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ABSTRACT 
 
 
 

Although it is well known that METH damages the dopamine (DA) system, the 

mechanisms underlying such toxicity have not been elucidated.  Previous work indicates 

that animals with partial DA loss from prior exposure to METH are resistant to further 

decreases in DA when reexposed to METH 30 days later.  This experimental paradigm 

results in four treatment groups based on postnatal day (PND)60:PND90 treatment 

(Saline:Saline, METH:Saline, Saline:METH, METH:METH) and allows for examination 

of factors associated with METH toxicity in animals matched for METH exposure, but 

differentiated with respect to acute METH neurotoxicity.  We used this paradigm to 

examine factors implicated in METH-induced neurotoxicity.  First, we investigated the 

possible contribution of nitric oxide (NO) by examining nitric oxide synthase (NOS) 

expression, activity, and protein nitration.  We found that acute METH administration 

increased NO production; however, METH did not change expression of endothelial 

NOS or result in induction of inducible NOS.  The number of cells positive for neuronal 

(nNOS) mRNA or the amount of nNOS mRNA per cell also did not change.  However, 

NOS activity was increased acutely after METH exposure, suggesting that increased NO 

production after METH exposure arises from NOS activity and most likely, nNOS.  

Furthermore, animals resistant to METH-induced DA depletions show equivalent degrees 

of NO production, suggesting that NO alone is not sufficient to induce METH-induced 

neurotoxicity.  Using the same paradigm, we then examined glial reactivity using glial-



fibrillary acidic protein (GFAP; astrocytes) and CD11b (Microglia), as well as markers of 

proliferation (BrdU and Ki67) immunohistochemistry.  Animals experiencing acute 

toxicity (Saline:METH) showed activated microglia and astocytes, whereas those 

resistant to toxicity (METH:METH) did not show activated microglia.  Furthermore, 

animals experiencing acute toxicity (Saline:METH) also showed increased proliferation 

compared to all other groups and a large proportion of proliferating cells were microglia 

with a smaller proportion being astrocytes.  Interestingly, GFAP expression remained 

elevated in animals exposed to METH at PND60 (METH:Saline), and was not further 

elevated in resistant animals (METH:METH).  These data suggest that astrocytes remain 

reactive up to 30 days post-METH exposure and that astrocyte reactivity does not reflect 

acute METH-induced neurotoxicity whereas microglial reactivity parallels acute METH-

induced neurotoxicity. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 

 



1.1 Methamphetamine use and neurotoxicity 

1.1.1 Current rates of methamphetamine use and abuse 

Methamphetamine (METH) abuse continues to be a significant public health 

concern in the United States. According to the National Survey on Drug Use and Health, 

approximately 12 million Americans report using METH at least once in their lifetime 

(SAMHSA/OSM, 2011).  Furthermore, the Arrestee Drug Abuse Monitoring program 

indicates high levels of abuse of METH in the western United States in particular, with as 

many as 20-30% of arrestees testing positive for METH, and 20-25% of arrestees 

reporting METH use in the 30 days prior to arrest (ADAMII, 2012).  New evidence also 

indicates that individuals with a history of METH abuse have an increased risk for 

developing Parkinson’s Disease years later, compared to both healthy controls and 

individuals with a history of cocaine use (Callaghan et al., 2010; Callaghan et al., 2012).  

Thus, abuse of amphetamines, and METH in particular, continues to be a significant 

public health concern and will continue to be a significant burden to society for years to 

come. 

 

1.1.2 Methamphetamine exposure results in  dopamine system 

damage and cognitive and behavioral deficits 

Although acutely methamphetamine increases extracellular concentrations of 

dopamine (DA) (O'Dell et al., 1991; O'Dell et al., 1993), exposure to high doses or 

repeated administration results in long-lasting brain changes, including damage to the DA 

system.  Initial investigation into METH-induced neurotoxicity in humans showed 

reduced levels of DA, tyrosine hydroxylase (TH), and dopamine transporter (DAT) in the 
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caudate- putamen, and nucleus accumbens in post mortem tissue from human METH 

abusers (Wilson et al., 1996).  More recent studies using positron emission tomography 

(PET) with radiolabelled ligands have confirmed these findings, demonstrating decreased 

DAT binding in the prefrontal cortex, orbitofrontal cortex, amygdala, caudate-putamen, 

and nucleus accumbens and decreased vesicular monoamine transporter (VMAT) in the 

caudate-putamen of abstinent METH abusers (Sekine et al., 2001; Volkow et al., 2001a; 

Volkow et al., 2001b; Johanson et al., 2006; McCann et al., 2008).  Furthermore, these 

DA lesions are associated with cognitive and behavioral deficits in human METH abusers 

(Simon et al., 2000; Volkow et al., 2001b; McCann et al., 2008), together suggesting that 

METH exposure results in long-lasting DA system damage in human METH abusers and 

that this damage may be related to the cognitive and behavioral deficits in these 

individuals. 

Animal models have been developed to study METH-induced neurotoxicity in 

humans and to elucidated mechanisms contributing to such neurotoxicity.  "Binge" 

exposure to METH, in which rodents are given multiple high doses of the drug in a single 

day to mimic binge administration seen in human abusers, results in monoamine 

depletions in rodents that are similar to those observed in humans.  The effects of such 

regimens in rodents include reduced DA tissue content (Kogan et al., 1976; Wagner et al., 

1980), DAT binding (Guilarte et al., 2003), TH (Kogan et al., 1976), and VMAT binding 

in striatum (Guilarte et al., 2003).  Furthermore, similar to human METH abusers, 

METH-induced DA depletions in animals are associated with cognitive and behavioral 

deficits (Chapman et al., 2001; Daberkow et al., 2005; Son et al., 2011; Pastuzyn et al., 

2012).  Overall, these data clearly indicate that exposure to high doses of METH results 
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in persistent damage to the DA system in human METH abusers and that it is possible to 

model both the neurotoxic, as well as the cognitive and behavioral effects using rodents. 

 

1.2 Mechanisms implicated in methamphetamine-induced neurotoxicity 

The molecular underpinnings of METH-induced neurotoxicity have not been clearly 

elucidated; however, several factors have been suggested to play an important role in 

such neurotoxicity.  These factors include increased extracellular and cytosolic DA 

(O'Dell et al., 1991; Gross et al., 2011b), increased extracellular glutamate (GLU)(e.g.,  

Nash and Yamamoto, 1992; Stephans and Yamamoto, 1994; Gross et al., 2011a), the 

production of reactive oxygen (e.g., Wagner et al., 1986; Fukami et al., 2004) and 

nitrogen species (e.g., Itzhak and Ali, 1996; Ali and Itzhak, 1998; Imam et al., 1999), 

activation of glial cells (e.g., LaVoie et al., 2004; Thomas and Kuhn, 2005a), and 

hyperthermia (e.g., Ali et al., 1994).  In this dissertation we will focus on the role of 

extracellular DA and GLU, the production of nitric oxide, and the activation of glial cells 

in the context of METH-induced DA nerve terminal degeneration in striatum. 

 

1.2.1 Dopamine in methamphetamine-induced neurotoxicity 

Acutely, METH increases extracellular monoamine concentrations in the brain, 

including DA (O'Dell et al., 1991; O'Dell et al., 1993) and the effects of METH on the 

DA system in particular have been suggested to play a detrimental role to DA nerve 

terminals in striatum (Broening et al., 2005; Gross et al., 2011b; Ares-Santos et al., 

2012).  This increased extracellular DA has been suggested to damage DA nerve 

terminals via activation of D1-type DA receptors.  For instance, systemic co-
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administration of a DA receptor antagonist with METH (Broening et al., 2005) protects 

against METH-induced neurotoxicity.  Further, intrastriatal delivery of a D1 DA receptor 

antagonist during METH exposure mitigates METH-induced DA depletions (Gross et al., 

2011b), although this treatment also reduced METH-induced hyperthermia, which is 

known to be critical for the neurotoxicity (Ali et al., 1995).  Likewise, genetic deletion of 

the D1 DA receptor renders animals protected against METH-induced neurotoxicity, and 

this protection is not solely dependent upon loss of METH-induced hyperthermia (Ares-

Santos et al., 2012).  Taken together, these data strongly suggest that DA release and 

activation of D1-type DA receptors during METH exposure contribute to METH-induced 

neurotoxicity.  

Although the data reviewed above implicate D1 DA receptor activation in 

METH-induced neurotoxicity, debate exists regarding whether D1 DA receptor activation 

contributes to DA terminal degeneration, as D1 DA receptors are located postsynaptic to 

DA nerve terminals on medium spiny neurons in striatum, rather than on the DA nerve 

terminals (Levey et al., 1993).  One mechanism through which this pathway has been 

suggested to result in damage to DA terminals is through altered basal ganglia output, 

ultimately leading to excessive corticostriatal excitation and GLU-mediated 

excitotoxicity to DA nerve terminals (Mark et al., 2004).  This mechanism will be 

discussed in greater detail in the coming sections of this dissertation. 

Increased cytosolic DA has also been suggested to play an important role in DA 

nerve terminal degeneration.  METH has been shown to alter VMAT function (Brown et 

al., 2000; Riddle et al., 2002) and expression (Eyerman and Yamamoto, 2005).  This in 

turn may increase concentrations of cytosolic DA in DA nerve terminals.  In fact, animals 
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with a VMAT gene deletion show higher cytosolic DA concentrations after METH 

administration compared to their wild-type counterparts (Larsen et al., 2002), 

emphasizing the significance of VMAT function in regulating cytosolic DA.  This DA 

can then be oxidized, resulting in production of the highly reactive DA quinone (Tse et 

al., 1976).  DA quinones are increased following METH exposure (LaVoie and Hastings, 

1999) and can alter protein function, including the DAT (Berman et al., 1996) and TH 

(Kuhn et al., 1999). DA quinones also can cause microglia activation in vitro (Kuhn et 

al., 2006).  Along these lines, decreasing DA synthesis prior to METH exposure results in 

protection against METH-induced DA depletions (Albers and Sonsalla, 1995; Thomas et 

al., 2008b).  Therefore, in addition to METH increasing extracellular DA and resulting in 

DA receptor activation and neurotoxicity, METH-induced cytosolic DA elevations also 

play an important role in METH-induced neurotoxicity.  

 

1.2.2 Glutamate in methamphetamine-induced neurotoxicity 

Similar to DA, extracellular GLU concentrations are also increased following 

exposure to a neurotoxic regimen of METH (Nash and Yamamoto, 1992; Stephans and 

Yamamoto, 1994) and may contribute to neurotoxicity.  Several lines of evidence suggest 

that METH increases extracellular GLU secondarily to METH-induced DA release and 

that this GLU contributes to METH-induced DA terminal degeneration via an excitotoxic 

mechanism.  First, on a circuitry level, the striatum receives the majority of glutamatergic 

input from corticostriatal neurons (Gerfen, 1989; Bellomo et al., 1998), and corticostriatal 

activity can be regulated by nigrothalamic and thalamocortical projections.  That is, γ-

aminobutyric acid (GABA) release from striatonigral neurons activates GABA-A 
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receptors in the substantia nigra pars reticulata (SNpr) to decrease nigrothalamic neuron 

firing (Deniau and Chevalier, 1985; Nicholson et al., 1995; Timmerman and Westerink, 

1997).  In turn, activity of glutamatergic thalamocortical and corticostriatal projections is 

increased (Deniau and Chevalier, 1985; Kaneko and Mizuno, 1988).  In fact, work from 

Yamamoto and colleagues has shown that METH-induced striatal GLU release is 

associated with GABA release in the SNpr and decreased GABA release in the thalamus 

(Mark et al., 2004).  Furthermore, GABA-A receptor antagonism in the SNpr increased 

METH-induced GABA release in the thalamus, as well as METH-induced GLU release 

and DA nerve terminal degeneration in the striatum (Mark et al., 2004).  Together, these 

findings suggest that striatonigral neuron activation is important for METH-induced GLU 

release in striatum via activation of basal ganglia circuitry. 

The second line of evidence implicating GLU in METH-induced neurotoxicity is 

that administration of a "binge" regimen of METH causes increased extracellular GLU 

concentrations in striatum (Nash and Yamamoto, 1992; Stephans and Yamamoto, 1994) 

as measured using in vivo microdialysis.  In addition, immunohistochemical staining for 

GLU in both striatal and cortical nerve terminals is reduced 12 hours after METH 

administration, consistent with high levels of GLU release during METH exposure 

(Burrows and Meshul, 1997).  Together these data provide significant evidence that 

METH increases extracellular GLU in striatum via release from corticostriatal 

projections.  

The third line of evidence consists of studies using pharmacological 

manipulations of the GLU system, which also strongly support a role of GLU in METH-

induced neurotoxicity to DA nerve terminals.  N-methyl-D-aspartate (NMDA)-type GLU 
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receptor antagonists co-administered with METH protect against DA nerve terminal 

degeneration (Sonsalla et al., 1989; Finnegan and Taraska, 1996), although this effect 

may be dependent upon attenuation of METH-induced hyperthermia (Ali et al., 1994).  

Furthermore, antagonism of type-5 metabotropic GLU receptors attenuated METH-

induced DA depletions, independent of effects on METH-induced hyperthermia 

(Battaglia et al., 2002), clearly demonstrating that the protection observed resulted from 

inhibition of GLU receptor activation, rather than disruption of METH-induced 

hyperthermia.  Moreover, recent work has also shown that epidural application of an 

NMDA receptor antagonist to the cortex reduces both METH-induced c-fos gene 

expression and DA nerve terminal degeneration in striatum (Gross et al., 2011a). Thus, 

taken together, these data suggest that METH increases GLU release in striatum via the 

activation of striatonigral GABAergic transmission, which then inhibits nigrothalamic 

GABA release and disinhibits glutamatergic thalamocortical afferents.  This disinhibition 

of thalamocortical neurons increases GLU release in the cortex, thus activating 

corticostriatal neurons, ultimately resulting in increased extracellular striatal GLU and 

METH-induced DA terminal degeneration.   

Although altered basal ganglia output has been suggested to influence GLU 

release during METH exposure as well as the resulting neurotoxicity, it is conceivable 

that other mechanisms may underlie increased concentrations of extracellular GLU and 

thus, toxicity.  For instance, liver toxicity and elevations of peripheral ammonia have also 

recently been suggested to contribute to increased striatal GLU associated with METH-

induced neurotoxicity (Halpin and Yamamoto, 2012).  How this alternative mechanism 

interfaces with the circuit-level mechanisms driving striatal GLU release in response to 
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METH and the relative contributions of these different sources of GLU to METH-

induced DA terminal degeneration deserves further exploration.  

The activation of downstream cascades by GLU has previously been implicated in 

DA nerve terminal degeneration.  For example, exposure of rats to a neurotoxic regimen 

of METH is associated with spectrin proteolysis (Staszewski and Yamamoto, 2006; Tata 

and Yamamoto, 2008).  Activation of NMDA-type GLU receptors in particular results in 

activation of calpain, a Ca2+-dependent protease (Suzuki et al., 1987; del Cerro et al., 

1994).  Once activated, calpain degrades the cytoskeletal membrane protein spectrin 

(Harris and Morrow, 1988).  This particular pathway has been implicated in several other 

neurodegenerative processes including excitotoxicity associated with traumatic brain 

injury, ischemia and hyperthermia (Morimoto et al., 1997; Pike et al., 1998; Buki et al., 

1999).  In addition to the activation of calpain, GLU has also been suggested to result in 

METH-induced neurotoxicity though an increase in nitric oxide (NO) production (Itzhak 

and Ali, 1996; Itzhak et al., 1998; Deng and Cadet, 1999; Imam et al., 1999; Itzhak et al., 

1999; Imam et al., 2000; Itzhak et al., 2000a; Anderson and Itzhak, 2006).  Although it is 

conceivable that several other intracellular events subsequent to the activation of NMDA-

type GLU receptors may influence METH-induced neurotoxicity, the overall goal of this 

dissertation was to explore the role of NO production in DA nerve terminal degeneration.   

 

1.2.3 The role of nitric oxide in methamphetamine-induced neurotoxicity 

Nitric oxide is a gaseous neuromodulator implicated in various physiological 

processes including neuroplasticity (Wang et al., 2005; Serulle et al., 2007), 

neurovascular coupling (Faraci and Breese, 1993), and neuronal excitability (Centonze et 
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al., 2001; West and Grace, 2004).  However, NO has also been implicated in neuronal 

damage (Louin et al., 2006; Mohammadi et al., 2012) and various central nervous system 

(CNS) diseases including Alzheimer’s disease (Sultana et al., 2006), Parkinson’s disease 

(Hunot et al., 1996), and multiple sclerosis (Bo et al., 1994), suggesting that in addition to 

playing a role in normal CNS functions, NO may also play a role in neurodegeneration. 

Nitric oxide is synthesized by a family of proteins termed nitric oxide synathase 

(NOS), of which there are three distinct isoforms.  The two constitutively expressed, 

Ca2+-dependent isoforms are neuronal nitric oxide synthase (nNOS or NOS-I) and 

endothelial nitric oxide synthase (eNOS or NOS-III) (Bredt and Snyder, 1990; 

Forstermann et al., 1991).  These two isoforms are basally expressed in their respective 

cell types under normal conditions.  In the brain, nNOS is predominantly expressed by 

neurons (Bredt et al., 1990; Bredt and Snyder, 1990), although some data suggest 

possible astrocytic expression of nNOS as well (Arbones et al., 1996).  Importantly, in 

striatum, nNOS is expressed by a subpopulation of interneurons that co-express GABA, 

somatostatin, and neuropeptide Y (Kawaguchi et al., 1995; Figueredo-Cardenas et al., 

1996).  Endothelial nitric oxide synthase is expressed predominantly by endothelial cells 

(Seidel et al., 1997; Stanarius et al., 1997), although neuronal expression in hippocampus 

(Dinerman et al., 1994; O'Dell et al., 1994) and astrocytic expression (Lin et al., 2007a) 

have also been described.  The third isoform, inducible nitric oxide synthase (iNOS or 

NOS-II), is not basally expressed under normal conditions, but rather is transcriptionally 

induced and activated in a Ca2+-independent manner (Yui et al., 1991) during 

inflammatory reactions via a cytokine-mediated cascade (Lowenstein et al., 1993; Xie et 

al., 1993; Lin and Murphy, 1997; Park et al., 1997).  Inducible nitric oxide synthase is 
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expressed mainly by astrocytes, microglia, and macrophages throughout the brain (Endoh 

et al., 1994; Liu et al., 1996).  Therefore, although all three isoforms convert the 

precursor L-arginine to NO and L-citrulline, each isoform arises from different a gene 

product (Janssens et al., 1992; Geller et al., 1993; Hall et al., 1994) and unique expression 

pattern. 

Under normal conditions, NO plays a role in normal physiological processes; 

however, over-production of NO may result in CNS damage.  For example, under normal 

conditions, NO is known to bind soluble guanylate cyclase (sGC) resulting in activation 

of the enzyme, cyclic guanosine monophosphate (cGMP) production, and activation of 

cellular events downstream of cGMP (Stone and Marletta, 1996).  However, NO has also 

been heavily implicated in several CNS injuries and neurodegenerative diseases.  In 

particular, NO can interact with superoxide (02
-) to form peroxynitrite (ONOO-) 

(Beckman et al., 1990), a potent oxidant (Radi et al., 1991).  Peroxynitrite, in turn, can 

interact with various cellular targets, resulting in protein nitration, lipid peroxidation 

(Rubbo et al., 1994), and DNA damage (Salgo et al., 1995; Yermilov et al., 1995; 

Yermilov et al., 1996).  More specifically, peroxynitrite can interrupt cellular respiration 

by inhibiting components of the mitochondrial electron transport chain, including 

complexes I and III (Radi et al., 1994; Clementi et al., 1998; Riobo et al., 2001).  In 

addition, NO can also directly nitrate proteins, resulting in protein/enzyme malfunction 

(Konorev et al., 1998; Blanchard-Fillion et al., 2001).  Thus while it is clear that NO is an 

important mediator of normal physiological processes, NO can also be detrimental to 

cellular function, and overproduction of NO can thus contribute to cellular injury.  
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To date, several studies have described increased NO production following 

METH exposure using various indices.  For example, detection of nitrated proteins, an 

indirect measure of peroxynitrite formation, is increased in striatum following METH 

exposure (Imam et al., 1999; Imam et al., 2000; Anderson and Itzhak, 2006; Wang et al., 

2008; Friend et al., 2013).  Our lab has also shown an increase in NADPH diaphorase 

histochemical staining (Friend et al., 2013), a measure of NOS activity (Dawson et al., 

1991; Hope et al., 1991), following exposure to a neurotoxic regimen of METH.  

Furthermore, the co-administration of peroxynitrite decomposition catalysts or NOS 

inhibitors is reported to result in decreased NO production following METH exposure 

(Imam et al., 1999; Imam et al., 2000).  Thus, it is apparent that METH results in NO 

production. 

 

1.2.3.1 Source of nitric oxide following methamphetamine exposure   

Given that NO production is increased in METH-induced neurotoxicity and data 

suggest roles for NO and peroxynitrite in neurodegeneration, several studies have 

attempted to identify which isoform of NOS contributes to the METH-induced NO 

production.  One study examined nNOS and iNOS expression in striatum and found that 

nNOS protein, as well as the number of cells positive for NADPH-diaphorase 

histochemical staining, were increased following METH exposure (Deng and Cadet, 

1999).  However, since this study was published, our lab and others have examined 

nNOS expression via immunohistochemistry (Wang and Angulo, 2011) or in situ 

hybridization (Friend et al., 2013) and have failed to see any change in the amount of 

nNOS expression at either the mRNA or protein level.  Additionally, we also examined 
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the number of cells with histochemical staining for NADPH diaphorase—a stain 

produced by the enzymatic activity of NOS (Hope et al., 1991)—and again, we did not 

observe a METH-induced change in the number of cells positively stained. It is possible 

that the discrepancy between the studies reflect a mouse vs. rat difference, as differences 

in nNOS expression have been observed between species and strains of animals within a 

species (Blackshaw et al., 2003).  Furthermore, it is generally accepted that nNOS is 

constitutively expressed and that NO production via nNOS arises as a consequence of 

Ca2+-calmodulin and Ca2+ influx through NMDA receptors (Bredt and Snyder, 1990; 

Sattler et al., 1999).  In fact, although we have not observed changes in the numbers of 

cells expressing nNOS mRNA or the number of cells positive for NADPH diaphorase 

histochemical staining, we did observe an increase in total NADPH diaphorase 

histochemical staining (i.e., percent of the total imaged field with signal; (Friend et al., 

2013; Chapter 2).  These data suggest that METH increases NO production via activation 

of constitutively expressed nNOS rather than a change in its expression.   

Inducible nitric oxide synthase expression has also been examined following a 

neurotoxic regimen of METH, and no induction of iNOS protein was observed (Deng and 

Cadet, 1999).  However, Deng and Cadet examined iNOS expression at 1hr, 24hr, and 1 

week following exposure to a neurotoxic regimen of METH—time points at which glial 

cells, the cell types in which induction of iNOS mRNA expression typically occurs 

(Gibson et al., 2005), may not be fully reactive (LaVoie et al., 2004).  Therefore, we 

examined iNOS mRNA expression in animals 1hr and also 48hr following a neurotoxic 

regimen of METH, as glial reactivity is maximal at 48hr after exposure to a neurotoxic 

regimen of METH (LaVoie et al., 2004). Consistent with the data from Deng and Cadet  
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(Deng and Cadet, 1999), we also failed to see any induction of iNOS mRNA (Friend et 

al., 2013).  Thus, because iNOS must be transcriptionally induced in order to produce NO 

(Lowenstein et al., 1993; Xie et al., 1993), these data suggest that NO is not produced via 

iNOS after exposure to a neurotoxic regimen of METH.   

Finally, our lab is the first to have examined eNOS mRNA expression following a 

neurotoxic regimen of METH.  As was the case for iNOS, we did not observe any change 

in eNOS expression in animals sacrificed 1 or 48hr after exposure to the neurotoxic 

regimen (Friend et al., 2013).  However, given that eNOS is also constitutively expressed, 

there remains the possibility that eNOS may contribute, at least in part to METH-induced 

NO production.  In this regard, our data show that when we limit our analysis of NOS 

activity to the nNOS expressing interneurons in striatum by excluding blood vessels from 

the NADPH diaphorase histochemical staining, we still observe an increase in NOS 

activity, suggesting that eNOS expressing endothelial cells are not contributing to 

METH-induced increases in NOS activation.  Taken together, these data suggest that 

nNOS, rather than eNOS, is the source of NO production in response to METH.  

However, a better general understanding of how the constitutively expressed NOS 

isoforms are regulated will lead to a more definitive answer regarding the particular 

isoforms responsible for METH-induced NO production.  For instance, studies examining 

NO in the context of long-term potentiating in the hippocampus have demonstrated 

compensatory interactions between nNOS and eNOS.  These data show that LTP is 

disrupted only if both nNOS and eNOS are eliminated (Son et al., 1996), suggesting that 

in the absence of one isoform of NOS the other may suffice in generating the NO 

necessary for LTP to occur.  If a similar scenario exists in the context of METH-induced 
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neurotoxicity, then it is conceivable that either isoform may contribute to METH-induced 

increases in NO. 

 

1.2.3.2 Nitric oxide in methamphetamine-induced neurotoxicity   

Several attempts have been made to elucidate the role of NO in METH-induce 

DA nerve terminal degeneration by using either pharmacological or genetic 

manipulations.  Unfortunately, these studies have been inconclusive.  For example, the 

co-administration of peroxynitrite decomposition catalysts with METH protects against 

METH-induced DA depletions (Imam et al., 1999).  Further, studies using genetic 

manipulations have shown that METH-induced DA depletions are blocked in mice with 

deletion of nNOS (Itzhak et al., 1998; Itzhak et al., 2000b) and partially attenuated in 

mice with deletion of iNOS (Itzhak et al., 1999; Itzhak et al., 2000b), suggesting a role 

for NO and its downstream mediator, peroxynitrite, in METH-induced neurotoxicity.  

However, although the use of peroxynitrite decomposition catalysts or the use of nNOS 

and iNOS knockout mice afforded protection against the neurotoxic effects of METH, 

these manipulations also mitigated METH-induced hyperthermia (Itzhak et al., 1998; 

Imam et al., 1999; Itzhak et al., 1999).  METH-induced hyperthermia is tightly associated 

with METH-induced monoamine toxicity (Ali et al., 1994).  In fact, simply cooling 

animals during METH exposure protects animals against METH-induced toxicity (Ali et 

al., 1994). Therefore it is difficult to determine whether the protection observed following 

these manipulations of the NOS system resulted in the protection against METH-induced 

DA depletions or whether the protection arose from the mitigation of METH-induced 

hyperthermia.  Finally, while some studies suggest protection against METH-induced DA 
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depletions when NOS inhibitors are co-administered (Di Monte et al., 1996; Itzhak and 

Ali, 1996; Ali and Itzhak, 1998; Itzhak et al., 2000a), others suggest that the 

neuroprotective effects of NOS inhibitors also result from mitigation of METH-induced 

hyperthermia (Taraska and Finnegan, 1997; Callahan and Ricaurte, 1998). Therefore, the 

work using pharmacological inhibition of NOS in the context of METH-induced 

neurotoxicity remains inconclusive.  Conducting these studies while carefully controlling 

for METH-induced hyperthermia (i.e., placing knockout animals in an environment with 

increased ambient temperature to maintain METH-induced hyperthermia) should lead to 

more conclusive results in this regard.  Additionally, studies using knockdown 

approaches particularly in specific cell types (e.g., shRNA driven by cell type specific 

promoters such as SST) should more clearly elucidate not only the NOS isoform 

contributing to increased NO during exposure to METH, but also the particular cell 

population involved.  

Adding further debate to the role of NO in METH-induced neurotoxicity are 

studies that use other manipulations in attempts to clarify the role in METH-induced 

neurotoxicity.  For example, ablation of nNOS-expressing interneurons in striatum did 

not protect against METH-induced TH or DAT depletions (Zhu et al., 2006; Fricks-

Gleason and Keefe, 2013); however, there was incomplete mitigation of METH-induced 

NO production in such preparations (Fricks-Gleason and Keefe, 2013) raising questions 

as to whether the NO could be produced by constitutively expressed eNOS or by 

diffusion away from residual nNOS-containing interneurons.   

An alternative conclusion for the results of these studies is that NO is not 

sufficient for METH-induced neurotoxicity.  In this regard, our lab examined this issue in 
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animals resistant to the acute neurotoxic consequences of METH exposure.  In this 

model, animals were initially treated with METH or saline on PND60 and then allowed 

to recover for 30 days.  At PND90, the rats are treated again with either METH or saline, 

resulting in four treatment groups based on PND60:PND90 treatment (Saline:Saline, 

Saline:METH, METH:Saline, and METH:METH).  Under this paradigm, we and others 

have found that animals with partial DA loss induced by a neurotoxic regimen of METH 

(METH:METH) fail to exhibit further decreases in striatal DA when reexposed to METH 

at PND90 (Thomas and Kuhn, 2005a; Hanson et al., 2009). This paradigm allowed us to 

compare changes in NOS enzyme activity and protein nitration in animals experiencing 

acute toxicity when exposed to METH at PND90 (i.e., the saline:METH group) 

compared to animals not experiencing acute toxicity when exposed to METH at PND90 

(i.e., the METH:METH group)(Friend et al., 2013).  We found that both protein nitration 

and NOS activity were increased in all animals exposed to METH at PND90 (i.e., 

Saline:METH and METH:METH).  Thus, NO was produced regardless of whether an 

animal was experiencing acute toxicity or not.  These data, combined with data showing 

that METH exposure results in DA terminal damage in several brain regions (i.e. 

amygdala, hippocampus, and cortex) that do not exhibit changes in protein nitration 

(Anderson and Itzhak, 2006), indicate a significant dissociation between indices of NO 

production and acute DA neuron toxicity, suggesting that generation of NO is not 

sufficient and may not be necessary for METH-induced DA toxicity.  

Although NO does not appear to be sufficient for METH-induced DA nerve 

terminal degeneration, it may be necessary when toxicity does occur, as NO may act 

together with other factors under those conditions to contribute to the toxicity.  For 
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example, both DA and GLU regulate NO production via nNOS-expressing interneurons 

in striatum.  In this regard, nNOS-expressing interneurons in striatum express NMDA-

type GLU receptors (Gracy and Pickel, 1997), and intrastriatal infusion of NMDA 

receptor agonists (Iravani et al., 1998; Rossetti and Crespi, 2004) or application in vitro 

(Garthwaite et al., 1988; Bredt and Snyder, 1989) increases NO production.  The striatum 

in particular receives extensive glutamatergic inputs from cortex (Gerfen, 1989; Bellomo 

et al., 1998), and stimulation of corticostriatal afferents, both in vitro and in vivo, 

increases the production of NO via an nNOS-dependent mechanism (Kawaguchi, 1993; 

Sammut et al., 2007).  In addition to expressing NMDA-type GLU receptors, nNOS-

expressing neurons also express D1-type (D1 and D5) DA receptors (Le Moine et al., 

1991; Rivera et al., 2002; Centonze et al., 2003).  D1-type DA receptor stimulation 

induces the production of NO (Le Moine et al., 1991; Sammut et al., 2006) and increases 

NADPH diaphorase staining in striatum (Morris et al., 1997; Hoque et al., 2010).  

Finally, NMDA and D1 DA receptor activation work together to increase NO production 

in striatum (Park and West, 2009).  Therefore, these data, combined with studies 

demonstrating significant increases in both GLU (Nash and Yamamoto, 1992; Mark et 

al., 2004) and dopamine (O'Dell et al., 1991; Nash and Yamamoto, 1992; O'Dell et al., 

1993) during and following exposure to a neurotoxic regimen of METH, suggest that NO 

produced by nNOS during METH exposure may simply be a readout of NMDA and DA 

receptor stimulation rather than a contributor to the neurotoxic process.  Studies using 

specific manipulations of NMDA or DA receptors and then examining NO production 

during METH exposure would more specifically answer this question.  
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In summary, our recent data strongly indicate that METH-induced NO production 

results from an increase in activity of nNOS in striatum.  Importantly, we also show that 

NO production is increased in animals exposed to METH whether or not animals are 

experiencing METH-induced neurotoxicity.  Together, these data indicate that although 

METH increases NO production via nNOS, the NO produced is not sufficient for the 

induction of METH-induced DA terminal degeneration. 

 

1.2.4 Microglia and astrocytes in methamphetamine-induced  

neurotoxicity 

Neuroinflammation is a defense mechanism orchestrated by the CNS to protect 

against infection, injury, and disease.  Most often, neuroinflammation initiates beneficial 

processes that resolve; however, under certain circumstances the neuroinflammatory 

response may persist, resulting in chronic neuroinflammation that can contribute to CNS 

pathologies.  Both astrocytes and microglia play an important role in coordinating this 

neuroinflammatory response.  

Paralleling the DA system damage observed in human METH abusers is the 

presence of reactive microglia and increased density of astrocytes (Kitamura et al., 2010).  

Unfortunately, studies examining glial reactivity in human METH abusers are few, and a 

significant limitation to these studies is that glial reactivity is examined in post mortem 

tissue (Kitamura et al., 2010).  Therefore the ability to examine long-term changes in 

glial reactivity in these individuals is limited.  However, the development of radiotracers 

for activated microglia for performing PET studies confirms that microglia take on an 

activated phenotype in the brains of human METH abusers (Sekine et al., 2008).  In 
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addition to the observation that METH abuse causes activation of glial cells in human 

abusers, there is strong evidence indicating that amphetamine abuse has a high rate of 

comorbidity among individuals infected with human immunodeficiency virus (HIV) 

(Harris et al., 1993; Crofts et al., 1994).  Importantly, synergistic effects of HIV and 

METH have now been documented, including increased dopaminergic system damage 

(Maragos et al., 2002) and enhanced glial responses (Kaul and Lipton, 1999; Zhao et al., 

2001) and cytokine production (Shah et al., 2012a; Shah et al., 2012b).  Together, these 

data clearly demonstrate that METH exposure results in reactive glial cells and that 

reactive glia may contribute to METH-induced neurotoxicity.   

Similar to observations in human METH abusers, studies using animal models 

have provided evidence that METH exposure results in activated microglia and astrocytes 

(e.g., O'Callaghan and Miller, 1994; Cappon et al., 1997; Guilarte et al., 2003; LaVoie et 

al., 2004).  Studies carefully examining these cells at several time points after a 

neurotoxic regimen of METH suggest that astrocytes increase expression of glial 

fibrillary acidic protein (GFAP; indicator of activated astrocytes) and that the increase is 

apparent approximately 1 day post treatment and remains elevated compared to controls 

for long periods of time (21-32 days)(O'Callaghan and Miller, 1994; Friend and Keefe, 

2013) post treatment.  Similarly, markers for microglia are elevated by approximately 1 

day (LaVoie et al., 2004) post METH exposure and remain elevated for approximately 7 

days (Thomas et al., 2004) post treatment.  These data indicate that rodent models of 

METH-induced neurotoxicity mimic glial responses observed in human METH abusers 

and that glial responses in the rodent model begin shortly after METH exposure. 
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Although the reactivity of these cells types has been well documented, elucidating 

the role that both microglia and astrocytes play in METH-induced neurotoxicity is a 

much more difficult task.  Several groups have attempted to understand the functional 

role of these cells in METH-induced neurotoxicity and thus elucidate whether they 

represent a cause or consequence of DA terminal degeneration associated with METH 

exposure.  This review will summarize these findings as well as indicate areas of the field 

that warrant further investigation.  

 

1.2.4.1 Microglia   

Depending upon the particular CNS environment, microglia can dramatically 

change their morphology as well as their function.  Under normal circumstances in the 

healthy brain, microglia can be observed in a “resting” state identified by a small cell 

body and ramified morphology (Kreutzberg, 1996).  Although termed “resting,” under 

these conditions microglia are constantly surveying the environment with highly motile 

processes (Nimmerjahn et al., 2005).  In response to brain injury, inflammatory signals, 

or disease, microglia take on an “activated” phenotype characterized by dramatic changes 

in morphology, including an amoeboid shape with larger cell body (Kreutzberg, 1996).  

In this activated state, microglia also up-regulate surface molecules, including major 

histocompatibility complex (MHC), as well as cytokine and chemokine receptors 

(McKimmie and Fazakerley, 2005; Cho et al., 2006).  On the one hand, microglial 

activation can provide beneficial support for neuronal survival, for example by clearing 

cellular debris (Beyer et al., 2000; Simard and Rivest, 2007).  On the other hand, 

activated microglia can also cause significant neuronal damage via production of the 
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superoxide anion (Colton and Gilbert, 1987), nitric oxide (NO)(Moss and Bates, 2001), 

and inflammatory cytokines (Sawada et al., 1989).  Therefore depending upon the 

particular circumstances, microglia morphology and function can change, and these 

changes may serve neuroprotective or neurotoxic functions.  

Although attempts have been made to determine the mediators of microgliosis in 

the context of METH-induced neurotoxicity, the exact cascade is not yet fully 

understood.  Classical mechanisms of microglial activation point to proinflammatory 

cytokines, chemokines, and toll-like receptor stimulation (For review see Hanisch, 2002).  

Previous work suggests that the expression of several proinflammatory cytokines and 

chemokines are upregulated following METH administration, including TNFα, 

interleukin (IL)1-β, IL-6, and IL-8 (Sriram et al., 2006; Goncalves et al., 2008; Tocharus 

et al., 2010; Shah et al., 2012b).  Therefore, in the context of METH-induced 

neurotoxicity, microglial reactivity following METH exposure may be initiated via a pro-

inflammatory cascade.  

Alternatively, other signals may be responsible for microglia activation in the 

context of METH-induced neurotoxicity.  For example, METH-induced changes in 

striatal neurotransmitter systems may function as an initiator of microglia reactivity.  

Microglia express receptors for GABA (Kuhn et al., 2004), GLU (Noda et al., 2000), DA 

(Farber et al., 2005), and acetylcholine (Chang and Liu, 2000).  In particular, GLU 

receptor antagonism has been shown to decrease (Thomas and Kuhn, 2005c), whereas 

GLU receptor activation increases, microglia activation (Kaindl et al., 2012).  Given the 

significant increases in extracellular GLU during and following METH exposure (Nash 

and Yamamoto, 1992; Stephans and Yamamoto, 1994), GLU-mediated microglia 
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activation remains an interesting possibility.  Likewise, DA-mediated microglia 

activation appears to be a provocative possibility.  For instance, inhibiting DA synthesis 

prior to METH exposure decreases microglial activation, whereas increased cytosolic DA 

increases microglial activation (Thomas et al., 2008b).  The influence of DA on 

microglial activation may depend upon DA quinone formation, as METH exposure 

results in the formation of DA quinones (LaVoie and Hastings, 1999), and DA quinones 

alone can stimulate microglial activation in vitro (Kuhn et al., 2006).  Additionally, 

microglial activation has also been shown to be stimulated via adenosine triphosphate 

(ATP).  Microglia express receptors for ATP (Walz et al., 1993; Langosch et al., 1994), 

and ATP stimulation of purinergic receptors expressed by microglia increases cytokine 

production and regulates chemotaxis (Hide et al., 2000; Honda et al., 2001; Shigemoto-

Mogami et al., 2001; Davalos et al., 2005).  Additionally, under conditions of neuronal 

injury, such as hypoxia, ischemia, traumatic brain injury, and epilepsy, extracellular ATP 

is increased (For review see Franke et al., 2006).  Although changes in extracellular ATP 

in the context of METH exposure have not been explored, given the significant amount 

of damage that occurs to DA nerve terminals, ATP release seems a likely possibility.  

Taken together, these data suggest critical roles for GLU, DA, and ATP 

neurotransmission in microglial activation in response to METH exposure; however, it is 

important to consider that many of the manipulations used to query the role of those 

systems in glial activation also mitigate the neurotoxic effects of METH.  Therefore loss 

of glial activation may reflect the loss of toxicity to which glia are reacting, rather than a 

blockade of glial activation that is then causal in the METH-induced neurotoxicity.  

Furthermore, whether the above mentioned signals (GLU, DA, ATP) initiate a cytokine 
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cascade that stimulates microglial activation or whether these signals (GLU, DA, ATP) 

directly activate microglia has yet to be determined.  Studies determining the exact 

mechanisms resulting in stimulation of resting microglia to their activated counterparts 

will lead to more specific ways in which microglial activation can be modulated in the 

context of METH-induced neurotoxicity and possibly provide insight to guide the 

development of beneficial therapeutic interventions.   

In the context of METH-induced toxicity, there is a tight association between 

microglial activation and the neurotoxicity that occurs.  For example, reactive microglia 

can be found in regions of the brain that undergo METH-induced DA nerve terminal 

degeneration, but not in regions that do not (Guilarte et al., 2003; Thomas et al., 2004).  

Additionally, animals with partial DA loss resulting from prior exposure to METH are 

resistant to further decreases in striatal DA when reexposed to METH 7 or 30 days later, 

and such resistant animals also do not show an activated microglial phenotype (Thomas 

and Kuhn, 2005a; Friend and Keefe, 2013).  Together these studies strongly support an 

association between microglial activation and METH-induced degeneration; however, 

given the nature of these studies it remains unclear whether microglial activation is a 

cause or consequence of METH-induced neurotoxicity.   

Two studies have attempted to elucidate whether microglial activation is a cause 

or consequence of METH-induced neurotoxicity by examining whether microglial 

activation occurs before DA nerve terminal injury is apparent.  As mentioned above, 

microglial activation is detectable approximately 1 day after METH exposure. In one 

study, this change to a reactive microglial phenotype was reported to precede DA 

terminal degeneration (LaVoie et al., 2004), suggesting that microglia become activated 
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before degeneration occurs and that they could therefore contribute to the toxicity.  

However, another study has reported that the appearance of microglial activation 

occurred only after degeneration of TH fibers began (Bowyer et al., 2008), suggesting the 

converse—that degeneration occurs prior to changes in microglial activation and that 

glial activation may therefore be a consequence of METH-induced neurotoxicity.  Thus, 

although it is clear that microglia become activated within hours of METH exposure, the 

appearance of microglial activation in relation to initial signs of DA terminal 

degeneration is still under debate.   

Our ability to determine whether microglial activation is a cause or consequence 

of METH-induced neurotoxicity may be clarified with specific pharmacological or 

genetic inhibition of microglial activation.  In this regard, antiinflammatory pretreatment 

prevented microglial activation following METH exposure, but did not result in 

protection against DA depletions (Sriram et al., 2006; Boger et al., 2009).  Likewise, 

pretreatment of animals with free radical scavengers prior to METH exposure resulted in 

protection from METH-induced neurotoxicity, but not microglial activation (Kawasaki et 

al., 2006).  Collectively, these data suggest that microglial activation can be separated 

from METH-induced neurotoxicity and thus may not be causal in METH-induced 

neurotoxicity. 

In summary, whether reactive microglia are a cause or consequence of METH-

induced neurotoxicity remains under debate.  As mentioned above, our data strongly 

indicate that microglia reactivity, as measured using CD11b immunohistochemistry, 

parallels METH-induced neurotoxicity.  In this work we found that reactive microglia 

phenotypes were only observed in animals exposed to METH and experiencing acute 
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toxicity, but not in those exposed to METH and not experiencing acute toxicity (Friend 

and Keefe, 2013).  Likewise, we also show that microglial proliferation occurs to a much 

higher degree in animals experiencing toxicity compared to those that are not (Chapter 3).  

Other studies have shown similar associations between reactive microglia and METH-

induced neurotoxicity (e.g., LaVoie et al., 2004; Thomas and Kuhn, 2005a).  Conversely, 

work of other groups has suggested that microglia and indices of METH-induced DA 

terminal degeneration can be separated, suggesting that microglia do not play a causal 

role in METH-induced neurotoxicity (e.g. Sriram et al., 2006; Bowyer et al., 2008; Boger 

et al., 2009).  Future studies using specific genetic manipulations to inhibit microglia 

activation will lead to more definitive answers regarding reactive microglia in this regard. 

 

1.2.4.2 Astrocytes  

 Similar to microglia, when astocytes become reactive, both the morphology and 

functions of the cells change.  Nonreactive astrocytes are characterized by finely 

branched processes, with each astrocyte occupying a nonoverlapping domain (Bushong et 

al., 2002).  As astrocytes become activated, they upregulate expression of GFAP and 

other astrocytic markers (S100β and vimentin) (Sofroniew, 2009).  In addition, their cell 

bodies and process become much thicker, and the processes begin to overlap (Sofroniew, 

2009).  As mentioned above, detectable increases in GFAP expression are apparent 

approximately 1 day after exposure to neurotoxic regimens of METH (O'Callaghan and 

Miller, 1994), and GFAP expression remains elevated compared to controls for long 

periods of time (O'Callaghan and Miller, 1994; Friend and Keefe, 2013). Similar to 

microglia, although astrocytes become activated following a neurotoxic regimen of 
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METH, whether these cells are a cause or consequence of METH-induced neurotoxicity 

is unknown.  

As is the case for microglia, multiple signaling molecules activate astrocytes 

depending upon the specific context.  For example, various cytokines (For review see 

John et al., 2003) and toll-like receptor stimulation (Farina et al., 2005; Park et al., 2006) 

have all been shown to activate astrocytes.  In addition, neurotransmitters such as GLU 

(Lalo et al., 2006) and ATP (Neary et al., 2003) have also been implicated in activation of 

astrocytes in other CNS contexts.  As argued above for microglial activation, identifying 

the specific signals that initiate astrocyte activation in the context of METH-induced DA 

neurotoxicity should provide novel insights into the function of astrocytes in this context. 

To date, the effects of manipulations of astrocyte activation on METH-induced 

neurotoxicity have not been examined, and therefore it is unclear whether activated 

astrocytes, as for microglia, are a cause or consequence of METH-induced neurotoxicity.  

As mentioned above, astrocytic GFAP expression remains elevated 3-5 weeks after 

exposure to a neurotoxic regimen of METH (O'Callaghan and Miller, 1994; Friend and 

Keefe, 2013), suggesting that astrocytes become reactive and stay reactive long after 

METH-induced DA terminal degeneration occurs.   Furthermore, a dissociation between 

increased levels of GFAP and DA terminal degeneration following METH exposure has 

been observed.  For example, increased GFAP expression occurred simultaneously with 

indications of DA terminal damage in older rodents (PND60 and PND80), but, increased 

GFAP expression occurred in the absence of DA terminal degeneration in younger 

animals (PND40) (Pu and Vorhees, 1993), suggesting that astrocyte activation is not 

sufficient for METH-induced neurotoxicity.  Additionally, animals with partial DA loss 
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from prior exposure to METH that are resistant to further decreases in striatal DA when 

reexposed to METH 30 days later show levels of GFAP expression similar to animals 

exposed to METH at PND90 and experiencing acute toxicity (Friend and Keefe, 2013).  

These findings further suggest a possible dissociation between reactive astrocytosis, as 

reflected in elevated GFAP expression, and acute METH-induced DA terminal injury.  

However, we should note that in animals experiencing acute toxicity when treated with 

METH at PND90 there is an increase in GFAP staining over baseline, whereas in animals 

resistant to acute toxicity at PND90, there is no increase in GFAP over the relevant 

baseline (which is elevated due to prior METH exposure at PND60).  These findings, 

therefore, can be interpreted in a different light—that is, that there is de novo astrocyte 

activation only in animals experiencing acute toxicity.  These different interpretations beg 

the same question asked above in the section on microglial activation of whether the 

marker being examined, in this case GFAP immunohistochemical staining, is a definitive 

measure of astrocyte reactivity.  Overall, however, when taken together the studies 

reported to date suggest that activation of astrocytes alone are not sufficient to cause 

METH-induced DA terminal degeneration.  Future studies using specific genetic 

manipulations to inhibit astrocyte activation should lead to more definitive answers 

regarding reactive microglia in this regard.  The following section will discuss possible 

ways in which glia may contribute to or play a protective role in METH-induced 

neurotoxicity. 
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1.2.4.1 Mechanisms by which glia may contribute to or mitigate  

methamphetamine-induced neurotoxicity 

As mentioned above, microglia and astrocytes are known to release several 

factors, including superoxide (Colton and Gilbert, 1987), NO (Moss and Bates, 2001), 

and various cytokines (Sawada et al., 1989) that may play an important causal role in 

CNS damage.  Oxidative damage in particular has been suggested to play a significant 

role in METH-induced neurotoxicity.  For example, markers of lipid oxidation 

(Fitzmaurice et al., 2006; Huang et al., 2013) and changes in antioxidant systems have 

been observed following a neurotoxic regimen of METH (Giovanni et al., 1995; 

Fleckenstein et al., 1997; Yamamoto and Zhu, 1998; Mirecki et al., 2004; Granado et al., 

2011).  Furthermore, animals to whom free radical scavengers and antioxidants are co-

administered with METH are protected from METH-induced DA terminal degeneration 

(Wagner et al., 1986; Fukami et al., 2004).  Therefore it could be possible that glial cells 

contribute to toxicity via production of reactive oxygen species.   

Interestingly, astrocytes also can protect neurons against oxidative stress via 

several antioxidant mechanisms (Makar et al., 1994; Shih et al., 2003), including 

glutathione (GSH) production (Raps et al., 1989).  In fact, treating animals with N-acetyl-

L-cysteine, a glutathione precursor, prior to METH exposure protects animals against 

METH-induced DA terminal degeneration (Fukami et al., 2004).	
  	
  Recent work has also 

demonstrated that metallothioneins (MT) can scavenge DA quinones (Miyazaki et al., 

2007).  Astrocytes express certain isoforms of MTS to a greater degree than do neurons, 

and astrocytes up-regulate expression of these isoforms in response to CNS injury 

(Chung et al., 2004).  Also, DA quinones increase expression of MTs in astrocytes and 
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astrocyte-derived MTs protect neurons from DA quinone toxicity (Miyazaki et al., 2011).  

Taken together, these data suggest that astrocytes may serve a protective function for 

neurons against oxidative stress in METH-induced neurotoxicity.  Given the data 

mentioned above regarding the possible role for glial in contributing to oxidative stress as 

well as a possible role for astroytes in mitigating reactive oxygen species related damage, 

studies manipulating the ability of astrocytes and microglia to specifically contribute to or 

mitigate reactive oxygen species in the context of METH-induced neurotoxicity is 

needed.  

In addition to reactive oxygen species, NO and ONOO- have been heavily 

implicated in METH-induced neurotoxicity (as reviewed above), and several groups have 

conducted studies in attempts to determine if glial-expressed inducible nitric oxide 

synthase (iNOS) plays a significant role in NO production following METH exposure.  

For example, animals with a depletion of the iNOS gene are protected against METH-

induced neurotoxicity (Itzhak et al., 1999; Itzhak et al., 2000b).  However, as already 

discussed above, a significant caveat to these studies is that METH-induced hyperthermia 

is disrupted in these animals (Itzhak et al., 1999), and METH-induced hyperthermia is 

tightly associated with the toxicity (Ali et al., 1994).  Therefore it is unclear whether the 

protection observed resulted from the mitigation of METH-induced iNOS expression or 

METH-induced hyperthermia.  Furthermore, because iNOS must be transcriptionally 

induced to produce NO (Lowenstein et al., 1993; Xie et al., 1993), and we  (Friend et al., 

2013) and others (Deng and Cadet, 1999) have failed to observe any induction of iNOS 

after METH exposure, the data suggest that METH-induced NO production does not 

result from the iNOS isoform (as discussed above).  Under some conditions astrocytes 
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have been reported to express nNOS (Arbones et al., 1996).  However, following METH 

exposure, there is no change in the number of cells expressing nNOS (Wang and Angulo, 

2011; Friend et al., 2013). It is thus unlikely that astrocytes are contributing to METH-

induced NO production via nNOS or iNOS.  Altogether these data suggest that glia do 

not contribute to METH-induced DA terminal degeneration via an NO mechanism. 

Microglia and astrocytes also have the ability to release both pro and anti-

inflammatory cytokines, and over production of proinflammatory cytokines can result in 

chronic inflammation (Hanisch, 2002; Min et al., 2006; Brambilla et al., 2009). Recent 

work examining changes in gene expression in microglia in response to DA quinone 

exposure in vitro shows a robust increase in several proinflammatory mediators (Kuhn et 

al., 2006).  Interestingly, central administration of proinflammatory mediators or 

lipopolysaccharide (Lin et al., 2007b; Hozumi et al., 2008) prior to or following METH 

administration attenuates METH-induced DA terminal degeneration, possibly suggesting 

that a “primed” neuroinflammatory response may serve a protective function.  Therefore, 

work determining the particular pro- or antiinflammatory mediators released by microglia 

and astrocytes at different time points during and following METH exposure should shed 

additional light on the role of these cells in chronic neuroinflammation.  A better 

understanding of the specific conditions under which astrocytes and microglia coordinate 

either pro- or antiinflammatory processes in the context of METH-induced neurotoxicity 

may point toward therapeutic targets for attenuating METH-induced neurotoxicity. 

One inflammatory mediator that has been implicated in METH-induced 

neurotoxicity is cyclooxygenase-2 (COX-2).  COX-2 expression is increased within just a 

few hours of exposure to a neurotoxic regimen of METH (Kita et al., 2000; Thomas and 
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Kuhn, 2005b; Zhang et al., 2007).  The COX enzyme is a major inflammatory mediator 

and is the rate-limiting enzyme in the synthesis of prostaglandins, with the COX-2 

isoform, in particular, being transcriptionally induced in neurons and glia in response to 

inflammatory stimuli (Smith et al., 2000; For review see Consilvio et al., 2004; Zhang et 

al., 2007).  COX-2 and the downstream synthesis of prostaglandins are believed to play 

an important role in regulating neuroinflammation (Aid and Bosetti, 2011).  Importantly, 

deletion of the COX-2 gene renders animals partially protected against METH-induced 

DA depletions (Thomas and Kuhn, 2005b).  However, COX-2 inhibitor co-administration 

during METH exposure does not afford similar protection (Thomas and Kuhn, 2005b; 

Zhang et al., 2007), and thus the possible role for glial-derived COX-2 in METH-induced 

neurotoxicity is unclear and deserves further study. 

In addition to release of factors that may contribute to or mitigate METH-induced 

DA terminal degeneration, microglia also have significant phagocytic capability.  In this 

regard, microglia may contribute to METH-induced neurotoxicity via phagocytosis of 

DA nerve terminals (i.e., prior to their degeneration).  There is a growing amount of 

evidence suggesting phagocytosis-induced neuronal damage, particularly of cells that 

may have otherwise been viable (Neher et al., 2011; Fricker et al., 2012).  Conversely, 

microglial activation may provide beneficial support for neuronal survival, by clearing 

cellular debris (Beyer et al., 2000; Simard and Rivest, 2007).  To date, no one has 

examined whether microglia-mediate phagocytosis of DA terminals occurs early in 

response to METH exposure.  Therefore, a more comprehensive understanding of 

microglia-mediated phagocytosis, the signals initiating this process, and whether such 

phagocytosis occurs following METH exposure are clearly needed and should provide 

32



novel insight into the potential causal versus protective roles of microglia in METH-

induced neurotoxicity 

As reviewed above, extracellular GLU has also been heavily linked to METH-

induced damage to the DA nerve terminals in striatum (Battaglia et al., 2002; Mark et al., 

2004).  Astrocytes are important regulators of extracellular GLU (Rothstein et al., 1996) 

via activity of excitatory amino acid transporter-1 (EAAT-1/GLAST) and 2 

(EAAT2/GLT-1) (Chaudhry et al., 1995; Kondo et al., 1995; Lehre et al., 1995). To our 

knowledge, only one study has examined and shown an increase in GLT-1 expression in 

response to repeated METH exposure, and that was to a low dose (Nishino et al., 1996).  

Therefore regulation of extracellular GLU via EAAT1 and 2 deserves further 

investigation in the context of METH-induced neurotoxicity.  In addition to EAAT 1 and 

2, astrocytes also express the cystine/glutamate antiporter, and activity of this transporter 

has been shown to decrease GLU release following exposure to other psychostimulants 

(Baker et al., 2003).  To our knowledge activity of the cystine/glutamate exchange has 

not been examined in the context of METH-induced neurotoxicity.  Given the significant 

implication of high extracellular GLU concentrations in METH-induced neurotoxicity, 

studies examining astrocyte-mediated GLU regulation may provide novel therapeutic 

targets. 

Although astrocyte mediated GLU regulation may function as a protective 

mechanism against METH-induced neurotoxicity, it also is conceivable that disruption of 

astrocyte-regulated GLU during METH exposure could contribute to the neurotoxicity.  

For example, in addition to regulating extracellular GLU concentrations via uptake 

mechanisms, astrocytes have the ability to release GLU.  Furthermore, astrocyte-
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mediated GLU release has been demonstrated in response to inflammatory stimuli, 

including increased tumor necrosis factor α (TNFα)(Rossi et al., 2005).  Stimulation of 

CXCR4 receptors expressed by astrocytes via TNFα increases GLU release and produces 

excitotoxic consequences in hippocampal cultures (Bezzi et al., 2001).  Importantly, 

TNFα is increased following METH exposure (Sriram et al., 2006; Goncalves et al., 

2008), and animals with a depletion of the TNFα receptor gene are protected against 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neurotoxicity (Sriram et al., 

2006).  Additionally, recent work from Yamamoto and colleagues has suggested that 

increased extracellular GLU may be derived from the periphery secondarily to liver 

damage and hepatic encephalopathy (HE) may contribute to METH-induced 

neurotoxicity (Halpin and Yamamoto, 2012).  Ammonia can decrease expression of 

astrocytic GLU transporters (Chan and Butterworth, 1999; Chan et al., 2000) and cause 

astrocyte-mediated Glu release (Gorg et al., 2010), thus ultimately increasing 

extracellular GLU and possibly resulting in excitotoxicity.  Clearly, more in depth 

investigations into the regulation of extracellular GLU by astrocytes will provide novel 

insights into extracellular GLU implicated in METH neurotoxicity.  

Finally, disruption of the blood brain barrier (BBB) following METH exposure 

has also been documented (Bowyer and Ali, 2006; Kiyatkin et al., 2007; Bowyer et al., 

2008, and others).  The mechanisms underlying this disruption of the BBB during and 

after METH exposure have not been fully elucidated; however, astrocytes are known to 

play a key role in the maintenance of BBB function.  For example, ablation of astrocytes 

after CNS injury prevents BBB repair and allows for CNS edema (Bush et al., 1999).  
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Therefore further investigation into astocyte regulation of BBB function in METH-

induced neurotoxicity could provide a beneficial therapeutic target. 

While it is clear that both astrocytes and microglia become “reactive” in response 

to METH-induced neurotoxicity, our understanding of the role of these cells in such 

toxicity is far from complete.  One important issue that complicates the examination of 

glial cells in METH-induced neurotoxicity is the reference to “activated” glia without 

acknowledging that the activation of these cells is a heterogenous process.  In this regard, 

recent work has now shown that subtypes of astrocytes derived from different regions of 

the CNS serve distinct CNS functions (Stadlin et al., 1998; Lau et al., 2000; Yeh et al., 

2009).  Therefore, simply using markers, such as GFAP, as indicators of reactive gliosis 

limits our understanding of the particular function of these cells in different contexts.   

Similarly, our understanding of glial activation is still limited and our classification of 

“activated” glia may thus be incomplete, in that changes of glial function may occur prior 

to gross morphological changes.  For instance, in the context of METH exposure, recent 

work has shown changes in astrocyte Ca2+ signaling within minutes of METH exposure 

in vitro (Granado et al., 2011), suggesting that changes in astrocyte function in response 

to METH occur long before observable changes in GFAP expression.  In this regard, as 

mentioned above, we and others have shown that GFAP remains elevated compared to 

controls in animals exposed to METH 21 or 32 days prior (O'Callaghan and Miller, 1994; 

Friend and Keefe, 2013).  However, the degree to which these astrocytes are all equally 

"reactive" and performing the same functions as the astrocytes with GFAP expression 

immediately after exposure to a neurotoxic regimen of METH is unknown.  Re-
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evaluating ways in which we classify glia as “activated” may result in a better 

understanding of the function of these cells in METH-induced neurotoxicity. 

Finally, another important issue in studying activation of glia in the context of 

METH-induced neurotoxicity is that pharmacological manipulations to inhibit 

inflammatory responses or neurotransmitter signaling are relatively nonspecific.  

Therefore, the ability to determine whether particular cell types or signaling molecules 

are involved in METH-induced neurotoxicity is difficult.  As mentioned above, many 

manipulations that prevent glial activation also prevent DA nerve terminal degeneration.  

It is unclear whether glial reactivity is inhibited due to mitigation of METH-induced DA 

terminal degeneration or because of direct inhibition of glial activation.  Therefore, the 

use of transgenic models allowing for conditional ablation of reactive glia or similar 

genetic manipulations of signaling cascades that may lead to glial activation in this 

context will allow for more specific manipulations of these cells in METH-induced 

neurotoxicity.  For example, the recent use of fractalkine receptor knockout mice 

demonstrated that this receptor is not involved in microglia activation following METH 

exposure (Thomas et al., 2008a).  Similarly, genetic manipulations of astrocyte activation 

is now possible and could lead to significant insights into the role of these cells in 

METH-induced neurotoxicity (Liedtke et al., 1998; Wilhelmsson et al., 2004; Okada et 

al., 2006; Herrmann et al., 2008; Li et al., 2008).  Thus, identifying the particular signals 

that activate glial cells and then manipulating such activation should lead to significant 

advances in our understanding of glial cells in METH-induced DA nerve terminal 

degeneration. 
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ABSTRACT
Nitric oxide is implicated in methamphetamine (METH)-induced
neurotoxicity; however, the source of the nitric oxide has not
been identified. Previous work has also revealed that animals
with partial dopamine loss induced by a neurotoxic regimen of
methamphetamine fail to exhibit further decreases in striatal
dopamine when re-exposed to methamphetamine 7–30 days
later. The current study examined nitric oxide synthase
expression and activity and protein nitration in striata of animals
administered saline or neurotoxic regimens of methamphet-
amine at postnatal days 60 and/or 90, resulting in four treatment
groups: Saline:Saline, METH:Saline, Saline:METH, and METH:
METH. Acute administration of methamphetamine on postnatal
day 90 (Saline:METH and METH:METH) increased nitric oxide
production, as evidenced by increased protein nitration.
Methamphetamine did not, however, change the expression of
endothelial or inducible isoforms of nitric oxide synthase, nor did

it change the number of cells positive for neuronal nitric oxide
synthase mRNA expression or the amount of neuronal nitric
oxide synthase mRNA per cell. However, nitric oxide synthase
activity in striatal interneurons was increased in the Saline:
METH and METH:METH animals. These data suggest that
increased nitric oxide production after a neurotoxic regimen of
methamphetamine results from increased nitric oxide synthase
activity, rather than an induction of mRNA, and that constitu-
tively expressed neuronal nitric oxide synthase is the most
likely source of nitric oxide after methamphetamine adminis-
tration. Of interest, animals rendered resistant to further
methamphetamine-induced dopamine depletions still show
equivalent degrees of methamphetamine-induced nitric oxide
production, suggesting that nitric oxide production alone in
response to methamphetamine is not sufficient to induce acute
neurotoxic injury.

Introduction
It is estimated that 60 million people worldwide have

abused amphetamine-type psychostimulants, including meth-
amphetamine (METH; Maxwell, 2005). METH abuse re-
sults in selective damage to central monoamine systems. In
particular, repeated high-dose administration of METH

results in persistent dopamine (DA) deficits in rodents,
nonhuman primates, and humans. These DA deficits are
manifested as decreases in DA concentration (Kogan et al.,
1976; Wagner et al., 1980), DA transporter (DAT; Volkow
et al., 2001; Guilarte et al., 2003) and vesicular monoamine
transporter-2 levels (Guilarte et al., 2003), and tyrosine
hydroxylase activity (Kogan et al., 1976), particularly in
striatum. The exact mechanisms contributing to this phe-
nomenon have yet to be fully elucidated; however, a number
of factors occurring during or shortly after administration of
a neurotoxic regimen of METH, including the production of
nitric oxide (NO), have been implicated in this toxicity.
NO production is involved in a variety of normal physiologic

process and various pathologic conditions. NO is produced by
nitric oxide synthase (NOS), of which there are three isoforms:
neuronal nitric oxide synthase (nNOS), inducible nitric oxide
synthase (iNOS), and endothelial nitric oxide synthase
(eNOS). The work of several groups has suggested an
important role for NO in METH-induced monoamine system
damage. First, NO can interact with oxygen to form
peroxynitrite, a potent oxidant (Radi et al., 1991). Second,
prior studies have suggested that nNOS protein (Deng and
Cadet, 1999), nitrate (Anderson and Itzhak, 2006), and
protein nitration—an indirect measure of peroxynitrite
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production (Imam et al., 1999; Imam et al., 2000)—are
increased in striatum after METH exposure. Third, coadmin-
istration of peroxynitrite decomposition catalysts prevents
METH-induced DA depletions (Imam et al., 1999). Fourth,
METH-induced DA depletions are blocked in mice with
deletion of nNOS (Itzhak et al., 1998; Itzhak et al., 2000b)
and partially attenuated in mice with deletion of iNOS
(Itzhak et al., 1999; Itzhak et al., 2000b). However, the use
of peroxynitrite decomposition catalysts and nNOS and iNOS
knockout mice also mitigated METH-induced hyperthermia
(Itzhak et al., 1998; Imam et al., 1999; Itzhak et al., 1999)
known to be critical for METH-induced monoamine toxicity
(Ali et al., 1994). In addition, studies using pharmacological
inhibitors of NOS are similarly inconclusive. Some studies
suggest protection against METH-induced DA depletions
when NOS inhibitors are coadministered (Di Monte et al.,
1996; Itzhak and Ali, 1996; Ali and Itzhak, 1998; Itzhak et al.,
2000a), whereas others suggest that the neuroprotective
effects of NOS inhibitors result from mitigation of METH-
induced hyperthermia (Taraska and Finnegan, 1997; Call-
ahan and Ricaurte, 1998). Adding to the debate on the role of
NO production in METH-induced neurotoxicity are data
demonstrating that the elimination of nNOS-expressing cells
in striatum fails to protect against METH-induced tyrosine
hydroxylase depletions (Zhu et al., 2006).
To further explore factors sufficient for METH-induced

monoamine toxicity, we have used a model of resistance to
this toxicity, in which animals are treatedwith a binge regimen
of METH but do not show acute monoamine toxicity. That is,
our laboratory and others have conducted studies in which
animals are treated with a neurotoxic regimen of METH and
are challenged seven or 30 days later with a second neurotoxic
regimen of METH. The data from these studies show that
animals with partial DA loss induced by an initial exposure to
a neurotoxic regimen of METH fail to exhibit further DA, DAT,
and vesicular monoamine transporter-2 depletions when
exposed to the second neurotoxic regimen (Thomas and Kuhn,
2005; Hanson et al., 2009). The extent to which this resistance
to subsequent METH-induced neurotoxicity is associated with
decreased NO production is unknown. Thus, the purpose of the
current study was to determine the source of NO after METH
exposure and to examine whether animals rendered resistant
to further METH-induced DA depletions have decreases in NO
production.

Materials and Methods
Animals. Male Sprague-Dawley rats (Charles River Laboratories,

Raleigh, NC) were housed in wire mesh cages in a temperature-
controlled room on a 12:12-hour light/dark cycle with free access to
food and water. All animal care and experimental procedures were in
accordance with theGuide for the Care andUse of Laboratory Animals
(8th Ed., National Research Council) and were approved by the
Institutional Animal Care and Use Committee at the University of
Utah.

METH Administration. On days of METH injections (postnatal
days [PNDs] 60 and 90), rats were housed in groups of four in plastic
tub cages (33 cm ! 28 cm ! 17 cm) with corncob bedding. Rats were
given injections of (6)-METH HCl (National Institutes of Health
National Institute on Drug Abuse, Bethesda, MD; 10mg/kg, free base,
subcutaneous) or 0.9% saline (1 ml/kg, subcutaneous) at 2-hour
intervals for a total of four injections. This METH dosing regimen has
previously been shown to significantly reduce DA levels and tyrosine

hydroxylase activity in the striatum (Kogan et al., 1976). To monitor
METH-induced hyperthermia, rectal temperatures were recorded
using a digital thermometer (BAT-12; Physitemp Instruments,
Clifton, NJ). Temperatures were taken 30 minutes before the first
injection of saline or METH and 1 hour after each injection thereafter.
Animals whose core temperature exceeded 40.5°C were cooled by
placement in a cool chamber until their core temperature decreased
below 39°C. Eighteen hours after the last injection of METH or saline
on PND60, animals were returned to their home cages and allowed to
recover for 30 days. On PND90, animals were again housed in plastic
tub cages as described above and injected with either saline or the
neurotoxic regimen of METH, similar to PND60 treatments. This
experimental protocol resulted in four treatment groups based on
treatments on PND60 and PND90 (PND60:PND90): Saline:Saline,
Saline:METH, METH:Saline, and METH:METH. Animals were
sacrificed 1 hour or 48 hours after their last injection on PND90.

Tissue Preparation. Rats were sacrificed by exposure to carbon
dioxide for 1 minute, followed by decapitation. To perform both in situ
hybridization histochemistry for the NOS isoforms and histochemis-
try for NOS activity and immunohistochemistry for protein nitration,
brains were rapidly removed and hemisected. One hemisphere was
immediately frozen in 2-methylbutane chilled on dry ice and stored at
280°C. The other hemisphere was submerged in 4% formaldehyde
with 0.9% sodium chloride for 24 hours at 4°C, then cryoprotected in
30% sucrose in 0.1 M phosphate-buffered saline (PBS) and stored at
4°C. The fresh-frozen hemispheres were cut into 12-mm thick sections
on a cryostat (Cryocut 1800; Cambridge Instruments, Bayreuth,
Germany). These striatal sections (Bregma: 11.6 mm to 10.2 mm)
were thaw-mounted on slides and stored at 220°C. Slides from all
animals to be used for a particular in situ hybridization histochemical
analysis were then postfixed in 4% formaldehyde/0.9% sodium chloride,
acetylated in 0.25% acetic anhydride in 0.1 M triethanolamine/0.9%
sodium chloride (pH, 8), dehydrated in alcohol, delipidated in
chloroform, and rehydrated in a descending series of alcohol concen-
trations. Slides were air-dried and stored at 220°C until further
processing. The fixed hemispheres were cut into 30-mm thick sections
on a freezing microtome (Microm, HM 440E). These sections of striatum
(Bregma: 11.6 mm to 10.2 mm) were stored at 4°C in 1 mg/ml sodium
azide in 0.1 M PBS.

DAT Autoradiography. DAT levels in striatumwere determined
by [125I]RTI-55 (PerkinElmer, Waltham, MA) binding, as previously
described (Pastuzyn et al., 2012). Slides were apposed to film (Biomax
MR; Eastman Kodak, Rochester, NY) for 24 hours and developed.
Film autoradiogramswere analyzed usingNIH ImageJ (http://imagej.
nih.gov/ij/) to yield mean background-subtracted gray values in the
dorsomedial and dorsolateral striatum. Two rostral and two middle
striatal sections were analyzed per rat and averaged. Mean gray
values were then converted to percentage of control (Saline:Saline).

Nitrotyrosine Immunohistochemistry. Tissue sections from
the fixed hemispheres were processed for nitrotyrosine immunohis-
tochemistry. The sections were washed in 0.1M PBS, incubated for 10
minutes in 0.1MPBSwith 3% hydrogen peroxide to block endogenous
peroxidases, and washed again in 0.1 M PBS. The tissue was blocked
with 0.1 M PBS containing 10% normal horse serum for 1 hour, then
incubated overnight at 4°C with 5% normal horse serum and anti-
nitrotyrosine mouse monoclonal antibody (1:100, Abcam, ab78163).
The following day, sections were washed in 0.1 M PBS and incubated
for 1 hour at room temperature with 5% normal horse serum and
biotinylated horse anti-mouse IgG (1:200, Vector Laboratories,
Burlingame, CA; BA-2001). Sections were then rinsed and incubated
with avidin-biotinylated peroxidase complex (ABC Elite kit; Vector,
PK-6100) for 1 hour at room temperature. The reaction was
terminated by rinsing sections three times in 0.1 M PBS. The tissue
was then incubated in nickel-enhanced diaminobenzidine tetrahydro-
chloride (Ni-DAB, Vector, SK-4100) for 3–5 minutes, washed again in
0.1 M PBS, mounted onto slides, dried, dehydrated, and coverslipped.

Images were digitized and densitometric analysis was performed
with ImageJ, yielding mean gray values. Two rostral and two middle
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striatal sections were analyzed per rat, and the values were averaged.
Mean gray values were then compared among treatment groups.

nNOS, iNOS, and eNOS In Situ Hybridization Histochem-
istry. Full-length rat nNOS and iNOS cDNAs were generously
provided by Dr. Michael Marletta (University of California Berkeley).
Polymerase chain reaction amplification with forward and reverse
primers containing T7 and SP6 promoter sequences were used to
amplify the nNOS and iNOS cDNAs (nNOS antisense: 59-AATAC-
GACTCACTATAGGGCAGTTCATCATGTTCCCCGAT-39; nNOS sense:
59-ATTTAGGTGACACTATAGATGGAAGAGAACACGTTTGGGGT-39;
iNOS antisense: 59-TAATACGACTCACTATAGGGACAATCCACAAC-
TCGCTCCAA-39; and iNOS sense 59-ATTTAGGTGACACTATAGGTT-
CAGCTACGCCTTCAACACCA-39). Ribonucleotide probes were then
synthesized from the amplified cDNAs using T7 (antisense) or SP6
(sense) RNA polymerases (RocheApplied Science, Indianapolis, IN) and
[35S]-UTP (PerkinElmer Life and Analytical Sciences, Boston, MA).
Full-length, rat eNOS cDNA in a pCMV-Sport6 vector was purchased
from Origene (RN200806; Rockville, MD), transformed into Escherichia
coli cells for amplification, and extracted using a DNA extraction kit
(Qiagen, Valencia, CA). eNOS cDNA was then linearized with NcoI
and transcribed with T7 (sense) and SP6 (antisense) RNA polymerases
and [33P]-UTP. For all in situ hybridizations, probes were prepared and
added to hybridization buffer to a final concentration of 1 ! 106 cpm/ml,
as previously described (Keefe and Gerfen, 1996). Hybridization buffer
(100 ml) with probe was applied to each slide containing four brain
sections, each slide was covered with a glass coverslip, and slides were
hybridized overnight in humid chambers at 55°C. The following day,
slides were washed four times in 2 ! saline-sodium citrate (0.15 M
sodium chloride with 0.015 M sodium citrate), treated with
Ribonuclease-A (5 mg/ml; Roche Applied Science) in 2 ! SSC for
15 minutes at room temperature, washed again in 2 ! SSC, dried, and
apposed to X-ray film (BiomaxMR; Eastman Kodak) for approximately
1 week.

Film autoradiograms were digitized and analyzed using ImageJ.
The images of sections from all groups in an experiment that were
processed and hybridized together were captured and measured
under constant lighting and camera conditions. nNOS mRNA
expression, which was punctate because of its expression in striatal
interneurons (Kawaguchi et al., 1995), was quantified by counting the
number of cells labeled for nNOS mRNA. To this end, images were
thresholded to include cell bodies of nNOS-positive cells. The mean
signal density per labeled cell was also measured from the thresh-
olded images. For iNOS and eNOS mRNA expression, both of which
were more diffuse, the mean gray value of the dorsal striatum was
measured, and the mean gray value of the corpus callosum overlying
the striatum was subtracted for background correction. Two rostral
and two middle striatal sections were analyzed per rat and averaged.

The specificity of our iNOS probe was confirmed by examining the
induction of iNOS mRNA in the brain of an animal infected with
Theiler’s murine virus, because previous studies have demonstrated
an induction of iNOS in these animals (Oleszak et al., 1997; Iwahashi
et al., 1999). As shown in Fig. 1A, hybridization of a brain section from
this animal with the antisense ribonucleotide against iNOS revealed
iNOS induction in the area of the intrahemispheric injection of the
virus. Alternatively, hybridization of an adjacent brain section from
the same animal with the sense ribonucleotide probe did not yield any
staining (Fig. 1B). We also evaluated the specificity of our eNOS
ribonucleotide probe. As shown in Fig. 1C, hybridization with the
antisense ribonucleotide probe revealed expression in the pyramidal
cell layer of the hippocampus, consistent with prior reports (Diner-
man et al., 1994; Vaid et al., 1996; Doyle and Slater, 1997). In
addition, hybridization of an adjacent brain section with the sense
ribonucleotide probe again yielded no signal (Fig. 1D). Finally, the
specificity of the nNOS antisense ribonucleotide probe used was based
on the correspondence between the staining obtained in the present
study and previous findings from our laboratory and others that
showed the distribution of the nNOS/somatostatin/neuropeptide
Y-containing interneuron population in striatum (Uhl and Sasek,

1986; Rushlow et al., 1995; Horner et al., 2006). Thus, the antisense
ribonucleotide probes generated for this study appear to specifically
label NOS isoform mRNAs in the brain.

NADPH Diaphorase Histochemical Staining. Tissue sections
from the fixed hemispheres were processed for NADPH diaphorase
histochemical staining to assess NOS activity (Hope et al., 1991).
Tissue was washed in 0.1 M Tris-HCL (pH, 8.0), followed by
preincubation in 0.1 M Tris-HCl containing 0.04% Tween-80 and
0.05% TritonX-100. The tissue was then incubated in Tris-HCl
containing 0.8 mg/ml NADP, 0.16 mg/ml NBT, 0.04% Tween-80,
0.05% TritonX-100, 1 mM MgCl2, and 15 mM malate for 2 hours at
37°C. Sections were then rinsed in 0.1 M Tris-HCL for 5 minutes,
mounted onto slides, dried, and coverslipped. Digitized images of the
NADPH diaphorase histochemical staining were captured under
bright field conditions with a 40! objective with use of a Leica DM
4000B microscope. A 3 ! 3 montage (0.63 mm2) centered over dorsal
striatum was captured from one hemisphere per section, resulting in
four images per animal. The images were analyzed using ImageJ.
Each image was thresholded such that the minimum threshold value
in ImageJ was set to zero and the maximum threshold value was set
to 16 points above the lowest edge of the threshold histogram. Blood
vessels with NADPH diaphorase histochemical staining (indicative of
eNOS activity) were excluded. The percentage area of the total
remaining field with signal was measured and averaged across the
four sections for each animal. This standardized image analysis
allowed for the measurement of NADPH diaphorase-positive cell
bodies and processes and excluded NADPH-diaphorase histochemical
staining associated with endothelial cells. In addition, the number of
cell bodies positive for NADPH diaphorase histochemical staining per
image was recorded, averaged across the four sections for each
animal, and then compared among treatment groups.

Statistical Analysis. All image analysis was conducted by an
experimenter blinded to the treatment groups. Statistical analysis
was performed using a two-factor analysis of variance [analysis of
variance (ANOVA); PND60 treatment ! PND90 treatment], followed
by post hoc analysis via Student’s t or TukeyHSD test, as appropriate.
Statistical analysis of body temperature data was conducted using
a multivariate ANOVA (MANOVA) with repeated measures (PND60
treatment ! PND90 treatment ! time), followed by post hoc analysis
via t tests at individual time points to assess main effects of

Fig. 1. Controls for iNOS and eNOS in situ hybridization histochemistry.
(A) Positive control image of a striatal section from a mouse with Theiler’s
murine virus (TMV) infection in the brain (indicated by the arrow)
showing detection of iNOS mRNA induction using the antisense
ribonucleotide probe described in this article. (B) Negative control image
showing a lack of signal in a brain section from the same TMV-infected
mouse hybridized with the sense ribonucleotide probe. (C) Positive control
image of a rat brain section at the level of the dorsal hippocampus
hybridized with the antisense ribonucleotide probe against eNOS mRNA
used in the present study. (D) Control image of a rat brain section at the
level of the dorsal hippocampus hybridized with the sense ribonucleotide
probe against eNOS mRNA used in the present study. Scale bar = 2 mm,
applies to all panels.
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treatments, as appropriate. No differences between dorsolateral and
dorsomedial striatum were observed for the DAT binding, iNOS and
eNOS mRNA expression, or nitrotyrosine staining; thus, values were
averaged across these two regions for each striatal section.

Results
METH-Induced Hyperthermia in Rats Sacrificed 1

Hour After the Final Treatment on PND90. For the body
temperature data collected during treatment of this cohort of
animals on PND60 (Fig. 2A), MANOVA revealed a main effect
of PND60 treatment (F(1,33)5169.5, P , 0.0001) and time
(F(4,30)549.5, P, 0.0001). There was also a significant PND60
treatment ! time interaction (F(4,30)553.5, P , 0.001). Post
hoc analysis revealed that the temperatures of animals
receiving METH were significantly greater than those of

controls at all four time points after the injections of METH
began (60 minutes, t516.3, P , 0.0001; 180 minutes, t515.5,
P , 0.0001; 300 minutes, t59.4, P , 0.0001; 420 minutes,
t59.7, P , 0.0001), but were not different from controls at
baseline (t51.6, P 5 0.1).
For the body temperature data collected during treatment

of this cohort of animals on PND90 (Fig. 2B), MANOVA
revealed a main effect of PND90 treatment (F(1,31)5343.3, P,
0.0001), a main effect of time (F(3,29)533.9, P , 0.0001), and
significant PND60 treatment ! time (F(3,29)55.2, P 5 0.005)
and PND90 treatment ! time (F(3,29)551.4, P , 0.0001)
interactions. Post hoc analysis of the PND60 ! time in-
teraction revealed that, at baseline on PND90, the rats
treated with METH at PND60 had statistically higher body
temperatures than did rats treated with saline on PND60
(t54.1, P 5 0.0002). However, the body temperatures at the

Fig. 2. Core body temperatures (mean 6 S.E.M.; n = 5–12) of animals that received systemic injections of saline (4 ! 1 mL/kg, subcutaneous at 2-hour
intervals) or METH (4 ! 10 mg/kg, subcutaneous at 2-hour intervals). Treatment group designations in the legend indicate PND60 treatment:PND90
treatment, resulting in the four treatment groups. Rectal temperatures were obtained 30 minutes before the first injection [baseline (BL)] and 1 hour
after each subsequent injection. X-axis values represent minutes after the first injection, and arrows represent the time of each saline or METH
injection. (A and C) Temperatures recorded during treatment on PND60 of animals sacrificed 1 hour (A) or 48 hours (C) after the last injection on PND90.
(B and D) Temperatures recorded during treatment on PND90 of animals sacrificed 1 hour (B) or 48 hours (D) after the last injection on PND90. *P ,
0.05; ***P , 0.001 indicate that groups receiving METH were significantly hyperthermic, relative to groups receiving saline.
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other time points recorded on PND90 were not different
between the rats treated with METH versus saline at PND60
(60 minutes, t51.1, P 5 0.3; 180 minutes, t50.2, P = 0.8; 300
minutes, t50.5, P 5 0.6). Post hoc analysis of the PND90
treatment ! time interaction again revealed that the temper-
atures of animals acutely receiving METH (i.e., PND90
treatment) were significantly higher than those of controls
at all time points after the administration of METH began
(60 minutes, t512.3, P , 0.0001; 180 minutes, t517.9, P ,
0.0001; 300 minutes, t59.7, P, 0.0001), but were not different
from controls at baseline (t51.7, P5 0.1). Of importance, there
was no significant PND60 treatment ! PND90 treatment
interaction (F(1,31)50.3,P5 0.6) or PND60 treatment! PND90
treatment ! time interactions (F(3,29)50.6, P5 0.6), indicating
that the pretreatment on PND60 did not impact METH-
induced hyperthermia on PND90.
METH-Induced Hyperthermia in Rats Sacrificed 48

Hours After the Final Treatment on PND90. For the
body temperature data collected during treatment of this
cohort of animals on PND60 (Fig. 2C), MANOVA revealed
a main effect of PND60 treatment (F(1,26)5213, P , 0.0001),
a main effect of time (F(4,23)552.8, P , 0.0001), and a signifi-
cant PND60 treatment ! time interaction (F(4,23)533.8, P ,
0.0001). Post hoc analysis revealed that the body tem-
peratures of the rats given METH at PND60 were signifi-
cantly greater than the temperatures of the controls at all
time points (baseline, t52.5, P 5 0.02; 60 minutes, t515.9,
P , 0.0001; 180 minutes, t514.2 P , 0.0001; 300 minutes,
t510.8, P , 0.0001; 420 minutes, t58.1, P , 0.0001).
For the body temperature data collected during treatment

of this cohort of animals on PND90 (Fig. 2D), MANOVA
revealed a main effect of PND90 treatment (F(1,24)5195.1, P,
0.0001), a main effect of time (F(4,21)535.7, P , 0.0001), and
a significant PND90 treatment ! time interaction
(F(4,21)551.4, P , 0.0001). Post hoc analysis of the PND90
treatment ! time interaction again revealed that the temper-
atures of animals acutely receiving METH (i.e., PND90
treatment) were significantly higher than those of controls
at all time points after the administration of METH began (60
minutes, t510.8, P , 0.0001; 180 minutes, t516.9, P ,
0.0001; 300 minutes, t59.4, P , 0.0001; 420 minutes, t59.1,
P , 0.0001), but were not different from controls at baseline
(t51.2, P 5 0.3). Of importance, there was no significant
PND60 treatment ! PND90 treatment interaction
(F(1,24)51.7, P 5 0.2), PND60 treatment ! time (F(4,21)51.6,
P 5 0.2), or PND60 treatment ! PND90 treatment ! time
interaction (F(4,21)51.3, P 5 0.3), indicating again that the
pretreatment on PND60 did not impact METH-induced
hyperthermia on PND90.
METH-Induced DA Depletions. Administration of

METH resulted in significant decreases in [125I]RTI-55
binding to the DAT, compared with saline-treated controls
(Fig. 3). In animals sacrificed 1 hour after the last injection on
PND90 (Fig. 3A), a two-factor ANOVA revealed a main effect
of PND60 treatment (F(1,30)542.1, P , 0.0001), with rats
treated with METH at PND60 showing decreased DAT
binding, compared with rats treated with saline. There was
no significant main effect of PND90 treatment (F(1,30)579.3,
P 5 0.6) and no significant PND60 treatment ! PND90
treatment interaction (F(1,30)50.1, P 5 0.8). In the cohort of
animals sacrificed 48 hours after the last injection on PND90
(Fig. 3, B and C), a two-factor ANOVA revealed a main effect

of PND60 treatment (F(1,23)511.2, P, 0.003), a main effect of
PND90 treatment (F(1,23)5202.2, P , 0.0001), and a signifi-
cant PND60 treatment ! PND90 treatment interaction
(F(1,23)578.9, P , 0.0001). Post hoc analysis of the interaction
revealed that all treatment groups were significantly different
from each other (Tukey’s test, P values # 0.005).
To assess whether the decrease in DAT autoradiographic

labeling reflects METH-induced DA terminal degeneration,
we examined, in another cohort of animals treated with the
same neurotoxic regimen of METH, the relation between this
measure and other indices of METH-induced DA depletion.
[125I]RTI-55 binding to the DAT correlates strongly with
decreases in DA tissue content measured via high-
performance liquid chromatography (n 5 9; DM r250.897,
P , 0.0001, DL r250.79, P = 0.0013). Thus, [125I]RTI-55 bind-
ing to the DAT appears to reflect the degree of DA loss induced
by the neurotoxic regimen of METH.
Effect of METH on Protein Nitration in Striatum.

Consistent with prior reports in the literature implicating
reactive nitrogen species in METH-induced neurotoxicity (Di
Monte et al., 1996; Itzhak and Ali, 1996; Imam et al., 1999), in
this study, treatment of rats with a neurotoxic regimen of
METH resulted in a significant increase in protein nitration
in the striata of rats sacrificed 1 hour after the final injection
on PND90 (Fig. 4). A two-factor ANOVA revealed a significant
main effect of PND90 treatment (F(1,31)5 8.8, P = 0.006), but
no main effect of PND60 treatment (F(1,31)50.1, P 5 0.7) and
no significant PND60 treatment ! PND90 treatment in-
teraction (F(1,31)50.3, P 5 0.6). Thus, all rats receiving
a neurotoxic regimen of METH on PND90 (i.e., Saline:METH
and METH:METH groups), whether they experienced acute
toxicity or not, showed equivalent increases in protein
nitration in striatum.
Effect of METH on iNOS Expression in Striatum. Re-

peated high-dose administrations of METH did not result in
an induction of iNOS mRNA expression either at 1 hour (Fig.
5A) or 48 hours (Fig. 5, B and C) after the last injection on
PND90. A two-way ANOVA on iNOS expression in the striata
of rats sacrificed 1 hour after the final injection on PND90
revealed no significant main effects of PND60 treatment
(F(1,30)50.0002, P 5 0.99) or PND90 treatment (F(1,30)50.3,
P 5 0.6) and no significant PND60 treatment ! PND90
treatment interaction (F(1,30)50.0000, P 5 0.99). Similarly,
analysis of iNOS expression in the striata of animals
sacrificed 48 hours after the last injection on PND90 showed
no significant main effects of PND60 treatment (F(1,23)50.9,
P 5 0.3) or PND90 treatment (F(1,23)50.04, P 5 0.8) and no
significant PND60 treatment! PND90 treatment interaction
(F(1,23)50.1, P 5 0.7).
Effect of METH on eNOS Expression in Striatum.

Administration of the neurotoxic regimen of METH did
not alter eNOS mRNA expression in the striata of rats sacri-
ficed either at 1 hour (Fig. 6A) or at 48 hours (Fig. 6, B and
C) after the last administration of METH on PND90. That
is, in the cohort of rats sacrificed at 1 hour after the last
injection, there was no significant main effect of PND60
treatment (F(1,31)50.6, P 5 0.5) or PND90 treatment
(F(1,31)50.7, P 5 0.4) and no significant PND60 treatment !
PND90 treatment interaction (F(1,31)50.3, P 5 0.6). Likewise,
in the cohort of rats sacrificed 48 hours after the last
injection, there was no significant main effect of PND60
treatment (F(1,23)51.3, P 5 0.3) or PND90 treatment
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(F(1,23)50.4, P 5 0.6) and no significant PND60 treatment !
PND90 treatment interaction (F(1,23)50.8, P 5 0.4).
Effect of METH on nNOS Expression in Striatum.

Repeated high-dose administrations of METH did not alter
the number of cells expressing nNOS mRNA (Fig. 7A) or
the mean density of nNOS mRNA signal per cell (Fig. 7B) in
rats sacrificed either 1 hour or 48 hours after the last injec-
tion on PND90. That is, there was no main effect of PND60
treatment (1-hour survival cohort, F(1,30)50.4, P 5 0.5;
48-hour survival cohort, F(1,23)50.3, P 5 0.8), no main effect
of PND90 treatment (1-hour survival cohort, F(1,30)50.1,
P 5 0.7; 48-hour survival cohort, F(1,23)50.0003, P 5 0.99),
and no significant PND60 treatment ! PND90 treatment
interaction (1-hour survival cohort, F(1,30)50.003, P 5 0.96;
48-hour survival cohort, F(1,23)50.3, P 5 0.6) on the number
of nNOS-positive cells in each striatum . Likewise, there was
no main effect of PND60 treatment (1-hour survival co-
hort, F(1,30)50.02, P 5 0.9; 48-hour survival cohort,
F(1,23)50.3, P 5 0.6), no main effect of PND90 treatment
(1-hour survival cohort, F(1,30)50.5, P 5 0.5; 48-hour survival
cohort, F(1,23)53.1, P 5 0.09), and no significant PND60
treatment ! PND90 treatment interaction (1-hour survival
cohort, F(1,30)50.7, P 5 0.4; 48-hour survival cohort,
F(1,23)52.8, P 5 0.1) on the mean density of nNOS mRNA
staining per cell.

To further validate the nNOS mRNA results, we quantified
the number of NADPH diaphorase-positive cells in the striata
of animals sacrificed at 1 hour after the last injection. These
data confirmed that the number of NADPH diphaorase-
positive cells did not change after single or repeated exposure
to a neurotoxic regimen of METH (unpublished data).
Effect of METH on NOS Activity in the Striatum.

Because eNOS and nNOS are constitutively expressed, the
enzymes increase their production of NO without observable
changes in mRNA expression. Previous work has shown that
the NADPH diaphorase histochemical staining allows for the
quantification of nNOS activity in the striatum (Dawson
et al., 1991; Hope et al., 1991; Morris et al., 1997). Therefore,
we examined the effects of a neurotoxic regimen of METH on
NOS activity, as reflected in NADPH diaphorase histochem-
ical staining in striatum. Administration of the METH binge
regimen on PND90 resulted in a significant increase in
NADPH diaphorase histochemical staining in the striata of
rats sacrificed 1 hour after the final injection on PND90 (Fig.
8). A two-factor ANOVA revealed a main effect of PND90
treatment (F(1,28)55.8, P, 0.05), but no main effect of PND60
treatment (F(1,28)50.06, P 5 0.8) and no significant PND60
treatment ! PND90 treatment interaction (F(1,28)50.9, P 5
0.4). Thus, as was the case for protein nitration in striatum,
NADPH diaphorase histochemical staining and, thus, nNOS

Fig. 3. Striatal DAT binding density after single or repeated exposure to a neurotoxic regimen of METH (mean 6 S.E.M.; n = 5–12). Treatment group
designations indicate PND60 treatment:PND90 treatment, resulting in the four treatment groups: Saline:Saline (SS), METH:Saline (MS), Saline:
METH (SM), and METH:METH (MM). (A) Animals sacrificed 1 hour after the last injection on PND90. ***Main effect of PND60 treatment, P , 0.001.
(B) Animals sacrificed 48 hours after the last injection on PND90. **SS group significantly different from all other groups, P , 0.005; ††MS group
significantly different from all other groups; P, 0.005; ‡‡‡SM group significantly different from all other groups, P, 0.005. (C) Representative images of
DAT autoradiography in animals sacrificed 48 hours after the last injection. Scale bar = 2 mm, applies to all images.
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activity were increased in all rats receiving a neurotoxic
regimen of METH on PND90, regardless of whether they
experienced acute DA neuron toxicity (Saline:METH group)
or not (METH:METH group).

Discussion
Recent data suggest that abuse of METHmay contribute to

increased incidence of Parkinsonism secondary to damage to
striatal DA systems (Callaghan et al., 2012). Thus, de-
lineating the necessary and sufficient factors involved in
METH-induced damage to central DA systems is critical for

advancing our ability to mitigate long-term consequences of
METH use. Our laboratory and others have found that
animals pretreated with a neurotoxic regimen of METH do
not show further depletions of striatal DA when challenged
with a subsequent neurotoxic regimen of METH (Thomas and
Kuhn, 2005; Hanson et al., 2009). This paradigm thus affords
a model in which animals can be matched for acute METH
exposure, but differentiated with respect to acute DA neuron
toxicity, to identify factors that are sufficient to induce striatal
DA toxicity. Prior evidence has suggested that NO may be
such a critical factor for METH-induced neurotoxicity (Di
Monte et al., 1996; Itzhak and Ali, 1996; Deng and Cadet,
1999; Imam et al., 1999). Therefore, the purpose of this study
was to determine whether NO production secondary to METH
exposure is sufficient to induce striatal DA depletions and to
determine the source of NO after METH exposure. The data
reveal that production of NO, as reflected in protein nitration,
is similar whether an animal is experiencing acute DA toxicity
or not, suggesting that NO production is not sufficient to
induce such toxicity. Furthermore, the data suggest that the
NO likely arises from the constitutively expressed isoforms of
NOS, most likely the nNOS-containing interneuron popula-
tion in striatum.
The present results suggest that NO production in response

to METH may not contribute to METH-induced DA neuron
toxicity, because both rats experiencing acute toxicity to
METH administration on PND90 and those resistant to it
showed equivalent increases in protein nitration and NOS
activity in striatum. As noted above, studies have implicated
NO in METH-induced DA neuron toxicity on the basis of
observations that inhibition of NOS blocks or attenuates such
toxicity (Di Monte et al., 1996; Itzhak and Ali, 1996; Ali and
Itzhak, 1998; Itzhak et al., 1998; Imam et al., 1999; Itzhak
et al., 2000a; Itzhak et al., 2000b; Itzhak et al., 2004).
However, there is controversy over whether this protection
reflects a critical mechanistic role of NO in METH-induced
DA neuron toxicity or whether it results from a disruption of
METH-induced hyperthermia necessary for the toxicity
(Taraska and Finnegan, 1997; Callahan and Ricaurte,

Fig. 4. Quantitative analysis of the effects of single or repeated METH
exposure on protein nitration in the striata of animals sacrificed 1 hour
after the last injection on PND90. Protein nitration data are expressed as
average (avg.) gray values (mean 6 S.E.M.; n = 6–12) obtained from
densitometric analysis of immunohistochemically stained sections. Treat-
ment group designations indicate PND60 treatment:PND90 treatment,
resulting in the four treatment groups: Saline:Saline (SS), METH:Saline
(MS), Saline:METH (SM), and METH:METH (MM). **Significant main
effect of PND90 treatment, P , 0.01.

Fig. 5. Quantitative analysis of the
effects of single or repeated METH
exposure on iNOS mRNA expression
in the striata of animals sacrificed 1
hour (A) or 48 hour (B) after the last
injection on PND90. Treatment group
designations indicate PND60 treat-
ment:PND90 treatment, resulting in
the four treatment groups: Saline:
Saline (SS), METH:Saline (MS), Sa-
line:METH (SM), and METH:METH
(MM). Values are background-sub-
tracted average (avg.) gray values
(mean 6 SEM; n = 5-12). No signifi-
cant differences between treatment
groups were observed. (C) Represen-
tative images of iNOS mRNA in situ
hybridization histochemical staining
in rats sacrificed 48 hour after the last
injection on PND90. Scale bar = 2 mm,
applies to all images.
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1998). The present findings of a dissociation between indices
of NO production and acute DA neuron toxicity support the
conclusion that the generation of NO is not sufficient for
METH-induced DA toxicity.
Although the present data suggest that generation of NO is

not sufficient for METH-induced DA terminal damage, we
cannot rule out the possibility that NO is necessary for such
toxicity when it occurs (e.g., in the Saline:METH group),
because NO may act in concert with other factors under those
conditions to contribute to the toxicity. For example, evidence
suggests that NO regulates DA release in striatum (Zhu and
Luo, 1992; West and Galloway, 1997; West et al., 2002),
including METH-induced DA release (Bowyer et al., 1995;
Inoue et al., 1996), which has been suggested to play an

important role in damage to DA terminals (O’Dell et al., 1991;
O’Dell et al., 1993; Gross et al., 2011). Thus, NO production
during an initial exposure to a neurotoxic regimen of METH
may increase DA overflow, and this DA overflow may result in
the DA neuron toxicity. Under conditions in which DA overflow
is reduced, such as in animals with prior METH-induced DA
neuron toxicity (Hanson et al., 2009), such a role of NO might
not be apparent. Clearly, studies with strict control over
potential contributing factors allowing for systematic indepen-
dent and coordinate manipulation of the factors will be
necessary to fully understand the process by which METH
induces DA neurotoxicity. Furthermore, we cannot exclude
a role of NO in striatal-efferent neuron toxicity observed in
somemodels of METH-induced neurotoxicity (Zhu et al., 2009).

Fig. 6. Quantitative analysis of the effects
of single or repeated METH exposure on
eNOS mRNA expression in the striata of
animals sacrificed 1 hour (A) or 48 hours (B)
after the last injection on PND90. Treat-
ment group designations indicate PND60
treatment:PND90 treatment, resulting in
the four treatment groups: Saline:Saline
(SS), METH:Saline (MS), Saline:METH
(SM), and METH:METH (MM). Values are
background-subtracted mean gray values
(mean 6 S.E.M.; n = 5–12). No significant
differences between treatment groups were
observed. (C) Representative images of
eNOS mRNA in situ hybridization histo-
chemical staining in rats sacrificed 48 hours
after the last injection on PND90. Scale bar =
2 mm, applies to all images.

Fig. 7. Quantitative analysis of the
effects of single or repeated METH
exposure on nNOS mRNA expression
in the striata of animals sacrificed 1
hour or 48 hours after the last in-
jection on PND90. Treatment group
designations indicate PND60 treat-
ment:PND90 treatment, resulting in
the four treatment groups: Saline:
Saline (SS), METH:Saline (MS), Sa-
line:METH (SM), and METH:METH
(MM). Values are expressed as the
mean number of cells expressing
nNOS per square millimeter of the
imaged striatal sections (A; mean 6
S.E.M.; n = 4–12) and the mean den-
sity (i.e., average [avg.] gray value) of
the nNOS signal per labeled cell (B) in
the striatal sections analyzed. No sig-
nificant differences among treatment
groups were observed. (C) Represen-
tative images of nNOS mRNA in situ
hybridization histochemical staining
in rats sacrificed 48 hours after the
last injection on PND90. Scale bar = 2
mm, applies to all images.
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Although the necessity of NO for METH-induced DA
neurotoxicity remains in question, it is clear from the present
findings that administration of a binge regimen of METH
increases NO production. The data further suggest that
METH-induced increases in NOS activity/NO production
may largely arise secondary to activation of nNOS, which is
found in striatal somatostatin/neuropeptide Y-positive inter-
neurons (Kawaguchi et al., 1995). First, we found no induction
of iNOS mRNA 1 or 48 hours after the last administration on
PND90. These data are consistent with previous work (Deng
and Cadet, 1999) showing that iNOS protein expression is not
induced after a neurotoxic regimen of METH. However, in
that study, iNOS protein was examined at 1 hour, 24 hours,
and 1 week after exposure to METH, time points when glial
cells may not be fully activated (LaVoie et al., 2004). Of
importance, it is these cell types in which induction of iNOS
mRNA expression typically occurs (Gibson et al., 2005).
Therefore, we examined iNOS expression at 1 and 48 hours,
because previous work has shown that glial reactivity peaks
at 48 hours after a neurotoxic regimen of METH (LaVoie
et al., 2004). Our data combined with the work of others (Deng
and Cadet, 1999) strongly suggest that iNOS is not a likely
source of NO after METH exposure.
Second, induction of eNOS and nNOS isoforms also does not

appear to underlie the METH-induced increases in NO
production. At both 1 and 48 hours after the last administra-
tion of METH on PND90, there were no changes in the
numbers of cells expressing eNOS or nNOS mRNA. Likewise,
there was no increase in the numbers of NADPH diaphorase-
positive cells and no increase in eNOS immunohistochemical
staining in sections from animals sacrificed 48 hours after the
last injection (data not shown). A prior study in mice reported
an increase in the number of cells expressing nNOS protein
after a neurotoxic regimen of METH (Deng and Cadet, 1999),
but others have not (Wang et al., 2008; Wang and Angulo,
2011). Differences in nNOS expression have been observed
between species and strains of animals within a species
(Blackshaw et al., 2003), suggesting that differences between
our results and the prior report by Deng and Cadet may
reflect a species difference. Our data thus suggest that
induction of eNOS or nNOS expression by METH exposure
is not contributing to METH-induced NO production in this
rat model.
Taken together, the data suggest that activation of

constitutively expressed NOS isoforms (i.e., eNOS or nNOS)

is the likely basis for METH-induced NO production. This
conclusion is based on the data showing increased NADPH
diaphorase histochemical staining, which reflects NOS activ-
ity (Hope et al., 1991). We further restricted this assay to
determination of nNOS activity in striatum by excluding
stained vasculature from the images during the analysis and
thresholding the images to include only cell bodies and
processes of NADPH-positive cells. We found that animals
acutely exposed to a neurotoxic regimen of METH on PND90
showed increased staining, suggesting increased nNOS
activation by the binge regimen of METH. On the basis of
these observations, we conclude that activation of nNOS is
a major source of NO production in response to the binge
regimen ofMETH.However, we cannot rule out a contribution
of eNOS activation to METH-induced NO production and
METH-induced protein nitration in striatum.
Activation of nNOS in striatal interneurons in the context

of binge regimens of METH is not surprising, because of what
is known about NO production in striatum and the cascade of
events occurring during and after METH administration.
First, activation of the N-methyl-D-aspartate (NMDA) sub-
type of glutamate (GLU) receptors initiates NO production via
Ca-dependent activation of nNOS (Garthwaite et al., 1988;
Bredt and Snyder, 1989). Furthermore, binge regimens of
METH increase GLU efflux in striatum and activation of
NMDA receptors (Nash and Yamamoto, 1992; Mark et al.,
2004). Second, activation of DA D1 receptors increases NO
efflux in striatum (Le Moine et al., 1991; Sammut et al., 2006)
and NADPH diaphorase histochemical staining (Morris et al.,
1997; Hoque et al., 2010), and striatal nNOS-containing
interneurons express DA D1 family receptors (Le Moine et al.,
1991). Furthermore, NMDA and DA D1 receptor activation
work in concert to increase NO production (Park and West,
2009), and stimulation of either type of receptor or blockade of
either type of receptor decreases NOS activity, as assessed via
NADPH diaphorase histochemical staining (Morris et al.,
1997). Together with data showing increased extracellular
levels of both DA and GLU during and after METH exposure
(O’Dell et al., 1991; Nash and Yamamoto, 1992; O’Dell et al.,
1993), it seems to be likely that activation of nNOS in striatal
interneurons is a major source of NO production after METH
exposure.
In conclusion, the data presented here show that adminis-

tration of a binge regimen of METH in rats increases protein
nitration in striatum. The data further show that activation of

Fig. 8. (A) Quantitative analysis of the
effects of single or repeated METH
exposure on nNOS activity in the striata
of animals sacrificed 1 hour after the
last injection on PND90. Treatment
group designations indicate PND60
treatment:PND90 treatment, resulting
in the four treatment groups: Saline:
Saline (SS), METH:Saline (MS), Saline:
METH (SM), and METH:METH (MM).
Data are expressed as the percentage
area of the field with signal above
threshold. *Significant main effect of
PND90 treatment, P , 0.05. (B) Repre-
sentative image of NADPH diaphorase
histochemical staining in an SM animal
sacrificed 1 hour after the last injection
on PND90. Scale bar = 50mm.
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nNOS, as reflected in increased NADPH-diaphorase histochem-
ical staining in cell bodies and processes of striatal interneurons,
was apparent in rats acutely exposed to a binge regimen of
METH, implicating nNOS as the likely source of METH-
induced NO production. However, the data also show a dissoci-
ation between measures of NOS activity (NADPH diaphorase
staining) and NO production (immunohistochemical staining of
protein nitration) and METH-induced DA neurotoxicity, sug-
gesting that NO production by a binge regimen of METH is not
sufficient to induce acuteDA neurotoxicity and thatNOmay not
be a useful therapeutic target for prevention of acute METH-
induced neurotoxicity in human METH abusers.
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Abstract
Neurotoxic regimens of methamphetamine (METH) result in
reactive microglia and astrocytes in striatum. Prior data
indicate that rats with partial dopamine (DA) loss resulting
from prior exposure to METH are resistant to further decreases
in striatal DA when re-exposed to METH 30 days later. Such
resistant animals also do not show an activated microglia
phenotype, suggesting a relation between microglial activation
and METH-induced neurotoxicity. To date, the astrocyte
response in such resistance has not been examined. Thus,
this study examined glial-fibrillary acidic protein (GFAP) and
CD11b protein expression in striata of animals administered
saline or a neurotoxic regimen of METH on post-natal days 60
and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:
METH). Consistent with previous work, animals experiencing

acute toxicity (Saline:METH) showed both activated microglia
and astocytes, whereas those resistant to the acute toxicity
(METH:METH) did not show activated microglia. Interestingly,
GFAP expression remained elevated in rats exposed to METH
at PND60 (METH:Saline), and was not elevated further in
resistant rats treated for the second time with METH (METH:
METH). These data suggest that astrocytes remain reactive
up to 30 days post-METH exposure. In addition, these data
indicate that astrocyte reactivity does not reflect acute, METH-
induced DA terminal toxicity, whereas microglial reactivity
does.
Keywords: astrocyte, dopamine, methamphetamine, microglia,
toxicity.
J. Neurochem. (2013) 125, 566–574.

Methamphetamine (METH) is a highly abused psychostim-
ulant, and repeated high-dose administration of METH
results in persistent damage to the dopamine (DA) system.
This damage consists of decreased dopamine (DA) tissue
concentrations (Kogan et al. 1976; Wagner et al. 1980), DA
transporter (DAT) (Fleckenstein et al. 1997; McCann et al.
1998) and vesicular monoamine transporter-2 levels (Guil-
arte et al. 2003), and tyrosine hydroxylase activity (Kogan
et al. 1976) in striatum.
Several studies have documented a robust activation of

both astrocytes (Bowyer et al. 1994; O’Callaghan and Miller
1994; Cappon et al. 1997; Guilarte et al. 2003) and micro-
glia (Guilarte et al. 2003; LaVoie et al. 2004; Thomas et al.
2004) following exposure of rodents to a neurotoxic regimen
of METH. However, these studies examined astrocyte and
microglia activation in response to a single neurotoxic
regimen of METH. Human METH abusers administer
multiple doses of METH. Thus, to more accurately model
the repeated binge administration observed in humans, our
lab and others (Thomas and Kuhn 2005; Hanson et al. 2009)
have conducted studies in which animals are treated with a
neurotoxic regimen of METH and challenged 7 or 30 days

later with a second neurotoxic regimen of METH. These
studies have revealed that such animals are resistant to acute
DA neuron toxicity upon exposure to the second METH
regimen. This experimental paradigm thus allows for the
examination of factors associated with METH toxicity in
animals matched for acute METH exposure, but differenti-
ated with respect to acute METH-induced DA terminal
degeneration. Prior work with this model has reported that
animals that are resistant to the acute METH-induced
neurotoxicity also do not demonstrate significant microglial
activation following the second exposure as do animals
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Address correspondence and reprint requests to Kristen A. Keefe,

Dept. of Pharmacology and Toxicology, 30 South 2000 East, Room 105,
Salt Lake City, UT 84112, USA. E-mail: k.keefe@utah.edu (or) Danielle
M. Friend, Interdepartmental Program in Neuroscience, University of
Utah, Salt Lake City, UT, USA. E-mail: da.friend@utah.edu
Abbreviations used: BBB, blood–brain barrier; CNS, central nervous

system; DA, dopamine; DAT, dopamine transporter; GLU, glutamate;
METH, methamphetamine; PBS, phosphate buffered saline; PND, post-
natal day.

566 © 2013 International Society for Neurochemistry, J. Neurochem. (2013) 125, 566--574

JOURNAL OF NEUROCHEMISTRY | 2013 | 125 | 566–574 doi: 10.1111/jnc.12201

71



experiencing acute toxicity (Thomas and Kuhn 2005),
suggesting a possible role of microglial activation in
METH-induced DA toxicity. The extent to which resistance
to subsequent METH-induced neurotoxicity is also associ-
ated with decreased astrocyte reactivity is currently
unknown. Therefore, the purpose of this study was to
examine both microglia and astrocyte reactivity, using
CD11b and glial-fibrillary acidic protein (GFAP) expression
respectively, in animals rendered resistant to the acute DA
toxicity induced by METH.

Methods

Animals

Male Sprague-Dawley rats (Charles River Laboratories, Raleigh,
NC, USA) were housed in wire mesh cages in a temperature-
controlled room on a 12:12-h light:dark cycle with free access to
food and water. All animal care and experimental procedures were
in accordance with both the ARRIVE guidelines and the Guide for
the Care and Use of Laboratory Animals (8th Ed., National Research
Council) and were approved by the Institutional Animal Care and
Use Committee at the University of Utah.

METH administration

Because of tissue availability, one cohort of animals was used to
examine GFAP expression and another cohort of animals was used to
examine CD11b expression. METH and saline injections were
conducted as previously described (Friend et al. 2013). Briefly, on
treatment days [post-natal day (PND)60 and PND90], rats (5–8 per
treatment group) were housed in groups of 6 in plastic tub cages
(33 cm 9 28 cm 9 17 cm) with corncob bedding. Animals
received injections of (!)-METH-HCl (10 mg free base/kg, s.c.;
kindly provided by the National Institute on Drug Abuse) or 0.9%
saline (1 mL/kg, s.c.) at 2-h intervals resulting in a total of four
injections. Rectal temperatures were monitored using a digital
thermometer (BAT-12; Physitemp Instruments, Clifton, NJ, USA)
to ensure the presence of METH-induced hyperthermia. Baseline
temperatures for each animal were taken 30 min prior to the first
injection and 1 h after each subsequent injection. If the body
temperature of an animal exceeded 40.5°C, the animal was cooled
by transferring it to a cage placed over wet ice until the body
temperature fell below 39°C. Approximately, 18 h after the last
injection on PND60, animals were returned to wire mesh cages in the
colony room and allowed to recover for 30 days. On PND90, animals
were again transferred to plastic tub cages and treated with either
METH or saline as described above. This treatment regimen resulted
in four treatment groups: Saline:Saline, Saline:METH,METH:Saline,
and METH:METH based on treatments on PND60:PND90.

Tissue preparation

Animals were sacrificed 48 h after the last injection on PND90 via
exposure to CO for 1 min. Following decapitation, brains were
rapidly removed and submerged in 4% paraformaldehyde with 0.9%
NaCl for 24 h at 4°C, then cryoprotected in 30% sucrose in 0.1 M
phosphate buffered saline (PBS) and stored at 4°C. The brains were
then sectioned at 30 lm on a freezing microtome (Microm, HM
440E). For each animal, four coronal sections of striatum (+1.6 mm

to +0.2 mm relative to bregma) were sectioned and stored at 4°C in
1 mg/mL sodium azide in 0.1 M PBS.

Immunohistochemistry

DAT immunohistochemistry was performed to evaluate METH-
induced DA depletions. Briefly, sections were subject to heat-
mediated antigen retrieval in 10 mM citrate buffer containing 0.5%
Tween-20 (pH6.0) for 20 min at 37°C.After cooling at 23°C, sections
were washed in 0.1 M PBS, incubated for 10 min in 0.1 M PBS
containing 3% H2O2, and washed again in 0.1 M PBS. Non-specific
antibody binding was blocked by incubating tissue in 0.1 M PBS
containing 5% milk and 0.2% Triton X-100 for 60 min. Tissue was
then incubated overnight at 4°C in a primary antibody solution
containing 0.1 M PBS, 2% milk, 0.2% Triton X-100, and rat anti-
DAT antibody (Millipore, Billerica, MA, USA; MAB369, 1 : 5000).
The following day, tissue was washed in 0.1 M PBS, incubated in a
secondary antibody solution containing 0.1 M PBS, 2% non-fat dry
milk, 0.2% Triton X-100 and biotinylated goat anti-rat IgG (Vector
Labs, Burlingame, CA, USA; BA-4000, 1 : 200). Finally, tissue was
incubated in avidin-biotinylated peroxidase complex solution (ABC
Elite Kit; Vector Labs, PK-6100) for 30 min and the reaction
terminated by washing in 0.1 M PBS. The tissue sections were then
incubated in nickel-enhanced diaminobenzidine tetrahydrochloride
(Ni-DAB; Vector, SK-4100) for 3–5 min, washed again in 0.1 M
PBS, mounted onto slides, dried, dehydrated and coverslipped with
VectaMount (Vector Labs, H-5000).

For GFAP and CD11b immunohistochemistry, sections were
washed in 0.1 M PBS, and non-specific antibody binding was
prevented by incubating tissue for 2 h at 23°C in a blocking solution
containing 10% goat serum and 0.3% Triton X-100 in 0.1 M PBS.
Sections were then incubated in a primary antibody solution
containing 10% goat serum, 0.3% Triton X-100, and either mouse
anti-GFAP antibody conjugated to Alexa Fluor 488 (Millipore,
MAB3402X, 1 : 1000) or mouse anti-CD11b (Abcam, Cambridge,
MA, USA; AB1211, 1 : 50) overnight at 4°C. The following day,
sections labeled for GFAP were washed in 0.1 M PBS, mounted on
slides, and coverslipped using Pronglong Gold! with diamidino-2-
phenylindole (DAPI; Invitrogen, Grand Island, NY, USA). For
CD11b immunohistochemistry, sections were also washed in 0.1 M
PBS and then incubated for 2 h at 23°C with a goat anti-mouse
secondary antibody conjugated to Alexa Fluor 488 (Invitrogen,
A11029, 1 : 1000). Sections were then washed in 0.1 M PBS,
mounted on slides, and coverslipped using Pronglong Gold! with
DAPI.

Image acquisition and analysis

Image analyses were completed by an experimenter blinded to
treatment conditions. For DAT immunohistochemistry, images were
digitized and densitometric analysis was performed using the NIH
ImageJ software (http://imagej.nih.gov/ij/), yielding background-
subtracted, average gray values in both DM and DL striatum. Two
rostral (+1.6 mm bregma) and two middle (+0.2 mm bregma)
striatal sections per rat were analyzed and averaged. Average gray
values were then compared across treatment groups. For GFAP and
CD11b immunohistochemistry, 3X3 (0.63 mm2) montages in both
DL and DM striatum were captured at 40X (Leica DM 4000B; 488-
nm filter cube, Buffalo Grove, IL, USA). Using NIH ImageJ
software, images were thesholded to include cell bodies and
processes of GFAP- or CD11b-positive cells. The percent area of
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the field with GFAP or CD11b signal was recorded, averaged for
each animal, and compared across treatment groups. The use of this
approach for quantifying astrocyte and microglia reactivity has
previously been established as a reliable method for determining
changes in astrocyte and microglia reactivity (LaVoie et al. 2004).

Statistical analysis

Statistical analysis was performed using a two-factor ANOVA (PND60
treatment 9 PND90 treatment) followed by post hoc analysis via a
Student’s t-test or Tukey’s HSD test, as appropriate. Statistical
analysis on body temperatures was conducted using a MANOVA with
repeated measures (PND60 treatment 9 PND90 treatment 9 time)
followed by a t-test post hoc analysis at individual time points to
determine main effects of treatments.

Results

Experiment 1

METH-induced hyperthermia in animals sacrificed to
examine GFAP expression
For body temperature data collected during treatment of this
cohort of animals on PND60 (Fig. 1a), MANOVA revealed
main effects of PND60 treatment (F(1,24) = 210.08,
p < 0.0001) and time (F(4,24) = 21.36, p < 0.0001) and a
significant PND60 treatment 9 time interaction (F(1,24) =
27.84, p < 0.0001). Post hoc analysis revealed that the
temperatures of animals receiving METH on PND60 were
not different from controls at baseline (0 min, t = 0.00,
p = 1.0), but were significantly greater than those receiving
saline at all four time points after the injections of METH
began (60 min, t = 14.76, p < 0.0001; 180 min, t = 16.40,
p < 0.0001; 300 min, t = 11.23, p < 0.0001; 420 min,
t = 10.45, p < 0.0001). For body temperature data collected
during treatment of this cohort of animals on PND90
(Fig. 1b), MANOVA revealed main effects of PND90 treatment
(F(1,24) = 208.36, p < 0.0001) and time (F(4,24) = 54.79,
p < 0.0001) and a significant PND90 treatment 9 time
interaction (F(1,24) = 44.73, p < 0.0001). Post hoc analysis
of the PND90 treatment 9 time interaction again revealed
that temperatures of animals acutely receiving METH (i.e.,
PND 90 treatment) were not different from controls at
baseline (t = !0.86, p = 0.40), but were significantly higher
than those of controls at all time points after the adminis-
tration of METH began (Fig. 1b; 60 min, t = 12.91,
p < 0.0001; 180 min, t = 13.08, p < 0.0001; 300 min,
t = 10.61, p < 0.0001; 420 min, t = 11.46, p < 0.0001).
Importantly, there was no significant PND60 treatment
9 PND90 treatment (F(1,24) = 0.35, p = 0.74) or PND60
treatment 9 PND90 treatment 9 time (F(4,21) = 1.87,
p = 0.15) interactions.

METH-induced DA depletions
METH-treated rats showed significant decreases in DAT
immunohistochemical staining compared to saline-treated

controls (Table 1). Two-factor ANOVAs for the DL and DM
striatum revealed significant PND60 treatment 9 PND90
treatment interactions (DL striatum: F(1,24) = 29.32, p <
0.0001; DM striatum: F(1,24) = 27.80, p < 0.0001). Post hoc
analysis of the interaction revealed that groups of animals treated
with the neurotoxic regimen ofMETH at PND60, PND90, or at
both time points (PND60 and PND90) were significantly
different from the Saline:Saline group (Tukey’s HSD test, p-
values < 0.002; Table 1). Furthermore, DAT staining in the
Saline:METH group was significantly less than that in the
METH:Saline and METH:METH groups (p-values < 0.01),
which were not different from each other (p = 0.89). Thus, as
previously shown, rats receiving a secondneurotoxic regimenof
METH were resistant to further acute neurotoxicity.

Effect of METH on astrocyte reactivity
Rats treated with METH showed significant increases in
GFAP immunohistochemical staining compared to saline-
treated controls (Fig. 2). Two-factor ANOVAs on data for the
DL and DM striatum revealed main effects of PND60
treatment (DL striatum: F(1,27) = 4.80, p < 0.05; DM stria-
tum: F(1,27) = 6.83, p < 0.05) and PND90 treatment (DL
striatum: F(1,27) = 9.83, p < 0.01; DM striatum:
F(1,27) = 32.19, p < 0.0001), as well as significant PND60
treatment 9 PND90 treatment interactions (DL striatum:
F(1,108) = 6.48, p < 0.02; DM striatum: F(1,108) = 5.11,
p < 0.05). Post hoc analysis of the significant interactions
revealed that all treatment groups, including those that had
received the neurotoxic regimen of METH 32 days prior to
sacrifice (i.e., METH:Saline group), showed significantly
greater levels of GFAP immunohistochemical staining than
did the Saline:Saline controls (Tukey’s HSD test, p-values
< 0.05); however, these groups that had received METH
(METH:Saline, Saline:METH, METH:METH) were not
significantly different (p-values > 0.05) from each other
with respect to GFAP staining.

Experiment 2

METH-induced hyperthermia in rats sacrificed to examine
CD11b expression
For body temperature data collected during treatment of this
cohort of animals on PND60 (Fig. 1c), MANOVA revealed a
main effect of PND60 treatment (F(1,24) = 183.33,
p < 0.0001) and time (F(4,21) = 51.99, p < 0.0001) and a
significant PND60 treatment 9 time interaction (F(1,21) =
31.85, p < 0.0001). Post hoc analysis of the interaction
revealed that the baseline temperatures of rats treated with
saline on PND60 were slightly, but significantly (t = !2.7,
p < 0.05), lower than the temperatures of rats in the METH
group. However, the temperatures of animals receiving
METH were significantly greater than those of animals
receiving saline at all four time points after the injections of
METH began (Fig. 1c; 60 min, t = !16.70, p < 0.0001;
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180 min, t = !14.83, p < 0.0001; 300 min, t = !10.39,
p < 0.0001; 420 min, t = !7.93, p < 0.0001). For body
temperature data collected during treatment of this cohort of
animals on PND90 (Fig. 1d), MANOVA revealed main effects
of PND90 treatment (F(1,24) = 195.07, p < 0.0001) and time
(F(4,24) = 35.73, p < 0.0001) and a significant PND90
treatment 9 time interaction (F(1,24) = 59.30, p < 0.0001).
Post hoc analysis of the significant interaction revealed that
the temperatures of animals receiving METH were signifi-
cantly greater than those of controls at all four time points
after the injections of METH began (Fig. 1d; 60 min,
t = !10.82, p < 0.0001; 180 min, t = !16.89, p < 0.0001;

300 min, t = !9.37, p < 0.0001; 420 min, t = !9.14,
p < 0.0001). Importantly, there was no significant PND60
treatment 9 PND90 treatment interaction (F(1,24) = 1.7,
p = 0.21) or PND60 treatment 9 PND90 treatment 9 time
interactions (F(4,21) = 1.32, p = 0.29).

METH-induced DA depletions
As in Experiment 1, administration of METH to this cohort
of animals resulted in significant decreases in DAT immu-
nohistochemical staining when compared to that in saline-
treated controls (Table 1). Two-factor ANOVAs for DL and
DM striatum revealed main effects of PND90 treatment (DL

(a) (b)

(c) (d)

Fig. 1 Body temperatures (mean " SEM;
n = 5–8) of animals that received systemic
injections of saline (4 9 1 mL/kg, s.c. at 2-h
intervals) or (")-METH (4 9 10 mg/kg, s.c.
at 2-h intervals). Treatment group
designations indicate post-natal day (PND)
60 treatment:PND90 treatment, resulting
in the four treatment groups: Saline:
Saline (SS); METH:Saline (MS); Saline:
METH (SM); and METH:METH (MM).
Temperatures were obtained 30 min prior
to the first injection (baseline; BL) and 1 h
after each subsequent injection. X-axis
values represent minutes after the first
injection and arrows represent the time of
each saline or METH injection.
Temperatures of animals sacrificed 48 h
after the last injection on PND90 were
recorded for experiment 1 on PND60 (a)
or PND90 (b) and experiment 2 on PND60
(c) and PND90 (d). *p < 0.005 and
**p < 0.01 Significant effect of METH
at this time point.

Table 1 Striatal DAT immunohistochemistry following single or repeated exposure to a neurotoxic regimen of METH

Experiment 1 Experiment 2

DL DM DL DM

Saline:Saline 100 " 0.73 100 " 0.90 100 " 2.18 100 " 1.77
METH:Saline 72.56 " 3.57* 62.63 " 3.45* 65.65 " 2.68* 65.50 " 6.59*
Saline:METH 50.40 " 3.48*,**,*** 41.71 " 4.45*,**,*** 28.94 " 0.95*,**,*** 22.76 " 1.42*,**,***
METH:METH 68.46 " 4.38* 59.78 " 5.90* 52.56 " 3.38*,** 46.42 " 3.56*,**

Data are mean gray values (" SEM; n = 5–8) from densitometric analyses expressed as a percent of the respective Saline:Saline group.
Treatment group designations indicate PND60 treatment: PND90 treatment, resulting in four treatment groups: Saline:Saline; METH:Saline; Saline:
METH and METH:METH. * indicates (p < 0.01) treatment group is significantly different from Saline:Saline. ** indicates (p < 0.01) that treatment
group is significantly different from METH:Saline. *** indicates (p < 0.01) treatment group is significantly different from METH:METH.
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striatum: F(1,24) = 254.58, p < 0.0001; DM striatum:
F(1,24) = 191.10, p < 0.0001) and significant PND60 treat-
ment 9 PND90 treatment interactions (DL striatum:
F(1,24) = 101.31, p < 0.0001; DM striatum: F(1,24) = 70.35,
p < 0.0001). Post hoc analyses of the interactions revealed
that all treatment groups were significantly different from all
other treatment groups (Tukey’s HSD test, p-values < 0.005;
Table 1).

Effect of METH on microglia reactivity
Administration of a neurotoxic regimen of METH on PND90
resulted in a significant increase in immunohistochemical
staining for CD11b expression only in animals acutely
experiencing toxicity (i.e., Saline:METH group; Fig. 3).
Two-factor ANOVAs for the DL and DM striatum revealed
main effects of PND60 treatment (DL striatum:
F(1,24) = 5.90, p < 0.05; DM striatum: F(1,24) = 3.02,
p = 0.095), main effects of PND90 treatment (DL striatum:

F(1,24) = 23.48, p < 0.0001; DM striatum: F(1,24) = 19.24,
p < 0.0002), and significant PND60 treatment 9 PND90
treatment interactions (DL striatum: F(1,24) = 6.76, p < 0.02;
DM striatum: F(1,24) = 4.37, p < 0.05). Post hoc analyses of
the interactions revealed that CD11b immunohistochemical
staining in the Saline:METH group was significantly greater
than that in all other treatment groups (Tukey’s HSD test, p-
values < 0.03; Fig. 3). Conversely, staining was not different
between any of the other three groups (i.e., Saline:Saline,
METH:Saline, and METH:METH); p-values > 0.2).

Discussion

METH abuse continues to be a significant public health
concern, and recent studies report increased incidence of
Parkinson’s Disease among individuals with a history of
amphetamine use (Callaghan et al. 2010, 2012). Although it is
established that METH exposure results in damage to the DA

(a)
(b)

Fig. 2 (a) Quantitative analysis of the effects of single or repeated
methamphetamine (METH) administration on glial-fibrillary acidic
protein (GFAP) expression in striata of animals killed 48 h after the
last injection on post-natal day (PND)90. Data are mean percent area
of the total image field with GFAP signal above threshold (! SEM,
n = 5–8) in dorsolateral (DL; black bars) and dorsomedial (DM; white

bars) striatum. Treatment group designations indicate PND60 treat-
ment:PND90 treatment, resulting in the four treatment groups: Saline:
Saline (SS); METH:Saline (MS); Saline:METH (SM); and METH:METH
(MM). * All groups significantly different from SS group, p < 0.05. (b)
Representative images of GFAP immunohistochemical staining 48 h
after the last injection on PND90. Scale bar = 50 lm.

(a) (b)

Fig. 3 (a) Quantitative analysis of the effects of single or repeated
methamphetamine (METH) exposure on CD11b expression in striata
of animals killed 48 h after the last injection on post-natal day (PND)90.
Data are mean percent area of the total image field with CD11b signal
above threshold (! SEM, n = 5–8) in dorsolateral (DL; black bars) and
dorsomedial (DM; white bars) striatum. Treatment group designations

indicate PND60 treatment:PND90 treatment, resulting in the four
treatment groups: Saline:Saline (SS); METH:Saline (MS); Saline:
METH (SM); and METH:METH (MM). * SM group significantly different
from all other groups, p < 0.05. (b) Representative images of CD11b
immunohistochemical staining 48 h after the last injection on PND90.
Scale bar = 50 lm.
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system, the cascade of events that ultimately results in DA
terminal degeneration is not as well understood. Studies using
animal models of METH-induced neurotoxicity show robust
activation of both astrocytes and microglia (Bowyer et al.
1994; O’Callaghan and Miller 1994; Guilarte et al. 2003;
LaVoie et al. 2004; Thomas et al. 2004), and recent work
demonstrates reactive microglia (Sekine et al. 2008; Kitamura
et al. 2010) and increased density ofGFAP-positive astrocytes
(Kitamura et al. 2010) in brains of human METH abusers. In
addition, there is a growing amount of evidence indicating that
amphetamine abuse has a high rate of comorbidity among
individuals infected with human immunodeficiency virus
(HIV) (Harris et al. 1993; Crofts et al. 1994). Given data
suggesting combined effects of HIV and METH, including
increased HIV viral load (Ellis et al. 2003), synergistic
damage to the DA system (Maragos et al. 2002), altered glial
response (Kaul and Lipton 1999; Zhao et al. 2001) and
increased cytokine production (Shah et al. 2012a,b), studies
investigating the role of glial cells in METH-induced neuro-
toxicity are essential to identifying factors contributing to or
mitigating METH-induced damage to DA nerve terminals.
Using an established model (Thomas and Kuhn 2005;

Hanson et al. 2009) of resistance to acute METH-induced
DA terminal injury, this study examined the extent to which
animals rendered resistant to further DA depletions are also
resistant to astrocyte and microglia reactivity following the
second neurotoxic regimen of METH. Consistent with
previous work, we demonstrate that exposure to a neurotoxic
regimen of METH results in significant astrocyte activation as
assessed 48 h after the last injection (i.e., in the Saline:METH
group). However, we extend these previous findings by
showing that GFAP expression remains elevated compared to
controls even 32 days after exposure to a neurotoxic regimen
of METH (i.e., in the METH:Saline group). Furthermore, the
present findings reveal that the degree of GFAP expression is
similar in animals exposed to METH and experiencing acute
toxicity (Saline:METH) and those exposed to METH but not
experiencing acute toxicity (METH:METH). Also consistent
with prior work (Thomas and Kuhn 2005), the present data
confirm that activation of microglia mirrors acute DA neuron
toxicity, as only animals experiencing acute DA neuron
toxicity (i.e., the Saline:METH group) show an increase in
CD11b immunohistochemical staining. Thus, these data
support the conclusion that activation of microglia, rather
than astrocytes, is associated with the acute toxic effects of
METH on DA nerve terminals, although we cannot rule out a
potential role of persistent astrocyte activation in resistance to
acute METH-induced DA terminal toxicity.
Astrocytes have been shown to play important roles in

normal brain function, such as neurotransmission and
synaptic function, but have also been implicated in several
central nervous system (CNS) diseases. GFAP immunohis-
tochemistry is commonly used to assess astrocyte reactivity
(Sofroniew and Vinters 2010) and is increased following

various CNS pathologies (Hozumi et al. 1990; Zhang et al.
1999; Borges et al. 2003). Herein, we examined GFAP
expression in animals that received single or repeated
administration of a neurotoxic regimen of METH. In
saline-treated control animals (Saline:Saline), GFAP is
minimally expressed in striatum. Conversely, in animals
treated with METH (METH:Saline, Saline:METH, and
METH:METH), GFAP expression is much more dispersed
throughout the entire striatum. In these groups, GFAP
expression was much more intense and astrocytes took on
a more reactive phenotype with thicker processes. To our
knowledge, this is the first study to show that GFAP
expression remains elevated in METH-exposed rats as far out
as 32 days post-treatment. However, these data are consistent
with previous work showing elevated GFAP expression in
METH-exposed mice 21 days post-treatment (O’Callaghan
and Miller 1994) and in primates 30 days post-METH
exposure (Harvey et al. 2000). It is important to note,
however, that in the study examining GFAP expression in
mice 21 days following METH exposure (O’Callaghan and
Miller 1994), GFAP expression was elevated compared to
controls at 21 days, but the expression was decreased
compared to GFAP levels in animals examined 2 days after
exposure to METH. In the current work, we did not find
significant differences in GFAP expression in animals treated
with METH 32 days prior and those treated 2 days prior.
However, in our work and the work of O’Callaghan and
colleagues, the GFAP expression remains elevated for
extended periods of time (O’Callaghan and Miller 1994).
It is presently unclear whether persistent astrocytosis in

animals previously exposed to a neurotoxic regimen of
METH may play a role in the resistance to further DA
depletions seen in these animals. For example, astrocytes are
key regulators of extracellular glutamate (GLU) via GLU
transporters (Anderson and Swanson 2000). Given signifi-
cant implication of GLU in METH-induced neurotoxicity
(Sonsalla et al. 1989; Nash and Yamamoto 1992; O’Dell
et al. 1992; Mark et al. 2004; Gross et al. 2011; Halpin and
Yamamoto 2012; Shah et al. 2012b), it is tempting to
speculate that changes in transporter expression or activity
associated with increased GFAP expression following the
first neurotoxic regimen of METH (PND60) may allow for
more efficient astrocyte-mediated GLU buffering during the
second METH administration (PND90). Astrocytes are also
known to be involved in blood–brain barrier (BBB) function
(Bowyer and Ali 2006), and changes in BBB during and
following METH exposure have been documented (Abbott
et al. 2006; Ramirez et al. 2009; Sharma and Kiyatkin
2009). Therefore, changes in astrocyte reactivity following
the initial exposure to METH (PND60) could result in
changes in the BBB function, resulting in protection against
toxicity when animals are exposed again at PND90. Other
possible areas of investigation related to astrocyte activity
include protection against oxidative stress via glutathione
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production (Chen et al. 2001; Shih et al. 2003), protection
against ammonia toxicity (Halpin and Yamamoto 2012), and
regulation of inflammatory responses (Min et al. 2006;
Okada et al. 2006; Shah et al. 2012b). Whether such
enhanced functions of astrocytes underlie resistance to
METH-induced DA terminal remains to be examined.
In this study, elevated GFAP expression was noted in

animals exposed to the neurotoxic regimen of METH but not
experiencing acute toxicity (i.e., the METH:METH group),
suggesting a dissociation between reactive astrogliosis and
METH-induced neurotoxicity. However, it remains possible
that astrocytes are necessary for acute METH-induced
neurotoxicity. The elevated GFAP expression in the
METH:METH group likely reflects the persistent GFAP
expression arising from the first exposure to the neurotoxic
regimen on PND60, as is apparent in the METH:Saline
group. In the METH:METH group, there is a lack of further
acute activation of astrocytes in response to the second
METH regimen on PND90 and a lack of further acute DA
neurotoxicity. Thus, the apparent lack of further astrocyte
activation and the lack of further toxicity may be linked. Our
current understanding of the conditions under which astro-
cytes become activated, the nature of that activation, and the
extent to which they provide detrimental versus beneficial
effects in the setting of CNS injury is in its infancy
(Sofroniew 2009). Thus, although all of the METH-treated
groups show similar levels of GFAP expression, it is thus
possible that there are differences in the functions of
seemingly similar ‘reactive’ astrocytes under different
METH-exposure conditions and that these differences in
function are not reflected in differences in GFAP expression
(Sofroniew 2009). It is also possible that the immunhisto-
chemical detection of GFAP used herein may not be
sensitive to subtle differences in GFAP expression, as prior
work by O’Callaghan and Miller (1994) in mice have
suggested some recovery of GFAP expression as assessed by
an enzyme-linked immunosorbent assay three weeks after
exposure to a similar neurotoxic regimen, whereas such
recovery is not apparent in this work. Prior studies of
neurotoxicity associated with a single bolus injection of
METH in mice show that minocycline pre-treatment pre-
vents the activation of microglia, but does not protect against
toxicity or increases in GFAP expression (Sriram et al.
2006), suggesting an association between reactive astrocy-
tosis, but not reactive microglia, and METH-induced neu-
rotoxicity. However, that prior study was conducted using a
single bolus regimen of METH, and other data suggest
notable differences in the nature of the neurotoxicity
resulting from a single bolus versus a neurotoxic binge
regimen of METH (Zhu et al. 2006). Clearly, additional
studies are necessary to discern the role of astrocytes in the
persistent monoamine neurotoxicity induced by METH and
to further define the phenotype of astrocytes under different
METH-exposure conditions.

Microglia are the primary antigen-presenting cells in the
CNS and also become highly reactive following various CNS
insults. Microglia have been shown to migrate to sites of
injury and to secrete pro-inflammatory cytokines, as well as a
variety of other factors (Hanisch 2002). Reactive microglia
have been observed in the brains of both animals (Guilarte
et al. 2003; LaVoie et al. 2004; Thomas et al. 2004)
exposed to METH and in the brains of human METH
abusers (Sekine et al. 2008; Kitamura et al. 2010). Interest-
ingly, Thomas and colleagues have shown that when animals
are pre-treated with a neurotoxic regimen of METH, allowed
to recover for 7 days, and treated with a subsequent
neurotoxic regimen of METH, they no longer demonstrate
significant microglial activation. Similarly, here we show that
when the recovery period between METH treatments is
extended to 30 days, animals still remain resistant to acute
DA-terminal injury and activation of microglia. Activated
microglia are often characterized as having retracted, thick-
ened processes with increased cell body size, whereas their
‘resting’ counterparts demonstrate finely branched processes
and ramified morphology and small cell body (Kreutzberg
1996). In control animals and those exposed to METH only
at PND60 (METH:Saline), the resting microglia morphology
was observed. Similarly, striatal sections from animals
resistant to further toxicity also exhibited resting microglia
morphology, as reflected in CD11b immunohistochemistry.
Conversely, animals exposed to METH on PND90 and
experiencing acute toxicity (Saline:METH) exhibited signif-
icant thickening of branches and more intense microglia cell
body staining. These data are consistent with the findings of
Thomas and colleagues (Thomas and Kuhn 2005) and
suggest that microglia reactivity remains a specific marker
for acute damage to DA terminals following a neurotoxic
regimen of METH. However, whether microglial activation
contributes to or simply mirrors METH-induced neurotoxic-
ity remains unknown.
Clearly, more direct experiments using pharmacological

and genetic manipulations of astrocyte and microglia activa-
tion are needed to determine the role of these two cell types
in METH-induced DA terminal degeneration. Studies inves-
tigating the molecular triggers for the activation of astrocytes
and microglia following methamphetamine exposure will
lead to a better understanding of the cascade of events that
ultimately results in changes in these cells. Finally, more
specific markers for the different stages of activation of both
astrocytes and microglia are needed to further tease apart the
differences in degree of activation and activity of these two
cell types following METH exposure.
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CHAPTER 4 
 
 
 

PROLIFERATION OF GLIAL CELLS IN STRIATUM FOLLOWING  
 

REPEATED METHAMPHETAMINE EXPOSURE 
 



	
  

4.1 Abstract 

Following brain injury, progenitor cells have the ability to differentiate into 

neurons and/or glia.  Previous work has suggested that a single bolus regimen of 

methamphetamine (METH) increases the number of proliferating cells in striatum and 

that some proliferating cells colocalize with beta-III tubulin, suggesting a neuronal fate.  

However, the identity of these cells has not been clearly elucidated.  Also, the extent to 

which such proliferation is induced simply by exposure to METH or is associated with 

METH-induced neurotoxicity has not heretofore been examined.  Data from our lab and 

others indicate that rats with partial dopamine (DA) loss resulting from prior exposure to 

METH are resistant to further decreases in striatal DA when reexposed to METH 30 days 

later.  This experimental paradigm thus allows for examination of factors associated with 

METH-induced toxicity in animals matched for acute METH exposure, but differentiated 

with respect to acute METH-induced neurotoxicity.  Therefore, this study 

examined cellular proliferation (BrdU and Ki67) in striata of animals administered saline 

or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, 

Saline:METH, METH:Saline, METH:METH).  Consistent with previous work, we found 

that animals exposed to METH and acutely experiencing toxicity (Saline:METH) showed 

an increase in striatal proliferation compared to all other treatment groups.  Furthermore, 

using double-label immunohistochemistry, we determined that a large proportion of the 

proliferating cells in the Saline:METH treatment group were microglia (CD11b+).  Only 

a small proportion of proliferating cells were astrocytes (GFAP+) or neurons (NeuN+).  

The results presented herein are consistent with previous reports in that we observe an 

increase in proliferation following METH exposure.  However, we extend the current 

knowledge by demonstrating that a large proportion of these proliferating cells are also 
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positive for markers of microglia, suggesting a significant contribution of glial 

proliferation to the total amount of METH-induced proliferation, and that the increase in 

proliferation only occurs in animals exposed to METH and experiencing acute toxicity 

suggesting that microglia reactivity parallels METH-induced neurotoxicity.  

	
  

4.2 Introduction 

Methamphetamine (METH) abuse and the resulting neurotoxicity is a 

considerable public health concern.  METH exposure results in persistent damage to the 

dopaminergic system in both human METH abusers and in animal models.  METH-

induced damage to the dopamine (DA) system is reflected in decreased DA tissue content 

(Kogan et al., 1976; Wagner et al., 1980), dopamine transporter (DAT) binding 

(Fleckenstein et al., 1997; McCann et al., 1998), tyrosine hydroxylase (TH) 

immunohistochemical staining (Kogan et al., 1976), and vesicular monoamine transporter 

activity (Guilarte et al., 2003) in striatum.  The importance of elucidating the cascade of 

events that occurs during and following METH exposure that ultimately results in 

METH-induced neurotoxicity has only grown due to new evidence indicating that 

individuals with a history of amphetamine abuse have an increased risk for developing 

Parkinson’s Disease years later (Callaghan et al., 2010; Callaghan et al., 2012).  

Multipotent progenitor cells are present in the adult mammalian central nervous 

system and have the capacity to divide and differentiate into multiple cell types including 

neurons, astroglia, and oligodendrocytes (for review see De Filippis and Binda, 2012).  

Recent work has shown cellular proliferation in striatum in response to various CNS 

injuries including ischemia (Parent et al., 2002), excitotoxicity (Dihne et al., 2001; Collin 
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et al., 2005), and exposure to neurotoxic drugs including 6-hydroxydopamine (6-

OHDA)(Aponso et al., 2008; Wachter et al., 2010) and 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) (Kay and Blum, 2000; Mao et al., 2001).  In particular, 

increased striatal cellular proliferation has been observed in mice following 

administration of a bolus injection of a high dose of METH (Tulloch et al., 2011a; 

Tulloch et al., 2011b; Tulloch et al., 2011c).  In these latter studies, at least a portion of 

the proliferating cells co-localized with beta-III tubulin, suggesting a neuronal phenotype.  

However, this study did not quantify the degree of co-localization between markers of 

proliferation and beta-III tublin and did not examine markers for other cells types that 

may also contribute to the increase in proliferation (Tulloch et al., 2011a).  Interestingly, 

the work by Tulloch and colleagues showed that proliferation peaked at 2 days post-

METH treatment, a time point at which it is well established that glial cells are highly 

reactive (LaVoie et al., 2004; Thomas et al., 2004).  Furthermore, as mentioned above, 

exposure to MPTP or 6-OHDA is associated with increased proliferation in striatum, and 

immunohistochemical staining identified these proliferating cells as astrocytes and 

microglia (Kay and Blum, 2000; Mao et al., 2001; Aponso et al., 2008; Wachter et al., 

2010).  Thus, given the established time course of astrocyte and microglia activation 

following METH exposure and data indicating significant glial proliferation following 

exposure to other neurotoxic drugs, the extent to which proliferation following METH 

exposure is, at least in part, glial-derived requires scrutiny. 

While the data noted above (Tulloch et al., 2011a; Tulloch et al., 2011b; Tulloch 

et al., 2011c) indicate that exposure to METH is associated with proliferation in the 

striatum, the extent to which the proliferation is a response to METH exposure alone or is 

83



	
  

associated with METH-induced neurotoxicity is unknown.  Our lab and others (Thomas 

and Kuhn, 2005; Hanson et al., 2009) have conducted studies in which animals are 

treated with a neurotoxic regimen of METH and animals are challenged 7 or 30 days later 

with a second neurotoxic regimen of METH.  These studies revealed that such animals 

are resistant to acute DA neuron toxicity upon exposure to the second METH regimen 

(Thomas and Kuhn, 2005; Hanson et al., 2009). This experimental paradigm thus allows 

for the examination of factors associated with METH-induced neurotoxicity in animals 

matched for acute METH exposure, but differentiated with respect to acute toxicity.  In 

the present study, we therefore used this paradigm to examine proliferation in striata of 

animals exposed to METH and experiencing acute toxicity (Saline:METH) and in 

animals exposed to METH but not experiencing acute toxicity (METH:METH).  We then 

determined the identity of proliferating cells using double-label immunohistochemistry 

with markers of proliferation, including Ki67 (endogenous marker of actively dividing 

cells, (Bacchi and Gown, 1993)) and BrdU (synthetic analog of thymidine incorporated 

into newly synthesized DNA (Gratzner, 1982)) with markers for neurons (NeuN), 

astrocytes (GFAP), and microgla (CD11b).  The results presented here are consistent with 

previous reports in that we observe an increase in proliferation and microglial reactivity 

following METH exposure.  However, we extend the current knowledge by 

demonstrating that the increase in proliferation only occurs in animals exposed to METH 

and experiencing acute toxicity, but not in those resistant to such toxicity.  Finally, we 

also show that a large proportion of these proliferating cells are microglia, suggesting a 

significant contribution of glial proliferation to the total amount of METH-induced 

proliferation. 
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4.3 Experimental procedures 

4.3.1 Animals 

 Male Sprague-Dawley rats (Charles River Laboratories, Raleigh, NC) were 

housed in wire mesh cages in a temperature-controlled room on a 12:12hr light:dark 

cycle with free access to food and water. All animal care and experimental procedures 

were in accordance with the Guide for the Care and Use of Laboratory Animals (8th Ed., 

National Research Council) and were approved by the Institutional Animal Care and Use 

Committee at the University of Utah.  

 

4.3.2 METH and BrdU administration 

METH and saline injections were completed as previously described (Friend et 

al., 2013).  On treatment days (PND60 and PND90), rats were housed in groups of 6 in 

plastic tub cages (33cm x 28cm x 17cm) with corncob bedding.  Animals received four 

injections of (±)-METH-HCl (4 x 10 mg free base/kg, s.c., at 2hr intervals; provided by 

the National Institute on Drug Abuse) or 0.9% saline (4 x 1 ml/kg, s.c., at 2hr intervals).  

Rectal temperatures were monitored using a digital thermometer (BAT-12, Physitemp 

Instruments, Clifton, NJ) to ensure that METH-induced hyperthermia occurred. Baseline 

temperatures were taken 30 min prior to the first injection and 1hr after each subsequent 

injection. If the body temperature of an animal exceeded 40.5°C, the animal was 

transferred to a cage placed over wet ice until the body temperature fell below 39°C.  

Approximately 18hr after the last injection on PND60, animals were returned to wire 

mesh cages in the colony room and allowed to recover for 30 days. On PND90, animals 

were again transferred to plastic tub cages and treated with either METH or saline as 

described above. This treatment regimen resulted in four treatment groups based on the 
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animals' PND60:PND90 treatments; Saline:Saline, Saline:METH, METH:Saline, and 

METH:METH.  For BrdU experiments, animals were treated with METH or saline on 

PND60 and PND90 as described above; however, animals also received an injection of 

BrdU (100 mg/kg, i.p; Sigma-Aldrich, B5002) dissolved in water 24hr after their last 

injection on PND90.  

 

4.3.3 Tissue preparation 

Animals were sacrificed on PND92 via exposure to CO₂ for 1 min (see Figure 4.1 

for experiment time-lines).  Following decapitation, brains were rapidly removed and 

submerged in 4% formaldehyde with 0.9% NaCl for 24hr at 4°C, then cryoprotected in 

30% sucrose in 0.1M PBS and stored at 4°C.  Brains were then sectioned at 30 µm on a 

freezing microtome (Microm, HM 440E). For each animal, coronal sections of striatum 

(+1.6 mm to +0.2 mm relative to bregma) were sectioned and stored at 4°C in 1mg/ml 

sodium azide in 0.1M PBS, as previously described (Friend and Keefe, 2013). 

 

4.3.4 Immunohistochemistry 

To determine METH-induced DA depletions, DAT immunohistochemistry was 

completed as previously described (Friend and Keefe, 2013).  Briefly, sections were 

subject to heat-mediated antigen retrieval, followed by incubation in 3% H2O2, and then 

washed in PBS.  Nonspecific antibody binding was blocked by incubating tissue in 0.1 M 

PBS containing 5% milk and 0.2% Triton X-100 for 60 min.  Sections were then 

incubated overnight at 4°C in a primary antibody solution (rat anti-DAT antibody 

(Millipore, MAB369, 1:5000)).  The following day, tissue was washed, incubated in a 
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secondary antibody solution (biotinylated goat anti-rat IgG (Vector Labs, BA-4000, 

1:200)), incubated in avidin-biotinylated peroxidase complex solution (ABC Elite Kit, 

Vector Labs, PK-6100), and washed. The sections were then incubated in nickel-

enhanced +3,3'-diaminobenzidine tetrahydrochloride (Ni-DAB; Vector, SK-4100), 

washed again, mounted onto slides, dried, dehydrated and coverslipped with VectaMount 

(Vector Labs, H-5000).   

For BrdU immunhistochemistry, sections were washed in 2x SSC buffer (0.15 M 

NaCl with 0.015 M sodium citrate) followed by incubation in 2 N hydrochloric acid for 

1hr at room temperature (RT).  Sections were then washed in 0.01M sodium borate buffer 

followed by a wash in 0.1 M PBS.  Nonspecific antibody binding was blocked by 

incubating sections in 5% normal horse serum with 0.02% Triton X-100 in 0.1M PBS for 

1hr at RT.  Sections were then incubated in a primary antibody solution containing 2% 

normal horse serum, 0.2% Triton X-100, and sheep anti-BrdU antibody (Novis 

Biologicals, NB 500-235, 1:5000) in 0.1M PBS overnight at 4°C.  The following day, 

sections were washed and incubated in a secondary antibody solution containing 2% 

normal horse serum, 0.2% Triton X-100, and donkey anti-sheep IgG conjugated to Alexa 

Fluor 555 (Invitrogen, A21436, 1:200).  Finally, sections were washed in 0.1M PBS, 

mounted on slides, and coverslipped using Prolong Gold® with DAPI (Invitrogen, 

1034067). 

For Ki67 immunohistochemistry, sections were initially washed in 0.1M PBS and 

nonspecific antibody binding was blocked by incubating in 0.1M PBS containing 10% 

goat serum with 0.2% Triton X-100 for 1hr at RT.  Sections were then incubated in 

primary antibody solution containing 5% goat serum, 0.2% Triton-X 100 and rabbit anti-
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Ki67 antibody (Abcam, ab16667, 1:50) overnight at 4°C.  The following day, sections 

were washed in 0.1M PBS and incubated in a secondary antibody solution containing 5% 

goat serum, 0.2% Triton X-100, and goat anti-rabbit IgG conjugated to Alexa Fluor 555 

(Invitrogen, A21428, 1:1000) for 1hr at RT.  Finally, sections were washed in 0.1M PBS, 

mounted on slides, and coverslipped as described above for BrdU.  The quantification of 

proliferation using Ki67 immunohistochemistry was consistent with the quantification of 

proliferation using BrdU immunohistochemistry. Therefore, because Ki67 

immunohistochemistry is more easily combined with other immunohistochemical 

protocols, we used Ki67 immunohistochemistry for all double-label 

immunohistochemical analyses. 

For double-label immunohistochemisty of Ki67 with GFAP, CD11b, or NeuN, 

sections were first immunostained for Ki67 as described above.  Following 

immunohistochemical detection of Ki67, immunohistochemistry for GFAP or CD11b 

was performed, as previously described (Friend and Keefe, 2013).  Briefly, sections were 

washed and blocked for 2hr at RT in blocking solution. Sections were then incubated in 

primary antibody solution (mouse anti-GFAP antibody conjugated to Alexa Fluor 488, 

Millipore, MAB3402X, 1:1000 or mouse anti-CD11b, Abcam, AB1211, 1:50). The 

following day, sections labeled for GFAP were washed, mounted on slides, and 

coverslipped using Pronglong Gold® with DAPI.  For CD11b immunohistochemistry, 

sections were washed and incubated with the secondary antibody solution (goat anti-

mouse IgG conjugated to Alexa Fluor 488, Invitrogen, A11029, 1:1000).  Sections were 

then mounted and coverslipped as described above.  For double-label 

immunohistochemistry of Ki67 and NeuN, following Ki67 immunohistochemical 
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staining, sections were washed and blocked in a solution containing 10% horse serum and 

2% Triton X-100 in 0.1M PBS for 2hr at RT.  Sections were then incubated in primary 

antibody solution containing 5% horse serum and mouse anti-NeuN conjugated to Alexa 

Fluor 488 (Millipore, MAB377X, 1:600) at RT for 3hr. Sections were then washed, 

mounted, and coverslipped as described above for BrdU.   

 

4.3.5 Image acquisition and analysis 

Image analysis was completed by an experimenter blinded to treatment 

conditions.  For DAT immunohistochemistry, images were digitized and densitometric 

analysis was performed as previously described, yielding background-subtracted, average 

gray values in striatum (Friend and Keefe, 2013).  Average gray values were then 

compared across treatment groups.  Fluorescent microscopy was used to quantify the 

total number of proliferating cells (Ki67 and BrdU) in striatum.  Montages (3x3 fields; 

total area 0.63 mm2) in striatum were captured at 40X (Leica DM 4000B; 555-nm filter 

cube).  Two rostral (+1.6 mm bregma) and two middle (+0.2 mm bregma) striatal 

sections per animal were imaged and analyzed.  The number of cells stained for Ki67 or 

BrdU were recorded and averaged across sections for each animal and compared across 

treatment groups.  Confocal microscopy was used to visualize fluorescent cells double-

labeled with Ki67 and cell type-specific markers (NeuN, GFAP, or CD11b).  Two serial 

sections were imaged and analyzed per label per animal.  A Z-stacked image of Ki67 in 

striatum was captured under 2X zoom with an FV1000 confocal laser-scanning 

microscope (Olympus) with motorized stage (Prior Scientific) using a 40X, 1.3 NA oil-

immersion lens (Plan APO) and 405-nm Diode, 488-nm AR, and 543-nm HENE lasers.  

89



	
  

Images were captured at 2-µm intervals through the Z-axis of the section.  Cells were 

examined in each animal for NeuN, GFAP, or CD11b colabeling with Ki67 to determine 

the percentage of Ki67+ cells that were Ki67+/NeuN+, Ki67+/GFAP+, or Ki67+/ CD11b + 

in relation to the total number of Ki67+ cells.  The degree of colocalization was then 

compared across treatment groups. 

 

4.3.6 Statistical analysis 

Statistical analysis was performed using a two-factor ANOVA (PND60 treatment 

x PND90 treatment) followed by post hoc analysis using a Tukey’s HSD test.  Statistical 

analysis on body temperatures was conducted using a MANOVA with repeated measures 

(PND60 treatment x PND90 treatment x Time) followed by post hoc analysis of 

significant time x treatment interactions using two-tailed t-tests at each time point.  

 

4.4. Results 

4.4.1 METH-induced hyperthermia 

4.4.1.1 METH-induced hyperthermia in BrdU cohort  

For body temperature data collected during treatment of this cohort of animals on 

PND60 (Figure 4.2A), MANOVA revealed main effects of PND60 treatment (F(1,21) = 

177.51, p < 0.0001) and time (F(4,18) = 144.13, p < 0.0001) and a significant PND60 

treatment x time interaction (F(1,18) = 108.29, p<0.0001). Post hoc analysis revealed that 

the temperatures of animals receiving METH on PND60 were not different from controls 

at baseline (BL, t = 1.66, p = 0.11), but were significantly greater than those receiving 

saline at all four time points after the injections of METH began (60 min, t = 9.88, p < 
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0.0001; 180 min, t = 13.48, p < 0.0001; 300 min, t = 8.92, p < 0.0001; 420 min, t = 8.87, 

p < 0.0001).  For body temperature data collected during treatment of this cohort of 

animals on PND90 (Figure 4.2B), MANOVA revealed main effects of PND90 treatment 

(F(1,21) = 102.97, p < 0.0001) and time (F(4,18) = 52.17, p < 0.0001) and a significant 

PND90 treatment x time interaction (F(1,18) = 30.82, p < 0.0001). Post hoc analysis of the 

PND90 treatment x time interaction again revealed that temperatures of animals acutely 

receiving METH on PND90 were not different from controls at baseline (BL, t = -0.69, p 

= 0.31), but were significantly higher than those of controls at all time points after the 

administration of METH began (60 min, t = 9.84, p < 0.0001; 180 min, t = 11.05, p < 

0.0001; 300 min, t = 7.43, p < 0.0001; 420 min,  t = 7.94, p < 0.0001). Importantly, there 

were no significant PND60 treatment x PND 90 treatment (F(1,21) = 0.23, p = 0.6300) or 

PND60 treatment x PND90 treatment x time (F(4,18) = 0.3783, p = 0.82) interactions.  

	
  

4.4.1.2 METH-induced hyperthermia in Ki67 cohort  

 For body temperature data collected during treatment of this cohort of animals on 

PND60 (Figure 4.2C), MANOVA revealed main effects of PND60 treatment (F(1,50) = 

332.62, p < 0.0001) and time (F(4,47) = 64.41, p < 0.0001) and a significant PND60 

treatment x time interaction (F(1,47) = 53.59, p < 0.0001). Post hoc analysis revealed that 

the temperatures of animals receiving METH on PND60 were slightly elevated compared 

to saline treated animals at baseline (BL, t = 2.06, p < 0.05) and were significantly higher 

than those of animals exposed to saline at all four time points after the injections of 

METH began (60 min, t = 20.45, p < 0.0001; 180 min, t = 19.10, p < 0.0001; 300 min, t = 

14.05, p < 0.0001; 420 min, t = 12.47, p < 0.0001).  For body temperature data collected 
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during treatment of this cohort of animals on PND90 (Figure 4.2D), MANOVA revealed 

main effects of PND90 treatment (F(1,50) = 381.58, p < 0.0001) and time (F(4,47) = 87.87, p 

< 0.0001) and a significant PND90 treatment x time interaction (F(4,47) = 87.81, p < 

0.0001). Post hoc analysis of the PND90 treatment x time interaction again revealed that 

temperatures of animals receiving METH on PND90 were not different from controls at 

baseline (BL, t = -1.10, p = 0.52), but were significantly higher than those of saline 

treated animals at all time points after the administration of METH began (Figure 2D; 60 

min, t = 15.76, p < 0.0001; 180 min, t = 18.30, p < 0.0001; 300 min, t = 12.58, p < 

0.0001; 420 min, t = 13.33, p < 0.0001). Importantly, there were no significant PND60 

treatment x PND 90 treatment (F(1,50) = 1.57, p = 0.22) or PND60 treatment x PND90 

treatment x time (F(4,47) = 2.23, p = 0.08) interactions.  

 

4.4.2 METH-induced DA depletions 

4.4.2.1 METH-induced DA depletions in the BrdU cohort  

METH-treated animals showed significant decreases in DAT 

immunohistochemical staining compared to saline-treated controls (Figure 4.3A). A two-

factor ANOVA for striatal DAT revealed no significant main effect of PN60 treatment 

(F(1,21) = 0.0111, p = 0.9272); however, the ANOVA revealed a significant effect of 

PND90 treatment (F(1,21) = 47.89, p < 0.0001) and a significant PND60 x PND90 

treatment interaction (F(1,21) = 16.34, p < 0.001). Post hoc analysis of the interaction 

revealed that animals treated with the neurotoxic regimen of METH (Saline:METH, 

METH:Saline, and METH:METH) were significantly different from saline controls 

(Saline:Saline; Tukey’s HSD test, p values <0.05) and that animals treated with METH 

92



	
  

only on PND90 (Saline:METH) were different from animals treated with METH only on 

PND60 (METH:Saline) or animals treated with METH on both PND60 and PND90 

(METH:METH; Tukey’s HSD test, p values <0.05). DAT staining in the striata of 

METH:Saline and METH:METH animals were not different from each other (p = 0.15).  

Thus, as previously shown, rats receiving a second neurotoxic regimen of METH were 

resistant to further acute neurotoxicity. 

 

4.4.2.2 METH-induced DA depletions in the Ki67 cohort  

METH-treated animals in this cohort also showed significant decreases in DAT 

immunohistochemical staining compared to saline-treated controls (Figure 4.3B). A two-

factor ANOVA for striatal DAT did not reveal a main effect for PND60 treatment; 

however, the ANOVA revealed a significant effect of PN90 treatment (F(1,50)=123.96, 

p<0.0001) and a significant PND60 x PND90 treatment interaction (F(1,50)=61.95, 

p<0.0001). Post hoc analysis of the interaction revealed that animals treated with the 

neurotoxic regimen of METH (METH:Saline, Saline:METH, and METH:METH) were 

significantly different from controls (Saline:Saline; Tukey’s HSD test, p values <0.0001; 

Figure 3B) and that animals treated with METH only on PND90 (Saline:METH) were 

different from animals treated with METH on PND60 (METH:Saline) and animals 

treated with METH on both PND60 and PND90 (METH:METH) (Tukey’s HSD test, p 

values <0.001).  Furthermore, DAT staining in Saline:METH animals and METH:METH 

animals were not different from each other (p = 0.10).  Thus, as previously shown, 

animals receiving a second neurotoxic regimen of METH were resistant to further acute 

neurotoxicity. 

93



	
  

4.4.3 Proliferation 

4.4.3.1 METH-induced proliferation measured via BrdU  

immunohistochemistry   

Animals treated with METH only on PND90 (Saline:METH) showed a significant 

increase in the number of BrdU-positive cells compared to all other treatment groups 

(Saline:Saline, METH:Saline, and METH:METH; Figure 4.4A).  A two-factor ANOVA 

of the number of BrdU+ cells revealed significant main effects of PND60 (F(1,21) = 12.99, 

p < 0.01) and PND90 treatments (F(1,21) = 34.39, p < 0.0001), and a significant PND60 x 

PND90 treatment interaction (F(1,21) = 8.76, p < 0.01).  Post hoc analysis of the 

interaction revealed that animals treated with a neurotoxic regimen only on PND90 

(Saline:METH) were significantly different from all other treatment groups (Tukey’s 

HSD test, p values < 0.001).  To confirm the accuracy of these measurements, a second 

experimenter independently performed counts of BrdU-positive cells.  The correlation 

between the two independent investigators’ measures was highly significant (r2 = 0.4, p < 

0.0001, data not shown), indicating accurate measurement of BrdU-positive cells.  

 

4.4.3.2 METH-induced proliferation measured via  

Ki67 immunohistochemistry 

Animals treated with METH on PND90 only (Saline:METH) showed a significant 

increase in the number of Ki67-positive cells compared to all other treatment groups 

(Saline:Saline, METH:Saline, and METH:METH; Figure 4.4B).  A two-factor ANOVA 

of the number of Ki67-positive cells revealed that there was no main effect of PND60 

treatment (F(1,50) = 2.61, p > 0.11), but that there was a main effect of PND90 treatment 
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(F(1,50) = 13.19, p < 0.001) and a significant PND60 treatment x PND90 treatment 

interaction (F(1,50) = 5.31, p < 0.05). Post hoc analysis of the interaction revealed that 

animals treated with a neurotoxic regimen of METH only on PND90 (Saline:METH) 

were significantly different from all other treatment groups (Tukey’s HSD test, p values < 

0.05). 

 

4.4.3.3 Percentage of proliferating cells that are neurons  

 Methamphetamine administration did not result in a change in neuronal 

proliferation 48hr after the last injection on PND90 (Figure 4.5).  A two-way ANOVA 

examining the percentage of Ki67-positive cells double labeled for NeuN revealed no 

significant main effects of PND60 (F(1,23) = 0.09, p = 0.93) or PND90 (F(1,23) = 3.23, p = 

0.09) treatment and no significant PND60 treatment  x  PND90 treatment interaction 

(F(1,23) = 0.05, p = 0.83).  

 

4.4.3.4 Percentage of proliferating cells that are astrocytes  

 Methamphetamine administration resulted in an increase in the degree of 

astrocyte proliferation 48hr after the last injection on PND90 (Figure 4.6).  A two-way 

ANOVA examining the percentage of Ki67-positive cells double labeled for GFAP 

revealed a significant main effect of PND90 treatment (F(1,20) = 2.61, p < 0.05), but no 

significant main effect of PND60 treatment (F(1,20) = 0.3586, p = 0.56) and no significant 

PND60 treatment  x  PND90 treatment interaction (F(1,20) = 1.1434, p=0.25).  
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4.4.3.5 Percentage of proliferating cells that are microglia  

Animals treated METH only on PND90 (Saline:METH) showed increased 

microglial proliferation 48hr after the last injection on PND90 (Figure 4.7).  A two-way 

ANOVA examining the percentage of Ki67-positive cells double labeled for CD11b 

revealed main effects of PND60 (F(1,23) = 5.72, p < 0.05) and PND90 (F(1,23) =14.66, p < 

0.001) treatments and a significant PND60 treatment x PND90 treatment interaction 

(F(1,23) = 4.75, p < 0.05).  Post hoc analysis of the interaction revealed that animals 

treated with a neurotoxic regimen of METH only on PND90 (Saline:METH) were 

significantly different from all other treatment groups (Tukey’s HSD test, p values < 

0.05). 

 

4.5 Discussion 

Methamphetamine use continues to be a significant public health concern.  It is 

well established that abuse results in long-term deficits to the DA system.  Notably, 

recent evidence has shown that individuals with a history of amphetamine abuse, most 

prominently METH, also show increased incidence of Parkinson’s disease several years 

later (Callaghan et al., 2010; Callaghan et al., 2012), highlighting the clinical relevance of 

METH-induced neurotoxicity.  Thus, clarifying the mechanisms through which METH 

damages the DA system and how these mechanisms may contribute to the further 

degeneration resulting in Parkinsonism years later will be essential for the development 

of therapeutic targets to prevent further degeneration in individuals with a history of 

METH abuse and addiction, as well as perhaps for individuals with idiopathic Parkinson's 

disease. 
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Recent work has documented a significant increase in proliferation in striatum 24-

48hrs after exposure to a neurotoxic regimen of METH (Tulloch et al., 2011a; Tulloch et 

al., 2011b; Tulloch et al., 2011c).  Based on double-label immunohistochemical staining, 

that work suggested that proliferating cells co-localized with beta-III tubulin, a neuron-

specific marker (Tulloch et al., 2011a).  However, this study did not quantify the degree 

of co-localization of BrdU and beta-III tubulin, nor did this study examine whether other 

cell types contributed to total amount of proliferation observed.  Given prior data 

suggesting that glial cells become reactive 24-48hr following exposure to METH and 

may increased in number (O'Callaghan and Miller, 1994; LaVoie et al., 2004), we wanted 

to explore the possibility that microglia and astrocytes contribute to the increased 

proliferation occurring in striatum following exposure to a neurotoxic regimen of METH.  

To answer this question we used double-label immunohistochemistry with markers of 

cellular proliferation (Ki67 and BrdU) and cell type-specific markers to identify 

astrocytes (GFAP), microglia (CD11b), and neurons (NeuN). 

Consistent with previous work (Tulloch et al., 2011a; Tulloch et al., 2011b), we 

found that proliferation is increased in animals following exposure to a neurotoxic 

regimen of METH.  We found similar degrees of proliferation in two separate cohorts of 

animals using two separate markers of proliferation, BrdU and Ki67.  Interestingly, we 

found that cellular proliferation was only increased in animals that were exposed to 

METH and experiencing acute toxicity (Saline:METH), whereas animals resistant to 

further METH-induced DA depletions (METH:METH) did not show increased 

proliferation compared to saline-treated controls (Saline:Saline).   
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To determine the identity of proliferating cells we initially performed double-label 

immunohistochemisty with Ki67 and NeuN (neuron specific marker) to determine the 

percentage of Ki67 positive cells that were neurons.  Here, we found that in saline treated 

animals, approximately 15% of the Ki67+ cells in striatum also stained for NeuN, a 

finding that is consistent with quantifications of baseline neuronal proliferation in 

striatum (Van Kampen et al., 2004).  Surprisingly, we did not observe an increase in the 

percentage of Ki67+ cells that colocalized with NeuN in animals exposed to a neurotoxic 

regimen of METH compared to those exposed to saline.  These data are inconsistent with 

the previous work suggesting that many of the proliferating (i.e., BrdU-positive) cells 

observed after METH exposure co-localize with beta-III tubulin, a neuron-specific 

marker (Tulloch et al., 2011c); however, beta-III tubulin is known to label immature 

neurons, whereas NeuN labels neurons that are fully differentiated (von Bohlen Und 

Halbach, 2007).  Therefore, there remains the possibility that neuronal precursors (beta-

III tubulin) are proliferating 48hr after METH exposure, but have not yet fully 

differentiated into neurons (expressing NeuN). 

Next, double-label immunohistochemistry was performed to determine the 

percentage of Ki67+ cells that also stained for GFAP.  Here we found that a small 

proportion of proliferating cells were, in fact, astrocytes.  Here we found a main effect of 

PND90 treatment, indicating that astrocyte proliferation was increased in animals 

exposed to METH on PND90 (Saline:METH and METH:METH), compared to animals 

exposed to saline on PND90 (Saline:Saline and Saline:METH).  These data suggest that 

havn’t proliferation of astrocytes may partially contribute to the total number of 

proliferating cells observed following METH exposure. 
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Finally, we determined the percentage of proliferating cells that are microglia by 

performing double-label immunohistochemistry using Ki67 and CD11b, a microglia-

specific marker.  We found that a large proportion (~40%) of proliferating cells in 

animals exposed to METH and experiencing acute toxicity (Saline:METH) were 

microglia, as evidenced by CD11b staining.  Interestingly, this increase in the percentage 

of cells double-labeled for Ki67 and CD11b  was only observed in animals treated with 

METH and acutely experiencing toxicity (Saline:METH); very little colocalization of 

Ki67 with CD11b occurred in animals exposed to METH but not experiencing acute 

toxicity (METH:METH).  These later data demonstrating the proliferation of microglia 

only in animals experiencing acute METH-induced toxicity are consistent with previous 

work.  For example, our lab and others have previously shown that animals exposed to 

METH and experiencing acute toxicity (Saline:METH) have highly reactive microglia 

throughout striatum, whereas animals exposed to METH but  resistant to METH-induced 

neurotoxicity (METH:METH) do not show microglial activation (Thomas and Kuhn, 

2005; Friend and Keefe, 2013).  Furthermore, irradiated mice given bone marrow 

transplants from mice expressing eGFP and then later exposed to METH do not show any 

evidence of eGFP-expressing microglia in striatum (Thomas et al., 2008).  However, a 

typical activated microglia response is still observed in these animals after exposure to 

METH.  Taken together with the present findings, the data suggest that the microglial 

response to METH exposure, at least in part, reflects proliferation of resident striatal 

microglia.  Additionally these data also indicate that the microglial response following a 

neurotoxic regimen of METH parallels toxicity in that increased cd11b expression and 

microglia proliferation only occurs in animals exposed to METH and experiencing acute 
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toxicity (Saline:METH) but not in animals exposed to METH and not experiencing acute 

toxicity (METH:METH). 

Although the present findings demonstrate that astrocytes, neurons to a lesser 

degree, and microglia make up a large proportion of the proliferating cells observed in 

striatum following exposure to a neurotoxic regimen of METH, there still remains a 

subpopulation of proliferating cells that are unaccounted for.  The possibility remains that 

a portion of the proliferating cells are neuronal precursors that at 48hr after METH 

exposure do not yet express NeuN (Kempermann et al., 2003; von Bohlen Und Halbach, 

2007; Liu et al., 2008), but that are beta-III tubulin-positive (Tulloch et al., 2011a).  

Additionally, glial/oligodendrocyte precursors are known to enter the cell cycle and to 

proliferate following various CNS injuries (Levine, 1994; Keirstead et al., 1998; Redwine 

and Armstrong, 1998; Levine and Reynolds, 1999; Nielsen et al., 2006)  These precursors 

are positive for the chondroitin sulfate proteoglycan NG2 and give rise to both astrocytes 

and oligdendrocytes (Levine et al., 2001; Trotter et al., 2010).  To our knowledge, 

changes in proliferation of NG2-positive cells has yet to be examined in the context of a 

neurotoxic regimen of METH, and thus deserves attention in this context.  Future work 

will be aimed at determining whether neuronal precursors and/or oligodendrocyte 

progenitors also contribute to METH-induced striatal cellular proliferation. 

 
 

4.6 Conclusions 
	
  

These studies demonstrate a significant increase in the number of proliferating 

cells in striatum 48hr following a neurotoxic regimen of METH.  Importantly, the 

increase in proliferation is only seen in animals exposed to METH and experiencing 
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toxicity, not in those resistant to such toxicity.  Using double-label 

immunohistochemistry, we show that a large portion of these proliferating cells are 

microglia, whereas only a small number of cells co-express markers for astrocytes 

(GFAP) or differentiated neurons (NeuN).  These data are consistent with previous work 

from our lab and others demonstrating that glial cells are highly reactive 24-48hr after 

exposure to a neurotoxic regimen of METH and that animals resistant to METH-induced 

DA depletions as result of prior exposure to the drug do not show reactive microglial 

phenotypes.  Taken together, these data provide further support for a link between 

microglial proliferation and METH-induced neurotoxicity in the striatum.  

  

101



	
  

4.7 References 

Aponso PM, Faull RL and Connor B (2008) Increased progenitor cell proliferation and 
astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson's 
disease. Neuroscience 151:1142-1153. 

Bacchi CE and Gown AM (1993) Detection of cell proliferation in tissue sections. Braz J 
Med Biol Res 26:677-687. 

Callaghan RC, Cunningham JK, Sajeev G and Kish SJ (2010) Incidence of Parkinson's 
disease among hospital patients with methamphetamine-use disorders. Mov 
Disord 25:2333-2339. 

Callaghan RC, Cunningham JK, Sykes J and Kish SJ (2012) Increased risk of Parkinson's 
disease in individuals hospitalized with conditions related to the use of 
methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 
120:35-40. 

Collin T, Arvidsson A, Kokaia Z and Lindvall O (2005) Quantitative analysis of the 
generation of different striatal neuronal subtypes in the adult brain following 
excitotoxic injury. Exp Neurol 195:71-80. 

De Filippis L and Binda E (2012) Concise review: self-renewal in the central nervous 
system: neural stem cells from embryo to adult. Stem Cells Transl Med 1:298-
308. 

Dihne M, Block F, Korr H and Topper R (2001) Time course of glial proliferation and 
glial apoptosis following excitotoxic CNS injury. Brain Res 902:178-189. 

Fleckenstein AE, Metzger RR, Gibb JW and Hanson GR (1997) A rapid and reversible 
change in dopamine transporters induced by methamphetamine. Eur J Pharmacol 
323:R9-10. 

Friend DM and Keefe KA (2013) Glial Reactivity in Resistance to Methamphetamine-
Induced Neurotoxicity. J Neurochem. 

Friend DM, Son JH, Keefe KA and Fricks-Gleason AN (2013) Expression and activity of 
nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine 
toxicity. J Pharmacol Exp Ther 344:511-521. 

Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new 
reagent for detection of DNA replication. Science 218:474-475. 

Guilarte TR, Nihei MK, McGlothan JL and Howard AS (2003) Methamphetamine-
induced deficits of brain monoaminergic neuronal markers: distal axotomy or 
neuronal plasticity. Neuroscience 122:499-513. 

102



	
  

Hanson JE, Birdsall E, Seferian KS, Crosby MA, Keefe KA, Gibb JW, Hanson GR and 
Fleckenstein AE (2009) Methamphetamine-induced dopaminergic deficits and 
refractoriness to subsequent treatment. Eur J Pharmacol 607:68-73. 

Kay JN and Blum M (2000) Differential response of ventral midbrain and striatal 
progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev 
Neurosci 22:56-67. 

Keirstead HS, Levine JM and Blakemore WF (1998) Response of the oligodendrocyte 
progenitor cell population (defined by NG2 labelling) to demyelination of the 
adult spinal cord. Glia 22:161-170. 

Kempermann G, Gast D, Kronenberg G, Yamaguchi M and Gage FH (2003) Early 
determination and long-term persistence of adult-generated new neurons in the 
hippocampus of mice. Development 130:391-399. 

Kogan FJ, Nichols WK and Gibb JW (1976) Influence of methamphetamine on nigral 
and striatal tyrosine hydroxylase activity and on striatal dopamine levels. Eur J 
Pharmacol 36:363-371. 

LaVoie MJ, Card JP and Hastings TG (2004) Microglial activation precedes dopamine 
terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 
187:47-57. 

Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after 
brain injury. J Neurosci 14:4716-4730. 

Levine JM and Reynolds R (1999) Activation and proliferation of endogenous 
oligodendrocyte precursor cells during ethidium bromide-induced demyelination. 
Exp Neurol 160:333-347. 

Levine JM, Reynolds R and Fawcett JW (2001) The oligodendrocyte precursor cell in 
health and disease. Trends Neurosci 24:39-47. 

Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, Connor B, Dragunow 
M and Faull RL (2008) Doublecortin expression in the normal and epileptic adult 
human brain. Eur J Neurosci 28:2254-2265. 

Mao L, Lau YS, Petroske E and Wang JQ (2001) Profound astrogenesis in the striatum of 
adult mice following nigrostriatal dopaminergic lesion by repeated MPTP 
administration. Brain Res Dev Brain Res 131:57-65. 

McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF and Ricaurte GA (1998) 
Reduced striatal dopamine transporter density in abstinent methamphetamine and 
methcathinone users: evidence from positron emission tomography studies with 
[11C]WIN-35,428. J Neurosci 18:8417-8422. 

103



	
  

Nielsen HH, Ladeby R, Drojdahl N, Peterson AC and Finsen B (2006) Axonal 
degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the 
mouse. Glia 54:105-115. 

O'Callaghan JP and Miller DB (1994) Neurotoxicity profiles of substituted amphetamines 
in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741-751. 

Parent JM, Vexler ZS, Gong C, Derugin N and Ferriero DM (2002) Rat forebrain 
neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 
52:802-813. 

Redwine JM and Armstrong RC (1998) In vivo proliferation of oligodendrocyte 
progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 
37:413-428. 

Thomas DM, Francescutti-Verbeem DM and Kuhn DM (2008) Methamphetamine-
induced neurotoxicity and microglial activation are not mediated by fractalkine 
receptor signaling. J Neurochem 106:696-705. 

Thomas DM and Kuhn DM (2005) Attenuated microglial activation mediates tolerance to 
the neurotoxic effects of methamphetamine. J Neurochem 92:790-797. 

Thomas DM, Walker PD, Benjamins JA, Geddes TJ and Kuhn DM (2004) 
Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is 
associated with microglial activation. J Pharmacol Exp Ther 311:1-7. 

Trotter J, Karram K and Nishiyama A (2010) NG2 cells: Properties, progeny and origin. 
Brain Res Rev 63:72-82. 

Tulloch I, Afanador L, Mexhitaj I, Ghazaryan N, Garzagongora AG and Angulo JA 
(2011a) A single high dose of methamphetamine induces apoptotic and necrotic 
striatal cell loss lasting up to 3 months in mice. Neuroscience 193:162-169. 

Tulloch I, Ghazaryan N, Mexhitaj I, Ordonez D and Angulo JA (2011b) Role of 
neurokinin-1 and dopamine receptors on the striatal methamphetamine-induced 
proliferation of new cells in mice. Brain Res 1399:33-39. 

Tulloch IK, Afanador L, Zhu J and Angulo JA (2011c) Methamphetamine induces striatal 
cell death followed by the generation of new cells and a second round of cell 
death in mice. Curr Neuropharmacol 9:79-83. 

Van Kampen JM, Hagg T and Robertson HA (2004) Induction of neurogenesis in the 
adult rat subventricular zone and neostriatum following dopamine D3 receptor 
stimulation. Eur J Neurosci 19:2377-2387. 

von Bohlen Und Halbach O (2007) Immunohistological markers for staging neurogenesis 
in adult hippocampus. Cell Tissue Res 329:409-420. 

104



	
  

Wachter B, Schurger S, Rolinger J, von Ameln-Mayerhofer A, Berg D, Wagner HJ and 
Kueppers E (2010) Effect of 6-hydroxydopamine (6-OHDA) on proliferation of 
glial cells in the rat cortex and striatum: evidence for de-differentiation of resident 
astrocytes. Cell Tissue Res 342:147-160. 

Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ and Westley J (1980) 
Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites 
following repeated administration of methamphetamine. Brain Res 181:151-160. 

 
 

105



	
  

	
  

	
  

	
  

 

Figure 4.1. Experimental time lines. (A) Experimental time line for BrdU experiments.  
Animals were treated with METH or saline on PND60,	
  allowed to recover for 30 days 
and treated again with METH or saline on PND90.  BrdU injections were given 24 hr 
after the final METH or saline injection on PND90.  Animals were sacrificed 24 hr 
following injection with BrdU.  (B) Experimental time line for Ki67 experiments.  
Animals were treated with METH or saline on PND60, allowed to recover for 30 days 
and treated again with METH or Saline on PND90.  Animals were sacrificed 48 hr after 
the final METH or saline injection on PND90. 
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Figure 4.2.  Body temperatures (mean ± SEM; n = 4-17/group) of animals that received 
systemic injections of saline (4 x 1 mL/kg, s.c. at 2-hr intervals) or (±)-METH (4 x 10 
mg/kg, s.c. at 2-hr intervals). Treatment group designations indicate PND60:PND90 
treatment, resulting in the four treatment groups: Saline:Saline; METH:Saline; 
Saline:METH; and METH:METH.  Temperatures were obtained 30 min prior to the first 
injection (baseline; BL) and 1 hr after each subsequent injection. X-axis values represent 
minutes after the first injection and arrows represent the time of each saline or METH 
injection. (A & B) Body temperatures of animals used for BrdU experiments treated with 
either METH or saline on PND60 (A) or PND90 (B). (C & D) Body temperatures of 
animals used for Ki67 experiments treated with either METH or saline on PND60 (C) or 
PND90 (D).  * p < 0.05; ** p < 0.01, Significantly different from saline. 
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Figure 4.3. Striatal DAT immunohistochemical staining following single or repeated 
exposure to a neurotoxic regimen of METH. Data are mean gray values from 
densitometric analyses expressed as a percent of the respective Saline:Saline group (mean 
± SEM; n=4-17/group).  Treatment group designations indicate PND60:PND90 
treatment, resulting in the four treatment groups: Saline:Saline (SS); METH:Saline (MS); 
Saline:METH (SM); and METH:METH (MM).  (A) METH-Induced DA depletions of 
animals used for BrdU experiments.  (B) METH-Induced DA depletions of animals used 
for Ki67 experiments. * p < 0.05; ** p < 0.01, significantly different from Saline:Saline. 
$ p < 0.05, $$ p < 0.01, significantly different from METH:Saline.   
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Figure 4.4.  Cell proliferation in striatum following single or repeated exposure to a 
neurotoxic regimen of METH.  Data are the average number of BrdU (A)- or Ki67 (B)- 
positive cells counted in four striatal sections from each animal expressed as a percent of 
the respective Saline:Saline group (mean ± SEM; n=10-17/group).  Treatment group 
designations indicate PND60:PND90 treatment, resulting in the four treatment groups: 
Saline:Saline (SS); METH:Saline (MS); Saline:METH (SM); and METH:METH (MM).  
(C) Representative images of Ki67 immunohistochemistry in a Saline:Saline animal and 
a Saline:METH animal.  Scale bar = 50µm. (D) Representative image of Ki67-positive 
dividing cells, often seen in Saline:METH animals.  Scale bar = 10µm.  * p < 0.05, ** p < 
0.01, significantly different from all other groups. 
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Figure 5.  Co-localization of Ki67 and NeuN following single or repeated exposure to a 
neurotoxic regimen of METH.  (A) Data are the percentage of Ki67-positive  cells also 
positive for NeuN staining (mean ± SEM; n=5-8/group).  Treatment group designations 
indicate PND60:PND90 treatment, resulting in the four treatment groups: Saline:Saline 
(SS); METH:Saline (MS); Saline:METH (SM); and METH:METH (MM).  There were 
no significant main effects or interactions. (B) Representative image from a 
Saline:METH animal. Scale bar = 10µm. 
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 Figure 4.6.  Co-localization of Ki67 and GFAP following single or repeated exposure to 
a neurotoxic regimen of METH.  (A) Data are the percentage of Ki67-positive cells also 
positive for GFAP staining (mean ± SEM; n=5-8/group).  Treatment group designations 
indicate PND60:PND90 treatment, resulting in the four treatment groups: Saline:Saline 
(SS); METH:Saline (MS); Saline:METH (SM); and METH:METH (MM). * p< 0.05, ** 
p<0.01significantly different from all other treatment groups. (B) Representative image 
from a Saline:METH animal. Scale bar = 10µm. 
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Figure 4.7.  Co-localization of Ki67 and CD11b following single or repeated exposure to 
a neurotoxic regimen of METH. (A) Data are the percentage of Ki67-positive cells also 
positive for CD11b staining (mean ± SEM; n=5-8/group).  Treatment group designations 
indicate PND60:PND90 treatment, resulting in the four treatment groups: Saline:Saline 
(SS); METH:Saline (MS); Saline:METH (SM); and METH:METH (MM). * p < 0.05, 
significantly different from all other groups.  (B) Representative image from a 
Saline:METH animal.  Scale bar = 10µm. 
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CHAPTER 5 
 
 
 

DISCUSSION 



 
Exposure to methamphetamine (METH) results in significant damage to the 

dopaminergic system, particularly in the caudate-putamen of human METH abusers and 

in the striatum of animals (Kogan et al., 1976; Sekine et al., 2001; Volkow et al., 2001; 

McCann et al., 2008 and others).  Several factors have been implicated in such toxicity, 

including increased extracellular and cytosolic dopamine (DA) (e.g. O'Dell et al., 1991; 

Albers and Sonsalla, 1995; LaVoie and Hastings, 1999; Gross et al., 2011b), increased 

extracellular glutamate (GLU) (Nash and Yamamoto, 1992; Mark et al., 2004), the 

production of reactive oxygen (Wagner et al., 1986; Fukami et al., 2004) and nitrogen 

species (Ali and Itzhak, 1998; Imam et al., 1999; Itzhak et al., 2000 and others), and the 

activation of glial cells (LaVoie et al., 2004; Thomas and Kuhn, 2005).   

The goal of this dissertation was to further explore the role of nitric oxide (NO) 

and activated glial cells in METH-induced neurotoxicity.  To determine if these factors 

are sufficient for METH-induced monoamine toxicity, we used a model of resistance to 

such toxicity, in which animals are treated with a binge regimen of METH, but do not 

show acute monoamine toxicity.  In this regard, animals were treated with either saline or 

a neurotoxic regimen of METH on PND60.  Animals were allowed to recover for 30 days 

and then challenged with saline or a binge regimen of METH at PND90.  This treatment 

regimen results in four treatment groups based on the animals' PND60:PND90 treatments 

(Saline:Saline, Saline:METH, METH:Saline, and METH:METH). Previous studies using 

this treatment regimen have shown that animals with partial DA loss induced by the 

initial exposure to binge regimen of METH on PND60 fail to exhibit further
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depletions of DA, DAT or VMAT-2 when exposed to the second neurotoxic regimen on 

PND90 (METH:METH) (Thomas and Kuhn, 2005; Hanson et al., 2009).  This paradigm 

thus allows for the examination of factors associated with METH-induced monoamine 

toxicity in animals matched for acute METH exposure, but differentiated with respect to 

acute METH-induced DA terminal degeneration.  The extent to which this resistance to 

subsequent METH-induced neurotoxicity is associated with decreased NO production or 

glial activation was unknown. Therefore, using this treatment regimen, we first wanted to 

determine whether animals rendered resistant to acute METH-induced DA depletions 

(METH:METH) demonstrated decreased NO production compared to animals 

experiencing acute toxicity (saline:METH).  Furthermore, we also wanted to determine 

the isoform of NOS responsible for METH-induced NO production.  Second, we wanted 

to determine whether animals resistant to acute METH-induced DA depletions 

(METH:METH) demonstrate similar glial activation compared to animals acutely 

experiencing toxicity (saline:METH).  The following discussion describes the results of 

these studies, has well as the future implications for this work. 

In the initial set of experiments pertaining to NO production in METH-induced 

neurotoxicity (Chapter 2), we first examined the production of NO by performing 

immunohistochemistry for protein nitration.  Here we found that all animals exposed to 

METH on PND90 (saline:METH and METH:METH), whether or not they were 

experiencing acute toxicity, had significant increases in protein nitration compared to 

controls (saline:saline) or animals treated with METH 30 days prior (METH:saline),  

suggesting that exposure to the binge regimen of METH increases production of NO, but 

that such NO production during METH exposure is not sufficient for METH-induced DA 

115



terminal degeneration.  Next, to elucidate the isoform of NOS responsible for METH–

induced NO production, we examined expression of all three isofroms of NOS in 

response to exposure to the binge regimen of METH.  Here we found that neither the 

expression of nNOS nor eNOS changed in striata of animals exposed to METH.  

Furthermore, consistent with previous work (Deng and Cadet, 1999), we did not observe 

any induction of iNOS following the binge regimen of METH.  However, given that 

nNOS and eNOS are constitutively expressed and can increase production of NO without 

a change in the expression of either isoform, we also wanted to determine if the increase 

in NO during METH exposure resulted from an increase in NOS activity.  To do this, we 

used NADPH diaphorase histochemical staining, an indirect measure of NOS activity 

(Dawson et al., 1991; Hope et al., 1991).  During analysis of these data, we restricted our 

quantification of the staining to include only cell bodies and processes of nNOS-

expressing striatal interneurons, thereby excluding eNOS as a contributor to the observed 

changes in NADPH diaphorase histochemical staining.  Paralleling the results obtained 

from examination of protein nitration, we found that animals exposed to the binge 

regimen of METH at PND90 had a significant increase in nNOS activity whether the 

animal was experiencing acute toxicity or not (saline:METH and METH:METH).  Taken 

together, these data suggest that there is a disassociation between the production of NO 

and METH-induced neurotoxicity, indicating that NO is not sufficient for METH-

induced DA nerve terminal degeneration.  Additionally, these data indicate that the 

METH-induced increase in NO production likely results from increased activity of nNOS 

(Friend et al., 2013).   
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Although the results of the work detailed in Chapter 2 indicate that METH-

induced NO production likely results from an increase in nNOS activity and that this NO 

does not appear to be sufficient for METH-induced DA terminal degeneration, future 

studies could strengthen and clarify these findings.  For example, future experiments 

using double-label immunohistochemistry with markers for nNOS and markers for 

specific cell types will lead to a clear identification of the particular cell types 

contributing to METH-induced NO production.  Furthermore, studies using shRNA 

knockdown of nNOS in these specific cell types while controlling for METH-induced 

hyperthermia will provide more conclusive results regarding the lack of a role for NO in 

METH-induced neurotoxicity.  Finally, identifying the mechanism initiating the 

increased NO following a neurotoxic regimen of METH will lead to more specific ways 

in which this process can be inhibited in this context.  

In the second set of experiments (Chapter 3), we examined astrocyte and 

microglial activation in the context of the resistance paradigm.  Here we found that 

microglia were reactive only in animals exposed to METH on PND90 and experiencing 

acute toxicity (saline:METH), but not in those exposed to METH and resistant to such 

toxicity (METH:METH)(Friend and Keefe, 2013).  These findings are consistent with 

previous work demonstrating that animals resistant to DA nerve terminal degeneration do 

not show an activated microglia phenotype (Thomas and Kuhn, 2005).  Next, we 

examined the response of astroyctes to the binge regimen of METH using GFAP 

immunohistochemistry.  Here we found that all animals exposed to METH 

(METH:saline, Saline:METH, and METH:METH) showed an equivalent increase in 

GFAP staining compared to controls (Saline:Saline) (Friend and Keefe, 2013).  These 
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data are novel in that they are the first to document increased GFAP levels as far out as 

32 days post-METH treatment; however, they are consistent with previous work showing 

increased expression of GFAP compared to controls at 21 days post-METH treatment 

(O'Callaghan and Miller, 1994).   

Finally, in addition to examining markers for activated glia, we also examined 

striatal proliferation using the same treatment regimen (Chapter 4).  We found that 

animals exposed to METH at PND90 and experiencing acute toxicity (Saline:METH) 

show an increase in proliferation compared to all other treatment groups (Saline:Saline, 

METH:saline, and METH:METH).  Additionally, when we performed double-label 

immunohistochemistry with markers of proliferation (Ki67) combined with markers for 

neurons (NeuN), astrocytes (GFAP), and microglia (OX-42), we found that microglia 

make up a large proportion of the proliferating cells (approximately 40 percent) in 

animals experiencing acute toxicity (Saline:METH).  Only a small proportion of the 

proliferating cells were positive for GFAP or NeuN, and those porportions did not vary as 

a function of acute METH-induced neurotoxicity.  Altogether, these data indicate that 

microglial activation appears to parallel METH-induced neurotoxicity, as we only 

observed activated microglia in animals exposed to METH and experiencing acute 

toxicity (Saline:METH).  Additionally, microglia show significant proliferation in 

animals exposed to METH and experiencing toxicity (saline:METH), further suggesting 

that activated microglia are only observed under conditions during which degeneration of 

DA nerve terminals occurs.  Conversely, the activation of astrocytes does not parallel 

acute METH-induced neurotoxicity, as we observed an increase in GFAP expression 
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even in animals exposed to METH 30 days prior (METH:Saline).  Thus activation of 

astrocytes is not likely to be necessary for acute METH-induced neurotoxicity. 

Although these data provide significant insight into the activation of glial cells in 

the context of METH-induced neurotoxicity, whether activated glia are a cause or 

consequence of METH-induced neurotoxicity remains unknown.  Future work is still 

needed in order to clearly answer this question.  For example, the signals initiating glial 

activation following METH exposure are currently unknown. Determining the exact 

cascade of events that results in METH-induced glial activation could lead to more 

specific ways in which activation of these cell types can be inhibited.  Future work should 

also examine specific manipulations of both microglial and astrocyte activation, possibly 

using conditional knockout animals, in order to determine whether activated glia are 

neuroprotective or contribute to neurotoxicity in the context of METH-induced DA nerve 

terminal degeneration. 

Another factor associated with METH-induced neurotoxicity that deserves further 

exploration is extracellular DA and the subsequent activation of D1-type DA receptors.  

It is well established that METH exposure results in a significant increase in extracellular 

DA (O'Dell et al., 1991; O'Dell et al., 1993; Gross et al., 2011b).  Additionally, it appears 

that increased extracellular DA may result in neurotoxicity via activation of D1-type DA 

receptors.  For example, D1-type DA receptor antagonists systemically co-administered 

with METH partially protect against METH-induced neurotoxicity (Broening et al., 

2005).  Similarly, intrastriatal infusion of D1-type DA receptor antagonist during METH 

exposure also was reported to protect against METH-induced neurotoxicity (Gross et al., 

2011); however, that protection may at least partially have resulted from mitigation of 
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METH-induced hyperthermia, a factor also tightly associated with METH-induced 

neurotoxicity (Ali et al., 1994).  More recently however, animals with a deletion of the 

D1-type DA receptor gene were also reported to be protected against METH-induced 

neurotoxicity—an effect that appears to not solely depend upon attenuation of METH-

induced hyperthermia (Ares-Santos et al., 2012).  Thus, due to the inconclusive, yet 

promising results in the literature during the course of this dissertation work regarding a 

role for D1-type DA receptor activation in METH-induced neurotoxicity, we wanted to 

further examine whether blockade of D1-type DA receptors in striatum during METH 

exposure protects against METH-induced DA nerve terminal degeneration when METH-

induced hyperthermia is maintained.  To answer this question, we conducted preliminary 

studies in which we infused the D1-type DA receptor antagonist SCH23390 (R-(+)-8-

chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) directly into the 

striata of animals just prior to and during administration of the binge regimen of METH.  

The ambient temperature in the rats' environment was manipulated to maintain METH-

induced hyperthermia. 

One week prior to METH or saline treatment, male Sprague-Dawley rats (Charles 

River Laboratories, Raleigh, NC) were anesthetized with ketamine/xylazine (90/10

mg/kg, i.p.) and placed in a stereotaxic apparatus.  Guide cannulae were implanted 

bilaterally to end just dorsal to dorsal striatum. The guides were secured with skull 

screws and dental acrylic and dummy cannulae were inserted.  Subsequent infusions were 

made through 33-gauge infusion cannulae extending 3.8 mm beyond the guides.  

On PND60, 30 min prior to saline or METH injections, intrastriatal infusions of 

either saline (0.1 µl/1 min, 0.9% saline) or SCH23390 (2 µg/µl in 0.9% saline, at 0.1 
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µl/min) were started.  Infusions continued until 1 hr after the last injection of either saline 

or METH, therefore producing a total elapsed time of infusion of 7.5 hr.  

METH and saline injections were conducted as previously described in Chapters 

2-4.  Rectal temperatures were monitored using a digital thermometer (BAT-12, 

Physitemp Instruments, Clifton, NJ) to ensure the presence of METH-induced 

hyperthermia. Baseline temperatures for each animal were taken 30 min prior to the first 

injection and 1 hr after each subsequent injection. If the body temperature of an animal 

exceeded 40.5°C, the animal was cooled by transferring it to a cage placed over wet ice 

until the body temperature fell below 39°C.  Conversely, cages of SCH23390 infused, 

METH-treated animals were placed on a heating pad with a heating lamp in order to 

maintain METH-induced hyperthermia (39°C-40.4°C).  Approximately 18hr after the last 

injection, animals were returned to their home cages in the colony room.  Animals were 

then sacrificed 7 days after the last METH or saline injection and the brains processed as 

described in Chapters 2-4 for immunohistochemical detection of DAT to assess METH-

induced DA neurotoxicity.   

For body temperature data collected during METH or saline treatment (Figure 

5.1), MANOVA revealed a significant main effects of infusion (F(1,20)= 8.98, p<0.01), a 

significant main effect of treatment (F(1,20)= 250.9, p<0.0001) and a significant effect of 

time (F(4,17)= 26.8, p<0.0001).  Furthermore, there was also a significant treatment x time 

interaction (F(4,17)= 13.7, p<0.0001). Post hoc analysis revealed that the temperatures of 

animals receiving METH were not different from controls at baseline (0 min, t=1.29, 

p=0.2), but were significantly greater than those receiving saline at all four time points 

after the injections of METH began (60 min, t=5.03, p<0.0001; 180 min, t=5.30, 
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p<0.0001; 300 min, t=8.52, p<0.0001; 420 min, t=5.90, p<0.0001). Importantly, there 

was no time x infusion interaction (F(4,17) =0.6, p>0.7) or an infusion x treatment x time 

interaction (F(4,17)= 0.7, p>0.6), indicating the maintenance of METH-induced 

hyperthermia in the rats receiving intrastriatal infusions of SCH23390.  

METH-treated rats showed significant decreases in DAT immunohistochemical 

staining compared to saline-treated controls.  Striatal placement of infusion cannulae in 

striatum is shown in Figure 5.2.  However SCH23390 infusions appeared to result in 

partial protection against such toxicity (Figure 5.3). A two-factor ANOVA of the average 

gray value of DAT immunohistochemical signal in striatum revealed significant main 

effects of infusion (F(1,20) =4.6, p<0.05) and treatment (F(1,20) =40.4, p<0.0001), and a 

significant infusion x treatment interaction (F(1,20) =4.5, p<0.05).  Post hoc analysis of the 

interaction revealed that animals treated with a neurotoxic regimen of METH 

(saline:METH and SCH:METH) had significantly lower DAT immunohistochemical 

signal compared to saline-treated controls (saline:saline and SCH:saline)(Tukey’s HSD 

test, p values <0.05; Figure 5.3).  Importantly, animals infused with saline and treated 

with METH (saline:METH) showed significantly lower DAT immunohistochemical 

signal in striatum compared to all other treatment groups (saline:saline, SCH:saline, and 

SCH:METH)(Tukey’s HSD test, p values <0.05; Figure 5.3).   

Here we found that animals infused with the D1-DA receptor antagonist 

SCH23390 into the striata bilaterally showed a significant degree of protection following 

METH exposure compared to their counterparts treated with METH and infused with 

saline.  Together, these data indicate that the neuroprotection observed in animals infused 
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with SCH23390 during METH injections resulted from the blockade of D1-type DA 

receptors in the striatum, and not from disruption of METH-induced hyperthermia. 

Interestingly, D1-type DA receptors are located postsynaptic to DA nerve 

terminals that undergo degeneration following METH exposure (Levey et al., 1993).  

Therefore, although unexplored in the current study, one possible way in which D1 DA 

receptor activation may play a causal role in damage to DA terminals is through altered 

basal ganglia output secondary to METH-induced DA release and activation of D1 DA 

receptors, ultimately leading to excessive corticostriatal excitation and GLU-mediated 

excitotoxicity to DA nerve terminals.  As reviewed in the Introduction, the striatum 

receives significant GLU inputs from corticostriatal projections (Gerfen, 1989; Bellomo 

et al., 1998).  Further, corticostriatal activity can be regulated by nigrothalamic and 

thalamocortical projections, as GABA release from D1 DA receptor-containing, 

striatonigral neurons activates GABA-A receptors in the SNpr and decreases thalamic 

neuron firing (Deniau and Chevalier, 1985; Nicholson et al., 1995; Timmerman and 

Westerink, 1997).  Nigrothalamic activity can then influence glutamatergic 

thalamocortical and corticostriatal projections (Kaneko and Mizuno, 1988).  Studies have 

shown that METH-induced GLU release is associated with GABA release in the SNpr 

and decreased GABA release in the thalamus (Mark et al., 2004) and that GABA-A 

receptor antagonism in the SNpr can reduce METH-induced GABA release in the 

thalamus, as well as GLU release and DA nerve terminal degeneration in the striatum 

(Mark et al., 2004).  These data suggest that striatonigral neuron activation is important 

for METH-induced GLU release.  Other work has also shown that intrastriatal infusions 

of D1-type DA receptor antagonists prevent apomorphine-induced cortical immediate-
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early gene expression and sensorimotor responsiveness (Steiner and Kitai, 2000), further 

implicating activation of D1-type DA receptors in striatum in influencing corticostriatal 

activity.  Lastly, recent evidence has shown that NMDA-type GLU receptor antagonist 

applied epidurally to the cortex reduces both METH-induced c-fos gene expression and 

DA nerve terminal degeneration in striatum (Gross et al., 2011a). Taken together, these 

data suggest that METH may increase GLU release and ultimately DA neuron toxicity 

via the activation of D1 DA receptors on striatonigral efferent neurons. 

Given that increased extracellular DA, subsequent activation of D1-type DA 

receptors, and altered output of the basal ganglia have been suggested to play such an 

important role in the induction of METH-induced neurotoxicity, future work exploring 

this pathway in the context of such toxicity may provide novel therapeutic targets for 

human METH abusers.  For example, studies using approaches to block activation of the 

striatonigral neurons, such as Designer Receptors Exclusively Activated by a Designer 

Drug (DREDD) expression, may prove fruitful in further defining a critical role of 

striatonigral neuron activation in METH-induced DA terminal injury.  Clarification of 

this role will then point to potential therapeutic targets for preventing METH-induced 

toxicity to DA neurons. 
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Figure 5.1.  Body temperatures (mean±SEM; n=4-8) of animals that received systemic 
injections of saline (4 x 1 mL/kg, s.c. at 2-hr intervals) or (±)-METH (4 x 10 mg/kg, s.c. 
at 2-hr intervals) and intrastriatal infusions of either saline or SCH222390.  Treatment 
group designations indicate infusion:treatment, resulting in the four treatment groups: 
Saline:Saline (S:S); SCH:Saline (SCH:S); Saline:METH (S:M); and SCH:METH 
(SCH:M).  Temperatures were obtained 30 min prior to the first injection (baseline; BL) 
and 1 hr after each subsequent injection. X-axis values represent minutes after the first 
injection and arrows represent the time of each saline or METH injection.  ***p<0.0001 
significant effect of METH at this time point.  
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Figure 5.2. Diagram indicating location of infusion sites in striatum with the black dots 
representing tips of the cannulae.  Numbers represent mm from Bregma.  
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Figure 5.3.  Striatal DAT immunohistochemical signal in animals that received systemic 
injections of saline (4 x 1 mL/kg, s.c. at 2-hr intervals) or (±)-METH (4 x 10 mg/kg, s.c. 
at 2-hr intervals) and intrastriatal infusions of either saline or SCH222390.  Treatment 
group designations indicate infusion:treatment, resulting in the four treatment groups: 
Saline:Saline (S:S); SCH:Saline (SCH:S); Saline:METH (S:M); and SCH:METH 
(SCH:M).  * indicates significant differences from saline:saline and SCH:saline,  p<0.05; 
# indicates significant difference from SCH:METH, p<0.05.  (B) Representative images 
of DAT autoradiography.  
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