The landmark points representing 

shapes, which are in anatomical correspondence across a population, are concatenated into 

a large vector. This way, a given shape is a point in a high dimensional Euclidean space with 

dimension defined by the number of landmark points. Shapes in this framework are aligned 

given the Kendall definition of shape by generalized Procrustes. From this representation, 

a mean shape can be easily computed as a linear average of landmark points across the 

population. A statistical analysis of shape variability is conducted by principal component 

analysis (PCA) on the covariance of landmark points.

Kendall furthered our understanding of the landmark representation of shapes, by de

veloping the concept of a shape space which has come to be called Kendall shape space [49]. 

Rather than modeling shapes as points in high dimensional Euclidean space, shapes are 

represented by a complex vector. Rather than Procrustes to account for alignment, equiv

alence classes are constructed under translation, rotation, and scale. This representation 

given equivalence classes results in a complex projective space, where shapes now take the 

form of points on a Riemannian manifold, in contrast to the linear parameterization of the
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PDM. In this setting, a mean shape cannot be computed in closed form, rather it is called 

the Frechet mean, which must be estimated by minimizing sum of squared distance for a 

given Riemannian metric. Work has been done to carry traditional statistics over to the 

manifold setting, such as the extension of PCA, called principal geodesic analysis [38].

In stark contrast to the point distribution model, it was also proposed to study shape 

variability by considering the deformation of space which transforms one shape onto another. 

D ’Arcy Thompson advocated using the mathematical representation of transformations to 

study anatomical variability in 1917 [77]. The vision of Thompson has been highly influential 

in the emergence of computational anatomy [78, 22, 59], where modeling and statistical 

analysis is focused on transformations of space. This is in contrast to the PDM paradigm, 

where statistics are based on the distribution of points, or how they displace. The idea has 

been far reaching, where the study of variability reduces to the study of deformations, such 

as has been adopted in neuroscience as deformation based morphometry [2].

One of the most powerful consequence of the study of deformations is the wide variety 

of geometric representations tha t fit naturally into this framework. This is particularly 

important in the study of anatomy, as medical imaging gives way to numerous shape repre

sentations, in 2D and 3D. Examples of shape representations common in medical imaging 

studies include: structural magnetic resonance imaging (MRI), tensors from diffusion tensor 

imaging (DTI), curves representing white m atter connections in the brain, triangular meshes 

representing the surface of an anatomical shape, quadrilateral meshes representing the 

surface and interior of an anatomical shape, and unstructured point clouds or corresponding 

landmarks representing the sampling of the surface of shape. Some examples of shape 

representation are shown in Figure 1.1. A comprehensive analysis should take advantage of 

several or all of these formats, given the wide variety of geometric information at hand.

The comprehensive analysis considering many anatomical representations simultane

ously is one of the main motivations of this dissertation. Rather than study directly the 

geometric changes to a shape itself, such as point displacements, we instead consider how 

the ambient space deforms. By modeling deformations of ambient space, we can leverage 

multiple shapes simultaneously. In fact, analysis based on deformations alleviates the need 

for a rigorous definition of shape. This is the precisely the vision of Thompson, to compare 

shapes through deformations of space without the need for a specific definition or form of 

shape [77].

The other main motivation of this dissertation is the study of anatomical change over 

time. These changes can be due to natural processes, such as development in children,
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F ig u re  1.1. Variety of representations of shape in medical imaging. Clockwise from 
upper left: Structural MRI, triangular mesh representing shape surface, landmark points, 
unstructured point cloud.

or due to disease progression, such as neurodegeneration associated with Huntington’s or 

Alzheimer’s disease. The study of change over time is also necessary to monitor the effect 

of therapy or drug treatm ent. In any case, studying change over time has the potential 

to further our understanding of many dynamic processes. W hat is needed are accurate 

computational models to capture, describe, and quantify shape change over time, which we 

refer to as spatiotemporal models.

Time dependent medical data are becoming more common as scanning technology 

improves, resulting in faster and cheaper observations in the form of MR images. Such 

time-indexed data fall into two categories: cross-sectional and longitudinal. Cross-sectional 

data involve observations from different subjects distributed across time. Longitudinal data 

contain repeated measurements of the same subjects over time. The power of longitudinal 

data lie in the correlated observations for each subject, which often lead to a better 

description of the population as a whole. There are, however, several difficulties associated 

with longitudinal data. First, subjects are not necessary scanned at the same time across
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the population, nor are subjects observed the same number times. This makes analysis 

challenging. Spatiotemporal models must be flexible with respect to the data, being able 

to handle staggered measurements as well as missing observations.

In addition to statistical analysis, spatiotemporal models provide continuous shape 

trajectories given discrete shape observations. The continuous shape interpolation has 

several useful applications. First, it allows for the alignment of shape data with other clinical 

measures, such as cognitive scores, not obtained at the same time. Second, a continuous 

shape trajectory may provide new information about localized differences in rate of change 

(velocity and/or acceleration), which may better inform about underlying neurobiological 

changes. The most forward looking application is the construction of normative 4D atlases 

of anatomical development. For example, one could compare the shape of a child’s brain 

to a normative model of development, much in the same way measurements such as head 

circumference are ubiquitous in pediatric examination.

The need to model shape change over time which can incorporate several shapes simulta

neously, even those with different representation, forms the motivation of this dissertation.

1.2 Terminology
Here we briefly cover some terminology used in the remainder of this dissertation.

• S hap e  reg ress io n  m odel: this can either refer to the general model of shape change 

(i.e., geodesic), or refer to a specific instance estimated based on shape observations. 

We refer to the general model of shape change in several ways: spatiotemporal 

model, regression model, and growth model. Likewise, we will refer to an estimated 

shape model in many ways, including: shape trajectory, shape sequence, and growth 

scenario.

• S hape-com plex : an object made up of multiple shapes. Shape complexes can be 

represented in many ways, such as points, curves, surfaces, or any combination of 

them. In this dissertation, we often use shape and shape-complex interchangeably. 

We also consider images to be a representation of shape, however, in many cases we 

make clear the distinction between shapes and images.

• C ross-sec tio n a l d a ta : time-indexed data representing single observations for differ

ent subjects taken at different time-points.
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• L o n g itu d in a l d a ta : time-indexed data representing repeated measurements of the 

same subjects over time. Observation times are not necessarily the same for all 

subjects, and missing observations for a given subject are common.

1.3 Shape regression
There are two main components for a spatiotemporal model of shape: a model of 

deformation and a way to parameterize shapes and measure shape similarity. We will 

cover the two components in this chapter. In Section 1.3.1 we will provide details about 

the deformation model. In Section 1.3.2 we will discuss shape representation and a way 

to compute distance between shapes. These two components will form the foundation 

for the shape regression models in Chapters 2 and 3. The deformation model provides 

the machinery for computing and applying transformations to shapes, while the similarity 

metric drives the estimation of model parameters to match observed data.

In its most basic form, regression analysis involves exploring the relationship between 

a dependent variable and one or more independent variables. The most ubiquitous model 

is simple linear regression, where we consider a linear relationship between one dependent 

and one independent variable, also called an explanatory variable. Given the common 

parametric form of a line y =  mx +  b, linear regression can be written as

given measurements [yi , y2, ..., yn] and corresponding explanatory variables [x1, x2, ..., xn]. 

Model estimation involves finding values of m and b, which minimize the regression criterion 

(1.1). In more straightforward terms, we must compute the slope m and y-intercept b, which 

minimize the sum-of-squared distance between the line and the observations.

Many other regression models are available in addition to the simple linear one. Common 

parametric regression models are polynomials of fixed degree, exponential, logistic, among 

many others. Model estimation takes the form of finding model parameters that minimize 

the distance between the model and observed data, in a least squares sense. Nonparametric 

choices are also available, where the estimated model does not derive from a family of 

parametric functions. In the nonparametric case, one does not make assumptions about 

the underlying distribution of the observed data, rather the model is inferred from the 

distribution of the observations themselves.

The concept of regression extends naturally to the case of shape observations, which we 

call shape regression. The problem of shape regression involves finding correlations between

(1.1)
i=1
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shape configuration and a continuous scalar parameter such as age, disease progression, drug 

delivery, or cognitive scores. Intuitively, we seek to infer the continuous sequence of shapes 

tha t best explains the observed shapes, in a least squares sense to be defined later. Consider 

a set of shape observations Oti at times t i . Shape regression can be described by the generic 

regression criterion

E ( 0 t) =  ^  d(0n (Oto), ° t i )2 -  YReg(^t) (1.2)
ti

where 0 t continuously transforms baseline shape Oto over time to match shape observations 

Oti with respect to a shape similarity function d, Reg controls the regularity of the trans

formation, and y balances data matching with regularity. As with the scalar regression 

cases mentioned above, model fitting involves finding parameters of 0 t , which minimizes 

the criterion (1.2).

Shape regression models of this form require two essential components. First, a model 

of deformation tha t gives the form and parameterization of the time varying deformation 

0 t . Second, a shape representation and corresponding shape matching metric d that takes 

shapes as input and returns a scalar value indicating the similarity (or dissimilarity) of 

the shapes. The next sections will discuss the particular choices of deformation model and 

shape similarity metric used to design the shape regression models in this dissertation.

1 .3 .1  D e fo rm a t io n  m o d e l

1 .3 .1 .1  S m a ll d e fo rm a tio n  m o d e l

The small deformation model builds deformation of space of the form

0(x) =  x +  u(x) (1.3)

where u is a displacement field that is added to position x to parameterize the deformation 0. 

As the name suggests, this model well approximates small deformations, where u represents 

a small displacement. In this case, the inverse deformation can be computed by subtracting 

the displacement field rather than adding it, 0 -1 (x) =  x — u(x). However, the inverse 

calculation fails when the magnitude of u becomes sufficiently large (when deformations are 

large). The composition of forward and inverse deformations do not produce the identity 

deformation, and can be considerably far away from the identity [1].

The small deformation framework, which linearizes deformations by displacement fields, 

suffers from a few limitations. Mainly, there is no guarantee the deformation are one-to-one 

and invertible. Such constraints on transformations are especially important in the study of 

anatomy, where we do not want to considering folding and topological changes. This gives 

way to the large deformation setting of diffeomorphisms.
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1 .3 .1 .2  L a rg e  d e fo rm a tio n  m o d e l

The large deformation model is commonly referred to as the large deformation diffeo- 

morphic metric mapping (LDDMM) framework. The idea is allow for large deformations 

while guaranteeing a well behaved transformation. Namely, the transformation is a diffeo- 

morphism tha t is continuously differentiable with differentiable inverse. This is built on the 

work of [78],[22], and has been influential in registration and atlas building [48, 4, 57]. We 

will now cover the mathematical foundations of LDDMM.

Let the ambient space be represented by Q, an open subset of Rd. The main idea of the 

LDDMM framework is to parameterize diffeomorphisms of Q by time-varying velocity fields 

vt : Q ^  Rd, t £ [0,1]. The diffeomorphism 0t is then defined by the ordinary differential 

equation

0t =  vt(0t), (1.4)

given certain smoothness assumptions on vt .

Solving this equation (1.4) generates a flow of diffeomorphisms 0t : Q ^  Q (transforma

tions of the space to itself) beginning with the identity transformation 0o =  Id  and ending 

at 0 1 =  +  f0  vt (0t) dt. Here, the variable t need not be interpreted as time, but rather 

it serves as a variable of integration to generate a path in the space of diffeomorphisms. 

This is an important distinction here, as later in this dissertation the variable t will usually 

correspond to physical units of time.

A norm is assigned to the time-varying velocity field through association with a differ

ential operator L

||vt||V =  /  LvTvdt, (1.5)
n

which defines a Riemannian metric on the space of diffeomorphisms. This provides a way 

to compute distance between the identity diffeomorphism and an arbitrary diffeomorphism

f  as

d(Id, f ) = m i n { /  ||vt||V dt : ^  =  f} . (1.6)
o

Equation (1.6) can then be used to compute the distance between any two diffeomorphisms

d(0, f )  =  d(Id, f  o 0 -1 ). (1.7)

The operator L has inverse K  =  L-1 where K  is a smooth kernel such that

( K v v)(x) =  /  K v (x,y)v(y)dy.  (1.8)
n

The space V  of instantaneous velocity fields is therefore a reproducing kernel Hilbert 

space (RKHS). As such, the smoothness constraints on vt are met, which guarantees
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the solution to equation (1.4) gives a flow of diffeomorphisms. In practice, we deal di

rectly with the kernel K V rather than the operator L, for example the Gaussian kernel 

K V (x, y) =  e x p (-  ||x -  y ||2 /aV ).

1 .3 .1 .3  I l lu s t r a t iv e  e x a m p le : im a g e  m a tc h in g

We now consider the problem of image matching to better illustrate the LDDMM 

framework. The problem consists of finding the diffeomorphism which best maps a given 

source image I0 onto a target image I 1. This can be expressed generically by the criterion

E (0) =  ||lo o 0 -1 -  h \\2L +  YReg(0) (1.9)

where the first term  controls the accuracy of the image match and the second term  controls 

the regularity of the deformation, with y balancing the trade-off between the two. The data 

attachment term reflects the fact that the deformation of an image I  by a diffeomorphism 

0 is defined by the action of the diffeomorphism I  o 0 -1 .

Building off the LDDMM framework, [9] seeks to match images by finding the time- 

varying velocity field which ultimately builds diffeomorphism 0 1 at the end time of the 

flow. This is represented by the specific criterion

E(vt) =  \ Io o -  I i\L  +  7 /  IM lV . (1.10)
o

The authors derive the Euler-Lagrange equations to compute the minimizing velocity fields, 

which produce a geodesic in the space of diffeomorphisms. However, it has been shown in [83] 

tha t the numerical implementation does not necessary converge to a geodesic. Instead, [83] 

propose optimizing directly on the initial momenta rather than the time-varying velocity 

field of [9]. We also favor this parameterization by initial momentum, and it forms the basis 

of our geodesic regression model of Chapter 3.

1 .3 .2  S h a p e  r e p r e s e n ta t io n  a n d  c o m p a r is o n

As shown above, a shape regression model requires a way to measure the distance 

between shapes. There are many choices available. One method is to measure shape 

differences by the amount of energy required to deform one shape onto another, using 

elastic distance for example [88]. Another choice is to parameterize shapes by a set of 

landmark points. By enforcing correspondence across shapes, one can compute shape 

similarity by sum-of-square distance between the landmarks. Several shape regression 

models have been built based on point correspondence [18, 19], based on an entropy model of 

point correspondence [12, 11]. Other choices for measuring shape similarity are Hausdorff
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distance [45] or earth mover’s distance [13]. This list is by no means exhaustive, there 

are many other metrics for measuring shape similarity. An interested reader could begin 

with [81] or [82] for more detail, or [66] for metrics specifically relating to images.

For the design of our shape regression models, we prefer a metric tha t is flexible to the 

shape representation. Shape data take the form of landmark points, unstructured point sets, 

curves, surfaces, and volumetric data; the shape metric should be capable of handling these 

various geometric representations. Further, we wish to analyze shape-complexes consisting 

of one or more shapes, so the shape metric should be able to handle different shape 

representations in any combination. Finally, we want a metric insensitive to topological 

differences between shapes, so we do not have to invest time and effort in preprocessing, 

filling holes in shapes or enforcing regular meshing for example.

1 .3 .2 .1  C u r r e n ts  fo r m o d e lin g  s h a p e

Currents were introduced to computational anatomy in 2005 [79, 40] to provide a similar

ity measure between curves or surfaces without the need for correspondence. Here, we briefly 

present the currents representation for shape. We refer more interested readers to part I of 

Stanley Durrleman’s dissertation [27], which covers both theory and implementation details 

of currents far beyond the scope of this dissertation.

The underlying idea of currents is to use vector fields to probe geometric objects. 

Intuitively, we can characterize the geometry of a surface by investigating the flux of every 

possible vector field w through the surface S (w) =  f s  w(x)Tn(x)d \(x )  where n(x) is the 

normal vector at point x and d \  is the Lebesgue measure on the surface. Similarly, a 

curve can be characterized by the path integral of every possible vector field along the 

curve L(w) =  f L w(x)Tt(x)dA(x) where t(x )  is the tangent vector at point x and d \  is the 

Lebesgue measure on the curve. Currents then characterize a shape by the numbers S (w ) 

or L(w).

For the space of possible vector fields, denoted W , we choose a reproducing kernel Hilbert 

space (RKHS) consisting of convolution between any square integrable vector field and a 

smoothing kernel K W (x,y). W ithout loss of generality, we can assume kernel K W(x,y) =  

exp(— ||x — y ||2 / o W ). The RKHS structure allows any w in W to be described by an infinite 

linear combination w(x) =  K W(x, y)fi where are vectors located at points y. Then, given 

two vector fields w1 and w2 under this definition, an inner product on W is defined as

< w 1,w 2 > W= <  K W(., x)a, K W(., y)fi > W =  a*KW (x, y)fi. (1.11)

Given this definition of W , the space of currents is then the dual space W *, which is a
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space of mappings from W to the real numbers, W * : W ^  R. Through the choice of kernel 

parameter aW, one defines a specific space W and space of currents W *. This allows one 

to tune the metric properties of the space for each specific application. The choice of aW 

effectively introduces a prior on the desired level of correspondence between shapes, based 

on anatomical knowledge, for example.

There further exists a linear mapping from the RKHS W to the space of currents W *, 

denoted Lw : W ^  W *. This mapping is defined through the inner product afforded by 

the RKHS structure of W

L w  (Wi)(W2) = <  Wi,W2 >w  (1.12)

for any vector fields w1 and w2 e  W . For a given w, the object Lw (w) is in fact a current 

and represents the dual of w. The mapping Lw also brings the inner product (1.11) from 

W to W *, which is written as

< 1 1  T2 > w * = <  LW1(Ti^  LW1(T2) > w  (1.13)

between currents T1 and T2. Ultimately, a closed form distance between currents T1 and T2 

is written as
N1 N1

d(T1,T2) =  ||T1 — T2||W* =  E E  a tK W (x i,x j )a3 —
i= 1 j= 1

Ni N2

2 E E  a ‘K  W (xi , yj )^j +  
i=1j=1

N2 N2

E E  w (yi,yj )^j (1.14)
i=1 j=1

where current T1 is represented by a collection of normals (or tangents) a  located at points 

x and current T2 is represented by a collection of normals (or tangents) ^  located at points 

y.

We can see tha t equation (1.14) measures shape similarity through discrepancy of normal 

(or tangent) vectors between two shapes, and does not rely on consistent sampling of the 

two shapes. For surfaces represented as meshes, a reasonable choice is to have x be face 

centers, with n  being face normals computed from the normals at each vertex of tha t face. 

As mention above, the kernel K W controls the metric properties of the space of currents 

W * through choice of a W. The standard deviation a W can be interpreted as the sensitivity 

of the currents metric to spurious shape features. It is the spatial scale at which shape 

differences are considered noise. Shapes which differ only at scales smaller than a W are 

considered the same with respect to the metric on currents.
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1 .3 .3  I n te r p la y  b e tw e e n  d e fo rm a t io n  m o d e l a n d  s h a p e
s im i la r i ty  m e tr ic

The deformation model and shape similarity metric work in tandem during shape 

regression. The deformation model provides the mechanism for computing a continuously 

deforming sequence of shapes. The deformed shapes can then compared to the observed 

shapes through shape similarity metric d, where the residual is used in turn to refine the 

parameters of the deformation. However, the two components are largely independent 

of each other. Indeed, model estimation is apathetic with respect to the specific shape 

similarity metric d used. Rather, the algorithm for model estimation only requires black 

box functionality -  the details of d are not necessary.

The gradient descent algorithms we derive in Chapters 2 and 3 take advantage of this 

fact. For implementation, two things relating to shape similarity are required. First, shape 

metric d which takes two shapes as input and returns a scalar value which measures shape 

difference. Second, Vd which provides the gradient of the shape metric. In this work we 

mostly consider d as the metric on currents for geometric shape data, and sum-of-squared 

distance between intensity for imaging data. However, it is straightforward to adapt the 

algorithms to a variety of other data and metrics.

1.4 Contributions
The work in this dissertation is organized into two main contributions. The first 

contribution is the development of spatiotemporal models tha t capture, describe, and 

quantify anatomical change over time. We require tha t a spatiotemporal model be suitable 

to many applications and flexible with respect to shape representation. Our contribution is 

the development of two such spatiotemporal models detailed in Chapters 2 and 3.

The second contribution is the incorporation of our spatiotemporal models into larger 

statistical frameworks. We aim to demonstrate these models have practical application, 

by showing several ways they support conventional methods for statistical analysis of 

scalar measurements. We also explore the analysis of higher dimensional shape features 

captured by spatiotemporal models and propose a new method to quantify longitudinal 

shape variability.
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1.5 Overview of chapters
The forthcoming chapters are organized in the following way:

Chapter 2 covers the development of a shape regression model based on regularized ac

celeration that drives shape change over time. The mathematical formulation is introduced 

and a dedicated algorithm for model estimation is derived.

Chapter 3 covers the development of a shape regression model based on geodesic flows 

of diffeomorphisms. The model can be considered the extension of simple linear regression 

to the space of diffeomorphisms. We develop the mathematical formulation and derive a 

gradient descent algorithm for model estimation.

Chapter 4 explores several ways to incorporate shape regression models with the statis

tical analysis of scalar measurements.

Chapter 5 expands upon scalar statistical analysis and develops techniques for the 

statistical analysis of longitudinal shape variability.

Chapter 6 provides a discussion of the work introduced in this dissertation and presents 

directions for future research work.



CHAPTER 2

ACCELERATION CONTROLLED 

REGRESSION 

2.1 Introduction
Chapter 1 introduced the large deformation diffeomorphic metric mapping (LDDMM) 

framework for building diffeomorphisms from time-varying velocity fields. The LDDMM 

framework applied to the problem of registration results in a geodesic flow of diffeomor- 

phisms which deforms the source onto the target. However, the straightforward extension 

of the LDDMM registration framework for time-series data results in evolution tha t is 

piecewise-geodesic [29, 24, 50]. It is a desirable model if your goal is to match observations 

as closely as possible. However, there are several limitations of the model. First, model 

parameters, in the form of momentum vectors, must be stored at every time point corre

sponding to an observation. This makes the model difficult to use for traditional parametric 

statistical methods.

Second, the resulting shape evolution under the piecewise-geodesic model contains dis

continuities at times corresponding to observed data, where the velocity field changes 

direction instantaneously. In other words, the piecewise-geodesic model cannot guarantee 

temporally smooth evolution. Temporally smooth evolution could be a desirable property, 

particularly when considering the development of anatomical structures. It is a reasonable 

assumption that biological shapes would develop smoothly over time, and would not undergo 

instantaneous change of direction. Of course this assumption must be made explicit, as it 

would not make sense in the case of sudden traum a, in traum atic brain injury, for example.

The work presented in this chapter is motivated by the assumption tha t the evolution 

of biological shapes is inherently smooth in time. If we consider the growth of biological 

shapes as a mechanical system driven by external forces, then the evolution of any particle 

on an anatomical surface is continuous with continuous derivative and therefore does not 

change direction instantaneously, as observed in the growth model estimated from [29, 24].
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Based on these considerations, we present a growth model parameterized by acceleration, 

rather than velocity as in the large deformation setting of [58]. The estimated acceleration 

could be considered an indication of the forces tha t drive the growth of the anatomical 

structures. From this parameterization, we gain one order of differentiability and guarantee 

tha t shape evolution is smooth in both space and time. We further deviate from the large 

deformations framework by introducing a new regularization term tha t accounts for the 

total amount of acceleration.

2 .1 .1  C lo se ly  r e la te d  w o rk

The authors of [84] address temporal smoothness by proposing a second order growth 

model for shape data represented as landmarks. They borrow from the well-studied problem 

of diffeomorphic matching for landmarks, where the minimizing time-varying velocity field 

is estimated in a variational framework. The main contribution is the inclusion of a per

turbation model, by adding external forces tha t act on the landmark configuration. These 

forces exist at time points corresponding to observed data, which perturb the evolution 

away from a geodesic at that time. For this reason, the work is closely related to the spline 

model. In the absence of external forces, the landmark configuration follows a geodesic in 

the space of diffeomorphisms.

The shape spline model and the acceleration controlled method presented in this chapter 

are comparable in the sense they generate temporally smooth, second order flows of diffeo- 

morphisms. However, the acceleration model presented here does not constrain the flow of 

deformations to be geodesic, or close to a geodesic. This is an important distinction, as our 

model is not a smoothing or modification of a geodesic path. Rather, the trajectories are 

the result of fundamentally different assumptions on the underlying model which result in 

more biologically plausible estimations of growth (as compared to the standard piecewise 

geodesic model).

Further, the shape spline model of [84] has only been developed in case of landmarks. 

The authors mention the method can be extended to infinite dimensional shape space, but 

this remains an open problem. In contrast, the growth model developed in this chapter 

takes advantage of a wide variety of shape representations, including surfaces, curves, point 

clouds, and landmarks in any combination.

2.2 Deformation model
The deformation model here is very much in the spirit of LDDMM, where we build a flow 

of deformations by integration of time-varying vector fields. As in the LDDMM framework,
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we consider the time varying deformation 0t belonging to a regular group of deformations. 

However, instead of an instantaneous velocity field, let a(t, x) be an acceleration field defined 

at any point x and time t as

N
a(t,x)  =  ^  K V (x,xj (t)')ai(t), (2.1)

i=1

where xi are spatial locations which carry impulse vectors a i , and K V(x,y) =  

e x p (-  ||x — y ||2 / a ^ ) is a Gaussian kernel of dimension mass-1 with standard deviation aV. 

The impulse vector field a(t, x) is defined by a finite and sparse set of points xi and vectors 

with high spatial frequency. Through equation (2.1) we compute an acceleration field, which 

is now dense, defined at any point x, and smoothed by choice of aV. Parameter aV controls 

the the spatial extent at which the acceleration field varies; low values of aV allow points 

to move independently, while high values of aV tend towards rigid deformation.

The time-varying point force vectors a i (t) define the trajectory of a given particle x by 

the differential equation

0t (x(t)) =  d ; 2 t) =  a(t,x(t)),  x(0) =  x0 and x(0) =  x0 (2.2)

subject to initial position x0 and initial velocity x0, defining a continuous flow of deforma

tions 0t (x) by the integration of the 2nd-order ODE. For some time t, 0t (x0) gives the new 

position of the point originating at x0. Solving equation (2.2) from t =  0 to some later time 

T  defines the continuous trajectory of point x0, starting from the identity transformation

00 (x0) =  x0.

Given a time varying impulse field, we can compute the corresponding acceleration 

field by equation (2.1). The acceleration field provides a means to compute continuous 

trajectories of shape points by solving equation (2.2). Therefore, shape trajectory is fully 

and completely defined by the time-varying impulse field, given x0 and x0, the starting 

position and initial velocity. This shows that we can construct a continuous flow of 3D 

deformations from a finite parameterization.

2.3 Acceleration controlled shape regression
2 .3 .1  M e th o d o lo g y

We have seen tha t a continuous flow of diffeomorphisms can be parameterized by a 

finite number of impulse vectors (which also vary in time). We now present a method to 

estimate the deformation parameters such that the resulting shape evolution best matches a 

set of observed shapes, subject to regularity constraints. Consider a discrete set of observed
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shapes O ti at time t i within the time interval [t0,T ]. Shape regression can be written as a 

variational problem in the form of a trade off between fidelity to data and regularity:

f  T
E (± (o),a ( t) )  =  y n^ti( o to) -  o t i 11W* +  y W  iia ( t) iiVdt, (2.3)

t 0ti

where ||-||W* is the norm on currents and regularity is defined as ||a(t)||V =  

a ( t ) K V(x (t) ,x (t))a (t) , interpreted as the ‘total amount of acceleration,’ measured using 

the norm in the reproducing kernel Hilbert space defined by the interpolating kernel [27]. 

The initial positions x(0) are assumed to be located at the vertices of the shape at the 

earliest time point (the baseline shape), x(0) =  O to. Model estimation consists of finding 

values of initial velocity X(0) and time-varying impulses a(t)  tha t minimize equation (2.3).

The gradient of the criterion (2.3) with respect to a given impulse vector and initial 

velocity is written as

V«P(t)E (t) =  2y r  ap(t) +  np(t) and V x p(0)E  =  nX(0), (2.4)

where auxiliary variables npX (t) and npX (0) satisfy the coupled ODEs

nX(t) =  ^ (V*P(ti)A )1{t<ti}+ 
ti

rT N (2.5)
Y  (ap(u)tnXX(u) +  a g(u)tnpX(u) +  2yRap(u)ta q(u)) V 1k(xp(u) ,xq(u))du
q= 1

and

nx(t) =  J  nX(s)ds, (2.6)

where D  is a discrepancy between 0tj (O to) and Otj measured using the norm of currents. 

Please see Appendix A for a detailed derivation of these gradients.

2 .3 .2  A lg o r i th m

We implement an adaptive step size gradient descent algorithm, summarized in Algo

rithm 1. During each iteration of gradient descent, the trajectories of shape points are 

computed by solving the 2nd-order ODE in (2.2). For this integration, we use the velocity 

Verlet algorithm [76], which is well suited for integrating equations of motion given velocity 

and acceleration. The velocity Verlet algorithm can be implemented efficiently, and provides 

time reversibility. Given a time step of At, velocity Verlet has global error of O (A t2) for 

position and O (A t4) for velocity.

Once shape trajectories have been computed, we can compute the gradient of the data 

term. For each observed shape O ti, the baseline shape is deformed to the corresponding
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A lg o rith m  1: Acceleration controlled shape regression
In p u t: O ti (observed shapes), t0 (start time), T  (end time), yr  (tradeoff), oV (std.

dev. of deformation kernel), oW (std. dev. of currents metric)
O u tp u t: x 0 (initial velocity), a(t)  (time-varying impulses)

1 x  o =  0
2 a(t)  =  0
3 re p e a t

// Compute trajectory of shape points (Verlet forward integration)
4>t(x(t)) =  a(t,x(t)),  x(0) =  Ot0 and x(0) =  x 0
// Compute the gradients of data matching term for each observation
V x(ti)D(ti)
// Compute auxiliary variables nx(t) and nx(t) (backwards integration 
with prediction/correction)
nX(t) =  E t;  (Vxp(ti)D i)1 (t<ti} +

10

/ tT E N=1 {ap^YnX (u) +  a q(u)tnX(«) + 2 7 R«P(u)‘aq (u^  V 1 k(xp(u) ,xq(u))du

4 (t) =  i f  nX(s)ds
// Compute gradients
V ;X P(0)E  =  nX (0)
V «P(t)E  (t) =  27r a p(t) +  nX(t)
// Update initial velocity, as well as impulses for all t

p(0) ^  !ip(0) — Vxp(0)E  ap(t) ^  ap(t) — V ap(t)E(t)
1 1  u n til Convergence
12 r e tu r n  xo, a ( t)

time, and the gradient of the data term  is computed. The auxiliary variables nX(t) and nX(t) 

are computed by backwards integration using an Euler method with prediction/correction. 

Finally, we compute the gradients given in equation (2.4), which are used to update the 

initial velocity x 0 and time-varying impulse vectors a t .

2 .3 .2 .1  In i t ia l iz a t io n

In order for the algorithm to get started, model parameters x 0 and a t must be initialized. 

They are necessary to compute the initial trajectory, by solving equation (2.2). The 

algorithm can be started with zero impulse and zero initial velocity. This corresponds to no 

deformation during the first iteration. In this case, the first gradient update is driven by the 

residual between the observations and the unaltered given baseline shape. The subsequent 

iterations will compute residuals between the observations and the baseline shape deformed 

by the current estimation of 0t up to the time points corresponding to the observations.

It is also possible to provide a reasonable initialization for x 0 while keeping a t zero. One 

way to compute a good approximation for x 0 is by registration between the baseline and
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first target shape as in [79]. This will provide an initial deformation in the right direction 

for the first iteration. We have noticed this can improve convergence of the algorithm, in 

terms of the number of iterations.

The algorithm also requires a baseline shape. For subject specific models estimated 

from longitudinal data, this is assumed to be the observation at the earliest time point. 

The procedure can also be performed backwards in time, using the observation furthest 

in time as the baseline shape. For the sake of clarity, we will assume estimation forward 

in time. However, it is not clear how to determine the baseline shape from cross-sectional 

data of a population of shapes. In practice, one should first limit the search for a baseline 

shape to those observations earliest in time. From there, select one subject which is around 

average volume and does not represent an outlier in terms of geometry.

To reduce bias associated with starting from a specific subject, one can essentially ‘pull’ 

the baseline shape back in time during model estimation. For example, if the time interval 

of the population is from 6 to 24 months, you would estimate a model with time interval 3 

to 24 months. After model estimation you simply disregard the first 3 months of the growth 

scenario. This allows all the available data to influence the estimation of the baseline shape, 

rather than the baseline shape being fixed to one particular observation.

2 .3 .2 .2  P a r a m e te r s

There are three main parameters which influence model estimation:

• ov : the size of the kernel tha t defines the deformation. It is the distance at which 

points move in a correlated way. Higher values result in mostly rigid deformation, 

while lower values allow each point to move more independently. Consider a synthetic 

experiment on spheres at “age” 6 months, 1 year, and 2 years old. The radii of the 

spheres increase over time, and are equal to 1, 2, and 4. Figure 2.1 shows the volume 

measured after regression with varying values of oV. We hold oW =  5 and yr  =  0.1 

fixed for all experiments. We see a value of 3 provides an accurate representation of 

the trend as well as accurately matching the target shapes. As oV is lowered further, 

we see highly nonlinear behavior between the two time points. This is likely attributed 

to the high degree of independence with which points on the surface are allowed to 

move.

• o w : the size of the kernel tha t defines the metric on currents. For multiobject com

plexes, one can choose a value of oW for each individual shape. This parameter allows 

you to tune the metric properties of the space of currents to suit your application.
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F ig u re  2.1. Impact of ay . Volume of a synthetic sphere over time, red points denote target 
volume. Curves represent volume measured after shape regression with ay  =  10, 5 ,3 ,2 ,1  
(from left to right). All experiments have aW =  5 and yR =  0.1.

Intuitively, this parameter is the scale at which shape differences are considered noise. 

If you want to match very detailed shape features, you would choose a small value. 

For noisy observations with spurious features, set this value larger than the size of the 

features. However, too large of values essentially ignore shape differences altogether. 

Too small of values can lead to matching error as shapes do not ‘see’ each other.

Consider a synthetic experiment on spheres at ‘age’ 6 months, 1 year, and 2 years old. 

The radii of the spheres increase over time, and are equal to 1, 2, and 4. Figure 2.2 

shows the volume measured after regression with varying values of aW. We hold 

ay  =  3 and yr  =  0.1 fixed for all experiments. We can see tha t a high value of aW 

changes the shape of the trend slightly, as the growth rate appears to taper off near 24 

months. For smaller values of aW, we see a slight overestimation of the volume at 12 

months gradually reduced to a slight underestimation. Finally, for small enough values 

of aW, the surfaces do not ‘see’ each other and we have a volume tha t continually 

decreases over time.

• yr : the tradeoff between data-matching and regularity. This can be be a very small 

value, such as 0.01. The shape trajectories are by definition twice differentiable. The 

transformations are by nature highly regularized due to this parameterization, so 

additional regularization is often not necessary in practice.
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F ig u re  2.2. Impact of aW. Volume of a synthetic sphere over time, red points denote target 
volume. Curves represent volume measured after shape regression with aW =  15,8, 5,2,0.5 
(from left to right). All experiments have ay  =  5 and y r  =  0.1.
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2.4 Experiments
2 .4 .1  R e la t io n s h ip  b e tw e e n  im p u lse , a c c e le ra t io n ,

a n d  v e lo c ity

In the previous section, we provided the mathematical definition for impulse, acceler

ation, and velocity. Specifically, the impulse field is the main parameter of the model, 

and gives way to acceleration through convolution with a kernel (2.1). From acceleration, 

velocity and position are related through integrating the equation of motion (2.2). In this 

section, we want to provide an intuition for the relationship between impulse, acceleration, 

velocity, and the resulting position of the estimated shape evolution.

As an illustrative example, we consider the evolution of the cerebellum extracted from 

MR images of a single healthy child observed at 6, 12, and 24 months. The child experiences 

significant growth during this time, with the most rapid change happening at the earliest 

time points. This can be seen in the volume of the observed cerebellum, shown in Figure 2.3, 

as the slope between the 1st and 2nd observation is 1.6 times the slope between the 2nd 

and final observation. The cerebellum increases quickly in volume from 6 to 12 months, 

after which the rate of growth slows.

We estimate a growth scenario of the cerebellum with the acceleration controlled model 

using parameters a V =  30 mm, a W =  8 mm, and yr =  0.01. Time is discretized into 30 

time points, resulting in a time step of 0.62 months. Several snapshots of the evolution are 

shown in Figure 2.4 with time progressing from top to bottom.

The impulse field is characterized by high spatial frequency at any given time. Vectors 

within a given neighborhood are not necessarily oriented in a consistent or correlated 

direction. Recall tha t impulse vectors are the main estimated parameter of the model,

Cerebellum volume over time

0 .9----- 1----- 1----- 1----- 1----- 1----- 1----- 1----- 1-----
6 8 1 0 12 1 4 1 6 1 8 20 22 24

Time (months)

F ig u re  2.3. Observed cerebellum volume extracted from MR images acquired from the 
same healthy child at 6, 12, and 24 months of age.
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t=20.4

F ig u re  2.4. Relationship between impulse, acceleration, and velocity in a model estimated 
from a child’s cerebellum at 6, 12, and 24 months. Vectors denote direction (can point 
inwards) and color denotes magnitude (white to red). At t  =  6 there is initial acceleration 
outward, leading to outward velocity. The acceleration then mostly changes direction 
(pointing inwards) and decreases in magnitude over time. The velocity still evolves outward 
over time, but the acceleration in the opposite direction results in lower speed of evolution. 
This evolution reflects early accelerated growth in children, which eventually levels off. 
Animation available at goo.gl/9ihTZL.
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with no constraint on the direction. Rather the direction is influenced by the observed 

data. The corresponding acceleration field is spatially smooth, with the neighborhood of 

correlated velocity defined by the parameter a y . For this experiment, vectors within a 

30 mm neighborhood influence each other, with the highest correlation between vectors 

very close together.

From acceleration, velocity is computed by integrating the equation of motion (2.2). At 

t =  6 months, outward accelerations result in nearly constant outward velocity, which leads 

to outward growth of the shape. The acceleration quickly changes directions, by t =  9.6 

months the majority of acceleration vectors on the top of the shape are directed inwards. By 

t =  13.2 months, all acceleration is oriented inwards. Note that the change in acceleration 

direction does not lead to a dramatic change of direction in velocity. Rather, the impact 

of the change of acceleration is manifested as a reduction in the magnitude of velocity; the 

reversal of acceleration slows down the growth trajectory. We see the speed of evolution 

decrease over time from 6 to 24 months. This is the type of evolution that was characterized 

by the volume of the observed shapes (Figure 2.3).

2 .4 .2  D if fe re n t ia b i l i ty  o f  v e lo c ity  fie ld

In this section, we want to explore specifically the evolution of the velocity field over 

time. In the piecewise-geodesic model, we know tha t the velocity is not continuously differ

entiable, characterized by instantaneous change of direction at time points corresponding 

to observations. In contrast, the acceleration controlled model has piecewise continuous 

acceleration and continuously differentiable velocity, leading to point trajectories tha t are 

twice differentiable. We will explore the differences between models with a synthetic 

experiment of shape evolution with dramatic change in direction.

The synthetic evolution is a sphere tha t expands laterally into an ellipse, which then 

evolves into another ellipse with an orthogonal axis. The observed shapes are shown in 

Figure 2.5. The shapes are all centered at the origin and are equally spaced in time, which 

we refer to as t0, t 1, t2. The times can be thought of as 0, 1, and 2 seconds, or any other 

unit of time.

The observed shapes tell us tha t shape evolution begins outward on the left and right 

of the sphere, but must change direction after the second observation. After the second 

observation, the trajectory on the left and right of the shape must be directed inward in 

order to match the final observation. The time around t 1 where the most dramatic change 

occurs is exactly the time window we want to explore. We estimate a model with aV =  1, 

aW =  0.25, and yr  =  0.01. Here, the parameters do not have units because of the nature
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Time

F ig u re  2.5. Observations from a synthetic shape evolution. From left to right: a sphere, 
an ellipse with major axis in the x direction, an ellipse with major axis in the y direction. 
Shapes are centered at the origin and are equally spaced in time.

of synthetic data, but the magnitude of the parameters still reflect the extent and size of 

the shapes. Further, we use the same parameter values of aV and aw  for both models for 

an accurate comparison between the two.

Figure 2.6 shows consecutive time points around time ti, comparing the velocity field 

estimated from a piecewise-geodesic model and the acceleration controlled model. We can 

see a discontinuity in velocity in the piecewise-geodesic case, happening at time t 1. On 

the left and right of the shape, the velocity changes direction from pointing outward to 

inwards. This change happens instantaneously, and the resulting shape trajectory is not 

continuously differentiable. For anatomical shapes, the instantaneous change of direction 

violates our assumption that biological tissue evolves smoothly in time.

In contrast, the velocity estimated in the acceleration controlled case shows consistency 

between time steps. The direction of the velocity changes direction smoothly over several 

time steps, rather than instantaneously in the piecewise-geodesic model. This leads to 

continuously differentiable velocity and shape trajectories that are twice differentiable. We 

also note that the smoothness constraints imposed by our model do not limit the ability to 

match the data as closely as the piecewise-geodesic model. However, the tradeoff between 

data-matching and regularity can be controlled through parameter yr. This ability to 

control the extent the model matches the data can be highly beneficial in practice, which 

we will discuss later. The comparison can be viewed as an animation at goo.gl/bgiBpJ, 

which better highlights the difference between the models.
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Piecewise geodesic

Acceleration controlled

-----------------------------------------------
Time

F ig u re  2.6. Comparing estimated models at three consecutive time steps around the 
second observation: t 1 — At,  t 1, t 1 +  At. Target shapes are transparent and estimated shape 
is solid. Vectors denote direction of growth (can point inwards) and color denotes speed 
(blue to white to red). The direction of growth in the piecewise-geodesic model changes 
instantaneously as the vectors on the left and right of the shape flip direction. In contrast, 
the direction of growth changes smoothly in time in the acceleration controlled model. The 
difference between models is most evident when viewed as an animation at goo.gl/M2sQ3v.

2 .4 .3  M is s in g  d a t a

In this section, we investigate the impact of missing data on the acceleration controlled 

model. The parameterization by acceleration guarantees twice differentiable shape tra 

jectories, which are temporally smooth. In contrast, the piecewise-geodesic model suffers 

from discontinuities at observation time points, leading to trajectories that are piecewise 

differentiable. The two modeling assumptions therefore lead to shape evolutions with 

differing trajectories between and through shape observations.

2 .4 .3 .1  E x a m p le : s y n th e t ic  d a t a

To explore the differences between models we consider the evolution of 2D curves. 

The synthetic evolution can be sampled continuously, beginning as a circle and eventually 

evolving into a pinched ellipse (data from Vialard and Trouve [84]). Figure 2.7 shows three 

viewpoints of the synthetic curve evolution, shown in 3D space-time.
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F ig u re  2.7. Three views of synthetic curve evolution shown in 3D space-time represen
tation. For all three views, time moves from left to right. The synthetic curves can be 
sampled continuously across time.

To evaluate the impact of missing data, we perform a leave-many-out analysis. The 

procedure involves using a small number of available observations for model estimation to 

see how closely the estimated model matches the observations tha t were left out. For each 

experiment, we choose observations uniformly across time. We also estimate piecewise- 

geodesic and acceleration controlled models with identical parameter sets (ay  and aW) for 

a fair comparison. We consider models estimated using 5, 6, 7, 8, 9, 10, and 11 target 

observations.

The results for one particular experiment are summarized in Figure 2.8 for model esti

mation using six observations (baseline shape plus 5 target shapes). Figure 2.8 shows three 

views of shape reconstruction from piecewise-geodesic and acceleration controlled shape 

regression models. The discontinuities in the piecewise-geodesic model are apparent at the 

observations, showing instantaneous changes in direction. The acceleration controlled model 

estimates smooth transitions between observations, resulting in better interpolation between 

and across observations. The shape reconstruction from the acceleration controlled model 

better approximates the synthetic evolution by more accurately matching the observations 

left out during model estimation.

The impact of missing data for the piecewise-geodesic and acceleration controlled regres

sion models are summarized in Figure 2.9, which shows reconstruction error as a function of 

the number of observations used for model estimation. Here reconstruction error is measured 

as the sum of squared distance between the reconstruction and the ground tru th  observations 

left out during model estimation. For these experiments, the synthetic evolution consists 

of 501 discrete samples. It should be made clear tha t the magnitude of the error has no 

meaning, since there is no concept of physical units in the synthetic data. Rather, it is the 

relative difference in error between estimates from the piecewise-geodesic and acceleration 

controlled regression models is of significance.

The acceleration controlled regression model generates more accurate trajectories be

tween and across observed data, as evident by lower reconstruction error for all experiments.
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Piecewise geodesic Synthetic evolution Acceleration controlled

A. A A

F ig u re  2.8. Three views comparing shape reconstruction from piecewise-geodesic (left 
column) and acceleration controlled regression (right column) on six samples from a 
synthetic evolution (middle column). Solid black lines represent target observations used 
for model estimation. The time axis is vertical in the top two rows (from bottom to top) 
and horizontal (from left to right) in the bottom row. Acceleration controlled regression 
provides better interpolation between observations.

The difference in error between piecewise-geodesic and acceleration controlled is larger the 

fewer target observations used for model estimations. This suggest tha t in addition to 

providing better interpolation between observations, the acceleration controlled regression 

model is also more robust to missing data, by more accurately capturing the underlying 

trend in the data.

The results from our acceleration controlled model are also qualitatively very similar 

to the results presented in [84]. Here, we compare visually as we do not have access to 

their implementation. In the future we wish for a quantitative comparison across the 

full suite of experiments presented in [84]. Such a project will provide more information 

about the strengths and weaknesses of our model. It will also provide an opportunity
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F ig u re  2.9. Comparison of the interpolation properties between piecewise-geodesic and 
acceleration controlled shape regression models on leave-many-out experiments on synthetic 
curve data (Figure 2.7). Reconstruction error of synthetic evolution is shown as a function 
of number of observations used for model estimation. Error is computed as the sum of 
squared differences between shapes estimated by the regression models and the synthetic 
ground tru th  observations left out during model estimation.

to better understand the similarities between two methods with fundamentally different 

constructions.

This synthetic example assumes noise free observations that serve as ground truth. In 

practice, medical data represent noisy observations of the underlying distribution. For noisy 

observations, it is not desirable to perfectly match observations. Rather this would be an 

example of overfitting. It is more important for a model to generalize the trend suggested 

by the measurements, instead of providing perfect interpolation of observed data. The 

next section will investigate how the piecewise-geodesic and acceleration controlled models 

perform on noisy observations of a real anatomical shape.

2 .4 .3 .2  E x a m p le : m e d ic a l d a t a

Here, we follow the development of a single child from around 4 to 8 years of age. W ithin 

tha t interval, 16 observations were taken in the form of MR images. The MRI data are 

first rigidly aligned to establish a common reference frame. Lateral ventricles are segmented 

from each image using a level-set based active contour segmentation tool [43]. The lateral 

ventricles make for an interesting regression experiment, as they have complex geometry 

and very thin structures. For example, the horns of the lateral ventricles are as thin as a
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few millimeters. The left side of Figure 2.10 shows the baseline ventricle shape at 4.2 years.

This unique longitudinal dataset with 16 observations highlights a common difficulty 

associated with medical image analysis; the observations are inherently noisy, with variabil

ity introduced during scanning, registration, segmentation, among other possible sources. 

It is difficult to discern anatomical change related to development from changes due to 

segmentation error, for example. The noise in this dataset can be seen in Figure 2.10, 

which shows the volume of the discrete ventricle observations. The overall trend can be 

readily understood, that volume increases with age. However, there is large variability from 

time point to time point. For example, consider the evolution after 7 years old. The volume 

decreases over the next 3 observations at a steady pace, before increasing rapidly over the 

next 2 observations. In fact, the ventricle volume increases by 12% over the first 2.8 years 

of observation and increases by 16% over the final 0.4 years. The development represented 

by the observations is not characteristic of the smooth trajectories of biological growth. It 

is clear we do not desire to match the observations perfectly, and to do so would be an 

example of overfitting.

To assess the performance of the acceleration controlled model, we compare it with 

the piecewise-geodesic model on leave-many-out experiments using the observed ventricle 

shapes. In each experiment, we exclude some of the available observations during model 

estimation in order to see how well the model matches the observations left out. We estimate 

acceleration controlled and piecewise-geodesic models using 1, 2, 3, 5, 9, and 15 target 

shapes. We always include the baseline shape at 4.2 years of age and use the remaining 

observations as evenly distributed across time as possible. We set input parameters av  =
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F ig u re  2.10. Longitudinal observations of lateral ventricles. Left) Baseline ventricle shape 
at 4.2 years old. Right) Volume of the discrete ventricle observations.

Ventricle volume over timex  10
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20 mm, aw  =  1 0  mm, y r  =  0 .0 1  for all experiments and for both acceleration controlled 

and piecewise-geodesic regression models.

To measure regression accuracy with respect to matching excluded data, we use the 

coefficient of determination defined as

-t fi) / r j  i-7\

R  = 1 -  Y . i (y  -  y)2 ' (2.7)

where yi are the observed ventricles, f i are the ventricles estimated by regression, and y is 

the mean of the observed ventricles. The numerator represents the sum of squares of the 

residuals, while the denominator is the total sum of squares. R 2 measures the goodness of 

fit of a model, with a value of 1 meaning a perfect fit.

The results of the leave-many-out experiments are summarized in Figure 2.11. When 

using 3 or more target observations, the piecewise-geodesic model generates a higher R 2 

than the acceleration controlled model. This is particularly true when all 15 available 

target observations are used. However, as we saw in Figure 2.10, the ventricle segmentations 

represent noisy observations, and we prefer to capture the overall trend rather than closely 

matching all observations. This suggest tha t the piecewise-geodesic model is overfitting. In 

contrast, there is only a minimal increase in R2 when using more than 3 target shapes with 

the acceleration controlled model. This suggests that our method captures the underlying

F ig u re  2.11. Summary of leave-many-out experiments on lateral ventricles. Left) Snap
shots from a continuous shape evolution of lateral ventricles estimated by our regression 
model. Acceleration vectors are displayed on the surface, with color denoting magnitude. 
Right) Comparison of coefficient of determination R 2 as a function of number of target 
shapes between piecewise-geodesic and acceleration controlled regression models.
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growth with limited data, as additional target data do not greatly alter the estimation. 

For most longitudinal studies, the ability to capture the growth given limited data is highly 

desirable, as it is uncommon to have more tha t 2 or 3 observations available for each subject.

2.5 Discussion
The acceleration controlled regression model can be thought of as a nonparametric 

model. The power of the acceleration controlled regression model lies in the flexibility to 

model highly nonlinear and dynamic shape changes, while guaranteeing temporally smooth 

trajectories. For anatomical shapes, this is an especially important property, as we assume 

the development of biological tissue is a smooth process in time. The model also has the 

benefit of fitting a smooth trend in between and through observations. Compared to the 

standard piecewise-geodesic model, our method is less sensitive to noise introduced during 

segmentation and is robust to missing data, and is therefore more likely to characterize the 

underlying biological growth given limited observations.

Though flexible and applicable to many distributions of data, nonparametric models 

also have limitations. In order to recreate shape evolution estimated by the acceleration 

controlled model, one must store the initial shape, initial velocity, and the time-varying 

impulse vectors. As an analogy, consider kernel regression for scalar values. One must store 

the curve (or re-estimate) to revisit the model. In contrast, a parametric linear model for 

scalar values requires only to store a slope and intercept. Parametric models are especially 

convenient for statistical analysis, due to a low number of parameters situated at only 

one time point. It is therefore not straightforward to integrate the acceleration controlled 

regression model into a framework for statistical analysis of longitudinal data. We present 

a few possible ways to incorporate this model into frameworks for statistical analysis in 

Chapters 4 and 5.

The smoothness built into the parameterization limit the shape variation the acceleration 

controlled regression model can capture over short-time periods. In practice, this is a 

desirable quality that protects from over fitting. However, in cases where very accurate 

fitting is desirable there are a few options. First, one can reduce the value of important 

parameters av  and aW for more accurate matching. However, this is only beneficial to a 

certain point (see Section 2.3.2.2 and Figures 2.1 and 2.2). Another logical choice is to lower 

the value 7 r ,  essentially giving the model more freedom by sacrificing regularity of the flow 

of deformations.

Another choice tha t is not obvious is to lower the criteria for convergence of the gradient 

descent algorithm. For most applications, we term inate the algorithm when the difference
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between the criterion of two successive iterations is less than 1-6 . However, we have noticed 

tha t letting the algorithm continue for many more iterations can lead to better matching of 

target shapes, even though the progress of each iteration is very small. For our experiments, 

we have found a convergence criteria of 1 - 1 4  produces results comparable to piecewise- 

geodesic, with all other parameters equal. This is an important strategy to keep in mind for 

experiments where accuracy is important, though estimation will take considerably more 

time.

Future changes can be made to improve the model. Rather than assuming the baseline 

shape is fixed at the earliest observation, the baseline shape could also be estimated as 

part of the algorithm. This would result in an unbiased estimation and generally improve 

model fit. Another important change is to decouple the model parameters from the shape 

representation. Currently, the impulse vectors are located at the vertices of the baseline 

shape. This is a convenient representation in terms of the mathematical model, and for 

its implementation. However, the number and location of deformation parameters should 

reflect the dynamics of shape change, rather than the sampling of the particular shape. In 

the next chapter, we will present such a parameterization of diffeomorphisms, independent 

of shape representation, around which we build regression models.

Estimation of initial velocity is another key area for future improvement. Currently it is 

a model parameter which is estimated jointly with the time-varying impulse vectors during 

optimization. However, this is problematic as there is no regularization of initial velocity. 

In practice, this can lead to nondiffeomorphic flows. To avoid this, it is best to fix initial 

velocity at 0. Another option is initialize the initial velocity by geodesic registration, as 

mentioned in Section 2.3.2.1, and fix the value during optimization. In the future, this is a 

limitation that needs to be addressed.



CHAPTER 3

GEODESIC REGRESSION  

3.1 Introduction
The previous chapter introduced an acceleration controlled growth model for shape 

regression motivated by the assumption tha t anatomical structures develop smoothly over 

time. The acceleration controlled regression model was designed to overcome the limitations 

of the piecewise-geodesic model, namely the instantaneous change in direction present 

in the estimated trajectories. However, the acceleration controlled model is not without 

limitations. The acceleration controlled model is nonparametric and it is not yet clear how 

to integrate such a model into a comprehensive framework for longitudinal data analysis. It 

is more straightforward to incorporate a parametric model into a longitudinal framework, 

since different regressions could be compared by transporting model parameters from subject 

to subject, using parallel transport for instance [56].

The acceleration controlled model also assumes deformation parameters are located at 

the vertices of the shapes. The number of parameters can quickly escalate when shape 

complexes are introduced, especially considering parameters must be computed for every 

time point in the discretization. Furthermore, the role of the deformation parameters is 

to characterize shape change over time. The description of anatomical change should be 

independent from the specific shape representation, as well the sampling of tha t shape. The 

acceleration controlled model is also limited to assuming a fixed baseline shape, at the time 

of the earliest observation for example.

Taking into account the strengths and weaknesses of the acceleration controlled model, in 

this chapter we develop what we believe to be a complementary growth model. The main 

motivation is to define a growth model that is parametric, has deformation parameters 

independent of any specific shape representation, and must include the estimation of a 

baseline shape. Such a model tha t is ubiquitous in Euclidean statistics is the linear regression 

model, which is entirely defined by two parameters: intercept and slope. We present in this 

chapter the details of a geodesic regression model tha t can be considered the extension
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of linear regression to the space of diffeomorphisms in the spirit of the large deformation 

diffeomorphic metric mapping (LDDMM) framework outlined in Chapter 1. The LDDMM 

framework is well suited for regression purposes since it is built on a flow of diffeomorphisms 

tha t model continuous shape changes over a time period.

The geodesic regression model is a generative statistical model, being fully characterized 

by a baseline shape configuration and momentum vectors defining the geodesic at the 

baseline shape. By analogy with linear regression, the baseline shape is a proxy for the 

intercept, while the momenta vectors represent the slope. While geodesic models cannot 

match observed data as closely as nonparametric models such as the acceleration controlled 

or piecewise-geodesic models (in general), the power of the geodesic model lies in the 

simplification of the statistical analysis. To compare two trajectories of change, one only 

needs to compare the initial conditions [56].

We also leverage a sparse parameterization of dense deformations, which is referred to as 

a control point parameterization of diffeomorphisms [26, 23, 25]. The control point frame

work decouples the parameterization of the time-varying deformations from the specific 

shape representation. This allows the number of model parameters to reflect the complexity 

of anatomical change over time rather than the sampling of the shape. The geodesic model 

is able to characterize complex evolution with a small number of parameters, the number 

of which is defined by the user.

We begin this chapter by developing the deformation model, where dense deformations 

are built from a limited number of control points. We then detail how geodesic paths in 

the space of diffeomorphisms can be computed, given the control point deformation model. 

These two pieces serve as the foundation for geodesic regression. On top of this foundation 

we derive dedicated algorithms to implement geodesic regression for shapes and for images. 

Finally, we leverage the flexible deformation model to introduce a unified framework for 

geodesic regression of images and shapes in any combination.

3 .1 .1  C lo se ly  r e la te d  w o rk

Geodesic regression has been developed for imaging data in [62] which leverages the 

initial momenta formulation of the EPDiff equation [83]. The goal is to estimate initial 

momenta, which fully characterize a geodesic flow of diffeomorphisms to deform a baseline 

image over time to match observed images. The baseline image (also referred to as template 

image) must also be estimated. In [62], the momenta are a scalar field of the same dimension 

of the image, as such, they can be thought of as attached to each voxel. The direction of 

the initial momenta is orthogonal to the gradient of the deforming baseline image [60].
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The authors of [62] propose an optimal-control framework to estimate the scalar initial 

momenta as well as the baseline image. They utilize gradient descent and an adjoint method 

to compute forward integration of state equations and subsequent backward integration to 

bring gradient information back to time zero to update model parameters.

Rather than use scalar initial momenta, the work of [74] introduces a vector formulation. 

They provide the forward evolution equations tha t define geodesic evolution, as well as the 

adjoint equations, which bring gradient information back to time zero. The main advantage 

of the formulation is tha t the baseline image can be computed in closed form, given a current 

estimation for initial momenta. The optimization procedure need not jointly compute both 

baseline image and initial momenta, rather only momenta is estimated, and a new baseline 

image is computed in turn. This leads to faster convergence, in terms of the number of 

iterations of gradient descent.

For both the case of scalar momenta [62] and vector momenta [74], the initial momenta 

are located on the voxels of the baseline image. As such, the dimensionality of the model 

is determined by the sampling of the observed data. In contrast, in this chapter we 

present geodesic regression models based on a sparse representation of diffeomorphisms. 

We decouple the deformation parameters (initial momenta) from the shape representation 

so the dimensionality of the model is not determined by the sampling of observed data, but 

rather the model reflects the complexity of shape change over time.

Another parametric regression approach is presented in [44], who propose a generic 

method for polynomial regression of manifold valued data. A geodesic path on a manifold 

is the path where velocity is at all times parallel along the curve. Extending this concept, 

a quadratic path on a manifold is the path where acceleration is at all times parallel along 

the curve. This observation allows the authors of [44] to parameterize polynomials of any 

order as curves where kth  order covariant derivative is zero along the curve, i.e., the vector 

field is always parallel.

The authors provide generic algorithms for forward integration of a kth  order polynomial 

as well as backward integration for the adjoint equations for a kth  order polynomial. These 

generic algorithms are provided with respect to manifold specific computations such as 

covariant derivatives, parallel transport, and exponential map. Specific implementations 

are explored for Kendall shape space and LDDMM landmark space. In general, the method 

is difficult to implement for an arbitrary manifold due to the need to explicitly compute 

curvature, as is the case for landmarks.

The geodesic model presented here differs in several ways form the work of [44]. First,
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the geodesic in our model refers specifically to a geodesic flow of diffeomorphisms. In 

other words, it is specific to the manifold of diffeomorphisms. The work of [44] provides an 

intrinsic representation of polynomials on a generic Riemannian manifold. Furthermore, the 

polynomial regression model provides arbitrary order of regression curves, with geodesics 

being a special case.

We do not yet have a solid understanding of polynomial curves on general manifolds, 

or what type of observed data are distributed in such a form. One can always improve 

model fit by increasing the order of the polynomial. However, this often comes at the cost 

of overfitting, as well as other phenomena such as ringing. Model selection is alleviated in 

the Euclidean case by inspection of the estimated curves and making reasonable decisions 

about overfitting. In the case of regression on manifolds, it is not clear how to select the 

appropriate order of model. Until this problem is better understood, geodesic models stand 

as a reasonable tradeoff between model fit and model complexity.

3.2 Deformation model
The large deformation diffeomorphic metric mapping (LDDMM) framework, developed 

in [78, 22, 58], provides a way to build diffeomorphisms through the integration of vector 

fields. The vector fields are in fact time-varying velocity fields defined at point x as vt (x). 

Over the time interval [0,1], the trajectory of x is given by the integration of <j6t (x) =  

vt (0t (x)) with initial condition 0o(x) =  x the identity transformation. The transformation 

0t (x) is a flow of diffeomorphisms under certain conditions of the vector field vt . Specifically, 

vt is the set of any L2 vector field convolved with kernel K . The space of vt is therefore a 

reproducing kernel Hilbert space (RKHS) with metric properties defined by the choice of 

kernel K.

Following the framework of landmark matching in [47], a low dimensional parame

terization of diffeomorphisms was introduced in [26]. This sparse parameterization of 

diffeomorphisms has been further explored and applied to problems in image/shape analysis 

in [30, 23, 25, 33, 32, 34].

Let c(t) =  ( c i( t ) , ..., cNc(t)} be the spatial coordinates of a set of Nc control points for 

each time t. Associated with each control point is a momenta vector, the set of which is 

denoted a(t)  =  { a 1(t), ...aNc(t)}. The finite set of control point/m om enta pairs define the 

time-varying velocity field everywhere in space as

Nc
x(t) =  vt(x) =  Y  K ( x , c p(t))ap(t), (3.1)

p= i
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where K  is a Gaussian kernel K (x,y) =  exp(—||x — y ||2/aV ) defining the RKHS and 

corresponding metric properties through the choice of av . We write (3.1) in short as 

X(t) =  G(x(t),  S(t)) and refer to this as the flow equation.

The time-varying velocity field vt then builds a flow of diffeomorphisms as in the 

LDDMM framework by integrating the differential equation

Nc
<pt(x(t)) =  vt (0t (x(t))) =  ^  K  (x(t),cp(t))ap(t) (3.2)

p=1

given initial value x(0). Additionally, the location of control points evolve in time according 

to the equation of motion in the same manner, written as

Nc
Ci(t) =  ^  K  (a  (t),cp(t))ap(t) (3.3)

p= 1

given initial values ci (0). The trajectory x(t) is computed by solving (3.2), which is defined 

fully by the control point/mom enta pairs, which we will refer to as the state of the system 

S(t) =  {c ( t)  a ( t ) }.
This representation of diffeomorphic flow has two main benefits. First, it provides 

a sparse representation of dense deformations. A low dimensional parameterization is 

beneficial for statistical analysis, due to the problem of high dimensionality and low sample 

size. It is also beneficial to reduce noise in the description of shape variability, as the true 

variability is likely parameterized by far fewer parameters than the number of image voxels, 

for instance. The second benefit of the control point framework is it decouples deformation 

parameters from any specific shape representation. As we saw in Chapter 2 on acceleration 

controlled shape regression, the deformation parameters were tied to the shape points. 

Freeing the control points from the confines of the shape allows the deformation parameters 

to be concentrated in areas where the most dynamic changes occur.

3.3 Geodesic flow of diffeomorphisms
The geodesic path connecting to 0 1 is the path with constant velocity and zero 

acceleration, which is equivalent to the path tha t minimizes the total kinetic energy of the 

the velocity field vt

1 !• 1 !• 1 NC NC
2 IHlV dt = J 2 aP(t) tK  (cP(t), Cq (t))aq(t) (3.4)
2 J  0 Jo p= 1 q=1
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which is defined entirely by the state of the system S(t). The a(t) that minimize (3.4) satisfy 

a set of differential equations defining the evolution of momenta over time [60]. Combining 

this with the motion of the control points (3.3) gives

Nc
C(t) =  ^  K  (ci(t),cp(t))ap(t),

P=1N  (3.5)
ai(t) =  -  E  ai(t)*ap(t)ViK(ci(t),cp(t))

p= i

with initial conditions So =  (co, a 0}, which we write in short as

S(t) =  F(S(t)), given S(0) =  S0, (3.6)

which we will refer to as the shooting equations, or geodesic shooting.

The shooting equations in (3.5) provide the continuous evolution of the control points 

and momenta, and represent the speed and acceleration of control points, respectively. This 
shows that the entire flow of diffeomorphisms is parameterized completely by the initial state 

of the system S0. First, the continuous motion of the control points and momenta can be 

determined by solving equations (3.5). One can then determine the velocity at any location 

and any time using equation (3.1) and therefore compute the full trajectory of a point x 

through time by integrating 0t(x) =  vt(0t(x)).

3.4 Geodesic shape regression
This problem of geodesic regression is addressed in the work of [39, 37, 62, 74] where 

geodesic regression is proposed for image time series as well as in the Riemannian setting. 

Extending it for geometric data such as curves and surfaces is challenging for at least two 

reasons. First, images seen as measures on R3 inherit the linear structure of Euclidean space 

that eases the estimation of the baseline image (images could be averaged by averaging grey 

levels for instance). Curves or surfaces could be also embedded into a vector space if we 
assume point correspondences between shapes [18]. Alternatively, we can avoid explicit 

correspondence by embedding shapes into the space of currents, which defines a generic 
metric that can handle both surfaces and curves or any mix of them. However, the average 

of surfaces in the space of currents is usually not a surface anymore [24]. To overcome this 

limitation, we will use here the new formulation initiated in [30], which allows to optimize 

a given template in the space of currents, while preserving its topology.
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3.4.1 M e th o d o lo g y

The goal is to estimate a continuous shape evolution from a discrete set of observed 

shapes Oti at time ti within the time interval [t0, T]. Here, we consider shapes to be generic 
geometric objects that can be represented as curves, landmark points, or surfaces in 2D or 

3D. Shape evolution is modeled as the geodesic flow of diffeomorphisms acting on a baseline 

shape X 0, defined as X(t) =  0t(X 0) with t varying continuously within the time interval 

determined by the observed data. The baseline shape X 0 is continuously deformed over time 

to match the observation data (X (ti) ~  Oti) with the rigidity of the evolution controlled 

by a regularity term. This is naturally expressed as a variational problem, described by the 
regression criterion

Nobs
E (X 0,0t) =  E  ||(0ti(X 0) -  Oti)||W* +  Reg(0t)

i= 1
Nobs

=  £  D (X (ti), Oti) +  L(&), (3.7)
i= 1

where D represents the squared distance on currents (|| • ||W *) and L is a measure of the 
regularity of the time-varying deformation 0t.

The geodesic flow of diffeomorphisms 0t is parameterized by Nc control points and 

momenta vectors S0 =  {c 0, a 0}, which act as initial conditions for the shooting equations 

(3.5). The baseline shape X 0 can then be deformed by the flow equation (3.1). Therefore 

we seek to estimate the position of the control points, initial momenta, and position of the 

points on the baseline shape such that the resulting geodesic flow of the baseline shape best 

matches the observed data. An overview of our control point formulation of geodesic shape 

regression is shown in Figure 3.1. With all elements of our framework defined, geodesic 
shape regression can now be described by the specific regression criterion

Nobs 1
E (X 0, S0) =  £  ^ 2 D (X(ti), Oti) +  L(S0), (3.8)

i=1
subject to

( S(t) =  F (S(t)) with S(0) =  {C0, « 0}, (3 9)
\ ^ (t) =  G(X(t), S(t)) with X(0) =  X 0, ( . )

where A2 is used to balance the importance of the data term and regularity. The regularity 
term is given by the kinetic energy of the control points

Nc Nc
L(S0) =  E E  (t)tK(cp(0), Cq(0))aq(0). (3.10)

p=1 q=1
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S o  —  C o ,  OCq

Figure 3.1. Overview of geodesic shape regression. Parameters of the model that must be 
estimated are shown in red.

The first part of (3.16) describes the trajectory of the control points and momenta as in 

the shooting equations (3.5). The second equation of (3.16) represents flowing the baseline 

shape along the deformation defined by S(t) as in (3.1).
As shown in Appendix B, the gradients of the criterion (3.15) are

Vso E  — £ (0) +  Vso L Vxo E — 0(0),

where the auxiliary variables 0(t) and £(t) =  {£c, £a} satisfy the ODEs:
Nobs

0(t) — — d1G(t)t0(t) +  V X(ti)D(ti (t — ti)
i=1

^(t) — - ( d 2 G(t)t 0(t) +  ds(t) F  (t)t £ (t))

0(T) — 0, 

£ (T) — 0.

(3.11)

(3.12)

3.4.2 A lg orith m
We implement an adaptive step size gradient descent algorithm, summarized in Algo

rithm 2. The gradient is computed by first integrating equations (3.5) forward in time to 

construct the flow of diffeomorphisms. The deformations are then applied to the baseline 

shape by integrating forward in time equation (3.1). With the full trajectory of the deformed 

baseline shape, one can compute the gradient of the data term V X(ti)D(ti), corresponding 

to each observation.
The ODEs (3.18) are then integrated backwards in time, with the gradients of the data 

term acting as jump conditions at observation time points, which pull the geodesic towards
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Algorithm  2: Geodesic shape regression
Input: X 0 (initial baseline shape), Oti (observed shapes), t0 (start time), T (end 

time), a (tradeoff), av  (std. dev. of deformation kernel), aW (std. dev. of 
currents metric)

Output: Xo, co, ao
1 a 0 =  0
2 Initialize control points c0 on regular grid with spacing av
3 repeat

// Compute path of control points and momentum (forward integration)

ci(t) =  ci(0) +  /  E N  i K  (ci(s), cp(s))ap(s)ds
ai(t) =  ai(0) -  /t0 E ^  i ai(s)tap(s)V iK (ci(s),cp(s))ds 
// Trajectory of deformed baseline shape (forward integration)

xk(t) =  xk(0) +  E j !  i K (xk(s),cj (s))aj (s)ds
// Compute the gradient of the data term for each observation

V X(ti)D(ti)
// Compute auxiliary variable 0(t) (backward integration)

Ok(t) =  Ok(T) +  /T E j ! i  ap(s)% (s)V iK (xk(s),cp(s)) -  EtN1s Vxfc(t;)D£(s -  ti)ds 
// Compute auxiliary variable £c(t) (backward integration)

ek(t) =
Ck(T) -  EN=i ak(s)tOp(s)V iK (ck(s),xp(s)) +  (dcFc)££(s) +  (dcFa)£a(s)ds 
// Compute auxiliary variable £a(t) (backward integration)

ea(t) =  ea(T) -  / t  EN=i k  (ck (s),xp(s))op(s) +  (d«Fc)£k (s) +  (d«Fa)£k (s)ds10 k w  _  Sk ; JT Z^p=i “ V ^  7Skl°/ ' ;s>k
// Compute gradients

11 V c0 E =  CC(0) +  V c0 L
12 V ao E =  C° (0) +  V ao L
13 Vxo E =  O(0)

// Update control points, momenta, and baseline shape

14 ci(0) =  ci(0) -  eVQE ai(0) =  ai(0) -  eVaiE xi(0) =  xi(0) -  eV ^E
15 until Convergence
16 return X 0, c0, a

target data. The final values of the auxiliary variables 0(0) and C(0) are then used to update 
the location of the control points, the initial momenta, and the location of the points on 

the baseline shape. All ODEs are solved using an Euler scheme with prediction correction, 

which is equivalent to second order Runge-Kutta.

3.4 .2 .1  In itia lization
There are several parameters that require initialization. The simplest of which is the 

initial momenta a 0, which are initialized to 0, corresponding to no deformation. It is 

possible to initialize momenta by some preprocessing, such as registration between the 

earliest and latest time points. However, this is not necessary, as the algorithm computes a
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reasonable estimate for momenta after the first iteration.

The algorithm also requires an initial baseline shape. For surfaces, one choice for 

initialization is an ellipsoid for each connected component of the observed shapes. The 
ellipsoid serves as a reasonable blobby approximation of many anatomical shapes. The 

ellipsoid(s) defines the number of shape points as well as the connectivity, which is preserved 

during optimization. Figure 3.2 shows an example initial baseline shape with connectivity. 

It is also reasonable to choose one of the observed shapes for the initial baseline shape, the 

earliest observed shape for example. This will improve the speed of convergence, but may 

slightly bias the estimation towards that observation.

The location of the control points co must also be initialized. For our implementation, 

we initialize control points on a regular grid defined by a bounding box around the observed 
data. Figure 3.2 shows initial control points surrounding the initial baseline shape. The 

spacing is determined by the user, and consequently determines the number of control points 
and therefore the dimensionality of the model parameters. It is also possible to initialize 

control point locations at the vertices of the baseline shape. However, this goes against the 
spirit of the control point formulation, which decouples the deformation parameters from 

the shape representation. For that reason, we prefer initialization on a regular grid.

Figure 3.2. Initialization of control points on a regular grid in red. The baseline shape 
here is initialized as an ellipse, which defines the number of shape points and connectivity.
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3.4 .2 .2  P aram eters

There are four main parameters which influence model estimation:

• spacing of control points: distance between each control point initialized on a regular 
grid. The size of the grid is defined by a bounding box around the observed data.

• aW: the size of the kernel that defines the metric on currents. This parameter allows 

you to tune the metric properties of the space of currents to suit your application. 
Intuitively, this parameter is the scale at which shape differences are considered noise. 

For more detail, please see the discussion of parameters in Chapter 2.

• a v : the size of the kernel that defines the deformation. It is the distance at which 
points move in a correlated way. Higher values result in mostly rigid deformation, 

while lower values allow each point to move independently. For more detail, please 

see the discussion of parameters in Chapter 2.

• yr : the tradeoff between data-matching and regularity.

3.4.3 E xperim ents

3.4 .3 .1  S yn th etic  transform ations

We explore the ability of the geodesic regression model to capture simple synthetic 

transformations applied to a real anatomical surface. We consider the amygdala surface 
extracted from a 4 year old child and investigate translation and scaling. For both experi

ments, we initialize the baseline shape to be an ellipse, as shown in Figure 3.3. This defines 

the topology of the baseline shape, which will remain unchanged during optimization. We 
define 12 control points on a regular grid and parameters av  =  12 mm, aW =  5 mm, and 

A =  0.1. Both experiments contain three shape observations spaced one time unit apart.

Figure 3.3. Initial baseline shape (left) defines topology and connectivity and is a 
reasonable initialization for an observed amygdala (right).



43

For both experiments, the baseline shape estimated by our method closely matches the 

amygdala surface at the earliest time point and the dynamics of shape evolution are well 

captured by the geodesic model (Figure 3.4). However, very accurate matching of the target 
shapes is not the goal with a geodesic model (and is generally not possible). The power of 
the model lies in the low dimensional parameterization of shape evolution, which facilitates 

statistical analysis. These experiments demonstrate the compactness of the geodesic model; 

continuous shape evolution is described by the baseline shape and 12 momentum vectors.

3 .4 .3 .2  P ed ia tric  su b cortica l developm en t

We next investigate the application of geodesic shape regression to model pediatric 

subcortical development. Three subcortical shapes are considered as a multiobject shape 

complex: putamen, amygdala, and hippocampus. The structures were obtained from MRI 
of a healthy child scanned at approximately 9, 13, and 24 months of age. Geodesic regression 

was conducted using 126 control points and parameters ay =  8 mm, aw =  6 mm, and A =  

1.0. To improve speed of convergence, we initialize the baseline shapes for each subcortical

Figure 3.4. For both translation and scaling panels, the top row shows discrete shape 
observations of the amygdala surface, while the bottom row shows shapes estimated during 
geodesic regression at observation times as well as intermediate stages. Our method 
estimates a baseline shape and momenta vectors that capture shape evolution.
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structure with an ellipse that has been coarsely registered to its corresponding subcortical 
shape. Regression was conducted on all shapes simultaneously, resulting in one deformation 
of the ambient space.

Several snapshots of the evolution of subcortical structures are shown in Figure 3.5, 

with estimated baseline shape shown at 6 months. From 6 to 26 months, all subcortical 

structures increase in size, with the putamen demonstrating the most dramatic growth. The 
evolution of the putamen is characterized by accelerated growth at the superior anterior 

and inferior posterior regions, while the hippocampus grows mostly at the extreme posterior 

region, expanding and bending at the tip. The geodesic model is able to capture interesting 
non-linear growth patterns with few parameters; the full time evolution is modeled by three 

baseline shapes and 126 momenta vectors.
This experiment demonstrates the applicability of the geodesic model in characterizing 

pediatric subcortical development. Our regression framework simultaneously handles multi

ple shapes, including those with complex geometry. Multiobject regression allows for a more 

complete analysis, compared to an independent treatment of each subcortical structure, 

which ignores potentially important spatial relationships between structures. This single 

subject experiment can also be extended to a population analysis thanks to the control point 
formulation of deformations by freezing the control point locations for all subjects. The 

differences between and within populations can be quantified by exploring the variability

Figure 3.5. Snapshots of subcortical shape evolution after geodesic regression on a 
multiobject complex: putamen, amygdala, and hippocampus.



45

between estimated baseline shapes, and between initial momenta at identical locations for 

all subjects.

3 .4 .3 .3  W h ite  m atter fibers in early  brain  develop m en t
Finally, we study early brain development by considering the evolution of white matter 

connections from birth to 2 years of age. For this experiment, we have diffusion tensor 

imaging (DTI) data from 17 subjects with scans obtained at clustered time points of 2 ±  2, 

12 ±  2 months, and 24 ±  2 months. We extract the genu fiber tract from each DTI using 

the framework of [7]. In our experiment, we use 26 genu fiber tracts that are represented as 
a collection of 3D curves. By considering fiber geometry obtained from multiple subjects, 

the estimated geodesic model can be considered as the development of the genu tract for 

an average child. We initialize the baseline shape with the genu fiber bundle from the atlas 

space, define 75 control points on a regular grid, and set parameter values as av  =  5 mm, 

aW =  8 mm, and A =  0.1.
The average development of the genu tract estimated by our geodesic model is summa

rized in Figure 3.6, which shows several snapshots on the genu fibers over time. The shape 
change of fiber bundles reflects the size and shape change of brain growth during early 

development. Our geodesic regression framework handles the multiple fiber structure that 
form the genu fiber bundle, using the currents framework to match the curvilinear fiber 

structures.

3.5 Geodesic image regression
Geodesic methods have been addressed in the work of [39, 62, 74] where geodesic 

regression is proposed for image time series as well as in the Riemannian setting. The 

geodesic regression model is generative, being fully characterized by the baseline image (the 

intercept) and the momenta vectors defining the geodesic at the baseline image (the slope). 

While these models cannot match the observed data as closely as the class of nongenerative 

models discussed above (in general), the power of such models lies in the simplification of 

the statistical analysis.
In contrast to the geodesic model of [62], which used scalar initial momenta, we present 

a vector momenta formulation. Our formulation is very similar to the model proposed 

in [74], who also develop a framework with vector rather than scalar momenta. The geodesic 

formulation of [74] and our formulation were developed independently during the same year. 
Interestingly, the motivation behind the vector based formulation differs between the design 

of [74] and our model. The authors of [74] leverage this formulation to derive a closed form
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A

B

Figure 3.6. Average development of genu fiber tract from 2 to 24 months. A) Observed 
data for all subjects, which is clustered around 2, 12, and 24 months. B) Genu fiber tracts 
estimated from geodesic regression at several time points with velocity of fiber development 
displayed on the surface of the estimated fibers.

update for the baseline image. Our motivation, however, was to decouple the deformation 

parameters from the specific image representation. This flexible representation is what 
ultimately allows for geodesic models to be estimated with any combination of images and 

shapes, which we will discuss later in this chapter. In contrast, the momenta in [74] are 

located on the voxels of the image.

However, it remains that the majority of the computations involved in model estimation 

are equivalent between our model and that of [74]. The forward evolution equations, which 

govern the time evolution of the baseline image and momenta are essentially the same. 
The major difference is we also compute a time evolution of control points which is not 

necessary in [74], as the momenta have fixed locations on the voxels of the image. The 

backwards integration of the adjoint equations are also essentially the same between the 

two methods. Both systems bring gradient information back to time zero, with gradients of 
the data-matching term used as jump conditions at observation time points. The biggest 

difference is we also integrate back gradient information with respect to the position of the 

control points, to update their location as well as the momentum vectors. Finally, we do 
not yet take advantage of the closed form update for the baseline image derived in [74]. 

Instead, we also compute the gradient with respect to the baseline image and use this to 
refine the baseline image iteratively.

Although model parameters are located only at a baseline time point, the geodesic
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regression models of [62, 74] still require to store a large number of parameters. In fact, the 

number of parameters for these geodesic regression models is equal to the number of image 
voxels, which can quickly become unwieldy, particularly for 3D medical images. However, 
the dynamics of image evolution are likely characterized by considerably fewer parameters. 
Intuitively, momenta should be concentrated in areas where the most dynamic changes are 

occurring.
In this section, we present a new geodesic image regression framework which decouples 

the parameterization of the time-varying deformations from the specific representation of 

the images. This allows the number of model parameters to reflect the complexity of 

anatomical changes in time rather than the sampling of the images. An upper bound on 

the dimensionality of the deformation is chosen by the user, and a L1 penalty selects the 

most relevant subset of initial momenta, those that describe the most salient changes over 

time.

3.5.1 M e th o d o lo g y
The goal of image regression is to infer the continuous image evolution that best describes 

a discrete set of observed images Iti at time ti within the time interval [to, T ]. The dynamics 
of image evolution are modeled as the geodesic flow of diffeomorphisms applied to a baseline 

image I0, defined as I(t) =  I0 o 0 - 1.
Let y =  (y1, . . .  ,yM) be the physical coordinates of the pixel locations of the observed 

image furthest in time. The trajectory of the image points can be written as Y (t, y) =  

0 - 1(y) where Y(0, y) =  y. The trajectory Y(t, y) can then be used to interpolate the 
gray values of the neighboring voxels in the baseline image, allowing image evolution to 

be written as I(t, y) =  I0(Y(t, y)). The variational framework for image regression can be 

expressed by the criterion
Nobs

E (Io,0t) =  £  ||Io(Y(ti)) -  Iti)|||2 +Reg(0t)
i= 1
Nobs

=  ] T  D(Io(Y(ti)), Iti) +  L(0t), (3.13)
i= 1

where D represents the squared distance between images and L is a measure of the regularity 
of the entire time-varying deformation 0t for all times t.

The dense flow of diffeomorphisms 0t is constructed as in Sections 3.2 and 3.3 by 

first shooting initial control points and momenta by the geodesic equations (3.5). The 
trajectories of control points ci(t) and ai(t) parameterize the time-varying velocity field as 
equation (3.1).
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The action of a diffeomorphism on an image is defined through the inverse transforma

tion. The starting pixel locations y therefore follow the trajectory Y(t, y) — 0 - 1(y), which 
evolves in time by the ODE

Y(t, y) — - [dyY(t, y)]v(y, t) with Y(0, y) — y, (3.14)

which is written in short as Y (t , .) — G (Y (t , .), S(t)). In the specific case of image regression, 

we will refer to the inverse deformation applied to pixel locations as the flow equation.
Using the pixel locations y as final conditions at time T , integrating this ODE backwards 

in time computes the inverse deformation of the pixel coordinates from time T to t0. The 

deformed pixel locations Y (t) are used to interpolate the gray values of the neighboring 

voxels in the baseline image. Therefore the flow of diffeomorphisms is fully determined by 

the initial state of the system S0.
The initial state of the system So — {c o, a o} consists of Nc control points and momenta 

vectors that fully parameterize the geodesic flow of diffeomorphisms 0t in the criterion 

(3.13), acting as initial conditions for the flow equations (3.5). The deformation can then 
be applied to the pixel coordinates y according to this flow by solving equation (3.14) and 

deformed images can be constructed by interpolating the baseline image I(t) — I0(Y(t)). 

Geodesic image regression is now described by the specific regression criterion

Nobs 1
E(Io, So) — £  ^ D ( Y ( t i ) ,  Iti) +  L(So), (3.15)

i=1

subject to
S(t) — F(S(t)) with S(0) — {co, ao}, (3 16)
Y (t) — G(Y(t), S(t)) with Y (0, y ) — y, ( . )

where A2 is the tradeoff parameter and L(So) — J2pq ato,pK(co;P,co;q)ao>q is the kinetic
energy of the particles. The first part of (3.16) governs the time evolution of the control

points and momenta as in (3.5). The second equation of (3.16) represents flowing the pixel

coordinates along the deformation defined by S(t) as in (3.14).
The gradient of the criterion (3.15) with respect to the initial state of the system is

Nobs
VsoE — £(0 )+  VsoL VioE — Y  VioD(Y(ti), Iti), (3.17)

i=1

where the auxiliary variables n(t) and £(t) — {£c, £a} satisfy the ODEs:

NObs
n(t) — - d 1G(t)tn(t) +  Y  V y (ti)D(ti)6(t -  ti) n(T) — 0,

((t) — -(d2G (t)t0(t) +  ds(t) f  (t)t£(t)) £ ( t  ) — 0.
(3.18)
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3.5.2 A lg or ith m

Model parameters are estimated using an adaptive step size gradient descent algorithm, 

summarized in Algorithm 3. The gradient is computed by first integrating equations (3.5) 
forward in time to construct the flow of diffeomorphisms. The deformations are then applied 

by integrating equation (3.14) backward in time. With the full trajectory of the deformed 

pixel coordinates, one can compute the gradient of the data term V Y(ti)D(ti), corresponding 

to each observation. The ODEs (3.18) are then integrated backwards in time, with the 

gradients of the data term added at observation time points. The final values of the auxiliary 

£(to) is then used to update the location of the control points and initial momenta.

Algorithm  3: Geodesic image regression
Input: Iti (observed images), to (start time), T (end time), yr  (tradeoff), av  (std.

dev. of deformation kernel)
Output: Io, co, ao

1 a o =  0
2 Initialize control points co on regular grid with spacing av
3 repeat

// Compute path of control points and momentum (forward integration)

ci(t) =  ci(0) +  Jt0 1 K (ci(s), cp(s))ap(s)ds 
ai(t) =  ai (0) — / t0 1 ai(s)tap(s)V 1K  (ci(s),cp(s))ds 
// Compute trajectory of pixel locations (backward integration)

Y(t, y) =  —[dyY(t, y)]v(y, t) with Y (0, y) =  y
// Compute the gradient of the data term for each observation

V Y(ti)D(Yti ,1ti)
// Compute auxiliary variable n(t) (backward integration)

Vk(t) =  Vk(T) +  fT 1 Vk (s)ap (s)tVep K  (yk (0),cp(s)) — 
dVk(t) E j :  1 K  (yk (0),cp(t))ap(t)) — E i l l 8 V vk(ti)D5(s — ti)ds
// Compute auxiliary variable £c(t) (backward integration)

Ck(t) =
£k(T) — EN^1X ak((dypY(s))tn(yp))VcpK(yp,ck) +  (dcF c)££(s) +  (dcF a)(a(s)ds 
// Compute auxiliary variable £a(t) (backward integration)

10 yN,
Ca(t) =  Ca(T) ^ ;= 1 x K(yp, ck)(dypY (s ))tn(yp) +  (d«Fc)Ck(s) +  (d«Fa)Ck(s)ds
// Compute gradients

11 Vco E =  Cc(0) +  Vco L
12 V ao E =  C°(0) +  V ao L
13 VioE =  EN=t V ioD (Y(ti), Iti)

// Update control points, momenta, and baseline image

14 ci(0) =  ci(0) — eVci E ai(0) =  ai(0) — eVai E Io =  Io — eVio E
15 until Convergence
16 return Io, co, ao
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The gradient with respect to the baseline image I0 is computed as the sum of gradients 

V i0D (Y (ti), Iti) for each observed image Iti. The gradient of D is computed by flowing 

a voxel Yk(t) to time t and computing the residual. The gray value in the residual image 
at voxel k is then distributed to its neighboring voxels with weights defined by bilinear or 
trilinear interpolation. The summation over observations shows that the gray values are 

accumulated for every observed image.

3.5.3 E xperim ents

3.5 .3 .1  P ed ia tric  n eu rod evelop m en t

We investigate the application of geodesic regression to model pediatric development. 

The data considered here, shown in Figure 3.7, consists of T1 weighted images acquired 

from the same child at 6, 12, and 24 months of age. The MR images are 195x233x159 with 

isotropic voxels of dimension 1 mm. The images are coregistered to establish a common 

reference space. The period between 6 and 24 months old is a time of rapid development, 

which can be observed in the MR images as an improvement in contrast over time. This 

reflects the myelination process, as white matter develops and connections between the brain 
are establish and improved. The low contrast at 6 months combined with the changing 

contrast present a challenge for model estimation.

As a 2D experiment to show modeling of brain development, we fit a geodesic model to 

2D slices extracted from the observed MR images. Due to the low contrast at 6 months, we 

choose the 24 month old observation as the baseline shape, and estimate the model backward 
in time. Control points are initialized on a regular grid with spacing 14 mm, deformation 

kernel av =  14 mm, and regularity A =  0.1. Five snapshots of the estimated model are 

shown in Figure 3.8. We observe that the geodesic model mostly captures the overall 
growth of the brain, without capturing many details of changes in the interior of the brain. 

This is likely due to the limited contrast and could be potentially improved with image

Figure 3.7. Observed data acquired from the same child at 6, 12, and 24 months of age.
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Figure 3.8. Estimated geodesic model representing image evolution from 6 to 24 months. 
The model was estimated beginning in the space of the 24 month old observation and 
evolution was followed backward in time. The geodesic model mostly captures the scale 
changes associated with neurodevelopment.

similarity metrics that are less sensitive than sum-of-squared differences to intensity values. 

Section 3.6 of this chapter will try to address this issue by combining shape information 

with image data during model estimation.

3 .5 .3 .2  N eu rod egen eration  in A lzh e im er ’s disease

We now examine the application of geodesic image regression to capture neurodegen

eration in Alzheimer’s disease. The progression of Alzheimer’s disease leads to dramatic 

changes in neuro anatomy. Most evident is a volume increase in cerebrospinal fluid as the 

surrounding white matter atrophies. Here, we consider a subject diagnosed with Alzheimer’s 

disease observed at 70.8, 71.4, 71.8, and 72.8 years in the form of structural T1 weighted 
MR images. The images are 128x128x128 with isotropic voxels of dimension 1.25 mm. The 

images have been rigidly aligned and undergone a skull stripping procedure. Axial slices 

of the four observations are shown in Figure 3.9. Over the span of 2 years, the expansion 
of the lateral ventricles is readily apparent, though the white matter atrophy is harder to 

discern. The changes that occur over the 2 year observation window are more evident in

70.8 years 71.4 years 71.8 years 72.8 years

Figure 3.9. Observations of a subject with Alzheimer’s disease. Note the expansion of 
lateral ventricles as the surrounding tissue atrophies.
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Figure 3.10, which shows the difference image between the first and final observation, where 

the bright areas represent the areas with most significant changes. The shrinking of the 

cortical surface is now evident in addition to the increase in cerebrospinal fluid.
We estimate a geodesic model using the 3D volumetric images. Control points are 

initialized on a regular grid with 15 mm spacing, with the corresponding deformation 

kernel av =  15 mm, and set regularity parameter A =  0.1. To explore the progression 

of Alzheimer’s disease into the future, we estimate a model representing 4 years of ex

trapolation, resulting in model covering a total of 6 years. Two views of the estimated 

geodesic model are shown in Figure 3.11, covering the 6 years of estimated change. The 

expansion of the ventricles is well captured by the geodesic model, which is most obvious 

when extrapolated into the future. The expansion of cerebrospinal fluid is also noticeable in 

the sagittal slices on the bottom row of Figure 3.11. Though it is hard to discern from the 

images, the geodesic model also accurately models the shrinking of the hippocampus, which 

has been shown to be a sensitive and early biomarker for Alzheimer’s disease [16, 14]. The 
changes in anatomy are most easily understood when viewed as an animation, available at 

http://goo.gl/DsVQgB and http://goo.gl/vrx8dY.

In addition to extrapolation for change prediction, we also investigate the accuracy 

with which the geodesic model matches the observed data. We compute difference images 

between the observed axial slices that are shown in Figure 3.9 and those extracted from 
the geodesic model. The difference images are scaled to the same intensity range as the 

difference image between the first and final observation from Figure 3.10, allowing for a 
comparison on a consistent scale representing maximum change. The difference images 

between the estimated geodesic model and the four observations are shown in Figure 3.12. 

The estimated images match the observations closely, as the geodesic model is well suited

t? -

Figure 3.10. Difference image representing changes between the first and last observation 
of a subject with Alzheimer’s disease.

http://goo.gl/DsVQgB
http://goo.gl/vrx8dY
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70.8 years 72.3 years 73.8 years 75.3 years 76.8 years

Figure 3.11. Two views of predicted brain atrophy of a patient with Alzheimer’s disease. 
The observations span from 70.8 to 72.8 years, with an additional four years of extrapolation. 
The changes in anatomy can be viewed as an animation at http://goo.gl/DsVQgB and 
http://goo.gl/vrx8dY.

70.8 years 71.4 years 71.8 years 72.8 years

Figure 3.12. Difference between images estimated from geodesic regression and original 
observations. Bright areas represent differences and black areas represent perfect matching. 
The low contrast here represents very high matching between images, as the intensities are 
scaled to the same range as the difference image between the first and last observation from 
Figure 3.10. For optimal viewing, please zoom into digital version.

to capture changes over short time periods. It is interesting that the geodesic model better 
matches the observations later in time, even though the model was estimated beginning in 

the space of the earliest observation. Nevertheless, for this experiment the geodesic model 

yields accurate results for all time points, in terms of matching the observed images.

3.5.4 Sparsity on  initial m om enta

The dimensionality of the flow of diffeomorphisms is determined by the number of control 

points. In general, increasing the number of control points will also increase the accuracy 
of the image evolution, in terms of more closely matching the observed data. Traditional 
image regression methods leverage this fact, using either scalar or vector momenta located

http://goo.gl/DsVQgB
http://goo.gl/vrx8dY
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at every voxel in the image [62, 74]. However, the dynamics of image evolution are likely 

characterized by a much smaller subset of locations, where the majority of changes are 

occurring. Additional momenta can be considered as noise in the description of image 
evolution. To determine the optimal number of control points/momenta, we introduce a L1 

penalty used in the context of atlas building [23] to the regression criterion (3.15):

Nobs 1 Nc
E (Io, So) =  £  ^ D (Y (ti )) +  L(So) +  Ysp £  |K(to)||, (3.19)

i=1 i=1

where Nc denotes the total number of control points and ai is the ith initial momentum.

We use the fast iterative shrinkage and thresholding algorithm (FISTA) [8] to optimize 

the regression criterion (3.19), which now contains nondifferentiable terms. FISTA works 

by storing the gradient calculation of the original criterion (3.15) (without the L1 penalty) 
from the previous iteration, which is used to threshold momenta with small magnitude. The 

update equations for the baseline image and control points are not affected by the L1 term. 

The update equation for momenta can be found in [23], which involves a soft threshold 
determined by the product of the sparsity weight Ysp and the current step size.

3.5 .4 .1  E xperim ents

We first explore a synthetic image time series. The synthetic data, shown in Figure 
3.13, was generated by shooting the baseline image along predefined initial momenta. The 

resulting evolution is therefore geodesic, and serves as a best case scenario for our model. 

We explore the impact of the sparsity parameter by estimating several geodesic models with 

a range of values of Ysp. Each model was initialized with control points distributed on a 

regular grid with 20 pixel spacing, deformation kernel av  =  20 pixels, and A =  0.5.
The estimated baseline shape and initial momenta for increasing values of sparsity 

parameter Ysp are shown in Figure 3.14. Increasing the sparsity parameter results in a 
decrease in the number of control points, leading to a more compact representation of the

+ + + ♦ ♦

Figure 3.13. Synthetic image evolution generated by shooting the baseline image (far left) 
along predefined initial momenta, constraining the resulting evolution to be geodesic.
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Sparsity = 0.1 Sparsity = 1 Sparsity = 2 Sparsity = 3 Sparsity = 5

190 control points 153 control points 138 control points 127 control points 67 control points

Figure 3.14. Baseline shape and initial momenta estimated for several values of sparsity 
parameter Ysp. An increase in the sparsity parameter leads to a more compact representa
tion, with momenta located in areas of dynamic change over time.

dynamics of shape change over time. The momenta that remain for high values of Ysp 

represent the areas that undergo the most dynamic changes. In that sense, these momenta 
hold the most important information about the trajectory of image evolution. The left 

panel of Figure 3.15 shows the impact the sparsity parameter has on the number of control 

points as well as the accuracy in which the estimated evolution matches observed data. 

We can obtain a 43% decrease in the number of control points for less than a 2% relative 

increase in data matching error, or a 70% decrease in control points for a 10% cost. We 

obtain a reasonable model of shape change with as few as 67 momenta, compared to 79804 
momenta (one for every pixel) for dense deformation models.

Next, we revisit the application of sparse geodesic regression to model pediatric brain 

development from Section 3.5.3.1, with data shown in Figure 3.7. Due to the limited

Sparsity parameter y Sparsity parameter 7

A  B

Figure 3.15. Impact of the sparsity parameter for the synthetic experiment (A) and for 
the developing brain (B), which are both 2D image series. There is a range of values of the 
sparsity parameter which result in a considerable decrease in the number of control points 
for only minimal increase in the relative error of the data matching term.
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contrast in the image at 6 months, we estimate geodesic models with baseline image at 

24 months, and follow the evolution backwards in time. We estimate several models by 

varying the sparsity parameter Ysp, with control points initialized on a regular grid with 14 
mm spacing, deformation kernel ay  =  14 mm, and A =  0.1.

Figure 3.16 shows the estimated baseline images at 24 months and initial momenta which 

characterize evolution backwards in time. For high values of ysp, the momenta cluster around 

the outside of the brain and around the the lateral ventricles. This can be interpreted to 
mean that the change in brain and ventricle size are the most notable descriptors of this 

child’s trajectory of growth. The right panel of Figure 3.15 summarizes the impact of the 
sparsity parameter in terms of control points and accuracy. We can decrease the number of 

control points by 80% for just over 2% relative increase in data matching error. This has 
the potential to improve the power of ensuing statistical analysis, as the discarded momenta 

can be considered as noise in the description of image evolution.

3.6 Unified framework for shapes and images
We have seen how the control point formulation provides a discrete parameterization 

of dense deformations. The deformation parameters are independent of the specific shape 

representation, i.e., they do not live on the vertices of the shape or on image voxels. Section

3.3 details how geodesics in the space of diffeomorphisms can be generated from initial 
conditions. Section 3.4 details the estimation of a baseline shape and geodesic path that best 

explains a time series of shape observations. In Section 3.5 we develop the mathematical for-

Sparsity = 50 Sparsity = 250 Sparsity = 500 Sparsity = 1000 Sparsity = 2000

183 control points 158 control points 137 control points 66 control points 47 control points

Figure 3.16. Baseline shape and initial momenta estimated for several values of sparsity 
parameter Ysp. The baseline shape was estimated at 24 months of age and evolution was 
followed backward in time. As the sparsity parameter is increased, the momenta cluster 
around the perimeter of the brain and around the lateral ventricles. From this, we can 
infer that the scale of the brain and ventricles are the most salient features describing the 
development of this child.
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mulation for geodesic regression for image time series. Though the machinery for computing 

forward (shapes) and inverse (images) flows of diffeomorphisms (shape/image trajectories) 
is different between algorithms, the common link is the diffeomorphisms transform the 
ambient space, regardless of the shape representation which is embedded. The estimated 
baseline shape or image is deformed by the flow of diffeomorphisms to match the observed 

data. We present here a unified framework for geodesic regression which leverages shape 
and image data simultaneously to compute a single time-varying deformation of the ambient 

space. We develop the mathematical formulation and derive a dedicated gradient descent 
algorithm for estimating model parameters given observed data.

3.6.1 M e th o d o lo g y

Following the deformation model from Section 3.2, the vertices of a given baseline shape 

complex concatenated into a vector X 0 move at time t to X(t) =  0(t, X 0), which satisfies 

the ordinary differential equation (ODE): X(t) =  v(t, X (t)) with X(0) =  X 0. To make 

explicit the dependency of the equation of motion on S(t) (equation 3.6, we write it as:

X(t) =  G(X(t), S(t)).
A given baseline image I0 is also deformed by the flow of diffeomorphisms and its 

trajectory is given as I(t) =  I0 o 0(t, .)-1 . The inverse flow satisfies the equation — = 

—d0(t, .)-1v (t ,.). For the sake of simplicity, we denote Y (t , .) =  0(t, .)-1 , a L2 function 

that maps the point x to its position at time t under the inverse flow 0-1 (t, x). This maps 

satisfies Y (t , .) =  —dY(t, .)v(t,.) =  H (Y (t ,.), S(t)), where we make explicit the dependency 

on S(t). At time t, the intensity of the warped baseline image at voxel position x is given 

by I(t, x) =  I0(Y (t,x )) using 3D interpolation if needed.
A conceptual overview of our framework is shown in Figure 3.17 where regression is 

performed by minimizing the overall distance between the observations and the deformed 

baseline objects (shapes and/or images). Let d(X(ti), X i) be a metric between the deformed 

baseline shape complex X 0 at time ti and the data shape complex X i. For this work, the 
metric d is a weighted sum over each component of the shape complex of the currents metric 

between sets of curves or surface meshes. Other metrics are easily implemented within this 

framework, such as sum of squared difference in the case of point correspondences. This 
term essentially depends on X (ti) and is denoted A (X (ti)).

Similarly, we have a metric d(I(ti), Ii) denoted as B (Y (ti, .)) that is the sum of squared 

differences between the deformed baseline image I0 o Y (ti ,.) and the observed image Ii. 
Other image similarity metrics are also reasonable.
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Figure 3.17. Conceptual overview of geodesic regression on multiobject complexes 
containing both image and shape data. The framework estimates parameters at t =  0, 
which consist of the baseline image Io and shape Xo along with the deformation model 
parameterized by control points c0 and initial momenta a 0 such that overall distance 
between the deformed objects and the observations are minimal.

The geodesic regression problem amounts to finding the deformation parameters S0 = 
{c 0, a 0} and baseline anatomical configuration (I0, X 0) such that the following criterion is 

minimized:

E(S0, I0, X 0) =  Y  ( ^ A(X(ti)) +  XItiB (Y (ti,.)))  +  L(S0), (3.20)

subject to
S(t) =  F  (S(t)) S(0) =  S0,

X(t) =  G(X(t), S(t)) X(0) =  X 0, 

Y (t,.) =  H (Y (t , .), S(t)) Y (0,.) =  Id,

(3.21)

where the regularizer L(S0) =  f j = 1 (c0;i,c0j )a0,j is the squared norm of initial 
velocity.

As shown in Appendix D, the gradient of (3.20) is computed by integrating three linear 

ODEs with source terms from final time-point Tf back to time-point 0:

Vsq E =  £ (°)+  Vsq L, Vxq E =  n(0) 2 V iQ E =  Y  SplatY (tj ,.)(I0 0 Y (tj , .) — Ii), (3.22)
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with
' n(t) =  —d\G{t)Tn(t) -  v x(ti)A5{t -  ti) n(Tf ) =  °

ti
< 9(t) =  —d\H(t?0(t) -  £  V Y(ti..)BS(t -  ti) d(Tf) =  0, (3.23)

ti
, i(t) =  - 3 2G(t)Tn(t) -  d2H(t)t^(t) -  ds(t)FTa t)  Z(Tf) =  0, 

where n is a vector of same size as X 0, which brings back to time t =  0 the gradients of 
the data matching terms, and is used to update the position of the vertices of the baseline 

shape complex. Similarly, d is of the same size as Y (0 ,.) (an image of vectors in practice), 

which integrates the successive gradients of the image matching terms that act as jumps in 

the differential equation. Finally, £ is a variable of the same size as So, which is used at time 

t =  0 to update the deformation parameters (the position of the control points and their 

momentum vectors). The gradient with respect to the baseline image involves the splatting 

of the current residual images at positions Y (ti, .), as done in [26].

3.6.2 A lg or ith m

The algorithm follows closely the implementation of shape regression from Algorithm 2 

and image regression from Algorithm 3. We refer the reader to the details of those algo

rithms.

3.6.3 E xperim ents

3.6 .3 .1  S yn th etic  tu m or evolu tion

We first evaluate our regression model by studying tumor evolution over time. Using 

TumorSim [67], we simulate a rapidly developing tumor and obtain four observations over 

time consisting of synthetic T2W images, ground truth tumor segmentations, and ground 

truth tissue classifications. The T2W modality depicts the tumor as a diffuse structure (top 

row of Figure 3.18); the tumor boundary is not clearly visible. The intensity information 

alone does not well differentiate tumor from the surrounding tissue. To evaluate the impact 

of joint image and shape regression, we estimate two models: one on 2D image slices only, 

and one using tumor and gray matter boundaries in addition to 2D images. In both cases, 

we estimate a geodesic model with 676 control points initialized on a regular grid and set 
deformation parameter ay  =  10 mm.

The estimated baseline images (and estimated baseline tumor for joint image and shape 

regression) and geodesic evolution are shown in Figure 3.18. For the image only case, 

we obtain the evolution of the tumor shape by shooting the ground truth baseline tumor 

shape along the estimated geodesic. It is evident that regression on images alone underes-



60

Figure 3.18. Summary of regression experiments on synthetic tumor evolution. A) 
Observed (synthetic) T2W image and tumor shape over time. B) Evolution estimated 
by regression on images alone. C) Evolution estimated jointly on images and tumor shapes. 
Ground truth tumor shapes displayed in green with estimated tumor shape shown in red. 
Regression with image data alone underestimates the amount of deformation (and therefore 
the speed) of the developing tumor.

timates the amount of deformation over time. It also appears that the size of the tumor 

is overestimated in the baseline image. For the image and shape case, the tumor growth 

is accurately captured. By incorporating tumor and gray matter structures, we provide 
additional information in areas of the image where intensity values alone are insufficient for 
model estimation.

3 .6 .3 .2  P ed ia tric  brain  developm en t

Next, we explore the impact of joint image and shape regression in modeling pediatric 

brain development. The data consists of T1W and T2W images of the same healthy child 

observed at 6 months, 12 months, and 25 months of age. Regression on images alone is 

difficult in this case due to the very low contrast in the 6 month old image. Despite the 

low contrast, tissue segmentations can still be reliably and consistently estimated [80]. We 

estimate a geodesic model using only 2D slices extracted from T1W images as well as a model 
jointly on 2D image slices and white matter boundaries to emphasize the development of 

the interface between gray and white matter. We initialize 120 control points on a regular 

grid with the deformation kernel ay =  20 mm. Finally, due to limited contrast at 6 months,
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we estimate the baseline at 25 months and follow the evolution backwards in time. The 

results of geodesic regression are shown for several snapshots in time in Figure 3.19.

The model estimated using only images mostly captures the scale change, but does not 
capture much deformation in the interior of the brain. In contrast, the model estimated 

jointly on image and shape captures much more detailed development as white matter 
stretches and expands. The differences between the two estimated models is most evident 

when viewed as a movie at goo.gl/F4MWAU and goo.gl/FlZv6c.

3 .6 .3 .3  N eu rod egen era tion  in H u n tin g ton ’s disease

Next, we investigate the application of joint image and shape regression to Huntington’s 
disease (HD) where accurate 4D models are needed to measure the effectiveness of therapies 

or drug treatments. In HD, degeneration of the caudate has been shown to be significant [6]. 

Here, we explore T1W image data from a single patient diagnosed with HD scanned at 58, 
59, and 60 years of age. Subcortical structures are segmented, manually verified, and 

cleaned. Models are estimated using only T1W images as well as T1W images plus caudate 

surfaces. Control points are initialized on a regular grid with spacing 10 mm spacing and 

kernel av =  10 mm.
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Figure 3.19. Images and deformations estimated by geodesic regression at 6, 9, 12, and 20 
months using images alone (A) and jointly on images and white matter surfaces (B). Model 
estimation using only images results in mostly rigid evolution. Regression jointly on image 
and shape results in a more realistic evolution that captures detailed changes in brain tissue 
in addition to the increase in brain size.
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The trajectory of caudate volume extracted after regression is shown in Figure 3.20. 

The model estimated from images alone fails to capture the volume loss observed in both 

caudates, and rather, shows an increase in right caudate volume. By incorporating caudate 
shape data in model estimation, we are able to capture the shrinking of the caudates. The 

corresponding expansion of the ventricles is also captured, shown in Figure 3.21, due to the 
inclusion of imaging data. By incorporating shape and image information jointly, we are 

able to model both the expansion of the ventricles and the degeneration of the caudates. 
Accurate models of change are essential when extrapolating beyond the observation time 

interval, which can provide insight into disease progression.

3.7 Discussion
In this chapter, we detailed a sparse representation of diffeomorphisms, where momenta 

are located at discrete control points. From the discrete momenta, dense deformations 

of the whole space can be computed. Then, through geodesic shooting, a geodesic flow 

of diffeomorphisms can be constructed and used to deform various shapes embedded in 

the ambient space. This machinery became the foundation around which we developed 
dedicated algorithms for geodesic regression for shapes and for images. Indeed, the control 
point framework provided the flexibility of parameterization to unify the regression methods, 

allowing for the inclusion of shapes and images in any combination.

Figure 3.20. Caudate volume extracted continuously after regression compared to 
observed caudate volumes (circles and x ’s). Volume is measured continuously from the 
modeled shape trajectories, not fitted to discrete volume measurements. The model 
estimated on images alone fails to capture the volume loss. Evolution of caudates for 
the image only model is not estimated, but instead we shoot the baseline caudate shapes 
along the geodesic estimated from images alone. Measurements extracted from nonlinearly 
deforming shapes can produce either linear or nonlinear trends with no prior assumption of 
linearity.
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Baseline 1 year 2 years 3 years 4 years

Interpolation Extrapolation

Figure 3.21. Summary of regression experiments on Huntington’s disease data. A) 
Evolution estimated on images alone. Evolution of caudates is not estimated, but instead 
we shoot the baseline caudate shapes along the estimated geodesic. B) Evolution estimated 
jointly using images, caudate shapes, and white matter surfaces. Regression on images 
alone results in a slight expansion of ventricles, but does not capture the shrinking of 
caudates. Our method is able to capture both the expansion of ventricles and the shrinking 
of caudates.

The geodesic model cannot match observations as closely when compared to other 

regression models, such as piecewise geodesic or the acceleration controlled model. For 
example, the geodesic model would not well approximate shape evolution derived from a 

cyclical process, such as the beating heart. However, the geodesic model excels in situations 

where monotonic changes are expected. Also, the geodesic model is a reasonable choice 

when only a few samples are available, or given a short period of observation. In either 

case, fitting a higher order model would not be wise, for example, fitting a polynomial to 
two observations.

The geodesic regression model is a parametric and generative model of shape change. 
The power of the model lies in the compact statistical representation of anatomical change 

-  the whole shape evolution can be characterized by a baseline shape configuration and set 

of initial momenta. Only a relatively small number of parameters can encode complex non
linear change. Further, the introduction of an L1 penalty can further reduce the number of 

model parameters. The number of parameters therefore reflects the dynamics of anatomical 
change, rather than the sampling of the data, such as the number of voxels of an image. 

Though we only showed experimental results for sparsity on image regression, the estimation 
procedure is equivalent for all the geodesic regression schemes. Continued exploration of 

sparsity is an avenue for future work.



CHAPTER 4

STATISTICAL ANALYSIS: SCALAR 
MEASUREMENTS EXTRACTED 

FROM SHAPE

4.1 Introduction
Traditionally, clinical studies on aging or disease progression leverage regression analysis 

to explore the relationship between various clinical measures (volume, cognitive scores, etc.) 

and time. Conventionally, only scalar variables are considered and regression consists of 

estimating a parametric function that best describes the observed data. Linear regression 

is the preferred method, consisting of fitting a line to the data. Nonlinear choices are also 

available, such as a polynomial of fixed degree, or other parametric forms such as the logistic 
or Gompertz function [68, 86].

Although regression is the predominant analytical tool for clinical studies, it is not 

without limitations. One drawback is that there is no clear anatomical or biological 
interpretation to aid in the selection of the appropriate regression model. There is often 

no biological motivation to assume a linear trend in a clinical variable. Instead, the model 

is selected for simplicity and ease of statistical analysis. The model selection problem is 

particularly difficult when multiple clinical variables are of interest. Independent models 
for each variable fail to account for possible correlation between measures, further removing 

clinical measurements from their anatomical context. For example, an independent volume 
analysis of the caudate and putamen does not account for the spatial relationship between 

the two structures.
In contrast, regression analysis centered around the estimation of shape evolution over

comes these limitations. Rather than extracting sparse measurements from discrete data, we 
model the continuous evolution of anatomical shapes. From the resulting growth scenario, 

we can extract any measurement of interest, whether it be common scalar values like volume 
or more complex shape features for further statistical analysis. By shifting our modeling 

efforts to shape, we can overcome the model selection problem by incorporating relevant
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biological or anatomical information to realistically capture the growth of anatomical struc

tures. Furthermore, only one model needs to be estimated, as multiple measurements and 

shape features can be sampled continuously from the shape evolution.
In addition to volume, circumference, and other common clinical measurements, other 

less obvious features may be of significance. From the multitude of available measurements, 
its is difficult or impossible to determine which landmarks are most salient from image or 

shape data alone. In contrast, the visualization of shape evolution is a powerful exploratory 

tool that allows a researcher to quickly and intuitively explore potentially significant mea
surements.

For example, consider a population of children followed over time in an autism study, 

with observations clustered around 6, 12, and 24 months. Growth models of shape allow one 
to bring all subjects into temporally alignment, to make meaningful comparisons between 

subjects and groups. The population can be explored at any time of interest; we are not 
limited to the times of observation. In the autism example, we can investigate all subjects at 

9 months, even though no observation took place at 9 months. Figure 4.1 shows snapshots 

at 9 months for 10 subjects divided into 3 groups. In this case, shape regression serves as an 

exploratory tool to assess subject/group differences and to discover trends to be analyzed 
further.

The spirit of this chapter is to demonstrate the range of applications for continuous shape 
models. By modeling the change in anatomy as a smoothly deforming process, we argue 

that shape models produce more realistic anatomical trajectories than would be estimated 
from discrete scalar measurements. This is particularly evident in the presence of noisy 

observations, which is always the case with medical imaging data. In this chapter, we will 

explore several different ways that shape regression can support traditional scalar analysis. 

We will begin by following a subject-specific point of view, where we are interested in 

individual models of change. Next, we will investigate a way to apply shape regression to a 
cross-sectional study by bootstrapping. Finally, we consider longitudinal data consisting of 

repeated measurements of the same individuals, and explore how continuous shape models 
can improve mixed-effects modeling.

4.2 Subject specific analysis
Here, we consider the analysis of individual subjects over time. In this case, shape 

regression of a given subject provides a personalized growth model estimated from one or 
more shapes per observation. A personalized shape model provides a growth scenario that 

attempts to explains the anatomical changes described by the observations. In contrast,
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Figure 4.1. Shape regression as exploratory tool for subjects in different groups as part 
of an autism study. Here, we compare snapshots of growth of left/right hemisphere and 
cerebellum for 10 subjects in 3 groups: controls (LR-), high risk subjects that do not develop 
autism (HR-), and high risk subjects who test in the autism spectrum (HR+). Each column 
represents 3 different viewpoints of the same subject, with velocity displayed on the surface 
(from blue to red). Shape regression allows us to generate shapes at any time point, here 
at 9 months, where observation data are not available or aligned between subjects.

models fit to scalar measurements do not provide much information about the underlying 

anatomical changes from which the measurements are derived. First, we consider the 

evolution of scalar measurements, such as volume, extracted from subject specific shape 

models. Any number of measurements can be extracted from the continuous sequence of 

shapes. We then provide an example clinical application where shape modeling is used to 

study subcortical change associated with Huntington’s disease.
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4.2.1 M easurem ents ex tra cted  from  shape
In this section, we aim to explore the application of shape regression to support tradi

tional scalar analysis, as in [36]. The idea is to model the change of anatomy from which 
the measurements derive, rather than model the evolution of the measurements themselves. 

Shape regression is then a natural choice to generate continuous growth trajectories of 

anatomical structures. Further, the growth models presented in Chapters 2 and 3 allow 
for the analysis of shapes within their anatomical context by treating several shapes as 

a multiobject complex. A single model is estimated taking into account all structures 

simultaneously. The estimated growth therefore takes into account possible interactions 

of shape boundaries and their spatial relationships to one another. This is additional 
information that is not leveraged in the analysis of scalar measurements.

As an illustrative example, consider several observations of caudate volume over a period 

of a few years. A reasonable choice given the short-time window is to choose a linear 

regression model. However, model estimation in this case does not take into account the 
proximity of the putamen, which may or may not also be changing. The trajectories of the 

caudate and putamen are not necessarily independent, and a more complete model should 
account for their interaction. In contrast, the estimation of a shape regression model can 

include both the caudate and putamen shape, as well as any other anatomical shapes that 

are available. Volume can then be extracted continuously from the estimated trajectories.
In order for shape regression to aid in scalar analysis, measurements extracted from 

shape models need to be compatible with the observed measurements. The spirit of 

shape regression is to estimate more realistic trajectories of anatomical structures. We 

will investigate the accuracy of the extracted measurements in a examples of developing 
children. In one example, we will consider the evolution of a multishape complex from 6 

months to 12 months in a single child. This is a time of rapid development where volume 
growth is nearly exponential. Next, we will consider an older child observed 16 times from 

around 4 to 8 years of age. At this age, volume growth has slowed considerably, and is 

well approximated by a linear model. We will see if the shape regression model is flexible 

enough to accurately capture the volume trends in these different experiments, both linear 
and nonlinear, without any prior constraint on linearity.

4 .2 .1 .1  L e ft /r ig h t  hem isphere and cerebellu m

First we consider three observations of a healthy child at 6, 12, and 24 months in the 
form of structural MRI. The images are first rigidly aligned across time. Next, the brain 

is segmented into left/right hemispheres and cerebellum for all time points. Using the
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acceleration controlled shape model, we estimate a growth scenario. We set the standard 
deviation of the Gaussian kernel ay  controlling the deformation to 10 mm in order to 

capture very detailed shape changes. For aW, the scale at which shape differences are 
considered noise, we choose 4 mm for the hemispheres and 2 mm for the cerebellum. We 

weight regularity by 0.01 and discretize time into 50 time points, resulting in a time step of 

0.37 months.

Figure 4.2 shows volume of the left/right hemispheres and cerebellum extracted after 

shape regression as well as quadratic regression estimated using the sparse volume mea

surements. For the sparse measurements, separate 1D regressions were computed for each 

shape. In contrast, the shape regression paradigm provides a consistent framework for 

dealing with multiple shapes as well as multiple measurements. The regression only needs 
to be estimated once. Additionally, because the estimation is done jointly on several shapes, 

it incorporates potentially important spatial relationships between shapes. The decrease in 

cerebellum volume at 22 months estimated by quadratic regression highlights the downside 

of using such models, as it is unlikely the true anatomy decreased in volume. Volume 

extracted after shape regression closely matches the observed measurements, and provides 
a realistic interpolation over the time interval.

4 .2 .1 .2  Intracranial vo lu m e

This experiment consists of longitudinal imaging data from a child that has been scanned

16 times between 4 and 8 years of age. The images are first rigidly aligned to establish a 

common reference frame. The intracranial volume is segmented from each image using 
an EM based tissue classification algorithm. The volume of the extracted intracranial

Cerebellum Volume

Figure 4.2. Volume measurements extracted after shape regression compared with 
quadratic regression on the discrete volume measurements. The evolution of shape was 
estimated jointly on all shapes, whereas three independent curves were estimated in the 1D 
regression case.
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surfaces varies considerably from time point to time point, reflecting the inherent variability 

introduced from image acquisition, registration error, segmentation error, among others. 

The noisy observations provide a interesting trade off between matching the observations, 
and estimating a model that captures the overall trend in the data.

We estimate a growth scenario using the acceleration controlled shape model. The 
standard deviation of the Gaussian kernel controlling deformation is set to 50 mm, roughly 

30% of the diameter of the baseline intracranial surface. For the scale of currents we use 

20 mm, with a regularity weight of 0.01. Finally, time is discretized in increments of 0.0425 

years. As a comparison, we generate two additional trajectories. One using a regression 

model based on the piecewise-geodesic flow of diffeomorphisms as in [29]. The piecewise- 

geodesic model was estimated using the same parameters as above, expect regularity is 
weighted by 0.1 (the two weighted terms cannot be compared since they have different 

“physical” dimension). The parameters were tuned empirically to produce regressions of 
comparable quality with both methods. Finally, we estimate a model with the volume 

measurements themselves, using kernel regression.

From the continuous shape trajectory, we extract a continuous nonlinear model of 

volume, shown in Figure 4.3. The volume trend is consistent with a 1D kernel regression 

model applied to the sparse volume measurements. However, we have focused our modeling 

efforts on capturing the evolution of shape, with continuous volume measurements resulting

, „6 Intracranial Volume
x 10

Age (years)

Figure 4.3. Volume measurements derived from the acceleration controlled growth model 
are consistent with a kernel regression (a =  0.5) performed on the sparse volume mea
surements. The shape model describes the continuous evolution of shape and volume is 
measured after regression.
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naturally from the estimated growth. Additionally, we argue that the volume extracted from 
the acceleration controlled regression model is more biologically realistic than the volume 

extracted from the piecewise-geodesic model. The piecewise-geodesic method appears to 
be over fitting, producing unrealistic volume measurements. This result suggests that our 

method is more robust in the presence of noisy data.

4.2 .2  E xam ple: H u n tin g ton ’ s disease stu dy

The most promising studies for measuring change across time are of longitudinal design, 

which involves repeated observations of the same subjects over time. This type of data 

is especially important in the study of Huntington’s disease (HD), where accurate models 

of trajectory of change are essential to measure the effectiveness of drug treatments. The 

prevailing hypothesis associated to the progression of HD is a loss of subcortical volume, 

particularly in the caudate [6]. For this example, we study the development of subcortical 

structures in a longitudinal cohort of controls and subjects with HD of varying severity. In 

the spirit of this dissertation, we model the continuous evolution of the subcortical shapes 
themselves via shape regression rather than modeling subcortical volume directly. We 

build personalized continuous models for each subject that capture the trajectory of shape 

change, taking into account all subcortical structures simultaneously. By considering the 

geometry and spatial location of all anatomical structures simultaneously during estimation, 
the resulting models are more robust to segmentation noise as well as being more temporally 

consistent than a traditional scalar analysis of individual structures.

Here, we will consider a subject-specific analysis where we generate personalized volume 

profiles for each subject. In Section 4.3, we will also consider a population based analysis 
using mixed effects models. These contrasting experiments show how shape regression can 

support these two different approaches to analysis.

4 .2 .2 .1  D escrip tion  o f  data

We study subcortical change associated with Huntington’s disease (HD), leveraging the 

longitudinal study PREDICT-HD. The longitudinal database consists of 84 subjects: 30 
controls (CTRL), 16 (LOW), 24 (MED), and 14 (HIGH). The LOW/MED/HIGH cate

gories represent probability of onset of manifesting signs of HD. We will also refer to the 

CTRL/LOW/MED/HIGH group membership as the progression of HD. All subjects have 

had at least three MR images acquired approximately one year apart, with many subjects 

undergoing multiple scans per visit. Six subcortical pairs (caudate, putamen, hippocam

pus, thalamus, acumben, and pallidus) were segmented from each image (Figure 4.4) and
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Figure 4.4. Example of six subcortical pairs extracted for each subject and time point.

manually verified and cleaned [51].

The quality of each segmentation varies considerably for each time point, even when 

scans are obtained on the same day from the same scanner, as individual single-subject 
segmentation is prone to errors related to variability of imaging, image calibration, hu
man expert judgment, and limited robustness of segmentation algorithms. While the 

segmentation quality is not easily assessed by viewing the 3D anatomical surfaces, the 
temporal inconsistency becomes clear by investigating volume extracted from the shapes. 

Figure 4.5 shows the variability in segmentation, illustrated by the temporal inconsistency 

of observed caudate volume, motivating the need for models which produce biologically 

realistic trajectories.

4 .2 .2 .2  S u b ject  specific  tra jectories

Shape models are constructed using the geodesic shape regression method from Chapter 

3. Recall, the method can be thought of as the extension of classical linear regression to 
the space of diffeomorphisms (smooth and invertible transformations). We therefore seek 

to estimate a baseline shape (intercept) and continuous deformation of space (slope) that 
best matches the observed shapes over time. Note that the model is linear in the space of 

diffeomorphisms, but the estimated shape changes are not necessarily linear.

Geodesic growth models are estimated for each subject independently, resulting in 
personalized and temporally consistent anatomical evolution. Recall that model estimation 

does not require point correspondence, facilitating the inclusion of all subcortical shapes 

simultaneously without imposing any topological constraints. Each subject's personalized 

model allows us to generate shapes at any instant in time, from which desired shape
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Figure 4.5. Evolution of caudate volume over time. A) Caudate volume for all subjects 
extracted continuously from personalized growth scenarios. Observed volumes shown 
as circles, which highlight the noise in segmentation. Consistent shape trajectories are 
estimated by considering all shapes simultaneously, which respects the interplay between 
shape boundaries and their locations. B) Volume from linear regression models estimated 
for each subject.

properties, such as volume, can be extracted. We can therefore obtain a continuous evolution 
of volume for all subcortical structures without any explicit modeling of volume. Models are 

estimated with deformation parameter ay  =  10 mm, shape matching parameter aw =  2 mm 

for all subcortical structures, and tradeoff weight A =  1.0. We initialize control points on a 

regular grid with spacing 10 mm, resulting in 245 control point/momenta pairs.

From each subject’s personalized growth trajectories, we extract volume of caudate 

(left+right), shown on the left of Figure 4.5. Note that volume extracted is not strictly 

linear, though it appears that way over such small time windows. Also note the flexibility 
of the shape modeling, producing consistent and realistic volume trends in the presence of 

noisy observations. This is due in part to the inherent smoothness of the geodesic model, 

but also due to the inclusion of all subcortical shapes simultaneously in model estimation. 

Though the volume of the observed caudates for a given subject may show an increasing 

trend, the overall trend found by taking into account the surrounding structures suggests 

that the caudate volume decreases. The reverse of this is of course also true. The shared 
time-varying deformation of space is influenced by all available data and is therefore more 

robust to noise from the segmentation of any specific structure.
Additionally, subject specific models of caudate change are generated by linear regression 

of the observed volume measurements. The estimated linear regression models are shown 

on the right of Figure 4.5. In contrast to shape models, these models are influenced only by 
the caudate volume and therefore rely completely on accurate segmentation. Inconsistent
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and noisy segmentation heavily influence model estimation without surrounding shape 

information providing the big picture of anatomical change.

To compare subcortical volume change from shape regression with that from linear 

regression of discrete volume measurements, we explore volume change for each group 

estimated by the different techniques. The percentage volume change is computed by 
averaging the volume change from each subject in each group. The results for all six 

subcortical pairs are shown in Table 4.1. For shape regression, there is an increase in 

subcortical atrophy along with the progression of HD. This is in agreement with recent 

findings in the HD literature that caudate and putamen volume loss are associated with the 
progression of HD. For linear regression, there is no correlation between volume change and 

group membership. This is due to each model being highly influenced by noisy observations. 

Shape models, on the other hand, are more robust to noisy observations by taking all data 

into account.

4.3 Population analysis
Section 4.2 explored how shape models can be used in a subject-specific analysis frame

work. Here, we will consider population based analysis. First, we will consider a cross
sectional approach to measuring population variability through bootstrapping. Next, we 

explore the support shape models can provide longitudinal analysis by mixed-effect modeling 

of extracted measurements. For the longitudinal case, subject specific models of shape

Table 4.1. Summary of subcortical volume change for CTRL/LOW/MED/HIGH groups 
in the PREDICT-HD (Huntington’s disease) study. Values represent the average across 
subjects: negative values represent volume loss, while positive values reflect a volume 
increase. Volume extracted from continuous shape models show greater subcortical volume 
loss with the progression of HD. This is particularly evident in the caudate and putamen, 
together called the striatum, which has been shown to be associated with the progression 
of HD [5]. In contrast, trends from linear regression on discrete volume measurements do 
not show any correlation between volume change and progression of HD.

Percent Volume Change Percent Volume Change
from Shape Regression from Linear Regression

CTRL LOW MED HIGH CTRL LOW MED HIGH
Caudate -1.41 -2.11 -3.39 -4.84 0.01 1.31 1.00 1.05
Putamen -3.11 -5.01 -5.42 -6.74 0.29 -0.09 0.06 0.01
Hippocampus -1.55 -1.38 -1.34 -1.55 0.32 0.93 1.23 0.96
Thalamus -1.68 -2.47 -1.19 -1.93 0.66 0.49 -0.06 -0.40
Acumben -0.58 -1.52 -1.39 -2.67 -0.04 -2.81 -0.01 1.36
Pallidus -3.82 -5.49 -5.51 -6.76 0.29 -0.25 -0.52 -2.43
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change attempt to capture the underlying anatomical growth, producing a smoothly de

forming sequence given noisy observations. Measurements extracted from the shape models 

more realistically reflect anatomical change, which can improve the resulting statistical 
analysis of the measurements.

4 .3.1 B oots tra p p in g

One common and powerful tool for population analysis is bootstrapping. It is particu
larly useful for situations with relatively few samples, as it is difficult make inferences about 

a population as a whole with a small sample size. Bootstrapping allows one to compute an 
estimate of the underlying distribution given limited observations from that distribution. 

This is done by leveraging the available observations as a reasonable approximation of 

the population. The process of bootstrapping involves creating “proxy” populations by 

sampling from the pool of observed data, with replacement, such that the new population 

has the same number of samples as the original. By repeating this process a number of 

times, one can compute estimates for many statistics of the underlying distribution, such 
as mean, variance, and confidence intervals.

4 .3 .2  E xam ple: autism  stu dy

We explore the bootstrap procedure using a database from an Autism Center of Excel
lence (ACE), part of the Infant Brain Imaging Study (IBIS). Autism is a neurodevelopmental 

disorder which impacts the development of social and communication skills. Diagnosis 

typically consists of placement on the autism spectrum, called autism spectrum disorder 

(ASD), through examination by a physician. The de facto assessment is the autism diag

nostic observation schedule (ADOS). This study seeks to locate imaging biomarkers that 
are indicative of the development of autism by comparing controls and children eventually 

diagnosed with autism. In addition, it is of special interest to gain more understanding 
the difference between high risk children who do not develop autism and those high risk 

children that are eventually diagnosed with autism. High risk children are those with a 

sibling already diagnosed with autism.
The hypothesis driving the study is that measurements derived from imaging might 

be more sensitive to prediagnostic differences than the observational measurements from 

cognitive and social assessments. ADOS can provide a diagnosis by the age of 2 [55], 

as the characteristics of autism are not readily observable at an earlier age. However, 
measurements from imaging data have the potential to improve our understanding of the 

development of autism at an earlier age. It has been shown that there is a difference between
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high risk children who developed ASD and those who did not as early as 6 months of age, 

as measured using imaging data [85]. It has also been suggested that autism is linked with 
accelerated early brain growth before 2 years of age [42].

4 .3 .2 .1  D escrip tion  o f  data

The database consists of children from the autism study: 14 controls and 12 children 

with positive ADOS score (placing them on the autism spectrum), from here on referred 

to as the autism group. Each child has been scanned 3 times, at approximately 6, 12, and 

24 months old. The 6 and 12 month images are first rigidly coregistered to the 24 month 

image using IRTK [69]. Next, the left hemisphere, right hemisphere, and cerebellum are 
segmented via deformable registration with a template. Triangular meshes are extracted 

via marching cubes and are simplified and smoothed, resulting in a quality mesh for each 

subject. Finally, the 6 and 12 month shape complexes are rigidly coregistered to the 24 
month shape complex using gmmreg [46] to further reduce the amount of translation and 

rotation between time points.

4 .3 .2 .2  M ean  scenario  o f  grow th

We want to investigate the trajectory of brain volume between the control and autism 
group. Given the small sample size for each group, we follow the bootstrapping procedure. 

We sample each group, with replacement, creating a new dataset with the same number 
of samples as the original. A mean scenario is then estimated for each group based on the 

new samples, and the process is repeated 100 times to simulate the variability within each 

group. In the end, we have 100 average growth scenarios for each population. In this case, 

shape regression takes into account all data from all subjects simultaneously. The resulting 

evolution is a growth trajectory which best represents the population, also referred to as an 

average or an atlas.
Each of the 100 mean scenarios for each group is estimated for the shape complex 

consisting of left/right hemisphere and cerebellum using the acceleration controlled growth 

model from Chapter 2. We set the standard deviation of the Gaussian kernel aV controlling 

the deformation to 10 mm. For aw , which influences the accuracy of shape matching, we 
choose 4 mm for the hemispheres and 2 mm for the cerebellum. We weight regularity by 

0.01 and discretize time into 50 time points, resulting in a time step of 0.37 months.

The selection of the initial shape for this example is also important. For the subject 
specific analysis, the logical choice of initial shape is the observation at the earliest time 

point. However, for a population analysis, it is not clear how to choose the initial shape, as
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the data contain observations from several different individuals. We choose the initial shape 

by first searching among the earliest observations for a representative sample. We choose 

an observation that has roughly average volume from the collection of earliest time points. 
During estimation, we assign to this baseline shape a time which precedes all observations 

in our dataset. For this experiment, the observation earliest in time is at 5.9 months, so 

we begin the estimation at 3 months. Doing this effectively “pulls” the baseline shape back 

in time, and allows all available data to influence the estimation within the observed time 

window.
From the mean growth scenarios, we extract 90% confidence intervals of total volume 

(sum of left/right hemisphere and cerebellum), by discarding the largest and smallest 5%, 

shown in Figure 4.6. We observe that there is a large amount of variability in volume present 
in both groups. The intervals overlap considerably, showing there is no significant difference 
in volume between the two populations. However, there is an interesting difference in the 

initial rate of volume growth between the two groups, as the volume in the autism group 

increases faster than the controls. As with the individual regression analysis, this implies 
that the period of time around 6 months old is an important direction for further study. 

Additionally, this experiment provides further evidence that rate of growth may be a more 

relevant measure than size.

Control Autistic

Age (months) Age (months)

x 10 x 10

Figure 4.6. Bootstrap 90% confidence intervals of volume for shape complex of left/right 
hemisphere and cerebellum for control and autism group, measured after shape regression. 
Small circles represent the volume of the target shapes. There is an interesting difference 
in the initial rate of volume growth between the two groups, as the volume in the autism 
group increases faster than the controls
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4.3 .3  Linear m ixed  effects m od elin g  o f  ex tracted  
m easurem ents

Longitudinal data are composed of repeated observations of the same subjects over 

time. The measurements of a given subject are therefore correlated, which is not properly 
accounted for in simple linear regression, for example. The mixed effects model, introduced 

by Laird and Ware [53], leverages individual measurements to compute an overall population 

trend. These models arose out of the need to model not only trajectories of change, but also 

to analyze the way trajectories differ [70]. Mixed effects models can help answer questions 

about intrasubject change, and well as intersubject changes. Mixed effects models go by 
various names depending on the field, most commonly as multilevel or hierarchical models.

For clarity of understanding, we present the mathematical formulation here as a hier

archical model consisting of two levels. The first level will be referred to as the individual 
level, which models subject specific trajectories of change. The second level, called the 

population level, models the trajectory of the population as a whole, and how changes in 

trajectories from the individual level vary between subjects.

4 .3 .3 .1  In div idual Level

The individual growth model is written as a linear function of T (usually time)

X ij =  ai +  biTij +  eij1 (4.1)

where X j  is a measurement of subject i at time j, ai is the intercept, bi is slope, and 

e explains any deviation from the line. As a result, the individual model contains both 
a structural component (the line) and a stochastic part (measurement error representing 

deviation from linearity). A common strategy is to assume that e is drawn from a normal 

distribution with zero mean. Another interpretation of e is the amount of the measurement 

Xij not fully explained by the explanatory variable Tij .

4 .3 .3 .2  P op u la tion  level

The population component aims to model how changes in individual trajectories vary 

between subjects. By using a linear individual model, individuals trajectories can only differ 

in intercept and slope. Therefore, general questions about how individual’s trajectories differ 
can be reduced to the analysis of growth parameters ai and bi.

The population submodel must output the same growth parameters as the individual 

component. Therefore, the population model must output intercept and slope. We write 
the population model in parts, one for each growth parameter from the individual level:
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ai =  700 +  701Gi +  ^ , 

bi =  710 +  7l1Gi +  Cli,

(4.2)

(4.3)

where Gi are the predictors (perhaps group or population membership), 7 00 and 7 10 are 

intercepts, y01 and 7 1 1  are slopes, and Z are error terms, accounting for differences between 

individuals’ growth parameters. The structural part, parameters y00, y01, y10, and Yn are 

referred to as fixed effects, which capture the inter-subject differences in trajectories. The 

stochastic parameters (0i and ( 1i are referred to as random effects, which represent the 
portion of the population outcomes not fully explained by Gi.

The stochastic portion of the population submodel actually decomposes into population 

variances af and af , and covariance a01. The variances capture the population variation in 

intercept and slope. As in the individual model, we must assume a distribution from which 
population submodel residuals are drawn. A common choice is to assume a bivariate normal 

distribution with zero mean, unknown variances af and af, and unknown covariance a01.

We study subcortical change associated with Huntington’s disease (HD), leveraging the 
longitudinal study PREDICT-HD. Here, we consider 65 female subjects in four groups: 23 

controls (CTRL), 14 (LOW), 15 (MED), and 13 (HIGH). The data and group distinction is 

described in more detail in Section 4.2.2.1. We extract six subcortical pairs (caudate, 

putamen, hippocampus, thalamus, acumben, and pallidus) from each image, shown in 
Figure 4.4.

The segmentations represent noisy observations of the true anatomical structures. There 
is considerably variation present even when scans are obtained on the same day from the 

same scanner. This variability can be seen in the volume of the extracted caudates, shown 

in the right of Figure 4.5. The temporal inconsistency of observed individuate caudates 
motivates the need for temporally consistent segmentations which properly account for 

correlated longitudinal data.

4 .3 .4 .1  P ersonalized  sp a tio tem p ora l m odels o f

Continuous models of shape trajectory are estimated for each subject using the geodesic 
regression model from Chapter 3, resulting in personalized and temporally consistent anatom

ical evolution. Model estimation does not require point correspondence, facilitating the 
inclusion of all subcortical shapes simultaneously without imposing any topological con

straints. Each subject’s personalized model allows us to generate shapes at any instant

4 .3 .4  E xam ple: H u n tin g ton ’ s disease stu dy

su b cortica l change
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in time, from which desired shape properties, such as volume, can be extracted. We can 

therefore obtain a continuous evolution of volume for all subcortical structures without any 
explicit modeling of volume.

The left of Figure 4.5 shows caudate volume extracted from each subject’s continuous 

shape model, demonstrating the flexibility of the shape model to capture both linear and 
nonlinear volume trends with no prior assumption or constraint on linearity. Though we 

only display caudate volume here, recall that each model is estimated by leveraging all 

shape data simultaneously (Figure 4.4), which respects shape boundaries and locations, 

incorporating important geometric relationships between shapes.

4 .3 .4 .2  L on gitud inal analysis o f  striatal vo lu m e

Here, we conduct a univariate analysis of volume extracted from shape, as striatal volume 

loss has been shown to be associated with the progression of HD [5]. We aim to evaluate 

the benefit of spatiotemporal shape modeling, by comparing striatal volume extracted from 

the temporally consistent shapes with volume extracted from the raw shape observations. 
Figure 4.7 shows the results of linear mixed-effects analysis on striatal volumes for raw (A) 

and temporally consistent shapes (B), testing for the interaction between age and group 
membership.

In the case of using raw volume measurements for model estimation, the difference in 

volume around 20 years old is interesting. We would expect all groups to begin from similar 

volume, as the effects of HD are not manifested so early, even for for subjects categorized

Observed Striatal Volume Consistent Striatal Volume

Age (years) Age (years)

A  B

Figure 4.7. Longitudinal mixed-effects analysis of striatal volumes obtained from observed 
shapes (A) and temporally consistent shapes (B). Volume data are shown as filled black 
circles with corresponding individual trends. Note the improvement of the model fit in the 
consistent striatal volume over the observed striatal volume, which results in lower standard 
error of estimated mixed-effects parameters (Table 4.2).
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in the HIGH group. Rather, the difference can be attributed to the variability in the data, 
rather than as a meaningful conclusion with respect to HD. Further, in the case of raw 

measurements, there is no clear separation between MED and HIGH groups, as the MED 

group shows the steepest volume decrease. There is also not a clear distinction between 

the evolution of CTRL and LOW groups. For the volumes extracted from continuous 

shape models, we observe a consistent starting volume between groups, as well as clearer 

separation between CTRL and the HD groups.

The benefit of shape modeling can be also been seen in Table 4.2, which summarizes 

hypothesis testing of the estimated mixed-effects model parameters. The estimated fixed- 

effects parameters for the temporally consistent (smoothed) category were found to be 

significant. This demonstrates the benefit of spatiotemporal shape modeling, as striatal 
volumes extracted from the temporally consistent shapes provide better separation between 

the control and LOW groups, and also between the control and HIGH groups.
Another benefit of spatiotemporal shape modeling is seen in the standard error of 

estimated parameters (Table 4.2). The standard error is consistently lower for volume 

extracted from continuous shape models, which implies a reduction in unwanted variability 

present in the original segmentations. Further note in Figure 4.7, the mixed-effects model 

fits the temporally consistent data better than the observed striatal volume. A separate 

longitudinal mixed-effects analysis on the caudate and the putamen, and a similar story 
was found in both cases.

4.4 Discussion
In this chapter, we presented several approaches to the analysis of time-series data 

based on shape regression. Rather than fitting curves to scalar measurements extracted

Table 4.2. Comparison of the standard error and significance values of fixed-effects 
parameters of longitudinal volumes. Here, we compare models estimated from discrete 
volume measurements (raw volume) and volume extracted from continuous shape growth 
(shape model).

Std. error 
(raw volume)

Std. error 
(shape model)

p-value 
(raw volume)

p-value 
(shape model)

Slope (CTRL) 26.23 14.10 0.002 < 0.001
Slope (LOW) 38.73 26.60 0.143 < 0.001
Slope (MED) 36.43 22.14 0.003 < 0.001
Slope (HIGH) 66.56 23.73 0.182 < 0.001
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from imaging data, we advocate modeling the evolution of the shapes of interest. After 

shape regression, any measurement can simply be extracted from the continuous shape 

sequence. In contrast to traditional longitudinal studies of scalar measures, shape regression 
provides a generic and flexible framework that allows for consistent treatment of multiple 

measurements and multiple shapes simultaneously. For scalar values, it is not obvious how 
to choose the appropriate model from the list of parametric and nonparametric choices, as 

well as linear and nonlinear models. The flexibility gained from estimating a single shape 

model helps alleviate the problem of model selection.

However, even within the paradigm of shape regression, one still has a choice: between 
the acceleration controlled model from Chapter 2 and the geodesic model from Chapter 3, for 

example. While both models are based on a continuous deformation of the ambient space, 
they make vastly different assumptions about the trajectory of growth. The nonparametric 

acceleration controlled model is a better fit for capturing the dynamic and nonlinear tra

jectories associated with the development of young children. The geodesic model, however, 
provides a reasonable approximation for data consisting of a small number of observations 

over short time periods.

In additional to flexibility with regard to model selection, shape models provide a way 
to deal with noise present in measurements derived from medical imaging data. The shape 

models also have anatomical assumptions built into their design that provide important 
guarantees, such as temporally smooth evolution, nonoverlapping structures, and topologi

cal consistency. The geodesic model works well where measurements are expected to evolve 

monotonically, but the observations do not represent samples of a monotonic function due 

to the presence of noise.



CHAPTER 5

STATISTICAL ANALYSIS: SHAPE 
VARIABILITY

5.1 Introduction
The previous chapter focused on the statistical analysis of scalar measurements derived 

from shape. In this chapter, we cover the statistical analysis of higher dimensional shape 

features. Such an analysis has the potential to take better advantage of the rich geometric 

data encoded in shape, as well as the trajectory of change captured by shape regression 

models. The idea here is that shape features represent complex but important morphometric 
changes that may not be reflected by simple volumes, or other common scalar measures. 

For example, the ventricle shape in schizophrenia reflected a vulnerability for disease in 

nonaffected twins, while an analysis of volume did not show differences [75].

Many methods have been proposed for the statistical analysis of cross-sectional time- 
series data, which do not contain repeated measurements of the same subject. Methods 

include the extension of kernel regression to Riemannian manifolds [20] or piecewise geodesic 

regression for image time-series [50]. Others have proposed higher order regression models, 

such as geodesic regression [62, 39], regression based on stochastic perturbations of geodesic 

paths [84]. The regression models from Chapters 2 and 3 are examples of this type of 

analysis [33, 34, 32, 35]. Progress has also been made to incorporate these models into 

longitudinal frameworks, by comparing models across different subjects [24, 31, 41, 54, 56].
The work of [19] extends the concept of linear mixed effects modeling to shapes, based 

on explicit point correspondence between shapes. They present an algorithm that simulta

neously estimates optimal placement of landmarks across a population of shapes as well as 

the individual and population trends. They further introduce hypothesis testing of model 

parameters through a permutation test based on Hotellings’s T 2 statistic.

Methods for constructing a longitudinal atlas for DTI [41] and images [54] have been 
introduced by combining subject specific growth modeling with cross-sectional atlas con

struction. As a first step, a continuous evolution is estimated for each subject using the
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standard piecewise geodesic regression model. The continuous evolution for all subjects is 

then used to compute a cross-sectional atlas. Lastly, subjects are registered to the atlas 

space by the same regression technique used to establish individual trajectories.
A method for the analysis of longitudinal anatomy was proposed recently in [29, 24], 

where a longitudinal atlas is constructed by considering each individual subject as a spa- 

tiotemporal deformation of a mean scenario of growth. A single spatial deformation maps 

the geometry of the atlas onto the observed individual geometry, while a 1D time warp 

accounts for pacing differences between the atlas and subjects. In this framework, statis
tics are naturally performed on the initial momenta that parameterize the morphological 

deformation to each subject. However, this single deformation best explains how the entire 
evolution of the mean scenario maps to each individual. The analysis of shape variability 

at an arbitrary time point has not been explored.

In [61], the concept of hierarchical linear modeling is extended to manifold valued data. 

A geodesic represents the mean trend for a population, while individual trajectories are 

geodesics resulting from a perturbation of the population geodesic. Estimation consists of 

computing a Frechet expectation that minimizes the sum of geodesic distances between the 

group geodesic and the estimated individual geodesics where distance is defined between 

tangent bundles with respect to the Sasaki metric. With this method, computational 

difficulties arise due to the need to compute covariant derivatives and explicitly compute 
curvature. As a result, the extension to infinite dimensional manifolds, as is the case in 

LDDMM, is difficult.

An attempt to extend this concept of hierarchical linear modeling to the LDDMM 

framework was made in [73]. Rather than measure the distance between geodesics explicitly, 

as with the Sasaki metric [61], they propose measuring the distance between the group trend 

and individual trends by a combination of “slope” and “intercept” matching. To do this, one 

must transport the group level baseline image and initial momenta along the geodesic, and 

then transport these quantities to the individual baseline to compute distance. In contrast 
to [61], this does not compute explicit distances between geodesics. One main difficulty 
and shortcoming here is that variances of the likelihood and slope terms are not estimated, 

and instead are defined by the user. Further, any method involving parallel and coadjoint 

transport can produce undesirable results, as shown in [63], especially when transporting 

over large distances.

In this chapter, we present how shape regression models can be used for the analysis 

of longitudinal shape variability. We present alternatives to the work discussed above
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in addition to novel ways to combine methodologies to improve statistical power. First, 

we begin with an illustrative example in the study of craniosynostosis. Here we leverage 

shape regression to estimate a normative 4D atlas, which can be used to compare with 
craniosynostosis subjects scanned at various ages. Next, we present a method for statistical 

analysis of longitudinal shape variability based on personalized growth models estimated 

for multiple subjects. We generate shape features in the form of diffeomorphisms at any 

time point of interest, to study changes at arbitrary times during shape development. 

We compute straightforward statistics on these diffeomorphisms in the form of hypothesis 

testing and principal component analysis. Finally, we explore the ability of shape regression 

to produce temporally consistent and biologically realistic trajectories of change, and how 
these trajectories can be combined with an existing statistical framework to improve the 

analysis.

5.2 Example: craniosynostosis
The skull of young children is made of several separate bony structures that allow for 

expansion of growth as the child develops. In some children, the bony plates fuse together 
and close, resulting in an irregular trajectory of growth and an abnormal head shape. The 

development is the result of a birth defect called craniosynostosis, which effects between 3.5 

and 4.5 per 10,000 live births [52]. Once detected, intervention for craniosynostosis include 
reshaping surgery as well as helmet remolding and spring drive distraction [15]. These 

therapies frequently result in improvement in function, such as speech and motor skills.

In this section, we wish to explore the effects of surgical intervention for craniosynostosis. 

To assess the surgical outcome, we will compare subjects postsurgery with age-matched 

healthy controls. Computed tomographic (CT) scans of eight subjects with craniosynostosis 

were obtained before and after surgery. The craniosynostosis subjects range between 1 
month and 2 years of age. The population of healthy controls consists of 402 subjects 

between 38 and 825 days old, with observations in the form of structural T1 weighted MR 

images. Figure 5.1 shows the volume distribution of the population of controls. The spatial 
resolution of the MR images was 1x1x1. For each population, full brain segmentation was 

performed.

In order to compare the craniosynostosis patients obtained at various ages with norma

tive development, we estimate a 4D shape atlas. Using the 402 brain shapes from the control 

population, a reference 4D atlas is estimated from 6 to 825 days. We use the acceleration 
controlled shape model, as it is well suited to capture the rapid growth experienced by young
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Age (days)

x 10

Figure 5.1. Whole brain volume of population of 402 control subjects in red. Solid line 
represents volume extracted from 4D shape atlas.

children. From the normative atlas, we can sample shapes continuously. This is necessary 

to generate normative shapes at the time points corresponding to craniosynostosis patients. 

Snapshots of the 4D reference atlas are displayed in Figure 5.2, which also shows the speed 

of evolution.
We compare shape metrics from the craniosynostosis patients with aged match shapes 

sampled from the 4D atlas [64]. Here, we consider surface-to-surface distances [3] between 
surfaces with user specified sampling rate. Specifically, we compute closest point signed 

distances between surfaces. Figure 5.3 compares two patients with craniosynostosis with 

normative development. Figure 5.3 A depicts a patient with metopic craniosynostosis, while 
B depicts a patient with sagittal craniosynostosis. Metopic craniosynostosis cases display a

33 days 232 days 430 days 629 days 827 days

Figure 5.2. Several snapshots of the 4D atlas of normative evolution estimated from 402 
brain shapes of healthy children.
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A

Figure 5.3. Closest point signed differences between aged match controls from the norma
tive 4D atlas and craniosynostosis patients. A) A subject with metopic craniosynostosis. 
B) A subject with sagittal craniosynostosis.

similar head circumference to healthy controls, only differing by the metopic ridging in the 

anterior part, but still have enlarged brain volume. Sagittal craniosynostosis brain shapes 
have larger head circumference by elongation of the brain shape in the anterior posterior 

axis and narrowing of the brain in the left right axis.

Shape data demonstrate that brain growth is not normal in patients with single suture 

craniosynostosis. While understanding of what causes craniosynostosis is still evolving, 

it does seem clear after 3D shape analysis that surgical correction for craniosynostosis 
demonstrates an improvement of the brain differences between craniosynostosis patients 

and healthy controls.

5.3 Longitudinal shape variability
The most promising studies for measuring change across time are of longitudinal design, 

which involves repeated observations of the same subjects over time. This type of data 

is especially important in understanding disease progression, where accurate models of 

trajectory of change are essential to measure the effectiveness of drug treatments.
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5.3.1 M e th o d o lo g y

The proposed method for the statistical analysis of longitudinal shape variability is 

summarized in Figure 5.4. The observed MRI first undergo some standard preprocessing 

steps. All observations are rigidly aligned to an anatomical template, which establishes 

a common coordinate system across subjects as well as an orientation consistent with 

established standards. From the MRI, anatomical structures of interest are extracted 

using the segmentation method(s) of choice. For a given longitudinal subject, the shape 

complexes should be well aligned across time, as they were extracted from pre-aligned 
images. However, shape complexes can be further aligned by rigid shape registration of the 

whole complex across time, using gmmreg [46] for instance. Individual structures can also be 

aligned across time with the corresponding structure (rather than the shape complex as a 

whole). However, this needs to be done carefully to avoid corrupting the spatial relationship 

between neighboring shapes, allowing two shapes to overlap/intersect, for instance.
The set of segmented, aligned shapes serve as input for the atlas estimation procedure. 

The goal of this stage is to produce a 4D (space and time) atlas A(t) for a reference 

population. The atlas can be considered the average model, which is representative of 

normative evolution. The statistical analysis of shape variability that comes later will 

always be with respect to this normative atlas.

In addition to the normative atlas, subject specific 4D models are estimated for all 

subjects Ss (t) independently. The personalized models of growth account for the intra

subject variability described by the longitudinal data. Construction of the normative atlas 

and personalized models of growth follow the same procedure, namely the estimation of a 
growth model by shape regression.

The estimation of the growth model for the normative atlas as well as for individuals

Figure 5.4. Flowchart depicting the proposed method for the analysis of longitudinal 
shape variability.
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follows the general description of shape regression of Chapter 1, described as a variational 

problem balancing fidelity to data with regularity, written as

E =  Y  d ( M S o ) ,S u)2 +  7R*g(&), (5.1)
ti

where d measures similarity between baseline shape S0 deformed by deformation 0t to shape 

observation Sti, Reg measuring the regularity of the time varying deformation 0t, and y 
controlling the balance between the two terms. The specific shape model we prefer for this 

work is the acceleration controlled growth model of Chapter 2. Please refer to that chapter 

for details about the deformation model and estimation of model parameters.
The parameterization by acceleration guarantees that the estimated evolution is tem

porally smooth. Furthermore, the acceleration controlled growth model is generic, with no 

constraint that the flow of deformation must follow a geodesic path, or close to a geodesic 

path. This flexibility is particularly useful for this longitudinal analysis method, as we will 

see later that the statistical analysis is based solely on shape/geometric differences, and not 

based on an analysis or comparison of model parameters. From the point of view of the 

statistical analysis, the output of the shape model is a continuous sequence of shapes. The 
geodesic model, in contrast to the acceleration controlled model, is a compact statistical 

model that is not as useful when we desire a sequence of shapes that best interpolates 

observed data. The acceleration model produces more generic and flexible trajectories, and 
is therefore a better fit in this particular case.

After we have estimated normative evolution and subject specific trajectories via shape 

regression, we extract shape features to describe variability. The shape features of interest 

are flows of diffeomorphisms that map the reference atlas to each subject at a specific time 
point. This is accomplished by warping the atlas to each subject at the time point of 

interest using nonlinear shape registration [79]. Due to regression, we can sample a shape 

from the atlas and from any individual at any time of interest. The warping from atlas 

space to each individual establishes homologous points between every subject. The flow of 

diffeomorphisms that match the atlas shape A(t) to subject shape Ss(t) at time t is found 
as the minimizer of

F  (t) =  d(^s(A(t)),S  s(t))2 +  7Reg(0s )> (5.2)

where d is shape similarity metric (the norm on currents for our implementation), and 
regularity enforces smoothness on the time-varying velocity field, which is used to build the 
diffeomorphism.
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The flow of diffeomorphisms that warp the template shape to each individual subject 

shape are geodesic [58]. As a result, the initial momenta completely determine the entire 
deformation. Recall that the initial momenta act as tangent vectors on the Riemannian 

manifold of diffeomorphisms, and therefore any given set of momenta lie in Euclidean space. 

Further, since the atlas is warped to each subject, every diffeomorphism starts from the 

same reference space -  the same Euclidean tangent space. We can leverage this common 

vector space to compute intrinsic statistics. For example, a mean can be computed by 

simply taking the arithmetic mean of a collection of momenta fields. The mean momenta 

can then be applied to a shape via geodesic shooting.
Next, we introduce the details principal component analysis (PCA) to explore shape 

variability within a population.

5.3 .1 .1  P C A
To explore shape variability within a population, we can conduct a principal component 

analysis (PCA) on the momenta that warp normative atlas to each subject, as in [28]. 

Let the mapping defining a single warp from atlas to subject i be parameterized by N m 

momenta vectors, which can be represented as feature vector a i concatenating all momenta. 
The dimension of a i is then dNm, depending on the dimension d of the data being analyzed. 

The feature vectors of momenta for mappings from atlas to all N s subjects can be expressed 
in a matrix (centered around the mean momenta)

A. =  (a i — a , a 2 — a , ..., a ^ s — a ), (5.3)

where a  is the mean momenta that can be computed as the linear average of the collection 
of momenta a i/ N s. This matrix is of dimension dNm x Ns.

A matrix representing the deformation kernel is also constructed. Recall that the 

kernel controls the metric properties of the reproducing kernel Hilbert space (RKHS), 
for our implementation it is controlled via the standard deviation of the Gaussian kernel 

K V (x, y) =  exp(— \\x — y||2 /a V ). We therefore denote the matrix K V, which is of dimension 
dNm x dNm with a block structure. A given block (i ,j)  is the d x d matrix K V(xi,x j-), 

where x  are the spatial locations of the momenta in the reference atlas space.
Given matrix A  and K V, the covariance matrix is computed as

XV =  (K V) 1/2 A  ((K V) 1/2A )T, (5.4)

where we use the superscript V to make the dependence on kernel K V explicit. A singular 
value decomposition (SVD) of XV gives eigenvectors v =  [v1, v2, ..., vNm] and correspond

ing eigenvalues A =  [A1, A2, ... ANm]. One can then explore the i — th mode of variability
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4>% =  a  +  A iai (5.5)

for +1 standard deviation. The mode can be computed for -1 standard deviation by 
subtracting the eigenvalue/eigenvector product. The deformation mode can then be applied 

via geodesic shooting, described in Chapter 3.

5.3.2 E xam ple: synthetic  data

We first evaluate our framework with a database of synthetic longitudinal shape data. 

In this simple database, normative growth is modeled by a sphere which grows isotropically 

over time. We further consider two groups, A and B, with different patterns of growth. 

Group A starts as a small sphere, develops a protuberance in the negative x direction, and 

eventually evolves into a large sphere. Group B also starts from a small sphere, but develops 

a protuberance in the positive x direction, before evolving into a large sphere. These two 
groups are specifically constrained to begin and end with shapes identical to the normative 

growth, with the only difference being the trajectory of growth.

Subjects from both groups contain 5 time points corresponding to 6, 10, 12, 18, and 24 

months. We construct 12 subjects in each group by randomizing the amount of protuberance 

and also the amount of global scaling. A typical subject from group A and group B as well 
as the normative reference growth are summarized in Figure 5.5.

The normative reference atlas is estimated from a collection of spheres of increasing 

radius using parameter values AV =  0.5 mm, AW =  0.5 mm, and yr =  0.0001. We further 
estimate individual growth models for all 24 subjects using the same parameter values 

as for normative growth. The continuous evolution for both the normative group and all 

individuals provides temporal correspondence, as we can now generate shapes at any instant 

in time. The atlas shapes at time points 7, 9, 12, 18, and 24 months are then warped to 
each individual via a diffeomorphic mapping.

First, we perform PCA on the momenta that warp the normative atlas to each individual 

in group A. The first major mode of variation is summarized in Figure 5.6 for several time 

points. This mode explains the variability in group A with respect to the reference shapes. 
The bulge on the left side of the shape is clearly identified along with variability in scale. A 

PCA on group B produces similar results, however, it captures the bulge on the right side 

of the shape.

We also conduct hypothesis testing to determine if there are significant differences 

between group A and B. For each shape point, an independent t-test is performed on 
the magnitude of initial momenta, which parameterize the mapping from reference atlas to
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Figure 5.5. The synthetic shape database with observations at 6, 10, 12, 18, and 24 
months. A) Typical shape observations for a subject from group A. B) Normative growth 
scenario. C) Typical shape observations for a subject from group B.

Figure 5.6. The first major mode of deformation from PCA (mean plus one standard 
deviation) at selected time points for group A. Color indicates the displacement from the 
mean shape. The variability in the protuberance is clearly captured.

individuals. We are testing if the distribution of momenta magnitude at each shape point 

is different between each group. Figure 5.7 shows the Bonferroni corrected p-values shown 

on the reference atlas at selected time points. We observe significance on the left and right 

side of the shapes at 9, 12, and 16 months, corresponding to the bulge growing in opposite 
directions in group A and B. It is also important to note that we observe no significant 

differences at 20 months, where the shapes of each group are nearly identical.
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OOUV'
Figure 5.7. Significant differences in magnitude of momenta between group A and B at 
several time points, with p-values displayed on the surface of the reference atlas.

5.3.3 E xam ple: autism  stu dy

We also evaluate our method using a longitudinal database from an Autism Center of 
Excellence, part of the Infant Brain Imaging Study (IBIS). The study consists of high- 
risk infants as well as controls, scanned at approximately 6, 12, and 24 months. At 24 
months, symptoms of autism spectrum disorder (ASD) were measured using the autism 

diagnostic observation schedule (ADOS). A positive ADOS score indicates the child has a 

high probability of later being diagnosed with autism. Finally, we have three groups: 15 

high-risk subjects with positive ADOS (HR+), 40 high-risk subjects with negative ADOS 
(HR-), and 14 low-risk subjects with negative ADOS (LR-).

We perform a hierarchical, multiscale rigid alignment to establish a common reference 

frame that preserves the relationship between anatomical structures in space and time. 

First, left/right hemisphere and cerebellum are segmented from rigidly aligned images. 
Next, for each individual, shape complexes are aligned across time. Finally, individual 

shapes are aligned across time for each subject.

First, we estimate a cross-sectional atlas of normative growth using all the data from 
the LR- group with parameter values AV =  30 mm, AW = 10 mm for each hemisphere 

and AW = 8 mm for the cerebellum, and yr =  0.01. Individual trajectories are estimated 

independently for each subject using the same parameter values. Finally, we investigate the 

shape variability at 7, 9, 12, 18, and 24 months by registering the atlas to every subject 
at the time points of interest, resulting in diffeomorphic mappings parameterized by initial 

momenta.

We investigate the shape variability in the HR+ and HR- groups by performing PCA 

on the initial momenta for each group. Recall that PCA is conducted using the momenta 

vectors that parameterize the mapping from atlas to subject at each selected time point. 
Therefore, the major modes of variability describe how each group varies from the normative 

growth scenario, shown in Figure 5.8 for several time points of interest. There appears to
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Figure 5.8. The first mode from PCA (mean plus one standard deviation) at selected time 
points for the autism database. Color indicates displacement from the mean shape.

be a difference in how each group deviates from the normative growth scenario, particularly 

in the cerebellum. This could be an interesting avenue to pursue for future research.

Hypothesis testing is conducted on the magnitude of initial momenta between groups. 
For each shape point, we perform a t-test on the distribution of momenta magnitude between 

each population. After correcting the p-value for multiple comparisons, using Bonferroni 

correction, we find no significant locations on the surfaces of the left/right hemisphere or 

cerebellum. This may be due to relatively small sample size. However, it may be the case 
that smaller scale anatomical surfaces, such as subcortical structures might lead to group 

discrimination due to hypothesized differences in brain growth.
It is important to stress that these results are intended to illustrate a potential ap

plication of our methodology. The results here are too preliminary to draw meaningful 

conclusions with respect to autism, due to the small sample size and the need to incorporate 
biostatistical modeling, that combines patient variables with our computational analysis.

5.4 Diffeomorphic flows for mixed effects 
shape modeling

Anatomical change over time associated with neurodevelopment or aging is assumed to 

be a smooth process. That is, the trajectory of a particle on an anatomical surface should be 

differentiable, with no instantaneous change of direction. The presence of a disorder such 
as Huntingtons disease (HD) would not invalidate the smoothness assumption. Rather, 

the neurodegeneration process associated with HD has been observed as a temporally 

smooth process [6]. However, our anatomical measurements (medical images and extracted 

anatomical shapes) are often not representative of samples from a smooth process, due to
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the natural variability attributed to image acquisition, subject positioning, segmentation, 

etc. Without temporal consistency in our measurements it becomes difficult to distinguish 

between anatomical change associated with disease from changes due to noise.
In Chapter 4, we showed how shape regression models can support traditional statis

tical analysis. Specifically, we provided an example where measurements extracted from 

continuous shape models improved the statistical power of a linear mixed effects model. 
Here, rather than measurements extracted from shape, we explore how diffeomorphic shape 

trajectories can improve longitudinal shape analysis, specifically a mixed effects analysis of 

shape.

5.4.1 M e th o d o lo g y

The next two sections detail the methodology for the statistical analysis of longitudinal 

shape-complexes. First, biologically realistic shape trajectories are estimated to produce 

temporally consistent shape sequences. The estimated model trajectories represent smooth 

shape changes associated with anatomical evolution in time. For measuring individual and 
group shape differences, we estimate a multivariate mixed-effects model for shapes, designed 

to take advantage of longitudinal shape data.

5.4 .1 .1  S p atiotem p ora l m od elin g  for con sisten cy  in 
longitu din al segm entation

To produce smooth shape trajectories and ensure consistency in longitudinal segmenta

tion, we leverage the geodesic regression model from Chapter 3. Recall that the geodesic 

model is particularly applicable where observations span a small time window and where 

shape change is assumed to be monotonic. Though the model is linear in the space of 

diffeomorphisms, geodesic trajectories have the flexibility to capture complex deformations.

Estimated geodesic shape models result in a baseline shape configuration, and initial 

momenta that parameter the geodesic flow of diffeomorphisms 0t. The continuous geodesic 

flow of diffeomorphisms is applied to the baseline anatomical configuration to produce a 
continuous and temporally consistent sequence of shapes. Shapes can then be sampled at 
any time of interest.

5 .4 .1 .2  M ix ed  effects m od el for shapes

The diffeomorphic flow of anatomical shapes produces a continuous sequence for each 

individual, from which we obtain shapes at the time points corresponding to observations. 

In doing so, the shapes no longer represent independent and potentially noisy measurements,
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but rather are estimated taking into account correlation between repeated scans of the same 

individual.
Statistical interpretation of longitudinal shape data is extremely useful for ascertain

ing differences between individuals within and across populations. A compact statistical 

representation of shape was proposed by [11], where a surface is described by a finite set 

of landmark points distributed across the surface. The collection of points are known as 

a particle system. Given multiple shape observation (across time and/or across subjects), 
particle positions are optimized to be in correspondence. In the particle framework, a 

faithful representation of shape is achieved by balancing the residual error between model 

and observed data, and particles uniformly distributed across shape surfaces.
To analyze longitudinal data, [19] generalized the methods in [11] to incorporate a 

linear mixed-effects model in the optimization framework. Let Yi be the longitudinal shape 

configuration for the ith individual, and X i denote the explanatory variable, typically time. 

The mixed-effects model for longitudinal correspondences is given as

Yi =  X i(a +  bi) +  £i, (5.6)

where a are the fixed-effects parameters (group intercept, group slope), while bi are random- 

effects parameters with ei being the error in correspondences for the ith individual. For 
details on model parameter estimation, see [19].

5 .4 .1 .3  H yp oth esis  testing
Longitudinal data provide the unique opportunity to test if changes observed in one pop

ulation are different from changes in another population. To test the statistical significance 

of differences between two groups of longitudinal data, [19] outlines a statistical hypothesis 
permutation test based on Hotelling’s T 2 statistic.

Given two groups of data, (p1, . . .  ,pm} and (q1, . . . ,  qn}, with sample means p, q, recall 

that Hotelling’s T 2 statistic is a test statistic to test for significant differences between 

sample means, relative to the pooled sample covariance W:

W  =  E i (P i-  p)(P i-  p)T +  E i (q i-  Q)(q i -  g)T (5 7)
m +  n — 2 . .

The T 2 statistic can be thought of as a squared Mahalanobis distance between the means, 
using the pooled covariance W. The sample T 2 statistic is given by

t2 =  _ m+ _ ( p  -  q)Tw - 1 (p -  q). (5 .8)
m + n

The permutation test procedure is as follows: (1) compute the t2 statistic, (2) randomly 

permute (swap) data points between the p and q groups, computing a t| statistic for the
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permuted groups, (3) repeat step 2 for k =  1 , . . . ,  P , (4) compute the p-value: p =  B / ( P +1), 

where B is the number of t| < t2. The final p-value can be interpreted as the probability of 
finding a larger group difference by random chance under the null hypothesis (that there is no 
difference between the means). The underlying assumption of any permutation test is that 

the data should be exchangeable under the null distribution. Our null hypothesis is that the 

groups (e.g., healthy and diseased) are from the same distribution. We permute individuals 
(keeping their time points all intact), which under this null assumption is exchangeable.

To test for differences in anatomical trajectories between a healthy and disease group, 

also note that it is important to distinguish if the shape differences are present at baseline 

(intercept) or if they develop over time (slope). To make this distinction, we also separate 

the above Hotelling’s T 2 test into these two components.

5.4.2 E xam ple: H u n tin g ton ’ s disease

We study subcortical change associated with Huntington’s disease (HD), leveraging the 

longitudinal study PREDICT-HD. The longitudinal database consists of 65 female subjects: 
23 controls (CTRL), 14 (LOW), 15 (MED), and 13 (HIGH). The LOW /  MED /  HIGH 

categories represent probability of onset of manifesting signs of HD. All subjects have had at 

least 3 MR images acquired approximately one year apart, with many subjects undergoing 

multiple scans per visit. Six subcortical pairs (caudate, putamen, hippocampus, thalamus, 

acumben, and pallidus) were segmented from each image (Figure 4.4) and manually verified 

and cleaned [51].
The quality of each segmentation varies considerably for each time point, even when 

scans are obtained on the same day from the same scanner. The variability in subcortical 
segmentation motivates the need for temporally consistent shapes that properly account for 

correlated longitudinal data.

5.4 .2 .1  P ersonalized  sp a tio tem p ora l m odels o f  
su b cortica l change

Continuous models of shape trajectory are estimated for each subject using the geodesic 
regression model, resulting in personalized and temporally consistent anatomical evolu

tion. Recall that model estimation does not require point correspondence, facilitating 

the inclusion of all subcortical shapes simultaneously without imposing any topological 

constraints. The inclusion of all shapes simultaneously respects shape boundaries and 

locations, incorporating potentially important geometric relationships between shapes.
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5.4.2 .2  L on gitud inal analysis o f  striatal shape

Using only the caudate shapes estimated from the diffeomorphic model for each individ

ual, a mixed effects shape model is estimated. The mixed effects model results in individual 
intercept and slope parameters, as well as parameters for group slope and intercept. A 

mixed effects shape model is also estimated using the original observed caudates. The two 

mixed effects analysis differ in important ways. One, the first mixed effects model uses 

shapes estimated from geodesic regression, rather than the observed caudates. Two, the 

caudate shapes from the first mixed effects model were estimated with all 12 subcortical 

shapes contributing to model estimation, while the second mixed effects analysis uses only 

the original observed caudate shapes.

We next conduct a multivariate Hotelling’s T 2 hypothesis test of the baseline shape 
(intercept) and trend (slope) between controls and the combined HD groups (LOW/MED/ 

HIGH). We compare the results for analyses using the original caudate segmentations versus 

those obtained from spatiotemporal modeling. We represent these shapes in the particle 

optimization framework to estimate longitudinal fixed and random effects. Note that we 
do not normalize for size in these experiments, which means that we test for differences 

between control and combined HD groups based on both shape and size.

Figure 5.9 shows the estimated fixed-effects parameters for both groups, i.e., the baseline 

(intercept) shape with trajectory (slope) displayed as a color map. When comparing baseline 
shapes, we do not find significant difference between controls and HD in either analysis. This

Control
A

HD
B

Control
C

HD
D

Figure 5.9. Fixed-effects parameters for raw caudate shapes (A: Control, B: HD), Right: 
Fixed-effects parameters for temporally consistent caudate shapes (C: Control, D: HD), 
Fixed effects slope: Blue-Red indicates Contraction-Expansion
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is the expected result, as the onset of degeneration in HD is expected at a later age. We 

would not expect to find differences in the caudate as early as 30 years of age. However, 

when comparing shape trajectories (slope), we find significant differences between controls 
and HD for the temporally consistent shapes, but not in the case of the observed caudate 

shapes.

Table 5.1 provides the p-values from the statistical hypothesis test between the control 

and combined HD groups. In both the left and right caudate, the temporally consistent 

shapes result in lower p-values. Specifically, the left caudate is statistically significant at the 

5% level. Similarly to the volume analysis from Chapter 4, this demonstrates that shape 
regression can play an important supporting role in frameworks for statistical analysis. In 

this example, temporally consistent shape trajectories result in greater ability to distinguish 
differences in longitudinal trends between controls and HD groups.

5.5 Discussion
In this chapter, we moved beyond volumetric analysis, and provided several methods for 

applying shape regression models to the study of longitudinal shape variability. Regression is 

a powerful tool to generate continuous trajectories representing interpolation between shape 
observations. This allows for alignment of shapes between subjects not scanned at the same 

time. Further, it would provide alignment between shape data and clinical measurements 
not obtained at the same time, to facilitate the inclusion of cognitive measures in the 

statistical analysis [72].

Given longitudinal data representing different populations, individual trajectories of 

change are estimated by shape regression. This results in personalized growth models for 

each subject that properly account for correlated measurements. Shape regression is also 
used to estimate an atlas for comparison, which is a 4D model of normative evolution. The 

subjects and atlas are now in temporally alignment, and we can investigate shape variability 

at any time point of interest. Diffeomorphisms that transport the atlas to each subject are

Table 5.1. Hypothesis test for differences in shape change ( “slope” ), between controls 
and HD groups, for observed caudates and temporally consistent caudate shapes estimated 
from geodesic regression.

Structure Observed Temporally consistent
Left caudate 0.15 0.005

Right caudate 0.23 0.06
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computed, and form the basis of the statistical analysis. We leverage the tangent space 
representation of diffeomorphisms to perform hypothesis testing and a principal component 

analysis.
We also showed that individual models of shape change can improve the consistency in 

longitudinal segmentation. The reason for the improved consistency is two-fold. First, dif- 

feomorphic shape models produce differentiable shape trajectories representative of smooth 

change over time. Second, the spatiotemporal modeling of many shapes simultaneously as 

a shape-complex allows for all shapes, and the interplay between them, to contribute to 

the estimated deformation. This has the benefit of increased robustness, as the estimation 

is not be heavily biased by a few noisy observations. It is particularly helpful in the case 

of the subcortical structures, where certain structures can be accurately extracted, while 
others structures prove difficult to segment with a high degree of confidence.

There still remain several key areas for improvement. The 4D normative atlas estimated 

in Section 5.3.1 does not take into account longitudinal correlation. One improvement would 

be to leverage the geodesic model for joint estimation of normative atlas and individual 

trajectories, as in [73], through parallel transport of model parameters. There is also effort 
made to formulate more flexible regression models as generative models based on shooting 

from initial conditions [71, 44], which would be a good fit for longitudinal frameworks.



CHAPTER 6

DISCUSSION

In Chapter 2, we introduced a nonparametric shape regression model via controlled 

acceleration fields. The model was developed based on the LDDMM framework, where flows 
of diffeomorphisms are built by integrating time-varying velocity fields. The straightforward 

extension of LDDMM to time-series data results in a flow of diffeomorphisms that is 

geodesic between time points and piecewise-geodesic over the full interval. As a result, the 

estimated shape evolution can change direction simultaneously at time points corresponding 

to observations, leading to nondifferentiable trajectories. This violates our assumption 

about the development of biological tissue as a temporally smooth process.
To overcome this limitation of the piecewise-geodesic model, we proposed a new param

eterization of diffeomorphic flow based on acceleration rather than velocity. Deformations 

are therefore built by twice integrating acceleration, rather than a single integration of 

velocity. The parameterization guarantees temporally smooth shape evolution, specifically 
twice differentiable trajectories. The estimated shape model is therefore more likely to 

capture the underlying growth of anatomical shapes. The model is also generic and flexible, 

with no constraint to follow a geodesic path, or necessarily near a geodesic.

We demonstrate the interpolation properties of the acceleration controlled model through 
several experiments comparing with piecewise-geodesic. Further, the acceleration model 

does a good job of generalizing evolution given a small number of observations. We 
demonstrated in a leave-several-out experiment that the estimation of the acceleration 

controlled model is not heavily influenced by the inclusion of more observations. In con

trast, the piecewise-geodesic model seems prone to overfitting noisy observation by geodesic 

interpolation between time points. This suggest the acceleration controlled model is able 

to capture the underlying growth with only few available observations.

In Chapter 3, we introduced a complementary shape regression model based on geodesic 
flows of diffeomorphisms. The geodesic regression model is the extension of simple linear 

regression to the space of diffeomorphisms. Whereas the acceleration controlled model is
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nonparametric, the geodesic model was designed to be a generative and compact statistical 

model of growth. While the geodesic model is not able to match observations as closely 

the acceleration controlled model, the power of the geodesic model lies in shape evolution 
encoded in a small number of parameters. This has the potential to greatly simplify 

statistical analysis.

Further, we incorporate a sparse representation of diffeomorphisms that serves two 

important purposes. First, it allows to define dense deformations of space with very 

few parameters, with the exact number of parameters chosen by the user. Second, it 

allows us to completely separate the parameterization of the deformations from the specific 

shape representation. This was not the case with the acceleration controlled model, where 

deformation parameters were located on the vertices of the shapes.
Using this parameterization of diffeomorphisms combined with the machinery of geodesic 

shooting, we derive dedicated algorithms for geodesic shape regression and geodesic image 

regression. In both cases, we estimate the baseline shape/image configuration as part 

of the algorithm, whereas the baseline shape was assumed to be fixed at the earliest 
observation in estimation of the acceleration controlled model. We finally leverage the 

sparse parameterization of diffeomorphisms to fully realize the motivation of this thesis, 

to incorporate images and shapes in any combination in model estimation by presenting 

a unified mathematical framework for geodesic regression. Compared to image regression 
alone, shape data provide anatomical information that constrain the regression, especially in 

cases where images have low contrast, by placing larger weights on regions with anatomical 

importance. Compared to shape regression alone, image information provides data in areas 

where segmentations are not available, as well as providing context to regions surrounding 

anatomical objects.

Shape regression models provide a statistical representation of anatomical change, but 

they also give a continuous shape trajectory which best explains the shape observations. 

This is useful to bring shapes from different subjects into alignment, or to compare subjects 
with age-matched shapes from a normative 4D atlas. Shape regression is also a necessary 

tool to align shape observations with other clinical measures not necessarily obtained at 

the same time. Shape regression models are also incredibly helpful for predicting change 

into the future, by extrapolating beyond the observation time window. The geodesic model 

is the obvious choice since extrapolation involves continuing to follow the existing geodesic 
path.

In addition to the development of spatiotemporal models of anatomical change, we
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also present methods to incorporate the regression models into larger frameworks for the 

analysis of time-dependent data. In the case where statistical analysis is conducted on scalar 

measurements, such as volume, we argue that spatiotemporal modeling serves as a useful 
first step. Rather than extracting measurements from discrete image or shape observations 

and fitting a regression model to the measurements, we advocate modeling the evolution 

of anatomical structures by shape regression. The derived measurements can either be 

extracted continuously from the estimated shape trajectories, or sampled at the time points 

corresponding to observations.

The power and flexibility of this paradigm is due to inclusion of multiple shapes si
multaneously in model estimation. Only one model needs to be estimated, which takes 

into account multiple structures and respects the spatial relationships between structures. 
The spatiotemporal modeling of anatomical shapes has the added benefit of producing 

temporally consistent evolution, effectively smoothing unwanted variability in the observa

tions. The single estimated shape model, developed with assumptions about anatomical 
development in mind, helps alleviate the model selection problem in traditional regression 

analysis. For example, there is often no biological motivation behind choosing a polynomial 

regression model.

In addition to the analysis of scalar measurements extracted from shape models, we also 
present several methods for incorporating our regression models into a larger framework 
for the analysis of longitudinal shape variability. The analysis of higher dimensional shape 

features is important, as the complex geometric information encoded by shape can provide 

more information than is available in global measures such as volume.

Each of the shape regression models has inherent limitations. The acceleration controlled 

model has deformation parameters located at the vertices of the baseline shape, making it 

more difficult to formulate a unified framework for regression on images and shapes. It is 
not clear how to incorporate the control point parameterization with the acceleration based 

deformation model, though the new work of [71] may provide some clues. This remains a 
clear avenue for future work. A formulation of the acceleration controlled model based on 

shooting from initial conditions would improve the applicability of the model, by greatly 

reducing the number of model parameters.

Another direction for future research is the development of a comprehensive framework 

for statistical analysis of longitudinal shapes, along the lines of [73, 24]. Such a framework 

would properly account for longitudinal correlation in all stages of estimation, in contrast 
to the method we propose in Chapter 5, which ignores any longitudinal information in the
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estimation of the normative trend. Such a framework will rely on a way to transport model 

parameters from subject to subject. Furthermore, we would like to develop methods to 

find correlation between longitudinal shape trends and various clinical variables, to improve 
biostatistical modeling of disease progression for example.

Finally, future work involves testing and applying our methodologies on large scale 

clinical studies. Such data are just recently becoming available in the form of retrospective 
studies, which take many years to gain momentum. It remains our ultimate goal to provide 

statistical methods as well as computational tools to clinicians to aid in their understanding 

of serious problems in medicine.



APPENDIX A

DERIVATION OF GRADIENTS FOR 
ACCELERATION CONTROLLED 

SHAPE REGRESSION

A.1 Notation
For the sake of simplicity, we introduce matrix notations: xo =  {xp}p= ,...,n  denotes 

the 3 N  vector, which is the concatenation of the coordinates of N vertices of the baseline 

shape Ot0. Denote the moving points x(t), which is the 3N vector: xp(t)p= 1,...,N and the 

parameterizing vectors a(t) the 3N vector ap(t)p=1,...,N. We denote also K (x(t),x (t)) the 
3N-by-3N block matrix whose block p, q is given by the 3-by-3 matrix (K (xp(t) ,x q(t))). 

This matrix is symmetric, positive definite by definition of the kernel K .
Thanks to these notations, the norm of the acceleration vector at is written: ||at||V = 

a (t)*K (x(t),x (t))a (t), which we denote as L (x(t),a (t)). We denote the data-matching 
function as A, a function from R3 to R, and we denote by dxA its Jacobian matrix at point 

x, so that for any vector V : (dxA )V  =  (V xA)*V. By extension, V xA denotes the 3N vector

(Vx, A, . . . , V Xn A ).
With these notations, the regression criterion is written as

E ((a (t))te[o,T|) =  Y  Ai(x*i) +  /  L (x (t) a (t)) dt. (A .1)
t Jo

Let X(t) =  (x(t), x(t))1 be the state of the system of particles at time t. The evolution 
of this system is given by the following differential equation:

x (i) =  F ( m  a ( i ) ) =  (  K(xCt)3̂ xt()t))a(t) )  (A -2)

with initial condition X(0) =  X 0 =  (x0, :x0)t, where we denote

F(x(t), a(t)) =  K (x(t), x(t))a(t),
(A.3)

L(x(t), a (t)) =  ya(t) F(x(t), a (t)).

For the sake of simplicity, we will now denote F(t) and L(t) instead of F(x(t), a (t)) and 

L(x(t), a(t)).
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A.2 Gradient in matrix form
Let 5E  be a variation of the criterion E  with respect to a variation 5 a (t) of the impulse 

vectors a(t):

5E =  V  (dx(ti)Ai) 5X(ti) +  [  (dxL(t))5X(t) +  (da L(t))5a(t)dt, (A.4)
~T  J oli

where 5X(t) denotes the variations of the positions x(t) and the velocities X(t) with respect 

to the variations of the impulse vectors a(t). The differentiation of the flow equation (A.2) 

shows that these variations 5X(t) satisfy a linear ODE with source term: 

d
—5X(t) =  (d x F  (t))5X(t) +  (da F  (t))5a(t) with 5X(0) =  5Xo. (A.5)

The equation (A.5) is a linear inhomogeneous ODE that can be solved by the method 
of variation of parameters

5X(t) =  y  exp (̂  J  dX F (s)ds^ da F(u)5a(u)du  +  e x p ^ y  dXF(s)ds^ 5X0. (A.6)

To simplify notation, let Rut =  exp  ̂j u dX F (s)dsj  for u, t e [0,T], which lets us write 

(A.6) as

5X(t) =  f  Rutda F(u)5a(u)du  +  Rot5Xo. (A.7)
o

This form lets us write the specific variations 5X ( ti) as:

5X(ti) =  [  Rttida F(t)5a(t)l{t<ti}dt  +  Roti5Xo, (A.8)
Jo

where 1{t<ti} =  1 if t < ti and 0 otherwise. Now, we can plug (A.6) and (A.7) into (A.4). 
Noticing that for any L2 function F(u, t) Fubini’s theorem implies / 0T /o F (u,t)dudt =  

fo fu F(u,t)dtdu  =  / 0T / tT F (t,u)dudt, this leads to:

5E =  ( V  dx(ti)AiRoti +  J T dxL(t)Rotdt) 5Xo+

'— i-------------------------------------------------'
=n(o)t

J  ^3a L(t) +  ( V  dx(ti)AiRtti 1{t<ti} +  y  dxL(u)Rtudu^ da F ( t ) j  5a(t)dt. (A.9) 

'— i--------------------------- -------------------------------- '
n(t)t

This gives the gradient of E  with respect to the L 2 metric as:

f V aE(t) =  da L(t)i +  da F(t)tn(t)

I V xoE =  n (0),
(A.10)
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where we denote the auxiliary variable n(t):

n (t) =  E (Rtti)tVx(ti)Ail{t<ti} +  J  (Rtu)td x L (u)tdu. (A -11)

The auxiliary variable n(u) depends on the flows Rut and therefore satisfies an ODE. 

To make this ODE explicit, we write the inverse flow Rut in integral form. Noticing that 
RtuRut =  Id, we have dRUi =  —dX F (u)Rut, which gives in integral form (noticing that Rut 

and dX F  commute):

Rut =  Id +  /  RstdxF(s)ds. (A.12)
u

Now, we can plug this equation into the definition of n(t) in (A.11). Writing Rtti =

theorem implies that f tT f tu F(u,s)dsdu  =  f tT f T F(s,u)dsdu, this leads to:

n(t) =  E  ^x(ti)Ail{t<ti} +  f  d x L (u)t+  
i

d x F (u)t (^ E (Ruti)t^x(ti)Ail{u<ti} 1{t<ti} +  J  (Rus)td x L (s)td^  du. (A .13)

'— i------------------------------------ *----------------------------------------- '
(*)

Now, we notice that t <  u within the integral, which implies that 1{t<ti}1{u<ti} = 

1{u<ti}. Hence, (*) is exactly equal to n(u). Therefore, n(t) is the solution of the integral 

equation (integrated upstream in time):

n(t) =  E  V x tiAi1{t<ti} + f  d x L(u)t +  d xF (u )tn(u)du. (A.14)i i t

A.3 Gradient in coordinates
From now on, we decompose the vectors into two blocks (the x-component and the 

X-component). Due to the definition of A, which depends on x but not on x, we have:

Vx(ti)Ai =  ( VxiAi 0 ) t . (A.15)

Similarly, we have:

d xL  =  ( dxL dxL ) =  ( j a t(di +  d i)(K (x ,x )a ) 0 ) , (A.16)

da L =  2 7 « tK(x, x), (A.17)

dxF  = (  £ £  * £  )  =  (  (di +  0 x )a  0 )  , (A ,8 )
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a- F = (  £ £ )  = (  k (X, x O  ■ (A19)
Therefore, the gradient of the regression criterion with respect to the L2 metric given 

in (A.10) is now equal to: V a E (t) =  K (x(t), x(t)) (2 7a(t) +  nx(t)), where we have decom

posed the auxiliary variable n into n =  (nx , nx).
The matrix K (x(t), x(t)) is precisely the Sobolev metric induced by the kernel on the 

set of L2 functions, so that the gradient with respect to this metric is given by:

V «P E(t) =  2y ap(t) +  nX(t). (A .20)

The auxiliary variables nx(t) and nx satisfies the two coupled ODEs (written in (A.14))
* P T t

nx(t) =  £  V xtiA d{t<ti} +  ( (di +  d2)K (x (u )x (u ))a (u )) (7 a(u) +  nx (u)) du

nx (t) =  J  nx(u)du.

t (A.2 1 )
Eventually, the gradient with respect to the initial velocities is given as:

Vxo E =  nx (0). (A.22)

The 3N vector V xt Ai is equal to (V xi(ti)Ai, . . . ,  V xN(ti)Aj). For generic 3N vectors 

x, y and a ,  the kth coordinate of the 3 N -vector K (x, y )a  is given as: (K(x, y )a )k = 

^N= 1 K (xk,y p)ap. The kernel K  is scalar, namely of the form K ( x ,y )  =  k(x,y)Id for a 
scalar function k. We have therefore for every i, j  =  1 , . . . ,  N :

N
dxi (K(x, y )a ) j =  £  ap (Vik(x*,yp)) S(i -  j),

p= 1
dyi (K (x ,y )a ) j =  ai ( V 2k(xj , yi))t ■

Therefore, for a generic 3N-vector p, we have:

(A.23)

N
((di +  £2) (K (x ,y )a )t p ) k =  £ ap^fcV ik(xfc,yp) +  ak^ 2 k(xp, y k). (A.24)

p=i

Now, we can apply this equation with y =  x  and p  =  7 a + n x and combine it with (A.2 1 ) . 

Noticing that for a symmetric kernel, we have V ik(x,y) =  V 2k(y,x), we get

np(t) =  £ (V xP(ti)A i)i{t<ti}+ 
ti

T n (A.25)
' £  (ap(u)tnix(u) +  aq(u)tnx(u) +  2Yap(u)taq(u)) V ik(xp(u),xq(u))du

■Jt q=i
and

/• t
nx(t) j t nx(s)ds. (A .26)



APPENDIX B

DERIVATION OF GRADIENTS FOR 
GEODESIC SHAPE REGRESSION

B.1 Gradient in matrix form
Consider a perturbation 5S0 to the initial state of the system (c0, a 0), which leads to 

a perturbation of the motion of the control points 5S(t), a perturbation of the template 
shape trajectory 5X(t), and a perturbation of the criterion 5E

Nobs
5E =  Y  ((Vx(ti)D(ti))*^X(ti)) +  (VsoL)*^S0. (B.1)

i=1

The perturbations 5S(t) and 5X(t) satisfy the ODEs:

5S(t) =  dS(t)F  (t)5S(t) 5S(0) =  5S0
5X(t) =  diG(t)5X(t) +  82G(t)5S(t) 5X(0) =  5X0.

(B.2)

5S(t) =  exp (̂  J  dS(u)F(u)du^ 5S0. (B.3)

The first ODE is a linear homogeneous ODE with well known solution
ft

dS(u)
0

The second ODE is a linear inhomogeneous ODE that can be solved by the method of 

variation of parameters

5X(t) =  y  exp d1G (s)d ^  d2G(u)5S(u)du +  e x p ^ y  d1G (s)d ^  5X0. (B.4)

Plugging (B.3) into (B.4) gives 

rt
5X(t) =  J  exp d1 G(s)ds^ d2G(u)exp ^ y  dS(v)F(v)dv^ 5S0du

+  exp ^ y  d1G (s)d ^  5X0.
(B.5)

To simplify notation, let =  exp f̂ s dS(u)F(u)duj and Vst =  exp f̂ s d1G (u )d^  which 

gives

5X(ti) ^ y  * Vutid2G(u)R0ud^ 5S0 +  V0ti5X0 (B.6)
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and now plugged into (B.1)
N„,

5E  = ^ ( V x ( t i )  D (ti ) f
ti

VutiS2G(u)Roud^ 5So +  Voti5Xo( Vx(ti) D (^ i/t
i=1

By rearranging terms, we can write the variation of the criterion as
t

+  (Vso L)t5So. (B.7)

Nobs r ti 1 t
5E =  y ;  /  Routd2G(u)tVuti tVx(ti)D(ti)du ^  1 r-  rlt 

'oi=1
5So +  [Vso L]t 5So

Nobs
+  V  [VotitVx(ti)D(ti)]t 5Xo 

i=1

(B.8)

which leads to
r ti Nobs

V So E =  Routd2G(u)t y ]  VutitVx(ti) D(ti) 1{u<ti}du +  V SoL
■/o i=1
Nobs

V xo e = y  % tit V x(ti) D(ti) .

(B.9)

i=1
For further notational convenience, denote 0(t) =  ^^=1 VttitV x (ti)D(ti)1{t<ti}, g(t)x(

d2C(t)d(t), and {(t) =  Jtti Rtutg(u)du. The gradients are now

/o + VSo L (B.10)

t
/* ti

o E =  Rout

Vxo E =  0(0).
To compute 0(t), note that for any time greater than the latest observation T  >  t f , the value 

of 1{t<ti} =  0 and therefore d(T) =  0 and 0(t) =  - d 1G(t)t0(t) +  VttiVx(ti)D(ti)5(t -
U). Note that in the second term we have Vtti =  1 whenever t =  ti and 5(t -  ti) is nonzero 

only when t =  ti . Therefore we write

0(T) =  0
Nobs (B11)

0(t) =  -d1G (t)t0(t) +  y  Vx(ti)D(ti)5(t -  ti). ( . )
i=1

To compute {(t), note that for any time greater than the latest observation T > t f , the 

value of { (T ) =  0. Also notice that Rts =  ID -  f ts R̂Û du =  ID +  f ts RusdS(u)F(u)du. Using 

Fubini’s theorem gives

/ ti
Rtutg(u)du

rti rti
=  g(u) +  dS(u)F (u)W  Ruvtg(v)dvdu

t u

/ ti
g(u) +  dS(u)F (u)t{(u)du, (B.12)

and finally
{(T ) =  0
{(t) =  (d2G(t)t0(t) +  dS(t)F  (t)t{(t)).

(B.13)
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B.2 Gradient in coordinates
Expanding the variables S(t) =  {c 0,k(t) ,a 0,k(t)}, X(t) =  {X k(t)}, d(t) =  {dk(t)}, and

C(t) =  { Ck(t),Ca(t)} gives

Vco,fc E  =  (0 )+  V C0,fc L(So) (B.14)

Vao,k E  =  ea(0) +  V«o,fc L(So) (B.15)

where the gradient of the regularity term is written

Nc
V CfcL =  2 E  aPta fcV i K (cfc, cp) (B.16)

p=i
Nc

V ak L =  ^ E  K  (cfc, cp)ap. (B.17)
p=i

B .2 .1  C om p u ta tion  o f  0{t)

The term diG(X(t), S(t)) is a block-matrix of size 3Nc x 3Nx whose (k,p)th 3 x 3 block 

is given as
Nc

dxkG (X (t) ,  S(t))p =  E  a j (t)V iK (X p(t),c3(t))t5(p -  k) (B.18)
j=i

so that the vector d(t) is updated according to 

(t) =  —
Nc
E  aP(t)i6k (t) V i K  (Xk (t),cp(t)) 
p=i

NObs
+  E  Vxk(ti)D5(t -  ti). (B.19)

i=i

B .2 .2  C om p u ta tion  o f  £(t) =  (£c(t),£ “ (t))

The terms dcG (X (t) ,  S(t)) and daG (X (t) ,  S(t)) are both matrices of size 3Nx x 3Nc, 

whose (k,p) block is given by

dck Gp =  a k (V iK  (ck , X p))t (B.20)

dak Gp =  K  (ck , X p)h . (B.21)

(  Fc (c a )The differential of the function F (S) =  f f « ( c> ) can be decomposed into 4 blocks as

dcF  c da F  c
ds(t)F \dcF a d „ F a ' . (B.22)
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Therefore, the update rules for the auxiliary variables £c(t) and £“ (t) are

' Nx

Cfc(t) =  -

4a(t) =  -

j > k  (t)t^p(t)ViK (Ck (t),Xp(t)) +  (dcF c)tec (t) +  (dcF « )tea(t) 
p=i
Nx
£  k  (Ck (t),Xp(t))6p(t) +  (d«Fc)tek (t) +  (d«F «)tea(t) 
p=i

with

(B.23)

(dcF (t)
Nc

=  £  (ap(t)tck(t) +  a k (t)tep(t)) V iK  (ck (t),cp(t)) 
p=i

(B.24)

(dcF « ) tea(t)
Nc

=  £  a k (t)tap(t)V i,iK  (ck (t),cp(t))t(ca(t) -  â(t)) 
p=i

(B.25)

(daF c)tek (t)
Nc

=  £  K  (ck (t),cp(t))£jc(t) 
p=i

(B.26)

(daF a)tea(t)
Nc ( )

=  £  V iK  (ck (t),cp(t))t ( C (t) -  Cfc(t)) ap(t). 
p=i

(B.27)

If the kernel is a scalar isotropic kernel of the form K  =  f  (||x — y||2)I, then

V iK (x ,y ) =  2f'(||x -  y||2)(x -  y) (B.28)

V i,iK (x ,y ) =  4f"(||x -  y||2)(x -  y)(x -  y)t +  2f'(||x -  y||2)I. (B.29)



APPENDIX C

DERIVATION OF GRADIENTS FOR 
GEODESIC IMAGE REGRESSION

C.1 Gradient in matrix form
Consider a perturbation 5S0 of the initial state of the system (c0, a 0), which leads to a 

perturbation of the motion of the control points 5S(t), a perturbation of the trajectory of 

image coordinates 5Y(t), and finally a perturbation of the criterion 5E

5E =  [VY(1)A] 5Y(1). (C.1)

The perturbations 5S(t) and 5Y(t) satisfy the ODEs

5S(t) =  [dS(t)F (t)] 5S(t) with 5S(0) =  5S0

5Y(t) =  d1G(t)5Y(t) +  S2G(t)5S(t) with 5Y(0) =  5Y 0 =  0.
(C.2)

The first ODE is a linear homogenous ODE with known solution
ft

dS(u)5S(t) =  exp (̂  J  dS(u)F(u)du^ 5S0. (C.3)

The second ODE is a linear inhomogeneous ODE that can be solved by the method of 

variation of parameters

5Y(t) =  I  exp (̂  J  d1G (s)d ^  d2G(u)5S(u)du +  e x p ^ y  d1G (s )d ^  5Y0

=  I  exp d1G (s)d ^  d2G(u)5S(u)du. (C.4)

Plugging (D.3) into (C.4) gives

5Y(t) =  y  exp ^ y  d1G (s)d ^  d2G(u)exp  ̂J  dS(v)F(v)dv^ 5S0du. (C.5) 

Let Rst =  exp(Jst dS(u)F(u)du) and Vst =  exp(Jst d1G(u)du), which writes

5 Y (t )=  /  Vutd2G(u)R0u5S0du, (C.6)
0
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which can now plugged into (C.1)

0

which finally gives the gradient of the criterion E with respect to S0

1
£E =  [VY(1)A] /  Vu1d2G(u)R0«du6S0, (C.7)

0

Vso E =  f 1 R0„d2G(u)*VU1VY(1)Adu. (C.8)
0

Letting n(t) =  V̂*1V y (1)A and £(t) =  f t Rt«d2G(u)*n(u)du we can rewrite the gradient 
of the criterion as

Vso E =  £(0). (C.9)

To compute n(t), note that n(1) =  V Y(1)A and therefore

n(1) =  V Y(1)A (C 10)
n(t) =  — 91G(t)*n(t). (C.10)

To compute £(t), note that £(1) =  0 and therefore

I  £ (1) =  0 (C11)
l  £(t) =  — (S2G(t)*n(t) +  ds(t)F(t)*£(t)).

C.2 Gradient in coordinates
Expanding the variables S(t) =  {c 0;k(t), a 0,k (t)}, Y (t) =  {Y k(t)}, n(t) =  (t)}, and 

£(t) =  {£k(t), £fc(t)} gives

Vco,fc E =  £cfc (0)

V  ao,k E =  £^(0).

C .2 .1  C om p u ta tion  o f  rj(t)

Computing n(t) requires the computation of d1 G(t)*n(t). Recall the flow equation 

G(Y, S)(y0) =  —[dyoY]v(y0), therefore

G (Y  +  5Y)(y0) =  — [dyo(Y +  £Y)] v(y,) (C.12)

=  — [dyo Y  +  dyo<5Y] v(y0) (C.13)

=  — dyo Y v(y0) — dyo ̂ Y v(y0) (C.14)

=  —G(Y)(y0) — dyo 5Yv(y0) (C.15)

and therefore

dY G(5Y) =  — d(5Y)v, (C.16)
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which allows us to write the dot product

(dvG (£Y ),n) =  / -n (y )tdy(5Y)v(y)dy (C.17)y
m

=  /  - (d y(n ^ Y ) -  (£Y )tdyn)v(y)dy (C.18)
Jn

=  -  /  dy(nt^Y)vydy +  [  (5Y)tdynv(y)dy (C.19)
./n ./n

=  f  (nt^Ydiv(v(y))dy +  f  (6Y )% nv(y)dy (C.20)
7n in

=  f  (^Y)t(div(v(y))n +  dynv(y))dy (C.21)
n

=  (5Y, (dvG)tn). (C.22)

Therefore, we have

[(dvG)tn] (yk) =  div(v(yk))n(yk) +  dn(yk)v(yk) (C.23)dv
Nc

cp)apdiv I E  K(yk, Cp)ap) I n(yk) +  dn(yk)v(yk) (C.24)
^p=i

Nc
=  £  n(yk )apV cp K  (yk ,cp)n (yk) +  dn (yk )v(yk) (C.25) 

p=i
and finally

Nc Nc
nk(t) =  £  nk(t)ap(t)tVcpK(yk(0), Cp(t)) -  dnk(t) £  K(yk(0),Cp(t))ap(t). (C.26) 

p=i p=i

C .2 .2  C om p u ta tion  o f  £(i) =  (£c (t), $,a (t))

Computing £(t) requires the computation of d2G(t)tn(t), specifically the terms dcG and 

da G. Recall the flow equation G (Y , S)(y0) =  -  [dy0Y]v(y0), therefore

dsG(5S)(yc) =  -dyo Ydsv(yo)^S (C.27)

where ds can be expanded to

dcp v(yk) =  apVcp K  (yk,cp)t (C.28)

dap v(yk) =  K  (yk ,Cp)Id. (C.29)

We can write

(dsG(^S), n) =  /  - (dyYdsv(y)^S)tn(y)dy (C.30)
Jn

=  - ( ^  /  dsv(y)tdyYtn(y)dy (C.31)
n

=  (5S, -dsG n ). (C.32)
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We can approximate the integral by a summation, which writes

Npix

(dS^n) =  -  Y  dSv(Vk)tdyfcY tn(yk). (C.33)
k=1

We can expand dSG tn evaluated at specific momenta and control point p

Npix

(dcpGtn) =  -  Y  aP((dykY )tn (Vk))V cpK (yk,cp) (C.34)
k=1
Npix

(d« pGtn) =  -  Y  K (Vk, °p)(dykY )tn (Vk) . (C.35)
k=1

C .2 .3  G radien t w ith  respect to  baseline im age

The gradient with respect to the baseline image I0 can be computed as the sum of 
gradients V i0D (Y (ti), Oti) for each observed image Oti. Recall that the intensity of the 

baseline image I0(Yk (t)) for some voxel k and time t is computed by interpolating gray 

values, written as J2peN(Yk(t)) Pp(Yk(t))I0(np(Yk(t))) in a neighborhood N  of voxels n 
around Yk(t) with weights p from bilinear (2D) or trilinear (3D) interpolation. Let Rti 

be the residual image I0(Y (ti)) — Oti. Then a variation I0 leads to

Nobs Nvox
5D(Y(ti)) =  Z )  £  R>.(Yk(ti)) £  Pp(Yk(t))5I0(np(Yk (t))) (C.36)

i=1 k=1 peN (Yfc (t))
Nobs Nvox

' 5Id(np(Yi(ti))). (C.37)£
i=1

Y  Pp(Yk(ti))Rti(Yk(ti))
k=1



APPENDIX D

DERIVATION OF GRADIENTS FOR 
JOINT GEODESIC IMAGE AND 

SHAPE REGRESSION

D.1 Gradient in matrix form
A perturbation 5S0 of the deformation parameters and 5X0 of the positions of the 

vertices in the baseline shape complex induce a perturbation of the control points and 

momentum trajectories 5S(t), as well as the trajectory of the vertices 5X(t) and the inverse 

maps 5Y (t,.), and finally a perturbation of the criterion 5E. According to the chain rule,

5E =  V  (V x iA T5X(ti) +  V y (ti,.)BT5Y (ti,.)) +  V soLt . (D.1)
tj

V X(ti)A is the gradient of the current metric d(X(ti) ,X i)2 with respect of the position 

of the vertices in the mesh X (ti). Its expression is given in [79], for instance. V Y(ti,.)B 

is the gradient of the L2 metric between images ||/o o Y(ti, .) -  / i y2. It is given by: 2(1o o 

Y(ti, .) -  1i)V Y(ti,.)1o, which is the usual image force used in image matching.
The variations of the parameters follow the linearized ODEs of the equation of motion, 

namely:
' 5S(t) =  [dS(t)F(t)] 5S(t) with 5S(0) =  5So

5XT(t) =  d1G(t)5X(t) +  S2G(t)5S(t) with 5X (0) =  5Xo . (D.2)

5Y (t,.) =  d1H (t)5Y (t,.) +  d2H(t)5S(t) with 5Y(0,.) =  0
The first ODE is a linear homogenous ODE with known solution

5S(t) =  exp ( ^ j  dS(u)F(u)du^ 5So. (D.3)

The second and third ODEs are linear inhomogeneous ODEs that can be solved by the 
method of variation of parameters

- t . - t 1  ̂ . T \
5X(t) =  /  exp ( f  d1G (s)d ^  d2G(u)5S(u)du +  e x ^  f  d1G (s)d ^  5Xo

y° t v^u t ;  v.Zo /  (d .4)

5Y (t,.) =  J  exp ( J  d1H (s)dsj d2H(u)5S(u)du.

<
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Let Rst =  exp(/sT ds(u)F(u)du), Vst =  exp(/sT diG(u)du) and Wst =  exp(/sT diH(u)du), 
then plugging (D.3) into (D.4) gives

(D.5)
6X (t) =  Vot^Xo +  I  Vutd2G(v,)Rou5Sodv,

Jo 

5 Y ( t , .) =  f  Wutd2G(u)RouSSodu
o

In turn, these expressions could be plugged into (D.1) to give

/*ti /* ti 
VsoE =  £ /  R Toud2G(u)TV Ti  V x (ti)Adu +  /  R q ^ H ^ W ^  V y f e .)£ +  VsoL

ti o o
Z*Tf

I  R ^  &2G(u)T n(u) +  ^ H  (u)t 0(u)j du +  V so L

(D.6)

and

Vxo E =  E  Vt  Vx(ti) A =  n(0), (D.7)

where we denoted
n(u) =  E  v T  Vx(ti) A1{u<ti} 

ti
0(u) =  E  ^ ItiV Y(ti,.)B 1{u<ti}. 

ti
By definition of Vts, the differentiation of n(u) gives:

n(u) =  E  - d iG(u)TVIti V x(ti) A1{u<ti} -  E  VTi V x(ti) A^(u -  ti)
ti ti

=  - d iG(u)T n(u) -  E  V x  (ti) A^(u -  ti)

(D.8)

(D.9)

since when u =  ti, V̂ ti =  Id. Combined with the fact that n(Tf) =  0, this equation yields 

the ODE satisfied by n(t).
Similarly, we have for d(u):

d(u) =  - d i H (u)]Q(u) -  E  V y (ti,.)BS(u -  ti) (D.10)
ti

with the condition at u =  T f: d(Tf) =  0.
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Let us now denote {(t) =  f t f R[u fd2G(u)T n(u) +  d2H (u)t0(uH du, so that

V SE =  {(0) +  V so L . (D.11)

To compute { (t), we notice that Rts =  Id — f*s ^duf-du =  Id +  J*s Rusds(u)F(u)du. 

Therefore, using Fubini’s theorem, we get:

t
rTf rTf
/ g(u) +  ds(u)FT /  RusTg(s)dsdu (D.12)

g(u) +  ds(u)FT {(u)du,

where we denoted g(u) =  d2G(u)Tn(u) +  d2H(u)^0(u). This last equation is the integral 
form of the following ODE

{(t) =  —g(t) — ds(t)FT{(t) with {(T f) =  0. (D.13)

This achieves the differentiation of the criterion.

D.2 Gradient in coordinates
The terms that involve X , S, F  and G are essentially the same as in [30], where the reader 

could find the expression in coordinates. What remains to be computed is d1H(t)^0(t) and 

d2H (t)t0(t).
Recall H(Y, S)(x) =  — [dxY(t, .)]v(x), therefore

H (Y  +  6Y)(x) =  — [dx(Y +  6Y)] v(x) (D.14)

(D.15)

(D.16)

(D.17)

=  — [dxY +  dx5Y] v(x)

=  —dxYv(x) — dx^Yv(x) 

=  —H (Y )(x) — dx^Yv(x)

and therefore

d1H (5Y) =  — d(5Y)v, (D.18)

which allows us to write the L2 dot product
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(d!ff(5Y),0) =  /  -0 (x )Tdx(5Y)v(x)dx
JQ

=  /  - (dx(0T 5Y) — (5Y )T dx0)v(x)dx 
Jq

=  — [  dx(0T5Y)v(x)dx +  /  (5Y)Tdx0v(x)dx
-'Q jq (D.19)

=  /  (0T5Ydiv(v(x))dx +  /  (5Y)Tdx0v(x)dx
JQ ./Q

=  /  (5Y)T(div(v(x))0 +  dx0v(x))dx 
Jq

=  ( 5Y, (d y H )^ ) ,

using several integration by parts and assuming zero boundary conditions of both 0 and 
5Y.

Therefore the image of vectors (d1 H)t0 at voxel x is given by

(d1 H)t0 (x) =  div(v(x))0(x) +  d0(x)v(x) (D.20)

Nc
div I Y  K (x ,cp)ap I 0(x) +  d0(x)v(x) (D.21)

Nc
Y  V xK  (x, cp)0(x) +  d0(x)v(x) (D.22)
p=1

and finally
Nc Nc

0(t, x) =  -  Y  «p(t)TVxK(x,cp(t))0(t,x) -  dx0(t,x) ^  K (x, Cp(t))ap(t). (D.23) 
p=1 p=1

We need now to compute the term d2H(t)t0(t), which can be decomposed in two parts 

dcH and daH . Recall H(Y, S)(x) =  - [dxY(t, .)]v(x), therefore

dSH (5S)(x) =  - dxYdSv(x)5S (D.24)

where dS can be expanded to

dcpv(x) =  apVCpK(x, Cp)T (D.25)

dap v(x) =  K  (x,Cp)Id. (D.26)

We can write

(dSH(5S),0) =  / -(dxYdSv(x)5S)T0(x)dx (D.27)
Q J

=  - (5S)t /  dSv(x)TdxY T0(x)dx (D.28)
Q

= (5S,dSH*0) (D.29)
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Therefore the vector (dsH^#) at time t is given by

(dsH^0)(t) =  -  j dsv(t,x )TdxY(t, x)T#(t, x)dx. (D.30)
n

We can expand dsHt# evaluated at specific momenta and control point p

(dcpH f#)(t) =  - f  ap(t)T ((dxY(t,x))T#(t,x)) Vcp(t)K(x,Cp(t))dx (D.31) 
Jn

(dapH f#)(t) =  - f  K (x, Cp(t)) ((dxY(t, x ))T#(t,x)) dx. (D.32)
n

D.3 Differentiation with respect to the baseline 
image

Using the L2 norm between images as similarity measure B, we have: B (Y (tj,.)) =  

||/o o Y(t^ .) -  XiHL2, which is the only terms in the criterion depending on the baseline 

image / 0.

The differentiation gives V /0B (Y (tj,.)) =  2 |dY(ti, .) - i |R o Y (tj,.)- i , where R =  / 0 o 

Y(tj) -  /j denotes the residual image. Using the discrete L2 norm (sum of squared differ

ences) instead of the continuous norm, the gradient is computed by splatting the intensities 

of the residual image at the neighboring voxels around position Y (tj, x) for each voxel x. 

The splatting method (explained in more detail in [26]) is the discrete version of the operator 
R ^  |dY(ti,.)- i |R o Y (ti,.)- i .



APPENDIX E

NOTES ON IMPLEMENTATION 

E.1 Introduction
Here, we provide notes for implementing the regression methods contained in this 

dissertation. It should be stressed that the materials presented here are meant as a teaching 

tool. We do not offer compilable code, but rather attempt to provide intuition for the 

structure of one particular implementation.

Both the acceleration controlled and geodesic model require the same machinery for 

implementation. An optimization scheme is required to estimate model parameters to 

minimize the specific criterion. During each iteration of the optimization, the majority of 

work requires solving ordinary differential equations (ODEs). Finally, at the lowest level, the 

most common computation is convolution with a kernel. We provide pseudocode algorithms 

for these major components. A reader interested in c++ code can find an implementation 

of the acceleration controlled growth model from Chapter 2 at 

http://w w w .sci.utah.edu/softw are/exoshapeaccel.htm l.

E.2 Overview
At the highest level of abstraction, an optimization procedure is needed to estimate 

model parameters that minimize the specific criterion. One choice for an optimization 

scheme is gradient descent, outlined in Algorithm 4. The input to gradient descent are the 

model parameters, here concatenated into variable X . The main computations required for 

gradient descent are ComputeCriterion and ComputeGradient. During each iteration, the 

gradient is used to update the model parameters. One could improve speed of convergence 

by implementing an adaptive stepsize gradient descent by including a line search over 

stepsize.

The method ComputeCriterion must compute the value of the criterion, which consists 

of a data-matching and regularity term. For data-matching, we recommend an object- 

oriented approach to allow for multiple shape representations. For example, each shape

http://www.sci.utah.edu/software/exoshapeaccel.html
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Algorithm  4: GradientDescent
Input: X  (value to be optimized)
Output: X  (value at convergence)
/ /  I n it ia liz e  the stepsize (e.g 0.01)

1 stepsize =  In itia lizeS tep size ()
/ /  Convergence variables

2 hasConvered =  false iter =  1 maxIters  =  500 breakRatio =  1e-6  
/ /  Compute a baseline value o f the criterion

3 F  =  ComputeCriterion(X)
4 while (iter <  maxIters) || (hasConverged) do
5
6
7

8
9

10
11

G  =  ComputeGradient(X) / /  Compute the gradient 
X  =  X  -  stepsize * G  / /  Update the estimate for X  
Fnew  =  ComputeCriterion(X) / /  Compute the new criterion  value 
/ /  Check for convergence
if ((F  -  Fnew) <  breakRatio) then  

hasConverged =  true

F  =  Fnew  / /  Update value of criterion  for the next iteration  
iter++ / /  Increment loop counter

12 return X

representation must implement a data-matching function D (S i ,S 2) that takes two shapes 

as input and returns a scalar that represents the similarity of the two shapes. Consider 
shapes represented as corresponding landmarks, the data-matching function can be written 

as

D(Si,S2) =  ||Si -  S2|||2, (E.1)

which is the sum-of-squared Euclidean distance of the landmarks in the two shape configu

rations.
The method ComputeGradient contains model specific gradient computations. However, 

the main components are solving ODEs where convolution is the major computation. These 

will be covered in the next two sections. ComputeGradient also requires the gradient of 
the data-matching term. Again, we favor an object-oriented implementation where each 

shape representation must implement a gradient of data-matching function. This function 

takes two shapes as input and returns a vector. Let us again consider shapes represented as 
corresponding landmarks, then the gradient of the data-matching function (equation E.1) 

can be written as

VD(Si,S2) =  2(Si -  S2). (E.2)
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E.3 Solving ODEs
Both the acceleration controlled model of Chapter 2 and the geodesic model of Chapter 3 

require solving several ODEs. For example, ODEs describe the forward integration of the 
deformation model, as well as backwards integration to bring model parameters back to the 

earliest time point. There are many methods for solving ODEs. Here, we cover two schemes 
that can be used for implementation.

E .3.1 V e loc ity  verlet
The velocity Verlet method is a common algorithm for computing trajectories of particles 

given equations of motions [76]. For example, the second order equation of motion is

x(t) =  a(t,x(t)), x(to) =  xo and x =  vo, (E.3)

with time dependent position x(t), velocity v(t), and acceleration a(t). Note initial position 

xo and initial velocity vo are necessary initial conditions to begin integration. This form is 

precisely the case for the equations governing the trajectories of shape points (equation 2.2) 
from Chapter 2. The algorithm for velocity Verlet is shown in Algorithm 5.

The necessary component for implementation is the function ComputeAcceleration. 

For the acceleration controlled growth model of Chapter 2, acceleration is computed by 

convolution with the time-varying impulse vectors. With a current estimate for time-varying 

impulse vectors, acceleration can be computed at any time from equation 2.1. Given a time 

step of At, velocity Verlet has global error of O(At2) for position and O(At4) for velocity.

E .3.2  H eu n ’s m eth od
Heun’s method, shown in Algorithm 6, also known as the modified Euler method (with 

prediction/correction), is a method for solving initial valued ODEs of the form

X(t) =  f  (t,x(t)), x(to) =  xo, (E.4)

A lgorithm  5: Velocity Verlet
Input: x(0) (initial position), v(0) (initial velocity), T (number of timepoints) 
Output: x(t) (trajectory of particles)

1 At =  1.0/(T -  1.0) / /  timestep At
2 for (t =  0; t < T; t++) do 

a(t) =  ComputeAcceleration(x(t)) / /  acceleration  a(t) 
x(t +  1) =  x(t) +  v(t)At +  2a(t)At2 / /  new p osition  x(t +  At)

4 a(t +  1) =  ComputeAcceleration(x(t +  1)) / /  acceleration  a(t +  At)
5 v(t +  1) =  v(t) +  2(a(t) +  a(t +  1))At / /  new v e lo c ity  v(t +  At)
6 return x(t)
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Algorithm  6: Heun’s Method 
Input: x(0) (initial value), T (number of timepoints)
Output: x(t) (solution to ODE)

1 At =  1.0/(T — 1.0) / /  timestep At
2 for (t =  0; t < T; t++) do

/ /  Compute intermediate value x ( t +  At)
3 x(t +  1) =  x(t) +  ComputeValue(x(t))At 

/ /  Compute new value x(t +  At)
4 x(t +  1) =  x(t) +  ^  [ComputeValue(x(t)) +  ComputeValue(x(t +  1))]
5 return x(t)

where the time derivative of x(t) is a function of x(t) with initial value x0. The main idea 

of Heun’s method is to compute an intermediate value of x(t +  1), which is then used to 

compute the final approximation of x(t +  1).
The necessary component for implementation is the function ComputeValue. For ex

ample, consider the ODEs which govern the trajectory of control points and momenta 

for geodesic regression in Chapter 3. To implement ComputeValue for control points and 
momenta, one only needs compute the right hand side of the ODEs in equation (3.5).

Heun’s method is very easy to implement, as it does not require to compute derivatives 

at fractional time points. It also has provides an adequate approximation, with global error 

of O(At2) given a time step of At. This is equivalent to the second order Runge-Kutta 

method.

E.4 Convolution
There are three main computations performed during estimation of regression models, 

all of which involve convolution. The first computation is of the form
N M

where xj, y j, a i are d-dimensional vectors (2D or 3D in practice), and K  is a kernel. We 

will refer to this general form as Convolve. The output of Convolve is a list of length N 

containing d-dimensional vector elements.
The second main form involves convolution with the gradient of the kernel, of the form

i=1 j=1
We will refer to this general form as ConvolveGradient. The output of ConvolveGradient 

is a list of length N containing dxd matrices.

(E.5)
i=1 j=1

N M
(E.6)
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The third main form involves convolution with the Hessian of the kernel, of the form

N ME E
V i,iK  (xi,yj  )aT. (E.7)

i=i j=i

We will refer to this general form as ConvolveHessian. The output of ConvolveHessian 

is a list of lists containing dxd matrices.

Let us consider kernels of the form K ( x , y )  =  f  (||x -  y||2). This gives the form of the 

gradient and Hessian as

V iK  ( x , y ) =  2f/(||x -  y||2)(x -  y)

V i,iK (x, y) =  4 f //(||x -  y||2)(x -  y)(x -  y)t +  2 f /(||x -  y||2)Id.

E .4.1 E xact C on volu tion

Equations (E.5), (E.6), and (E.7) can be computed exactly using nested loops, as shown 

in Algorithm 7, 8, and 9, respectively.
This naive implementation will run very slowly in practice, as the number of vectors x , 

y, and a can be on the order of tens or hundred thousands. Furthermore, for regression, 

such computations are made inside a loop which represents the time discretization. As 
such, the naive implementation is only efficient when the number of vectors is on the order 

of hundreds. The next section will discuss methods for approximating convolution with 

efficient algorithms.

Algorithm  7: Convolve
Input: x  (list of d-dimensional x vectors), y (list of d-dimensional y  vectors), a  (list 

of d-dimensional a vectors)
Output: v  (list of d-dimension vectors)

1 nx  =  length(x) / /  number of x vectors
2 ny =  length(y) / /  number of y  vectors
3 for (i =  0; i <  ny ; i++) do
4
5
6
7
8

9
10
11

x  =  x[i] / /  the current x  vector 
v =  0 / /  set to a d-dimensional zero vector 
for (j =  0; j  <  ny ; j+ + )  do

y  =  y [j] / /  the current y vector 
a =  a[j] / /  the current a vector 
/ /  Kernel evaluation returns scalar value k 
k =  EvaluateKernel(x, y) / /  evaluate the kernel at xi and yj 
v + =  ka / /  running vector sum

v[i] =  v / /  update output v
12 return v
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Algorithm  8: ConvolveGradient
Input: x  (list of d-dimensional x vectors), y (list of d-dimensional y vectors), a  (list 

of d-dimensional a vectors)
Output: V  (list of dxd dimensional matrices)

1 d =  Dim(x) / /  the dimension d of the vectors
2 nx =  length(x) / /  number of x vectors
3 ny =  length(y) / /  number of y vectors
4 V  =  EmptyList(nx) / /  empty l i s t  of s ize  nx
5 for (i =  0; i < ny; i++) do
6
7
8 
9

10

11
12
13

14

x =  x[i] / /  the current x vector
v =  Zeros(d, d) / /  dxd dimensional matrix of zeros 
for (j =  0; j  < ny; j+ + )  do

y =  y [j] / /  the current y vector 
a =  a[j] / /  the current a vector
/ /  Kernel gradient evaluation returns d-dimensional vector V iK  
V iK  =  EvaluateKernelGradient(x, y)
for (k =  0; k < d; k++) do

v.SetRow(k,v.GetRow(k) +  a[k](V1K )T)

V[i] =  v
15 return V

Algorithm  9: ConvolveHessian
Input: x  (list of d-dimensional x vectors), y (list of d-dimensional y vectors), a  (list 

of d-dimensional a vectors)
Output: V  (list of lists of dxd dimensional matrices)

1 d =  Dim(x) / /  the dimension d of the vectors
2 nx =  length(x) / /  number of x vectors
3 ny =  length(y) / /  number of y vectors
4 V  =  EmptyList(EmptyList()) / /  empty l i s t  of l i s t s  (dynamically sized)
5 for (i =  0; i < ny; i++) do
6
7
8
9

10
11
12

13
14
15

16

x =  x[i] / /  the current x vector 
v =  EmptyList(d) / /  Empty l i s t  of s ize  d
for (k =  0; k < d; k++) do

v[k] =  Zeros(d, d) / /  dxd dimensional matrix of zeros
for (j =  0; j  < ny; j+ + )  do

y =  y [j] / /  the current y vector 
a =  a[j] / /  the current a vector
/ /  Kernel Hessian evaluation returns dxd dimensional matrix 
V i,iK  =  EvaluateKernelHessian(x, y)
for (k =  0; k < d; k++) do 
|_ v[k] =  v[k] +  a[k]V1,1K

V[i] =
17 return V

v
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E .4.2  Fast C on volu tion

Here, we briefly mention two potential choices for efficiently approximating convolution. 

One choice is approximation through improved fast Gauss transforms (IFGT) [87]. For 
Gaussian kernels K , these methods reduce the computational complexity from O(n2) to 
O(n). Another possible choice is approximation using the fast fourier transform (FFT) [27]. 

The FFT based method reduces computational complexity to O(n log n). Both methods 
have a parameter that controls the approximation error, which essentially is the trade-off 

between speed and accuracy. Please see the corresponding references for implementation 

details.

Another increasingly popular choice for fast convolution is to leverage the speed of 

modern hardware. One choice is to utilize parallelization to take advantage of multicore 
CPUs. A second choice is to harness the speed of GPUs, or even multi-GPUs, as algorithms 

such as FFT have relatively straightforward GPU implementations. Please see [65] for more 

detail regarding efficient convolution algorithms.
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