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ABSTRACT

We present a method for absolutely quantifying pharmacokinetic parameters in

dynamic contrast-enhanced (DCE)-MRI. This method, known as alternating mini-

mization with model (AMM), involves jointly estimating the arterial input function

(AIF) and pharmacokinetic parameters from a characteristic set of measured tissue

concentration curves. By blindly estimating the AIF, problems associated with

AIF measurement in pharmacokinetic modeling, such as signal saturation, flow and

partial volume effects, and small arterial lumens can be ignored. The blind estimation

method described here introduces a novel functional form for the AIF, which serves

to simplify the estimation process and reduce the deleterious effects of noise on

the deconvolution process. Computer simulations were undertaken to assess the

performance of the estimation process as a function of the input tissue curves. A

confidence metric for the estimation quality, based on a linear combination of the

SNR and diversity of the input curves, is presented. This confidence metric is then

used to allow for localizing the region from which input curves are drawn. Local

blood supply to any particular region can then be blindly estimated, along with some

measure of confidence for that estimation. Methods for evaluating the utility of the

blind estimation algorithm on clinical data are presented, along with preliminary

results on quantifying tissue parameters in soft-tissue sarcomas.

The AMM method is applied to in vivo data from both cardiac perfusion and

breast cancer scans. The cardiac scans were conducted using a dual-bolus protocol,

which provides a measure of truth for the AIF. Twenty data sets were processed with

this method, and pharmacokinetic parameter values derived from the blind AIF were

compared with those derived from the dual-bolus measured AIF. For seventeen of the

twenty datasets there were no statistically significant differences in Ktrans estimates.

The cardiac AMM method presented here provides a way to quantify perfusion of

myocardial tissue with a single injection of contrast agent and without a special



pulse sequence. The resulting parameters are similar to those given by the dual

bolus method. The breast cancer scans were processed with the AMM method and

the results were compared to an analysis done with the semiquantitative DCE-MRI

scans. The effects of the temporal sampling rate of the data on the AMM method

are examined. The ability of the AMM-derived parameters to distinguish benign and

malignant tumors is compared to more conventional methods.
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CHAPTER 1

INTRODUCTION

This dissertation aims to address issues in quantitative processing of dynamic

contrast enhanced magnetic resonance imaging. Quantitative imaging has the po-

tential to simplify patient diagnosis and aid in developing individual treatment plans

for patients suffering from a range of disease.

1.1 Fundamentals of MRI

MRI is an imaging modality that makes use of the principle of magnetic resonance

to obtain anatomical and physiological images noninvasively and without the use of

ionizing radiation. Since the publication of the first magnetic resonance image in 1973

[?], MRI techniques have been developed to image a wide variety of applications

including the diffusion of water molecules [?, ?], oxygen dependant brain activity

[?, ?] and density and integrity of tissue vasculature [?]. The ability of MRI to acquire

images in arbitrary imaging planes and with a wide variety of contrast sources makes

it an increasingly used clinical tool for diagnosing and monitoring disease.

There are many texts covering the basic principles of magnetic resonance and the

use of magnetic resonance in imaging in great detail. The interested reader is referred

particularly to those by Haacke [?] and Liang [?]. In general, magnetic resonance

images use nuclei with nonzero net spin such as 1H, 23Na, and 31P among others.

The work in this dissertation is concerned solely with the imaging of hydrogen nuclei

(or protons) found throughout the body. For more information on nonhydrogen

imaging the reader is referred to [?].

The proton that composes a hydrogen nucleus has a net magnetic moment with

two possible spin states (often referred to as up or down). When placed in a large,

uniform, external magnetic field, such as that found in the bore of an MR scanner, the

nuclei will experience a torque causing them to align their spin states such that they
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precess around the axis of the external field. Due to the differences in energy between

the up and down spin states, a slightly larger percentage of the total nuclei will

align in the lower energy state, resulting in a net longitudinal magnetization within

the body. RF energy, tuned to the characteristic frequency of the spin precession,

can then be applied, which results in tipping these spins off the axis of the main

magnetic field. Following the application of an RF pulse, the spinning nuclei will

regain their initial energy state. The RF energy emitted during this relaxation is

the signal recorded by the MR scanner. This signal depends on the density of the

nuclei, as well as the interactions among the nuclei as they relax. The characteristic

time following the application of an RF pulse during which the net longitudinal

magnetization is recovering is known as the longitudinal or spin-lattice relaxation

time, T1. The value of T1 for a given proton depends on the local interactions

between the hydrogen nuclei. The majority of the hydrogen nuclei in the body are

part of water molecules. Pure water has a T1 of several seconds. The interaction of

the water with proteins and other biomolecules lowers the T1 in tissue. In general T1

in tissue varies between 100-1000 ms. The differences in T1 among different tissues

are a source of contrast in many MRI sequences, including those used in this work.

1.2 Background of DCE-MRI

Dynamic contrast-enhanced imaging methods have been used in a variety of

applications and imaging modalities. The main principle behind these methods is

the serial acquisition of images of a region of interest before, during and after the

injection of a contrast agent. In positron emission tomography (PET) as well as

in single photon emission computed tomography (SPECT), contrast injection is a

required part of all imaging. In both of these forms of nuclear imaging, the acquired

signal comes from the emission of radioactivity from some radiotracer. In static PET

or SPECT imaging, the cumulative signal over a period of time is used to reconstruct

a single image showing the distribution of the tracer in the subject. By decreasing

the amount of time dedicated to each acquisition, an increased number of images can

be reconstructed, yielding information on the time course of the tracer distribution.

This sort of dynamic imaging has also been applied to x-ray computed tomography
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(CT) scanning. In CT imaging, the acquired signal relates to the transmission and

attenuation of x-rays through the imaged subject. DCE-CT is possible through the

injection of some contrast agent that alters the attenuation properties of the tissue.

The idea of dynamic contrast-enhanced imaging has also been applied to MRI.

These methods have been particularly designed to assess the density and permeability

of tissue vasculature. DCE-MRI is used primarily to diagnose and monitor diseases

where tissue vascularization is a useful biomarker. Two examples of DCE-MRI use

in clinical practice are in oncology, and in myocardial perfusion. An example of a

DCE-MRI acquisition for myocardial perfusion is seen in Figure 1.1. In oncology,

as tumors grow larger than a few mm3, they are no longer able to meet metabolic

Figure 1.1. Example DCE-MRI scan of a primitive neuroectodermal tumor (PNET)
in the distal humerus (first two rows) and a single short axis slice through the heart
(second two rows). In the PNET, the contrast can be seen entering the tumor in
the upper portion of the image. In the heart, the contrast enters the right ventricle,
passing into the left ventricle and then dispersing throughout the blood and tissue.
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demands solely through passive diffusion of nutrients. Through a process called

angiogenesis, they create new vasculature to supply needed nutrients. These new

vessels tend to be very leaky when compared to those in healthy tissue. As a result,

DCE-MRI is able to identify tumors based on regions of enhanced leakiness in the

vessels. In addition, rapidly growing tumors tend to be very heterogeneous, often

having necrotic cores (where cells are no longer able to proliferate) and distinctly

active rims with high metabolic activity. In clinical scans, high spatial resolution is

often desired to distinguish small tumors from surrounding healthy tissue, as well as

to segment larger tumors into regions of high and low activity.

DCE-MRI is also used in myocardial perfusion imaging [?, ?]. In this case, the

parameter of greatest interest is the flow of blood to myocardial tissue. Tissue that

has been damaged, or tissue that has an inadequate blood supply due to vessel

occlusion, are both identifiable in DCE-MRI studies. In these cardiac scans, high

temporal resolution is often desirable due to the nature of the kinetics of blood flow

through the coronary arteries. In addition, cardiac (and respiratory) motion makes

consistent imaging across frames difficult. By imaging the entire region of interest

in a short time, greater interframe correlation in cardiac phase is possible.

A separate class of dynamic MRI scans, dynamic contrast susceptibility (DSC)

MRI, has also been developed. DSC-MRI is used largely in brain imaging, and differs

from DCE-MRI in that DSC studies make use of T2-weighted contrast changes while

DCE-MRI studies focus on changes in T1. This work focuses solely on DCE-MRI,

the interested reader is referred to [?] for more information on DSC-MRI and its

applications.

1.3 Principles of DCE-MRI

As stated above, DCE-MRI involves the injection of contrast into the subject to

be imaged. Though multiple types of MR contrast exist, this work focuses on the use

of paramagnetic gadolinium based chelates. Unlike dynamic CT, PET, or SPECT,

DCE-MRI does not measure the concentration of contrast agent directly. Gadolinium

ions contain unpaired outer electrons that generate local magnetic fields. These local

fields affect the relaxation of hydrogen nuclei and reduce the characteristic relaxation
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time. By tracking the change in relaxation over time, the delivery of contrast agent

(and the blood supply) can be determined.

The relationship between gadolinium concentration and the relaxation time is

often modeled as:
1

T1
=

1

T1,0
+ r1C (1.1)

where r1 represents the field strength specific relaxivity and C the gadolinium concen-

tration. Similar equations also apply to T2 and T2∗. This relationship is within the

fast exchange limit, which assumes that the contrast agent and water are well mixed

within the time course of the sampling. As described below, the acquired MR signal

varies nonlinearly with relaxation times, as a result, the relationship between contrast

concentration and MR signal is nonlinear, and saturates at high concentration levels.

This nonlinear relationship is illustrated with sample parameters in Figure 1.2. A

typical DCE-MRI study involves some measurement of the native (precontrast) T1

values for the region of interest. Following this measurement, T1-weighted images
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Figure 1.2. The relationship between the relative change in MR signal and the con-
centration of gadolinium. As the concentration increases, the relationship becomes
increasingly nonlinear, and the signal change saturates at high concentrations.
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are acquired while a bolus injection of a gadolinium chelate (such as Gadodiamide)

is administered. Images are acquired continuously over some predetermined time

frame that will depend on the expected kinetics of the contrast agent bolus in the

tissue of interest. Depending on the intended use of the data, acquisitions may be

focused on obtaining either high spatial resolution (i.e., 0.5mm isotropic) or high

temporal resolution (i.e., <15 sec/frame) images. Due to current limitations in

scanner hardware and image acquisition and reconstruction, some tradeoff between

spatial resolution, temporal resolution and SNR will be made. The details of the

acquisition will depend on the intended purpose of the scan. Following acquisition,

these images can then be assessed qualitatively, or through the use of quantitative

or semiquantitative postprocessing. This work focuses on quantitative processing as

described below. For more information on DCE-MRI the reader is referred to [?]

and the references contained therein.

1.4 Quantitative Postprocessing

Quantitative postprocessing differs from qualitative or semiquantitative process-

ing in that it relies on physical measurements (i.e., T1 values) rather than relative

changes in signal intensity (as in semiquantitative analyses). Though more challeng-

ing to process, quantitative measurements directly reflect tissue physiology, and are

reproducible in different scanning situations.

Quantitative processing begins by converting the acquired MR signal into T1

measurements or contrast agent concentration measurements. This conversion de-

pends on the MR sequence used to acquire the data, and the relaxivity of the contrast

agent used. One commonly used family of sequences in oncological DCE-MRI is the

gradient echo class, which includes 2D and 3D variants, with a variety of spoiling

gradients, balanced gradients and other specialized acquisition techniques. The

choice of sequence will depend on the scanner configuration and desired application.

In general, the relationship of the acquired signal and the scanning parameters in a

standard spoiled gradient echo sequence can be described as

S(T1, T
∗
2 ) = M0

sin(α)(1− e−TR/T1)e−TE/T ∗
2

1− e−TR/T1 cos(α)
(1.2)
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where M0 represents a constant signal scale, α represents the flip angle of the pulse

sequence, TR and TE represent the repetition and echo times of the pulse sequence,

and T1 and T ∗
2 represent the relaxation times of the tissue [?]. As contrast agent

enters the tissue of interest, the relative change in signal intensity can be described

as

∆S =
S(T1, T

∗
2 )− S(T1,0, T

∗
2,0)

S(T1,0, T ∗
2,0)

(1.3)

where the zero subscripts refer to precontrast values. Given the relationship between

concentration and T1, equation 1.2 can be solved numerically to obtain a measure

of the concentration in that tissue (see [?] for a study of the uncertainty and bias

in this conversion). Concentration measurements can be obtained voxelwise for each

time frame to create tissue concentration time courses for the region of interest.

Saturation recovery sequences are more commonly employed in cardiac DCE-MRI

applications. These sequences include one or more pulses prior to the readout of

the MRI data. These pulses serve to ”saturate” or remove residual longitudinal

magnetization prior to the readout. The signal measured during the readout will

then depend on some saturation recovery time between the saturation pulse and the

readout. As with the gradient echo sequence used in cancer imaging, the change in

signal intensity for the saturation recovery sequences varies nonlinearly with contrast

concentration. The general signal equation for the nth readout of a saturation

recovery sequence is

S(T1, T
∗
2 , n, C) = M0(cos(α)e−TR/T1)n−1 (1.4)(

e−TD/T1 − e−TR/T1 − cos(α)e−TR/T1

1− cos(α)e−TR/T1

1− e−(eSRT−TD)R1C

1− e−eSRT ·R1·C

)
(1− e−eSRT ·R1C)

where eSRT = TD + (n − 1)TR is the effective saturation recovery time [?]. As

with the gradient echo sequence, this equation can be solved numerically to obtain

a measure of the concentration in the tissue.

Various mathematical models have been developed to relate the time course of

contrast agent to the underlying tissue physiology. The most commonly used model

in quantitative DCE-MRI is the two compartment model first developed by Kety [?].
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Other models, including shutterspeed models [?] and adiabatic models [?] have also

been used; however, this study focuses on the two compartment case.

The two compartment model assumes that the region of interest is composed

of two regions, through which contrast agent can travel. These compartments are

assumed to be well mixed, in that the water exchange between the intra and extra

cellular space is fast compared to the relaxation rate of the water. This is equivalent

to treating any contrast agent entering the compartment as immediately distributed

uniformly throughout the volume. In DCE-MRI modeling, the first compartment

consists of the blood plasma volume fraction (vp) into which the contrast agent flows.

The second compartment is the extracellular, extravascular volume fraction (ve) (see

Figure 1.3). Contrast agent can be exchanged between the two compartments, and

the measure of the rates of exchange, as well as the fractional volumes of the two

compartments, are the parameters to be measured in this model. The kinetics of

the contrast agent in the compartments can be described by the following equations

(with derivation and standardized symbols following those given in [?]).

Figure 1.3. Graphical representation of the two compartment model. Blood flows
through the region (vp) allowing the contrast to be exchanged between the two
compartments. Current MRI contrast agents do not enter the intracellular space
(vi)
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d

dt
Ct(t) = Ktrans(Cp − Ct/ve) = KtransCp − kepCt (1.5)

Through the use of appropriate integration constants, equation 1.5 yields the solution

Ct(t) = Ktranse−kept ⊗ Cp(t) (1.6)

where ⊗ represents the convolution operator. It has been noted that equation 1.6,

also known as the Kety model, does not explicitly include a plasma compartment.

The Kety model can be extended by the inclusion of the plasma compartment to

yield the extended Kety model:

Ct(t) = Ktranse−kept ⊗ Cp(t) + vpCp(t) (1.7)

1.5 Arterial Input Functions

Two compartment model parameters are typically found by fitting equation 1.7

to either voxelwise or region averaged (to reduce noise) measured concentration time

courses with a nonlinear least squares method. This type of fit requires knowledge of

the concentration time course in the blood plasma, also known as the arterial input

function (AIF).

The AIF can be measured directly through the use of arterial catheterization.

During the contrast injection, samples are drawn directly from the blood supply,

and later analyzed chemically to obtain concentration measurements. Though this

technique allows for very accurate concentration measurements, the invasive nature of

the technique, as well as the relatively poor temporal resolution and added complexity

make it less than desirable for regular clinical use.

A second method for determining the AIF makes use of arterial signal within

the imaged field of view. Arterial regions of interest are identified (either manually

or with computer aided detection) and the signal measurements are converted into

concentration in the same manner as the tissue measurements. This method does not

require additional imaging, as the AIF and tissue can be gathered simultaneously.

Drawbacks to this method include the difficulty of obtaining an accurate arterial

signal. In many cases no large arteries are adjacent to the desired field of view,

which necessitates an increase in the imaging window with concomitant decreases in
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either spatial or temporal resolution. In other cases, the arterial lumens within the

field of view are small with respect to the spatial resolution of the image, which

results in partial volume effects that must be accounted for in determining the

desired AIF [?]. Flow effects may also alter the arterial signal and make accurate

concentration measurements difficult to obtain. Lastly, as the concentration of

contrast agent in a region increases, the relative change in signal intensity decreases.

This signal saturation is especially problematic in the blood plasma, which has higher

concentrations of contrast than the surrounding tissue.

Recent work has been done to determine population averaged AIFs [?, ?, ?]. With

this method, the same AIF is used for all patients imaged under a particular protocol.

Though this method has the advantage of simplicity and ease in calculation, it is

unable to account for changes in inter- or intrapatient individuality between scans.

Reference region approaches [?, ?, ?] compare measured values in regions of

interest to those from healthy tissue. The parameter values for the healthy, ref-

erence tissue are assumed to be consistent with previously reported literature values.

Comparing the kinetics of the region of interest to the reference tissue allows for

parameter calculation without needing to determine the AIF. These approaches allow

for acquisitions with greater focus on spatial resolution at the expense of temporal

resolution, as the kinetics of tissues tend to be slower than those for the AIF. However,

reference region calculations are limited by the agreement of the parameter values

in the tissue to those from literature, and also necessitate the presence of a good

reference tissue in the imaging field of view.

In contrast, blind estimation methods like those previously developed for dynamic

PET or SPECT [?] and those for DCE-MRI [?, ?, ?] estimate the AIF directly from

the tissue concentration time curves. In general, these methods assume that the

curves within a region of interest share a common blood input and estimate that

input function through statistical methods.

1.6 Scope of Dissertation

The work presented in this dissertation builds upon previously developed blind

estimation techniques. Chapter 2 presents the alternating minimization with model
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(AMM) method for blindly estimating the AIF. A novel functional form for the AIF

is incorporated into the estimation to minimize the effect of noise. Simulations are

carried out to assess the benefit of including the AIF model in the estimation and

preliminary results from the application of the AMM method to in vivo DCE-MRI

data are presented.

Chapter 3 characterizes the performance of the AMM method through monte

carlo type computer simulations. The effects of the SNR and diversity among the

input tissue curves on the quality of estimation are presented. A metric for estimating

the uncertainty in the AMM-estimated AIF is developed. This metric is used to

estimate AIFs on small, localized regions of interest within a tumor. The differences

between global and local AIF estimation on kinetic parameters in in vivo data sets

are presented.

The application of the AMM method to myocardial perfusion data sets is pre-

sented in Chapter 4. Additional constraints given by the signal in the left ventricular

blood pool on the AIF estimation are incorporated into the AMM method to create

a cardiac constrained AMM (CAMM) algorithm for use in myocardial perfusion

scanning. The results from CAMM-estimated AIFs are compared to the more

established dual bolus method in 21 in vivo data sets.

Quantitative processing in breast cancer DCE-MRI is presented in Chapter 5.

The AMM method is compared to the more commonly used three-time-point semi-

quantitative analysis methods. The effects of the temporal sampling rate on both

the AMM and three-time-point methods are examined in simulation and with in vivo

data. The sensitivity and specificity of each of the processing methods are presented.

Chapter 6 discusses the current state of AMM estimation and presents ideas for

future research in this area.



CHAPTER 2

MODEL-BASED BLIND ESTIMATION

Portions of this chapter originally appeared in ”Model-based blind estimation of

kinetic parameters in dynamic contrast enhanced (DCE)-MRI” Mag. Res. Med.

Volume 62 Issue 6, Pages 1477 - 1486. Reprinted with permission.

2.1 Introduction

This work focuses on blind estimation techniques for extracting kinetic parame-

ters and AIFs simultaneously from DCE-MRI data that do not require either mea-

sured AIF data or statistical estimates of pharmacokinetic parameters in reference

tissues. We build on the work reported previously by Riabkov and DiBella [?]

that used the iterative quadratic maximum likelihood (IQML) algorithm for blind

estimation of kinetic parameters, and also on a similar approach by Yang et al. [?].

A key difference here is firstly that a novel functional form for the input function,

which can accurately model the shape of the AIF while simultaneously minimizing

the effect of noise, is introduced. A second important difference in this work is that

the characteristics of AIFs that are estimated when arterial voxels are not included

in the field of view are studied. That is, blind estimation using time curves from both

tissue and arterial voxels provides input functions similar to those measured directly

from the arterial voxels. In contrast, when arterial voxels are excluded from the

estimation process, with the algorithm based on only tissue curves from a particular

region, the resulting input function is dispersed and delayed as compared to the AIF

measured in the arterial voxels. This suggests that the true input function seen

by tissue voxels is different from that measured in a nearby artery, consistent with

the work of Calamante and others on local input functions measured using dynamic

susceptibility contrast in the brain [?, ?]. We discuss the mathematical basis of our
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algorithm and present preliminary results on both simulated and measured data.

2.2 Materials and Methods

2.2.1 Blind Estimation Analysis

The basic algorithm used here is described in detail in [?]. We begin with an

extended Tofts-Kety two compartment model for tissue CA concentration:

Ct(t) = Ktranse−kept ⊗ Cp(t) + vpCp(t) (2.1)

where Ktrans and kep are the transfer constant and rate constant respectively, ⊗ is

the convolution operator, vp is the blood plasma volume fraction, and Cp(t) is the

concentration of CA in the blood plasma [?]. The blind estimation method takes

advantage of the discrete nature of MRI data and creates an objective function:

R = || ~Ct(t)− [H + ∆] ~Cp(t)|| (2.2)

where H denotes the convolution matrix and ∆ denotes a diagonal matrix repre-

senting vp. Ct(t) is a matrix consisting of the tissue concentration curves input to

the algorithm. This function (Eq. 2.2) is minimized by alternately varying the

kinetic parameters and the AIF. A population averaged input function, which has

been shown to yield reasonable estimates for kinetic parameters [?], is used as the

initial guess for the AIF. The initial guesses for pharmacokinetic parameter values are

estimated via a nonlinear least squares algorithm using this initial guess for the AIF.

The pharmacokinetic parameter values are then held fixed and a new AIF estimate

is computed by the same least squares algorithm. This alternating optimization

continues until the regression has converged to an AIF. In our implementation the

MATLAB lsqcurvefit function was used to perform the nonlinear regressions. De-

fault convergence criteria were used, and parameter values were bounded to prevent

nonphysiological negative values.

We use a model parameterization of the following form to represent the AIF [?]:

Cp(t) =
∑

i=1..2

Aiγv(αi, τi) + A3S(α3, τ3, T,∆) (2.3)

which consists of two normalized gamma variate curves (γi) representing the first and

second passes of the CA bolus, and a normalized sigmoid function (S) representing
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the decaying washout of CA from the ROI. This function is fully described with 11

parameters, and can model a wide range of physiological input functions, similar

to that developed by Parker et al. [?]. By choosing a flexible analytic form for

the AIF, we minimize the impact of AIF measurement noise, which otherwise could

be amplified at each step of the minimization process. At each iteration of the

alternating minimization with model (AMM) algorithm, the new AIF estimate is

constrained to this functional form by nonlinear regression using a least squares

approach.

We also changed the implementation of the minimization process from that in [?]

to include a delay time between the arrival of the CA bolus in the arterial blood and

in the tissue of interest. During each iteration, when fitting the tissue curves to the

AIF, the AIF was allowed to shift in time to obtain a best fit.

As reported in [?], the IQML algorithm can only estimate Ktrans to within a

global scaling constant. To constrain this scale factor, at the end of each iteration

the average value of the last five values of the estimated AIF is normalized to the

average of the last five time points of the AIF obtained from a nearby region of

arterial voxels. At the beginning of the next iteration the estimated AIF is adjusted

so that the average concentration of the tail of the estimated AIF matches that of the

measured arterial voxels. In practice, it is assumed that following the imaging of the

FOV of interest a few images of a nearby artery would be acquired. This acquisition

could be optimized for concentration measurements of the equilibrium blood pool

concentration. The lower CA concentration several minutes after injection would be

less susceptible to nonlinear saturation effects. In addition, moving the imaging FOV

to a larger artery would lessen the impact of partial volume effects, allowing for a

better estimate for the scaling constant for the estimated AIF. This AIF can then

be used with any conventional deconvolution or curve fitting methods to determine

kinetic parameters for any pixel in the FOV. The sequence of steps leading to the

determination of the AIF is summarized in Figure 2.1.
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Average	  Ct(t)	  curves	  
from	  MRI	  data	  

Ini8al	  AIF	  es8mate	  

Calculate	  kine8c	  parameters	  

Hold	  kine8c	  parameters	  
constant,	  calculate	  AIF	  

If	  converged	  

Es8mated	  AIF/kine8c	  parameters	  

No	  

Yes	  

Figure 2.1. Flowchart for the AMM method. This method requires several tissue
concentration curves and some estimate for the AIF as input. The algorithm will
alternately calculate the kinetic parameters for each input concentration curve and
the common input function.

2.2.2 Sensitivity to Initial Estimate of AIF Parameters

The AMM method uses a population averaged input function as a starting guess.

To test the sensitivity of the algorithm to this initial guess for the AIF, we generated

simulated tissue concentration curves using a model AIF generated using equation

2.3 with the following parameter values: A1 = 7.8, α1 = 1.26, τ1 = 0.00663, A2 =

1.2, α2 = 1.65, τ2 = 0.00555, A3 = 1.9, α3 = 44, τ3 = 0.018, ∆ = 0.7, and T =

15. Both the AIF and tissue curves were discretized at 4.5 s temporal resolution and

truncated after 7.5 min. The resulting AIF is shown in Figure 2.2.
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Figure 2.2. Estimated AIFs resulting from variations in initial guess to the AMM
method (blue). The initial guess used (green) were truth (a), near truth (b), zero
(c), and the lower bounds (d), and upper (e) bounds on the constraints used in the
estimation algorithm. For comparison, truth has been plotted on each panel (red).
All graphs have the same temporal resolution, shown in red.

Ten sets of four tissue curves were created from the true AIF with pharmacoki-

netic parameters drawn from a uniform random distribution. Ktrans was constrained

to [0,2.2] 1
min

, ve to [0.15,1], and vp to [0,0.2]. Zero mean Gaussian noise with a

standard deviation of 0.08 mM, corresponding to an average signal to noise ratio

(SNR) of 8 was added to the simulated tissue curves and each set of four curves were

input to the AMM method for each of five different initial guesses for the AIF.

The five initial guesses supplied to the AMM algorithm were as follows: the true

AIF, a slightly modified version of the true AIF with parameters A1 = 4, α1 = 1.1,

τ1 = .009, A2 = 1.5, α2 = 1.5, τ2 = .01, A3 = 2, α3 = 40, τ3 = .03, ∆ = 0.5,

and T = 20; a zero valued vector; and the lower- and upper-bounded AIF from the

minimization process, with parameters A1 = 1, α1 = 0.5, τ1 = 0.002, A2 = 0.25,

α2 = 0.5, τ2 = 0.002, A3 = 0.25, α3 = 5, τ3 = 0.001, ∆ = 0.5, and T = 5; and A1 =

30, α1 = 2, τ1 = 0.01, A2 = 10, α2 = 4, τ2 = 0.03, A3 = 10, α3 = 60, τ3 = 0.05, ∆ =

4, and T = 30, respectively.

The process was repeated for each initial guess with each set of four randomly

generated tissue curves. Estimates for the pharmacokinetic parameters for each of

the four input curves were calculated. The relative error of these estimates was
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computed as a measure of the error introduced by the variation in initial guess.

2.2.3 Noise Sensitivity Simulation

Kinetic parameter estimates from the AMM algorithm were compared to param-

eter estimates from a measured AIF with a noise simulation based on patient data.

A portion of a single slice of patient data with a significant amount of diseased tissue

was selected. The measured AIF from this scan was then fit to the model in equation

2.3, and this AIF was used to estimate kinetic parameters for the region. The AIF

and estimated parameters were then treated as truth and noise free tissue curves

were created according to equation 2.1 with temporal resolution of 4.5 s/frame. Four

sets of kinetic parameters were randomly generated within bounds set to match those

from the patient data, and zero mean Gaussian noise with standard deviations of

0.02, 0.04, 0.08, and 0.16 mM was added to the tissue curves. For reference, the

average standard deviation in the background noise in the original measured data

was 0.08 mM, which corresponds to an SNR on the order of 8.

For conventional (nonblind) estimation of the kinetic parameters from the simu-

lated data, noise corresponding to the level added to the tissue curves was added to

the simulated AIF, scaled by the square root of 19, which was the number of pixels

used to calculate the AIF in the original dataset. The AIF was shifted by a random

fraction of the sampling time to simulate jitter. The jittered AIF was then used to

calculate the kinetic parameters.

For the blind estimation method, the kinetic parameters were estimated using the

AMM algorithm. In addition, the blind estimation algorithm was implemented at

each noise level without including any analytic form for the input function. A total

of 100 noise realizations were used at each noise level, with four new tissue curves

generated randomly at each realization. The conventional AIF was jittered during

each realization. The resultant kinetic parameters from the simulated measured

AIF, the AMM method, and the alternating minimization without model were then

compared with truth, and the relative error was computed.

The noise sensitivity simulation was repeated with a second set of patient data.

This set was selected for having the AIF that was the most widely dispersed in time



18

over all of the patient data used in this work. The simulation methodology was

identical to that used with the first patient AIF.

2.2.4 Patient Data

The blind estimation algorithm was applied to DCE-MRI data from 12 patients

diagnosed with various soft tissue sarcomas. Data were acquired on a Siemens 1.5T

scanner using a fast low angle shot (FLASH) three-dimensional (3D) sequence with

20◦ flip angle, and TR ranging from 2.81 ms to 3.59 ms and TE ranging from 1.13 ms

to 1.44 ms. A total of 20 ml of Omniscan was administered intravenously with a dose

of 0.1 mmol/kg to 0.2 mmol/kg of body weight. The temporal resolution of the scans

ranged from 3.5 s/frame to 4.9 s/frame. From 12 to 18 slices were obtained from

each scan, with 96 to 512 voxels acquired along the frequency axis and 128 to 512

voxels along the phase encode axis. All data were obtained with written consent and

was institutional review board (IRB)approved. Measured DCE-MRI images were

converted into CA concentration by solving the nonlinear relationship between the

FLASH signal and CA concentration, as described in [?]. Precontrast T10 values

were determined using a variable flip angle method [?]. This nonlinear conversion

technique minimizes the impact of underestimation of true contrast concentration

due to signal saturation at high CA concentrations.

Each dataset contained arterial voxels from which a measured AIF was extracted.

The AIF used was selected from the voxels with the highest overall concentration

values and earliest uptake times. The AIF selection was done automatically, similar

to the method described in [?]. This measured AIF functioned as truth in comparison

with the blind estimation extracted AIF. Due to the large size of the patient data sets

a portion of a single slice through the lesion of interest was selected from each patient

for analysis, with the portions averaging 250 X 250 voxels. Each slice was selected

so that it also contained arterial voxels, as determined by the AIF measurement

technique described above, and the blind estimation algorithm was applied twice.

During the second run, any arterial voxels in the selected slice were excluded from

use in the blind estimation. The arterial voxels were selected for exclusion based on

their shape, specifically the ratio of the height of the first pass of the CA bolus to the
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average concentration over the rest of the curve. This was done to test the assumption

that AMM may be used in situations where no artery exists within the imaged

FOV, or when the clinician may wish to limit the FOV to the region immediately

surrounding the area of interest. In both cases, the automatically extracted AIF was

used to scale the estimated AIF as described above.

In order to determine the set of curves, here called Ct(t) or tissue concentration

curves, to be input into the alternating minimization, the data are clustered into

groups of similar curves using an unsupervised k-means algorithm. The number of

clusters is determined empirically with the goal that each cluster has a minimum

of intracluster variability, here defined as the average of the within cluster sums of

point to centroid differences, measured as the vector sum of the Euclidean norms.

The tissue concentration curves within each cluster are averaged to obtain a repre-

sentative curve from every cluster. These cluster averaged curves are then used in

the implementation of the blind estimation algorithm.

After CA concentration curves have been obtained from the MRI data they are

clustered into groups of similar curves with k-means clustering as described above.

The total number of clusters selected is limited by the number of voxels in the dataset

under investigation. Smaller datasets yield clusters with fewer tissue concentration

curves per cluster. These small clusters produce average curves with lower SNR

than would result when opting to use less clusters. With patient data, the algorithm

returned nearly identical values for the pharmacokinetic parameters over a range of

four to 10 clusters in each dataset. In most instances, eight clusters seemed adequate

from empirical testing and eight clusters were used throughout for the patient data.

After an estimated input function has been obtained from the AMM method,

kinetic parameter estimates were obtained voxelwise via a linearized least squares

approach outlined in [?]. This approach was selected for its increased speed with

respect to nonlinear approaches.
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2.3 Results

2.3.1 Sensitivity to Initial Estimate of AIF Parameters

Mean estimated AIFs from each of the five initial guesses are shown in Figure 2.2.

When the initial guess for the AIF matches truth, the algorithm converges rapidly

(often in a single iteration) (Figure 2.2a). When the initial guess is close to truth

(Figure 2.2b) or uniformly zero (Figure 2.2c), the resulting AIF results in kinetic

parameters estimates with a median relative error of 8%. Figure 2.2d represents the

lower bound on the 11 AIF parameters in the AMM process. This very poor initial

guess for the AIF results in a 300% overestimation of the peak value of the AIF,

with a corresponding 65% median relative error in the kinetic parameters. Figure

2.2e represents another intentionally poor initial estimate, the upper bound on the

11 AIF parameters, and results in an AIF yielding 15% median relative error in the

kinetic parameters.

2.3.2 Noise Sensitivity Simulation

As stated above, the sensitivity of the algorithm to noise was determined by

adding Gaussian noise to a set of tissue curves before applying the blind estimation

process. The accuracy of the algorithm was determined by the relative error of the

fit kinetic parameters. As shown in Figure 2.3, the average error in Ktrans and kep

estimates is 5% higher for the AMM method as compared to the more conventional,

measured AIF method. The minimization without model results for Ktrans have the

same error as the AMM method at noise levels of 0.04 mM and smaller, but as noise

increases, the relative error increases to a maximum of 36%, with the AMM maximum

at 22%. The estimates for kep are not as good when the AIF model was not used, with

an average of 13% higher relative error as compared to AMM. vp measurements were

highly sensitive to small variations in the estimated input function. In addition,

vp measurements tend to be on the order of 0.10, and thus small changes in the

estimates yield high percentage errors. All of the analysis methods had some error

at a zero noise level. This error is due to the coarse temporal resolution used in these

simulations. When the temporal resolution was increased to 0.5 s per time sample,

all the estimation techniques returned zero error when no noise was added to the
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Figure 2.3. The relative error in estimated kinetic parameters after noise has been
added to simulated tissue concentration curves. The error in the kinetic parameters
was less when the functional model for the AIF was included in the alternating
minimization (black), as compared to when no restrictions were placed on the
input function (red), and is 10% higher than the error from measurements using
a conventionally acquired AIF (blue). The χ2 fits of the estimated input functions
are also shown.

simulated curves. Representative results from a single noise realization at a noise

level of 0.08 mM are shown in Figure 2.4 for both of the test AIFs.

2.3.3 Patient Data

Figure 2.5 shows the tissue concentration curves from one representative cluster

along with the average cluster value used in the AMM process. Averaging the curves

in each cluster served to reduce the noise in the data and provided a representative

value for the curves in the cluster.
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Figure 2.4. AIFs used in noise sensitivity simulation (blue). Representative
estimated AIFs from the AMM method when the model was included (green) and
not included (red) are also shown.
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Figure 2.5. Representative tissue concentration curve cluster from a sarcoma
patient. The blue curves represent single voxel activity from the tumor rim. The
bold red circles indicate the average value of all curves in this cluster, and were used
as an input to the AMM algorithm.

Figure 2.6 shows results from the AMM process for a patient. The fitted curves

closely match the measured data during the initial arrival of CA to the tissue. Overall

curve fitting has similar χ2 values to that done with arterially measured AIFs.

Representative maps of kinetic parameters from the same patient are shown in

Figures 2.7 and 2.8. Kinetic parameters were obtained by the method described [?],

using the measured AIF from the DCE-MRI data (Figures 2.7 and 2.8, first row),

and those computed by the AMM method (Figures 2.7 and 2.8, second row). The

AIFs from the AMM method in Figure 2.7 were estimated when arterial voxels were

included in clustering. The parameters obtained from the estimated AIF are lower

than those from the measured AIF due to the increased peak height in the estimated

AIF over the measured AIF. In Figure 2.8, arterial voxels were not included in the

estimation process. The Ktrans and kep values obtained from the estimated AIF are

lower than those from the measured AIF, though the vp values are higher. Figure

2.9 shows the measured AIF from this patient’s data. The measured AIF for this
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Figure 2.6. Curve fitting results from the AMM algorithm with eight clusters used
as the input. The gray points represent the average valued curves from each cluster.
The dashed line functions were constructed from the estimated kinetic parameters
and AIF from the AMM algorithm, according to the two compartment model. The
eighth cluster contained only background noise and has been deleted.

patient was extracted from a mix of arterial and venous voxels, affecting the quality

of measurement. As the accuracy of the measured AIF is suspect for the patient

in Figures 2.7 through 2.9, the agreement of the kinetic parameters in Figures 2.7

and 2.8 and plots are not representative, as can be seen by noting the aggregate

differences shown in Figure 2.11 are typically smaller. In addition the tissue AIFs

resulting from the AMM method with and without the inclusion of arterial voxels are

overlaid for easy comparison. For each of the 12 datasets, three ROIs were drawn and

used to calculate average kinetic parameters. Two ROIs were selected from a region

of diseased tissue, the other from a region of healthy tissue (Figure 2.10). The average

values of the kinetic parameters for these regions are summarized in Figure 2.11. The

average Ktrans values resulting from the measured AIF are 13% higher than those

from the AMM derived AIFs with arterial voxels and 16% higher than those from
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Figure 2.7. Parameter mapping results. The first row (a) used the measured
AIF. The second row (b) was derived from the estimated AIF using arterial voxels.
The third row shows scatter plots of the parameters displayed in row (a) (x-axis)
and row (b) (y-axis). The patient was scanned near the proximal humerus, with
the AIF measured in the brachial artery. The region shown is from a primitive
neuroectodermal tumor.

AMM when arterial voxels were excluded. The average kep values obtained from the

measured AIFs were 7.5% higher than those from the AMM method with or without

arterial voxels. The measured AIF and arterial voxel AMM average values for vp differ

by< 0.007 while those resulting from AMM without arterial voxels are approximately

0.1 higher. A two tailed dependent Students t-test showed that the differences in

parameters were not significant (P > 0.5) with the exception of the differences in

vp estimated with the measured AIF and the estimated AIF when arterial voxels
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Figure 2.8. Parameter mapping results. The first row (a) used the measured AIF.
The second row (b) was derived from the AIF estimated when arterial voxels were
excluded. The third row shows scatter plots of the parameters displayed in row (a)
(x-axis) and row (b) (y-axis). These maps correspond to the same region as in Figure
2.7

were excluded (P = 0.0005). The differences in kinetic parameters result from the

different shape in the resulting AIFs from the AMM method when arterial voxels are

included and excluded in the estimation. Figure 2.12 shows the mean and standard

deviation of the AIFs from the patient data, one of which included arterial voxels,

and one resulting from the exclusion of that data. The distinctly different heights

and widths of the estimated AIF during the first pass of the bolus suggest that the

inclusion of arterial voxels impacts the estimated AIF.
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Figure 2.11. Relative mean changes for each of the pharmacokinetic parameters and
standard deviation of each measurement. The parameters were measured from 12
patients, with two ROIs selected from each patient. Each chart shows the parameter
value when derived from the measured AIF (a), the estimated AIF when arterial
voxels are included (b), and the estimated AIF when arterial voxels are excluded (c).

2.4 Discussion

Here we have presented a method for estimating pharmacokinetic parameters

from DCE-MRI data without explicitly measuring the AIF. Reference region methods

for determining kinetic parameters without a measured AIF have been proposed

[?, ?, ?, ?]. However, these methods require the use of one or more reference regions

for which assumed values for the kinetic parameters for these reference regions must

be provided. While the reference region approach appears fairly robust in dealing

with low SNR data and has been shown to give results similar to those derived

from a known AIF, the assumptions inherent in this class of methods may lead to

unnecessary bias in the resulting kinetic parameters. For instance, though literature

values for kinetic parameters in reference regions may be generally accurate, they do
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Figure 2.12. Average performance of the AMM algorithm for 12 patients. The
curves represent the mean (center) and standard deviation of the first pass bolus of
the AIF derived from measured voxels (red), or from the AMM method when arterial
voxels are included (blue) and excluded (green). The first gamma variate curve from
the AMM model was used to describe the first pass.

not allow for interpatient individuality and thus introduce some bias into the results.

A method similar to the one described here has been proposed by Yang et al. [?, ?]

that makes use of multiple tissue concentration regions used jointly to identify kinetic

parameters and an AIF simultaneously. This method imposes a local polynomial

smoothing to ensure a smooth form for the AIF curve. In addition, one region used

in this method is assumed to be skeletal muscle in which the vp term is forced to be

close to or equal to zero. As well, ve is set to 0.12 in the skeletal muscle region in

their model. This is done to provide a reference for the general scale factor needed

to quantify estimated parameters. This method performed well on real data when

one concentration region contained a high percentage of pixels with arterial blood,

but was only demonstrated on a single patient [?].

The AMM method presented here uses tissue concentration curves from a portion

of the image and blindly estimates the input function through an iterative algorithm.

The basic assumptions in this method are common to the extended Tofts-Kety two

compartment model: tissues may be represented as separate compartments in and

out of which CA is free to diffuse. Additionally, the CA is assumed to be well mixed

" , 
1 , 
• • , , , 
" , 

9 • " , 
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within the blood pool in the fast exchange limit. The AMM method is unique in

assuming a novel functional form for the input function as defined in equation 2.3.

Analytical forms for the input function in dynamic imaging have been proposed with

Gaussian [?] and exponential or multiexponential [?, ?] curves. The particular form

chosen here was selected for its flexibility and quality of fit across multiple datasets.

For blind estimation, constraining the input function to a particular functional form

ensures smoothness and increases the efficiency of the algorithm by limiting the

number of unknown variables. When the input function was allowed to vary without

any constraints in the algorithm, the resulting AIF was significantly noisier than the

tissue curves. The simulations also showed that kinetic parameter measurements are

more accurate at higher levels of noise when the input function model is included.

This suggests that the model constraint helps prevent the iterative estimation from

amplifying noise. Without the AIF model, the characteristic dispersion in the first

pass of the bolus for cases in which arteries were excluded from the FOV was still

present, signifying that this dispersion is not a consequence of the use of the AIF

model.

One possible source for error in the AMM algorithm is the selection of initial

estimates. By restricting the AIF to the functional form of equation 2.3, we can

standardize the form for guesses in the initial AIF. Additionally, this functional form

avoids the characteristic underestimation found in other models for the AIF [?]. The

AMM algorithm was shown here to be robust to variation in the initial AIF if the

initial AIF was somewhat similar to the true AIF or was all zeros. Artificial initial

estimates that would be difficult to rationalize in practice gave poor results. The

model parameters for the AIF were bounded to a range broad enough to model the

AIFs from each of the patients tested in this study. These bounds provided limits

for the least squares algorithm.

As shown in Figure 2.12, the algorithm presented here estimates different peak

values and transit times of the CA bolus in the AIF, depending on whether arterial

voxels are included as inputs to the AMM process. Calamante et al. [?] and Cala-

mente [?] have investigated the effects of local AIFs in DSC-MRI perfusion studies.

Typical DCE-MRI studies involve measuring the input function Cp(t) in some artery
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convenient to the ROI. However, CA molecules perfuse tissue through exchange

across the capillary bed vascular endothelium, which lies significantly downstream

from the large arteries used for AIF measurement. Early studies assumed minimal

differences between the AIF and CA concentration in the capillary bed. However,

studies such as those by Calamante et al. [?] and Calamante [?] have found evidence

suggesting the true local input function may be appreciably dispersed in time, similar

to the results we show here. Also, Schmitt et al. [?] have examined the possible effects

of dispersion and delay in simulated input functions in DCE myocardial blood flow

measurements. They report systematic underestimations of up to 50% in blood flow

measurements due to input function dispersion. Our results, as seen in Figure 2.12,

support the idea that local input functions may be significantly delayed and dispersed

as compared to measured AIFs. A limitation of this study is that measured AIFs may

not always provide a suitable reference standard. Although the method in [?] was

used, there may be inclusion of venous signal in some cases as well as partial volume

effects that will tend to reduce the peak of measured AIF. It is not surprising then

that the AMM method with arteries in the field of view tends to estimate an AIF

with a higher peak. In particular, the dispersed form of the AIF generally results in

superior tissue curve fits compared to the nondispersed form. Further investigation

into the nature of AIF dispersion in microvasculature may help clarify the nature of

CA delivery.

2.5 Conclusions

We set out to develop an accurate method for blindly estimating CA input

functions for use in DCE-MRI studies. The motivation for this research was to

allow for increased flexibility in imaging parameters by removing any requirement

for arterial voxels in the imaging FOV. In order to reduce noise effects and optimize

computational time, we assumed a parameterized model for the input function, using

11 parameters. This model based blind estimation method outperformed our previ-

ous method that did not include a model of the AIF, with 10% to 20% lower relative

error. The blind estimation was shown to be robust to guesses for the input function,

and was relatively robust to noise. Results from human studies in regions without
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arterial voxels returned input functions that demonstrated significant dispersion as

compared to the measured AIFs from these data sets. These results support the idea

of unique local input functions in the regions of interest. Further work is required to

investigate the spatial variance of CA input to tissues in DCE-MRI.



CHAPTER 3

LOCAL ARTERIAL INPUT FUNCTIONS

Portions of this chapter originally appeared in ”Towards Local Arterial Input

Functions in Dynamic Contrast-Enhanced MRI” J. Mag Res Im. Volume 32 Issue 4

Pages 924-934. Reprinted with permission

3.1 Introduction

This chapter builds upon the alternating minimization with model (AMM) method

for blind AIF estimation. In the previous chapter it was observed that, applied

to clinically acquired data, the AMM algorithm produced different AIF estimates

depending on the type of tissue concentration curves used as input. When arterial

voxels were included, the estimated AIF closely matched the directly measured AIF.

In contrast, when the region of interest was localized to contain only enhancing

tissue voxels, the estimated AIF was both delayed and dispersed with respect to the

directly measured AIF. Previous research in dynamic susceptibility contrast in brain

imaging by Calamante et al. [?, ?] supports the idea that local input functions exhibit

delay and dispersion with respect to AIFs measured in central arteries due to transit

effects as the contrast bolus traverses the vasculature. Dispersion in the arterial

input function has been shown with computer simulations to have a significant effect

on the resulting parameter estimates [?].

Previous work with the AMM method focused on the estimation of a single

tumor wide AIF. Additionally, the impact of the number and heterogeneity of the

selected tissue curves on the quality of blind AIF estimates has not previously been

investigated. In this chapter we use computer simulations to develop a new confidence

measurement for use in conjunction with AMM estimations. The new metric relates

the number and heterogeneity of the input tissue curves to the quality of the resulting



33

blind AIF estimate. This confidence metric can then be used in the processing of in

vivo DCE-MRI data sets to define subsets of voxels that contain a sufficient number

of heterogeneous tissue curves to estimate an input function, locally (i.e., a region

size 10X10X10 voxels), with known accuracy. These local arterial input functions

are then used to estimate pharmacokinetic parameters voxelwise within the subset

from which they were created.

Here we present preliminary results comparing the kinetic parameters and good-

ness of fits obtained from local AIFs to those from blind AIFs estimated globally

across the field of view and those from arterially measured AIFs.

3.2 Methods

3.2.1 Confidence Measurements

Both empirical observations, and previous theoretical studies [?] suggest that

there are two key factors determining convergence of the AMM algorithm: 1) the

concentration signal to noise ratio (SNR) of the tissue concentration curves [Ct(t)]

used to estimate the AIF, and 2) the heterogeneity, or diversity, of the kinetic

parameters among the curve set. Here we define concentration signal to noise as

the ratio of the peak concentration value of a tissue curve to the standard deviation

of the baseline concentration measurements. We quantify diversity by assessing the

normalized spread of kep, and vp in parameter space. Ktrans is essentially a scale

factor in the tissue curve model which does not add any information regarding the

shape of the underlying AIF and thus is not included in the measure of diversity

(though since it partly determines concentration SNR, Ktrans does affect the confi-

dence calculation).

A series of simulations were undertaken to assess the impact of tissue curve SNR

and diversity on AMM AIF estimation. The simulation proceeded as follows:

1. Two simulated AIFs (one to serve as truth, and the second to initialize the

AMM estimation) were created using the model form [?]:

Cp(t) =
∑

i=1..3

Aiγv(αi, τi,∆i) + A4S(α4, τ4, T,∆4) (3.1)

where γv refers to a gamma variate function and S refers to a sigmoid function.

In this model Ai are scaling constants, ∆i are related to the injection time, and
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αi, τi and T are related to the shape and concentration of the bolus. In these

simulations the true AIF was selected to be different from the population AIF

so that the initial AIF guess in the AMM algorithm, which was set as the

population average AIF, would not be the same as truth. The true AIF had

parameters: A1 = 4.83, α1−4 = 4.99, τ1 = 0.0564, ∆1 = 1.0, A2 = 0.24, τ2−4 =

0.0731, ∆2 = 1.3, A3 = 0.11, ∆3−4 = 1.6, A4 = 0.21, and T = 14.42. and

was sampled with 4s temporal resolution. This true AIF is slightly dispersed

and delayed with respect to the population-average AIF given by Parker. The

AIF model in equation 3.1 was fit to the population average AIF reported by

Parker [?] with parameters: A1 = 6, α1−4 = 2.92, τ1 = 0.0633, ∆1 = 1.0, A2 =

0.27, τ2−4 = 0.0953, ∆2 = 1.3, A3 = 0.12, ∆3−4 = 1.9, A4 = 0.21, and T =

14.712. The true AIF used in these simulations can be seen in Figure 3.1 along

with the population average AIF.

2. 6000 sets of eight curves each were created from kinetic parameters randomly

selected from uniform distributions of varying size, selected to cover the full

range of diversities seen in previously measured patient data.
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Figure 3.1. AIFs used for confidence simulations. The true AIF (thin black line) is
slightly dispersed with respect to the population average (thick gray line) AIF.
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3. Zero mean, Gaussian noise with standard deviation of 0.02mM, which corre-

sponds to the average noise level observed in lesions in our patient data, was

added to the first 2000 sets of eight curves. Noise with standard deviations

of 0.03mM and 0.04mM were added to the second 2000 and third 2000 sets of

eight curves, respectively. Each set of eight simulated, noisy tissue curves was

then used as input to the AMM algorithm. The initial guess for the algorithm

in each case was the population average AIF.

4. Following the estimation of the AIF and kinetic parameters for each realization,

the error in the estimated input function was determined. This error was not

calculated by direct comparison to the true AIF, but rather by the impact of

AIF error on the estimation of kinetic parameters. This error metric was chosen

to reflect the importance of the downstream parameters, as well as the indirect

relationship between AIF shape and the resulting parameter values. To assess

the impact of the estimated AIF shape on kinetic parameter estimates, 1000

tissue curves were generated from randomly selected kinetic parameters and the

true AIF. For each of these tissue curves, kinetic parameters were calculated

using a linearized form of the extended Kety model [?] with the estimated AIF.

The median value of the percent error for each of the 1000 kinetic parameters

(Ktrans, kep, vp) was used as the overall error for the AIF estimate.

5. For each simulation of eight curves, the diversity of the kinetic parameters

in a single noise realization was measured by first normalizing the kep and vp

values for each of the curves in the set. These normalized values were treated

as points in two dimensional parameter space and used as input in MATLABs

(The Mathworks Inc, R2007b) convhulln routine to create a convex polygon

containing all eight points. The area of this polygon was used as the measure

for diversity for each simulation. Figure 3.2 demonstrates this calculation for

one sample set of eight parameters. This diversity metric was chosen based on

the observation that the quality of the AMM derived AIF was dependent on the

range of kinetic parameters of the input tissue curves [?]. As well, the addition

of curves that did not add to the total spread in the parameters did not alter
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Figure 3.2. A representation of the diversity calculation in two dimensions. Seven
of the eight parameter points were used in the convex hull in this example. The
point within the hull does not contribute to the diversity measure.

the estimation quality, as defined by the resultant error in kinetic parameters.

In the simulations described above, on average 63% of the input tissue curves

or clusters contributed to the total diversity, with the remaining 37% being

completely contained within the convex polygon created by the other curves.

6. The mean concentration SNR of each set of tissue curves was calculated by first

finding the maximum concentration value for each of the eight tissue curves

in the set. The average value of these eight maxima was divided by the noise

level to create a mean peak concentration SNR measure for each set of curves.

3.2.2 Clinical Data

Local AIF estimates were obtained from 11 patient data sets. Eight of these

patients had sarcomas in their arm or leg, while the other three had brain tumors.

All data was acquired on a Siemens 1.5T scanner with a FLASH 3D sequence (mean

TR/TE=3.16/1.25) and a 20◦ flip angle. Twenty mL of Omniscan were administered

intravenously at a rate of 4mL/s corresponding to a dose of 0.1-0.2 mmol/kg of body

weight. The contrast was followed by a 20 mL saline flush at 2 mL/s. The temporal

resolution of the scans was approximately 4 seconds/frame. Written consent was

obtained from all patients as part of ongoing DCE-MRI studies and IRB approval
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was obtained. Prior to contrast injection, T1 values were determined using a variable

flip angle method as outlined in [?]. Measured DCE-MRI images were converted

into CA concentration by solving the non linear relationship between the FLASH

signal and CA concentration [?]. This method minimizes the impact of concentration

measurement error due to signal saturation.

After the patient data were converted to concentration measurements, five ad-

jacent slices of image data containing the tumor were identified. A rectangular

region of interest consisting of the tumor and surrounding tissue was selected. A

region growing method was developed to select local subsets of voxels for the AMM

algorithm. The region growing method used a three-dimensional, concentric search

pattern to add new curves to the subset voxelwise, beginning with an arbitrary

seed point. As each new voxel was added to the subset, the curves were clustered

using an unsupervised k-means algorithm into a set of eight characteristic tissue

curves. The SNR and diversity of these characteristic curves were calculated and

compared to a user defined threshold. A threshold of 4.7 for combined normalized

diversity/SNR, corresponding to an estimated standard deviation of 0.05 in Ktrans

error, was selected, and the region was allowed to grow until the combined peak

SNR and diversity reached this threshold or 1000 curves were added to the subset.

Seed points were selected from the middle slice of the five slices, and were evenly

spaced five voxels apart across the selected region. The characteristic curves from

each local region grown subset were input to the AMM algorithm, which estimated

a parameterized AIF for each set. AIF estimates were color coded according to the

natural logarithm of the estimated error to better show differences in error. These

AIFs were then overlaid on the middle slice of MRI data for two representative sample

datasets, and kinetic parameters were calculated locally.

The kinetic parameters were determined for every voxel in the selected region

by fitting the extended Kety model to the data using the nearest neighbor locally

estimated AIF. For comparison, a single global AIF was estimated using the tissue

curves from the entire selected tumor. The tissue curves from this whole region were

clustered into eight characteristic curves and input to the AMM algorithm, similar

to the estimated AIFs from Chapter 2 when no arterial voxels were included. Kinetic
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parameters were calculated voxelwise using this globally estimated AIF. In addition,

each of the datasets studied here contained large arteries outside the tumor region. A

measured AIF was automatically extracted from the top 10% enhancing voxels which

had peak values within 30 seconds of the bolus injection time [?]. Kinetic parameters

were also calculated voxelwise using this measured AIF. Difference maps for each of

the kinetic parameters were created by comparing these kinetic parameters to those

created from the globally and locally estimated AIFs.

Comparison between the AIFs and associated kinetic parameters was done on

a voxelwise basis. Voxels for which the fitting algorithm converged to nonphysical

values were excluded from the comparison automatically. For the purposes of this

comparison, significance masks were created by restricting Ktrans to the range [0

5.0] 1
min

, ve was restricted to the range [0.1 1.0] and vp to the range [0 1.0] [?].

Nonphysical parameter values arise in voxels dominated by noise. Restricting the

values to a physiological range, like that reported in [?], excludes these voxels.

Akaikes information criterion (AIC) was used to determine the goodness of fit for

each of the AIF estimation models (i.e., measured, globally estimated, and locally

estimated). This criterion takes into account the closeness of the model to the

data, as well as the number of parameters used to generate the model. AIC values

were computed voxelwise, and the median value over the tumor was calculated for

each subject. Kinetic parameters were collected from all of the 11 patients in this

study and Pearsons correlation coefficient and the line of best fit were calculated for

each of the possible parameter comparisons (i.e., measured-global, measured-local,

global-local). Students paired t-test was used to determine if the samples were

significantly different at the 5% confidence level. Bonferronis correction was used

to adjust for multiple comparisons.

3.3 Results

3.3.1 Confidence Measurements

Figures 3.3 and 3.4 depict the quality of the AIF estimation as a function of both

SNR and tissue curve diversity. Figure 3.3(a) shows the relationship of the spread

in the percent error of kinetic parameter estimates and the diversity present in the
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tissue curve set. Each curve in the figure represents a group of realizations within

a specific range of SNR. Two trends are apparent in this graph. The first trend is

that as diversity increases within a set, the expected σerror in estimation decreases.

As the diversity increases from near zero to values around 20% of the maximum for

the simulations, the σerror decreases by 75%. As the diversity continues to increase,

the rate of decrease in σerror is approximately linear, with a rate of -.01 σerror for

every 20% increase in diversity. Secondly, for a given level of diversity, an increase

in SNR will lower the expected σerror. This trend is more readily apparent in Figure

3.3(b), which uses the same data seen in Figure 3.3(a). Here each realization is

sorted into groups of similar diversity, and the expected spread in σerror is plotted

as a function of increasing SNR. As expected, at a constant diversity level, curve

sets with higher SNR will result in better estimations on average. Also, at a given

SNR level, an increase in diversity will result in a general decrease in σerror, though

the improvement rate decreases as diversity increases. For each curve of constant

diversity, as the SNR increases by 25%, the expected σerror decreases by 0.025.

Both Figures 3.3(a) and (b) display expected σerror only for Ktrans. kep σerror
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Figure 3.3. The standard deviation of errors for the confidence simulations with
respect to diversity (a) and SNR (b). In (a), as the diversity of the tissue curve sets
in each group of realizations (sorted by increasing SNR 1-5) increases, the expected
σerror decreases for a given SNR level. In (b) the converse is true, at a given level of
diversity (sorted by increase diversity 1-5), increasing SNR results in a lower spread
in estimation σerror. Only Ktrans σerror is reported here. kep errors tend follow those
of Ktrans, while vp tends to be less affected by SNR and diversity.
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Figure 3.4. The standard deviation of the errors in the confidence simulations
plotted with respect to a combined SNR/diversity metric. Both SNR and diversity
were normalized to the range [0 5] and the sum of these two metrics was used as the
overall quality of fit metric. Both Ktrans (red +) and kep (blue diamonds) decreased
as a power function of the quality metric. The σerror shown here was error calculated
from percent error in kinetic parameter measurements.

tends to follow Ktrans σerror closely, and is not shown for simplicity’s sake. The

spread in σerror of the vp estimates tends to be larger than that for the other kinetic

parameters, and remains constant regardless of SNR or diversity. vp measurements

are sensitive to the temporal sampling rate. If the temporal sampling of the data is

slower than the Nyquist rate for the associated AIF, the model will not be able to

return accurate vp estimates [?].

The overall effects of SNR and diversity are shown in Figure 3.4. Both SNR and

diversity were normalized to have the same range, and the sum of the two measures

was used as an overall quality metric. Both Ktrans and kep σerror are shown in Figure

3.4 to illustrate the close correlation between the two parameters. A power function

of the form y = Axb was fit to both of the σerror curves with parameters A = 0.32,

b = −1.20 for Ktrans and A = 0.24, b = −1.10 for kep. A power function was

chosen as it provided the best fit to the measured results. The parameters A and b

do not have a direct physical interpretation, but rather provide an estimate for the

• -
-

• 

.~ 
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rate at which the estimated quality is expected to improve given an increase in SNR

and diversity. At a combined normalized diversity/SNR above 4.7 a.u. the AMM

algorithm returns results with a standard deviation of error of less than 0.05.

3.3.2 Clinical Data

Figure 3.5 shows the results of local AIF calculation from a sample data set. This

patient was scanned near the proximal humerus, and the AIF was measured in the

brachial artery. The region shown is from a primitive neuroectodermal tumor. The

MR data in this figure were converted to contrast concentration as described above.

All of the region grown subsets within this image had approximately the same level

of noise (0.02 mM) with a range of (0.011 to 0.031 mM), although the voxel subset

sizes ranged from 10-139 curves. Though the region growing algorithm attempts to

find subsets with a given level of SNR and diversity, in some cases the upper bound

on the subset size, set here to 1000 curves, was reached before the curves within

the subset reached the SNR/diversity threshold. The region within the center of

the lesion contained tissue curves with the highest diversity, as signified by the red

AIF curves. Regions around the rim of the tumor had less diversity, as shown by

the darker red AIF curves. Outside the lesion, the tissue was fairly homogenous,

resulting in poor diversity. In addition, the area outside the tumor consisted mainly

of skeletal muscle, which was poorly enhancing as compared to the tumor and thus

has low concentration SNR. Typical subset sizes in this outer region ranged from

300-1000 curves. The subsets in the center of the lesion resulted in estimated input

functions with significant dispersion with respect to the measured AIF.

Similar results from a patient with a brain tumor are shown in Figure 3.6. This

patient had a glioma and the AIF was measured in the middle cerebral artery. As

with the previous data, the noise level across this image was fairly uniform, with a

range of 0.007 to 0.016 mM. The region of highest diversity in this figure came from

the subset containing voxels with highly enhancing arterial signal. In this patient, 32

of the 77 subsets contained 1000 curves, while the size of the remaining subsets ranged

from 11-1000 curves. The AIF dispersion seen in the previous figure was also present

in the tumor center here, though to less degree. Subsets on the side contralateral
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Figure 3.5. Local AIF results. The AMM algorithm was used to estimate an AIF
for subsets of tissue concentration curves in a region around a lesion. The patient
was scanned near the proximal humerus, with the AIF measured in the brachial
artery. The region shown is from a primitive neuroectodermal tumor. The AIFs
with the highest confidence based on noise and diversity are found near the center of
the tumor. Regions outside the tumor had less signal and diversity. The individual
AIFs are color coded based on the relationship displayed in Figure 3.4. The natural
logarithm of expected error is shown to increase contrast among the high quality
AIF estimations.

to the tumor, which consisted of healthy brain tissue, had AIF estimates that more

nearly matched the measured AIF. Dispersion of the AIF within regions of diseased

tissue was also evident in the remaining nine datasets not shown here. This suggests

that the AIF dispersion was a function of physiology and not the estimation process.

Figures 3.7(a) and 3.8(a) show the kinetic parameter estimates from the measured

AIFs for the patients whose local AIFs are displayed in Figures 3.5 and 3.6. Figures

3.7(b) and 3.8(b) show the percent change in the kinetic parameters when the globally

estimated AIFs are used in place of the measured AIFs and Figures 3.7(c) and 3.8(c)

show the percent change in parameters when the locally estimated AIFs replace

the measured AIFs. In Figure 3.7, taken from a neuroectodermal tumor near the

proximal humerus, both Ktrans and kep decrease across the region with the AMM
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Figure 3.6. Local AIF results. The AMM algorithm was used to estimate an AIF
for subsets of tissue curves in a region around a glioma. The patient was scanned at
5 sec temporal resolution. The AIFs with the highest confidence based on noise and
diversity are found near voxels with significant arterial signal. In addition, subsets
near the center of the tumor also resulted in estimates with high confidence. Regions
outside the tumor had less signal and diversity. The individual AIFs are intensity
coded based on the relationship displayed in Figure 3.4. The natural logarithm of
expected error is shown to increase contrast among the high quality AIF estimations.

method. vp, on the other hand, increases significantly throughout the lesion.

The opposite trends for Ktrans and kep are seen in Figure 3.8, with increases

seen throughout the region. When the estimated AIF replaced the measured AIF in

Figure 3.8(b), no significant changes in vp were seen. Use of local AIFs, however, led

to a slight increase in vp across the tumor. The changes in the kinetic parameters

are directly related to the changing shapes of the estimated AIFs. As the observed

dispersion in the AIF increases, the change in kinetic parameters increases.

The AIC values for the locally estimated AIF model were lower than those from

the measured AIF for 10 of the 11 patients in this study. In addition, the AIC values

for the globally estimated AIF model were lower than those from the measured AIF

for 9 of the 11 patients.
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Figure 3.7. Kinetic parameters resulting from the measured AIF (column a), as
well as the percent change in parameters when a single AIF was estimated for the
whole region (b) and when multiple AIFs were estimated locally across the region
(c). Both Ktrans and kep decreased across the region, with more significant decreases
seen when local AIFs were used (c). vp increased throughout the region by as much
as 200%. These data correspond to the same patient and region seen in Figure 3.5.
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Figure 3.8. Kinetic parameters resulting from the measured AIF (column a), as
well as the percent change in parameters when a single AIF was estimated for the
whole region (b) and when multiple AIFs were estimated locally across the region
(c). Both Ktrans and kep increased across the region, with more significant increases
seen in (a). vp increased slightly throughout the region when local AIFs were used
(c), but showed no significant change when a global AIF was estimated (b). These
data correspond to the same patient and region seen in Figure 3.6.
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The changes in kinetic parameters are summarized in Table 3.1. Overall, approxi-

mately 32,000 voxels were included in the significance masks from the eleven patients,

corresponding to an average of about 600 voxels per slice of data. The parameters

from the measured AIFs were compared to those from globally estimated and locally

estimated AIFs, and in each case a very close correlation is observed. Figure 3.9

shows a scatter plot comparing the Ktrans values when the measured AIF was used

compared to the local AIFs.

Pearsons correlation coefficient between these parameters is 0.99. In this case,

the Ktrans values from the global AIF tended to be approximately 23% smaller

than those from the measured AIF. The lowest overall correlations were between the

measured and estimated vp values. It should be noted again that vp values tend to

be small, on the order of a few percent, and are especially sensitive to poor temporal

resolution [?]. All of the parameter comparisons were significantly different with

two exceptions, kep differences between the local and global AIFs (p = 0.12) and vp

measurements between the measured and local AIFs (p = 0.56). In general, Ktrans

and kep measurements tended to be 9-23% smaller when estimated AIFs were used

instead of measured AIFs. This is consistent with the observation that estimated

AIFs tend to be dispersed in time with respect to measured AIFs.
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Figure 3.9. Scatter plot of Ktrans values from all eleven patients. Significance
masks were used to extract voxels from regions of interest, resulting in a total of
approximately 32,000 voxels. When the measured AIF was used to calculate Ktrans

the values were approximately 23% higher than when locally estimated AIFs were
used. A line of best fit is also shown with equation y = 0.77x− 4.08x10−5

.. 
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3.4 Discussion

An increasing number of researchers have noted the detrimental effects of bolus

dispersion on accurate quantification of dynamic MR data. Much of this work is

focused on bolus dispersion in the brain as part of DSC-MRI studies [?, ?, ?, ?].

These methods calculate local AIFs through independent component analysis and

through individual voxel screening. The local AIFs are then used to calculate cerebral

blood flow (CBF) and other tissue kinetics in the brain. The CBF values found

using local AIFs tend to be higher than those calculated with a single, measured

AIF. In addition, they have found that the new CBF values have a higher sensitivity

and specificity in characterizing stroke, suggesting local determination of the AIF

may lead to improved clinical performance. The work presented here demonstrates a

different approach to determine the local arterial input function of a region of interest

in DCE-MRI scans throughout the body. We have also presented simulated results

from which the accuracy of these local AIFs could be determined based on the SNR

and diversity in the local tissue curves. This method makes use of the Alternating

Minimization with Model (AMM) method described in Chapter 2. Here we expand

on that work by examining the changes in the estimated AIF shape across a region

of interest in tumors and the effect of local AIF estimation on DCE-MRI parameters.

A similar blind estimation of AIF approach has been carried out by Yang et

al. [?, ?]. That work focuses on the use of multiple reference regions to obtain

an estimate for the AIF in a region of interest. These estimated AIFs are local

to the regions used in the estimation, rather than the neighboring arteries, but

are not localized within a reference tissue. Pellerin and others have developed a

more elaborate technique incorporating contrast agent diffusion into DCE-MRI [?].

This method modifies the Kety model to include a term describing the diffusion of

contrast agent between neighboring voxels. The value of the AIF is then estimated

at each time point in conjunction with kinetic parameters and diffusion parameters

for each voxel, which increases the number of model parameters to be solved. In

contrast, the method described in this paper uses a parameterized input function in

conjunction with the extended Kety model to limit the number of free parameters

in any particular subset containing N clusters to 3N+11. Though the number of
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free parameters to be estimated increases with an increasing number of subsets, each

individual AIF calculation is computationally efficient, taking an average of 113s

(Intel Xeon 2.4 GHz, 8 GB RAM). We take advantage of the fact that each local

AIF calculation is independent of the others to estimate local AIFs in parallel (eight

at a time with dual quadcore processors, Parallel Computing Toolbox, Mathworks),

and obtain linear speedups. Additionally, the blindness of the AMM method allows

for increased freedom in selecting imaging parameters by removing constraints on

field of view and the dynamic range of signal contrast due to CA injection.

Koutcher and others [?, ?] have investigated the use of population average arterial

input functions in quantifying DCE-MRI data. They develop unique population

average AIFs for specific arteries, such as the femoral artery, for use in DCE-MRI

scans in that area. This work differs from that done previously by Parker [?],

who developed a more general population average AIF. While these methods have

shown some promise in quantifying kinetic parameters they suffer from the same

measurement difficulties inherent in all DCE-MRI scans, including those done here,

namely partial volume effects, flow effects, and signal saturation effects. Additionally,

they are unable to account for interpatient individuality.

The method presented here would allow for data acquisition to be done during

a single scan, with concentration dose, flip angle and other parameters optimized to

avoid signal saturation in tissue curve acquisition. In addition, local AIF estimation

could be used clinically to allow for smaller imaging fields of view, with concomitant

increases in spatial resolution. Partial volume and flow effects in arterial voxels are

not an issue, as the AIF is estimated without reference to any arterial voxels except

as a reference for a global scaling constant as described above. Previous work shows

the estimation process to be robust with regards to the initial estimate for the AIF

at the SNR/diversity levels used here.

The standard deviation of simulation percent errors was chosen as an error

metric because the simulation results did not show any significant bias in kinetic

parameter estimates. Also, the simulation results shown in Figures 3.3 and 3.4

represent a scenario in which the entire region of interest consisted of a single type

of tissue, here a tumor. Due to the highly heterogeneous nature of tumors, even
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relatively small subsets of tumor data contained more than one tissue type, resulting

in higher diversity, and thus lower estimation error than a majority of the simulation

realizations shown here.

However, there are limitations to the utility of the confidence metric developed

here. First, all of the tissue concentration curves used in the simulations are ac-

curately described by the extended Kety model with additive, zero mean Gaussian

noise. Though this model is effective at describing tissue concentration data, it does

not account for more subtle concentration transport in actual physiology, and so any

deviations of the data from the Kety model are not accounted for in the confidence

metric. Second, in clinical data, the nonlinear conversion from signal to concentration

measurements results in additional error in the concentration measurements of the

individual tissue curves [?]. In areas of low concentration uptake, these conversion

errors often dwarf the actual concentration measurements, resulting in misleadingly

high confidences in areas of low concentration uptake. In addition, patient motion,

flow effects and other effects also add to concentration error not accounted for in

the confidence metric. In practice, the confidence or uncertainty metric developed

here would be used in conjunction with errors or uncertainties due to conversion

to concentration and the other effects mentioned. These errors could be used to

create significance masks that for example screen out voxels with low concentrations,

reducing the impact of otherwise high confidences such as those seen in regions of

low contrast uptake in Figures 3.5 and 3.6.

Both locally and globally estimated AIFs resulted inKtrans and kep values that

were 9-23% smaller than those from measured AIFs. A greater difference in Ktrans

was seen with the local AIFs, and the differences in kep were nearly identical re-

gardless of the size or location of the estimation input. These differences in kinetic

parameters were due in part to the dispersion seen in both the globally and locally

estimated AIFs, similar to that reported in Chapter 2. This dispersion is likely

due to flow effects as the contrast bolus traverses the vasculature. The lower AIC

values resulting from the locally estimated AIFs in 10 of the 11 subjects used in

this study suggest that the improvement in model fidelity to the measured data

is sufficiently high to warrant the increased complexity of estimating local input
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functions. Though absolute truth for the kinetic parameters is not possible to obtain

in vivo, the improved model fitting suggests that the dispersion and delay seen in

the local AIFs, along with the concomitant changes in the kinetic parameters, more

accurately reflect the underlying physiology of the tumors.

3.5 Conclusions

Here we presented a method for determining the confidence with which one can

blindly estimate a local AIF. This method was used to calculate local AIFs across

a tumor region using region grown subsets of varying size with sufficient curve SNR

and diversity to allow for a high confidence in the AIF estimation. The resulting

kinetic parameters were 9-23% smaller than those estimated with a measured AIF.

The differences suggest that the current method of using arterially measured AIFs

biases the resulting parameters high, especially in regions where more dispersion in

the local blood supply may be expected. Further work is required to quantify the

advantages of locally determining the blood supply to a region of diseased tissue with

regard to diagnosis and treatment monitoring of disease.



CHAPTER 4

CONSTRAINED ESTIMATION

4.1 Introduction

Dynamic contrast-enhanced (DCE) MRI is a rapidly developing tool for evaluat-

ing myocardial perfusion. As with other DCE-MRI applications, measurement of the

arterial input function is necessary for accurate tissue quantification. The difficulty

of accurately measuring the AIF in cardiac perfusion acquisitions has been widely

documented [?, ?, ?, ?], and several techniques have been proposed to overcome this

difficulty. Among these techniques is the dual bolus method [?, ?, ?], which measures

the AIF and myocardial tissue curves with separate injections of contrast agent

of different concentrations. A low concentration dose of gadolinium is used when

measuring the AIF to avoid signal saturation effects due to the nonlinear relationship

between contrast concentration and signal intensity. A separate acquisition with

a high concentration dose is made to acquire the myocardial tissue signal, which

maximizes the myocardial signal to noise ratio (SNR). A second class of techniques,

referred to as dual acquisition methods [?, ?], use pulse sequences designed to acquire

LV blood pool images and myocardial tissue images separately. The LV blood pool

images are low resolution, and have short saturation recovery time to minimize signal

saturation effects at peak contrast agent concentrations. A third method uses radial

acquisition techniques to create subimages with different effective saturation recovery

times [?, ?]. These images can be modeled according to the equation in [?] to

estimate T1 at each time point. These T1 values can then be used to estimate the

concentration of contrast.

All of these methods increase the accuracy of AIF measurement for doses high

enough to cause significant saturation of the AIF signal. However, these methods

also introduce additional complications into the acquisition process. The dual bolus
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method doubles the effective imaging time required to obtain perfusion measure-

ments. In addition, physiological variations in the subject between injections may

introduce error into the AIF measurement. The dual acquisition method requires

imaging an extra slice in each beat. Though relatively brief, this requires nonstandard

scanning procedures and cannot be applied retrospectively to previously acquired

data. Likewise, the T1 estimation method makes use of special properties of radial

acquisitions, and is not applicable to other imaging schemes. Additional research is

needed to further validate the dual acquisition and the radial acquisition method. As

well, none of the above methods can be applied retrospectively to previously acquired

perfusion datasets.

This chapter describes an alternative method for quantifying myocardial perfu-

sion. This method builds upon previous work on blind estimation of the arterial input

function directly from tissue concentration curves (see Chapter 2). Blind estimation

assumes the tissue concentration curves share a common input function and are

related to that input function through a mathematical model. The AIF can then be

estimated by iteratively minimizing a cost function associated with the model used.

This method has the advantage of only requiring a single scan, with parameters and

contrast agent concentrations optimized to obtain maximum SNR in the myocardial

wall, and can in theory be applied to any myocardial perfusion dataset in which the

tissue curves are not saturated. The purpose of the present study is to adapt the

AMM method for use in cardiac perfusion data by using additional AIF information

from the nonsaturated portions of the blood pool signal. The resulting constrained

AMM (CAMM) model is quantitatively assessed using computer simulations, and

preliminary results comparing the presented method with the dual bolus method in

vivo are presented.

4.2 Methods

4.2.1 CAMM Algorithm

The estimation method developed here is based on the alternating minimization

with model (AMM) method presented in Chapter 2. Starting from a set of myocardial

tissue concentration curves from a single slice of a myocardial perfusion data set, the
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data are spatially upsampled by a factor of two in the x and y directions to aid

in the temporal registration of the data, as well as the segmentation. The data

are registered temporally and the myocardial tissue is segmented by an experienced

observer, using custom software. A conservative segmentation, excluding any voxels

from either the LV blood pool or pericardium, was used. The most basal slice was

typically selected for estimation, which resulted in approximately 500 myocardial

voxels. This slice was selected to match the analysis from the dual bolus protocol

(see below), which selects the basal slice for AIF measurement to minimize the impact

of flow effects. An unsupervised k-means algorithm was used to classify the tissue

concentration measurements into a set of 10 characteristic curves with higher signal

to noise ratio (SNR) than the constituent curves themselves. Empirical testing of

the minimization algorithm returned nearly identical values over a range of 4 to 20

clustered curves. As 10 clustered curves adequately described the data, that number

was used throughout this study. A population average AIF was used to estimate

initial kinetic parameter values for each of these characteristic curves in conjunction

with an extended Kety model:

Ct(t) = Ktranse−kept ⊗ Cb(t) + vbCb(t) (4.1)

where Ktrans is the transfer rate constant, kep is the washout rate constant, vb is

the volume fraction of blood, ⊗ represents convolution, Cb(t) refers to the contrast

concentration in the blood or AIF and Ct(t) refers to an individual concentration

time curve. The population average AIF was taken from the median of 12 resting

perfusion scans, each performed with a 0.004 mmol/kg dose of 1/5 concentration

contrast agent as part of a dual bolus protocol, detailed below. Previous work with

the AMM method without cardiac constraints showed the algorithm to be insensitive

to the initial estimate of the AIF within physiologically reasonable bounds.

After the initial kinetic parameters were estimated for each of the characteristic

curves, they were held constant and a new AIF was estimated using nonlinear

regression. A model parameterization with ten free parameters was used to constrain

the shape of the estimated AIF and reduce the impact of measurement noise. The

model used was of the form:
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Cb(t) =
∑

i=1..3

Aiγv(αi, τi,∆i) + A4S(α4, τ4, T,∆4) (4.2)

where γv refers to a gamma variate function and S refers to a sigmoid function [?].

In this model Ai are scaling constants, ∆i are delay terms, αi and τi are related to

the shape and width of the first pass bolus and recirculation peaks, and T represents

the exponential time constant for contrast elimination from the blood pool. The

gamma variate functions represent the first pass of the contrast bolus and subsequent

recirculation peaks. The sigmoid function models the rising concentration in the

blood due to contrast recirculation. After the parameters describing the initial

AIF estimate were obtained, these were held fixed and kinetic parameters were

recalculated. The algorithm than continued to alternately refine kinetic parameter

and AIF estimates until the change in the mean Ktrans value between iterations was

less than 0.1%.

The AMM implementation used in this chapter differed from previous non-cardiac

work by inclusion of an additional constraint on the blind AIF estimate through in-

clusion of the AIF measured in the LV blood pool along with the tissue concentration

curves. The objective function for the minimization process uses Euclidean norms

and is written:

R = ||Ct(t)−H ~Cb(t)||+ λ||w(L̂− ~Cb(t)|| (4.3)

where H is a matrix with the kinetic parameters from the extended Kety model (eq

4.1) that implements a convolution with the AIF Cb(t). Ct(t) is a matrix holding

several (typically 10) clustered tissue curves. L̂ represents the measured LV blood

pool signal and λ represents a weight factor. The circumflex over the LV blood

pool curve indicates that this curve was assumed to be equal to the true desired

AIF only at signal intensities below a threshold where a linear relationship between

signal intensity and concentration could be used as a reasonable approximation [?].

In this work, it was assumed that the maximum value of the recirculation peak of

the measured AIF could be used as a saturation threshold. This threshold was based

on previous work done with the dual bolus method and is specific to the dose and

sequence used here. w implements this threshold by being 0 above the threshold

and 1 below. While previous work with the AMM method required an independent
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measurement of blood pool contrast concentration to eliminate ambiguity in the

scaling of the estimated AIF and kinetic parameters, the inclusion of the LV blood

pool signal eliminates this ambiguity by constraining the value of the estimated AIF

at low concentrations.

4.2.2 Simulations

Computer simulations were used to test the ability of the CAMM method to

accurately estimate AIFs and kinetic parameter values. A particular concern was

that the diversity of tissue curves in healthy heart tissue might not be sufficient to

enable robust AIF estimation as the matrix to be minimized will become singular

or nearly singular. Work on related AIF estimation algorithms has shown that

diversity in kinetic parameters leads to improved estimation quality (see Chapter

3) [?]. To ensure realistic simulations, a pool of kinetic parameters was collected

from a set of myocardial perfusion DCE-MRI data sets acquired using the dual

bolus method as described below. Parameters were calculated voxelwise using the

low dose AIF. Histograms of the pooled kinetic parameter estimates are shown in

Figure 4.1. The individual parameter histograms from each subject had similar

means and distributions, which implies that it is reasonable to draw from the entire

pool to create simulations. A true AIF was created by fitting the AIF model given

by equation 4.2 to the low dose dual bolus AIF from one of the perfusion scans.
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Figure 4.1. Histograms of the kinetic parameters collected from twelve subjects.
These parameter sets were used in the computer simulations described here. The vb
values are shown on a logarithmic scale to highlight the distribution in parameters.
The means and distributions were consistent for each of the data sets from which
these pools were created.



58

This model fitting was done to remove measurement noise from the ’true’ AIFs for

the simulations. For each realization, five hundred sets of kinetic parameters were

randomly selected from the pool and tissue curves were created according to equation

4.1. Zero mean Gaussian noise was added to each of the tissue curves independently.

The standard deviation of the noise was 5% of the maximum value of the tissue

curves, roughly corresponding to the average noise value in the twelve data sets.

Example simulated tissue curves, as well as sample tissue curves from the in vivo

data are seen in Figure 4.2. The five hundred curves, corresponding to the average

number of myocardial tissue curves in a single slice of a perfusion scan, were then

clustered into 10 curves. Example cluster averaged curves from in vivo data are seen

in Figure 4.3. The 10 cluster averaged curves were input to the CAMM algorithm

along with the ’true’ AIF signal clipped at the maximum value of the recirculation

peak as described above and the resulting estimated AIF used to calculate kinetic

parameters for each of the original tissue curves. The relative and absolute errors

for each of the five hundred sets of kinetic parameters were then tabulated and the

median errors were determined. 1000 realizations were conducted using the same

true AIF, and five true AIFs based on five of the human studies were used for a

total of 5000 noise realizations. The five ’true’ AIFs were selected to cover a range

of reasonably expected input functions, including total acquisition time. The second

simulated AIF was selected to represent a short acquisition, approximately 26 seconds
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Figure 4.2. Sample AIFs (dashed line) and voxelwise, spatially upsampled tissue
curves from subject data (effective in plane resolution of 1.2X1.2mm) (a) and from
the computer simulation (b).
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Figure 4.3. Sample myocardial tissue curves collected voxelwise (a), averaged
into six equiangular regions (b), and from the k-means cluster averaged curves (c).
Cluster averaging yield higher diversity representative curves with respect to region
averaging.

following contrast uptake in the LV.

4.2.3 Subject Data

The CAMM method was also applied to resting myocardial perfusion data sets

from 21 subjects, 8 female and 13 male with mean age 49±14 years (range: 26-70),

mean weight 85.5±21.6 kg (range: 59-123). Each of the subjects volunteered to be

scanned as part of IRB approved ongoing research studies. Though the subjects in

this study were not screened for coronary artery disease, two of the subjects studied

here had been previously diagnosed with coronary artery disease. A dual bolus pro-

tocol was used in which subjects were first injected with a low dose (0.004 mmol/kg)

of dilute (1/5 concentration) Gd-BOPTA contrast, followed by a higher, nondilute

dose (0.02 mmol/kg). Both injections were followed by a 25 mL saline flush, and both

contrast and saline were injected at a rate of 5 mL/s by power injector (Medrad Inc.,

Indianola, PA, USA). All acquisitions were done at 3T, with Siemens Verio and Trio

scanners (Siemens Medical Solutions, Erlangen, Germany). A saturation recovery,

radial turboFLASH sequence was used with 72 interleaved rays over 180 degrees,

TR/TE = 2.6/1.4 ms, flip angle of 14◦, slice thickness of 8 mm, and isotropic in

plane resolution of 2.3 mm. An iterative, constrained reconstruction method was

used to reconstruct the images offline [?]. Each time frame was manually registered

to account for respiratory motion and the myocardial tissue was segmented manually
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by an experienced observer. The mean precontrast signal was subtracted from the

data to obtain relative signal changes (which introduces additional uncertainty).

AIFs were determined for both low- and high-dose scans from a region of interest in

the LV blood pool. True AIFs, determined from the low-dose AIF scaled by 5, were

used to determine true kinetic parameters for each of the myocardial voxels in the

higher dose scan. An independent delay term was included for each tissue curve in

the fitting process to account for differences in uptake time between the dual bolus

and estimated AIFs and the tissue curves.

AIFs were also estimated using the CAMM algorithm for each of the 21 subjects.

Myocardial tissue concentration curves were collected from a single, relatively basal

slice from each 0.02 mmol/kg dose scan and input into the algorithm as described

above. The resulting AIF estimate was used to compute kinetic parameters voxelwise

in each subject. The percent difference in the area under the curve (AUC) of the

first pass of the estimated and dual bolus AIF, as defined by the first gamma-variate

curve in the model fit to the data, was calculated for each patient. The myocardium

was then divided into six equiangular regions and the parameters in each region were

averaged to obtain six sets of parameters per subject. Independent, two tailed t-tests

were performed to compare the parameters resulting from the CAMM method and

dual bolus method. Linear regression was used to determine the relationship between

parameters from the dual bolus and estimated AIFs.

Following data acquisition at rest, a second set of dynamic images was acquired

for eight of the subjects during adenosine infusion (140 µg/kg/min). A single higher,

nondilute dose (0.03 mmol/kg) of contrast was injected, followed by a 25 mL saline

flush. These images were reconstructed and processed using the same protocol as

was used at rest. The CAMM method was used to estimate an AIF for each subject

and pharmacokinetic parameters were calculated voxelwise and then averaged in

each of six equi-angular regions, as in the resting studies. No reference standard was

available; this analysis was performed to determine if the method gave reasonable

results when a higher dose and stress were used.
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4.3 Results

4.3.1 Simulations

Figure 4.4 shows histograms of the median absolute error in each of the 5000

noise realizations for each of the three kinetic parameters from the pooled results of

the computer simulations. The Ktrans errors range from -0.19 to 0.02, with a median

error of -0.004. The histogram of Ktrans errors has two distinct local maxima, one

centered at 0.0 error and one centered at -0.04 error. The majority of the realizations

comprising the second maximum arose from the set of noise realizations using the true

AIF with the shortest total acquisition time. This can be seen further in Figure 4.5,

which displays joint probability density functions for Ktrans estimates for the cardiac

AMM and dual bolus methods. The values resulting from the set of simulations with

the shortest total acquisition time (Figure 4.5(b)) have a higher bias than those from

the other four sets. The errors in kep range from -0.32 to 0.08, with a median error of

0.0. The kep errors are unimodal and negatively skewed. vb errors were much smaller

than those for either Ktrans or kep, with a range of -0.004 to 0.0 and a median value

of -0.0003. The errors for vb followed the same trends as those for Ktrans, with the

small peak in the histogram also due to bias in the set of realizations with a short

acquisition time.

The five AIFs used in the simulations are shown in Figure 4.6. The minimum
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Figure 4.4. Histograms of the error for the computer simulations. The second peak
in the Ktrans errors results mostly from one of the five sets of 1000 simulations, as
seen in the joint PDFs in Figure 4.5. This set of simulations had the shortest overall
scan time of 0.55 min.



62

(a) true K
trans

C
A

M
M

 K
tr

a
n
s

(b) true K
trans

(c) true K
trans

(d) true K
trans

(e) true K
trans

Figure 4.5. Joint PDFs of the CAMM estimates for Ktrans vs. true values, plotted
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Figure 4.6. AIFs from the computer simulations. The dashed lines represent the
five true AIFs used in the simulations. The red area represents the full range in the
estimated AIFs, and the blue line represents the median estimated AIF. In all five
cases, the median was near the top of the range of estimated AIFs (which were not
normally distributed).
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and maximum estimated AIFs in each case are shown, along with the median AIF

from all the noise realizations using that AIF. The second, smaller grouping of errors

seen in Ktrans and vb in Figure 4.4 both arose from the second AIF in the simulation

set. This AIF had the shortest simulated total acquisition time of the AIFs tested

here at approximately 33 seconds (26 seconds of nonzero data).

4.3.2 Subject Data

Data of acceptable quality was obtained in 20 of the 21 subjects in this study.

The one subject was eliminated due to insufficiently long acquisition time. The

simulation results shown above suggest that acquisitions that do not fully sample the

recirculation peak result in higher error compared to longer acquisitions, and thus

the one scan with an incomplete recirculation peak was excluded from the study.

Figure 4.7 displays the AIFs from the in vivo data tests for the twenty subjects. The

peak change in signal intensity (∆SI) of the full dose AIF ranged from 37% to 100%

of the dual bolus AIF ∆SI peak height, due to signal saturation as the contrast

agent bolus made its first pass through the LV blood pool. The estimated AIFs from

the CAMM method are overlaid with the measured AIFs and the percent difference

in the first pass AUC are displayed. The changes in the AUC ranged from 0% to

38%. Due to the constraint imposed by the inclusion of portions of the full dose

blood signal in the estimation process, the estimated AIFs are strongly affected by

the constraint of the full dose AIFs below the maximum of the recirculation peak.

The low dose portion of the dual bolus AIFs was acquired in a separate scan several

minutes prior to the full dose scan, and changes in patient physiology and motion

between scans account for the differences in uptake time and bolus width seen in

Figure 4.7.

Ktrans estimates were not significantly different for 17 of the subjects (p > 0.05),

but were significantly lower for the other three (p = 0.02, 0.004, 0.000, mean absolute

difference of 0.18, 0.15, 0.94). kep estimates were not significantly different for 15

subjects, but were significantly different for the other five (p =0.000, 0.003, 0.004,

0.001, 0.000). vb was not significantly different for 12 subjects, but was significantly

different for the other eight (p =0.03, 0.003, 0.004, 0.04, 0.03, 0.001, 0.003, 0.000).
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Figure 4.7. Dual bolus and estimated AIFs from 20 patients. The CAMM estimated
AIF is shown in red (squares), and the dual bolus AIF is shown in black (triangles).
In each case, the directly measured LV blood pool signal is also shown for comparison
in blue (circles). The percent differences in the AUC of the first pass of the dual
bolus and CAMM AIFs are also shown. The dual bolus AIFs were acquired 3-7
minutes before the full dose measured AIFs.
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Overall, the average parameters from the two methods were not significantly

different (p = 0.450.690.52 for Ktrans, kep, vb respectively). Figure 4.8 displays

scatter plots of the region averaged parameters. Ktrans values for these subjects

have a close correlation (r2 = 0.89) with a linear fit of Ktrans (CAMM)=0.95 Ktrans

(dual bolus) +0.04. The correlation for kep was equal to that for Ktrans (r2 = 0.89)

with a linear fit of kep (CAMM)=0.73 kep (dual bolus) + 0.50. vb has a slightly worse

correlation (r2 = 0.82) and a linear fit of vb (CAMM)=0.68 vb (dual bolus) +0.00.

Figure 4.9 shows the estimated AIFs for the eight subjects imaged during stress. In

each case the signal from the LV blood pool is also shown. The mean Ktrans values

for the eight subjects were 209% higher at stress than at rest.

4.4 Discussion

This chapter presents a new method for determining the arterial input function for

use in myocardial perfusion quantification. This method builds upon the previously

reported alternating minimization with model (AMM) method (see Chapter 2) by

incorporating additional information regarding the AIF from the measured LV blood

pool signal.
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Figure 4.8. Scatter plots of the six region wide averages for the kinetic parameters
for each of the 20 subjects from the in vivo data. Ktrans estimates (a) had a good
linear correlation with Ktrans values from the dual bolus method. kep (b) and vb
(c) estimates had lower correlations due to differences in bolus width between the
estimated and dual bolus AIFs. The lines of best fit are also shown in black.
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Figure 4.9. Measured and estimated AIFs from eight stress acquisitions. The
CAMM estimated AIF is shown in red (squares), and the directly measured LV
blood pool signal is shown in blue (circles).

Several AIF estimation methods have been developed for use in DCE-MRI with

applications to various types of cancer [?, ?], or in dynamic PET studies [?]. Unlike

DCE-MRI data in tumors, myocardial DCE data tend to have lower diversity among

tissue uptake curves, higher temporal resolution, and sharper AIFs with significant

saturation even at relatively low contrast doses. A lack of other candidate reference

tissues with input functions identical to those of myocardium makes reference region

approaches impractical for myocardial imaging. The diversity of tissue kinetics in

healthy myocardium may be insufficient for other blind estimation techniques [?, ?].

Increase heterogeneity in the tissue curves input to the estimation algorithm increases

the ability of the algorithm to reliably estimation the AIF (see Chapter 3). This

makes maximizing the diversity of the myocardial perfusion curves a desirable goal.

The k-means clustering strategy described above yields tissue curves with greater

diversity than spatial averaging (such as with six equiangular regions), as seen in

Figure 4.3. Although diversity by multiplicative scale factors is not helpful for the

CAMM algorithm, this can be considered an additional advantage. That is, scale

differences in the tissue curves due to coil sensitivity variations will not affect the

estimate of the AIF. In addition, the majority of the subjects used in this work
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were volunteers with no known cardiac disease. It is possible that the algorithms

performance would be expected to improve with data from patients with disease and

correspondinly increased heterogeneity in tissue characteristics, though this requires

further study.

The results from the computer simulations (Figure 4.4) show that the median

errors in the kinetic parameters when the CAMM method is used are near zero for

Ktrans and kep when the acquisition time is approximately 1 minute. The errors and

the estimated AIFs (Figure 4.6) both suggest that the CAMM method may exhibit

some bias and slightly underestimate the peak values of the AIF when the acquisition

time is shorter. This underestimation should not be attributed to the AIF model

used, as that model describes the simulated AIFs. We hypothesize that the AMM

method is sensitive to the total acquisition time. The simulation with the second

simulated AIF (Figure 4.4) was repeated with a longer simulated acquisition time

(t = 1.5min) and gave less bias, with results comparable to the other simulations.

In addition, two in vivo data sets were artificially truncated after 30 seconds of

acquisition and the estimation was repeated with this truncated data. In both sets,

the agreement between the estimated and dual bolus AIFs worsened as a result of

the data truncation, with the CAMM method consistently underestimating the AIF

with respect to the dual bolus AIF. Further research is required to fully characterize

the relationship between estimation quality and total acquisition time. However, the

poor estimation quality in both simulation and in vivo data suggest that insufficient

washout information in the tissue curves leads to non-unique AIF/kinetic parameter

combinations in fitting the models to noisy tissue curves. For the data here, 1 minute

of data provided good estimates of the AIF.

In this implementation the AIF estimation was constrained to be similar to

the saturated LV blood pool signal below a threshold. While the AMM method

without a constraint worked for a subset of the cardiac datasets, the unconstrained

results were poor in a number of cases. The portion of the LV blood pool signal to

use as a constraint was that for which the relationship between signal change and

concentration is approximately linear. This value was selected based on comparison

of low-dose and high-dose AIFs from dual bolus studies for the concentration dose and
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imaging protocol used here. In practice the user would need to select a conservative

threshold determined by the imaging parameters and dose employed.

One potential limitation of this study is the population average AIF used to

initialize the CAMM estimation. This population average was taken from a subset

of 12 patients from the dual bolus AIFs measured here. Previous work with the

AMM algorithm in sarcoma patients showed that the estimation performance was

insensitive to the initial AIF selection within physiologically reasonable bounds (see

Chapter 2), however more work is needed to test the CAMM algorithm presented here

with patients whose AIFs are significantly different from the population average. A

second limitation of the work presented here is the lack of coil sensitivity correction.

As mentioned above, the CAMM method is insensitive to the scaling of the input

tissue curves. However, more accurate absolute parameter values can be obtained

when the tissue and blood regions are corrected for coil sensitivity.

Small but statistically significant differences in the Ktrans parameter were seen in

three of the twenty subjects studied here. These differences may be due to problems

inherent in the dual bolus protocol employed here. Despite careful efforts to maintain

consistent protocol between the low and high concentration injections, variations in

patient physiology, including the effects of respiratory variations on venous return

and fluctuations in heart rate, may adversely affect the dual bolus AIF. Among the

subjects studied here, the average change in heart rate between the low and high

dose scans was less than one beat per minute; however, three of the volunteers’

heart rates changed by more than four beats per minute. In addition, flow effects

in the LV blood pool affect the observed signal changes in the dual bolus protocol

[?]. Flow effects will be less severe in the CAMM method, which only makes use

of the LV blood pool signal as an additional constraint on the AIF shape after the

first bolus pass. Conversely, the CAMM method as used here does not account

for any signal saturation in the myocardial tissue curves themselves. If the linear

approximation between change in signal intensity and contrast agent concentration

in the myocardial tissue curves is not valid, those errors will propagate through the

AIF estimation. With the contrast dose studied here, no signal saturation in the

tissue curves is expected.
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Ktrans values resulting from the estimated and dual bolus AIFs had a high (r2 =

0.89), linear correlation. The Ktrans parameter is directly related to myocardial blood

flow, and has been shown to not be significantly different from flow estimated with

model independent analyses [?]. The ability of the CAMM method to replicate Ktrans

measurements suggests that this method may find use in quantitative myocardial flow

measurements [?].

In conclusion, the CAMM method presented here provides a way to quantify

myocardial tissue perfusion with a single injection of gadolinium when the measured

AIFs have peak saturation on the order of 30-70%. The method likely works with

a wide range of standard, easily implemented acquisitions. Though further work

assessing the range of saturation for which this method is successful is needed,

the cardiac CAMM method currently provides reasonable estimates for the kinetic

parameters and could be used with future myocardial perfusion studies to simplify

scanning protocols. The subject data presented here was from resting perfusion

scans. At stress, the AIF shape is similar to the resting AIF, and the algorithm

may perform equally well. Further testing is needed to verify the application of the

CAMM method to stress perfusion scans. Further testing will also focus on the ability

of the CAMM method to accurately return kinetic parameters in populations with

known or suspected coronary artery disease. In addition, it may be possible to apply

this method retrospectively to existing myocardial perfusion data that previously

could only be analyzed qualitatively, as well as to dynamic PET or CT studies using

similar compartmental model analysis.



CHAPTER 5

TEMPORAL SAMPLING

5.1 Introduction

DCE-MRI has been shown to provide high sensitivity and moderate specificity

in detecting breast cancer (see reviews [?, ?]). In addition, changes in tumor volume

as measured with DCE-MRI have been shown to correlate well early pathological

response to chemotherapy [?, ?]. Many methods for analyzing breast DCE-MRI data

have been proposed. These methods include qualitative assessment of morphological

features; semiquantitative parameters such as signal enhancement, contrast wash-in

and wash-out rates; and quantitative pharmacokinetic modeling (see references in

[?]). In addition, more recent analysis techniques such as fuzzy c-means clustering

[?], principal component analysis [?], and textural kinetics [?] have been proposed

for automatic identification of breast lesions. Selecting an optimal analysis method

remains an open question. This chapter focuses on two more commonly used tech-

niques for classifying lesions with DCE-MRI, the semiquantitative three time point

(3TP) method [?, ?, ?, ?, ?, ?] and the fully quantitative extended Tofts-Kety (ETK)

two compartment model [?, ?, ?, ?].

The question of whether to use a semiquantitative model, like the 3TP method,

or a quantitative model, such as the ETK method is highly influenced by the tem-

poral sampling rate of images being acquired. Increasing the spatial and temporal

resolution of the MR acquisition both result in decreasing the SNR of the acquired

images, so a balance between competing demands must be made. Images with high

spatial resolution are well suited for qualitative assessment of areas with contrast

uptake and washout and are often used to segment breast lesions into fine heteroge-

neous structures. Quantitative analyses, on the other hand, require higher temporal

sampling rates than the semiquantitative methods. These quantitative methods fit
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mathematical models to measured data, and rapid sampling of the data is required

for good model fidelity. The rate at which tissue curves should be sampled is an area

of active research and depends on the particular model implementation chosen [?, ?].

The ETK model studied here requires knowledge of the contrast input to the tissue,

known as the arterial input function (AIF). In many applications, the AIF varies more

rapidly in time than tissue curves, and the limits on temporal sampling are driven by

the AIF. Henderson suggests that accurate quantitative of tissue parameters requires

sampling the AIF once per second. Tissue concentration curves, on the other hand

should be sampled at least every four seconds to obtain accurate information on the

fractional plasma volume (vp) in the tissue [?].

Another issue for analyses using the ETK model with breast DCE-MRI involves

the accurate acquisition of the AIF. Automatic detection techniques have been pro-

posed for selecting the AIF from the breast DCE-MRI data [?]; however, due to the

relatively small size of the axillary artery, the measurements may suffer from partial

volume effects [?]. Population average input functions have also been proposed

[?, ?] though these are necessarily limited in their response to interpatient variation.

Other work has been performed on a blind estimation method for determining the

AIF directly from measure tissue enhancement curves (see Chapter 2). The blind

estimation approach uses a parameterized form for the AIF to minimize the impact

of measurement noise. In addition, the estimation can be done at an arbitrarily high

sampling rate, alleviating some of the constraints inherent in quantitative modeling.

This chapter aims to compare the quantitative ETK analysis method to the

more commonly used 3TP semiquantitative analysis. The alternating minimization

with model (AMM) algorithm is used to estimate the AIF for use with the ETK

method. Computer simulations are used to investigate the ability of the ETK model

to accurately return pharmacokinetic parameters at various temporal resolutions.

The blind estimation implementations are done at one second temporal resolution,

consistent with the recommendations of Henderson et al. These simulations also

test the ability of the 3TP model to accurately return semiquantitative parameters

at various temporal sampling rates. Both the ETK and 3TP models are applied

to previously acquired breast DCE-MRI data with pathology proven lesions. The
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diagnostic utility of the respective methods will be determined as a function of the

temporal sampling rate of the acquired data.

5.2 Methods

5.2.1 Three-time-point Method

The 3TP method used in this work is based upon previously published work

[?, ?, ?, ?]. This method is a parametric description of individual tissue curves that

assigns each voxel in the image a color (red, green, or blue) and color intensity.

Three samples or time points from each time curve are considered. The time points

used here are one time point precontrast, one 2 minutes following contrast injection,

and one 6 minutes following contrast injection. The intensity of the color of each

voxel is directly related to the relative change in signal intensity between the first

and second time points, and reflects the rate at which the contrast agent is initially

taken up into the voxel. The color of each voxel is related to the relative change in

signal intensity between the second and third time points. Voxels with at least a 10%

increase in signal enhancement are colored blue, voxels whose signal enhancement

changes by less than 10% are green, and voxels with a 10% or greater decrease in

signal enhancement are colored red. A calibration map is used to ensure consistency

across images [?, ?]. 3TP analysis is typically done with data acquired with a 1-2

minute temporal sampling rate [?, ?, ?].

5.2.2 Extended Tofts-Kety Model

The extended Tofts-Kety model is a compartmental model that describes the

tissues being imaged as a mixture of two compartments into and out of which the

contrast agent can flow. Mathematically, the ETK model is given as:

Ct(t) = Ktranse−kept ⊗ Cp(t) + vpCp(t) (5.1)

where Ktrans is the transfer rate constant, kep is the washout rate constant, vp is

the volume fraction of blood plasma, ⊗ represents convolution, Cp(t) refers to the

contrast concentration in the blood plasma or AIF and Ct(t) refers to an individual

concentration time curve. A separate parameter, ve, represents the extracellular
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volume fraction, and is equal to the quotient of Ktrans and kep (derivation of this

model and explanation of standardized parameters given in [?]).

In this chapter, tissue concentration curves were calculated from the signal en-

hancement data by numerically solving the nonlinear relationship between signal and

concentration [?]. This method minimizes the impact of concentration measurement

error due to signal saturation. A functional representation of the AIF was used in this

implementation, consisting of three gamma variate curves and a sigmoid curve. The

alternating minimization with model (AMM) method was used to blindly estimate an

AIF directly from the tissue concentration curves (see Chapter 2 for details). Briefly,

this method estimates the AIF by minimizing a cost function based on the ETK

model. A functional form for the AIF is used to reduce the number of parameters to

be estimated, as well as to reduce the impact of measurement noise on the estimation.

ETK model parameters are then found using the estimated AIF and a linearized form

of equation 5.1 for speed [?].

5.2.3 Temporal Resolution Simulations

Computer simulations were done to assess the effect of temporal resolution on

both the ETK and 3TP models. These simulations were based on previously acquired

patient data. Seventy-five lesions were simulated according to the following strategy:

1. Kinetic parameters were determined from a region of interest defined around

a lesion from a breast DCE-MRI scan using a population averaged AIF.

2. A ’true’ AIF was created by dispersing a population averaged AIF with a

Gaussian kernel. The width of the Gaussian kernel was a randomly selected

value between 0 and 0.2 minutes. This dispersion was included so that the true

AIF would not necessarily be equivalent to the population average. Sample

dispersed AIFs can be seen in Figure 5.1.

3. ’True’ tissue curves were created according to equation 5.1 using the ’true’ AIF

and the lesion kinetic parameters. These curves were created with one second

temporal resolution and eight minutes simulated acquisition.

4. ’True’ 3TP parameters were calculated for each of the tissue curves.
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Figure 5.1. Three sample AIFs used in the temporal resolution simulations. The
first AIF (solid line) represents the population average AIF. The dashed AIFs
represent AIFs dispersed with kernels of width 0.1 and 0.2.

5. Zero-mean Gaussian noise with standard deviation of 0.03 mM was added

independently to each true tissue curve. This noise level was the average noise

level found in the lesions on which the simulations are based.

6. Each tissue curve was down sampled to 4, 8, 16, and 32 second temporal

resolution. This downsampling was done by averaging every 4th, 8th, 16th, and

32nd point from the true curves. This type of downsampling reflects the higher

SNR that would be achievable with lower temporal resolution imaging.

7. Parameters were calculated using an AIF obtained from the AMM blind esti-

mation method developed previously for use with the ETK model. The noisy

tissue curves were upsampled to 1 second resolution with cubic interpolation.

The AIF was estimated with 1 second resolution, and the kinetic parameters

were calculated with the upsampled AIF and tissue curves.

8. 3TP parameters were calculated for each tissue curve. The three time points

were obtained by selecting a precontrast frame, and the first frame at least 2

minutes and 6 minutes after the contrast injection. Colors and intensities for

each curve were assigned as described above.
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Figure 5.2 displays representative tissue curves from the above simulations. Fol-

lowing the simulations, the root mean squared error (RMSE) of the estimated pa-

rameters was calculated. The errors were collected over all the simulated tumors and

average RMSE values for each temporal resolution were calculated.

5.2.4 Clinical Data

The 3TP and ETK models were also applied to previously acquired breast DCE-

MRI data from 87 patients. These data were collected as part of a prospective

study on pharmacokinetic modeling in breast DCE [?]. All data was acquired on

a 1.5 T Siemens Avanto scanner. The dynamic imaging was performed with 9.2-

19.7 second temporal resolution using a fast 3D SPGR sequence (TR/TE/alpha =

2.54/1.09/10) with 1.5 mm isotropic resolution. Twenty-four of the datasets had

a temporal resolution less than or equal to 12 seconds. Forty-two of the datasets

had temporal sampling rates between 12 and 16 seconds, and 21 of the datasets
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Figure 5.2. Sample tissue curves from temporal resolution simulations. Each set of
curves was created from kinetic parameters derived from previously acquired patient
data. The tissue curves were created with 1 second temporal sampling and Gaussian
white noise (σ=0.03 mM) was added. The curves were then downsampled to 4, 8 16
and 32 second resolution.
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had a sampling rate above 16 seconds. Partial Fourier encoding in the phase and

frequency encoding directions was used and full bilateral coverage from the chest

wall to the nipple was obtained in all scans. A 20 mL injection of gadodiamide

(Omniscan, Amersham Health) was given at a rate of 4 mL/s, followed by a 20 mL

saline flush at 2 mL/s. Eight to 10 minutes of data was acquired. Each of the datasets

was downsampled temporally by selecting every second time frame and every fourth

time frame to obtain datasets with temporal sampling rates ranging from 18.4-39.4

and 36.8-78.8 seconds/frame.

Each of the subjects in the previously referenced study had been referred to biopsy

independent of any MRI results. All imaging results were correlated with pathology.

In addition, following data acquisition, one region of interest (ROI) per patient was

identified in each subject by an experienced observer.

Pharmacokinetic parameters were calculated for each voxel within the defined

ROIs. The AMM estimated AIF was used and separate calculations were done for

both the original and two downsampled datasets. For the AMM method, all of the

tissue curves within the ROI were used as input. These curves were clustered using

an unsupervised k-means algorithm, and the cluster averaged curves were used as

input to the AMM algorithm. A population average AIF, based on that reported by

Parker et al. [?], was used to initialize the algorithm. As with the simulations above,

the tissue curves were upsampled to 1 second resolution with cubic interpolation,

and the AIF was estimated on a 1 second resolution grid. This AIF was then used

to estimate kinetic parameters voxelwise throughout the field of view. Following

parameter calculation, mean values for each of the parameters were found for each

region of interest. Parameters were also calculated for each voxel using the 3TP

model described above.

Following parameter calculation, each of the lesions was classified as either benign

or malignant. Classification of lesions with the 3TP parameters was done using the

method outlined in [?], which distinguishes lesions based on the percentage of voxels

assigned red. When a lesion has 15% or more red voxels, it is likely malignant. When

the number of red voxels is less than 10%, the lesion is likely benign. For intermediate

lesions, a second 3TP analysis with time points at 4 and 8 minutes after injection is
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done and the lesion is reclassified.

For the ETK parameters, lesions were classified with linear combinations of

parameters. Each of the possible linear combinations of parameters (i.e., Ktrans,

kep, vp, K
trans/kep, K

trans/vp, kep/vp, K
trans/kep/vp) was considered as a possible

classifier. Parameters were combined using the method outlined in [?]. This was

repeated for each patient in a leave one out manner with a possible unique classifier

for each dataset. A standard method [?] was used to calculate the ROC curves for

each combination. Separate ROC curves were generated using the original data and

each set of downsampled data.

Classification of the lesions for both the 3TP and ETK parameters was also done

retrospectively, to find the optimal linear combination of parameters that maximizes

the area under the ROC curve (AUC). As with the classification for the ETK method

above, each of the possible linear combinations of the parameters was tested (i.e. red,

green, blue, red/green, red/blue, green/blue, red/green/blue). The intensities of the

colors assigned to the voxels were used to classify the lesions. All of the lesions were

included in the analysis, and the optimal linear classifier was found for both the 3TP

and ETK parameters for each temporal resolution.

5.3 Results

5.3.1 Temporal Resolution Simulations

Aggregate results from all 75 simulated lesions are seen in Figure 5.3. This

figure displays the average RMS error (±1 SD) for the simulations at each temporal

resolution, for each parameter. The error in the ETK model with the AMM esti-

mated AIF increases linearly with the temporal resolution of the input curves. The

RMSE increases by approximately 70% when the temporal sampling rate increases

from 4 to 32 seconds. The RMS errors in the parameters from the 3TP method

remained constant as the temporal sampling changed. These errors were largely due

to incorrect binning of the voxels as the temporal resolution changed.

5.3.2 Clinical Data

Figure 5.4 displays modeling results from a representative slice from one of the

lesions in this study. The first panel shows Ktrans values calculated with an AMM
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Figure 5.3. The average RMS error for each parameter for all of the temporal
sampling simulations. Panel (a) corresponds to Ktrans/red, (b) to kep/green, (c) to
vp/blue. In each panel, the green curve corresponds to ETK parameters with an
AMM estimated AIF, and the blue curve to 3TP parameters.
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Figure 5.4. Parameter maps from a representative slice of DCE-MRI data taken
from the left breast of a patient with infiltrating ductal carcinoma. Panel (a)
corresponds to Ktrans values calculated with an AMM estimated AIF and (b) to
3TP parameters.

estimated AIF. The second panel displays the 3TP parameters for the same slice.

These parameters were from a subject with pathology proven IDC, and the elevated

Ktrans values seen here are consistent with literature reports [?].

ROC curves for the 3TP method using a prospective classifier are plotted in Figure

5.5. For each of the lesions defined in this study, diagnoses were obtained from MRI

independent pathology reports. Of the lesions studied here, 25 were classified as
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Figure 5.5. ROC curves for the 3TP method using a literature (prospective)
classifier as well as those for the ETK method using a leave-one-out analysis. The
first row displays ROC curves for the 3TP method with the original dataset (a), for
the data downsampled by a factor of 2 (b), and 4 (c). The second row corresponds
to the ETK method with the original data (d), as well as the downsampled datasets
(e) and (f). The area under the ROC curve is indicated on each plot.

malignant. The remaining 62 lesions were defined as benign. Using the classifier

for the 3TP parameters, the AUC was 0.85, with a 95% confidence interval (CI) of

0.74-0.96. When the data were temporally downsampled by a factor of two prior to

parameter calculation, the AUC of the ROC curve decreased to 0.81 (CI:0.70-0.92).

When the data were downsampled by a factor of 4, the 3TP classifier was unchanged,

with an AUC of 0.81 (CI:0.70-0.92). ROC curves for the ETK method are also shown

in Figure 5.5. These curves were generated using a leave-one-out analysis. At the

native resolution of the scans, the AUC of the ROC curve was 0.85 (CI:0.72-0.96).

When the data were downsampled by a factor of 2, the AUC decreased to 0.82

(CI:0.71-0.93). When the data were further downsampled, the AUC remained 0.82

(CI:0.70-0.93).
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Figure 5.6. ROC curves for both the 3TP and ETK methods using a retrospectively
determined classifier. The first row displays ROC curves for the 3TP method with
the original dataset (a), for the data downsampled by a factor of 2 (b), and 4 (c).
The second row corresponds to the ETK method with the original data (d), as well
as the downsampled datasets (e) and (f). The area under the ROC curve is indicated
on each plot.

When the optimal linear classifier was found retrospectively, the AUC for the 3TP

increased. The ROC curves for both the 3TP and ETK methods with a retrospective

classifier are seen in Figure 5.6. The first row corresponds to values from the 3TP

method, and the second row to the ETK analysis. For the original dataset, with

temporal sampling rates ranging from 9.2-19.7 seconds, the 3TP method AUC was

0.91 (CI:0.82-1.00) and the ETK method AUC was 0.94 (CI:0.86-1.00). When the

data was downsampled by a factor of 2, the 3TP AUC increased to 0.92 (CI:0.85-

1.00) and the ETK method decreased to 0.92 (CI:0.84-0.99). When the data was

downsampled by a factor of 4, the 3TP AUC decreased to 0.89 (CI:0.81-0.98) and

the ETK method decreased to 0.85 (CI:0.74-0.95).
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5.4 Discussion

This chapter presents results comparing the semiquantitative three-time-point

method and the fully quantitative extended Tofts-Kety compartmental modeling

method for evaluating breast DCE-MRI. Semiquantitative models, such as the three

time point method studied here, return parameters that are dependent on the overall

shape of the tissue curves, and thus reflect tissue physiology only indirectly. As shown

in the simulations carried out here, the accuracy of the 3TP method is insensitive to

the temporal sampling rate of the acquired data. As a result, the analysis can be done

with higher spatial resolution images in conjunction with morphological assessments

[?]. In addition, the computational load of the 3TP method is minimal compared to

the quantitative methods.

The parameters of fully quantitative models, such as the Ktrans, kep, vp, and

ve parameters in the extended Tofts-Kety model, directly reflect tissue physiology.

They can provide insight into the makeup of the tissue and have been shown to

correlate well with pathology [?], although other models have also been proposed [?].

Quantitative modeling has also been shown to track treatment response in various

chemotherapies in longitudinal studies.

The AIF model implemented here was the AIF estimated with the alternating

minimization with model algorithm. This algorithm attempts to find an input func-

tion that best fits the tissue concentration data within the AIF and tissue response

models. Estimating the input function allows for greater interpatient individuality

than a population average input function. Also, the heterogeneity of the tissue curves

in many breast lesions results in higher expected accuracy in the AIF estimation (see

Chapter 3). The estimation can be done at high temporal resolution, allowing for fine

structure not available at lower sampling rates. Despite the high resolution grid that

can be used for the AIF estimation, the information available from the tissue curves

will depend on the native sampling rate. Henderson reports that for curves with

nonzero contribution from the blood plasma volume (vp) and with a known AIF, the

tissue curves must be sampled with at least four second resolution to obtain less than

10% error in all of the parameter estimates [?]. This same study reports that if errors

in the plasma volume are ignored, the sampling rate can be relaxed to 16 seconds.
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In comparison, Schabel reports results from simulations done with a Monte Carlo

type estimation method for obtaining the AIF on the effect of the temporal sampling

rate on the accuracy of the estimated kinetic parameters [?]. This method can be

considered a generalization of the method employed here. These simulations return

good estimates of all of the parameters at reasonable noise levels and at sampling

rates up to 8 seconds, after which the errors grow rapidly with increasing sampling

rates. The Monte Carlo method also found that, ignoring any errors in vp, K
trans

and kep estimates were stable up to sampling rates of twelve seconds, after which the

error increase rapidly.

The fastest sampling rate in the clinical data studied here was more than twice

as long as the 4 seconds recommended by Henderson, and more than one second

faster than the 8 seconds reported by Schabel. As a result, voxels with nonzero vp

are not sampled sufficiently quickly, and much of that information is lost, even with

high resolution AIF estimation. In lesions where vp is small enough to be neglected,

Henderson’s recommendation for the required sampling increases to 16 seconds [?],

while Schabel’s recommendation increases to only 12 seconds [?]. In comparison,

the temporal sampling rate of the data acquired here ranges up to 19.7 seconds.

More work is needed to understand the relationship between nonzero vp and the AIF

estimation at nonoptimal temporal sampling rates.

Other method of estimating the AIF have been used in breast DCE-MRI analysis.

Reference region approaches, such as those done by Yankeelov et al. [?, ?], attempt

to avoid the complications due to AIF uncertainty by calculating kinetic parameters

through comparison of unknown tissue curves to reference curves with known tissue

parameters. These methods do not require an AIF estimate, and have been shown to

return kinetic parameter estimated comparable with AIF deconvolution approaches.

The reference region method, which does not typically included vp estimates, was

shown in simulation to provide estimates of Ktrans and kep with less than 10% error

at temporal resolutions up to 29 seconds, after which the error begins to increase [?].

In these studies, the pectoral muscle is used as a reference region. Further validation

of the reference region approach is still needed, as the reference tissue values may

not be consistent across patients.
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Some work has also been done measuring the AIF directly from arterial voxels

within the imaging field of view [?]. However, unless a variable sampling rate

acquisition is used, measured AIFs will have the same temporal sampling rate as

the tissue enhancement curves. In addition, arteries adjacent to the breast tissue

tend to be small with respect to the voxel size, and partial volume effects may affect

the concentration measurements.

The ultimate utility of any analysis method is its diagnostic usefulness. The

selection of an optimal linear classifier based on the analysis parameters remains an

open question for both quantitative and semiquantitative analysis. As seen in Figure

5.5, the literature classifier used in conjunction with the 3TP method yields good

results (i.e. AUC > 0.8) regardless of the temporal resolution, and is comparable to

similar studies with other semiquantitative analysis methods [?]. As mentioned in

[?], this classifier is often used in conjunction with radiologist interpretation of the

images to arrive at a diagnosis. The leave-one-out method returned similar results

using the ETK parameters, which suggests that a prospective classifier based on the

ETK model may be clinically feasible at the temporal sampling rates studied here.

As with previous analyses of various diagnostic techniques [?, ?], the pathology

proven diagnoses allowed the selection of a retrospectively determined classifier for

optimally distinguishing benign and malignant lesions. This was especially useful

for the ETK analysis, where no consensus has been reached on how to classify

lesions based on the estimated parameters. As seen in Figure 5.6, the optimal linear

3TP classifier outperforms the literature classifier for the 3TP method, as would

be expected. This type of analysis is not typically used in conjunction with the

3TP parameters, but is included here to allow for direct comparison with the ETK

method. The change in the optimal classifier performance, as measured by the AUC,

is small as the temporal resolution of the data lengthens. This is due to the general

insensitivity of the 3TP method to temporal sampling within the range of this study.

The ETK method, on the other hand, is more sensitive to the temporal sampling

of the acquired data. For the most rapidly sampled data the ETK method had the

highest overall optimal performance. As the temporal sampling rate increased, the

AUC of the ROC curves for the ETK method decreased more rapidly than those for
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the 3TP method.

It should also be noted that the analysis performed here did not include any

morphological assessment of the acquired data. The increased temporal sampling

rate of the data used in this study led to a decrease in the acquired spatial resolution

(1.5mm isotropic resolution here, compared to sub millimeter resolution obtained in

more standard breast DCE-MRI scans). Morphological assessment, when combined

with the semi-quantitative analyses studied here, may provide additional power in

distinguishing lesions.

5.5 Conclusion

The AMM-estimated AIF was shown in simulation to return parameters with

lower mean error than the 3TP method at all temporal sampling rates studied here.

In addition, simulations showed that as the temporal sampling rate of the input data

increased, the error in the parameters decreased. The leave one out analysis done

with the ETK parameters performed as well as the conventional 3TP analysis across

all temporal resolutions. When applied to clinical data acquired at 9-19 seconds

per frame temporal resolution, the ETK analysis was able to distinguish benign and

malignant lesions more accurately than the 3TP analysis when optimally determined

classifiers were used. As the data were increasingly undersampled temporally, the

ETK performance decreased to a level equal to that of the 3TP analysis. With further

temporal undersampling, the ETK methods performance was worse than that for the

3TP method. As undersampling acquisition and reconstruction techniques improve,

high temporal resolution acquisition of DCE-MRI data will become more realizable.

The ability of the fully quantitative modeling to report on subject physiology may

make it a more attractive analysis option than semiquantitative analyses, especially

with no expected loss in distinguishing power relative to semiquantitative analyses.



CHAPTER 6

CONCLUSION

This dissertation focuses on the problem of properly identifying the arterial input

function (AIF) for use in conjunction with compartmental modeling in quantitative

DCE-MRI. The accuracy of the measured kinetic parameters depends on the AIF

used in the model deconvolution.

6.1 Summary of Work

A novel method for extracting the AIF directly from the tissue curves was de-

veloped. This method makes use of a functional form for the AIF, which serves to

reduce the impact of measurement noise, and to simplify the estimation process. The

method minimizes a cost function based on the compartmental model by alternately

refining the estimates for the kinetic and AIF model parameters. This alternating

minimization with model (AMM) method is tested in simulation and compared to

deconvolution approached with measured input functions. The method is also tested

in in vivo datasets, each of which contain arterial voxels from which a measured AIF

can be used for comparison. The shape of the AMM-estimated AIF is found to be

strongly dependent on whether arterial voxels are used to constrain the estimation

process, as well as the diversity of the kinetic parameters of the tissue curves input

to the algorithm.

Based on the above observations, a metric was created to provide an estimate for

the uncertainty in the AMM-derived AIF. This metric is a function of the SNR

and heterogeneity of the tissue curves input to the algorithm. Using computer

simulations, the error in the kinetic parameters estimated using the AIF from the

AMM algorithm was found to decrease exponentially as the SNR of the input tissue

curves increased. A similar exponential decline in error was seen as the heterogeneity
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of the input tissue curves increased. The spread of the kep and vp parameters in

normalized parameter space was used as a measure of curve diversity.

This metric was used in in vivo data to estimate input functions within a small

region of data (i.e., 10X10X10 voxels. These local input functions were then used to

calculate kinetic parameters. When the local input functions were used in place of

either globally estimated or measured AIFs, the kinetic parameters were significantly

different.

The AMM algorithm was also adapted for use in cardiac applications. Unlike

imaging in many other parts of the body, in myocardial imaging the signal in the

blood pool is easily measurable. However, due to high concentrations of contrast

agent in the blood pool, signal saturation can significantly affect the AIF mea-

surement and resulting kinetic parameters. This signal saturation can be corrected

to some degree using the signal equations for the image sequence used during ac-

quisition. This corrected signal can in turn be used to constrain the alternating

minimization. This constrained estimation was tested in both computer simulation

and with in vivo datasets. In 85% of the datasets studied here, the Ktrans values

calculated with the estimated AIF were not significantly different from those found

using the more conventional dual bolus method.

In most clinical breast DCE-MRI, a high emphasis is placed on acquiring high

spatial resolution data, with a concomitant increase in the temporal sampling rate.

The poor temporal resolution in breast scanning has made quantitative modeling

difficult. The AMM algorithm was used in conjunction with clinical breast cancer

data to obtain pharmacokinetic parameters. The effects of various temporal sampling

rates on the quantitative modeling were examined with computer simulation and with

in vivo data. The specificity and sensitivity of the AMM method parameters were

compared with more conventional three-time-point analyses. Two different classifiers

were used, and in both cases the sensitivity and specificity of the AMM parameters

were not significantly different from the three-time-point diagnoses.
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6.2 Future Work

As mentioned above, one drawback in analyzing the effectiveness of the AMM

algorithm is the difficulty in ascertaining absolute truth in in vivo data for com-

parison. The parameters of the compartment model quantify physiology in a way

that is difficult to assess with histology. However, histological examination of tissues,

for example with animal models, can correlate with the measured parameters and

provide some measure for the accuracy of these parameters. Future work may focus

on validating the AMM algorithm through histological analysis of animal model data.

In addition, the efficacy of local input functions (as described in Chapter 3) in

discriminating disease or monitoring treatment should be investigated. Locally esti-

mated input functions have the potential to improve compartmental model fidelity,

particularly in large heterogeneous tumors. Large tumors often have necrotic cores

with a very different blood supply than the actively growing rim. Adapting the

AIF to match the tissue curves in different regions of the tumor may result in more

accurate parameter estimation. The downstream utility of this increased accuracy

should be investigated.

Chapter 4 describes a method for constraining the AMM estimation by using the

measured blood pool signal from the left ventricle. The model also implements signal

saturation correction based on the signal equations for the acquisition sequence. The

constraint used in this implementation was fairly simple, with a binary correction

for signal saturation. Also, only a single value for the weight of the constraint was

tested. Further work in refining both the concentration estimation and weighting

the blood pool constraint is needed.

In Chapter 5, it was shown that the AMM method is able to distinguish benign

and malignant lesions at nearly the same rate as the three-time-point method, even at

low temporal sampling rates. The AMM method is also able to provide physiological

measures for the tumor, which may be beneficial in longitudinal studies tracking

treatment response. Further work is needed to determine what benefits parameter

estimation may bring.


