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ABSTRACT

A new theoretical and experimental method of induced polarization (IP) in the

time domain is tested with resistivity data and detailed mineralogy of rock samples.

The Generalized Effective Medium Theory of Induced Polarization (GEMTIP) was

originally developed in the frequency domain for explaining the structure-property

relationship of rocks. The geoelectrical parameters of this model are determined by

the intrinsic petrophysical and geometric characteristics of composite media: the

mineralization and/or fluid content of rocks and the matrix composition, porosity,

anisotropy, and polarizability of formations. The physical properties of rock samples

from exploration or mining sites are often used to assist in planning geological

surveys or interpretation of geophysical results. However, electrical property data

are often recorded in the time domain. In this paper, the Generalized Effective

Medium Theory of Induced Polarization (GEMTIP) is tested with the time domain

resistivity data transformed from complex resistivity data. It is demonstrated that

the time-domain GEMTIP method can be used to study the induced polarization

(IP) effect. Results indicate that the time domain resistivity data from laboratory

measurements can be used in inversion routines. With advances in the under-

standing of the IP effect through the GEMTIP model and wide application of the

time domain measurements, detection, and discrimination capability will improve

for porphyry systems and other geologic targets, leading to greater efficiency in

mineral exploration.
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CHAPTER 1

PRINCIPLES AND APPLICATION OF

THE INDUCED POLARIZATION

EFFECT

1.1 Introduction

The electromagnetic (EM) data observed in geophysical experiments generally

reflect two phenomena: (1) electromagnetic induction (EMI) in the earth and (2)

the induced polarization (IP) effect related to the relaxation of polarized charges

in rock formations. The induced polarization (IP) method was first observed

by Conrad Schlumberger in France (1913). The theoretical and experimental

foundations of IP methods were continued by A. S. Semenov, Y. P. Bulashevich,

S. M. Sheinman, V. A. Komarov, T. Madden, H. Seigel, J. Wait, S. Ward, J.

Hohmann, K. Zonge, and many others (see review by Seigel et al., 2007).

Practical use of the IP method can be traced to the 1950s, when mining and

petroleum companies actively looked into application of this method to mineral

exploration. The physical-mathematical principles of the IP effect were originally

formulated in pioneering works by Wait (1959) and Sheinman (1969). However, this

method was not widely used in U.S. industry until after the work of Zonge and his

associates at the Zonge Engineering and Research Organization (Zonge, 1974; Zonge

and Wynn, 1975) and by Pelton (1977) and Pelton et al. (1978) at the University of

Utah. Significant contribution to the development of the IP method was also made

by Wait (1959, 1982) and by the research team at Kennecott from 1965 through

1977 (Nelson, 1997). IP surveys can be more sensitive to mineralization, pore fluids,

and other rock parameters compared to DC resistivity surveys. There are several

models developed to describe the IP effect. The well-accepted empirical model, the

Cole-Cole model (Cole and Cole, 1941), was first adopted by Pelton (Pelton, 1978).

The Generalized Effective Medium Theory of Induced Polarization (GEMTIP) was

developed by Zhdanov in 2006, and is tested in the following chapters.
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1.2 The Induced Polarization Effect

The IP effect is thought to be caused by electrochemical reactions and charge

build up at interfaces, grain boundaries, vein walls and other boundaries (Frasier,

1964). The IP effect of a disseminated mineralization and a mineralized vein is

shown in Figure 1.1. Current is applied across a host rock with metallic mineral

inclusions. The porous region around the metallic inclusion is generally saturated

with fluid, allowing ions to travel across. The metallic inclusions become polarized,

and attract positive ions to form an electrical double layer at the boundary of the

inclusions. This causes charge build up to occur, thus impeding current flow. As a

result, when the current is abruptly terminated, instead of immediately dropping

to zero, the voltage gradually decays.

1.3 Cole-Cole Model

The Cole-Cole model (Kenneth S. Cole and Robert H. Cole, 1941), demonstrated

by Pelton (Pelton et al., 1978), is an excellent representation of the complex resis-

tivity (real and imaginary) of polarized rock formations. This frequency-dependent

complex resistivity is illustrated in Figure 1.2, which is described in the following

formula:

ρ(ω) = ρDC

(
1−m

(
1− 1

1 + (−iωτ)C

))
(1.1)

where ρDC is the dc resistivity (Ohm-m); ω is the angular frequency (rad/sec); the

time constant, τ , determines at what frequency the peak response in the imaginary

resistivity will occur, whereas the dimensionless intrinsic chargeability, m, charac-

terizes the intensity of the IP effect and the relaxation parameter, C, depicts its

magnitude. These effects can been seen graphically in Figure 1.2 (Emond, 2007).

Characterizing observed IP responses in terms of their Cole-Cole parameters has

proven useful in resolving different rocks, but primarily through differences in their

average particle size. Grounded metallic structures have been easily recognized by

the long time constant of their IP responses. However, despite much effort, at-

tempts to predict the mineralogical composition of rocks by analysis of IP response

characteristics have not been very fruitful (Seigel et al.).
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Figure 1.1. Conceptual illustrations of surface polarization. a) Surface polar-
ization of disseminated minerals in a uniformly conductive host rock. b) Surface
polarization of a mineralized vein.

The resistivity behavior of the Cole-Cole model transformed in the time domain

by changing different parameters is shown in Figure 1.3. The resistivity increases

with time. The IP effect happens in later time when increasing the time constant

(τ). The difference between the amplitude of the IP effect at early time and that

at later time is greater by increasing chargeability (m). Also a larger value of

relaxation parameter (C) leads to steeper resistivity curve against time.

dV 

modified from Frazier 1964 
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Figure 1.2. Complex resistivity behavior of the Cole-Cole model in the frequency
domain. The effect of charging chargeability (m), time constant (τ), and decay
coefficient (C) from the formula is illustrated (Emond, 2007).
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Figure 1.3. The behavior of the Cole-Cole model transformed in the time domain.
The effect of changing chargeability (m), time constant (τ), and decay coefficient
(C) from the formula is illustrated.



CHAPTER 2

IP EFFECT IN THE FREQUENCY

DOMAIN

2.1 Frequency-domain IP

Conrad Schlumberger was the first to describe conclusively an IP phenomenon

in his monograph, published in 1920.

In the three decades that followed, there were no further significant develop-

ments in this field until Brant and his group’s work at Newmont Exploration

Limited in 1946, which later sparked an application report by Bleil (1953) and

a comprehensive series of articles under the guidance of MIT Professor Madden

(1957-1959). Bleil’s (1953) pulse IP equipment was conceived during World War II

and the equipment of Vacquier et al. (1957) was similar to Newmont’s. The first

commercial pulse IP equipment was marketed by Hunting in 1957 and was followed

by that of Seigel and associates in 1958.

Madden and his coworkers did a variety of basic theoretical and laboratory

research studies with emphasis on IP effects due to nonmetallic causes. They used

their frequency IP equipment in the field survey in Nova Scotia in 1955 (Madden and

Marshall, 1958). Advantages in the frequency-domain IP equipment design inspired

McPhar in 1957, Geoscience, Inc in 1959, and Heinrichs Geoexploratoin Co. in 1960

to develop their own apparatuses. Mining companies, including Kennecott and

Phelps Dodge, produced similar frequency-domain instruments, while ASARCO

adhered to the pulse equipment. Anacondas geophysical division under McAlister

perfected phase-sensitive field equipment in 1955.

Research on induced polarization in the Soviet Union started in 1941, according

to Dakhnov’s descriptions of this method in petroleum well logging.

In the years between 1955 and 1960, several universities, mining companies,

and government agencies are involved in the IP research because of the success

of the method in exploring for metallic minerals. Researchers at the University
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of California at Berkeley, Michigan Technological University, Missouri School of

Mines, the University of Utah, and the U.S. Geological Survey were engaged in

IP research in the 1960s and 1970s. Some base-metal mining companies, including

Kennecott Copper, Anaconda, American Smelting and Refining Co., and Phelps

Dodge, started their own research on IP.

In 1960, Newmont Exploration Limited supported a program for IP instrument

design with Varian Associates of Palo Alto, California, for the development of

low-frequency, phase-sensitive, frequency-domain equipment.

Dolan and McLaughlin (1967) summarized previous frequency-domain work and

also their time-domain IP instrument development.

Various characteristics of the IP decay curves have been studied by differ-

ent groups, but there are not many general statistical compilations of the basic

phenomenon beyond observing that to a first approximation the decay curve is

logarithmic and the IP phenomenon is linear. Dolan and McLaughlin found that

the normalized shape of the decay curve for 575 laboratory sample measurements

varies between the rather close limits. It is interesting to see that it is possible to

define a normalized standard decay curve with a fairly consistent logarithmic shape

and a decay constant in the 0.1-1.0 s. Hohmann et al. (1970) and other investigators

have documented these characteristics in the frequency and phase domains.

K. L. Zonge and his associates in Tucson, Arizona, have designed a completely

digitized filled IP unit, which uses a digital computer to direct operations and

analyze results. Zonges IP transmitter sends out a series of square-wave current

signals which are sampled by the digital computer and then compared in real time

with the exact amplitude of the in-phase and out-of-phase voltage responses. The

harmonic frequencies of the square waves are used in the analysis technique. The

field data thus consist of the complete IP response spectrum with both real and

imaginary components.

The frequency effect (FE) is determined from data of two different frequencies

generally a decade apart (Zonge et al., 1972). Because differences in subsurface

geology cause different perturbations in the observed data, FE can be useful for

interpretation of IP data. The frequency effect is defined as:

FE =
V2 − V1

V1

(2.1)
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or in term of resistivity,

FE =
ρ2 − ρ1

ρ1

(2.2)

The simplest form of FE compares the recorded voltages at two frequencies

and is given by equation 2.1. It can be transformed into equation 2.2 by using

the calculated apparent resistivity values, ρ2 and ρ1. Percent FE is calculated

multiplying FE by 100 (Zonge et al., 1972).

The above interpretation techniques proved useful for obtaining geologic infor-

mation in exploration.

A resistivity spectrum is a display of rock resistivity as a function of frequency.

To contrast such a diagram, the resistivity or voltage level is assigned 100% at

the datum frequency. Resistivities at other frequencies over spectral range are

normalized relative to the datum. The resistivity spectrum of a rock is concave

down at the low-frequency end of the Warburg impedance and convex down at

the high-frequency end. This relationship was noted by Fraser et al. (1964),

who then pointed out that massively mineralized rocks should have convex-down

spectral curves. Disseminated mineralized or membrane polarization rock with

higher resistivity should ideally display concave-down spectral curves.

2.2 Frequency-domain GEMTIP

The analysis of IP phenomena is usually based on models with frequency-

dependent complex conductivity distribution. As we discussed above, one of the

most popular is the Cole-Cole relaxation model and its different modifications (Cole

and Cole, 1941). The parameters of the conductivity-relaxation model can be used

for discrimination of different types of rock formations, an important goal in mineral

exploration. Until recently, these parameters have been determined mostly in the

physical laboratory by direct analysis of samples.

Zhdanov (2006) introduced a new composite geoelectric model of rock for-

mations based on the effective-medium approach that generates a conductivity

model with parameters directly related by analytic expressions to the physical

characteristics of the microstructure of rocks and minerals (microgeometry and
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conductivity parameters). This composite geoelectric model provides more realistic

representation of complex rock formations than conventional unimodal-conductivity

models, which permits modeling the relationships between the geometric factors

and physical characteristics of different types of rocks (e.g., grain size, shape,

conductivity, polarizability, fraction volume, and so forth) and the parameters of

the relaxation model.

Effective-medium approximation for composite media has been discussed in

many publications. The general formalism of the effective-medium theory (EMT)

was developed by Stroud (1975). The advances of physical EMTs (e.g., Landauer,

1978; Norris et al., 1985; Shwartz, 1994; Sihvola, 2000; Kolundzija and Djordjevic,

2002; Berryman, 2006) make it possible to develop a rigorous mathematical model

of multiphase heterogeneous conductive media excited by an EM field. The EMT

and its different extensions were applied successfully to the study of macroscopically

isotropic and anisotropic models of rock formations in electrical geophysics (e.g.,

Sen et al., 1981; Mendelson and Cohen, 1982; Sheng, 1991; Kazatchenko et al.,

2004; Toumelin and Torres-Verdn, 2007, and so forth).

The existing form of EMT and its modifications, however, do not allow the

inclusion of the induced-polarizability effect in the general model of heterogeneous

rocks. The conventional EMT models describe the electromagnetic-induction effect

caused by electrical heterogeneity of the multiphase medium, whereas the IP effect

is manifested by additional surface polarization of the grains caused by the complex

electrochemical reactions that accompany current flow within the formation.

It is well known, however, that the effective conductivity of rocks is not necessar-

ily a constant and real number but can vary with frequency and be complex (Shuev

and Johnson, 1973). There are several explanations for these properties of effective

conductivity. Most often, they are explained by physical-chemical polarization

effects of mineralized particles of rock material and/or by electrokinetic effects in

the pores of reservoirs (Wait, 1959; Marshall and Madden, 1959; Luo and Zhang,

1998). Thus, polarizability is caused by the complex electrochemical reactions that

accompany current flow in the earth. These reactions occur in a heterogeneous

medium representing rock formations in areas of mineralization and hydrocarbon

reservoirs. This phenomenon is usually explained as a surface polarization of

mineralized particles and the surface of a moisture-porous space that occurs under
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the influence of an external electromagnetic field. It is manifested by accumulating

electric charges on the surface of different grains forming the rock. This effect is

significant in the case of a metal-electrolyte interface (Bockrih and Reddy, 1973).

However, a similar effect is observed at the interface between electrolyte and typical

rock-forming minerals such as silicate and carbonate (Komarov, 1980).

Zhdanov (2006) demonstrated that EMT formalism can be used in the theory

of formation polarizability as well. A generalization of the classical EMT approach

consists of two major parts: (1) introduction of the effective-conductivity mod-

els of the heterogeneous, multiphase rock formations with inclusions of arbitrary

shape and conductivity by using the principles of the Born-type quasi-linear (QL)

approximation in the framework of EMT formalism; (2) development of the gen-

eralized effective-medium theory of induced polarization (GEMTIP), which takes

into account electromagnetic induction (EMI) and induced polarization (IP) effects

related to the relaxation of polarized charges in rock formations.

The general model applies to mineralization zones and hydrocarbon reservoirs.

It develops a unified physical-mathematical model to examine EM effects in complex

rock formations that accounts for mineral composition, electrical properties, fluid

content, matrix composition, porosity, anisotropy, and polarizability. It provides

a link between the volume content of different minerals and/or the hydrocarbon

saturations and the observed EM field data.



CHAPTER 3

IP EFFECT IN THE TIME DOMAIN

3.1 Time-domain IP

There are several different ways of measuring the IP effect in the time domain.

One measure is the area between the decay curve and the zero volt level. The

pulsed constant-current time-domain input waveform and typical voltage response

waveform over mineralized or polarizable ground are shown in Figure 3.1. This

value is usually normalized by dividing it by the peak charging voltage.

The labeled portions of the waveform are used in defining the theoretical def-

inition. The unitless parameter m, derived by Seigel (1959) and often called the

theoretical chargeability, is defined as:

m =
Vs
Vp

(3.1)

Chargeability in the time domain refers to the discharge of the polarizable media

and can be defined in two methods. This method is the ratio of the secondary

voltage (Vs) to the primary voltage (Vp) shown in Equation 3.1 and illustrated in

Figure 3.1 (Sumner, 1976). When the inducing current is turned off, the primary

voltage almost immediately drops to a secondary response level and then the

transient decay voltage diminishes with time. The second method integrates the

decaying secondary voltage (Vt) over the time interval t1 to t2 and divides by the

primary voltage (Vp) expressed in equation 3.2 (Sumner, 1976).

M =
1

Vp

∫ t2

t1

Vt dt (3.2)

where t1 and t2 define a time interval on the discharge curve which excludes major

voltage transients due to electromagnetic coupling effects.
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Figure 3.1. The IP pulse or time-method waveforms, ideally due to a long-period
pulse, showing the induced primary current being detected as a maximum primary
voltage Vp. When current is turned off, voltage drops to a secondary level Vs and
the transient voltage decays with time (Modified from Summer, 1976).

3.2 Time-domain GEMTIP

The generalized effective-medium theory of induced polarization (GEMTIP)

considers a composite geoelectrical model of rock formations using the effective-

medium approach, which generates a conductivity model with parameters directly

related by analytical expressions to the physical characteristics of the microstruc-

ture of rocks and minerals (Zhdanov, 2008). As a result, GEMTIP can be used

to produce complex resistivity (CR) spectra of mineral rocks in the frequency

domain. GEMTIP combines the rigors of Maxwells equations at low frequency

with IP relaxation mechanisms.

Following the principles of the GEMTIP approach, we represent a complex

heterogeneous rock formation as a composite model formed by a homogeneous

host medium of a volume V with a (complex) conductivity tensor σ̂0(r) (where

r is an observation point) filled with grains of arbitrary shape and conductivity.

The rock is composed of a set of N different types of grains, the lth grain type

having (complex) tensor conductivity σ̂l(r). The grains of the lth type have a

volume fraction fl in the medium and a particular shape and orientation. The

polarizability effect is usually associated with surface polarization of the coatings

of the grains. This surface polarization can be related to electrochemical charge

transfer between the grains and a host medium (Wong, 1979; Wong and Strangway,
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1981; Klein et al., 1984). The surface polarization is manifested by accumulating

electric charges on the surface of the grain. A double layer of charges is created

on the grain’s surface, which results in the voltage drop at this surface (Wait,

1982). The polarizability effect is quantitatively represented in the fundamental

equations of the GEMTIP model through the volume depolarization tensor, Γ̂l, and

a surface polarizability tensor p̂ (Zhdanov, 2008). A general solution of the effective

conductivity problem for an arbitrary multiphase composite polarized medium is

provided by the following expression:

σ̂e = σ̂0 +
N∑
l=1

[Î + p̂l]
−1[Î −∆σ̂pl Γ̂l]

−1[Î + p̂l]∆σ̂lfl (3.3)

where ∆σ̂l = σ̂l − σ̂0 is anomalous conductivity, and σ̂pl is a ”polarized” anomalous

conductivity:

σ̂p(r) = [Î + p̂(r)]∆σ̂(r) (3.4)

This formula allows us to find the effective conductivity for inclusions with

arbitrary shape and electrical properties. That is why the composite goelectrical

model of the IP effect may be used to construct the effective conductivity for realistic

rock formations typical for mineralization zones and/or petroleum reservoirs. In

the case of an isotropic multiphase composite model, with all model parameters

described by the scalar functions, equation 3.3 can be simplified. For example, if a

composite model is formed by a homogeneous host medium of a volume V with a

conductivity σ0 filled with grains of spherical shape, and we assume that we have a

set of N different types of grains, the lth grain type having radius al, conductivity

σl, and surface polarizability kl, the volume depolarization tensors are constant

scalar tensors equal to (Zhdanov, 2008):

Γ̂l = ΓlÎ = − 1

3σb
Î (3.5)

The surface polarizability tensor p̂l also becomes a scalar tensor and equals to:
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p̂l = plÎ = 2kla
−1
l σbσl(∆σl)

−1Î (3.6)

In the last formula, kl is the surface polarizability factor, which is a complex

function of frequency, described for the lth grain by the following formula:

kl =
al
2

(2ρl + ρ0)(iωτl)
−Cl (3.7)

where τl is the time parameter; Cl is the relaxation parameter; and ρl = 1
σl

.

Substituting expressions 3.5, 3.6 and 3.7 into general formula 3.3, after some

algebra, we arrive at the following GEMTIP model of the effective resistivity, ρe,

for the multiphase composite medium with spherical grains:

ρef = ρ0

(
1 +

N∑
l=1

(
flml

(
1− 1

1 + (−iωτl)Cl

)))−1

(3.8)

where:

ml = 3
ρ0 − ρl
2ρl + ρ0

, ρe = 1/ρe (3.9)

The GEMTIP model has been successfully applied to mineral rocks (e.g., Zh-

danov, 2008; Phillips, 2009) and hydrocarbon-bearing rocks (Buist, 2009a; Buist

et al., 2009b; Burtman et al., 2009a, 2009b, 2010). The observed IP effects are

within the 1 to 103 Hz band, leading us to conclude that relaxation processes in

the milliseconds to seconds range should be typical for IP decay in mineral rocks,

and faster for hydrocarbon-bearing samples.

In order to obtain the time-domain resistivity, one should apply the inverse

Fourier transform to expression 3.8:

ρef (t) =
1

2π

∫ ∞
−∞

ρef (ω)eiωt dω (3.10)



CHAPTER 4

PRINCIPLES OF FORWARD MODELING

AND INVERSION RESISTIVITY

RELAXATION CURVE IN

THE TIME DOMAIN

4.1 Forward Modeling: Cole-Cole Model

It was demonstrated in the pioneer work of Pelton (1977) that the Cole-Cole

relaxation model (Cole and Cole, 1941) can represent well the typical complex

conductivity of polarized rock formations. Buist (2009) demonstrated forward

modeling of the Cole-Cole model with three IP parameters in the frequency domain.

Phillips (2010) demonstrated that the new GEMTIP model can describe the IP

effect as effectively as the time tested Cole-Cole model. This chapter shows in the

time domain how varying IP parameters in each model changes the IP response in

the data.

The Cole-Cole model is based on the assumption of bulk mineral discrimination

and contains no information about rock composition. In the GEMTIP model, we

take into account both physical and electrical characteristics of rocks at the grain

scale using one analytic expression. These characteristics include grain size, grain

shape, mineral conductivity, porosity, anisotropy, polarizability, mineral volume

fraction, pore fluids, and more (Zhdanov, 2008).

In fact, the Cole-Cole appears as a special case of the GEMTIP model for a

two-phase medium with spherical inclusions (Zhdanov, 2008).

To understand in more details what effect the three different IP parameters of

the Cole-Cole model in the time domain have on synthetic data, different values

of the three parameters shown in Tables 4.1, Table 4.2, and Table 4.3 have been

modeled. Within these tables, two parameters are kept constant while the third

parameter is varied. All parameters published data for a variety of common minerals

(Buist, 2009).
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Table 4.1. Cole-Cole parameters used for synthetic modeling when varying m.

Model ρ0(DC) m τ C
No IP 500 NA NA NA
1 500 0.1 1 0.4
2 500 0.2 1 0.4
3 500 0.3 1 0.4
4 500 0.4 1 0.4
5 500 0.5 1 0.4
6 500 0.6 1 0.4

Table 4.2. Cole-Cole parameters used for synthetic modeling when varying τ .

Model ρ0(DC) m τ C
No IP 500 NA NA NA
1 500 0.4 0.001 0.4
2 500 0.4 0.01 0.4
3 500 0.4 0.0 0.4
4 500 0.4 1 0.4
5 500 0.4 10 0.4
6 500 0.4 100 0.4

Table 4.3. Cole-Cole parameters used for synthetic modeling when varying C.

Model ρ0(DC) m τ C
No IP 500 NA NA NA
1 500 0.4 1 0.1
2 500 0.4 1 0.2
3 500 0.4 1 0.3
4 500 0.4 1 0.4
5 500 0.4 1 0.5
6 500 0.4 1 0.6
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Figure 4.1 depicts the case where the chargeability factor (m) is varied (from

0.1 for model 1, to 0.6 for model 6) it increases the slope of the resistivity. For a

larger value of chargeability factor (m), the value of the resistivity is smaller. As

time increases, the differences become close to the real resistivity. Changing m does

not change the location (at what time) of the IP response, but only its amplitude.

The slopes of the resistivity derivative with different chargeability factor (m) are

quite similar.

In Figure 4.2, it shows that adjusting the time constant τ (from 0.001 seconds

to 100 seconds) shifts the low value of resistivity response to a later time. Emond

(2007) demonstrated that decreasing the grain size was analogous to decreasing

the time parameter, which caused the IP effect to be at a lower frequency (later

time). The behavior of the resistivity derivative is very interesting: in the early

time (t : 10−5−104 seconds), increasing the time constant τ decreases the resistivity

Figure 4.1. Resistivity and resistivity derivative behavior of the Cole-Cole model
when the chargeability (m) factor varies from 0.1 to 0.6. Both the time constant (τ),
and relaxation parameter (C) are held constant (1 second and 0.4, respectively).
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Figure 4.2. Resistivity and resistivity derivative behavior of the Cole-Cole model
when the time constant (τ) varies from 0.001 to 100 seconds. Both the chargeability
(m), and relaxation parameter (C) are held constant (0.4 and 0.4, respectively).

derivative; in the late time (t : 1−10 seconds), the larger time constant τ responses

to the larger resistivity derivative value.

Figure 4.3 shows the effect that changing the relaxation parameter C, (from

0.1 to 0.6) has on the resistivity and resistivity derivative in the time domain. All

plots of different relaxation parameter (C) converge at the time t = 1 second.

The IP effect is more apparent for a larger relaxation parameter (C). For the

resistivity derivative, in early time (t105 seconds), the smaller relaxation parameter

(C) responses to a larger value of the resistivity derivative; in late time (t : 1− 10

seconds), the larger relaxation parameter (C) responds to a larger value of the

resistivity derivative.

From these results it is concluded that all of the three parameters affect the

resistivity signature. However, the chargeability factor (m), which is the most

important parameter in real life IP surveys, has a greater effect on the data over a

long time range.
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Figure 4.3. Resistivity and resistivity derivative behavior of the Cole-Cole model
when the relaxation parameter (C) factor varies from 0.1 to 0.6. Both the time
constant (τ), and chargeability parameter (m) are held constant (1 second and 0.4,
respectively).

4.2 Forward Modeling: GEMTIP Model

In a special case of a simple two-phase heterogeneous model, formula (3.8) for

the effective resistivity is simplified as (Zhdanov, 2008):

ρef = ρ0

(
1 +

(
f1m1

(
1− 1

1 + (−iωτ1)C1

)))−1

(4.1)

m1 = 3
ρ0 − ρ1

2ρ1 + ρ0

, andτ1 = [
a1

2α1

(2ρ1 + ρ0)]
1
C1 (4.2)

In order to obtain the time domain resistivity, one should apply the inverse

Fourier transform to expression 4.1:

ρef (t) =
1

2π

∫ ∞
−∞

ρef (ω)eiωt dω (4.3)

Figure 4.4 depicts the plot of the GEMTIP resistivity model, keeping all pa-
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Figure 4.4. Spherical GEMTIP resistivity and resistivity derivative response
obtained by maintaining all parameters constant but the surface polarizability
coefficient (α).

rameters constant but the surface polarization coefficient. In this example, five

different values of α are chosen to represent the range of reasonable values. It is

very clearly shown that by varying α, the response of the computed resistivity shifts

in time. High values of α correspond to early time response, while low values of α

correspond to late time response. Also, varying α only affects the time at which IP

effect appears.

Figure 4.5 shows how varying the decay coefficient (C) affects the computed re-

sistivity values (while holding all other parameters constant). The decay coefficient

(C) appears to affect resistivity response amplitude. Typical values for C range

from 0 to 1. For low values of C, the resistivity response tends to decay gradually,

which has high value of resistivity derivative in early time and low value in late

time. In contrast, high values of C tend to cause a dramatic decrease of resistivity

and more gradual slope of resistivity derivative.

In Figure 4.6, all parameters are kept constant except the volume fraction (f).

By increasing f over several magnitudes, it clearly shows that the amplitude of the
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Figure 4.5. Spherical GEMTIP resistivity and resistivity derivative response
obtained by maintaining all parameters constant but the surface delay coefficient
(C)

resistivity response significantly increases proportionately. High values of volume

fraction (f) have high values of resistivity derivative. Understanding the effects of

the volume fraction is particularly significant because it is one the parameters that

can be measured directly.

4.3 Analytical Solutions for the Time

Domain GEMTIP Model

We now consider a few cases where the Fourier transformation (4.3) results in

the analytical expression for the effective resistivity.

For example, in the case of C1 = 1, equation 4.1 can be rewritten as:

ρef (ω) =
ρ0

1 + (1 + f1m1)iωτ1

+
ρ0iωτ1

1 + (1 + f1m1)iωτ1

(4.4)

By introducing a new constant,
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Figure 4.6. Spherical GEMTIP resistivity and resistivity derivative response
obtained by maintaining all parameters constant but the volume fraction (f).

k = 1 + f1m1 (4.5)

We can also write:

ρef (ω) =
ρ0

1 + kiωτ1

+
ρ0iωτ1

1 + kiωτ1

(4.6)

According to Abramowitz and Stegun (1964), the first term in equation 4.6 has

the Fourier transform pair for α > 0:

1

α + iω
→ u(t)e−t (4.7)

where u(t) is the Heaviside unit step function, u(t) = 1, t > 0. For conversion

of the second term in equation 4.6, we use a time differentiation property of the

Fourier transform:
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iωF (ω)→ d[f(t)]

dt
(4.8)

For the inverse Fourier transform, we use a scaling property of the Fourier

transform:

1

|a|

(ω
a

)
→ f(at) (4.9)

where a is a constant. We can now write:

kτ1

kτ1

ρ0

1 + kiωτ1

→ ρ0

kτ1

exp

(
− t

kτ1

)
(4.10)

Since

d

dt

[
ρ0

kτ1

exp

(
− t

kτ1

)]
=

ρ0

(kτ1)2
exp

(
− t

kτ1

)
(4.11)

The second term in equation 4.6 could be transformed by using equation 4.8:

kτ1

kτ1

ρ0iωτ1

1 + kiωτ1

→ ρ0τ1

(kτ1)2
exp

(
− t

kτ1

)
=

ρ0

k2τ1

exp

(
− t

kτ1

)
(4.12)

Exploiting linearity of the Fourier transform, and using equations 4.11 and 4.12,

we arrive at the analytical expression for GEMTIP in the time domain for C1 = 1

as:

ρef (t) =
ρ0

kτ1

exp

(
− t

kτ1

)
+

ρ0

k2τ1

exp

(
− t

kτ1

)
(4.13)

Or substituting back, k = 1 + f1m1:



24

ρef (t) = ρ0
(1+f1m1)τ1

exp
(
− t

(1+f1m1)τ1

)
+ ρ0

(1+f1m1)2τ1
exp

(
− t

(1+f1m1)τ1

)
(4.14)

Figure 4.7 compares the analytic solution of the time-domain GEMTIP response

with a discrete Fourier transform of the frequency-domain GEMTIP responses for

the same material parameters. Diversion of the analytic and discrete solutions can

be explained by boundary conditions used in the Fourier transform, and accuracy

of the digital filters.

As a second analytical example we consider the case where C1 = 2. Following

similar algebra, as used for equations 4.1 through 4.14, it can be shown that the

analytic solution for this case is given by:

ρef (t) = ρ0
(1+f1m1)τ1

sin
(
− t

(1+f1m1)τ1

)
+ ρ0

(1+f1m1)2τ1
sin
(
− t

(1+f1m1)τ1

)
(4.15)

It can also be shown that an approximate time-domain GEMTIP solution for

C1 = 0.5 could be written as follows:

ρef (t) = ρ0
(1+f1m1)τ1

erfc
(√
− t

(1+f1m1)τ1

)
exp

(
− t

(1+f1m1)τ1

)
+ ρ0

(1+f1m1)2τ1
erfc

(√
− t

(1+f1m1)τ1

)
exp

(
− t

(1+f1m1)τ1

)
(4.16)

where erfc is the complementary error function defined by the following formula:

erfc = 1− erf(x) = 1− 2√
x

∫ x

0

exp(−y2)dy (4.17)

4.4 Regularized Conjugate Gradient Method

It is known that modeling the IP effect is very useful in improving mineral

discrimination techniques. With improved understanding of the IP effect and
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Figure 4.7. Comparison between the analytic solutions of the GEMTIP resistivity
relaxation models in the time domain and the results of the numerical Fourier trans-
form (FTRAN) of the corresponding GEMTIP resistivity curves in the frequency
domain. A comparison is shown for three models with different volume fraction
of the polarizable grains: f1 = 0.1%, f2 = 0.35%, and f3 = 0.5%. The top and
middle panels show the real and imaginary parts of the resistivity relaxation curves
in the frequency domain. The corresponding time-domain solutions are shown in
the bottom panel. The solid lines correspond to the analytic solution, while the
dotted lines correspond to the numerical Fourier transform of the frequency-domain
GEMTIP model. The following parameters were used: ρ0 = 1000Ohm − m,
a1 = 0.005m, and ρ10 = 1Ohm −m. The brown arrow in the upper and bottom
panels show the increase of the volume fraction.

new advancements in rock physics models, mineral discrimination will become

more effective as well as more reliable. As shown in forward modeling, different

parameters of the GEMTIP model control different behaviors of the IP effect. So

obtaining the recovered values of parameters from inversion can be quite useful.

An inverse problem can be formulated as the solution of the operator equation:

d = A(m) (4.18)
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where m is some function (or vector) describing the model parameters, d is the

data set and A is the operator of forward modeling.

The problems in this research are ill-posed and unstable. To find the stable

solution for the minimization problem, we have to consider the regularized mini-

mization of the Tikhonov parametric functional:

Pα(m) = ρ2
D(A(m),d) + αs(m) = min (4.19)

where s(m) is some stabilizing functional.

The iteration process of the regularized conjugate gradient (RCG) method is

based on the calculation of the regularized steepest descent directions:

mn+1 = mn + δmn − k̃αn l̃α(mn). (4.20)

First, the direction of regularized steepest ascent is used:

l̃α(m0) = lα(m0). (4.21)

The next direction is a linear combination of the regularized steepest ascent in

this step, and the conjugate gradient direction in the previous step:

l̃α(m1) = lα(m1) + βα1 l̃α(m0). (4.22)

The steps k̃αn are selected based on the minimization of the parametric func-

tional:

Pα(mn+1) = Pα(mn)− k̃αn lα(mn) = Φ(k̃αn). (4.23)

Minimization of this functional gives the following best estimation for the length

of the step using a linear line search:



27

k̃αn = (̃lαn, l
α
n)/(̃lαn, F

∗
mnFmn + α(W ∗W )̃lαn)

= (̃lαn, l
α
n)/[(Fmnl̃

α
n, Fmnl̃

α
n) + α(W l̃αn,W l̃αn)]

= (̃lαn, l
α
n)/[||Fmnl̃αn||2 + α||W l̃αn||2] (4.24)

The βn coefficients are determined by the following formula:

βαn = ||lα(mn)||2/||lα(mn−1)||2. (4.25)

The final numerical scheme for the RCG method can be summarized as follows:

rn = A(mn)− d, (4.26)

lαn = l̃α(mn) = F ∗mnrn + αW ∗W (mn −mapr),

βαn = ||lαn||2/||lαn−1||2,

l̃αn = lαn + βαn l̃αn−1,

l̃α0 = l0,

k̃αn = (̃lαn, l
α
n)/[||Fmnl̃αn||2 + α||W l̃αn||2],

mn+1 = mn − k̃αn l̃αn.

The initial regularization parameter α is calculated using the following formula:

α =
||A(m1)− d||2

||m1 −mapr||2
. (4.27)

We also implement the adaptive regularization; therefore, αn becomes

αn = αqn, (4.28)

where:
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0 < q < 1. (4.29)

The numerical scheme has been implemented using a MATLAB code.

4.5 Inversion: GEMTIP Model

4.5.1 Model 1: Two-phase GEMTIP model

The synthetic data are obtained from the forward modeling considering one

disseminated phase that occurs at one grain size. The matrix resistivity of the rock

is 100 m. The resistivity of the inclusions is 0.1 Ωm, which represents pyrite. All the

inclusions are spherical with the same radius (a = 2 mm). The volume fraction of

the inclusions is 5.0%. The values of the decay and surface polarizability coefficients

are 0.5 and 0.4 (Ωm2)/secc, respectively. All the parameters are summarized in

Table 4.4.

Figure 4.8 shows the effective resistivity plotted against time. The solid dots

and hollow boxes represent original and predicted data. The original observed

data come from using the true model parameter values, while the predicted data

are determined by minimizing the Tikhonov parametric functional using the RCG

method with initial conditions. It clearly shows that the predicted data fit the

original observed data very well.

Figure 4.9 shows the converging model steps plotted over the misfit functional.

In the regularized inversion, a relaxation coefficient of q = 0.9 is used. The misfit

threshold is set to 0.1%. And after 100 iterations, the misfit reaches 0.1%. After

inversion, the correct surface polarizability (α) is recovered from 1 to 0.40, while

the decay coefficient (C) is recovered from 1 to 0.50.

4.5.2 Model 2: Two-phase GEMTIP model

with 2% random noise

We have now added 2% random noise to the data while all the parameters

are kept the same as in the previous synthetic model. The original and predicted

resistivity in time and the misfit against iteration number are illustrated in Figure

4.10 and Figure 4.11. After 100 iterations, the misfit becomes 0.3%. And the
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Table 4.4. GEMTIP inversion parameters.

Variable Units True model Initial Recovered
ρmatrix Ωm 400 - -
f - 0.08 - -
C Seconds 0.5 1.0 0.50
ρphase1 Ω m 0.3 - -
a mm 12.5 - -

α Ω·m2

seccl
0.4 1.0 0.40

Figure 4.8. Synthetic model. a) The effective resistivity plotted against time from
10−5s - 10s. b) Percent misfit against number of iterations from inversion.

surface polarizability (α) is recovered from 1 to 0.41, while the decay coefficient

(C) is recovered from 1 to 0.52.

4.5.3 Model 3: Three-phase GEMTIP model

Figure 4.12 represents both the original and predicted resistivity curves in the

time domain for the three-phase GEMTIP model. The synthetic data are obtained

from the forward modeling considering a model formed by a homogeneous host rock

filled with two types of spherical grains, simulating, e.g., pyrite and chalcopyrite

inclusions. The matrix resistivity of the rock is 300 Ωm.
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Figure 4.9. Synthetic model. The misfit functional is plotted with shaded isolines
signifying the direction of decreasing misfit. Model steps are also plotted and are
shown to converge after several iterations.

The resistivity of these two grains are ρ1 = 0.2Ωm and ρ1 = 0.004Ωm, respec-

tively. And the inclusions have different radii (a1 = 0.2mm and a2 = 0.8mm).

The volume fraction of the inclusions are both 15.0%. The values of the decay

and surface polarizability coefficients are 0.8, 0.6 and 2Ω·m2

seccl
, 0.04Ω·m2

seccl
respectively.

All the parameters are summarized in Table 4.5. The recovered delay and surface

polarizability are almost the same as true value.

The original observed data come from using the true model parameter values,

while the predicted data are determined by minimizing the Tikhonov parametric

functional using the RCG method with initial conditions. We notice that in the

case of multiphase model, the resistivity curve in the time domain becomes more

complicated than the conventional Cole-Cole curve. After 91 iterations, the misfit

becomes less than 0.02%. It clearly shows that the predicted data fit the original

observed data very well.

In order to compare the inversion results in the time domain and in the frequency

domain, I will present the original and predicted resistivity curves in the frequency
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Figure 4.10. Synthetic sample with 2% random noise. a). The effective resistivity
plotted against time from 10−5s − 10s. b). Percent misfit against number of
iterations from inversion.

domain for the three-phase GEMTIP model. All the parameters are the same as

those in the time domain.

Figure 4.13 shows the inversion result in the frequency domain. At the frequency

10−2 Hz, 1 Hz and 11 Hz, the predicted resistivities do not fit the original resistivities

well. And in Table 4.6, the inversion result is not as good as that in the frequency

domain: the recovered parameters are a little different from the true values. The

surface polarizability of the first type inclusions (α1) is not well recovered after

inversion. The effect of the first type inclusion is shown as the peak in the imaginary

part of the resistivity at the frequency 10−2 Hz. Obviously, the original imaginary

part of the resistivity is about 4 Ωm higher than the predicted value at the frequency

10−2 Hz, which can explain why the inversion result of α1 is not good. Similarly,

the difference between the original and predicted imaginary part of the resistivity

at the frequency 11 Hz reflects the difference between the recovered and true value

of the surface polarization α2.
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Figure 4.11. Synthetic sample with 2% random noise. The misfit functional is
plotted with shaded isolines signifying the direction of decreasing misfit. Model
steps are also plotted and are shown to converge after several iterations.
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Figure 4.12. Synthetic three-phase GEMTIP model. The original and predicted
resistivity plotted against time from 10−5s−102s. The lower panel is percent misfit
against number of iterations from the inversion.



34

Table 4.5. Three-phase GEMTIP model inversion parameters in the time domain
Variable Units True model Initial Recovered
ρ0 Ωm 300 - -
f1 % 15 - -
f2 % 15 - -
ρ1 Ω m 0.2 - -
ρ2 Ω m 0.004 - -
a1 mm 0.2 - -
a2 mm 0.8 - -
C1 Seconds 0.8 1.0 0.80
C2 Seconds 0.6 1.0 0.60

α1
Ω·m2

seccl
2 3 1.99

α2
Ω·m2

seccl
0.04 0.2 0.04
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Figure 4.13. Synthetic three-phase GEMTIP model. The original and predicted
resistivity plotted against time from 10−5 Hz - 103 Hz. The lower panel is percent
misfit against number of iterations from the inversion.
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Table 4.6. Three-phase GEMTIP model inversion parameters in the frequency
domain

Variable Units True model Initial Recovered
ρ0 Ωm 300 - -
f1 % 15 - -
f2 % 15 - -
ρ1 Ω m 0.2 - -
ρ2 Ω m 0.004 - -
a1 mm 0.2 - -
a2 mm 0.8 - -
C1 Seconds 0.8 1.0 0.86
C2 Seconds 0.6 1.0 0.67

α1
Ω·m2

seccl
2 3 2.88

α2
Ω·m2

seccl
0.04 0.2 0.03



CHAPTER 5

ANALYSIS OF EXPERIMENTAL DATA

This chapter analyzes the experimental data obtained from the electron mi-

crotomography equipment QEMSCAN imaging and X-ray micro tomography. The

rock samples were measured at the University of Utah. The complex resistivity data

were measured at Zonge Engineering and Research Organization, Inc. A description

and analysis of these samples will be made in this chapter.

5.1 Description of the Samples

5.1.1 Sample K01

Sample K01 is dacite from the Kori Kollo mine in Bolivia with disseminated

pyrite (FeS2) in a predominantly sericite and quartz matrix (Figure 5.1). This

igneous rock was selected because of the mineral inclusions that are potentially

ideal for analysis by the GEMTIP rock physics model.

For better understanding of the 3-D structure and composition, sample K01

was analyzed using three-dimensional (3D) X-ray microtomography (Emond, 2007).

The X-ray microtomography created a 3D volume of attenuation coefficients. The

attenuation coefficients were used to distinguish the pyrite from the rock matrix.

In addition to the 3D image, the volume fraction, inclusion size, and surface

area can be determined by X-ray microtomography. A summary of the X-ray

microtomography can be seen in Table 5.1. For example, a 3D microtomographic

image of sample K01 is shown in Figure 5.2, and highlights the sulfide phases.

5.1.2 Sample #13

Sample #13 is a porphyry copper deposit from the mines at Sar Cheshmeh

in Iran, which is the worlds second largest porphyry copper deposit (5% of the

worlds total). The sample contains disseminated chalcocite (Cu2S), chalcopyrite

(CuFeS2), and pyrite (FeS2) in a predominantly feldspar, quartz, and mica matrix.
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Figure 5.1. Sample K01 contains disseminated pyrite (size: about 2mm). Mon-
zonite from the Kori Kollo mine, Bolivia.

Table 5.1. K01 mineralogical summary (Emond, 2007)

Method Matrix Compo-
sition

Pyrite Vol.
fraction

Pyrite radius

Optical sericite, quartz 10% 1− 2.5mm
X-ray quantitative 7% 478 inclusions. 90%

volume from 0.5 to
1.3mm

X-ray quantitative - Predominantly 1 to
2mm with smaller
grains



39

Figure 5.2. X-ray tomography image of Sample K01, Korri Kollo, Bolivia, pyrite
in a sericite and quartz matrix. The image has been optimized to show the pyrite
(Emond, 2007).
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Sample #13 is shown in Figure 5.3 and Figure 5.4. The shiny spots are

chalcopyrite and pyrite inclusions. All sulfides are introduced during micro vein

formation (introduction of quartz). Later during supergene enrichment chalcopy-

rite is partially replaced by chalcocite. Pyrite is not attacked by chalcopyrite.

K-feldspar phenocrysts are altered to muscovite. The rest of the rock consists of

K-feldspar and quartz.

5.2 QEMSCAN Measurement

Five samples (#13, TC-7F, B5, WL5 and WL3) have been analyzed using the

QEMSCAN at the University of Utah department of Geology and Geophysics.

A detailed mineralogical analysis of samples can be obtained with QEMSCAN.

Four Energy Dispersive Spectrometry (EDS) detectors are used simultaneously to

decrease the time required to analyze samples. Polished samples are coated with

a thin layer of carbon, scanned for mineral composition and size. A color coded

image of mineral composition is created as well as a quantitative measurement of

mineral abundance and inclusion size.

Figure 5.5 of Sample #13 is acquired by QEMSCAN measurement. It is a

representative section of sample #13. The sample contains 3.09% chalcocite, 0.46%

chalcopyrite, 0.02% pyrrhotite, 30.2% quartz and 64.4% feldspars and mica.

5.3 Complex Resistivity Measurements

Complex resistivity measurements were obtained from Zonge Engineering and

Research Organization Inc, Tuscon, Arizona. The frequency domain data were

collected over a range from about 0.03 Hz to about 2300 Hz. The time domain

data were measured at frequencies of 0.125 Hz, 1 Hz and 32 Hz. Samples #13,

WL3 and TC-7F were measured twice in two orthogonal directions. This was done

to test whether the anisotropy of the bedding in these samples would have an

actual effect on the measured resistivity. Analyzing these samples with the GDP16

required special preparation procedures. First, each sample had to be trimmed to

approximately one inch square to fit appropriately between the current electrodes.

Second, if the sample was measured dry, the resistivity data collected would be

meaningless, because the electrodes and the rock sample are not well contacted.

Thus, in order for the electrolytes to flow through the porous volume of the sample,
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Figure 5.3. Porphyry copper deposit from Sarchesme, Iran with disseminated chal-
cocite (Cu2S), chalcopyrite (CuFeS2), and pyrite (FeS2). The first measurement
is in the labeled direction.

it had to be soaked in water for approximately three days before the measurement.

Additionally, the electrodes and the rock samples should be contacted in copper

sulfate solution for about 10 minutes before starting the measurement. These two

procedures were followed for each sample that was measured. The equipment used

to perform these measurements is shown in Figures 5.6 and 5.7.

The plots of the raw resistivity data in the frequency domain recorded at Zonge

are shown in Figure 5.8 and 5.9 for samples K01 and #13, respectively. Two sets

of data were recorded for these two samples. Unfortunately, one difficulty arises

when using the GDP16 to record complex resistivity, which is that the resistivity

measurements for a given sample tend to shift to lower values as more measurements

are made. This may be explained by the increased penetration of the electrolytes

via the copper sulfate solution flowing into the porous regions of the rock sample

as time passes. At the same time, the measured resistivity values also may increase

as time passes because of the porous membranes getting dry.
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Figure 5.4. The second measurement of sample #13 is in the labeled direction.
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Figure 5.5. A representative QEMSCAN section of the sample #13
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Figure 5.6. Recording system used at Zonge Engineering and Research Organiza-
tion Inc. to obtain EM measurements.
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Figure 5.7. Sample holder, rock sample, and receiving and transmitting electrodes.
Note the rubber band to prevent surface current flow across the rock sample surface.

rock sample 
porous 
membranes 
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Figure 5.8. The plot of the resistivity data in the frequency domain for samples
K01.
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Figure 5.9. The plot of the resistivity data in the frequency domain for sample
#13 in the first direction.



CHAPTER 6

INVERSION RESULT

This chapter discusses the inversion results based on the time-domain resistivity

which is converted from frequency-domain resistivity by using the Fourier Trans-

form. The routine based on the regularized conjugate-gradient (RGC) method

(Zhdanov, 2002) was used for GEMTIP model inversion. As mentioned in Chapter

3, the RCG method, an iterative solver, updates the model parameters at each

iteration using the conjugate-gradient directions.

Additional information about the samples was obtained by using the QEM-

SCAN and it was compared to the inversion results. In the case of the GEMTIP

inversion, the recovered parameters are surface polarizability coefficient (α), the

decay coefficient (C) and volume fraction (f). In the case of samples K01 and #13,

the spherical GEMTIP model is used.

6.1 Sample K01

Sample K01 is a dacite from the Kori Kollo mine in Bolivia with disseminated

pyrite and a predominantly sericite and quartz matrix. The diameter of the pyrite

inclusions in this sample is 0.5− 5mm.

Figure 6.1 presents the plots of both the predicted and the measured time

domain resistivity data and the misfit versus by iteration number. The resistivity

is plotted over the time range from 10−3 to 1 second. Figure 6.2 presents the plot

of the misfit functional in the model space formed by two parameters, α and C, for

different iteration steps. After inversion, the surface polarizability (α) and decay

coefficients (C) are determined. The final recovered values for α and C are 0.4 and

0.7.

Table 6.1 shows inversion parameters for sample K01 using the spherical GEMTIP

model. The initial values for decay coefficients (C) and polarizability (α) are both

0.1.
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Figure 6.1. Sample K01: a) Measured and predicted effective resistivity curves
plotted against time. b) Convergence of the misfit functional for a given number of
iterations.
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Figure 6.2. The misfit functional for sample K01, plotted with shaded isolines
signifying the direction of decreasing misfit. The model steps are plotted using red
solid dots. The final model is shown as a solid triangle.

Table 6.1. GEMTIP inversion parameters.

Variable Units Initial Recovered
ρmatrix Ωm 81 -
f - 0.07 -
C Seconds 0.1 0.7
ρphase1 Ω m 0.3 -
a mm 2 -

α Ω·m2

seccl
0.1 0.4
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6.2 Sample #13

The rock sample #13 is from the Sar Cheshmeh Mine bench 2475 in Iran. This

sample contains 3.6%Cu2S (black dots). There is quartz in the veins.

Figure 6.3 presents the plot of both the predicted and the measured time domain

resistivity data versus time, and the misfit as a function of the iteration number.

The predicted data fit the measured data well. The resistivity is plotted over the

time range from 10−3 to 1 second. Figure 6.4 presents the plots of the misfit

functional in the model space formed by two parameters: surface polarizability (α)

and decay coefficients (C).

The parameters of the spherical GEMTIP model for sample #13 are summarized

in Table 6.2. By minimizing the Tikhonov parametric functional using the RCG

method, the recovered value of the surface polarizability (α) equals 0.59, and the

recovered value of decay coefficients (C) equals 0.47. The initial values for decay

coefficients (C) and polarizability (α) are both 0.1.

Figure 6.3. Sample #13: a) Measured and predicted effective resistivity plotted
against time. b) Convergence of misfit functional for a given number of iterations.
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Figure 6.4. The misfit functional for sample #13, plotted with shaded isolines
signifying the direction of decreasing misfit. The model steps are plotted using
solid dots. And the final model shows as solid triangle.

Table 6.2. GEMTIP inversion parameters.

Variable Units Initial Recovered
ρmatrix Ωm 163 -
f - 0.05 -
C Seconds 0.1 0.59
ρphase1 Ω m 0.1 -
a mm 2 -

α Ω·m2

seccl
0.1 0.47
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CHAPTER 7

CONCLUSIONS

I have evaluated the induced polarization effect in the time domain. Based on

the transformation of the complex resistivity data from the frequency domain into

the time domain data, it is shown that the IP effect in the time domain is different

than the frequency domain. In the time domain, the IP effect is characterized

by the change of the slope of the resistivity curve, as a function of time. It is

demonstrated that the inversion results can be used as a mineral discrimination

technique. Forward modeling has been done by using both the Cole-Cole model

and GEMTIP model to study the IP effect in the time domain. The inversion

result shows that the GEMTIP model is useful for understanding the composition

of rocks.

Three porphyry system rock samples containing disseminated sulfides were mea-

sured to obtain the complex resistivity in the frequency domain. The frequency do-

main data were transformed into the time domain using a Fourier Transformation.

This process was shown to provide useful information for GEMTIP model analysis

of the rock samples.

In future the method can be tested on different types of rock samples. Further

study may be done in testing the model with two or three different sulfide minerals.

Additionally, more work should be done in application of the elliptical GEMTIP to

study the influence of the ellipticity of the inclusions on the IP effect.
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